010001

SOUTHWEST RESEARCH INSTITUTE

NUCLEAR PROJECT CLIENT: Division 20 TASK ORDER: 040616-1

SRR: 26046 SDG: 246046 CASE: CNWRA

VTSR: June 15, 2004

PROJECT#: 06002.01.081

FINAL REPORT

SAMPLE ANALYSIS DATA SHEET

010002

Lab Name: Southwest Research Institute

Client: Division 20

Lab Code: SwRI

Date Received: 06/16/04

Matrix: Liquid

Project No.: 20.06002.01.081

SRR: 26046

TO: 040616-1

		
	Lab	Chloride
Sample ID	System ID	Results (mg/L)
Prep Blank		<0.1
Lab Control		202
True Value		200
Recovery		101%
BL-5A	246046	2048
Duplicate result	246046	2035
RPD	246046	0.64%
Spike result	246046	4040
Spike added	246046	2000
Recovery	246046	99.6%
BL-5B	246047	2907
BL-5C	246048	4038
BL-5D	246049	6280
GS60-A	246050	7484
GS60-B	246051	8053
GS60-C	246052	8329
GS60-D	246053	9077
GS60-E	246054	9931
GS95-A	246055	3151
GS95-B	246056	5143
GS95-C	246057	7602
GS95-D	246058	11716
GS95-E	246059	15287
GS95-F	246060	15583

Reporting Limit:

100 mg/L

SAMPLE ANALYSIS DATA SHEET 010003

Sample ID BL-5A

Lab Name: Southwest Research Institute

Client: Division 20

Lab Code: SwRI

Date Received: 06/16/04

Matrix: Liquid

Project No.: 06002.01.081

Lab System ID: 246046

SRR: 26046

	Sample	Reporting
Analysis	Result (mg/L)	Limit (mg/L)
Aluminum	<1.5	1.5
Boron	<1	1
Calcium	<2.5	2.5
Chromium	0.808	0.25
Iron	15.4	1.5
Lithium	< 0.25	0.25
Magnesium	<1.5	1.5
Manganese	0.660	0.25
Nickel	3.63	0.25
Phosphorus	<1.5	1.5
Potassium	1747	10
Silicon	2.04	1.5
Sodium	273	10
Titanium	<0.25	0.25
Uranium	<3.75	3.75
Zirconium	< 0.25	0.25

SAMPLE ANALYSIS DATA SHEET

010004

Sample ID BL-5B

Lab Name: Southwest Research Institute

Client: Division 20

Lab Code: SwRI

Date Received: 06/16/04

Matrix: Liquid

Project No.: 06002.01.081

Lab System ID: 246047

SRR: 26046

	Sample	Reporting
Analysis	Result (mg/L)	Limit (mg/L)
Aluminum	<1.5	1.5
Boron	<1	1
Calcium	<2.5	2.5
Chromium	<0.25	0.25
Iron	11.4	1.5
Lithium	<0.25	0.25
Magnesium	<1.5	1.5
Manganese	0.674	0.25
Nickel	3.62	0.25
Phosphorus	<1.5	1.5
Potassium	2174	10
Silicon	3.76	1.5
Sodium	590	10
Titanium	<0.25	0.25
Uranium	<3.75	3.75
Zirconium	<0.25	0.25

SAMPLE ANALYSIS DATA SHEET

010005

Sample ID BL-5C

Lab Name: Southwest Research Institute

Client: Division 20

Lab Code: SwRI

Date Received: 06/16/04

Matrix: Liquid

Project No.: 06002.01.081

Lab System ID: 246048

SRR: 26046

	Sample	Reporting
Analysis	Result (mg/L)	Limit (mg/L)
Aluminum	<1.5	1.5
Boron	1.17	1
Calcium	<2.5	2.5
Chromium	<0.25	0.25
Iron	8.60	1.5
Lithium	<0.25	0.25
Magnesium	<1.5	1.5
Manganese	0.692	0.25
Nickel	3.74	0.25
Phosphorus	<1.5	1.5
Potassium	2594	10
Silicon	5.52	1.5
Sodium	1049	10
Titanium	<0.25	0.25
Uranium	<3.75	3.75
Zirconium	<0.25	0.25

DUPLICATE SUMMARY

010006

Sample ID BL-5C

Lab Name: Southwest Research Institute

Client: Division 20

Lab Code: SwRI

Date Received: 06/16/04

Matrix: Liquid

Project No.: 06002.01.081

Lab System ID: 246048

SRR: 26046

	Sample	Duplicate	
Analysis	Result (mg/L)	Result (mg/L)	RPD
Aluminum	<1.5	<1.5	0.00%
Boron	1.17	1.13	3.57%
Calcium	<2.5	<2.5	0.00%
Chromium	<0.25	<0.25	0.00%
Iron	8.60	8.10	5.99%
Lithium	<0.25	<0.25	0.00%
Magnesium	<1.5	<1.5	0.00%
Manganese	0.692	0.678	2.05%
Nickel	3.74	3.61	3.57%
Phosphorus	<1.5	<1.5	0.00%
Potassium	2594	2640	1.78%
Silicon	5.52	5.43	1.64%
Sodium	1049	1065	1.49%
Titanium	<0.25	<0.25	0.00%
Uranium	<3.75	<3.75	0.00%
Zirconium	< 0.25	<0.25	0.00%

SAMPLE ANALYSIS DATA SHEET

010007

Sample ID BL-5D

Lab Name: Southwest Research Institute

Client: Division 20

Lab Code: SwRI

Date Received: 06/16/04

Matrix: Liquid

Project No.: 06002.01.081

Lab System ID: 246049

SRR: 26046

	Sample	Reporting
Analysis	Result (mg/L)	Limit (mg/L)
Aluminum	<1.5	1.5
Boron	1.65	1
Calcium	3.22	2.5
Chromium	<0.25	0.25
Iron	5.32	1.5
Lithium	<0.25	0.25
Magnesium	<1.5	1.5
Manganese	0.772	0.25
Nickel	4.09	0.25
Phosphorus	<1.5	1.5
Potassium	3355	10
Silicon	7.66	1.5
Sodium	1917	10
Titanium	<0.25	0.25
Uranium	<3.75	3.75
Zirconium	<0.25	0.25

SOUTHWEST RESEARCH INSTITUTE MATRIX SPIKE SUMMARY 010008

Sample ID BL-5D

Lab Name: Southwest Research Institute

Client: Division 20

Lab Code: SwRI

Date Received: 06/16/04

Matrix: Liquid

Project No.: 06002.01.081

Lab System ID: 246049

SRR: 26046

TO: 040616-1

	Sample	Spike	Spike	
Analysis	Result (mg/L)	Result (mg/L)	Added (mg/L)	Recovery
Aluminum	<1.5	101	100	101.3%
Boron	1.65	206	200	102.0%
Calcium	3.22	1028	1000	102.5%
Chromium	< 0.25	9.99	10.0	99.9%
Iron	5.32	60.2	50.0	109.8%
Lithium	< 0.25	203	200	101.7%
Magnesium	<1.5	1021	1000	102.1%
Manganese	0.772	26.2	25.0	101.8%
Nickel	4.09	28.7	25.0	98.4%
Phosphorus	<1.5	206	200	102.9%
Potassium	3355	4421	1000	106.6%
Silicon	7.66	211	200	101.7%
Sodium	1917	2939	1000	102.3%
Titanium	<0.25	199	200	99.5%
Uranium	<3.75	209	200	104.4%
Zirconium	<0.25	198	200	99.0%

NA- Not Applicable.

SAMPLE ANALYSIS DATA SHEET

010009

Sample ID GS60-A

Lab Name: Southwest Research Institute

Client: Division 20

Lab Code: SwRI

Date Received: 06/16/04

Matrix: Liquid

Project No.: 06002.01.081

Lab System ID: 246050

SRR: 26046

	Sample	Reporting
Analysis	Result (mg/L)	Limit (mg/L)
Aluminum	<1.5	1.5
Boron	<1	1
Calcium	<2.5	2.5
Chromium	<0.25	0.25
Iron	<1.5	1.5
Lithium	<0.25	0.25
Magnesium	<1.5	1.5
Manganese	<0.25	0.25
Nickel	<0.25	0.25
Phosphorus	<1.5	1.5
Potassium	1924	10
Silicon	2.70	1.5
Sodium	3737	10
Titanium	<0.25	0.25
Uranium	<3.75	3.75
Zirconium	<0.25	0.25

SAMPLE ANALYSIS DATA SHEET

010010
Sample ID

Lab Name: Southwest Research Institute

Client: Division 20

Lab Code: SwRI

Date Received: 06/16/04

Matrix: Liquid

Project No.: 06002.01.081

GS60-B

Lab System ID: 246051

SRR: 26046

Γ	Sample	Reporting
Analysis	Result (mg/L)	Limit (mg/L)
Aluminum	<1.5	1.5
Boron	<1	1
Calcium	<2.5	2.5
Chromium	<0.25	0.25
Iron	<1.5	1.5
Lithium	<0.25	0.25
Magnesium	<1.5	1.5
Manganese	<0.25	0.25
Nickel	<0.25	0.25
Phosphorus	<1.5	1.5
Potassium	2011	10
Silicon	3.09	1.5
Sodium	3923	10
Titanium	<0.25	0.25
Uranium	<3.75	3.75
Zirconium	<0.25	0.25

SAMPLE ANALYSIS DATA SHEET

010011

Sample ID GS60-C

Lab Name: Southwest Research Institute

Client: Division 20

Lab Code: SwRI

Date Received: 06/16/04

Matrix: Liquid

Project No.: 06002.01.081

Lab System ID: 246052

SRR: 26046

	Sample	Reporting
Analysis	Result (mg/L)	Limit (mg/L)
Aluminum	<1.5	1.5
Boron	<1	1
Calcium	<2.5	2.5
Chromium	<0.25	0.25
Iron	<1.5	1.5
Lithium	<0.25	0.25
Magnesium	<1.5	1.5
Manganese	<0.25	0.25
Nickel	<0.25	0.25
Phosphorus	<1.5	1.5
Potassium	2243	10
Silicon	3.54	1.5
Sodium	4226	10
Titanium	<0.25	0.25
Uranium	<3.75	3.75
Zirconium	< 0.25	0.25

010012 SAMPLE ANALYSIS DATA SHEET

> Sample ID GS60-D

Lab Name: Southwest Research Institute

Client: Division 20

Lab Code: SwRI

Date Received: 06/16/04

Matrix: Liquid

Project No.: 06002.01.081

Lab System ID: 246053

SRR: 26046

	Sample	Reporting
Analysis	Result (mg/L)	Limit (mg/L)
Aluminum	<1.5	1.5
Boron	<1	1
Calcium	<2.5	2.5
Chromium	<0.25	0.25
Iron	<1.5	1.5
Lithium	< 0.25	0.25
Magnesium	<1.5	1.5
Manganese	<0.25	0.25
Nickel	<0.25	0.25
Phosphorus	<1.5	1.5
Potassium	2509	10
Silicon	3.80	1.5
Sodium	4604	10
Titanium	<0.25	0.25
Uranium	<3.75	3.75
Zirconium	<0.25	0.25

SAMPLE ANALYSIS DATA SHEET

010013

Sample ID GS60-E

Client: Division 20

Lab Code: SwRI

Date Received: 06/16/04

Matrix: Liquid

Project No.: 06002.01.081

Lab System ID: 246054

Lab Name: Southwest Research Institute

SRR: 26046

	Sample	Reporting
Analysis	Result (mg/L)	Limit (mg/L)
Aluminum	<1.5	1.5
Boron	<1	1
Calcium	<2.5	2.5
Chromium	<0.25	0.25
Iron	<1.5	1.5
Lithium	< 0.25	0.25
Magnesium	<1.5	1.5
Manganese	<0.25	0.25
Nickel	0.410	0.25
Phosphorus	<1.5	1.5
Potassium	2586	10
Silicon	4.57	1.5
Sodium	4655	10
Titanium	< 0.25	0.25
Uranium	<3.75	3.75
Zirconium	< 0.25	0.25

SAMPLE ANALYSIS DATA SHEET

Sample ID 10014

Lab Name: Southwest Research Institute

Client: Division 20

Lab Code: SwRI

Date Received: 06/16/04

Matrix: Liquid

Project No.: 06002.01.081

Lab System ID: 246055

SRR: 26046

	Sample	Reporting
Analysis	Result (mg/L)	Limit (mg/L)
Aluminum	<1.5	1.5
Boron	<1	1
Calcium	<2.5	2.5
Chromium	<0.25	0.25
Iron	<1.5	1.5
Lithium	< 0.25	0.25
Magnesium	<1.5	1.5
Manganese	<0.25	0.25
Nickel	<0.25	0.25
Phosphorus	<1.5	1.5
Potassium	1451	10
Silicon	4.29	1.5
Sodium	1212	10
Titanium	<0.25	0.25
Uranium	<3.75	3.75
Zirconium	<0.25	0.25

SAMPLE ANALYSIS DATA SHEET

010015

Sample ID GS95-B

Lab Name: Southwest Research Institute

Client: Division 20

Lab Code: SwRI

Date Received: 06/16/04

Matrix: Liquid

Project No.: 06002.01.081

Lab System ID: 246056

SRR: 26046

	Sample	Reporting
Analysis	Result (mg/L)	Limit (mg/L)
Aluminum	<1.5	1.5
Boron	<1	1
Calcium	<2.5	2.5
Chromium	<0.25	0.25
Iron	<1.5	1.5
Lithium	<0.25	0.25
Magnesium	<1.5	1.5
Manganese	<0.25	0.25
Nickel	<0.25	0.25
Phosphorus	<1.5	1.5
Potassium	1807	10
Silicon	6.74	1.5
Sodium	2250	10
Titanium	<0.25	0.25
Uranium	<3.75	3.75
Zirconium	<0.25	0.25

SAMPLE ANALYSIS DATA SHEET

010016

Sample ID GS95-C

Lab Name: Southwest Research Institute

Client: Division 20

Lab Code: SwRI

Date Received: 06/16/04

Matrix: Liquid

Project No.: 06002.01.081

Lab System ID: 246057

SRR: 26046

	Sample	Reporting
Analysis	Result (mg/L)	Limit (mg/L)
Aluminum	<1.5	1.5
Boron	1.15	1
Calcium	<2.5	2.5
Chromium	<0.25	0.25
Iron	<1.5	1.5
Lithium	< 0.25	0.25
Magnesium	<1.5	1.5
Manganese	<0.25	0.25
Nickel	<0.25	0.25
Phosphorus	<1.5	1.5
Potassium	2217	10
Silicon	9.70	1.5
Sodium	3485	10
Titanium	<0.25	0.25
Uranium	<3.75	3.75
Zirconium	<0.25	0.25

SAMPLE ANALYSIS DATA SHEET

010017

Sample ID GS95-D

Lab Name: Southwest Research Institute

Client: Division 20

Lab Code: SwRI

Date Received: 06/16/04

Matrix: Liquid

Project No.: 06002.01.081

Lab System ID: 246058

SRR: 26046

	Sample	Reporting
Analysis	Result (mg/L)	Limit (mg/L)
Aluminum	<1.5	1.5
Boron	1.54	1
Calcium	<2.5	2.5
Chromium	<0.25	0.25
Iron	<1.5	1.5
Lithium	<0.25	0.25
Magnesium	<1.5	1.5
Manganese	<0.25	0.25
Nickel	<0.25	0.25
Phosphorus	<1.5	1.5
Potassium	2696	10
Silicon	15.3	1.5
Sodium	5557	10
Titanium	<0.25	0.25
Uranium	<3.75	3.75
Zirconium	<0.25	0.25

SAMPLE ANALYSIS DATA SHEET 010018

Sample ID GS95-E

Lab Name: Southwest Research Institute

Client: Division 20

Lab Code: SwRI

Date Received: 06/16/04

Matrix: Liquid

Project No.: 06002.01.081

Lab System ID: 246059

SRR: 26046

	Sample	Reporting
Analysis	Result (mg/L)	Limit (mg/L)
Aluminum	<1.5	1.5
Boron	1.97	1
Calcium	<2.5	2.5
Chromium	<0.25	0.25
Iron	<1.5	1.5
Lithium	0.303	0.25
Magnesium	<1.5	1.5
Manganese	<0.25	0.25
Nickel	<0.25	0.25
Phosphorus	<1.5	1.5
Potassium	3150	10
Silicon	20.6	1.5
Sodium	7514	10
Titanium	<0.25	0.25
Uranium	<3.75	3.75
Zirconium	<0.25	0.25

SAMPLE ANALYSIS DATA SHEET

010019

Sample ID GS95-F

Lab Name: Southwest Research Institute

Client: Division 20

Lab Code: SwRI

Date Received: 06/16/04

Matrix: Liquid

Project No.: 06002.01.081

Lab System ID: 246060

SRR: 26046

	Sample	Reporting
Analysis	Result (mg/L)	Limit (mg/L)
Aluminum	<1.5	1.5
Boron	1.88	1
Calcium	<2.5	2.5
Chromium	<0.25	0.25
Iron	<1.5	1.5
Lithium	0.309	0.25
Magnesium	<1.5	1.5
Manganese	<0.25	0.25
Nickel	<0.25	0.25
Phosphorus	<1.5	1.5
Potassium	3108	10
Silicon	20.7	1.5
Sodium	7476	10
Titanium	<0.25	0.25
Uranium	<3.75	3.75
Zirconium	<0.25	0.25

SOUTHWEST RESEARCH INSTITUTE LABORATORY CONTROL SAMPLE 010020

Sample ID LCSW

Lab Name: Southwest Research Institute

Client: Division 20

Lab Code: SwRI

Date Received: NA

Matrix: Liquid

Project No.: 06002.01.081

Lab System ID: NA

SRR: 26046

TO: 040616-1

	Sample	True	
Analysis	Result (mg/L)	Value (mg/L)	Recovery
Aluminum	1.95	2.00	97.5%
Boron	4.01	4.00	100.2%
Calcium	20.5	20.0	102.7%
Chromium	0.195	0.200	97.7%
Iron	1.12	1.00	111.9%
Lithium	3.56	4.00	89.1%
Magnesium	20.4	20.0	101.8%
Manganese	0.507	0.500	101.3%
Nickel	0.492	0.500	98.5%
Phosphorus	4.01	4.00	100.2%
Potassium	20.0	20.0	99.9%
Silicon	4.03	4.00	100.7%
Sodium	20.1	20.0	100.4%
Titanium	3.93	4.00	98.2%
Uranium	4.11	4.00	102.7%
Zirconium	3.88	4.00	97.0%

NA- Not Applicable.

BLANK SUMMARY

010021

Sample ID PBW

Lab Name: Southwest Research Institute

Client: Division 20

Lab Code: SwRI

Date Received: NA

Matrix: Liquid

Project No.: 06002.01.081

Lab System ID: NA

SRR: 26046

TO: 040616-1

	Sample	Reporting
Analysis	Result (mg/L)	Limit (mg/L)
Aluminum	<1.5	1.5
Boron	<1	1
Calcium	<2.5	2.5
Chromium	<0.25	0.25
Iron	<1.5	1.5
Lithium	<0.25	0.25
Magnesium	<1.5	1.5
Manganese	<0.25	0.25
Nickel	<0.25	0.25
Phosphorus	<1.5	1.5
Potassium	<10	10
Silicon	<1.5	1.5
Sodium	<10	10
Titanium	<0.25	0.25
Uranium	<3.75	3.75
Zirconium	<0.25	0.25

NA- Not Applicable.

NUCLEAR PROJECT CLIENT: Division 20 TASK ORDER: 040616-1

SRR: 26046 SDG: 246046 CASE: CNWRA VTSR: June 15, 2004

PROJECT#: 06002.01.081

Task Orders/01-QPP-015

Southwest Research Institute

Laboratory Task Order

TO #: 040616-1 Revision: 1

SDG: 246046 SRR #'s: 26046 VTSR: 06/16/04 Client(s): DIV 20 CASE: CNWRA

010023

Project(s): 06002.01.081 Manager(s): DAMMANN, MIKE

To PM: 06/28/04 To QA: 09/14/04 To Client: 09/15/04

Instructions

DIVISION 20 - CNWRA. 14-day TAT. Using 13-day TAT for report/PM, QAU, 13-day TAT for hardcopy (subject to change). Point of Contact is Yi-Ming Pan (x6640). ICP analysis of test solutions for glass leaching study - Al, B, Ca, Cr, Chlorine, Fe, K, Li, Mg, Mn, Na, Ni, P, Si, Ti, U and Zr. Using IC-SwRI test code for CHLORINE. Solutions are 1000 ppm KCI depleted U238 specimen. Work is 10 CFR 50, Part 21, Appendix B. CONTACT Charlie Butcher (ext. 5928, pager 271-5172) BEFORE STARTING ANY WORK ON THIS TASK ORDER. CONTACT PM WITH ANY QUESTIONS. revision 1: updated task order. (dr091304)

Documents Related to this task order: 11019[COC 26046]

Test: DIL-DILUTION Holding: 28 days from CED

Section: METALPREP Prep, Dilution - NOTE SAMPLE QUANTITY Cnt: 15

System ID	Туре	Cont	Matrix	Customer ID	CED	Method Date
246046		1	Liquid	BL-5A	14 May 04	11 Jun 04
246046		2	Liquid	BL-5A	14 May 04	11 Jun 04
246047		1	Liquid	BL-5B	15 May 04	12 Jun 04
246047		2	Liquid	BL-5B	15 May 04	12 Jun 04
246048		1	Liquid	BL-5C	16 May 04	13 Jun 04
246048		2	Liquid	BL-5C	16 May 04	13 Jun 04
246049		1	Liquid	BL-5D	17 May 04	14 Jun 04
246049		2	Liquid	BL-5D	17 May 04	14 Jun 04
246050		1	Liquid	GS60-A	14 May 04	11 Jun 04
246050		2	Liquid	GS60-A	14 May 04	11 Jun 04
246051		1	Liquid	GS60-B	15 May 04	12 Jun 04
246051		2	Liquid	GS60-B	15 May 04	12 Jun 04
246052		1	Liquid	GS60-C	16 May 04	13 Jun 04
246052		2	Liquid	GS60-C	16 May 04	13 Jun 04
246053		1	Liquid	GS60-D	17 May 04	14 Jun 04
246053		2	Liquid	GS60-D	17 May 04	14 Jun 04
246054		1	Liquid	GS60-E	18 May 04	15 Jun 04
246055		1	Liquid	GS95-A	14 May 04	11 Jun 04
246055		2	Liquid	GS95-A	14 May 04	11 Jun 04
246056		1	Liquid	GS95-B	15 May 04	12 Jun 04
246056		2	Liquid	GS95-B	15 May 04	12 Jun 04
246057		1	Liquid	GS95-C	16 May 04	13 Jun 04
246057		2	Liquid	GS95-C	16 May 04	13 Jun 04
246058		1	Liquid	GS95-D	17 May 04	14 Jun 04
246058		2	Liquid	GS95-D	17 May 04	14 Jun 04
246059		1	Liquid	GS95-E	18 May 04	15 Jun 04
246060		1	Liquid	GS95-F	19 May 04	16 Jun 04
246060		2	Liquid	GS95-F	19 May 04	16 Jun 04

Test: IC-SWRI

Holding: 28 days from CED

Ion Chromatography by SwRl Method (Chlorine) - NOTE SAMPLE QUANTITY Section: WETCHEM

System ID Typ	oe Cont	Matrix	Customer ID	CED	Method Date
246046	1	Liquid	BL-5A	14 May 04	11 Jun 04
246046	2	Liquid	BL-5A	14 May 04	11 Jun 04
246047	1	Liquid	BL-5B	15 May 04	12 Jun 04
246047	2	Liquid	BL-5B	15 May 04	12 Jun 04
246048	1	Liquid	BL-5C	16 May 04	13 Jun 04

Southwest Research Institute

Laboratory Task Order TO #: 040616-1 Revision: 1

010024

SDG: 246046 VTSR: 06/16/04 CASE: CNWRA

SRR #'s: 26046 Client(s): DIV 20 Project(s): 06002.01.081 Manager(s): DAMMANN, MIKE To PM: 06/28/04 To QA: 09/14/04 To Client: 09/15/04

System ID	Type	Cont	Matrix	Customer ID	CED	Method Date
246048		2	Liquid	BL-5C	16 May 04	13 Jun 04
246049		1	Liquid	BL-5D	17 May 04	14 Jun 04
246049		2	Liquid	BL-5D	17 May 04	14 Jun 04
246050		1	Liquid	GS60-A	14 May 04	11 Jun 04
246050		2	Liquid	GS60-A	14 May 04	11 Jun 04
246051		1	Liquid	GS60-B	15 May 04	12 Jun 04
246051		2	Liquid	GS60-B	15 May 04	12 Jun 04
246052		1	Liquid	GS60-C	16 May 04	13 Jun 04
246052		2	Liquid	GS60-C	16 May 04	13 Jun 04
246053		1	Liquid	GS60-D	17 May 04	14 Jun 04
246053		2	Liquid	GS60-D	17 May 04	14 Jun 04
246054		1	Liquid	GS60-E	18 May 04	15 Jun 04
246055		1	Liquid	GS95-A	14 May 04	11 Jun 04
246055		2	Liquid	GS95-A	14 May 04	11 Jun 04
246056		1	Liquid	GS95-B	15 May 04	12 Jun 04
246056		2	Liquid	GS95-B	15 May 04	12 Jun 04
246057		1	Liquid	GS95-C	16 May 04	13 Jun 04
246057		2	Liquid	GS95-C	16 May 04	13 Jun 04
246058		1	Liquid	GS95-D	17 May 04	14 Jun 04
246058		2	Liquid	GS95-D	17 May 04	14 Jun 04
246059		1	Liquid	GS95-E	18 May 04	15 Jun 04
246060		1	Liquid	GS95-F	19 May 04	16 Jun 04
246060		2	Liquid	GS95-F	19 May 04	16 Jun 04

Test: ICP-SWRI Holding: 180 days from CED

ICP Analysis by SwRl Method - NOTE SAMPLE QUANTITY Section: METALS

Cnt: 15

System ID Type	Cont	Matrix	Customer ID		CED	Method Date
246046	1	Liquid	BL-5A	14	May 04	10 Nov 04
246046	2	Liquid	BL-5A	14	May 04	10 Nov 04
246047	1	Liquid	BL-5B	15	May 04	11 Nov 04
246047	2	Liquid	BL-5B	15	May 04	11 Nov 04
246048	1	Liquid	BL-5C	16	May 04	12 Nov 04
246048	2	Liquid	BL-5C	16	May 04	12 Nov 04
246049	1	Liquid	BL-5D	17	May 04	13 Nov 04
246049	2	Liquid	BL-5D	17	May 04	13 Nov 04
246050	1	Liquid	GS60-A	14	May 04	10 Nov 04
246050	2	Liquid	GS60-A	14	May 04	10 Nov 04
246051	1	Liquid	GS60-B	15	May 04	11 Nov 04
246051	2	Liquid	GS60-B	15	May 04	11 Nov 04
246052	1	Liquid	GS60-C	16	May 04	12 Nov 04
246052	2	Liquid	GS60-C	16	May 04	12 Nov 04
246053	1	Liquid	GS60-D	17	May 04	13 Nov 04
246053	2	Liquid	GS60-D	17	May 04	13 Nov 04
246054	1	Liquid	GS60-E	18	May 04	14 Nov 04
246055	1	Liquid	GS95-A	14	May 04	10 Nov 04
246055	2	Liquid	GS95-A	14	May 04	10 Nov 04
246056	1	Liquid	GS95-B	15	May 04	11 Nov 04
246056	2	Liquid	GS95-B	15	May 04	11 Nov 04
246057	1	Liquid	GS95-C	16	May 04	12 Nov 04
246057	2	Liquid	GS95-C	16	May 04	12 Nov 04
246058	1	Liquid	GS95-D	17	May 04	13 Nov 04

Southwest Research Institute

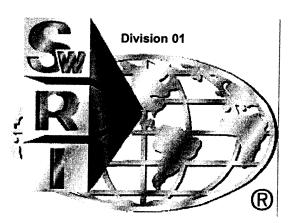
SDG: 246046 VTSR: 06/16/04 CASE: CNWRA

Laboratory Task Order TO #: 040616-1 Revision: 1

SRR #'s: 26046 Client(s): DIV 20 010025

Project(s): 06002.01.081 Manager(s): DAMMANN, MIKE To PM: 06/28/04 To QA: 09/14/04 To Client: 09/15/04

System ID	Type Con	Matrix	Customer ID		CED	Method Date
246058	2	Liquid	GS95-D	17	May 04	13 Nov 04
246059	1	Liquid	GS95-E	18	May 04	14 Nov 04
246060	1	Liquid	GS95-F	19	May 04	15 Nov 04
246060	2	Liquid	GS95-F	19	May 04	15 Nov 04


CONTROLLED COPY

IF STAMP IS NOT RED, THIS DOCUMENT IS UNCONTROL! FO

01-QPP-015 010026 Division 01

Division 01 Revision 4 November 2002

Document No.

Chemistry and Chemical Engineering Division

QUALITY PROJECT PLAN FOR

PERFORMANCE OF CHEMICAL ANALYSES FOR COMMERCIAL NUCLEAR POWER PLANTS WITHIN THE DEPARTMENT OF ANALYTICAL AND ENVIRONMENTAL CHEMISTRY

DIV. 20 SRR #26046 PROJECT #06002.01.081 CASE: CNWRA VTSR: 06/15/04 1430

SOUTHWEST RESEARCH INSTITUTE
Chemistry and Chemical Engineering Division
6220 CULEBRA ROAD, SAN ANTONIO, TEXAS 78238

CHEMISTRY AND CHEMICAL ENGINEERING DIVISION Division 01 Quality Project Plan

Quality Assurance Engineer

01-QPP-015 Division 01 Rev 4/November 2002 Page i

QUALITY PROJECT PLAN FOR PERFORMANCE OF CHEMICAL ANALYSES FOR COMMERCIAL NUCLEAR POWER PLANTS WITHIN THE DEPARTMENT OF ANALYTICAL AND ENVIONMENTAL CHEMISTRY

SWRI AUTHORIZATION SIGNATORIES

This is to certify that this Quality Project Plan of Southwest Research Institute (SwRI) has been reviewed and approved by the following personnel:

Joann Bowl	10/30/02
JQANN BOYD (210) 522-2169 Quality Assurance Manager	DATE
K. Kung	10/30/02 DATE
REZA KARIMI (210) 522-2412 Director, Department of Analytical and Environmental Chemistry	DATE
Ning Onll	10/30/02
MCHAEL G. MACNAUGHTON (210) 522-5162	DATE
Vice President, Chemistry and Chemical Engineering Division	10/30/02
CHRISTOPHER HOBSON (210) 522-5838	DATE

01-QPP-015 Division 01 Rev 4/Nov 2002 Page ii

TABLE OF CONTENTS

		Pag	je
1.0	INTRO	DUCTION	1
2.0	SCOP	E	1
3.0	REFER	RENCES	1
4.0	APPLI	CABLE SECTIONS OF SWRI PROGRAM QUALITY PLAN (PQP-NUCLEAR)	1
	4.1	Indoctrination and Training	1
	4.2	Qualification of Personnel	2
	4.3	Design Control	
	4.4	Right of Access	2
	4.5	Control of Supplier-Generated Documents	2
	4.6	Acceptance of Services Only	
	4.7	Commercial Grade Items	
	4.8	Inspection	
	4.9	Inspection and Testing	
	4.10	Handling, Storage, Packaging, Preservation, and Delivery	
	4.11	Quality Assurance Records	
	4.12	10 CFR, Part 21	
	4.13	Certified Test Report	
	4.14	Valid Documents List	
5.0	ніѕто	RY OF REVISIONS	6

01-QPP-015 Division 01 Rev 4/Nov 2002 Page 1 of 6

PERFORMANCE OF CHEMICAL ANALYSES FOR COMMERCIAL NUCLEAR POWER PLANTS WITHIN THE DEPARTMENT OF ANALYTICAL AND ENVIRONMENTAL CHEMISTRY

1.0 INTRODUCTION

This Quality Project Plan (QPP) defines the Quality Assurance (QA) program requirements for personnel providing the chemical analyses for commercial nuclear power plants. Southwest Research Institute (SwRI) *Program Quality Plan (PQP-Nuclear)*, *Nuclear Services* shall implement the QA requirements. Project activities controlled by the PQP-Nuclear shall be accomplished as specified by the appropriate sections of 01-QAP-004, *Quality Assurance Plan for Analytical and Environmental Services* and/or nationally recognized testing methods as specified on individual purchase orders. This QPP shall be applied to all projects initiated for nuclear utilities in the Department of Analytical and Environmental Chemistry. If, as a result of complexity, duration, or other factors, it is determined that a unique, project-specific quality plan is required, the project QAE shall notify the Project Manager and a project-specific quality plan shall be generated in accordance with SOP-01-4.2.1, *Preparation and Revision of Documented Procedures*.

2.0 SCOPE

This Quality Project Plan shall be applied to the chemical analyses performed for commercial nuclear power plants by the Department of Analytical and Environmental Chemistry within the Chemistry and Chemical Engineering Division. Although the majority of the work performed for nuclear facilities resides within the Department of Analytical and Environmental Chemistry, other departments within the division may utilize this Quality Project Plan as deemed necessary when nuclear projects are conducted.

3.0 REFERENCES

- 3.1 SwRI Quality System Manual 2000
- 3.2 10 CFR 50, Appendix B, ASME NQA-1
- 3.3 SwRI Program Quality Plan (PQP-Nuclear), Nuclear Services
- 3.4 01-QAP-004, Quality Assurance Plan for Analytical and Environmental Services

4.0 APPLICABLE SECTIONS OF SWRI PROGRAM QUALITY PLAN (PQP-NUCLEAR)

4.1 Indoctrination and Training

- 4.1.1 Personnel performing duties affecting quality shall receive quality training to the SwRI Program Quality Plan (PQP-Nuclear), Nuclear Services prior to performing any work on projects for nuclear utilities. Institute Quality Systems (IQS) personnel shall perform this training and documentation shall be evident in the personnel training files maintained in Division Quality Assurance.
- 4.1.2 Indoctrination and training of personnel shall be conducted in accordance with SOP-01-6.2.1, Qualification and Training.

01-QPP-015 Division 01 Rev 4/Nov 2002 Page 2 of 6

4.2 Qualification of Personnel

- 4.2.1 Testing personnel shall be designated as qualified to perform applicable project activities as specified in **SOP-01-6.2.1**, *Qualification and Training*.
- 4.2.2 During the performance of each testing process, testing personnel shall have access to the necessary documented procedures, i.e., QPP, QAP, Work Order, Division Quality System Standard Operating Procedures (SOPs), and applicable test/analytical procedures (TAPs) available for ready reference.
- 4.2.3 Any person who has not performed testing activities associated with any particular method being used for nuclear utilities projects for a period of one year shall be reevaluated prior to the conduct of the test.
- 4.2.4 Quality Assurance personnel witnessing the testing process for nuclear utilities shall have documented evidence of qualifications maintained by Institute Quality Systems.

4.3 Design Control

Not applicable to activities conducted within the Department of Analytical and Environmental Chemistry.

4.4 Right of Access

- 4.4.1 Procurement documents shall provide for access to the suppliers' facilities and records for surveillance, inspection, or audit by SwRI and clients.
- 4.4.2 Where appropriate, quality clause **Q32** shall be noted on the procurement documents to indicate that right of access for inspection and surveillance of activities associated with the order shall be afforded to SwRI and clients.

4.5 Control of Supplier-Generated Documents

- 4.5.1 Client documents shall be controlled in accordance with SOP-01-4.2.1, Preparation and Revision of Documented Procedures. These procedures provide the requirements for the preparation, review, approval, issue, distribution, and revision of documents controlled by the Chemistry and Chemical Engineering Division.
- 4.5.2 Documents may be controlled as Plans or Work Instructions and shall be accessible through the Division Intranet link, *Contract Requirements* as PDF files.
- 4.5.3 Nationally recognized test methods shall be of the most current issue or as specified in the purchase order. Work orders shall identify the applicable test methods to be used on the nuclear project.

4.6 Acceptance of Services Only

Not applicable to activities conducted within the Department of Analytical and Environmental Chemistry.

01-QPP-015 Division 01 Rev 4/Nov 2002 Page 3 of 6

4.7 Commercial Grade Items

- 4.7.1 Where an item is to be incorporated into a test or deliverable to a client, and that item is not subject to design or specification requirements that are unique to nuclear facilities, used in applications other then nuclear facilities, and procured from the supplier on the specifications set forth in the manufacturers' published product and description, the item shall be considered "commercial grade".
- 4.7.2 Chemical reagents and standards used for testing purposes shall be ordered to specific chemical grades and certificates of analysis shall be required with each lot.
- 4.7.3 Controls for procurement planning, supplier selection, supplier performance evaluation, and acceptance of procured items and services other than chemical reagents and standards shall be as identified in SOP-01-7.4.1, *Purchasing*, and any referenced document within that procedure.
- 4.7.4 Receipt inspection of chemical reagents, standards, and test items for use on nuclear safety-related projects shall be performed by department personnel and documented on the SwRI Receipt Traveler or FRM-109, Item Receipt Report, as specified in SOP-01-8.2.4, Monitoring and Measurement. Any discrepancy such as a damaged container or container label shall be documented on the form and the client shall be contacted for disposition.
- 4.7.5 Prior or acceptance of a commercial grade item, the receipt inspection shall determine the following:
 - (a) Damage was not sustained during shipment;
 - (b) The item has satisfied the specified acceptance criteria; and
 - (c) Specified documentation, as applicable to the item, was received and is acceptable.
- 4.7.6 Receipt inspection of chemical reagents and standards shall also consist of verification of chemical type, grade, container integrity, certificate of analysis, and shelf life, where applicable. Upon acceptance of chemical reagents and standards, the containers shall be labeled with the following:
 - (a) Chemical name;
 - (b) Chemical grade;
 - (c) Lot code;
 - (d) Date received; and
 - (e) Shelf life, when applicable.

01-QPP-015 Division 01 Rev 4/Nov 2002 Page 4 of 6

- 4.7.7 Expired shelf life items shall not be used for testing purposes.
- 4.7.8 Lot codes of chemical reagents and standards used during equipment standardization and testing shall be recorded on the individual testing data sheets to provide traceability.
- 4.7.9 Samples supplied to SwRI for testing shall be received by the Sample Custodian and logged into the laboratory logbook. Sample documentation and sample custody shall be maintained in accordance with TAP-01-0407-001, Sample Receipt Inspection, and TAP-01-0407-035, Organic and Inorganic Sample Security.
- 4.7.10 Samples supplied to SwRI for testing shall be labeled with the following:
 - (a) Sample control number;
 - (b) Purchase order number;
 - (c) Purchase order line item number, as applicable;
 - (d) Work order number;
 - (e) Nuclear QA label; and
 - (f) Sample retention date, when applicable.
- 4.7.11 In the event that samples are damaged upon receipt, a **Sample Discrepancy Record** shall be generated from the Division Intranet.
- 4.7.12 The testing work order shall list the project number, tests required, test methods required, and shall be labeled *Nuclear Quality*.
- 4.7.13 Identification and traceability shall be maintained in accordance with **SOP-01-7.5.1**, *Item Identification and Traceability*.

4.8 Inspection

- 4.8.1 Inspection for acceptance shall be performed by qualified persons other than those who conduct or directly supervise the work being inspected.
- 4.8.2 Institute Quality System (IQS) personnel shall perform surveillance activities as required to ensure compliance with the contract and this Quality Project Plan. Specific areas in which IQS may perform surveillance activities include, but are not-limited to, the following:
 - (a) Receiving inspection and labeling of chemical reagents, standards, and testing samples;
 - (b) Testing processes;
 - (c) Calibration and major equipment;
 - (d) Sample and record retention; and

01-QPP-015 Division 01 Rev 4/Nov 2002 Page 5 of 6

(e) Test records.

4.9 Inspection and Testing

- 4.9.1 Required tests for acceptance shall be conducted under appropriate environmental conditions using the tools and equipment necessary to conduct the test in a manner to fulfill test requirements and acceptance criteria.
- 4.9.2 Tests shall be conducted, controlled, and verified in accordance with **SOP-01-8.2.4**, *Monitoring and Measurement*.
- 4.9.3 Controls for measuring and test equipment shall be as specified in **SOP-01-7.6.1**, Control of Measuring and Test Equipment.
- 4.9.4 Controls for identification, segregation, reporting, and resolution of nonconforming items and conditions shall be as specified in SOP-01-8.3.1, Nonconformance Reporting.

4.10 Handling, Storage, Packaging, Preservation, and Delivery

- 4.10.1 Controls for handling, storage, packaging, preservation, and delivery of items are identified in SOP-01-7.5.3, Handling, Storage, Packaging, Protection, and Delivery of Items.
- 4.10.2 Samples specified on the purchase order to be returned to the client shall be prepared and packaged as specified on the purchase order. Each package shall be marked legibly and indelibly with the purchase order/release number and line item number(s) relevant to the package.

4.11 Quality Assurance Records

- 4.11.1 Quality assurance records shall furnish documentary evidence that items or activities meet specified quality requirements. Documents that ensure this evidence include TAP-01-0407-014, Inventory of Case File Purges, and SOP-01-4.2.4, Storage and Maintenance of Quality Records. These documents and this QPP ensure that QA records shall be legible, identifiable, retrievable, and maintained in dual storage.
- 4.11.2 Records shall be traceable to associated items and activities and shall accurately reflect the work accomplished or information required.
- 4.11.3 Documents shall be considered valid records only if stamped, initialed or signed and dated by authorized personnel or otherwise authenticated.
- 4.11.4 Records of test analyses performed by the Department of Analytical and Environmental Chemistry are classified as nonpermanent and shall be retained for a minimum of five years. Nonpermanent records are those required to show evidence that an activity was performed in accordance with the applicable requirements, but need not be retained for the life of the item. Based on the use of the final data, the client shall be responsible for determining and implementing permanent storage requirements.

CHEMISTRY AND CHEMICAL ENGINEERING DIVISION Division 01 Quality Project Plan

01-QPP-015 Division 01 Rev 4/Nov 2002 Page 6 of 6

4.11.5 In order to satisfy duplicate storage requirements, one copy of the QA record shall maintained by the Project Manager in Building 70 and a separate copy shall be maintained in the Division Quality Assurance Archives in Building 201. Storage requirements shall be as stated in SOP-01-4.2.4, Storage and Maintenance of Quality Records, to ensure protection against the risk of damage or destruction.

4.12 10 CFR, Part 21

- 4.12.1 SwRI procurement documents shall include requirements for reporting and approving disposition of supplier nonconformances and, when required, compliance to 10 CFR, Part 21.
- 4.12.2 The Manager of Institute Quality Assurance or Director of Institute Quality Systems shall determine if a nonconforming condition is reportable under 10 CFR, Part 21, and initiate reporting and condition in accordance with the SwRI Operating Policies and Procedures (OPP). Safety hazards or defects that could create a substantial safety hazard shall be reported. Substantial safety hazard means a loss of safety function to the extent that there is a major reduction in the degree of protection provided to public health and safety.

4.13 Certified Test Report

The Project Manager and Institute Quality Assurance Manager as complying with all contractual requirements shall certify test reports. The certified test report shall reference the purchase order/release number, the test methods performed, and the purchase order/release line item number.

4.14 Valid Documents List

The Department of Analytical and Environmental Chemistry work order shall specify all applicable documents and appropriate document revision level for each document. The work order shall then serve as the Valid Documents List (VDL) for each individual project.

5.0 HISTORY OF REVISIONS

Revision 4

Title of document changed from the Standard Project Quality Plan SPQP-CH/AN to Quality Project Plan, QPP-015

Extensive revision to comply with Project Quality Plan PQP-Nuclear, *Nuclear Services*, which replaces SwRI NQAPM, *Nuclear Quality Assurance Program Manual*.

NUCLEAR PROJECT CLIENT: Division 20 TASK ORDER: 040616-1

SRR: 26046 SDG: 246046 CASE: CNWRA VTSR: June 15, 2004

PROJECT#: 06002.01.081

Chain of Custody/Login Paperwork

Shipper Name/ Address								SAMPLE LIST/CHAIN OF CUSTODY Southwest Research Institute Chemistry and Chemical Engineering Division 6220 Culebra Road San Antonio, Texas 78238-5166							Requested Turnaround: 2 Weeks 3 Weeks Other:			
								Client Purchase Order/Other ID Site/Zo								SwRI Contact		
© Y; ∧;	CNU	URA					CN	NRA								Y: Min	_	
B Yi Mim	Par					Analyses Requested									- 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.			
7	T			Г		_	Т		1	Allalyse	nequest	<u>ea</u>	1	1	1	REMARKS		
Sample ID	Sample Collection Date (mm/dd/yy)	Sample Collection Time	Matrix Type	Sample Type	# of Containers	ICP Analysis	sheet				1					Preservation a = HCl to b = HNO ₃ t c = H ₂ SO ₄ d = NaOH t e = Cool (4 f = Other (n pH <2 o pH <2 to pH <2 to pH >12 °C±2°C)	
BL-5A	3/4/04	3:30	4		2									INTA LT				
			,				 	+	-	+	 	+	+	1		TMIA		
BL-5B	5/15/04		<u> </u>	 	2	1	ļ				ļ		<u> </u>	<u> </u>				
BL-5C	5/16/04	3:30	1 1		2													
					DIV. 20 —													
BL-5D 5/17/04 5:30 V 2						SRR #26046 _												
									•	PROJ	ECT #06	002.01.0	081					
GS 60-A 5/4/W 3:30 L 2					~	CASE: CNWRA						1						
						VTSR: 06/15/04 1430 —												
GS 60-B	5/15/01				2	~			.1	1	1	1	1	ı	, /			
65 60 - C	7/14/01				2	1												
GS 60-0	7/1/4		V		2		ļ											
6560-E	5/18/04		•		1	V				İ						<u>_</u>		
maurx rypes:	watrix rypes: r Sample rypes:			Relinquished by (Print/Signature)						Date,	Time	SwRI Project#:						
A – Air B – Biota				Brian & Denzy B. T.						6/05/04	}		902.01.0H					
D - Diota		ES - Equi			lo	Received by (Print/Signature)								<u> </u>				
E - Emission/Stack		FB - Field		ai Sairipi	ie	Received by (Print/Signature)							Date	Time	Received by SwRI Lab:			
L - Liquid													ĺ	(Signature)				
P - Product	luct MS – Matrix Spike					Relinquished by (Print/Signature)						Date	Time	- Courted	- Janual -			
Sd - Solid	- F					, , ,								,	1			
S - Soil		TB – Trip	Blank													Date	Time	
SED – Sediment T - Tissue						Docali :	d by (Dele-	MCian at							<u> </u>	04/5/04	14:30	
W - Water						neceive	a by (Prin	t/Signature	5)					Date	Time	Samples Dis		
WP - Wipe															ļ	Date	posed:	
Temp: 22.°C,		Therm #:	027			1										Duit	4	
Comments:		·				Relinqui	shed by (f	Print/Signa	ature)					Date	Time	1	Time S	
													Samples Dis	Samples Disposed by:				
						1												

Shipper Name/ Address							Client Pu		Chemistry San	uthwest Re and Chem 6220 Cu Antonio, T	e <mark>search I</mark> ical Engin ilebra Roa	n stitute eering Div ad 38-5166	ision			Requested Turnaround: 2 Weeks 3 Weeks Other:			
Diu 20	GN	WRA	Y: M	inu f	242	1 '	Cilent Pu	irchase Org	er/Otner IL	,		\$	Site/Zone	e ID		SwRI C	ontact M'a Pag		
0			, , ,	<u> </u>						Analyses	Request	ted				- /' '	X(640		
Sample ID	Sample Collection Date (mm/dd/yy)		Matrix Type	Sample Type	# of Containers	Tep Analysis	shee!									b = HN c = H ₂ : d = Na e = Co	REMARKS ation Cl to pH <2 NO₃ to pH <2 SO₄ to pH <2 OH to pH >12 OH to pH >12 oI (4°C±2°C) her (specify)		
	5/4/4		L		2											Tu	7467		
G595-B	\$15/0		1		2											124		•	
6595-C	5/14/4	, 1			2					-	 	+	+	 	-			İ	
	÷Ι' /	1 1			2	-	†				٥	IV. 20						-	
6595. E	/n/u 51/1	1 /			1		-					#26046						ļ	
(537) · F	5) J	4	1				_			PF		#06002			_				
G595- F	3/m/u	4			2	V				,		E: CNWR.			; <u>i</u>				
		-				ļ			_	· · · · · ·	VISK: U	5/15/04	1430	1					
									1										
Matrix Types: A – Air B – Biota		Sample 7 D - Duplic	ate					(Print/Signa		R.S			1	Date 6	Time	SwRI Proj			
D - Dust		ER – Equi ES – Envi	ipment Ki ironmenta	nsate I Samp	ie	Receive	d by (Pri	int/Signature	e) /	D-	7-4/			Date	Time		OGOO2.01-081	ĺ	
E – Emission/Stack L - Liquid		FB - Field	Blank	_			, (' (Date	Time	(Signatu			
P - Product		FD – Field MS – Mati	rix Spike rix Spike	е		Relingui	shed by	(Print/Signa	ature)					Date	Time	1	et jours-		
Sd - Solid		MSD – Ma	atrix Spike	e Dup				(* O.g						Date	rime	(7.	13	l	
S – Soil SED – Sediment		TB – Trip	Blank													Date	Time	\supset	
T - Tissue						Receive	d by (Pri	nt/Signature	∍)					Date	Time	06/15/	04 14:30	-	
W - Water WP - Wipe																	Disposed:	\geq	
Temp: 22.0°C		Therm #:	027													Date	Time	0037	
Comments:				• •		Relinqui	shed by	(Print/Signa	ture)					Date	Time			J	
																Samples	Disposed by:		

SAMPLE LOG-IN SHEET

ah	Name				U	10038
æυ		earch Institute				Page 1 of 1
Rec	eived By (Print Name)	•				Log-in Date
	DINO ROMAN eived By (Signature)	\sim \sim				06/15/2004
Cec	erved by (Signature)	()/(
Cas	Number		Sample Delivery Gro	oup No.	THE LAST DESCRIPTION OF THE PARTY OF THE PAR	SAS Number
	CNWRA					NA
Ren	arks: 06002.01.081			Corre	esponding	Remarks: Condition of Sample
			EPA Sample #	Sample Tag #	Assigned Lab #	Shipment, etc
1.	Custody Seal(s)	Present Absent Intact/Broken	BL-5A	None	246046	Intact
		Intact, broken			0.1.60.17	
2.	Custody Seal Nos.		BL-5B	None	246047	Intact
			BL-5C	None	246048	Intact
3.	Chain-of Custody Records	resent Absent*	BL-5D	None	246049	Intact
4.	Traffic Reports or Packing Lists	Present Absent	GS60-A	None	246050	Intact
5.	Airbill	Airbill/Sticker resent/Absent*	GS60-B	None	246051	Intact
5.	Airbill No.	HAND DELIVERED	GS60-C	None	246052	Intact
			GS60-D	None	246053	Intact
' .	Sample Tags	Present Absent	GS60-E	None	246054	Intact
	Sample Tag Numbers	Listed Not listed on Chain of	GS95-A	None	246055	Intact
		Custody	GS95-B	None	246056	Intact
	Sample Condition	Intact/Broken*/ Leaking	GS95-C	None	246057	Intact
١.	Cooler Temperature	22.0C	GS95-D	None	246058	Intact
0.	Does Information on custody records, traffic	(es)No*	GS95-E	None	246059	Intact
	reports, and sample tags agree?		GS95-F	None	246060	Intact
1.	Date Received at Lab	06/15/2004				
2.	Time Received	14:30:00				
	Sample	Transfer				
rac		Praction				
Area	Inors Thors#2	Area#				
Зу		By Con				
DI)n	NO ROMAN	On				
	/15/2004					

Reviewed By (JUSTHEA A. SAUCEDA Logbook No. Sample Receipt (26046)

Date 0605/2004 Logbook Page No. 5104 (SECHEN 20F 3)

SOUTHWEST RESEARCH INSTITUTE

NUCLEAR PROJECT CLIENT: Division 20 TASK ORDER: 040616-1

SRR: 26046 SDG: 246046 CASE: CNWRA VTSR: June 15, 2004

PROJECT#: 06002.01.081

Copies of Login Book

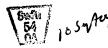
SwRI Login Area Division 1

Sample Rece	•	Project: 06002.01.141	Client:	
VTSR Date:	Jun 15, 2004	VTSR Time: 10:05:00	Manager: DAMMANN	I, MIKE
System ID	Customer Sample ID		separati de la seconda de la Ma	atrix
246040	Anion 1C		\ \	/ater
246041	Anion 2C		W	/ater
246042	Anion 3C		, w	/ater
246043	Anion 4C		W	/ater
246044	Anion 5C		W	/ater
246045	Anion 6C		W	/ater

Sample Rece	•	Project: 06002.01.081		Client: DIV 20
VTSR Date:	Jun 15, 2004	VTSR Time: 14:30:00	Manager: DA	MMANN, MIKE
System ID	Customer Sample ID			Matrix
246046	BL-5A			Liquid
246047	BL-5B			Liquid
246048	BL-5C			Liquid
246049	BL-5D			Liquid
246050	GS60-A			Liquid
246051	GS60-B			Liquid
246052	GS60-C			Liquid
246053	GS60-D			Liquid
246054	GS60-E			Liquid
246055	GS95-A			Liquid
246056	GS95-B			Liquid
246057	GS95-C		,	Liquid
246058	GS95-D			Liquid
246059	GS95-E		The Late of the Control of the Contr	Liquid
246060	GS95-F		3.8.9.11	Liquid

Sample Rece	eipt: 26047	Project: 10192.01.10X	Client: Lynx, LTD.
VTSR Date:	Jun 15, 2004	VTSR Time: 16:00:00	Manager: SUN, GANG
System ID	Customer Sample ID		Matrix
246061	0406101350		Aqueous

SOUTHWEST RESEARCH INSTITUTE


NUCLEAR PROJECT CLIENT: Division 20 TASK ORDER: 040616-1

SRR: 26046 SDG: 246046 CASE: CNWRA VTSR: June 15, 2004

PROJECT#: 06002.01.081

RAW DATA

system id	elem	result	qual	units	rl	tv	rec	ug/ml	<u> </u>	nran	no a /l	Idata	Titing a
cycloni id	10.011	Toduit	quai	unics	111	I.V	160	Tug/III	rl	prep	mg/L	date	time
246046	Al3082	1.5	lu -	mg/L	1.5		 	0.01066	0.03	50	0.522	07/01/04	11:28
246046	B 2496		Ū	mg/L	1.0			0.01249	0.03	50		07/01/04	11:28
246046	Ca3179	2.5		mg/L	2.5			0.03941	0.02	50		07/01/04	11:28
246046	Cr2677	0.808		mg/L	0.25			0.01615	0.005	50		07/01/04	11:28
246046	Fe2714	15.4		mg/L	1.5			0.30772	0.03	50		07/01/04	11:28
246046	K 766	1747		mg/L	10			34.9353	0.2	50	1746.765		13:14:29
246046	Li6707	0.25	U	mg/L	0.25			0.00063	0.005	50		07/01/04	11:28
246046	Mg2790	1.5		mg/L	1.5			0.00380	0.03	50		07/01/04	11:28
246046	Mn2576	0.660		mg/L	0.25			0.01319	0.005	50		07/01/04	11:28
246046	Na589	273		mg/L	10			5.4640	0.2	50		07/07/04	13:14:29
246046	Ni2316	3.63		mg/L	0.25			0.07266	0.005	50		07/01/04	11:28
246046	P_1782	1.5	U	mg/L	1.5			-0.01845	0.03	50		07/01/04	11:28
246046	Si2881	2.04		mg/L	1.5			0.04084	0.03	50		07/01/04	11:28
246046	Ti3349	0.25	U	mg/L	0.25			0.00001	0.005	50		07/01/04	11:28
246046	U_4090	3.75	U	mg/L	3.75			0.00112	0.075	50		07/01/04	11:28
246046	Zr3496	0.25	U	mg/L	0.25			-0.00013	0.005	50		07/01/04	11:28
246047	Al3082	1.5	U	mg/L	1.5			0.01200	0.03	50		07/01/04	11:33
246047	B_2496	1	U	mg/L	1			0.01618	0.02	50		07/01/04	11:33
246047	Ca3179	2.5		mg/L	2.5			0.04441	0.05	50		07/01/04	11:33
246047	Cr2677	0.25	U	mg/L	0.25			0.00392	0.005	50		07/01/04	11:33
246047	Fe2714	11.4		mg/L	1.5			0.22889	0.03	50		07/01/04	11:33
246047	K_766	2174		mg/L	10			43.4863	0.2	50	2174.315		13:18:03
246047	Li6707	0.25		mg/L	0.25			0.00070	0.005	50		07/01/04	11:33
246047	Mg2790	1.5	U	mg/L	1.5			0.00898	0.03	50	0.449	07/01/04	11:33
246047	Mn2576	0.674		mg/L	0.25			0.01347	0.005	50		07/01/04	11:33
246047	Na589	590		mg/L	10			11.7923	0.2	50	589.615	07/07/04	13:18:03
246047	Ni2316	3.62		mg/L	0.25			0.07234	0.005	50		07/01/04	11:33
246047	P_1782	1.5	U	mg/L	1.5			-0.00742	0.03	50	-0.371	07/01/04	11:33
246047	Si2881	3.76		mg/L	1.5			0.07511	0.03	50	3.7555	07/01/04	11:33
246047	Ti3349	0.25		mg/L	0.25			0.00000	0.005	50	0	07/01/04	11:33
246047	U_4090	3.75		mg/L	3.75			0.01249	0.075	50		07/01/04	11:33
246047	Zr3496	0.25		mg/L	0.25			-0.00022	0.005	50		07/01/04	11:33
246048	Al3082	1.5	U	mg/L	1.5			0.00483	0.03	50		07/01/04	11:39
246048	B_2496	1.17		mg/L	1			0.02341	0.02	50		07/01/04	11:39
246048	Ca3179	2.5		mg/L	2.5			0.04058	0.05	50		07/01/04	11:39
246048	Cr2677	0.25	U	mg/L	0.25			0.00253	0.005	50		07/01/04	11:39
246048	Fe2714	8.60		mg/L	1.5			0.17202	0.03	50		07/01/04	11:39
246048	K_766	2594		mg/L	10			51.8750	0.2	50	2593.75		13:21:07
246048	Li6707	0.25	U	mg/L	0.25			0.00081	0.005	50	0.0405	07/01/04	11:39

Div 20 to#040616-1 06002.01.081

system id	elem	result	gual	units	rl	tv	rec	ug/ml	rl	prep	mg/L	date	time
system iu	CICITI	TOSUR	quu.										
246048	Mg2790	1.5	U	mg/L	1.5			0.00158	0.03	50		07/01/04	11:39
246048	Mn2576	0.692		mg/L	0.25			0.01383	0.005	50		07/01/04	11:39
246048	Na589	1049		mg/L	10			20.9823	0.2	50	1049.115		13:21:07
246048	Ni2316	3.74		mg/L	0.25			0.07473	0.005	50		07/01/04	11:39
246048	P 1782	1.5	U	mg/L	1.5			-0.00835	0.03	50		07/01/04	11:39
246048	Si2881	5.52		mg/L	1.5			0.11035	0.03	50		07/01/04	11:39
246048	Ti3349	0.25	U	mg/L	0.25			-0.00011	0.005	50		07/01/04	11:39
246048	U 4090	3.75		mg/L	3.75			-0.01436	0.075	50		07/01/04	11:39
246048	Zr3496	0.25		mg/L	0.25			-0.00056	0.005	50		07/01/04	11:39
246048d	Al3082	1.5		mg/L	1.5			0.01070	0.03	50		07/01/04	11:44
246048d	B 2496	1.13		mg/L	1			0.02259	0.02	50		07/01/04	11:44
246048d	Ca3179	2.5	111	mg/L	2.5			0.04320		50		07/01/04	11:44
246048d	Cr2677	0.25		mg/L	0.25			0.00127		50		07/01/04	11:44
246048d	Fe2714	8.10	 	mg/L	1.5			0.16201	0.03	50		07/01/04	11:44
246048d	K 766	2640		mg/L	10			52.8082	0.2	50		07/07/04	13:24:11
246048d	Li6707	0.25	П	mg/L	0.25			0.00079	0.005	50		07/01/04	11:44
246048d	Mg2790	1.5		mg/L	1.5			0.00574	0.03	50	0.287	07/01/04	11:44
246048d	Mn2576	0.678		mg/L	0.25			0.01355	0.005	50		07/01/04	11:44
246048d	Na589	1065		mg/L	10			21.2966	0.2	50		07/07/04	13:24:11
246048d	Ni2316	3.61		mg/L	0.25			0.07211	0.005	50		07/01/04	11:44
246048d	P 1782	1.5		mg/L	1.5			-0.01331	0.03	50		07/01/04	11:44
246048d	Si2881	5.43		mg/L	1.5	_		0.1085	0.03	50	5.4275	07/01/04	11:44
246048d	Ti3349	0.25		mg/L	0.25			-0.0003	0.005	50			11:44
246048d	U 4090	3.75		mg/L	3.75			0.05082	0.075	5 50		07/01/04	11:44
246048d	Zr3496	0.25		mg/L	0.25			-0.0010	0.005	5 50			11:44
2460480	Al3082		Ū	mg/L	1.5			0.0172	0.03	50		07/01/04	11:49
246049	B 2496	1.65		mg/L	_			0.0330	0.02			07/01/04	11:49
246049	Ca3179	3.22		mg/L				0.0644	1 0.05	5 50		07/01/04	11:49
246049	Cr2677	0.25		mg/L	0.25			0.0032	0.005	5 50		07/01/04	11:49
246049	Fe2714	5.32		mg/L				0.1064	3 0.03			07/01/04	11:49
246049	K 766	3355		mg/L				67.092				07/07/04	13:27:16
246049	Li6707	0.25		mg/L				0.0010				07/01/04	11:49
246049	Mg2790		5 U	mg/L				0.0086				4 07/01/04	11:49
246049	Mn2576	0.772		mg/L				0.0154	3 0.00			5 07/01/04	11:49
246049	Na589	1917		mg/L				38.335	2 0.2			6 07/07/04	13:27:16
246049	Ni2316	4.09		mg/L				0.0818	9 0.00			5 07/01/04	11:49
246049	P 1782		j u	mg/L	_			-0.0123		3 50		8 07/01/04	11:49
246049	Si2881	7.66		mg/L				0.1532				3 07/01/04	11:49
246049	Ti3349	0.2		mg/l	_			-0.0001	8 0.00	5 5	-0.00	9 07/01/04	11:49

Div 20 to#040616-1 06002.01.081

					C.al	41/	rec	ug/ml	rl	prep	mg/L	date	time
stem id	elem	result	qual	units	rl	tv	160	ug/iii					
					0.75			-0.00790	0.075	50		011011	11:49
16049	U 4090	3.75		mg/L	3.75			-0.00042	0.005	50	-0.021	07/01/04	11:49
16049	Zr3496	0.25	U	mg/L	0.25		101.3%	2.02594	0.03	50	101.297	07/01/04	11:55
16049s	Al3082	101		mg/L	1.5		102.0%	4.11336		50	205.668	07/01/04	11:55
16049s	B 2496	206		mg/L	1		102.5%	20.55878		50	1027.939	07/01/04	11:55
46049s	Ca3179	1028		mg/L	2.5		99.9%	0.19985			9.9925	07/01/04	11:55
46049s	Cr2677	9.99		mg/L	0.25			1.20454		50	60.227	07/01/04	11:55
46049s	Fe2714	60.2		mg/L	1.5			88.4201			4421.005	07/07/04	13:30:20
46049s	K 766	4421		mg/L	10			4.06603			203.3015	07/01/04	11:55
46049s	Li6707	203		mg/L	0.25			20.41534				07/01/04	11:55
46049s	Mg2790	1021		mg/L	1.5			0.52423				07/01/04	11:55
46049s	Mn2576	26.2		mg/L	0.25			58.7884				07/07/04	13:30:20
46049s	Na589	2939		mg/L	10				_			07/01/04	11:55
46049s	Ni2316	28.7	•	mg/L	0.25		-	-				07/01/04	11:55
46049s	P 1782	206	5	mg/L	1.5			-	_	_		07/01/04	11:55
246049s	Si2881	211		mg/L						_		07/01/04	11:55
246049s	Ti3349	199	9	mg/L		_				-		07/01/04	11:55
246049s	U 4090	209	9	mg/L								5 07/01/04	11:55
246049s	Zr3496	198	3	mg/L			99.0%			_		5 07/01/04	12:00
2460495	Al3082	1.	5 U	mg/L	1.	5		0.0047	-	_		5 07/01/04	12:00
246050	B 2496		1 U	mg/L		1		0.0116	_			6 07/01/04	12:00
	Ca3179	2.	5 U	mg/L				0.0323		_		3 07/01/04	12:00
246050	Cr2677		5 U	mg/l				0.0000		_	-	5 07/01/04	
246050	Fe2714		5 U	mg/l	_ 1.	.5		-0.0065				5 07/07/04	
246050	K 766	192		mg/l	L 1	0		38.487		_		5 07/01/04	
246050	Li6707		5 U	mg/		25		0.0010				5 07/01/04	
246050	Mg2790		5 U	mg/	_	.5		0.0025	_			6 07/01/04	
246050	Mn2576		5 U	mg/	_	25		0.0009				6 07/07/04	
246050	Na589	373		mg/		10		74.739		_		07/01/04	
246050	Ni2316		5 U	mg/		25		0.0024			-	15 07/01/04	
246050	P 1782		.5 U	mg/		.5		0.0003				96 07/01/04	
246050	Si2881	2.7	_	mg/		.5		0.053		_	-	0 07/01/04	
246050			25 U	mg/		25		0.000			0	37 07/01/04	
246050	Ti3349		75 U	mg	_	75		0.007	40 0.0			03 07/01/04	
246050	U_4090		25 U	mg		25			0.00		, ,		
246050	Zr3496		.5 U	mg		1.5		0.009				91 07/01/0	
246051	Al3082	_	1 U	mg		1		0.009		_	30	64 07/01/0	
246051	B 2496		2.5 U	mg		2.5		0.037		_		75 07/01/0	
246051	Ca317			mg		.25		-0.000				75 07/01/0	
246051	Cr2677		25 U 1.5 U	mg		1.5		-0.006	0.	03	50 -0.3	02 07/01/0	4 12:05

Div 20 to#040616-1 06002.01.081

system id	elem	result	qual	units	rl	tv	rec	lug/ml	rl	prep	mg/L	date	time
								- g		ріор	mg/ L	ludio	
246051	K_766	2011		mg/L	10			40.2220	0.2	50	2011.1	07/07/04	13:36:28
246051	Li6707	0.25	U	mg/L	0.25			0.00130	0.005	50		07/01/04	12:05
246051	Mg2790	1.5	U	mg/L	1.5			0.00776	0.03	50		07/01/04	12:05
246051	Mn2576	0.25	U	mg/L	0.25			0.00077	0.005	50		07/01/04	12:05
246051	Na589	3923		mg/L	10			78.4520	0.2	50		07/07/04	13:36:28
246051	Ni2316	0.25	U	mg/L	0.25			0.00186	0.005	50		07/01/04	12:05
246051	P_1782	1.5	U	mg/L	1.5			-0.00015	0.03	50		07/01/04	12:05
246051	Si2881	3.09		mg/L	1.5			0.06182	0.03	50		07/01/04	12:05
246051	Ti3349	0.25	U	mg/L	0.25			-0.00012	0.005	50		07/01/04	12:05
246051	U_4090	3.75	U	mg/L	3.75			0.01394	0.075	50		07/01/04	12:05
246051	Zr3496	0.25	U	mg/L	0.25			-0.00055	0.005	50		07/01/04	12:05
246052	Al3082	1.5	U	mg/L	1.5			0.01067	0.03	50		07/01/04	12:28
246052	B_2496	1	U	mg/L	1			0.01061	0.02	50		07/01/04	12:28
246052	Ca3179	2.5	U	mg/L	2.5			0.03177	0.05	50		07/01/04	12:28
246052	Cr2677	0.25	U	mg/L	0.25			-0.00023	0.005	50		07/01/04	12:28
246052	Fe2714	1.5	U	mg/L	1.5			0.00907	0.03	50	0.4535	07/01/04	12:28
246052	K_766	2243		mg/L	10			44.8529	0.2	50	2242.645	07/07/04	13:49:02
246052	Li6707	0.25		mg/L	0.25			0.00148	0.005	50	0.074	07/01/04	12:28
246052	Mg2790	1.5		mg/L	1.5			0.01238	0.03	50		07/01/04	12:28
246052	Mn2576	0.25	כ	mg/L	0.25			0.00083	0.005	50		07/01/04	12:28
246052	Na589	4226		mg/L	10			84.5216	0.2	50	4226.08	07/07/04	13:49:02
246052	Ni2316	0.25	J	mg/L	0.25			0.00206	0.005	50	0.103	07/01/04	12:28
246052	P_1782	1.5	U	mg/L	1.5			-0.01155	0.03	50	-0.5775	07/01/04	12:28
246052	Si2881	3.54		mg/L	1.5			0.07078	0.03	50	3.539	07/01/04	12:28
246052	Ti3349	0.25		mg/L	0.25			0.00003	0.005	50		07/01/04	12:28
246052	U_4090	3.75		mg/L	3.75			0.03547	0.075	50	1.7735	07/01/04	12:28
246052	Zr3496	0.25		mg/L	0.25			0.00030	0.005	50	0.015	07/01/04	12:28
246053	Al3082	1.5		mg/L	1.5			-0.00042	0.03	50	-0.021	07/01/04	12:34
246053	B_2496	1	U	mg/L	1			0.01255	0.02	50		07/01/04	12:34
246053	Ca3179	2.5	U	mg/L	2.5			0.03608	0.05	50	1.804	07/01/04	12:34
246053	Cr2677	0.25		mg/L	0.25			-0.00061	0.005	50	-0.0305	07/01/04	12:34
246053	Fe2714	1.5	U	mg/L	1.5			-0.00250	0.03	50		07/01/04	12:34
246053	K_766	2509		mg/L	10			50.1729	0.2	50	2508.645	07/07/04	13:52:06
246053	Li6707	0.25		mg/L	0.25			0.00177	0.005	50		07/01/04	12:34
246053	Mg2790	1.5		mg/L	1.5			0.00181	0.03	50	0.0905	07/01/04	12:34
246053	Mn2576	0.25	U	mg/L	0.25			0.00093	0.005	50	0.0465	07/01/04	12:34
246053	Na589	4604		mg/L	10			92.0803	0.2	50	4604.015	07/07/04	13:52:06
246053	Ni2316	0.25		mg/L	0.25			0.00264	0.005	50	0.132	07/01/04	12:34
246053	P_1782	1.5	U	mg/L	1.5			-0.00893	0.03	50	-0.4465	07/01/04	12:34

system id	elem	result	qual	units	rl	tv	rec		ug/ml	rl	prep	mg/L	date	time
								\perp						
246053	Si2881	3.80		mg/L	1.5			\perp	0.07590	0.03	50		07/01/04	12:34
246053	Ti3349	0.25		mg/L	0.25			\perp	-0.00024	0.005	50	-0.012	07/01/04	12:34
246053	U_4090	3.75		mg/L	3.75		_		-0.02106	0.075	50	-1.053	07/01/04	12:34
246053	Zr3496	0.25		mg/L	0.25	L			-0.00108	0.005	50	-0.054	07/01/04	12:34
246054	Al3082	1.5		mg/L	1.5				0.01009	0.03	50	0.5045	07/01/04	12:39
246054	B_2496		U	mg/L	1			Т	0.01380	0.02	50	0.69	07/01/04	12:39
246054	Ca3179	2.5		mg/L	2.5				0.03823	0.05	50	1.9115	07/01/04	12:39
246054	Cr2677	0.25	U	mg/L	0.25				-0.00160	0.005	50	-0.08	07/01/04	12:39
246054	Fe2714	1.5	U	mg/L	1.5				0.01484	0.03	50	0.742	07/01/04	12:39
246054	K_766	2586		mg/L	10				51.7245	0.2	50	2586.225	07/07/04	13:55:11
246054	Li6707	0.25	U	mg/L	0.25				0.00206	0.005	50	0.103	07/01/04	12:39
246054	Mg2790	1.5	Ų	mg/L	1.5				0.00876	0.03	50	0.438	07/01/04	12:39
246054	Mn2576	0.25	U	mg/L	0.25				0.00233	0.005	50	0.1165	07/01/04	12:39
246054	Na589	4655		mg/L	10				93.1044	0.2	50	4655.22	07/07/04	13:55:11
246054	Ni2316	0.410		mg/L	0.25			T	0.00820	0.005	50	0.41	07/01/04	12:39
246054	P_1782	1.5	U	mg/L	1.5			T	-0.00580	0.03	50		07/01/04	12:39
246054	Si2881	4.57		mg/L	1.5				0.09147	0.03	50		07/01/04	12:39
246054	Ti3349	0.25	U	mg/L	0.25			T	-0.00032	0.005	50	-0.016	07/01/04	12:39
246054	U_4090	3.75	U	mg/L	3.75			T	0.02111	0.075	50	1.0555	07/01/04	12:39
246054	Zr3496	0.25	U	mg/L	0.25			T	-0.00086	0.005	50	-0.043	07/01/04	12:39
246055	Al3082	1.5	U	mg/L	1.5				0.00563	0.03	50		07/01/04	12:44
246055	B_2496	1	U	mg/L	1			T	0.01326	0.02	50	0.663	07/01/04	12:44
246055	Ca3179	2.5	U	mg/L	2.5				0.02191	0.05	50		07/01/04	12:44
246055	Cr2677	0.25	U	mg/L	0.25			T	0.00054	0.005	50		07/01/04	12:44
246055	Fe2714	1.5		mg/L	1.5				0.00240	0.03	50		07/01/04	12:44
246055	K 766	1451		mg/L	10			T	29.0122	0.2	50		07/07/04	13:58:15
246055	Li6707	0.25	U	mg/L	0.25				0.00154	0.005	50	0.077	07/01/04	12:44
246055	Mg2790	1.5	U	mg/L	1.5	1			0.00781	0.03	50		07/01/04	12:44
246055	Mn2576		U	mg/L	0.25				0.00012	0.005	50		07/01/04	12:44
246055	Na589	1212		mg/L	10			7	24.2300	0.2	50		07/07/04	13:58:15
246055	Ni2316	0.25	U	mg/L	0.25			T	0.00193	0.005	50		07/01/04	12:44
246055	P 1782	1.5		mg/L	1.5			T	-0.00978	0.03	50		07/01/04	12:44
246055	Si2881	4.29		mg/L	1.5			\top	0.08579	0.03	50	1	07/01/04	12:44
246055	Ti3349	0.25	U	mg/L	0.25	"		十	0.00004	0.005	50		07/01/04	12:44
246055	U 4090	3.75		mg/L	3.75			\top	0.01809	0.075	50		07/01/04	12:44
246055	Zr3496	0.25		mg/L	0.25			\top	0.00006	0.005	50		07/01/04	12:44
246056	Al3082	1.5		mg/L	1.5			十	0.01287	0.03	50		07/01/04	12:50
246056	B 2496	1	U	mg/L	1			十	0.01519	0.02	50		07/01/04	12:50
246056	Ca3179	2.5	_	mg/L	2.5		+	+	0.03177	0.02	50		07/01/04	12:50

system id	elem	result	qual	units	rl	tv	rec	ug/ml	rl	prep	mg/L	date	time
								J					
246056	Cr2677	0.25	U	mg/L	0.25			-0.00030	0.005	50	-0.015	07/01/04	12:50
246056	Fe2714	1.5	U	mg/L	1.5			0.01730	0.03	50	0.865	07/01/04	12:50
246056	K 766	1807		mg/L	10			36.1402	0.2	50	1807.01	07/07/04	14:01:19
246056	Li6707	0.25	U	mg/L	0.25			0.00252	0.005	50	0.126	07/01/04	12:50
246056	Mg2790	1.5	U	mg/L	1.5			0.01225	0.03	50		07/01/04	12:50
246056	Mn2576	0.25	U	mg/L	0.25			-0.00003	0.005	50	-0.0015	07/01/04	12:50
246056	Na589	2250		mg/L	10			44.9947	0.2	50	2249.735	07/07/04	14:01:19
246056	Ni2316	0.25	U	mg/L	0.25			0.00160	0.005	50	0.08	07/01/04	12:50
246056	P 1782	1.5	U	mg/L	1.5			-0.01063	0.03	50	-0.5315	07/01/04	12:50
246056	Si2881	6.74		mg/L	1.5			0.13479	0.03	50	6.7395	07/01/04	12:50
246056	Ti3349	0.25	U	mg/L	0.25			-0.00019	0.005	50	-0.0095	07/01/04	12:50
246056	U 4090	3.75		mg/L	3.75			0.03465	0.075	50		07/01/04	12:50
246056	Zr3496	0.25	U	mg/L	0.25			0.00029	0.005	50	0.0145	07/01/04	12:50
246057	Al3082	1.5	U	mg/L	1.5			0.01593	0.03	50	0.7965	07/01/04	12:55
246057	B 2496	1.15		mg/L	1			0.02290	0.02	50	1.145	07/01/04	12:55
246057	Ca3179	2.5	U	mg/L	2.5			0.03421	0.05	50	1.7105	07/01/04	12:55
246057	Cr2677	0.25	U	mg/L	0.25			0.00001	0.005	50	0.0005	07/01/04	12:55
246057	Fe2714	1.5	U	mg/L	1.5			-0.00077	0.03	50	-0.0385	07/01/04	12:55
246057	K_766	2217		mg/L	10			44.3414	0.2	50	2217.07	07/07/04	14:04:24
246057	Li6707	0.25	U	mg/L	0.25			0.00377	0.005	50	0.1885	07/01/04	12:55
246057	Mg2790	1.5	U	mg/L	1.5			0.00831	0.03	50	0.4155	07/01/04	12:55
246057	Mn2576	0.25	U	mg/L	0.25			0.00009	0.005	50	0.0045	07/01/04	12:55
246057	Na589	3485		mg/L	10			69.7005	0.2	50	3485.025	07/07/04	14:04:24
246057	Ni2316	0.25	U	mg/L	0.25			0.00183	0.005	50	0.0915	07/01/04	12:55
246057	P_1782	1.5	U	mg/L	1.5			-0.00153	0.03	50	-0.0765	07/01/04	12:55
246057	Si2881	9.70		mg/L	1.5			0.19405	0.03	50	9.7025	07/01/04	12:55
246057	Ti3349	0.25	U	mg/L	0.25			0.00001	0.005	50	0.0005	07/01/04	12:55
246057	U_4090	3.75	U	mg/L	3.75			0.00744	0.075	50	0.372	07/01/04	12:55
246057	Zr3496	0.25	U	mg/L	0.25			-0.00035	0.005	50	-0.0175	07/01/04	12:55
246058	Al3082	1.5	U	mg/L	1.5			0.00835	0.03	50	0.4175	07/01/04	13:00
246058	B 2496	1.54		mg/L	1			0.03079	0.02	50	1.5395	07/01/04	13:00
246058	Ca3179	2.5	U	mg/L	2.5			0.03214	0.05	50	1.607	07/01/04	13:00
246058	Cr2677	0.25	U	mg/L	0.25			0.00011	0.005	50	0.0055	07/01/04	13:00
246058	Fe2714	1.5	U	mg/L	1.5			-0.00067	0.03	50	-0.0335	07/01/04	13:00
246058	K_766	2696		mg/L	10			53.9275	0.2	50	2696.375	07/07/04	14:07:27
246058	Li6707	0.25	U	mg/L	0.25			0.00499	0.005	50	0.2495	07/01/04	13:00
246058	Mg2790	1.5	U	mg/L	1.5			0.00774	0.03	50	0.387	07/01/04	13:00
246058	Mn2576	0.25	U	mg/L	0.25			0.00007	0.005	50	0.0035	07/01/04	13:00
246058	Na589	5557		mg/L	10			111.1490	0.2	50	5557.45	07/07/04	14:07:27

system id	elem	result	qual	units	rl	tv	rec	ug/ml	I ml	T	I/1	T.:	12.
			19001	Junito		-	100	ug/iii	rl	prep	mg/L	date	time
246058	Ni2316	0.25	U	mg/L	0.25			0.00275	0.005		0.4075	07/04/04	10.00
246058	P 1782	1.5		mg/L	1.5			0.00275	0.003	50 50		07/01/04	13:00
246058	Si2881	15.3	 	mg/L	1.5			0.30664	0.03			07/01/04	13:00
246058	Ti3349	0.25	lu -	mg/L	0.25			-0.00006	0.005	50		07/01/04	13:00
246058	U_4090	3.75		mg/L	3.75			0.00714	0.005	50		07/01/04	13:00
246058	Zr3496	0.25		mg/L	0.25			-0.000714		50		07/01/04	13:00
246059	Al3082	1.5		mg/L	1.5			0.00714	0.005	50		07/01/04	13:00
246059	B 2496	1.97	 	mg/L	1.5			0.00714		50		07/01/04	13:05
246059	Ca3179	2.5	111	mg/L	2.5			0.03945	0.02	50		07/01/04	13:05
246059	Cr2677	0.25		mg/L	0.25			-0.00006	0.05	50		07/01/04	13:05
246059	Fe2714	1.5		mg/L	1.5			0.00377	0.005	50		07/01/04	13:05
246059	K 766	3150		mg/L	10				0.03	50		07/01/04	13:05
246059	Li6707	0.303		mg/L	0.25			62.9956	0.2	50		07/07/04	14:11:02
246059	Mg2790	1.5	11	mg/L	1.5			0.00605 0.01172	0.005	50		07/01/04	13:05
246059	Mn2576	0.25		mg/L	0.25			0.00001	0.03	50		07/01/04	13:05
246059	Na589	7514	<u> </u>	mg/L	10			150.2723	0.005	50		07/01/04	13:05
246059	Ni2316	0.25	U	mg/L	0.25			0.00151	0.2	50	7513.615		14:11:02
246059	P 1782		U	mg/L	1.5					50		07/01/04	13:05
246059	Si2881	20.6		mg/L	1.5			-0.00210 0.41189	0.03	50		07/01/04	13:05
246059	Ti3349	0.25	U	mg/L	0.25			-0.00026	0.005	50	20.5945		13:05
246059	U_4090	3.75		mg/L	3.75	_		0.02591	0.005	50		07/01/04	13:05
246059	Zr3496	0.25		mg/L	0.25			-0.00054	0.075	50		07/01/04	13:05
246060	Al3082		Ü	mg/L	1.5			0.00323	0.003	50		07/01/04	13:05
246060	B_2496	1.88		mg/L	1.3			0.00323	0.03	50 50		07/01/04	13:11
246060	Ca3179	2.5	II .	mg/L	2.5			0.03767	0.02			07/01/04	13:11
246060	Cr2677	0.25		mg/L	0.25			-0.00038	0.005	50		07/01/04	13:11
246060	Fe2714		Ŭ	mg/L	1.5			0.00149		50		07/01/04	13:11
246060	K 766	3108		mg/L	10			62.1689	0.03	50 50		07/01/04	13:11
246060	Li6707	0.309		mg/L	0.25			0.00618	0.005		3108.445		14:14:06
246060	Mg2790	1.5	U I	mg/L	1.5			0.00278	0.005	50		07/01/04	13:11
246060	Mn2576	0.25		mg/L	0.25			0.00278	0.005	50		07/01/04	13:11
246060	Na589	7476		mg/L	10			149.5173	0.005	50 50		07/01/04	13:11
246060	Ni2316	0.25	u l	mg/L	0.25			0.00252	0.005	50	7475.865		14:14:06
246060	P 1782	1.5		mg/L	1.5			-0.00080	0.005			07/01/04	13:11
246060	Si2881	20.7		mg/L	1.5			0.41417	0.03	50		07/01/04	13:11
246060	Ti3349	0.25	u 	mg/L	0.25			-0.00014		50	20.7085		13:11
246060	U 4090	3.75		mg/L	3.75			-0.02431	0.005	50		07/01/04	13:11
246060	Zr3496	0.25		mg/L	0.25			-0.02431	0.075	50	-1.2155		13:11
lcsw-F30W1	Al3082	1.95	- +	mg/L	1.5	2	97.5%	1.94914	0.005	50		07/01/04	13:11
	7	1.00		mg/L	1.0		91.0%	1.94914	0.03	1	1.94914	U//01/04	11:23

Div 20 to#040616-1 06002.01.081

system id	elem	result	gual	units	rl	tv	rec	ug/ml	rl	prep	mg/L	date	time
			1			-	100	Lug/IIII		prep	IIIg/L	uale	ume
lcsw-F30W1	B 2496	4.01		mg/L	1	4	100.2%	4.00824	0.02	1	4 00824	07/01/04	11:23
lcsw-F30W1	Ca3179	20.5		mg/L	2.5	20	102.7%	20.54508	0.05	1	20.54508		11:23
lcsw-F30W1	Cr2677	0.195		mg/L	0.25	0.2	97.7%	0.19542	0.005	1		07/01/04	11:23
lcsw-F30W1	Fe2714	1.12		mg/L	1.5	1	111.9%	1.11947	0.03	1		07/01/04	11:23
lcsww-040707	K_766	20.0		mg/L	10	20	99.9%	19.9783	0.2	1	· · · · · · · · · · · · · · · · · · ·	07/07/04	13:11:26
lcsw-F30W1	Li6707	3.56		mg/L	0.25	4	89.1%	3.56360	0.005	1		07/01/04	11:23
lcsw-F30W1	Mg2790	20.4		mg/L	1.5	20	101.8%	20.36833	0.03	1	20.36833		11:23
lcsw-F30W1	Mn2576	0.507		mg/L	0.25	0.5	101.3%	0.50650	0.005	1		07/01/04	11:23
lcsww-040707	Na589	20.1		mg/L	10	20	100.4%	20.0899	0.2	1		07/07/04	13:11:26
lcsw-F30W1	Ni2316	0.492		mg/L	0.25	0.5	98.5%	0.49230	0.005	1		07/01/04	11:23
lcsw-F30W1	P_1782	4.01		mg/L	1.5	4	100.2%	4.00746	0.03	1		07/01/04	11:23
lcsw-F30W1	Si2881	4.03		mg/L	1.5	4	100.7%	4.02797	0.03	1		07/01/04	11:23
lcsw-F30W1	Ti3349	3.93		mg/L	0.25	4	98.2%	3.92784	0.005	1		07/01/04	11:23
lcsw-F30W1	U_4090	4.11		mg/L	3.75	4	102.7%	4.10600	0.075	1		07/01/04	11:23
lcsw-F30W1	Zr3496	3.88		mg/L	0.25	4	97.0%	3.87816	0.005	1		07/01/04	11:23
pbw-F30W1 pg57-125	Al3082	1.5	J	mg/L	1.5			0.00824	0.03	50		07/01/04	11:17
pbw-F30W1 pg57-125			U	mg/L	1			0.00402	0.02	50		07/01/04	11:17
pbw-F30W1 pg57-125	Ca3179	2.5		mg/L	2.5			0.01390	0.05	50	0.695	07/01/04	11:17
pbw-F30W1 pg57-125		0.25		mg/L	0.25			0.00012	0.005	50	0.006	07/01/04	11:17
pbw-F30W1 pg57-125		1.5		mg/L	1.5			0.01052	0.03	50	0.526	07/01/04	11:17
pbw-040707	K_766	10		mg/L	10			-0.0749	0.2	50		07/07/04	13:08:22
pbw-F30W1 pg57-125		0.25		mg/L	0.25			0.00005	0.005	50	0.0025	07/01/04	11:17
pbw-F30W1 pg57-125		1.5		mg/L	1.5			0.00864	0.03	50	0.432	07/01/04	11:17
pbw-F30W1 pg57-125		0.25		mg/L	0.25			0.00009	0.005	50	0.0045	07/01/04	11:17
pbw-040707	Na589		U	mg/L	10			0.0207	0.2	50	1.035	07/07/04	13:08:22
pbw-F30W1 pg57-125		0.25		mg/L	0.25			0.00261	0.005	50		07/01/04	11:17
pbw-F30W1 pg57-125		=	U	mg/L	1.5			-0.00940	0.03	50		07/01/04	11:17
pbw-F30W1 pg57-125			U	mg/L	1.5			0.00640	0.03	50		07/01/04	11:17
pbw-F30W1 pg57-125	Ti3349		U	mg/L	0.25			0.00003	0.005	50		07/01/04	11:17
pbw-F30W1 pg57-125		3.75		mg/L	3.75			0.00380	0.075	50		07/01/04	11:17
pbw-F30W1 pg57-125	Zr3496	0.25	U	mg/L	0.25			0.00009	0.005	50		07/01/04	11:17

TRACE METALS PREPARATORY LABORATORY DIGESTION LOG

SOUTHWEST RESEARCH INSTITUTE SAN ANTONIO, TEXAS 78228

DISPOSAL INT/DATE/LOC: _____

BOOK / PAGE 57 125

SAN ANTONIO, TEXAS 70220				BOOK /	FAGL.	
CLIENT(S): DIV 20						
TASK ORDER(S): 040616-1		SD0	G(S):,	246	046	010050
PROJECT NO(S): 06002.01.081		<u></u>			·	
METHOD:3005A3050B3050B-7.53	8010A	3020A	7760A_	7740	AHCIO4_	H₂SO₄ Sb
MicrowaveFusionTeflonRockC	STHE	R	d = 5	50 de	eluteons	
MATRIX: WaterSoilBiotaSolidL	•					
INSTRUMENT: GFAAICP_/ICP-MSI	CF	FLAAHYDF	RIDE	_OTHE	R	
ACID INORG #: HNO₃#HCI#	*	H ₂ SO ₄ #		HCI	O ₄ #	HF#
INTERNAL STD: Sc @ 10 PPM 1/2 Be @ 10 P	PM_	_SOURCE:_\	<u>/</u>	NORG#	‡ <u> </u>	P: 7/04 AMT: SCNL
Oven/Hotplate ID:Temperature	e (°C)	: Amb	icnt			
SAMPLE IDENTIFICATION	рН	WT (g)	I.V.	(mL)	F.V. (mL)	
PSW-F30W1				5	5	
USW-F30W1*						
346046			100	NL		
6047						
10048						
(00488)		· · · · · · · · · · · · · · · · · · ·				
V 6049 ×						
10050						
6051						
6052						
6053						
6054						
6055						
10056						
6057						
6058						
16060						
* Soulo SONL So.KE!		Spend 4306	Exp. 1	0/04		
1 JONL I-CALI		Spea# 4245	Exa. 3	$\overline{}$		
20xL P @ 1000 pm		1 Ut 4593	Esp	4/05		
20NL ZV 11		1V# 4474	Esp.	3/05		
JONL U		11/ 4473	1	105		· · · · · · · · · · · · · · · · · · ·
20NL L:		1V# 4149		7/04		
JOM Ti		10# 4332	1	104		
2016 Si		14 4437	12	105		
PBW ELSEN ON ARROWED AS SIMLS		10# 4201	-0 5/	104	- * <i>x</i> +	LOCATION:
18 - RLB - 02-041-01 Pu	- 1	190 HNO3/5	YOH	<u> </u>	** AT	M) A
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	10-1	1 0 1			30	
PREPARED BY: Dun Willy			DATE:_	_6	-2404	Jed
REVIEWED BY:			DATE:	6	30-0A	U

TRACE METALS PREPARATORY LABORATORY DIGESTION LOG

SOUTHWEST RESEARCH INSTITUTE
SAN ANTONIO, TEXAS 78228

BOOK / PAGE: 56 244

CLIENT(S): Div Zo		
TASK ORDER(S): 040616-1	SDG(S): 246046	040054
PROJECT NO(0). Al 222 Al 241	0Da(0)0	010031
PROJECT NO(S): 0600Z .01.081	22004 7740A U	SIO H SO SP
METHOD:3005A3050B3050B-7.53010A	3020A//60A//40AHC	JIU4 125U4 Sb
MicrowaveFusionTeflonRockOTHER	de 50 dilutions	
MATRIX: WaterSoilBiotaSolidLiquid_ <i>_/</i>	TCLP ExtOTHER	
NSTRUMENT: GFAAICP_VTCP-MSICFLA	AHYDRIDEOTHER	
ACID INORG #: HNO ₃ # * HCI# *	_H ₂ SO ₄ #HClO ₄ #	HF#
ACID INORG #: HNO₃# <u>*</u> HCI# <u>*</u> INTERNAL STD: Sc @ 10 PPM <u></u> Be @ 10 PPMS	OURCE: TY INORG#4629	_EXP: 8/05 AMT: 500L
Oven/Hotplate ID:Temperature (°C):	Ambient	
S		$\alpha_{\mathbf{j}}^{\mathcal{N}}$
	7 4	
		
Sample Identification pH	WT(g) I.V.(ml) F.V.(ml)	
DDW 007114		
PBW-G07H1	5 5	
LCSW-G07H1*	5 5	
246046	100uL 5	
246047 246048	100uL 5	
246048d	100uL 5	
246049	100uL 5 100uL 5	
246049s	100uL 5	
246050	100uL 5	
246051	100uL 5	
246052	100uL 5	
246053	100uL 5	
246054	100uL 5	
246055	100uL 5	
246056	100uL 5	
246057	100uL 5	
246058	100uL 5	
246059	100uL 5	
246060	100uL 5	
\CAL-\ *spike 50uL spike- 1 Spex#4514 Ex 20uL Li IV#4149 Exp.08/05 PBW&LCSW are prepared as 5mls	•	
** RLB-04-041-01 Exp. 7/23/04	- 1.5. III Og / 0.70 1 IOL	
02 co 8 ho lo4	1	
		LOCATION:
		NA P
PREPARED BY:	DATE: 72-7-04	+
REVIEWED BY: Ondura	DATE: 17 04	
DISPOSAL INT/DATE/LOC:	_	

FRM-191 (Rev 2/Mar 03)

Trace Metals Reagent Logbook 010052

SOUTHWEST RESEARCH INSTITUTE SAN ANTONIO, TEXAS 78228

BOOK / PAGE: 02 041

Reagent I.D.:	Preparation Description:	Prep Date:	Exp Date:	Initials:
	120 HNO3/530HCL			<u> </u>
143-02-0-11 01		9-27-04	7-2304	0,
	all a 150 mls di voter to a 350 ml			
	Nolgene buttle all 5.5 mls HNbz -			
<u> </u>	errough 4495, of 12.5 onls HLL -	ļ		
V	mouth 4491, F.V. to 250 mLs wildited		V	\checkmark
			V	40
RLB-02-041-0X	EFB#2-E03E1	5-3-04	8-3-04	8-3-34
	15.7ml Acetic Aird dilute	1	1	· /
3	to 11 Dibbater. pt 285			
	,			
RLB-02-041-03	0.1N HND3	5-1924	8-1904	Seo
	all 298 mls divisten to a 500 ml Malgen	<u> </u>	\	
	Lattle and 1890 L HAIDS may \$ 4560			
	F.V. to 300 mls wife water		1	./
216-02-041-04	570 HNO-3	5-1904	8-404	90
	all 400 ml di toa 500 ml nagene		1	1
	Irolle all Sols Har -era \$4560			
V	F.V. te 500 Mls whi water			
RLB02-041-05	5% Potassium Permanyaunte			
	_	5-20-04	5-20-05	61
	INUNG # 4485	V	1	\Box
			7	7
RLB-02-041-06	IN (NaOH) 40g NaOH#4207	5-26-04	5-26-05	KÉ
	IN (NaOH) 40g NaOH#4207 dilute to 1L Di-water			1

BOOK/ PAGE 08 020

010053

SOUTHWEST RESEARCH INSTITUTE®

6220 Culebra Rd San Antonio, Texas 78228

TJA_2 TRACE ICP DAILY LOG

ANALYST	J		DATI	7-1-A		
As 189.042 Pro	file Line			As Intensity: 473, 91	<u>`</u>	
PEAK POSITIO	N 120902	.7-		•		
VERNIER POSI	_			STDs PREP DATE:	, ']
				CLP_STD1_S0	04675	1
				CLP_STD2_S0		1
QC PREP DATE	:			CLP_STD3_S0		1
CCV/ICV	04001	_]	CLP_STD4_SC		1
CRI		1.00]	CLP_STD5_SC		
ICSA	1			CLP_STD6_SC		
ICSAB]		04/21	
		,		,		
COMMENTS	FILE	CLIENT	TO#	PROJECT NO.	METHOD	_
B406161	Y04300	Di 120	040616-1	06002.01.081	5~KI 57	125
						
		1 1-1	-04			
COMMENTS:						
			7	•		
MAINTENANCE						
WAINTENANCE	•					
REVIEWED BY:	Orde	ina		DATE:	8(10/04	

SOUTHWEST RESEARCH INSTITUTE

6220 Culebra Rd San Antonio, Texas 78228

ρ	SPECTRO	O ICP DAILY LO	G	010054
ANALYST J		DATE	7-7-04	
POWER: 1700	•	FLOWS:		
			Aux 40 Coolant 60	
		7	Mass Flow Contro	oller_1054
CURRENT PROPOS	ED			٠.
5030 5033		Na		·
4735 4919		Fe Sr		
		.	CLP STD1 SC	0460)
QC PREP DATE:			CLP_STD2_SC	
ccv/icv 04-G-01	<u> </u>		CLP_STD3_SC	3/
CRI			CLP_STD4_SC	
ICSA 3			CLP_STD5_SC	
ICSAB		J	BLK_SC	04621
FILE CLIENT	TO#	PROJECT NO.	METHOD	PREP PAGE
40707 DIVZe	040616-1	06002.01.081		36294
		.0_		
	1	7-7-04		
			·	
COMMENTS:				
OOMMENTO.				
		· · · · · · · · · · · · · · · · · · ·		
MAINTENANCE:	OT	HER.		
Cleaned Torch: YES	01	HER:		
Changed Pump Tubing: YES Cleaned Optics: YES				
Polished Optics: YES				
REVIEWED BY:	/a		DATE: 8	7/04

ICP Calibration Blank/ICB/CCB Solution

ID: BLK- CA £ Z \ Date Prepared: 5-Z1-64 Make up as needed in 1000ml volumetric flask. Added 10 ml HNO3 INORG #: 4561 Added 50 ml HCL INORG #: 4554 Added 1000ul of 10000ppm Sc (INORG. VENT	010055
ICP Calibration Blank/ICB/C	CB Solution
ID: BLK- O4 FZ 1	
Date Prepared: 6-21-04	Prepared By: DI+
Make up as needed in 1000ml volumetric flask. Added 10 ml HNO3 INORG #:4582	
Added 50 ml HCL INORG #: 4556 Added 1000ul of 10000ppm Sc (INORG. VEN	Г.) EXP. Date: 4262 ^{он} INORG #: 4262
ICP Calibration Blank/ICB/C ID: BLK- 04609	CB Solution
Date Prepared: 7 - 9 - 04	Prepared By:
Make up as needed in 1000ml volumetric flask.	
Added 10 ml HNO3 INORG #: 4583	
Added 50 ml HCL INORG #:	
Added1000ul of 10000ppm Sc (INORG. VENT	Г.) EXP. Date: <u>//>-/-о4</u> -INORG #: 4
ICP Calibration Blank/ICB/C	CR Solution
ID: BLK-04Ho2	CB Solution
Date Prepared: 8-7-0	Draway Bu Du
Make up as needed in 1000ml volumetric flask.	Prepared By: 42
Added 10 ml HNO3 INORG #: 4650	
Added 50 ml HCL INORG #: 4591	
Added1000ul of 10000ppm Sc (INORG, VENT	T.) EXP. Date: 16-1-4 INORG #: 4262

FRM-296 (Rev 0/May 02)

ICP ICV/CCV SOLUTION

ccv-04c01

010056

Date Prepared: 7 - \ - \ - \ 4 Prepared By:_

HNO3 INORG #: 4583

HCI INORG #:

Make up as needed in 1000ml volumetric flask in 1% HNO3 AND 5% HCl.

Element	Std Conc	Amt added	Check	Source	Inorg #	Stock Conc	Exp Date
	(ppm)					(ppm)	
Sc	10	1ml		INORGVENT	4262	10000	16-1-A
В	5	5ml		SPEX	4564	1000	4-30-05
Li	5	5ml		SPEX	4439	1000	1-30-05
Мо	5	5ml	/	SPEX	4440	1000	1-30-05
Р	5	5ml		SPEX	4307	1000	10-30-04
Si	5	5ml	/	SPEX	4232	1000	8-30-A
Ti	5	5ml	/	SPEX	4234	1000	8-30-A
Sr	5	5ml	i/	SPEX	4308	1000	10-30-A
Sn	5	5ml	/	SPEX	4565	1000	4-30-05
Bi	5	5ml	V	SPEX	4475	1000	2-28-05
La	5	5ml	<i>\(\)</i>	SPEX	4438	1000	1-30-05
Υ	5	5ml		SPEX	9441	1000	1-30-05
Pd	1	1ml	/	SPEX	4417	1000	1-15-05
S ·	1	1ml		SPEX	4617	1000	6-30-050
Th	1	1ml		SPEX	4233	1000	8-30-04
U 、	1	1ml		SPEX	4619	1000	6-30-05
W	1	1ml		SPEX	4212	1000	-8-15-A
Zr	5	5ml		SPEX	4566	1000	4-30-05
Na	10	1ml		SPEX	4443	10000	1-30-65
ICV-2A	vary	10ml	/	SPEX	4328	mix	11-30-04
ICV-2B	vary	1ml	/	SPEX	4329	mix	11-30-04
ICV-2C	vary	10ml		SPEX	4330	mix	11-30-04

Expiration Date: 8-15-4

ICP Calibration Standards

Date Prepared: 5-25-64	Prepared By:

HNO3 INORG #: 4561 HCI INORG #: 4555

010057

Make up as needed in 500 ml volumetric flasks in 1% HNO3 and 5% HCl.

Prepared	Standard	Element	Std Conc	Added	Check	Source	INORG #	Stock Conc	Exp Date]
	Name		(ppm)	ml				(ppm)		1
										_
All STO	STD1-	Al	50	2.50	1	INORVENT	4220	10000	9-1-04	_
	1,4	Ca	50	2.50	<u> </u>	INORVENT	4436	10000	2-1-05	-
46	I X	Fe	50	2.50	<u> </u>	INORVENT	4470	10000	3-1-05	1
\mathcal{CV}	1	K	50	2.50	سن	INORVENT	4320	10000	12-1-64	4
KV	1,6	Mg	25	1.25	<u></u>	INORVENT	4204	10000	4-1-04	1
) '	A5, N.	Na	50	2.50		INORVENT	4205	10000	8-1-04	-
	6	Li	10	5.00		INORVENT	4149	1000	7-1-04	1
		Sc	10	0.500		INORVENT	426C	10000	10-1-04	1
	STD2-	Ва	10	5.00	2/	INORVENT	4465	1000	3-1-65	┨
1	STD2-	Be	5	2.50	-	INORVENT	4062	1000	6-1-045	100
, 15	100	Cr	10	5.00	1/	INORVENT	4318	1000	12-1-04	
De 25 Si	1 12	Cu	10	5.00	i	INORVENT	4469	1000	3-1-05	1
J -	150	Ni Ni	10	5.00	-	INORVENT	4412	1000	3-1-05	1
	\ \si^*	Sc	10	0.500	V	INORVENT	4712	10000	10-1-04-	1
				3.003						1
	STD3-	Cd	10	5.00	مسن	INORVENT	4467	1000	3-1-05]
(AA	Co	10	5.00		INORVENT	4468	1000	3-1-05]
ON 125	1 15	Mn	10	5.00		INORVENT	4434	1000	2-1-05]
1-1		V	10	5.00	•	INORVENT	4321	1000	12-1-04]
\mathcal{N}	16.6	Zn	10	5.00		INORVENT	4315	1000	12.1-04	1
U	STD4- 5 &	Sc	10	0.500		INORVENT	4 262	10000	16-1-0A	1
	1. 15						A = 5 =	1000		-
/	STD4- 5		2	1.00	7	INORVENT	4222	1000	9-1-04	1
/	X	As	10	5.00	1	INORVENT	4433	1000	11.1.05	ł
(1)	X X	Pb	10	5.00	_ /	INORVENT	4313	1000		ł
ix ers	1 LV 10	Sb	10	5.00	1	INORVENT	4964	1000 1000	7-1-04	1
. No.	6.65	Se	10	5.00		INORVENT	4152	1000	2-1-05	1
J	6	TL Sc	10 10	5.00 0.500	-	INORVENT INORVENT	4262	10000	 	1
	*	30	10	0.500		INORVENT	7660	10000	10124	5.2
	STD5-	В	10	5.00	V	INORVENT	4201	1000	8-104	1
	6.4	Mo	10	5.00	11	INORVENT	4471	1000	3-1-05	1
	1	P	10	5.00	11.	INORVENT	4049	1000	6-1-04	x P
/		Si	10	5.00		INORVENT	4437	1000	2-1-05]
okt25	X X	Ti	10	5.00	1	INORVENT	4332	1000	12-1-04	ł
sc.V	166	Sr	10	5.00	V ,	INORVENT	4154	1000	7-104	1
×"	N N	Sn	10	5.00	V	INORVENT	4512	1000	4-1-05]
0,	6	Di.	5	2.50	0/	INORVENT	4200	1000	8-1-04	†
	10 h	Sc	10	0.500		INORVENT	4262	10000	10-1-04	+
	40								-	1
	STD6-	La	10	5.00		INORVENT	4221	1000	9-1-4	-
	٠ ١	Na	11	0.05		INORVENT	4205	10000	8-1-44	4
,	2	Pd	10	5.00		INORVENT	4477	1000	3-1-05	-
/	16 8	S	10	5.00		INORVENT	437	1000	12-1-04	4
At25	4.74.8X	Th	10	5.00		INORVENT	4283	1000	11-1-04	+
nt"	\ \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	U	10	5.00	9/	INORVENT	4473	1000 1000	3-1-65	1
Q,	6	W	5	2.50	-	INORVENT	4203	1000	8-1-04	+
•	ł		10	5.00		INORVENT	4513	1000	8-1.05	4
	1	Zr SC	10 10	5.00 0.500		INORVENT INORVENT	944Z 426Z	1000	10-1-4	4

Expiration Dates:

STD1: 7 -1-0A

STD4: 7-1-04

STD2: 6-1-4

STD5: 6-1-04

STD3: 8-24-A

STD6: 8-1-4

FRM-299 (Rev 0/May 02) ICP Calibration Standards

Date Prepared: 6 - 2 - 04 Prepare	ed By:
-----------------------------------	--------

HN03 INORG #: 4567 HCI INORG #: 4557 010058

Make up as needed in 500 ml volumetric flasks in 1% HNO3 and 5% HCl.

Prepared	Standard	Element	Std Conc	Added	Check	Source	INORG #	Stock Conc	Exp Date	
	Name		(ppm)	ml				(ppm)		
	STD1-	Al	50	2.50		INORVENT		10000		
		Ca	50	2.50		INORVENT		10000		
		Fe	50	12:50		TNORVENT		10000		
		K	50	b 2.50		INORVENT		10000	ļ	
		Mg	25	1.25		INORVENT		10000	ļ	
	l	Na	50	2.50		INORVENT		10000 1000		
_	_	<u>Li</u>	10	5.00 0,500		INORVENT	<u> </u>	10000		
		Sc	10	0.500		INCRVENT		10000		
	STD2-	Ba	10	5.00		INORVENT	4465	1000	3-1-05	
12	3152	Be	5	2.50		INORVENT	4542	1000	6-1-05	
704	100	Cr	10	5.00	1	INORVENT	4318	1000	12-1-A	
V	of for	Cu	10	5.00	<i>J</i> ,	INORVENT	4469	1000	3-1-65	
•	יטן.	Ni	10	5.00		INORVENT	4472	1000	3-1-08	
		Sc	10	0.500	V	INORVENT	4262	10000	10-1-04	-
	STD3-	Cd	10	5.00		INORVENT		1000		
		Со	10	5.00		INORVENT		1000		
	 	Mn	10	5.00		INORVENT		1000		
		V	10	5.00		INORVENT		1000		
		Zn	10	5,00		INORVENT		1000		
		Sc	10	0.500		INORVENT		10000		
	L		A -	لىرـــــــــــــــــــــــــــــــــــ		1110011111		4000		
	STD4-	Ag	7.3	1.00		INORVENT	<u> </u>	1000		
		As	1 1	5.00		INORVENT	<u> </u>	1000		
		Pb b	10	5.00		INORVENT		1000		
		86	10	5.00		INORVENT		1000 1000		
		Se T	10	5.00		INORVENT		1000		
_	1	TL Sc	10	0.500		INORVENT	 	1000		
		-00-	10	0.500		INORVENT	-	10000		
	STD5-	В	10	5.00		INORVENT	470!	1000	8-1-04	
	3100-	Mo	10	5.00		INORVENT	4471	1000	3-1-05	
	STD5-	P	10	5.00	1	INORVENT	4553	1000	67-65	
	1002	Si	10	5.00	-	INORVENT	4437	1000	2-1-05	
A	1 or.	Ti	10	5.00	~	INORVENT	4332	1000	12-1-04	
ζ·ε [~] .		Sr	10	5,00		INORVENT	4154	1000	7-1-04	
		Sn	10	5.00		INORVENT	4512	1000	4-1-04-1	4-1: HU
		Bi	5	2.50	/	INORVENT	4200	1000	8-1-04	DH
		Sc	10	0.500		INORVENT	4262	10000	10-1-04	
	STD6-	La	10	5.00		INORVENT		1000		
		Na	1	0.05		INORVENT		10000		
		Pd	10	5.00		INORVENT		1000		
		S	10	5.00	A_	INORVENT		1000		
		Th	10	/) 5.00	2-0	INORVENT		1000		
		U	10	5 60		INORVENT		1000		
		W	5	2.50		INORVENT	ļ	1000		
		γ	10	5.00		INORVENT		1000		
		Zr	10	5.00		INORVENT		1000		
		SC	10	0.500		INORVENT		10000		

Expiration Dates:

STD1:

STD4: ---

STD2: 8-1-04

STD5: 7-1-04

STD3:

STD6: ----

FRM-299 (Rev 0/May 02)

ICP Calibration Standards

Date Prepared: 7-1-04 Prepared By: 1010059

HNO3 INORG #: 4583 HCI INORG #: 4587

Make up as needed in 500 ml volumetric flasks in 1% HNO3 and 5% HCl.

Prepared	Standard	Element	Std Conc	Added	Check	Source	INORG #	Stock Conc	Exp Date
1.1004.04	Name		(ppm)	ml				(ppm)	
							1.00	10000	0 14
	STD1-	Al	50	2,50		INORVENT	4220	10000	9-1-04
		Ca	50	2.50		INORVENT	4436	10000	Z-1-05
A	1 3	Fe	50	2.50		INORVENT	4470	10000	3-1-05
7-1-0	OAGO!	K	50	2.50		INORVENT	4320	10000	12-1-04
7	040	Mg	25	1.25		INORVENT	4204	10000	8-1-04
7		Na	50	2,50		INORVENT	4-205	10000 1000	8-1-05
		Li	10	5.00		INORVENT	4628	1000	10-1-A
		Sc	10	0.500		INORVENT	4262	10000	10-1-04
		<u> </u>	- 10	5.00	V	INORVENT	4465	1000	3-1-05
	STD2-	Ba	10	5.00		INORVENT	4592	1000	6-1-05
	l .	Be	5	2.50			4318	1000	12-1-04
7-8-09	مرجوع	Cr	10	5.00		INORVENT	4465	1000	3-1-05
2 404	070	Cu	10	5.00	-		4432	1000	3-1-05
1-0		Ni	10	5.00		INORVENT		1000	10-1-04
		Sc	10	0.500	-	INORVENT	4262	10000	10:10:
	OTDS.	 	- 40	E 00		INORVENT	4467	1000	3-1-05
	STD3-	Cd	10	5,00		INORVENT	4468	1000	3-1-05
9.80	1	Co	10	5.00		INORVENT	4434	1000	2-1-05
N	MGOS	Mn	10	5,00 5,00		INORVENT	4321	1000	12-1-04
94,08	0.	V	10 10	5.00		INORVENT	4319	1000	12-1-04
4,50	1	Zn	10	0.500		INORVENT	4262	10000	10-1-04
		Sc	10	0,300		INOTIVEIN	1,000		103(0)
	STD4-	100	2	1.00		INORVENT	4222	1000	9-1-04
	1	Ag	10	5.00		INORVENT	4433	1000	2-1-05
		As Pb	10	5.00		INORVENT	4313	1000	11-1-04
7-1-A	04501	Sb	10	5.00		INORVENT	4464	1000	3-105
1-1-0	104	Se	10	5.00	-	INORVENT	4630	1000	8-1-05
, ,		TL	10	5.00		INORVENT	4435	1000	2-1-05
		Sc	10	0.500		INORVENT	4262	10000	10-1-04
			10						
	STD5-	В	10	5.00		INORVENT	+201	1000	4-1-04
	0.20	Mo	10	5.00	/	INORVENT	4471	1000	3-1-65
		P	10	5.00		INORVENT	4593	1000	6-1-05
۱ ،	800	Si	10	5.00		INORVENT	4437	1000	2-1-05
1.4.d	120	Ti	10	5.00		INORVENT	4332	1000	12-1-04
17	10	Sr	10	5.00		INORVENT	4635	1000	8-1-05
,		Sn	10	5.00		INORVENT	4512	1000	4-1-05
		Bi	5	2.50		INORVENT	4200	1000	8-1-04
		Sc	10	0.500		INORVENT	4262	10000	10-1-04
								1655	+
7-1-04	STD6-	La	10	5.00		INORVENT	1527	1000	9-1-04
1		Na	11	0.05		INORVENT	4205	10000	8-1-04
	1	Pd	10	5.00	/	INORVENT	4477	1000	3-1-05
A	LAGO	S	10	5.00	/	INORVENT	4317	1000	12-1-04
1-0	10.	Th	10	5.00		INORVENT	4283	1000	11-1-04
す "		Ü	10	5.00		INORVENT	4473	1000	3-1-05
		W	5	2.50		INORVENT	4203	1000	8-1-04
		Υ	10	5.00		INORVENT	9513	1000	4-1-05
		Zr	10	5.00		INORVENT	4442	1000	10-1-05
l	1	SC	10	0.500	<u> </u>	INORVENT	4267	10000	10-10+

Expiration Dates:

STD1: 8-1-04

STD4: 9-1-04

STD2: 06/01/05

cav Folosiso STD5: 08/01/05

50190196

STD3: 03/01/05

STD6: & -1-04

FRM-299 (Rev 0/May 02)

ICR ANALYSIS

	PROJ. N	Ю.	PROJECT	TO#	DATE	MATRIX	LOGBK PG
06	067.01.08	()	Divw	040616-1	7-1-04	Liquid	57 125
		-					
			• .				
	INSTRU	MI	ENT: The	4CE 2	FILI	ENAME: <u>8</u> 4	06161
	INSTRU	MI	ENT DL:				

	•						
Method: 1 Run Time:	PAILY2 : 07/01/04	Standard 10:33:33	d: blk				
Elem Avge SDev %RSD	Ag3280 0000 .0000 18.63	A13082 .0004 .0000 1.127	As1890 0000 .0001 132.4	B_2496 .0001 .0000 19.17	Ba4934 0000 . 0000 123. 9	Be3130 0001 .0000 2.158	Bi2230 .0000 .0000 .0000
#1 #2	ଉଉଉଉ ଉଉଉଉ	. 0004 . 0004	0000 0001	.0001 .0001		0001 0001	. ଉଉଉଉ . ଉଉଉଉ
Elem Avge SDev XRSD	Ca3179 . ଉଉଉଉ . ଉଉଉଉ . 6429	Cd2265 . ଉଉଉଉ . ଉଉଉଉ 125. 6	Co2286 0000 . 0000 26. 33	Cr2677 . 0000 . 0000 44. 10	Cu3247 . മമമ4 . മമമ 4. 199	Fe2714 . 0000 . 0000 58. 77	K 7664 . 0003 . 0000 12.25
#1 #2	. ଉଉଉଉ . ଉଉଉଉ		0000 0000	. ଉପଦଦ . ଉପଦଦ	. 0004 . 0004		. 0003 2000 .
Elem Avge SDev %RSD	La3988 ଉଉଉଉ . ଉଉଉଉ 141. 4	Li6707 .0001 .0000 6.617	Mg2790 0000 .0000 51.98	Mn2576 . 0000 . 0000 89. 61	Ma2020 . 0000 . 0000 27. 67	Na3302 0002 .0000 14.58	Na5889 0123 .0003 2.122
#1 #2	0000 . 0000	. 0001 . 0000	0000 0000	. ଉଉପଦ . ଉପଦଦ	. ଉଉପଦ . ଉଉପଦ	0002 0002	0125 0121
Elem Avge SDev %RSD	Ni2316 0001 .0000 64.79	P_1782	2203/1 . 0000 . 0001 284. 8	2203/2 0000 .0000 61.71	Pd3404 . 0000 . 0000 188. 1	5_1820 . 0008 . 0000 2. 569	Sb2068 0012 .0000 .9189
#1 #2	0001 0000	. ଉଉଉଉ . ଉଉଉଉ	0000 .0001	ଉଷଷଷ ଉଷଷଷ	. ଉଉଉଉ ଉଉଉଉ	. 0008 . 0008	0011 0012
Elem Avge SDev %RSD	Sc3613 70.59 .46 .6462	1960/1 0001 . 0000 4. 469	1960/2 .0001 .0001 114.6	Si2881 .0017 .0000 .7313	5n1899 .0000 .0000 91.86	Sr4215 0000 .0000 141.4	Th2837 .0001 .0000 36.62
#1 #2	70.27 70.91	0001 0001	.0001 .0000	.0017 .0018	. 0000 . 0001	0000 . 0000	. 0000 . 0001
Elem Avge SDev %RSD	Ti3349 0001 . 0000 40.32	T11908 0002 .0000 18.51	U_4090 0003 .0001 40.59	V 2924 - 0000 0000 39.16	W_2079 .0001 .0001 113.4	Y 3710	Zn2062 .0000 .0000 12.42
#1 #2	0001 0000	0002 0002	0004 0002	0000 0000	. ଉଉପର . ଉପପର	0000 . 0000	
Elem Avge SDev %RSD	Zr3496 . ØØØ2 . ØØØ1 25. 68				6	0	
#1 #2	.0002 .0002				1 () (July)	

Major

010062

Standardization Rpt.

07/01/04 10:38:40 AM page 2

IntStd	1	2	3	4	5	6	7
Mode	*Counts	Time	NOTUSED	NOTUSED	NOTUSED	NOTUSED	NOTUSED
Elem	Sc	***** *****	**** *****	**** *****	***** *****	***** *****	***** *****
Wavlen	361.384	****	*****	****	*****	*****	*****
Avge	705802	10000	*****	*****	*****	****	*****
SDev	4537.504	. ଉଉଉଉଉଉଉ	****	****	*****	·····	****
%RSD	.6428858	. ଉଉଉଉଉଉଉ	****				····
#1	702594	10000	****	·····	****	*****	
#2	709011	1 ወወወወ		****	Lemma equales	***** ****	*****

Standardization Rp	Standardization Rpt.				07/01/04 10:43:36 AM			
Method: DAILY2 Run Time: Ø7/Ø1/Ø4	Standar 10:38:51	d: clp_std	4					
Elem Ag3280 Avge .0815 SDev .0001 %RSD .1627	As1890 .1189 .0000 .0240	2203/1 .3237 .0014 .4351	2203/2 .2778 .0023 .8386	Sb2068 .1790 .0005 .2584	1960/1 .2578 .0007 .2578	1960/2 .2646 .0034 1.286		
#1 .0816 #2 .0814	.1189 .1189	. 3247 . 3227	.2761 .2794	.1786 .1793	. 2583 . 2574	.2622 .2670		
Elem T11908 Avge .2290 SDev .0005 %RSD .2288								
#1 .2294 #8 .2286								
IntStd 1 Mode *Counts Elem Sc Wavlen 361.384 Avge 729231 SDev 4682.461 %RSD .6421094	2 Time 10000 .0000000	NOTUSED	NOTUSED	S NOTUSED 	6 NOTUSED 	7 NOTUSED 		
#1 725920 #2 732542	10000 10000	*****	****	*****		*****		

07/01/04 10:47:49 AM page 1

	DAILY2 : 07/01/04		d: clp_std	1			
Elem Avge SDev %RSD	A13082 .1087 .0001 .0451	Ca3179 .2025 .0001 .0452	Fe2714 .1036 .0001 .1010	K_7664 .T922 .QQQ2 .Q966	Li6707 3.207 .001 .0164	Mg2790 .0885 .0001 .1085	Na3302 . 0086 . 0000 . 4516
#1 #2	. 1088 . 1087	. 2025 . 2026	. 1036 . 1037	. 1924 . 1921	3.208 3.207	. Ø884 . Ø886	. 0086 . 0086
IntStd Mode Elem Wavlen Avge SDev %RSD	1 *Counts Sc 361.384 714789 5081.270 .7108768	2 Time 10000 .0000000 .0000000	3 NOTUSED 	4 NOTUSED 	5 NOTUSED 	6 NOTUSED 	7 NOTUSED
#1 #2	718382 711196	10000 10000	****		****		****

Standardization Rpt	Standardization Rpt.				₽ AM	page 1
Method: DAILY2 Run Time: 07/01/04	Standard 10:48:01	d: clp_std5	ÿ			
Avge .1690 SDev .0001	Bi2230 .0336 .0001 .2417	Mo2020 .3377 .0011 .3133	P 1782 .0172 .0001 .6139	Si2881 .1746 .0005 .2635	Sn1899 .1598 .0002 .1173	9r4215 2.544 .003 .1336
	.0337 .0335	.3369 .3384	.0171 .0173	.1749 .1742	.1599 .1597	2.541 2.546
Elem Ti3349 Avge 2.641 SDev .001 %RSD .0203						
#1 2.641 #8 2.641						
Mode *Counts Elem Sc Wavlen 361.384 Avge 705748 30ev 2397.799	2 Time 10000 .0000000 .0000000	3 NOTUSED 	NOTUSED	5 NOTUSED 	6 NOTUSED	7 NOTUSED
	10000 10000			*****	*****	

Method: Run Time	DAILY2 : 07/01/04	Standar 10:52:14	d: clp_sto	12			
Elem Avge SDev %RSD	Ba4934 1.181 .008 .8193	Be3130 1.370 .001 .0981	Cr2677 .4180 .0001 .0304	Cu3247 .3063 .0001 .0249	Ni2316 - 3574 - 0000 - 0107	010	0066
#1 #2	1.119	1.371 1.369	.4179 .4181	. 3063 . 3068	. 3573 . 3574		
IntStd Mode Elem Wavlen Avge SDev *RSD	1 *Counts Sc 361.384 741266 7418.257 1.000754	2 Time 	3 NOTUSED 	NOTUSED	5 NOTUSED 	6 NOTUSED 	7 NOTUSED
#1 #2	736021 746512	10000 10000			10-100 CHON		

Method: DAILY2 Standard: clp_std3 Run Time: 07/01/04 10:56:05 V_2924 .1936 Cd2265 Elem Co2286 Mn2576 Zn2062 . 3051 1.007 .2165 .8568 Avge . 0001 010067 . ØØ1 . Ø8Ø9 . 0008 SDev .0001 . 0004 **XRSD** .0433 .0922 .0375 . 1331 1.006 .2164 #1 .3048 .8562 . 1935 #2 1.007 .2165 .8573 . 1936 . 3054 IntStd 2 Time *Counts Mode NOTUSED NOTUSED NOTUSED NOTUSED NOTUSED Sc. Elem --------361.384 711727 11555.54 1.623592 Wavlen Ayge 10000 . 00000000 SDev ----.... ------------. ଉପଉପଉପର %RSD 719898 703556 10000 #2 10000

07/01/04 11:04:42 AM page 1

						· · · · · · · · · · · · · · · · · · ·
Method: DAILY2 Run Time: 07/01/04	Standar 11:00:18	d: clp_sto	16			
Elem La3988 Avge .4716 SDev .0005 %RSD .1083	Na5889 .0461 .0001 .1763	Pd3404 . 2038 . 0000 . 0064	S_1820 . 0343 . 0001 . 2565	Th2837 .1113 .0001 .0737	U_4090 .0710 .0000 .0343	W_2079 .2073 .0006 .2702
#1 .4720 #2 .4713	. 0422 . 0420	. 2038 . 2039	. 0343 . 0344	.1114	.0710 .0710	.2069 .2077
Elem Y 3710 Avge .7699 SDev .0002 %RSD .0251	Zr3496 1.887 .000 .0157					
#1 .77Ø1 #2 .7698	1.887 1.887					
IntStd 1 Mode *Counts Elem Sc Wavlen 361.384 Avge 718250 SDev 7937.273 %RSD 1.105084	2 Time 10000 .0000000 .0000000	3 NOTUSED 	4 NOTUSED 	5 NOTUSED 	6 NOTUSED 	7 NOTUSED
#1 723863 #2 712638	10000 10000			*****		****

010069

Report 07/01/04 11:04:48 AM Standardization page 1 Method: DAILY2 Slope = Conc(SIR)/IRY-intercept
.000964
.000964
.0004091
.0004091
.000522
-.0003848
-.00038126
-.00038126
-.0004441
-.00128550
-.076434
.0004408
-.004408
-.004407
-.00440991
-.00440991
-.00440991
-.004559
-.006367
-.0063677
-.0006367
-.0006367
-.0006367
-.0006367
-.0006367
-.0006367
-.0006367
-.0006367
-.0006367
-.0006367
-.0006367
-.0006367
-.0006367 Element Wavelen High std Low std Slope Y-intercept Date Standardized 24.5259 461.567 84.0605 clp_std4 clp_std1 clp_std4 clp_std5 Ag3280 Al3082 07/01/04 11:00:18 07/01/04 11:00:18 328.068 blk 308.215 189.042 blk 07/01/04 11:00:18 07/01/04 11:00:18 As1890 blk B_2496 249.678 blk 59.1910 493.409 313.042 07/01/04 11:00:18 07/01/04 11:00:18 clp_std2 clp_std2 clp_std5 Ba4934 8.92120 blk Be3130 Bi2230 Ca3179 3.64824 blk 313.042 223.061 317.933 226.502 228.616 267.716 324.753 271.441 147.588 246.921 9.93115 46.1968 23.4826 07/01/04 11:00:18 blk 07/01/04 11:00:18 07/01/04 11:00:18 07/01/04 11:00:18 07/01/04 11:00:18 clp_std1 clp_std3 clp_std3 clp_std2 blk C02286 blk blk 07/01/04 11:00:18 07/01/04 11:00:18 07/01/04 11:00:18 07/01/04 11:00:18 Cr2677 blk clp_std2
clp_std1
clp_std1
clp_std1
clp_std1
clp_std3
clp_std3
clp_std3
clp_std3
clp_std3
clp_std3 23.9225 32.6940 482.776 260.514 21.2209 3.11788 282.309 11.6728 Cu3247 Fe2714 K_7664 blk blk 271.441 766.491 398.853 670.784 279.078 257.610 202.030 330.232 588.991 178.287 07/01/04 11:00:18 blk 07/01/04 11:00:18 07/01/04 11:00:18 07/01/04 11:00:18 07/01/04 11:00:18 07/01/04 11:00:18 07/01/04 11:00:18 07/01/04 11:00:18 La3988 blk Li6707 Mg2790 Mn2576 blk blk blk Mo2020 Na3302 29.6213 5678.81 blk blk 18.4690 27.9790 583.111 30.8956 Na5889 blk clp_std6 clp_std5 clp_std4 clp_std4 clp_std6 clp_std6 clp_std4 07/01/04 11:00:18 07/01/04 11:00:18 07/01/04 11:00:18 Ni2316 F_1782 blk 231.604 178.287 220.352 220.352 340.458 182.040 206.838 361.384 196.021 blk 2203/1 blk 35.9960 50.3741 297.674 55.5190 07/01/04 11:00:18 07/01/04 11:00:18 2203/2 blk Fd3404 S 1820 S52068 blk 07/01/04 11:00:18 blk 07/01/04 11:00:18 07/01/04 11:00:18 blk Sc3613 dark 1.41665 07/01/04 11:00:18 07/01/04 11:00:18 07/01/04 11:00:18 07/01/04 11:00:18 *NOT STANDARDIZED *NOT STANDARDIZED clp_std4 clp_std4 clp_std5 NONE .004559 -.002527 1960/1 38.7708 blk 1960/2 37.8040 -. 002527 -. 100870 . 000000 . 000000 blk 196.022 288.158 220.353 196.026 189.989 421.552 283.730 334.941 1409.864 57.6484 1.00000 Si2881 blk PP55@ NONE NONE 1.00000 Se196 NONE 07/01/04 11:00:18 07/01/04 11:00:18 07/01/04 11:00:18 07/01/04 11:00:18 07/01/04 11:00:18 clp_std5 clp_std5 clp_std6 clp_std5 clp_std4 clp_std4 -.002035 62.6304 3.93120 Sn1899 blk .000003 -.005045 .000239 Sr4215 blk 93.8080 3.78651 Th2837 blk Ti3349 blk T11908 .008216 43.6280 blk U_4090 V_2924 W_2079 Y_3710 148.326 51.6582 .047241 409.014 blk 07/01/04 11:00:18 .047241 .001209 -.002776 -.000055 -.001115 -.001169 07/01/04 11:00:18 07/01/04 11:00:18 07/01/04 11:00:18 07/01/04 11:00:18 07/01/04 11:00:18 07/01/04 11:00:18 292.402 207.914 371.030 clp_std6 clp_std6 clp_std6 clp_std3 clp_std6 blk 24.1256 12.9858 32.7823 5.79289 blk blk 206.200 ZT2062 blk

blk

Zr3496

Analysis Report QC Standard 07/01/04 11:10:03 AM page 1 Method: DAILY2 Sample Name: icv/ccv Operator: Run Time: 07/01/04 11:04:54 Comment: Mode: CONC Corr. Factor: 1 Ba4934 A13082 As1890 B 2496 Be3130 Bi2230 Elem Aq3280 .9911 ppm 4.766 ppm 10.03 ppm 4.992 PPM . 979Ø P_pm Units PPm 9.715 5.008 Ayge . 0024 .010 .00 .016 .004 . 0003 .007 SDev %RSD . 2424 . 1675 .0813 .2111 .2195 .0353 . 1405 .9894 .9928 9.704 9.727 4.758 4.773 .9793 #1 4.995 10.01 5.013 . 9788 4.990 5.003 #2 10.05 QC Pass 1.000 QC Pass 10.00 QC Pass QC Pass Errors QC Pass QC Pass QC Pass ร์. ิชติจิ 1.000 ร. อออ 5.000 Value 10.00 Ranne 10.00 10.00 10.00 10.00 10.00 10.00 10.00 Fe2714 K 7664 Elem Ca3179 Cd2265 Co2286 Cr2677 Cu3247 .9995 Ppm 2.010 PPM 18.21 Units ppm 20.04 ppm 10.12 ppm ppm 4. 975 1.950 Avge . 01 .0013 .003 .0651 .006 .3171 . 004 SDev .01 .02 . 1252 . 0295 . Ø897 . 1325 **%RSD** . 1951 4.973 4.977 1.000 #1 20.04 1.953 2.006 10.13 18.19 1.948 #2 20.04 .9986 2.015 10.12 18.23 QC Pass 2.000 QC Pass 2.000 QC Pass QC Pass QC Pass QC Pass QC Pass Errors Value 20.00 1.000 5.000 10.00 20.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 Range Li6707 Mp279Ø Na5889 Elem La3988 Mn2576 Mo2Ø2Ø Na3302 ppm 5.039 ppm 4.97@ Units ppm 4.555 ppm 19.95 PPm 27.11 ppm Q42.48 ppm1.010 Avge .10 .2468 .008 SDev .005 . 04 .000 .014 .07 . 1691 . 2592 **KRSD** .0982 .2066 . 2788 . 0131 5.035 4.550 4.561 Q42.40 Q42.55 1.010 4.960 #1 19.92 27.06 19.98 4.980 27.15 #2 1.010 QC Pass QC Fail QC Pass QC Pass QC Pass QC Pass QC Pass Errors รี. ๏๏๏ี 1.000 5.000 5.000 Value 20.00 30.00 30.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 Range Ni2316 F_1782 2203/1 2203/2 Pd3404 S_1820 Sb2@68 Elem .9656 PPm 5.010 ppm 4.912 Units ppm ppm ppm ppm 4.887 4.976 1.020 1.034 Avge .013 . 094 .003 .0021 .025 .5155 . 001 SDev . 000 . 2159 **KRSD** .0042 . 2514 1.881 .3196 . 1161 1.036 1.019 . 9641 #1 4.887 5.019 4.894 5.042 5.001 #2 4.887 4.930 4.910 1.032 1.021 .9671 QC Pass 5.000 QC Pass 5.000 QC Pass 1.000 NOCHECK QC Pass Errors NOCHECK QC Pass Value 1.000 1. (1010) 10.00 Range 10.00 10.00 10.00 10.00

Elem

Sc3613

1960/1

1960/2

Si2881

Pb220

Se196

Sn1899

Analysis	Report	QC Stand	dand	07/01/0	3 AM	page 2	
Units Avge SDev %RSD	%R 102.3 1.0 .9528	PP# 5.139 .036 .6968	5.222 .090 1.732	PPM 5.031 .003 .0547	PFM 4.954 .054 1.089	PP# 5.194 .048 .9308	rpm 4.920 .013 .2726
#1 #2	101.6 103.0	5. 114 5. 164	5.285 5.158	5.029 5.033	4.993 4.916	5.228 5.160	4.910 4.929
Errors Value Range	NOCHECK	NOCHECK	NOCHECK	QC Pass 5.000 10.00	QC Pass 5.000 10.00	QC Pass 5.000 10.00	QC Pass 5.000 10.00
Elem Units Avge SDev %RSD	Sr4215 PPM 5.052 .005 .1024	Th2837 ppm .9785 .0029 .2996	Ti3349 ppm 4.827 .000 .0013	T11908 PP# 5.182 .016 .3028	U_4090 ppm .9505 .0228 2.397	V_2924 ppm 4.957 .003 .0569	W_2079 ppm 1.016 .002 .1925
#1 #2	5.048 5.056	.9764 .9805	4.827 4.827	5. 171 5. 193	.9666 .9344	4.959 4.955	1.015 1.017
Errors Value Range	QC Pass 5.000 10.00	QC Pass 1.000 10.00	QC Pass 5.000 10.00	QC Pass 5.000 10.00	QC Pass 1.000 10.00	QC Pass 5.000 10.00	QC Pass 1.000 10.00
Elem Units Avge SDev %RSD	Y_3710 PPm 5.086 .001 .0133	Zn2062 PPM .9976 .0018 .1789	Zr3496 ppm 4.946 .003 .0554				
#1 #@	5. Ø86 5. Ø87	.9988 .9963	4.944 4.948				
Errors Value Range	QC Pass 5.000 10.00	QC Pass 1.000 10.00	QC Pass 5.000 10.00				

Analysis Report QC Standard		07/01/	page 3				
IntStd Mode Elem Wavlen Avge SDev %RSD	1 *Counts Sc 361.384 722241 6894.291 .9545693	2 Time 10000 .0000000 .0000000	3 NOTUSED 	4 NOTUSED 	5 NOTUSED 	6 NOTUSED 	7 NOTUSED
#1 #2	717366 727116	10000 10000		****		****	*****

page 1

Analysis Report Blank Sample 07/01/04 11:17:45 AM Method: DAILY2 Sample Name: icb/ccb Run Time: 07/01/04 11:12:38 Operator:

kun iime: Comment:	: (0//(01//04	111151500					
Mode: COM	NC Corr.	Factor: 1					
Elem	Ag3280	A13082	As1890	B_2496	Ba4934	Be3130	Bi2230
Units	PPM	ppm	ppm	ppm	ppm	ppm	PPm
Avge	.0004	.0004	0009	.0033	.0001	.0000	0020
SDev	.0000	.0010	.0006	.0012	.0002	.0000	.0017
%RSD	7.316	236.6	68.48	36.15	151.9	8.291	88.08
#1	. 0004	0003	0005	.0042	. 0003	. 0001	0007
#2	. 0004	.0011	0013	.0025	0000	. 0000	0032
Errors	LC Pass	LC Pass	LC Pass	LC Fass	LC Pass	LC Pass	LC Pass
High	.0050	.0500	.0050	.0500	.0050	.0050	.0100
Low	0050	0500	0050	0500	0050	0050	0100
Elem	Ca3179	Cd2265	Co2286	Cr2677	Cu3247	Fe2714	K_7664
Units	PPm	ppm	PPm	PPM	PPm	ppm	PPm
Avge	.0189	0002	. 0004	0001	0003	- 0009	.0108
SDev	.0009	.0003	. 0001	.0003	.0003	- 0027	.0055
%RSD	4.542	198.8	10.94	375.0	87.57	320.6	51.08
#1	.0195	. 0001	. 0004	.0001	0001	.0011	.0069
#2	.0183	0004	. 0005	0003	0005	0028	.0147
Errors	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass
High	.0500	.0050	.0050	.0050	.0050	.0250	.1000
Low	0500	0050	0050	0050	0050	0250	1000
Elem	La3988	Li6707	Mg2790	Mn2576	Mo2020	Na3302	Na5889
Units	ppm	ppm	PPm	ppm	PPM	ppm	PPM
Avge	.0003	.0001	.0081	.0000	.0031	0446	.0195
SDev	.0003	.0000	.0005	.0001	.0022	.1524	.0054
%RSD	111.0	14.31	5.908	186.6	71.02	341.5	27.80
#1	.0001	.0001	.0078	. 0001	.0047	L1524	.0157
#2	.0005	.0001	.0085	0000	.0016	H.0632	.0233
Errors	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass
High	.0050	.0050	.0500	.0050	.0050	.0500	.0500
Low	0050	0050	0500	0050	0050	0500	0500
Elem	Ni2316	P_1782	2203/1	2203/2	Pd3404	5_1820	Sb2068
Units	PPm	PPm	PP#	PPm	PPM	ppm	PPM
Avge	.0009	0003	.0033	.0012	.0044	L0184	0002
SDev	.0013	.0018	.0039	.0014	.0012	.0003	.0027
%RSD	143.5	535.8	116.9	120.1	26.65	1.795	1363.
#1 #2	.0018 0000	. 0009 0016	. ଉଉଟ 1 . ଉଉଉଟ	.0022 .0002		L0182 L0187	.0017 0021
Errors High Low	LC Pass .0050 0050	LC Pass .0100 0100	NOCHECK	NOCHECK	LC Pass .0050 0050	LC Low .0100 0100	LC Pass .0100 0100
Elem	Sc3613	1960/1	1960/2	Si2881	Pb220	Se196	Sn1899

Analysis	Report	Blank S	ample	07/01/	24 11:17:4	5 AM	page 2
Units	%R	PPM	PPM	PPM	PPM	PPM	PPM
Avge	102.4	. 0005	0005	- 0048	-0019	0002	0011
SDev	.7	. 0020	.0002	- 0009	-0023	.0005	.0030
%RSD	.6948	412.5	37.21	18.98	116.9	289.1	263.3
#1	101.9	0009	0004	.0042	H.0035	0006	0033
#2	102.9	.0019	0007	.0055	.0003	.0002	.0010
Errors High Low	NOCHECK	NOCHECK	NOCHECK	LC Pass .0100 0100	LC Pass .0030 0030	LC Pass .0050 0050	LC Pass .0050 0050
Elem	Sr4215	Th2837	Ti3349	T11908	U_4090	V_2924	W_2079
Units	PPM	PPM	PPM	PPM	PPM	PPM	PPM
Avge	.0001	0004	.0001	.0035	.0085	0006	.0051
SDev	.0001	.0002	.0002	.0009	.0045	.0003	.0001
%RSD	42.56	54.48	295.2	27.17	52.73	59.62	2.122
#1	.0002	0005	.0002	. 0042	.0053	0008	.0050
#2	.0001	0002	0001	. 0028	.0117	0003	.0051
Errors	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass
High	.0050	.0100	.0050	.0100	.1000	.0050	.0100
Low	0050	0100	0050	0100	1000	0050	0100
Elem Units Avge SDev %RSD	Y_3710 PPm .0002 .0002 95.22	Zn2062 ppm .0017 .0003 19.97	Zr3496 ppm 0001 .0007 687.2				
#1 #2	.0004 .0001	.0014 .0019	. 0004 0006				
Errors High Low	LC Pass .0050 0050	LC Pass .0050 0050	LC Pass .0050 0050				

Analysis	Report	Blank Sample		07/01/04 11:17:45 AM			page 3	
IntStd Mode Elem Wavlen Avge SDev %RSD	1 *Counts 5c 361.384 722708 5062.177 .7004463	2 Time 10000 .0000000 .0000000	3 NOTUSED 	4 NOTUSED 	5 NOTUSED 	6 NOTUSED 	7 NOTUSED 	
#1 #2	719128 726287	10000 10000	****	*****	*****		electr state	

Analysis	Report			07/01/	04 11:23:0	3 AM	page 2
Units	%R	PPM	PPM	ppm	PPM	PPM	PP#
Avge	98.51	.0010	0005	.0064	.0000	- 0000	0029
SDev	.67	.0062	.0005	.0024	.0003	.0017	.0006
%RSD	.6794	611.6	90.04	38.22	1432.	33030.	20.27
#1	98.98	.0054	0009	.0047	0002	.0012	0025
#2	98.03	0033	0002	.0081	.0003	0012	0033
Errors High Low	NOCHECK	NOCHECK	NOCHECK	LC Pass .0100 0100	LC Pass .0030 0030	LC Pass .0050 0050	LC Pass .0050 0050
Elem	Sr4215	Th2837	Ti3349	T11908	U_4090	V_2924	W_2079
Units	PPM	PP#	PPM	ppm	PPm	PFM	FF#
Avge	.0001	.0003	- ଉଉଉଉ	.0034	.0038	0002	. 0038
SDev	.0000	.0007	- ଉଉଉi	.0014	.0256	. 0007	. 0002
%RSD	25.70	223.6	249-6	40.63	674.1	291. 9	4. 559
#1	. 0001	ଉଉଉଥ	0000	.0025	0143	ଉଷଷଟ	. 0037
#2	. 0001	. ଉଉଉଥ	. 0001	.0044	.0219	. ଉଷଷଥ	. 0039
Errors	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass
High	.0050	.0100	.0050	.0100	.1000	.0050	.0100
Low	0050	0100	0050	0100	1000	0050	0100
Elem Units Avge SDev %RSD	Y_3710 ppm .0001 .0000 44.54	Zn2062 ppm .0008 .0001 15.64	Zr3496 ppm .0001 .0005 479.2				
#1 #2	. 0001 . 0000	. ወወወ9 . ወወወ7	0002 .0004				
Errors High Low	LC Pass .0050 0050	LC Pass .0050 0050	LC Pass .0050 0050				

010078

Analysis Report

07/01/04 11:23:03 AM

page 3

IntStd Mode Elem	1 *Counts Sc	2 Time 	3 NOTUSED 	NOTUSED	5 NOTUSED	6 NOTUSED	7 NOTUSED
Wavlen	361.384	****	*****	*****	*****	*****	
Avne	695320	10000	****	****	****	****	****
Avge SDev	4747.515	. ଉପ୍ରପ୍ରପ୍ରପ୍ର	****	****	****	*****	
%RSD	.6827813	. 0000000	****	****		*****	*****
#1	698677	10000	*****	****	*****	·····	·····
井已	691963	10000	*****	min	****	*****	*****

.5011 .0001 .5019 .0012

Analysis Report

. ଉଉଦର . ଉଉଦର

#1 #2 -.0131 -.0186

3.928 3.927

2.067 2.068 4.113 4.099

07/01/04 11:28:22 AM

page 1

Method: DAILY2 Run Time: 07/01/04	Sample Name: lcsw- 11:23:15	=3ØW1	Operator:		
Comment: Mode: CONC Corr.	Factor: 1				
Elem Ag3280	A13082 As1890	B_2496	Ba4934	Be3130	Bi2230
Units ppm	ppm ppm	ppm	ppm	Ppm	PPM
Avge .0514	1.949 2.024	4.008	2.029	.0503	0006
SDev .0008	.002 .007	.006	.000	.0001	.0030
%RSD 1.621	.1151 .3518	.1432	.0051	.1312	527.6
#1 .0508	1.948 2.029	4.012	2.029	. 0504	0027
#2 .0520	1.951 2.019	4.004	2.029	. 0503	.0016
Elem Ca3179	Cd2265 Co2286 PPM PPM .0497 .5025 .0004 .0003 .8712 .0664	Cr2677	Cu3247	Fe2714	K_7664
Units ppm		Prm	PPM	ppm	FFM
Avge 20.55		- 1954	.2506	1.119	17.40
SDev .02		- 0004	.0003	.017	.00
%RSD .0809		- 2059	.1038	1.479	.0246
#1 20.53	.0500 .5027	.1957	. 2504	1.108	17.39
#2 20.56	.0494 .5022	.1951	. 2508	1.131	17.40
Elem La3988	Li6707 Mg2790	Mn2576	Mo2020	Na33Ø2	Na5889
Units ppm	PPm PPm	PPM	PPM	PP#	PP#
Avge .0007	3.564 20.37	.5065	.0003	17.69	27.84
SDev .0002	.021 .00	.0000	.0006	.22	.10
%RSD 29.46	.5802 .0073	.0048	176.3	1.244	.3517
#1 .0008	3.578 20.37	.5065	.0007	17.53	27.91
#2 .0005	3.549 20.37	.5065	0001	17.84	27.77
Elem Ni2316	P_1782	2203/2	Pd3404	S_1820	Sb2068
Units ppm		ppm	PPm	ppm	ppm
Avge .4923		.4973	.0029	.0017	.4865
SDev .0019		.0028	.0035	.0099	.0043
%RSD .3749		.5599	121.2	569.7	.8783
#1 .4936	3.999 .4944	.4954	.0004	0053	. 4896
#2 .4910	4.016 .4951	.4993	.0054	.0087	. 4835
Elem Sc3613	1960/1 1960/2	Si2881	Pb220	Se196	Sn1899
Units %R	ppm ppm	ppm	Ppm	ppm	PPM
Avge 95.37	2.058 2.067	4.028	.4965	2.064	- 0003
SDev .97	.001 .011	.003	.0020	.008	- 0049
%RSD 1.020	.0410 .5244	.0728	.4088	.3637	1821.
#1 96.06	2.059 2.075	4.030	. 4951	2.069	.0032
#2 94.68	2.058 2.059	4.026	. 4979	2.059	0037
Elem Sr4215	Th2837 Ti3349 PPM PPM PPM0159 3.928 .0039 .001 24.47 .0220	T11908	U_4090	V_2924	W_2079
Units ppm		PPM	PPm	PPM	PPM
Avge .0008		2.068	4.106	.5015	.0007
SDev .0000		.001	.010	.0005	.0008
%RSD .8083		.0348	.2525	.1070	125.2

Elem Units Avge SDev %RSD	Y_3710 ppm 0000 .0001 846.7	Zn2062 ppm .5045 .0018 .3530	Zr3496 PPM 3.878 .001 .0229			010	080
#1 #2	0001 .0000	.5033 .5058	3.878 3.879				
IntStd Mode Elem Wavlen Avge SDev %RSD	1 *Counts Sc 361.384 673116 6859.643 1.019089	2 Time 10000 .0000000 .0000000	3 NOTUSED 	4 NOTUSED 	5 NOTUSED 	6 NOTUSED 	7 NOTUSED
#1 #2	677966 668265	10000 10000	*****	*****	****	****	****

Method: DAILY2 Sample Name: 246046 Run Time: 07/01/04 11:28:33 Comment: Mode: CONC Corr. Factor: 1

Operator:

010081

Trustal as a tustas		, m. 0.00, n. m.					
Elem	Ag3280	A13082	As1890	B_2496	Ba4934	Be3130	Bi2230
Units	PPm	ppm	PPM	ppm	ppm	ppm	PPM
Avge	.0001	.0107	.0007	.0125	.0263	.0001	0084
SDev	.0005	.0026	.0028	.0014	.0001	.0000	.0012
%RSD	503.7	23.91	373.0	11.18	.3182	21.26	14.74
#1	0002	.0089	0012	.0135	.0264	. 0001	0093
#2	.0004	.0125	.0027	.0115	.0262	. 0000	0075
Elem	Ca3179	Cd2265	Co2286	Cr2677	Cu3247	Fe2714	K_7664
Units	PPm	PPM	PP#	ppm	ppm	ppm	PPM
Avge	.0394	0001	. 0028	.0162	.0082	.3077	26.47
SDev	.0019	.0001	. 0007	.0009	.0002	.0159	.04
%RSD	4.753	200.7	26.82	5.703	8.330	5.164	.1691
#1	.0381	0001	.0022	.0168	.0021	.2965	26.44
#2	.0407	.0000	.0033	.0155	.0024	.3190	26.50
Elem	La3988	Li6707	Mg2790	Mn2576	Mo2020	Na3302	Na5889
Units	ppm	PPm	PPm	ppm	ppm	ppm	PPM
Avge	.0007	.0006	. 0038	.0132	- 0000	4.440	6.912
SDev	.0009	.0000	. 0023	.0001	- 0003	.046	.024
%RSD	130.0	3.605	60.11	.3669	2112.	1.038	.3422
#1	.0001	. 0006	.0054	.0132	. 0002	4.473	6.929
#2	.0013	. 0007	.0022	.0132	0002	4.407	6.895
Elem	Ni2316	P_1782	2203/1	2203/2	Pd3404	S_1820	Sb2068
Units	PPm	PPm	PPM	ppm	ppm	ppm	ppm
Avge	.0727	0185	.0002	.0015	.0020	.0140	0027
SDev	.0012	.0079	.0029	.0010	.0027	.0117	.0007
%RSD	1.636	42.98	1184.	65.81	136.7	83.75	26.77
#1	.0735	0241	.0023	.0008	.0001	.0057	0022
#2	.0718	0128	0018	.0023	.0039	.0222	0032
Elem	Sc3613	1960/1	1960/2	Si2881	Pb220	Se196	Sn1899
Units	%R	ppm	PPM	PPM	Ppm	PPm	PPM
Avge	102.7	- 0000	.0022	.0408	.0011	.0015	- 0005
SDev	1.0	- 0008	.0002	.0025	.0003	.0001	.0008
%RSD	.9785	3151.	8.830	6.069	26.36	8.046	177.5
#1	103.4	. 0005	.0021	.0391	.0013	.0016	.0001
#2	102.0	0006	.0024	.0426	.0009	.0014	0011
Elem	Sr4215	Th2837	Ti3349	T11908	U_4090	V_2924	W_2079
Units	PPM	PPM	ppm	PPM	PP#	PP#	PPM
Avge	.0006	0002	.0000	.0026	.0011	- 0006	.0032
SDev	.0001	.0012	.0001	.0004	.0084	- 0000	.0000
%RSD	11.95	671.3	1116.	16.91	745.3	2.741	1.372
#1	. 0006	.0007	0001	6500.	0048		.0032
#8	. 0007	0010	. 0001	5500.	. 0070		.0032

Zr3496 ppm 0001 .0000 13.88			0	10082
0001 0002				
3 NOTUSED 	4 NOTUSED	5 NOTUSED	6 NOTUSED	7 NOTUSED
*****	*****	*****	*****	1-000 00000
	*****	00010 00000 00000 00000	*****	00000 00000
****		*****		
	PPM - 0001 - 0000 13.88 - 0001 - 0002 3 NOTUSED	PPM	PPM	PPM

Method: DAILY2 Sample Name: 246047 Run Time: 07/01/04 11:33:52 Comment: Mode: CONC Corr. Factor: 1

Operator:

010083

1	node: cur	uc comm.	ractor: 1				OT.	uuaa
	Elem	Ag3280	A13082	As1890	B_2496	Ba4934	Be3130	Bi2230
	Units	ppm	ppm	ppm	ppm	ppm	ppm	PPM
	Avge	.0001	.0120	0002	.0162	.0249	.0000	0034
	SDev	.0007	.0029	.0011	.0008	.0000	.0000	.0042
	%RSD	576.7	24.48	640.2	4.941	.0306	118.9	120.7
	#1	.0007	.0141	. ଉଉଉଚ	.0168	. 0249	. ଉଉଉଉ	0005
	#2	0004	.0099	ଉଉଉଚ	.0156	. 0249	. ଉଉଉଉ	0064
	Elem	Ca3179	Cd2265	Co2286	Cr2677	Cu3247	Fe2714	K_7664
	Units	PPM	PPM	PPm	PPm	ppm	PPM	PPm
	Avge	.04444	- 0002	. 0026	.0039	.0018	.2289	34.01
	SDev	.0002	- 0000	. 0002	.0003	.0002	.0054	.03
	%RSD	.5414	17.64	9.142	6.691	10.96	2.380	.1024
	#1	.0442	0003	.0027	.0037	.0019	.2327	33.99
	#2	.0446	0002	.0024	.0041	.0017	.225 0	34.04
	Elem	La3988	Li6707	Mg2790	Mn2576	Mo2020	Na3302	Na5889
	Units	ppm	PPm	PPm	PPM	ppm	99m	PPM
	Avge	.0006	.00007	. 0090	.0135	.0003	9.908	15.61
	SDev	.0005	.0000	. 0019	.0000	.0005	.082	.01
	%RSD	76.87	.0788	20. 79	.2413	177.1	.8323	.0625
	#1	.0010	. 0007	.0077	.0135	.0006	9.849	15.61
	#2	.0003	. 0007	.0103	.0134	0001	9.966	15.62
	Elem	Ni2316	F_1782	2203/1	2203/2	Pd3404	S_1820	Sb2068
	Units	PPM	PPM	ppm	ppm	ppm	PPM	PPm
	Avge	.0723	0074	.0025	.0011	.0010	.0108	0028
	SDev	.0006	.0006	.0003	.0019	.0009	.0082	.0011
	%RSD	.8790	7.568	11.61	174.0	83.90	75.75	38.78
	#1	.0728	0078	.0023	.0024	.0017	.0166	0020
	#2	.0719	0070	.0027	0002	.0004	.0050	0035
	Elem	Sc3613	1960/1	1960/2	Si2881	Pb220	Se196	Sn1899
	Units	%R	ppm	ppm	PPm	Ppm	ppm	PPM
	Avge	99.98	.0001	0025	.0751	.0016	0016	0032
	SDev	.43	.0007	.0021	.0010	.0011	.0017	.0019
	%RSD	.4264	526.8	85.65	1.341	72.43	103.5	59.41
	#1	99.68	. ଉଉପ6	0010	.0758	. 0024	0004	0045
	#2	100.3	ଉଉପ4	0040	.0744	. 0008	0028	0018
	Elem	Sr4215	Th2837	Ti3349	T11908	U_4090	V_2924	W_2079
	Units	PPM	PPm	ppm	PPm	ppm	PPm	ppm
	Avge	.0006	- 0029	.0000	.0036	.0125	- 0007	.0018
	SDev	.0000	- 0019	.0000	.0027	.0169	. 0001	.0029
	%RSD	4.194	65.80	430.6	73.50	135.6	8. 003	157.8
	#1	. ଉଉଷର	0016	. ଉଚ୍ଚତତ	.0055	.0245	0006	. 0038
	#2	. ଉଉଷର	0043	—. ଉଚ୍ଚତତ	.0017	.0005	0007	0002

Elem Units Avge SDev %RSD	Y_3710 PPM .0001 .0001 71.64	Zn2062 ppm .0058 .0001 2.193	Zr3496 ppm - ØØØ2 - ØØØ4 192.9			01	0084
#1 #2	. 0001 . 0000	. 0059 . 0057	.0001 0005				
IntStd Mode Elem Wavlen Avge SDev XRSD	1 *Counts Sc 361.384 705680 3007.325 .4261602	2 Time 10000 .0000000	3 NOTUSED	4 NOTUSED 	5 NOTUSED 	6 NOTUSED 	7 NOTUSED
#1 #2	703553 707806	10000 10000	*****	*****	****	*****	*****

Method: DAILY2 Sample Name: 246048 Run Time: 07/01/04 11:39:11 Comment:

Comment: Mode: CO	: 0//01/04 NC Corr.	11:39:11 Factor: 1				01	.0085
Elem	Ag3280	A13082	As1890	B_2496	Ba4934	Be3130	Bi2230
Units	PPM	PPm	ppm	ppm	ppm	ppm	PPm
Avge	.0001	.0048	0002	.0234	. 0292	0000	0010
SDev	.0006	.0033	.0014	.0004	. 0000	.0000	.0006
%RSD	447.9	67.44	651.5	1.701	. 0950	57.77	58.05
#1	0003	.0025	0012	.0231	. 0293	0000	0006
#2	. 0006	.0071	.0007	.0237	. 0292	0000	0014
Elem	Ca3179	Cd2265	Co2286	Cr2677	Cu3247	Fe2714	K_7664
Units	ppm	PPm	PPM	PPM	PP#	PPM	ppm
Avge	.0406	0002	.0023	.0025	. 0023	.1720	42.48
SDev	.0018	.0001	.0008	.0000	. 0000	.0000	.00
%RSD	4.448	33.85	35.22	.3735	1.259	.0038	.0077
#1	.0393	0003	.0017	.0025	.0024	.1720	42.48
#2	.0419	0002	.0029	.0025	.0023	.1720	42.48
Elem	La3988	Li6707	Mg2790	Mn2576	Mo2020	Na3302	Na5889
Units	ppm	PPM	PPm	PPM	PPM	PPM	PP#
Avge	0001	.0008	.0016	.0138	. 0009	17.85	28.54
GDev	.0004	.0000	.0062	.0000	. 0005	.13	.00
%RSD	328.4	2.455	390.9	.2565	53. 56	.7482	.0161
#1	0004	. 0008	0028	.0139	.0012	17.95	28.54
#2	.0002	. 0008	.0060	.0138	.0005	17.76	28.55
Elem	Ni2316	P_1782	2203/1	2203/2	Pd3404	S_1820	Sb2068
Units	PPm	PPm	PPM	PPM	Ppm	PPM	PPM
Avge	.0747	0084	0008	.0022	.0016	.0064	0012
SDev	.0005	.0086	.0010	.0025	.0016	.0005	.0027
%RSD	.6138	103.1	126.4	114.2	105.5	7.465	228.3
#1	.0744	0144	0015	. 0040	. 0004	. 0067	0031
#@	.0751	0023	0001	. 0004	. 0027	. 0060	.0007
Elem	Sc3613	1960/1	1960/2	Si2881	Pb220	Se196	Sn1899
Units	%R	PPm	PPm	ppm	Ppm	ppm	PPM
Avge	101.8	0036	0005	.1104	.0012	0015	0027
SDev	.2	.0006	.0005	.0038	.0014	.0001	.0019
%RSD	.1710	17.60	107.6	3.467	110.1	8.184	71.34
#1	101.9	0031	0008	.1077	.0022	0016	0040
#2	101.6	0040	0001		.0003	0014	0013
Elem	Sr4215	Th2837	Ti3349	T11908	U_4090	V_2924	W_2079
Units	PPM	PPM	ppm	PPM	PPm	PPm	PPM
Avge	. 0006	- 0009	0001	.0030	0144	0006	.0012
SDev	. 0000	. 0007	.0000	.0015	.0123	. 0005	.0020
%RSD	4. 900	78.63	40.28	51.16	85.64	82.82	166.0
#1	. 0006	0004	0001	.0041	0231	ଉଉଉଚ	.0027
#2	. 0007	0015	0002	.0019	0057	ଉଉଉଚ	0002

Elem Units Avge SDev %RSD	Y_3710 PPM 0000 .0000 393.8	Zn2062 ppm .0058 .0002 3.027	Zr3496 PPM 0006 0003 49. 48			0	10086
#1 #2	. ଉଉଉଉ ଉଉଉଉ	. 0056 . 0059	0004 0008				
IntStd Mode Elem	1 *Counts Sc	Z Time	3 NOTUSED	4 NOTUSED	5 NOTUSED	6 NOTUSED	7 NOTUSED
Wavlen	361.384				****	***** ****	****
Avge SDev	718234 1260.771	10000 .0000000					*****
%RSD	.1755376	. 00000000	****	Caption books	•	gradies arrived	****
# i	719126	10000	*****			*****	
#2	717343	10000	****	****	****	****	

.0007

. 0007

-.0027

.0005

#1

井卍

.0780

.0237

-.0012

-. 0008

.0033

-. 0006

Method: DAILY2 Sample Name: 246048d Operator: Run Time: 07/01/04 11:44:29 010087 Comment: Mode: CONC Corr. Factor: 1 B 2496 Bi2230 Aq3280 A13082 As1890 Ba4934 Be3130 Elem . 0226 Units . ØØØ1 ppmppmppm ppm ppm .0107 . 0000 . 0289 . 0001 .0033 Avge SDev . 0005 .0019 .0038 . 0009 . 0000 . ଉଉଉଉ .0035 . 0145 61.39 17.68 114.6 4.116 4931. **%RSD** 699.6 . 0004 . 0006 .0289 . 0000 .0025 .0120 .0219 #1 -. 0003 . 0059 .0233 .0289 . 0000 -. 0024 .0094 #2 Elem Ca3179 Cd2265 Co2286 Cr2677 Cu3247 Fe2714 K_7664 ppm .0432 .0019 PP# 42.40 ppmUnits DDM ppm ppm -. 0000 . 1620 .0027 .0013 Avge . 0003 . 0061 SDēv . 0001 .0003 .0010 . 0003 **%RSD** .6523 635.6 12.33 81.28 15.90 3.756 .3886 . 0000 .0029 .0005 .0017 .0434 #1 .1663 井記 .0430 -. 0001 .0024 .0020 .0021 . 1577 La3988 Mg2790 Elem L16707 Mn2576 Mo2020 Na3302 . 0008 . 0002 Units PPM . 0057 .0136 ppm 28.46 ppm ppm 17.96 -. 0010 Avge SDev .0002 . 0004 . ଉପରସ . 0029 . 0007 . 11 %RSD 227.5 1.327 50.34 1.269 68.61 .6217 .5302

. 16 42.52 42.28 Na5889 . 15 28.56 28.35 . ଉଉଉଞ .0037 #1 .0005 .0134 -. 0014 18.03 #2 -. 0001 . 0008 . 0078 .0137 -. 0005 17.88 Elem Ni2316 P 1782 2203/1 2203/2 Pd3404 5 1820 SP5068 PPM . 07≈1 .0007 **FrFrm** Units ppm ppm ppm ppm .0029 -. 0014 .0190 -.0057 -.0133 Avge SDev . 0005 . 0028 . 0028 .0019 . ØØØ6 .0131 . 0016 28.31 20.94 68.87 **XRSD** .7338 96.45 135.5 81.18 .0717 . 0049 -.0027 .0011 . 0282 -. 0045 #1 -.0113 #2 . 0009 .0097 .0725 -.0001 .0003 -.0068 -.0153Se196 Elem Sc3613 1960/1 1960/2 Si2881 PP550 Sn1899 . 2010 . 0001 Units %R ppmppm ppmppm-.0005 .1086 . 2222 -.0017 103.2 Avge Shau .0005 .0003 1.2 .0045 .0016 .0003 . 0005 **KRSD** 1.126 471.9 339.8 . 4542 486.8 2099. 16.79 104.0 .0042 -.0016 .1082 -.0002 .0003 -.0015 # 1 #2 102.4 -.0022 . 0007 . 0003 -.0003 -. 0019 . 1089 V 2924 Elem Sr4215 Th2837 Ti3349 T11908 U 4090 W 2079 Units .0508 .0028 рри . 0014 ppm ppmppm ppm .0007 -.0003 -. 0011 -.0010 Avge SDev . ଉପସସ .0022 . 0000 .0036 Ø384 .0003 .0027 4.290 204.4 14.95 75.60 %RSD 129.0 30.86 200.7

.0053

.0002

-. 0003

-.0004

Elem Units Avge SDev %RSD	Y_3710 PPm 0001 .0002 203.1	Zn2062 PPm .0098 .0003 2.884	Zr3496 PPm ØØ1Ø . ØØØ4 42.89			0:	10088
#1 #2	ଉଉଉଥ . ଉଉଉଥ	. 0096 . 0100	0013 0007				
IntStd Mode Elem Wavlen Avge SDev %RGD	1 *Counts Sc 361.384 728183 8208.096 1.127202	2 Time 10000 .0000000 .0000000	3 NOTUSED 	A NOTUSED	5 NOTUSED 	6 NOTUSED 	7 NOTUSED
#1 #注	733987 722379	10000 10000	***************************************	*****	***** *****	***** *****	and disp.

,	•						11
Method: I Run Time Comment:	DAILY2 : 07/01/04	Sample Nam 11:49:47	ne: 246049		Oper	rator:	010089
Mode: CO	NC Corr.	Factor: 1					010003
Elem	Ag3280	A13082	As1890	B_2496	Ba4934	Be3130	Bi2230
Units	ppm	PPM	PPM	PPM	ppm	PPM	PPM
Avge	.0004	.0173	0004	.03331	.0244	.0000	0041
SDev	.0001	.0017	.0036	.0009	.0001	.0000	.0095
%RSD	18.66	9.982	929.7	2.793	.3284	50.39	232.5
#1	. 0003	.0185	0029	.0337	.0243	. ଉଉଉଉ	0108
#2	. 0004	.0161	.0022	.0324	.0244	. ଉଉଉଉ	.0026
Elem	Ca3179	Cd2265	Co2286	Cr2677	Cu3247	Fe2714	K_7664
Units	ppm	PPm	ppm	ppm	PPm	ppm	ppm
Avge	.0644	- 0000	.0026	.0033	.0030	.1064	58.07
SDev	.0001	- 0000	.0002	.0004	.0001	.0049	.10
%RSD	.1990	71.50	8.537	12.30	4.803	4.637	.1672
#1	.0645	0000	.0027	.0036	.0029	.1029	58.00
#2	.0643	0001	.0024	.0030	.0031	.1099	58.13
Elem	La3988	Li6707	Mg279Ø	Mn2576	Mo2020	Na3302	Na5889
Units	ppm	PPm	PPm	PPM	PPM	ppm	ppm
Avge	- 0001	.0010	.0087	.0154	0005	34.69	54.30
SDev	- 0000	.0000	.0030	.0000	.0009	.12	.01
%RSD	14.30	.9507	34.35	.2619	179.0	.3518	.0113
#1	0001	.0010	.0108	.0154	0011	34.78	54.31
#2	0001	.0010	.0066	.0155	.0001	34.61	54.30
Elem	Ni2316	P_1782	2203/1	2203/2	Pd3404	S_1820	Sb2068
Units	PPM	PPM	ppm	PPm	PPm	PPm	PPM
Avge	.0819	0124	.0042	.0030	.0010	.0389	- 0041
SDev	.0015	.0018	.0027	.0002	.0008	.0018	.0033
%RSD	1.825	14.35	63.92	7.887	78.75	4.588	80.11
#1	.0830	0136	. 0062	.0028	.0005	.0402	0018
#記	.0808	0111	. 0023	.0038	.0016	.0377	0064
Elem	5c3613	1960/1	1960/2	Si2881	ԲᲮ220	Se196	5n1899
Units	%R	PPm	ppm	PPM	PPm	PPM	PP#
Avge	99.80	- 0018	.0006	.1533	. 0034	- 0002	. 0004
SDev	.55	- 0010	.0042	.0010	. 0008	- 0032	. 0002
%RSD	.5524	56.69	661.8	.6742	21.78	1927.	62. 93
#1	100.2	0025	0024	. 1525	.0040	0024	. 0005
#2	99.41	0011	.0036	. 1540	.0029	.0021	. 0002
Elem	Sr4215	Th2837	Ti3349	T11908	U_4090	V_2924	W_2079
Units	PPM	PPM	ppm	PPM	PPM	PPM	PP#
Avge	.0007	0007	0002	- 0000	0079	0005	.0017
SDev	.0000	.0022	.0001	. 0020	.0051	.0000	.0005
%RSD	.0313	301.1	32.92	6333.	64.14	10.17	31.95
#1	.0007	0023	0002	0014	0043	0005	.0013
#2	.0007	.0008	0001	.0014	0115	0004	.0020

Elem Units Avge SDev %RSD	Y_3710 PPm .0001 .0001 141.4	Zn2062 Ppm .0066 .0002 2.633	Zr3496 ppm 0004 .0001 25.84			0:	10090
#1 #2	. ଉଉଉଉ . ଉଉଉଥ	.0065 .0067	0005 0003				
IntStd Mode Elem Wavlen Avge SDev XRSD	1 *Counts Sc 361.384 704425 3884.845	2 Time 10000 .0000000 .0000000	3 NOTUSED 	NOTUSED	5 NOTUSED 	6 NOTUSED 	7 NOTUSED
#1 #@	707172 701678	1 0000 1 0000	*****	****			

Run Time: 07/01/04 11:55:06 010091 Comment: Mode: CONC: Corr. Factor: 1 Elem A13082 As1890 B 2496 Ba4934 Be3130 Bi2230 Ag328@ . **0**522 2.026 PDM 4.113 PPM 2.041 8.070 Units DOM ppm . 0503 -.0023 Avge . 009 . ଉଉଉଉ . 0049 . 000 .017 .0011 .003 SDev 217.1 . 1640 .0210 **%RSD** 2.045 .0077 . 4177 . 4152 .0508 2.064 .0012 .0530 2.086 2.039 4.101 #1 -. 0058 #2 .0515 2.026 2.044 4.126 2.076 .0503 K 7664 Elem Fe2714 Ca3179 Cd2265 Co2286 Cr2677 Cu3247 PPM .5109 ppm .0499 83. Ø1 ppm 20.56 .2596 Units ppm ppm . 1999 1.205 Avge . ଉଉଉଞ . 0003 .0007 .0002 .016 . 05 .27 SDev .0850 1.289 .3312 .2261 .5438 . 3331 **XRSD** .1638 . 2594 1.194 . 0497 .5103 .2003 20.59 82.82 #1 排記 20.53 .0501 .5115 .1994 .2597 1.216 83.21 Na5889 Mg279@ Na3302 La3988 Li6707 Mn2576 Mo2020 Elem . 0008 ppm ppm 20.42 PPM .5242 ppm55.40 ppm 89.83 Units -. 0011 4.066 Avge .015 .03 .0003 .05 SDev . 0009 . 0001 .20 . 0926 . 0578 %RSD 114.5 . 3649 5.959 . 2221 . 1511 .0014 4.056 .5240 -. 0011 57.44 57.36 20.39 89.69 #1 4. 077 20.44 89.98 #2 . 0001 .5245 -. 0010 Elem Ni2316 P_1782 2203/1 2203/2 Pd3404 \$ 1820 Sb2068 . 0238 ppmUnits ppm .5001 ppm ppm ppm 4993 .5741 4.114 . 4998 .0042 Avge . 0001 . 075 . 0044 . 0069 .0110 SDev . 0002 . Ø161 . 8799 2.191 **XRSD** . 0260 1.832 1.378 3.821 67.81 .5739 . 5047 .5079 .0043 .0124 . 4962 #1 4.061 #2 .5742 . 4950 . 4924 .0041 .0358 .5024 4.167 Elem Si2881 Ph220 Se196 Sn1899 Sc3613 1960/1 1960/2 .5000 %R PPM 2.100 ppm 2.111 Units ppm 2.117 ppm ppm -: 0010 96.40 2.50 4.220 Avge SDev .017 . 055 .003 . 0096 . 042 .0005 2.589 . 0703 1.987 . 8002 2.575 1.920 **%RSD** 47.03 94.64 98.17 2.112 2.155 2.078 4.218 -.0007 .5068 #1 2.141 4.222 . 4933 2.082 #2 -.0013 Sr4215 Th2837 Ti3349 T11908 U 4090 V 2924 W 2079 Elem 3.980 .001 Units ppm ppm PPM 2.092 ppm 4.175 .5026 ppm.0014 .0012 -.0152 Avge .002 . 0001 .0000 .003 .0010 SDēv .0030 %RSD 3.077 19.81 .0318 . 0745 . 0679 . 0241 88.40 3.979 #1 .0014 -.0131 2.091 4.173 .5025 .0019 .0014 3.981 . 0004 -.0173 2.093 4.177 .5027 #2

Sample Name: 246Ø49s

Elem Units Avge SDev %RSD	Y_3710 PPm 0001 .0001 115.1	Zn2062 PPM .5112 .0004 .0709	Zr3496 ppm 3.959 .003 .0665			0	10092
#1 #2	0000 0002	.5114 .5109	3.957 3.961				
IntStd Mode Elem Wavlen Avge SDev %RSD	1 *Counts Sc 361.384 680470 17619.69 2.589341	2 Time 10000 .0000000 .0000000	3 NOTUSED 	4 NOTUSED 	5 NOTUSED 	6 NOTUSED 	7 NOTUSED
#1 #8	668011 692929	10000 10000		*****	**************************************	*****	

#2

. 0005

.0017

Method: DAILY2 Sample Name: 246050 Operator: Run Time: 07/01/04 12:00:24 Comment: 010093 Mode: CONC Carr. Factor: 1 Elem Aq328@ A13082 As1890 B_2496 Ba4934 Be3130 Bi2230 PPM .0117 Units PPM .0048 . 0002 bbm ppmppm bbm. 0204 . 0003 . ଉଉଉଉ -. QIQIQI 1 Avge SDEv . ଉଉଉଉ .0012 . 0003 . 0004 . 0002 . 0000 . 0002 6.899 24.96 **%RSD** .9927 25.27 126.7 3.803 210.9 #1 .0003 . 0039 . 0004 .0120 .0203 . 0001 -.0003 . 0056 #2 .0003 . 0000 . 0000 .0113 . 0206 . 0001 Elem Ca3179 Cd2265 Co2286 Cr2677 Cu3247 Fe2714 K_7664 .0019 Units .0001 55m 34.57 ppm ppm ppm ppm . 0323 -. 0000 -10065 .0002 Avge 0016 . Ø34Ø . 18 SDev .0018 . 0001 .0002 . ØØØ4 5.452 2566. .5089 XRSD 684.5 11.29 254.2 522.7 . 0001 .0020 . 0336 #1 -. 0011 -. 0001 .0175 34.45 34.70 #2 .0311 -. 0001 .0017 .0012 . 0004 -. 0306 La3988 Mg279@ Na5889 Elem Li6707 Mn2576 Mo2020 Na3302 ppm .0011 . 2029 Units ppmppm .0025 PPM 67.40 ppm 99.76 ppm-. 0000 -. 0004 Avge . 32 SDev .0002 . 0000 .0054 .0002 .0001 .30 395.7 . 8142 **%RSD** 216.3 18.44 15.84 . 4674 .3011 . 0008 -. @@@3 .0001 .0011 .0064 #1 99.55 67.18 #2 99. 97 -. 0002 . 0011 -. 0013 .0010 -- 0004 67.62 Elem Ni2316 P_1782 2203/1 2203/2 Pd3404 S 1820 Sb2068 Units ppmppm ppm ppm ppm ppm ppm.0027 .0024 .0003 .0037 . 0006 .0101 -. 0009 Avge SDēv . 0007 . 0039 .0022 0064 0021 0088 .0043 **XRSD** 27.87 1263. 170.5 328.0 82.93 87.38 450.2 .0019 #1 .0031 .0083 -. 0008 .0042 .0163 -. 0040 井ご .0029 -.0024 -. 0008 .0021 .0011 .0039 .0021 Elem Sc3613 1960/1 1960/2 Si2881 PPSSW Se196 Sn1899 XR. Units ppm ppm ppm meter ppm ppm . 8859 . Ø539 . 0015 -.0012 Avge 101.1 .0017 .0010 SDev 8.8 .0051 .0015 . മമമദ . 0007 . 0001 %RSD 2.791 87.30 202.7 1.945 45. 18 48.61 12.68 99.10 .0095 . 0547 -.0018 .0022 . 0020 #1 -. 0011 #2 .0022 .0003 .0532 .0011 . 0010 -.0013 Ti3349 Elem Sr4215 Th2837 T11908 U_4@9@ V 2924 W 2079 PPM .0074 Units ppm ppmppm.0016 ppm ppm -:0002 . 0006 -. 0000 -: 0003 -.0004 Avge SDev . 0000 .0028 .0001 .0042 .0129 . 0006 . 0006 **%RSD** 6.934 1143. 1879. 1330. 173.6 35.64 165.2 #1 . ଉଉଉଚ -.0022 -. 0001 -.0033 .0165 -. 0009 .0020

.0026

-.0017

.0001

.0012

.0001

Elem Units Avge SDev %RSD	Y_3710 PPm .0001 .0001 177.2	Zn2062 PP# .0019 .0000 .7785	Zr3496 ppm . 0001 . 0010 1497.			0	10094
#1 #2	ଉଉଉଉ . ଉଉଉଥ	. 0019 . 0019	0007 .0008				
IntStd Mode Elem Wavlen Avge SDev %RSD	1 *Counts Sc 361.384 713580 19890.91 2.787482	2 Time 10000 .0000000 .0000000	3 NOTUSED 	4 NOTUSED 	5 NOTUSED 	6 NOTUSED 	7 NOTUSED
#1 #2	699515 727645	10000 10000	***** *****	2000 0000	****** ******	*****	*****

Elem

Avge

SDev

%RSD

#1

#2

Units

Sr4215

ppm

. 0006

. ØØØØ

1.533

. 0006

. 0006

Th2837

-.0022

. 0007

30.48

-. 0018

-.0027

ppm

Ti3349

-.0001

87.93

-. ଉଉଉଉ

-.0002

. 0001

ppm

T119Ø8

ppm

.0007

. ଉପପଦ

2.265

.0007

.0007

U 4090

.0139

. Ø139

99.75

. 0041

.0238

V 2924

-. 0004

23.81

-. 0004

-.0003

. 0001

ppm

W 2079

. 0031

.0010

32.56

.0024

.0038

Operator: 010095 Method: DAILY2 Sample Name: 246051 Run Time: 07/01/04 12:05:43 Comment: Mode: CONC Corr. Factor: 1 Ag3280 B 2496 Bi2230 A13082 As1890 Ba4934 Be3130 Elem pm mqq .0093 . 0098 .Ø196 . 20000 Units bbū ppm bbm .0008 . 0006 . ଉଉଉଚ Avge SDev .0001 0050 0007 . ଉଉଉଉ . 0001 . 0000 .0031 179.3 1425. . 4235 **%RSD** 20.80 50.86 86.71 . 4015 #1 .0005 .0063 .0013 .0093 .0197 . ଉଉଉଉ -.0020.0093 . 0196 -. ଉଉଉଉ . 0024 . 0007 .0134 . 0003 #2 K_7664 Elem Ca3179 Cd2265 Co2286 Cr2677 Cu3247 Fe2714 . 2020 PPM .0375 57.14 .13 Units ppm ppmppm ppm -. 0001 -. 0008 -. 0000 -. 0060 Avge . 0002 SDev . 0008 . 0001 . 0002 .0002 . 0107 157.0 . 3589 2.065 12.05 **XRSD** 101.7 643.7 176.6 -. ଉଉଉଉ .0380 .0018 . ଉଉଉଉ . 0001 37.24 37.05 #1 -. 0136 #2 . 0370 -.0002 .0022 -. 0003 -.0002 .0015 Na5889 Mg279Ø Elem Mn2576 Na3302 La3988 Li6707 Mo2020 PPM .0013 PPM 73.07 ppm 106.9 ppmPPM .0078 Units ppm ppm .0005 . 0008 -. 0006 Avge .32 .4358 . 3 SDev .0007 .0001 . 0003 . 0000 .0002 3.516 %RSD 141.8 3.703 2.156 29.32 . 2350 .0013 .0080 .0008 -. 0000 -.0005 73.30 107.1 #1 #2 .0011 . 0013 . 0076 . 0008 -. 0007 72.85 106.8 Ni2316 2203/1 2203/2 Pd3404 Sb2068 Elem P 1782 S 1820 Units ppm ppm ppmppm ppmppm ppm -. 0016 .0019 -.0002 .0035 -.0019 .0029 -. 0048 Avge . 0001 .0001 . 0009 . 0004 .0012 . 0022 .0053 SDAV 109.8 3.975 **%RSD** 46.14 273.8 35.27 3.279 78.39 -.0015 .0013 . 0001 .0026 .0013 -.0085 #1 -.0020 #2 .0025 -. 0005 .0043 -.0019 .0045 -. 0011 -. 0016 Se196 Sn1899 Elem Sc3613 1960/1 1960/2 Pb22@ Si2881 . 0033 ppm ppmppm Units XR ppm ppm.0025 -. ଉଉଉବ . 0021 -. 0001 .0618 101.1 Avge . 0009 SDev 1.0 .0043 .0035 .0043 . 0005 .0013 **%RSD** 1.022 131.0 165.7 6.868 402.2 35.84 137.0 .0588 101.8 . ଉଉଉଥ . 0046 --. 0004 .0031 -. 0000 #2 100.4 .0063 -. 0004 . 0648 . 0002 .0019 -. 0019

Elem Units Avge SDev %RSD	Y_3710 PPm 0001 .0000 46.64	Zn2062 ppm .0020 .0000 1.585	Zr3496 PPm - 0006 - 0002 38.57			0:	10096
#1 #2	0001 0001	.0019 .0020	0007 0004				
IntStd Mode Elem Wavlen Avge SDev %RSD	1 *Counts Sc 361.384 713493 7288.857 1.021574	2 Time 10000 .0000000 .0000000	3 NOTUSED 	4 NOTUSED 	5 NOTUSED 	6 NOTUSED 	7 NOTUSED
#1 #2	718647 708339	10000 10000			******	***************************************	*****

Analysis Report

Elem

Sc3613

1960/1

1960/2

Si2881

P6220

Se196

Sn1899

QC Standard

07/01/04 12:20:54 PM

page 1

Method: DAILY2 Operator: Sample Name: icv/ccv Run Time: 07/01/04 12:15:47 010097 Comment: Mode: CONC Corr. Factor: 1 Ag328@ B 2496 Bi2230 A13082 As1890 Ba4934 Be3130 Elem .9800 ppm 9.999 Units PPM 4.750 ppm 4.985 .9905 ppm 9.696 ppm 4.987 Avge . 009 . 011 SDev .0005 .003 .002 . 006 . 0001 . 0592 **%RSD** . 0520 . 1168 . Ø367 . Ø576 . 0057 . 1879 .9902 4.749 4.751 #1 9.704 4.989 10.00 . 9800 4.978 4.985 4.991 #2 9.688 9.995 . 9800 QC Pass 10.00 QC Pass QC Pass QC Pass QC Pass QC Pass QC Pass Errors 1.000 5.000 รี. ๗๗๗ 1.000 5.000 10.00 Value Range 10.00 10.00 10.00 10.00 10.00 10.00 10.00 Cu3247 K 7664 Elem Ca3179 Cd2265 Co2286 Cr2677 Fe2714 .9956 ppm 1.953 .001 20.01 2.009 ppm 18.18 Units ppm ppm 4. 981 Avge 10.17 . 000 .001 . 02 SDev . 0004 . 04 . Ø1 . ØŠÄŠ . 1951 **%RSD** . 0459 .0387 . 0089 . 0413 . 2001 .9958 1.953 2.009 20.00 18.21 #1 4.981 10.15 1.952 #2 20.01 .9953 4.981 2.008 10.18 18.16 QC Pass QC Pass 5.000 QC Pass 2.000 QC Pass 20.00 QC Pass 10.00 QC Pass 20.00 QC Pass Errors 2.00ัติ Value 10.00 10.00 10.00 10.00 10.00 10.00 10.00 Range La3988 Mg279@ Mn2576 Mo2020 Na3302 Na5889 Li6707 Elem ppm 5.023 ppm 4.540 ppm 19.95 ppm 1.011 PPM 27.03 042.22 Units ppm 4.981 .009 Avge . 09 .008 .18 .004 .00 .001 SDev **KRSD** . 0820 . 1674 .0063 . 0655 . 1812 .6571 . 2098 4.545 4.535 #1 5.026 19.95 1.012 4.975 27.15 Q42.29 Q26.9Ø 5.020 19.95 4.988 Q42.16 #2 1.011 QC Pass 20.00 QC Pass 30.00 QC Fail 30.00 QC Pass QC Pass QC Pass QC Pass Errors 1.000 5. ชชติ 5. 000 5.000 Value Range 10.00 10.00 10.00 10.00 10.00 10.00 10.00 Sb2068 2203/1 2203/2 Pd3404 S 1820 Elem Ni2316 P 1782 .9629 Units ppm 4.885 ppm ppm 4.878 ppm ppm ppm 1.035 1.008 4.978 4.932 Avge .071 .004 .010 .083 SDev .005 .009 .0102 . 9106 **%RSD** . 0985 1.434 . 1989 4782 1.064 4.925 4.939 1.037 .9557 #1 4.889 5.028 4.861 1.015 4.882 4.927 4.894 1.032 1.002 . 9702 #2 QC Pass 5.000 QC Pass 1.000 QC Pass 1.000 QC Pass 1.000 QC Pass NOCHECK NOCHECK Errars 5.000 Value Range 10.00 10.00 10.00 10.00 10.00

Analysis	Report	QC Stand	dard	07/01/0	84 12:20:5	4 FM	page 2
Units	%R	PPM	PPM	ppm	PPM	94.m	P:F:M
Avge	101.2	5.177	5.109	5.040	4.896	5.138	4.926
SDev	.8	.024	.039	.004	.019	.034	.006
%RSD	.8224	.4661	.7671	.0796	.3845	.6659	.1205
#1	101.8	5.160	5.081	5.043	4.883	5. 107	4.921
#2	100.6	5.194	5.137	5.037	4.909	5. 156	4.930
Errors Value Range	NOCHECK	NOCHECK	NOCHECK	QC Pass 5.000 10.00	QC Pass 5.000 10.00	QC Pass 5.000 10.00	QC Pass 5.000 10.00
Elem	Sr4215	Th2837	Ti3349	T11908	U_4090	V_2924	W_2079
Units	PPM	PPM	PPM	ppm	ppm	ppm	ppm
Avge	5.037	.9758	4.827	5.192	.9692	4.951	1.015
SDev	.003	.0015	.000	.028	.0138	.001	.002
%RSD	.0613	.1577	.0074	.5329	1.425	.0170	.1896
#1	5.035	.9769	4.827	5.172	.9789	4.951	1.014
#2	5.039	.9747	4.827	5.211	.9594	4.950	1.017
Errors	QC Pass	QC Pass	QC Pass	QC Pass	QC Pass	QC Pass	QC Pass
Value	5.000	1.000	5.000	5.000	1.000	5.000	1.000
Range	10.00	10.00	10.00	10.00	10.00	10.00	10.00
Elem Units Avge SDev %RSD	Y_3710 PPm 5.084 .002 .0296	Zn2062 ppm .9996 .0023 .2280	Zr3496 ppm 4.939 .002 .0423				
#1 #2	5.085 5.083	.9980 1.001	4.941 4.938				
Errors Value Range	QC: Pass 5.000 10.00	QC Pass 1.000 10.00	QC Pass 5.000 10.00				

Analysis	Report	QC Stan	dard	07/01/	/04 12:20:5	54 PM	page 3
IntStd Mode Elem Wavlen Avge SDev %RSD	1 *Counts 5c 361.384 71448Ø 5884.542 .823612Ø	2 Time 10000 .0000000 .0000000	3 NOTUSED 	4 NOTUSED 	5 NOTUSED 	6 NOTUSED 	7 NOTUSED
#1 #2	718641 710319	1 0000 1 0000	*****	40000 COMM	2000 1000 2000 1000	****	**** ****

Analysis Report 07/01/04 12:28:36 PM Blank Sample page 1 Method: DAILY2 Sample Name: icb/ccb Run Time: 07/01/04 12:23:29 Operator: Comment: Mode: CONC Corr. Factor: 1 Ba4934 Ag328@ A13082 As1890 B 2496 Be3130 Bi2230 Elem PPM . 0004 ppm Units ppmppmppm ppm ppm . 0006 . 0040 . 0001 . 00001 . 0026 -. 0000 Avge . ଉଉଉଉ .0015 . 0008 ଉଉଉଦ 0000 .0035 0018 SDev %RSD 8.265 284.3 16380. 21.39 63.53 42.15 136.2 .0004 .0001 . 0001 #1 .0019 .0010 . 0034 -. 0001 -. 0006 . 0000 #2 . 0004 -. 0011 . 0046 . 0000 -. 0051 LC Pass LC Pass LC Pass LC Pass LC Pass Errors LC Pass LC Pass . 0050 . 0500 . ดิริตติ . 0050 . 0050 . 0050 .0100 High -.0100 Low -.0050 -. 0500 -.0050 -. 0500 -.0050 -.0050 K_7664 Fe2714 Elem Ca3179 Cd2265 Co2286 Cr2677 Cu3247 PPM . 0064 .0002 Units ppm ppmppm ppmppm-. ଉଉଉ୨ -.0003 -.0022 . 0001 .0177 Avge .0014 0001 0005 . 0003 . 0001 . 0034 . 0003 SDev 44.36 153.9 8.024 77.27 234.3 34.03 4.216 **KRSD** -. 0004 .0063 .0187 .0001 .0005 -.0011 .0002 #1 #2 .0167 . 0000 -. 0001 -. 0007 -.0002 -. 0046 . 0066 LC Pass .0250 LC Pass .0050 LC Pass .0500 LC Pass LC Pass LC Pass LC Pass Errors . 1000 .0050 .0050 .0050 High -. 0500 -.0050 -.0050 -. 0250 -.0050 -.0050 -. 1000 Low Na5889 Elem La3988 Li6707 Mg2790 Mn2576 Mo2020 Na3302 . WØ3Ø Units $bb\bar{w}$ ppmppmppm ppm. ppm. 0005 . 0002 -. 0001 . 0188 .0017 -. 0177 Avge SDEv .0005 . ଉଉଉଉ 0047 . 0000 0013 . 0369 .0014 95.44 11.15 73.98 207.9 7.433 **KRSD** 157.1 3.684 .0009 .0000 .0198 #1 .0064 -.0001 . 0026 . 0083 -. 0003 . 0008 -. 0438 .0178 . 0002 #2 . 0000 --. ØØØ1 LC Pass .0500 LC Pass LC Pass LC Pass LC Pass LC Pass LC Pass Errors . ติตรติ . 05:00 . 0500 . 0050 . 0050 . 0050 High Low -.0050 -.0050 -. 0500 -. 0050 -.0050 -. 0500 -.0500 P 1782 2203/1 5 1820 Elem Ni2316 2203/2 Pd34Ø4 Sb2068 PPM . 0034 PP# .0015 Units PPm. .0003 ppm ppm ppm -. 0047 -. 0140 .0031 L-. Ø189 Avge .0043 22.55 SDev . 0001 . 0006 0005 . ଉଉ୧૩ 0006 .0010 22.14 %RSD 7.278 4.058 15.94 861.3 20.81 L-.0219 L-.0159 #1 .0016 L-.0136 .0030 -. 0014 .0036 -.0039 #2 L-. 0144 .0019 .0014 .0038 -.0054 .0027 LC Pass LC Low .0100 LC Pass .0100 LC Low .0100 Errors LC Pass NOCHECK NOCHECK . Øøsø High L.OW -.0050 -. 0100 -. 0050 -.0100 -.0100 Elem Sc3613 1960/1 1960/2 Si2881 Pb220 Se196 Sn1899

Analysis	Report	Blank S	ample	07/01/0	04 12:28:3	6 PM	page 2
Units Avge SDev %RSD	%R 100.6 .3213	PPM .0011 .0008 71.23	PPM .0027 .0007 27.22	ppm .0052 .0023 45.00	PPM .0013 .0017 129.2	PPM .0022 .0002 10.10	PPM 0016 .0024 148.7
#1 #2	100.9 100.4	.0017 .0006	.0022 .0032	.0035 .0069	.0001 .0025	.0020 .0023	0034 .0001
Errors High Low	NOCHECK	NOCHECK	NOCHECK	LC Pass .0100 0100	LC Pass .0030 0030	LC Pass .0050 0050	LC Pass .0050 0050
Elem Units Avge SDev %RSD	Sr4215 PPM .0001 .0000 .0000 .20.26	Th2837 PPM 0023 .0006 27.74	Ti3349 PPM - 0000 - 0001 990.9	T11908 PPM .0019 .0038 198.8	U_4090 PPm .0166 .0115 68.94	V_2924 PPM 0005 . 0006 126. 3	W_2079 PPM .0028 .0005 18.56
#1 #C	. 0001 . 0001	0028 0019	0001 . 0001	ØØØ8 . ØØ46	.0247 .0085	0001 0010	.0031 .0024
Errors High Low	LC Pass .0050 0050	LC Pass .0100 0100	LC Pass .0050 0050	LC Pass .0100 0100	LC Pass .1000 1000	LC Pass .0050 0050	LC Pass .0100 0100
Elem Units Avge SDev %RSD	Y_3710 PPM 0000 .0001 554.3	Zn2062 PPM .0010 .0001 12.24	Zr3496 PPM 0002 .0002 68.17				
#1 #2	.0001 0001	.0011 .0009	0003 0001				
Errors High Low	LC Pass .0050 0050	LC Pass .0050 0050	LC Pass .0050 0050				

Analysis	Report	Blank Sa	ample	07/01/0	04 12:28:36	5 PM	page 3
IntStd Mode Elem Wavlen Avge SDev %RSD	1 *Counts Sc 361.384 710346 2328.503 .3277986	2 Time 10000 .0000000 .0000000	3 NOTUSED 	NOTUSED	S NOTUSED	6 NOTUSED	7 NOTUSED
#1 #2	711992 708699	10000 10000	1000 mms	***************************************	June 2000		NAME AND

page 1

*	•						
Method: DAI Run Time: Ø Comment:	7/01/04 1		e: 246 0 52		Oper	ator:	
Mode: CONC	Corr. Fa	actor: 1					
Units pp Avge .0 SDev .0	m p ØØ3 . (pm 0107 0037	PPM . 0024 . 0006	B_2496 ppm .0106 .0020 19.00	Ba4934 ppm .0166 .0001 .3813	Be3130 ppm .0001 .0000 40.94	Bi2230 ppm .0019 .0009 48.77
				.0120 .0092	.0166 .0165	.0000 .0001	.0012 .0025
Units pp Avge .0 SDev .0	318 .0 206 .0	6005 6005	ppm .0014 .0007	Cr2677 ppm 0002 .0016 665.5	Cu3247 ppm .0003 .0006 192.3	Fe2714 PPM .0091 .0166 183.3	K_7664 PP# 39.80 .21 .5203
				.0009 0014	.0007 0001	.0208 0027	39.65 39.94
Units pp Avge .0 SDev .0	m p 010 .0	0015 . 0001 .	ppm .0124 .0006	Mn2576 PPM . 0008 . 0001 6. 040	Mo2020 PPM 0001 .0005 493.0	Na33Ø2 PD# 75.96 .29 .3864	Na5889 ppm 111.2 .2 .1794
			.0120 .0128	. ଉଷଷର . ଉଷଷର	.0003 0005	75.75 76.17	111.1
Units pp Avge .0 SDev .0	m p 021 - 009	ри .0116 .0041	PPM 0019 .0005	2203/2 ppm 0002 .0003 146.1	Pd3404 ppm .0041 .0004 11.00	S_1820 PPm 0071 .0040 56.13	Sb2068 PP:M 0034 .0016 46.21
				0004 . 0000	.0037 .0044	0043 0100	0023 0046
Units %R Avge 10 SDev	1.3 .0 3.0	PM 0016 . 0020 .	PPM .0001 .0003	Si2881 PPm .0708 .0035 4.890	Pb220 PPm 0007 .0004 49.47	Se196 PPM .0006 .0004 70.14	5n1899 ppm .0000 .0009 2095.
#1 99 #2 10				.0683 .0732	0010 0005	.0009 .0003	0006 .0007
Units pp Avge .0 SDev .0	m P 1006 — 1000	PM .0019 .0020	ppm .0000 .0001	T11908 PPm .0011 .0073 683.0	U_4090 PP# .0355 .0046 13.07	V_2924 PPm . 0000 . 0005 1295.	W_2079 PPM .0029 .0010 35.65
			. 0001 0000	0041 .0063	.0388 .0322	.0004 0003	.0021 .0036

Elem Units Avge SDev %RSD	Y_3710 PPm .0001 .0001 51.63	Zn2062 PPM .0016 .0003 18.84	Zr3496 PPM . 0003 . 0008 246. 0				010104
#1 #2	.0001 .0001	.0014 .0018	. 0008 0002				
IntStd Mode Elem Wavlen Avge SDev %RSD	1 *Counts 3c 361.384 715041 21128.35 2.954845	2 Time 10000 .0000000 .0000000	3 NOTUSED 	A NOTUSED	5 NOTUSED 	6 NOTUSED	7 NOTUSED
#1 #2	700101 729981	10000 10000	***************************************	***** *****	***************************************		000-10 00000 00000 00000

Method: DAILY2	Sample Name: 246053			Ope	rator:	
Run Time: 07/01/04 Comment: Mode: CONC Corr.						010105
Elem Ag3280 Units ppm Avge0007 SDev .0009 *RSD 129.5		As1890 PPM .0017 .0049 282.2	B_2496 PPM .0126 .0002 1.931	Ba4934 ppm .0157 .0001 .5328	Be3130 ppm .0000 .0000 21.36	Bi2230 PPM 0019 .0004 21.05
#10001	.0026	.0052	.0124	.0156	. 0001	0022
#20014	0034	0017	.0127	.0158	. 0000	0016
Elem Ca3179	Cd2265	Co2286	Cr2677	Cu3247	Fe2714	K_7664
Units ppm	ppm	ppm	PPM	PP#	PPM	ppm
Avge .0361	0003	.0010	0006	- 0004	0025	44.53
SDev .0001	.0003	.0001	.0001	- 0002	.0215	.02
%RSD .3715	118.5	8.782	11.31	46.28	855.5	.0513
#1 .0362	0000	.0010	0007	0003	.0127	44.54
#2 .0360	0005		0006	0006	0177	44.51
Elem La3988	Li6707	Mg2790	Mn2576	Mo2020	Na33Ø2	Na5889
Units ppm	ppm	ppm	PPM	PPM	PP#	PPM
Avge - 0009	.0018	.0018	.0009	- 0000	81.93	120.0
SDev - 0004	.0000	.0005	.0000	.0007	.22	.3
%RSD 37.81	.2571	29.80	2.273	1760.	.2698	.2691
#10007	.0018	.0022	. 0010	. 0005	82.09	120.2
#20012	.0018	.0014	. 0009	0006	81.78	119.8
Elem Ni2316	P_1782	2203/1	2203/2	Pd3404	S_1820	Sb2068
Units ppm	PPM	PPm	PPM	PPM	PFM	PPM
Avge .0026	0089	.0006	.0013	0011	0084	0049
SDev .0011	.0123	.0006	.0015	.0022	.0043	.0010
%RSD 41.43	137.1	95.01	113.6	207.2	51.58	19.41
#1 .0019	0003	.0010	.0003	.0005	0115	0042
#2 .0034	0176	.0002	.0024	0026	0053	0056
Elem Sc3613	1960/1	1960/2	Si2881	Pb220	Se196	5n1899
Units %R	PPM	ppm	PPm	PPm	ppm	ppm
Avge 104.9	- 0001	0001	.0759	.0011	0001	. 0004
SDev .2	- 0078	.0004	.0017	.0008	.0029	. 0037
%RSD .2318	6484.	713.1	2.275	73.66	4339.	860. 3
#1 104.7	.0054	.0002	.0771	.0005	.0020	.0031
#2 105.1	0056	0003	.0747	.0017	0021	0022
Elem Sr4215	Th2837	Ti3349	T11908	U_4090	V_2924	W_2079
Units ppm	PPM	ppm	PPM	PPM	ppm	ppm
Avge .0005	- 0029	0002	.0007	0211	0013	.0012
SDev .0000	.0006	.0001	.0001	.0205	.0002	.0026
%RSD 3.876	22.55	59.92	19.40	97.48	18.55	217.3
#1 .0005	0033	0001	. ଉଉଉଚ	0065	0014	. 0031
#2 .0005	0024	0004	. ଉଉଉଚ	0356	0011	0006

Elem Units Avge SDev %RSD	Y_3710 PPm 0001 .0001 136.9	Zn2062 ppm .0011 .0001 10.64	Zr3496 ppm 0011 .0001 13.01			C	10106
#1 #2	0002 0000	.0011 .0012	0010 0012				
IntStd Mode Elem Wavlen Avge SDev	1 *Counts Sc 361.384 740263 1684.328	2 Time 10000 .0000000	3 NOTUSED 	NOTUSED	5 NOTUSED 	6 NOTUSED 	7 NOTUSED
%RSD #1 #2	.2275311 739072 741454	. ଉପଉପଉପଦ 1 ଉପଉପ 1 ଉପଉପ		*****	****	****	10010 10000

,				277 (317)	65-4 A 5 C # - 7 - 7 # 5 A	.a. 1 1-1	ឯមកិត
Comment:	: 07/01/04	12:39:25	me: 246054		Ope	rator:	010107
Elem Units Avge SDev %RSD	NC Corr. Ag3280 ppm .0006 .0007 118.9	Factor: 1 A13082 ppm .0101 .0015 15.26	As1890 PPM - 0007 - 0040 579.8	B_2496 PP# . 0138 . 0002 1.574	Ba4934 ppm .0058 .0000	Be3130 PPM .0000 .0000	Bi2230 PPM 0026 .0003 10.37
#1 #2	.0001	.0090	0036 .0022	.0140	.0058 .0058		0024 0028
Elem	Ca3179	Cd2265	Co2286	Cr2677	Cu3247	Fe2714	K_7664
Units	PPm	PP#	PPM	PPM	PPm	ppm	ppm
Avge	.0382	.0001	.0024	0016	0001	.0148	49.25
SDev	.0000	.0005	.0012	.0003	.0005	.0107	.15
%RSD	.0909	357.0	51.12	16.05	436.5	72.04	.3059
#1	.0383	.0005	.0015	0014	.0002	.0073	49.15
#2	.0382	0002	.0032	0018	0005	.0224	49.36
Elem Units Avge SDev %RSD	La3988 PPM .0009 .0005 53.50	Li6707 PPM .0021 .0000 .7107	Mg2790 PPm .00088 .0003 3.071	Mn2576 PP# . 0023 . 0000 . 4398	Mo2020 PPM 0004 .0001 38.19	Na33Ø2 ppm 89.96 .28 .3Ø86	Na5889 PPM 130.8 .2
#1 #2	.0006 .0013	.0021 .0021		.0023 .0023	0005 0003	89.76 90.16	130.6 130.9
Elem	Ni2316	P_1782	2203/1	2203/2	Pd3404	S_1820	Sb2068
Units	PPM	PPm	PPm	ppm	PPm	PPM	PPM
Avge	.0088	0058	.0078	0021	.0017	.0021	0027
SDev	.0014	.0016	.0055	.0028	.0008	.0065	.0030
XRSD	16.85	27.01	70.90	134.2	47.96	301.3	109.2
#1	.0092	0069	.0039	0001	.0022	. 0067	ଉଉଉନ
#記	.0072	0047	.0117	0041	.0011	0024	ଉଉଧ୍ୟ
Elem	Sc3613	1960/1	1960/2	Si2881	Ph220	Se196	Sn1899
Units	%R	PPM	ppm	ppm	Ppm	PPm	PPM
Avge	100.2	.0077	0056	.0915	.0012	0012	- 0007
SDev	1.9	.0021	.0049	.0029	.0001	.0026	.0019
%RSD	1.863	26.71	87.74	3.130	4.541	223.8	280.9
#1	98.85	.0062	0021	. 0895	.0012	.0007	0020
#2	101.5	.0092	0091	. 0935	.0012	0030	.0007
Elem	Sr4215	Th2837	Ti3349	T11908	U_4090	V_2924	W_2079
Units	ppm	ppm	PPM	PPM	ppm	PPm	PPM
Avge	.0004	0044	0003	.0009	.0211	0010	0001
SDev	.0000	.0031	.0002	.0015	.0126	.0003	.0045
%RSD	2.916	71.37	48.02	156.9	59.88	30.83	4798.
#1	. 0004	0022	0002	0001	.0122	0012	0033
#2	. 0004	0066	0004	.0020	.0301	0008	.0031

Elem Units Avge SDev %RSD	Y_3710 PPm 0001 .0001 34.51	Zn2062 PPm .0010 .0001 9.350	Zr3496 PPm - ØØØ9 - ØØØ1 8.9Ø7			010108	
#1 #2	0001 0002	. 0009 . 0010	ଉଉଉଞ ଉଉଉଞ				
IntStd Mode Elem Wavlen Avge SDev %RSD	1 *Counts Sc 361.384 707065 13150.77 1.859910	2 Time 10000 .0000000 .0000000	3 NOTUSED 	4 NOTUSED 	5 NOTUSED 	6 NOTUSED 	7 NOTUSED
#1 #8	697766 716364	1 0000 1 0000	*****	*****		**************************************	***** *****

•	•						
Method: Run Time Comment: Mode: CO	: 07/01/04		me: 246Ø55		Oper	naton:	010109
Elem	Ag3280	A13082	As1890	B_2496	Ba4934	Be3130	Bi2230
Units	PPm	PPM	ppm	ppm	ppm	ppm	PPM
Avge	.0005	.0056	.0012	.0133	.0189	.0000	0012
SDev	.0004	.0021	.0019	.0002	.0000	.0000	.0065
%RSD	83.34	37.33	159.4	1.624	.0050	69.18	527.9
#1 #2	. 0002 . 0008	.0041 .0071	. 0026 0002	.0134 .0131	.0189 .0189		0058 .0034
Elem	Ca3179	Cd2265	Co2286	Cr2677	Cu3247	Fe2714	K_7664
Units	PPm	PPM	ppm	PPM	PPM	PPM	PP#
Avge	.0219	0000	.0016	.0005	.0004	-0024	23.83
SDev	.0005	.0002	.0002	.0005	.0001	.0030	.03
%RSD	2.090	644.8	15.03	88.25	27.29	123.9	.1348
#1	.0216	0001	.0014	. 0002	. 0003	.0003	23.81
#2	.0222	.0001	.0017	. 0009	. 0005	.0045	23.85
Elem	La3988	Li6707	Mg2790	Mn2576	Mo2020	Na3302	Na5889
Units	ppm	PPM	PPm	PPm	PPM	ppm	ppm
Avge	.0007	.0015	.0078	.0001	.0004	20.95	31.66
SDev	.0002	.0000	.0009	.0000	.0010	.04	.02
%RSD	23.11	2.278	11.10	20.43	284.7	.2069	.0598
#1	. 0006	.0015	.0084	. 0001	.0011	20.92	31.64
#2	. 0008	.0016	.0072	. 0001	0004	20.98	31.67
Elem	Ni2316	P_1782	2203/1	2203/2	Pd3404	S_1820	Sb2068
Units	PP#	PPM	PPM	PPM	PPm	PP#	ppm
Avge	.0019	0098	.0033	0017	.0038	.0021	0029
SDev	.0006	.0018	.0012	.0028	.0017	.0041	.0013
%RSD	29.72	18.45	37.24	162.1	43.82	198.3	45.83
#1	.0023	0085	.0024	.0003	.0027	.0050	ᲢᲢ2Ტ
#2	.0015	0111	.0042	0037	.0050	0008	ᲢᲢ39
Elem Units Avge SDev %RSD	9c3613 %R 97.76 .19	1960/1 PPM - 0011 - 0041 360.2	1960/2 PPM .0005 .0021 407.6	Si2881 P9m .0858 .0015 1.795	Pt@20 Ppm - 0000 - 0015 3436.	Se196 PPM - 0000 - 0000 17.51	Sn1899 ppm - 0021 . 0006 30.17
#1	97.62	0041	.0020	. Ø847	.0010	ଉଉଉଉ	0017
#2	97.89	.0018	0010	. Ø869	0011	ଉଉଉଉ	0026
Elem	ടന4215	Th2837	Ti3349	T11908	U_4090	V_2924	W_2079
Units	PPM	PPM	ppm	PPM	PPm	ppm	ppm
Avge	. 0005	0018	.0000	0005	.0181	- 0000	.0016
SDev	. 0000	.0021	.0003	.0001	.0054	- 0005	.0021
%RSD	4.991	117.1	666.7	22.20	29.68	1086.	134.2
#1	.0004	0003	.0002	0005	.0143	.0003	.0001
#2	.0005	0033	0002	0006	.0219	0004	.0031

Elem Units Avge SDev %RSD	Y_3710 PPm . 0000 . 0000 83. 04	Zn2062 PPm .0014 .0003 21.54	Zr3496 ppm . 0001 . 0002 310. 3				010110
#1 #2	. 0001 . 0000	.0016 .0012	0001 .0002				
IntStd Mode Elem Wavlen Avge SDev XRSD	1 *Counts Sc 361.384 689972 1307.440	2 Time 10000 .0000000 .0000000	3 NOTUSED 	4 NOTUSED 	5 NOTUSED 	6 NOTUSED 	7 NOTUSED
#1 #2	689Ø47 69Ø896	10000 10000	***** *****	***** *****	****	*****	****

#2

. 0005

-.0027

-.0002

.0003

.0369

-.0001

.0018

Method: DAILY2 Sample Name: 246056 Operator: Run Time: 07/01/04 12:50:01 Comment: 010111 Mode: CONC Carr. Factor: 1 Elem Ag3280 A13082 As1890 B 2496 Ba4934 Be3130 Bi2230 PPM 2129 90m . 0007 PPM . 2152 Units PPM . Ø19Ø . ØØ36 ppm ppm . 0024 Avge . ଉଉଉଉ . 0050 SDev . 0024 *.* ØØØ4 . 0001 . ଉଉଉଉ . 0000 . 0039 **%RSD** 54.76 39.22 98.08 . 5757 .0170 3.497 109.2 . 0009 #1 .0164 .0041 .0151 .0190 . ଉଉଉଉ . 0008 #2 . 00004 .0093 . 0007 .0153 .0190 . ଉଉଉଉ .0064 Ca3179 Elem Cd2265 Co2286 Cr2677 Cu3247 Fe2714 K_7664 ppm .0318 Units .0012 PPM .0173 PPM 30.66 bbwppm ppm . 0000 -. 0003 Avge .0002 SDēv . ଉଉପର .0001 . 0001 . 0004 . 0001 . 0248 . 09 **%RSD** 2.528 219.3 8.026 126.8 31.58 143.1 .3034 -. ଉଉଉଧ #1 .0323 . 0001 .0013 .0002 .0348 30.59 井ご .0312 -. 0000 30.72 .0011 -. ଉଉଉଉ .0001 -.0002 Elem Mg2790 La3988 Li6707 Mn2576 Na5889 Mo2020 Na3302 .0001 Units . 00008 ppm .0123 mqq ppm 39.41 ppm 59.38 .0025 -. ଉଉଉଉ Avge . 0000 SDev . 0003 .0004 .0000 . 0000 .24 . Ø4 %RSD 42.02 .3143 29.86 . 0727 40.43 .6141 .0011 #1 .0025 .0125 -. 0000 .0001 39.58 59.35 #2 . 0006 . 0025 .0120 -. 0000 . 0001 39.24 59.41 Elem Ni2316 P 1782 2203/1 2203/2 Pd34Ø4 S 1820 Sb2068 ppm .0025 Units ppmppm ppm ppm ppm .0025 .0016 -. 0106 Avge -.0018 . 0085 -. 0024 SDev 0006 .0035 . 0030 . 0002 .0015 .0053 . 0005 **XRSD** 35.71 28.18 139.6 10.19 58.97 62.46 22.27 #1 .0012 .0000 -. 0019 .0015 .0122 -. 0027 -. 0085 #2 .0020 -.0128 . 0050 -. 0017 . 0036 . 0047 -.0020 Elem 503613 1960/1 1960/2 Se196 Si2881 PP550 Sn1899 УR 97.77 . ଉଉଉଚ Units ppm ppmppm ppm meqq Avge .0016 -. 0011 . 1348 -. 0003 -- , (አርክርክ ---. 17 . 0004 . 0004 SDev .0016 .0008 .0014 .0013 . 1762 101.2 %RSD . 2809 37.12 408.8 369.7 . 0027 -.0008 97.65 #1 . 1345 -.0012 . 0004 .0011 #2 97.89 . 0005 -.0014 . 1351 . 0006 -. 0008 -. **ଉଉଉ**ର Elem Sr4215 Th2837 Ti3349 T11908 U 4090 V 2924 W 2079 Units PPM .0347 .0031 ppm ppmppmppmppm . 0008 -.0002 -. 0000 .0005 -. 0030 Avge SDev . ଅଅଅଅଅ . 0005 .0000 . 0008 . 0032 . 0001 .0018 93.27 %RSD 5.579 16.30 4.509 9.294 56.55 60.15 .0005 #1 -. 0033 -.0002 .0324 -.0003 . 0044 .0013

Elem Units Avge SDev %RSD	Y_3710 PPm .0000 .0000 1911.	Zn2062 PPm .0015 .0002 13.29	Zr3496 PPM .0003 .0001 17.79				010112
#1 #2	. ଉଉଉଉ ଉଉଉଉ	.0017 .0014	.0003 .0003				
IntStd Mode Elem Wavlen Avge SDev %RSD	1 *Counts Sc 361.384 690086 1219.759	2 Time 10000 .0000000 .0000000	3 NOTUSED 	4 NOTUSED	5 NOTUSED 	6 NOTUSED 	7 NOTUSED
#1 #2	689224 690949	10000 10000	****	*****			****

Method: DAILY2 Run Time: 07/01/04	Sample Name: 246057			Operator:			
Comment:	Factor: 1				•	10113	
Elem Ag3280 Units ppm Avge - 0002 SDev - 0002 %RSD 98.12	PPM PP 10. 6510. 10. 1500.	m 020 031	97m . 0229 . 0013	OOB	Be3130 PPM . 0000 . 0000 10. 82	Bi2230 PPM 0014 .0030 222.4	
#10004 #20001			. Ø22Ø . Ø238	.0131 .0131	. 0000 . 0000	. 0008 0035	
Elem Ca3179 Units ppm Avge .0342 SDev .0001 %RSD .4313	.00001 .00 00001 .00	m 020 006 .	୨୧୩ . ଉପସସ . ଉପସମ	ppm _	Fe2714 ppm 000A .0264 3419.	K_7664 PPM 39.79 .05 .1309	
#1 .0341 #2 .0343			0005 . 0005		0194 .0179	39.83 39.75	
Elem La3988 Units ppm Avge .0003 SDev .0001 %RSD 30.69	PPM PP .0038 .00	m 083 037	PPM . 0001 . 0000		Na33 0 2 ppm 63.43 .31 .4963	Na5889 ppm 94.57 .36 .3831	
#1 .0004 #2 .0003			. 0001 . 0001	.0011 .0015	63.65 63.20	94.82 94.31	
Elem Ni2316 Units ppm Avge .0018 SDev .0000 %RSD 1.784	ppm ppm 0015 .00 .0014 .00	m 044 008		PPM .0022 .0024	S_1820 PP# .0058 .0027 46.56	Sb2068 PP# .0010 .0050 500.6	
#1 .0018 #2 .0019			0012 .0001	.0005 .0039	.0077 .0039	0025 .0045	
Elem Sc3613 Units %R Avge 96.29 SDev 1.53 %RSD 1.592	.0030 .00 0030 .00 .0031 .00	m 034 012	ppm .1941 .0031		Se196 PPM . 0013 . 0003 19.31	Sn1899 PPM - ØØ23 - ØØ18 78.98	
#1 97.38 #2 95.21			. 1919 . 1962	. 0009 . 0014	.0015 .0011	0036 0010	
Elem Sr4215 Units ppm Avge .0004 SDev .0000 %RSD 1.485	PPM PPM PPM PPM PPM PPM PPM PPM PPM PPM	m ଉଉଉ - -	PPM 0024 .0056	ppm	V_2924 PPM 0001 .0008 1594.	W_2079 PPM .0016 .0013 83.21	
#1 .0004 #2 .0005				0063 .0212	0007 . 0005	.0025 .0007	

A 4	•	4	4	A
01	LU	1	1	4

Elem Units Avge SDev %RSD #1	Y_3710 PPM . WWW1 . WWW0 48. 4W . WWWW . WWW01	Zn2062 Ppm . 0018 . 0002 10. 99 . 0019 . 0016	Zr3496 PP# - 0004 - 0002 50.05 - 0005 - 0002			0101	114
IntStd Mode Elem Wavlen Avge SDev %RSD	1 *Counts Sc 361.384 679669 10880.96 1.600920	2 Time 10000 .0000000 .0000000	3 NOTUSED 	4 NOTUSED 	5 NOTUSED 	6 NOTUSED 	7 NOTUSED
#1 #2	687363 671975	10000 10000	unces about	*****	*****	*****	2000 ADDE

Method: DAILY2	Sample Name: 3	2 ለ ፍ ረ ክ መ	Onen	ator:	
Run Time: 07/01/04 Comment:	13:00:38	2 T to \$2 to to	wper (01	0115
Mode: CONC Corr.	Factor: 1				
Elem Ag3280 Units ppm Avge .0001 SDev .0009 *RSD 748.2	A13082 A518 PPM PPM .0084 .001 .0004 .001 4.553 148.	13 .0308 13 .0308 19 .0008	PPM .0162 .0000	Be3130 ppm .0001 .0000 3.276	Bi2230 PPM 0020 .0011 57.91
#1 .0008 #20005	.008600 .0081 .008			. 0000 . 0001	0028 0012
Elem Ca3179 Units ppm Avge .0321 SDev .0002 %RSD .6052	Cd2265 Co23 PPM PPM .0001 .001 .0001 .000 66.89 3.71	PPM 11 .0001 10 .0013	. 0000 . 0000	Fe2714 PPM - 0007 - 0014 202.8	K_7664 PPM 50.20 .07 .1473
#1 .0383 #8 .0380	.0001 .000 .0002 .000			.0003 0016	50.26 50.15
Elem La3988 Units ppm Avge .0001 SDev .0015 %RSD 1145.	Li6707 Mg27 PPm PPm .0050 .007 .0000 .008 .2734 36.6	77 .0001 29 .0001	PP# 0004 .0002	Na33Ø2 PPM 1Ø4.3 .2522	Na5889 ppm 150.2 .5
#1 .0012 #20009	. 0050 . 009 . 0050 . 005			104.5 104.1	150.5 149.9
Elem Ni2316 Units ppm Avge .0028 SDev .0013 %RSD 47.47	P_1782 2203 ppm ppm .0031 .004 .0155 .003 506.2 86.0	PP# 44 .0004 37 .0019	PPM .0007 .0002	S_1820 ppm .0075 .0045 60.11	Sb2068 ppm .0002 .0042 2214.
#1 .0018 #2 .0037	.0140 .007 0079 .001			.0043 .0106	.0032 0028
Elem Sc3613 Units %R Avge 101.3 SDev .3 %RSD .2628	1960/1 1960 ppm ppm 0014 .008 .0026 .001 184.9 67.7	PP# 3066 6 .0008	PPM .0017 .0000	Se196 PPM .0011 .0002 18.26	Sn1899 PPM 0015 .0024 156.8
#1 101.4 #2 101.1	.0004 .001 0033 .003			.0010 .0013	0032 .0002
Elem Sr4215 Units ppm Avge .0006 SDev .0000 %RSO 7.235	Th2837 Ti33 PPM PPM001000 .0047 .00 477.0 166.	PP# 001 .0024 001 .0009	PEM .0071 .0289	V_2924 PPM 0005 . 0008 172.7	W_2079 PPM .0027 .0010 37.59
#1 .0006 #3 .0005	004300 .0023 .000			0011 .0001	. 0034 . 0020

Elem Units Avge SDev %RSD	Y_3710 PPM 0000 .0002 367.5	Zn2062 PPM .0015 .0004 24.71	Zr3496 PPm - 0007 - 0002 31.85			01	.0116
#1 #2	0002 .0001	.0018 .0013	0009 0006				
IntStd Mode Elem Wavlen Avge SDev %RSD	1 *Counts Sc 361.384 714710 1894.339 .2650498	2 Time 10000 .0000000 .0000000	3 NOTUSED 	4 NOTUSED 	5 NOTUSED 	6 NOTUSED 	7 NOTUSED
#1 #2	716 050 713371	10000 10000	*****	capes catho	COURT COMPA	*****	***************************************

Operator:

010117 Run Time: 07/01/04 13:05:57 Comment: Mode: CONC Corr. Factor: 1 B 2496 Ba4934 Bi2230 Elem Ap3280 A13082 As1890 Be3130 ppm . 0395 . 0000 PP# - 0044 Units PPM . 00007 PPM .0071 ppm ppm -. 0003 . 0001 Avge SDev . 0005 .0012 . 0045 . 0009 . ଉଉଉଉ . 0000 . 0004 2.273 %RSD 16.64 1409. 1.021 41.00 13380. 72.71 . 0000 .0003 .0010 .0063 . 0029 . 0401 . 0044 #1 #2 .0003 . 0080 -.0035 .0388 .0043 . 0001 -. 0003 K_7664 Elem Ca3179 Cd2265 Co2286 Cr2677 Cu3247 Fe2714 Units ppm .0346 ₽₽**m** 63.30 ppm ppmppm ppmppm -:"0003 -. 0001 -. 0000 :0038 .0016 Avge SDev .0020 . 00000 . 0000 . 0008 . 0001 . Ø136 . 04 5.883 1255. .0666 14.80 *RSD 2.373 360.8 111.8 .0016 .0360 -.0002 . 0005 -. 0001 . 0134 63.27 # 1 井巴 -.0058 63.33 . Ø332 -. 0003 .0016 -. 0006 -. 0000 Elem L16707 La3988 Mg2790 Mn2576 Magaga Na3302 Na5889 . 0117 ppm 215.0 Units maga ppm ppm ODM ppm 153.9 .0061 . ଉଉଉଉ -. 0008 .0007 Avge . 0000 . 0000 SDev . 0000 . Ø .0002 . 0004 . 171 .0087 **XRSD** 31.28 . 0876 3.475 324.5 3.480 .0018 . 0006 . 0000 -.0007 153.9 153.9 215.0 215.0 . 0061 .0114 #1 #2 . 0009 . 0060 .0120 --. ଉଉଉଡ -. 0008 Ni2316 P_1782 2203/1 5_1820 Elem 2203/2 Pd3404 Sb2Ø68 .0015 Units ppm ppm ppm ppm ppm ppm .0207 -.0021 .0016 -. 0016 .0010 -.0056 Avge 0001 .0022 .0019 SDev .0034 . 0069 .0122 .0032 %RSD 3.628 136.3 122.3 58.89 56.23 161.0 676.5 .0015 -. 0045 .0032 -.0002 .0059 .0121 #1 -. 0034 -.0029 -.0039 .0293 #2 .0016 . 0003 . 0001 -. 0079 Elem Sc3613 1960/1 1960/2 Si2881 Pb220 Se196 Sn1899 Units %R .0012 ppm ppm ppm ppm ppm-.0024 -.0021 100.2 . 0084 .4119 -. 0005 Avge . øøøs SDev . 8 .0043 .0026 .0003 .0020 . 0006 %RSD .8319 51.76 106.1 . 2078 433.8 22.36 29.49 .0053 .0014 -.0006 -.0017 #1 99.62 .4113 .0010 #2 100.8 -.0019 .0114 -. 0042 .4125 .0010 -. 0026 Sr4215 Th2837 Ti3349 T11908 U 4090 V 2924 W 2079 Elem PEm 9259 .0005 .0013 Units ppmppmppmbkm -.0038 -. 0003 -.0025 -.0012 Avge . 0000 . 0000 . 0003 . 0005 SDev .0016 . 0057 .0021 %RSD 2.518 42, 21 6.373 12.12 21.91 162.5 44.67 . 0005 -. 0028 .0219 -- , ØØØ8 -. 0049 -.0003 . 0028 #1 #3 .0005 -.0027 -.0008 -.0023 .0299 -.0002 -.0016

Sample Name: 246@59

Elem Units Avge SDev %RSD	Y_3710 PPM 0001 .0001 237.2	Zn2062 PPM .0035 .0000 .1663	Zr3496 PPM - 0005 - 0003 46.71				010118
#1 #2	. 0000 0001	.0035 .0035	0007 0004				
IntStd Mode Elem Wavlen Avge SDev %RSD	1 *Counts Sc 361.384 707288 5929.797 .8383852	2 Time 10000 .0000000 .0000000	3 NOTUSED 	NOTUSED	5 NOTUSED 	6 NOTUSED 	7 NOTUSED
#1 #2	703095 711481	1 0 0 0 0 1 0 0 0 0	*****	***** *****	***************************************	******	**************************************

Method: DAILY2 Sample Name: 246060 Run Time: 07/01/04 13:11:16 Comment:

#2

.0005

-. 0046

Operator: 010119

-. 0016

. 0004

Comment: Mode: CONC Corr. Factor: 1 B 2496 Ba4934 Bi2230 Elem Ap3280 A13082 As1890 Be3130 ppm .0044 Ppm .0001 PPm .0377 Units ppmppmppm ppm -.0071 -. 0006 -. 0014 .0032 Avge .0033 SDev . 0008 .0072 .0002 .0018 . 0000 . 0000 %RSD 143.1 221.3 16.66 4.816 . 7592 33.27 46.09 #1 -.0012 -.0018 -.0016 .0364 . 0044 .0001 -. 0094 #2 . 00000 .0083 -.0012 .0390 . 0044 . 0001 -. 0048 K_7664 Elem Ca3179 Cd2265 Co2286 Cr2677 Cu3247 Fe2714 Units ppm ppm ppm ppm ppm ppmppm . 0384 . 0000 -. 0004 .0015 .0007 .0003 64.11 Avge SDev .0019 . 0001 . 0000 . 0004 . 0006 . 0344 . 07 5.690 567.0 5.700 2301. . 1051 7R:3D 114.2 196.0 .0007 -. 0007 .0311 -. ଉତ୍ତର -. 0001 -. 0228 64.07 # 1 #2 .0337 . 0000 . 0007 -.0001 . 0008 .0258 64.16 La3988 Mg279Ø Mn2576 Na3302 Na5889 Elem L16707 Mo2Ø2Ø . WWW. Units ppm pom . ២០៣ ១១៣ ១១៣ ppm ppm 156.0 ppm 218.1 -.0012 . 8862 . ממממ Avge .0016 133.1 SDev .0001 . 0054 0000 . 0008 . Ø %RSD 1.299 195.6 78.26 137.0 . 1051 .0171 -.0023 .0000 .0061 # 1 -. 0011 .0018 156.2 218.0 #2 -. 0001 .0062 . 0066 . 0001 . QUQUQUQI 155.9 218.1 P_1782 2203/1 2203/2 \$ 1820 Sb2068 Elem Ni2316 Pd3404 .0025 Units ppm ppm ppm ppm ppm ppm . 0185 -. 0008 -.0003 . 0000 -.0012 -.0038 Avge .0015 .0157 . 0006 .0034 .0055 SDev . 0008 .0017 %RSD 1949. 193.5 7820. 43.77 60.28 465.2 4.096 -. 0008 .0190 .0014 .0103 -.0023 -.0050 -.0050 -. 0119 .0027 .0179 #2 .0036 .0001 .0024 -.0026 Sc3613 1960/1 1960/2 Si2881 Pb220 Sn1899 Elem Se196 %R Units mqqppmppm ppm ppm ppm 99.67 .0017 . 4142 -. 0001 .0019 .0022 - 0024 Avge .77 .0035 .0042 .0016 SDev .0022 .0025 .0026 **%RSD** .7723 201.5 1.005 102.0 4493. 83.40 106.3 . 0006 .0042 -.0042 #1 100.2 -.0018 .0030 .4112 -. 0007 井色 99.12 .0038 . 4171 .0017 . 00008 -. ଉଉଉ6 V 2924 Elem Sr4215 Th2837 Ti3349 T11908 U 4090 W 2079 .0005 .0006 ppm Units ppmppmppm ppm -.0022 -. 0001 -.0243 -.0015 -.0004 Avge . 0046 753. 4 . ଉଉଉଉ SDev .0033 .0001 . 0370 . 0001 .0012 %RSD 6.385 149.0 98.88 158.8 268.5 7.577 . 0001 #1 .0005 -. 0000 -.0027 -. 0505 -. 0014 -.0013

.0039

.0019

-.0002

Elem Units Avge SDev %RSD	Y_3710 PP# 0001 .0001 238.4	Zn2062 Ppm .0007 .0001 11.41	Zr3496 ppm - 0011 - 0005 47.71			01	0120
#1 #2	, ଉଉଡ t - , ଉଉଡ t	. ଉଦଦର . ଉଦଦର	0014 0007				
IntStd Mode Elem Wavlen Avge SDev XRSD	1 *Counts 5c 361.384 703505 5436.237 .7727361	2 Time 10000 .0000000	3 NOTUSED 	A NOTUSED	5 NOTUSED 	6 NOTUSED 	7 NOTUS:FD
#1 #2	707349 699661	10000 10000	******	***************************************			

Analysis Report QC Standard 07/01/04 01:26:27 PM

page 1

Method: DAILY2 Sample Name: icv/ccv Operator: 010121 Run Time: 07/01/04 13:21:20 Comment: Mode: CONC Factor: 1 Corr. A13082 As1890 B 2496 Ba4934 Bi2230 Elem Ap3280 Be3130 PPM 9.674 ppm 9.936 .9826 .9916 ppm 4.997 PPM 4.721 Units ppm 4.970 Avge . 0006 .013 .010 SDev .009 .009 .0005 .003 %RSD . Ø574 . 1351 . 1860 . 2110 . 0895 . 0488 . 0700 .9920 #1 9.683 5.004 4.728 9.943 .9830 4.973 #2 .9912 9.665 4.990 4.714 9.930 .9823 4.968 QC Pass 10.00 QC Pass Errors QC Pass QC Pass QC Pass QC Pass QC Pass Value 1.000 10.00 5.000 5.000 1.000 5.000 10.00 Range 10.00 10.00 10.00 10.00 10.00 10.00 K 7664 Ca3179 Fe2714 Elem Cd2265 Co2286 Cr2677 Cu3247 ppm . 9997 20.12 ppm 4.980 ppm **bb**w ppm 10.18 ppm Q17.94 Units 1.957 2.001 Avge .002 .004 .0018 . 04 . 01 . 04 SDev -2147 %RSD . 0532 .1760 .0311 . 0932 4066 4.979 1.959 2.004 #1 20.11 1.001 10, 15 Q17.97 .9984 4.981 1.956 #2 20.13 1.998 10.21 Q17.91 QC Pass 10.00 QC Pass 20.00 QC Fail QC Pass QC Pass QC Pass QC Pass Errors ຊ. ຊຸດຊື້ 2. ผิงดี 1.000 5.000 Value 10.00 10.00 10.00 10.00 10.00 10.00 10.00 Range Li6707 Na5889 La3988 Mg279Ø Mn2576 Mo2020 Na3302 Elem ppm 19.97 PPM 4.975 .007 Units ppm ppm ppm PPM 27.10 .04 ppm 4.516 .021 1.013 α41.9ø 5.010 Avge .004 . 00 SDEV .0065 .0717 .3756 %RSD . 0714 . 4568 . 1320 . 1455 4.531 4.502 4.970 #1 5.012 19.97 1.013 27.13 Q42. Ø1 #2 5.007 19.97 1.012 4.979 27.07 Q41.79 QC Pass QC Pass QC Pass QC Fail QC Pass QC Pass QC Pass Errors 5.000 5.000 20.00 1.000 5.000 30.00 30.00 Value 10.00 Range 10.00 10.00 10.00 10.00 10.00 10.00 Elem Ni2316 P_1782 2203/1 2203/2 Pd3404 Sb2068 5 1820 PPm .9957 .9603 PPm 5.066 ppm. Units ppm ppm ppm 4.870 4.977 1.028 4.918 Avge SDev .015 .007 .0022 .0026 . 056 .001 . 9390 **%RSD** .3112 1.110 . 1376 .0630 .2178 .2663 5.106 1.029 .9972 4.881 4.944 4.914 .9621 #1 5.027 5.010 4.923 . 9942 .9585 #2 4.860 1.028 QC Pass 5.000 QC Pass QC Pass QC Pass NOCHECK NOCHECK QC Pass Errors 5. 000 1.000 Value 1.000 1.000 10.00 10.00 Range 10.00 10.00 10.00 Sc3613 1960/1 1960/2 Si2881 Pb220 Se196 Sn1899 Elem

Analysis Report QC Standard		dard	07/01/04 01:26:27 PM 010122				
Units	%R	PPM	PPM	PP#	PP#	ppm	PPM
Avge	96.70	5.191	5.142	5.045	4.938	5.159	4.920
SDev	.87	.048	.001	.007	.020	.017	.009
%RSD	.9018	.9868	.0151	.1290	.4067	.3207	.1906
#1	97.32	5.157	5.142	5.049	4.924	5.147	4.926
#@	96.09	5.225	5.143	5.040	4.958	5.170	4.913
Errors Value Range	NOCHECK	NOCHECK	NUCHECK	QC Pass 5.000 10.00	QC Pass 5.000 10.00	QC Pass 5.000 10.00	GC Pass 5.000 10.00
Elem	Sr4215	Th2837	Ti3349	T11908	U_4090	V_2924	W_2079
Units	PP#	ppm	ppm	PPM	PFm	PFM	rpm
Avge	5.036	.9761	4.821	5.184	.9571	4.951	1.021
SDev	.008	.0044	.002	.004	.0040	.008	.001
%RSD	.1620	.4549	.0411	.0841	.4169	.1708	.0958
#1	5.042	.9792	4.823	5. 181	.9599	4.957	1.021
#2	5.031	.9729	4.820	5. 188	.9543	4.945	1.022
Errors	QC Pass	0C Pass	QC Pass	QC Pass	QC Pass	QC Pass	QC Pass
Value	5.000	1.000	5.000	5.000	1.000	5.000	1.000
Range	10.00	10.00	10.00	10.00	10.00	10.00	10.00
Elem Units Avge SDev %RSD	Y_3710 PPm 5.071 .012 .2364	Zn2062 ppm 1.005 .001 .0596	Zr3496 ppm 4.926 .009 .1781				
#1 #2	5.080 5.063	1.005 1.006	4.933 4.920				
Errors Value Range	QC Pass 5.000 10.00	QC Pass 1.000 10.00	QC Pass 5.000 10.00				

Analysis Report		QC Standard		07/01/04 01:86:87 PM			page 3
IntStd Mode Elem Wavlen Avge SDev %RSD	1 *Counts Sc 361.384 682514 6158.193 .9022801	2 Time 10000 .000000 .0000000	3 NOTUSED 	4 NOTUSED 	5 NOTU:SED 	6 NOTUSED 	7 NOTUSED
#1 #2	686869 678160	1		****	*****	00000 00000	****

Analysis Report Blank Sample 07/01/04 01:34:09 PM page 1

		•				
Method: DAILY2 Run Time: 07/01 Comment:	Sample N ./04 13:29:02	ame: icb/co	=b	Ор	erator:	
	mr. Factor:	1.				
Elem Ag3280	A13082	As1890	B_2496	Ba4934	Be3130	Bi2230
Units ppm	PPM	PPM	PP#	ppm	ppm	PPM
Avge .0001	. 0027	- 0009	. 0042	. 0001	. 0001	0022
SDev .0001	. 0002	- 0005	. 0003	. 0001	. 0000	.0051
%RSD 99.49	5. 756	61.42	6. 538	209. 3	40.69	233.9
#1 .0000	. ଉଷ୍ଟର	0005	. 0044	0000	. 0000	0058
#2 .0001	୧९ଷଷ :	0012	. 0040	. 0001	. 0001	.0014
Errors LC Pas	. 0500	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass
High .0050		.0050	.0500	.0050	.0050	.0100
Low0050		0050	0500	0050	0050	0100
Elem Ca3179	Cd2265	Co2286	Cr2677	Cu3247	Fe2714	K_7664
Units ppm	PPM	P9m	PPM	ppm	POM	PPm
Avge .0184	- 0000	. WWW6	- 0002	- 0001	. 00019	.0105
SDev .0007	.0003	. WWW3	- 0013	- 0006	. 0095	.0013
%RSD 3.627	1525.	59.53	669.6	819.9	497. 2	12.64
#1 .0189	ଉଷଜଥ	. 0003	0011	0005	. 0086	.0115
#2 .0180	. ଉଷଜଥ	. 0008	.0007	. 0004	0048	.0096
Errors LC Pas	. 0050	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass
High .0500		.0050	.0050	.0050	.0250	.1000
Low0500		0050	0050	0050	0250	1000
Elem La3985	Li6707	Mg2790	Mn2576	Mo2020	Na3302	Na5889
Units ppm	PPm	PPm	PPM	ppm	PPM	PPM
Avge .0009	.0003	.0029	. 0000	.0024	0059	.0164
SDev .0002	.0000	.0010	. 0001	.0013	.0893	.0016
%RSD 27.03	i0.57	33.74	343. 5	54.84	1504.	9.620
#1 .0007	. ଉଉପଥ	.0022	0000	.0033	L0691	.0175
#2 .0011	. ଉଉପଥ	.0036	.0001	.0014	H.0572	.0153
Errors LC Pas	.0050	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass
High .0050		.0500	.0050	.0050	.0500	.0500
Low0050		0500	0050	0050	0500	0500
Elem Ni2316	P_1782	2203/1	2203/2	₽ძ3404	S_1820	Sb2068
Units ppm	PPm	PPm	PPM	იცm	PPM	PPM
Avge .0015	L0199	0012	.0019	.0036	.0005	0013
SDev .0007	.0042	.0003	.0004	.0008	.0117	.0005
%RSD 47.40	21.03	25.43	19.24	20.84	2178.	36.67
#1 .0020	L0169	0010	.0022	.0041	ØØ77	0010
#2 .0010	L0229	0015	.0017	.0031	. ØØ88	0017
Errors LC Pas High .0050 Low0050	.0100	NOCHECK	NOCHECK	LC Pass .0050 0050	LC Pass .0100 0100	LC Pass .0100 0100
Elem Sc3613	1960/1	1960/2	Si2881	Pb220	Se196	Sn1899

Analysis	Report	Blank Sa	ample	07/01/0	04 01:34:09	F'M	page 2
Units	%R	PPM	ppm	PPM	PPM	PPM	Fifim
Avge	98.05	.0033	0001	.0038	- 0009	.0011	.0001
SDev	.31	.0006	.0007	.0012	- 0004	.0007	.0010
XRGD	.3113	18.71	1344.	32.81	39.46	61.27	740.5
#1	98.27	.0029	0005	.0047	.0012	.0006	ଉଷଷର
#2	97.83	.0037	.0004	.0029	.0007	.0015	- ଅଷଷର
Errors High Low	NOCHECK	NOCHECK	NOCHECK	LC Pass .0100 0100	LC Pass .0030 0030	LC Pass .0050 0050	LC Pass .0050 0050
Elem	Sr4215	Th2837	Ti3349	T11908	U_4090	V_2924	W_2079
Units	PPM	PPM	PPM	PPM	PPm	PPm	ppm
Avge	.0001	0004	- 0000	.0025	0014	0003	.0022
SDev	.0000	.0018	.0004	.0046	.0029	.0005	.0039
%RSD	17.46	470.0	1301.	182.0	204.0	153.9	174.0
#1	.0001	0017	0003	0007	0034	0006	
#2	.0001	.0009	.0002	.0058	.0006	. 0000	
Errors	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass
High	.0050	.0100	.0050	.0100	.1000	.0050	.0100
Low	0050	0100	0050	0100	1000	0050	0100
Elem Units Avge SDev *RSD	Y_3710 PPm .0001 .0001 217.4	Zn2062 PPM .0007 .0002 24.84	Zr3496 PPM - 0001 - 0006 567.5				
#1 #3	ଉଉଉଉ ଉଉଉଡ	. 0006 . 0008	0005 .0003				
Errors High Low	LC Pass .0050 0050	LC Pass .0050 0050	LC Pass .0050 0050				

Analysis	nalysis Report Bla		Blank Sample		07/01/04 01:34:09 PM		
IntStd Mode Elem Wavlen Avge SDev %RSD	1 *Counts Sc 361.384 692082 2132.634 .3081476	2 Time 10000 .0000000 .0000000	3 NOTUSED 	4 NOTUSED 	5 NOTUSED 	6 NOTUSED 	7 NOTUSED == == == ==
#1 #2	693590 69 0 574	10000 10000	*****		******	*****	*****

PROJ. NO	. PROJECT	TO#	DATE	MATRIX	LOGBK PC
180.10, 5000	Divzo	040616-1	7.7.04	Liquid	<u>56 244</u>
	:				
·					

			·		
· ————————————————————————————————————					

____ ANALYSIS

Keep last result visible enabled ... Starting run ...

Creating high priority queue entries ...

BACKGROUND CORRECTED INTENSITIES

Identity 1 : BLK_SC Identity 2 : Type : STD

Weight: 1.0000 Volume: 1.00 Printed: 12:55:04 PM July 7, 2004

# 1 # 2	к_766 29.5 15.5	Li670 -11.0 -23.0	Na589 29.0 20.0	Sc361 4692.0 4615.0
iíean	22.5	-17.0	24.5	4653.5
SD	9.9	8.5	6.4	54.4
%RSD	44.0	49.9	26.0	1.2

INTENSITIES

Identity 1 : BLK_SC Identity 2 : Type : STD

Weight: 1.0000 Volume: 1.00 Printed: 12:55:04 PM July 7, 2004

	K_766	L1670	Na589	Sc361
# i	Ø. Ø	-0.0	Ø. Ø	4692.0
# 2	0.0	-ଡି.ଡି	Ø. Ø	4615.0
iíean	0.0	-∅. છ	Ø. Ø	4653.5
SD	0.0	0.0	۵.0	54.4
%RSD	42.9	50.9	24.8	1.2

BACKGROUND CORRECTED INTENSITIES

Identity 1 : CLP STD1 SC Identity 2 : Type : STD

Weight: 1.0000 Volume: 1.00 Printed: 12:58:12 PM July 7, 2004

	K_766	L1670	Na589
# 1	4119.0	32383.0	22172.5
# 2	4110.0	32167.0	22070.5
iíean	4114.5	32275.0	22121.5
SD	6.4	152.7	72.1
%RSD	ô. 2	0.5	0.3

INTENSITIES

Identity 1 : CLP_STD1_SC Identity 2 : Type : STD

Weight: 1.0000 Volume: 1.00 Printed: 12:58:12 PM July 7, 2004

	K_766	Li670	Na589
# 1	Ø. 9	6.8	4.6
# 2	0.9	6.8	4.7
liean	ø. 9	6.8	4.7
SD	Ø. Ø	ũ. ũ	0.0
%RSD	0.7	Ø. 4	0.6

DC 7-7-04

```
BACKGROUND CORRECTED INTENSITIES
Type : CV
Weight: 1.0000 Volume: 1.00 Printed: 1:01:20 PM July 7, 2004
                      Li670
                                   Na589
                                                           Sc361
           K 766
                                                  Sc
           1656.0
                      16337.5
                                  13307.5
                                               4801.0
                                                           4801.0
 # 1
  2
           1629.0
                      16091.5
                                  13073.5
                                                           4716.0
                                               4716.0
                                               4758.5
                                                           4758.5
říean
           1642.5
                      16214.5
                                  13190.5
SD
             19.1
                        173.9
                                    165.5
                                                 60. i
                                                             60. i
                                                              1.3
%RSD
              1.2
                          i. i
                                      1.3
                                                  1.3
APPARENT CONCENTRATIONS
Identity 1 : CLP_CCV_SC Identity 2 : Type : CV
Weight: 1.0000 Volume: 1.00 Printed: 1:01:20 PM July 7, 2004
           K_766
                       Li670
                                   Na589
                                                  Sc
                                                           Sc361
             ppm
                         ppm
                                     ppm
                                                             ppm
 # 1
          19.7267
                       5.0072
                                  29.7138
                                             4801.000 H
                                                         103.1741
 # 2
          19.7552
                       5.0207
                                  29.7175
                                             4716.000 H
                                                         101.3450
          19.7409
                       5.0139
                                  29.7157
                                             4758.500 H
                                                         102.2595
iiean
                                               60.104
SD
          0.0202
                       0.0095
                                   0.0026
                                                           1.2934
%RSD
           0.1022
                       0.1901
                                   0.0087
                                                1.263
                                                           1.2648
Checking calibration verification ...
Identity 1 : CLP_CCV_SC
                         Identity 2:
                 Low limit
Report name
                               Value
                                         High limit
K_766
                     18.000
                                 19.741
                                             22.000
L1670
                      4.500
                                 5.014
                                              5.500
Na589
                     27.000
                                 29.716
                                             33.000
BACKGROUND CORRECTED INTENSITIES
Identity 1 : Calibration blank Identity 2 :
                                               Type: CB
Weight : 1.0000 Volume : 1.00 Printed : 1:05:34 PM July 7, 2004
           K_766
                       L1670
                                   Na589
                                                  Sc
                                                           Sc361
                                     57.0
 # 1
             26.0
                         -8.5
                                               4780.0
                                                           4780.0
 # 2
             25.0
                        -12.5
                                     34.0
                                               4742.0
                                                           4742.0
             25.5
                        -10.5
                                     45.5
                                               4761.0
                                                           4761.0
ĭiean
             0.7
                          2.8
                                                 26.9
                                                             26.9
SD
                                     16.3
%RSD
             2.8
                         26.9
                                     35.7
                                                  Ø.6
                                                              Ø. 6
APPARENT CONCENTRATIONS
Identity 1 : Calibration blank Identity 2 :
                                               Type : CB
Weight: 1.0000 Volume: 1.00 Printed: 1:05:34 PM July 7. 2004
                                                           Sc361
           K 766
                       L1670
                                   Na589
                                                  Sc
                                     ppm
             ppm
                         ppm
                                                             ppm
                                             4780.000 H
                                                         102.7222
 # 1
           0.0350
                       0.0028
                                   0.0715
          0.0253
                       0.0015
                                   Ø. 0205
                                             4742.000 H
                                                         101.9045
          0.0302
                                             4761.000 H
liean
                       0.0021
                                   Ø. Ø46Ø
                                                         102.3133
          0.0069
                       Ø. ØØØ9
                                   0.0361
                                               26.870
SD
                                                           Ø.5782
```

Checking	calibration blank	
Identity	i : Calibration blan	ık

22.7221

%RSD

 Report name
 CRDL
 Value

 K_766
 0.100
 0.030

 L1670
 0.010
 0.002

41.9450

78.5082

Identity 2:

Ø. 564

0.5652

EVOLUTION by Micro-Active Australia Pty Ltd 1:15:26 PM July 7. 2004 0.000 102.313 BACKGROUND CORRECTED INTENSITIES Identity i : pbw-04070/ Identity 2 : Type : SAMPLE Weight: 1.0000 Volume: 1.00 Printed: 1:08:44 PM July 7, 2004 K_766 L1670 Na589 Sc Sc361 # 1 19.5 -8.5 39.5 4675.5 4675.5 # 2 13.5 -14.5 27.5 4626.5 4626.5 iíean 16.5 -11.5 33.5 4651.0 4651.0 รอ 4.2 4.2 8.5 34.6 34.6 %RSD 25.7 36.9 25.3 0.7 0.7 APPARENT CONCENTRATIONS Identity 1: pbw-040707 Identity 2: Type: SAMPLE Weight: 1.0000 Volume: 1.00 Printed: 1:08:44 PM July 7, 2004 K_766 L1670 Na589 Sc Sc361 ppm ppm mqq ppm -0.0385 0.0027 # 1 L 0.0342 4675.500 H 100.4734 # 2 L -Ø.1112 0.0008 0.0073 4626.500 99.4190 -0.0749 iiean L 0.0017 0.0207 4651.000 99.9462 SD 0.0514 0.00140.0190 34.648 0.7456 %RSD 68.6267 0.7460 79.0618 91.6890 0.745 BACKGROUND CORRECTED INTENSITIES Identity 1 : lcsww-040707 Identity 2 : Type : SAMPLE Weight: 1.0000 Volume: 1.00 Printed: 1:11:52 PM July 7, 2004 K 766 L1670 Na589 Sc Sc361 # i 1642.0 12757.0 8849.0 4708.5 4708.5 # 2 1639.0 12756.0 8772.0 4685.5 4685.5 1640.5 iiean 12756.5 8810.5 4697.0 4697.0 SD 2.1 0.7 54.4 16.3 16.3 %RSD Ø. i Ø. Ø Ø.6 0.3 Ø.3 APPARENT CONCENTRATIONS Weight: 1.0000 Volume: 1.00 Printed: 1:11:52 PM July 7, 2004

	K_766	L1670	Na589	Sc	Sc361
	mqq	ppm	mqq		ppm
# i	19.9472	3.9877	20.1286	4708.500 H	101.1836
# 2	20.0094	4.0070	20.0512	4685.500 H	100.6886
ìíean	19.9783	3.9973	20.0899	4697.000 H	100.9361
SD	0.043 9	0.0136	0.0547	16.263	0.3500
%RSD	0.2200	0.3403	0. 2725	Ø.346	0.3467

BACKGROUND CORRECTED INTENSITIES

Identity 1 : 246046 Identity 2 : Type : SAMPLE

Weight: 1.0000 Volume: 1.00 Printed: 1:14:58 PM July 7, 2004

	K_766	L1670	Na589	Sc	Sc361
# i	2865.5	2.5	2432.0	4751.5	4751.5
# 2	2884.5	-2.5	2436.0	4719.5	4719.5
ñean	2875.0	0.0	2434.0	4735.5	4735.5
SD	13.4	3.5	2.8	22.6	22.6
%RSD	Ø.5	Ø. Ø	0.1	0. 5	0.5

Identity 1 : 246046 Identity 2 : Type : SAMPLE

Weight: 1.0000 Volume: 1.00 Printed: 1:14:58 PM July 7, 2004

	K_766	Li670	Na589	Sc	Sc361
	ppm	ppm	ppm		ppm
# 1	34.7000	0.0061	5. 4408	4751.500 H	102.1089
# 2	35.1707	Ø. ØØ46	5.4872	4719.500 H	101.4203
iiean	34.9353	0.0054	5.4640	4735.500 H	101.7646
SD	0.3328	0.0011	0.0328	22.627	Ø. 4869
%RSD	0.95 27	20.4473	Ø. 6002	Ø. 478	Ø. 4785

BACKGROUND CORRECTED INTENSITIES

Identity 1: 246047 Identity 2: Type: SAMPLE

Weight: 1.0000 Volume: 1.00 Printed: 1:18:06 PM July 7. 2004

	K_766	L1670	Na589	Sc	Sc361
# i	3585.5	-8.0	523 5. 0	4751.5	4751.5
# 2	3543.5	-6.€	5188.0	4696.5	4696.5
iiean	3564.5	-7.0	5211.5	4724.0	4724.0
SD	2 9. 7	1.4	33.2	38. 9	38.9
%RSD	0.8	20.2	Ø. 6	Ø. 8	Ø. 8

APPARENT CONCENTRATIONS

Identity 1 : 246047 Identity 2 : Type : SAMPLE

Weight: 1.0000 Volume: 1.00 Printed: 1:18:06 PM July 7, 2004

	K_766	L1670	Na589	Sc	Sc361
	mqq	ppm	ppm		mqq
# i	43.4894	0.0 029	11.7768	4751.500 H	102.1089
# 2	43.4832	0.00 35	11.8078	4696.500 H	100.9253
liean	43.4863	0.0032	11.7923	4724.000 H	101.5171
SD	0.0043	0.0004	0.0220	38.891	0.8369
%RSD	0.0100	13.2185	0.186 5	0.82 3	0.8244

BACKGROUND CORRECTED INTENSITIES

Identity 1 : 246048 Identity 2 : Type : SAMPLE

Weight: 1.0000 Volume: 1.00 Printed: 1:21:14 PM July 7, 2004

	K_766	L1670	Na589	Sc	Sc361
# 1	4280.5	Ø. Ø	9330.0	4769.0	4769.0
# 2	4262.5	-13.0	9281.0	4732.0	4732.0
říean	4271.5	-6.5	9305.5	4750.5	4750.5
SD	12.7	9.2	34.6	26.2	26.2
%RSD	0.3	141.4	Ø. 4	ø. 6	Ø. 6

APPARENT CONCENTRATIONS

Identity 1: 246048 Identity 2: Type: SAMPLE

Weight: 1.0000 Volume: 1.00 Printed: 1:21:14 PM July 7, 2004

		K_766	L1670	Na589	Sc	Sc361
		mqq	ppm	ppm		ppm
# i	H	51.7818	0.0054	20. 9558	4769.000 H	102.4855
# 2	Н	51.9682	0.0013	21.0089	4732.000 H	101.6893
Mean SD %RSD	Н	51.8750 0.1318 0.2541	0.0034 0.0029 85.2191	20.9823 0.0375 0.1789	4750.500 Н 26.163 0.551	102.0874 0.5630 0.5515

BACKGROUND CORRECTED INTENSITIES

THERETO I . CHEMICA THERETO . . THERE . CAMPIE

EVOLUTION by Micro-Active Australia Pty Ltd 1:30:56 PM July 7, 2004

Weight: 1.0000 Volume: 1.00 Printed: 1:24:22 PM July 7. 2004

	K_766	L1670	Na589	Sc	Sc361
# i	4342.5	-9.0	9449.0	4749.5	4749.5
# 2	4363.5	-26.0	9462.0	4762.5	4762.5
iiean	4353.0	-17.5	9455.5	4756.0	4756. Ø
SD	14.8	12.0	9.2	9.2	9.2
%RSD	ø.3	68.7	Ø. i	Ø. 2	Ø. 2

010132

APPARENT CONCENTRATIONS

Identity 1 : 246048d Identity 2 : Type : SAMPLE

Weight: 1.0000 Volume: 1.00 Printed: 1:24:22 PM July 7, 2004

		K_766	L1670	Na589	Sc	Sc361
		ppm	ppm	ppm		ppm
# i	H	52.7527	0.00 26	21.3112	4749.500 H	102.0658
# 2	Н	52.8637	L -0.0027	21.2821	4762.500 H	102.3456
iiean	Н	52.8082	L -0.0000	21.2966	4756.000 H	102.2057
SD		0.0785	0.0037	0.0205	9.192	Ø.1 9 78
%RSD		0.1486	10518.0234	0.09 63	Ø. 193	0.1 9 35

BACKGROUND CORRECTED INTENSITIES

Identity 1 : 246049 Identity 2 : Type : SAMPLE

Weight: 1.0000 Volume: 1.00 Printed: 1:27:32 PM July 7, 2004

	K_766	L1670	Na589	Sc	Sc361
# i	5512.0	2.0	16974.0	4764.5	4764.5
# 2	5527 .0	-12.0	16998.0	473 9 .5	4739.5
iiean	5519.5	-5.0	16986.0	4752.0	4752.0
SD	10.6	9.9	17.0	17.7	17.7
%RSD	0. 2	198.0	0.i	Ø. 4	Ø. 4

APPARENT CONCENTRATIONS

Identity 1 : 246049 Identity 2 : Type : SAMPLE

Weight: 1.0000 Volume: 1.00 Printed: 1:27:32 PM July 7, 2004

		K_766	L1670	Na589	Sc	Sc361
		ppm	ppm	ppm		ppm
# î	H	66.8234	ଡ. ଡଡରେ	38.2071	4764.500 H	102.3886
# 2	H	67.3609	0.0016	38.4633	4739.500 H	101.8507
iiean	Н	67.0922	0.0038	38.3352	4752.000 H	102.1196
SD		0.3801	0.0031	0. 1812	17.678	0.3804
%RSD		0. 5665	80.3651	0.4726	0. 372	0.3725

BACKGROUND CORRECTED INTENSITIES

Identity 1: 246049s Identity 2: Type: SAMPLE

Weight: 1.0000 Volume: 1.00 Printed: 1:30:38 PM July 7, 2004

	K_766	L1670	Na589	Sc	Sc361
# i	7184.5	12902.0	25712.0	4707.5	4707.5
# 2	7159.5	12862.0	25679.0	4672.5	4672.5
iíean	7172.0	12882.0	25695.5	4690.0	4690.0
SD	17.7	28.3	23.3	24.7	24.7
%RSD	ŵ. 2	Ø. 2	Ø. i	0.5	Ø.5

APPARENT CONCENTRATIONS

Identity 1 : 246049s Identity 2 : Type : SAMPLE

Weight: 1.0000 Volume: 1.00 Printed: 1:30:38 PM July 7, 2004

	K_766		Na589	Sc	Sc361
# t tf	00 0407 ppm	y acce to	eo cocc bbw	4707.500 H	ppm
# 1 H	88.2437	4.0514 H	28. 6066 50. 6066	4707.500 H	101.1620
# ∠ n	88.3363	4. WO14 H	38.9/W∠	4672.500 H	100.4089
Mean H	88.4201	4.0426 H	58.7884	4690.000 H	100.7855
SD	0.2494	0.0124	Ø. 2571	24.749	
%RSD	0.2821	0.3077	0.4373	Ø. 528	
	JND CORRECTED				
	1 : 246050				
Weight	: 1.0000 Vol	ume : 1.00	Printed:	1:33:48 PM J	uly 7, 2004
	к 766	Li670	Na589	Sc	Sc361
# i	3131.0	6. Ø	32627.5	4702.5	
# 2		-2.0	32337.5		
					12
iíean	3117.5			4664.5	4664.5
SD	19.1	5.7	205.1	53.7	53.7
%RSD	Ø. 6	282.8	0.6	1.2	1.2
1551555	CONCENTRATI	047			
	1 : 246050		. Т	CIMBIC	
				1:33:48 PM Ju	.1 7 0004
werdur :	1.0000 101	ume : 1.00	Frintea:	1:33:48 PM J	119 /, 2004
	K_766	L1670	Na589	Sc	Sc361
	ppm	mqq	ppm		ppm
	38.33 9 3			4702.500 H	101.0544
# 2	38.6352	0.0047 H	75.0147	4626.500	99.4190
iíean	38, 4873	ด. ดดรด ห	74, 7392	4664.500 H	100.2367
SD	0.2092				1.1564
%RSD	0.5437				1.1537
					27225
	IND CORRECTED				
Identity	1 : 246051	Identity 2	: Type :	SAMPLE	
Weight :	1.0000 Vol	ume : 1.00	Printed:	1:36:56 PM Ju	11y 7, 2004
	K 766	Li670	Na589	Sc	Sc361
# 1				4762.5	4762 S
	3293.5			4709.5	
	0		01022.0	170313	4703.3
iíean	3307.0	-2.5	34618.0	4736.0	4736.0
SD		4.2			
%RSD	0.6	169.7	Ø. 4		Ø. 8
A DU A DE MT	CONCENTRATIO	nutt:			
	1 : 246051		. T	CIMBITE	
				1:36:56 PM Ju	1 7 0004
werdur .	1.0000 701	ume : 1.00	Frincea:	1:36:36 FN 30	11y /, 2004
	K_766	Li670		Sc	Sc361
	ppm	ppm	mqq		maa
# î	40.1608	0.0037 H	78. 22 9 3	4762.500 H	102.3456
# 2	40.2833	0.0055 н	78.6747	4709.500 H	101.2051
Maan	ፈል ኃኃኃል	ത തെഷം ല	70 /500	4736.000 H	101 7750
				4736.000 H 37.477	
				0.791	
מניזויי	W. 41JJ	£0.4303	A' 4013	n. / JT	0.7924

BACKGROUND CORRECTED INTENSITIES

Identity 1 : CLP_CCV_SC Identity 2 : Type : CV

Weight: 1.0000 Volume: 1.00 Printed: 1:41:42 PM July 7, 2004

010134

# i # 2	K_766 1661.0 1651.0	Li670 16171.0 16031.0	Na589 13237.0 13097.0	Sc 4818.0 4776.0	5c361 4818.0 4776.0
Mean	1656.0	16101.0	13167.0	4797.0	4797.0
SD	7.1	99.0	99.0	29.7	29.7
%RSD	0.4	0.6	0.8	0.6	0.6

APPARENT CONCENTRATIONS

Identity 1 : CLP_CCV_SC Identity 2 : Type : CV

Weight: 1.0000 Volume: 1.00 Printed: 1:41:42 PM July 7, 2004

	K_ 766	L1670	Na589	Sc	Sc361
	ppm	ppm	ppm		ppm
# i	19.7163	4.9387	29.4516	4818.000 H	103.5399
# 2	19.7707	4.9390	29. 3963	4776.000 H	102.6361
iiean	19.7435	4.9389	29.4240	4797.000 H	103.0880
GB.	ø. ø385	0.0002	0.0391	29.698	0.6391
XRSD	0. 1948	0.0043	0.1330	0.619	0.6199

Checking calibration verification ...

 Report name
 Low limit
 Value
 High limit

 K_766
 18.000
 19.743
 22.000

 Li670
 4.500
 4.939
 5.500

 Na589
 27.000
 29.424
 33.000

BACKGROUND CORRECTED INTENSITIES

Identity 1 : Calibration blank Identity 2 : Type : CB

Weight: 1.0000 Volume: 1.00 Printed: 1:45:56 PM July 7, 2004

	K_766	Li670	Na589	Sc	Sc361
# i	18.0	-9.0	31.0	4842.5	4842.5
# 2	27.0	-3.0	17.0	47 9 7.5	4797.5
liean	22.5	-6.0	24.0	4820.0	4820.0
SD	6.4	4.2	9.9	31.8	31.8
%RSD	28.3	70.7	41.2	0.7	0.7

APPARENT CONCENTRATIONS

Identity 1 : Calibration blank Identity 2 : Type : CB

Weight: 1.0000 Volume: 1.00 Printed: 1:45:56 PM July 7, 2004

		K_766	L1670	Na589	Sc	Sc361
		ppm	mqq	ppm		ppm
# 1	L	-0.0648	0.0026	0.0122	4842.500 H	104.0671
# 2		0.0460	0.0045 L	-0.0185	4797.500 H	103.0988
ìíean	L	-0.0094	0.0035 L	-0.0031	4820.000 H	103.5830
SD		0.0784	0.0013	0.0217	31.820	0.6847
%RSD		831.1791	36.1648	691.4820	Ø. 66Ø	0.6611

Checking calibration blank ...

Identity 1 : Calibration blank Identity 2 :

Report name	CRDL	Value
K_766	0.100	-0.009
L1670	0.010	0.004
11 555	6 666	

EVOLUTION by Micro-Active Australia Pty Ltd 1:55:38 PM July 7. 2004 ଡି. ଡିଡିଡି 103.583 BACKGROUND CORRECTED INTENSITIES Identity 1: 246052 Identity 2: Type: SAMPLE Weight: 1.0000 Volume: 1.00 Printed: 1:49:04 PM July 7, 2004 K 766 Li670 Na589 Sc Sc361 -1.5 36050.5 -5.5 35853.5 36050.5 4586.5 3575.5 4586.5 # 1 # 2 3529.5 4544.5 4544.5 -3.5 35952.0 4565.5 2.8 139.3 29.7 3552.5 liean 4565.5 SD 32.5 29.7 32.5 2.8 0.9 80.8 %RSD Ø. 4 0.7 0.7 APPARENT CONCENTRATIONS Identity 1 : 246052 Identity 2 : Type : SAMPLE Weight: 1.0000 Volume: 1.00 Printed: 1:49:04 PM July 7, 2004 BACKGROUND CORRECTED INTENSITIES Identity 1: 246053 Identity 2: Type: SAMPLE Weight: 1.0000 Volume: 1.00 Printed: 1:52:12 PM July 7, 2004 APPARENT CONCENTRATIONS Identity 1 : 246053 Identity 2 : Type : SAMPLE Weight: 1.0000 Volume: 1.00 Printed: 1:52:12 PM July 7, 2004 BACKGROUND CORRECTED INTENSITIES Identity 1: 246054 Identity 2: Type: SAMPLE Weight: 1.0000 Volume: 1.00 Printed: 1:55:20 PM July 7, 2004 14670 W-500

inningum couceumpittous

	K_766	L1670	Na589	Sc	Sc361
	mqq	mqq	mqq		ppm
# 1	44.9375	0.0049 H	84.3643	4586.500	98.5582
# 2	44.7683	0.0036 H	84.6789	4544.500	97.6544
iíean	44.8529	0.0042 H	84.5216	4565.500	98.1063
Si	0.1197	0.000 9	0.2225	29.698	0.63 9 1
%RSD	0. 2668	21.650 9	Ø. 2632	0.650	0.6514

	K_766	L1670	Na589	Sc	Sc361
# i	3874.0	-6.5	38344.5	4463.5	4463.5
# 2	3850.0	-3.5	37833.5	4416.5	4416.5
liean	3862.0	-5.0	38089.0	4440.0	4440.0
SD	17.0	2.1	361.3	33.2	33.2
%RSD	Ø. 4	42.4	0.9	ũ. 7	Ø.7

		K_766	L1670	Na589	Sc	Sc361
		bbw	mqq	ppm		ppm
# i	H	50.0626	0.0032 H	92.2107	4463.500	95.9113
# 2	Н	50.2832	0.0042 H	91.9499	4416.500	94.8999
ñean	Н	50.1729	0.0037 H	92.0803	4440.000	95.4056
SD		0.1559	0.0007	Ø. 1844	33.234	0.7152
%RSD		0.3108	18.5606	0.200 3	0.74 9	0.7496

	K_766	L1670	Na589	Sc	Sc361
# i	4290.0	-3.0	41534.0	4800.0	4800.0
# 2	4274.0	-7.0	41318.0	4752.0	4752.0
ñean	4282.0	-5. 0	41426.0	4776.0	4776.0
SD	11.3	2.8	152.7	33 . 9	33.9
%RSD	0. 3	56.6	Ø. 4	0. 7	Ø. 7

EVOLUTION by Micro-Active Australia Pty Ltd 2:05:04 PM July 7, 2004

010136

Identity 1 : 246054 Identity 2 : Type : SAMPLE

Weight: 1.0000 Volume: 1.00 Printed: 1:55:20 PM July 7, 2004

	K_766	Li670	Na589	Sc	Sc361
	ppm	ppm	ppm		ppm
# 1 H	51.5603	0.0045 H	92.8791	4800.000 H	i 103.1526
# 2 H	51.8887	0.0032 H	93.3296	4752.000 H	1 102.1196
Mean H	51.7245	0.0038 H	93.1044	4776.000 H	1 102.6361
SD	0. 2322	0.000 9	0.3186	33.941	0.7304
%RSD	0.4489	23.0277	0.3422	0.711	0.7116
BACKGRO	UND CORRECTED	INTENSITIES			
		<i></i>	_		

Identity 1: 246055 Identity 2: Type: SAMPLE

Weight: 1.0000 Volume: 1.00 Printed: 1:58:30 PM July 7, 2004

	K_766	Li670	Na589	Sc	Sc361
# î	2406.0	-22.5	10764.5	4771.5	4771.5
# 2	2383.0	-17.5	10678.5	4711.5	4711.5
iiean	2394.5	-20.0	10721.5	4741.5	4741.5
SD	16.3	3.5	60.8	42.4	42.4
%RSD	Ø.7	17.7	Ø.6	0 .9	Ø. 9

APPARENT CONCENTRATIONS

Identity 1: 246055 Identity 2: Type: SAMPLE

Weight: 1.0000 Volume: 1.00 Printed: 1:58:30 PM July 7, 2004

	K_766	L1670	Na589	Sc	Sc361
	ppm	mqq	ppm		ppm
# i	28.9676 L	-0.0016	24.1738	4771.500 H	102.5393
# 2	29.0569 L	-0.0001	24.2863	4711.500 H	101.2481
ilean	29.0122 L	-0.0008	24.2300	4741.500 H	101.8937
SD	0.0632	0.0010	0.0796	42.426	0.9130
%RSD	0.2177	126.0261	0. 3284	0.8 9 5	0.8960

BACKGROUND CORRECTED INTENSITIES

Identity 1 : 246056 Identity 2 : Type : SAMPLE

Weight: 1.0000 Volume: 1.00 Printed: 2:01:38 PM July 7, 2004

	K_766	L1670	Na589	Sc	Sc361
# i	3002.0	-16.0	20073.5	4790.5	4790.5
# 2	2985.0	-11.0	19921.5	4744.5	4744.5
iíean	2993.5	-13.5	19997.5	4767.5	4767.5
SD	12.0	3.5	107.5	32.5	32.5
%RSD	Ø. 4	26.2	Ø.5	Ø. 7	ũ.7

APPARENT CONCENTRATIONS

Identity 1: 246056 Identity 2: Type: SAMPLE

Weight: 1.0000 Volume: 1.00 Printed: 2:01:38 PM July 7, 2004

	K_766	Li670	Na589	Sc	Sc361
	ppm	ppm	ppm		ppm
# i	36.0680	Ø. ØØØ5	44.9486	4790.500 H	102.9481
# 2	36.2125	0.0020	45.0408	4744.500 H	101.9583
ĭiean	36.1402	0.0012	44.9947	4767.500 H	102.4532
SD	0.1022	0.0011	0. 0652	32.527	Ø. 7ØØØ
%RSD	0. 2829	87.6611	0.1450	0.682	ø.6832

BACKGROUND CORRECTED INTENSITIES

GALLERA C. CACCED THATALE C. THAT COMMUNIC

EVOLUTION by Micro-Active Australia Pty Ltd 2:11:28 PM July 7, 2004

Weight: 1.0000 Volume: 1.00 Printed: 2:04:46 PM July 7, 2004

 K_766
 Li670
 Na589
 Sc
 Sc361

 # 1
 3718.0
 -10.0
 31334.0
 4831.0
 4831.0

 # 2
 3698.0
 -6.0
 31276.0
 4809.0
 4809.0

 Mean
 3708.0
 -8.0
 31305.0
 4820.0
 4820.0

 SD
 14.1
 2.8
 41.0
 15.6
 15.6

 XRSD
 0.4
 35.4
 0.1
 0.3
 0.3

APPARENT CONCENTRATIONS

Identity 1 : 246057 Identity 2 : Type : SAMPLE

Weight: 1.0000 Volume: 1.00 Printed: 2:04:46 PM July 7, 2004

	K_766	Li670	Na589	Sc	Sc361
	bbw	ppm	mąą		m q q
# i	44.3599	0.0023 H	69. 6059	4831.000 H	103.8197
# 2	44.3229	0.0035 H	69.7950	4809.000 H	103.3462
ìiean	44.3414	0.0029 H	69.7005	4820.000 H	103.5830
SD	ø. ø262	0.000 9	Ø. 1338	15 . 556	0.3348
%RSD	0.05 9 0	29.1552	0.1919	0.323	0.3232

BACKGROUND CORRECTED INTENSITIES

Identity 1 : 246058 Identity 2 : Type : SAMPLE

Weight: 1.0000 Volume: 1.00 Printed: 2:07:54 PM July 7, 2004

	K_766	Li670	Na589	Sc	Sc361
# i	4452.5	-3.5	49471.5	4783.0	4783.0
# 2	4487.5	-5.5	49574.5	4783.0	4783.0
liean	4470.0	-4.5	49523.0	4783.0	4783.0
SD	24.7	1.4	72.8	Ø. Ø	Ø. Ø
%RSD	Ø. 6	31.4	Ø. i	Ø. Ø	0.0

APPARENT CONCENTRATIONS

Identity 1: 246058 Identity 2: Type: SAMPLE

Weight: 1.0000 Volume: 1.00 Printed: 2:07:54 PN July 7, 2004

		K_766	L1670	Na589	Sc	Sc361
		ppm	ppm	mqq		ppm
# i	H	53.7152	0.0043 H	111.0333	4783.000 H	102.7867
# 2	H	54.1397	0.0037 H	111.2646	4783.000 H	102.7867
iíean	H	53 . 9275	0.0040 H	111.1490	4783.000 H	102.7867
SD		0.3001	0.0004	0.1635	ଡ. ଡଡଡ	Ø. ØØØØ
%RSD		ø. 5565	10. 9 011	0.1471	ଡ. ଡଡଡ	0.0000

BACKGROUND CORRECTED INTENSITIES

Identity 1: 246059 Identity 2: Type: SAMPLE

Weight: 1.0000 Volume: 1.00 Printed: 2:11:02 PH July 7, 2004

# 1	K_766 5212.0	Li670 10.5	Na589 66794.0	Sc 47 9 1.0	Sc361 4791.0
# 2	5148.0	8.5	66127.0	4706.0	4706.0
říean	5180.0	9.5	66460.5	4748.5	4748.5
SD	45.3	1.4	471.6	60.1	60.1
%RSD	Ø. 9	14.9	Ø.7	1.3	i.3

APPARENT CONCENTRATIONS

Identity 1: 246059 Identity 2: Type: SAMPLE

Weight: 1.0000 Volume: 1.00 Printed: 2:11:02 PM July 7, 2004

EVOLUTION by Micro-Active Australia Pty Ltd 2:19:06 PM July 7, 2004

# 1 # 2	H H	K_766 ppm 62.8202 63.1711	L1670 ppm 0.0086 H 0.0080 H	Na589 ppm 149.6811 150.8634	Sc 4791.000 H 4706.000 H	Sc361 ppm 102.9589 101.1298
Mean	Н	62.9956	0.0083 H	150. 2723	4748.500 H	102.0443
SD		0.2481	0.0004	0. 8360	60.104	1.2934
%RSD		0.3939	4.8216	0. 5563	1.266	1.2675

010138

BACKGROUND CORRECTED INTENSITIES

Identity 1 : 246060 Identity 2 : Type : SAMPLE

Weight: 1.0000 Volume: 1.00 Printed: 2:14:12 PM July 7, 2004

	K_766	L1670	Na589	Sc	Sc361
# i	5111.0	18.5	65939.5	4753.5	4753.5
# 2	5088.0	4.5	65982.5	4719.5	4719.5
iíean	5099.5	11.5	65961.0	4736.5	4736.5
SD	16.3	9.9	30.4	24.0	24.0
%RSD	Ø.3	86.1	Ø. Ø	0. 5	Ø. 5

APPARENT CONCENTRATIONS

Identity 1 : 246060 Identity 2 : Type : SAMPLE

Weight: 1.0000 Volume: 1.00 Printed: 2:14:12 PK July 7, 2004

		K_766	L1670	Na589	Sc	Sc361
		ppm	ppm	рþш		ppm
# 1	H	62.0856	0.0111 H	148.9317	4753.500 H	102.1519
# 2	Н	62.2522	0.0068 H	150.1029	4719.500 H	101.4203
iiean	Н	62.1689	0.0089 H	149.5173	4736.500 H	101.7861
SD		0.1178	0.0031	0.8282	24.042	0.5174
%RSD		0.1895	34.1968	0.5539	0.508	0.5083

BACKGROUND CORRECTED INTENSITIES

Identity 1 : CLP_CCV_SC Identity 2 : Type : CV

Weight: 1.0000 Volume: 1.00 Printed: 2:18:56 PM July 7, 2004

	K_766	Li670	Na589	Sc	Sc361
# i	1662.0	16133.5	13198.0	4853.0	4853.0
# 2	165 9 .0	16067.5	13141.0	4807.0	4807.0
říean	1660.5	16100.5	13169.5	4830.0	4830.0
SD	2.1	46.7	40.3	32.5	32.5
%RSD	Ø. i	Ø.3	0.3	0.7	0.7

APPARENT CONCENTRATIONS

 $\label{eq:ccv_sc} \mbox{Identity 1 : CLP_CCV_SC} \ \ \mbox{Identity 2 :} \ \ \mbox{Type : CV}$

Weight: 1.0000 Volume: 1.00 Printed: 2:18:56 PM July 7, 2004

	K_766	L1670	Na589	Sc	Sc361
	ppm	ppm	ppm		mqq
# i	19.5840	4.8918	29.1525	4853.000 H	104.2931
# 2	19.7379	4.9184	29.3047	4807.000 H	103.3032
líean	19.6609	4.9051	29.2286	4830.000 H	103.7981
SD	0.1088	0.0188	0.1076	32.527	0.7000
%RSD	0.5535	0. 3832	0.3681	0.673	0.6743

Report name Low limit Value High limit

EVOLUTION by Micro-Active Australia Pty Ltd 2:29:30 PM July 7, 2004
Li670 4.500 4.905 5.500

33.000

Na589 27.000 29.229 BACKGROUND CORRECTED INTENSITIES

Identity 1 : Calibration blank Identity 2 : Type : CB

Weight: 1.0000 Volume: 1.00 Printed: 2:23:10 PM July 7, 2004

	K_766	Li670	Na589	Sc	Sc361
# i	14.5	-12.0	37.0	4845.0	4845.0
# 2	13.5	-8.0	30.0	4798.0	4798.0
říean	14.0	-10.0	33.5	4821.5	4821.5
SD	Ø. 7	2.8	4.9	33.2	33.2
%RSD	5.1	28.3	14.8	0. 7	0.7

APPARENT CONCENTRATIONS

Identity 1 : Calibration blank Identity 2 : Type : CB

Weight: 1.0000 Volume: 1.00 Printed: 2:23:10 PM July 7, 2004

		K_766	Li670	Na589	Sc	Sc361
		ppm	mqq	ppm		ppm
# 1	L	-0.1069	0.0017	0.025 5	4845.000 H	104.1209
# 2	Ĺ	-0.1172	0.0029	0.0106	4798.000 H	103.1095
iíean	L	-0.1121	0.0023	0.0180	4821.500 H	103.6152
SD		0.0073	Ø. ØØØ8	0.0105	33.234	0.7152
%RSD		6.5557	36.1993	58.2641	0. 689	0.6 9 02

Checking calibration blank ...

Value Report name CRDL K 766 0.100 -0.112 Contaminated 0.002 L1670 0.010 Na589 0.050 0.018 Sc361 Ø. ØØØ 103.615

DIV 20 06002.01.081 040616-1

010140

Analyst: RSS 4 Method: EPA 300

6/30/04

			Conc	RESULT				% Rec
	System ID	Analyte	mg/L	mg/L	Qual	DL	TV	or RPD
06/25/04	246046	Chloride	2048.425	2048		100		
06/25/04	246046D	Chloride	2035.164	2035		100		0.649%
06/25/04	246046S	Chloride	4040.009	4040		100	2000	99.6%
06/25/04	246047	Chloride	2907.041	2907		100		
06/25/04	246048	Chloride	4038.253	4038		100		
06/25/04	246049	Chloride	6279.889	6280		100		
06/25/04	246050	Chloride	7484.298	7484		100		
06/25/04	246051	Chloride	8053.255	8053		100		
06/25/04	246052	Chloride	8328.546	8329		100		
06/25/04	246053	Chloride	9077.272	9077		100		
06/25/04	246054	Chloride	9930.791	9931		100		
06/25/04	246055	Chloride	3151.163	3151		100		
06/25/04	246056	Chloride	5143.218	5143		100		
06/25/04	246057	Chloride	7601.979	7602		100		
06/25/04	246058	Chloride	11715.756	11716		100		
06/25/04	246059	Chloride	15286.534	15287		100		
06/25/04	246060	Chloride	15583.483	15583		100		

U = UNDETECTED

mez

DIV 20 06002.01.081 040616-1 Analyst: RSS Method: EPA 300

010141

		Conc	RESULT				% Rec
System ID	Analyte	mg/L	mg/L	Qual	DL	TV	or RPD
CCV-1	Chloride	202.030	202		0.1	200	101%
CCV-2	Chloride	203.070	203		0.1	200	102%
CCV-3	Chloride	203.249	203		0.1	200	102%
CCB-1	Chloride	0.010	0.1	J	0.1		
CCB-2	Chloride	0.004	0.1	J	0.1		-
CCB-3	Chloride	0.003	0.1	J	0.1		
	CCV-1 CCV-2 CCV-3 CCB-1 CCB-2	CCV-1 Chloride CCV-2 Chloride CCV-3 Chloride CCB-1 Chloride CCB-2 Chloride	System ID Analyte mg/L CCV-1 Chloride 202.030 CCV-2 Chloride 203.070 CCV-3 Chloride 203.249 CCB-1 Chloride 0.010 CCB-2 Chloride 0.004	System ID Analyte mg/L mg/L CCV-1 Chloride 202.030 202 CCV-2 Chloride 203.070 203 CCV-3 Chloride 203.249 203 CCB-1 Chloride 0.010 0.1 CCB-2 Chloride 0.004 0.1	System ID Analyte mg/L mg/L Qual CCV-1 Chloride 202.030 202 CCV-2 Chloride 203.070 203 CCV-3 Chloride 203.249 203 CCB-1 Chloride 0.010 0.1 U CCB-2 Chloride 0.004 0.1 U	System ID Analyte mg/L mg/L Qual DL CCV-1 Chloride 202.030 202 0.1 CCV-2 Chloride 203.070 203 0.1 CCV-3 Chloride 203.249 203 0.1 CCB-1 Chloride 0.010 0.1 U 0.1 CCB-2 Chloride 0.004 0.1 U 0.1	System ID Analyte mg/L mg/L Qual DL TV CCV-1 Chloride 202.030 202 0.1 200 CCV-2 Chloride 203.070 203 0.1 200 CCV-3 Chloride 203.249 203 0.1 200 CCB-1 Chloride 0.010 0.1 U 0.1 CCB-2 Chloride 0.004 0.1 U 0.1

U = UNDETECTED

Book/Page 12 007

Southwest Research Institute

Dionex DX500 Ion Chromatography Daily Log

010142

Analyst:	K	\mathbb{X}	mos
Conductivity:		7.	8

Other Regen:

Date: 6/24/04

Client	Project #	TO #	Analytical Method
DIV 20	10 542.02.002	040617-9	300
<u> </u>	06002.01.081	040616]	V
1/0 /		^	
Loop: 40 ll			no040622
Column: 75/4=#01.	5-02-087 Calibra	ation:	6/22/04
CCV/MS: 1 st Source SPEX (In	09#4518) 2nd	Source Nit	nta-1
Lot #: 25-145AS	45/6) 2	Lot #:	8-01-104
CCV Conc: 1,20	CCV	Conc:	1:20
MS Conc: / ; / (2)	MS	S Conc:	1:100
ELUENT SOLUTION	PREP:	FV = 2.01	L DI H20
mM Sodium Bicarbonate	& <u>C</u>	mM Sodiu	m Carbonate
Weight: 0.1683	NaHCO ₃	Weight:	1419a Na2H
Source: Warich		Source: Uf	a alsar
Lot: 15308 E	<u></u>	Lot:	LD6 M34
Balance#34	•	** **	
Other Eluent:			

FRM-226 (Rev 3/Mar 03) Page 2 of 2 Eppendorfs: 50001

Work continued from Page	010143 Swar
177-01-1C4 Anions - é	010143 SWAID ROPPM MUX + 60 ppm SO4 (STD-1) LOT LOT # SOEN# EXO. Date
mL mg/L	
Fluorde 02ml 1000mg/	4387 7-147V4 1/15/05
Bromide	4480 7-158004 3/15/05 4603 27-128 AS 6/15/05 4389 25-65AS 1/15/05
8 Nitrati-N Phosphati-P * * Suyati 3000 mg	4390 7-145/Y 1/15/US 12 4402 27-98AS 6/15/2005
177-02-164 15ppm/45 3m1 177-01-164 1	ppm 504 (STD 2) MIDIH20.
177-03-164 10ppm Anion 20 2m1 177-01-164 2m	no + 30,00M SO4 (STD3) UDI H2O.
177-04-1C4 Spm An in 2ml 177-03-1C4 & 2m	no + 15 ppm SO4 (STD4) UD IH20.
25 177-05-1C4 1 ppm Anu 1 ml 177-04-1C4 +	ons, 3ppm, SO4 (STDS) 4ml DIH2O
177-06-164 0.5 ppm Ar 2 ml 177-05-164	2ml D/ H2O. STD6)
177-07-164 0,1 ppm An 12ml 177-06-164	com estatos 0.3 ppm SOc (STD7)
177-08-1 C4 Oppm (S	STD9)
SIGNATURE Epper	ndorf 5000 L 1000 J 200 J DATE 2264
DISCLOSED TO AND UNDERSTOOD BY	1 04 B 200 P 6

Book/Page: 12 009

Southwest Research Institute

Dionex DX500 Ion Chromatography Daily Log

010144

,) ()	•
Analyst:		Mes
, /	7	70
Conductivity:	///	1.8

Date: 6/25/04

Client	Project #	TO #	Analytical Method
			700
DIV 20	10542.02.002	040617-9	<u> </u>
_ V	06002.01.081	040616-1	
			and the second s

Loop Column Comments	AS14#015-	Mo 02-087 Calibr	ethod: <u>AM</u>	ma 0404 6/22/04	022
ICV/CCV/MS: 1 st Source Lot # CCV Conc MS Conc	1.20	CC	Source Nt Lot #: V Conc: S Conc:	nti N 178-01-1C 1:20 1:100	4
	ELUENT SOLUTION IN SOCIETY BY SOCIETY	•		0L DI H20 lium Carbonate	
Weight:	0.1689 Aldruci 15308 E	1	Weight: 0 Source: Mf0 Lot:	.74199 LOGMS LOGMS	Na ₂ HCO ₃
Bala	ncl# 12 Other Eluent:				
	nA-Autoregen (ASRS) Other Regen:				
- S	7/2/04	FPM_226 (Pey 3/Mar 02)		Eppeno	lorfs 0 L

Page 2 of 2

Book/Page: 12 009

Southwest Research Institute

Dionex DX500 Ion Chromatography Daily Log

Analyst: Conductivity:_

. 010145
Date: 6/25/04

Client	Project #	TO #	Analytical Method
Duran	10542 42 002	01/6/17 6	300
DIVO	10542.02.002	040617-9	000
	7 7 100.107.107	0 1 - 0 . 0 ,	
,			
Loop: 4() u	Me	thod: ANAM	na 040622

Loop:	40 u l	Method:	anuma 040	622
Column:	AS14#015-02-087	Calibration:	6/22/04	<u> </u>
Comments:	7.017-010-001-08-7	-	Q/-P:/0/	
-				
ICV/CCV/MS:	SPEX (Inorat 451	C)	Nitrita N	
1 st Source_	OPEX (11676) 731		NITVUN	- 1/
Lot #:	95-14SAY	Lot #:	118-01-10	_4
CCV Conc:_	1.20	CCV Conc:	1:20	
MS Conc:_	1:100	MS Conc:	1:100	
FI	LUENT SOLUTION PREP:		FV = 2.0L DI H20	
		25		
	M Sodium Bicarbonate	£ <u>0.5</u>	mM Sodium Carbonate	
Weight:	D. 1689 NaHCO	Weight:	0.74199	Na₂HCO₃
Source:	(dry c/	Source:	asta ander	14211003
	15300 E T		1012 M	71/
Lot:	100001	Lot: _	LU 6 1716	<u> </u>
Balar	rel# 12	*, *,,,		
01	ther Eluent:			
				-

$\int \int m_{\lambda}$	A-Autoregen (ASRS)			
	ther Regen:			
	/			1-15
//			Emen	derts

FRM-226 (Rev 3/Mar 03) Page 2 of 2

OUTEQUE LIE. O.	Cantoticonoguio mojano neen
-----------------	-----------------------------

Line	Sample	Sample Type	Level	Method	Data File	Dilution
1	ICV	Sample		anions040622.met	040625_001.dxd	20
2	ICB	Sample		anions040622.met	040625_002.dxd	1
3	246153	Sample		anions040622.met	040625_003.dxd	20
4	246152	Sample		anions040622.met	040625_004.dxd	2010146
5	246151	Sample		anions040622.met	040625_005.dxd	20
6	246150	Sample		anions040622.met	040625_006.dxd	20
7	246149	Sample		anions040622.met	040625_007.dxd	20
8	246148	Sample		anions040622.met	040625_008.dxd	20
9	246147	Sample		anions040622.met	040625_009.dxd	20
10	246146	Sample		anions040622.met	040625_010.dxd	20
11	246146D	Sample		anions040622.met	040625_011.dxd	20
12 _	. 246146S	Sample		anions040622.met	040625_012.dxd	20
13	CCV	Sample		anions040622.met	040625_013.dxd	20
14	CCB	Sample		anions040622.met	040625_014.dxd	1
15	246046	Sample		anions040622.met	040625_015.dxd	1000
16	246046D	Sample		anions040622.met	040625_016.dxd	1000
17	246046S	Sample		anions040622.met	040625_017.dxd	1000
18	246047	Sample		anions040622.met	040625_018.dxd	1000
19	246048	Sample		anions040622.met	040625 019.dxd	1000
20	246049	Sample		anions040622.met	040625_020.dxd	1000
21	246050	Sample		anions040622.met	040625_021.dxd	1000
22	246051	Sample		anions040622.met	040625_022.dxd	1000
23	246052	Sample		anions040622.met	040625_023.dxd	1000
24	246053	Sample		anions040622.met	040625_024.dxd	1000
25	CCV	Sample		anions040622.met	040625_025.dxd	20
26	CCB	Sample		anions040622.met	040625_026.dxd	1
27	246054	Sample		anions040622.met	040625_027.dxd	1000
28	246055	Sample		anions040622.met	040625_028.dxd	1000
29	246056	Sample		anions040622.met	040625_029.dxd	1000
30	246057	Sample		anions040622.met	040625_030.dxd	1000
31	246058	Sample		anions040622.met	040625_031.dxd	1000
32	246059	Sample		anions040622.met	040625_032.dxd	1000
33	246060	Sample		anions040622.met	040625_033.dxd	1000
34 🖍	CCV	Sample		anions040622.met	040625_034.dxd	1000
35	CCB	Sample		anions040622.met	040625_035.dxd	1
36	LCS	Sample		anions040622.met	040625_036.dxd	100
37	245962	Sample		anions040622.met	040625_037.dxd	1
38	245962D	Sample		anions040622.met	040625_038.dxd	1
39	245966	Sample		anions040622.met	040625_039.dxd	1
40	244944	Sample		anions040622.met	040625_040.dxd	1
41	244480	Sample		anions040622.met	040625_041.dxd	1
42	245966D	Sample		anions040622.met	040625_042.dxd	1
43	245969	Sample		anions040622.met	040625_043.dxd	1
44	CCV	Sample		anions040622.met	040625_044.dxd	20
45	CCB	Sample		anions040622.met	040625_045.dxd	1
46	245962_	Sample		anions040622.met	040625_046.dxd	20
47	245962D	Sample		anions040622.met	040625_047.dxd	20
48	245966	Sample		anions040622.met	040625_048.dxd	20
49	244944	Sample		anions040622.met	040625_049.dxd	20
50	244480	Sample		anions040622.met	040625_050.dxd	20
51	245966D	Sample		anions040622.met	040625_051.dxd	20
52	245969	Sample		anions040622.met	040625_052.dxd	20
53	CCV	Sample		anions040622.met	040625_053.dxd	20
54	CCB	Sample		anions040622.met	040625_054.dxd	. 1 ·

Default Method Path: C:\PEAKNET\METHOD Default Data Path: c:\peaknet\data\040625

Comment:

PeakNet 5.1

DIV 20 10542.02.002 TO#040617-9 DIV 20 06002.01.081 TO#040616-1

ICV/CCV = Spex 25-145AS (morg # 4518) let 5.1 NO2N Page 1 of 1 | 78-DI-1C4 100 mg/L Spekers: 50ml Spex into 5ml sample | sample delution.

Sample Name : CCV Dilution Factor: 20.00

Injection Number: 13

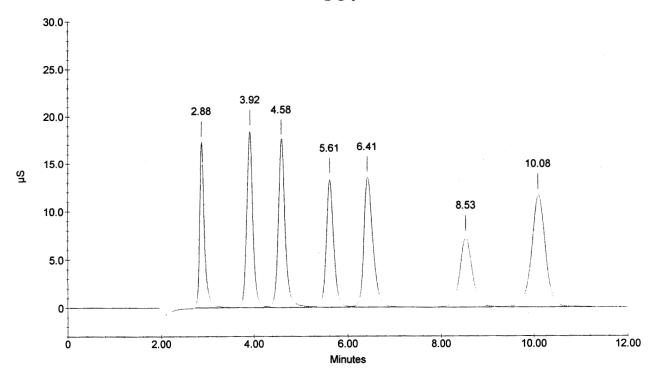
Data File Name : c:\peaknet\data\040625\040625_013.DXD

Method File Name: c:\peaknet\method\anions040622.met

Schedule File Name: c:\peaknet\schedule\25jun04.sch

Date Time Collected: 6/25/04 12:53:59 PM

System Name: Dx-500


Detector Name: Conductivity Detector

Column Type : AS14-#015724 AG14-#1018096 010147
System Operator 200

System Operator: RSS

	Peak Information : All Components									
Pk. Num	Ret Time	Component Name	Concentration (ppm)	Height	Area	BI. Code	%Delta			
1	2.88	FLUORIDE	98.831	171852	1232536	1	-0.46			
2	3.92	CHLORIDE	202.030	183565	1674143	2	-3.29			
3	4.58	NITRITE-N	95.750	173204	1794608	2	-2.90			
4	5.61	BROMIDE	403.388	132457	1485930	2	-3.28			
5	6.41	NITRATE-N	83.433	133972	1798147	2	-1.99			
6	8.53	PHOSPHATE-P	192.964	72346	1376257	2	0.95			
7	10.08	SULFATE	392.073	115827	2403679	2	0.67			
	0.00		total(s) 1468.468		11765300					

CCV

Current Date: 6/25/0

Current Time: 13:08:3

Sample Name: CCB Dilution Factor: 1.00 Injection Number: 14

Data File Name: c:\peaknet\data\040625\040625_014.DXD

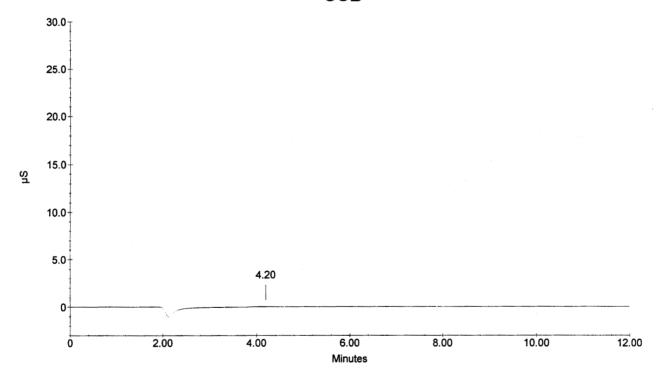
Method File Name: c:\peaknet\method\anions040622.met

Schedule File Name: c:\peaknet\schedule\25jun04.sch

Date Time Collected: 6/25/04 1:08:42 PM

System Name: Dx-500

Detector Name: Conductivity Detector


Column Type: AS14-#015724 AG14-#1018096

010148

System Operator: RSS

			Peak Information : All Compo	onents			
Pk. Num	Ret Time	Component Name	Concentration (ppm)	Height	Area	BI. Code	%Delta
1 1		CHLORIDE CHLORIDE NITRITE-N BROMIDE NITRATE-N PHOSPHATE-P SULFATE	0.010 0.010	77 77	1508 1508		3.62 3.62
	0.00		total(s) 0.020		3016	·	

CCB

Current Time: 13:23:1

Current Date: 6/25/0

Sample Name: 246046 Dilution Factor: 1000.00

Injection Number: 15

Data File Name: c:\peaknet\data\040625\040625_015.DXD

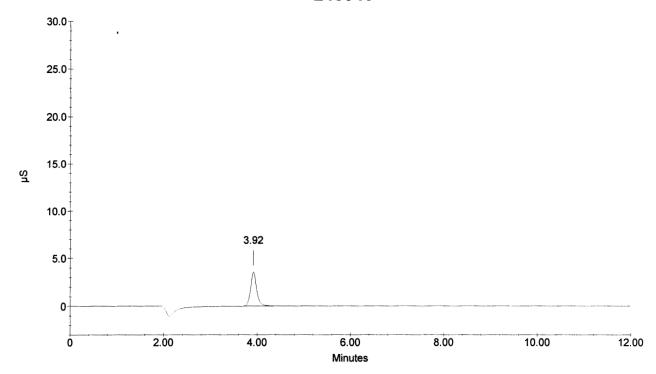
Method File Name: c:\peaknet\method\anions040622.met

Schedule File Name: c:\peaknet\schedule\25jun04.sch

Date Time Collected: 6/25/04 1:23:25 PM

System Name: Dx-500

Detector Name : Conductivity Detector


Column Type: AS14-#015724 AG14-#1018096

010149

System Operator : RSS

			Peak Information : All Compo	onents			
Pk. Num	Ret Time	Component Name	Concentration (ppm)	Height	Area	BI. Code	%Delta
1 1	3.92 3.92	CHLORIDE CHLORIDE NITRITE-N BROMIDE NITRATE-N PHOSPHATE-P SULFATE	2048.425 2048.425	35309 35309	319288 319288		-3.29 -3.29
	0.00		total(s) 4096.850		638576		

246046

Page 1 of 1

Current Date: 6/25/0

Current Time: 13:38:0

Sample Name: 246046D Dilution Factor: 1000.00

Injection Number: 16

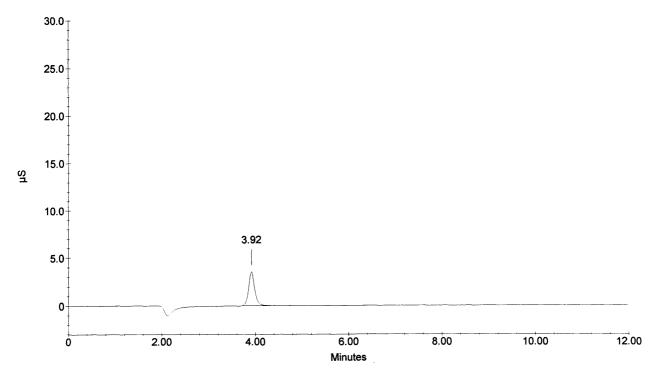
Data File Name: c:\peaknet\data\040625\040625_016.DXD Method File Name: c:\peaknet\method\anions040622.met

Schedule File Name: c:\peaknet\schedule\25jun04.sch

Date Time Collected: 6/25/04 1:38:07 PM

System Name: Dx-500

Detector Name : Conductivity Detector


Column Type: AS14-#015724 AG14-#1018096

010150

System Operator: RSS

			Peak Information : All Compo	onents			
Pk. Num	Ret Time	Component Name	Concentration (ppm)	Height	Area	BI. Code	%Delta
1 1	3.92 3.92	CHLORIDE CHLORIDE NITRITE-N BROMIDE NITRATE-N PHOSPHATE-P SULFATE	2035.164 2035.164	35246 35246	317192 317192		-3.29 -3.29
	0.00		total(s) 4070.328		634384		

246046D

Page 1 of 1

Current Date: 6/25/0

Current Time: 13:52:4

Sample Name : 246046S Dilution Factor : 1000.00

Injection Number: 17

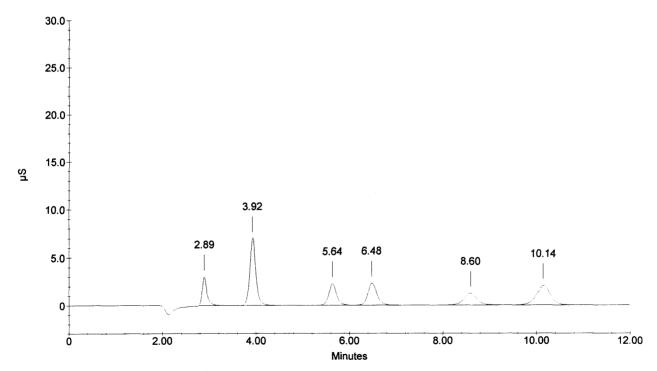
Data File Name: c:\peaknet\data\040625\040625_017.DXD Method File Name: c:\peaknet\method\anions040622.met

Schedule File Name: c:\peaknet\schedule\25jun04.sch

Date Time Collected: 6/25/04 1:52:49 PM

System Name : Dx-500

Detector Name : Conductivity Detector


Column Type: AS14-#015724 AG14-#1018096

010151

System Operator: RSS

Peak Information : All Components									
Pk. Num	Ret Time	Component Name	Concentration (ppm)	Height	Area	BI. Code	%Delta		
	2.89	FLUORIDE	907.273	30007	213126	1	0.00		
2	3.92	CHLORIDE NITRITE-N	4040.009	69302	638676	1	-3.29		
3	5.64	BROMIDE	3957.824	22649	262729	2	-2.82		
4	6.48	NITRATE-N	753.321	23122	316208	2	-0.97		
5	8.60	PHOSPHATE-P	1834.619	12369	246254	2	1.74		
6	10.14	SULFATE	3678.386	20264	433453	2	1.33		
			total(s)						
	0.00		15171.431		2110445				

246046S

Page 1 of 1

Current Date: 6/25/0

Current Time: 14:07:2

Sample Name: 246047 Dilution Factor: 1000.00

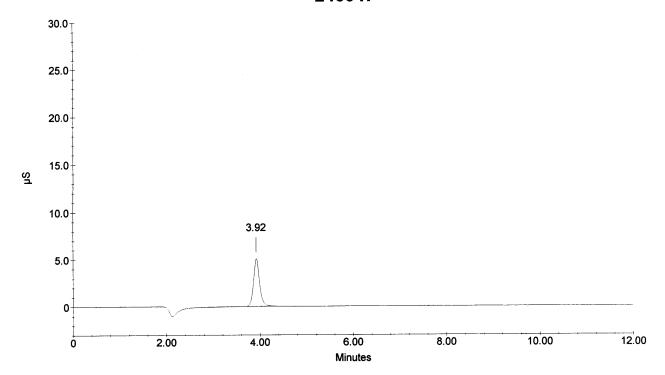
Injection Number: 18

Data File Name : c:\peaknet\data\040625\040625_018.DXD Method File Name: c:\peaknet\method\anions040622.met

Schedule File Name: c:\peaknet\schedule\25jun04.sch

Date Time Collected: 6/25/04 2:07:32 PM

System Name: Dx-500


010152 Detector Name : Conductivity Detector

Column Type: AS14-#015724 AG14-#1018096

System Operator: RSS

Peak Information : All Components										
Pk. Num	Ret Time	Component Name	Concentration (ppm)	Height	Area	BI. Code	%Delta			
1		CHLORIDE	2907.041	50122	455855		-3.29			
1	3.92	CHLORIDE NITRITE-N BROMIDE NITRATE-N	2907.041	50122	455855	1	-3.29			
		PHOSPHATE-P SULFATE								
	0.00	,	total(s) 5814.081		911710					

246047

Current Date: 6/25/0 Current Time: 14:22:0 Sample Name: 246048 Dilution Factor: 1000.00

Injection Number: 19

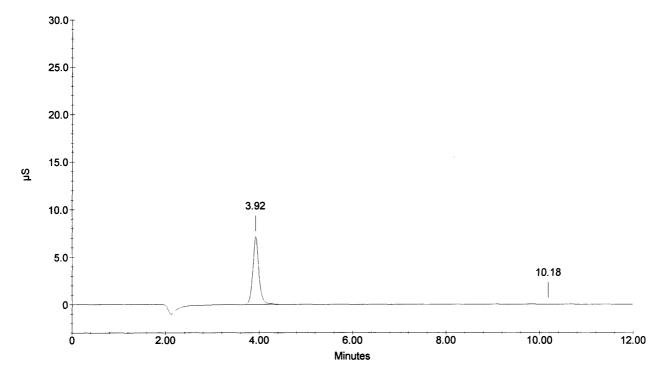
Data File Name: c:\peaknet\data\040625\040625_019.DXD Method File Name: c:\peaknet\method\anions040622.met

Schedule File Name: c:\peaknet\schedule\25jun04.sch

Date Time Collected: 6/25/04 2:22:14 PM

System Name: Dx-500

Detector Name : Conductivity Detector


Column Type: AS14-#015724 AG14-#1018096

010153

System Operator : RSS

	Peak Information : All Components									
Pk. Num	Ret Time	Component Name	Concentration (ppm)	Height	Area	BI. Code	%Delta			
1	3.92	CHLORIDE	4038.253	69960	638390	1	-3.29			
1	3.92	CHLORIDE NITRITE-N BROMIDE NITRATE-N PHOSPHATE-P	4038.253	69960	638390	1	-3.29			
2	10.18	SULFATE	8.192	67	957	1	1.73			
	0.00		total(s) 8084.698		1277738					

246048

Page 1 of 1

Current Date: 6/25/0

Current Time: 14:36:4

Sample Name: 246049 Dilution Factor: 1000.00 Injection Number: 20

Data File Name: c:\peaknet\data\040625\040625_020.DXD

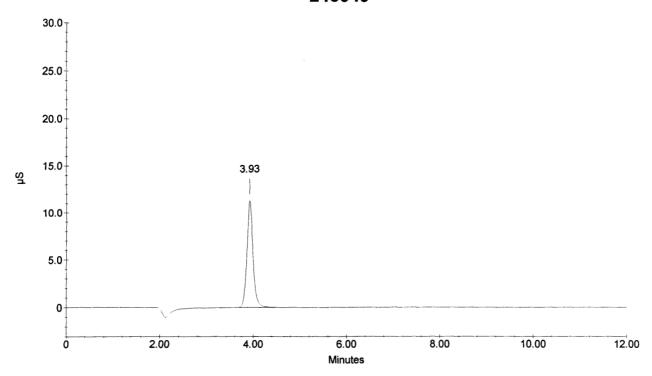
Method File Name: c:\peaknet\method\anions040622.met

Schedule File Name: c:\peaknet\schedule\25jun04.sch

Column Type : AS14-#015724 AG14-#1018096

Date Time Collected: 6/25/04 2:36:55 PM

Detector Name: Conductivity Detector


System Operator: RSS

System Name: Dx-500

010154

			Peak Information : All Compo	onents			
Pk. Num	Ret Time	Component Name	Concentration (ppm)	Height	Area	BI. Code	%Delta
1 1		CHLORIDE CHLORIDE NITRITE-N BROMIDE NITRATE-N PHOSPHATE-P SULFATE	6279.889 6279.889	112670 112670	1009446 1009446		-2.96 -2.96
	0.00		total(s) 12559.778		2018892		

246049

Sample Name: 246050 Dilution Factor: 1000.00

Injection Number: 21

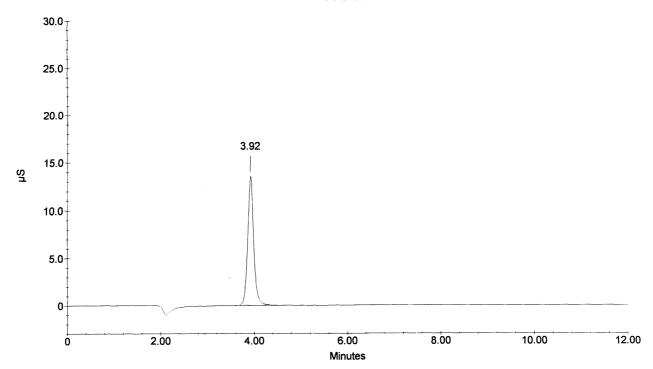
Data File Name: c:\peaknet\data\040625\040625_021.DXD Method File Name: c:\peaknet\method\anions040622.met

Schedule File Name : c:\peaknet\schedule\25jun04.sch

Date Time Collected: 6/25/04 2:51:37 PM

System Name: Dx-500

Detector Name : Conductivity Detector


Column Type: AS14-#015724 AG14-#1018096

System Operator : RSS

010155

			Peak Information : All Compo	onents			
Pk. Num	Ret Time	Component Name	Concentration (ppm)	Height	Area	BI. Code	%Delta
1 1	3.92 3.92	CHLORIDE CHLORIDE NITRITE-N BROMIDE NITRATE-N PHOSPHATE-P SULFATE	7484.298 7484.298	133221 133221	1214314 1214314	-	-3.29 -3.29
-	0.00		total(s) 14968.596		2428629		•

246050

Page 1 of 1

Current Time: 15:06:1

Sample Name : 246051 Dilution Factor : 1000.00

Injection Number: 22

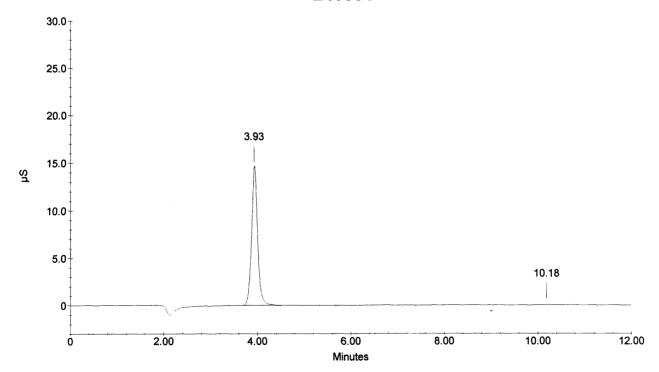
Data File Name: c:\peaknet\data\040625\040625_022.DXD Method File Name: c:\peaknet\method\anions040622.met

Schedule File Name: c:\peaknet\schedule\25jun04.sch

Date Time Collected : 6/25/04 3:06:20 PM

System Name : Dx-500

Detector Name : Conductivity Detector


Column Type: AS14-#015724 AG14-#1018096

System Operator : RSS

010156

Peak Information : All Components										
Ret Time	Component Name	Concentration (ppm)	Height	Area	BI. Code	%Delta				
3.93	CHLORIDE	8053.255	143895	1312520	1	-2.96				
3.93	NITRITE-N BROMIDE NITRATE-N	8053.255	143895	1312520	1	-2.96				
10.18		7.838	66	916	1	1.73				
0.00		total(s)		2625955						
	3.93 3.93	3.93 CHLORIDE NITRITE-N BROMIDE NITRATE-N PHOSPHATE-P 10.18 SULFATE	Ret Time Component Name Concentration (ppm) 3.93 CHLORIDE 8053.255 3.93 CHLORIDE 8053.255 NITRITE-N BROMIDE NITRATE-N PHOSPHATE-P 10.18 SULFATE 7.838	Ret Time Component Name Concentration (ppm) Height 3.93 CHLORIDE 8053.255 143895 3.93 CHLORIDE 8053.255 143895 NITRITE-N BROMIDE NITRATE-N PHOSPHATE-P 7.838 66 10.18 SULFATE 7.838 66	3.93 CHLORIDE 8053.255 143895 1312520 3.93 CHLORIDE 8053.255 143895 1312520 NITRITE-N BROMIDE NITRATE-N PHOSPHATE-P 10.18 SULFATE 7.838 66 916 total(s)	Component Name				

246051

Current Date: 6/25/0 Current Time: 15:20:5 Sample Name : 246052 Dilution Factor : 1000.00

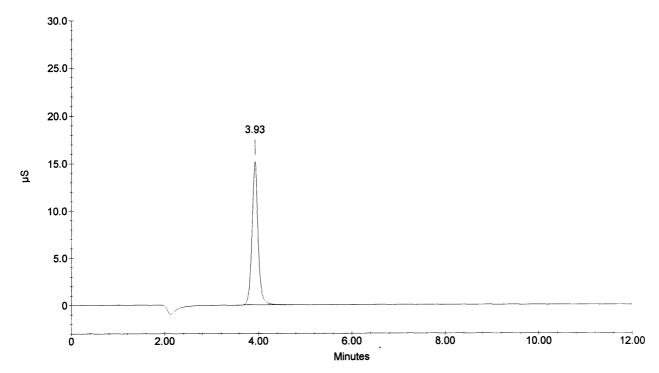
Injection Number: 23

Data File Name: c:\peaknet\data\040625\040625_023.DXD Method File Name: c:\peaknet\method\anions040622.met

Schedule File Name: c:\peaknet\schedule\25jun04.sch

Date Time Collected: 6/25/04 3:21:02 PM

System Name: Dx-500


Detector Name : Conductivity Detector

Column Type : AS14-#015724 AG14-#101809010157

System Operator: RSS

			Peak Information : All Compo	onents			
Pk. Num	Ret Time	Component Name	Concentration (ppm)	Height	Area	BI. Code	%Delta
1	3.93 3.93	CHLORIDE CHLORIDE NITRITE-N BROMIDE NITRATE-N PHOSPHATE-P SULFATE	8328.546 8328.546	151654 151654	1360377 1360377		-2.96 -2.96
	0.00		total(s) 16657.092		2720753	· · · · · · · · · · · · · · · · · · ·	

246052

Current Date: 6/25/0

Current Time: 15:35:3

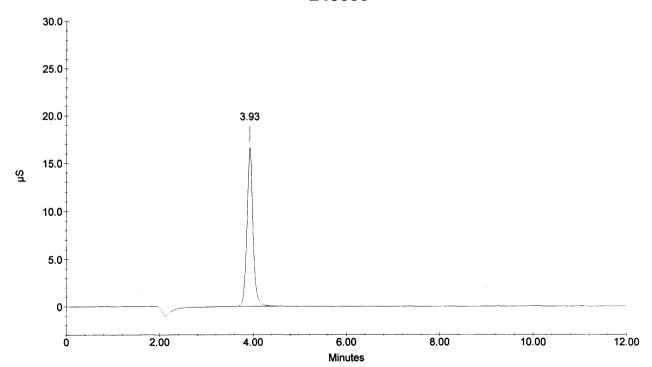
Sample Name: 246053 Dilution Factor: 1000.00

Injection Number: 24

Data File Name : c:\peaknet\data\040625\040625_024.DXD Method File Name: c:\peaknet\method\anions040622.met

Schedule File Name: c:\peaknet\schedule\25jun04.sch

Date Time Collected: 6/25/04 3:35:42 PM


System Name: Dx-500

Column Type : AS14-#015724 AG14-#1018096 010158
System Operator : RSS

System Operator: RSS

			Peak Information : All Compo	onents			
Pk. Num	Ret Time	Component Name	Concentration (ppm)	Height	Area	BI. Code	%Delta
1	3.93	CHLORIDE	9077.272	165054	1491688	1	-2.96
1	3.93	CHLORIDE NITRITE-N BROMIDE NITRATE-N PHOSPHATE-P SULFATE	9077.272	165054	1491688	1	-2.96
	0.00		total(s) 18154.543		2983376		

246053

Current Date: 6/25/0 Current Time: 15:50:1

Sample Name : CCV Dilution Factor: 20.00 Injection Number: 25

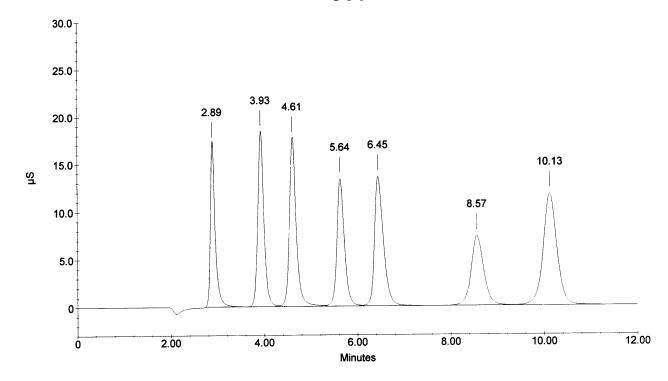
Data File Name: c:\peaknet\data\040625\040625_025.DXD

Method File Name: c:\peaknet\method\anions040622.met Schedule File Name : c:\peaknet\schedule\25jun04.sch

Date Time Collected: 6/25/04 3:50:25 PM

System Name : Dx-500

Detector Name : Conductivity Detector


Column Type: AS14-#015724 AG14-#1018096

010159

System Operator: RSS

			Peak Information : All Compo	onents			
Pk. Num	Ret Time	Component Name	Concentration (ppm)	Height	Area	BI. Code	%Delta
1	2.89	FLUORIDE	99.396	170820	1240077	1	0.00
2	3.93		203.070	182994	1683498	2	-2.96
3	4.61	NITRITE-N	96.565	176180	1809870	2	-2.33
4	5.64	BROMIDE	405.520	133157	1495003	2	-2.82
5	6.45		84.126	135372	1813590	2	-1.38
6	8.57	PHOSPHATE-P	194.065	72885	1384765	2	1.42
7	10.13	SULFATE	394.111	116972	2416832	2	1.20
			total(s)				
	0.00		1476.853		11843634		

CCV

Sample Name: CCB Dilution Factor: 1.00

Injection Number: 26

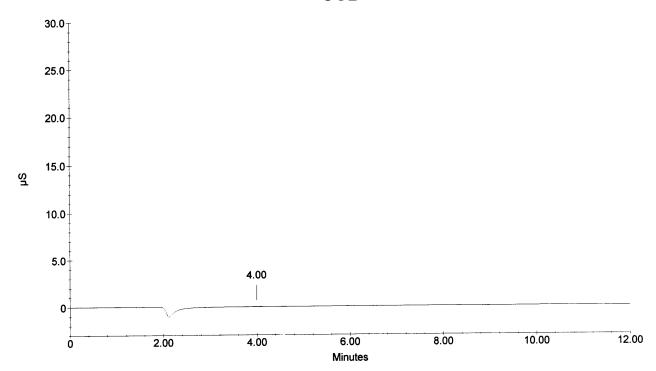
Data File Name: c:\peaknet\data\040625\040625_026.DXD Method File Name: c:\peaknet\method\anions040622.met

Schedule File Name: c:\peaknet\schedule\25jun04.sch

Date Time Collected: 6/25/04 4:05:08 PM

System Name : Dx-500

Detector Name : Conductivity Detector


Column Type: AS14-#015724 AG14-#1018096

010160

System Operator: RSS

			Peak Information : All Compo	onents			
Pk. Num	Ret Time	Component Name	Concentration (ppm)	Height	Area	BI. Code	%Delta
1 1	4.00 4.00		0.004 0.004	65 65	549 549		-1.32 -1.32
	0.00		total(s) 0.007		1099		

CCB

Current Date: 6/25/0 Current Time: 16:19:4

Sample Name: 246054 Dilution Factor: 1000.00

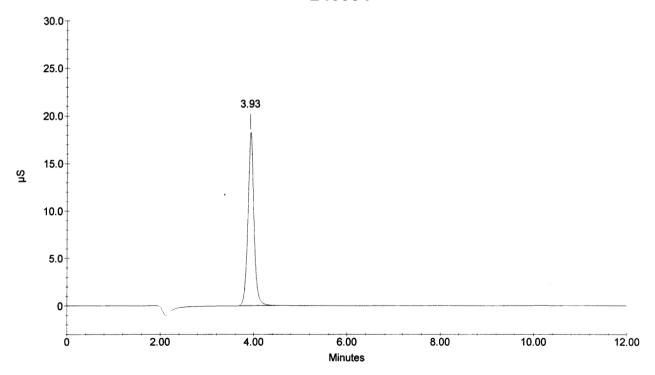
Injection Number: 27

Data File Name: c:\peaknet\data\040625\040625_027.DXD Method File Name: c:\peaknet\method\anions040622.met

Schedule File Name: c:\peaknet\schedule\25jun04.sch

Date Time Collected: 6/25/04 4:19:49 PM

System Name: Dx-500


010161 Detector Name: Conductivity Detector

Column Type: AS14-#015724 AG14-#1018096

System Operator: RSS

			Peak Information : All Compo	onents			
Pk. Num	Ret Time	Component Name	Concentration (ppm)	Height	Area	BI. Code	%Delta
1	3.93	CHLORIDE	9930.791	178593	1643503	1	-2.96
1	3.93	CHLORIDE NITRITE-N BROMIDE NITRATE-N PHOSPHATE-P SULFATE	9930.791	178593	1643503	1	-2.96
	0.00		total(s) 19861.583		3287006		

246054

: PeakNet 5.1

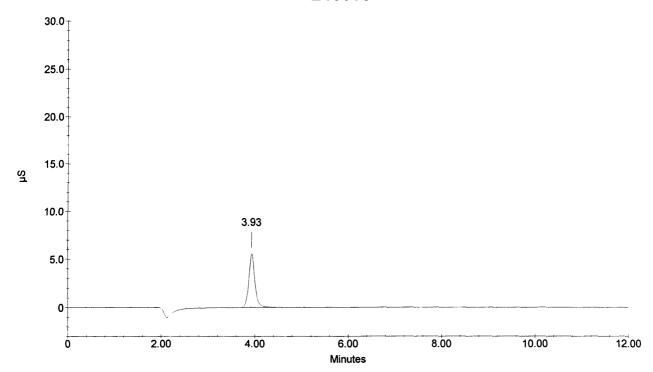
Current Date: 6/25/0 Current Time: 16:34:2

Sample Name: 246055 Dilution Factor: 1000.00

Injection Number: 28

Data File Name : c:\peaknet\data\040625\040625_028.DXD Method File Name: c:\peaknet\method\anions040622.met

Schedule File Name: c:\peaknet\schedule\25jun04.sch


Date Time Collected: 6/25/04 4:34:30 PM

System Name: Dx-500

Column Type : AS14-#015724 AG14-#1018096 System Operator : RSS

			Peak Information : All Compo	onents			
Pk. Num	Ret Time	Component Name	Concentration (ppm)	Height	Area	BI. Code	%Delta
1 1	3.93 3.93	CHLORIDE CHLORIDE NITRITE-N BROMIDE NITRATE-N PHOSPHATE-P SULFATE	3151.163 3151.163	54773 54773	494992 494992		-2.96 -2.96
	0.00		total(s) 6302.326		989984	<u> </u>	

246055

Current Date: 6/25/0 Current Time: 16:49:0 Sample Name: 246056 Dilution Factor: 1000.00 Injection Number: 29

Data File Name: c:\peaknet\data\040625\040625_029.DXD

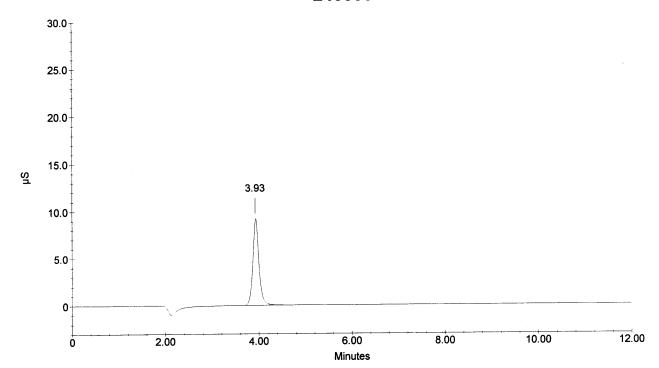
Method File Name : c:\peaknet\method\anions040622.met

Schedule File Name: c:\peaknet\schedule\25jun04.sch

Date Time Collected: 6/25/04 4:49:11 PM

System Name: Dx-500

Detector Name : Conductivity Detector


Column Type : AS14-#015724 AG14-#1018096

System Operator: RSS

010163

			Peak Information : All Compo	onents			
Pk. Num	Ret Time	Component Name	Concentration (ppm)	Height	Area	BI. Code	%Delta
1	3.93 3.93	CHLORIDE CHLORIDE NITRITE-N BROMIDE NITRATE-N PHOSPHATE-P SULFATE	5143.218 5143.218	90146 90146	819689 819689		-2.96 -2.96
	0.00		total(s) 10286.436		1639379	,	

246056

Current Date: 6/25/0 Current Time: 17:03:4 Sample Name: 246057 Dilution Factor: 1000.00

Injection Number: 30

Data File Name: c:\peaknet\data\040625\040625_030.DXD

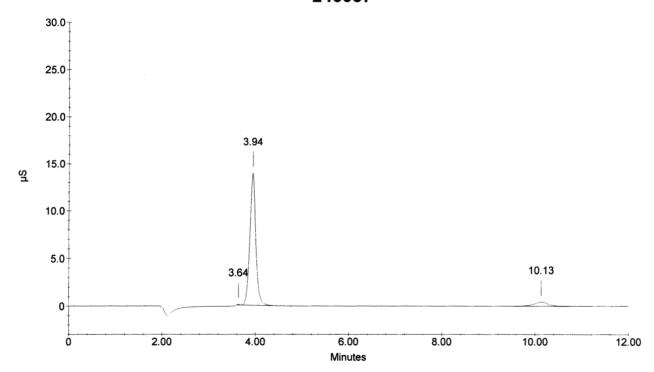
Method File Name: c:\peaknet\method\anions040622.met

Schedule File Name: c:\peaknet\schedule\25jun04.sch

Date Time Collected: 6/25/04 5:03:52 PM

System Name: Dx-500

Detector Name : Conductivity Detector


Column Type: AS14-#015724 AG14-#1018096

010164

System Operator: RSS

	Peak Information : All Components									
Pk. Num	Ret Time	Component Name	Concentration (ppm)	Height	Area	BI. Code	%Delta			
1	3.64		0.000	612	2347	2	2.11			
2	3.94	CHLORIDE NITRITE-N BROMIDE NITRATE-N PHOSPHATE-P	7601.979	138898	1234550	2	-2.63			
3	10.13	SULFATE	795.117	4272	93068	1	1.20			
	0.00		total(s) 8397.096		1329965					

246057

Current Date: 6/25/0 Current Time: 17:18:2

Sample Name: 246058 Dilution Factor: 1000.00

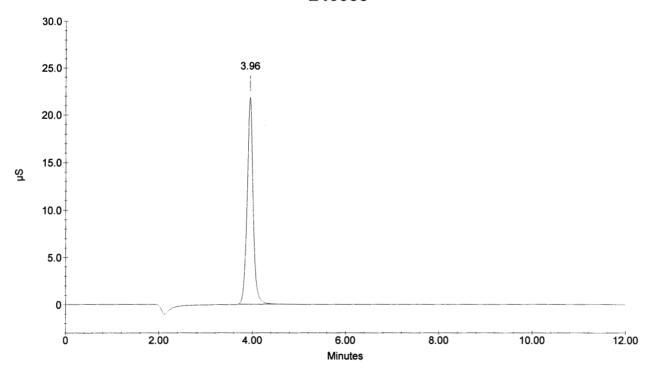
Injection Number: 31

Data File Name: c:\peaknet\data\040625\040625_031.DXD

Method File Name: c:\peaknet\method\anions040622.met Schedule File Name: c:\peaknet\schedule\25jun04.sch

Date Time Collected: 6/25/04 5:18:33 PM

System Name: Dx-500


Detector Name: Conductivity Detector

Column Type: AS14-#015724 AG14-#1018096

System Operator: RSS

			Peak Information : All Compo	onents			
Pk. Num	Ret Time	Component Name	Concentration (ppm)	Height	Area	BI. Code	%Delta
1 1		CHLORIDE CHLORIDE NITRITE-N BROMIDE NITRATE-N PHOSPHATE-P SULFATE	11715.756 11715.756	218015 218015	1968770 1968770		-2.30 -2.30
	0.00		total(s) 23431.512		3937540	A-1,	

246058

Current Date: 6/25/0 Current Time: 17:33:0

010165

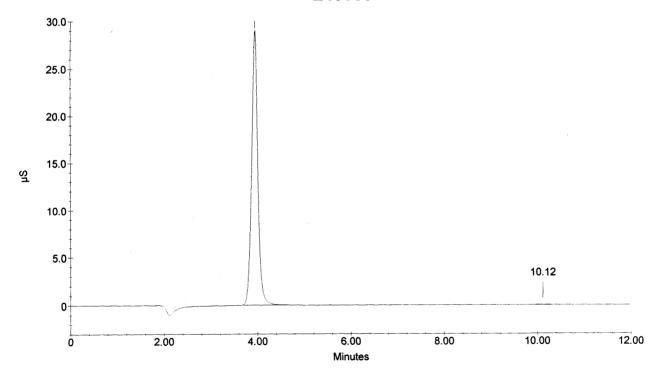
Sample Name: 246059 Dilution Factor: 1000.00

Injection Number: 32

Data File Name: c:\peaknet\data\040625\040625_032.DXD Method File Name: c:\peaknet\method\anions040622.met Schedule File Name: c:\peaknet\schedule\25jun04.sch

Date Time Collected: 6/25/04 5:33:14 PM

System Name : Dx-500


Detector Name : Conductivity Detector

Column Type : AS14-#015724 AG14-#1018096 **10166**

System Operator : RSS

			Peak Information : All Compo	onents			
Pk. Num	Ret Time	Component Name	Concentration (ppm)	Height	Area	BI. Code	%Delta
1	3.94	CHLORIDE	15286.534	285189	2655112	1	-2.63
1	3.94		15286.534	285189	2655112	1	-2.63
2	10.12	SULFATE	11.835	84	1383	1.	1.07
			total(s)				
	0.00		30584.903		5311606		

Sample Name: 246060 Dilution Factor: 1000.00

Injection Number: 33

Data File Name : c:\peaknet\data\040625\040625_033.DXD

Method File Name : c:\peaknet\method\anions040622.met Schedule File Name: c:\peaknet\schedule\25jun04.sch

Date Time Collected: 6/25/04 5:47:54 PM

System Name: Dx-500

Detector Name : Conductivity Detector

Column Type: AS14-#015724 AG14-#1018096

010167

System Operator : RSS

			Peak Information : All Compo	onents			
Pk. Num	Ret Time	Component Name	Concentration (ppm)	Height	Area	BI. Code	%Delta
1 1		CHLORIDE CHLORIDE NITRITE-N BROMIDE NITRATE-N PHOSPHATE-P SULFATE	15583.483 15583.483	293130 293130	2714591 2714591		-2.30 -2.30
	0.00		total(s) 31166.966		5429182		

246060

Page 1 of 1

Current Date: 6/25/0 Current Time: 18:02:3 Sample Name: CCV Dilution Factor: 20.00

Injection Number: 34

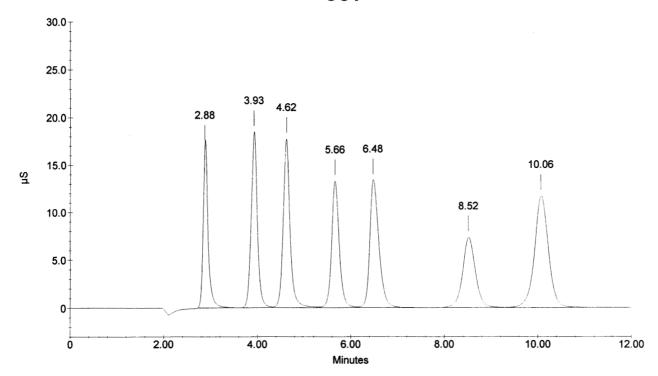
Data File Name : ...\040625_034.DXD

Method File Name: c:\peaknet\method\anions040622.met Schedule File Name: c:\peaknet\schedule\25jun04.sch

Date Time Collected: 6/25/04 6:02:35 PM

System Name: Dx-500

Detector Name : Conductivity Detector


Column Type: AS14-#015724 AG14-#1018096

010168

System Operator: RSS

			Peak Information : All Compo	onents			
Pk. Num		Component Name	Concentration (ppm)	Height	Area	BI. Code	%Delta
1	2.88	FLUORIDE	100.058	168676	1248920	2	-0.46
2	3.93	CHLORIDE	203.249	183925	1685113	2	-2.96
3	4.62	NITRITE-N	96.450	176674	1807722	2	-2.05
4	5.66	BROMIDE	405.238	132125	1493800	2	-2.36
5	6.48	NITRATE-N	83.916	132982	1808911	2	-0.97
6	8.52	PHOSPHATE-P	194.135	72684	1385303	2	0.79
7	10.06	SULFATE	393.846	116395	2415118	2	0.53
	0.00		total(s) 1476.892		11844887		

Current Date: 6/30/0 Current Time: 19:01:1

: PeakNet 5.1

Sample Name : CCB Dilution Factor : 1.00

Injection Number : 35

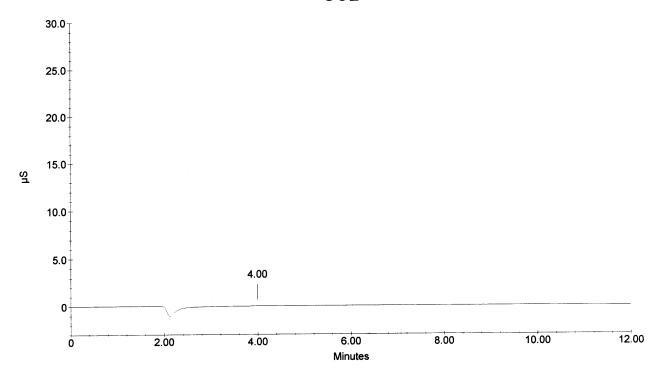
Data File Name : c:\peaknet\data\040625\040625_035.DXD Method File Name : c:\peaknet\method\anions040622.met

Schedule File Name : c:\peaknet\schedule\25jun04.sch

Date Time Collected: 6/25/04 6:17:16 PM

System Name: Dx-500

Detector Name : Conductivity Detector


010169

Column Type: AS14-#015724 AG14-#1018096

System Operator : RSS

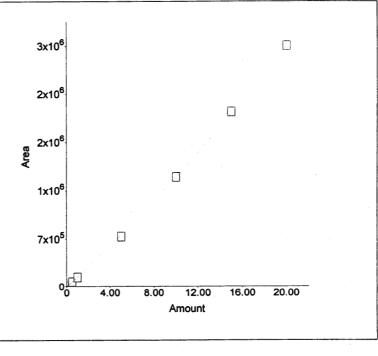
			Peak Information : All Compo	nents			
Pk. Num	Ret Time	Component Name	Concentration (ppm)	Height	Area	BI. Code	%Delta
1	4.00	CHLORIDE	0.003	47	499	1	-1.32
1	4.00	CHLORIDE NITRITE-N BROMIDE NITRATE-N PHOSPHATE-P SULFATE	0.003	47	499	1	-1.32
	0.00		total(s) 0.006		999		

Current Date: 6/25/0 Current Time: 18:31:5

Line	Sample	Sample Type	Level	Method	Data File	Dilution
1	STD 8 177-08-IC4	Calibration St	1	anions040622.met	040622_001.dxd	1
2	STD 7 177-07-IC4	Calibration St	2	anions040622.met	040622_002.dxd	010170
3	STD 6 177-06-IC4	Calibration St	3	anions040622.met	040622_003.dxd	ATOTIO
4	STD 5 177-05-IC4	Calibration St	4	anions040622.met	040622_004.dxd	1
5	STD 4 177-04-IC4	Calibration St	5	anions040622.met	040622_005.dxd	1
6	STD 3 177-03-IC4	Calibration St	6	anions040622.met	040622_006.dxd	1
7	STD 2 177-02-IC4	Calibration St	7	anions040622.met	040622_007.dxd	1
8	STD 1 177-01-IC4	Calibration St	8	anions040622.met	040622_008.dxd	1
9	STD 9 177-09-IC4	Calibration St	1	anions040622.met	040622 009.dxd	1
10	ICV	Sample		anions040622.met	040622 010.dxd	20
11	ICB	Sample		anions040622.met	040622_011.dxd	1

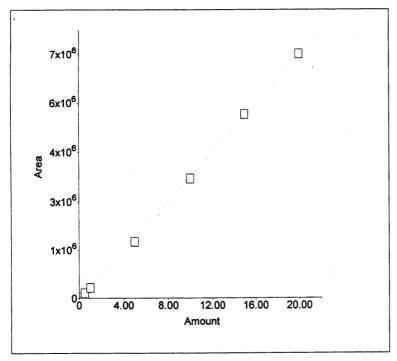
Default Method Path: C:\PEAKNET\METHOD Default Data Path: C:\PEAKNET\DATA\040622

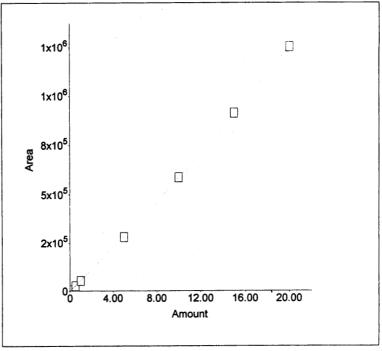
Comment:


EPA300 & SW 846 9056

ICV = Spex 25-145AS (Inorg # 4518)
NO2N 178-01-1CH
RSpren
6/30/04

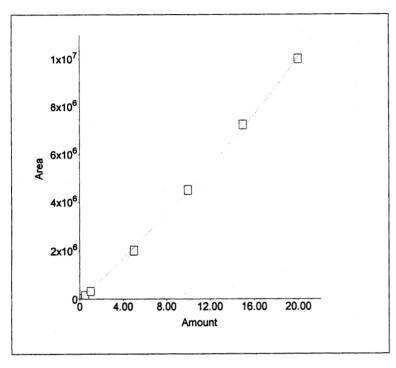
1. Component:FLUORIDE Standard:External Fit Type:Cubic Origin:Force Calibration:Area r²=0.999953 Amt=3.044799e-020*Resp³+

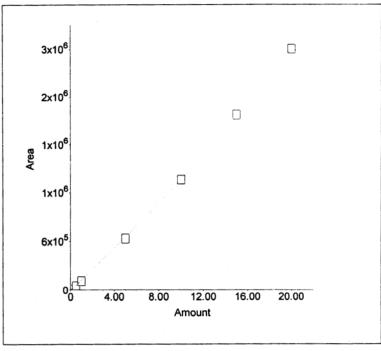

-2.870275e-013*Resp²+ 4.316773e-006*Resp+0 2. Component:CHLORIDE
Standard:External Fit Type:Quadratic
Origin:Force Calibration:Area
r²=0.999821
Amt=-2.817856e-013*Resp²+
6.505570e-006*Resp+0
010171



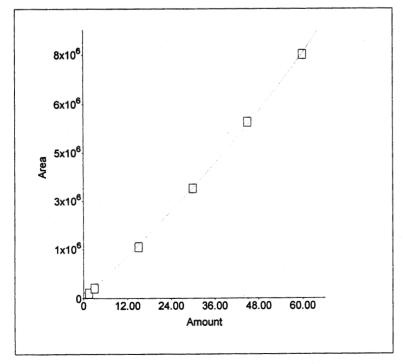
3. Component:NITRITE-N
Standard:External Fit Type:Linear
Origin:Force Calibration:Area
r²=0.999621
Amt=2.668e-006*Resp+0

4. Component:BROMIDE
Standard:External Fit Type:Quadratic
Origin:Force Calibration:Area
r²=0.999954
Amt=-1.218708e-012*Resp²+
1.538449e-005*Resp+0





Page 1 of 2 6/22/04 3:55:23 PM


5. Component:NITRATE-N
Standard:External Fit Type:Quadratic
Origin:Force Calibration:Area
r²=0.999492
Amt=-4.209966e-014*Resp²+
2.395673e-006*Resp+0

6. Component:PHOSPHATE-P
Standard:External Fit Type:Quadratic
Origin:Force Calibration:Area
r²=0.999784
Amt=-3.890673e-013*Resp²+
7.545921e-006*Resp+0
010172

7. Component:SULFATE
Standard:External Fit Type:Quadratic
Origin:Force Calibration:Area
r²=0.999728
Amt=-1.677817e-013*Resp²+
8.558970e-006*Resp+0

Sample Name : STD 8 177-08-IC4

Dilution Factor: 1.00 Injection Number: 1

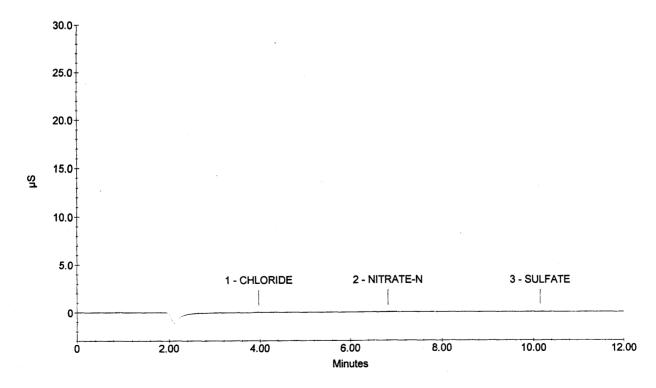
Data File Name: c:\peaknet\data\040622\040622_001.DXD

Method File Name: ... \ANIONS040622.met

Schedule File Name: c:\peaknet\schedule\040622.sch

Date Time Collected: 6/22/04 11:40:54 AM Date Time Updated: 6/22/04 3:48:55 PM

System Name: Dx-500


Detector Name: Conductivity Detector

Column Type : AS14-#015724 AG14-#101809010173

System Operator : RSS

Peak Information : All Components					
Peak Number	Peak Retention Time	Component Name	Concentration, ppm (ppm)	Peak Area	Peak Height
1	3.97	CHLORIDE	0.00	1106	133
1	3.97	CHLORIDE NITRITE-N BROMIDE	0.00	1106	133
2	6.82	NITRATE-N PHOSPHATE-P	0.00	2572	205
3	10.14	SULFATE	0.00	4850	220

STD 8 177-08-IC4

Sample Name: STD 7 177-07-IC4

Dilution Factor: 1.00 Injection Number: 2

Data File Name: c:\peaknet\data\040622\040622_002.DXD

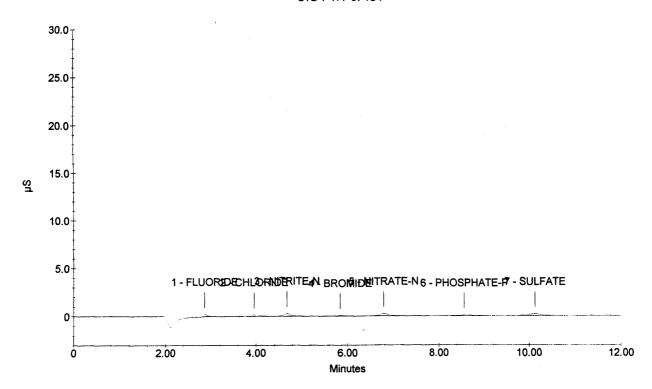
Method File Name: ... \ANIONS040622.met

Schedule File Name: c:\peaknet\schedule\040622.sch

Date Time Collected: 6/22/04 11:55:33 AM

Date Time Updated: 6/22/04 3:48:59 PM

System Name : Dx-500 Detector Name : Conductivity Detector


Column Type: AS14-#015724 AG14-#1018096

010174

System Operator: RSS

Peak Information : All Components					
Peak Number	Peak Retention Time	Component Name	Concentration, ppm (ppm)	Peak Area	Peak Height
1	2.86	FLUORIDE	0.10	15684	2442
2	3.96	CHLORIDE	0.10	16211	1759
3	4.68	NITRITE-N	0.10	28066	2890
4	5.84	BROMIDE	0.10	5624	498
5	6.78	NITRATE-N	0.10	31824	2358
6	8.56	PHOSPHATE-P	0.10	11247	601
7	10.12	SULFATE	0.30	38142	1876

STD 7 177-07-IC4

Sample Name: STD 6 177-06-IC4

Dilution Factor: 1.00 Injection Number: 3

Data File Name: c:\peaknet\data\040622\040622_003.DXD

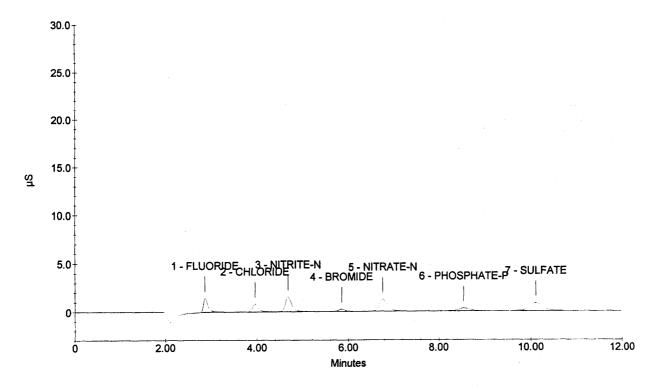
Method File Name: ...\ANIONS040622.met

Schedule File Name: c:\peaknet\schedule\040622.sch

Date Time Collected : 6/22/04 12:10:15 PM

Date Time Updated: 6/22/04 3:49:04 PM

System Name : Dx-500
Detector Name : Conductivity Detector


Column Type: AS14-#015724 AG14-#1018096

010175

System Operator: RSS

Peak Information : All Components					
Peak Number	Peak Retention Time	Component Name	Concentration, ppm (ppm)	Peak Area	Peak Height
	2.86	FLUORIDE	0.50	99663	14259
2	3.96	CHLORIDE	0.50	75370	8219
3	4.68	NITRITE-N	0.50	153456	15191
4	5.85	BROMIDE	0.50	29766	2560
5	6.76	NITRATE-N	0.50	170413	12313
6	8.54	PHOSPHATE-P	0.50	56740	2997
7	10.10	SULFATE	1.50	173676	8397

STD 6 177-06-IC4

Sample Name: STD 5 177-05-IC4

Dilution Factor: 1.00 Injection Number: 4

Data File Name: c:\peaknet\data\040622\040622_004.DXD

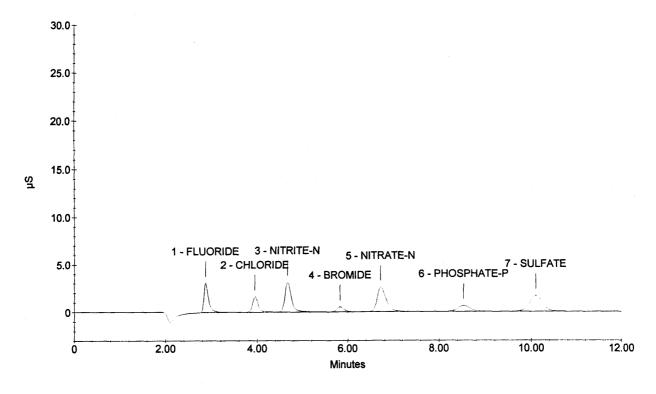
Method File Name: ... VANIONS040622.met

Schedule File Name: c:\peaknet\schedule\040622.sch

Date Time Collected: 6/22/04 12:24:55 PM Date Time Updated : 6/22/04 3:49:08 PM

System Name: Dx-500

010176


Detector Name : Conductivity Detector

Column Type: AS14-#015724 AG14-#1018096

System Operator: RSS

		Peak Information	All Components		
Peak Number	Peak Retention Time	Component Name	Concentration, ppm (ppm)	Peak Area	Peak Height
1	2.86	FLUORIDE	1.00	214673	30598
2	3.94	CHLORIDE	1.00	147584	16282
3	4.66	NITRITE-N	1.00	324429	31240
4	5.82	BROMIDE	1.00	61824	5247
5	6.72	NITRATE-N	1.00	351545	25507
6	8.53	PHOSPHATE-P	1.00	120558	6282
7	10.09	SULFATE	3.00	343827	16699

Sample Name: STD 4 177-04-IC4

Dilution Factor: 1.00 Injection Number: 5

Data File Name: c:\peaknet\data\040622\040622_005.DXD

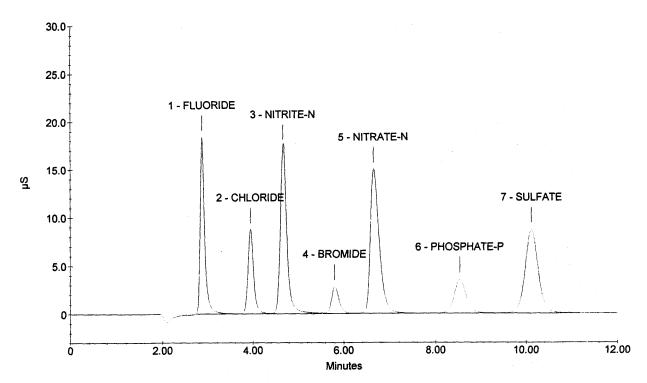
Method File Name: ...\ANIONS040622.met

Schedule File Name: c:\peaknet\schedule\040622.sch

Date Time Collected : 6/22/04 12:39:36 PM Date Time Updated : 6/22/04 3:49:11 PM

System Name: Dx-500

Detector Name : Conductivity Detector


Column Type: AS14-#015724 AG14-#1018096

010177

System Operator: RSS

Peak Number	Peak Retention	Peak Information : Component Name	Concentration,	Peak Area	Peak Height
	Time		ppm (ppm)		
1	2.88	FLUORIDE	5.00	1249311	183737
2	3.94	CHLORIDE	5.00	764286	86778
3	4.66	NITRITE-N	5.00	1763018	173760
4	5.80	BROMIDE	5.00	328544	28053
5	6.64	NITRATE-N	5.00	2040797	149957
6	8.53	PHOSPHATE-P	5.00	663949	35154
7	10.10	SULFATE	15.00	1739219	86511

STD 4 177-04-IC4

Sample Name: STD 3 177-03-IC4

Dilution Factor: 1.00 Injection Number: 6

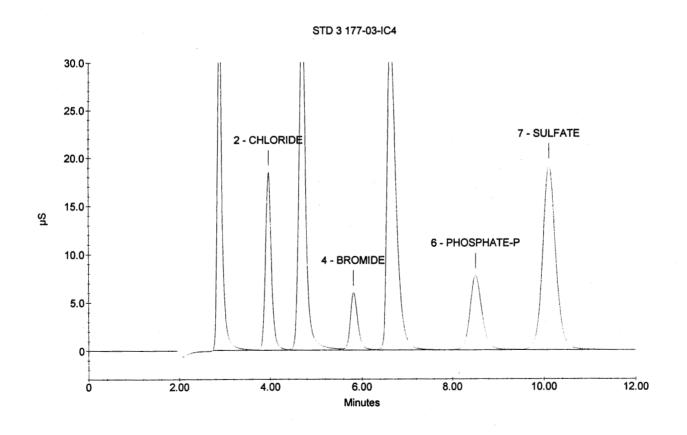
Data File Name: c:\peaknet\data\040622\040622_006.DXD

Method File Name: ... \ANIONS040622.met

Schedule File Name: c:\peaknet\schedule\040622.sch

Date Time Collected : 6/22/04 12:54:16 PM Date Time Updated : 6/22/04 3:49:15 PM

System Name: Dx-500


Detector Name : Conductivity Detector

Column Type: AS14-#015724 AG14-#1018096

System Operator : RSS

010178

Peak Number	Peak Retention Time	Component Name	Concentration, ppm (ppm)	Peak Area	Peak Height
	111116		ppiii (ppiii)		
1	2.88	FLUORIDE	10.00	2665804	366427
2	3.96	CHLORIDE	10.00	1655893	184330
3	4.69	NITRITE-N	10.00	3707012	357947
4	5.81	BROMIDE	10.00	688272	59797
5	6.61	NITRATE-N	10.00	4547116	328131
6	8.50	PHOSPHATE-P	10.00	1428173	77538
7	10.09	SULFATE	30.00	3773275	191012

Sample Name: STD 2 177-02-IC4

Dilution Factor: 1.00 Injection Number: 7

Data File Name: c:\peaknet\data\040622\040622_007.DXD

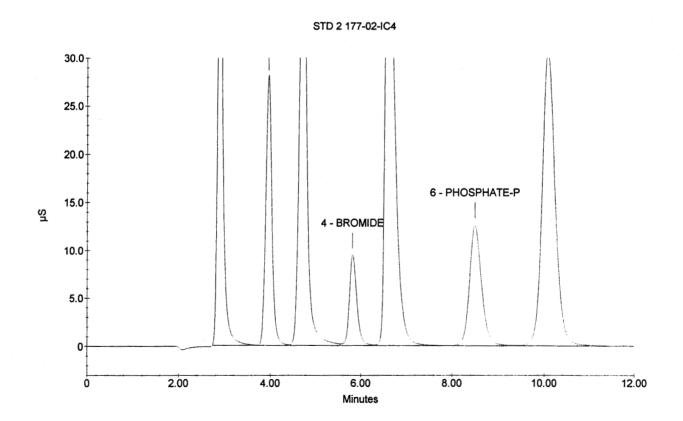
Method File Name: ...\ANIONS040622.met

Schedule File Name: c:\peaknet\schedule\040622.sch

Date Time Collected : 6/22/04 1:08:57 PM

Date Time Updated : 6/22/04 3:49:18 PM

System Name : Dx-500


Detector Name : Conductivity Detector

Column Type: AS14-#015724 AG14-#1018096

010179

System Operator : RSS

Peak Information : All Components					
Peak Number	Peak Retention Time	Component Name	Concentration, ppm (ppm)	Peak Area	Peak Height
	2.89	FLUORIDE	15.00	4096803	546794
2	3.96	CHLORIDE	15.00	2631927	278791
3	4.72	NITRITE-N	15.00	5660428	528607
4	5.81	BROMIDE	15.00	1070216	94254
5	6.58	NITRATE-N	15.00	7296057	514667
6	8.49	PHOSPHATE-P	15.00	2279473	125893
7	10.06	SULFATE	45.00	6051191	306767

Sample Name: STD 1 177-01-IC4

Dilution Factor : 1.00 Injection Number : 8

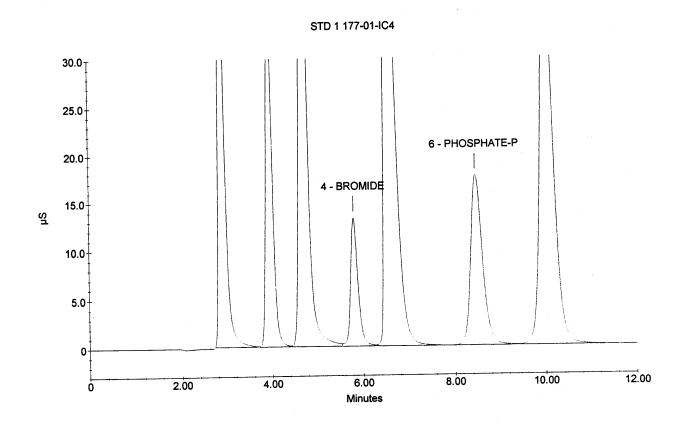
Data File Name : c:\peaknet\data\040622\040622_008.DXD

Method File Name : ... \ANIONS040622.met

Schedule File Name: c:\peaknet\schedule\040622.sch

Date Time Collected : 6/22/04 1:23:39 PM Date Time Updated : 6/22/04 3:49:22 PM

System Name : Dx-500


Detector Name : Conductivity Detector

Column Type : AS14-#015724 AG14-#1018096

010180

System Operator : RSS

Peak Number	Peak Retention Time	Component Name	Concentration, ppm (ppm)	Peak Area	Peak Height
	2.89	FLUORIDE	20.00	5470798	682986
1	3.96	CHLORIDE	20.00	3633847	373479
2 3	4.72	NITRITE-N	20.00	7518140	667759
•	5.80	BROMIDE	20.00	1468576	131327
4	6.54	NITRATE-N	20.00	10087786	701908
5		PHOSPHATE-P	20.00	3151553	175123
6 7	8.45 10.01	SULFATE	60.00	8338830	422992

Sample Name: STD 9 177-09-IC4

Dilution Factor: 1.00 Injection Number: 9

Data File Name: c:\peaknet\data\040622\040622_009.DXD

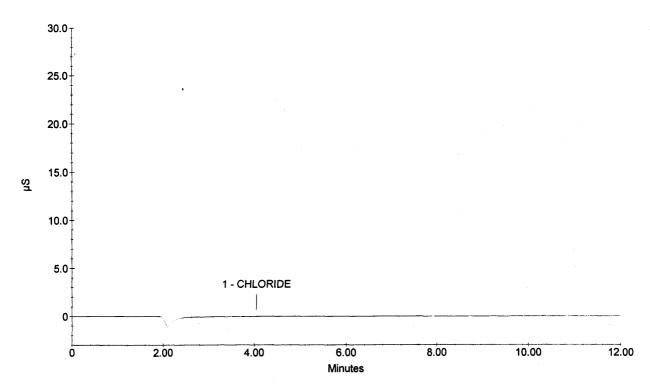
Method File Name: ...\ANIONS040622.met

Schedule File Name: c:\peaknet\schedule\040622.sch

Date Time Collected : 6/22/04 1:46:11 PM Date Time Updated : 6/22/04 3:49:26 PM

System Name : Dx-500

010181


Detector Name : Conductivity Detector

Column Type: AS14-#015724 AG14-#1018096

System Operator: RSS

Peak Information : All Components					
Peak Number	Peak Retention Time	Component Name	Concentration, ppm (ppm)	Peak Area	Peak Height
Tracks statement the statement to the st	4.05	CHLORIDE	0.00	763	67
	4.05	CHLORIDE	0.00	763	67
		NITRITE-N BROMIDE			
		NITRATE-N			
		PHOSPHATE-P SULFATE			

STD 9 177-09-IC4

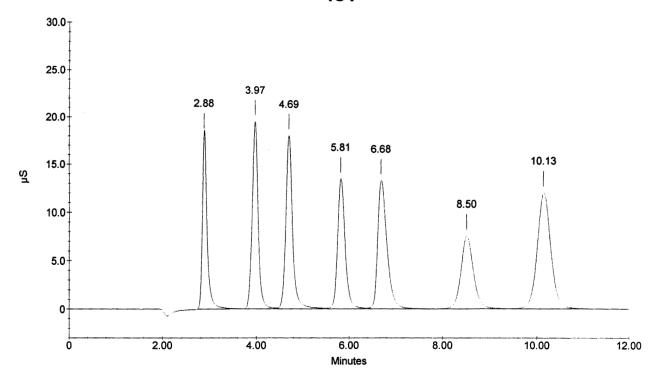
Sample Name: ICV

Dilution Factor: 20.00 Injection Number: 10

Data File Name : ...\040622_010.DXD

Schedule File Name: c:\peaknet\schedule\040622.sch

Date Time Collected: 6/22/04 3:20:43 PM


System Name : Dx-500

Detector Name : Conductivity Detector

010182 Column Type: AS14-#015724 AG14-#1018096

Peak Information : All Components							
Pk. Num		Component Name	Concentration (ppm)	Height	Area	BI. Code	%Delta
1	2.88	FLUORIDE	102.318	180581	1279152	2	-0.46
2	3.97	CHLORIDE	206.674	194415	1715979	2	-1.98
3	4.69	NITRITE-N	97.137	179452	1820599	2	-0.64
4	5.81	BROMIDE	411.331	133818	1519813	2	0.17
5	6.68	NITRATE-N	85.162	131899	1836684	2	2.09
6	8.50	PHOSPHATE-P	195.509	74697	1395936	2	0.63
7	10.13	SULFATE	397.367	119590	2437852	2	1.20
	0.00		total(s) 1495.497		12006014		

Current Date: 6/22/0 Current Time: 15:56:4

Sample Name : ICB

Dilution Factor : 1.00

Injection Number : 11

Data File Name : ...\040622_011.DXD

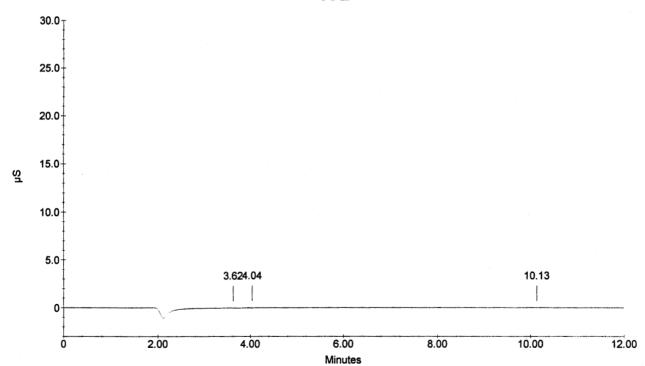
Method File Name : C:\PeakNet\method\ANIONS040622.met

Schedule File Name: c:\peaknet\schedule\040622.sch

Date Time Collected: 6/22/04 3:35:42 PM

System Name : Dx-500

Detector Name : Conductivity Detector


Column Type: AS14-#015724 AG14-#1018096

010183

System Operator: RSS

Peak Information : All Components							
Pk. Num	Ret Time	Component Name	Concentration (ppm)	Height	Area	BI. Code	%Delta
1	3.62		0.000	58	679	1	
2	4.04	CHLORIDE NITRITE-N BROMIDE NITRATE-N PHOSPHATE-P	0.016	181	2433		-0.33
3	10.13	SULFATE	0.006	56	671	1	1.20
					-		
	0.00		total(s) 0.022		3783		

ICB

Current Date: 6/22/0 Current Time: 15:57:2 SOUTHWEST RESEARCH INSTITUTE

NUCLEAR PROJECT CLIENT: Division 20 TASK ORDER: 040616-1

SRR: 26046 SDG: 246046 CASE: CNWRA VTSR: June 15, 2004

PROJECT#: 06002.01.081

Certificates of Analysis

FISHER SCIENTIFIC TRACEMETAL GRADE NITRIC ACID **CERTIFICATE OF ANALYSIS**

Catalog No. A509	Lot No; 11 Releam Date: Fa Expiry Date: Fe	bru ary, 2004
Leats	Units	Yalue
Assay	*	70%
Color	APHA	<10
Aluminum	ppb	<0.5
Antim ony	ppb	<0.1
Arsenic	врb	<0.1
Barium	ppb	<0.1
Beryllium	ppb	<0.1
Bismuth	ppb	<0.1
Boron	ppb	<1
Cadmium	ppb	<0.1
Calcium	ppb	- <1
Chromium	ppb	<0.2
Cobait	ppb	<0.1
Copper	ppb	<0.1
tron	ppb	<1
Lead	ppb	<0.1
Lithium	ppb	<0.1
Magnesium	ppb	<0.2
Manganese	фр	<0.1
Mercury	ppb	<0.2
Molybdenum	ppb	<0.1
Nickel	ppb	<0.1
Potassium	ppb	<0.2
Selenium	ppb	<0.1
Silver	ppb	<0.1
Sodium	ppb	<0.2
Strontium	ppb	<0.1
Thorium	ppb	<0.1
Tin	ppb	<0.1
Titanium	ppb	<0.1
Uranium	ppb	<0.1
Vanedium	ppb	<0.1
2nc	ppb	<0.2
Zirconium	nob	<0.1

Element concentrations are at the point of bottling. Concentrations of some elements in particular, Ca, Si, K, Na, B, Al, Mg & Mn will increase due to storage in glass bottles.

8 McKelver

Dr. B. McKelvey QA/QC Manager

Fisher Scientific Chemical Division Pittsburgh, PA., 15275 Phone (412) 490-8300

INURGANIC LABS/RADCHEM LABS
DATE RECEIVED: 05/05/04
DATE EXPIRED: 05/05/04
DATE OPENED: 05/05/04
INURG: 4558-4563 PO: F533K

FISHER SCIENTIFIC TRACEMETAL GRADE NITRIC ACID **CERTIFICATE OF ANALYSIS**

Catalog No. A509	Lot No: 1104010 Release Date: January, 2004 Expiry Date: January, 2007		
<u>Jests</u>	Unita	<u>Value</u>	
Assay	%	70%	
Color	APHA	<10	
Aluminum	ppb	<0.5	
Antim ony	ppb	<0.1	
Arsenic	pp b	<0.1	
Barium	ppb	<0.1	
Beryllium	ppb	<0.1	
Bismuth	ppb	<0.1	
Boron	ppb	<1	
Cadmium	ppb	<0.1	
Calcium	ppb	<1	
Chromium	dqq	<0.2	
Cobeit	ppb	<0.1	
Copper	ppb	<0.1	
Iron	ppb	<1	
Lead	ppb	<0.1	
Lithium	ppb	<0.1	
Magnesium	ppb	<0.2	
Manganese	ppb	<0.1	
Mercury	ppb	<0.2	
Malybdenum	ppb	<0.1	
Nickel	ppb	<0.1	
Potass ium	ppb	<0.2	
Selenium	ppb	<0.1	
Silver	ppb	<0.1	
Sodium	ppb	<0.2	
Stronti um	ррь	<0.1	
Thorium	ppb	<0.1	
Tin	ppb	<0.1	
Titanium	ppb	<0.1	
Uranium	ppb	≪0.1	
Vanadium	ррь	<0.1	
Znc	ppb	<0.2	
Zirconium	nnh	<0.1	

Element concentrations are at the point of bottling. Concentrations of some elements in particular, Ca, Si, K, Na, B, Ai, Mg & Mn will increase due to storage in glass bottles.

B Mckduey Dr. B. McKelvey

QA/QC Manager

Fisher Scientific Chemical Division Pittsburgh, PA., 15275 Phone (412) 490-8300

INURGANIC LABS/RADCHEM LABS

FISHER SCIENTIFIC TRACEMETAL GRADE NITRIC ACID CERTIFICATE OF ANALYSIS

Catalog No. A509	Lat No: 1104010		
_	Release Date: Ja	nua ry, 2004	
	Expiry Date: Ja	пив гу, 2007	
Leats	Units	Value	
Assay	%	70%	
Color	APHA	<10	
Aluminum	ppb	<0.5	
Antim ony	ppb	<0.1	
Arsenic	ppb	<0.1	
Barium	ppb	<0.1	
Beryllium	ppb	<0.1	
Bismuth	dqq	<0.1	
Boron	ρpb	<1	
Cadmium	ppb	<0.1	
Calcium	ppb	<1	
Chromium	ppb	<0.2	
Cobalt	ppb	<0.1	
Copper	ppb	<0.1	
tron	ppb	<1	
Lead	ppb	<0.1	
Lithium	qqq	<0.1	
Magnesium	ррь	<0.2	
Manganese	ppb	<0.1	
Mercury	ppb	<0.2	
Molybdenum	фbр	<0.1	
Nickel	ppb	<0.1	
Potass ium	ppb	<0.2	
Selenium	ded	<0.1	
Silver	` ppb	<0.1	
Sodium	ppb	<0.2	
Stronti um	ppb	<0.1	
Therium	ppb	<0.1	
Tan	ppb	<0.1	
Titenium	ppb	<0.1	
Uranium	ppb	<0.1	
Vanadium	ppb	<0.1	
Znc	ppb	<0.2	
Zimonium	nob	<0.1	

Element concentrations are at the point of bottling. Concentrations of some elements in particular, Ca, Si, K, Na, B, Al, Mg & Mn will increase due to storage in glass bottles.

8 Hikely

Dr. B. McKelvey QA/QC Manager

Fisher Scientific Chemical Division Pittsburgh, PA., 15275 Phone (412) 490-8300

INURGANIC LABS/RADCHEM LABS
DATE RECEIVED: 03/15/04
DATE EXPIRED: 03/16/2014
DATE OPENED: 03/16/04
INURG: 4495-4500 PO: E53351

FISHER SCIENTIFIC TRACEMETAL GRADE HYDROCHLORIC ACID

CERTIFICATE OF ANALYSIS

Catalog No. A508 Lot No: 4103101 Release Date: January, 2004 Expiry Date: January, 2007 Tests Units **Yalue** 35% Assay Color APHA <10 Aluminum ppb <0.5 Antim ony ppb <0.1 Arsenic ppb <0.1 Banum <0.1 ppb Beryllium ppb <0.1 Bismuth ppb <0.1 Boron ppb <0.5 Cadmium ppb <0.1 Calcium ppb <0.5 Chromium ppb <0.1 Cobalt ppb <0.1 Copper ppb <0.1 ppb <0.5 iron Lead <0.1 ppb ppb Lithium <0.1 Magnesium <0.5 ppb Manganese ppb < 0.1 Mercury <0.2 ppb Molybdenum < 0.1 ppb Nickel ppb <0.1 Potass ium ppb < 0.1 Seiensum ppb <0.1 Silver dqq <0.1 Sodium ppb <0.5 Stronti um ppb <0.1 Thorium ppb <0.1 ppb <0.1 Titanium ppb <0.1 Uranium <0.1 ppb Vanadium ppb <0.1 ppb Zere < 0.5

Element concentrations are at the point of bottling. Concentrations of some elements in particular, Ca, Si, K, Na, B, Al, Mg & Mn will increase due to storage in glass bottles.

ppb

<0.1

8 Mckelvey

Dr. B. McKelvey QA/QC Manager

Zirconium

Fisher Scientific Chemical Division
Pittsburgh, PA., 15275 Phone (412) 490-8300

INDRGANIC LABS/RADCHEM LABS

DATE RECEIVED: ____05/05/04 ____

DATE EXPIRED: ____05/05/04 ____

INDRG: 4552-4557 PO: ____53373

FISHER SCIENTIFIC TRACEMETAL GRADE HYDROCHLORIC ACID

CERTIFICATE OF ANALYSIS

Catalog No. A508	Lot No: 4103101			
	Referm Date:	Janua ty, 2004		
	Expiry Date:	Janua ry, 2007		
<u>Iests</u>	Units	Yaius		
Assay	%	35%		
Color	APHA	<10		
Aluminum	ppb	<0.5		
Antim ony	ppb	<0.1		
Arsenic	ppb	<0.1		
Barium	dqq	<0.1		
Beryllium	ppb	<0.1		
Bismuth	ppb	<0.1		
Boron	ppb	<0.5		
Cadmium	ppb	<0.1		
Calcium	ppb	<0.5		
Chromium	ppb	<0.1		
Cobelt	ppb	<0.1		
-Copper	ppb	<0.1		
Iron	ppb	<0.5		
Lead	ppb	<0.1		
Lithium	ppb	<0.1		
Magnesium	ppb	<0.5		
Manganese	ppb	<0.1		
Mercury	ppb	<0.2		
Molybdenum	ppb	°<0.1		
Nickel	ppb	<0.1		
Potass ium	ppb	<0.1		
Selenium	ppb	<0.1		
Silver	ppb	<0.1		
Sodium	ppb	<0.5		
Stronti um	ppb	<0.1		
Thorium	ppb	<0.1		
Tan	ppb	<0.1		
Titanium	ppb	≪0.1		
Uranium	ppb	<0.1		
Vanadium	ppb	<0.1		
Zinc	ppb	<0.5		
Zirconium	ppb	<0.1		

Element concentrations are at the point of bottling. Concentrations of some elements in particular, Ca, Si, K, Na, B, Al, Mg & Mn will increase due to storage in glass bottles.

B Mckelvey

Dr. B. McKelvey QA/QC Manager

Fisher Scientific Chemical Division Pittsburgh, PA., 15275 Phone (412) 490-8300

INORGANIC LABS/RADCHEM LABS
DATE RECEIVED: 06/01/04
DATE EXPIRED: 06/01/04
DATE OPENED: 06/01/04
INORG: 45%-4591 PO: F53393

FISHER SCIENTIFIC TRACEMETAL GRADE HYDROCHLORIC ACID

CERTIFICATE OF ANALYSIS

Catalog No. A508	Lot No: 4103100)
	Release Date: October	, 2003
	Expiry Date: October	2006
Toute	Units	Value
Isate		
Аввау	%	37%
Color	APHA	<10
Aluminum	ppb	<0.5
Antimony	ppb	<0.1
Arsenic	ppb	<0.1
Barium	ppb	<0.1
Beryllium	ppb	<0.1
Bismuth	ppb	<0.1
Boron	ppb	<1
Cadmium	ppb	<0.1
Calcium	ppb	<0.5
Chromium	ppb	<0.1
Cobalt	ppb	<0.1
Copper	ppb	<0.1
iron	ppb	<0.5
Lead	ppb	<0.1
Lithium	ppb	<0.1
Magnesium	ppb	<0.5
Manganese	ppb	<0.1
Mercury	ppb	<0.2
Molybdenum	ppb	<0.1
Nickel	ppb	<0.1
Potass ium	ppb	<0.1
Selénium	ppb	<0.1
Silver	ppb	<0.1
Sodium	ppb	<0.5
Strontium	ppb	<0.1
Thorium	ppb	<0.1
Tin	ppb	<0.1
Titanium	ppb	<0.1
Uranium	ppb	<0.1
Vanadium	ppb	<0.1
Zinc	ppb	<0.5

INORG: 4489-4494 Put

INDREANIC LABS/RADCHEM LABS

Zirc ppb < 0.5

Zirconium ppb < 0.1

Element concentrations are at the point of bottling.

Concentrations of some elements in particular, Ca, Si, K,
Na, B, AJ, Mg & Mn will increase due to storage in glass
bottles.

3 Hikduy

Dr. B. McKelvey QA/QC Manager

Fisher Scientific Chemical Division Pittsburgh, PA., 15275 Phone (412) 490-8300

010191

SPEXertificate™

Certificate of Reference Material

Catalog Number:

SPIKE-1

Lot No.: 25-23AS

Description:

Spike Sample Standard 1

Matrix:

5% Nitric Acid/tr Tartaric Acid - HF

This ASSURANCE *certified reference material, CRM, is intended primarily for use as a calibration standard or quality control standard for inorganic spectroscopic instrumentation such as ICPOES, DCP, AA, ICPMS, and XRF. It can be employed in USEPA, ASTM and other methods relevant to the certified properties listed below.

The CRM is prepared from high purity single element concentrates of individual elements using Class A laboratory ware to give precise concentration.

Refer to side 2 for details of measurement uncertainties.

Instrumental Analysis by ICP Spectrometer:

Element	Labeled (mg/L)	Measured (mg/L)	NIST SRM	Element	Labeled (mg/L)	Measured (mg/L)	NIST SRM
Al	200	199.51	3101a	Pb	50	49.98	3128
As	200	199.89	3103a	Sb	50	50.02	3102a
Ba	200	199.68	3104a	V	50	49.95	3165
Se	200	200.10	3149	Zn	50	50.02	3168a
TL	200	200.07	3158	Cu	25	25.34	3114
Fe	100	99.91	3126a	Cr	20	20.04	3112a
Co	50	50.25	3113	Ag	5	5.00	3151
Mn	50	49.98	3132	Be	5	5.00	3105a
Ni	50	50.11	3136	Cd	5	4.99	3108

Spex Reference Multi: Lot #2-61BD, 17-55AS, 19-85ASREF

Balances are calibrated regularly with weight sets traceable to NIST#s 32856, 32867 and others. This CRM is guaranteed stable and accurate to +/- 0.5% on the average of all the certified concentrations with no single component exceeding +/- 2%. This guarantee is valid for a period of one year from the date of certification only when the material is kept tightly capped and transported and stored under laboratory conditions.

Date of Certification: OCT -- 2003 Certifying Officer: N. Kocherakota

This Certified Reference Material has been prepared and certified under an ISO 9001 system consistent with the following guides:

Guide To The Expression Of Uncertainty In Measurement 1995

EURACHEM/CITAC Guide: Quantifying Uncertainty in Analytical Measurement - Second Edition

ASTM Guide D6362-98

ISO Guide 34: Quality system guidelines for the production of reference materials.

ISO Guide 17025: Certification of reference materials, general and statistical principles

ISO Guide 31: Contents of certificates of reference materials

NIST Technical Note 1297

ILAC-G12-2000: Guidelines for the requirements for the competence of reference materials producers

ISO/REMCO N280

Material Source:

All analytes and matrix materials are obtained and verified by SPEX CertiPrep from pre-qualified vendors as per ISO 9000 guidelines. Vendor identifications are proprietary, however sources of all materials used in the preparation and testing of SPEX CertiPrep CRMs are tracked and documented. For further information contact CRM Sales.

Instructions for Use:

Primary usage of this CRM is in neat form or diluted serially with matrix of a purity at or greater than the purity of the original matrix solution. If dilution is required the diluent must be compatible with all certified analytes and contain stabilizers appropriate for the period of intended use. The CRM can also be used as a spike or with a spike, again with appropriate compatibility considerations. All solutions should be thoroughly mixed, by shaking, prior to use and never pipetted directly from the bottle. All surfaces that come in contact with the solution must be thoroughly cleaned and leached prior to use. Dilutions should be performed only with Class A volumetric glassware.

Method of Preparation:

Clean laboratory procedures and techniques have been used throughout the preparation. All materials, equipment, analytical instrumentation and personnel have been qualified prior to use. The highest purity acids applicable, 18 megohm, double deionized water, acid-leached triple-rinsed bottles, and Class A glassware have been used in all preparations.

Homogeneity:

The Homogeneity of the CRM has been confirmed by procedures consistent with ISO guide 17025, ISO/REMCO N280 and ASTM D6362-98 Appendix X2. Random, replicate samples of the final, packaged material have been analyzed for the certified values by procedures consistent with the intended use of the CRM.

The mathematical expression k₁=s²m is employed to determine the sampling size

S = relative standard deviation in % for one component of the sample. (ie. The sub-sampling uncertainty)

m = the sub-sampling mass

k, = mass of sub-sample necessary to ensure a relative sub-sampling error of 1% (68% confidence level) in a single determination

Statistical estimator and Confidence limits:

The certified value 'x' listed on the reverse of this document is at the 95% level of confidence and can be expressed as X = x+/-U where X = True value (Labeled Value), U = Expanded uncertainty

U=ku_c where k=2 is the coverage factor at the 95% confidence level

 u_e is obtained by combining the individual element standard uncertainty components u_i and $u_{e^-}\sqrt{\Sigma u_i^2}$

Certification Traveler Report:

All certified values reported were derived from Traveler Report (Spex CertiPrep's traceability documentation) identified by the lot number of this CRM. For further information contact CRM Sales.

Legal Notice:

DATE RECEIVED: 09/15/93
DATE EXPIRED: 09/15/23
DATE GPENED: 09/15/23

SPEXertificate™

Certificate of Reference Material

Catalog Number:

ICAL-1

Lot No.: 25-176AS

Description:

Instrument Calibration Standard 1

Matrix:

5% Nitric Acid

This ASSURANCE *certified reference material, CRM, is intended primarily for use as a calibration standard or quality control standard for inorganic spectroscopic instrumentation such as ICPOES, DCP, AA, ICPMS, and XRF. It can be employed in USEPA, ASTM and other methods relevant to the certified properties listed below.

The CRM is prepared from high purity single element concentrates of individual elements using Class A laboratory ware to give precise concentration.

Refer to side 2 for details of measurement uncertainties.

Instrumental Analysis by ICP Spectrometer:

Element	Labeled (mg/L)	Measured (mg/L)	NIST SRM
Ca	5,000	4,984.92	3109a
K	5,000	4,990.26	3141a
Mg	5,000	4,991.82	3131a
Na	5,000	4,998.07	3152a

Spex Reference Multi: Lot #10-100AS, 12-113AS, 5-198VY, 6-28VY-REF

Balances are calibrated regularly with weight sets traceable to NIST#s 32856, 32867 and others. This CRM is guaranteed stable and accurate to +/- 0.5% on the average of all the certified concentrations with no single element exceeding +/-2%. This includes uncertainty of measurements and other effects, such as transpiration losses. This guarantee is valid for a period of one year from the date of certification only when the material is kept tightly capped and transported and stored under laboratory conditions.

Date of Certification: ______ Certifying Officer: N. Kochertakofa_

This Certified Reference Material has been prepared and certified under an ISO 9001 system consistent with the following guides:

Guide To The Expression Of Uncertainty In Measurement 1995

EURACHEM/CITAC Guide: Quantifying Uncertainty in Analytical Measurement - Second Edition

ASTM Guide D6362-98

ISO Guide 34: Quality system guidelines for the production of reference materials.

ISO Guide 17025: Certification of reference materials, general and statistical principles

ISO Guide 31: Contents of certificates of reference materials

NIST Technical Note 1297

ILAC-G12-2000: Guidelines for the requirements for the competence of reference materials producers

ISO/REMCO N280

Material Source:

All analytes and matrix materials are obtained and verified by SPEX CertiPrep from pre-qualified vendors as per ISO 9000 guidelines. Vendor identifications are proprietary, however sources of all materials used in the preparation and testing of SPEX CertiPrep CRMs are tracked and documented. For further information contact CRM Sales.

Instructions for Use:

Primary usage of this CRM is in neat form or diluted serially with matrix of a purity at or greater than the purity of the original matrix solution. If dilution is required the diluent must be compatible with all certified analytes and contain stabilizers appropriate for the period of intended use. The CRM can also be used as a spike or with a spike, again with appropriate compatibility considerations. All solutions should be thoroughly mixed, by shaking, prior to use and never pipetted directly from the bottle. All surfaces that come in contact with the solution must be thoroughly cleaned and leached prior to use. Dilutions should be performed only with Class A volumetric glassware.

Method of Preparation:

Clean laboratory procedures and techniques have been used throughout the preparation. All materials, equipment, analytical instrumentation and personnel have been qualified prior to use. The highest purity acids applicable, 18 megohm, double deionized water, acid-leached triple-rinsed bottles, and Class A glassware have been used in all preparations.

Homogeneity:

The Homogeneity of the CRM has been confirmed by procedures consistent with ISO guide 17025, ISO/REMCO N280 and ASTM D6362-98 Appendix X2. Random, replicate samples of the final, packaged material have been analyzed for the certified values by procedures consistent with the intended use of the CRM.

The mathematical expression k=3m is employed to determine the sampling size

S = relative standard deviation in % for one component of the sample. (ie. The sub-sampling uncertainty)

m = the sub-sampling mass

k_s ≈ mass of sub-sample necessary to ensure a relative sub-sampling error of 1% (68% confidence level) in a single determination

Statistical estimator and Confidence limits:

The certified value 'x' listed on the reverse of this document is at the 95% level of confidence and can be expressed as X = x+/-U where X = True value (Labeled Value), U = Expanded uncertainty

U=ku, where k=2 is the coverage factor at the 95% confidence level

 u_e is obtained by combining the individual element standard uncertainty components u_i and $u_e \sqrt{\Sigma u_i^2}$

Certification Traveler Report:

All certified values reported were derived from Traveler Report (Spex CertiPrep's traceability documentation) identified by the lot number of this CRM. For further information contact CRM Sales.

Legal Notice:

Catalog Number:

ICAL-1

Lot No.: 25-178AS

Description:

Instrument Calibration Standard 1

Matrix:

5% Nitric Acid

This ASSURANCE *certified reference material, CRM, is intended primarily for use as a calibration standard or quality control standard for inorganic spectroscopic instrumentation such as ICPOES, DCP, AA, ICPMS, and XRF. It can be employed in USEPA, ASTM and other methods relevant to the certified properties listed below.

The CRM is prepared from high purity single element concentrates of individual elements using Class A laboratory ware to give precise concentration.

Refer to side 2 for details of measurement uncertainties.

Instrumental Analysis by ICP Spectrometer:

Element	Labeled (mg/L)	Measured (mg/L)	NIST SRM
Ca	5,000	4,984.92	3109a
K	5,000	4,990.26	3141a
Mg	5,000	4,991.82	3131a
Na	5,000	4,998.07	3152a

Spex Reference Multi: Lot #10-100AS, 12-113AS, 5-198VY, 6-28VY-REF

Balances are calibrated regularly with weight sets traceable to NIST#s 32856, 32867 and others. This CRM is guaranteed stable and accurate to +/- 0.5% on the average of all the certified concentrations with no single element exceeding +/-2%. This includes uncertainty of measurements and other effects, such as transpiration losses. This guarantee is valid for a period of one year from the date of certification only when the material is kept tightly capped and transported and stored under laboratory conditions.

Date of Certification:

MAR = = 2001 Certifying Officer: N. Kochertakota

This Certified Reference Material has been prepared and certified under an ISO 9001 system consistent with the following guides:

Guide To The Expression Of Uncertainty In Measurement 1995

EURACHEM/CITAC Guide: Quantifying Uncertainty in Analytical Measurement -- Second Edition

ASTM Guide D6362-98

ISO Guide 34: Quality system guidelines for the production of reference materials.

ISO Guide 17025: Certification of reference materials, general and statistical principles

ISO Guide 31: Contents of certificates of reference materials

NIST Technical Note 1297

ILAC-G12-2000; Guidelines for the requirements for the competence of reference materials producers

ISO/REMCO N280

Material Source:

All analytes and matrix materials are obtained and verified by SPEX CertiPrep from pre-qualified vendors as per ISO 9000 guidelines. Vendor identifications are proprietary, however sources of all materials used in the preparation and testing of SPEX CertiPrep CRMs are tracked and documented. For further information contact CRM Sales.

Instructions for Use:

Primary usage of this CRM is in neat form or diluted serially with matrix of a purity at or greater than the purity of the original matrix solution. If dilution is required the diluent must be compatible with all certified analytes and contain stabilizers appropriate for the period of intended use. The CRM can also be used as a spike or with a spike, again with appropriate compatibility considerations. All solutions should be thoroughly mixed, by shaking, prior to use and never pipetted directly from the bottle. All surfaces that come in contact with the solution must be thoroughly cleaned and leached prior to use. Dilutions should be performed only with Class A volumetric glassware.

Method of Preparation:

Clean laboratory procedures and techniques have been used throughout the preparation. All materials, equipment, analytical instrumentation and personnel have been qualified prior to use. The highest purity acids applicable, 18 megohm, double deionized water, acid-leached triple-rinsed bottles, and Class A glassware have been used in all preparations.

Homogeneity:

The Homogeneity of the CRM has been confirmed by procedures consistent with ISO guide 17025, ISO/REMCO N280 and ASTM D6362-98 Appendix X2. Random, replicate samples of the final, packaged material have been analyzed for the certified values by procedures consistent with the intended use of the CRM.

The mathematical expression k, s²m is employed to determine the sampling size

S = relative standard deviation in % for one component of the sample. (ie. The sub-sampling uncertainty)

m = the sub-sampling mass

 k_s = mass of sub-sample necessary to ensure a relative sub-sampling error of 1% (68% confidence level) in a single determination

Statistical estimator and Confidence limits:

The certified value 'x' listed on the reverse of this document is at the 95% level of confidence and can be expressed as X = x+/-U where X = True value (Labeled Value), U = Expanded uncertainty

U=ku_e where k=2 is the coverage factor at the 95% confidence level

 u_e is obtained by combining the individual element standard uncertainty components u_i and $u_e \sqrt{\Sigma u_i^2}$

Certification Traveler Report:

All certified values reported were derived from Traveler Report (Spex CertiPrep's traceability documentation) identified by the lot number of this CRM. For further information contact CRM Sales.

Legal Notice:

inorganic ventures / iv labs

195 lehigh avenue, suite 4, lakewood, nj 08701 usa phone: 800-669-6799 • 732-901-1900 • fax: 732-901-1903

e-mail: ivsales@ivstandards.com • website: www.ivstandards.com

certificate of analysis

1.0 Inorganic Ventures / IV Labs is an ISO Guide 34-2000 Certified Reference Material (CRM) Manufacturer: Certificate #883-02. The certificate is designed and the certified value(s) and uncertainty(ies) are determined in accordance with ISO Guide 31-2000 (Reference Materials - Contents of certificates and label(s), ISO Guide 34-2000 "Quality System Guidelines for the Production of Reference Materials," and ISO Guide 35-1989 "Certification of Reference Materials - General and Statistical Principles."

2.0 DESCRIPTION OF CRM Custom-Grade 1000 µg/mL Zirconium in H20 tr. HNO3 tr. HF

Catalog Number:

CGZR1-1 and CGZR1-5

Lot Number:

W-ZR01056

Starting Material:

ZrO2

22855

Starting Material Purity (%):

99.994542

Starting Material Lot No Matrix:

H20 tr. HNO3 tr. HF

INDRGANIC LABS/RADCHEM LABS 143

DATE RECEIVED: 03/35/04

3.0 CERTIFIED VALUES AND UNCERTAINTIES

DATE EXPIRED: c3/0/acc5 VIC DATE OPENED: c3/a5/c4

Certified Concentration:

 $1004 \pm 2 \mu g/mL$

INDRG: 4474 PD: F53333

Certified Density:

0.999 g/mL (measured at 22° C)

The Certified Value is based upon the most precise method used to analyze this CRM. The following equations are used in the calculation of the certified value and the uncertainty:

Certified Value (C) = exx

(C)⊒≕ mean

n

x_i = individual results

Uncertainty (±) = $2[(e_T s_i)^T]^{1/2}$

n = number of measurements

(n)1/2

S = The summation of all significant estimated errors.
(Most common are the errors from instrumental measurement, weighing, dilution to volume, and the fixed error reported on the

NIST SRM certificate of analysis.)

4.0 TRACEABILITY TO NIST AND VALUES OBTAINED BY INDEPENDENT METHODS

□ "Property of the result of a measurement or the value of a standard whereby it can be related to stated references, usually national or international standards, through an unbroken chain of comparisons all having stated uncertainties." (ISO VIM, 2nd ed., 1993, definition 6.10)

☐ This IV product is Traceable to NIST via direct comparison to NIST SRMs. The uncertainties for each certified value are reported, taking into account the SRM uncertainty error and the measurement, weighing and volume dilution errors.

4.1

Assay Method #1

1004 ± 2 μg/mL (Avg 2 runs)

ICP Assay NIST SRM 3169 Lot Number: 990109

Assay Method #2

1000 µg/mL

Gravimetric NIST SRM Lot Number: See Sec. 4.2

- 4.2 BALANCE CALIBRATION All balances are checked daily using in-house procedure number 6-IMM-001. The weights used for testing are annually compared to Gerhart Scale Corporation's master weights and are traceable to the National Institute of Standards and Technology (NIST). The NIST Traceability numbers are 692476 Class 1 and 692476A Class 2. The NIST test number is 822/260017-98. All analytical balances are calibrated every 4 months by Gerhart Scale Corp. of South Amboy, The balances are calibrated with a class 1 and/or class 2 analytical weight set. These weights are tested annually by a NIST / NVLAP accredited calibration lab. The NIST test number is 822/260017-98.
- 4.3 THERMOMETER CALIBRATION The thermometers used in the determination of the final densities are calibrated vs standard thermometer No. 903-2680 which was certified in accordance with the procedures outlined by ASTM E77-87 and NIST Monograph 150 using NIST Test Nos. and Std Nos.: 769543, 217368/769543, 217368/P14452, 176240/P14452, 176240/P144
- 4.4 GLASSWARE CALIBRATION In-house procedure 3-QC-002 is used to calibrate all Class A Glassware used in the manufacture and quality control of Custom Grade Standards.

5.0 TRACE METALLIC IMPURITIES (TMI) DETERMINED BY ICP/MS AND ICP-OES IN µg/mL

Custom-Grade solutions are tested for trace metallic impurities by Axial ICP-OES and ICP-MS. The result from the most sensitive method for each element, is reported below. Solutions tested by ICP-MS were analyzed in an ULPA-Filtered Clean Room. An ULPA-Filter is 99.9985% efficient for the removal of particles down to 0.3 µm.

	t .		•	,
<u>O</u> Al 0.01416	<u>M</u> Dy < 0.01188	Q Li < 0.00012	<u>M</u> Pr < 0.00059	M Te < 0.05942
<u>M</u> Sb < 0.00099	<u>M</u> Er < 0.00990	<u>M</u> Lu < 0.00079	<u>M</u> Re < 0.00198	<u>M</u> Tb < 0.00059
M As < 0.01981	<u>M</u> Eu < 0.00594	Q Mg < 0.00012	M Rh < 0.00198	M Tl < 0.00198
M Ba < 0.01981	M Gd < 0.00198	Q Mn < 0.00401	M Rb < 0.00198	<u>M</u> Th < 0.00198
<u>O</u> Be < 0.40048	<u>M</u> Ga < 0.00198	<u>Q</u> Hg < 0.04405	M Ru < 0.00396	<u>M</u> Tm < 0.00079
<u>M</u> Bi < 0.00079	M Ge < 0.01188	Q Mo < 0.40048	<u>M</u> Sm < 0.00198	<u>M</u> Sn < 0.00990
M B < 0.13864	<u>M</u> Au < 0.00594	M Nd < 0.00396	<u>O</u> Sc < 0.00064	Q Ti < 0.16019
O Cd < 0.02123	M Hf 0.04403	Q Ni 0.01214	<u>M</u> Se < 0.01585	<u>M</u> W < 0.01981
O Ca 0.00809	<u>M</u> Ho < 0.00099	Q Nb < 0.08010	Q Si < 0.80096	<u>M</u> U < 0.00396
<u>M</u> Ce < 0.00990	M in < 0.01981	n Os	<u>O</u> Ag < 0.40048	<u>M</u> V < 0.00396
M Cs < 0.00059	<u>M</u> Ir < 0.00990	<u>M</u> Pd < 0.00990	Q Na < 0.02803	<u>M</u> Yb < 0.00198
O Cr < 0.00881	<u>Q</u> Fe 0.00344	Q P < 0.01922	M Sr < 0.00099	<u>O</u> Y < 0.00401
M Co < 0.00594	<u>M</u> La < 0.00099	M Pt < 0.00396	<u>O</u> S < 0.28033	<u>Q</u> Zn < 0.04005
M Cu < 0.01188	M Pb < 0.00594	<u>O</u> K < 0.00681	<u>M</u> Ta < 0.01386	<u>ş</u> Zr
M - Checked by ICP-MS	O - Checked by ICP-OES	i - Spectral Interference	n - Not Checked For	s - Solution Standard Element

6.0 INTENDED USE

For the calibration of analytical instruments including but not limited to the following:

ICP-MS, ICP-OES, FAAS, GFAA, XRF, and DCP

For the validation of analytical methods

For the preparation of "working reference samples"

For interference studies and the determination of correction coefficients

For detection limit and linearity studies

For additional intended uses, contact IV Technical Staff

7.0 INSTRUCTIONS FOR THE CORRECT USE OF THIS REFERENCE MATERIAL

Storage & Handling - Keep tightly sealed when not in use. Store and use at 20 ± 4.5. Do not pipet from container. Do not return portions removed for pipetting to container.

Atomic Weight; Valence; Coordination Number; Chemical Form in Solution - 91.224; +4; 6,7,8, Zr(F),-7

Chemical Compatibility - Soluble in concentrated HCI, HF, H, SO. (very hot) and HNO. Avoid H, PO. and neutral to basic media. Unstable at ppm levels with metals that would pull F away (i.e. Do not mix with Alkaline or Rare Earths or high levels of transition elements unless they are fluorinated). Stable with most inorganic anions but precipitation with phosphate, exalate, and tartrate with a tendency to hydrolyze forming the hydrated exide in all dilute acids except HF.

Stability - 2-100 ppb levels stable (alone or mixed with all other metals that are at comparable levels) as the Zr(F), + Zr(OH), F, > for morths in 1% HNO, / LDPE container. 1-10,000 ppm single element solutions as the Zr(F), - chemically stable for years in 2-5% HNO, / trace HF in an LDPE container.

Zr Containing Samples (Preparation and Solution) - Metal (Soluble in H₂O / HF / HNO₂); Oxide - unlike TiO₂ the ZrO₃ is best fused in one of the following ways (Na₂O₂ in Ni*, Na₂CO₃ in Pt* or Borax in Pt*), Organic Matrices (Dry ash at 450 °C in Pt* and dissolve by fusing with Na₂CO₃ and dissolving in HF / HNO₃ / H₂O₃).

Atomic Spectroscopic information (ICP-OES D.L.s are given as radial/axial view):

· was no obios		CHARLES AND AND SHOP		1 DESCRIPTION OF THE PROPERTY	
Technique/Li		Estimated D.L.	Order	Type	Interferences (underlined indicates severe at editioncs.)
ICP-OES 34	13.823 nm	0.007 / 0.0004 µg/ml.	1	ion	Hf, Nb
ICP-OES 33	9.198 nm	0.008 / 0.0007 µg/mL	1	ion	Th, Mo
ICP-OES 27	'2.261 nm	0.018 / 0.001 µg/mL	1	ion	Cr. V. Th. W
ICP-MS 90) amu	2 ppt	n/a	M.	"Ge"O, "Se"O,[""X" (where X = Hf, Ta, W)]

HF Note: This standard should not be prepared or stored in glass.

- 8.0 HAZARDOUS INFORMATION Please refer to the enclosed Material Saftey Data sheet for information regarding this CRM.
- 9.0 HOMOGENEITY This solution was mixed according to procedure IV-MPM-004 and is guaranteed to be homogeneous.

10.0 QUALITY STANDARD DOCUMENTATION

10.1 ISO 9001:2000 Quality Management System Registration - QMI Certificate Number 010105 Recognized by:

Registrar Accreditation Board (ANSI-RAB)

Standards Council of Canada (SCC)

Dutch Council for Accreditation (RVA)

Entidad Mexicana de Acreditación, a.c.(EMA)

Members of IQ Net International Certification Network:

Argentina (IRAM), Australia (QAS), Austria (QQS), Belgium (Avinter), Brazil (FCAV), Canada (QMI), Hong Kong (HKQAA), Columbia (ICONTEC), Czech Republic (CQS), Denmark (DS), Finland (SFS), France (AFAQ), Germany (DQS), Greece (ELOT), Hungary (MSZT), Ireland (NSAI), Israel (SII), Italy (CISQ), Japan (JQA), Korea (KSA-QA), Netherlands (KEMA), Norway (NCS), Poland (PCRC), Poland (APCER), Singapore (PSR), Stovenia (SIQ), Spain (AFNOR), Switzerland (SQS)

Poland(PCBC), Portugal (APCER), Singapore (PSB), Slovenia (SIQ), Spain (AENOR), Switzerland (SQS) 10.2 ISO/IEC 17025 - 1999 "General Requirements for the Competence of Testing and Calibration"

- Chemical Testing - Accredited A2LA Certificate Number 883.01

10.3 ISO/IEC Guide 34 - 2000 "General Requirements for the Competence of Reference Material Producers"

- Reference Materials Production - Accredited A2LA Certificate Number 883.02

A2LA Mutual Recognition Agreement Partners:

Australia (NATA), Austria (BmwA), Belgium (BELTEST) (BKO-OBE), Canada (SCC), Chinese Taipei (CNLA), Czech Republic (NAO), Denmark (DANAK), Finland (FINAS), France (COFRAC), Germany (DAR), Hong Kong (HKAS, Ireland (NAB), Italy (SIT) (SINAL), Japan (JAB) (JNLA), Republic of Korea (KOLAS), The Netherlands (RVA), New Zealand (IANZ), Norway (NA), Portugal (IPQ), Singapore (SAC-SINGLAS), Spain (ENAC), Sweden (SWEDAC), Switzerland (SAS), United Kingdom (UKAS) and United States (NVLAP) (ICBO ES)

- 10.4 10CFR50 Appendix B Nuclear Regulatory Commission
 - Domestic Licensing of Production and Utilization Facilities
- 10.5 10CFR21 Nuclear Regulatory Commission Reporting Defects and Non-Compliance
- 10.6 MIL-STD-45662A (Obsolete/Observed)

INOF	RGANIC L	_AB\$/RADCI	HEM LABS	128- Jac 9
DATE	RECEIVE	D: 09/	25/07	
DATE	EXPIRE):03/	700/9002	VD/5
DATE	OPENED:	09/	195/04	
INORG	: 447	4 PO:	F5939	3

- 11.1 IV Shelf Life The period of time during which the concentration of the analyte(s) in a properly packaged, unopened, and unused standard stored under environmentally controlled and monitored conditions will remain within the specified uncertainty range. Shelf life is limited primarily by transpiration (loss of water from the solution) and infrequently, by chemical instability. Transpiration studies (P-SP01020) of chemically-stable solutions performed at Inorganic Ventures / IV Labs indicate a CRM shelf-life of four years for solutions packaged in 500-mt. low density polyethylene bottles. When stored under special conditions that minimize transpiration and instability, the shelf life can be extended past this limit.
- 11.2 Expiration Date The date after which a CRM should not be used. Routine laboratory use of a CRM increases transpiration losses and the chance of contamination which affect the integrity of the CRM and limit its useful life. Inorganic Ventures / IV Labs concurs with state and federal regulatory agencies' recommendations that solution standards be assigned a one-year expiration date.

Certification Date: March 19, 2003

Expiration Date:

EXPIRES 112915

12.0 NAMES AND SIGNATURES OF CERTIFYING OFFICERS

Certificate Prepared By:

JoAnn Struthers, QA Administrative Assistant

Certificate Approved By:

Katalin Le, QC Supervisor

Certifying Officer:

Paul Gaines, Chemist, Senior Technical Director

for Stutten known in an Paux Aain

010201 inorganic ventures / iv labs

195 lehigh avenue, suite 4, lakewood, nj 08701 usa phone: 800-669-6799 • 732-901-1900 • fax: 732-901-1903 e-mail: ivsales@ivstandards.com • website: www.ivstandards.com

certificate of analysis

CUSTOM-GRADE SOLUTION

1000 µg/mL Scandium IN 5% HNO₃ (abs)

Catalog Number: CGSC1-1 and CGSC1-5

Lot Number: W-SC02058

Starting Material: Starting Material Purity: Starting Material Lot No: Sc₂O₃ 99.99% 632-5721 INDRGANIC LABS/RADCHEM LABS
DATE RECEIVED: 07/0\/0\/2
DATE EXPIRED: 08/0\/2005 \nu0\/3
DATE OPENED: 07/0\/0\/4
INDRG: \(\frac{1}{2}\)629 PD: \(\frac{1}{2}\)3\/2

CERTIFIED CONCENTRATION: 1005 \pm 2 μ g/mL

The Certified Value is based upon the most precise method used to analyze this CRM. The following equations are used in the calculation of the certified value and the uncertainty:

Certified Value $(\bar{x}) = \frac{\sum x}{n}$

Uncertainty (±) = $\frac{2[(\sum_{s})^2]^{1/2}}{(n)^{1/2}}$

(R) = mean

 $x_i = individual results$

n = number of measurements

 $\sum S_i$ = The summation of all significant estimated errors.

Classical Wet Assay: 1007 \pm 3 $\mu \mathrm{g/mL}$

Method: EDTA Titration vs NIST SRM 928 Lead Nitrate.

Instrument Analysis: 1005 ± 2 µg/mL

Method: Inductively Coupled Plasma Spectroscopy (ICP) vs NIST SRM 3148a.

The independent samples t-test was used to determine if there is agreement between the above assay methods at the 95% confidence interval. Both methods were compared and showed agreement within the stated uncertainties. This agreement is a confirmation of the accuracy of this CRM.

TRACE METALLIC IMPURITIES DETERMINED BY ICP-MS AND ICP-OES IN μ g/mL:

Custom-Grade solutions tested for trace metallic impurities by ICP-MS were analyzed in an ULPA-Filtered Clean Room. An ULPA-Filter is 99.9985% efficient for the removal of particles down to 0.3 μ m.

<u>o</u>	Al	< 0.070	M	Dγ	< 0.00060	M	Lj	< 0.0010	M	Pr	< 0.000030	М	Te	< 0.0030
M	Sb	<0.000050	M	Er	< 0.00050	M	Lu	< 0.000040	M	Re	< 0.00010	<u>M</u>	Tb<	0.000030
<u>M</u>	As	< 0.0010	M	Eu	< 0.00030	M	Mg	< 0.0030	M	Rh	< 0.00010	M	Tt	< 0.00010
M	Ba	< 0.0010	M	Gd	< 0.00010	M	Mn	< 0.00040	M	Rb	< 0.00010	<u>M</u>	Th	0.0028
M	Be	< 0.000050	M	Ga	< 0.00010	<u>o</u>	Hg	i	M	Ru	< 0.00020	M	Tm ·	< 0.000040
M	Bi	0.0043	M	Ge	< 0.00060	M	Мο	< 0.00020	<u>M</u>	Sm	< 0.00010	М	Sn	< 0.00050
0	В	< 0.020	M	Au	< 0.00030	M	Nd	< 0.00020	<u>s</u>	\$c		<u>M</u>	Ti	< 0.0050
M	Cd	< 0.00030	M	Hf	0.0030	<u>Q</u>	Ni	< 0.084	<u>o</u>	Se	< 0.67	M	W	< 0.0010
0	Ca	0.016	M	Но	< 0.000050	W	Nb	< 0.000050	<u>o</u>	Si	< 0.034	M	U	< 0.00020
M	Çe	< 0.00050	M	In	< 0.00010	ū	Os		· <u>M</u>	Ag	0.0050	M	٧	< 0.00020
M	Cs	< 0.000030	M	lr .	< 0.00050	M	Pd	< 0.00050	<u>o</u>	Na	< 0.16	M	Υb	< 0.00010
M	Cr	< 0.00050	<u>0</u>	Fe	< 0.16	Q	P	i	M	Sr	< 0.000050	M	Y	< 0.0040
M	Co	< 0.00030	M	La	< 0.000050	M	Pt	< 0.00020	n	S		M	Zn	0.0075
M	Cu	< 0.00060	M	Pb	0.00050	Õ	K	< 5.01	<u>M</u>	Ta	< 0.00070	M	Zr	0.032

M - checked by ICP-MS

O - checked by ICP-OES

i - spectral interference

n - not checked for

s - solution standard element

ANALYZED DENSITY OF SOLUTION (measured at 22°C): 1.038 g/mL

QA:KL Rev.0108040H

Quality Assurance Manager

Paul R. Haines

Expires:

01 2005

QUALITY STANDARD DOCUMENTATION

1. ISO 9001:2000 QMI Registered Quality System (Certificate Number 010105)

Members of IQ Net: Argentina (IRAM), Australia (QAS), Austria (ÖQS), Belgium (Avinter), Brazil (FCAV), Canada (QMI), Hong Kong (HKQAA), Columbia (ICONTEC), Czech Republic (CQS), Denmark (DS), Finland (SFS), France (AFAQ), Germany (DQS), Greece (ELOT), Hungary (MSZT), Ireland (NSAI), Israel (SII), Italy (CISQ), Japan (JQA), Korea (KSA-QA), Netherlands (KEMA), Norway (NCS), Poland(PCBC), Portugal (APCER), Singapore (PSB), Slovenia (SIQ), Spain (AENOR), Switzerland (SQS)

- 2. ISO/IEC Guide 34-2000 "General Requirements for the Competence of Reference Material Producers" Reference Materials Production Accredited A2LA Certificate 883.02
- ISO/IEC17025-1999 "General Requirements for the Competence of Testing and Calibration" Chemical Testing -Accredited A2LA Certificate 883.01
- 4. MIL-STD-45662A
- 5. 10CFR50 Appendix B Nuclear Regulatory Commission Domestic Licencing of Production and Utilization Facilities
- 10CFR21 Nuclear Regulatory Commission Reporting Defects and Non-Compliance
 Please contact our Quality Assurance Department for further information and copies of documents pertaining to our
 Quality Standard certifications.

STABILITY/ EXPIRATION DOCUMENTATION

Shelf Life -

The length of time that a properly stored and packaged standard will remain within the specified uncertainty. Shelf life is affected by chemical stability and transpiration issues. Inorganic Ventures' Standard Solutions are chemically stable indefinitely. Transpiration loss is linear with time and limits the time a standard can be used with confidence. The smaller the bottle the higher the rate of transpiration. Inorganic Ventures' studies indicate that the shelf life of our 500 ml. bottle is 4 years and the shelf life of our 125 mL bottle is 21 months.

Expiration Date -

The date after which a standard solution should not be used. A one year expiration date is recommended by most state and federal regulatory agencies. Transpiration issues and repeated use of solutions over a one year period may adversely affect the integrity of the standard.

PACKAGING DOCUMENTATION

Purified acid, 18 megohm double deionized water that has been filtered through a 0.2 µm filter and in-house procedure IV-PACK-001 is used to clean all bottles. Contact us for technical information relating to contamination issues in packaging materials.

GLASSWARE CALIBRATION

In-house procedure 3-QC-002 is used to calibrate all Class A Glassware used in the manufacture and quality control of Custom Grade Standards.

BALANCE CALIBRATION

All balances are checked daily using in-house procedure number 6-IMM-001. The weights used for testing are annually compared to Gerhart Scale Corporation's master weights and are traceable to the National Institute of Standards and Technology (NIST). The NIST Traceability numbers are 428359B and 454678. The NIST test number is 822/260017-98.

All analytical balances are calibrated every 4 months by Gerhart Scale Corp. of South Amboy. The balances are calibrated with a class 1 analytical weight set. These weights are tested annually by a NIST / NVLAP accredited calibration lab. The NIST test number is 822/260017-8.

THERMOMETER CALIBRATION

The thermometers used in the determination of the final densities are calibrated vs standard thermometer No. 903-2680 which was certified in accordance with the procedures outlined by ASTM E77-87 and NIST Monograph 150 using NIST Test Nos. and Std Nos.: 769543, 217368/769543, 217368/P14452, 176240/P14452, 176240. The in-house procedure No. is 2-QC-001. Thermometers which are not calibrated vs standard thermometer No. 903-2680 are traceable to NIST Identification Nos. 92564, 119016, 471047 and NIST test report Nos. 811/258522, 811/2557078, and 236090.

TECHNICAL SUPPORT

All customers are encouraged to contact us for technical support for the proper use of our products.

TEL 1-800-569-6799

INT'L 1-732-901-1900

FAX 1-732-901-1903

E-MAIL IVtech@ivstandards.com

inorganic ventures / iv labs

195 lehigh avenue, suite 4, lakewood, nj 08701 usa phone: 800-669-6799 • 732-901-1900 • fax: 732-901-1903 e-mail: ivsales@ivstandards.com • website: www.ivstandards.com

certificate of analysis

CUSTOM-GRADE SOLUTION

10,000 μg/mL Scandium IN 5% HNO₃ (abs)

Catalog Number: CGSC10-1and CGSC10-5

Lot Number: T-SC02053

Starting Material: Starting Material Purity: Starting Material Lot No:

Sc₂O₃ 99.999% 632-5721 INORGANIC LABS/RADCHEM LABS
DATE RECEIVED: 09/01/03
DATE EXPIRED: 09/01/001 VOS
DATE OPENED: 09/01/03
INORG: 100 FO: E50030

CERTIFIED CONCENTRATION: 10,047 ± 29 µg/mL

The Certified Value is based upon the most precise method used to analyze this CRM. The following equations are used in the calculation of the certified value and the uncertainty:

Certified Value $(\bar{x}) = \frac{\sum x}{n}$

Uncertainty (±) = $\frac{2[(\sum_s j^2]^{1/2}}{(n)^{1/2}}$

 $(\bar{x}) = mean$

x_i = individual results

n = number of measurements

 $\sum S_i =$ The summation of all significant estimated errors.

Classical Wet Assay: 10,047 ± 29 µg/mL

Method: EDTA Titration vs NIST SRM 928 Lead Nitrate.

Instrument Analysis: 9994 ± 41 µg/ml.

Method: Inductively Coupled Plasma Spectroscopy (ICP) vs NIST SRM 3148a.

The independent samples t-test was used to determine if there is agreement between the above assay methods at the 95% confidence interval. Both methods were compared and showed agreement within the stated uncertainties. This agreement is a confirmation of the accuracy of this CRM.

TRACE METALLIC IMPURITIES DETERMINED BY ICP-MS AND ICP-OES IN µg/mL:

Custom-Grade solutions tested for trace metallic impurities by ICP-MS were analyzed in an ULPA-Filtered Clean Room. An ULPA-Filter is 99,9985% efficient for the removal of particles down to 0.3 μ m.

<0.00030 <0.0010 0.028 <0.00040
0.028
< 0.00040
< 0.0050
< 0.010
< 0.0020
< 0.0020
< 0.0010
< 0.040
0.075
0.32

M - checked by ICP-MS

O - checked by ICP-OES

i - spectral interference

n - not checked for

s - solution standard element

ANALYZED DENSITY OF SOLUTION (measured at 22°C): 1.073 g/mL

(over)

QA:KL Rev.0212030W

Paul R. Laines

Expires:

11 97 M4

Quality Assurance Manager

QUALITY STANDARD DOCUMENTATION

ISO 9001:2000 QMI Registered Quality System (Certificate Number 010105)

Members of IQ Net: Argentina (IRAM), Australia (QAS), Austria (ÖQS), Belgium (Avinter), Brazil (FCAV), Canada (QMI), Hong Kong (HKQAA), Columbia (ICONTEC), Czech Republic (CQS), Denmark (DS), Finland (SFS), France (AFAQ), Germany (DQS), Greece (ELOT), Hungery (MSZT), Ireland (NSAI), Israel (SII), Italy (CISQ), Japan (JQA), Korea (KSA-QA), Netherlands (KEMA), Norway (NCS), Poland(PCBC), Portugal (APCER), Singapore (PSB), Slovenia (SIQ), Spain (AENOR), Switzerland (SQS)

- 2. ISO/IEC Guide 34-2000 "General Requirements for the Competence of Reference Material Producers" - Reference Materials Production - Accredited A2LA Certificate 883.02
- 3. ISO/IEC17025-1999 "General Requirements for the Competence of Testing and Calibration" - Chemical Testing -Accredited A2LA Certificate 883.01
- 4. MIL-STD-45662A
- 10CFR50 Appendix B Nuclear Regulatory Commission Domestic Licencing of Production and Utilization Facilities 5.
- 6. 10CFR21 - Nuclear Regulatory Commission - Reporting Defects and Non-Compliance Please contact our Quality Assurance Department for further information and copies of documents pertaining to our Quality Standard certifications.

STABILITY/ EXPIRATION DOCUMENTATION

Shelf Life -The length of time that a properly stored and packaged standard will remain within the

specified uncertainty. Shelf life is affected by chemical stability and transpiration issues. Inorganic Ventures' Standard Solutions are chemically stable indefinitely. Transpiration loss is linear with time and limits the time a standard can be used with confidence. The smaller the bottle the higher the rate of transpiration. Inorganic Ventures' studies indicate that the shelf life of our 500 mL bottle is 4 years and the shelf life of our 125 mL bottle is 21

Expiration Date -The date after which a standard solution should not be used. A one year expiration date is

> recommended by most state and federal regulatory agencies. Transpiration issues and repeated use of solutions over a one year period may adversely affect the integrity of th

standard.

PACKAGING DOCUMENTATION

Purified acid, 18 megohm double deionized water that has been filtered through a 0.2 µm filter and in-house IV-PACK-001 is used to clean all bottles. Contact us for technical information relating to procedure

contamination issues in packaging materials.

GLASSWARE CALIBRATION

In-house procedure 3-QC-002 is used to calibrate all Class A Glassware used in the manufacture and quality control of Custom Grade Standards.

BALANCE CALIBRATION

All balances are checked daily using in-house procedure number 6-IMM-001. The weights used for testing are annually compared to Gerhart Scale Corporation's master weights and are traceable to the National Institute of Standards and Technology (NIST). The NIST Traceability numbers are 428359B and 454678. The NIST test number is 822/260017-98.

All analytical balances are calibrated every 4 months by Gerhart Scale Corp. of South Amboy. The balances are calibrated with a class 1 analytical weight set. These weights are tested annually by a NIST / NVLAP accredited calibration lab. The NIST test number is 822/260017-8.

THERMOMETER CALIBRATION

The thermometers used in the determination of the final densities are calibrated vs standard thermometer No. 903-2680 which was certified in accordance with the procedures outlined by ASTM E77-87 and NIST Monograph 150 using NIST Test Nos. and Std Nos.: 769543, 217368/769543, 217368/P14452, 176240/P14452, 176240. The in-house procedure No. is 2-QC-001. Thermometers which are not calibrated vs standard thermometer No. 903-2680 are traceable to NIST Identification Nos. 92564, 119016, 471047 and NIST test report Nos. 811/258522, 811/2557078, and 236090.

TECHNICAL SUPPORT

All customers are encouraged to contact us for technical support for the proper use of our products.

FAX 1-732-901-1903 E-MAIL IVtech@ivstandards.com INT'L 1-732-901-1900 TEL 1-800-569-6799

Certificate of Reference Material

Catalog Number: PLB9-2X/2Y/2T

Lot No. 10-119B

Description:

1000 mg/L Boron

Matrix:

H20

This ASSURANCE ® certified reference material, CRM, is intended primarily for use as a calibration standard or quality control standard for inorganic spectroscopic instrumentation such as ICPOES, DCP, AA, ICPMS, and XRF. It can be employed in USEPA, ASTM and other methods relevant to the certified properties listed below.

Certified Value: 1001 mg/L

Uncertainty Associated with Measurement: +/- 3.0 mg/L

Certified Value is Traceable to: NIST SRM 3107

The CRM is prepared gravimetrically using high purity (NH4)2B4O7-4H2O Lot# 08001E. The certified value listed is the average of values obtained by classical wet assay and ICP spectrometer analysis

Refer to side 2 for details of measurement uncertainties.

Classical Wet Assay: 1001 mg/L

Method: Titration with Sodium Hydroxide using Phenolphthalein as indicator. Sodium Hydroxide

standardized against Potassium Biphthalate NIST SRM #84k

Instrumental Analysis by ICP spectrometer: 1001 mg/L

Uncertified Properties:

Density: 1.001 @ 22.3 Degrees Celsius

Trace Metallic Impurities in the Actual Solution via ICP / ICPMS Analysis:

Element	mg/L	Element	mg/L	Element	mg/L
Al	0.06	Cu	< 0.001	Pb	< 0.001
As	< 0.001	Fe	0.001	Re	< 0.001
Ag	0.002	Ga	< 0.001	Rb	< 0.001
Ba	<0.001	In	< 0.001	Sr	< 0.001
Be	< 0.001	K	<0.06	Sb	< 0.001
Bi	0.03	Li	< 0.001	Si	0.01
Cd	< 0.001	Mn	< 0.001	Ti	< 0.001
Co	<0.001	Mo	< 0.001	TI	< 0.001
Ca	0.001	Mg	<0.001	V	0.003
Cr	<0.001	Na	. 0.01	Zr	<0.001
		Ni	0.001	Zn	0.004

Balances are calibrated regularly with weight sets traceable to NIST #32856, #32857 and others. This CRM is guaranteed stable to +/-0.5% of the certified concentration inclusive of uncertainty of measurements and other effects, such as transpiration losses, for a period of one year from the date of certification. This guarantee is valid only when the material is kept tightly capped and transported and stored under laboratory conditions.

Date of Certification:

APR '04

Certifying Officer: N. Kocherakota

This Certified Reference Material has been prepared and certified under an ISO 9001 system consistent with the following guides:

Guide To The Expression Of Uncertainty In Measurement 1995

EURACHEM/CITAC Guide; Quantifying Uncertainty in Analytical Measurement - Second Edition

ASTM Guide D6362-98

ISO Guide 34: Quality system guidelines for the production of reference materials.

ISO Guide 17025: Certification of reference materials, general and statistical principles

ISO Guide 31: Contents of certificates of reference materials

NIST Technical Note 1297

ILAC-G12-2000: Guidelines for the requirements for the competence of reference materials producers

ISO/REMCO N280

Material Source:

All analytes and matrix materials are obtained and verified by SPEX CertiPrep from pre-qualified vendors as per ISO 9000 guidelines. Vendor identifications are proprietary, however sources of all materials used in the preparation and testing of SPEX CertiPrep CRMs are tracked and documented. For further information contact CRM Sales.

Instructions for Use:

Primary usage of this CRM is in neat form or diluted serially with matrix of a purity at or greater than the purity of the original matrix solution. If dilution is required the diluent must be compatible with all certified analytes and contain stabilizers appropriate for the period of intended use. The CRM can also be used as a spike or with a spike, again with appropriate compatibility considerations. All solutions should be thoroughly mixed, by shaking, prior to use and never pipetted directly from the bottle. All surfaces that come in contact with the solution must be thoroughly cleaned and leached prior to use. Dilutions should be performed only with Class A volumetric glassware.

Method of Preparation:

Clean laboratory procedures and techniques have been used throughout the preparation. All materials, equipment, analytical instrumentation and personnel have been qualified prior to use. The highest purity acids applicable, 18 megohin, double deionized water, acid-leached triple-rinsed bottles, and Class A glassware have been used in all preparations.

Homogeneity:

The Homogeneity of the CRM has been confirmed by procedures consistent with ISO guide 17025, ISO/REMCO N280 and ASTM D6362-98 Appendix X2. Random, replicate samples of the final, packaged material have been analyzed for the certified values by procedures consistent with the intended use of the CRM.

The mathematical expression k,=52m is employed to determine the sampling size

S = relative standard deviation in % for one component of the sample. (ie. The sub-sampling uncertainty)

m = the sub-sampling mass

 $k_s = mass$ of sub-sample necessary to ensure a relative sub-sampling error of 1% (68% confidence level) in a single determination

Statistical estimator and Confidence limits:

The certified value 'x' listed on the reverse of this document is at the 95% level of confidence and can be expressed as X = x+/-U where X = True value (Labeled Value), U = Expanded uncertainty

U=kue where k=2 is the coverage factor at the 95% confidence level

 u_e is obtained by combining the individual element standard uncertainty components u_i and $u_{ee} \sqrt{\Sigma u_i^2}$

Certification Traveler Report:

All certified values reported were derived from Traveler Report (Spex CertiPrep's traceability documentation) identified by the lot number of this CRM. For further information contact CRM Sales.

Legal Notice:

010207

SPEXertificate

Certificate of Reference Material

Catalog Number: PLLI2-2X/2Y

Lot No. 10-12LI

Description:

1000 mg/L Lithium

Matrix:

2% HNO3

This ASSURANCE © certified reference material, CRM, is intended primarily for use as a calibration standard or quality control standard for inorganic spectroscopic instrumentation such as ICPOES, DCP, AA, ICPMS, and XRF. It can be employed in USEPA, ASTM and other methods relevent to the certified properties listed below.

Certified Value: 997.5 mg/L

Uncertainty Associated with Measurement: +/- 3 mg/I Certified Value is Traceable to: NIST SRM 3129a

The CRM is prepared gravimetrically using high purity $\,$ Lithium Carconate $\,$ Lot# $\,$ 03021A . The certified value listed is the average of values obtained by classical wet assay and ICP spectrometer analysis

Refer to side 2 for details of measurement uncertainties.

Classical Wet Assay: 997 mg/L

Method: Evaporate to dryness. Furne with Sulfuric Acid. Ignite and weigh as Li2SO4.

Instrumentation Analysis By ICP spectrometer: 998 mg/L

Uncertified Properties:

Density: 1.014 @ 22.2 Degrees Celsius

Trace Metallic Impurities in the Actual Solution via ICP / ICPMS Analysis:

Element	mg/L	Element	mg/L	Element	mg/L
Al	0.001	Cu	<0.001	Pb	<0.001
As	< 0.001	Fe	0.007	Re	< 0.001
Ag	< 0.003	Ga	< 0.001	Rь	< 0.001
В	<0.008	In	< 0.001	Sr	< 0.001
Ba	0.001	K	0.20	Sb	< 0.001
Be	< 0.001	Mn	< 0.001	Si	0.007
Bi	< 0.001	Mo	< 0.001	Ti	< 0.001
Ca	0.017	Mg	< 0.001	Ti	< 0.001
Cr	< 0.001	Na	0.01	V	< 0.001
Cđ	0.008	Ni.	< 0.001	Zг	< 0.001
Co	< 0.001			Zn	0.035

Balances are calibrated regularly with weight sets traceable to NIST #32856, #32857 and others. This CRM is guaranteed stable to +/-0.5% of the certified concentration inclusive of uncertainty of measurements and other effects, such as transpiration losses, for a period of one year from the date of certification. This guarantee is valid only when the material is kept tightly capped and transported and stored under laboratory conditions.

Date of Certification:

JAN '04

Certifying Officer: N. Kochestakota

This Certified Reference Material has been prepared and certified under an ISO 9001 system consistent with the following guides:

Guide To The Expression Of Uncertainty In Measurement 1995

EURACHEM/CITAC Guide: Quantifying Uncertainty in Analytical Measurement - Second Edition

ASTM Guide D6362-98

ISO Guide 34: Quality system guidelines for the production of reference materials.

ISO Guide 17025: Certification of reference materials, general and statistical principles

ISO Guide 31: Contents of certificates of reference materials

NIST Technical Note 1297

ILAC-G12-2000: Guidelines for the requirements for the competence of reference materials producers

ISO/REMCO N280

Material Source:

All analytes and matrix materials are obtained and verified by SPEX CertiPrep from pre-qualified vendors as per ISO 9000 guidelines. Vendor identifications are proprietary, however sources of all materials used in the preparation and testing of SPEX CertiPrep CRMs are tracked and documented. For further information contact CRM Sales.

Instructions for Use:

Primary usage of this CRM is in neat form or diluted serially with matrix of a purity at or greater than the purity of the original matrix solution. If dilution is required the diluent must be compatible with all certified analytes and contain stabilizers appropriate for the period of intended use. The CRM can also be used as a spike or with a spike, again with appropriate compatibility considerations. All solutions should be thoroughly mixed, by shaking, prior to use and never pipetted directly from the bottle. All surfaces that come in contact with the solution must be thoroughly cleaned and leached prior to use. Dilutions should be performed only with Class A volumetric glassware.

Method of Preparation:

Clean laboratory procedures and techniques have been used throughout the preparation. All materials, equipment, analytical instrumentation and personnel have been qualified prior to use. The highest purity acids applicable, 18 megohm, double deionized water, acid-leached triple-rinsed bottles, and Class A glassware have been used in all preparations.

Homogeneity:

The Homogeneity of the CRM has been confirmed by procedures consistent with ISO guide 17025, ISO/REMCO N280 and ASTIVID6362-98 Appendix X2. Random, replicate samples of the final, packaged material have been analyzed for the certified values by procedures consistent with the intended use of the CRM.

The mathematical expression k,=s²m is employed to determine the sampling size

s = relative standard deviation in % for one component of the sample. (ie. The sub-sampling uncertainty)

m = the sub-sampling mass

k₄ = mass of sub-sample necessary to ensure a relative sub-sampling error of 1% (68% confidence level) in a single determination

Statistical estimator and Confidence limits:

The certified value 'x' listed on the reverse of this document is at the 95% level of confidence and can be expressed as X = x+/-U where X = True value (Labeled Value), U = Expanded uncertainty

U=ku, where k=2 is the coverage factor at the 95% confidence level

 u_e is obtained by combining the individual element standard uncertainty components u_i and $u_e \sqrt{\Sigma u_i^2}$

Certification Traveler Report:

All certified values reported were derived from Traveler Report (Spex CertiPrep's traceability documentation) identified by the lot number of this CRM. For further information contact CRM Sales.

Legal Notice:

SPEXertificate "

Certificate of Reference Material

Catalog Number: PLMO9-2X/2Y/2T

Lot No. 10-74MO

Description:

1000 mg/L Molybdenum

Matrix:

H20

This ASSURANCE © certified reference material, CRM, is intended primarily for use as a calibration standard or quality control standard for inorganic spectroscopic instrumentation such as ICPOES, DCP, AA, ICPMS, and XRF. It can be employed in USEPA, ASTM and other methods relevant to the certified properties listed below.

Certified Value: 998 mg/L

Uncertainty Associated with Measurement: +/-3.9mg/L Certified Value is Traceable to: NIST SRM #3134

The CRM is prepared gravimetrically using high purity (NH4)6Mo7(O)24 Lot# 03011C. The certified value listed is the average of values obtained by classical wet assay and ICP spectrometer analysis

Refer to side 2 for details of measurement uncertainties.

Classical Wet Assay: 998 mg/L

Method: Precipitation using 8 Hydroxy Quinoline, filter, dry and weigh as MoO2 (C9H6NO)2.

Instrumental Analysis by ICP spectrometer: 999 mg/L

Uncertified Properties:

Density: 0.9989 @ 23.7 Degrees Celsius

Trace Metallic Impurities in the Actual Solution via ICP / ICPMS Analysis:

Element	mg/L	Element	mg/L	Element	mg/L
Al	0.002	Cu	0.003	Pb	0.002
As	0.04	Fe	<0.10	Re	0.03
Ag	<0.001	Ga	<0.001	Rb	<0.001
В	<0.006	In	<0.001	Sr	< 0.001
Ba	0.001	K	0.01	Sb	0.005
Ве	<0.01	Li	<0.001	Si	<0.50
Bi	< 0.001	Mg	0.10	Ti	0.004
Ca	0.01	Mn	0.001	TI	< 0.001
Cr	<0.002	Na	0.007	v	0.003
Cd	<0.10	Ni	< 0.001	Zr	<0.001
Co	0.002			Zn	0.009

Balances are calibrated regularly with weight sets traceable to NIST #32856, #32857 and others. This CRM is guaranteed stable to +/-0.5% of the certified concentration inclusive of uncertainty of measurements and other effects, such as transpiration losses, for a period of one year from the date of certification. This guarantee is valid only when the material is kept tightly capped and transported and stored under laboratory conditions.

Date of Certification: Certifying Officer: N. Kocherlakol

This Certified Reference Material has been prepared and certified under an ISO 9001 system consistent with the following guides:

Guide To The Expression Of Uncertainty In Measurement 1995

EURACHEM/CITAC Guide; Quantifying Uncertainty in Analytical Measurement - Second Edition

ASTM Guide D6362-98

ISO Guide 34: Quality system guidelines for the production of reference materials.

ISO Guide 17025: Certification of reference materials, general and statistical principles

ISO Guide 31: Contents of certificates of reference materials

NIST Technical Note 1297

ILAC-G12-2000: Guidelines for the requirements for the competence of reference materials producers

ISO/REMCO N280

Material Source:

All analytes and matrix materials are obtained and verified by SPEX CertiPrep from pre-qualified vendors as per ISO 9000 guidelines. Vendor identifications are proprietary, however sources of all materials used in the preparation and testing of SPEX CertiPrep CRMs are tracked and documented. For further information contact CRM Sales.

Instructions for Use:

Primary usage of this CRM is in neat form or diluted serially with matrix of a purity at or greater than the purity of the original matrix solution. If dilution is required the diluent must be compatible with all certified analytes and contain stabilizers appropriate for the period of intended use. The CRM can also be used as a spike or with a spike, again with appropriate compatibility considerations. All solutions should be thoroughly mixed, by shaking, prior to use and never pipetted directly from the bottle. All surfaces that come in contact with the solution must be thoroughly cleaned and leached prior to use. Dilutions should be performed only with Class A volumetric glassware.

Method of Preparation:

Clean laboratory procedures and techniques have been used throughout the preparation. All materials, equipment, analytical instrumentation and personnel have been qualified prior to use. The highest purity acids applicable, 18 megohm, double deionized water, acid-leached triple-rinsed bottles, and Class A glassware have been used in all preparations.

Homogeneity:

The Homogeneity of the CRM has been confirmed by procedures consistent with ISO guide 17025, ISO/REMCO N280 and ASTM D6362-98 Appendix X2. Random, replicate samples of the final, packaged material have been analyzed for the certified values by procedures consistent with the intended use of the CRM.

The mathematical expression k₁=s²m is employed to determine the sampling size

S = relative standard deviation in % for one component of the sample. (ie. The sub-sampling uncertainty)

m = the sub-sampling mass

 k_t = mass of sub-sample necessary to ensure a relative sub-sampling error of 1% (68% confidence level) in a single determination

Statistical estimator and Confidence limits:

The certified value 'x' listed on the reverse of this document is at the 95% level of confidence and can be expressed as X = x+/-U where X = True value (Labeled Value), U = Expanded uncertainty

U=ku, where k=2 is the coverage factor at the 95% confidence level

 u_e is obtained by combining the individual element standard uncertainty components u_i and $u_e \sqrt{\Sigma u_i^2}$

Certification Traveler Report:

All certified values reported were derived from Traveler Report (Spex CertiPrep's traceability documentation) identified by the lot number of this CRM. For further information contact CRM Sales.

Legal Notice:

Certificate of Reference Alaterial

Catalog Number: PLP9-2X/2Y/2T

Lot No. 9-150P

Description:

1000 mg/L Phosphorus

Matrix:

H20

This ASSURANCE © certified reference material, CRM, is intended primarily for use as a calibration standard or quality control standard for inorganic spectroscopic instrumentation such as ICPOES, DCP, AA, ICPMS, and XRF. It can be employed in USEPA, ASTM and other methods relevent to the certified properties listed below.

Certified Value: 1002.5 mg/L

Uncertainty Associated with Measurement: +/- 3 mg/L Certified Value is Traceable to: NIST SRM 3139a

The CRM is prepared gravimetrically using high purity (NH4)H2(PO4) Lot# W1002B. The certified value listed is the average of values obtained by classical wet assay and ICP spectrometer analysis

Refer to side 2 for details of measurement uncertainties.

Classical Wet Assay:

1003 mg/L

Method: Precipitation using Magnesia Mixture. Filter, ignite, and weigh as Mg2P2O7.

Instrumentation Analysis By ICP spectrometer: 1002 mg/L

Uncertified Properties:

Density: 0.9996 @ 24.0 Degrees Celsius

Trace Metallic Impurities in the Actual Solution via ICP / ICPMS Analysis:

Element	mg/L	Element	mg/L	Element	mg/L
Ai	0.002	Cu	<0.001	Pb	<0.001
As	0.001	Fe	< 0.001	Rb	< 0.001
Ag	< 0.002	Ga	< 0.001	Re	< 0.001
В	< 0.002	In	< 0.001	Sn	< 0.001
Ba	< 0.001	K	0.006	Sr	< 0.001
Be	< 0.001	Li	< 0.001	Sb	0.004
Bi	< 0.001	Mg	< 0.001	Ti	0.004
Ca	0.004	Mn	< 0.001	TI	< 0.001
Cr	<0.008	Mo	< 0.001	V	< 0.006
Cd	< 0.001	Na	0.003	Zr	< 0.001
Со	< 0.001	Ni	< 0.001	Zn	0.07

Balances are calibrated regularly with weight sets traceable to NIST #32856, #32857 and others. This CRM is guaranteed stable to +/-0.5% of the certified concentration inclusive of uncertainty of measurements and other effects, such as transpiration losses, for a period of one year from the date of certification. This guarantee is valid only when the material is kept tightly capped and transported and stored under laboratory conditions.

Date of Certification:

OCT -- 2003

Certifying Officer: N. Kocherakota

This Certified Reference Material has been prepared and certified under an ISO 9001 system consistent with the following guides:

Guide To The Expression Of Uncertainty In Measurement 1995

EURACHEM/CITAC Guide: Quantifying Uncertainty in Analytical Measurement - Second Edition

ASTM Guide D6362-98

ISO Guide 34: Quality system guidelines for the production of reference materials.

ISO Guide 17025: Certification of reference materials, general and statistical principles

ISO Guide 31: Contents of certificates of reference materials

NIST Technical Note 1297

ILAC-G12-2000: Guidelines for the requirements for the competence of reference materials producers

ISO/REMCO N280
Material Source:

All analytes and matrix materials are obtained and verified by SPEX CertiPrep from pre-qualified vendors as per ISO 9000 guidelines. Vendor identifications are proprietary, however sources of all materials used in the preparation and testing of SPEX CertiPrep CRMs are tracked and documented. For further information contact CRM Sales.

Instructions for Use:

Primary usage of this CRM is in neat form or diluted serially with matrix of a purity at or greater than the purity of the original matrix solution. If dilution is required the diluent must be compatible with all certified analytes and contain stabilizers appropriate for the period of intended use. The CRM can also be used as a spike or with a spike, again with appropriate compatibility considerations. All solutions should be thoroughly mixed, by shaking, prior to use and never pipetted directly from the bottle. All surfaces that come in contact with the solution must be thoroughly cleaned and leached prior to use. Dilutions should be performed only with Class A volumetric glassware.

Method of Preparation:

Clean laboratory procedures and techniques have been used throughout the preparation. All materials, equipment, analytical instrumentation and personnel have been qualified prior to use. The highest purity acids applicable, 18 megohm, double deionized water, acid-leached triple-rinsed bottles, and Class A glassware have been used in all preparations.

Homogeneity:

The Homogeneity of the CRM has been confirmed by procedures consistent with ISO guide 17025, ISO/REMCO N280 and ASTM D6362-98 Appendix X2. Random, replicate samples of the final, packaged material have been analyzed for the certified values by procedures consistent with the intended use of the CRM.

The mathematical expression $k_s = s^2 m$ is employed to determine the sampling size

S = relative standard deviation in % for one component of the sample. (ie. The sub-sampling uncertainty) m = the sub-sampling mass

 k_s = mass of sub-sample necessary to ensure a relative sub-sampling error of 1% (68% confidence level) in a single determination

Statistical estimator and Confidence limits:

The certified value 'x' listed on the reverse of this document is at the 95% level of confidence and can be expressed as X = x+/-U where X = True value (Labeled Value), U = Expanded uncertainty

U=kue where k=2 is the coverage factor at the 95% confidence level

 u_c is obtained by combining the individual element standard uncertainty components u_i and $u_{c-}\sqrt{\Sigma u_i^2}$

Certification Traveler Report:

All certified values reported were derived from Traveler Report (Spex CertiPrep's traceability documentation) identified by the lot number of this CRM. For further information contact CRM Sales.

Legal Notice:

SPEX CertiPrep reference materials are not for any cosmetic, drug or household application and are to be used only by qualified individuals who are trained in appropriate procedures. No claims against SPEX CertiPrep, Inc. of any kind whatsoever, whether based on breach of warranty, alleged negligence, or otherwise, with respect to this RM shall be greater than the purchase price. In no event shall SPEX CertiPrep, Inc. be liable for any loss of profits or any incidental, special, or consequential damages.

203 Norcross Avenue • Metuchen, NJ 08840 USA 732-549-7144 • 1-800-LAB-SPEX • Fax: 732-603-9647 CRMSales@spexcsp.com • www.spexcsp.com

Always Providing Superior Quality . . . Unparalleled Service™

Certificate of Reference Material

Catalog Number: PLSI9-2X/2Y/2T

Lot No. 10-07SI

Description:

1000 mg/L Silicon

Matrix:

H2O / 0.4% F-

This ASSURANCE © certified reference material, CRM, is intended primarily for use as a calibration standard or quality control standard for inorganic spectroscopic instrumentation such as ICPOES, DCP, AA, ICPMS, and XRF. It can be employed in USEPA, ASTM and other methods relevent to the certified properties listed below.

Certified Value: 998.5 mg/L

Uncertainty Associated with Measurement: +/- 3 mg/L Certified Value is Traceable to: NIST SRM #3150

The CRM is prepared gravimetrically using high purity (NH4)2SiF6 Lot# 02021D. The certified value listed is the average of values obtained by classical wet assay and ICP spectrometer analysis

Refer to side 2 for details of measurement uncertainties.

Classical Wet Assay: 997 mg/L

Method: Precipitation using Ammonium Molybdate and 8-Hydroxy Quinoline. Filter, dry, and weigh as

(C9H7ON)4(H4)[Si(Mo12O40)]

Instrumentation Analysis By ICP spectrometer: 1000 mg/L

Uncertified Properties:

Density: 1.010 @ 26.5 Degrees Celsius

Trace Metallic Impurities in the Actual Solution via ICP / ICPMS Analysis:

Element	mg/L	Element	mg/L	Element	mg/L
Al	0.002	Cu	<0.001	Рb	<0.001
As	<0.001	Fe	0.020	Rb	<0.001
Ag	< 0.001	Ga	< 0.001	Re	< 0.001
В	< 0.003	ln	< 0.001	Sr	<0.001
Ba	< 0.001	K	<0.010	Sb	0.03
Be	<0.001	Li	<0.001	Ti	< 0.001
Bi	<0.001	Mg	<0.001	TI	<0.001
Ça	0.018	Mn	<0.001	V	<0.001
Cr	<0.002	Mo	<0.001	Zr	0.05
Cd	<0.001	Na	0.02	Zn	0.06
Co	< 0.001	Ni	0.001		

Balances are calibrated regularly with weight sets traceable to NIST #32856, #32857 and others. This CRM is guaranteed stable to +/-0.5% of the certified concentration inclusive of uncertainty of measurements and other effects, such as transpiration losses, for a period of one year from the date of certification. This guarantee is valid only when the material is kept tightly capped and transported and stored under laboratory conditions.

Date of Certification: 103 Certifying Officer: N. Kocherakota

This Certified Reference Material has been prepared and certified under an ISO 9001 system consistent with the following guides:

Guide To The Expression Of Uncertainty In Measurement 1995

EURACHEM/CITAC Guide; Quantifying Uncertainty in Analytical Measurement - Second Edition

ASTM Guide D6362-98

ISO Guide 34: Quality system guidelines for the production of reference materials.

ISO Guide 17025: Certification of reference materials, general and statistical principles

ISO Guide 31: Contents of certificates of reference materials

NIST Technical Note 1297

ILAC-G12-2000; Guidelines for the requirements for the competence of reference materials producers

ISO/REMCO N280

Material Source:

All analytes and matrix materials are obtained and verified by SPEX CertiPrep from pre-qualified vendors as per ISO 9000 guidelines. Vendor identifications are proprietary, however sources of all materials used in the preparation and testing of SPEX CertiPrep CRMs are tracked and documented. For further information contact CRM Sales.

Instructions for Use:

Primary usage of this CRM is in neat form or diluted serially with matrix of a purity at or greater than the purity of the original matrix solution. If dilution is required the diluent must be compatible with all certified analytes and contain stabilizers appropriate for the period of intended use. The CRM can also be used as a spike or with a spike, again with appropriate compatibility considerations. All solutions should be thoroughly mixed, by shaking, prior to use and never pipetted directly from the bottle. All surfaces that come in contact with the solution must be thoroughly cleaned and leached prior to use. Dilutions should be performed only with Class A volumetric glassware.

Method of Preparation:

Clean laboratory procedures and techniques have been used throughout the preparation. All materials, equipment, analytical instrumentation and personnel have been qualified prior to use. The highest purity acids applicable, 18 megohm, double deionized water, acid-leached triple-rinsed bottles, and Class A glassware have been used in all preparations.

Homogeneity:

The Homogeneity of the CRM has been confirmed by procedures consistent with ISO guide 17025, ISO/REMCO N280 and ASTM D6362-98 Appendix X2. Random, replicate samples of the final, packaged material have been analyzed for the certified values by procedures consistent with the intended use of the CRM.

The mathematical expression k=s2m is employed to determine the sampling size

S = relative standard deviation in % for one component of the sample. (ie. The sub-sampling uncertainty)

m = the sub-sampling mass

k, = mass of sub-sample necessary to ensure a relative sub-sampling error of 1% (68% confidence level) in a single determination

Statistical estimator and Confidence limits:

The certified value 'x' listed on the reverse of this document is at the 95% level of confidence and can be expressed as X = x+/-U where X = True value (Labeled Value), U = Expanded uncertainty

U=ku_c where k=2 is the coverage factor at the 95% confidence level

ue is obtained by combining the individual element standard uncertainty components u_i and $u_{c*}\sqrt{\Sigma u_i}^2$

Certification Traveler Report:

All certified values reported were derived from Traveler Report (Spex CertiPrep's traceability documentation) identified by the lot number of this CRM. For further information contact CRM Sales.

Legal Notice:

Certificate of Reference Material

Catalog Number: PLTI9-2X/2Y/2T Lot No. 10-38TI

Description: 1000 mg/L Titanium **Matrix:** H2O/ 0.24% F-

This ASSURANCE © certified reference material, CRM, is intended primarily for use as a calibration standard or quality control standard for inorganic spectroscopic instrumentation such as ICPOES, DCP, AA, ICPMS, and XRF. It can be employed in USEPA, ASTM and other methods relevent to the certified properties listed below.

Certified Value: 1001 mg/L

Uncertainty Associated with Measurement: 3.0mg/L Certified Value is Traceable to: NIST SRM #3162a

The CRM is prepared gravimetrically using high purity (NH4)2TiF6 Lot# 02021E. The certified value listed is the average of values obtained by classical wet assay and ICP spectrometer analysis

Refer to side 2 for details of measurement uncertainties.

Classical Wet Assay: 1003 mg/L

Method: Precipitation using Ammonium Hydroxide. Filter, ignite, and weigh as TiO2.

Instrumentation Analysis By ICP spectrometer: 999 mg/L

Uncertified Properties:

Density: 1.001 @ 22.5 Degrees Celsius

Trace Metallic Impurities in the Actual Solution via ICP / ICPMS Analysis:

Element	mg/L	Element	mg/L	Element	mg/L
Al	0.006	Cu	<0.10	Pb	<0.001
As	< 0.001	Fe	< 0.01	Rb	< 0.001
Ag	< 0.001	Ga	< 0.001	Re	< 0.001
В	0.003	In	< 0.001	Si	0.52
Ba	< 0.001	K	< 0.01	Sr	0.001
Be	< 0.001	Li	< 0.001	Sb	< 0.001
Bi	< 0.001	Mg	<0.001	TI	< 0.001
Ca	0.013	Mn	< 0.001	v	< 0.001
Cr	< 0.003	Mo	< 0.001	Zr	0.01
Cd	< 0.001	Na	0.02	Zn	0.03
Co	0.002	Ni	<0.001		

Balances are calibrated regularly with weight sets traceable to NIST #32856, #32857 and others. This CRM is guaranteed stable to +/-0.5% of the certified concentration inclusive of uncertainty of measurements and other effects, such as transpiration losses, for a period of one year from the date of certification. This guarantee is valid only when the material is kept tightly capped and transported and stored under laboratory conditions.

Date of Certification: AUG '03 Certifying Officer: N. Kochertakota

This Certified Reference Material has been prepared and certified under an ISO 9001 system consistent with the following guides:

Guide To The Expression Of Uncertainty In Measurement 1995

EURACHEM/CITAC Guide: Quantifying Uncertainty in Analytical Measurement - Second Edition

ASTM Guide D6362-98

ISO Guide 34: Quality system guidelines for the production of reference materials.

ISO Guide 17025: Certification of reference materials, general and statistical principles

ISO Guide 31: Contents of certificates of reference materials

NIST Technical Note 1297

ILAC-G12-2000: Guidelines for the requirements for the competence of reference materials producers

ISO/REMCO N280

Material Source:

All analytes and matrix materials are obtained and verified by SPEX CertiPrep from pre-qualified vendors as per ISO 9000 guidelines. Vendor identifications are proprietary, however sources of all materials used in the preparation and testing of SPEX CertiPrep CRMs are tracked and documented. For further information contact CRM Sales.

Instructions for Use:

Primary usage of this CRM is in neat form or diluted serially with matrix of a purity at or greater than the purity of the original matrix solution. If dilution is required the diluent must be compatible with all certified analytes and contain stabilizers appropriate for the period of intended use. The CRM can also be used as a spike or with a spike, again with appropriate compatibility considerations. All solutions should be thoroughly mixed, by shaking, prior to use and never pipetted directly from the bottle. All surfaces that come in contact with the solution must be thoroughly cleaned and leached prior to use. Dilutions should be performed only with Class A volumetric glassware.

Method of Preparation:

Clean laboratory procedures and techniques have been used throughout the preparation. All materials, equipment, analytical instrumentation and personnel have been qualified prior to use. The highest purity acids applicable, 18 megohm, double deionized water, acid-leached triple-rinsed bottles, and Class A glassware have been used in all preparations.

Homogeneity:

The Homogeneity of the CRM has been confirmed by procedures consistent with ISO guide 17025, ISO/REMCO N280 and ASTM D6362-98 Appendix X2. Random, replicate samples of the final, packaged material have been analyzed for the certified values by procedures consistent with the intended use of the CRM.

The mathematical expression k,-s²m is employed to determine the sampling size

S = relative standard deviation in % for one component of the sample. (ie. The sub-sampling uncertainty)

m = the sub-sampling mass

 k_i = mass of sub-sample necessary to ensure a relative sub-sampling error of 1% (68% confidence level) in a single determination

Statistical estimator and Confidence limits:

The certified value 'x' listed on the reverse of this document is at the 95% level of confidence and can be expressed as X = x+/-U where X = True value (Labeled Value), U = Expanded uncertainty

U=ku, where k=2 is the coverage factor at the 95% confidence level

 u_e is obtained by combining the individual element standard uncertainty components u_i and $u_{e-}\sqrt{\Sigma u_i^2}$

Certification Traveler Report:

All certified values reported were derived from Traveler Report (Spex CertiPrep's traceability documentation) identified by the lot number of this CRM. For further information contact CRM Sales.

Legal Notice:

Certificate of Reference Material

Catalog Number: PLSR2-2X/2Y/2T

Lot No. 9-166SR

Description:

1000 mg/L Strontium in 2% HNO3

Matrix:

2% HNO3

This ASSURANCE ® certified reference material, CRM, is intended primarily for use as a calibration standard or quality control standard for inorganic spectroscopic instrumentation such as ICPOES, DCP, AA, ICPMS, and XRF. It can be employed in USEPA, ASTM and other methods relevent to the certified properties listed below.

Certified Value: 1002.5 mg/L

Uncertainty Associated with Measurement: +/- 3 mg/L Certified Value is Traceable to: NIST SRM 3153a

The CRM is prepared gravimetrically using high purity Strontium Carbonate 02001B. The certified value listed is the average of values obtained by classical wet assay and ICP spectrometer analysis

Refer to side 2 for details of measurement uncertainties.

Classical Wet Assay:

1002 mg/L

Method: EDTA titration using Methyl Thymol Blue as indicator. EDTA standardized against Pb(NO3)2

NIST SRM #928.

Instrumentation Analysis By ICP spectrometer: 1003 mg/L

Uncertified Properties:

Density: 1.010 @ 22.7 Degrees Celsius

Trace Metallic Impurities in the Actual Solution via ICP / ICPMS Analysis:

Element	mg/L	Element	mg/L	Element	mg/L
Al	0.02	Cu	< 0.001	Pb	< 0.001
As	< 0.001	Fe	0.001	Rb	< 0.001
Ag	< 0.002	Ga	< 0.001	Re	< 0.001
В	< 0.003	In	< 0.001	Si	0.043
Ba	0.008	K	0.10	Sb	< 0.001
Be	<0.001	Li	0.007	Ti	< 0.002
Bi	< 0.001	Mg	<0.003	Tl	< 0.001
Ca	0.014	Mn	< 0.001	v	< 0.001
Cr	0.001	Mo	< 0.001	Zr	< 0.001
Cd	< 0.001	Na	0.01	Zn	0.04
Co	< 0.001	Ni	< 0.001		

Balances are calibrated regularly with weight sets traceable to NIST #32856, #32857 and others. This CRM is guaranteed stable to +/-0.5% of the certified concentration inclusive of uncertainty of measurements and other effects, such as transpiration losses, for a period of one year from the date of certification. This guarantee is valid only when the material is kept tightly capped and transported and stored under laboratory conditions.

Date of Certification:

Certifying Officer: N. Kochestake

This Certified Reference Material has been prepared and certified under an ISO 9001 system consistent with the following guides:

Guide To The Expression Of Uncertainty In Measurement 1995

EURACHEM/CITAC Guide: Quantifying Uncertainty in Analytical Measurement - Second Edition

ASTM Guide D6362-98

ISO Guide 34: Quality system guidelines for the production of reference materials.

ISO Guide 17025: Certification of reference materials, general and statistical principles

ISO Guide 31: Contents of certificates of reference materials

NIST Technical Note 1297

ILAC-G12-2000: Guidelines for the requirements for the competence of reference materials producers

ISO/REMCO N280

Material Source:

All analytes and matrix materials are obtained and verified by SPEX CertiPrep from pre-qualified vendors as per ISO 9000 guidelines. Vendor identifications are proprietary, however sources of all materials used in the preparation and testing of SPEX CertiPrep CRMs are tracked and documented. For further information contact CRM Sales.

Instructions for Use:

Primary usage of this CRM is in neat form or diluted serially with matrix of a purity at or greater than the purity of the original matrix solution. If dilution is required the diluent must be compatible with all certified analytes and contain stabilizers appropriate for the period of intended use. The CRM can also be used as a spike or with a spike, again with appropriate compatibility considerations. All solutions should be thoroughly mixed, by shaking, prior to use and never pipetted directly from the bottle. All surfaces that come in contact with the solution must be thoroughly cleaned and leached prior to use. Dilutions should be performed only with Class A volumetric glassware.

Method of Preparation:

Clean laboratory procedures and techniques have been used throughout the preparation. All materials, equipment, analytical instrumentation and personnel have been qualified prior to use. The highest purity acids applicable, 18 megohm, double deionized water, acid-leached triple-rinsed bottles, and Class A glassware have been used in all preparations.

Homogeneity:

The Homogeneity of the CRM has been confirmed by procedures consistent with ISO guide 17025, ISO/REMCO N280 and ASTM D6362-98 Appendix X2. Random, replicate samples of the final, packaged material have been analyzed for the certified values by procedures consistent with the intended use of the CRM.

The mathematical expression k₁=s²m is employed to determine the sampling size

S = relative standard deviation in % for one component of the sample. (ie. The sub-sampling uncertainty)

m = the sub-sampling mass

k_s = mass of sub-sample necessary to ensure a relative sub-sampling error of 1% (68% confidence level) in a single determination

Statistical estimator and Confidence limits:

The certified value 'x' listed on the reverse of this document is at the 95% level of confidence and can be expressed as X = x+/-U where X = True value (Labeled Value), U = Expanded uncertainty

U=ku, where k=2 is the coverage factor at the 95% confidence level

 u_e is obtained by combining the individual element standard uncertainty components u_i and $u_{e^{-}}\sqrt{\Sigma u_i^2}$

Certification Traveler Report:

All certified values reported were derived from Traveler Report (Spex CertiPrep's traceability documentation) identified by the lot number of this CRM. For further information contact CRM Sales.

Legal Notice

SPEX CertiPrep reference materials are not for any cosmetic, drug or household application and are to be used only by qualified individuals who are trained in appropriate procedures. No claims against SPEX CertiPrep, Inc. of any kind whatsoever, whether based on breach of warranty, alleged negligence, or otherwise, with respect to this RM shall be greater than the purchase price. In no event shall SPEX CertiPrep, Inc. be liable for any loss of profits or any incidental, special, or consequential damages.

ISO 9001

203 Norcross Avenue • Metuchen, NJ 08840 USA 732-549-7144 • 1-800-LAB-SPEX • Fax: 732-603-9647 CRMSales@spexcsp.com • www.spexcsp.com

Always Providing Superior Quality . . . Unparalleled Service™

Certificate of Reference Material

Catalog Number: PLSN5-2X/2Y/2T

Lot No. 10-87SN

Description:

1000 mg/L Tin

Matrix:

20% HCL

This ASSURANCE © certified reference material, CRM, is intended primarily for use as a calibration standard or quality control standard for inorganic spectroscopic instrumentation such as ICPOES, DCP, AA, ICPMS, and XRF. It can be employed in USEPA, ASTM and other methods relevant to the certified properties listed below.

Certified Value: 1003 mg/L

Uncertainty Associated with Measurement: +/-3.0mg/L Certified Value is Traceable to: NIST SRM 3161a

The CRM is prepared gravimetrically using high purity Tin Metal Lot# 05021C. The certified value listed is the average of values obtained by classical wet assay and ICP spectrometer analysis

Refer to side 2 for details of measurement uncertainties.

Classical Wet Assay:

1004 mg/L

Method: Precipitation using Ammonium Hydroxide. Filter, ignite, and weigh as SnO2.

Instrumental Analysis by ICP spectrometer:

1001 mg/L

Uncertified Properties:

Density: 1.034 @24.8C Degrees Celsius

Trace Metallic Impurities in the Actual Solution via ICP / ICPMS Analysis:

Element	mg/L	Element	mg/L	Element	mg/L
Aì	0.003	Cu	0.001	Pb	0.004
As	<0.20	Fe	0.18	Rb	< 0.001
Ag	0.006	Ga	< 0.001	Re	< 0.001
B	< 0.002	In	0.05	Si	0.20
Ba	0.004	K	< 0.20	Sr	< 0.001
Ве	< 0.001	Li	< 0.001	Sb	0.003
Bi	< 0.001	Mg	0.004	Ti	0.009
Ca	0.02	Mn	0.003	TI	< 0.001
Cr	0.02	Mo	< 0.001	ν	< 0.40
Cd.	0.002	Na	0.02	Zr	< 0.001
Co	0.007	Ni	0.06	Zn	0.05

Balances are calibrated regularly with weight sets traceable to NIST #32856, #32857 and others. This CRM is guaranteed stable to +/-0.5% of the certified concentration inclusive of uncertainty of measurements and other effects, such as transpiration losses, for a period of one year from the date of certification. This guarantee is valid only when the material is kept tightly capped and transported and stored under laboratory conditions.

Date of Certification: APR '04 Certifying Officer: N. Kocherlakola

This Certified Reference Material has been prepared and certified under an ISO 9001 system consistent with the following guides:

Guide To The Expression Of Uncertainty In Measurement 1995

EURACHEM/CITAC Guide: Quantifying Uncertainty in Analytical Measurement - Second Edition

ASTM Guide D6362-98

ISO Guide 34: Quality system guidelines for the production of reference materials.

ISO Guide 17025: Certification of reference materials, general and statistical principles

ISO Guide 31: Contents of certificates of reference materials

NIST Technical Note 1297

ILAC-G12-2000; Guidelines for the requirements for the competence of reference materials producers

ISO/REMCO N280

Material Source:

All analytes and matrix materials are obtained and verified by SPEX CertiPrep from pre-qualified vendors as per ISO 9000 guidelines. Vendor identifications are proprietary, however sources of all materials used in the preparation and testing of SPEX CertiPrep CRMs are tracked and documented. For further information contact CRM Sales.

Instructions for Use:

Primary usage of this CRM is in neat form or diluted serially with matrix of a purity at or greater than the purity of the original matrix solution. If dilution is required the diluent must be compatible with all certified analytes and contain stabilizers appropriate for the period of intended use. The CRM can also be used as a spike or with a spike, again with appropriate compatibility considerations. All solutions should be thoroughly mixed, by shaking, prior to use and never pipetted directly from the bottle. All surfaces that come in contact with the solution must be thoroughly cleaned and leached prior to use. Dilutions should be performed only with Class A volumetric glassware.

Method of Preparation:

Clean laboratory procedures and techniques have been used throughout the preparation. All materials, equipment, analytical instrumentation and personnel have been qualified prior to use. The highest purity acids applicable, 18 megohm, double deionized water, acid-leached triple-rinsed bottles, and Class A glassware have been used in all preparations.

Homogeneity:

The Homogeneity of the CRM has been confirmed by procedures consistent with ISO guide 17025, ISO/REMCO N280 and ASTM D6362-98 Appendix X2. Random, replicate samples of the final, packaged material have been analyzed for the certified values by procedures consistent with the intended use of the CRM.

The mathematical expression k,-s²m is employed to determine the sampling size

S = relative standard deviation in % for one component of the sample. (ie. The sub-sampling uncertainty)

m = the sub-sampling mass

 k_s = mass of sub-sample necessary to ensure a relative sub-sampling error of 1% (68% confidence level) in a single determination

Statistical estimator and Confidence limits:

The certified value 'x' listed on the reverse of this document is at the 95% level of confidence and can be expressed as X = x+/-U where X = True value (Labeled Value), U = Expanded uncertainty

U=ku_e where k=2 is the coverage factor at the 95% confidence level

ue is obtained by combining the individual element standard uncertainty components u_i and $u_{cr} \sqrt{\Sigma u_i^2}$

Certification Traveler Report:

All certified values reported were derived from Traveler Report (Spex CertiPrep's traceability documentation) identified by the lot number of this CRM. For further information contact CRM Sales.

Legal Notice:

Certificate of Reference Alaterial

Catalog Number: PLBI4-2X/2Y

10-68BI Lot No.

Description:

1000 mg/L Bismuth

Matrix:

10% HNO3

This ASSURANCE ® certified reference material, CRM, is intended primarily for use as a calibration standard or quality control standard for inorganic spectroscopic instrumentation such as ICPOES, DCP, AA, ICPMS, and XRF. It can be employed in USEPA, ASTM and other methods relevant to the certified properties listed below

Certified Value: 1001 mg/L

Uncertainty Associated with Measurement: +/-3.0mg/L

Certified Value is Traceable to:

NIST SRM 3106

The CRM is prepared gravimetrically using high purity Bismuth Metal certified value listed is the average of values obtained by classical wet assay and ICP spectrometer analysis

Refer to side 2 for details of measurement uncertainties.

Classical Wet Assay: 1000 mg/L

Method: EDTA titration using Xylenol Orange as indicator. EDTA standardized against Pb(NO3)2 NIST

SRM #928.

Instrumental Analysis by ICP spectrometer: 1002 mg/L

Uncertified Properties:

Density: 1.052@23.1 Degrees Celsius

Trace Metallic Impurities in the Actual Solution via ICP / ICPMS Analysis:

Element	mg/L	Element	mg/L	Element	mg/L
Al	0.006	Cu	0.002	РЪ	0.009
As	<0.001	Fe	0.001	Re	< 0.001
Ag	<0.001	Ga	< 0.001	Rb	<0.001
В	< 0.003	In	<0.001	Sr	<0.001
Ba	< 0.001	K	0.002	Sb	0.002
Be	< 0.001	Li	< 0.001	Si	< 0.01
Cd	<0.001	Mn	<0.001	Ti	< 0.001
Co	< 0.001	Mo	< 0.001	TI	< 0.001
Ca	0.006	Mg	0.002	v	<0.001
Cr	< 0.001	Na	0.009	Zr	< 0.001
		Ni	0.001	Zn	0.01

Balances are calibrated regularly with weight sets traceable to NIST #32856, #32857 and others This CRM is guaranteed stable to +/-0.5% of the certified concentration inclusive of uncertainty of measurements and other effects, such as transpiration losses, for a period of one year from the date of certification. This guarantee is valid only when the material is kept tightly capped and transported and stored under laboratory conditions.

Date of Certification:

Certifying Officer: N. Kocherlakol

This Certified Reference Material has been prepared and certified under an ISO 9001 system consistent with the following guides:

Guide To The Expression Of Uncertainty In Measurement 1995

EURACHEM/CITAC Guide: Ouantifying Uncertainty in Analytical Measurement - Second Edition

ASTM Guide D6362-98

ISO Guide 34: Quality system guidelines for the production of reference materials.

ISO Guide 17025: Certification of reference materials, general and statistical principles

ISO Guide 31: Contents of certificates of reference materials

NIST Technical Note 1297

ILAC-G12-2000: Guidelines for the requirements for the competence of reference materials producers

ISO/REMCO N280

Material Source:

All analytes and matrix materials are obtained and verified by SPEX CertiPrep from pre-qualified vendors as per ISO 9000 guidelines. Vendor identifications are proprietary, however sources of all materials used in the preparation and testing of SPEX CertiPrep CRMs are tracked and documented. For further information contact CRM Sales.

Instructions for Use:

Primary usage of this CRM is in neat form or diluted serially with matrix of a purity at or greater than the purity of the original matrix solution. If dilution is required the diluent must be compatible with all certified analytes and contain stabilizers appropriate for the period of intended use. The CRM can also be used as a spike or with a spike, again with appropriate compatibility considerations. All solutions should be thoroughly mixed, by shaking, prior to use and never pipetted directly from the bottle. All surfaces that come in contact with the solution must be thoroughly cleaned and leached prior to use. Dilutions should be performed only with Class A volumetric glassware.

Method of Preparation:

Clean laboratory procedures and techniques have been used throughout the preparation. All materials, equipment, analytical instrumentation and personnel have been qualified prior to use. The highest purity acids applicable, 18 megohm, double deionized water, acid-leached triple-rinsed bottles, and Class A glassware have been used in all preparations.

Homogeneity:

The Homogeneity of the CRM has been confirmed by procedures consistent with ISO guide 17025, ISO/REMCO N280 and ASTM D6362-98 Appendix X2. Random, replicate samples of the final, packaged material have been analyzed for the certified values by procedures consistent with the intended use of the CRM.

The mathematical expression k=s²m is employed to determine the sampling size

S = relative standard deviation in % for one component of the sample. (ie. The sub-sampling uncertainty)

m = the sub-sampling mass

k, = mass of sub-sample necessary to ensure a relative sub-sampling error of 1% (68% confidence level) in a single determination

Statistical estimator and Confidence limits:

The certified value 'x' listed on the reverse of this document is at the 95% level of confidence and can be expressed as X = x+/-U where X = True value (Labeled Value), U = Expanded uncertainty

U=kue where k=2 is the coverage factor at the 95% confidence level

 u_e is obtained by combining the individual element standard uncertainty components u_i and $u_{ee} \sqrt{\Sigma u_i^2}$

Certification Traveler Report:

All certified values reported were derived from Traveler Report (Spex CertiPrep's traceability documentation) identified by the lot number of this CRM. For further information contact CRM Sales.

Legal Notice:

Certificate of Reference Material

Catalog Number: PLLA2-2X/2Y

Lot No. 10-27LA

Description:

1000 mg/L Lanthanum

Matrix:

2% HNO3

This ASSURANCE ® certified reference material, CRM, is intended primarily for use as a calibration standard or quality control standard for inorganic spectroscopic instrumentation such as ICPOES, DCP, AA, ICPMS, and XRF. It can be employed in USEPA, ASTM and other methods relevent to the certified properties listed below.

Certified Value: 1000 mg/L

Uncertainty Associated with Measurement: +/-3.0mg/L Certified Value is Traceable to: NIST SRM #3127a

The CRM is prepared gravimetrically using high purity La(NO3)3-6H2O Lot# 03951B. The certified value listed is the average of values obtained by classical wet assay and ICP spectrometer analysis

Refer to side 2 for details of measurement uncertainties.

Classical Wet Assay: 1000 mg/L

Method: EDTA titration using Methyl Thymol Blue as indicator. EDTA standardized against Pb(NO3)2

NIST SRM #928.

Instrumentation Analysis By ICP spectrometer: 999 mg/L

Uncertified Properties:

Density: 1.010 @ 22.3 Degrees Celsius

Trace Metallic Impurities in the Actual Solution via ICP / ICPMS Analysis:

Element	mg/L	Element	mg/L	Element	mg/L
Ce	0.02	Lu	< 0.001	Th	< 0.001
Ca	0.029	Mn	< 0.001	Tm	< 0.001
Dy	<0.001	Mo	< 0.001	Ti	< 0.001
Er	< 0.001	Nd	< 0.001	Tb	<0.001
Eu	< 0.001	Ni	< 0.001	Ta	<0.001
Fe	0.005	Na	0.01	TI	< 0.001
Gd	< 0.001	Pr	< 0.001	v	< 0.001
Ga	< 0.001	Rь	< 0.001	W	<0.001
Hf	< 0.001	Sc	0.002	Y	< 0.001
Но	< 0.001	Sm	< 0.001	Yb	<0.001
In	< 0.001			Zr	< 0.001

Balances are calibrated regularly with weight sets traceable to NIST #32856, #32857 and others This CRM is guaranteed stable to +/-0.5% of the certified concentration inclusive of uncertainty of measurements and other effects, such as transpiration losses, for a period of one year from the date of certification. This guarantee is valid only when the material is kept tightly capped and transported and stored under laboratory conditions.

Date of Certification:

JAN '04

Certifying Officer: N. Kochertakota

This Certified Reference Material has been prepared and certified under an ISO 9001 system consistent with the following guides:

Guide To The Expression Of Uncertainty In Measurement 1995

EURACHEM/CITAC Guide: Quantifying Uncertainty in Analytical Measurement - Second Edition

ASTM Guide D6362-98

ISO Guide 34: Quality system guidelines for the production of reference materials.

ISO Guide 17025: Certification of reference materials, general and statistical principles

ISO Guide 31: Contents of certificates of reference materials

NIST Technical Note 1297

ILAC-G12-2000: Guidelines for the requirements for the competence of reference materials producers

ISO/REMCO N280

Material Source:

All analytes and matrix materials are obtained and verified by SPEX CertiPrep from pre-qualified vendors as per ISO 9000 guidelines. Vendor identifications are proprietary, however sources of all materials used in the preparation and testing of SPEX CertiPrep CRMs are tracked and documented. For further information contact CRM Sales.

Instructions for Use:

Primary usage of this CRM is in neat form or diluted serially with matrix of a purity at or greater than the purity of the original matrix solution. If dilution is required the diluent must be compatible with all certified analytes and contain stabilizers appropriate for the period of intended use. The CRM can also be used as a spike or with a spike, again with appropriate compatibility considerations. All solutions should be thoroughly mixed, by shaking, prior to use and never pipetted directly from the bottle. All surfaces that come in contact with the solution must be thoroughly cleaned and leached prior to use. Dilutions should be performed only with Class A volumetric glassware.

Method of Preparation:

Clean laboratory procedures and techniques have been used throughout the preparation. All materials, equipment, analytical instrumentation and personnel have been qualified prior to use. The highest purity acids applicable, 18 megohm, double deionized water, acid-leached triple-rinsed bottles, and Class A glassware have been used in all preparations.

Homogeneity:

The Homogeneity of the CRM has been confirmed by procedures consistent with ISO guide 17025, ISO/REMCO N280 and ASTM D6362-98 Appendix X2. Random, replicate samples of the final, packaged material have been analyzed for the certified values by procedures consistent with the intended use of the CRM.

The mathematical expression k₁=s²m is employed to determine the sampling size

S = relative standard deviation in % for one component of the sample. (ie. The sub-sampling uncertainty)

m = the sub-sampling mass

k_s = mass of sub-sample necessary to ensure a relative sub-sampling error of 1% (68% confidence level) in a single determination

Statistical estimator and Confidence limits:

The certified value 'x' listed on the reverse of this document is at the 95% level of confidence and can be expressed as X = x+/-U where X = True value (Labeled Value), U = Expanded uncertainty

U=kue where k=2 is the coverage factor at the 95% confidence level

 u_e is obtained by combining the individual element standard uncertainty components u_i and $u_{ee} \sqrt{\Sigma u_i^2}$

Certification Traveler Report:

All certified values reported were derived from Traveler Report (Spex CertiPrep's traceability documentation) identified by the lot number of this CRM. For further information contact CRM Sales.

Legal Notice:

Certificate of Reference Material

Catalog Number: PLY2-2X/2Y/2T

Lot No. 9-152Y

Description:

1,000 mg/L Yttrium

Matrix:

2% HNO3

This ASSURANCE © certified reference material, CRM, is intended primarily for use as a calibration standard or quality control standard for inorganic spectroscopic instrumentation such as ICPOES, DCP, AA, ICPMS, and XRF. It can be employed in USEPA, ASTM and other methods relevent to the certified properties listed below.

Certified Value: 1001.5 mg/L

Uncertainty Associated with Measurement: +/- 3 mg/L Certified Value is Traceable to: NIST SRM 3167a.

The CRM is prepared gravimetrically using high purity $\mbox{ Yttrium Oxide}$ Lot# 08001A. The certified value listed is the average of values obtained by classical wet assay and ICP spectrometer analysis

Refer to side 2 for details of measurement uncertainties.

Classical Wet Assay:

1002 mg/L

Method: EDTA titration using Methyl Thymol Blue as indicator. EDTA standardized against Pb(NO3)2

NIST SRM #928.

Instrumentation Analysis By ICP spectrometer: 1001 mg/L

Uncertified Properties:

Density: 1.010 @ 24.8 Degrees Celsius

Trace Metallic Impurities in the Actual Solution via ICP / ICPMS Analysis:

Element	mg/L	Element	mg/L	Element	mg/L
Ce	~ <0.001	- La	< 0.001	Tb	< 0.001
Ca	0.007	Lu	< 0.001	Tm	< 0.001
Dy	< 0.001	Mn	< 0.001	TI	< 0.001
Er	< 0.001	Mo	< 0.001	Th	< 0.001
Eu	< 0.001	Nd	< 0.001	Ta	< 0.001
Fe	0.003	Ni	< 0.001	Ti	< 0.001
Gd	< 0.001	Na	0.005	v	< 0.001
Ga	< 0.001	Pr	< 0.001	w	< 0.001
Hf	< 0.001	Rb	<0.001	Yb	< 0.001
Ho	< 0.001	Sc	< 0.001	Zr	0.003
In	< 0.001	Sm	< 0.001		

Balances are calibrated regularly with weight sets traceable to NIST #32856, #32857 and others. This CRM is guaranteed stable to +/-0.5% of the certified concentration inclusive of uncertainty of measurements and other effects, such as transpiration losses, for a period of one year from the date of certification. This guarantee is valid only when the material is kept tightly capped and transported and stored under laboratory conditions.

Date of Certification: Certifying C

Certifying Officer: N. Kochestaketa

This Certified Reference Material has been prepared and certified under an ISO 9001 system consistent with the following guides:

ASTM Guide D6362-98

ISO Guide 34: Quality system guidelines for the production of reference materials.

ISO Guide 35: Certification of reference materials, general and statistical principles

ISO Guide 31: Contents of certificates of reference materials

ILAC-G12-2000: Guidelines for the requirements for the competence of reference materials producers

ISO/REMCO N280

Material Source:

All analytes and matrix materials are obtained and verified by SPEX CertiPrep from pre-qualified vendors as per ISO 9000 guidelines. Vendor identifications are proprietary, however sources of all materials used in the preparation and testing of SPEX CertiPrep CRMs are tracked and documented. For further information contact the certifying organization.

Instructions for Use:

Primary usage of this CRM is in neat form or diluted serially with matrix of a purity at or greater than the purity of the original matrix solution. If dilution is required the diluent must be compatible with all certified analytes and contain stabilizers appropriate for the period of intended use. The CRM can also be used as a spike or with a spike, again with appropriate compatibility considerations. All solutions should be thoroughly mixed, by shaking, prior to use and never pipetted directly from the bottle. All surfaces that come in contact with the solution must be thoroughly cleaned and leached prior to use. Dilutions should be performed only with Class A volumetric glassware.

Method of Preparation:

Clean laboratory procedures and techniques have been used throughout the preparation. All materials, equipment, analytical instrumentation and personnel have been qualified prior to use. The highest purity acids applicable, 18 megohm, double deionized water, acid-leached triple-rinsed bottles, and Class A glassware have been used in all preparations.

Homogeneity:

The Homogeneity of the CRM has been confirmed by procedures consistent with ISO guide 35, ISO/REMCO N280 and ASTM D6362-98 Appendix X2. Random, replicate samples of the final, packaged material have been analyzed for the certified values by procedures consistent with the intended use of the CRM.

The mathematical expression k_s=s²m is employed to determine the sampling size

s = relative standard deviation in % for one component of the sample. (ie. The sub-sampling uncertainty)

m = the sub-sampling mass

k₃ = mass of sub-sample necessary to ensure a relative sub-sampling error of 1% (68% confidence level) in a single determination

Statistical estimator and Confidence limits:

The uncertainty of the certified value listed on the reverse of this document is the total uncertainty U.

 $U = 2U_c + B mg/L$

Where U_c = combined uncertainty components associated with volumetric and gravimetric factors, B is the uncertainty component of two independent methods of analysis (including the systematic and random uncertainties) 95% confidence limits = $X + t_{0.05} \sqrt{\Sigma U_c^2}$

where X = grand mean

t_{0.05} = the percentile of the student's t distribution for (k-1) degrees of freedom.

Certification Traveler Report:

All certified values reported were derived from the Traveler Report identified by the lot number of this CRM. For further information contact the certifying organization.

Legal Notice:

Certificate of Reference Material

Catalog Number: PLPD3-2X/2Y

Lot No. 10-108PD

Description:

1000 mg/L Palladium

Matrix:

10% HCI

This ASSURANCE ® certified reference material, CRM, is intended primarily for use as a calibration standard or quality control standard for inorganic spectroscopic instrumentation such as ICPOES, DCP, AA, ICPMS, and XRF. It can be employed in USEPA, ASTM and other methods relevant to the certified properties listed below.

Certified Value: 1002.5 mg/L

Uncertainty Associated with Measurement: +/- 3 mg/L

Certified Value is Traceable to: NIST SRM 3138

Refer to side 2 for details of measurement uncertainties.

Classical Wet Assay: 1002 mg/L

Method: Precipitation using Glyoxime. Filter, dry, and weigh as Pd(C4H7O2N2)2

Instrumental Analysis by ICP spectrometer: 1003 mg/L

Uncertified Properties:

Density: 1.017 @ 23.6 Degrees Celsius

Trace Metallic Impurities in the Actual Solution via ICP / ICPMS Analysis:

Element	mg/L	Element	mg/L	Element	mg/L
Al	0.01	Fe	0.024	Re	<0.001
Au	0.003	Ga	< 0.001	Rh	0.001
Ag	0.005	Ir	< 0.001	Rb	< 0.001
В	< 0.002	In	< 0.001	Ru	< 0.001
Be	< 0.003	Mg	0.008	Sn	0.007
Bi	< 0.001	Mn	< 0.001	Te	< 0.002
Ca	0.014	Na	0.02	Ti	< 0.001
Cd	< 0.001	Ni	< 0.001	W	< 0.001
Co	0.004	Pb	0.002	Zr	< 0.001
Cr	< 0.003	Pt	< 0.001	Zn	1.0
Cu	0.001				

Balances are calibrated regularly with weight sets traceable to NIST #32856, #32857 and others. This CRM is guaranteed stable to +/-0.5% of the certified concentration inclusive of uncertainty of measurements and other effects, such as transpiration losses, for a period of one year from the date of certification. This guarantee is valid only when the material is kept tightly capped and transported and stored under laboratory conditions.

Date of Certification: Certifying Officer: N. Kochestakola

010228

This Certified Reference Material has been prepared and certified under an ISO 9001 system consistent with the following guides:

Guide To The Expression Of Uncertainty In Measurement 1995

EURACHEM/CITAC Guide: Quantifying Uncertainty in Analytical Measurement - Second Edition

ASTM Guide D6362-98

ISO Guide 34: Quality system guidelines for the production of reference materials.

ISO Guide 17025: Certification of reference materials, general and statistical principles

ISO Guide 31: Contents of certificates of reference materials

NIST Technical Note 1297

ILAC-G12-2000: Guidelines for the requirements for the competence of reference materials producers

ISO/REMCO N280

Material Source:

All analytes and matrix materials are obtained and verified by SPEX CertiPrep from pre-qualified vendors as per ISO 9000 guidelines. Vendor identifications are proprietary, however sources of all materials used in the preparation and testing of SPEX CertiPrep CRMs are tracked and documented. For further information contact CRM Sales.

Instructions for Use:

Primary usage of this CRM is in neat form or diluted serially with matrix of a purity at or greater than the purity of the original matrix solution. If dilution is required the diluent must be compatible with all certified analytes and contain stabilizers appropriate for the period of intended use. The CRM can also be used as a spike or with a spike, again with appropriate compatibility considerations. All solutions should be thoroughly mixed, by shaking, prior to use and never pipetted directly from the bottle. All surfaces that come in contact with the solution must be thoroughly cleaned and leached prior to use. Dilutions should be performed only with Class A volumetric glassware.

Method of Preparation:

Clean laboratory procedures and techniques have been used throughout the preparation. All materials, equipment, analytical instrumentation and personnel have been qualified prior to use. The highest purity acids applicable, 18 megohm, double deionized water, acid-leached triple-rinsed bottles, and Class A glassware have been used in all preparations.

Homogeneity:

The Homogeneity of the CRM has been confirmed by procedures consistent with ISO guide 17025, ISO/REMCO N280 and ASTM D6362-98 Appendix X2. Random, replicate samples of the final, packaged material have been analyzed for the certified values by procedures consistent with the intended use of the CRM.

The mathematical expression k_s=s²m is employed to determine the sampling size

S = relative standard deviation in % for one component of the sample. (ie. The sub-sampling uncertainty)

m = the sub-sampling mass

 k_s = mass of sub-sample necessary to ensure a relative sub-sampling error of 1% (68% confidence level) in a single determination

Statistical estimator and Confidence limits:

The certified value 'x' listed on the reverse of this document is at the 95% level of confidence and can be expressed as X = x+/-U where X = True value (Labeled Value), U = Expanded uncertainty

U=kue where k=2 is the coverage factor at the 95% confidence level

 u_e is obtained by combining the individual element standard uncertainty components u_i and $u_{ee} \sqrt{\Sigma u_i^2}$

Certification Traveler Report:

All certified values reported were derived from Traveler Report (Spex CertiPrep's traceability documentation) identified by the lot number of this CRM. For further information contact CRM Sales.

Legal Notice:

Certificate of Reference Material

Catalog Number: PLS9-2X/2Y/2T

Lot No. 10-122S

Description:

1000 mg/L Sulfur

Matrix:

H₂O

This ASSURANCE ® certified reference material, CRM, is intended primarily for use as a calibration standard or quality control standard for inorganic spectroscopic instrumentation such as ICPOES, DCP, AA, ICPMS, and XRF. It can be employed in USEPA, ASTM and other methods relevant to the certified properties listed below.

Certified Value: 1001 mg/L

Uncertainty Associated with Measurement: +/-3.0mg/L

Certified Value is Traceable to: NIST SRM #3154

The CRM is prepared gravimetrically using high purity Ammonium Sulfate Lot# 05891M, The certified value listed is the average of values obtained by classical wet assay and ICP spectrometer analysis

Refer to side 2 for details of measurement uncertainties.

Classical Wet Assay: 1002 mg/L

Method: Precipitation using Barium Chloride. Filter, ignite and weigh as BaSO4.

Instrumental Analysis by ICP spectrometer: 1000 mg/L

Uncertified Properties:

Density: 1,001 @ 22.7 Degrees Celsius

Trace Metallic Impurities in the Actual Solution via ICP / ICPMS Analysis:

Element	mg/L	Element	mg/L	Element	mg/L
Al	<0.001	Cu	<0.001	РЬ	<0.001
As	0.003	Fe	0.014	Rb	< 0.001
Ag	< 0.001	Ga	< 0.001	Re	< 0.001
В	< 0.001	ln	< 0.001	Si	0.003
Ba	< 0.001	K	< 0.10	Sr	< 0.001
Be	< 0.001	Li	<0.001	Sb	< 0.001
Bi	< 0.001	Mg	0.005	Tì	< 0.001
Ca	0.012	Mn	< 0.002	Tl	< 0.001
Cr	< 0.001	Mo	< 0.001	V	< 0.001
Cd	< 0.001	Na	0.01	Zr	< 0.001
Co	< 0.001	Ni	< 0.001	Zn	< 0.002

Balances are calibrated regularly with weight sets traceable to NIST #32856, #32857 and others. This CRM is guaranteed stable to +/-0.5% of the certified concentration inclusive of uncertainty of measurements and other effects, such as transpiration losses, for a period of one year from the date of certification. This guarantee is valid only when the material is kept tightly capped and transported and stored under laboratory conditions.

Date of Certification:

Certifying Officer: N. Kochestakola

This Certified Reference Material has been prepared and certified under an ISO 9001 system consistent with the following guides:

Guide To The Expression Of Uncertainty In Measurement 1995

EURACHEM/CITAC Guide: Quantifying Uncertainty in Analytical Measurement - Second Edition

ASTM Guide D6362-98

ISO Guide 34: Quality system guidelines for the production of reference materials.

ISO Guide 17025: Certification of reference materials, general and statistical principles

ISO Guide 31: Contents of certificates of reference materials

NIST Technical Note 1297

ILAC-G12-2000: Guidelines for the requirements for the competence of reference materials producers

ISO/REMCO N280

Material Source:

All analytes and matrix materials are obtained and verified by SPEX CertiPrep from pre-qualified vendors as per ISO 9000 guidelines. Vendor identifications are proprietary, however sources of all materials used in the preparation and testing of SPEX CertiPrep CRMs are tracked and documented. For further information contact CRM Sales.

Instructions for Use:

Primary usage of this CRM is in neat form or diluted serially with matrix of a purity at or greater than the purity of the original matrix solution. If dilution is required the diluent must be compatible with all certified analytes and contain stabilizers appropriate for the period of intended use. The CRM can also be used as a spike or with a spike, again with appropriate compatibility considerations. All solutions should be thoroughly mixed, by shaking, prior to use and never pipetted directly from the bottle. All surfaces that come in contact with the solution must be thoroughly cleaned and leached prior to use. Dilutions should be performed only with Class A volumetric glassware.

Method of Preparation:

Clean laboratory procedures and techniques have been used throughout the preparation. All materials, equipment, analytical instrumentation and personnel have been qualified prior to use. The highest purity acids applicable, 18 megohm, double deionized water, acid-leached triple-rinsed bottles, and Class A glassware have been used in all preparations.

Homogeneity:

The Homogeneity of the CRM has been confirmed by procedures consistent with ISO guide 17025, ISO/REMCO N280 and ASTM D6362-98 Appendix X2. Random, replicate samples of the final, packaged material have been analyzed for the certified values by procedures consistent with the intended use of the CRM.

The mathematical expression k=3m is employed to determine the sampling size

s = relative standard deviation in % for one component of the sample. (ie. The sub-sampling uncertainty)

m = the sub-sampling mass

k_s = mass of sub-sample necessary to ensure a relative sub-sampling error of 1% (68% confidence level) in a single determination

Statistical estimator and Confidence limits:

The certified value 'x' listed on the reverse of this document is at the 95% level of confidence and can be expressed as X = x+/-U where X = True value (Labeled Value), U = Expanded uncertainty

U=ku, where k=2 is the coverage factor at the 95% confidence level

 u_e is obtained by combining the individual element standard uncertainty components u_i and $u_e \sqrt{\Sigma u_i^2}$

Certification Traveler Report:

All certified values reported were derived from Traveler Report (Spex CertiPrep's traceability documentation) identified by the lot number of this CRM. For further information contact CRM Sales.

Legal Notice:

DATE RECEIVED: ____09/05/0

SPEXertificate

Certificate of Reference Material

Catalog Number: PLTH2-2X/2Y Lot No. 10-24TH

Description: 1000 mg/L Thorium

Matrix: 2% HNO3

This ASSURANCE © certified reference material, CRM, is intended primarily for use as a calibration standard or quality control standard for inorganic spectroscopic instrumentation such as ICPOES, DCP, AA, ICPMS, and XRF. It can be employed in USEPA, ASTM and other methods relevent to the certified properties listed below.

Certified Value: 999 mg/L

Uncertainty Associated with Measurement: +/- 3.0 mg/L

Certified Value is Traceable to: NIST SRM #3159

The CRM is prepared gravimetrically using high purity Th(NO3)4-4H2O Lot# 01851R. The certified value listed is the average of values obtained by classical wet assay and ICP spectrometer analysis

Refer to side 2 for details of measurement uncertainties.

Classical Wet Assay: 1000 mg/L

Method: EDTA titration using Xylenol Orange as indicator. EDTA syandardized against Pb(NO3)2 NIST

SRM #928.

Instrumentation Analysis By ICP spectrometer: 998 mg/L

Uncertified Properties:

Density: 1.010 @ 22.0 Degrees Celsius

Trace Metallic Impurities in the Actual Solution via ICP / ICPMS Analysis:

Element	mg/L	Element	mg/L	Element	mg/L
Ce	0.01	La	0.003	Тъ	< 0.001
Ca	0.27	Lu	< 0.001	Tm	< 0.001
Dy	< 0.001	Mn	< 0.001	Ti	<0.002
Er	< 0.001	Mo	< 0.001	Ta	< 0.001
Eu	< 0.001	Nd	0.003	Tl	< 0.001
Fe	< 0.01	Ni	< 0.001	V	< 0.001
Gd	< 0.001	Na	0.04	W	< 0.001
Ga	< 0.001	Pr	< 0.001	Y	0.002
Hf	< 0.001	Rb	< 0.001	Yb	< 0.001
Ho	< 0.001	Sc	< 0.03	Zr	< 0.001
In	< 0.001	Sm	< 0.001		

Balances are calibrated regularly with weight sets traceable to NIST #32856, #32857 and others This CRM is guaranteed stable to +/-0.5% of the certified concentration inclusive of uncertainty of measurements and other effects, such as transpiration losses, for a period of one year from the date of certification. This guarantee is valid only when the material is kept tightly capped and transported and stored under laboratory conditions.

Date of Certification: 400 03 Certifying Officer: N. Kochertakota

This Certified Reference Material has been prepared and certified under an ISO 9001 system consistent with the following guides:

Guide To The Expression Of Uncertainty In Measurement 1995

EURACHEM/CITAC Guide: Quantifying Uncertainty in Analytical Measurement - Second Edition

ASTM Guide D6362-98

ISO Guide 34: Quality system guidelines for the production of reference materials.

ISO Guide 17025: Certification of reference materials, general and statistical principles

ISO Guide 31: Contents of certificates of reference materials

NIST Technical Note 1297

ILAC-G12-2000; Guidelines for the requirements for the competence of reference materials producers

ISO/REMCO N280

Material Source:

All analytes and matrix materials are obtained and verified by SPEX CertiPrep from pre-qualified vendors as per ISO 9000 guidelines. Vendor identifications are proprietary, however sources of all materials used in the preparation and testing of SPEX CertiPrep CRMs are tracked and documented. For further information contact CRM Sales.

Instructions for Use:

Primary usage of this CRM is in neat form or diluted serially with matrix of a purity at or greater than the purity of the original matrix solution. If dilution is required the diluent must be compatible with all certified analytes and contain stabilizers appropriate for the period of intended use. The CRM can also be used as a spike or with a spike, again with appropriate compatibility considerations. All solutions should be thoroughly mixed, by shaking, prior to use and never pipetted directly from the bottle. All surfaces that come in contact with the solution must be thoroughly cleaned and leached prior to use. Dilutions should be performed only with Class A volumetric glassware.

Method of Preparation:

Clean laboratory procedures and techniques have been used throughout the preparation. All materials, equipment, analytical instrumentation and personnel have been qualified prior to use. The highest purity acids applicable, 18 megohm, double deionized water, acid-leached triple-rinsed bottles, and Class A glassware have been used in all preparations.

Homogeneity:

The Homogeneity of the CRM has been confirmed by procedures consistent with ISO guide 17025, ISO/REMCO N280 and ASTM D6362-98 Appendix X2. Random, replicate samples of the final, packaged material have been analyzed for the certified values by procedures consistent with the intended use of the CRM.

The mathematical expression k_s=s²m is employed to determine the sampling size

S = relative standard deviation in % for one component of the sample. (ie. The sub-sampling uncertainty)

m = the sub-sampling mass

k_s = mass of sub-sample necessary to ensure a relative sub-sampling error of 1% (68% confidence level) in a single determination

Statistical estimator and Confidence limits:

The certified value 'x' listed on the reverse of this document is at the 95% level of confidence and can be expressed as X = x+/-U where X = True value (Labeled Value), U = Expanded uncertainty

U=ku, where k=2 is the coverage factor at the 95% confidence level

 u_e is obtained by combining the individual element standard uncertainty components u_i and $u_e \sqrt{\Sigma u_i^2}$

Certification Traveler Report:

All certified values reported were derived from Traveler Report (Spex CertiPrep's traceability documentation) identified by the lot number of this CRM. For further information contact CRM Sales.

Legal Notice:

Certificate of Reference Material

Catalog Number: PLU2-2X/2Y

Lot No. 10-127U

Description:

1000 mg/L Uranium

Matrix:

2% HNO3

This ASSURANCE © certified reference material, CRM, is intended primarily for use as a calibration standard or quality control standard for inorganic spectroscopic instrumentation such as ICPOES, DCP, AA, ICPMS, and XRF. It can be employed in USEPA, ASTM and other methods relevant to the certified properties listed below.

Certified Value: 1004 mg/L

Uncertainty Associated with Measurement: +/- 3.0 mg/L

Certified Value is Traceable to: NIST SRM #3164

The CRM is prepared gravimetrically using high purity Uranium(V,VI) Oxide Lot# 04001D. The certified value listed is the average of values obtained by classical wet assay and ICP spectrometer analysis

Refer to side 2 for details of measurement uncertainties.

Classical Wet Assay: 1004 mg/L

Method: Evaporate to dryness. Ignite and weigh as U3O8.

Instrumental Analysis by ICP spectrometer: 1005 mg/L

Uncertified Properties:

Density: 1.010 @ 21.6 Degrees Celsius

Trace Metallic Impurities in the Actual Solution via ICP / ICPMS Analysis:

Element	mg/L	Element	mg/L	Element	mg/L
Al	0.005	Cu	0.01	Pb	0.008
As	0.04	Fe	0.41	Rb	< 0.001
Ag	<0.001	Ga	< 0.001	Re	<0.001
В	< 0.003	In	< 0.001	Si	0.03
Ba	< 0.001	K	0.022	Sr	0.003
Be	< 0.001	Li	< 0.001	Sb	0.003
Bi	< 0.001	Mg	0.002	Ti	< 0.001
Ca	0.09	Mn	0.003	TI	< 0.001
Cr	<0.002	Mo	0.004	V	0.004
Cd	< 0.001	Na	0.08	Zr	0.002
Co	< 0.001	Ni	< 0.001	Zn	0.06

Balances are calibrated regularly with weight sets traceable to NIST #32856, #32857 and others. This CRM is guaranteed stable to +/-0.5% of the certified concentration inclusive of uncertainty of measurements and other effects, such as transpiration losses, for a period of one year from the date of certification. This guarantee is valid only when the material is kept tightly capped and transported and stored under laboratory conditions.

Date of Certification: JUN - 2004 Certifying Officer: N. Kocherakota

DATE EXPIRED: 06/30/3005 W
DATE OPENED: 06/39/04
INORG: 46/39

85/RADCHEM LABS - 06/35/04 - 06/30/305 VOJ - 06/39/04

This Certified Reference Material has been prepared and certified under an ISO 9001 system consistent with the following guides:

Guide To The Expression Of Uncertainty In Measurement 1995

EURACHEM/CITAC Guide: Quantifying Uncertainty in Analytical Measurement - Second Edition

ASTM Guide D6362-98

ISO Guide 34: Quality system guidelines for the production of reference materials.

ISO Guide 17025: Certification of reference materials, general and statistical principles

ISO Guide 31: Contents of certificates of reference materials

NIST Technical Note 1297

ILAC-G12-2000: Guidelines for the requirements for the competence of reference materials producers

ISO/REMCO N280

Material Source:

All analytes and matrix materials are obtained and verified by SPEX CertiPrep from pre-qualified vendors as per ISO 9000 guidelines. Vendor identifications are proprietary, however sources of all materials used in the preparation and testing of SPEX CertiPrep CRMs are tracked and documented. For further information contact CRM Sales.

Instructions for Use:

Primary usage of this CRM is in neat form or diluted serially with matrix of a purity at or greater than the purity of the original matrix solution. If dilution is required the diluent must be compatible with all certified analytes and contain stabilizers appropriate for the period of intended use. The CRM can also be used as a spike or with a spike, again with appropriate compatibility considerations. All solutions should be thoroughly mixed, by shaking, prior to use and never pipetted directly from the bottle. All surfaces that come in contact with the solution must be thoroughly cleaned and leached prior to use. Dilutions should be performed only with Class A volumetric glassware.

Method of Preparation:

Clean laboratory procedures and techniques have been used throughout the preparation. All materials, equipment, analytical instrumentation and personnel have been qualified prior to use. The highest purity acids applicable, 18 megohm, double deionized water, acid-leached triple-rinsed bottles, and Class A glassware have been used in all preparations.

Homogeneity:

The Homogeneity of the CRM has been confirmed by procedures consistent with ISO guide 17025, ISO/REMCO N280 and ASTM D6362-98 Appendix X2. Random, replicate samples of the final, packaged material have been analyzed for the certified values by procedures consistent with the intended use of the CRM.

The mathematical expression k,=s²m is employed to determine the sampling size

S = relative standard deviation in % for one component of the sample. (ie. The sub-sampling uncertainty)

m = the sub-sampling mass

 k_s = mass of sub-sample necessary to ensure a relative sub-sampling error of 1% (68% confidence level) in a single determination

Statistical estimator and Confidence limits:

The certified value 'x' listed on the reverse of this document is at the 95% level of confidence and can be expressed as X = x+/-U where X = True value (Labeled Value), U = Expanded uncertainty

U=ku, where k=2 is the coverage factor at the 95% confidence level

 u_e is obtained by combining the individual element standard uncertainty components u_i and $u_{ee} \sqrt{\sum u_i^2}$

Certification Traveler Report:

All certified values reported were derived from Traveler Report (Spex CertiPrep's traceability documentation) identified by the lot number of this CRM. For further information contact CRM Sales.

Legal Notice:

Certificate of Reference Material

Catalog Number: PLW9-2X/2Y

Lot No. 9-177W

Description:

1000 mg/L Tungsten

Matrix:

H₂O

This ASSURANCE © certified reference material, CRM, is intended primarily for use as a calibration standard or quality control standard for inorganic spectroscopic instrumentation such as ICPOES, DCP, AA, ICPMS, and XRF. It can be employed in USEPA, ASTM and other methods relevent to the certified properties listed below.

Certified Value: 1,000 mg/L

Uncertainty Associated with Measurement: +/- 3 mg/L

Certified Value is Traceable to: NIST SRM 3163

The CRM is prepared gravimetrically using high purity Ammonium Tungstate Lot# 02001H. The certified value listed is the average of values obtained by classical wet assay and ICP spectrometer analysis

Refer to side 2 for details of measurement uncertainties.

Classical Wet Assay: 1000 mg/L

Method: Fume with Sulfuric Acid to dryness. Ignite and weigh as WO3.

Instrumentation Analysis By ICP spectrometer: 1000 mg/L

Uncertified Properties:

Density: 0.9979 @ 23.7 Degrees Celsius

Trace Metallic Impurities in the Actual Solution via ICP / ICPMS Analysis:

Element	mg/L	Element	mg/L	Element	mg/L
Al	0.002	Cu	<0.001	Pb	<0.001
As	0.01	Fe	< 0.01	Rb	< 0.001
Ag	< 0.003	Ga	< 0.001	Re	0.004
В	< 0.005	In	< 0.001	Si	.56
Ba	< 0.001	K	0.05	Sr	< 0.001
Be	< 0.001	Li	< 0.001	Sb	0.001
Bi	< 0.001	Mg	< 0.001	Ti	< 0.001
Ca	0.009	Mn	< 0.001	Ti	< 0.001
Cr	< 0.001	Mo	0.005	V	0.001
Cđ	< 0.001	Na	0.03	Zī	< 0.001
Co	0.001	Ni	< 0.001	Zn	0.01

Balances are calibrated regularly with weight sets traceable to NIST #32856, #32857 and others. This CRM is guaranteed stable to +/-0.5% of the certified concentration inclusive of uncertainty of measurements and other effects, such as transpiration losses, for a period of one year from the date of certification. This guarantee is valid only when the material is kept tightly capped and transported and stored under laboratory conditions.

Date of Certification: ______ Certifying Officer: N. Kochestakota_

This Certified Reference Material has been prepared and certified under an ISO 9001 system consistent with the following guides:

Guide To The Expression Of Uncertainty In Measurement 1995

EURACHEM/CITAC Guide: Quantifying Uncertainty in Analytical Measurement - Second Edition

ASTM Guide D6362-98

ISO Guide 34: Quality system guidelines for the production of reference materials.

ISO Guide 17025: Certification of reference materials, general and statistical principles

ISO Guide 31: Contents of certificates of reference materials

NIST Technical Note 1297

ILAC-G12-2000: Guidelines for the requirements for the competence of reference materials producers

ISO/REMCO N280

Material Source:

All analytes and matrix materials are obtained and verified by SPEX CertiPrep from pre-qualified vendors as per ISO 9000 guidelines. Vendor identifications are proprietary, however sources of all materials used in the preparation and testing of SPEX CertiPrep CRMs are tracked and documented. For further information contact CRM Sales.

Instructions for Use:

Primary usage of this CRM is in neat form or diluted serially with matrix of a purity at or greater than the purity of the original matrix solution. If dilution is required the diluent must be compatible with all certified analytes and contain stabilizers appropriate for the period of intended use. The CRM can also be used as a spike or with a spike, again with appropriate compatibility considerations. All solutions should be thoroughly mixed, by shaking, prior to use and never pipetted directly from the bottle. All surfaces that come in contact with the solution must be thoroughly cleaned and leached prior to use. Dilutions should be performed only with Class A volumetric glassware.

Method of Preparation:

Clean laboratory procedures and techniques have been used throughout the preparation. All materials, equipment, analytical instrumentation and personnel have been qualified prior to use. The highest purity acids applicable, 18 megohm, double deionized water, acid-leached triple-rinsed bottles, and Class A glassware have been used in all preparations.

Homogeneity:

The Homogeneity of the CRM has been confirmed by procedures consistent with ISO guide 17025, ISO/REMCO N280 and ASTM D6362-98 Appendix X2. Random, replicate samples of the final, packaged material have been analyzed for the certified values by procedures consistent with the intended use of the CRM.

The mathematical expression k=s²m is employed to determine the sampling size

s = relative standard deviation in % for one component of the sample. (ie. The sub-sampling uncertainty)

m = the sub-sampling mass

k, = mass of sub-sample necessary to ensure a relative sub-sampling error of 1% (68% confidence level) in a single determination

Statistical estimator and Confidence limits:

The certified value 'x' listed on the reverse of this document is at the 95% level of confidence and can be expressed as X = x+/-U where X = True value (Labeled Value), U = Expanded uncertainty

U=ku_c where k=2 is the coverage factor at the 95% confidence level

 u_e is obtained by combining the individual element standard uncertainty components u_i and $u_e \sqrt{\Sigma u_i^2}$

Certification Traveler Report:

All certified values reported were derived from Traveler Report (Spex CertiPrep's traceability documentation) identified by the lot number of this CRM. For further information contact CRM Sales.

Legal Notice:

SPEX CertiPrep reference materials are not for any cosmetic, drug or household application and are to be used only by qualified individuals who are trained in appropriate procedures. No claims against SPEX CertiPrep, Inc. of any kind whatsoever, whether based on breach of warranty, alleged negligence, or otherwise, with respect to this RM shall be greater than the purchase price. In no event shall SPEX CertiPrep, Inc. be liable for any loss of profits or any incidental, special, or consequential damages.

203 Norcross Avenue • Metuchen, NJ 08840 USA 732-549-7144 • **1-800-LAB-SPEX** • Fax: 732-603-9647 CRMSales@spexcsp.com • www.spexcsp.com Always Providing Superior Quality . . . Unparalleled Service™

Certificate of Reference Alaterial

Catalog Number: PLZR2-2X/2Y/2T

Lot No. 10-05ZR

Description:

1000 mg/L Zirconium

Matrix:

2% HNO3

This ASSURANCE ® certified reference material, CRM, is intended primarily for use as a calibration standard or quality control standard for inorganic spectroscopic instrumentation such as ICPOES, DCP, AA, ICPMS, and XRF. It can be employed in USEPA, ASTM and other methods relevent to the certified properties listed below.

Certified Value: 997 mg/L

Uncertainty Associated with Measurement: +/-3.0 mg/L

Certified Value is Traceable to:

NIST SRM 3169

The CRM is prepared gravimetrically using high purity Zirconyl Nitrate 11011C, The certified value listed is the average of values obtained by classical wet assay and ICP spectrometer analysis

Refer to side 2 for details of measurement uncertainties.

Classical Wet Assay:

997 mg/L

Method: Evaporate to dryness. Fume with Sulfuric Acid. Ignite and weigh as ZrO2.

Instrumentation Analysis By ICP spectrometer: 997 mg/L

Uncertified Properties:

Density: 1.010 @ 23.6 Degrees Celsius

Trace Metallic Impurities in the Actual Solution via ICP / ICPMS Analysis:

Element	mg/L	Element	mg/L	Element	mg/L
Al	0.03	Cu	0.002	Pb	0.002
As	< 0.001	Fe	0.017	Rb	< 0.001
Ág	<0.05	Ga	< 0.001	Re	< 0.001
В	< 0.004	I n	< 0.001	Si	0.10
Ba	< 0.001	K	0.10	Sr	< 0.001
Be	< 0.001	Li	0.002	Sb	< 0.001
Bi	<0.001	Mg	0.003	Ti	< 0.001
Ca	0.11	Mn	<0.001	TI	< 0.001
Cr	<0.009	Mo	< 0.001	v	< 0.001
Cd	0.004	Na	0.04	Zn	0.02
Co	<0.001	Ni	< 0.001		

Balances are calibrated regularly with weight sets traceable to NIST #32856, #32857 and others This CRM is guaranteed stable to +/-0.5% of the certified concentration inclusive of uncertainty of measurements and other effects, such as transpiration losses, for a period of one year from the date of certification. This guarantee is valid only when the material is kept tightly capped and transported and stored under laboratory conditions.

Date of Certification:

Certifying Officer: N. Kocherlakola

This Certified Reference Material has been prepared and certified under an ISO 9001 system consistent with the following guides:

Guide To The Expression Of Uncertainty In Measurement 1995

EURACHEM/CITAC Guide: Quantifying Uncertainty in Analytical Measurement - Second Edition

ASTM Guide D6362-98

ISO Guide 34: Quality system guidelines for the production of reference materials.

ISO Guide 17025: Certification of reference materials, general and statistical principles

ISO Guide 31: Contents of certificates of reference materials

NIST Technical Note 1297

ILAC-G12-2000: Guidelines for the requirements for the competence of reference materials producers

ISO/REMCO N280

Material Source:

All analytes and matrix materials are obtained and verified by SPEX CertiPrep from pre-qualified vendors as per ISO 9000 guidelines. Vendor identifications are proprietary, however sources of all materials used in the preparation and testing of SPEX CertiPrep CRMs are tracked and documented. For further information contact CRM Sales.

Instructions for Use:

Primary usage of this CRM is in neat form or diluted serially with matrix of a purity at or greater than the purity of the original matrix solution. If dilution is required the diluent must be compatible with all certified analytes and contain stabilizers appropriate for the period of intended use. The CRM can also be used as a spike or with a spike, again with appropriate compatibility considerations. All solutions should be thoroughly mixed, by shaking, prior to use and never pipetted directly from the bottle. All surfaces that come in contact with the solution must be thoroughly cleaned and leached prior to use. Dilutions should be performed only with Class A volumetric glassware.

Method of Preparation:

Clean laboratory procedures and techniques have been used throughout the preparation. All materials, equipment, analytical instrumentation and personnel have been qualified prior to use. The highest purity acids applicable, 18 megohm, double dejonized water, acid-leached triple-rinsed bottles, and Class A glassware have been used in all preparations.

Homogeneity:

The Homogeneity of the CRM has been confirmed by procedures consistent with ISO guide 17025, ISO/REMCO N280 and ASTM D6362-98 Appendix X2. Random, replicate samples of the final, packaged material have been analyzed for the certified values by procedures consistent with the intended use of the CRM.

The mathematical expression k, =s²m is employed to determine the sampling size

S = relative standard deviation in % for one component of the sample. (ie. The sub-sampling uncertainty)

m = the sub-sampling mass

 k_i = mass of sub-sample necessary to ensure a relative sub-sampling error of 1% (68% confidence level) in a single determination

Statistical estimator and Confidence limits:

The certified value 'x' listed on the reverse of this document is at the 95% level of confidence and can be expressed as X = x+/-U where X = True value (Labeled Value), U = Expanded uncertainty

U=ku_s where k=2 is the coverage factor at the 95% confidence level

ue is obtained by combining the individual element standard uncertainty components ue and ue √Σue²

Certification Traveler Report:

All certified values reported were derived from Traveler Report (Spex CertiPrep's traceability documentation) identified by the lot number of this CRM. For further information contact CRM Sales.

Legal Notice:

Certificate of Reference Material

Catalog Number: PLNA2-3X/3Y

Lot No. U8-128NA

Description:

10,000 mg/L Sodium

Matrix:

5% HNO3

This ASSURANCE © certified reference material, CRM, is intended primarily for use as a calibration standard or quality control standard for inorganic spectroscopic instrumentation such as ICPOES, DCP, AA, ICPMS, and XRF. It can be employed in USEPA, ASTM and other methods relevent to the certified properties listed below.

Certified Value: 9998 mg/L

Uncertainty Associated with Measurement: +/- 30 mg/L

Certified Value is Traceable to: NIST SRM 3152a.

The CRM is prepared gravimetrically using high purity Sodium Carbonate Lot# 02021A. The certified value listed is the average of values obtained by classical wet assay and ICP spectrometer analysis

Refer to side 2 for details of measurement uncertainties.

Classical Wet Assay: 9998 mg/L

Method: Evaporate to dryness. Fume with Sulfuric Acid. Ignite and weigh as Na2SO4.

Instrumentation Analysis By ICP spectrometer: 9998 mg/L

Uncertified Properties:

Density: 1.049 @ 23.9 Degrees Celsius

Trace Metallic Impurities in the Actual Solution via ICP / ICPMS Analysis:

Element	mg/L	Element	mg/L	Element	mg/L
Al	0.02	Cu	0.003	Pb	<0.001
As	< 0.003	Fe	0.03	Re	< 0.001
Ag	< 0.03	Ga	< 0.001	Rb	< 0.001
В	< 0.03	In	< 0.001	Sr	< 0.002
Ba	0.03	K	0.14	. Sb	< 0.001
Be	< 0.02	Li	< 0.002	Sn	< 0.001
Bi	<0.001	Mg	0.30	Ti	< 0.004
Ca	0.52	Mn	0.008	Ti	< 0.001
Cr	< 0.004	Mo	< 0.001	v	< 0.001
Cd	< 0.001	Ni	< 0.002	Zr	< 0.001
Co	< 0.001			Zn	<0.03

Balances are calibrated regularly with weight sets traceable to NIST #32856, #32857 and others. This CRM is guaranteed stable to +/-0.5% of the certified concentration inclusive of uncertainty of measurements and other effects, such as transpiration losses, for a period of one year from the date of certification. This guarantee is valid only when the material is kept tightly capped and transported and stored under laboratory conditions.

Date of Certification:

'04

Certifying Officer: N. Kochertakota

DATE RECEIVED: 01/39/04 UDATE EXPIRED: 01/39/04 UDATE OPENED: 01/39/04

This Certified Reference Material has been prepared and certified under an ISO 9001 system consistent with the following guides:

Guide To The Expression Of Uncertainty In Measurement 1995

EURACHEM/CITAC Guide: Quantifying Uncertainty in Analytical Measurement - Second Edition

ASTM Guide D6362-98

ISO Guide 34: Quality system guidelines for the production of reference materials.

ISO Guide 17025: Certification of reference materials, general and statistical principles

ISO Guide 31: Contents of certificates of reference materials

NIST Technical Note 1297

ILAC-G12-2000: Guidelines for the requirements for the competence of reference materials producers

ISO/REMCO N280

Material Source:

All analytes and matrix materials are obtained and verified by SPEX CertiPrep from pre-qualified vendors as per ISO 9000 guidelines. Vendor identifications are proprietary, however sources of all materials used in the preparation and testing of SPEX CertiPrep CRMs are tracked and documented. For further information contact CRM Sales.

Instructions for Use:

Primary usage of this CRM is in neat form or diluted serially with matrix of a purity at or greater than the purity of the original matrix solution. If dilution is required the diluent must be compatible with all certified analytes and contain stabilizers appropriate for the period of intended use. The CRM can also be used as a spike or with a spike, again with appropriate compatibility considerations. All solutions should be thoroughly mixed, by shaking, prior to use and never pipetted directly from the bottle. All surfaces that come in contact with the solution must be thoroughly cleaned and leached prior to use. Dilutions should be performed only with Class A volumetric glassware.

Method of Preparation:

Clean laboratory procedures and techniques have been used throughout the preparation. All materials, equipment, analytical instrumentation and personnel have been qualified prior to use. The highest purity acids applicable, 18 megohm, double deionized water, acid-leached triple-rinsed bottles, and Class A glassware have been used in all preparations.

Homogeneity:

The Homogeneity of the CRM has been confirmed by procedures consistent with ISO guide 17025, ISO/REMCO N280 and ASTM D6362-98 Appendix X2. Random, replicate samples of the final, packaged material have been analyzed for the certified values by procedures consistent with the intended use of the CRM.

The mathematical expression k_e=s²m is employed to determine the sampling size

S = relative standard deviation in % for one component of the sample. (ie. The sub-sampling uncertainty)

m = the sub-sampling mass

k, = mass of sub-sample necessary to ensure a relative sub-sampling error of 1% (68% confidence level) in a single determination

Statistical estimator and Confidence limits:

The certified value 'x' listed on the reverse of this document is at the 95% level of confidence and can be expressed as X = x+/-U where X = True value (Labeled Value), U = Expanded uncertainty

U=ku_e where k=2 is the coverage factor at the 95% confidence level

 u_c is obtained by combining the individual element standard uncertainty components u_i and $u_{ce} \sqrt{\Sigma u_i^2}$

Certification Traveler Report:

All certified values reported were derived from Traveler Report (Spex CertiPrep's traceability documentation) identified by the lot number of this CRM. For further information contact CRM Sales.

Legal Notice:

SPEX CertiPrep reference materials are not for any cosmetic, drug or household application and are to be used only by qualified individuals who are trained in appropriate procedures. No claims against SPEX CertiPrep, Inc. of any kind whatsoever, whether based on breach of warranty, alleged negligence, or otherwise, with respect to this RM shall be greater than the purchase price. In no event shall SPEX CertiPrep, Inc. be liable for any loss of profits or any incidental, special, or consequential damages.

203 Norcross Avenue • Metuchen, NJ 08840 USA
732-549-7144 • 1-800-LAB-SPEX • Fax: 732-603-9647
CRMSales@spexcsp.com • www.spexcsp.com
Always Providing Superior Quality . . . Unparalleled Service™

Certificate of Reference Material

Catalog Number: ICV-2A

Lot No.: 24-84AS

Description:

Initial Calibration Verification Standard II

Matrix:

5% Nitric Acid

This ASSURANCE *certified reference material, CRM, is intended primarily for use as a calibration standard or quality control standard for inorganic spectroscopic instrumentation such as ICPOES, DCP, AA, ICPMS, and XRF. It can be employed in USEPA, ASTM and other methods relevant to the certified properties listed below.

The CRM is prepared from high purity single element concentrates of individual elements using Class A laboratory ware to give precise concentration.

Refer to side 2 for details of measurement uncertainties.

Instrumental Analysis by ICP Spectrometer:

Element	Labeled (mg/L)	Measured (mg/L)	NIST SRM	Element	Labeled (mg/L)	Measured (mg/L)	NIST SRM
Ca	2,000	2,005.40	3109a	Ni	500	500.58	3136
K	2,000	1,997.89	3141a	V	500	504.23	3165
Mg	2,000	1,992.26	3131a	Cr	200	203.21	3112a
Na	2,000	1,992.99	3152a	Cu	200	199.75	3114
Al	1,000	1,005.90	3101a	Ag	100	100.46	3151
Ba	1,000	1,001.51	3104a	Вe	100	100.04	3105a
Fe	1,000	1,003.17	3126a	Mn	100	100.64	3132
Co	500	505.10	3113	Zn	100	100.52	3168a

Spex Reference Multi: Lot #4-63BD, 14-125AS

Balances are calibrated regularly with weight sets traceable to NIST#s 32856, 32867 and others. This CRM is guaranteed stable and accurate to +/- 0.5% on the average of all the certified concentrations with no single component exceeding +/- 2%. This guarantee is valid for a period of one year from the date of certification only when the material is kept tightly capped and transported and stored under laboratory conditions.

Date of Certification: _____ Certifying Officer: N. Kocherta kota

This Certified Reference Material has been prepared and certified under an ISO 9001 system consistent with the following guides:

Guide To The Expression Of Uncertainty In Measurement 1995

EURACHEM/CITAC Guide: Quantifying Uncertainty in Analytical Measurement - Second Edition

ASTM Guide D6362-98

ISO Guide 34: Quality system guidelines for the production of reference materials.

ISO Guide 17025: Certification of reference materials, general and statistical principles

ISO Guide 31: Contents of certificates of reference materials

NIST Technical Note 1297

ILAC-G12-2000: Guidelines for the requirements for the competence of reference materials producers

ISO/REMCO N280

Material Source:

All analytes and matrix materials are obtained and verified by SPEX CertiPrep from pre-qualified vendors as per ISO 9000 guidelines. Vendor identifications are proprietary, however sources of all materials used in the preparation and testing of SPEX CertiPrep CRMs are tracked and documented. For further information contact CRM Sales.

Instructions for Use:

Primary usage of this CRM is in neat form or diluted serially with matrix of a purity at or greater than the purity of the original matrix solution. If dilution is required the diluent must be compatible with all certified analytes and contain stabilizers appropriate for the period of intended use. The CRM can also be used as a spike or with a spike, again with appropriate compatibility considerations. All solutions should be thoroughly mixed, by shaking, prior to use and never pipetted directly from the bottle. All surfaces that come in contact with the solution must be thoroughly cleaned and leached prior to use. Dilutions should be performed only with Class A volumetric glassware.

Method of Preparation:

Clean laboratory procedures and techniques have been used throughout the preparation. All materials, equipment, analytical instrumentation and personnel have been qualified prior to use. The highest purity acids applicable, 18 megohm, double deionized water, acid-leached triple-rinsed bottles, and Class A glassware have been used in all preparations.

Homogeneity:

The Homogeneity of the CRM has been confirmed by procedures consistent with ISO guide 17025, ISO/REMCO N280 and ASTM D6362-98 Appendix X2. Random, replicate samples of the final, packaged material have been analyzed for the certified values by procedures consistent with the intended use of the CRM.

The mathematical expression k_s=s²m is employed to determine the sampling size

S = relative standard deviation in % for one component of the sample. (ie. The sub-sampling uncertainty)

m = the sub-sampling mass

k₁ = mass of sub-sample necessary to ensure a relative sub-sampling error of 1% (68% confidence level) in a single determination

Statistical estimator and Confidence limits:

The certified value 'x' listed on the reverse of this document is at the 95% level of confidence and can be expressed as X = x+/-U where X = True value (Labeled Value), U = Expanded uncertainty

U=ku_c where k=2 is the coverage factor at the 95% confidence level

 u_e is obtained by combining the individual element standard uncertainty components u_i and $u_{ex}\sqrt{\Sigma u_i^2}$

Certification Traveler Report:

All certified values reported were derived from Traveler Report (Spex CertiPrep's traceability documentation) identified by the lot number of this CRM. For further information contact CRM Sales.

Legal Notice:

SPEX CertiPrep reference materials are not for any cosmetic, drug or household application and are to be used only by qualified individuals who are trained in appropriate procedures. No claims against SPEX CertiPrep, Inc. of any kind whatsoever, whether based on breach of warranty, alleged negligence, or otherwise, with respect to this RM shall be greater than the purchase price. In no event shall SPEX CertiPrep, Inc. be liable for any loss of profits or any incidental, special, or consequential damages.

203 Norcross Avenue • Metuchen, NJ 08840 USA
732-549-7144 • 1-800-LAB-SPEX • Fax: 732-603-9647
CRMSales@spexcsp.com • www.spexcsp.com
Always Providing Superior Quality ... Unparalleled Service™

Certificate of Reference Material

Catalog Number: PLSB7-2X/2Y/2T

Lot No. 10-43SB

Description:

1000 mg/L Antimony

Matrix:

H2O/0.6Tart.Acid/tr.HNO3

This ASSURANCE © certified reference material, CRM, is intended primarily for use as a calibration standard or quality control standard for inorganic spectroscopic instrumentation such as ICPOES, DCP, AA, ICPMS, and XRF. It can be employed in USEPA, ASTM and other methods relevant to the certified properties listed below.

Certified Value: 1004 mg/L

Uncertainty Associated with Measurement: +/-3.0mg/L

Certified Value is Traceable to: NIST SRM 3102a

The CRM is prepared gravimetrically using high purity Antimony Metal Lot# 04021A. The certified value listed is the average of values obtained by classical wet assay and ICP spectrometer analysis

Refer to side 2 for details of measurement uncertainties.

Classical Wet Assay:

1005 mg/L

Method: Evaporate to dryness. Fume with Nitric Acid. Ignite and weigh as Sb2O4.

Instrumental Analysis by ICP spectrometer:

1002 mg/L

Uncertified Properties:

Density: 1.046 @ 25.5 Degrees Celsius

Trace Metallic Impurities in the Actual Solution via ICP / ICPMS Analysis:

Element	mg/L	Element	mg/L	Element	mg/L
Al	0.03	Cu	0.002	Pb	0.009
As	< 0.001	Fe	0.03	Rb	<0.001
Ag	< 0.001	Ga	<0.001	Re	<0.001
В	< 0.004	In	< 0.001	Sr	< 0.001
Ba	< 0.001	K	0.01	Si	<0.01
Be	< 0.001	Li	< 0.001	Ti	< 0.003
Bi	0.002	Mg	0.005	Tl	< 0.001
Ca	0.14	Mn	<0.001	V	< 0.001
Ст	< 0.002	Mo	<0.001	Zr	< 0.001
Cd	< 0.001	Na	0.005	Zn	0.02
Co	< 0.001	Ni	<0.001		

Balances are calibrated regularly with weight sets traceable to NIST #32856, #32857 and others. This CRM is guaranteed stable to +/-0.5% of the certified concentration inclusive of uncertainty of measurements and other effects, such as transpiration losses, for a period of one year from the date of certification. This guarantee is valid only when the material is kept tightly capped and transported and stored under laboratory conditions.

NOV - - 2003

Date of Certification:

Certifying Officer: N. Kocherakota

This Certified Reference Material has been prepared and certified under an ISO 9001 system consistent with the following guides:

Guide To The Expression Of Uncertainty In Measurement 1995

EURACHEM/CITAC Guide: Quantifying Uncertainty in Analytical Measurement - Second Edition

ASTM Guide D6362-98

ISO Guide 34: Quality system guidelines for the production of reference materials.

ISO Guide 17025: Certification of reference materials, general and statistical principles

ISO Guide 31: Contents of certificates of reference materials

NIST Technical Note 1297

ILAC-G12-2000: Guidelines for the requirements for the competence of reference materials producers

ISO/REMCO N280

Material Source:

All analytes and matrix materials are obtained and verified by SPEX CertiPrep from pre-qualified vendors as per ISO 9000 guidelines. Vendor identifications are proprietary, however sources of all materials used in the preparation and testing of SPEX CertiPrep CRMs are tracked and documented. For further information contact CRM Sales.

Instructions for Use:

Primary usage of this CRM is in neat form or diluted serially with matrix of a purity at or greater than the purity of the original matrix solution. If dilution is required the diluent must be compatible with all certified analytes and contain stabilizers appropriate for the period of intended use. The CRM can also be used as a spike or with a spike, again with appropriate compatibility considerations. All solutions should be thoroughly mixed, by shaking, prior to use and never pipetted directly from the bottle. All surfaces that come in contact with the solution must be thoroughly cleaned and leached prior to use. Dilutions should be performed only with Class A volumetric glassware.

Method of Preparation:

Clean laboratory procedures and techniques have been used throughout the preparation. All materials, equipment, analytical instrumentation and personnel have been qualified prior to use. The highest purity acids applicable, 18 megohm, double deionized water, acid-leached triple-rinsed bottles, and Class A glassware have been used in all preparations.

Homogeneity:

The Homogeneity of the CRM has been confirmed by procedures consistent with ISO guide 17025, ISO/REMCO N280 and ASTM D6362-98 Appendix X2. Random, replicate samples of the final, packaged material have been analyzed for the certified values by procedures consistent with the intended use of the CRM.

The mathematical expression k_s=s²m is employed to determine the sampling size

S = relative standard deviation in % for one component of the sample. (ie. The sub-sampling uncertainty)

m = the sub-sampling mass

k, = mass of sub-sample necessary to ensure a relative sub-sampling error of 1% (68% confidence level) in a single determination

Statistical estimator and Confidence limits:

The certified value 'x' listed on the reverse of this document is at the 95% level of confidence and can be expressed as X = x+/-U where X = True value (Labeled Value), U = Expanded uncertainty

U=ku_c where k=2 is the coverage factor at the 95% confidence level

 u_e is obtained by combining the individual element standard uncertainty components u_i and $u_e \sqrt{\Sigma u_i^2}$

Certification Traveler Report:

All certified values reported were derived from Traveler Report (Spex CertiPrep's traceability documentation) identified by the lot number of this CRM. For further information contact CRM Sales.

Legal Notice:

Certificate of Reference Material

Catalog Number:

ICV-2C

Lot No.: 24-85AS

Description:

Initial Calibration Verification Standard II

Matrix:

5% Nitric Acid

This ASSURANCE *certified reference material, CRM, is intended primarily for use as a calibration standard or quality control standard for inorganic spectroscopic instrumentation such as ICPOES, DCP, AA, ICPMS, and XRF. It can be employed in USEPA, ASTM and other methods relevant to the certified properties listed below.

The CRM is prepared from high purity single element concentrates of individual elements using Class A laboratory ware to give precise concentration.

Refer to side 2 for details of measurement uncertainties.

Instrumental Analysis by ICP Spectrometer:

Element	Labeled (mg/L)	Measured (mg/L)	NIST SRM
As	500	497.85	3103a
Pb	500	495.41	3128
Se	500	501.98	3149
TL	500	501.89	3158
Cd	100	99.77	3108

Spex Reference Multi: Lot #4-51BDREF, 15-39AS, 11-173AS

Balances are calibrated regularly with weight sets traceable to NIST#s 32856, 32867 and others. This CRM is guaranteed stable and accurate to +/- 0.5% on the average of all the certified concentrations with no single element exceeding +/- 2%. This includes uncertainty of measurements and other effects, such as transpiration losses. This guarantee is valid for a period of one year from the date of certification only when the material is kept tightly capped and transported and stored under laboratory conditions.

Date of Certification:

NOV -- 2000

Certifying Officer: N. Kochestakola

This Certified Reference Material has been prepared and certified under an ISO 9001 system consistent with the following guides:

Guide To The Expression Of Uncertainty In Measurement 1995

EURACHEM/CITAC Guide: Quantifying Uncertainty in Analytical Measurement - Second Edition

ASTM Guide D6362-98

ISO Guide 34: Quality system guidelines for the production of reference materials.

ISO Guide 17025: Certification of reference materials, general and statistical principles

ISO Guide 31: Contents of certificates of reference materials

NIST Technical Note 1297

ILAC-G12-2000: Guidelines for the requirements for the competence of reference materials producers

ISO/REMCO N280

Material Source:

All analytes and matrix materials are obtained and verified by SPEX CertiPrep from pre-qualified vendors as per ISO 9000 guidelines. Vendor identifications are proprietary, however sources of all materials used in the preparation and testing of SPEX CertiPrep CRMs are tracked and documented. For further information contact CRM Sales.

Instructions for Use:

Primary usage of this CRM is in neat form or diluted serially with matrix of a purity at or greater than the purity of the original matrix solution. If dilution is required the diluent must be compatible with all certified analytes and contain stabilizers appropriate for the period of intended use. The CRM can also be used as a spike or with a spike, again with appropriate compatibility considerations. All solutions should be thoroughly mixed, by shaking, prior to use and never pipetted directly from the bottle. All surfaces that come in contact with the solution must be thoroughly cleaned and leached prior to use. Dilutions should be performed only with Class A volumetric glassware.

Method of Preparation:

Clean laboratory procedures and techniques have been used throughout the preparation. All materials, equipment, analytical instrumentation and personnel have been qualified prior to use. The highest purity acids applicable, 18 megohm, double deionized water, acid-leached triple-rinsed bottles, and Class A glassware have been used in all preparations.

Homogeneity:

The Homogeneity of the CRM has been confirmed by procedures consistent with ISO guide 17025, ISO/REMCO N280 and ASTM D6362-98 Appendix X2. Random, replicate samples of the final, packaged material have been analyzed for the certified values by procedures consistent with the intended use of the CRM.

The mathematical expression k,-s²m is employed to determine the sampling size

S = relative standard deviation in % for one component of the sample. (ie. The sub-sampling uncertainty)

m = the sub-sampling mass

 k_s = mass of sub-sample necessary to ensure a relative sub-sampling error of 1% (68% confidence level) in a single determination

Statistical estimator and Confidence limits:

The certified value 'x' listed on the reverse of this document is at the 95% level of confidence and can be expressed as X = x+/-U where X = True value (Labeled Value), U = Expanded uncertainty

U=ku_c where k=2 is the coverage factor at the 95% confidence level

 u_e is obtained by combining the individual element standard uncertainty components u_i and $u_{ee} \sqrt{\Sigma u_i^2}$

Certification Traveler Report:

All certified values reported were derived from Traveler Report (Spex CertiPrep's traceability documentation) identified by the lot number of this CRM. For further information contact CRM Sales.

Legal Notice:

SPEX CertiPrep reference materials are not for any cosmetic, drug or household application and are to be used only by qualified individuals who are trained in appropriate procedures. No claims against SPEX CertiPrep, Inc. of any kind whatsoever, whether based on breach of warranty, alleged negligence, or otherwise, with respect to this RM shall be greater than the purchase price. In no event shall SPEX CertiPrep, Inc. be liable for any loss of profits or any incidental, special, or consequential damages.

203 Norcross Avenue • Metuchen, NJ 08840 USA 732-549-7144 • **1-800-LAB-SPEX** • Fax: 732-603-9647

CRMSales@spexcsp.com • www.spexcsp.com

Always Providing Superior Quality . . . Unparalleled Service™

inorganic ventures

195 lehigh avenue, suite 4, lakewood, nj 08701 usa phone: 800-669-6799 • 732-901-1900 • fax: 732-901-1903 e-mail: ivsales@ivstandards.com • website: www.ivstandards.com

certificate of analysis

1.0 Inorganic Ventures / IV Labs is an ISO Guide 34-2000 Certified Reference Material (CRM) Manufacturer: Certificate #883-02. The certificate is designed and the certified value(s) and uncertainty(ies) are determined in accordance with ISO Guide 31-2000 (Reference Materials - Contents of certificates and label(s), ISO Guide 34-2000 "Quality System Guidelines for the Production of Reference Materials." and ISO Guide 35-1989 "Certification of Reference Materials - General and Statistical Principles."

2.0	DESCRIPTION OF CRM	Custom-Grade	10000 µg/mL Aluminum in 5% (abs) HNO ₃
-----	--------------------	--------------	---

Catalog Number:

CGAL10-1 and CGAL10-5

Lot Number:

W-AL04008

Starting Material:

Al metal

Starting Material Purity (%):

99.998460

INORGANIC LABS/RADCHEM LABS %.1.62

Starting Material Lot No

607116

DATE RECEIVED: 08/06/03

DATE EXPIRED: 09/01/2004 VOS

Matrix:

5% (abs) HNO3

DATE OPENED: 08/86/03 INDRG: 400 PO: F50004

CERTIFIED VALUES AND UNCERTAINTIES 3.0

Certified Concentration:

 $10070 \pm 31 \mu g/mL$

Certified Density:

1,059 g/mL (measured at 22° C)

The Certified Value is based upon the most precise method used to analyze this CRM. The following equations are used in the calculation of the certified value and the uncertainty:

Certified Value (C) = 221X:

(C) = mean

x. = individual results

n = number of measurements

Uncertainty (±) = $2[(e_1 \cdot s_1)^2]^{1/2}$

BS = The summation of all significant estimated errors

(Most common are the errors from instrumental measurement, weighing, dilution to volume, and the fixed error reported on the

NIST SRM certificate of analysis.)

The independent samples t-test was used to determine if there is agreement between the above assay methods at the 95% confidence interval. Both methods were compared and showed agreement within the stated uncertainties. This agreement is a confirmation of the accuracy of this CRM.

TRACEABILITY TO NIST AND VALUES OBTAINED BY INDEPENDENT METHODS 4.0

□ "Property of the result of a measurement or the value of a standard whereby it can be related to stated references, usually national or international standards, through an unbroken chain of comparisons all having stated uncertainties." (ISO VIM, 2nd ed., 1993, definition 6.10)

☐ This IV product is Traceable to NIST via direct comparison to NIST SRMs. The uncertainties for each certified value are reported, taking into account the SRM uncertainty error and the measurement, weighing and volume dilution errors.

4.1

Assay Method #1

10006 ± 55 µg/mL

ICP Assay NIST SRM 3101a Lot Number: 992003

Assay Method #2

10070 ± 31 µg/mL

EDTA NIST SRM 928 Lot Number: 880710

- 4.2 BALANCE CALIBRATION All balances are checked daily using in-house procedure number 6-IMM-001. The weights used for testing are annually compared to Gerhart Scale Corporation's master weights and are traceable to the National Institute of Standards and Technology (NIST). The NIST Traceability numbers are 692476 Class 1 and 692476A Class 2. The NIST test number is 822/260017-98. All analytical balances are calibrated every 4 months by Gerhart Scale Corp. of South Amboy. The balances are calibrated with a class 1 and/or class 2 analytical weight set. These weights are tested annually by a NIST / NVLAP accredited calibration lab. The NIST test number is 822/260017-98.
- 4.3 THERMOMETER CALIBRATION The thermometers used in the determination of the final densities are calibrated vs standard thermometer No. 903-2680 which was certified in accordance with the procedures outlined by ASTM E77-87 and NIST Monograph 150 using NIST Test Nos. and Std Nos.: 769543, 217368/769543, 217368/P14452, 176240/P14452, 176240. The in-house procedure No. is 2-QC-001. Thermometers which are not calibrated vs standard thermometer No. 903-2680 are traceable to NIST Identification Nos. 92564, 119016, 471047 and NIST test report Nos. 811/258522, 811/2557078, and 236090.
- 4.4 GLASSWARE CALIBRATION In-house procedure 3-QC-002 is used to calibrate all Class A Glassware used in the manufacture and quality control of Custom Grade Standards.

5.0 TRACE METALLIC IMPURITIES (TMI) DETERMINED BY ICP/MS AND ICP-OES IN µg/ml

Custom-Grade solutions are tested for trace metallic impurities by Axial ICP-OES and ICP-MS. The result from the most sensitive method for each element, is reported below. Solutions tested by ICP-MS were analyzed in an ULPA-Filtered Clean Room. An ULPA-Filter is 99.9985% efficient for the removal of particles down to 0.3 µm.

<u>s</u>	Αl			M	Đу	<	0.02695	<u>0</u>	Li		0.00011	M	Pr	<	0.00135	M	Te	<	0.13473
M	Sb	<	0.00225	М	Er	<	0.02245	<u>M</u>	Lu	<	0.00180	M	Re	<	0.00449	M	Tb	<	0.00135
M	As	<	0.04491	M	Eu	<	0.01347	Q	Mg		0.00470	W	Rh	<	0.00449	M	Ħ	<	0.00449
M	Ba	<	0.04491	м	Gd	<	0.00449	M	Mn	<	0.01796	M	Rb	<	0.00449	M	Th	<	0.00449
0	Be	<	0.00017	М	Ga	<	0.00449	o	Hg	<	0.00700	M	Ru	<	0.00898	М	Tm	<	0.00180
M	Bi	<	0.00180	М	Ge	<	0.02695	M	Мо	<	0.00898	M	Sm	<	0.00449	М	Sn	<	0.02245
<u>o</u> .	В		0.01164	M	Au	<	0.01347	M	Nd	<	0.00898	M	Sc	<	0.04491	M	Ti	<	0.22454
M	Cd	<	0.01347	М	Hf	<	0.00898	Q	Ni	<	0.00600	W	Se	<	0.03593	M	W	<	0.04491
Q	Са		0.01903	<u>M</u>	Но	<	0.00225	M	Nb	<	0.00225	0	Si		0.07389	M	υ	<	0.00898
M	Се	<	0.02245	<u>o</u>	In	<	0.03000	<u>n</u>	Os			M	Ag	<	0.00898	W	٧	<	0.00898
M	Cs	<	0.00135	M	ir	<	0.02245	M	Pd	<	0.02245	ō	Na		0.03359	M	Υb	<	0.00449
<u>o</u>	Cr		0.00336	0	Fe		0.00493	<u>0</u>	P	<	0.03000	M	Sr	<	0.00225	M	Υ	<	0.17963
M	Со	<	0.01347	M	La	<	0.00225	M	Pt	<	0.00898	0	\$	<	0.10000	M	Zn	<	0.08982
M	Çu	<	0.02695	М	Pb	<	0.01347	0	κ		0.02911	M	Та	<	0.03144	M	Zr	<	0.02245
M - C	Check	be	by ICP-MS	0 -	Chec	kec	by ICP-OES	1 - S	pect	al I	nterference	n - 1	Not C	hec	ked For	s -	Soluti	on-	Standard Element

6.0 INTENDED USE

For the calibration of analytical instruments including but not limited to the following:

ICP-MS, ICP-OES, FAAS, GFAA, XRF, and DCP

For the validation of analytical methods

For the preparation of "working reference samples"

For interference studies and the determination of correction coefficients

For detection limit and linearity studies

For additional intended uses, contact IV Technical Staff

7.0 INSTRUCTIONS FOR THE CORRECT USE OF THIS REFERENCE MATERIAL

Storage & Handling - Keep tightly sealed when not in use. Store and use at 20 ± 4°C. Do not pipet from container. Do not return portions removed for pipetting to container.

Atomic Weight; Valence; Coordination Number; Chemical Form in Solution - 26.98154; +3, 6; A(H,O), "

Chartical Compatibility - Soluble in HCl, HNO, HF and H2SO. Avoid neutral media. Soluble in strongly basic NaOH forming the AI(OH) (H₂O); species. Stable with most metals and inorganic anions. The phosphate is insoluble in water and only slightly soluble in acid.

Stability - 2-100 ppb levels stable for months in 1% HNO_a / LDPE container. 1-10,000 ppm solutions chemically stable for years in 2-5% HNO_a / LDPE container.

Al Containing Samples (Preparation and Solution) - Metal (Best dissolved in HCI / HNO₂); a-Al₂O₂ (Na₂OO₂ fusion in Pt²); y-Al₂O₃ (Soluble in acids such as HCI); Ores (Carbonate fusion in Pt³ followed by HCI dissolution); Organic Matrices (suffunc/peroxide digestion or nitric / suffuric / perchloric acid decomposition, or dry ash and dissolution in dilute HCI.

Atomic Spectroscopic Information (ICP-OES D.L.s are given as radial/axia) view):

THUSING SPECIAL CONTRACTOR	STANDED LINE AND INC.	,		
Technique/Line	Estimated D.L.	Order	Type	Interferences (underlined indicates severe at valloncs.)
ICP-OES 394.401 nm	0.05 / 0.006 µg/mL	1	atom	U, Ce
ICP-OES 396.152 nm	0.03 / 0.006 µg/mL	1	atom	Mo, Zr, Ce
ICP-0ES 167.078 nm	0.1 / 0.009 µg/mL	1	ion	Fe
ICP-MS 27 amu	30 ppt	n.ta	М'	`PC'"N, "C"N, "H'PC"N, "B'"O, "Cr", "Fe"

- HAZARDOUS INFORMATION Please refer to the enclosed Material Saftey Data sheet for information regarding this CRM. 8.0
- HOMOGENEITY This solution was mixed according to procedure !V-MPM-004 and is guaranteed to be homogeneous. 9.0

QUALITY STANDARD DOCUMENTATION 10.0

10.1 ISO 9001:2000 Quality Management System Registration - QMI Certificate Number 010105 Recognized by:

Registrar Accreditation Board (ANSI-RAB)

Standards Council of Canada (SCC)

Dutch Council for Accreditation (RVA)

Entidad Mexicana de Acreditacion, a.c.(EMA)

Members of IQ Net International Certification Network:

Argentina (IRAM), Australia (QAS), Austria (ÖQS), Belgium (Avinter), Brazil (FCAV), Canada (QMI), Hong Kong (HKQAA), Columbia (ICONTEC), Czech Republic (CQS), Denmark (DS), Finland (SFS), France (AFAQ), Germany (DQS), Greece (ELOT), Hungary (MSZT), Ireland (NSAI), Israel (SII), Italy (CISQ), Japan (JQA), Korea (KSA-QA), Netherlands (KEMA), Norway (NCS), Poland(PCBC), Portugal (APCER), Singapore (PSB), Slovenia (SIQ), Spain (AENOR), Switzerland (SQS) 10.2 ISO/IEC 17025 - 1999 "General Requirements for the Competence of Testing and Calibration"

- Chemical Testing - Accredited A2LA Certificate Number 883.01

10.3 ISO/IEC Guide 34 - 2000 "General Requirements for the Competence of Reference Material Producers" - Reference Materials Production - Accredited A2LA Certificate Number 883.02

A2LA Mutual Recognition Agreement Partners:

Australia (NATA), Austria (BmwA), Belgium (BELTEST) (BKO-OBE), Canada (SCC), Chinese Taipei (CNLA), Czech Republic (NAO), Denmark (DANAK), Finland (FINAS), France (COFRAC), Germany (DAR), Hong Kong (HKAS, Ireland (NAB), Italy (SIT) (SINAL), Japan (JAB) (JNLA), Republic of Korea (KOLAS), The Netherlands (RvA), New Zealand (IANZ), Norway (NA), Portugal (IPQ), Singapore (SAC-SINGLAS), Spain (ENAC), Sweden (SWEDAC), Switzerland (SAS), United Kingdom (UKAS) and United States (NVLAP) (ICBO ES)

- 10.4 10CFR50 Appendix B Nuclear Regulatory Commission
 - Domestic Licensing of Production and Utilization Facilities
- 10.5 10CFR21 Nuclear Regulatory Commission Reporting Defects and Non-Compliance
- 10.6 MIL-STD-45662A (Obsolete/Observed)

INOR	SANIC LA	BS/RADCHEM	LABSP9. Dof 3
DATE	RECEIVED	08/96/	03
NAIF	ニメルイドドア:	69/01/	2014 105
DAIE (JENED: _	08/26	5/03
INORG:	4930	PO: F	52224

DATE OF CERTIFICATION AND PERIOD OF VALIDITY

- 11.1 IV Shelf Life The period of time during which the concentration of the analyte(s) in a property packaged, unopened, and unused standard stored under environmentally controlled and monitored conditions will remain within the specified uncertainty range. Shelf life is limited primarily by transpiration (loss of water from the solution) and infrequently, by chemical instability. Transpiration studies (P-SP01020) of chemically-stable solutions performed at Inorganic Ventures / IV Labs indicate a CRM shelf-life of four years for solutions packaged in 500-mL low density polyethylene bottles. When stored under special conditions that minimize transpiration and instability, the shelf life can be extended past this limit.
- 11.2 Expiration Date The date after which a CRM should not be used. Routine laboratory use of a CRM increases transpiration losses and the chance of contamination which affect the integrity of the CRM and limit its useful life. Inorganic Ventures / IV Labs concurs with state and federal regulatory agencies' recommendations that solution standards be assigned a one-year expiration date.

Certification Date: February 13, 2003

Expiration Date:

NAMES AND SIGNATURES OF CERTIFYING OFFICERS 12.0

Certificate Prepared By:

JoAnn Struthers, QA Administrative Assistant

Certificate Approved By:

Katalin Le, QC Supervisor

Certifying Officer:

Paul Galnes, Chemist, Senior Technical Director

Jolla Struthen Knowen an Paux Sain

inorganic ventures

195 lehigh avenue, suite 4, lakewood, nj 08701 usa phone: 800-669-6799 • 732-901-1900 • fax: 732-901-1903 e-mail: ivsales@ivstandards.com • website: www.ivstandards.com

certificate of analysis

Inorganic Ventures / IV Labs is an ISO Guide 34-2000 Certified Reference Material (CRM) Manufacturer: 1.0 Certificate #883-02. The certificate is designed and the certified value(s) and uncertainty(ies) are determined in accordance with ISO Guide 31-2000 (Reference Materials - Contents of certificates and label(s), ISO Guide 34-2000 "Quality System Guidelines for the Production of Reference Materials," and ISO Guide 35-1989 "Certification of Reference Materials - General and Statistical Principles."

2.0	DESCRIPTION OF CRM	Custom-Grade	10000 μg/mL Calcium in 1.4% (abs) HNO
-----	--------------------	--------------	---------------------------------------

Catalog Number:

CGCA10-1, CGCA10-2, and CGCA10-5

Lot Number:

W-CA03022

Starting Material:

CaO

Starting Material Purity (%):

99.999389

Starting Material Lot No Matrix:

C27L01

1.4% (abs) HNO₃

INORGANIC LABS/RADCHEM LABSBy 2002

DATE RECEIVED: ___OV/30/04_

DATE OPENED: 01/20/04 INORG: 4436 PO: F58303

3.0 **CERTIFIED VALUES AND UNCERTAINTIES**

9968 ± 18 µg/mL

Certified Density:

1.038 g/mL (measured at 22° C)

The Certified Value is based upon the most precise method used to analyze this CRM. The following equations are used in the calculation of the certified value and the uncertainty:

Certifled Value (C) = 22'X

Certified Concentration:

(C)1 = mean

x_i = Individual results

Uncertainty $(\pm) = 2[(e_1 \cdot s_1)^2]^{1/2}$

n = number of measurements

BS = The summation of all significant estimated errors.

(Most common are the errors from instrumental measurement, weighing, dilution to volume, and the fixed error reported on the NIST SRM certificate of analysis.)

The independent samples t-test was used to determine if there is agreement between the above assay methods at the 95% confidence interval. Both methods were compared and showed agreement within the stated uncertainties. This agreement is a confirmation of the accuracy of this CRM.

4.0 TRACEABILITY TO NIST AND VALUES OBTAINED BY INDEPENDENT METHODS

 "Property of the result of a measurement or the value of a standard whereby it can be related to stated references, usually national or international standards, through an unbroken chain of comparisons all having stated uncertainties." (ISO VIM, 2nd ed., 1993, definition 6.10)

This IV product is Traceable to NIST via direct comparison to NIST SRMs. The uncertainties for each certified value are reported, taking into account the SRM uncertainty error and the measurement, weighing and volume dilution errors.

Assay Method #1

9968 ± 18 µg/mL

ICP Assay NIST SRM 3109a Lot Number: 000622

Assay Method #2

9973 ± 25 µg/mL

EDTA NIST SRM 928 Lot Number: 880710

- 4.2 BALANCE CALIBRATION All balances are checked daily using in-house procedure number 6-IMM-001. The weights used for testing are annually compared to Gerhart Scale Corporation's master weights and are traceable to the National Institute of Standards and Technology (NIST). The NIST Traceability numbers are 692476 Class 1 and 692476A Class 2. The NIST test number is 822/260017-98. All analytical balances are calibrated every 4 months by Gerhart Scale Corp. of South Amboy. The balances are calibrated with a class 1 and/or class 2 analytical weight set. These weights are tested annually by a NIST / NVLAP accredited calibration lab. The NIST test number is 822/260017-98.
- 4.3 THERMOMETER CALIBRATION The thermometers used in the determination of the final densities are calibrated vs standard thermometer No. 903-2680 which was certified in accordance with the procedures outlined by ASTM E77-87 and NIST Monograph 150 using NIST Test Nos. and Std Nos.: 769543, 217368/769543, 217368/P14452, 176240/P14452, 176240. The in-house procedure No. is 2-QC-001. Thermometers which are not calibrated vs standard thermometer No. 903-2680 are traceable to NIST Identification Nos. 92564, 119016, 471047 and NIST test report Nos. 811/258522, 811/2557078, and 236090.
- 4.4 GLASSWARE CALIBRATION In-house procedure 3-QC-002 is used to calibrate all Class A Glassware used in the manufacture and quality control of Custom Grade Standards.

5.0 TRACE METALLIC IMPURITIES (TMI) DETERMINED BY ICP/MS AND ICP-OES IN μg/mL

Custom-Grade solutions are tested for trace metallic impurities by Axial ICP-OES and ICP-MS. The result from the most sensitive method for each element, is reported below. Solutions tested by ICP-MS were analyzed in an ULPA-Filtered Clean Room. An ULPA-Filter is 99,9985% efficient for the removal of particles down to 0.3 µm.

		•	ı	1
Q Al 0.00013	<u>M</u> Dy < 0.03067	Q Li 0.00011	<u>M</u> Pr < 0.00153	<u>M</u> Te < 0.15333
M Sb < 0.00256	M Er < 0.02556	M Lu < 0.00204	<u>M</u> Re < 0.00511	M Tb < 0.00153
M As < 0.05111	M Eu < 0.01533	<u>Q</u> Mg 0.03453	M Rh < 0.00511	<u>M</u> TI < 0.00511
<u>Q</u> Ba 0.00063	M Gd < 0.00511	<u>Q</u> Mn < 0,00030	M Rb < 0.00511	M Th < 0.00511
Q Be < 0.00009	M Ga < 0.00511	Q Hg < 0.01100	M Ru < 0.01022	<u>M</u> Tm < 0.00204
M Bi < 0.00204	M Ge < 0.03067	M Mo < 0.01022	<u>M</u> Sm < 0.00511	M Sn < 0.02556
Q B < 0.00054	M Au < 0.01533	M Nd < 0.01022	Q Sc < 0.00002	<u>M</u> Ti < 0.25555
O Cd < 0.00450	M Hf < 0.01022	Q NI < 0.00230	<u>O</u> Se < 0.00620	M W < 0.05111
<u>S</u> Ca	M Ho < 0.00256	M Nb < 0.00256	<u>Q</u> Si 0.00253	<u>M</u> U < 0.01022
<u>M</u> Ce < 0.02556	Q in < 0.00200	<u>n</u> Os	M Ag < 0.01022	<u>O</u> V < 0.00090
M Cs < 0.00153	M Ir < 0.02556	M Pd < 0.02556	<u>O</u> Na < 0.00010	M Yb < 0.00511
O Cr 0.00183	<u>O</u> Fe < 0.00110	Q P < 0.00480	Q Sr 0.02021	<u>M</u> Y < 0.20444
O Co < 0.00120	M La < 0.00256	M Pt < 0.01022	<u>Q</u> S 0.01053	Q Zn 0.02232
O Cu < 0.00400	M Pb < 0.01533	Q K < 0.00170	<u>M</u> Ta < 0.03578	<u>M</u> Zr < 0.02556
M - Checked by ICP-MS	O - Checked by ICP-OES	i - Spectral Interference	n - Not Checked For	s - Solution Standard Element

6.0 INTENDED USE

For the calibration of analytical instruments including but not limited to the following:

ICP-MS, ICP-OES, FAAS, GFAA, XRF, and DCP

For the validation of analytical methods

For the preparation of "working reference samples"

For interference studies and the determination of correction coefficients

For detection limit and linearity studies

For additional intended uses, contact IV Technical Staff

7.0 INSTRUCTIONS FOR THE CORRECT USE OF THIS REFERENCE MATERIAL

Storage & Handling - Keep tightly sealed when not in use. Store and use at 20 ± 4°C. Do not pipet from container. Do not return portions removed for pipetting to container.

Atomic Weight; Valence; Coordination Number; Chemical Form in Solution - 40.078, +2; 6, Ca(H,O),**

Chemical Compatibility - Soluble in HCI and HNO,. Avoid H,SO., HF, H,PO, and neutral to basic media. Stable with most metals and inorganic anions forming insoluble silicate, carbonate, hydroxide, oxide, fluoride, sulfate, oxalate, chromate, arsenate and tungstate in neutral aqueous media.

Stability - 2-100 ppb levels stable for months in 1% HNO, /LDPE container. 1-10,000 ppm solutions chemically stable for years in 1-10% HNO, /LDPE container.

Ca Containing Samples (Preparation and Solution) - Metal (best dissolved in diluted HNO,) Ores (Carbonate fusion in Pt* tollowed by HCl dissolution); Organic Matrices (dry ash and dissolution in dilute HCl. Do not heat when dissolving to avoid precipitation of SiO₂). The oxide, hydroxide, carbonate, phosphate, and fluoride of calcium are soluble in % levels of HCl or HNO₂. The sulfates (gypsum, anhydrite, etc.), certain silicates and complex compounds require fusion with Na₂CO₂ followed by HCl / water dissolution. Contamination is a very real problem when analyzing for trace levels.

Atomic Spectroscopic Information (ICP-OES D.L.s are given as radial/axial view):

Technique		Estimated D.L.	Order	Type	Interferences (underlined indicates severe at alloncs.)
ICP-OES	393,366 nm	0.0002/0.00004 µg/ml.	1	ion	U,Ce
ICP-OES	396.847 nm	0.0005 / 0.00006 µg/mL	1	ion	Th
ICP-OES	422.673 nm	0.01 / 0.001 ug/mi.	1	atom	Ge
ICP-MS	44 amu	1200 ppt	n <i>i</i> a	W.	160314C, 31214O, 112123

- 8.0 HAZARDOUS INFORMATION Please refer to the enclosed Material Saftey Data sheet for information regarding this CRM.
- 9.0 HOMOGENEITY This solution was mixed according to procedure IV-MPM-004 and is guaranteed to be homogeneous.

10.0 QUALITY STANDARD DOCUMENTATION

10.1 ISO 9001:2000 Quality Management System Registration - QMI Certificate Number 010105

Recognized by:

Registrar Accreditation Board (ANSI-RAB)

Standards Council of Canada (SCC)

Dutch Council for Accreditation (RVA)

Entidad Mexicana de Acreditacion, a.c.(EMA)

Members of IQ Net International Certification Network:

Argentina (IRAM), Australia (QAS), Austria (QQS), Belgium (Avinter), Brazil (FCAV), Canada (QMI), Hong Kong (HKQAA), Columbia (ICONTEC), Czech Republic (CQS), Denmark (DS), Finland (SFS), France (AFAQ), Germany (DQS), Greece (ELOT), Hungary (MSZT), Ireland (NSAI), Israel (SII), Italy (CISQ), Japan (JQA), Korea (KSA-QA), Netherlands (KEMA), Norway (NCS),

Poland(PCBC), Portugal (APCER), Singapore (PSB), Slovenia (SIQ), Spain (AENOR), Switzerland (SQS) 10.2 ISO/IEC 17025 - 1999 "General Requirements for the Competence of Testing and Calibration"

- Chemical Testing - Accredited A2LA Certificate Number 883.01

- 10.3 ISO/IEC Guide 34 2000 "General Requirements for the Competence of Reference Material Producers"
 - Reference Materials Production Accredited A2LA Certificate Number 883.02

A2LA Mutual Recognition Agreement Partners:

Australia (NATA), Austria (BmwA), Belgium (BELTEST) (BKO-OBE), Canada (SCC), Chinese Taipei (CNLA), Czech Republic (NAO), Denmark (DANAK), Finland (FINAS), France (COFRAC), Germany (DAR), Hong Kong (HKAS, Ireland (NAB), Italy (SIT) (SINAL), Japan (JAB) (JNLA), Republic of Korea (KOLAS), The Netherlands (RvA), New Zealand (IANZ), Norway (NA), Portugal (IPQ), Singapore (SAC-SINGLAS), Spain (ENAC), Sweden (SWEDAC), Switzerland (SAS), United Kingdom (UKAS) and United States (NVLAP) (ICBO ES)

- 10.4 10CFR50 Appendix B Nuclear Regulatory Commission
 - Domestic Licensing of Production and Utilization Facilities
- 10.5 10CFR21 Nuclear Regulatory Commission Reporting Defects and Non-Compliance
- 10.6 MIL-STD-45662A (Obsolete/Observed)

INORGANIC LABS/	RADCHEM LABS 13-246
NATE DECEMBER	01/20/0 1
DATE EXPIRED:	09/01/3005 VP3
DATE OPENED:	01/90/04
INORG: 4436	PO: <u>F5a3o3</u>

11.0 DATE OF CERTIFICATION AND PERIOD OF VALIDITY

010254

- 11.1 IV Shelf Life The period of time during which the concentration of the analyte(s) in a properly packaged, unopened, and unused standard stored under environmentally controlled and monitored conditions will remain within the specified uncertainty range. Shelf life is limited primarily by transpiration (loss of water from the solution) and infrequently, by chemical instability. Transpiration studies (P-SP01020) of chemically-stable solutions performed at inorganic Ventures / IV Labs indicate a CRM shelf-life of four years for solutions packaged in 500-mL low density polyethylene bottles. When stored under special conditions that minimize transpiration and instability, the shelf life can be extended past this limit.
- 11.2 Expiration Date The date after which a CRM should not be used. Routine laboratory use of a CRM increases transpiration losses and the chance of contamination which affect the integrity of the CRM and limit its useful life. Inorganic Ventures / IV Labs concurs with state and federal regulatory agencies' recommendations that solution standards be assigned a one-year expiration date.

Certification Date: July 23, 2003

Expiration Date:

EXPIRES

12.0 NAMES AND SIGNATURES OF CERTIFYING OFFICERS

Certificate Prepared By: JoAnn Struthers, QA Administrative Assistant

Certificate Approved By: Katalin Le, QC Supervisor

Certifying Officer: Paul Gaines, Chemist, Senior Technical Director

folh Stutters on Paul Aains

inorganic ventures

195 lehigh avenue, suite 4, lakewood, nj 08701 usa phone: 800-669-6799 • 732-901-1900 • fax: 732-901-1903

e-mail: ivsales@ivstandards.com • website: www.ivstandards.com

certificate of analysis

Inorganic Ventures / IV Labs is an ISO Guide 34-2000 Certified Reference Material (CRM) Manufacturer: 1.0 Certificate #883-02. The certificate is designed and the certified value(s) and uncertainty(ies) are determined in accordance with ISO Guide 31-2000 (Reference Materials - Contents of certificates and label(s), ISO Guide 34-2000 "Quality System Guidelines for the Production of Reference Materials," and ISO Guide 35-1989 "Certification of Reference Materials - General and Statistical Principles."

DESCRIPTION OF CRM 2.0

Custom-Grade 10000 µg/mL Iron in 3.5% (abs) HNO3

Catalog Number:

CGFE10-1, CGFE10-2, and CGFE10-5

Lot Number:

W-FE03030

Starting Material:

Fe metal

Starting Material Purity (%):

Starting Material Lot No

99.999569

Matrix:

3.0

23166 3.5% (abs) HNO₃

INDREGAMIC LABS/RADCHEM LABS PS. 1.002

DATE RECEIVED: 03/35/04
DATE EXPIRED: 03/0/3005 vos DATE OPENED: 00/05/04

INORG: 4470 FO: F50333

Certified Concentration:

10,016 ± 25 µg/mL

Certified Density:

1.050 g/mL (measured at 22° C)

The Certified Value is based upon the most precise method used to analyze this CRM. The following equations are used in the calculation of the certified value and the uncertainty:

Certified Value (C) = grx

(C) = mean

CERTIFIED VALUES AND UNCERTAINTIES

 $x_i = Individual results$

Uncertainty (±) = $2[(e_T s_i)^2]^{1/2}$

n = number of measurements

ES = The summation of all significant estimated errors.

(Most common are the errors from instrumental measurement, weighing, dilution to volume, and the fixed error reported on the

NIST SRM certificate of analysis.)

The independent samples t-test was used to determine if there is agreement between the above assay methods at the 95% confidence interval. Both methods were compared and showed agreement within the stated uncertainties. This agreement is a confirmation of the accuracy of this CRM.

4.0 TRACEABILITY TO NIST AND VALUES OBTAINED BY INDEPENDENT METHODS

"Property of the result of a measurement or the value of a standard whereby it can be related to stated references, usually national or international standards, through an unbroken chain of comparisons all having stated uncertainties." (ISO VIM, 2nd ed., 1993, definition 6.10)

This IV product is Traceable to NIST via direct comparison to NIST SRMs. The uncertainties for each certified value are reported, taking into account the SRM uncertainty error and the measurement, weighing and volume dilution errors.

Assay Method #1

 $10,031 \pm 33 \,\mu g/mL$

ICP Assay NIST SRM 3126a Lot Number: 000606

Assay Method #2

10,016 ± 25 µg/mL

EDTA NIST SRM 928 Lot Number: 880710

- 4.2 BALANCE CALIBRATION All balances are checked daily using in-house procedure number 6-IMM-001. The weights used for testing are annually compared to Gerhart Scale Corporation's master weights and are traceable to the National Institute of Standards and Technology (NIST). The NIST Traceability numbers are 692476 Class 1 and 692476A Class 2. The NIST test number is 822/260017-98. All analytical balances are calibrated every 4 months by Gerhart Scale Corp. of South Amboy. The balances are calibrated with a class 1 and/or class 2 analytical weight set. These weights are tested annually by a NIST / NVLAP accredited calibration lab. The NIST test number is 822/260017-98.
- 4.3 THERMOMETER CALIBRATION The thermometers used in the determination of the final densities are calibrated vs standard thermometer No. 903-2680 which was certified in accordance with the procedures outlined by ASTM E77-87 and NIST Monograph 150 using NIST Test Nos. and Std Nos.: 769543, 217368/769543, 217368/P14452, 176240/P14452, 176240. The in-house procedure No. is 2-QC-001. Thermometers which are not calibrated vs standard thermometer No. 903-2680 are traceable to NIST Identification Nos. 92564, 119016, 471047 and NIST test report Nos. 811/258522, 811/2557078, and 236090.
- 4.4 GLASSWARE CALIBRATION In-house procedure 3-QC-002 is used to calibrate all Class A Glassware used in the manufacture and quality control of Custom Grade Standards.

5.0 TRACE METALLIC IMPURITIES (TMI) DETERMINED BY ICP/MS AND ICP-OES IN µg/mL

Custom-Grade solutions are tested for trace metallic impurities by Axial ICP-OES and ICP-MS. The result from the most sensitive method for each element, is reported below. Solutions tested by ICP-MS were analyzed in an ULPA-Filtered Clean Room. An ULPA-Filter is 99.9985% efficient for the removal of particles down to 0.3 µm.

			_																
<u>0</u>	Al	<	0.00270	<u>M</u>	Dу	<	0.02413	ō	u	<	0.00003	М	Pr	<	0.00121	M	Te	<	0.12066
M	Sb	<	0.00201	M	Er	<	0.02011	M	Lu	<	0.00161	М	Re	<	0.00402	M	Tb	<	0.00121
M	As	<	0.04022	M	Eu	<	0.01207	Ō	Mg	<	0.00006	М	Rh	<	0.00402	М	TI	<	0.00402
<u>M</u>	Ba	<	0.04022	М	Gd	<	0.00402	ō	Mn	<	0.02000	М	Rb	<	0.00402	M	Th	<	0.00402
0	Ве	<	0.00005	M	Ga	<	0.00402	<u>0</u>	Hg	<	0.01100	M	Ru	<	0.00804	М	Tm	<	0.00161
M	Bi	<	0.00161	į	Ge			. <u>M</u>	Мо	<	0.00804	М	Sm	<	0.00402	М	Sn	<	0.02011
0	В	<	0.00090	М	Au	<	0.01207	М	Nd	<	0.00804	М	Sc	<	0.04022	М	Ti	<	0.20109
M	Cd	<	0.01207	M	Hf	<	0.00804	<u>0</u>	Ni	<	0.05000	М	Se	<	0.03218	М	W	<	0.04022
0	Са		0.00291	М	Но	<	0.00201	M	Nb	<	0.00201	ō	Si	<	0.01000	М	U	<	0.00804
M	Се	<	0.02011	M	in	<	0.04022	Ū	Os			М	Ag	<	0.00804	М	ν	<	0.00804
М	Cs	<	0.00121	M	ìr	<	0.02011	М	Pd	<	0.02011	2	Na		0.00776	M	Yb	<	0.00402
M	Cr	<	0.02011	<u>s</u>	Fe			į	P			М	Sr	<	0.00201	M	Υ	<	0.16087
ō	Со	<	0.00110	M	La	<	0.00201	М	Pt	<	0.00804	0	s	<	0.07200	М	Zn		0.04876
<u>M</u>	Cu	<	0.02413	М	Pb	<	0.01207	ō	κ	<	0.00170	M	Ta	<	0.02815	M	Zr	<	0.02011
M - 0	Check	ed	by ICP-MS	٥-	Chec	ke	by ICP-OES	i - S	pect	al l	nterference	n -	Not C	hed	ked For	s -	Soluti	on .	Standard Element

6.0 INTENDED USE

For the calibration of analytical instruments including but not limited to the following:

ICP-MS, ICP-OES, FAAS, GFAA, XRF, and DCP

For the validation of analytical methods

For the preparation of "working reference samples"

For interference studies and the determination of correction coefficients

For detection limit and linearity studies

For additional intended uses, contact IV Technical Staff

7.0 INSTRUCTIONS FOR THE CORRECT USE OF THIS REFERENCE MATERIAL

Storage & Handling - Keep tightly sealed when not in use. Store and use at 20 ± 4.40. Do not pipet from container. Do not return portions removed for pipetting to container.

Atomic Weight; Valence; Coordination Number; Chemical Form in Solution - 55.847; +3; 0, Fe(H₂O).

Chamical Competibility - Stable in HCl, HNO₃, H₂SO₄, HF and H₂PO₄. Avoid basic media. Stable with most metals and inorganic anions in acidic media.

Stability - 2-100 ppb levels stable for months in 1% HNO. / LDPE container. 1-10,000 ppm solutions chemically stable for years in 1-5% HNO. / LDPE container.

Fe Containing Samples (Preparation and Solution) - Metal (Soluble in HCl), Oxides (If the oxide has been at a high temperature then Na₂CO₃ fusion in Pt* followed by HCl dissolution otherwise dissolve in dilute HCl), Ores (See Oxides above using only the fusion approach).

Atomic Spectroscopic Information (ICP-OES D.L.s are given as radial/axial view):

Technique	Line	Estimated D.L.	Order	Type	Interferences (underlined indicates severe at «EDoncs.)
ICP-OES	238.204 nm	0.005 / 0.001 µg/ml.	1	ion	Ru, Co
ICP-OES	239.562 nm	0.005 / 0.001 µg/mL	1	ion	Co, W, Cr
ICP-OES	259.940 nm	0.006 / 0.001 µg/ml	1	ion	Hf, Nb
ICP-MS	56 amu	970 ppt	n/a	M'	**Ar'3N 'H, **Ar'4O, **Ar'4O'H, **Ar'4O, **Cl'3O'H, **Ca**O

- 8.0 HAZARDOUS INFORMATION Please refer to the enclosed Material Saftey Data sheet for information regarding this CRM.
- 9.0 HOMOGENEITY This solution was mixed according to procedure IV-MPM-004 and is guaranteed to be homogeneous.

10.0 QUALITY STANDARD DOCUMENTATION

10.1 ISO 9001:2000 Quality Management System Registration - QMI Certificate Number 010105 Recognized by:

Registrar Accreditation Board (ANSI-RAB)

Standards Council of Canada (SCC)

Dutch Council for Accreditation (RVA)

Entidad Mexicana de Acreditacion, a.c.(EMA)

Members of IQ Net International Certification Network:

Argentina (IRAM), Australia (QAS), Austria (OQS), Belglum (Avinter), Brazil (FCAV), Canada (QMI), Hong Kong (HKQAA), Columbia (ICONTEC), Czech Republic (CQS), Denmark (DS), Finland (SFS), France (AFAQ), Germany (DQS), Greece (ELOT), Hungary (MSZT), Ireland (NSAI), Israel (SII), Italy (CISQ), Japan (JQA), Korea (KSA-QA), Netherlands (KEMA), Norway (NCS), Poland(PCBC), Portugal (APCER), Singapore (PSB), Slovenia (SIQ), Soain (AENOR), Switzerland (SQS)

Poland(PCBC), Portugal (APCER), Singapore (PSB), Slovenia (SIQ), Spain (AENOR), Switzerland (SQS) 10.2 ISO/IEC 17025 - 1999 "General Requirements for the Competence of Testing and Calibration"

- Chemical Testing - Accredited A2LA Certificate Number 883.01

10.3 ISO/IEC Guide 34 - 2000 "General Requirements for the Competence of Reference Material Producers"

- Reference Materials Production - Accredited A2LA Certificate Number 883.02

A2LA Mutual Recognition Agreement Partners:

Australia (NATA), Austria (BmwA), Belgium (BELTEST) (BKO-OBE), Canada (SCC), Chinese Taipei (CNLA), Czech Republic (NAO), Denmark (DANAK), Finland (FINAS), France (COFRAC), Germany (DAR), Hong Kong (HKAS, Ireland (NAB), Italy (SIT) (SINAL), Japan (JAB) (JNLA), Republic of Korea (KOLAS), The Netherlands (RvA), New Zealand (IANZ), Norway (NA), Portugal (IPQ), Singapore (SAC-SINGLAS), Spain (ENAC), Sweden (SWEDAC), Switzerland (SAS), United Kingdom (UKAS) and United States (NVLAP) (ICBO ES)

- 10.4 10CFR50 Appendix B Nuclear Regulatory Commission
 - Domestic Licensing of Production and Utilization Facilities
- 10.5 10CFR21 Nuclear Regulatory Commission Reporting Defects and Non-Compliance
- 10.6 MIL-STD-45662A (Obsolete/Observed)

INURGANIC	LABS/RADCHEN	1 LABSB. 2042
DATE RECEIV	/ED: 03/0)	5/04
DATE EXPIRE	D:03/01	12005 403
DATE OFENED): <u>0a/a</u>	5/04
	(O PU: I	

11.0 DATE OF CERTIFICATION AND PERIOD OF VALIDITY

- 11.1 IV Shelf Life The period of time during which the concentration of the analyte(s) in a properly packaged, unopened, and unused standard stored under environmentally controlled and monitored conditions will remain within the specified uncertainty range. Shelf life is limited primarily by transpiration (loss of water from the solution) and infrequently, by chemical instability. Transpiration studies (P-SP01020) of chemically-stable solutions performed at Inorganic Ventures / IV Labs indicate a CRM shelf-life of four years for solutions packaged in 500-mL low density polyethylene bottles. When stored under special conditions that minimize transpiration and instability, the shelf life can be extended past this limit.
- 11.2 Expiration Date The date after which a CRM should not be used. Routine laboratory use of a CRM increases transpiration losses and the chance of contamination which affect the integrity of the CRM and limit its useful life. Inorganic Ventures / IV Labs concurs with state and federal regulatory agencies' recommendations that solution standards be assigned a one-year expiration date.

Certification Date: March 20, 2003

Expiration Date:

EXPIRES 15.7355

12.0 NAMES AND SIGNATURES OF CERTIFYING OFFICERS

Certificate Prepared By:

JoAnn Struthers, QA Administrative Assistant

Certificate Approved By:

Katalin Le, QC Supervisor

Certifying Officer:

Paul Gaines, Chemist, Senior Technical Director

folh Strutten knower an Paux Aaim

inorganic ventures

195 lehigh avenue, suite 4, lakewood, nj 08701 usa phone: 800-669-6799 • 732-901-1900 • fax: 732-901-1903

e-mail: ivsales@ivstandards.com • website: www.ivstandards.com

certificate of analysis

Inorganic Ventures / IV Labs is an ISO Guide 34-2000 Certified Reference Material (CRM) Manufacturer: 1.0 Certificate #883-02. The certificate is designed and the certified value(s) and uncertainty(ies) are determined in accordance with ISO Guide 31-2000 (Reference Materials - Contents of certificates and label(s), ISO Guide 34-2000 "Quality System Guidelines for the Production of Reference Materials," and ISO Guide 35-1989 "Certification of Reference Materials - General and Statistical Principles."

DESCRIPTION OF CRM Custom-Grade 10000 µg/mL Potassium in 1.4% (abs) HNO3 2.0

Catalog Number:

CGK10-1, CGK10-2, and CGK10-5

Lot Number:

W-K02111

Starting Material:

KNO3

Starting Material Purity (%):

99.997230

INORGANIC LABS/RADCHEM LABS DATE RECEIVED:

K18J19

DATE EXPIRED: __

Starting Material Lot No Matrix:

1.4% (abs) HNO3

DATE OPENED: INORG: 4300 PO:

3.0 **CERTIFIED VALUES AND UNCERTAINTIES**

Certified Concentration:

 $9930 \pm 9 \mu g/mL$

Certified Density:

1.024 g/mL (measured at 22° C)

The Certified Value is based upon the most precise method used to analyze this CRM. The following equations are used in the calculation of the certified value and the uncertainty:

Certified Value (□) = exx

(C) = mean

 $x_i = individual results$

n = number of measurements

BS = The summation of all significant estimated errors. (Most common are the errors from instrumental measurement.)

weighing, dilution to volume, and the fixed error reported on the

NIST SRM certificate of analysis.)

The independent samples t-test was used to determine if there is agreement between the above assay methods at the 95% confidence interval. Both methods were compared and showed agreement within the stated uncertainties. This agreement is a confirmation of the accuracy of this CRM.

TRACEABILITY TO NIST AND VALUES OBTAINED BY INDEPENDENT METHODS 4.0

□ "Property of the result of a measurement or the value of a standard whereby it can be related to stated references, usually national or international standards, through an unbroken chain of comparisons all having stated uncertainties." (ISO VIM, 2nd ed., 1993, definition 6.10)

This IV product is Traceable to NIST via direct comparison to NIST SRMs. The uncertainties for each certified value are reported, taking into account the SRM uncertainty error and the measurement, weighing and volume dilution errors.

4.1 Assay Method #1 9926 ± 62 µg/mL

ICP Assay NIST SRM 3141a Lot Number: 891312

Assay Method #2

 $9930 \pm 9 \, \mu g/mL$

Gravimetric NIST SRM Lot Number: See Sec. 4.2

- BALANCE CALIBRATION All balances are checked daily using in-house procedure number 6-IMM-001. The weights used for testing are annually compared to Gerhart Scale Corporation's master weights and are traceable to the National Institute of Standards and Technology (NIST). The NIST Traceability numbers are 692476 - Class 1 and 692476A - Class 2. The NIST test number is 822/260017-98. All analytical balances are calibrated every 4 months by Gerhart Scale Corp. of South Amboy. The balances are calibrated with a class 1 and/or class 2 analytical weight set. These weights are tested annually by a NIST / NVLAP accredited calibration lab. The NIST test number is 822/260017-98.
- THERMOMETER CALIBRATION The thermometers used in the determination of the final densities are calibrated vs standard thermometer No. 903-2680 which was certified in accordance with the procedures outlined by ASTM E77-87 and NIST Monograph 150 using NIST Test Nos. and Std Nos.: 769543, 217368/769543, 217368/P14452, 176240/P14452, 176240. The in-house procedure No. is 2-QC-001. Thermometers which are not calibrated vs standard thermometer No. 903-2680 are traceable to NIST Identification Nos. 92564, 119016, 471047 and NIST test report Nos. 811/258522, 811/2557078, and 236090.
- GLASSWARE CALIBRATION In-house procedure 3-QC-002 is used to calibrate all Class A Glassware used in the manufacture and quality control of Custom Grade Standards.

TRACE METALLIC IMPURITIES (TMI) DETERMINED BY ICP/MS AND ICP-OES IN µg/mL 5.0

Custom-Grade solutions are tested for trace metallic impurities by Axial ICP-OES and ICP-MS. The result from the most sensitive method for each element, is reported below. Solutions tested by ICP-MS were analyzed in an ULPA-Filtered Clean Room. An ULPA-Filter is 99.9985% efficient for the removal of particles down to 0.3 µm.

Q AI	<	0.00090	M	Dy	<	0.02400	Ō	Li	<	0.00003	<u>M</u>	Pr	<	0.00120	М	Te	<	0.11998	
M Sb	<	0.00200	M	Er	<	0.02000	M	Lu	<	0.00160	M	Re	<	0.00400	<u>M</u>	Tb	<	0.00120	
M As	<	0.03999	M	Eu	<	0.01200	<u>0</u>	Mg		0.00100	M	Rh	<	0.00400	М	TI	<	0.00400	
M Ba	<	0.03999	M	Gd	<	0.00400	Q	Mn	<	0.00003	M	Rb		0.49948	М	Th	<	0.00400	
O Be	<	0.00020	M	Ga	<	0.00400	<u>0</u>	Hg	<	0.01500	M	Ru	<	00800.0	М	Tm	<	0.00160	
М ВІ	<	0.00160	<u>o</u>	Ge	<	0.00150	М	Mo	<	0.00800	М	Sm	<	0.00400	М	Sn	<	0.02000	
<u>o</u> B	<	0.00060	<u>o</u>	Au	<	0.00300	M	Nd	<	0.00800	<u>o</u>	Sc	<	0.00002	0	Ti	<	0.00070	
, <u>M</u> Cd	۱ <	0.01200	M	Hf	<	0.00800	<u>0</u>	Ni	<	0.00230	0	Se	<	0.05000	М	W	<	0.03999	
O Ca	ı	0.00075	М	Но	<	0.00200	<u>M</u>	Nb	<	0.00200	<u>O</u>	Si	<	0.00340	M	U	<	0.00800	
M Ce	; <	0.02000	M	In	<	0.03999	n	O\$			M	Ag	<	0.00800	0	٧	<	0.00090	
M Cs	· <	0.00120	М	lr	<	0.02000	M	Pd	<	0.02000	0	Na		0.21730	M	Yb	<	0.00400	
M Cr	<	0.02000	0	Fe		0.00212	ō	P	<	0.00250	<u>M</u>	Sr	<	0.00200	M	Y	<	0.15998	
M Co	> <	0.01200	M	La	<	0.00200	M	Pt	<	0.00800	0	s	<	0.07200	Q	Zn		0.00050	
M Cu	· <	0.02400	M	Pb	<	0.01200	<u>s</u>	κ			M	Та	<	0.02800	M	Zr	<	0.02000	
M - Chec	cked	by ICP-MS	0-	Chec	ked	by ICP-OES	1-8	pect	al l	nterference	n - 1	Not C	he	cked For	s-	Solut	ion -	Standard Eleme	nt

6.0 INTENDED USE

ICP-MS

39 amu

For the calibration of analytical instruments including but not limited to the following: . .

ICP-MS, ICP-OES, FAAS, GFAA, XRF, and DCP

For the validation of analytical methods

For the preparation of "working reference samples"

For interference studies and the determination of correction coefficients

For detection limit and linearity studies

For additional intended uses, contact IV Technical Staff

10 ppt

INSTRUCTIONS FOR THE CORRECT USE OF THIS REFERENCE MATERIAL

Storage & Handling - Keep tightly sealed when not in use. Store and use at 20 ± 4~6. Do not pipet from container. Do not return portions removed for pipetting to container.

Atomic Weight: Valence: Coordination Number: Chemical Form in Solution - 29.0983; +1; (6); K'(eq) (Coordination Number in parentheses is assumed, not certain.)

nb

Chemical Compatibility - Soluble in HCl, HNO, H₂SO, and HF aqueous matrices. Avoid use of HClO, due to insolubility of the perchlorate. Stable with all metals and inorganic anions except CIO.

Stability - 2-100 ppb levels stable for months in 1% HNO₃ / LDPE container. 1-10,000 ppm solutions chemically stable for years in 1-5% HNO₃ / LDPE container.

K Containing Samples (Preparation and Solution) - Metal (Dissolves very repidly in water): Ores (Sodium carbonate fusion in Pt* followed by HCl dissolution-blank levels of K in sodium carbonate critical); Organic Matrices (Sulfuric/peroxide digestion.)

Atomic Spectroscopic Information (ICP-DES D.L.s are given as redict/estat view): <u>Technique/Line</u> Estimated D.L. Order Type: Interferences (underlined indicates severe at aftioncs.) ICP-OES 766,490 nm 0.4 / 0.001 ug/mL atom 2" order radiation from R.E.s on some optical designs ICP-OES 771.531 nm 1.0 / 0.03 µg/mL 2" order radiation from R.E.s on some optical designs atom 1.1 / 0.05 µg/mL ICP-OES 404.721 nm <u>U. Cc.</u> ™ArH, ™Na"O, "Se" atom

M

- 8.0 HAZARDOUS INFORMATION Please refer to the enclosed Material Saftey Data sheet for information regarding this CRM.
- 9.0 HOMOGENEITY This solution was mixed according to procedure IV-MPM-004 and is guaranteed to be homogeneous.

10.0 QUALITY STANDARD DOCUMENTATION

10.1 ISO 9001:2000 Quality Management System Registration - QMI Certificate Number 010105 Recognized by:

Registrar Accreditation Board (ANSI-RAB)

Standards Council of Canada (SCC)

Dutch Council for Accreditation (RVA)

Entidad Mexicana de Acreditacion, a.c.(EMA)

Members of IQ Net International Certification Network:

Argentina (IRAM), Australia (QAS), Austria (ÖQS), Belgium (Avinter), Brazil (FCAV), Canada (QMI), Hong Kong (HKQAA), Columbia (ICONTEC), Czech Republic (CQS), Denmark (DS), Finland (SFS), France (AFAQ), Germany (DQS), Greece (ELOT), Hungary (MSZT), Ireland (NSAI), Israel (SII), Italy (CISQ), Japan (JQA), Korea (KSA-QA), Netherlands (KEMA), Norway (NCS), Poland (PCBC), Portugal (APCER), Singapore (PSB), Slovenia (SIQ), Spain (AENOR), Switzerland (SQS)

10.2 ISO/IEC 17025 - 1999 "General Requirements for the Competence of Testing and Calibration"

- Chemical Testing - Accredited A2LA Certificate Number 883.01

10.3 ISO/IEC Guide 34 - 2000 "General Requirements for the Competence of Reference Material Producers"

- Reference Materials Production - Accredited A2LA Certificate Number 883.02

A2LA Mutual Recognition Agreement Partners:

Australia (NATA), Austria (BmwA), Belgium (BELTEST) (BKO-OBE), Canada (SCC), Chinese Taipei (CNLA), Czech Republic (NAO), Denmark (DANAK), Finiand (FINAS), France (COFRAC), Germany (DAR), Hong Kong (HKAS, Ireland (NAB), Italy (SIT) (SINAL), Japan (JAB) (JNLA), Republic of Korea (KOLAS), The Netherlands (RvA), New Zealand (IANZ), Norway (NA), Portugal (IPQ), Singapore (SAC-SINGLAS), Spain (ENAC), Sweden (SWEDAC), Switzerland (SAS), United Kingdom (UKAS) and United States (NVLAP) (ICBO ES)

- 10.4 10CFR50 Appendix B Nuclear Regulatory Commission
 - Domestic Licensing of Production and Utilization Facilities
- 10.5 10CFR21 Nuclear Regulatory Commission Reporting Defects and Non-Compliance
- 10.6 MIL-STD-45662A (Obsolete/Observed)

11.0 DATE OF CERTIFICATION AND PERIOD OF VALIDITY

- 11.1 IV Shelf Life The period of time during which the concentration of the analyte(s) in a properly packaged, unopened, and unused standard stored under environmentally controlled and monitored conditions will remain within the specified uncertainty range. Shelf life is limited primarily by transpiration (loss of water from the solution) and infrequently, by chemical instability. Transpiration studies (P-SP01020) of chemically-stable solutions performed at Inorganic Ventures / IV Labs indicate a CRM shelf-life of four years for solutions packaged in 500-mL low density polyethylene bottles. When stored under special conditions that minimize transpiration and instability, the shelf life can be extended past this limit.
- 11.2 Expiration Date The date after which a CRM should not be used. Routine laboratory use of a CRM increases transpiration losses and the chance of contamination which affect the integrity of the CRM and limit its useful life. Inorganic Ventures / IV Labs concurs with state and federal regulatory agencies' recommendations that solution standards be assigned a one-year expiration date.

INOR	RGANIC LAE	S/RADCHEN	1 LABS JYZ
DATE	EXPIRED:	12/1/204	\mathcal{M}
DATE	OPENED: i: 43 2 6	11/5/43	352425

Certification Date: January 30, 2003

Expiration Date:

182004-

12.0 NAMES AND SIGNATURES OF CERTIFYING OFFICERS

Certificate Prepared By:

JoAnn Struthers, QA Administrative Assistant

Certificate Approved By:

Katalin Le, QC Supervisor

Certifying Officer:

Paul Gaines, Chemist, Senior Technical Director

folm Stutten knowen en Pour Aain

1.0

inorganic ventures

195 lehigh avenue, suite 4, lakewood, nj 08701 usa phone: 800-669-6799 • 732-901-1900 • fax: 732-901-1903 e-mail: ivsales@ivstandards.com • website: www.ivstandards.com

analysis certificate

inorganic Ventures / IV Labs is an ISO Guide 34-2000 Certified Reference Material (CRM) Manufacturer: Certificate #883-02. The certificate is designed and the certified value(s) and uncertainty(ies) are determined in accordance with ISO Guide 31-2000 (Reference Materials - Contents of certificates and label(s), ISO Guide 34-2000 "Quality System Guidelines for the Production of Reference Materials," and ISO Guide 35-1989 "Certification of Reference Materials - General and Statistical Principles."

2.0 **DESCRIPTION OF CRM** Custom-Grade 10000 µg/mL Magnesium in 1.4% (abs) HNO3

Catalog Number:

CGMG10-1 and CGMG10-5

Lot Number:

T-MG03006

Starting Material:

Mg metal

Starting Material Purity (%):

99,9968

INDRGANIC LABS/RADCHEM LABST9.1 of 2 DATE RECEIVED: 07/31/03

Starting Material Lot No

RML91191

DATE EXPIRED: 08/01/2004 V DATE OPENED: 08/01/03

Matrix:

1.4% (abs) HNO₃

INORG: 4304 PD: F53391

3.0 **CERTIFIED VALUES AND UNCERTAINTIES**

Certified Concentration:

9921 ± 20 µg/mL

Certified Density:

1.050 g/mL (measured at 22° C)

The Certified Value is the instrument analysis value. The following equations are used in the calculation of the certified value and the uncertainty:

Certified Value (x) = $\sum x$

(x) = mean

x = individual results

n = number of measurements

Uncertainty (±) = $2((\sum s))^{2/1/2}$

S = The summation of all significant estimated errors. (Most common are the error strom instrumental measurement,

weighing, dilution to volume, and the fixed error reported on the

NIST SRM certificate of analysis.)

TRACEABILITY TO NIST AND VALUES OBTAINED BY INDEPENDENT METHODS 4.0

"Property of the result of a measurement of the value of a standard whereby it can be related to stated references, usually national or international standards, through an unbroken chain of comparisons all having stated uncertainties." (ISO VIM, 2nd ed., 1993, definition 6.10)

This IV product is Traceable to NIST via direct comparison to NIST SRMs. The uncertainties for each certified value are reported, taking into account the SRM uncertainty error and the measurement, weighing and volume dilution errors.

4.1

Assay Method #1

9998 ± 20 µg/mL

EDTA NIST SRM 928 Lot Number: 880710

Assay Method #2

9921 ± 20 µg/mL

ICP Assay NIST SRM 3131a Lot Number: 991107

- 4.2 BALANCE CALIBRATION All balances are checked daily using in-house procedure number 6-IMM-001. The weights used for testing are annually compared to Gerhart Scale Corporation's master weights and are traceable to the National Institute of Standards and Technology (NIST). The NIST Traceability numbers are 692476 Class 1 and 692476A Class 2. The NIST test number is 822/260017-98. All analytical balances are calibrated every 4 months by Gerhart Scale Corp. of South Amboy. The balances are calibrated with a class 1 and/or class 2 analytical weight set. These weights are tested annually by a NIST / NVLAP accredited calibration lab. The NIST test number is 822/260017-98.
- 4.3 THERMOMETER CALIBRATION The thermometers used in the determination of the final densities are calibrated vs standard thermometer No. 903-2680 which was certified in accordance with the procedures outlined by ASTM E77-87 and NIST Monograph 150 using NIST Test Nos. and Std Nos.: 769543, 217368/769543, 217368/P14452, 176240/P14452, 176240. The in-house procedure No. is 2-QC-001. Thermometers which are not calibrated vs standard thermometer No. 903-2680 are traceable to NIST Identification Nos. 92564, 119016, 471047 and NIST test report Nos. 811/258522, 811/2557078, and 236090.
- 4.4 GLASSWARE CALIBRATION In-house procedure 3-QC-002 is used to calibrate all Class A Glassware used in the manufacture and quality control of Custom Grade Standards.

5.0 TRACE METALLIC IMPURITIES (TMI) DETERMINED BY ICP/MS AND ICP-OES IN µg/mL

Custom-Grade solutions are tested for trace metallic impurities by Axial ICP-OES and ICP-MS. The result from the most sensitive method for each element, is reported below. Solutions tested by ICP-MS were analyzed in an ULPA-Filtered Clean Room. An ULPA-Filter is 99.9985% efficient for the removal of particles down to 0.3 µm.

Q	Al		0.02454	М	Dy	<	0.02455	Q	Li		0.00797	М	Pr	<	0.00123	W	Te	<	0.12275
M	Sb		0.00306	М	Er	<	0.02046	M	Lu	<	0.00164	W	Re	<	0.00409	М	Tb	<	0.00123
M	As	<	0.04092	М	Eu	<	0.01228	<u>s</u>	Mg			М	Rh	<	0.00409	М	ŦI	<	0.00409
M	Ba	<	0.04092	М	Gd	<	0.00409	M	Mn	<	0.01637	M	Rb	<	0.00409	М	Th	<	0.00409
Q	Be	<	0.00017	М	Ga	<	0.00409	Q	Hg	<	0.00900	M	Ru	<	0.00818	M	Tm	<	0.00164
М	Bi	<	0.00164	M	Ge	<	0.02455	М	Мо	<	0.00818	М	Sm	<	0.00409	М	Sn	<	0.02046
Ō	В		0.00871	М	Au	<	0.01228	M	Nd	<	0.00818	M	Sc	<	0.04092	Ω	Ti		0.10206
M	Cd	<	0.01228	М	Hf	<	0.00818	Q	Ni		0.01404	M	Se	<	0.03273	M	W	<	0.04092
Ω	Ca		0.01070	М	Но	<	0.00205	М	Nb	<	0.00205	2	Si		0.03186	М	U	<	0.00818
М	Ce	<	0.02046	М	In	<	0.04092	Ω	Qs			М	Ag	<	0.00818	М	٧	<	0.00818
M	Cs	<	0.00123	М	ir	<	0.02046	M	Pd	<	0.02046	0	Na		0.01817	М	Yb	<	0.00409
Q	Cr		0.02315	Q	Fe		0.02467	Q	P	<	0.01600	М	Sr	<	0.00205	М	Y	<	0.16367
M	Co	<	0.01228	М	La	<	0.00205	M	Pt	<	0.00818	n	s			Q	Zn		0.01892
Ō	Cu		0.00672	Q	Pb		0.03236	Q	ĸ	<	0.05000	<u>M</u>	Ta	<	0.02864	M	Zr	<	0.02046
M - C	heck	ed	by ICP-MS	0 -	Chec	ked	by ICP-OES	i - S	pect	al la	nterference	n - 1	lot C	hec	ked For	s - S	olutic	n S	Standard Eleme

6.0 INTENDED USE

For the calibration of analytical instruments including but not limited to the following:

ICP-MS, ICP-OES, FAAS, GFAA, XRF, and DCP

For the validation of analytical methods

For the preparation of "working reference samples"

For interference studies and the determination of correction coefficients

For detection limit and linearity studies

For additional intended uses, contact IV Technical Staff

7.0 INSTRUCTIONS FOR THE CORRECT USE OF THIS REFERENCE MATERIAL

Storage & Handling - Keep tightly sealed when not in use. Store and use at 20 ± 4°C. Do not pipet from container. Do not return portions removed for pipetting to container.

Atomic Weight; Valence; Coordination Number; Chemical Form in Solution - 24.305; +2; 6; Mg(H₂O).12

Chemical Compatibility - Soluble in HCl, HNO, and H,SO, avoid HF, H,PO, and neutral to basic media. Stable with most metals and inorganic anions forming insoluble silicates, carbonates, hydroxides, oxides, and tungstates in neutral and slightly addic media.

Stability - 2-100 ppb levels stable for months in 1% HNO₁ / LDPE container. 1-10,000 ppm solutions chemically stable for years in 1-10% HNO₂ / LDPE container.

Mig Containing Samples (Preparation and Solution) - Metal (Best dissolved in diluted HNO₂); Oxide (Readily soluble in above competible aqueous acidic solutions), Ores (Carbonate fusion in Pt* followed by HCI dissolution); Organic Matrices (Sulfuric / percylde digestion or nitric / sulfuric / perchloric acid decomposition, ordry ash and dissolution in dilute HCI).

Atomic Spectroscopic Information (ICP-OES D.L.s are given as radial/axial view):

Techniqui	e/Line	Estimated D.L.	<u>Order</u>	Type	Interferences (underlined indicates severe at = concs.)
ICP-OES	279.553 nm	0.0002 / 0.00003 µg/mL	1	ion	Th
ICP-OES	280,270 nm	0.0003 / 0.00005 µg/mL	1	ion	U, V
ICP-OES	285,213 nm	0.002 / 0.00003 µg/ml.	1	atom	U, Ht, Cr, Zr
ICP-MS	24 amu	42 ppt	n/a	M'	'Ll'*O, **Ti'2 , **Ca'2

- 8.0 HAZARDOUS INFORMATION Please refer to the enclosed Material Saftey Data sheet for information regarding this CRM.
- 9.0 HOMOGENEITY This solution was mixed according to procedure IV-MPM-004 and is guaranteed to be homogeneous.

10.0 QUALITY STANDARD DOCUMENTATION

10.1 ISO 9001:2000 Quality Management System Registration - QMI Certificate Number 010105 Recognized by:

Registrar Accreditation Board (ANSI-RAB)

Standards Council of Canada (SCC)

Dutch Council for Accreditation (RVA)

Entidad Mexicana de Acreditacion, a.c.(EMA)

Members of IQ Net International Certification Network:

Argentina (IRAM), Australia (QAS), Austria (ŌQS), Belgium (Avinter), Brazil (FCAV), Canada (QMI), Hong Kong (HKQAA), Columbia (ICONTEC), Czech Republic (CQS), Denmark (DS), Finland (SFS), France (AFAQ), Germany (DQS), Greece (ELOT), Hungary (MSZT), Ireland (NSAI), Israel (SII), Italy (CISQ), Japan (JQA), Kore (KSA-QA), Netherlands (KEMA), Norway (NCS),

Poland(PCBC), Portugal (APCER), Singapore (PSB), Slovenia (SIQ), Spain (AENOR), Switzerland (SQS) 10.2 ISO/IEC 17025 - 1999 "General Requirements for the Competence of Testing and Calibration"

- Chemical Testing - Accredited A2LA Certificate Number 883.01

10.3 ISO/IEC Guide 34 - 2000 "General Requirements for the Competence of Reference Material Producers"

- Reference Materials Production - Accredited A2LA Certificate Number 883.02

A2LA Mutual Recognition Agreement Partners:

Australia (NATA), Austria (BmwA), Belgium (BELTEST) (BKO-OBE), Canada (SCC), Chinese Taipei (CNLA), Czech Republic (NAO), Denmark (DANAK), Finland (FINAS), France (COFRAC), Germany (DAR), Hong Kong (HKAS, Ireland (NAB), Italy (SIT) (SINAL), Japan (JAB) (JNLA), Republic of Korea (KOLAS), The Netherlands (RvA), New Zealand (IANZ), Norway (NA), Portugal (IPQ), Singapore (SAC-SINGLAS), Spain (ENAC), Sweden (SWEDAC), Switzerland (SAS), United Kingdom (UKAS) and United States (NVLAP) (ICBO ES)

- 10.4 10CFR50 Appendix B Nuclear Regulatory Commission
 - Domestic Licensing of Production and Utilization Facilities
- 10.5 10CFR21 Nuclear Regulatory Commission Reporting Defects and Non-Compliance
- 10.6 MIL-STD-45662A (Obsolete/Observed)

INOR	GANIC	LABS/	RADCHI	EΜ	LABS	P3. 204	Ş
DATE	RECEIV	ED:	07/3	31./s	ى		
DATE	EXPIRE:	D:	08/0	ة/د	400	V9\$.
DATE	OPENED	5 2 2	08/0	710	3		_
INORG	: 420	4	PO:	F5	339	1	

11.0 DATE OF CERTIFICATION AND PERIOD OF VALIDITY

- 11.1 IV Shelf Life The period of time during which the concentration of the analyte(s) in a properly packaged, unopened, and unused standard stored under environmentally controlled and monitored conditions will remain within the specified uncertainty range. Shelf life is limited primarily by transpiration (loss of water from the solution) and infrequently, by chemical instability. Transpiration studies (P-SP01020) of chemically-stable solutions performed at Inorganic Ventures / IV Labs indicate a CRM shelf-life of four years for solutions packaged in 500-mL low density polyethylene bottles. When stored under special conditions that minimize transpiration and instability, the shelf life can be extended past this limit.
- 11.2 Expiration Date The date after which a CRM should not be used. Routine laboratory use of a CRM increases transpiration losses and the chance of contamination which affect the integrity of the CRM and limit its useful life. Inorganic Ventures / IV Labs concurs with state and federal regulatory agencies' recommendations that solution standards be assigned a one-year expiration date.

Certification Date: August 28, 2002

Expiration Date:

EXPIRES 0.1 \$2.00 /I

12.0 NAMES AND SIGNATURES OF CERTIFYING OFFICERS

Certificate Prepared By:

Debbie Newman, QA Administrator

Certificate Approved By:

Katalin Le, QC Supervisor

Certifying Officer:

Paul Gaines, Chemist, Senior Technical Director

P. A.

1.0

2.0

310

inorganic ventures / iv labs

195 lehigh avenue, suite 4, lakewood, nj 08701 usa phone: 800-669-6799 • 732-901-1900 • fax: 732-901-1903

e-mail: ivsales@ivstandards.com • website: www.ivstandards.com

certificate of analysis

Inorganic Ventures / IV Labs is an ISO Guide 34-2000 Certified Reference Material (CRM) Manufacturer: Certificate #883-02. The certificate is designed and the certified value(s) and uncertainty(ies) are determined in accordance with ISO Guide 31-2000 (Reference Materials - Contents of certificates and label(s), ISO Guide 34-2000 "Quality System Guidelines for the Production of Reference Materials," and ISO Guide 35-1989 "Certification of Reference Materials - General and Statistical Principles."

DESCRIPTION OF CRM

Custom-Grade 10000 µg/mL Sodium in 1.4% (abs) HNO3

Catalog Number:

CGNA10-1, CGNA10-2, and CGNA10-5

Lot Number:

T-NA03006

Starting Material:

Na2CO3

INORGANIC LABS/RADCHEM LABS \$1 4 2

Starting Material Purity (%):

99.999936

DATE EXPIRED: 07/3/03

DATE EXPIRED: 08/01/3004 Vot

Starting Material Lot No

42095

DATE OFENED: 08/01/03

Matrix:

1.4% (abs) HNO₃

INORG: 4805 PO: F58391

CERTIFIED VALUES AND UNCERTAINTIES

Certified Concentration:

 $10,005 \pm 7 \,\mu g/mL$

Certified Density:

1.032 g/mL (measured at 22° C)

The Certified Value is based upon the most precise method used to analyze this CRM. The following equations are used in the calculation of the certified value and the uncertainty:

Certified Value (C) = exx

(⊡r=mean

n

xi = individual results

n = number of measurements

Uncertainty (±) = $2[(\alpha_1 s_1)^2]^{1/2}$

M12

BS = The summation of all significant estimated errors.

(Most common are the errors from instrumental measurement, weighing, dilution to volume, and the fixed error reported on the

NIST SRM certificate of analysis.)

The independent samples t-lest was used to determine if there is agreement between the above assay methods at the 95% confidence interval. Both methods were compared and showed agreement within the stated uncertainties. This agreement is a confirmation of the accuracy of this CRM.

TRACEABILITY TO NIST AND VALUES OBTAINED BY INDEPENDENT METHODS

□ "Property of the result of a measurement or the value of a standard whereby it can be related to stated references, usually national or international standards, through an unbroken chain of comparisons all having stated uncertainties." (ISO VIM, 2nd ed., 1993, definition 6.10)

☐ This IV product is Traceable to NIST via direct comparison to NIST SRMs. The uncertainties for each certified value are reported, taking into account the SRM uncertainty error and the measurement, weighing and volume dilution errors.

4.1

0.

Assay Method #1

10,067 ± 75 µg/mL

ICP Assay NIST SRM 3152a Lot Number: 990907

Assay Method #2

 $10,005 \pm 7 \, \mu g/mL$

Gravimetric NIST SRM Lot Number: See Sec. 4.2

- 4.2 BALANCE CALIBRATION All balances are checked daily using in-house procedure number 6-IMM-001. The weights used for testing are annually compared to Gerhart Scale Corporation's master weights and are traceable to the National institute of Standards and Technology (NIST). The NIST Traceability numbers are 692476 Class 1 and 692476A Class 2. The NIST test number is 822/260017-98. All analytical balances are calibrated every 4 months by Gerhart Scale Corp. of South Amboy. The balances are calibrated with a class 1 and/or class 2 analytical weight set. These weights are tested annually by a NIST / NVLAP accredited calibration lab. The NIST test number is 822/260017-98.
- 4.3 THERMOMETER CALIBRATION The thermometers used in the determination of the final densities are calibrated vs standard thermometer No. 903-2680 which was certified in accordance with the procedures outlined by ASTM E77-87 and NIST Monograph 150 using NIST Test Nos. and Std Nos.: 769543, 217368/769543, 217368/P14452, 176240/P14452, 176240. The in-house procedure No. is 2-QC-001. Thermometers which are not calibrated vs standard thermometer No. 903-2680 are traceable to NIST Identification Nos. 92564, 119016, 471047 and NIST test report Nos. 811/258522, 811/2557078, and 236090.
- 4.4 GLASSWARE CALIBRATION In-house procedure 3-QC-002 is used to calibrate all Class A Glassware used in the manufacture and quality control of Custom Grade Standards.

5.0 TRACE METALLIC IMPURITIES (TMI) DETERMINED BY ICP/MS AND ICP-OES IN μg/mL

Custom-Grade solutions are tested for trace metallic impurities by Axial ICP-OES and ICP-MS. The result from the most sensitive method for each element, is reported below. Solutions tested by ICP-MS were analyzed in an ULPA-Filtered Clean Room. An ULPA-Filter is 99,9985% efficient for the removal of particles down to 0.3 µm.

			1	1
<u>O</u> Al < 0.00090	<u>M</u> Dy < 0.02499	<u>O</u> Li < 0.00003	<u>M</u> Pr < 0.00125	<u>M</u> Te < 0.12494
M Sb < 0.00208	M Er < 0.02082	M Lu < 0.00167	<u>M</u> Re < 0.00417	<u>M</u> Tb < 0.00125
M As < 0.04165	<u>M</u> Eu < 0.01249	<u>O</u> Mg 0.00015	M Rh < 0.00417	<u>M</u> Ti < 0.00417
<u>M</u> Ba < 0.04165	M Gd < 0.00417	<u>O</u> Mn < 0.00003	M Rb < 0.00417	M Th < 0.00417
<u>O</u> Be < 0.00020	<u>M</u> Ga < 0.00417	<u>O</u> Hg < 0.01500	<u>M</u> Ru < 0.00833	<u>M</u> Tm < 0.00167
<u>M</u> Bi < 0.00167	<u>O</u> Ge < 0.00150	<u>M</u> Mo < 0.00833	<u>M</u> Sm < 0.00417	<u>M</u> Sn < 0.02082
O B < 0.00060	<u>Q</u> Au < 0.00300	M Nd < 0.00833	O Sc < 0.00002	<u>O</u> Ti < 0.00070
<u>M</u> Cd < 0.01249	<u>M</u> Hf < 0.00833	<u>O</u> Ni < 0.00230	<u>O</u> Se < 0.05000	<u>M</u> W < 0.04165
O Ca 0.00160	M Ho < 0.00208	M Nb < 0.00208	O Si < 0.00340	<u>M</u> U < 0.00833
<u>M</u> Ce < 0.02082	M in < 0.04165	<u>n</u> Os	<u>M</u> Ag < 0.00833	O V < 0.00090
M Cs 0.00104	M ir < 0.02082	M Pd < 0.02082	<u>S</u> Na	M Yb < 0.00417
<u>M</u> Cr < 0.02082	<u>O</u> Fe < 0.00110	<u>O</u> P < 0.04000	<u>M</u> Sr < 0.00208	<u>M</u> Y < 0.16658
<u>M</u> Co < 0.01249	<u>M</u> La < 0.00208	M Pt < 0.00833	<u>o</u> s < 0.07200	O Zn 0.00130
O Cu < 0.00140	M Pb < 0.01249	<u>O</u> K 0.00873	M Ta < 0.02915	<u>M</u> Zr < 0.02082
M - Checked by ICP-MS	O - Checked by ICP-OES	i - Spectral Interference	n - Not Checked For	s - Solution Standard Element

6.0 INTENDED USE

For the calibration of analytical instruments including but not limited to the following:

ICP-MS, ICP-OES, FAAS, GFAA, XRF, and DCP

For the validation of analytical methods

For the preparation of "working reference samples"

For interference studies and the determination of correction coefficients

For detection limit and linearity studies

For additional intended uses, contact IV Technical Staff

7.0 INSTRUCTIONS FOR THE CORRECT USE OF THIS REFERENCE MATERIAL

Storage & Handling - Keep tightly sealed when not in use. Store and use at 20 ± 47€. Do not pipet from container. Do not return portions removed for pipetting to container.

Atomic Weight; Valence; Coordination Number; Chemical Form in Solution - 22.98977; +1; (6); Ne'(eq) largely ionic in nature (Coordination Number in parentheses is assumed, not certain.)

Chemical Compatibility - Soluble in HCl, HNO_s, H_sSO_s and HF aqueous matrices. Stable with all metals and inorganic anions. Stability - 2-100 ppb levels stable for months in 1% HNO_s / LDPE container. 1-10,000 ppm solutions chemically stable for years in 1-5% HNO_s / LDPE container.

Ha Containing Samples (Preparation and Solution) - Metal (Dissolves very rapidly in water). Ores (Lithium carbonate fusion in graphite crucible followed by HCI dissolution - blank levels of Na in lithium carbonate critical). Organic Matrices (Sulfuric /peroxide digestion or nitric/sulfuric/peroxideriol).

Atomic Spectroscopic Information (ICP-OES D.L.s ere given as radial/axial view):

Technique	ALine	Estimated D.L.	Order		Interferences (underlined indicates severe at autonos.)
ICP-OES	589,595 nm	0.07 / 0.00009 µg/ml.	1	atom	2 st order radiation from R.E.s on some optical designs
ICP-OES	588.995 nm	0.03 / 0.006 µg/mL	1	atom	2 nd order radiation from R.E.s on some optical designs
ICP-OES	330.237 nm	2.0 / 0.09 µg/mL	1	atom	Pd. Zn
ICP-MS	23 amu	310 ppt	n/a	M'	APT 12 APCO 12

- 8.0 HAZARDOUS INFORMATION Please refer to the enclosed Material Saftey Data sheet for information regarding this CRM.
- 9.0 HOMOGENEITY This solution was mixed according to procedure IV-MPM-004 and is guaranteed to be homogeneous.

10.0 QUALITY STANDARD DOCUMENTATION

10.1 ISO 9001:2000 Quality Management System Registration - QMI Certificate Number 010105 Recognized by:

Registrar Accreditation Board (ANSI-RAB)

Standards Council of Canada (SCC)

Dutch Council for Accreditation (RVA)

Entidad Mexicana de Acreditacion, a.c.(EMA)

Members of IQ Net International Certification Network:

Argentina (IRAM), Australia (QAS), Austria (ÖQS), Belgium (Avinter), Brazil (FCAV), Canada (QMI), Hong Kong (HKQAA), Columbia (ICONTEC), Czech Republic (CQS), Denmark (DS), Finland (SFS), France (AFAQ), Germany (DQS), Greece (ELOT), Hungary (MSZT), Ireland (NSAI), Israel (SII), Italy (CISQ), Japan (JQA), Korea (KSA-QA), Netherlands (KEMA), Norway (NCS), Polynd (COSC), Series (AFACR), Suite and (SOS)

Poland(PCBC), Portugal (APCER), Singapore (PSB), Slovenia (SiQ), Spain (AENOR), Switzerland (SQS) 10.2 ISO/IEC 17025 - 1999 "General Requirements for the Competence of Testing and Calibration"

- Chemical Testing - Accredited A2LA Certificate Number 883.01

10.3 ISO/IEC Guide 34 - 2000 "General Requirements for the Competence of Reference Material Producers"

- Reference Materials Production - Accredited A2LA Certificate Number 883.02

A2LA Mutual Recognition Agreement Partners:

Australia (NATA), Austria (BmwA), Belgium (BELTEST) (BKO-OBE), Canada (SCC), Chinese Talpei (CNLA), Czech Republic (NAO), Denmark (DANAK), Finland (FINAS), France (COFRAC), Germany (DAR), Hong Kong (HKAS, Ireland (NAB), Italy (SIT) (SINAL), Japan (JAB) (JNLA), Republic of Korea (KOLAS), The Netherlands (RvA), New Zealand (IANZ), Norway (NA), Portugal (IPQ), Singapore (SAC-SINGLAS), Spain (ENAC), Sweden (SWEDAC), Switzerland (SAS), United Kingdom (UKAS) and United States (NVLAP) (ICBO ES)

- 10.4 10CFR50 Appendix B Nuclear Regulatory Commission
 - Domestic Licensing of Production and Utilization Facilities
- 10.5 10CFR21 Nuclear Regulatory Commission Reporting Defects and Non-Compliance
- 10.6 MIL-STD-45662A (Obsolete/Observed)

11.0 DATE OF CERTIFICATION AND PERIOD OF VALIDITY

- 11.1 IV Shelf Life The period of time during which the concentration of the analyte(s) in a properly packaged, unopened, and unused standard stored under environmentally controlled and monitored conditions will remain within the specified uncertainty range. Shelf life is limited primarily by transpiration (loss of water from the solution) and infrequently, by chemical instability. Transpiration studies (P-SP01020) of chemically-stable solutions performed at inorganic Ventures / IV Labs indicate a CRM shelf-life of four years for solutions packaged in 500-mt, low density polyethylene bottles. When stored under special conditions that minimize transpiration and instability, the shelf life can be extended past this limit.
- 11.2 Expiration Date The date after which a CRM should not be used. Routine laboratory use of a CRM increases transpiration losses and the chance of contamination which affect the integrity of the CRM and limit its useful life. Inorganic Ventures / IV Labs concurs with state and federal regulatory agencies' recommendations that solution standards be assigned a one-year expiration date.

	GANIC L				
DATE	RECEIVE	D:	07/31/	63	
DATE	RECEIVE EXPIRED) :	10,80	tage.	MQ
DATE	OPENED:		08/01/	03	
	i: 480			52391	

Certification Date: January 24, 2003

EXPIRES
Expiration Date: 0162601

.0182004

12.0 NAMES AND SIGNATURES OF CERTIFYING OFFICERS

Certificate Prepared By:

Debble Newman, LIMS Administrator

Certificate Approved By:

Katalin Le, QC Supervisor

Certifying Officer:

Paul Gaines, Chemist, Senior Technical Director

010270 Llever Heuman Known in

Certificate of Analysis

CUSTOM-GRADE SOLUTION

1000 μ g/mL Lithium in 0.1% HNO₃ (abs)

Uncertainty (±) = $2[(\sum_{s})^2]^{1/2}$

Catalog Number: CGLI1-1, CGLI1-2 and CGLI1-5

Lot Number: W-LI02066

Starting Material: Starting Material Purity: Starting Material Lot No:

 $(\bar{x}) = mean$

Li₂CO₃ 99.999% 1053 INDRGANIC LABS/RADCHEM LABS
DATE RECEIVED: 00/20/03
DATE EXPIRED: 07/01/2004 V00
DATE OPENED: 06/20/03
INDRG: 4149 PD: F52370

CERTIFIED CONCENTRATION: 998 ± 2 µg/mL

The Certified Value is based upon the most precise method used to analyze this CRM. The following equations are used in the calculation of the certified value and the uncertainty:

Certified Value
$$(\bar{x}) = \frac{\sum x_i}{n}$$

 $x_i = individual results$ n = number of measurements

 $\sum S_i$ = The summation of all significant estimated errors.

Classical Wet Assay: 998 ± 2 µg/mL

Method: Gravimetric as the Sulfate vs NIST weights #822/254143-94.

Instrument Analysis: 1000 ± 4 µg/mL

Method: Inductively Coupled Plasma Spectroscopy (ICP) vs NIST SRM 3129a.

The independent samples t-test was used to determine if there is agreement between the above assay methods at the 95% confidence interval. Both methods were compared and showed agreement within the stated uncertainties. This agreement is a confirmation of the accuracy of this CRM.

TRACE METALLIC IMPURITIES DETERMINED BY ICP-MS AND ICP-OES IN µg/mL:

Custom Grade solutions tested for trace metallic impurities by ICP-MS were analyzed in an ULPA-Filtered Clean Room. An ULPA-Filter is 99.9985% efficient for the removal of particles down to 0.3 μ m.

0	Αl	< 0.010	M	Dy	< 0.00060	<u>s</u>	Li		M	Pr	<0.000030	Q	Te	< 0.0090
M	Sb	< 0.000050	M	Er	< 0.00050	<u>M</u>	Lu	< 0.000040	<u>M</u>	Re	<0.00010	M	Tb	< 0.000030
Q	Αs	< 0.044	M	Εu	< 0.00030	<u> 0</u>	Mg	< 0.00010	<u>M</u>	Rh	< 0.00010	M	TI	< 0.00010
M	Ba	< 0.0010	M	Gd	< 0.00010	<u>o</u>	Mn	< 0.00020	M	Rb	< 0.00010	M	Th	< 0.00010
Q	Ве	< 0.000050	M	Ga	< 0.00010	<u>o</u>	Hg	< 0.0070	M	Ru	< 0.00020	<u>M</u>	Tm	< 0.000040
M	Bi	< 0.000040	M	Ge	< 0.00060	<u>M</u>	Мо	< 0.00020	<u>M</u>	Sm	<0.00010	· <u>M</u>	Sn	< 0.00050
Q	В	< 0.0060	O	Αu	< 0.010	M	Nd	< 0.00020	. · <u>М</u>	Sc	< 0.0010	<u>o</u>	Ti	< 0.00030
Q	Cd	< 0.0018	M	Hf	< 0.00020	<u>o</u>	Ni	< 0.0040	Q	Se	< 0.020	M	W	< 0.0010
<u>0</u>	Ca	0.051	M	Ho	< 0.000050	M	Nb	< 0.000050	Ō	Si	0.023	M	U	< 0.00020
M	Се	< 0.00050	Q	In	< 0.030	<u>n</u>	Os		<u>0</u>	Ag	< 0.0040	<u>0</u>	٧	< 0.0010
M	Cs	0.0018	M	ir	< 0.00050	M	Pđ	< 0.00050	<u>0</u>	Na	< 0.10	<u>M</u>	Υb	< 0.00010
Q	Cr	< 0.0020	0	Fe	< 0.0020	Q	P	< 0.030	<u>0</u>	Sr	< 0.0010	<u>M</u>	Υ	< 0.0040
M	Со	< 0.00030	M	La	< 0.000050	<u>M</u>	Pt	< 0.00020	0	S	< 0.050	<u>0</u>	Zn	< 0.030
M	Cu	< 0.00060	M	Pb	< 0.00030	<u>o</u>	K	0.0070	M	Ta	< 0.00070	M	Zr	< 0.00050

i - spectral interference

ANALYZED DENSITY OF SOLUTION (measured at 22°C): 1.004 g/mL

(over)

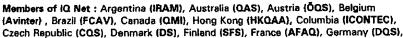
s - solution standard element

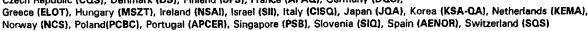
QA:KL Rev.022403DN

M - checked by ICP-MS

O - checked by ICP-OES

195 Lehigh Avenue • Suite 4 • Lakewood, NJ 08701 Orders: 800-669-6799 • FAX (732) 901-1903 Technical Support: 800-569-6799


Quality Assurance Manager


n - not checked for

QUALITY STANDARD DOCUMENTATION

1. ISO 9001:2000 QMI Registered Quality System (Certificate Number 010105)

- 2. ISO/IEC Guide 34-2000 "General Requirements for the Competence of Reference Material Producers" Reference Materials Production Accredited A2LA Certificate 883.02
- ISO/IEC17025-1999 "General Requirements for the Competence of Testing and Calibration" Chemical Testing -Accredited A2LA Certificate 883.01
- 4. MIL-STD-45662A
- 5. 10CFR50 Appendix B Nuclear Regulatory Commission Domestic Licencing of Production and Utilization Facilities
- 10CFR21 Nuclear Regulatory Commission Reporting Defects and Non-Compliance
 Please contact our Quality Assurance Department for further information and copies of documents pertaining to our
 Quality Standard certifications.

STABILITY/ EXPIRATION DOCUMENTATION

Shelf Life - The length of time that a properly stored and packaged standard will remain within the

specified uncertainty. Shelf life is affected by chemical stability and transpiration issues. Inorganic Ventures' Standard Solutions are chemically stable indefinitely. Transpiration loss is linear with time and limits the time a standard can be used with confidence. The smaller the bottle the higher the rate of transpiration. Inorganic Ventures' studies indicate that the shelf life of our 500 mL bottle is 4 years and the shelf life of our 125 mL bottle is 21 months.

Expiration Date - The date after which a standard solution should not be used. A one year expiration date is

recommended by most state and federal regulatory agencies. Transpiration issues and repeated use of solutions over a one year period may adversely affect the integrity of the

standard.

PACKAGING DOCUMENTATION

Purified acid, 18 megohm double deionized water that has been filtered through a 0.2 µm filter and in-house procedure IV-PACK-001 is used to clean all bottles. Contact us for technical information relating to contamination issues in packaging materials.

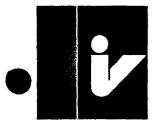
GLASSWARE CALIBRATION

In-house procedure 3-QC-002 is used to calibrate all Class A Glassware used in the manufacture and quality control of Custom Grade Standards.

BALANCE CALIBRATION

All balances are checked daily using in-house procedure number 6-IMM-001. The weights used for testing are annually compared to Gerhart Scale Corporation's master weights and are traceable to the National Institute of Standards and Technology (NIST). The NIST Traceability numbers are 428359B and 454678. The NIST test number is 822/260017-98.

All analytical balances are calibrated every 4 months by Gerhart Scale Corp. of South Amboy. The balances are calibrated with a class 1 analytical weight set. These weights are tested annually by a NIST / NVLAP accredited calibration lab. The NIST test number is 822/260017-8.


THERMOMETER CALIBRATION

The thermometers used in the determination of the final densities are calibrated vs standard thermometer No. 903-2680 which was certified in accordance with the procedures outlined by ASTM E77-87 and NIST Monograph 150 using NIST Test Nos. and Std Nos.: 769543, 217368/769543, 217368/P14452, 176240/P14452, 176240. The in-house procedure No. is 2-QC-001. Thermometers which are not calibrated vs standard thermometer No. 903-2680 are traceable to NIST Identification Nos. 92564, 119016, 471047 and NIST test report Nos. 811/258522, 811/2557078, and 236090.

TECHNICAL SUPPORT

All customers are encouraged to contact us for technical support for the proper use of our products.

TEL 1-800-569-6799 INT'L 1-732-901-1900 FAX 1-732-901-1903 E-MAIL IVtech@ivstandards.com

/ iv labs inorganic ventures

195 lehigh avenue, suite 4, lakewood, nj 08701 usa phone: 800-669-6799 • 732-901-1900 • fax: 732-901-1903

e-mail: ivsales@ivstandards.com • website: www.ivstandards.com

certificate of analysis

Inorganic Ventures / IV Labs is an ISO Guide 34-2000 Certified Reference Material (CRM) Manufacturer: 1.0 Certificate #883-02. The certificate is designed and the certified value(s) and uncertainty(ies) are determined in accordance with ISO Guide 31-2000 (Reference Materials - Contents of certificates and label(s), ISO Guide 34-2000 "Quality System Guidelines for the Production of Reference Materials," and ISO Guide 35-1989 "Certification of Reference Materials - General and Statisical Principles."

DESCRIPTION OF CRM Custom-Grade 1000 µg/mL Cadmium in 2% (abs) HNOs 2.0

Catalog Number:

CGCD1-1, CGCD1-2, and CGCD1-5

Lot Number:

W-CD01127

Starting Material:

Cd shot

Starting Material Purity (%):

99.998904

Starting Material Lot No Matrix:

3.0

C14M30

INDREANIC LABS/RADCHEM LABS 19.1 42

2% (abs) HNO₃

DATE RECEIVED: 03/35/04

DATE EXPIRED: 03/01/3005 VOS

CERTIFIED VALUES AND UNCERTAINTIES

DATE OPENED: _____O3/a5/01 INORG: 4467 PO: F53333

Certified Concentration:

 $1007 \pm 2 \mu g/mL$

Certified Density:

1,014 g/mL (measured at 22° C)

The Certified Value is based upon the most precise method used to analyze this CRM. The following equations are used in the calculation of the certified value and the uncertainty:

Certified Value (C) = @X

(C) = mean

 $x_i = individual results$

n = number of measurements

Uncertainty (±) = $2[(2x^2)^2]^{1/2}$

#S = The summation of all significant estimated errors. (Most common are the errors from instrumental measurement,

weighing, dilution to volume, and the fixed error reported on the

NIST SRM certificate of analysis.)

The independent samples t-test was used to determine if there is agreement between the above assay methods at the 95% confidence interval. Both methods were compared and showed agreement within the stated uncertainties. This agreement is a confirmation of the accuracy of this CRM.

TRACEABILITY TO NIST AND VALUES OBTAINED BY INDEPENDENT METHODS 4.0

□ "Property of the result of a measurement or the value of a standard whereby it can be related to stated references, usually national or international standards, through an unbroken chain of comparisons all having stated uncertainties." (ISO VIM, 2nd ed., 1993, definition 6.10)

☐ This IV product is Traceable to NIST via direct comparison to NIST SRMs. The uncertainties for each certified value are reported, taking into account the SRM uncertainty error and the measurement, weighing and volume dilution errors.

4.1 Assay Method #1

1007 ± 2 µg/mL

EDTA NIST SRM 928 Lot Number: 880710

Assay Method #2

1005 ± 5 µg/mL

ICP Assay NIST SRM 3108 Lot Number: 890312

- 4.2 BALANCE CALIBRATION All balances are checked daily using in-house procedure number 6-IMM-001. The weights used for testing are annually compared to Gerhart Scale Corporation's master weights and are traceable to the National Institute of Standards and Technology (NIST). The NIST Traceability numbers are 692476 Class 1 and 692476A Class 2. The NIST test number is 822/260017-98. All analytical balances are calibrated every 4 months by Gerhart Scale Corp. of South Amboy. The balances are calibrated with a class 1 and/or class 2 analytical weight set. These weights are tested annually by a NIST / NVLAP accredited calibration lab. The NIST test number is 822/260017-98.
- 4.3 THERMOMETER CALIBRATION The thermometers used in the determination of the final densities are calibrated vs standard thermometer No. 903-2680 which was certified in accordance with the procedures outlined by ASTM E77-87 and NIST Monograph 150 using NIST Test Nos. and Std Nos.: 769543, 217368/769543, 217368/P14452, 176240/P14452, 176240/P1452, 176240/P14452, 176240/P1445
- 4.4 GLASSWARE CALIBRATION In-house procedure 3-QC-002 is used to calibrate all Class A Glassware used in the manufacture and quality control of Custom Grade Standards.

5.0 TRACE METALLIC IMPURITIES (TMI) DETERMINED BY ICP/MS AND ICP-OES IN µg/mL

Custom-Grade solutions are tested for trace metallic impurities by Axial ICP-OES and ICP-MS. The result from the most sensitive method for each element, is reported below. Solutions tested by ICP-MS were analyzed in an ULPA-Filtered Clean Room. An ULPA-Filter is 99.9985% efficient for the removal of particles down to 0.3 µm.

Q	ΑI	<	0.00090	M	Dу	<	0.01191	Q	Li	<	0.00002	M	Pr	<	0.00060	2	Te	<	0.00700	
M	Sb		0.00039	M	Er	<	0.00993	M	Lu	<	0.00079	М	Re	<	0.00199	М	Tb	<	0.00060	
M	As	<	0.01985	M	Eu	<	0.00596	0	Mg		0.00002	M	Rh	<	0.00199	M	TI	<	0.00199	
<u>M</u>	Ва	<	0.01985	М	Gd	<	0.00199	M	Mn	<	0.00794	M	Rb	<	0.00199	M	Th	<	0.00199	
M	Ве	<	0.00099	M	Ga	<	0.00199	0	Hg	<	0.01200	M	Ru	<	0.00397	М	Tm	<	0.00079	
M	Bi	<	0.00079	M	Ge	<	0.01191	М	Мо	<	0.00397	M	Sm	<	0.00199	M	Sn	<	0.00993	
Q	В	<	0.00900	M	Au	<	0.00596	M	Nd	<	0.00397	М	\$c	<	0.01985	M	Ti	<	0.09925	
<u>s</u>	Çd			M	Hf	<	0.00397	ō	Ni	<	0.00300	M	Se	<	0.01588	M	W	<	0.01985	
<u>o</u>	Ca		0.00378	М	Но	<	0.00099	<u>M</u>	Nb	<	0.00099	0	Si	<	0.00340	<u>M</u>	U	<	0.00397	
M	Çe	<	0.00993	0	In	<	0.00200	n	Os			М	Ag	<	0.00397	М	V	<	0.00397	•
M	Cs	<	0.00060	M	lr	<	0.00993	· <u>М</u>	Pd		0.00691	M	Na	<	0.19849	M	Yb	<	0.00199	
M	Cr	<	0.00993	0	Fe	<	0.00110	0	P	<	0.00300	W	Sr	<	0.00099	M	Y	<	0.07940	
M	Со	<	0.00596	М	La	<	0.00099	M	Pt	<	0.00397	0	s	<	0.03000	0	Zn		0.00040	
M	Cu	<	0.01191	M	Pb	<	0.00596	<u>o</u>	ĸ		0.00015	M	Ta	<	0.01389	M	Zr	<	0.00993	
M - C	heck	ed	by ICP-MS	0-	Che	cke	by ICP-OES	i - 5	Spect	al I	nterference	n - I	Not C	hed	cked For	8 -	Solut	on	Standard Eleme	ent

6.0 INTENDED USE

For the calibration of analytical instruments including but not limited to the following:

ICP-MS, ICP-OES, FAAS, GFAA, XRF, and DCP

For the validation of analytical methods

For the preparation of "working reference samples"

For interference studies and the determination of correction coefficients

For detection limit and linearity studies

For additional intended uses, contact IV Technical Staff

7.0 INSTRUCTIONS FOR THE CORRECT USE OF THIS REFERENCE MATERIAL

Storage & Handling - Keep tightly sealed when not in use. Store and use at 20 ± 4 €. Do not pipet from container. Do not return portions removed for pipetting to container.

Atomic Weight; Valence; Coordination Number; Chemical Form in Solution - 112.41; +2; 4;Cd₂(OH) (eq)" end Cd(OH)(eq)" Chemical Compatibility - Stable in HCl, HNO., H,SO., and HF. Avoid basic media forming insoluble carbonate and hydroxide. Stable with most metals and inorganic anions in acidic media. The sulfide, carbonate, oxalate, phosphate, and cyanide are insoluble in water and soluble in HCI, HNO, and NH.OH. The chloride, bromide and iodide are soluble in water. Cdl., us one of the few lodides soluble in ethanol. All compounds of Cd are soluble in excess Nat, due to the formation of the complex ion, Cdl.*. Stability - 2-100 ppb levels stable for months in 1% HNO, / LDPE container . 1-10,000 ppm solutions chemically stable for years in 1-5 % HNO,/LDPE container.

Cd Containing Samples (Preparation and Solution) - Metal (soluble in HNO,); Oxides (Soluble in HCl or HNO,); Ores (Dissolve in HCl / HNO, then take to furnes with H,SO.. The silica and lead sulfate are filtered off after addition of water.); Organic based (dry ash at 450 % and dissolve ash in HCI) (sulfuric/peroxide acid digestion).

Atomic Spectroscopic Information (ICP-OES D.L.s are given as radial/axial view):

LEGISON OF	mariness bea sur	Minterior Jan Arm house												
Technique/Line		Estimated D.L.	Order	Type	Interferences (underlined indicates severe at afforcs.									
ICP-OES	214.438 nm	0.003 / 0.0003 µg/mL	1	ion	Pt, ir									
ICP-OES	228.802 nm	0.003 / 0.0003 µg/mL	1	atom	Co, tr, <u>As,</u> Pt									
ICP-OES	226,502 nm	0.003 / 0.0003 µg/mL	1	ion	ir i									
ICP-MS	111 amu	11 ppt	n/a	M·	*Mo"O									

- HAZARDOUS INFORMATION Please refer to the enclosed Material Saftey Data sheet for information regarding this CRM. 8.0
- HOMOGENEITY This solution was mixed according to procedure IV-MPM-004 and is guaranteed to be homogeneous. 9.0

QUALITY STANDARD DOCUMENTATION 10.0

10.1 ISO 9001:2000 Quality Management System Registration - QMI Certificate Number 010105 Recognized by:

Registrar Accreditation Board (ANSI-RAB) Standards Council of Canada (SCC) **Dutch Council for Accreditation (RVA)**

Entidad Mexicana de Acreditacion, a.c.(EMA)

Members of IQ Net International Certification Network:

Argentina (IRAM), Australia (QAS), Austria (ÖQS), Belgium (Avinter), Brazil (FCAV), Canada (QMI), Hong Kong (HKQAA), Columbia (ICONTEC), Czech Republic (CQS), Denmark (DS), Finland (SFS), France (AFAQ), Germany (DQS), Greece (ELOT), Hungary (MSZT), Ireland (NSAI), Israel (SII), Italy (CISQ), Japan (JQA), Korea (KSA-QA), Netherlands (KEMA), Norway (NCS), Poland(PCBC), Portugal (APCER), Singapore (PSB), Siovenia (SIQ), Spain (AENOR), Switzerland (SQS) 10.2 ISO/IEC 17025 - 1999 "General Requirements for the Competence of Testing and Calibration"

- Chemical Testing - Accredited A2LA Certificate Number 883.01

10.3 ISO/IEC Guide 34 - 2000 "General Requirements for the Competence of Reference Material Producers" - Reference Materials Production - Accredited A2LA Certificate Number 883.02

A2LA Mutual Recognition Agreement Partners:

Australia (NATA), Austria (BrnwA), Belgium (BELTEST) (BKO-OBE), Canada (SCC), Chinese Taipei (CNLA), Czech Republic (NAO), Denmark (DANAK), Finland (FINAS), France (COFRAC), Germany (DAR), Hong Kong (HKAS, Ireland (NAB), Italy (SIT) (SINAL), Japan (JAB) (JNLA), Republic of Korea (KOLAS), The Netherlands (RvA), New Zealand (IANZ), Norway (NA), Portugal (IPQ), Singapore (SAC-SINGLAS), Spain (ENAC), Sweden (SWEDAC), Switzerland (SAS), United Kingdom (UKAS) and United States (NVLAP) (ICBO ES)

- 10.4 10CFR50 Appendix B Nuclear Regulatory Commission
 - Domestic Licensing of Production and Utilization Facilities
- 10.5 10CFR21 Nuclear Regulatory Commission Reporting Defects and Non-Compliance
- 10.6 MIL-STD-45662A (Obsolete/Observed)

INORGANIC LABS	YRADUHEM LABS Pg. 20f 2
DATE RECEIVED:	03/03/0 3 03/03/05 %5
DATE EXPIRED:	03/01/2005 405
DATE OPENED:	03/35/04
	PO: F52333

DATE OF CERTIFICATION AND PERIOD OF VALIDITY

- 11.1 IV Shelf Life The period of time during which the concentration of the analyte(s) in a properly packaged, unopened, and unused standard stored under environmentally controlled and monitored conditions will remain within the specified uncertainty range. Shelf life is limited primarily by transpiration (loss of water from the solution) and infrequently, by chemical instability. Transpiration studies (P-SP01020) of chemically-stable solutions performed at Inorganic Ventures / IV Labs indicate a CRM shelf-life of four years for solutions packaged in 500-mL low density polyethylene bottles. When stored under special conditions that minimize transpiration and instability, the shelf life can be extended past this limit.
- 11.2 Expiration Date The date after which a CRM should not be used. Routine laboratory use of a CRM increases transpiration losses and the chance of contamination which affect the Integrity of the CRM and limit its useful life. Inorganic Ventures / IV Labs concurs with state and federal regulatory agencies' recommendations that solution standards be assigned a one-year expiration date.

Certification Date: April 24, 2003

Expiration Date:

NAMES AND SIGNATURES OF CERTIFYING OFFICERS

Certificate Prepared By:

JoAnn Struthers, QA Administrative Assistant

Certificate Approved By:

Katalin Le, QC Supervisor

Certifying Officer:

Paul Gaines, Chemist, Senior Technical Director

folh Stutten Known in Park Alain

inorganic ventures

195 lehigh avenue, suite 4, lakewood, nj 08701 usa phone: 800-669-6799 • 732-901-1900 • fax: 732-901-1903 e-mail: ivsales@ivstandards.com • website: www.ivstandards.com

of analysis certificate

Inorganic Ventures / IV Labs is an ISO Guide 34-2000 Certified Reference Material (CRM) Manufacturer: 1.0 Certificate #883-02. The certificate is designed and the certified value(s) and uncertainty(ies) are determined in accordance with ISO Guide 31-2000 (Reference Materials - Contents of certificates and label(s), ISO Guide 34-2000 "Quality System Guidelines for the Production of Reference Materials," and ISO Guide 35-1989 "Certification of Reference Materials - General and Statistical Principles."

DESCRIPTION OF CRM Custom-Grade 1000 µg/mL Cobalt in 2% (abs) HNO3 2.0

Catalog Number:

CGCO1-1, CGCO1-2, and CGCO1-5

Lot Number:

W-QC001114

Starting Material:

Co powder

Starting Material Purity (%): Starting Material Lot No

99.995670 22897

Matrix:

3.0

2% (abs) HNO₃

INORGANIC LABS/RADCHEM LABS B. 1 & a

DATE RECEIVED: ____O3/35/04____

DATE EXPIRED: 03/01/2005 VO

CERTIFIED VALUES AND UNCERTAINTIES

DATE OPENED: ______ 03/35/04

Certified Concentration:

 $1002 \pm 3 \mu g/mL$

INORG: 4468 FU: F59393

Certified Density:

1.016 g/mL (measured at 22° C)

The Certified Value is based upon the most precise method used to analyze this CRM. The following equations are used in the calculation of the certified value and the uncertainty:

Certified Value (C) = exx

(i□i = mean

x_i = individual results

n = number of measurements

Uncertainty $(\pm) = 2((a-s))^2$

#S = The summation of all significant estimated errors.

(Most common are the errors from instrumental measurement weighing, dilution to volume, and the fixed error reported on the

NIST SRM certificate of analysis.)

The independent samples t-test was used to determine if there is agreement between the above assay methods at the 95% confidence interval. Both methods were compared and showed agreement within the stated uncertainties. This agreement is a confirmation of the accuracy of this CRM.

4.0 TRACEABILITY TO NIST AND VALUES OBTAINED BY INDEPENDENT METHODS

"Property of the result of a measurement or the value of a standard whereby it can be related to stated references, usually national or international standards, through an unbroken chain of comparisons all having stated uncertainties." (ISO VIM, 2nd ed., 1993, definition 6.10)

☐ This IV product is Traceable to NIST via direct comparison to NIST SRMs. The uncertainties for each certified value are reported, taking into account the SRM uncertainty error and the measurement, weighing and volume dilution errors.

4.1

Assay Method #1

998 ± 4 µg/mL

ICP Assay NIST SRM 3181 Lot Number: 000630

Assay Method #2

1002 ± 3 µg/mL

EDTA NIST SRM 928 Lot Number: 880710

- 4.2 BALANCE CALIBRATION All balances are checked daily using in-house procedure number 6-IMM-001. The weights used for testing are annually compared to Gerhart Scale Corporation's master weights and are traceable to the National Institute of Standards and Technology (NIST). The NIST Traceability numbers are 692476 Class 1 and 692476A Class 2. The NIST test number is 822/260017-98. All analytical balances are calibrated every 4 months by Gerhart Scale Corp. of South Amboy. The balances are calibrated with a class 1 and/or class 2 analytical weight set. These weights are tested annually by a NIST / NVLAP accredited calibration lab. The NIST test number is 822/260017-98.
- 4.3 THERMOMETER CALIBRATION The thermometers used in the determination of the final densities are calibrated vs standard thermometer No. 903-2680 which was certified in accordance with the procedures outlined by ASTM E77-87 and NIST Monograph 150 using NIST Test Nos. and Std Nos.: 769543, 217368/769543, 217368/P14452, 176240/P14452, 176240. The in-house procedure No. is 2-QC-001. Thermometers which are not calibrated vs standard thermometer No. 903-2680 are traceable to NIST Identification Nos. 92564, 119016, 471047 and NIST test report Nos. 811/258522, 811/2557078, and 236090.
- 4.4 GLASSWARE CALIBRATION In-house procedure 3-QC-002 is used to calibrate all Class A Glassware used in the manufacture and quality control of Custom Grade Standards.

5.0 TRACE METALLIC IMPURITIES (TMI) DETERMINED BY ICP/MS AND ICP-OES IN µg/mL

Custom-Grade solutions are tested for trace metallic impurities by Axial ICP-OES and ICP-MS. The result from the most sensitive method for each element, is reported below. Solutions tested by ICP-MS were analyzed in an ULPA-Filtered Clean Room. An ULPA-Filter is 99.9985% efficient for the removal of particles down to 0.3 µm.

O AI 0.00025	M Dy < 0.02419	<u>Q</u> Li 0.00001	<u>M</u> Pr < 0.00121	<u>M</u> Te < 0.12097
M Sb < 0.00202	M Er < 0.02016	M Lu < 0.00161	<u>M</u> Re < 0.00403	M Tb < 0.00121
O As < 0.10000	<u>M</u> Eu < 0.01210	O Mg 0.00045	M Rh < 0.00403	<u>M</u> TI < 0.00403
<u>M</u> Ba < 0.04032	M Gd < 0.00403	Q Mn 0.00003	M Rb < 0.00403	M Th < 0.00403
<u>M</u> Be < 0.00202	<u>M</u> Ga < 0.00403	Q Hg < 0.05000	M Ru < 0.00807	M Tm < 0.00161
M Bi < 0.00161	<u>M</u> Ge < 0.02419	M Mo < 0.00807	M Sm < 0.00403	M Sn < 0.02016
<u>O</u> B < 0.04000	M Au < 0.01210	M Nd < 0.00807	M Sc < 0.04032	<u>M</u> Ti < 0.20162
M Cd < 0.01210	M Hf < 0.00807	Q NI < 0.02000	M Se < 0.03226	<u>M</u> W < 0.04032
O Ca 0.00325	M Ho < 0.00202	M Nb < 0.00202	<u>O</u> Si < 0.00400	M U < 0.00807
M Ce < 0.02016	M in < 0.04032	<u>n</u> Os	M Ag < 0.00807	M V < 0.00807
M Cs < 0.00121	M Ir < 0.02016	M Pd < 0.02016	<u>O</u> Na 0.00138	<u>M</u> Yb < 0.00403
M Cr < 0.02016	O Fe 0.00875	<u>n</u> P	M Sr < 0.00202	M Y < 0.16129
<u>s</u> Co	M La < 0.00202	M Pt < 0.00807	n s	<u>M</u> Zn < 0.08065
M Cu < 0.02419	M Pb < 0.01210	<u>O</u> K 0.03000	<u>M</u> Ta < 0.02823	M Zr < 0.02016
M - Checked by ICP-MS	O - Checked by ICP-OES	i - Spectral interference	n - Not Checked For	s - Solution Standard Element

6.0 INTENDED USE

For the calibration of analytical instruments including but not limited to the following:

ICP-MS, ICP-OES, FAAS, GFAA, XRF, and DCP

For the validation of analytical methods

For the preparation of "working reference samples"

For interference studies and the determination of correction coefficients

For detection limit and linearity studies

For additional intended uses, contact IV Technical Staff

7.0 INSTRUCTIONS FOR THE CORRECT USE OF THIS REFERENCE MATERIAL

Storage & Handling - Keep tightly sealed when not in use. Store and use at 20 ± 4 %. Do not pipet from container. Do not return portions removed for pipetting to container.

Atomic Weight; Valence; Coordination Number; Chemical Form in Solution - 58.9332; +2; 6; Co(H,O).*

Chemical Competibility - Stable in HCl, HNO, H,SO, HF, H,PO. Avoid basic media. Stable with most metals and inorganic splore in solid media.

Stability - 2-100 ppb levels stable for months in 1% HNO, /LDPE container. 1-10,000 ppm solutions chemically stable for years in 1-5% HNO, /LDPE container.

Co Containing Samples (Preparation and Solution) - Metal (soluble in HNO₂); Oxides (Soluble in HCl); Ores (Dissolve in HCl /HNO₂).

Atomic Spectroscopic Information (ICP-OES D.L.s are given as radial/axial view):

Technique	×Line	Estimated D.L.	Order	Type	Interferences (underlined indicates severe at actionss.)
ICP-OES	238,892 nm	0.017.002 pg/mL	1	ion	Fe, W, Ta
ICP-OES	228.616 nm	0.01/.001 µg/mL	1	ion	
ICP-OES	237.862 nm	0.01/.002 ucht.	1	ion	W, Re, Al, Ta
ICP-MS	59 amu	2 ppt	rva	M'	"ča"O'H`, "Ar"O'H , "Ar"Na, "Ca"O, "Mg"Cl

- 8.0 HAZARDOUS INFORMATION Please refer to the enclosed Material Saftey Data sheet for information regarding this CRM.
- 9.0 HOMOGENEITY This solution was mixed according to procedure IV-MPM-004 and is guaranteed to be homogeneous.

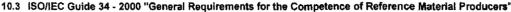
10.0 QUALITY STANDARD DOCUMENTATION

10.1 ISO 9001:2000 Quality Management System Registration - QMI Certificate Number 010105 Recognized by:

Registrar Accreditation Board (ANSI-RAB)

Standards Council of Canada (SCC)

Dutch Council for Accreditation (RVA)


Entidad Mexicana de Acreditacion, a.c.(EMA)

Members of IQ Net International Certification Network:

Argentina (IRAM), Australia (QAS), Austria (ÖQS), Belgium (Avinter), Brazil (FCAV), Canada (QMI), Hong Kong (HKQAA), Columbia (ICONTEC), Czech Republic (CQS), Denmark (DS), Finland (SFS), France (AFAQ), Germany (DQS), Greece (ELOT), Hungary (MSZT), Ireland (NSAI), Israel (SII), Italy (CISQ), Japan (JQA), Korea (KSA-QA), Netherlands (KEMA), Norway (NCS), Particular (ABCES), Science (ABCES), Scie

Poland(PCBC), Portugal (APCER), Singapore (PSB), Slovenia (SIQ), Spain (AENOR), Switzerland (SQS) 10.2 ISO/IEC 17025 - 1999 "General Requirements for the Competence of Testing and Calibration"

- Chemical Testing - Accredited A2LA Certificate Number 883.01

- Reference Materials Production - Accredited A2LA Certificate Number 883.02

A2LA Mutual Recognition Agreement Partners:

Australia (NATA), Austria (BmwA), Belgium (BELTEST) (BKO-OBE), Canada (SCC), Chinese Taipei (CNLA), Czech Republic (NAO), Denmark (DANAK), Finland (FINAS), France (COFRAC), Germany (DAR), Hong Kong (HKAS, Ireland (NAB), Italy (SIT) (SINAL), Japan (JAB) (JNLA), Republic of Korea (KOLAS), The Netherlands (RvA), New Zealand (IANZ), Norway (NA), Portugal (IPQ), Singapore (SAC-SINGLAS), Spain (ENAC), Sweden (SWEDAC), Switzerland (SAS), United Kingdom (UKAS) and United States (NVLAP) (ICBO ES)

- 10.4 10CFR50 Appendix B Nuclear Regulatory Commission
 - Domestic Licensing of Production and Utilization Facilities
- 10.5 10CFR21 Nuclear Regulatory Commission Reporting Defects and Non-Compliance
- 10.6 MIL-STD-45662A (Obsolete/Observed)

11.0 DATE OF CERTIFICATION AND PERIOD OF VALIDITY

- 11.1 IV Shelf Life The period of time during which the concentration of the analyte(s) in a properly packaged, unopened, and unused standard stored under environmentally controlled and monitored conditions will remain within the specified uncertainty range. Shelf life is limited primarily by transpiration (loss of water from the solution) and infrequently, by chemical instability. Transpiration studies (P-SP01020) of chemically-stable solutions performed at Inorganic Ventures / IV Labs indicate a CRM shelf-life of four years for solutions packaged in 500-mL low density polyethylene bottles. When stored under special conditions that minimize transpiration and instability, the shelf life can be extended past this limit.
- 11.2 Expiration Date The date after which a CRM should not be used. Routine laboratory use of a CRM increases transpiration losses and the chance of contamination which affect the integrity of the CRM and limit its useful life. Inorganic Ventures / IV Labs concurs with state and federal regulatory agencies' recommendations that solution standards be assigned a one-year expiration date.

Certification Date: August 28, 2003

Expiration Date:

INDREANIC LABS/RADCHEM LABSPS.3063
DATE RECEIVED: 03/01/05 V03
DATE EXPIRED: 03/01/05 V03
DATE OPENED: 03/05/04
INDRE: 4468 PO: F50303

12.0 NAMES AND SIGNATURES OF CERTIFYING OFFICERS

Certificate Prepared By:

JoAnn Struthers, QA Administrative Assistant

Certificate Approved By:

Katalin Le, QC Supervisor

Certifying Officer:

Paul Gaines, Chemist, Senior Technical Director

fold Stutten knowen de Paux Lain

labs inorganic ventures / iv

195 lehigh avenue, suite 4, lakewood, ni 08701 usa phone: 800-669-6799 • 732-901-1900 • fax: 732-901-1903 e-mail: ivsales@ivstandards.com • website: www.ivstandards.com

analysis certificate of

Inorganic Ventures / IV Labs is an ISO Guide 34-2000 Certified Reference Material (CRM) Manufacturer: 1.0 Certificate #883-02. The certificate is designed and the certified value(s) and uncertainty(ies) are determined in accordance with ISO Guide 31-2000 (Reference Materials - Contents of certificates and label(s), ISO Guide 34-2000 "Quality System Guidelines for the Production of Reference Materials," and ISO Guide 35-1989 "Certification of Reference Materials - General and Statistical Principles."

DESCRIPTION OF CRM Custom-Grade 1000 µg/mL Manganese in 2% (abs) HNO3 2.0

Catalog Number:

CGMN1-1, CGMN1-2, and CGMN1-5

Lot Number:

W-MN02036

Starting Material:

Mn pieces

Starting Material Purity (%): Starting Material Lot No.

99.995300 21563

Matrix:

3.0

2% (abs) HNO₃

INORGANIC LABS/RADCHEM LABS 7324 a DATE RECEIVED: 01/20/04

DATE EXPIRED: 00/01/3005 1005

CERTIFIED VALUES AND UNCERTAINTIES

DATE OPENED: 01/30/64 INORG: 4434 FD: £53301

Certified Concentration:

 $1000 \pm 2 \mu g/mL$

Certified Density:

1.014 g/mL (measured at 22° C)

The Certified Value is based upon the most precise method used to analyze this CRM. The following equations are used in the calculation of the certified value and the uncertainty:

Certified Value (二) = exx

(C) = mean

x = individual results

n = number of measurements

Uncertainty (±) = $21(e_1 + s_1)^T$

#S = The summation of all significant estimated errors. (Most common are the errors from instrumental measurement, weighing, dilution to volume, and the fixed error reported on the

NIST SFM certificate of analysis.)

The independent samples t-test was used to determine if there is agreement between the above assay methods at the 95% confidence interval. Both methods were compared and showed agreement within the stated uncertainties. This agreement is a confirmation of the accuracy of this CRM.

4.0 TRACEABILITY TO NIST AND VALUES OBTAINED BY INDEPENDENT METHODS

□ "Property of the result of a measurement or the value of a standard whereby it can be related to stated references, usually national or international standards, through an unbroken chain of comparisons all having stated uncertainties." (ISO VIM, 2nd ed., 1993, definition 6.10)

☐ This IV product is Traceable to NIST via direct comparison to NIST SRMs. The uncertainties for each certified value are reported, taking into account the SRM uncertainty error and the measurement, weighing and volume dilution errors.

4.1

Assay Method #1

 $1000 \pm 2 \mu g/mL$

ICP Assay NIST SRM 3132 Lot Number: 890903

Assay Method #2

1003 ± 3 µg/mL

EDTA NIST SRM 928 Lot Number: 880710

- 4.2 BALANCE CALIBRATION All balances are checked daily using in-house procedure number 6-IMM-001. The weights used for testing are annually compared to Gerhart Scale Corporation's master weights and are traceable to the National Institute of Standards and Technology (NIST). The NIST Traceability numbers are 692476 Class 1 and 692476A Class 2. The NIST test number is 822/260017-98. All analytical balances are calibrated every 4 months by Gerhart Scale Corp. of South Amboy. The balances are calibrated with a class 1 and/or class 2 analytical weight set. These weights are tested annually by a NIST / NVLAP accredited calibration lab. The NIST test number is 822/260017-98.
- 4.3 THERMOMETER CALIBRATION The thermometers used in the determination of the final densities are calibrated vs standard thermometer No. 903-2680 which was certified in accordance with the procedures outlined by ASTM E77-87 and NIST Monograph 150 using NIST Test Nos. and Std Nos.: 769543, 217368/769543, 217368/P14452, 176240/P14452, 176240/P144
- 4.4 GLASSWARE CALIBRATION In-house procedure 3-QC-002 is used to calibrate all Class A Glassware used in the manufacture and quality control of Custom Grade Standards.

5.0 TRACE METALLIC IMPURITIES (TMI) DETERMINED BY ICP/MS AND ICP-OES IN µg/mL

Custom-Grade solutions are tested for trace metallic impurities by Axial ICP-OES and ICP-MS. The result from the most sensitive method for each element, is reported below. Solutions tested by ICP-MS were analyzed in an ULPA-Filtered Clean Room. An ULPA-Filter is 99.9985% efficient for the removal of particles down to 0.3 µm.

<u>O</u> Al 0.00221	<u>M</u> Dy < 0.02471	<u>Q</u> Li 0.00020 <u>M</u> Pr < 0.00124	<u>M</u> Te < 0.12355
M Sb < 0.00206	M Er < 0.02059	M Lu < 0.00165 M Re < 0.00412	<u>M</u> Tb < 0.00124
M As < 0.04118	<u>M</u> Eu < 0.01236	Q Mg 0.03350 M Rh < 0.00412	<u>M</u> TI < 0.00412
M Ba < 0.04118	M Gd < 0.00412	<u>s</u> Mn <u>M</u> Rb < 0.00412	<u>M</u> Th < 0.00412
M Be < 0.00206	Q Ga < 0.05000	<u>i</u> Hg <u>M</u> Ru < 0.00824	<u>M</u> Tm < 0.00165
M Bi < 0.00165	O Ge < 0.00300	M Mo < 0.00824 M Sm < 0.00412	M Sn < 0.02059
Q B 0.00295	M Au < 0.01236	M Nd < 0.00824 M Sc < 0.04118	M Ti < 0.20592
M Cd < 0.01236	M Hf < 0.00824	<u>M</u> Ni < 0.03295 <u>M</u> Se < 0.03295	<u>M</u> W < 0.04118
Q Ca 0.00340	M Ho < 0.00206	M Nb < 0.00206 Q Si 0.00275	M U < 0.00824
M Ce < 0.02059	M in < 0.04118	n Os <u>M</u> Ag < 0.00824	M V < 0.00824
M Cs < 0.00124	M Ir < 0.02059	<u>M</u> Pd < 0.02059 <u>Q</u> Na 0.00225	M Yb < 0.00412
M Cr < 0.02059	Q Fe < 0.01000	i P <u>M</u> Sr < 0.00206	M Y < 0.16474
M Co < 0.01236	M La < 0.00206	M Pt < 0.00824 i S	<u>O</u> Zn 0.00250
M Cu < 0.02471	M Pb < 0.01236	Q K 0.00105 <u>M</u> Ta < 0.02883	M Zr < 0.02059
M - Checked by ICP-MS	O - Checked by ICP-OES	i - Spectral Interference n - Not Checked For	s - Solution Standard Element

6.0 INTENDED USE

For the calibration of analytical instruments including but not limited to the following:

ICP-MS, ICP-OES, FAAS, GFAA, XRF, and DCP

For the validation of analytical methods

For the preparation of "working reference samples"

For interference studies and the determination of correction coefficients

For detection limit and linearity studies

For additional intended uses, contact IV Technical Staff

7.0 INSTRUCTIONS FOR THE CORRECT USE OF THIS REFERENCE MATERIAL

Storage & Handling - Keep tightly sealed when not in use. Store and use at 20 ± 4 %. Do not pipet from container. Do not return portions removed for pipetting to container.

Atomic Weight; Valence; Coordination Number; Chemical Form in Solution - 54.9380; +2; 8; Mn(H₂O),2

Charmical Compartibility - Stable in HCl, HNO₁, H₂SO₄, HF, H₂PO₄. Avoid basic media. Stable with most metals and inorganic anions in acidic media.

Stability - 2-100 ppb levels stable for months in 1% HNO₁ / LDPE container. 1-10,000 ppm solutions chemically stable for years in 1-5 % HNO₂LDPE container.

Min Containing Samples (Preparation and Solution) - Metal (Soluble in dilute acids); Oxides (Soluble in dilute acids); Ores (Dissolve with HCI. If silice is present add HF and then tume off silice by adding H₂SO₄ and heat to SO₂ tumes - dense white tumes).

Atomic Spectroscopic Information (ICP-OES D.L.s are given as radial/axial view):

Technique/Line		Estimated D.L.	Order	Type	Interferences (underlined indicates severe at accords.)
ICP-OES	257.610nm	0.0014 / 0.00002 µg/mL	1	ion	Ce, W, Re
ICP-OES	259,373 nm	0.0016 / 0.00002 µg/mL	1	ion	U, Ta, Mo, Fe, Nb
ICP-OES	260,569 nm	0.0021 / 0.00002 µg/mL	1	ion	Cò i
ICP-MS	55 amu	10 ppt	n/a	M۱	"Ar"N'H, "K"O, "CI"O, "Ar"N, "Ar"O, "Ar"O'H,
		• • •			33AY 10 H, 1CI OH, 2Na33S

- 8.0 HAZARDOUS INFORMATION Please refer to the enclosed Material Saftey Data sheet for information regarding this CRM.
- 9.0 HOMOGENEITY This solution was mixed according to procedure IV-MPM-004 and is guaranteed to be homogeneous.

10.0 QUALITY STANDARD DOCUMENTATION

10.1 ISO 9001:2000 Quality Management System Registration - QMI Certificate Number 010105 Recognized by:

Registrar Accreditation Board (ANSI-RAB)

Standards Council of Canada (SCC)

Dutch Council for Accreditation (RVA)

Entidad Mexicana de Acreditacion, a.c.(EMA)

Members of IQ Net International Certification Network:

Argentina (IRAM), Australia (QAS), Austria (ÖQS), Belgium (Avinter), Brazil (FCAV), Canada (QMI), Hong Kong (HKQAA), Columbia (ICONTEC), Czech Republic (CQS), Denmark (DS), Finland (SFS), France (AFAQ), Germany (DQS), Greece (ELOT), Hungary (MSZT), Ireland (NSAI), Israel (SI), Italy (CISQ), Japan (JQA), Korea (KSA-QA), Netherlands (KEMA), Norway (NCS), Poland (PCRC), Portugal (APCER), Singapore (PSR), Slovenia (SIQ), Spain (AFNOR), Switzerland (SQS)

Poland(PCBC), Portugal (APCER), Singapore (PSB), Slovenia (SIQ), Spain (AENOR), Switzerland (SQS) 10.2 ISO/IEC 17025 - 1999 "General Requirements for the Competence of Testing and Calibration"

- Chemical Testing - Accredited A2LA Certificate Number 883.01

10.3 ISO/IEC Guide 34 - 2000 "General Requirements for the Competence of Reference Material Producers"

- Reference Materials Production - Accredited A2LA Certificate Number 883.02

A2LA Mutual Recognition Agreement Partners:

Australia (NATA), Austria (BmwA), Belgium (BELTEST) (BKO-OBE), Canada (SCC), Chinese Taipel (CNLA), Czech Republic (NAO), Denmark (DANAK), Finland (FINAS), France (COFRAC), Germany (DAR), Hong Kong (HKAS, Ireland (NAB), Italy (SIT) (SINAL), Japan (JAB) (JNLA), Republic of Korea (KOLAS), The Netherlands (RvA), New Zealand (IANZ), Norway (NA), Portugal (IPQ), Singapore (SAC-SINGLAS), Spain (ENAC), Sweden (SWEDAC), Switzerland (SAS), United Kingdom (UKAS) and United States (NVLAP) (ICBO ES)

- 10.4 10CFR50 Appendix B Nuclear Regulatory Commission
 - Domestic Licensing of Production and Utilization Facilities
- 10.5 10CFR21 Nuclear Regulatory Commission Reporting Defects and Non-Compliance
- 10.6 MiL-STD-45662A (Obsolete/Observed)

	RGANIC LAB		
DATE	RECEIVED:	01/20/	04
DATE	EXPIRED: _	7/10/60	2005 VOS
DATE	OPENED:	01/20/	04
	i: 4474		52301

11.0 DATE OF CERTIFICATION AND PERIOD OF VALIDITY

- 11.1 IV Shelf Life The period of time during which the concentration of the analyte(s) in a properly packaged, unopened, and unused standard stored under environmentally controlled and monitored conditions will remain within the specified uncertainty range. Shelf life is limited primarily by transpiration (loss of water from the solution) and infrequently, by chemical instability. Transpiration studies (P-SP01020) of chemically-stable solutions performed at Inorganic Ventures / IV Labs indicate a CRM shelf-life of four years for solutions packaged in 500-mL low density polyethylene bottles. When stored under special conditions that minimize transpiration and instability, the shelf life can be extended past this limit.
- 11.2 Expiration Date The date after which a CRM should not be used. Routine laboratory use of a CRM increases transpiration losses and the chance of contamination which affect the integrity of the CRM and limit its useful life. Inorganic Ventures / IV Labs concurs with state and federal regulatory agencies' recommendations that solution standards be assigned a one-year expiration date.

Certification Date: August 04, 2003

Expiration Date:

EXPIRES 112005

12.0 NAMES AND SIGNATURES OF CERTIFYING OFFICERS

Certificate Prepared By:

JoAnn Struthers, QA Administrative Assistant

Certificate Approved By:

Katalin Le, QC Supervisor

Certifying Officer:

Paul Gaines, Chemist, Senior Technical Director

folh Stutten known in Paux Dain

inorganic ventures / iv labs

195 lehigh avenue, suite 4, lakewood, nj 08701 usa phone: 800-669-6799 • 732-901-1900 • fax: 732-901-1903 e-mail: ivsales@ivstandards.com • website: www.ivstandards.com

certificate of analysis

CUSTOM-GRADE SOLUTION

1000 μ g/mL Vanadium in 1.4% HNO₃ (abs)

Catalog Number: CGV1-1, CGV1-2 and CGV1-5

Lot Number: T-V02032

Starting Material: Starting Material Purity: Starting Material Lot No: Vanadium Pentoxide 99.999%

46

INORGANIC LABS/RADCHEM LABS DATE RECEIVED: 4/5/63

DATE EXPIRED: 13/03/2004

DATE OPENED: 11/5/03

CERTIFIED CONCENTRATION: 990 \pm 2 μ g/mL

The Certified Value is based upon the most precise method used to analyze this CRM. The following equations are used in the calculation of the certified value and the uncertainty:

Certified Value (\Re) = $\sum_{n} x_n$

Uncertainty (±) = $2[(\sum_{s})^2]^{1/2}$

(∑) = mean

 $x_i = individual results$

n = number of measurements

 $\sum S_i$ = The summation of all significant estimated errors.

Classical Wet Assay: 993 ± 4 µg/mL

Method: EDTA Titration vs NIST SRM 928 Lead Nitrate.

Instrument Analysis: 990 ± 2 µg/mL

Method: Inductively Coupled Plasma Spectroscopy (ICP) vs NIST SRM 3165.

The independent samples t-test was used to determine if there is agreement between the above assay methods at the 95% confidence interval. Both methods were compared and showed agreement within the stated uncertainties. This agreement is a confirmation of the accuracy of this CRM.

TRACE METALLIC IMPURITIES DETERMINED BY ICP-MS AND ICP-OES IN $\mu g/mL$:

Custom-Grade solutions tested for trace metallic impurities by ICP-MS were analyzed in an ULPA-Filtered Clean Room. An ULPA-Filter is 99.9985% efficient for the removal of particles down to 0.3 μ m.

M	At	0.0095	<u>M</u>	Ďγ	< 0.00060	<u>M</u>	Li	< 0.0010	<u>M</u>	Pr	<0.000030	M	Te	< 0.0030
M	Sb	0.042	<u>M</u>	Er	< 0.00050	М	Lu	<0.000040	M	Яe	<0.00010	M	Tb	<0.000030
M	As	< 0.0010	M	Eu	< 0.00030	<u>M</u>	Mg	0.0089	<u>M</u>	Rh	<0.00010	<u>M</u>	TI	< 0.00010
M	Ba	<0.0010	M	Gd	< 0.00010	i	Mn		<u>M</u>	Rb	< 0.00010	M	Th	< 0.00010
M	Be	<0.000050	M	Ga	< 0.00010	i	Hg		<u>M</u>	Ru	< 0.00020	M	Tm	< 0.000040
M	Bi	< 0.000040	M	Ge	< 0.00060	<u>M</u>	Мо	0.016	<u>M</u>	Sm	<0.00010	M	Sn	< 0.00050
M	В	< 0.0070	M	Αu	< 0.00030	M	Nd	< 0.00020	M	Sc	< 0.0010	M	Ti	< 0.0050
M	Cđ	< 0.00030	<u>M</u>	Hf	< 0.00020	<u>o</u>	Ni	< 0.050	<u>o</u>	Se	< 0.40	M	W	0.00055
<u>o</u>	Ca	< 0.010	M	Ho	< 0.000050	<u>M</u>	Nb	0.00024	<u>0</u>	Si	< 0.030	<u>M</u>	U	0.0011
M	Се	< 0.00050	Q	in	< 0.070	<u>n</u>	Os		<u>M</u>	Ag	0.00044	<u>s</u>	٧	
M	Cs	< 0.000030	<u>M</u>	۱r	< 0.00050	M	Pd	< 0.00050	<u>o</u>	Na	< 0.090	M	Υb	<0.00010
Q	Cr	< 0.020	<u>o</u>	Fe	< 0.050	1	P		M	Sr	<0.000050	М	Υ	< 0.0040
Q	Co	< 0.050	M	La	< 0.000050	M	Pt	< 0.00020	n	\$		M	Zn	0.0041
M	Cu	<0.00060	M	Pb	<0.00030	ū	K		M	Ta	<0.00070	M	Zr	<0.00050

M - checked by ICP-MS

O - checked by ICP-OES

i - spectral interference

n - not checked for

s - solution standard element

ANALYZED DENSITY OF SOLUTION (measured at 22°C): 1.015 g/mL

(over)

QA:KLRev.082202DN

Quality Assurance Manager

Paul R. Haines

EXPIRES 182004

QUALITY STANDARD DOCUMENTATION

1. ISO 9001 QMI Registered Quality System (Certificate Number 010105)

Members of IQ Net: Argentina (IRAM), Australia (QAS), Austria (ÖQS), Belgium
(Avinter), Brazil (FCAV), Canada (QMI), Hong Kong (HKQAA), Columbia (ICONTEC), Czech
Republic (CQS), Denmark (DS), Finland (SFS), France (AFAQ), Germany (DQS), Greece
(ELOT), Hungary (MSZT), Ireland (NSAI), Israel (SII), Italy (CISQ), Japan (JQA), Korea (KSA-QA), Netherlands (KEMA), Norway (NCS), Poland(PCBC), Portugal (APCER), Singapore (PSB), Slovenia (SIQ), Spain (AENOR),
Switzerland (SQS)

- 2. ISO Guide 25 A2LA .Accredited (Certificate Number 0883-01)
- 3. MIL-STD-45662A
- 4. 10CFR50 Appendix B
- 5. 10CFR21

Please contact our Quality Assurance Department for further information and copies of documents pertaining to our Quality Standard certifications.

STABILITY/ EXPIRATION DOCUMENTATION

Shelf Life - The length of time that a properly stored and packaged standard will remain within the

specified uncertainty. Shelf life is affected by chemical stability and transpiration issues. Inorganic Ventures' Standard Solutions are chemically stable indefinitely. Transpiration loss is linear with time and limits the time a standard can be used with confidence. The smaller the bottle the higher the rate of transpiration. Inorganic Ventures' studies indicate that the shelf life of our 500 mL bottle is 4 years and the shelf life of our 125 mL bottle is 21 months.

Expiration Date - The date after which a standard solution should not be used. A one year expiration date is

recommended by most state and federal regulatory agencies. Transpiration issues and repeated use of solutions over a one year period may adversely affect the integrity of the

standard.

PACKAGING DOCUMENTATION

Purified acid, 18 megohm double deionized water that has been filtered through a 0.2 μm filter and in-house procedure IV-PACK-001 is used to clean all bottles. Contact us for technical information relating to contamination issues in packaging materials.

GLASSWARE CALIBRATION

In-house procedure 3-QC-002 is used to calibrate all Class A Glassware used in the manufacture and quality control of Custom Grade Standards.

BALANCE CALIBRATION

All balances are checked daily using in-house procedure number 6-IMM-001. The weights used for testing are annually compared to Gerhart Scale Corporation's master weights and are traceable to the National Institute of Standards and Technology (NIST). The NIST Traceability numbers are 428359B and 454678. The NIST test number is 822/260017-98.

All analytical balances are calibrated every 4 months by Gerhart Scale Corp. of South Amboy. The balances are calibrated with a class 1 analytical weight set. These weights are tested annually by a NIST / NVLAP accredited calibration lab. The NIST test number is 822/260017-8.

THERMOMETER CALIBRATION

The thermometers used in the determination of the final densities are calibrated vs standard thermometer No. 903-2680 which was certified in accordance with the procedures outlined by ASTM E77-87 and NIST Monograph 150 using NIST Test Nos. and Std Nos.: 769543, 217368/769543, 217368/P14452, 176240/P14452, 176240. The in-house procedure No. is 2-QC-001. Thermometers which are not calibrated vs standard thermometer No. 903-2680 are traceable to NIST Identification Nos. 92564, 119016, 471047 and NIST test report Nos. 811/258522, 811/2557078, and 236090.

TECHNICAL SUPPORT

All customers are encouraged to contact us for technical support for the proper use of our products.

TEL 1-800-569-6799

FAX 1-732-901-1903

E-MAIL IVtech@ivstandards.com

inorganic ventures / iv labs

195 lehigh avenue, suite 4, lakewood, nj 08701 usa phone: 800-669-6799 • 732-901-1900 • fax: 732-901-1903 e-mail: ivsales@ivstandards.com • website: www.ivstandards.com

certificate of analysis

1.0 Inorganic Ventures / IV Labs is an ISO Guide 34-2000 Certified Reference Material (CRM) Manufacturer: Certificate #883-02. The certificate is designed and the certified value(s) and uncertainty(ies) are determined in accordance with ISO Guide 31-2000 (Reference Materials - Contents of certificates and label(s), ISO Guide 34-2000 "Quality System Guidelines for the Production of Reference Materials," and ISO Guide 35-1989 "Certification of Reference Materials - General and Statistical Principles."

2.0 DESCRIPTION OF CRM Custom-Grade 1000 μg/mL Zinc in 1.4% (abs) HNO₃

Catalog Number:

CGZN1-1, CGZN1-2, and CGZN1-5

Lot Number:

W-ZN02018

Starting Material:

Zn shot

INORGANIC LABS/RADCHEM LAB

Starting Material Purity (%):

99,999889

DATE RECEIVED: __

Starting Material Lot No

J17L26

DATE OPENED:

Matrix:

1.4% (abs) HNO₃

INORG: 43/9 PD: +53258

3.0 CERTIFIED VALUES AND UNCERTAINTIES

Certified Concentration:

 $1006 \pm 3 \,\mu g/mL$

Certified Density:

1.011 g/mL (measured at 22° C)

The Certified Value is based upon the most precise method used to analyze this CRM. The following equations are used in the calculation of the certified value and the uncertainty:

Certified Value (C) = exx

(□) = mean

x, = individual results

n = number of measurements

Uncertainty (±) = $2[(2+5)^2]^{1/2}$

BS = The summation of all significant estimated errors

(n)^{1/2} (Most common are the error sfrom instrumental measurement, weighing, diktion to volume, and the fixed error reported on the

NIST SRM certificate of analysis.)

The independent samples t-test was used to determine if there is agreement between the above assay methods at the 95% confidence interval. Both methods were compared and showed agreement within the stated uncertainties. This agreement is a confirmation of the accuracy of this CRM.

4.0 TRACEABILITY TO NIST AND VALUES OBTAINED BY INDEPENDENT METHODS

C: "Property of the result of a measurement or the value of a standard whereby it can be related to stated references, usually national or international standards, through an unbroken chain of comparisons all having stated uncertainties." (ISO VIM, 2nd ed., 1993, definition 6.10)

This IV product is Traceable to NIST via direct comparison to NIST SRMs. The uncertainties for each certified value are reported, taking into account the SRM uncertainty error and the measurement, weighing and volume dilution errors.

4.1 Assay Method #1

1002 ± 6 μg/mL

ICP Assay NIST SRM 3168a Lot Number: 001402

Assay Method #2

1006 ± 3 μg/mL

EDTA NIST SRM 928 Lot Number: 880710

- 4.2 BALANCE CALIBRATION All balances are checked daily using in-house procedure number 6-IMM-001. The weights used for testing are annually compared to Gerhart Scale Corporation's master weights and are traceable to the National Institute of Standards and Technology (NIST). The NIST Traceability numbers are 692476 Class 1 and 692476A Class 2. The NIST test number is 822/260017-98. All analytical balances are calibrated every 4 months by Gerhart Scale Corp. of South Amboy. The balances are calibrated with a class 1 and/or class 2 analytical weight set. These weights are tested annually by a NIST / NVLAP accredited calibration lab. The NIST test number is 822/260017-98.
- 4.3 THERMOMETER CALIBRATION The thermometers used in the determination of the final densities are calibrated vs standard thermometer No. 903-2680 which was certified in accordance with the procedures outlined by ASTM E77-87 and NIST Monograph 150 using NIST Test Nos. and Std Nos.: 769543, 217368/769543, 217368/P14452, 176240/P14452, 176240. The in-house procedure No. is 2-QC-001. Thermometers which are not calibrated vs standard thermometer No. 903-2680 are traceable to NIST Identification Nos. 92564, 119016, 471047 and NIST test report Nos. 811/258522, 811/2557078, and 236090.
- 4.4 GLASSWARE CALIBRATION In-house procedure 3-QC-002 is used to calibrate all Class A Glassware used in the manufacture and quality control of Custom Grade Standards.

5.0 TRACE METALLIC IMPURITIES (TMI) DETERMINED BY ICP/MS AND ICP-OES IN µg/mL

Custom-Grade solutions are tested for trace metallic impurities by Axial ICP-OES and ICP-MS. The result from the most sensitive method for each element, is reported below. Solutions tested by ICP-MS were analyzed in an ULPA-Filtered Clean Room. An ULPA-Filter is 99.9985% efficient for the removal of particles down to 0.3 μ m.

<u>0</u>	Al	<	0.00200	М	Dy	<	0.02440	ō	LI		0.00001	M	Pr	<	0.00122	W	Te	<	0.12198	
M	Sb	<	0.00203	M	Er	<	0.02033	М	Lu	<	0.00163	M	Re	<	0.00407	M	Tb	<	0.00122	
M	As	<	0.04066	M	Eu	<	0.01220	Q	Mg		0.00011	M	Rh	<	0.00407	М	TI	<	0.00407	
M	Ва	<	0.04066	М	Gd	<	0.00407	M	Mn	<	0.01626	M	Rb	<	0.00407	M	Th	<	0.00407	
M	Ве	<	0.00203	М	Ga	<	0.00407	Q	Hg	<	0.01000	М	Ru	<	0.00813	M	Tm	<	0.00163	
M	Bi	<	0.00163	М	Ge	<	0.02440	M	Мо	<	0.00813	М	Sm	<	0.00407	M	Sn	<	0.02033	
<u>0</u>	В		0.00015	M	Au	<	0.01220	М	Nd	<	0.00813	M	Sc	<	0.04066	M	Ti	<	0.20331	
М	Cd	<	0.01220	М	Hf	<	0.00813	Q	Ni		0.00009	M	Se	<	0.03253	M	W	<	0.04066	_
<u>o</u>	Ca		0.00022	М	Ho	<	0.00203	М	NЬ	<	0.00203	<u>0</u>	Şi	<	0.00400	M	υ	<	0.00813	
<u>M</u>	Сe	<	0.02033	M	ln	<	0.04066	n	Os			М	Ag	<	0.00813	М	V	<	0.00813	
М	Cs	<	0.00122	М	łr	<	0.02033	М	Pd	<	0.02033	<u>o</u>	Na		0.00055	М	Υb	<	0.00407	
<u>o</u>	Cr	<	0.00100	0	Fe		0.00005	Q	P	<	0.00300	М	Sr	<	0.00203	M	Y	<	0.16264	
М	Со	<	0.01220	M	La	<	0.00203	M	Pt	<	0.00813	Q	s	<	0.02000	2	Zn			
Q	Cu	<	0.00050	M	Pb	<	0.01220	Ω	ĸ		0.00018	М	Ta	<	0.02846	М	Zr	<	0.02033	
M - Checked by ICP-MS			0-	Chec	kec	by ICP-OES	i - S	pect	al i	nterference	n - 1	Not C	he	cked For	s-	Solut	ion	Standard Elei	ment	

6.0 INTENDED USE

For the calibration of analytical instruments including but not limited to the following:

ICP-MS, ICP-OES, FAAS, GFAA, XRF, and DCP

For the validation of analytical methods

For the preparation of "working reference samples"

For interference studies and the determination of correction coefficients

For detection limit and linearity studies

For additional intended uses, contact IV Technical Staff

7.0 INSTRUCTIONS FOR THE CORRECT USE OF THIS REFERENCE MATERIAL

Storage & Handling - Keep tightly sealed when not in use. Store and use at 20 ± 4™€. Do not pipat from container. Do not return portions removed for pipetting to container.

Atomic Weight; Valence, Coordination Number; Chemical Form in Solution - 65.39, +2; 4; Zn(OH)(aq)**

Charrical Compatibility - Stable in HCl, HNO, H,SO, HF, H,PO. Avoid basic media that promotes the formation of insoluble carbonate and hydroxide. Stable with most metals and inorganic anions in addic media.

Stability - 2-100 ppb levels stable for months in 1% HNO, /LDPE container, 1-10,000 ppm solutions chemically stable for years in 1-5% HNO, /LDPE container.

Zn Containing Samples (Preparation and Solution) - Metal (Solutie in HNO,); Oxides (Solutie in HCl.); Ores (Dissolve in HCl.); Organic based (Dry ash at 450 © and dissolve ash in HCl.) (Suffuric/peroxide add digestion)

Atomic Spectroscopic Information (ICP-OES D.L.s are given as radial/axial view):

Technique/Line ICP-OES 213.856 nm ICP-OES 202.548 nm ICP-OES 206.200 nm Type Interferences (underlined indicates severe at aftoncs.) Estimated D.L. 0.002 / 0.0004 µg/mL. 1 Order etom 0.004 / 0.0002 µg/mL 1 ion Nb, Cu, Co, Hf Sb, Ta, Bl, Os M' **TI*'O.**Cr*'O, **V*'O, **S*'O₂, **S*'O*'O, **S*'O'O, 0.006 / 0.0006 µg/mL. 1 ion ICP-MS 66 amu 7 ppt Γν'n "S"S, "S,

- 8.0 HAZARDOUS INFORMATION - Please refer to the enclosed Material Saftey Data sheet for information regarding this CRM.
- 9.0 HOMOGENEITY - This solution was mixed according to procedure IV-MPM-004 and is guaranteed to be homogeneous.

10.0 QUALITY STANDARD DOCUMENTATION

10.1 ISO 9001:2000 Quality Management System Registration - QMI Certificate Number 010105 Recognized by:

Registrar Accreditation Board (ANSI-RAB)

Standards Council of Canada (SCC)

Dutch Council for Accreditation (RVA)

Entidad Mexicana de Acreditacion, a.c.(EMA)

Members of IQ Net International Certification Network:

Argentina (IRAM), Australia (QAS), Austria (ÖQS), Belglum (Avinter), Brazil (FCAV), Canada (QMI), Hong Kong (HKQAA), Columbia (ICONTEC), Czech Republic (CQS), Denmark (DS), Finland (SFS), France (AFAQ), Germany (DQS), Greece (ELOT), Hungary (MSZT), Ireland (NSAI), Israel (SII), Italy (CISQ), Japan (JQA), Korea (KSA-QA), Netherlands (KEMA), Norway (NCS), Poland(PCBC), Portugal (APCER), Singapore (PSB), Slovenia (SIQ), Spain (AENOR), Switzerland (SQS) 10.2 ISO/IEC 17025 - 1999 "General Requirements for the Competence of Testing and Calibration"

- Chemical Testing - Accredited A2LA Certificate Number 883.01

10.3 ISO/IEC Guide 34 - 2000 "General Requirements for the Competence of Reference Material Producers" - Reference Materials Production - Accredited A2LA Certificate Number 883.02

A2LA Mutual Recognition Agreement Partners:

Australia (NATA), Austria (BmwA), Belgium (BELTEST) (BKO-OBE), Canada (SCC), Chinese Taipei (CNLA), Czech Republic (NAO), Denmark (DANAK), Finland (FINAS), France (COFRAC), Germany (DAR), Hong Kong (HKAS, Ireland (NAB), Italy (SIT) (SINAL), Japan (JAB) (JNLA), Republic of Korea (KOLAS), The Netherlands (RvA), New Zealand (IANZ), Norway (NA), Portugal (IPQ), Singapore (SAC-SINGLAS), Spain (ENAC), Sweden (SWEDAC), Switzerland (SAS), United Kingdom (UKAS) and United States (NVLAP) (ICBO ES)

- 10.4 10CFR50 Appendix B Nuclear Regulatory Commission
 - Domestic Licensing of Production and Utilization Facilities
- 10.5 10CFR21 Nuclear Regulatory Commission Reporting Defects and Non-Compliance
- 10.6 MIL-STD-45662A (Obsolete/Observed)

11.0 DATE OF CERTIFICATION AND PERIOD OF VALIDITY

- 11.1 IV Shelf Life The period of time during which the concentration of the analyte(s) in a properly packaged, unopened, and unused standard stored under environmentally controlled and monitored conditions will remain within the specified uncertainty range. Shelf life is timited primarily by transpiration (loss of water from the solution) and infrequently, by chemical instability. Transpiration studies (P-SP01020) of chemically-stable solutions performed at Inorganic Ventures / IV Labs indicate a CRM shelf-life of four years for solutions packaged in 500-mL low density polyethylene bottles. When stored under special conditions that minimize transpiration and instability, the shelf life can be extended past this limit.
- 11.2 Expiration Date The date after which a CRM should not be used. Routine laboratory use of a CRM increases transpiration losses and the chance of contamination which affect the integrity of the CRM and limit its useful life. Inorganic Ventures / IV Labs concurs with state and federal regulatory agencies' recommendations that solution standards be assigned a one-year expiration date.

Certification Date: May 02, 2003

Expiration Date:

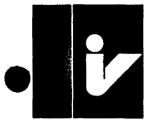
EXPIRES 1:2004

12.0 NAMES AND SIGNATURES OF CERTIFYING OFFICERS

Certificate Prepared By:

JoAnn Struthers, QA Administrative Assistant

Certificate Approved By:


Katalin Le, QC Supervisor

Certifying Officer:

Paul Gaines, Chemist, Senior Technical Director

Paux Aain

INORGANIC LABS/RADCHEM LABS
DATE RECEIVED: 11/5/03 24/2
DATE EXPIRED: 12/10/03
INORG: 43/9 PO: F5208

inorganic ventures

195 lehigh avenue, suite 4, lakewood, nj 08701 usa phone: 800-669-6799 • 732-901-1900 • fax: 732-901-1903 e-mail: ivsales@ivstandards.com • website: www.ivstandards.com

certificate of analysis

CUSTOM-GRADE SOLUTION

1000 μg/mL Silver in 3.5% HNO₃ (abs)

Catalog Number: CGAG1-1, CGAG1-2 and CGAG1-5

Lot Number:	T-A	GO	20	15
-------------	-----	----	----	----

Starting Material: Starting Material Purity: Starting Material Lot No:

Silver Metal 99.999% F15I02

DATE RECEIVED: 08/06/03 DATE EXPIRED: 09/01/2004 VOS DATE OPENED: 08/86/03

INORGANIC LABS/RADCHEM LABS

INORG: 4202 FO: E50004

CERTIFIED CONCENTRATION: 1001 \pm 2 μ g/mL

The Certified Value is based upon the most precise method used to analyze this CRM. The following equations are used in the calculation of the certified value and the uncertainty:

Certified Value
$$(\bar{x}) = \frac{\sum x_i}{n}$$

Uncertainty (±) = $2[(\sum_{s})^2]^{1/2}$

(x) = mean

x, = individual results

n = number of measurements

 $\sum S_i$ = The summation of all significant estimated errors.

Classical Wet Assay: 1004 ± 3 µg/mL

Method: Volhard Titration vs NIST SRM 999a Potassium Chloride

Instrument Analysis: 1001 ± 2 µg/mL

Method: Inductively Coupled Plasma Spectroscopy (ICP) vs NIST SRM 3151.

The independent samples t-test was used to determine if there is agreement between the above assay methods at the 95% confidence interval. Both methods were compared and showed agreement within the stated uncertainties. This agreement is a confirmation of the accuracy of this CRM.

TRACE METALLIC IMPURITIES DETERMINED BY ICP-MS AND ICP-OES IN $\mu a/mL$:

Custom-Grade solutions tested for trace metallic impurities by ICP-MS were analyzed in an ULPA-Filtered Clean Room. An ULPA-Filter is 99,9985% efficient for the removal of particles down to 0.3 μm .

Q	Αl	< 0.00010	M	Dν	< 0.00060	Q	Li	< 0.000030	<u>M</u>	Pr	< 0.000030	<u>o</u>	Te	< 0.030
M	Sb	< 0.000050	M	Er	< 0.00050	M	Lu	< 0.000040	<u>M</u>	Re	< 0.00010	M	ТЪ	< 0.000030
0	As	< 0.0050	М	Eu	< 0.00030	<u> </u>	Mg	< 0.000040	M	Rh	< 0.00010	M	TI	< 0.00010
M	Ba	< 0.0010	М	Gd	< 0.00010	Q	Mn	< 0.00030	<u>M</u>	Rb	< 0.00010	M	Th	< 0.00010
<u>o</u>	Ве	< 0.00050	М	Ga	< 0.00010	ō	Hg	0.00090	M	Ru	< 0.00020	M	Tm	< 0.000040
м	8i	< 0.000040	M	Ge	< 0.00060	M	Mo	< 0.00020	M	Sm	< 0.00010	<u>M</u>	Sn	< 0.00050
ō	B	< 0.0020	ō	Αu	< 0.012	M	Nd	< 0.00020	<u>M</u>	Sc	< 0.0010	<u> </u>	Tī	< 0.00070
ō	Cd	< 0.0020	M	Hf	< 0.00020	<u> </u>	Ni	< 0.0070	ō	Se	< 0.036	M	W	< 0.0010
ō	Ca	< 0.000050	M	Ho	< 0.000050	<u>M</u>	Nb	< 0.000050	ō	Si	< 0.0030	M	U	< 0.00020
М	Ce	< 0.00050	O	In	< 0.020	<u>n</u>	Оs		- 8	Ag		M	V	< 0.00020
М	Cs	< 0.000030	M	1r	< 0.00050	M	Pd	< 0.00050	<u>ō</u>	Na	< 0.090	M	Yb	< 0.00010
<u>o</u>	Cr	< 0.0020	ō	Fe	< 0.00070	ō	P	< 0.030	M	Sr	< 0.000050	<u>M</u>	Y	< 0.0040
M	Co	< 0.00030	M	La	< 0.000050	M	Pt	< 0.00020	<u> </u>	S	< 0.020	<u></u>	Zn	< 0.0010
M	Cu	< 0.00060	M	Pb	< 0.00030	<u>o</u>	K	< 0.0060	<u>M</u>	Ta	<0.00070	M	Zr	<0.00050

i - spectral interference

ANALYZED DENSITY OF SOLUTION (measured at 22°C): 1.024 g/mL

O - checked by ICP-OES

QA:KL nov.00210200

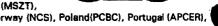
M - checked by ICP-MS

Quality Assurance Manager

Paul R. Haines

n - not checked for

Expires:



s - solution standard element

QUALITY STANDARD DOCUMENTATION

Singapore (PSB), Slovenia (SIQ), Spain (AENOR), Switzerland (SQS)

1.ISO 9001:2000 QMI Registered Quality System (Certificate Number 010105) Members of IQ Net: Argentina (IRAM), Australia (QAS), Austria (QQS), Belgium (Avinter), Brazil (FCAV), Canada (QMI), Hong Kong (HKQAA), Columbia (ICONTEC), Czech Republic (CQS), Denmark (DS), Finland (SFS), France (AFAQ), Germany (DQS), Greece (ELOT), Hungary (MSZT), Ireland (NSAI), Israel (SII), Italy (CISQ), Japan (JQA), Koree (KSA-QA), Netherlands (KEMA), Norway (NCS), Poland(PCBC), Portugal (APCER),

2.ISO/IEC Guide 34-2000 "General Requirements for the Competence of Reference Material Producers" - Reference Materials Production - Accredited A2LA Certificate 883.02

3.ISO/IEC17025-1999 "General Requirements for the Competence of Testing and Calibration" - Chemical Testing -Accredited A2LA Certificate 883.01

4.MIL-STD-45662A

5.10CFR50 Appendix B - Nuclear Regulatory Commission - Domestic Licencing of Production and Utilization Facilities 6.10CFR21 - Nuclear Regulatory Commission - Reporting Defects and Non-Compliance

Please contact our Quality Assurance Department for further information and copies of documents pertaining to our Quality Standard certifications.

STABILITY/ EXPIRATION DOCUMENTATION

Shelf Life -The length of time that a properly stored and packaged standard will remain within the specified uncertainty. Shelf life is affected by chemical stability and transpiration issues. Inorganic Ventures' Standard Solutions are chemically stable indefinitely. Transpiration loss is linear with time and limits the time a standard can be used with confidence. The smaller the bottle the higher the rate of transpiration. Inorganic Ventures' studies indicate that the shelf life of our 500 mL bottle is 4 years and the shelf life of our 125 mL bottle is 21 months.

Expiration Date - The date after which a standard solution should not be used. A one year expiration date is recommended by most state and federal regulatory agencies. Transpiration issues and repeated use of solutions over a one year period may adversely affect the integrity of the standard.

PACKAGING DOCUMENTATION

Purified acid, 18 megohm double deionized water that has been filtered through a 0.2 µm filter and in-house procedure IV-PACK-001 is used to clean all bottles. Contact us for technical information relating to contamination issues in packaging materials.

GLASSWARE CALIBRATION

In-house procedure 3-QC-002 is used to calibrate all Class A Glassware used in the manufacture and quality control of Custom Grade Standards.

BALANCE CALIBRATION

All balances are checked daily using in-house procedure number 6-IMM-001. The weights used for testing are annually compared to Gerhart Scale Corporation's master weights and are traceable to the National Institute of Standards and Technology (NIST). The NIST Traceability numbers are 428359B and 454678. The NIST test number is 822/260017-98.

All analytical balances are calibrated every 4 months by Gerhart Scale Corp. of South Amboy. The balances are calibrated with a class 1 analytical weight set. These weights are tested annually by a NIST / NVLAP accredited calibration lab. The NIST test number is 822/260017-8.

THERMOMETER CALIBRATION

The thermometers used in the determination of the final densities are calibrated vs standard thermometer No. 903-2680 which was certified in accordance with the procedures outlined by ASTM E77-87 and NIST Monograph 150 using NIST Test Nos. and Std Nos.: 769543, 217368/769543, 217368/P14452, 176240/P14452, 176240. The in-house procedure No. is 2-QC-001. Thermometers which are not calibrated vs standard thermometer No. 903-2680 are traceable to NIST Identification Nos. 92564, 119016, 471047 and NIST test report Nos. 811/258522, 811/2557078, and 236090.

TECHNICAL SUPPORT

All customers are encouraged to contact us for technical support for the proper use of our products.

TEL 1-800-569-6799 INT'L 1-732-901-1900 FAX 1-732-901-1903

E-MAIL IVtech@ivstandards.com

inorganic ventures

195 lehigh avenue, suite 4, lakewood, nj 08701 usa phone: 800-669-6799 • 732-901-1900 • fax: 732-901-1903

e-mail: ivsales@ivstandards.com • website: www.ivstandards.com

certificate of analysis

1.0 Inorganic Ventures / IV Labs is an ISO Guide 34-2000 Certified Reference Material (CRM) Manufacturer: Certificate #883-02. The certificate is designed and the certified value(s) and uncertainty(ies) are determined in accordance with ISO Guide 31-2000 (Reference Materials - Contents of certificates and label(s), ISO Guide 34-2000 "Quality System Guidelines for the Production of Reference Materials," and ISO Guide 35-1989 "Certification of Reference Materials - General and Statistical Principles."

DESCRIPTION OF CRM 2.0

Custom-Grade 1000 µg/mL Arsenic in 1.4% (abs) HNO3

Catalog Number:

CGAS1-1, CGAS1-2, and CGAS1-5

Lot Number:

W-AS02022

Starting Material:

POLYCRYSTALINE LUMP

Starting Material Purity (%):

99.998994

Starting Material Lot No

23115

Matrix:

1.4% (abs) HNO3

INORGANIC LABS/RADCHEN LABS% 142

DATE RECEIVED: 01/30/04

3.0 **CERTIFIED VALUES AND UNCERTAINTIES** DATE EXPIRED: 03/01/3005 VO DATE OPENED: 01/20/04

Certified Concentration:

1014 ± 3 µg/mL

INURG: 4433 PU: F52301

Certified Density:

1.012 g/mL (measured at 22° C)

The Certified Value is based upon the most precise method used to analyze this CRM. The following equations are used in the calculation of the certified value and the uncertainty:

Certified Value (C) = exx

(C)1 = mean

x_i = individual results

n = number of measurements

Uncertainty $(\pm) = 2[(2\pm s_i)^2]^{1/2}$

BS = The summation of all significant estimated errors. (Most common are the errors from instrumental measurement, weighing, dilution to volume, and the fixed error reported on the

NIST SRM certificate of analysis.)

TRACEABILITY TO NIST AND VALUES OBTAINED BY INDEPENDENT METHODS 4.0

The Property of the result of a measurement or the value of a standard whereby it can be related to stated references, usually national or international standards, through an unbroken chain of comparisons all having stated uncertainties." (ISO VIM, 2nd ed., 1993, definition 6.10)

This IV product is Traceable to NIST via direct comparison to NIST SRMs. The uncertainties for each certified value are reported, taking into account the SRM uncertainty error and the measurement, weighing and volume dilution errors.

4.1

Assay Method #1

1014 ± 3 µg/mL (Avg 2 runs)

ICP Assay NIST SRM 3103a Lot Number: 891003

Assay Method #2

1008 µg/mL

Gravimetric NIST SRM Lot Number: See Sec. 4.2

- 4.2 BALANCE CALIBRATION All balances are checked daily using in-house procedure number 6-IMM-001. The weights used for testing are annually compared to Gerhart Scale Corporation's master weights and are traceable to the National Institute of Standards and Technology (NIST). The NIST Traceability numbers are 692476 Class 1 and 692476A Class 2. The NIST test number is 822/260017-98. All analytical balances are calibrated every 4 months by Gerhart Scale Corp. of South Amboy. The balances are calibrated with a class 1 and/or class 2 analytical weight set. These weights are tested annually by a NIST / NVLAP accredited calibration lab. The NIST test number is 822/260017-98.
- 4.3 THERMOMETER CALIBRATION The thermometers used in the determination of the final densities are calibrated vs standard thermometer No. 903-2680 which was certified in accordance with the procedures outlined by ASTM E77-87 and NIST Monograph 150 using NIST Test Nos. and Std Nos.; 769543, 217368/769543, 217368/P14452, 176240/P14452, 176240. The in-house procedure No. is 2-QC-001. Thermometers which are not calibrated vs standard thermometer No. 903-2680 are traceable to NIST identification Nos. 92564, 119016, 471047 and NIST test report Nos. 811/258522, 811/2557078, and 236090.
- 4.4 GLASSWARE CALIBRATION In-house procedure 3-QC-002 is used to calibrate all Class A Glassware used in the manufacture and quality control of Custom Grade Standards.

5.0 TRACE METALLIC IMPURITIES (TMI) DETERMINED BY ICP/MS AND ICP-OES IN µg/mL

Custom-Grade solutions are tested for trace metallic impurities by Axial ICP-OES and ICP-MS. The result from the most sensitive method for each element, is reported below. Solutions tested by ICP-MS were analyzed in an ULPA-Filtered Clean Room. An ULPA-Filter is 99.9985% efficient for the removal of particles down to 0.3 µm.

<u>0</u>	Al		0.00038	<u>M</u>	Dу	<	0.01596	Q	LI		0.00009	M	Pr	<	0.00080	<u> </u>	<u>1</u> T	e	<	0.07978	
o	Sb	<	0.01000	М	Er	<	0.01330	M	Lu	<	0.00106	ō	Re	<	0.01000	V	1 1	b	<	0.00080	
<u>s</u>	As			M	Eu	<	0.00798	Q	Mg		0.00009	<u>M</u>	Rh	<	0.00266	N	1 7	1	<	0.00266	
M	Ва	<	0.02660	М	Gd	<	0.00266	Q	Mn	<	0.00003	М	Rb	<	0.00266	M	Ţ	'n	<	0.00266	
М	Ве	<	0.00133	M	Ga	<	0.00266	Q	Hg	<	0.01200	M	Ru	<	0.00532	N	1 1	m	<	0.00106	
M	Bi	<	0.00106	W	Ge	<	0.01596	М	Мо	<	0.00532	М	Sm	<	0.00266	2	<u> </u>	'n		0.00049	
Q	В	<	0.01200	M	Au	<	0.00798	М	Nd	<	0.00532	M	Sc	<	0.02660	V	<u>1</u> 7	ï	<	0.13297	
M	Cd	<	0.00798	M	Hf	<	0.00532	M	Ni	<	0.02128	M	Se	<	0.02128	V	<u>1</u> V	٧	<	0.02660	_
<u>o</u>	Ca		0.00189	М	Но	<	0.00133	ō	Nb	<	0.00200	0	Si		0.00415	V	<u>1</u> L)	<	0.00532	
M	Се	<	0.01330	М	In	<	0.02660	<u>n</u>	Os			Μ	Ag	<	0.00532	Δ	1 \	•	<	0.00532	
M	Св	<	0.00080	M	1r	<	0.01330	M	Pd	<	0.01330	0	Na		0.00159	V	<u>1</u> Y	b	<	0.00266	
М	Cr	<	0.01330	0	Fe	<	0.00110	Q	P	<	0.00260	М	Sr	<	0.00133	Ī	<u>1</u> Y	,	<	0.10638	
M	Co	<	0.00798	М	La	<	0.00133	М	Pt	<	0.00532	0	s	<	0.02500	2	2	'n		0.00057	
М	Cu	<	0.01596	M	Pb	<	0.00798	<u>o</u>	ĸ		0.00132	M	Та	<	0.01862	Ā	<u>1</u> 2	r	<	0.01330	
M - C	heck	(ed	by ICP-MS	0-	Chec	kec	by ICP-OES	1 - S	pect	al l	nterference	n - 1	Not C	hec	cked For	s	- So	lutio	on s	Standard Ele	ement

6.0 INTENDED USE

For the calibration of analytical instruments including but not limited to the following:

ICP-MS, ICP-OES, FAAS, GFAA, XRF, and DCP

For the validation of analytical methods

For the preparation of "working reference samples"

For Interference studies and the determination of correction coefficients

For detection limit and linearity studies

For additional intended uses, contact IV Technical Staff

7.0 INSTRUCTIONS FOR THE CORRECT USE OF THIS REFERENCE MATERIAL

Storage & Handling - Keep tightly sealed when not in use. Store and use at 20 ± 4°C. Do not pipet from container. Do not return portions removed for pipetting to container.

Atomic Weight; Valence; Coordination Number; Chemical Form in Solution - 74.9218; mix of +3 and +5, 6; H₂AsO₄ and

Chemical Competibility -Arsenic has no extionic chemistry. It is soluble in HCl, HNO, H,PO., H,SO. and HF aqueous metrices water and NH,OH. It is stable with most inorganic anions (forms arsenate when boiled with chromate) but many cationic metals form the insoluble arsenates under pH neutral conditions. When fluorinated and / or under acidic conditions arsenate formation is typically not a problem at moderate to low concentrations.

Stability - 2-100 ppb levels stable for months alone or mixed withother elements at equivalent levels in 1% HNO. / LDPE

container. 1-10,000 ppm solutions chemically stable for years in 1-5% HNO, / LDPE container.

As Containing Samples (Preparation and Solution) - As (soluble in 1:1 H₂O /HNO₃) Oxides (the code exists in crystalline and amorphous forms where the amorphoric form is more water soluble. The oxides typically dissolve in dilute addic solutions when boiled), Minerals (One gram of powered sample is fused in a Ni^o crucible with 10 grams of a 1:1 mix of K₂CO₃ and KNO₃ and the mett extracted with hot water); Organic Matrices (0.2 to 0.5 grams of the sample are fused with 15 grams of a 1:1 Na₂CO₂ / Na₂O₂ mix in a Ni^a crucible. The fuseate is extracted with water and addited with HNO₂)

Atomic Spectroscopic Information (ICP-OES D.L.s are given as redisi/axiel view):

<u>Technique</u>		Estimated D.L.	<u>Order</u>	Type atom	Interferences (underlined indicates severe at validoncs.)
ICP-OES	189.042 nm	0.05 / 0.005 µg/mL	1	atom	Cr
ICP-OES	193.696 nm	0.1 / 0.01 µg/mL	1	atom	V, Ge
ICP-OES	228.812 nm	0.1 / 0.01 µg/mL	1	atom	Cd, Pt, ir, Co
ICP-MS	75 amu	20 ppt	n/a	M'	Cd. Pt, ir, Co "APCI, 32Co"O, "Ar"Ar"H, "Ar"Cl, "Ar"K, '"Nd", '"Sm"

- 8.0 HAZARDOUS INFORMATION - Please refer to the enclosed Material Saftey Data sheet for information regarding this CRM.
- 9.0 HOMOGENEITY - This solution was mixed according to procedure IV-MPM-004 and is guaranteed to be homogeneous.

QUALITY STANDARD DOCUMENTATION

10.1 ISO 9001:2000 Quality Management System Registration - QMI Certificate Number 010105

Registrar Accreditation Board (ANSI-RAB)

Standards Council of Canada (SCC)

Dutch Council for Accreditation (RVA)

Entidad Mexicana de Acreditacion, a.c.(EMA)

Members of IQ Net International Certification Network:

Argentina (IRAM), Australia (QAS), Austria (ÖQS), Belgium (Avinter), Brazil (FCAV), Canada (QMI), Hong Kong (HKQAA), Columbia (ICONTEC), Czech Republic (CQS), Denmark (DS), Finland (SFS), France (AFAQ), Germany (DQS), Greece (ELOT), Hungary (MSZT), Ireland (NSAI), Israel (SII), Italy (CISQ), Japan (JQA), Korea (KSA-QA), Netherlands (KEMA), Norway (NCS).

Poland(PCBC), Portugal (APCER), Singapore (PSB), Slovenia (SIQ), Spain (AENOR), Switzerland (SQS) 10.2 ISO/IEC 17025 - 1999 "General Requirements for the Competence of Testing and Calibration"

- Chemical Testing - Accredited A2LA Certificate Number 883.01

10.3 ISO/IEC Guide 34 - 2000 "General Requirements for the Competence of Reference Material Producers"

- Reference Materials Production - Accredited A2LA Certificate Number 883.02

A2LA Mutual Recognition Agreement Partners:

Australia (NATA), Austria (BmwA), Belgium (BELTEST) (BKO-OBE), Canada (SCC), Chinese Taipei (CNLA), Czech Republic (NAO), Denmark (DANAK), Finland (FINAS), France (COFRAC), Germany (DAR), Hong Kong (HKAS, Ireland (NAB), Italy (SIT) (SINAL), Japan (JAB) (JNLA), Republic of Korea (KOLAS), The Netherlands (RvA), New Zealand (IANZ), Norway (NA), Portugal (IPQ), Singapore (SAC-SINGLAS), Spain (ENAC), Sweden (SWEDAC), Switzerland (SAS), United Kingdom (UKAS) and United States (NVLAP) (ICBO ES)

- 10.4 10CFR50 Appendix B Nuclear Regulatory Commission
 - Domestic Licensing of Production and Utilization Facilities
- 10.5 10CFR21 Nuclear Regulatory Commission Reporting Defects and Non-Compliance
- 10.6 MIL-STD-45662A (Obsolete/Observed)

	/RADCHEM LABS79 2 of 2
DATE RECEIVED: _	01/30/04
DATE EXPIRED:	01/20/04 705
	40106110
INORG: 4433	FO: E5230)

11.0 DATE OF CERTIFICATION AND PERIOD OF VALIDITY

- 11.1 IV Shelf Life The period of time during which the concentration of the analyte(s) in a properly packaged, unopened, and unused standard stored under environmentally controlled and monitored conditions will remain within the specified uncertainty range. Shelf life is limited primarily by transpiration (loss of water from the solution) and infrequently, by chemical instability. Transpiration studies (P-SP01020) of chemically-stable solutions performed at Inorganic Ventures / IV Labs indicate a CRM shelf-life of four years for solutions packaged in 500-mL low density polyethylene bottles. When stored under special conditions that minimize transpiration and instability, the shelf life can be extended past this limit.
- 11.2 Expiration Date The date after which a CRM should not be used. Routine laboratory use of a CRM increases transpiration losses and the chance of contamination which affect the integrity of the CRM and limit its useful life. Inorganic Ventures / IV Labs concurs with state and federal regulatory agencies' recommendations that solution standards be assigned a one-year expiration date.

Certification Date: May 01, 2003

Expiration Date: EXPIRES

NAMES AND SIGNATURES OF CERTIFYING OFFICERS

Certificate Prepared By:

JoAnn Struthers, QA Administrative Assistant

Certificate Approved By:

Katalin Le, QC Supervisor

Certifying Officer:

Paul Gaines, Chemist, Senior Technical Director

Foll Strutten Known an Park Hains

교

XPIRED

inorganic ventures / iv labs

195 lehigh avenue, suite 4, lakewood, nj 08701 usa phone: 800-669-6799 • 732-901-1900 • fax: 732-901-1903 e-mail: ivsales@ivstandards.com • website: www.ivstandards.com

certificate of analysis

1.0 Inorganic Ventures / IV Labs is an ISO Guide 34-2000 Certified Reference Material (CRM) Manufacturer: Certificate #883-02. The certificate is designed and the certified value(s) and uncertainty(ies) are determined in accordance with ISO Guide 31-2000 (Reference Materials - Contents of certificates and label(s), ISO Guide 34-2000 "Quality System Guidelines for the Production of Reference Materials," and ISO Guide 35-1989 "Certification of Reference Materials - General and Statistical Principles."

2.0 DESCRIPTION OF CRM Custom-Grade 1000 µg/mL Lead in 0.35% (abs) HNO3

Catalog Number:

CGPB1-1, CGPB1-2, and CGPB1-5

Lot Number:

W-PB02114

Starting Material:

Pb(NO3)2

Starting Material Purity (%):

99,999974

Starting Material Lot No

22150

Matrix:

0.35% (abs) HNO3

3.0 CERTIFIED VALUES AND UNCERTAINTIES

Certified Concentration:

 $1006 \pm 2 \mu g/mL$

Certified Density:

1.002 g/mL (measured at 22° C)

The Certified Value is the wet assay value. The following equations are used in the calculations of the certified value and the uncertainty:

Certified Value (C) = exx

(C) = mean

24.CU

x_I = individual results

Uncertainty (±) = $2[(e_1 \cdot s_1)^2]^{1/2}$

n = number of measurements

micertainty (I) = 21(ers)ri-

BS = The summation of all significant estimated errors

(Most common are the errors from instrumental measurement, weighing, dilution to volume, and the fixed error reported on the

NIST SRM certificate of analysis.)

The independent samples t-test was used to determine if there is agreement between the above assay methods at the 95% confidence interval. Both methods were compared and showed agreement within the stated uncertainties. This agreement is a confirmation of the accuracy of this CRM.

4.0 TRACEABILITY TO NIST AND VALUES OBTAINED BY INDEPENDENT METHODS

□ "Property of the result of a measurement or the value of a standard whereby it can be related to stated references, usually national or international standards, through an unbroken chain of comparisons all having stated uncertainties." (ISO VIM, 2nd ed., 1993, definition 6.10)

☐ This IV product is Traceable to NIST via direct comparison to NIST SRMs. The uncertainties for each certified value are reported, taking into account the SRM uncertainty error and the measurement, weighing and volume dilution errors.

4.1 Assay Method #1

 $1005 \pm 2 \,\mu g/mL$

ICP Assay NIST SRM 3128 Lot Number: 991504

Assay Method #2

1006 ± 2 µg/mL

EDTA NIST SRM 928 Lot Number: 880710

- 4.2 BALANCE CALIBRATION All balances are checked daily using in-house procedure number 6-IMM-001. The weights used for testing are annually compared to Gerhart Scale Corporation's master weights and are traceable to the National Institute of Standards and Technology (NIST). The NIST Traceability numbers are 692476 Class 1 and 692476A Class 2. The NIST test number is 822/260017-98. All analytical balances are calibrated every 4 months by Gerhart Scale Corp. of South Amboy. The balances are calibrated with a class 1 and/or class 2 analytical weight set. These weights are tested annually by a NIST / NVLAP accredited calibration lab. The NIST test number is 822/260017-98.
- 4.3 THERMOMETER CALIBRATION The thermometers used in the determination of the final densities are calibrated vs standard thermometer No. 903-2680 which was certified in accordance with the procedures outlined by ASTM E77-87 and NIST Monograph 150 using NIST Test Nos. and Std Nos.: 769543, 217368/769543, 217368/P14452, 176240/P14452, 176240/P144
- 4.4 GLASSWARE CALIBRATION In-house procedure 3-QC-002 is used to calibrate all Class A Glassware used in the manufacture and quality control of Custom Grade Standards.

5.0 TRACE METALLIC IMPURITIES (TMI) DETERMINED BY ICP/MS AND ICP-OES IN µg/mL

Custom-Grade solutions are tested for trace metallic impurities by Axial ICP-OES and ICP-MS. The result from the most sensitive method for each element, is reported below. Solutions tested by ICP-MS were analyzed in an ULPA-Filtered Clean Room. An ULPA-Filter is 99.9985% efficient for the removal of particles down to 0.3 µm.

<u>O</u> Al < 0.00270	<u>M</u> Dy < 0.01193	<u>O</u> Li < 0.00002	<u>M</u> Pr < 0.00060	<u>M</u> Te < 0.05965
<u>M</u> Sb < 0.00099	<u>M</u> Er < 0.00994	<u>M</u> Lu < 0,00080	M Re < 0.00199	<u>M</u> Tb < 0.00060
M As < 0.01989	<u>M</u> Eu < 0.00597	<u>Q</u> Mg 0.00008	<u>O</u> Rh < 0.00900	<u>O</u> TI 0.00130
<u>M</u> Ba < 0.01989	M Gd < 0.00199	<u>M</u> Mn < 0.00795	M Rb < 0.00199	<u>M</u> Th < 0.00199
<u>M</u> Be < 0.00099	<u>M</u> Ga < 0.00199	<u>O</u> Hg < 0.01500	<u>M</u> Ru < 0.00398	<u>M</u> Tm < 0.00080
<u>O</u> Bi < 0.02000	<u>M</u> Ge < 0.01193	<u>M</u> Mo < 0.00398	<u>M</u> Sm < 0.00199	<u>M</u> Sn < 0.00994
<u>O</u> B < 0.04000	<u>M</u> Au < 0.00597	M Nd < 0.00398	M Sc < 0.01989	<u>M</u> TI < 0.09942
M Cd < 0.00597	M Hf < 0.00398	<u>M</u> Ni < 0.01591	M Se < 0.01591	<u>M</u> W < 0.01989
O Ca 0.00009	<u>M</u> Ho < 0.00099	<u>M</u> Nb < 0.00099	O SI < 0.00340	<u>M</u> U < 0.00398
M Ce < 0.00994	<u>M</u> In < 0.01989	n Os	<u>M</u> Ag < 0.00398	<u>M</u> V < 0.00398
M Cs < 0.00060	M ir < 0.00994	M Pd < 0.00994	O Na < 0.00600	<u>M</u> Yb < 0.00199
M Cr < 0.00994	<u>O</u> Fe 0.00011	<u>O</u> P < 0.00500	<u>M</u> Sr < 0.00099	<u>M</u> Y < 0.07954
M Co < 0.00597	<u>M</u> La < 0.00099	M Pt < 0.00398	<u>O</u> S < 0.10000	M Zn < 0.03977
<u>M</u> Cu < 0.01193	<u>s</u> Pb	<u>O</u> K < 0.00180	<u>M</u> Ta < 0.01392	<u>M</u> Zr < 0.00994
M - Checked by ICP-MS	O - Checked by ICP-OES	I - Spectral Interference	n - Not Checked For	s - Solution Standard Element

6.0 INTENDED USE

For the calibration of analytical instruments including but not limited to the following:

ICP-MS, ICP-OES, FAAS, GFAA, XRF, and DCP

For the validation of analytical methods

For the preparation of "working reference samples"

For interference studies and the determination of correction coefficients

For detection limit and linearity studies

For additional intended uses, contact IV Technical Staff

7.0 INSTRUCTIONS FOR THE CORRECT USE OF THIS REFERENCE MATERIAL

Storage & Handling - Keep tightly sealed when not in use. Store end use at 20 ± 4 €. Do not pipet from container. Do not return portions removed for pipetting to container.

Atomic Weight; Valence; Coordination Number; Chemical Form in Solution - 207.2; +2; 6; Pb(H₂O); 2

Chemical Competibility - Soluble in HCl, HF and HNO_s. Avoid H_sSO_s. Stable with most metals and inorganic anions forming insoluble carbonate, borate, <u>suitate</u>, sulfite, sulfide, phosphate, oxalate, <u>chromate</u>, tannate, indate, and cyanide in neutral aqueous media.

Stability - 2-100 ppb levels stable for months in 1% HNO₃ / LDPE container. 1-10,000 ppm solutions chemically stable for years in 2-5% HNO₃ / LDPE container.

Pb Containing Samples (Preparation and Solution) - Metal (Best dissolved in 1:1 H₂O / HNO₃) Oxides (The many different Pb oxides are soluble in HNO₃ with the exception of PbO₂ which is soluble in HCl or HF); Ores and Alloys (Best attacked using 1:1 H₂O / HNO₃) Organic Matrices (Dry ash and dissolve in dilute HCl.).

Atomic Spectroscopic Information (ICP-OES D.L.s are given as radial/axial view):

Techniqu	e/Line	Estimated D.L.	Order	Type	Interferences (underlined indicates severe at actioncs.)
ICP-OES	168.215 nm	0.03 / 0.003 µg/mL	1	ion	Co
ICP-OES	220.353 nm	0.04 / 0.006 µg/mL	1	ion	Bi,Nb
ICP-OES	217.000 nm	0.09 / 0.03 µg/mL	1	atom	W, Ir, Hf, Sb, Th
ICP-MS	208 amu	5 ppt	n/a	M'	' <u>™Pt'"O, '™Os'®O</u>

- 8.0 HAZARDOUS INFORMATION Please refer to the enclosed Material Saftey Data sheet for information regarding this CRM.
- 9.0 HOMOGENEITY This solution was mixed according to procedure IV-MPM-004 and is guaranteed to be homogeneous.

10.0 QUALITY STANDARD DOCUMENTATION

10.1 ISO 9001:2000 Quality Management System Registration - QMI Certificate Number 010105 Recognized by:

Registrar Accreditation Board (ANSI-RAB)

Standards Council of Canada (SCC)

Dutch Council for Accreditation (RVA)

Entidad Mexicana de Acreditacion, a.c.(EMA)

Members of IQ Net International Certification Network:

Argentina (IRAM), Australia (QAS), Austria (ÖQS), Belgium (Avinter), Brazil (FCAV), Canada (QMI), Hong Kong (HKQAA), Columbia (ICONTEC), Czech Republic (CQS), Denmark (DS), Finland (SFS), France (AFAQ), Germany (DQS), Greece (ELOT), Hungary (MSZT), Ireland (NSAI), Israel (SII), Italy (CISQ), Japan (JQA), Korea (KSA-QA), Netherlands (KEMA), Norway (NCS), Poland (PCRC), Poland (APCER), Singapore (PSR), Slovenia (SIQ), Spain (AENOR), Switzerland (SQS)

Poland(PCBC), Portugal (APCER), Singapore (PSB), Slovenia (SIQ), Spain (AENOR), Switzerland (SQS) 10.2 ISO/IEC 17025 - 1999 "General Requirements for the Competence of Testing and Calibration"

- Chemical Testing - Accredited A2LA Certificate Number 883.01

10.3 ISO/IEC Guide 34 - 2000 "General Requirements for the Competence of Reference Material Producers"

- Reference Materials Production - Accredited A2LA Certificate Number 883.02

A2LA Mutual Recognition Agreement Partners:

Australia (NATA), Austria (BmwA), Belgium (BELTEST) (BKO-OBE), Canada (SCC), Chinese Taipei (CNLA), Czech Republic (NAO), Denmark (DANAK), Finland (FINAS), France (COFRAC), Germany (DAR), Hong Kong (HKAS, Ireland (NAB), Italy (SIT) (SINAL), Japan (JAB) (JNLA), Republic of Korea (KOLAS), The Netherlands (RvA), New Zealand (IANZ), Norway (NA), Portugal (IPQ), Singapore (SAC-SINGLAS), Spain (ENAC), Sweden (SWEDAC), Switzerland (SAS), United Kingdom (UKAS) and United States (NVLAP) (ICBO ES)

- 10.4 10CFR50 Appendix B Nuclear Regulatory Commission
 - Domestic Licensing of Production and Utilization Facilities
- 10.5 10CFR21 Nuclear Regulatory Commission Reporting Defects and Non-Compliance
- 10.6 MIL-STD-45662A (Obsolete/Observed)

DATE OF CERTIFICATION AND PERIOD OF VALIDITY

- 11.1 IV Shelf Life The period of time during which the concentration of the analyte(s) in a properly packaged, unopen end, and unused standard stored under environmentally controlled and monitored conditions will remain within the specified uncertainty range. Shelf life is limited primarily by transpiration (loss of water from the solution) and infrequently, by chemical i enstability. Transpiration studies (P-SP01020) of chemically-stable solutions performed at Inorganic Ventures / IV Labs Indica. te a CRM shelf-life of four years for solutions packaged in 500-mL low density polyethylene bottles. When stored under spec=ial conditions that minimize transpiration and instability, the shelf life can be extended past this limit.
- 11.2 Expiration Date The date after which a CRM should not be used. Routine laboratory use of a CRM increases transpiration losses and the chance of contamination which affect the integrity of the CRM and limit its useful life. inorganic Ventures / IV Labs concurs with state and federal regulatory agencies' recommendations that solution state and federal regulatory agencies' recommendations that solution state and federal regulatory agencies' recommendations that solution state and federal regulatory agencies' recommendations that solution state and federal regulatory agencies' recommendations that solution state and federal regulatory agencies' recommendations that solution state and federal regulatory agencies' recommendations that solution state and federal regulatory agencies' recommendations that solution state and federal regulatory agencies' recommendations that solution state and federal regulatory agencies' recommendations that solution state and federal regulatory agencies' recommendations that solution state and federal regulatory agencies' recommendations are solved as the solution agencies and federal regulatory agencies are solved as the solution agencies are solved as the solution agencies and federal regulatory agencies are solved as the solution agencies and agencies are solved as the solution agencies and agencies are solved as the solution agencies and agencies are solved as the solution agencies and agencies are solved as the solution agencies and agencies are solved as the solution agencies and agencies are solved as the solution agencies and agencies are solved as the solution agencies and agencies are solved as the solution agencies and agencies are solved as the solution agencies and agencies are solved agencies and agencies are solved agencies and agencies are solved agencies and agencies are solved agencies and agencies are solved agencies and agencies are solved agencies and agencies are solved agencies and agencies are solved agencies and agencies are solved agencies and agencies are solved agencies and agencies are solved agencies and agencies agencies are solved agencies and agencies are solved agencies and agencies agencies agencies agencies agencies agencies agencies agencies agencies agencies agencies assigned a one-year expiration date.

INORGANIC LABS/RADCHEM LABS 4 3	Certification
DATE RECEIVED: 1//3/03	+ +
DATE EXPIRED: 11/04 OC DATE OPENED: 113/13	Expiration D
DATE OPENED: 1/3/1/3	
INORG: 4313 FO: F52358	

Date: January 23, 2003

12.0 NAMES AND SIGNATURES OF CERTIFYING OFFICERS

Certificate Prepared By:

JoAnn Struthers, QA Administrative Assistant

Certificate Approved By:

Katalin Le, QC Supervisor

Certifying Officer:

Paul Gaines, Chemist, Senior Technical Director

folm Stutten knower de Paux Aains

inorganic ventures

195 lehigh avenue, suite 4, lakewood, nj 08701 usa phone: 800-669-6799 • 732-901-1900 • fax: 732-901-1903 e-mall: lvsales@ivstandards.com • website: www.ivstandards.com

certificate of analysis

Inorganic Ventures / IV Labs is an ISO Guide 34-2000 Certified Reference Material (CRM) Manufacturer: 1.0 Certificate #883-02. The certificate is designed and the certified value(s) and uncertainty(ies) are determined in accordance with ISO Guide 31-2000 (Reference Materials - Contents of certificates and label(s), ISO Guide 34-2000 "Quality System Guidelines for the Production of Reference Materials," and ISO Guide 35-1989 "Certification of Reference Materials - General and Statistical Principles."

DESCRIPTION OF CRM Custom-Grade 1000 µg/mL Antimony in 0.7% (abs) HNO3 / 3% Tartaric Acid 2.0

Catalog Number:

CGSB1-1, CGSB1-2 and CGSB1-5

Lot Number:

W-SB02078

Starting Material:

Sb shot

Starting Material Purity (%):

99.989188

Starting Material Lot No Matrix:

D17L24

0.7% (abs) HNO3 / 3% Tartaric Acid

3.0 **CERTIFIED VALUES AND UNCERTAINTIES**

Certified Concentration:

 $1005 \pm 2 \mu g/mL$

Certified Density:

1.019 g/mL (measured at 22° C)

The Certified Value is based upon the most precise method used to analyze this CRM. The following equations are used in the calculation of the certified value and the uncertainty:

Certified Value (C) = exx

(C) = mean

x_i = individual results

n = number of measurements

Uncertainty (±) = <u>2[(2+5)</u>]1/2

ES = The summation of all significant estimated errors. (Most common are the errors from instrumental me asurement, weighing, dilution to volume, and the fixed error reported on the

NIST SPM certificate of analysis.)

4.0 TRACEABILITY TO NIST AND VALUES OBTAINED BY INDEPENDENT METHODS

☐ "Property of the result of a measurement or the value of a standard whereby it can be related to stated references, usually national or international standards, through an unbroken chain of comparisons all having stated uncertainties." (ISO VIM, 2nd ed., 1993, definition 6.10)

This IV product is Traceable to NIST via direct comparison to NIST SRMs. The uncertainties for each certified value are reported, taking into account the SRM uncertainty error and the measurement, weighing and volume dilution errors.

4.1

Assay Method #1

 $1005 \pm 2 \mu g/mL (Avg 2 runs)$

ICP Assay NIST SRM 3102a Lot Number: 990707

Assay Method #2

1000 µg/mL

Gravimetric NIST SRM Lot Number: See Sec. 4.2

INDREANIC LABS/RADCHEM LABS 134 2 DATE RECEIVED: 02/25/04 DATE EXPIRED: 03/0/ a05 VOS DATE OPENED: 08/85/04 INORG: 4464 PO: E53333

- 4.2 BALANCE CALIBRATION All balances are checked daily using in-house procedure number 6-IMM-001. The weights used for testing are annually compared to Gerhart Scale Corporation's master weights and are traceable to the National Institute of Standards and Technology (NIST). The NIST Traceability numbers are 692476 Class 1 and 692476A Class 2. The NIST test number is 822/260017-98. All analytical balances are calibrated every 4 months by Gerhart Scale Corp. of South Amboy. The balances are calibrated with a class 1 and/or class 2 analytical weight set. These weights are tested annually by a NIST / NVLAP accredited calibration lab. The NIST test number is 822/260017-98.
- 4.3 THERMOMETER CALIBRATION The thermometers used in the determination of the final densities are calibrated vs standard thermometer No. 903-2680 which was certified in accordance with the procedures outlined by ASTM E77-87 and NIST Monograph 150 using NIST Test Nos. and Std Nos.: 769543, 217368/769543, 217368/P14452, 176240/P14452, 176240. The in-house procedure No. is 2-QC-001. Thermometers which are not calibrated vs standard thermometer No. 903-2680 are traceable to NIST Identification Nos. 92564, 119016, 471047 and NIST test report Nos. 811/258522, 811/2557078, and 236090.
- 4.4 GLASSWARE CALIBRATION In-house procedure 3-QC-002 is used to calibrate all Class A Glassware used in the manufacture and quality control of Custom Grade Standards.

5.0 TRACE METALLIC IMPURITIES (TMI) DETERMINED BY ICP/MS AND ICP-OES IN µg/mL

Custom-Grade solutions are tested for trace metallic impurities by Axial ICP-OES and tCP-MS. The result from the most sensitive method for each element, is reported below. Solutions tested by iCP-MS were analyzed in an ULPA-Filtered Clean Room. An ULPA-Filter is 99.9985% efficient for the removal of particles down to 0.3 µm.

<u>Q</u> Al 0.04519	<u>M</u> Dy < 0.00597	오 니 0.00004	<u>M</u> Pr < 0.00030	<u>M</u> Te < 0.02983
<u>S</u> Sb	<u>M</u> Er < 0.00497	<u>M</u> Lu < 0.00040	<u>M</u> Re < 0.00099	M Tb < 0.00030
M As < 0.00994	M Eu < 0.00298	Q Mg 0.00171	M Rh < 0.00099	M TI 0.00040
<u>Q</u> Ba 0.00003	<u>M</u> Gd < 0.00099	Q Mn 0.00321	M Rb < 0.00099	<u>M</u> Th < 0.00099
Q Be < 0.00001	M Ga < 0.00099	Q Hg < 0.01500	<u>M</u> Ru < 0.00199	<u>M</u> Tm < 0.00040
M Bi 0.00170	<u>M</u> Ge < 0.00597	M Mo < 0.00199	M Sm < 0.00099	M Sn 0.00050
Q B 0.00100	M Au < 0.00298	M Nd < 0.00199	Q Sc < 0.00016	Q Ti 0.00131
M Cd < 0.00298	<u>M</u> Hf < 0.00199	Q Ni 0.00100	M Se < 0.49711	<u>M</u> W < 0.00994
<u>Q</u> Ca 0.00884	<u>M</u> Ho < 0.00050	M Nb < 0.00050	Q Si 0.00502	<u>M</u> U < 0.00199
<u>O</u> Ce < 0.00300	<u>M</u> In < 0.00994	n Os	<u>M</u> Ag < 0.00199	M V < 0.00199
M Cs < 0.00030	M ir < 0.00497	M Pd < 0.00497	Q Na 0.00362	<u>M</u> Yb < 0.00099
Q Cr 0.00954	<u>O</u> Fe 0,01306	Q P < 0.04000	<u>M</u> Sr < 0.00050	M Y < 0.03977
M Co < 0.00298	Q La < 0.00120	M Pt < 0.00199	i s	<u>Q</u> Zn 0.00141
Q Cu 0.00321	M Pb 0.00060	<u>O</u> K 0.01004	<u>M</u> Ta < 0.00696	M Zr < 0.00497
M - Checked by ICP-MS	O - Checked by ICP-OES	- Spectral Interference	n - Not Checked For	s - Solution Standard Element

6.0 INTENDED USE

For the calibration of analytical instruments including but not limited to the following:

ICP-MS, ICP-OES, FAAS, GFAA, XRF, and DCP

For the validation of analytical methods

For the preparation of "working reference samples"

For interference studies and the determination of correction coefficients

For detection limit and linearity studies

For additional intended uses, contact IV Technical Staff

7.0 INSTRUCTIONS FOR THE CORRECT USE OF THIS REFERENCE MATERIAL

Storage & Handling - Keep tightly seeled when not in use. Store and use at 20 ± 4 €. Do not pipet from container. Do not return portions removed for pipetting to container.

Atomic Weight; Valence; Coordination Number; Chemical Form in Solution - 121.75, +3; & Sb(0)C/H₂O₄*

Chemical Competibility - Stable in concentrated HCI, dilute or concentrated HF. Stable in dilute HNOs as the fluoride or tertrate complex. Avoid basic media. Stable with most metals and inorganic anions in acidic media as the tartrate provided the acidity is not too high or the acid is addizing causing loss of the stabilizing tartrate ion. The fluoride complex of artimony is stable in strong acid but you should only mix with other metals that are fluorinated.

Stability - 2-100 ppb levels stable for months in 1% HNO, / LOPE container. 1-10,000 ppm solutions chemically stable for years in 1-2% HNO, / LOPE container.

Sb Containing Samples (Preparation and Solution) - Metal and alloys (Soluble In H₂O / HF / HNO₂ mixture); Oxides (Soluble in HCl and tarteric acid or H₂O / HF / HNO₂ mixtures), Ores (Fusion with Na₂CO₂ in Pt^a followed by dissolving the fuseate in a H₂O / HF / HNO₂ mixture); Organic based (Sulfurle acid / hydrogen peroxide digestion)

Atomic Spectroscopic Information (ICP-OES D.L.s are given as radial/axial view):

	indicates severe at accords.)
CP-OES 206.833 nm	
ICP-OES 217.581 nm 0.0570.005 µg/mL 1 atom Nb, W, Re, Fe,	
ICP-OES 231.147 nm 0.06 / 0.006 μg/mL 1 atom NI, Co, Pt	
ICP-MS 121 amu 5 ppt nA M' '™Pd'™O, ™Y'™O₂	

- 8.0 HAZARDOUS INFORMATION - Please refer to the enclosed Material Saftey Data sheet for information regarding this CRM.
- 9.0 HOMOGENEITY - This solution was mixed according to procedure IV-MPM-004 and is guaranteed to be homogeneous.

QUALITY STANDARD DOCUMENTATION 10.0

10.1 ISO 9001:2000 Quality Management System Registration - QMI Certificate Number 010105

Recognized by:

Registrar Accreditation Board (ANSI-RAB)

Standards Council of Canada (SCC)

Dutch Council for Accreditation (RVA)

Entidad Mexicana de Acreditacion, a.c.(EMA)

Members of IQ Net International Certification Network:

Argentina (IRAM), Australia (QAS), Austria (OQS), Belgium (Avinter), Brazil (FCAV), Canada (QMI), Hong Kong (HKQAA), Columbia (ICONTEC), Czech Republic (CQS), Denmark (DS), Finland (SFS), France (AFAQ), Germany (DQS), Greece (ELOT), Hungary (MSZT), Ireland (NSAI), Israel (SII), Italy (CISQ), Japan (JQA), Korea (KSA-QA), Netherlands (KEMA), Norway (NCS), Poland(PCBC), Portugal (APCER), Singapore (PSB), Slovenia (SIQ), Spain (AENOR), Switzerland (SQS) 10.2 ISO/IEC 17025 - 1999 "General Requirements for the Competence of Testing and Calibration"

- Chemical Testing - Accredited A2LA Certificate Number 883.01

10.3 ISO/IEC Guide 34 - 2000 "General Requirements for the Competence of Reference Material Producers"

- Reference Materials Production - Accredited A2LA Certificate Number 883.02

A2LA Mutual Recognition Agreement Partners:

Australia (NATA), Austria (BrnwA), Belgium (BELTEST) (BKO-OBE), Canada (SCC), Chinese Taipei (CNLA), Czech Republic (NAO), Denmark (DANAK), Finland (FINAS), France (COFRAC), Germany (DAR), Hong Kong (HKAS, Ireland (NAB), Italy (SIT) (SINAL), Japan (JAB) (JNLA), Republic of Korea (KOLAS), The Netherlands (RvA), New Zealand (IANZ), Norway (NA), Portugal (IPQ), Singapore (SAC-SINGLAS), Spain (ENAC), Sweden (SWEDAC), Switzerland (SAS), United Kingdom (UKAS) and United States (NVLAP) (ICBO ES)

- 10.4 10CFR50 Appendix B Nuclear Regulatory Commission
 - Domestic Licensing of Production and Utilization Facilities
- 10.5 10CFR21 Nuclear Regulatory Commission Reporting Defects and Non-Compliance
- 10.6 MIL-STD-45662A (Obsolete/Observed)

INDEGANIC LABS.	RADCHEM LABS 13 - 2 of 3
DATE RECEIVED:	09/95/04
DATE EXPIRED:	03/01/2005 105
DATE OPENED:	09/35/04
INORG: 4464	FO: F53333

11.0 DATE OF CERTIFICATION AND PERIOD OF VALIDITY

- 11.1 IV Shelf Life The period of time during which the concentration of the analyte(s) in a properly packaged, unopened, and unused standard stored under environmentally controlled and monitored conditions will remain within the specified uncertainty range. Shelf life is limited primarily by transpiration (loss of water from the solution) and Infrequently, by chemical instability. Transpiration studies (P-SP01020) of chemically-stable solutions performed at Inorganic Ventures / IV Labs indicate a CRM shelf-life of four years for solutions packaged in 500-mt. low density polyethylene bottles. When stored under special conditions that minimize transpiration and instability, the shelf life can be extended past this limit.
- 11.2 Expiration Date The date after which a CRM should not be used. Routine laboratory use of a CRM increases transpiration losses and the chance of contamination which affect the integrity of the CRM and limit its useful life. Inorganic Ventures / IV Labs concurs with state and federal regulatory agencies' recommendations that solution standards be assigned a one-year expiration date.

Certification Date: July 23, 2003

Expiration Date: EXPIRES

12.0 NAMES AND SIGNATURES OF CERTIFYING OFFICERS

Certificate Prepared By: JoAnn Struthers, QA Administrative Assistant

Certificate Approved By: Katalin Le, QC Supervisor

Certifying Officer: Paul Gaines, Chemist, Senior Technical Director

folk States

2l0

inorganic ventures / iv labs

195 lehigh avenue, suite 4, lakewood, nj 08701 usa phone: 800-669-6799 • 732-901-1900 • fax: 732-901-1903 e-mail: ivsales@ivstandards.com • website: www.ivstandards.com

certificate of analysis

Inorganic Ventures / IV Labs is an ISO Guide 34-2000 Certified Reference Material (CRM) Manufacturer:

Certificate #883-02. The certificate is designed and the certified value(s) and uncertainty(les) are
determined in accordance with ISO Guide 31-2000 (Reference Materials - Contents of certificates and label(s),
ISO Guide 34-2000 "Quality System Guidelines for the Production of Reference Materials," and ISO Guide 35-1989
"Certification of Reference Materials - General and Statisical Principles."

DESCRIPTION OF CRM Custom-Grade 1000 µg/mL Selenium in 1.4% (abs) HNO3

Catalog Number: CG:

CGSE1-1, CGSE1-2, and CGSE1-5

Lot Number: Starting Material:

T-SE01102

Starting Material Purity (%):

Se shot

99.9971

Starting Material Lot No

C09L08

DATE EXPIRED: 07(01/3004 VO)

Matrix:

1.4% (abs) HNO₃

DATE OPENED: 06/03/03 INORG: 415a PO: <u>F50370</u>

3.0 CERTIFIED VALUES AND UNCERTAINTIES

Certified Concentration:

 $995 \pm 3 \, \mu g/mL$

Certified Density:

1.010 g/mL (measured at 22° C)

The Certified Value is based upon the most precise method used to analyze this CRM. The following equations are used in the calculation of the certified value and the uncertainty:

Certified Value (C) = exx

(□) = mean

n Servi

x, = individual results

n = number of measurements

Uncertainty (±) = $\frac{2[(\underline{x}-\underline{s})^2]^{1/2}}{\omega^{1/2}}$

IS = The summation of all significant estimated errors (Most common are the errors from instrumental measurement, weighing, dilution to volume, and the fixed error reported on the

NIST SRM certificate of analysis.)

4.0 TRACEABILITY TO NIST AND VALUES OBTAINED BY INDEPENDENT METHODS

in "Property of the result of a measurement or the value of a standard whereby it can be related to stated references, usually national or international standards, through an unbroken chain of comparisons all having stated uncertainties." (ISO VIM, 2nd ed., 1993, definition 6.10)

11 This IV product is Traceable to NIST via direct comparison to NIST SRMs. The uncertainties for each certified value are reported, taking into account the SRM uncertainty error and the measurement, weighing and volume dilution errors.

4.1

Assay Method #1

995 ± 3 μg/mL (Avg. 2 runs)

ICP Assay NIST SRM 3149 Lot Number: 992106

Assay Method #2

1002 µg/mL

Gravimetric NIST SRM Lot Number: See Sec. 4.2

- 4.2 BALANCE CALIBRATION All balances are checked daily using in-house procedure number 6-IMM-001. The weights used for testing are annually compared to Gerhart Scale Corporation's master weights and are traceable to the National Institute of Standards and Technology (NIST). The NIST Traceability numbers are 692476 Class 1 and 692476A Class 2. The NIST test number is 822/260017-98. All analytical balances are calibrated every 4 months by Gerhart Scale Corp. of South Amboy. The balances are calibrated with a class 1 and/or class 2 analytical weight set. These weights are tested annually by a NIST / NVLAP accredited calibration lab. The NIST test number is 822/260017-98.
- 4.3 THERMOMETER CALIBRATION The thermometers used in the determination of the final densities are calibrated vs standard thermometer No. 903-2680 which was certified in accordance with the procedures outlined by ASTM E77-87 and NIST Monograph 150 using NIST Test Nos. and Std Nos.: 769543, 217368/769543, 217368/P14452, 176240/P14452, 176240. The in-house procedure No. is 2-QC-001. Thermometers which are not calibrated vs standard thermometer No. 903-2680 are traceable to NIST Identification Nos. 92564, 119016, 471047 and NIST test report Nos. 811/258522, 811/2557078, and 236090.
- 4.4 GLASSWARE CALIBRATION In-house procedure 3-QC-002 is used to calibrate all Class A Glassware used in the manufacture and quality control of Custom Grade Standards.

5.0 TRACE METALLIC IMPURITIES (TMI) DETERMINED BY ICP/MS AND ICP-OES IN µg/mL

Custom-Grade solutions are tested for trace metallic impurities by Axial ICP-OES and ICP-MS. The result from the most sensitive method for each element, is reported below. Solutions tested by ICP-MS were analyzed in an ULPA-Filtered Clean Room. An ULPA-Filter is 99.9985% efficient for the removal of particles down to 0.3 µm.

Ō	ΑJ		0.00017		M	Dy	<	0.01196	<u>0</u>	U	<	0.00003	M	Pr	<	0.00060	M	Te	<	0.05981
M	Sb		0.00160		М	Er	<	0.00997	M	Lu	<	0.00080	ō	Re	<	0.00900	M	ТЬ	<	0.00060
<u>o</u>	As	<	0.00500		M	Eu	<	0.00598	Q	Mg	<	0.00003	M	Rh	<	0.00199	M	TI	<	0.00199
· <u>М</u>	Ва	<	0.01994		M	Gd	<	0.00199	M	Mn	<	0.00798	M	Rb	<	0.00199	M	Th	<	0.00199
Q	Ве	<	0.00009		M	Ga	<	0.00199	<u>o</u>	Hg		0.01950	Ω	Rυ		0.00220	M	Trr	<	0.00080
M	Bi	<	0.00080		М	Ge	<	0.01196	<u>0</u>	Мо	<	0.00400	М	Sm	<	0.00199	_ ₩	Sn	<	0.00997
ō	В	<	0.00006		M	Au	<	0.00598	M	Nd	<	0.00399	M	Sc	<	0.01994	<u>M</u>	Ti	<	0.09969
M	Çd	<	0.00598		M	Hf	<	0.00399	<u>0</u>	Ni	<	0.00090	<u>s</u>	Se			M	w	<	0.01994
<u>0</u>	Ca		0.00200		M	Но	<	0.00100	<u>0</u>	· Nb	<	0.00400	ō	Si		0.00055	M	U	<	0.00399
M	Çe	<	0.00997		М	in	<	0.01994	n	Os			<u>M</u>	Ag		0.00070	M	٧	<	0.00399
M	Cs	<	0.00060		М	ir	<	0.00997	M	Pd	<	0.00997	0	Na		0.00355	M	Yb	<	0.00199
M	Cr	<	0.00997		<u>o</u>	Fe		0.00060	Q	P	<	0.00300	М	Sr	<	0.00100	M	Y	<	0.07975
M	Со	<	0.00598		M	La	<	0.00100	М	Pt	<	0.00399	0	s		0.00500	M	Zn	<	0.03988
M	Cu	<	0.01196		M	Pb	<	0.00598	<u>o</u>	ĸ		0.00070	M	Та	<	0.01396	<u>c</u>	Zr	<	0.00040
M - C	heck	ed	by ICP-MS	. () -	Chec	kec	by ICP-OES	i - S	pect	ral	Interference	'n - 1	Not C	he	cked For	s -	Solu	tion	Standard Element

6.0 INTENDED USE

For the calibration of analytical instruments including but not limited to the following:

ICP-MS, ICP-OES, FAAS, GFAA, XRF, and DCP

For the validation of analytical methods

For the preparation of "working reference samples"

For interference studies and the determination of correction coefficients

For detection limit and linearity studies

For additional intended uses, contact IV Technical Staff

7.0 INSTRUCTIONS FOR THE CORRECT USE OF THIS REFERENCE MATERIAL

Storage & Handling - Keep tightly sealed when not in use. Store and use at 20 ± 4~6. Do not pipet from container. Do not return portions removed for pipetting to container.

Atomic Weight; Valence; Coordination Number; Chemical Form in Solution - 78.96; +4; 6; H.SeO.

Chemical Compatibility - Soluble in HCl, HNO, H,PO., H,SO. and HF aqueous matrices and water. It is stable with most inorganic anions but many cationic metals form the insoluble selenites under pH neutral conditions. When fluorinated and/or under acidic conditions precipitation is typically not a problem at moderate to low concentrations.

Stability - 2-100 ppb levels - stable for morths alone or mixed with other elements at equivalent levels - in 1 % HNO₃ / LDPE container, 1-10,000 ppm solutions chemically stable for years in 1-5% HNO₃ / LDPE container.

Se Containing Samples (Preparation and Solution) - Metal (Solutie in HNO_a); Oxides (Readily soluble in water); Minerals and alloys (Acid digestion with HNO_a or HNO_a / HF), Organic Matrices (Acid digestion with hot concentrated H₂SO₄ accompanied by the careful dropwise addition of H₂O₂ until clear)

Atomic Spectroscopic Information (ICP-OES D.L.s are given as radial/axial view):

Techniqu		Estimated D.L.	Order	Type	Interferences (underlined indicates severe at validonos.)
ICP-OES	196.026 nm	0.08 / 0.006 µg/mL	1	atom	Fe
ICP-OES	203.985 nm	0.2 / 0.05 µg/mL	1	atom	<u>Sb, Ir, Cr, Ta</u>
ICP-OES	206.279 nm	0.3 / 0.16 µg/mL	1	atom	Cr <u>, Pt</u>
ICP-MS	82 amu	200 ppt	n/a	М'	17C**CI2

- HAZARDOUS INFORMATION Please refer to the enclosed Material Saftey Data sheet for information regarding this CRM. 8.0
- HOMOGENEITY This solution was mixed according to procedure IV-MPM-004 and is guaranteed to be homogeneous. 9.0

QUALITY STANDARD DOCUMENTATION 10.0

10.1 ISO 9001:2000 Quality Management System Registration - QMI Certificate Number 010105 Recognized by:

Registrar Accreditation Board (ANSI-RAB) Standards Council of Canada (SCC)

Dutch Council for Accreditation (RVA)

Entidad Mexicana de Acreditación, a.c.(EMA)

Members of IQ Net International Certification Network:

Argentina (IRAM), Australia (QAS), Austria (ÖQS), Belgium (Avinter), Brazil (FCAV), Canada (QMI), Hong Kong (HKQAA). Columbia (ICONTEC), Czech Republic (CQS), Denmark (DS), Finland (SFS), France (AFAQ), Germany (DQS), Greece (ELOT). Hungary (MSZT), Ireland (NSAI), Israel (SII), Italy (CISQ), Japan (JQA), Korea (KSA-QA), Netherlands (KEMA), Norway (NCS), Poland(PCBC), Portugal (APCER), Singapore (PSB), Slovenia (SIQ), Spain (AENOR), Switzerland (SQS) 10.2 ISO/IEC 17025 - 1999 "General Requirements for the Competence of Testing and Calibration"

- Chemical Testing - Accredited A2LA Certificate Number 883.01

10.3 ISO/IEC Guide 34 - 2000 "General Requirements for the Competence of Reference Material Producers"

- Reference Materials Production - Accredited A2LA Certificate Number 883.02

A2LA Mutual Recognition Agreement Partners:

Australia (NATA), Austria (BmwA), Belgium (BELTEST) (BKO-OBE), Canada (SCC), Chinese Taipei (CNLA), Czech Republic (NAO), Denmark (DANAK), Finland (FINAS), France (COFRAC), Germany (DAR), Hong Kong (HKAS, Ireland (NAB), Italy (SIT) (SINAL), Japan (JAB) (JNLA), Republic of Korea (KOLAS), The Netherlands (RvA), New Zealand (IANZ), Norway (NA), Portugal (IPQ), Singapore (SAC-SINGLAS), Spain (ENAC), Sweden (SWEDAC), Switzerland (SAS), United Kingdom (UKAS) and United States (NVLAP) (ICBO ES)

- 10.4 10CFR50 Appendix B Nuclear Regulatory Commission
 - Domestic Licensing of Production and Utilization Facilities
- 10.5 10CFR21 Nuclear Regulatory Commission Reporting Defects and Non-Compliance
- 10.6 MIL-STD-45662A (Obsolete/Observed)

INOF	RGANIC L	ABS/RADCH	IEM LABS	Pg. Def 2
DATE	RECEIVE	D: <u>06</u> /	80/03	
DATE	EXPIRED	: 07/	4006/10	νØ
DATE	OPENED:	06	/23/03	
	3: 4158		F5 0370	

11.0 DATE OF CERTIFICATION AND PERIOD OF VALIDITY

- 11.1 IV Shelf Life The period of time during which the concentration of the analyte(s) in a properly packaged, unopened, and unused standard stored under environmentally controlled and monitored conditions will remain within the specified uncertainty range. Shelf life is limited primarily by transpiration (loss of water from the solution) and infrequently, by chemical instability. Transpiration studies (P-SP01020) of chemically-stable solutions performed at Inorganic Ventures / IV Labs indicate a CRM shelf-life of four years for solutions packaged in 500-mt. low density polyethylene bottles. When stored under special conditions that minimize transpiration and instability, the shelf life can be extended past this limit.
- 11.2 Expiration Date The date after which a CRM should not be used. Routine laboratory use of a CRM increases transpiration losses and the chance of contamination which affect the integrity of the CRM and limit its useful life. Inorganic Ventures / IV Labs concurs with state and federal regulatory agencies' recommendations that solution standards be assigned a one-year expiration date.

Certification Date: November 27, 2002

Expiration Date: EXPIRES

01 \$2 00 4

12.0 NAMES AND SIGNATURES OF CERTIFYING OFFICERS

Certificate Prepared By:

Debbie Newman, QA Administrator

Certificate Approved By:

Katalin Le, QC Supervisor

Certifying Officer:

Paul Gaines, Chemist, Senior Technical Director

Paux daine

inorganic ventures

195 lehigh avenue, suite 4, lakewood, nj 08701 usa phone: 800-669-6799 • 732-901-1900 • fax: 732-901-1903

e-mail: ivsales@ivstandards.com • website: www.ivstandards.com

certificate of analysis

Inorganic Ventures / IV Labs is an ISO Guide 34-2000 Certified Reference Material (CRM) Manufacturer: 1.0 Certificate #883-02. The certificate is designed and the certified value(s) and uncertainty(ies) are determined in accordance with ISO Guide 31-2000 (Reference Materials - Contents of certificates and label(s), ISO Guide 34-2000 "Quality System Guidelines for the Production of Reference Materials," and ISO Guide 35-1989 "Certification of Reference Materials - General and Statisical Principles."

DESCRIPTION OF CRM Custom-Grade 1000 µg/mL Thallium in 0.5% (abs) HNO3 2.0

Catalog Number:

CGTL1-1, CGTL1-2, and CGTL1-5

Lot Number:

W-QTL01094

Starting Material:

TLNO3

Starting Material Purity (%):

99.996539

Starting Material Lot No

22928

Matrix:

3.0

0.5% (abs) HNO₃

INDREANIC LABS/RADCHEM LABS %-246

DATE RECEIVED: ____O\/OO/OH

DATE EXPIRED: 03/01/3005

DATE OPENED: 01/20/04

CERTIFIED VALUES AND UNCERTAINTIES

INORG: 4435 FO: F58301

Certified Concentration:

 $1001 \pm 4 \mu g/mL$

Certified Density:

1.002 g/mL (measured at 22° C)

The Certified Value is based upon the most precise method used to analyze this CRM. The following equations are used in the calculation of the certified value and the uncertainty:

Certified Value (C) = exx

(C) = mean

x_i = individual results

n = number of measurements

Uncertainty $(\pm) = 2((2a+5))^{2/1/2}$

BS = The summation of all significant estimated errors. (Most common are the errors from instrumental measurement, weighing, dilution to volume, and the fixed error reported on the

NIST SRM certificate of analysis.)

TRACEABILITY TO NIST AND VALUES OBTAINED BY INDEPENDENT METHODS 4.0

□ "Property of the result of a measurement or the value of a standard whereby it can be related to stated references, usually national or international standards, through an unbroken chain of comparisons all having stated uncertainties." (ISO VIM, 2nd ed., 1993, definition 6.10)

☐ This IV product is Traceable to NIST via direct comparison to NIST SRMs. The uncertainties for each certified value are reported, taking into account the SRM uncertainty error and the measurement, weighing and volume dilution errors.

4.1

Assay Method #1

1001 ± 4 µg/mL (Avg 2 runs)

ICP Assay NIST SRM 3158 Lot Number: 993012

Assay Method #2

1000 µg/mL

Gravimetric NIST SRM Lot Number: See Sec. 4.2

- 4.2 BALANCE CALIBRATION All balances are checked daily using in-house procedure number 6-IMM-001. The weights used for testing are annually compared to Gerhart Scale Corporation's master weights and are traceable to the National Institute of Standards and Technology (NIST). The NIST Traceability numbers are 692476 Class 1 and 692476A Class 2. The NIST test number is 822/260017-98. All analytical balances are calibrated every 4 months by Gerhart Scale Corp. of South Amboy. The balances are calibrated with a class 1 and/or class 2 analytical weight set. These weights are tested annually by a NIST / NVLAP accredited calibration lab. The NIST test number is 822/260017-98.
- 4.3 THERMOMETER CALIBRATION The thermometers used in the determination of the final densities are calibrated vs standard thermometer No. 903-2680 which was certified in accordance with the procedures outlined by ASTM E77-87 and NIST Monograph 150 using NIST Test Nos. and Std Nos.: 769543, 217368/769543, 217368/P14452, 176240/P14452, 176240/P144
- 4.4 GLASSWARE CALIBRATION In-house procedure 3-QC-002 is used to calibrate all Class A Glassware used in the manufacture and quality control of Custom Grade Standards.

5.0 TRACE METALLIC IMPURITIES (TMI) DETERMINED BY ICP/MS AND ICP-OES IN pg/mL

Custom-Grade solutions are tested for trace metallic impurities by Axial ICP-OES and ICP-MS. The result from the most sensitive method for each element, is reported below. Solutions tested by ICP-MS were analyzed in an ULPA-Filtered Clean Room. An ULPA-Filter is 99.9985% efficient for the removal of particles down to 0.3 µm.

<u>M</u> Al < 0.01000	<u>M</u> Dy < 0.00600	Q Li < 0.00002	<u>M</u> Pr < 0.00030	<u>M</u> Te < 0.03000
M Sb < 0.00050	<u>M</u> Er < 0.00500	<u>M</u> Lu < 0.00040	<u>M</u> Re < 0.00100	<u>M</u> Tb < 0.00030
<u>M</u> As < 0.01000	M Eu < 0.00300	O Mg 0.00012	M Rh < 0.00100	<u>s</u> Ti
M Ba < 0.01000	M Gd < 0.00100	M Mn < 0.00400	M Rb < 0.00100	M Th < 0.00100
<u>M</u> Be < 0.00050	M Ga < 0.00100	Q Hg < 0.01200	<u>M</u> Ru < 0.00200	<u>M</u> Tm < 0.00040
M Bi < 0.00040	M Ge < 0.00600	<u>M</u> Mo < 0.00200	M Sm < 0.00100	<u>M</u> Sn < 0.00500
<u>O</u> B < 0.00140	<u>M</u> Au < 0.00300	M Nd < 0.00200	M Sc < 0.01000	<u>M</u> Ti < 0.05000
Q Cd 0.00150	<u>M</u> Hf < 0.00200	M Ni < 0.00800	M Se < 0.00800	<u>M</u> W < 0.01000
<u>Q</u> Ca 0.00085	M Ho < 0.00050	M Nb < 0.00050	<u>Q</u> Si < 0.00340	<u>M</u> U < 0.00200
M Ce < 0.00500	<u>M</u> in < 0.01000	<u>n</u> Os	<u>M</u> Ag 0.04000	M V < 0.00200
M Cs < 0.00030	<u>M</u> ir < 0.00500	M Pd < 0.00500	<u>O</u> Na 0.00050	<u>M</u> Yb < 0.00100
<u>M</u> Cr < 0.00500	<u>Q</u> Fe 0.00030	<u>O</u> P < 0.00260	<u>M</u> Sr < 0.00050	<u>M</u> Y < 0.04000
M Co < 0.00300	<u>M</u> La < 0.00050	M Pt < 0.00200	<u>O</u> S < 0.03000	O Zn 0.00110
<u>М</u> Сш < 0.00600	M Pb 0.00210	Q K < 0.00180	<u>M</u> Ta < 0.00700	M Zr < 0.00500
M - Checked by ICP-MS	O - Checked by ICP-OES	i - Spectral Interference	n - Not Checked For	s - Solution Standard Element

6.0 INTENDED USE

For the calibration of analytical instruments including but not limited to the following:

ICP-MS, ICP-OES, FAAS, GFAA, XRF, and DCP

For the validation of analytical methods

For the preparation of "working reference samples"

For interference studies and the determination of correction coefficients

For detection limit and linearity studies

For additional intended uses, contact IV Technical Staff

7.0 INSTRUCTIONS FOR THE CORRECT USE OF THIS REFERENCE MATERIAL

Storage & Handling - Keep tightly sealed when not in use. Store and use at 20 ± 4 %. Do not pipet from container. Do not return portions removed for pipetting to container.

Atomic Weight; Valence; Coordination Number; Chemical Form in Solution - 204.383; +1; 6; Tl(H,O), "

Cherrical Compatibility - Soluble in HCl, HNO, and H,SO. Stable withmost metals and inorganic anions. The sulfite, thiocyanate and oxalate are moderately soluble; the phosphate and assenite are slightly soluble and the sulfide is insoluble. Stability - 2-100 ppb levels stable for months in 1% HNO, /LDPE container. 1-10,000 ppm solutions chemically stable for years in 2-5% HNO, /LDPE container.

Ti Containing Samples (Preparation and Solution) - Metal (Best dissolved in HNO, which forms chiefly the Ti' Ion.); Oxide (The thallous oxide is readily soluble in water. The thallous oxide requires high levels of acid); Ores (Carbonate tusion in Pt* followed by HCI dissolution). Organic Matrices (Sulturic/peroxide digestion or dry ash and dissolution in HCI).

Atomic Spectroscopic Information (ICP-OES D.L.s are given as radial/axial view):

<u>Technique/Line</u>		Estimated D.L.	<u>Order</u>	Type	Interferences (underlined indicates severe at validonos.)
ICP-OES	190.864 nm	0.04 / 0.004 µg/mL	1	ion	V, Ti
ICP-OES	276.787 nm	0.1 / 0.01 µg/mL	1	atom	Te, V, Fe, Cr
ICP-OES	351 .924 nm	0.2 / 0.02 µg/mL	1	atom	Th, Cè, <i>Ii</i> r
ICP-MS	205 amu	2 ppt	n/a	M'	149O514O

- 8.0 HAZARDOUS INFORMATION - Please refer to the enclosed Material Saftey Data sheet for information regarding this CRM.
- 9.0 HOMOGENEITY - This solution was mixed according to procedure IV-MPM-004 and is guaranteed to be homogeneous.

10.0 **QUALITY STANDARD DOCUMENTATION**

10.1 ISO 9001;2000 Quality Management System Registration - QMI Certificate Number 010105

Recognized by:

Registrar Accreditation Board (ANSI-RAB)

Standards Council of Canada (SCC)

Dutch Council for Accreditation (RVA)

Entidad Mexicana de Acreditacion, a.c.(EMA)

Members of IQ Net International Certification Network:

Argentina (IRAM), Australia (QAS), Austria (ÖQS), Belgium (Avinter), Brazil (FCAV), Canada (QMI), Hong Kong (HKQAA), Columbia (ICONTEC), Czech Republic (CQS), Denmark (DS), Finland (SFS), France (AFAQ), Germany (DQS), Greece (ELOT). Hungary (MSZT), Ireland (NSAI), Israel (SII), Italy (CISQ), Japan (JQA), Korea (KSA-QA), Netherlands (KEMA), Norway (NCS), Poland(PCBC), Portugal (APCER), Singapore (PSB), Slovenia (SIQ), Spain (AENOR), Switzerland (SQS) 10.2 ISO/IEC 17025 - 1999 "General Requirements for the Competence of Testing and Calibration"

- Chemical Testing - Accredited A2LA Certificate Number 883.01

10.3 ISO/IEC Guide 34 - 2000 "General Requirements for the Competence of Reference Material Producers"

- Reference Materials Production - Accredited A2LA Certificate Number 883.02

A2LA Mutual Recognition Agreement Partners:

Australia (NATA), Austria (BmwA), Belgium (BELTEST) (BKO-OBE), Canada (SCC), Chinese Taipei (CNLA), Czech Republic (NAO), Denmark (DANAK), Finland (FINAS), France (COFRAC), Germany (DAR), Hong Kong (HKAS, Ireland (NAB), Italy (SIT) (SINAL), Japan (JAB) (JNLA), Republic of Korea (KOLAS), The Netherlands (RvA), New Zealand (IANZ), Norway (NA), Portugal (IPQ), Singapore (SAC-SINGLAS), Spain (ENAC), Sweden (SWEDAC), Switzerland (SAS), United Kingdom (UKAS) and United States (NVLAP) (ICBO ES)

- 10.4 10CFR50 Appendix B Nuclear Regulatory Commission
 - Domestic Licensing of Production and Utilization Facilities
- 10.5 10CFR21 Nuclear Regulatory Commission Reporting Defects and Non-Compliance
- 10.6 MIL-STD-45662A (Obsolete/Observed)

INORGANIC LABS.	/RADCHEM LABS Ryaug a
DATE RECEIVED:	400610
DATE EXPIRED:	03/01/3005 705
DATE OPENED:	40/06/10
INORG: 4435	FU:_ F5 3301

- 11.1 IV Shelf Life The period of time during which the concentration of the analyte(s) in a properly packaged, unopened, and unused standard stored under environmentally controlled and monitored conditions will remain within the specified uncertainty range. Shelf life is limited primarily by transpiration (loss of water from the solution) and infrequently, by chemical instability. Transpiration studies (P-SP01020) of chemically-stable solutions performed at Inorganic Ventures / IV Labs indicate a CRM shelf-life of four years for solutions packaged in 500-mL low density polyethylene bottles. When stored under special conditions that minimize transpiration and instability, the shelf life can be extended past this limit.
- 11.2 Expiration Date The date after which a CRM should not be used. Routine laboratory use of a CRM increases transpiration losses and the chance of contamination which affect the integrity of the CRM and limit its useful life. inorganic Ventures / IV Labs concurs with state and federal regulatory agencies' recommendations that solution standards be assigned a one-year expiration date.

Certification Date: December 09, 2003

Expiration Date:

LE2005

12.0 NAMES AND SIGNATURES OF CERTIFYING OFFICERS

Certificate Prepared By:

Debbie Newman, Production Manager

Certificate Approved By:

Katalin Le, QC Manager

Certifying Officer:

Paul Gaines, Chemist, Senior Technical Director

Kebbi Newman Known in

Certificate of Analysis

JSTOM-GRADE SOLUTION

1000 μ g/mL Lanthanum in 1.4% HNO, (abs)

Catalog Number: CGLA1-1 and CGLA1-5

Lot Number: T-QLA01057

Starting Material: Starting Material Purity: Starting Material Lot No: Lanthanum Oxide 99.999% LA-0-5-017

INORGANIC LABS/RADCHEM LABS DATE RECEIVED: ____08/a6/03 DATE EXPIRED: _____09/01/2004 DATE OPENED: 08/86/03 INORG: 4221 PO: F53034

CERTIFIED CONCENTRATION: 1002 \pm 3 μ g/mL

The Certified Value is based upon the most precise method used to analyze this CRM. The following equations are used in the calculation of the certified value and the uncertainty;

Certified Value (x) =
$$\sum_{x}$$

Uncertainty (±) =
$$2[(\sum_s)^2]^{1/2}$$

(n)^{1/2}

(x) = mean

 $x_i = individual results$

n = number of measurements $\sum S_i = The summation of all significant$ estimated errors.

Classical Wet Assay: 1002 ± 3 µg/mL

Method: EDTA Titration vs NIST SRM 928 Lead Nitrate.

Instrument Analysis: 1007 ± 3 μ g/mL

Method: Inductively Coupled Plasma Spectroscopy (ICP) vs NIST SRM 3127a.

The independent samples t-test was used to determine if there is agreement between the above assay methods at the 95% confidence interval. Both methods were compared and showed agreement within the stated uncertainties. This agreement is a confirmation of the accuracy of this CRM.

TRACE METALLIC IMPURITIES DETERMINED BY ICP-MS AND ICP-OES IN $\mu g/mL$:

Custom-Grade solutions tested for trace metallic impurities by ICP-MS were analyzed in an ULPA-Filtered Clean Room. An ULPA-Filter is 99.9985% efficient for the removal of particles down to 0.3 μ m.

_				_				ME COLORS	_					
<u>o</u> .	ΑI	< 0.040	M	Dy	<0.00060	M	U	< 0.0010	Ō	Рr	<0.020	M	Te	< 0.0030
M	Sb	< 0.000050	M	Er	0.0010	M	Lu	0.000040	M	Re	<0.00010	M	Tb	< 0.000030
M	Αs	< 0.0010	М	Eu	< 0.00030	M	Mg	< 0.0030	M	Rh	<0.00010	M	TI	< 0.00010
<u>0</u>	Ba	< 0.020	M	Gđ	0.039	M	Min	< 0.00040	M	Rb	< 0.00010	M	Th	< 0.00010
M	Be	< 0.000050	M	Ga	< 0.00010	<u>o</u>	Hg	< 0.030	M	Ru	< 0.00020	M	Tm	< 0.000040
M	Bi	< 0.000040	M	Ge	< 0.00060	M	Мо	< 0.00020	M	Sm	0.00040	M	Sn	< 0.00050
<u>0</u>	В	< 0.020	<u>M</u>	Αu	< 0.00030	M	Nd	0.00020	M	Sc	< 0.0010	M	Ti	< 0.0050
M	Cd	< 0.00030	M	Hf	< 0.00020	<u>0</u>	Ni	< 0.050	<u>o</u>	Se	< 0.40	M	W	< 0.0010
0	Ca	< 0.010	M	Ho	0.00010	M	Nb	< 0.000050	Ō	Si	< 0.020	M	U	< 0.00020
į	Се		0	In	< 0.030	<u>n_</u>	Оs		M	Ag	< 0.00020	M	٧	< 0.00020
<u>n</u>	Cs		M	lr	< 0.00050	M	Pd	< 0.00050	Q	Na	< 0.090	<u>M</u>	Yb	< 0.00010
M	Cr	< 0.00050	Q	Fe	< 0.050	Ō	Р	< 0.050	M	Sr	< 0.000050	M	Υ	< 0.0040
M	Co	< 0.00030	<u>\$</u>	La		M	Pt	< 0.00020	n	S		M	Zn	< 0.0020
<u>M</u>	Cu	< 0.00060	M	Pb	< 0.00030	<u>n</u>	K		M	Ta	< 0.00070	M	Zr	< 0.00050

i - spectral interference

ANALYZED DENSITY OF SOLUTION (measured at 22°C): 1.009 g/mL

(over)

s - solution standard element

QA:KSL Rev.1217020H

M - checked by ICP-MS

195 Lehigh Avenue • Suite 4 • Lakewood, NJ 08701 Orders: 800-669-6799 • FAX (732) 901-1903

O - checked by ICP-OES

Technical Support: 800-569-6799

Quality Assurance Manager

n - not checked for

QUALITY STANDARD DOCUMENTATION

1. ISO 9001:2000 QMI Registered Quality System (Certificate Number 010105)

Members of IQ Net: Argentina (IRAM), Australia (QAS), Austria (ÖQS), Belgium (Avinter), Brazil (FCAV), Canada (QMI), Hong Kong (HKQAA), Columbia (ICONTEC), Czech Republic (CQS), Denmark (DS), Finland (SFS), France (AFAQ), Germany (DQS), Greece (ELOT), Hungary (MSZT), Ireland (NSAI), Israel (SII), Italy (CISQ), Japan (JQA), Korea (KSA-QA), Netherlands (KEMA), Norway (NCS), Poland(PCBC), Portugal (APCER), Singapore (PSB), Slovenia (SIQ), Spain (AENOR), Switzerland (SQS)

- 2. ISO/IEC Guide 34-2000 "General Requirements for the Competence of Reference Material Producers" Reference Materials Production Accredited A2LA Certificate 883.02
- ISO/IEC17025-1999 "General Requirements for the Competence of Testing and Calibration" Chemical Testing Accredited A2LA Certificate 883.01
- 4. MIL-STD-45662A
- 5. 10CFR50 Appendix B Nuclear Regulatory Commission Domestic Licencing of Production and Utilization Facilities
- 10CFR21 Nuclear Regulatory Commission Reporting Defects and Non-Compliance
 Please contact our Quality Assurance Department for further information and copies of documents pertaining to our Quality
 Standard certifications.

STABILITY/ EXPIRATION DOCUMENTATION

Shelf Life - The length of time that a properly stored and packaged standard will remain within the specified

uncertainty. Shelf life is affected by chemical stability and transpiration issues. Inorganic Ventures' Standard Solutions are chemically stable indefinitely. Transpiration loss is linear with time and limits the time a standard can be used with confidence. The smaller the bottle the higher the rate of transpiration. Inorganic Ventures' studies indicate that the shelf life of our 500 mL

bottle is 4 years and the shelf life of our 125 mL bottle is 21 months.

Expiration Date - The date after which a standard solution should not be used. A one year expiration date is recommended by most state and federal regulatory agencies. Transpiration issues and repeated

use of solutions over a one year period may adversely affect the integrity of the standard.

PACKAGING DOCUMENTATION

Purified acid, 18 megohm double deionized water that has been filtered through a 0.2 μ m filter and in-house procedure IV-PACK-001 is used to clean all bottles. Contact us for technical information relating to contamination issues in packaging materials.

GLASSWARE CALIBRATION

In-house procedure 3-QC-002 is used to calibrate all Class A Glassware used in the manufacture and quality control of Custom Grade Standards.

BALANCE CALIBRATION

All balances are checked daily using in-house procedure number 6-IMM-001. The weights used for testing are annually compared to Gerhart Scale Corporation's master weights and are traceable to the National Institute of Standards and Technology (NIST). The NIST Traceability numbers are 428359B and 454678. The NIST test number is 822/260017-98.

All analytical balances are calibrated every 4 months by Gerhart Scale Corp. of South Amboy. The balances are calibrated with a class 1 analytical weight set. These weights are tested annually by a NIST / NVLAP accredited calibration lab. The NIST test number is 822/260017-8.

THERMOMETER CALIBRATION

TEL 1-800-569-6799

The thermometers used in the determination of the final densities are calibrated vs standard thermometer No. 903-2680 which was certified in accordance with the procedures outlined by ASTM E77-87 and NIST Monograph 150 using NIST Test Nos. and Std Nos.: 769543, 217368/769543, 217368/P14452, 176240/P14452, 176240. The in-house procedure No. is 2-QC-001. Thermometers which are not calibrated vs standard thermometer No. 903-2680 are traceable to NIST Identification Nos. 92564, 119016, 471047 and NIST test report Nos. 811/258522, 811/2557078, and 236090.

FAX 1-732-901-1903

E-MAIL IVtech@ivstandards.com

TECHNICAL SUPPORT

All customers are encouraged to contact us for technical support for the proper use of our products.

INT'L 1-732-901-1900

inorganic ventures / iv labs

195 lehigh avenue, suite 4, lakewood, nj 08701 usa phone: 800-669-6799 • 732-901-1900 • fax: 732-901-1903

e-mail: ivsales@ivstandards.com • website: www.ivstandards.com

certificate of analysis

1.0 Inorganic Ventures / IV Labs is an ISO Guide 34-2000 Certified Reference Material (CRM) Manufacturer: Certificate #883-02. The certificate is designed and the certified value(s) and uncertainty(ies) are determined in accordance with ISO Guide 31-2000 (Reference Materials - Contents of certificates and label(s), ISO Guide 34-2000 "Quality System Guidelines for the Production of Reference Materials," and ISO Guide 35-1989 "Certification of Reference Materials - General and Statistical Principles."

2.0 DESCRIPTION OF CRM Custom-Grade 1000 µg/mL Palladium in 3.3% (abs) HCL

Catalog Number:

CGPD1-1 and CGPD1-5

Lot Number:

W-PD02019

Starting Material:

Pd(NO3)2

Starting Material Purity (%): Starting Material Lot No 99.999248 11974A-00

Matrix:

3.0

3.3% (abs) HCL

INORGANIC LABS/RADCHEM LABS 79.4000

INORG: 4777 PO: F52333

DATE RECEIVED: 03/01/04

CERTIFIED VALUES AND UNCERTAINTIES

DATE EXPIRED: 03/01/205 YDS
DATE OPENED: 03/01/04

Certified Concentration:

994 ± 3 µg/mL

Certified Density:

1.022 g/mL (measured at 22° C)

The Certified Value is based upon the most precise method used to analyze this CRM. The following equations are used in the calculation of the certified value and the uncertainty:

Certified Value (C) = exx

(C) = mean

1

x_i = individual results

n = number of measurements

Uncertainty (±) = 2[(2+5)]412

T = number of measurements

ES = The summation of all significant estimated errors.

(Most common are the errors from instrumental measurement, weighing, dilution to volume, and the fixed error reported on the

NIST SRM certificate of analysis.)

4.0 TRACEABILITY TO NIST AND VALUES OBTAINED BY INDEPENDENT METHODS

© "Property of the result of a measurement or the value of a standard whereby it can be related to stated references, usually national or international standards, through an unbroken chain of comparisons all having stated uncertainties." (ISO VIM, 2nd ed., 1993, definition 6.10)

☐ This IV product is Traceable to NIST via direct comparison to NIST SRMs. The uncertainties for each certified value are reported, taking into account the SRM uncertainty error and the measurement, weighing and volume dilution errors.

4.1

Assay Method #1

994 ± 3 µg/mL (Avg 2 runs)

ICP Assay NIST SRM 3138 Lot Number: 990207

Assay Method #2

1000 µg/mL

Gravimetric NIST SRM Lot Number: See Sec. 4.2

- 4.2 BALANCE CALIBRATION All balances are checked daily using in-house procedure number 6-IMM-001. The weights used for testing are annually compared to Gerhart Scale Corporation's master weights and are traceable to the National Institute of Standards and Technology (NIST). The NIST Traceability numbers are 692476 Class 1 and 692476A Class 2. The NIST test number is 822/260017-98. All analytical balances are calibrated every 4 months by Gerhart Scale Corp. of South Amboy. The balances are calibrated with a class 1 and/or class 2 analytical weight set. These weights are tested annually by a NIST / NVLAP accredited calibration lab. The NIST test number is 822/260017-98.
- 4.3 THERMOMETER CALIBRATION The thermometers used in the determination of the final densities are calibrated vs standard thermometer No. 903-2680 which was certified in accordance with the procedures outlined by ASTM E77-87 and NIST Monograph 150 using NIST Test Nos. and Std Nos.: 769543, 217368/769543, 217368/P14452, 176240/P14452, 176240/P14452, 176240. The in-house procedure No. is 2-QC-001. Thermometers which are not calibrated vs standard thermometer No. 903-2680 are traceable to NIST Identification Nos. 92564, 119016, 471047 and NIST test report Nos. 811/258522, 811/2557078, and 236090.
- 4.4 GLASSWARE CALIBRATION In-house procedure 3-QC-002 is used to calibrate all Class A Glassware used in the manufacture and quality control of Custom Grade Standards.

5.0 TRACE METALLIC IMPURITIES (TMI) DETERMINED BY ICP/MS AND ICP-OES IN µg/mL

Custom-Grade solutions are tested for trace metallic impurities by Axial ICP-OES and ICP-MS. The result from the most sensitive method for each element, is reported below. Solutions tested by ICP-MS were analyzed in an ULPA-Filtered Clean Room. An ULPA-Filter is 99.9985% efficient for the removal of particles down to 0.3 µm.

<u>O</u> Al 0.00400	<u>M</u> Dy < 0.00060	<u>O</u> Li < 0.04000	<u>M</u> Pr < 0.00003	<u>O</u> Te < 0.01300
Q Sb < 0.00500	<u>M</u> Er < 0.00050	<u>M</u> Lu < 0.00004	<u>M</u> Re < 0.00010	<u>M</u> Tb < 0.00003
<u>O</u> As < 0.01400	<u>M</u> Eu < 0.00030	O Mg < 0.01100	Q Rh < 0.00600	<u>M</u> TI < 0.00010
<u>M</u> Ba < 0.00100	M Gd < 0.00010	<u>O</u> Mn < 0.00650	M Rb < 0.00010	M Th < 0.00010
<u>O</u> Be < 0.00009	<u>M</u> Ga < 0.00010	O Hg < 0.01100	<u>Q</u> Ru < 0.00200	<u>M</u> Tm < 0.00004
M Bi < 0.00004	<u>M</u> Ge < 0.00060	<u>M</u> Mo < 0.00020	M Sm < 0.00010	O Sn < 0.00700
<u>O</u> B < 0.00090	O Au < 0.00300	M Nd < 0.00020	<u>O</u> Sc < 0.00009	<u>O</u> Ti < 0.00100
Q Cd < 0.00600	M Hf < 0.00020	Q Ni 0.01800	<u>M</u> Se < 0.00080	<u>M</u> W < 0.00100
<u>Q</u> Ca 0.00700	<u>M</u> Ho < 0.00005	M Nb < 0.00005	<u>O</u> Si 0.00600	<u>M</u> U < 0.00020
<u>M</u> Ce < 0.00050	<u>O</u> in < 0.03300	n Os	<u>O</u> Ag < 0.00670	<u>M</u> V < 0.00020
M Cs < 0.00003	<u>M</u> Ir < 0.00050	<u>S</u> Pd	O Na 0.01500	<u>M</u> Yb < 0.00010
Q Cr 0.00450	O Fe 0.04600	O P · 0.00600	<u>M</u> Sr < 0.00005	<u>M</u> Y < 0.00400
M Co < 0.00030	<u>M</u> La < 0.00005	O Pt < 0.00600	<u>O</u> \$ < 0.02500	<u>O</u> Zn < 0.00060
<u>O</u> Cu 0.00360	M Pb < 0.00030	O K < 0.02000	<u>M</u> Ta < 0.00070	M Zr < 0.00050
M - Checked by ICP-MS	O - Checked by ICP-OES	i - Spectral Interference	n - Not Checked For	s - Solution Standard Element

6.0 INTENDED USE

For the calibration of analytical instruments including but not limited to the following:

ICP-MS, ICP-OES, FAAS, GFAA, XRF, and DCP

For the validation of analytical methods

For the preparation of "working reference samples"

For interference studies and the determination of correction coefficients

For detection limit and linearity studies

For additional intended uses, contact IV Technical Staff

7.0 INSTRUCTIONS FOR THE CORRECT USE OF THIS REFERENCE MATERIAL

Storage & Handling - Keep tightly sealed when not in use. Store and use at 20 ± 4 °C. Do not pipet from container. Do not return portions removed for pipetting to container.

Atomic Weight: Valence; Coordination Number; Chemical Form in Solution - 106.42 +2; 6; Pd(H₂O), 21

Chemical Compatibility - Stable in HCl, HNO₃, H₃SO₄, HF, H₂PO₄. Avoid basic media. Stable with most metals and inorganic anions in acidic media. Avoid contact with water soluble organics such as aldehydes since Pd² is easily reduced.

Stability - 2-100 ppb levels. 2ppb Pd is stable for 1 day in 1% HNO₂ /LDPE container. 10 ppb is stable for 3 days in 1% HNO₂ /LDPE container. 1-10,000 ppm solutions chemically stable for wears in 1-5% HNO₂ /LDPE container.

years in 1.5% HNO₃ / LDPE container.

Pd Containing Samples (Preparation and Solution) - Metal (Soluble in HNO₃ or Aqua Regia), Oxides (Soluble in HCI) Ores (Dissolve in HCI / HNO₃).

Atomic Spectroscopic Information (ICP-OES D.L.s are given as radial/axial view):

worse sh	renomopie milai:	HENNISHED -AFO DIS	_				
Technique	Line	Estimated D.L.		Order	Type	Interferences funderlined indicates	severe at edition cs.)
ICP-OES	340.458 nm	0.04 / 0.003 µg/mL 1	1	atom	Ce, Th	Zr	
ICP-OES	363.470 rxn	0.05 / 0.007 µg/mL 1	1	etom			
ICP-OES	229.651 nm	0.07 / 0.004 ug/mL 1	1	ion	Ca		
ICP-MS	105 amu	2 ppt		n/a	M'	^{⊷a} Ar ^{as} Cu, ^{as} Y ^{as} O	

- 8.0 HAZARDOUS INFORMATION Please refer to the enclosed Material Saftey Data sheet for information regarding this CRM.
- 9.0 HOMOGENEITY This solution was mixed according to procedure IV-MPM-004 and is guaranteed to be homogeneous.

10.0 QUALITY STANDARD DOCUMENTATION

10.1 ISO 9001:2000 Quality Management System Registration - QMI Certificate Number 010105 Recognized by:

Registrar Accreditation Board (ANSI-RAB) Standards Council of Canada (SCC) Dutch Council for Accreditation (RVA)

Entidad Mexicana de Acreditacion, a.c.(EMA)

Members of IQ Net International Certification Network:

Argentina (IRAM), Australia (QAS), Austria (QQS), Belgium (Avinter), Brazil (FCAV), Canada (QMI), Hong Kong (HKQAA), Columbia (ICONTEC), Czech Republic (CQS), Denmark (DS), Finland (SFS), France (AFAQ), Germany (DQS), Greece (ELOT), Hungary (MSZT), Ireland (NSAI), Israel (SII), Italy (CISQ), Japan (JQA), Korea (KSA-QA), Netherlands (KEMA), Norway (NCS), Poland(PCBC), Portugal (APCER), Singapore (PSB), Slovenia (SIQ), Spain (AENOR), Switzerland (SQS)

10.2 ISO/IEC 17025 - 1999 "General Requirements for the Competence of Testing and Calibration"

- Chemical Testing - Accredited A2LA Certificate Number 883.01

10.3 ISO/IEC Guide 34 - 2000 "General Requirements for the Competence of Reference Material Producers"

- Reference Materials Production - Accredited A2LA Certificate Number 883.02

A2LA Mutual Recognition Agreement Partners:

Australia (NATA), Austria (BmwA), Belgium (BELTEST) (BKO-OBE), Canada (SCC), Chinese Taipel (CNLA), Czech Republic (NAO), Denmark (DANAK), Finland (FINAS), France (COFRAC), Germany (DAR), Hong Kong (HKAS, Ireland (NAB), Italy (SIT) (SINAL), Japan (JAB) (JNLA), Republic of Korea (KOLAS), The Netherlands (RvA), New Zealand (IANZ), Norway (NA), Portugal (IPQ), Singapore (SAC-SINGLAS), Spain (ENAC), Sweden (SWEDAC), Switzerland (SAS), United Kingdom (UKAS) and United States (NVLAP) (ICBO ES)

- 10.4 10CFR50 Appendix B Nuclear Regulatory Commission
 - Domestic Licensing of Production and Utilization Facilities
- 10.5 10CFR21 Nuclear Regulatory Commission Reporting Defects and Non-Compliance
- 10.6 MIL-STD-45662A (Obsolete/Observed)

11.0 DATE OF CERTIFICATION AND PERIOD OF VALIDITY

- 11.1 IV Shelf Life The period of time during which the concentration of the analyte(s) in a property packaged, unopened, and unused standard stored under environmentally controlled and monitored conditions will remain within the specified uncertainty range. Shelf life is limited primarily by transpiration (loss of water from the solution) and infrequently, by chemical instability. Transpiration studies (P-SP01020) of chemically-stable solutions performed at Inorganic Ventures / IV Labs Indicate a CRM shelf-life of four years for solutions packaged in 500-mi. low density polyethylene bottles. When stored under special conditions that minimize transpiration and instability, the shelf life can be extended past this limit.
- 11.2 Expiration Date The date after which a CRM should not be used. Routine laboratory use of a CRM increases transpiration losses and the chance of contamination which affect the integrity of the CRM and limit its useful life. Inorganic Ventures / IV Labs concurs with state and federal regulatory agencies' recommendations that solution standards be assigned a one-year expiration date.

Certification Date: March 14, 2003

Expiration Date:

INDRGANIC LABS/RADCHEM LABS 19.0000
DATE RECEIVED: 03/01/04
DATE EXPIRED: 03/01/05 V0)
DATE OPENED: 03/01/04
INDRG: 4477 FO: F50303

EXPIRES

12.0 NAMES AND SIGNATURES OF CERTIFYING OFFICERS

Certificate Prepared By:

JoAnn Struthers, QA Administrative Assistant

Certificate Approved By:

Katalin Le, QC Supervisor

Certifying Officer:

Paul Gaines, Chemist, Senior Technical Director

5 - 4

inorganic ventures labs

195 lehigh avenue, suite 4, lakewood, nj 08701 usa phone: 800-669-6799 • 732-901-1900 • fax: 732-901-1903

e-mail: ivsales@ivstandards.com • website: www.ivstandards.com

certificate of analysis

Inorganic Ventures / IV Labs is an ISO Guide 34-2000 Certified Reference Material (CRM) Manufacturer: 1.0 Certificate #883-02. The certificate is designed and the certified value(s) and uncertainty(ies) are determined in accordance with ISO Guide 31-2000 (Reference Materials - Contents of certificates and label(s), ISO Guide 34-2000 "Quality System Guidelines for the Production of Reference Materials," and ISO Guide 35-1989 "Certification of Reference Materials - General and Statistical Principles."

DESCRIPTION OF CRM Custom-Grade 1000 µg/mL Sulfur in H20 2.0

Catalog Number:

CGS1-1 and CGS1-5

Lot Number:

W-QS01098

Starting Material:

H2SO4

INORGANIC LABS/RADCHEM LABS DATE RECEIVED: 11/5/03

DATE EXPIRED: 12/1/2014

Starting Material Purity (%):

99.999965

Starting Material Lot No

N38818

DATE OPENED: (1/5/23)
INORG: 43/7 FO:

Matrix:

H₂0

3.0 **CERTIFIED VALUES AND UNCERTAINTIES**

Certified Concentration:

 $1010 \pm 2 \mu g/mL$

Certified Density:

1.000 g/mL (measured at 22° C)

The Certified Value is based upon the most precise method used to analyze this CRM. The following equations are used in the calculation of the certified value and the uncertainty:

Certified Value (C) = exx

(□) = mean

x. = individual results

n = number of measurements

Uncertainty (±) = $2[(e_1 - s_1)^2]^{1/2}$

ES = The summation of all significant estimated errors.

(Most common are the errors from instrumental measurement weighing, dilution to volume, and the fixed error reported on the

NIST SRM certificate of analysis.)

The independent samples t-test was used to determine if there is agreement between the above assay methods at the 95% confidence interval. Both methods were compared and showed agreement within the stated uncertainties. This agreement is a confirmation of the accuracy of this CRM.

4.0 TRACEABILITY TO NIST AND VALUES OBTAINED BY INDEPENDENT METHODS

"Property of the result of a measurement or the value of a standard whereby it can be related to stated references, usually national or international standards, through an unbroken chain of comparisons all having stated uncertainties." (ISO VIM, 2nd ed., 1993, definition 6.10)

This IV product is Traceable to NIST via direct comparison to NIST SRMs. The uncertainties for each certified value are reported, taking into account the SRM uncertainty error and the measurement, weighing and volume dilution errors.

Assay Method #1

998 ± 8 µg/mL

ICP Assay NIST SRM 3154 Lot Number: 892205

Assay Method #2

 $1010 \pm 2 \mu g/mL$

Acidimetric NIST SRM 84k Lot Number: 84k

- 4.2 BALANCE CALIBRATION All balances are checked daily using in-house procedure number 6-IMM-001. The weights used for testing are annually compared to Gerhart Scale Corporation's master weights and are traceable to the National Institute of Standards and Technology (NIST). The NIST Traceability numbers are 692476 Class 1 and 692476A Class 2. The NIST test number is 822/260017-98. All analytical balances are calibrated every 4 months by Gerhart Scale Corp. of South Amboy. The balances are calibrated with a class 1 and/or class 2 analytical weight set. These weights are tested annually by a NIST / NVLAP accredited calibration lab. The NIST test number is 822/260017-98.
- 4.3 THERMOMETER CALIBRATION The thermometers used in the determination of the final densities are calibrated vs standard thermometer No. 903-2680 which was certified in accordance with the procedures outlined by ASTM E77-87 and NIST Monograph 150 using NIST Test Nos. and Std Nos.: 769543, 217368/769543, 217368/P14452, 176240/P14452, 176240. The in-house procedure No. is 2-QC-001. Thermometers which are not calibrated vs standard thermometer No. 903-2680 are traceable to NIST Identification Nos. 92564, 119016, 471047 and NIST test report Nos. 811/258522, 811/2557078, and 236090.
- 4.4 GLASSWARE CALIBRATION In-house procedure 3-QC-002 is used to calibrate all Class A Glassware used in the manufacture and quality control of Custom Grade Standards.

5.0 TRACE METALLIC IMPURITIES (TMI) DETERMINED BY ICP/MS AND ICP-OES IN µg/mL

Custom-Grade solutions are tested for trace metallic impurities by Axial ICP-OES and ICP-MS. The result from the most sensitive method for each element, is reported below. Solutions tested by ICP-MS were analyzed in an ULPA-Filtered Clean Room. An ULPA-Filter is 99.9985% efficient for the removal of particles down to 0.3 µm.

O Al 0.00025	<u>M</u> Dy < 0.01197	<u>O</u> Li < 0.00016	<u>M</u> Pr < 0.00060	<u>M</u> Te < 0.05984
M Sb < 0.00100	<u>M</u> Er < 0.00997	M Lu < 0.00080	M Re < 0.00200	<u>M</u> Tb < 0.00060
M As < 0.01995	<u>M</u> Eu < 0.00598	<u>O</u> Mg < 0.00004	M Rh < 0.00200	<u>M</u> TI < 0.00200
M Ba < 0.01995	M Gd < 0.00200	<u>M</u> Mn < 0.00798	M Rb < 0.00200	M Th < 0.00200
Q Be < 0.00200	M Ga < 0.00200	Q Hg < 0.01100	<u>M</u> Ru < 0.00399	<u>M</u> Tm < 0.00080
M Bi < 0.00080	M Ge < 0.01197	<u>M</u> Mo < 0.00399	M Sm < 0.00200	<u>M</u> Sn < 0.00997
<u>O</u> B < 0.00990	M Au < 0.00598	M Nd < 0.00399	<u>M</u> Sc < 0.01995	<u>M</u> Ti < 0.09974
M Cd < 0.00598	M Hf < 0.00399	Q Ni < 0.00230	<u>Q</u> Se < 0.00620	<u>M</u> W < 0.01995
Q Ca 0.00020	<u>M</u> Ho < 0.00100	M Nb < 0.00100	<u>Q</u> Si < 0.00410	<u>M</u> U < 0.00399
M Ce < 0.00997	M in < 0.01995	n Os	M Ag < 0.00399	<u>M</u> V < 0.00399
M Cs < 0.00060	<u>M</u> Ir < 0.00997	<u>M</u> Pd < 0.00997	O Na < 0.00010	<u>M</u> Yb < 0.00200
M Cr < 0.00997	Q Fe 0.00015	<u>O</u> P < 0.00480	<u>M</u> Sr < 0.00100	<u>M</u> Y < 0.07979
<u>M</u> Co < 0.00598	<u>M</u> La < 0.00100	M Pt < 0.00399	<u>s</u> S	<u>O</u> Zn 0.00125
M Cu < 0.01197	M Pb < 0.00598	<u>Q</u> K < 0.00170	<u>M</u> Ta < 0.01396	M Zr < 0.00997
M - Checked by ICP-MS	O - Checked by ICP-OES	i - Spectral Interference	n - Not Checked For	s - Solution Standard Element

6.0 INTENDED USE

For the calibration of analytical instruments including but not limited to the following:

ICP-MS, ICP-OES, FAAS, GFAA, XRF, and DCP

For the validation of analytical methods

For the preparation of "working reference samples"

For interference studies and the determination of correction coefficients

For detection limit and linearity studies

For additional intended uses, contact IV Technical Staff

7.0 INSTRUCTIONS FOR THE CORRECT USE OF THIS REFERENCE MATERIAL

Storage & Handling - Keep tightly sealed when not in use. Store and use at 20 ± 4~€. Do not pipet from container. Do not return portions removed for pipetting to container.

Atomic Weight; Valence; Coordination Number; Chemical Form in Solution - 32.066, +6, 6, (O=), S(OH),

Chemical Competibility - Soluble in HCI, HNO, H,PO, and HF aquecus matrices water and NH,OH. Stable with all metals and inorganic anions at low to moderate ppm levels under acidic conditions except Ba and Pb and to a lesser extent Sr, and Ca. Stability - 2-100 ppb levels - stability unknown- in 1 % HNO, / LDPE container. 1-10,000 ppm solutions chemically stable for years in LDPE container.

S Containing Samples (Preparation and Solution) - We most often get questions about the determination of S in Rocks, Silicates and insoluble sulfates (the finely powered sample is fused in a Pt* crucible with ##times its weight of Na,CO, + 0.5 grams KNO. The fuseate is extracted with water. Any BaSO, present in the sample is transposed by the carbonate fusion to the BaCO, which is left behind in the water-insoluble residue. If PbSO is present the fuseate should be boiled with a sodium carbonate saturated with CO, solution for 1 hour or more where the PbSO, will be transposed to the water insoluble carbonate which can be fittered off. Boiling the fuseate with a saturated carbonate solution is good insurance for samples containing Ba, Sr, and Ca. The Ba, Pb, Sr, Ca, tree filtrate can be additied and measured by ICP.)

Atomic Spectroscopic Information (ICP-OES D.L.s are given as radial/axia) view):

Technique	/Line	Estimated D.L.	Order	Туре	Interferences (underlined indicates severe at actionss.)
ICP-OES	166.669nm	0.2 / 0.19 µg/mL	1	atom	Si,B
ICP-OES	182.034 nm	0.3 / 0.024 µg/mL	1	atom	
ICP-OES	143.328 nm	0.4 / 0.035 µg/mL	1	atom	
ICP-MS	32 amu	30,000 ppt	n/a	Μ'	''O _' , ''N''O, ''N''O, ''N''O'H, ''N''O'H

- 8.0 HAZARDOUS INFORMATION - Please refer to the enclosed Material Saftey Data sheet for information regarding this CRM.
- 9.0 HOMOGENEITY - This solution was mixed according to procedure IV-MPM-004 and is guaranteed to be homogeneous.

QUALITY STANDARD DOCUMENTATION 10.0

10.1 ISO 9001:2000 Quality Management System Registration - QMI Certificate Number 010105 Recognized by:

Registrar Accreditation Board (ANSI-RAB)

Standards Council of Canada (SCC)

Dutch Council for Accreditation (RVA)

Entidad Mexicana de Acreditacion, a.c.(EMA)

Members of IQ Net International Certification Network:

Argentina (IRAM), Australia (QAS), Austria (ÖQS), Belgium (Avinter), Brazil (FCAV), Canada (QMI), Hong Kong (HKQAA), Columbia (ICONTEC), Czech Republic (CQS), Denmark (DS), Finland (SFS), France (AFAQ), Germany (DQS), Greece (ELOT), Hungary (MSZT), Ireland (NSAI), Israel (SII), Italy (CISQ), Japan (JQA), Korea (KSA-QA), Netherlands (KEMA), Norway (NCS), Poland(PCBC), Portugal (APCER), Singapore (PSB), Slovenia (SIQ), Spain (AENOR), Switzerland (SQS) 10.2 ISO/IEC 17025 - 1999 "General Requirements for the Competence of Testing and Calibration"

- Chemical Testing - Accredited A2LA Certificate Number 883.01

10.3 ISO/IEC Guide 34 - 2000 "General Requirements for the Competence of Reference Material Producers"

- Reference Materials Production - Accredited A2LA Certificate Number 883.02

A2LA Mutual Recognition Agreement Partners:

Australia (NATA), Austria (BrnwA), Belgium (BELTEST) (BKO-OBE), Canada (SCC), Chinese Taipei (CNLA), Czech Republic (NAO), Denmark (DANAK), Finland (FINAS), France (COFRAC), Germany (DAR), Hong Kong (HKAS, Ireland (NAB), Italy (SIT) (SINAL), Japan (JAB) (JNLA), Republic of Korea (KOLAS), The Netherlands (RvA), New Zealand (IANZ), Norway (NA), Portugal (IPQ), Singapore (SAC-SINGLAS), Spain (ENAC), Sweden (SWEDAC), Switzerland (SAS), United Kingdom (UKAS) and United States (NVLAP) (ICBO ES)

- 10.4 10CFR50 Appendix B Nuclear Regulatory Commission
 - Domestic Licensing of Production and Utilization Facilities
- 10.5 10CFR21 Nuclear Regulatory Commission Reporting Defects and Non-Compliance
- 10.6 MIL-STD-45662A (Obsolete/Observed)

DATE OF CERTIFICATION AND PERIOD OF VALIDITY 11.0

- 11.1 IV Shelf Life The period of time during which the concentration of the analyte(s) in a properly packaged, unopened, and unused standard stored under environmentally controlled and monitored conditions will remain within the specified uncertainty range. Shelf life is limited primarily by transpiration (loss of water from the solution) and infrequently, by chemical instability. Transpiration studies (P-SP01020) of chemically-stable solutions performed at Inorganic Ventures / IV Labs indicate a CRM shelf-life of four years for solutions packaged in 500-mL low density polyethylene bottles. When stored under special conditions that minimize transpiration and instability, the shelf life can be extended past this limit.
- 11.2 Expiration Date The date after which a CRM should not be used. Routine laboratory use of a CRM increases transpiration losses and the chance of contamination which affect the integrity of the CRM and limit its useful life. Inorganic Ventures / IV Labs concurs with state and federal regulatory agencies' recommendations that solution standards be assigned a one-year expiration date.

INOR	GANIC	LABSA	/RADCHEI	1 LABS	`
DATE	RECEIV	ED:	11/5/03	99	<u>~</u>
DATE	EXPIRE	D: 12	11/2014	DR	
DATE	OPENEI	: ///	5/03		
INORG	:43	17	_po:_ <i>E</i>	52258	

Certification Date: August 27, 2003

Expiration Date: EXPIRES

12.0 NAMES AND SIGNATURES OF CERTIFYING OFFICERS

Certificate Prepared By:

JoAnn Struthers, QA Administrative Assistant

Certificate Approved By:

Katalin Le, QC Supervisor

Certifying Officer:

Paul Gaines, Chemist, Senior Technical Director

follm Stratten known in Pauk Aaim

Certificate of Analysis

CUSTOM-GRADE SOLUTION

1000 µg/mL Thorium in 3% HNO₃ (abs)

Catalog Number: CGTH1-1 and CGTH1-5

Lot Number: T-TH01059

Starting Material: Starting Material Purity: Starting Material Lot No: Thorium Nitrate 99.999% C01L32 INORGANIC LABS/RADCHEM LABS
DATE RECEIVED: 10/08/03
DATE EXPIRED: 11/01/2004 V05
DATE OPENED: 10/08/03
INORG: 4883 PO: F53840

CERTIFIED CONCENTRATION: 1001 ± 3 µg/mL

The Certified Value is based upon the most precise method used to analyze this CRM. The following equations are used in the calculation of the certified value and the uncertainty:

Certified Value $(\bar{x}) = \frac{\sum x_i}{n}$

Uncertainty (±) = $\frac{2[(\sum_{s} j^2]^{1/2}}{(n)^{1/2}}$

(x) = mean

M - checked by ICP-MS

QA:KL Nov.050802DN

 $x_i = individual results$

n = number of measurements

 $\sum S_i =$ The summation of all significant estimated errors.

Classical Wet Assay: 1001 ± 3 µg/mL

Method: EDTA Titration vs NIST SRM Lead Nitrate.

Instrument Analysis: 1002 \pm 4 μ g/ml.

Method: Inductively Coupled Plasma Spectroscopy (ICP) vs NIST SRM 3159.

The independent samples t-test was used to determine if there is agreement between the above assay methods at the 95% confidence interval. Both methods were compared and showed agreement within the stated uncertainties. This agreement is a confirmation of the accuracy of this CRM.

TRACE METALLIC IMPURITIES DETERMINED BY ICP-MS AND ICP-OES IN μ g/mL:

Custom-Grade solutions tested for trace metallic impurities by ICP-MS were analyzed in an ULPA-Filtered Clean Room. An ULPA-Filter is 99.9985% efficient for the removal of particles down to 0.3 μm .

<u>o</u>	ΑI	< 0.00090	M	Đγ	0.0062	<u>0</u>	Li	< 0.000030	M	Pr	0.00037	<u>o</u>	Te	< 0.031
M	\$b	< 0.000050	M	Er	< 0.00050	M	Lu	< 0.000040	M	Re	< 0.00010	M	Tb	< 0.000030
Q	As	< 0.014	M	Eu	< 0.00030	Q	Mg	< 0.000060	<u>M</u>	Rh	< 0.00010	<u>M</u>	TI	< 0.00010
M	Ba	0.0050	M	Gd	0.0054	. <u>Q</u>	Mn	< 0.0000030	M	Rb	< 0.00010	<u>8</u>	Th	
<u>0</u>	Вe	< 0.00020	M	Ga	< 0.00010	i	Hg	and the second s	<u>M</u>	Ru	< 0.00020	<u>M</u>	Tm	< 0.000040
M	Bi	< 0.000040	M	Ge	< 0.00060	M	Мо	<0.00020	M	Sm	0.0095	<u>M</u>	Sn	< 0.00050
<u>0</u>	В	< 0.00060	M	Αu	< 0.00030	<u>M</u>	Nd	0.0026	M	Sc	< 0.0010	<u>o</u>	Ti	< 0.00092
<u>o</u>	Cd	< 0.0045	M	Hf	< 0.00020	<u>o</u>	Ni	< 0.0023	M	Se	< 0.010	<u>M</u>	W	< 0.0010
<u>o</u>	Са	< 0.030	M	Ho	0.00022	<u>M</u>	Nb	< 0.000050	<u>o</u>	Si	< 0.0034	<u>M</u>	U	0.074
M	Се	< 0.00050	Q	In	< 0.0020	n	Os		M	Ag	< 0.00020	<u>M</u>	٧	< 0.00020
М	Cs	< 0.000030	M	lr	< 0.00050	<u>M</u>	Pd	< 0.00050	<u>o</u>	Na	< 0.00010	M	Yb	< 0.00010
<u>0</u>	Cr	< 0.00080	Q	Fe	< 0.0011	i	Ρ		M	Sr	< 0.000050	M	Υ	< 0.0040
M	Co	< 0.00030	M	La	< 0.000050	<u>M</u>	Pt	< 0.00020	Q	\$	< 0.072	<u>0</u>	Zn	< 0.00058
M	Cu	< 0.00060	M	Pb	< 0.00030	<u>o</u>	K	< 0.0017	M	Ta	< 0.00070	M	Zr	0.0085

i - spectral interference

ANALYZED DENSITY OF SOLUTION (measured at 22°C): 1.022 g/mL

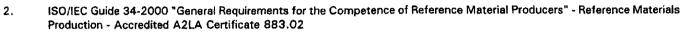
Inorganic Ventures, Inc.

O - checked by ICP-OES

195 Lehigh Avenue • Suite 4 • Lakewood, NJ 08701 Orders: 800-669-6799 • FAX (732) 901-1903 Technical Support: 800-569-6799

Quality Assurance Manager

n - not checked for


EXPIRES 01 \$2004

s - solution standard element

QUALITY STANDARD DOCUMENTATION

1. ISO 9001:2000 QMI Registered Quality System (Certificate Number 010105)

Members of IQ Net: Argentina (IRAM), Australia (QAS), Austria (ÖQS), Belgium
(Avinter), Brazil (FCAV), Canada (QMI), Hong Kong (HKQAA), Columbia (ICONTEC), Czech
Republic (CQS), Denmark (DS), Finland (SFS), France (AFAQ), Germany (DQS), Greece (ELOT), Hungary (MSZT), Ireland (NSAI), Israel
(SII), Italy (CISQ), Japan (JQA), Korea (KSA-QA), Netherlands (KEMA), Norway (NCS), Poland(PCBC), Portugal (APCER), Singapore
(PSB), Slovenia (SIQ), Spain (AENOR), Switzerland (SQS)

- 3. ISO/IEC17025-1999 "General Requirements for the Competence of Testing and Calibration" Chemical Testing Accredited A2LA Certificate 883.01
- 4. MIL-STD-45662A
- 5. 10CFR50 Appendix B Nuclear Regulatory Commission Domestic Licencing of Production and Utilization Facilities
- 10CFR21 Nuclear Regulatory Commission Reporting Defects and Non-Compliance
 Please contact our Quality Assurance Department for further information and copies of documents pertaining to our Quality
 Standard certifications.

STABILITY/ EXPIRATION DOCUMENTATION

Shelf Life - The length of time that a properly stored and packaged standard will remain within the specified

uncertainty. Shelf life is affected by chemical stability and transpiration issues. Inorganic Ventures' Standard Solutions are chemically stable indefinitely. Transpiration loss is linear with time and limits the time a standard can be used with confidence. The smaller the bottle the higher the rate of transpiration. Inorganic Ventures' studies indicate that the shelf life of our 500 mL

bottle is 4 years and the shelf life of our 125 mL bottle is 21 months.

Expiration Date - The date after which a standard solution should not be used. A one year expiration date is recommended by most state and federal regulatory agencies. Transpiration issues and repeated

use of solutions over a one year period may adversely affect the integrity of the standard.

PACKAGING DOCUMENTATION

Purified acid, 18 megohm double deionized water that has been filtered through a 0.2 μ m filter and in-house procedure IV-PACK-001 is used to clean all bottles. Contact us for technical information relating to contamination issues in packaging materials.

GLASSWARE CALIBRATION

In-house procedure 3-QC-002 is used to calibrate all Class A Glassware used in the manufacture and quality control of Custom Grade Standards.

BALANCE CALIBRATION

All balances are checked daily using in-house procedure number 6-IMM-001. The weights used for testing are annually compared to Gerhart Scale Corporation's master weights and are traceable to the National Institute of Standards and Technology (NIST). The NIST Traceability numbers are 428359B and 454678. The NIST test number is 822/260017-98.

All analytical balances are calibrated every 4 months by Gerhart Scale Corp. of South Amboy. The balances are calibrated with a class 1 analytical weight set. These weights are tested annually by a NIST / NVLAP accredited calibration lab. The NIST test number is 822/260017-8.

THERMOMETER CALIBRATION

The thermometers used in the determination of the final densities are calibrated vs standard thermometer No. 903-2680 which was certified in accordance with the procedures outlined by ASTM E77-87 and NIST Monograph 150 using NIST Test Nos. and Std Nos.: 769543, 217368/769543, 217368/P14452, 176240/P14452, 176240. The in-house procedure No. is 2-QC-001. Thermometers which are not calibrated vs standard thermometer No. 903-2680 are traceable to NIST Identification Nos. 92564, 119016, 471047 and NIST test report Nos. 811/258522, 811/2557078, and 236090.

TECHNICAL SUPPORT

All customers are encouraged to contact us for technical support for the proper use of our products.

TEL 1-800-569-6799

INT'L 1-732-901-1900

FAX 1-732-901-1903

E-MAIL IVtech@ivstandards.com

inorganic ventures

195 lehigh avenue, suite 4, lakewood, nj 08701 usa phone: 800-669-6799 • 732-901-1900 • fax: 732-901-1903

e-mail: ivsales@ivstandards.com • website: www.ivstandards.com

certificate analvsis

Inorganic Ventures / IV Labs is an ISO Guide 34-2000 Certified Reference Material (CRM) Manufacturer: 1.0 Certificate #883-02. The certificate is designed and the certified value(s) and uncertainty(ies) are determined in accordance with ISO Guide 31-2000 (Reference Materials - Contents of certificates and label(s), ISO Guide 34-2000 "Quality System Guidelines for the Production of Reference Materials," and ISO Guide 35-1989 "Certification of Reference Materials - General and Statisical Principles."

DESCRIPTION OF CRM 2.0

Custom-Grade 1000 µg/mL Uranium in 1% (abs) HNOs

Catalog Number:

CGU1-1 and CGU1-5

Lot Number:

W-LJ01059

Starting Material:

UO2(NO3)2.6H2O

Starting Material Purity (%):

99.994419

Starting Material Lot No Matrix:

3.0

RB0018

1% (abs) HNO₃

INORGANIC LABS/RADCHEM LABS PO 100 2

DATE RECEIVED: ___O3/35/CH

DATE EXPIRED: ____03/01/3005 DATE OPENED: 03/35/04

INORG: 4473 PD: F50303

Certified Concentration:

997 ± 2 µg/mL

CERTIFIED VALUES AND UNCERTAINTIES

Certified Density: 1.021 g/mL (measured at 22° C)

The Certified Value is based upon the most precise method used to analyze this CRM. The following equations are used in the calculation of the certified value and the uncertainty:

Certified Value (C) = exx.

(□I = mean

 $x_i = individual results$

n = number of measurements

Uncertainty $(\pm) = 2[(e_r s_i)^2]$

ES = The summation of all significant estimated errors. (Most common are the errors from instrumental measurement, weighing, dilution to volume, and the fixed error reported on the

NIST SRM certificate of analysis.)

4.0 * TRACEABILITY TO NIST AND VALUES OBTAINED BY INDEPENDENT METHODS

□ "Property of the result of a measurement or the value of a standard whereby it can be related to stated references, usually national or international standards, through an unbroken chain of comparisons all having stated uncertainties." (ISO VIM, 2nd ed., 1993, definition 6.10)

This IV product is Traceable to NIST via direct comparison to NIST SRMs. The uncertainties for each certified value are reported, taking into account the SRM uncertainty error and the measurement, weighing and volume dilution errors.

4.1

997 ± 2 µg/mL

ICP Assay NIST SRM 3164 Lot Number: 891509

Assay Method #2

1000 ua/mL

Gravimetric NIST SRM Lot Number: See Sec. 4.2

1

- 4.2 BALANCE CALIBRATION All balances are checked daily using in-house procedure number 6-IMM-001. The weights used for testing are annually compared to Gerhart Scale Corporation's master weights and are traceable to the National Institute of Standards and Technology (NIST). The NIST Traceability numbers are 692476 Class 1 and 692476A Class 2. The NIST test number is 822/260017-98. All analytical balances are calibrated every 4 months by Gerhart Scale Corp. of South Amboy. The balances are calibrated with a class 1 and/or class 2 analytical weight set. These weights are tested annually by a NIST / NVLAP accredited calibration lab. The NIST test number is 822/260017-98.
- 4.3 THERMOMETER CALIBRATION The thermometers used in the determination of the final densities are calibrated vs standard thermometer No. 903-2680 which was certified in accordance with the procedures outlined by ASTM E77-87 and NIST Monograph 150 using NIST Test Nos. and Std Nos.: 769543, 217368/769543, 217368/P14452, 176240/P14452, 176240. The in-house procedure No. is 2-QC-001. Thermometers which are not calibrated vs standard thermometer No. 903-2680 are traceable to NIST Identification Nos. 92564, 119016, 471047 and NIST test report Nos. 811/258522, 811/2557078, and 236090.
- 4.4 GLASSWARE CALIBRATION In-house procedure 3-QC-002 is used to calibrate all Class A Glassware used in the manufacture and quality control of Custom Grade Standards.

5.0 TRACE METALLIC IMPURITIES (TMI) DETERMINED BY ICP/MS AND ICP-OES IN µg/mL

Custom-Grade solutions are tested for trace metallic impurities by Axial ICP-OES and ICP-MS. The result from the most sensitive method for each element, is reported below. Solutions tested by ICP-MS were analyzed in an ULPA-Filtered Clean Room. An ULPA-Filter is 99.9985% efficient for the removal of particles down to 0.3 µm.

M	Αŀ		0.05166	М	Dy	<	0.01494	<u>M</u>	Li	<	0.02490	W	Pr	<	0.00075	M	Te	<	0.07470
М	Sb	<	0.00125	M	Er	<	0.01245	M	Lu	<	0.00100	М	Re	<	0.00249	M	Тb		0.00003
M	As	<	0.02490	M	Eu	<	0.00747	M	Mg	<	0.07470	М	Rh	<	0.00249	M	TI	<	0.00249
M	Ba	<	0.02490	М	Gd		0.00310	M	Mn		0.00083	M	Rb	<	0.00249	М	Th	<	0.00249
M	Ве	<	0.00125	M	Ga	<	0.00249	i	Hg			W	Ru	<	0.00498	<u>M</u>	Tm	<	0.00100
M	Bi	<	0.00100	<u>M</u>	Ge	<	0.01494	M	Мо		0.00093	M	Sm		0.00010	Ω	Sn	<	0.10000
<u>M</u>	В	<	0.17429	M	Au	<	0.00747	М	Nd	<	0.00498	М	Sc	<	0.02490	M	Tì		0.00258
M	Cd		0.00103	М	Hf	<	0.00498	M	Ni	<	0.01992	M	Se	<	0.01992	<u>M</u>	W	<	0.02490
<u>0</u>	Ca		0.05395	М	Но		0.00052	<u>M</u>	Nb	<	0.00125	Ī	Si			\$	U		
M	Ce		0.00010	W	in	<	0.02490	Ū	Os			M	Ag	<	0.00498	M	٧	<	0.00498
M	Cs	<	0.00075	М	lr	<	0.01245	М	₽d	<	0.01245	ō	Na		0.00664	M	Yb	<	0.00249
M	Cr	<	0.01245	<u>M</u>	Fe	<	0.49798	į	P			М	Sr	<	0.00125	M	Y		0.00062
M	Со	<	0.00747	<u>M</u>	La		0.00145	<u>M</u>	Pt	<	0.00498	i	s			M	Zn		0.00114
M	Cu		0.00072	M	Pb		0.00217	į	ĸ			M	Ta	<	0.01743	M	Zr	<	0.01245
M - C	heck	eđ	by ICP-MS	Q -	Chec	ke	by ICP-OES	i - S	pect	al l	nterference	n - I	Not C	hec	ked For	s - 8	Soluti	on :	Standard Element

6.0 INTENDED USE

For the calibration of analytical instruments including but not limited to the following:

ICP-MS, ICP-OES, FAAS, GFAA, XRF, and DCP

For the validation of analytical methods

For the preparation of "working reference samples"

For interference studies and the determination of correction coefficients

For detection limit and linearity studies

For additional intended uses, contact IV Technical Staff

7.0 INSTRUCTIONS FOR THE CORRECT USE OF THIS REFERENCE MATERIAL

Storage & Handling - Keep tightly sealed when not in use. Store and use at 20 ± 4 ∞ . Do not pipet from container. Do not return portions removed for pipetting to container.

Atomic Weight; Valence; Coordination Number; Chemical Form in Solution - 238.0289; +6; 8; UO; (uranyl)

Chemical Compatibility - Soluble in HCl and HNO. Avoid H,PO. HSO, and HF matrices should not be a problem depending upon [U]. Although the UO." ion is distinctly basic, any U" will precipitate in basic media. UO." salts are generally soluble in water and UO," is stable with most metals and inorganic anions. The uranyl phosphate is insoluble in water. UF, and UF, are water soluble.

Stability - 2-100 ppb levels stable for months in 1% HNO, /LDPE container. 1-10,000 ppm solutions chemically stable for years in 2-5% HNO, /LDPE container.

U Containing Samples (Preparation and Solution) - Metal (Dissolves rapidly in HCI and HNO.), Oxide (Soluble in HNO.), Ores (Digest for 1-2 hours with 1 gram of cre to 30 mL 1:1 HNO). Silica insolubles are removed by filtration after bringing the sample to tumes with conc. H.SO..)

Atomic Spectroscopic Information (ICP-OES D.L.s are given as radial/axia) view):

Technique	Line	Estimeted D.L.	Order	Moc	Interferences (underlined indicates severe at attorcs.)
ICP-OES	385,958 nm	0.3 / 0.01 µg/mL	1	ion	Th, Fe
ICP-OES	367.007 nm	0.3 / 0.02 µg/mL	1	ion	Th, Ce
ICP-OES	263.553 nm	0.3 / 0.01 µg/mL	1	ion	Ce, ir, Th, Rh, W, Zr, Ta, Ti, V, Hf, Fe, Re, Ru
ICP-MS	238 amu	2 ppt	n/a	Μ'	2**Pb16O3

- 8.0 HAZARDOUS INFORMATION - Please refer to the enclosed Material Saftey Data sheet for information regarding this CRM.
- 9.0 HOMOGENEITY - This solution was mixed according to procedure IV-MPM-004 and is guaranteed to be homogeneous.

QUALITY STANDARD DOCUMENTATION 10.0

10.1 ISO 9001:2000 Quality Management System Registration - QMI Certificate Number 010105 Recognized by:

Registrar Accreditation Board (ANSI-RAB)

Standards Council of Canada (SCC)

Dutch Council for Accreditation (RVA)

Entidad Mexicana de Acreditacion, a.c.(EMA)

Members of IQ Net International Certification Network:

Argentina (IRAM), Australia (QAS), Austria (ÖQS), Belgium (Avinter), Brazil (FCAV), Canada (QMI), Hong Kong (HKQAA), Columbia (ICONTEC), Czech Republic (CQS), Denmark (DS), Finland (SFS), France (AFAQ), Germany (DQS), Greece (ELOT), Hungary (MSZT), Ireland (NSAI), Israel (SII), Italy (CISQ), Japan (JQA), Korea (KSA-QA), Netherlands (KEMA), Norway (NCS), Poland(PCBC), Portugal (APCER), Singapore (PSB), Slovenia (SIQ), Spain (AENOR), Switzerland (SQS) 10.2 ISO/IEC 17025 - 1999 "General Requirements for the Competence of Testing and Calibration"

- Chemical Testing - Accredited A2LA Certificate Number 883.01

10.3 ISO/IEC Guide 34 - 2000 "General Requirements for the Competence of Reference Material Producers"

- Reference Materials Production - Accredited A2LA Certificate Number 883.02

A2LA Mutual Recognition Agreement Partners:

Australia (NATA), Austria (BmwA), Belgium (BELTEST) (BKO-OBE), Canada (SCC), Chinese Taipei (CNLA), Czech Republic (NAO), Denmark (DANAK), Finland (FINAS), France (COFRAC), Germany (DAR), Hong Kong (HKAS, Ireland (NAB), Italy (SIT) (SINAL), Japan (JAB) (JNLA), Republic of Korea (KOLAS), The Netherlands (RvA), New Zealand (IANZ), Norway (NA), Portugal (IPQ), Singapore (SAC-SINGLAS), Spain (ENAC), Sweden (SWEDAC), Switzerland (SAS), United Kingdom (UKAS) and United States (NVLAP) (ICBO ES)

- 10.4 10CFR50 Appendix B Nuclear Regulatory Commission
 - Domestic Licensing of Production and Utilization Facilities
- 10.5 10CFR21 Nuclear Regulatory Commission Reporting Defects and Non-Compliance
- 10.6 MIL-STD-45662A (Obsolete/Observed)

INORGANIC LABS.	/RADCHEM LABS \$ 30 F 2
DATE RECEIVED:	03/05/3005 VO
DATE EXPIRED:	03/01/3005 400
DATE OPENED:	02/25/04
INORG: 4473	PO: F 53333

*NOTICE TO ICP-MS USERS: The 235U in this standard is depleted. The certified abundances in Atom % are as follows:

Natural A	Abundance
-----------	-----------

IV's Certified Abundance

	Isotope	Atom %	Atom %
Uranium	²³⁸ U	99.3	99.8 ± 0.1
	²³⁵ U	0.70	0.204 ± 0.002

11.0 DATE OF CERTIFICATION AND PERIOD OF VALIDITY

- 11.1 IV Shelf Life The period of time during which the concentration of the analyte(s) in a properly packaged, unopened, and unused standard stored under environmentally controlled and monitored conditions will remain within the specified uncertainty range. Shelf life is limited primarily by transpiration (loss of water from the solution) and infrequently, by chemical instability. Transpiration studies (P-SP01020) of chemically-stable solutions performed at Inorganic Ventures / IV Labs indicate a CRM shelf-life of four years for solutions packaged in 500-mL low density polyethylene bottles. When stored under special conditions that minimize transpiration and instability, the shelf life can be extended past this limit.
- 11.2 Expiration Date The date after which a CRM should not be used. Routine laboratory use of a CRM increases transpiration losses and the chance of contamination which affect the integrity of the CRM and limit its useful life. Inorganic Ventures / IV Labs concurs with state and federal regulatory agencies' recommendations that solution standards be assigned a one-year expiration date.

Certification Date: June 10, 2003

Expiration Date:

142005

12.0 NAMES AND SIGNATURES OF CERTIFYING OFFICERS

Certificate Prepared By:

JoAnn Struthers, QA Administrative Assistant

Certificate Approved By:

Katalin Le. QC Supervisor

Certifying Officer:

Paul Gaines, Chemist, Senior Technical Director

folh Statlers unonen an Paul Aain

1.0

inorganic ventures / iv labs

195 lehigh avenue, suite 4, lakewood, nj 08701 usa phone: 800-669-6799 • 732-901-1900 • fax: 732-901-1903 e-mail: ivsales@ivstandards.com • website: www.ivstandards.com

certificate of analysis

Inorganic Ventures / IV Labs Is an ISO Guide 34-2000 Certified Reference Material (CRM) Manufacturer:

Certificate #883-02. The certificate is designed and the certified value(s) and uncertainty(ies) are
determined in accordance with ISO Guide 31-2000 (Reference Materials - Contents of certificates and label(s),
ISO Guide 34-2000 "Quality System Guidelines for the Production of Reference Materials," and ISO Guide 35-1989
"Certification of Reference Materials - General and Statistical Principles."

0	DESCRIPTION OF CRM	Custom-Grade 1000 µg/n	nL Tungsten in 1% (abs) HNO₃/1% (abs) HF
	Catalog Number: Lot Number: Starting Material: Starting Material Purity (%):	CGW1-1 and CGW1-5 W-W01080 W Powder 99.990703	INORGANIC LABS/RADCHEM LABS 19-10-6 DATE RECEIVED: 07/31/03 DATE EXPIRED: 08/01/004 V05 DATE OPENED: 08/01/03 INORG: 4303 PD: E50383
	Starting Material Lot No Matrix:	21418,C31H46,D02J21, 1% (abs) HNO ₃ /1%	•

.0 CERTIFIED VALUES AND UNCERTAINTIES

Certified Concentration:

 $1001 \pm 2 \mu g/mL$

Certified Density:

1.006 g/mL (measured at 22° C)

The Certified Value is based upon the most precise method used to analyze this CRM. The following equations are used in the calculation of the certified value and the uncertainty:

Certified Value (C) = erx

(C) = mean

n

X_i = Individual results

n = number of measurements

Uncertainty (±) = $2[(\alpha + s)]^{1/2}$

31/2

IS = The summation of all significant estimated errors.

(Most common are the errors from instrumental measurement,

(Most common are the error strom instrumental measurement, weighing, distribution to volume, and the fixed error reported on the

NIST SRM certificate of analysis.)

4.0 TRACEABILITY TO NIST AND VALUES OBTAINED BY INDEPENDENT METHODS

□ "Property of the result of a measurement or the value of a standard whereby it can be related to stated references, usually national or international standards, through an unbroken chain of comparisons all having stated uncertainties." (ISO VIM, 2nd ed., 1993, definition 6.10)

☐ This IV product is Traceable to NIST via direct comparison to NIST SRMs. The uncertainties for each certifled value are reported, taking into account the SRM uncertainty error and the measurement, weighing and volume dilution errors.

4.1 Assay Method #1

1001 ± 2 µg/mL (Avg 2 runs)

ICP Assay NIST SRM 3163 Lot Number: 990209

Assay Method #2

1000 µg/mL

Gravimetric NIST SRM Lot Number: See Sec. 4.2

- 4.2 BALANCE CALIBRATION All balances are checked daily using in-house procedure number 6-IMM-001. The weights used for testing are annually compared to Gerhart Scale Corporation's master weights and are traceable to the National Institute of Standards and Technology (NIST). The NIST Traceability numbers are 692476 Class 1 and 692476A Class 2. The NIST test number is 822/260017-98. All analytical balances are calibrated every 4 months by Gerhart Scale Corp. of South Amboy. The balances are calibrated with a class 1 and/or class 2 analytical weight set. These weights are tested annually by a NIST / NVLAP accredited calibration lab. The NIST test number is 822/260017-98.
- 4.3 THERMOMETER CALIBRATION The thermometers used in the determination of the final densities are calibrated vs standard thermometer No. 903-2680 which was certified in accordance with the procedures outlined by ASTM E77-87 and NIST Monograph 150 using NIST Test Nos. and Std Nos.: 769543, 217368/769543, 217368/P14452, 176240/P14452, 176240. The in-house procedure No. Is 2-QC-001. Thermometers which are not calibrated vs standard thermometer No. 903-2680 are traceable to NIST Identification Nos. 92564, 119016, 471047 and NIST test report Nos. 811/258522, 811/2557078, and 236090.
- 4.4 GLASSWARE CALIBRATION In-house procedure 3-QC-002 is used to calibrate all Class A Glassware used in the manufacture and quality control of Custom Grade Standards.

5.0 TRACE METALLIC IMPURITIES (TMI) DETERMINED BY ICP/MS AND ICP-OES IN μg/mL

Custom-Grade solutions are tested for trace metallic impurities by Axial ICP-OES and ICP-MS. The result from the most sensitive method for each element, is reported below. Solutions tested by ICP-MS were analyzed in an ULPA-Filtered Clean Room. An ULPA-Filter is 99.9985% efficient for the removal of particles down to 0.3 µm.

<u>O</u> AJ 0.01792	<u>M</u> Dy < 0.00595	<u>O</u> Li < 0.00008	<u>M</u> Pr < 0.00030	<u>M</u> Te < 0.02974
M Sb < 0.00050	<u>M</u> Er < 0.00496	<u>M</u> Lu < 0.00040	i Re	<u>M</u> Tb < 0.00030
M As < 0.00991	<u>M</u> Eu < 0.00297	O Mg 0.00120	M Rh < 0.00099	<u>M</u> TI < 0.00099
<u>M</u> Ba < 0.00991	M Gd < 0.00099	M Mn < 0.00397	M Rb < 0.00099	<u>M</u> Th < 0.00099
<u>M</u> Be < 0.00050	<u>M</u> Ga < 0.00099	<u>O</u> Hg < 0.04778	M Ru < 0.00198	<u>M</u> Tm < 0.00040
M Bi < 0.00040	<u>M</u> Ge < 0.00595	<u>M</u> Mo 0.00050	M Sm < 0.00099	<u>M</u> Sn < 0.00496
O B < 1.19460	M Au < 0.00297	M Nd < 0.00198	O Sc < 0.00036	<u>M</u> Ti 0.00198
M Cd < 0.00297	<u>M</u> Hf < 0.00198	M Ni < 0.00793	<u>M</u> Se < 0.00793	<u>s</u> w
O Ca 0.00080	<u>M</u> Ho < 0.00050	O Nb < 0.06371	O Si < 0.01354	<u>M</u> U < 0.00198
<u>M</u> Ce < 0.00496	<u>M</u> In < 0.00991	n Os	M Ag < 0.00198	M V < 0.00198
M Cs < 0.00030	M ir < 0.00496	M Pd < 0.00496	<u>O</u> Na 0.04778	<u>M</u> Yb < 0.00099
M Cr < 0.00496	<u>O</u> Fe < 0.03982	<u>n</u> P	M Sr < 0.00050	<u>M</u> Y < 0.03965
M Co < 0.00297	M La < 0.00050	M Pt < 0.00198	<u>n</u> \$	<u>M</u> Zn < 0.01983
M Cu < 0.00595	<u>M</u> Pb 0.00060	<u>O</u> K 0.03146	<u>O</u> Ta < 0.39820	<u>M</u> Zr 0.00079
M - Checked by ICP-MS	O - Checked by ICP-OES	i - Spectral Interference	n - Not Checked For	s - Solution Standard Element

6.0 INTENDED USE

For the calibration of analytical instruments including but not limited to the following:

ICP-MS, ICP-OES, FAAS, GFAA, XRF, and DCP

For the validation of analytical methods

For the preparation of "working reference samples"

For interference studies and the determination of correction coefficients

For detection limit and linearity studies

For additional intended uses, contact IV Technical Staff

7.0 INSTRUCTIONS FOR THE CORRECT USE OF THIS REFERENCE MATERIAL

Storage & Handling - Keep tightly sealed when not in use. Store and use at 20 ± 4 €. Do not pipet from container. Do not raturn portions removed for pipetting to container.

Atomic Weight; Valence; Coordination Number; Chemical Form in Solution - 183.85, +6; 6,7,8,9 WOF, "(chemical form as received)

Chamical Competibility - W is very readily hydrolyzed requiring 0.1 to 1% HF solutions for stable acidic solutions. The WOF, is soluble in % levels of HCI and HNO, provided it is in the WOF, form. Stable at ppm levels with some metals provided it is

fluorinated. Do not mix with Alkaline or Rare Earths. Is best to be mixed only with other fluorinated metals (Ti, Zr, Hf, Nb, Ta, Mo, Si, Sn, Ge). Look for yellow WO, precipitate if mixed with other transition elements at higher levels indicating instability. The yellow WO, will form over a period of weeks even in trace HF, therefore, HF levels of W multi-element blends should be - 1 %. Stability - 2-100 ppb levels stable (Alone or mixed with all other metals that are at comparable levels) as the WOF, for months in 1% HNO, / LDPE container. 1-10,000 ppm single element solutions as the WOF, chemically stable for years in 1% HF in an

LDPE container. W Containing Samples (Preparation and Solution) - Metal (Solutie in HF / HNO.); Oxide (Solutie in HF or NH.OH); Organic Matrices (Dry ash at 450 € in Pt* and dissolve oxide with HF).

Atomic Spectroscopic Information (ICP-OES B.L.s are given as radial/axial view):

Techniqu	eALine	Estimated D.L.	Order	Type	Interferences (underlined indicates severe at afforcs.)								
ICP-OES	207.911 nm	0.03 / 0.001 µg/mL	1	ion	Ru, In								
ICP-OES	224.875 nm	0.05 / 0.005 µg/mL	1	ion	Co, Rh, Ag								
ICP-OES	209.475 nm	0.05 / 0.005 ug/mL	1	ion	Mo								
ICP-MS	182 amu	5 ppt	n/a	Μ'	'"Er"O								

HF Note: This standard should not be prepared or stored in glass.

- 8.0 HAZARDOUS INFORMATION - Please refer to the enclosed Material Saftey Data sheet for information regarding this CRM.
- 9.0 HOMOGENEITY - This solution was mixed according to procedure IV-MPM-004 and is guaranteed to be homogeneous.

10.0 **QUALITY STANDARD DOCUMENTATION**

10.1 ISO 9001:2000 Quality Management System Registration - QMI Certificate Number 010105 Recognized by:

Registrar Accreditation Board (ANSI-RAB)

Standards Council of Canada (SCC)

Dutch Council for Accreditation (RVA)

Entidad Mexicana de Acreditacion, a.c.(EMA)

Members of IQ Net International Certification Network:

Argentina (IRAM), Australia (QAS), Austria (ÖQS), Belgium (Avinter), Brazil (FCAV), Canada (QMI), Hong Kong (HKQAA). Columbia (ICONTEC), Czech Republic (CQS), Denmark (DS), Finland (SFS), France (AFAQ), Germany (DQS), Greece (ELOT), Hungary (MSZT), Ireland (NSAI), Israel (SII), Italy (CISQ), Japan (JQA), Korea (KSA-QA), Netherlands (KEMA), Norway (NCS), Poland(PCBC), Portugal (APCER), Singapore (PSB), Slovenia (SIQ), Spain (AENOR), Switzerland (SQS) ISO/IEC 17025 - 1999 "General Requirements for the Competence of Testing and Calibration"

- Chemical Testing - Accredited A2LA Certificate Number 883.01

10.3 ISO/IEC Guide 34 - 2000 "General Requirements for the Competence of Reference Material Producers"

- Reference Materials Production - Accredited A2LA Certificate Number 883.02

A2LA Mutual Recognition Agreement Partners:

Australia (NATA), Austria (BrwA), Belgium (BELTEST) (BKO-OBE), Canada (SCC), Chinese Taipel (CNLA), Czech Republic (NAO), Denmark (DANAK), Finland (FINAS), France (COFRAC), Germany (DAR), Hong Kong (HKAS, Ireland (NAB), Italy (SIT) (SINAL), Japan (JAB) (JNLA), Republic of Korea (KOLAS), The Netherlands (RvA), New Zealand (IANZ), Norway (NA), Portugal (IPQ), Singapore (SAC-SINGLAS), Spain (ENAC), Sweden (SWEDAC), Switzerland (SAS), United Kingdom (UKAS) and United States (NVLAP) (ICBO ES)

- 10.4 10CFR50 Appendix B Nuclear Regulatory Commission
 - Domestic Licensing of Production and Utilization Facilities
- 10.5 10CFR21 Nuclear Regulatory Commission Reporting Defects and Non-Compliance
- 10.6 MIL-STD-45662A (Obsolete/Observed)

INOF	RGANIC	LABSA	RADCHEM	LABS	Pg. 2 of 2
DATE	RECEIV	ED:	07/31X	23	
DATE	EXPIRE	ED:	08/01/6	1004	vos
DATE	OPENE);	08/01/	3	
INORG	3: 4a0	3	PO: F5		

11.0 DATE OF CERTIFICATION AND PERIOD OF VALIDITY

- 11.1 IV Shelf Life The period of time during which the concentration of the analyte(s) in a properly packaged, unopened, and unused standard stored under environmentally controlled and monitored conditions will remain within the specified uncertainty range. Shelf life is limited primarily by transpiration (loss of water from the solution) and infrequently, by chemical instability. Transpiration studies (P-SP01020) of chemically-stable solutions performed at Inorganic Ventures / IV Labs indicate a CRM shelf-life of four years for solutions packaged in 500-mL low density polyethylene bottles. When stored under special conditions that minimize transpiration and instability, the shelf life can be extended past this limit.
- 11.2 Expiration Date The date after which a CRM should not be used. Routine laboratory use of a CRM increases transpiration losses and the chance of contamination which affect the integrity of the CRM and limit its useful life. Inorganic Ventures / IV Labs concurs with state and federal regulatory agencies' recommendations that solution standards be assigned a one-year expiration date.

Certification Date: February 10, 2003

Expiration Date:

122004-

12.0 NAMES AND SIGNATURES OF CERTIFYING OFFICERS

Certificate Prepared By:

JoAnn Struthers, QA Administrative Assistant

Certificate Approved By:


Katalin Le, QC Supervisor

Certifying Officer:

Paul Gaines, Chemist, Senior Technical Director

knowlin a

Paux dains

inorganic ventures / iv labs

195 lehigh avenue, suite 4, lakewood, nj 08701 usa phone: 800-669-6799 • 732-901-1900 • fax: 732-901-1903 e-mail: ivsales@ivstandards.com • website: www.ivstandards.com

certificate of analysis

1.0 Inorganic Ventures / IV Labs is an ISO Guide 34-2000 Certified Reference Material (CRM) Manufacturer: Certificate #883-02. The certificate is designed and the certified value(s) and uncertainty(ies) are determined in accordance with ISO Guide 31-2000 (Reference Materials - Contents of certificates and label(s), ISO Guide 34-2000 "Quality System Guidelines for the Production of Reference Materials," and ISO Guide 35-1989 "Certification of Reference Materials - General and Statistical Principles."

2.0 DESCRIPTION OF CRM Custom-Grade 1000 µg/mL Yttrium in 1.4% (abs) HNO3

Catalog Number:

CGY1-1, CGY1-2, and CGY1-5

Lot Number:

X-QY01101

Starting Material:

Y2O3

Starting Material Purity (%): Starting Material Lot No

99.999727 9918901OYL

Matrix:

1.4% (abs) HNO3

3.0 CERTIFIED VALUES AND UNCERTAINTIES

Certified Concentration:

1006 ± 2 µg/mL

Certified Density:

1.010 g/mL (measured at 22° C)

The Certified Value is based upon the most precise method used to analyze this CRM. The following equations are used in the calculation of the certified value and the uncertainty:

Certified Value (C) = exx

(C) = mean

h

x_i = individual results

n = number of measurements

Uncertainty $(\pm) = 2[(ers)]^{16}$

BS = The summetion of all significant estimated errors.

(Most common are the errors from instrumental measurement, weighing, ciliution to volume, and the fixed error reported on the

NIST SRM certificate of analysis.)

The independent samples t-test was used to determine if there is agreement between the above assay methods at the 95% confidence interval. Both methods were compared and showed agreement within the stated uncertainties. This agreement is a confirmation of the accuracy of this CRM.

4.0 TRACEABILITY TO NIST AND VALUES OBTAINED BY INDEPENDENT METHODS

□ "Property of the result of a measurement or the value of a standard whereby it can be related to stated references, usually national or international standards, through an unbroken chain of comparisons all having stated uncertainties." (ISO VIM, 2nd ed., 1993, definition 6.10)

☐ This IV product is Traceable to NIST via direct comparison to NIST SRMs. The uncertainties for each certified value are reported, taking into account the SRM uncertainty error and the measurement, weighing and volume dilution errors.

4.1

Assay Method #1

1004 ± 4 µg/mL

ICP Assay NIST SRM 3167a Lot Number: 790412

Assay Method #2

1006 ± 2 µg/mL

EDTA NIST SRM 928 Lot Number: 880710

INDRGANIC LABSA	/RADCHEM LABS Ps. 246
DATE DECEIVED:	03/30/04
DATE EXPIRED:	04/01/2005 YOU 03/30/04
DATE OPENED:	03/30/04
INORG: 4513	PO: F53361

- 4.2 BALANCE CALIBRATION All balances are checked daily using in-house procedure number 6-IMM-001. The weights used for testing are annually compared to Gerhart Scale Corporation's master weights and are traceable to the National Institute of Standards and Technology (NIST). The NIST Traceability numbers are 692476 Class 1 and 692476A Class 2. The NIST test number is 822/260017-98. All analytical balances are calibrated every 4 months by Gerhart Scale Corp. of South Amboy. The balances are calibrated with a class 1 and/or class 2 analytical weight set. These weights are tested annually by a NIST / NVLAP accredited calibration lab. The NIST test number is 822/260017-98.
- 4.3 THERMOMETER CALIBRATION The thermometers used in the determination of the final densities are calibrated vs standard thermometer No. 903-2680 which was certified in accordance with the procedures outlined by ASTM E77-87 and NIST Monograph 150 using NIST Test Nos. and Std Nos.: 769543, 217368/769543, 217368/P14452, 176240/P14452, 176240. The in-house procedure No. is 2-QC-001. Thermometers which are not calibrated vs standard thermometer No. 903-2680 are traceable to NIST Identification Nos. 92564, 119016, 471047 and NIST test report Nos. 811/258522, 811/2557078, and 236090.
- 4.4 GLASSWARE CALIBRATION In-house procedure 3-QC-002 is used to calibrate all Class A Glassware used in the manufacture and quality control of Custom Grade Standards.

5.0 TRACE METALLIC IMPURITIES (TMI) DETERMINED BY ICP/MS AND ICP-OES IN µg/mL

Custom-Grade solutions are tested for trace metallic impurities by Axial ICP-OES and ICP-MS. The result from the most sensitive method for each element, is reported below. Solutions tested by ICP-MS were analyzed in an ULPA-Filtered Clean Room. An ULPA-Filter is 99.9985% efficient for the removal of particles down to 0.3 µm.

ō	Al		0.00024		М	Dy	<	0.00595	ō	Li	<	0.00002	M	Pr	<	0.00030	M	Те	<	0.02976	
ō	Sb	<	0.01000		М	Εr	<	0.00496	М	Lu	<	0.00040	M	Re	<	0.00099	<u>M</u>	Tb	<	0.00030	
M	As	<	0.00992	İ	M	Eu	<	0.00298	Q	Mg		0.00015	M	Rh	<	0.00099	М	TI	<	0.00099	
M	Ba	<	0.00992		M	Gd	<	0.00099	Q	Mn	<	0.00002	М	Rb	<	0.00099	M	Th	<	0.00099	
M	Be	<	0.00050		M	Ga	<	0.00099	Q	Hg	<	0.02000	M	Ru	<	0.00198	М	Tm	<	0.00040	
M	Bi	<	0.00040		M	Ge	<	0.00595	М	Мо	<	0.00198	M	Sm	<	0.00099	M	Sn	<	0.00496	
Q	В		0.00013		Μ	Αu	<	0.00298	M	Nd	<	0.00198	Q	Sc	<	0.00003	M	Ti	<	0.04959	
M	Cd	<	0.00298		M	Hf	<	0.00198	M	Ni	<	0.00794	M	Se	<	0.00794	М	W	<	0.00992	
ō	Ca		0.00100		M	Но	<	0.00050	<u>M</u>	Nb	<	0.00050	Q	Si		0.00170	М	U	<	0.00198	
М	Се	<	0.00496		М	In	<	0.00992	<u>n</u>	Os			Q	Ag	<	0.02000	ō	٧	<	0.00080	
M	Cs	<	0.00030	Ì	M	ir	<	0.00496	Q	Pd	<	0.10000	<u>0</u>	Na	<	0.05000	<u>M</u>	Yb	<	0.00099	
M	Cr	<	0.00496		<u>o</u>	Fe		0.00070	Q	P	<	0.07000	Q	Sr	<	0.00004	<u>s</u>	Y			
M	Co	<	0.00298		M	La	<	0.00050	M	Pt	<	0.00198	Q	\$	<	0.04300	<u>o</u>	Zn		0.00025	
M	Cu	<	0.00595		M	Pb	<	0.00298	<u>0</u>	κ	<	0.10000	M	Та	<	0.00694	Q	Zr	<	0.00070	
M - (Check	ed	by ICP-MS		٥.	Chec	ke	by ICP-OES	i-S	pect	al I	nterference	n - l	Not C	Che	cked For	s - 3	Soluti	on:	Standard Elemen	ŧ

6.0 INTENDED USE

For the calibration of analytical instruments including but not limited to the following:

ICP-MS, ICP-OES, FAAS, GFAA, XRF, and DCP

For the validation of analytical methods

For the preparation of "working reference samples"

For interference studies and the determination of correction coefficients

For detection limit and linearity studies

For additional intended uses, contact IV Technical Staff

7.0 INSTRUCTIONS FOR THE CORRECT USE OF THIS REFERENCE MATERIAL

Storage & Handling - Keep tightly sealed when not in use. Store and use at 20 ± 4 €. Do not pipet from container. Do not return portions removed for pipetting to container.

Atomic Weight; Valence; Coordination Number; Chemical Form in Solution - 88.9059; +3; 6; Y(OH)(H,O),*2

Chemical Competibility - Soluble in HCl, H,SO, and HNO₁. Avoid HF, H,PO, and neutral to besic media. Stable with most metals and inorganic anions forming an insoluble carbonate, oxide, coalate, and fluoride. Avoid mixing with elements / solutions containing moderate amounts of fluoride.

Stability - 2-100 ppb levels stable for months in 1% HINO, /LDPE container. 1-10,000 ppm solutions chemically stable for years in 2-5% HINO, /LDPE container.

Y Containing Samples (Preparation and Solution) - Metal (Soluble in acids), Oxide (Dissolve by heating in H,O/HNO,) Ores (Carbonate fusion in Pt* followed by HCl dissolution), Organic Matrices (Dry ash and dissolve in 1:1 H,O/HCl or HNO,).

Atomic Spectroscopic Information (ICP-OES D.L.s are given as radial/axial view):

Techniqu	e/Line	Estimated D.L.	Order	Type	Interferences (underlined indicates severe at allores.)
ICP-OES	360.073 nm	0.005 / 0.000036 µg/mL	1	ion	Ce, Th
ICP-OES	371.030 nm	0.004 / 0.00007 µg/mL	1	ion	Ce
ICP-OES	377.433 nm	0.005 / 0.0009 µg/mL	1	ion	Ta, Th
ICP-MS	89 amu	0.8 ppt	n/a	M'	™Gero, ™Hfr²

- 8.0 HAZARDOUS INFORMATION Please refer to the enclosed Material Saftey Data sheet for information regarding this CRM.
- 9.0 HOMOGENEITY This solution was mixed according to procedure IV-MPM-004 and is guaranteed to be homogeneous.

10.0 QUALITY STANDARD DOCUMENTATION

10.1 ISO 9001:2000 Quality Management System Registration - QMI Certificate Number 010105 Recognized by:

Registrar Accreditation Board (ANSI-RAB)

Standards Council of Canada (SCC)

Dutch Council for Accreditation (RVA)

Entidad Mexicana de Acreditacion, a.c.(EMA)

Members of IQ Net International Certification Network:

Argentina (IRAM), Australia (QAS), Austria (ÖQS), Belgium (Avinter), Brazil (FCAV), Canada (QMI), Hong Kong (HKQAA), Columbia (ICONTEC), Czech Republic (CQS), Denmark (DS), Finland (SFS), France (AFAQ), Germany (DQS), Greece (ELOT), Hungary (MSZT), Ireland (NSAI), Israel (SII), Italy (CISQ), Japan (JQA), Korea (KSA-QA), Netherlands (KEMA), Norway (NCS),

Poland(PCBC), Portugal (APCER), Singapore (PSB), Slovenia (SIQ), Spain (AENOR), Switzerland (SQS) 10.2 ISO/IEC 17025 - 1999 "General Requirements for the Competence of Testing and Calibration"

- Chemical Testing - Accredited A2LA Certificate Number 883.01

- 10:3 ISO/IEC Guide 34 2000 "General Requirements for the Competence of Reference Material Producers"
 - Reference Materials Production Accredited A2LA Certificate Number 883.02

A2LA Mutual Recognition Agreement Partners:

Australia (NATA), Austria (BmwA), Belgium (BELTEST) (BKO-OBE), Canada (SCC), Chinese Talpei (CNLA), Czech Republic (NAO), Denmark (DANAK), Finland (FINAS), France (COFRAC), Germany (DAR), Hong Kong (HKAS, Ireland (NAB), Italy (SIT) (SINAL), Japan (JAB) (JNLA), Republic of Korea (KOLAS), The Netherlands (RvA), New Zealand (IANZ), Norway (NA), Portugal (IPQ), Singapore (SAC-SINGLAS), Spain (ENAC), Sweden (SWEDAC), Switzerland (SAS), United Kingdom (UKAS) and United States (NVLAP) (ICBO ES)

- 10.4 10CFR50 Appendix B Nuclear Regulatory Commission
 - Domestic Licensing of Production and Utilization Facilities
- 10.5 10CFR21 Nuclear Regulatory Commission Reporting Defects and Non-Compliance
- 10.6 MIL-STD-45662A (Obsolete/Observed)

	RADCHEM LABS 13- 24-2
DATE RECEIVED:	03/30/04 04/01/3005 vos
DATE EXPIRED:	04/01/2005 VO
DATE OFENED:	03/30/04
INORG: 4513	FO: F53361

11.0 DATE OF CERTIFICATION AND PERIOD OF VALIDITY

- 11.1 IV Shelf Life The period of time during which the concentration of the analyte(s) in a properly packaged, unopened, and unused standard stored under environmentally controlled and monitored conditions will remain within the specified uncertainty range. Shelf life is limited primarily by transpiration (loss of water from the solution) and infrequently, by chemical instability. Transpiration studies (P-SP01020) of chemically-stable solutions performed at Inorganic Ventures / IV Labs indicate a CRM shelf-life of four years for solutions packaged in 500-mL low density polyethylene bottles. When stored under special conditions that minimize transpiration and instability, the shelf life can be extended past this limit.
- 11.2 Expiration Date The date after which a CRM should not be used. Routine laboratory use of a CRM increases transpiration losses and the chance of contamination which affect the integrity of the CRM and limit its useful life. Inorganic Ventures / IV Labs concurs with state and federal regulatory agencies' recommendations that solution standards be assigned a one-year expiration date.

Certification Date: February 24, 2004

Expiration Date:

12.0 NAMES AND SIGNATURES OF CERTIFYING OFFICERS

Certificate Prepared By:

JoAnn Struthers, QA Administrative Assistant

Certificate Approved By:

Katalin Le, QC Manager

Certifying Officer:

Paul Gaines, Chemist, Senior Technical Director

folm Stutten known an Paux Aain

inorganic ventures

195 lehigh avenue, suite 4, lakewood, nj 08701 usa phone: 800-669-6799 • 732-901-1900 • fax: 732-901-1903

e-mail: ivsales@ivstandards.com • website: www.ivstandards.com

certificate of analysis

Inorganic Ventures / IV Labs is an ISO Guide 34-2000 Certified Reference Material (CRM) Manufacturer: 1.0 Certificate #883-02. The certificate is designed and the certified value(s) and uncertainty(ies) are determined in accordance with ISO Guide 31-2000 (Reference Materials - Contents of certificates and label(s), ISO Guide 34-2000 "Quality System Guidelines for the Production of Reference Materials," and ISO Guide 35-1989 "Certification of Reference Materials - General and Statisical Principles."

2.0	DESCRIPTION OF CRM	Custom-Grade	1000 µg/mL Zirconium in H20 tr. HNO3 tr. HF
-----	--------------------	--------------	---

Catalog Number:

CGZR1-1 and CGZR1-5

Lot Number:

W-ZR01056

Starting Material:

ZrO2

Starting Material Purity (%):

99.994542

Starting Material Lot No

22855

Matrix:

3.0

H₂0 tr. HNO₃ tr. HF

INORGANIC LABS/RADCHEM LABSP31013

INORG: 444a PD: F57306

DATE RECEIVED: 01/03/04__

DATE OPENED: _____OI/Q3/OH_

Certified Concentration:

 $1004 \pm 2 \mu g/mL$

Certified Density:

0,999 g/mL (measured at 22° C)

The Certified Value is based upon the most precise method used to analyze this CRM. The following equations are used in the calculation of the certified value and the uncertainty:

Certified Value (C) = exx

(C⊒=mean

CERTIFIED VALUES AND UNCERTAINTIES

x_i = individual results

Uncertainty (±) = $2((2rs))^{2/1/2}$

n = number of measurements

ES = The summation of all significant estimated errors. (Most common are the errors from instrumental measurement, weighing, dilution to volume, and the fixed error reported on the

NIST SRM certificate of analysis.)

TRACEABILITY TO NIST AND VALUES OBTAINED BY INDEPENDENT METHODS 4.0

"Property of the result of a measurement or the value of a standard whereby it can be related to stated references, usually national or international standards, through an unbroken chain of comparisons all having stated uncertainties." (ISO VIM, 2nd ed., 1993, definition 6.10)

☐ This IV product is Traceable to NIST via direct comparison to NIST SRMs. The uncertainties for each certified value are reported, taking into account the SRM uncertainty error and the measurement, weighing and volume dilution errors.

4.1

Assay Method #1

1004 ± 2 µg/mL (Avg 2 runs)

ICP Assay NIST SRM 3169 Lot Number: 990109

Assay Method #2

1000 µg/mL

Gravimetric NIST SRM Lot Number: See Sec. 4.2

- 4.2 BALANCE CALIBRATION All balances are checked daily using in-house procedure number 6-IMM-001. The weights used for testing are annually compared to Gerhart Scale Corporation's master weights and are traceable to the National Institute of Standards and Technology (NIST). The NIST Traceability numbers are 692476 Class 1 and 692476A Class 2. The NIST test number is 822/260017-98. All analytical balances are calibrated every 4 months by Gerhart Scale Corp. of South Amboy. The balances are calibrated with a class 1 and/or class 2 analytical weight set. These weights are tested annually by a NIST / NVLAP accredited calibration lab. The NIST test number is 822/260017-98.
- 4.3 THERMOMETER CALIBRATION The thermometers used in the determination of the final densities are calibrated vs standard thermometer No. 903-2680 which was certified in accordance with the procedures outlined by ASTM E77-87 and NIST Monograph 150 using NIST Test Nos. and Std Nos.: 769543, 217368/769543, 217368/P14452, 176240/P14452, 176240. The in-house procedure No. is 2-QC-001. Thermometers which are not calibrated vs standard thermometer No. 903-2680 are traceable to NIST Identification Nos. 92564, 119016, 471047 and NIST test report Nos. 811/258522, 811/2557078, and 236090.
- 4.4 GLASSWARE CALIBRATION In-house procedure 3-QC-002 is used to calibrate all Class A Glassware used in the manufacture and quality control of Custom Grade Standards.

5.0 TRACE METALLIC IMPURITIES (TMI) DETERMINED BY ICP/MS AND ICP-OES IN µg/mL

Custom-Grade solutions are tested for trace metallic impurities by Axial ICP-OES and ICP-MS. The result from the most sensitive method for each element, is reported below. Solutions tested by ICP-MS were analyzed in an ULPA-Filtered Clean Room. An ULPA-Filter is 99.9985% efficient for the removal of particles down to 0.3 µm.

<u>O</u> Al 0.01416	<u>M</u> Dy < 0.01188	<u>O</u> Li < 0.00012 <u>M</u> Pr < 0.00059	<u>M</u> Te < 0.05942
<u>M</u> Sb < 0.00099	<u>M</u> Er < 0.00990	<u>M</u> Lu < 0.00079 <u>M</u> Re < 0.00198	<u>M</u> Tb < 0.00059
M As < 0.01981	<u>M</u> Eu < 0.00594	<u>Q</u> Mg < 0.00012 <u>M</u> Rh < 0.00198	<u>M</u> TI < 0.00198
M Ba < 0.01981	<u>M</u> Gd < 0.00198	Q Mn < 0.00401 <u>M</u> Rb < 0.00198	<u>M</u> Th < 0.00198
Q Be < 0.40048	<u>M</u> Ga < 0.00198	Q Hg < 0.04405 <u>M</u> Ru < 0.00396	<u>M</u> Tm < 0.00079
<u>M</u> Bi < 0.00079	M Ge < 0.01188	<u>Q</u> Mo < 0.40048 <u>M</u> Sm < 0.00198	<u>M</u> Sn < 0.00990
<u>M</u> B < 0.13864	M Au < 0.00594	<u>M</u> Nd < 0.00396	Q Ti < 0.16019
Q Cd < 0.02123	M Hf 0.04403	<u>Q</u> Ni 0.01214 <u>M</u> Se < 0.01585	<u>M</u> W < 0.01981
<u>O</u> Ca 0.00809	<u>M</u> Ho < 0.00099	<u>Q</u> Nb < 0.08010 <u>Q</u> Si < 0.80096	M U < 0.00396
M Ce < 0.00990	<u>M</u> In < 0.01981	<u>n</u> Os <u>Q</u> Ag < 0.40048	M V < 0.00396
<u>M</u> Cs < 0.00059	M ir < 0.00990	<u>M</u> Pd < 0.00990 <u>Q</u> Na < 0.02803	<u>M</u> Yb < 0.00198
<u>O</u> Cr < 0.00881	Q Fe 0.00344	<u>O</u> P < 0.01922 <u>M</u> Sr < 0.00099	<u>O</u> Y < 0.00401
M Co < 0.00594	M La < 0.00099	M Pt < 0.00396 Q S < 0.28033	<u>Q</u> Zn < 0.04005
M Cu < 0.01188	M Pb < 0.00594	Q K < 0.00681 <u>M</u> Ta < 0.01386	<u>s</u> Zr
M - Checked by ICP-MS	O - Checked by ICP-OES	i - Spectral Interference n - Not Checked For	s - Solution Standard Element

6.0 INTENDED USE

For the calibration of analytical instruments including but not limited to the following:

ICP-MS, ICP-OES, FAAS, GFAA, XRF, and DCP

For the validation of analytical methods

For the preparation of "working reference samples"

For interference studies and the determination of correction coefficients

For detection limit and linearity studies

For additional intended uses, contact IV Technical Staff

7.0 INSTRUCTIONS FOR THE CORRECT USE OF THIS REFERENCE MATERIAL

Storage & Handling - Keep tightly sealed when not in use. Store and use at 20 ± 4 €. Do not pipet from container. Do not return portions removed for pipetting to container.

Atomic Weight; Valence; Coordination Number; Chemical Form in Solution - 91.224; +4; 6,7,8 Zr(F).

Chemical Competibility - Soluble in concentrated HCI, HF, H, SO. (very hot.) and HNO. Avoid H,PO. and neutral to basic media. Unstable at ppm levels with metals that would pull F away (i.e. Do not mix with Alkatine or Rare Earths or high levels of transition elements unless they are fluorinated). Stable with most inorganic anions but precipitation with phosphate, oxalete, and tertrate with a tendency to hydrolyze forming the hydrated oxide in all dilute acids except HF

Stability - 2-100 ppb levels stable (alone or mixed with all other metals that are at comparable levels) as the Zr(F), + Zr(OH),F, + tor months in 1% HNO, / LDPE container. 1-10,000 ppm single element solutions as the Zr(F), - chemically stable for years in 2-5% HNO, /trace HF in an LDPE container.

Zr Containing Samples (Preparation and Solution) - Metal (Soluble in H₂O / HF / HNO₂); Oxide - unlike TiO, the ZrO, is best tused in one of the following ways (Na₂O₂ in Ni*, Na₂CO₂ in Pt* or Borax in Pt*); Organic Matrices (Dry ash at 450 °C in Pt* and dissolve by fusing with Na,CO, and dissolving in HF /HNO, /H,O).

Atomic Spectroscopic Information (ICP-0ES D.L.s are given as radial/axial view):

Techniqu		Estimated D.L.	Order	Type	Interferences (underlined indicates severe et «affoncs.)
ICP-OES	343.823 nm	0.007 / 0.0004 µg/mL	1	ion	Hf, Nb
ICP-OES	339.198 nm	0.008 / 0.0007 µg/mL	1	ion	Th, Mo
ICP-OES	272.261 nm	0.018 / 0.001 µg/mL	1	ion	Cr. V. Th. W
ICP-MS	90 amu	2 ppt	n/a	Μ'	"Ge"O, "Se"O,['"X'' (where X = H1, Ta, V/)]

HF Note: This standard should not be prepared or stored in glass.

- 8.0 HAZARDOUS INFORMATION - Please refer to the enclosed Material Safley Data sheet for information regarding this CRM.
- 9.0 HOMOGENEITY - This solution was mixed according to procedure IV-MPM-004 and is guaranteed to be homogeneous.

10.0 **QUALITY STANDARD DOCUMENTATION**

10.1 ISO 9001:2000 Quality Management System Registration - QMI Certificate Number 010105 Recognized by:

Registrar Accreditation Board (ANSI-RAB) Standards Council of Canada (SCC)

Dutch Council for Accreditation (RVA)

Entidad Mexicana de Acreditacion, a.c.(EMA)

Members of IQ Net International Certification Network:

Argentina (IRAM), Australia (QAS), Austria (ÖQS), Belgium (Avinter), Brazil (FCAV), Canada (QMI), Hong Kong (HKQAA), Columbia (ICONTEC), Czech Republic (CQS), Denmark (DS), Finland (SFS), France (AFAQ), Germany (DQS), Greece (ELOT), Hungary (MSZT), Ireland (NSAI), Israel (SII), Italy (CISQ), Japan (JQA), Korea (KSA-QA), Netherlands (KEMA), Norway (NCS), Poland(PCBC), Portugal (APCER), Singapore (PSB), Slovenia (SIQ), Spain (AENOR), Switzerland (SQS) 10.2 ISO/IEC 17025 - 1999 "General Requirements for the Competence of Testing and Calibration"

- Chemical Testing - Accredited A2LA Certificate Number 883.01

10.3 ISO/IEC Guide 34 - 2000 "General Requirements for the Competence of Reference Material Producers"

- Reference Materials Production - Accredited A2LA Certificate Number 883.02

A2LA Mutual Recognition Agreement Partners:

Australia (NATA), Austria (BmwA), Belgium (BELTEST) (BKO-OBE), Canada (SCC), Chinese Taipei (CNLA), Czech Republic (NAO), Denmark (DANAK), Finland (FINAS), France (COFRAC), Germany (DAR), Hong Kong (HKAS, Ireland (NAB), Italy (SIT) (SINAL), Japan (JAB) (JNLA), Republic of Korea (KOLAS), The Netherlands (RvA), New Zealand (IANZ), Norway (NA), Portugal (IPQ), Singapore (SAC-SINGLAS), Spain (ENAC), Sweden (SWEDAC), Switzerland (SAS), United Kingdom (UKAS) and United States (NVLAP) (ICBO ES)

- 10.4 10CFR50 Appendix B Nuclear Regulatory Commission
 - Domestic Licensing of Production and Utilization Facilities
- 10.5 10CFR21 Nuclear Regulatory Commission Reporting Defects and Non-Compliance
- 10.6 MIL-STD-45662A (Obsolete/Observed)

	RADCHEM LABSP3-3 43
DATE RECEIVED:	01/33/04 200 2006\(d\80
DATE EXPIRED:	08/01/2005 VOS
DATE OPENED:	01/23/04
INORG: 4442	PO: F5336

11.0 DATE OF CERTIFICATION AND PERIOD OF VALIDITY

- 11.1 IV Shelf Life The period of time during which the concentration of the analyte(s) in a properly packaged, unopened, and unused standard stored under environmentally controlled and monitored conditions will remain within the specified uncertainty range. Shelf life is limited primarily by transpiration (loss of water from the solution) and infrequently, by chemical instability. Transpiration studies (P-SP01020) of chemically-stable solutions performed at Inorganic Ventures / IV Labs indicate a CRM shelf-life of four years for solutions packaged in 500-mL low density polyethylene bottles. When stored under special conditions that minimize transpiration and instability, the shelf life can be extended past this limit.
- 11.2 Expiration Date The date after which a CRM should not be used. Routine laboratory use of a CRM increases transpiration losses and the chance of contamination which affect the integrity of the CRM and limit its useful life. Inorganic Ventures / IV Labs concurs with state and federal regulatory agencies' recommendations that solution standards be assigned a one-year expiration date.

Certification Date: March 19, 2003

Expiration Date:

EXPIRES

12.0 NAMES AND SIGNATURES OF CERTIFYING OFFICERS

Certificate Prepared By:

JoAnn Struthers, QA Administrative Assistant

Certificate Approved By:

Katalin Le, QC Supervisor

Certifying Officer:

Paul Gaines, Chemist, Senior Technical Director

folm Stutten known in de Paux Aain

inorganic ventures

195 lehigh avenue, suite 4, lakewood, nj 08701 usa phone: 800-669-6799 • 732-901-1900 • fax: 732-901-1903 e-mail: ivsales@ivstandards.com • website: www.ivstandards.com

certificate of analysis

Inorganic Ventures / IV Labs is an ISO Guide 34-2000 Certified Reference Material (CRM) Manufacturer: 1.0 Certificate #883-02. The certificate is designed and the certified value(s) and uncertainty(ies) are determined in accordance with ISO Guide 31-2000 (Reference Materials - Contents of certificates and label(s), ISO Guide 34-2000 "Quality System Guidelines for the Production of Reference Materials," and ISO Guide 35-1989 "Certification of Reference Materials - General and Statistical Principles."

DESCRIPTION OF CRM Custom-Grade 1000 µg/mL Barium in 0.1% (abs) HNO3 2.0

Catalog Number:

CGBA1-1, CGBA1-2, and CGBA1-5

Lot Number: Starting Material:

W-BA02023 Ba(NO3)2

Starting Material Purity (%):

Starting Material Lot No

99.999730

Matrix:

21879 0.1% (abs) HNO3

INORGANIC LARS/RADCHEM LABS 10-10-2

DATE RECEIVED: __03/35/04

CERTIFIED VALUES AND UNCERTAINTIES 3.0

DATE EXPIRED: 03/01/aco5 V05 DATE OPENED: 03/35/04

Certified Concentration:

 $1001 \pm 1 \mu g/mL$

INORG: 4465 PO: F52333

Certified Density:

0.999 g/mL (measured at 22° C)

The Certified Value is based upon the most precise method used to analyze this CRM. The following equations are used in the calculation of the certified value and the uncertainty:

Certified Value (C) = exx

(C) = mean

x = individual results

Uncertainty (±) = $2(e_1 \cdot s_1)^2 \cdot 1^{4/2}$

n = number of measurements **ES** = The summation of all significant estimated errors.

(Most common are the error sfrom instrumental measurement, weighing, dilution to volume, and the fixed error reported on the

NIST SRM certificate of analysis.)

The independent samples t-test was used to determine if there is agreement between the above assay methods at the 95% confidence interval. Both methods were compared and showed agreement within the stated uncertainties. This agreement is a confirmation of the accuracy of this CRM.

4.0 TRACEABILITY TO NIST AND VALUES OBTAINED BY INDEPENDENT METHODS

"Property of the result of a measurement or the value of a standard whereby it can be related to stated references, usually national or international standards, through an unbroken chain of comparisons all having stated uncertainties." (ISO VIM, 2nd ed., 1993, definition 6.10)

🗓 This IV product is Traceable to NIST via direct comparison to NIST SRMs. The uncertainties for each certified value are reported, taking into account the SRM uncertainty error and the measurement, weighing and volume dilution errors.

4.1

Assay Method #1

998 ± 4 µg/mL

ICP Assay NIST SRM 3104a Lot Number: 992907

Assay Method #2

1001 ± 1 µg/mL

Gravimetric NIST SRM Lot Number: See Sec. 4.2

- 4.2 BALANCE CALIBRATION All balances are checked daily using in-house procedure number 6-IMM-001. The weights used for testing are annually compared to Gerhart Scale Corporation's master weights and are traceable to the National Institute of Standards and Technology (NIST). The NIST Traceability numbers are 692476 Class 1 and 692476A Class 2. The NIST test number is 822/260017-98. All analytical balances are calibrated every 4 months by Gerhart Scale Corp. of South Amboy. The balances are calibrated with a class 1 and/or class 2 analytical weight set. These weights are tested annually by a NIST / NVLAP accredited calibration lab. The NIST test number is 822/260017-98.
- 4.3 THERMOMETER CALIBRATION The thermometers used in the determination of the final densities are calibrated vs standard thermometer No. 903-2680 which was certified in accordance with the procedures outlined by ASTM E77-87 and NIST Monograph 150 using NIST Test Nos. and Std Nos.: 769543, 217368/769543, 217368/P14452, 176240/P14452, 176240. The in-house procedure No. is 2-QC-001. Thermometers which are not calibrated vs standard thermometer No. 903-2680 are traceable to NIST identification Nos, 92564, 119016, 471047 and NIST test report Nos. 811/258522, 811/2557078, and 236090.
- 4.4 GLASSWARE CALIBRATION In-house procedure 3-QC-002 is used to calibrate all Class A Glassware used in the manufacture and quality control of Custom Grade Standards.

5.0 TRACE METALLIC IMPURITIES (TMI) DETERMINED BY ICP/MS AND ICP-OES IN µg/mL

Custom-Grade solutions are tested for trace metallic impurities by Axial ICP-OES and ICP-MS. The result from the most sensitive method for each element, is reported below. Solutions tested by ICP-MS were analyzed in an ULPA-Filtered Clean Room. An ULPA-Filter is 99.9985% efficient for the removal of particles down to 0.3 µm.

Q	ΑI		0.00011	M	Dу	<	0.01269	Q	Li	<	0.00400	M	Pr	<	0.00063	М	Te	<	0.06343
М	Sb	<	0.00106	М	Er	<	0.01057	M	Lu	<	0.00085	<u>M</u>	Re	<	0.00211	<u>0</u>	Tb	<	0.00390
M	As	<	0.02114	Q	Eu	<	0.00040	<u>o</u>	Mg		0.00009	M	Rh	<	0.00211	<u>M</u>	TI	<	0.00211
<u>s</u>	Ва			<u>o</u>	Gd	<	0.00052	M	Mn	<	0.00846	M	Rb	<	0.00211	M	Th	<	0.00211
M	Ве	<	0.00106	M	Ga	<	0.00211	Q	Hg	<	0.01200	M	Ru	<	0.00423	M	Tm	<	0.00085
М	₿i	<	0.00085	М	Ge	<	0.01269	M	Мо	<	0.00423	Q	Sm	<	0.00071	M	Sn	<	0.01057
M	В	<	0.14800	M	Αu	<	0.00634	Q	Nd	<	0.00330	M	Sc	<	0.02114	M	Ti	<	0.10571
M	Cd	<	0.00634	M	Hf	<	0.00423	M	Ni	<	0.01691	M	Se	<	0.01691	M	W	<	0.02114
O	Са		0.00072	М	Но	<	0.00106	M	Nb	<	0.00106	O	Si	<	0.00340	M	U	<	0.00423
<u>M</u>	Се	<	0.01057	M	In	<	0.02114	n	Os			M	Ag	<	0.00423	M	V	<	0.00423
<u>M</u>	Cs	<	0.00063	М	ir	<	0.01057	M	Pd	<	0.01057	М	Na	<	0.21142	M	Yb	<	0.00211
<u>M</u>	Cr	<	0.01057	<u>o</u>	Fe		0.00062	Q	P	<	0.00260	0	Sr		0.00379	Q	Y		0.00040
<u>M</u>	Со	<	0.00634	M	La	<	0.00106	M	Pt	<	0.00423	Q	s	<	0.02500	Q	Zn	<	0.00039
M	Cu	<	0.01269	M	Pb		0.00020	Q	ĸ	<	0.00180	Q	Ta	<	0.00690	M	Zr	<	0.01057
M - C	heck	æd	by ICP-MS	0-	Chec	ked	by ICP-OES	i - S	pecti	al I	nterference	n - 1	lot C	hec	ked For	s - 8	Solutio	n S	Standard Element

6.0 INTENDED USE

For the calibration of analytical instruments including but not limited to the following:

ICP-MS, ICP-OES, FAAS, GFAA, XRF, and DCP

For the validation of analytical methods

For the preparation of "working reference samples"

For interference studies and the determination of correction coefficients

For detection limit and linearity studies

For additional intended uses, contact IV Technical Staff

7.0 INSTRUCTIONS FOR THE CORRECT USE OF THIS REFERENCE MATERIAL

Storage & Handling - Keep tightly sealed when not in use. Store and use at 20 ± 4 °C. Do not pipet from container. Do not return portions removed for pipetting to container.

Atomic Weight; Valence; Coordination Number; Chemical Form in Solution -137.33, +2; 6, 8e(H₂O), 2

Chemical Competibility - Soluble in HCl, and HNO_s. Avoid H₂SO_s. HF and neutral to basic media. Stable with most metals and inorganic anions forming insoluble siticate, carbonate, hydroxide, oxide, fluoride, sulfate, oxalate, dwomate, arsenate, iodate, molybolate, sulfate and fungatete in neutral aqueous media.

Stability - 2-100 ppb levels stable for months in 1% HNO_s / LDPE container, 1 -10,000 ppm solutions chemically stable for years in 1-3.5% HNO_s / LDPE container.

Ba Containing Samples (Preparation and Solution) - Metal(is best dissolved in diluted HNO₂) Ores (Carbonate fusion in Pt^a followed by HCl dissolution. If sulfate is present dissolve the fuseate using HCl /tartaric acid to prevent BaSO₄ precipitate), Organic Matrices (dry ash and dissolve in clitute HCl.)

Atomic Spectroscopic Information (ICP-OES D.L.s are given as radial/axial view):

Technique/Li	ine	Estimated D.L.	Order	Type	Interferences (underlined indicates	severe at validoncs.)
ICP-OES 45	5.403 nm	0.002 / 0.0001 µg/mL	1	ion	Žr, U	
ICP-OES 23	33.527 nm	0.004 / 0.0003 µg/mL	1	ion	·	
ICP-OES 23	30.424 nm	0.004 / 0.0005 µg/ml.	1	ion	Mo, Ir, Co	
ICP-MS 13	38 amu	1 ppt	rva	M'	¹æSh¹ĕO, ¹¤मa®O	

- 8.0 HAZARDOUS INFORMATION Please refer to the enclosed Material Saftey Data sheet for information regarding this CRM.
- 9.0 HOMOGENEITY This solution was mixed according to procedure IV-MPM-004 and is guaranteed to be homogeneous.

10.0 QUALITY STANDARD DOCUMENTATION

10.1 ISO 9001:2000 Quality Management System Registration - QMI Certificate Number 010105

Recognized by:

Registrar Accreditation Board (ANSI-RAB)

Standards Council of Canada (SCC)

Dutch Council for Accreditation (RVA)

Entidad Mexicana de Acreditacion, a.c.(EMA)

Members of IQ Net International Certification Network:

Argentina (IRAM), Australia (QAS), Austria (ÖQS), Belglum (Avinter), Brazil (FCAV), Canada (QMI), Hong Kong (HKQAA), Columbia (ICONTEC), Czech Republic (CQS), Denmark (DS), Finland (SFS), France (AFAQ), Germany (DQS), Greece (ELOT), Hungary (MSZT), Ireland (NSAI), Israel (SI), Italy (CISQ), Japan (JQA), Korea (KSA-QA), Netherlands (KEMA), Norway (NCS), Poland (PCRC), Portugal (APCER), Singapore (PSR), Slovenia (SIQ), Spain (AENOR), Switzerland (SQS)

Poland(PCBC), Portugal (APCER), Singapore (PSB), Slovenia (SIQ), Spain (AENOR), Switzerland (SQS) 10.2 ISO/IEC 17025 - 1999 "General Requirements for the Competence of Testing and Calibration"

- Chemical Testing - Accredited A2LA Certificate Number 883.01

10.3 ISO/IEC Guide 34 - 2000 "General Requirements for the Competence of Reference Material Producers"

- Reference Materials Production - Accredited A2LA Certificate Number 883.02

A2LA Mutual Recognition Agreement Partners:

Australia (NATA), Austria (BmwA), Belgium (BELTEST) (BKO-OBE), Canada (SCC), Chinese Taipei (CNLA), Czech Republic (NAO), Denmark (DANAK), Finland (FINAS), France (COFRAC), Germany (DAR), Hong Kong (HKAS, Ireland (NAB), Italy (SIT) (SINAL), Japan (JAB) (JNLA), Republic of Korea (KOLAS), The Netherlands (RvA), New Zealand (IANZ), Norway (NA), Portugal (IPQ), Singapore (SAC-SINGLAS), Spain (ENAC), Sweden (SWEDAC), Switzerland (SAS), United Kingdom (UKAS) and United States (NVLAP) (ICBO ES)

- 10.4 10CFR50 Appendix B Nuclear Regulatory Commission
 - Domestic Licensing of Production and Utilization Facilities
- 10.5 10CFR21 Nuclear Regulatory Commission Reporting Defects and Non-Compliance
- 10.6 MIL-STD-45662A (Obsolete/Observed)

INORGANIC L	ABS/RADCHEM LABS 13.3 43
DATE RECEIVE	D: <u>co/a5/o</u> 4
DATE EXPIRED	03/ei/a@5_V05
DATE OPENED:	09/35/04
INORG: 4465	5 PO: F59393

DATE OF CERTIFICATION AND PERIOD OF VALIDITY

- 11.1 IV Shelf Life The period of time during which the concentration of the analyte(s) in a properly packaged, unopened, and unused standard stored under environmentally controlled and monitored conditions will remain within the specified uncertainty range. Shelf life is limited primarily by transpiration (loss of water from the solution) and infrequently, by chemical instability. Transpiration studies (P-SP01020) of chemically-stable solutions performed at Inorganic Ventures / IV Labs indicate a CRM shelf-life of four years for solutions packaged in 500-mL low density polyethylene bottles. When stored under special conditions that minimize transpiration and instability, the shelf life can be extended past this limit.
- 11.2 Expiration Date The date after which a CRM should not be used. Routine laboratory use of a CRM increases transpiration losses and the chance of contamination which affect the integrity of the CRM and limit its useful life. Inorganic Ventures / IV Labs concurs with state and federal regulatory agencies' recommendations that solution standards be assigned a one-year expiration date.

Certification Date: July 28, 2003

Expiration Date:

NAMES AND SIGNATURES OF CERTIFYING OFFICERS

Certificate Prepared By:

JoAnn Struthers, QA Administrative Assistant


Certificate Approved By:

Katalin Le, QC Supervisor

Certifying Officer:

Paul Gaines, Chemist, Senior Technical Director

folm Stratten known in Park Lain

2.0

inorganic ventures / iv labs

195 lehigh avenue, suite 4, lakewood, nj 08701 usa phone: 800-669-6799 • 732-901-1900 • fax: 732-901-1903 e-mail: ivsales@ivstandards.com • website: www.ivstandards.com

certificate of analysis

Custom-Grade 1000 µg/mL Beryllium in 2% (abs) HNO3

1.0 Inorganic Ventures / IV Labs is an ISO Guide 34-2000 Certified Reference Material (CRM) Manufacturer: Certificate #883-02. The certificate is designed and the certified value(s) and uncertainty(ies) are determined in accordance with ISO Guide 31-2000 (Reference Materials - Contents of certificates and label(s), ISO Guide 34-2000 "Quality System Guidelines for the Production of Reference Materials," and ISO Guide 35-1989 "Certification of Reference Materials - General and Statistical Principles."

	Catalog Number: Lot Number: Starting Material: Starting Material Purity (%): Starting Material Lot No Matrix:	CGBE1-1, CGBE1-2, a W-BE01104 Be(OOCCH3)2 99.999897 01-10-01 2% (abs) HNO3	INORGANIC LABS/RADCHEM LABS ⁹ \$-1.42
3.0	CERTIFIED VALUES AND U	INCERTAINTIES	DATE EXPIRED: 06/01/2005 VOS
	0-45-40-44	4000 . 4 . 4 .	INORG: 4590 PO: F53393

Certified Density: 1.023 g/mL (measured at 22° C)

 $1007 \pm 4 \mu g/mL$

The Certified Value is based upon the most precise method used to analyze this CRM. The following equations are used in the calculation of the certified value and the uncertainty:

Certified Value (C) = exx

Certified Concentration:

DESCRIPTION OF CRM

(□)I= mean

n

x_i = individual results

n = number of measurements

Uncertainty $(\pm) = 2[(\alpha + 5)^2]^{1/2}$

IS = The summation of all significant estimated errors.

(Most common are the errors from instrumental measurement, weighing, dilution to volume, and the fixed error reported on the

NIST SRM certificate of analysis.)

4.0 TRACEABILITY TO NIST AND VALUES OBTAINED BY INDEPENDENT METHODS

☐ "Property of the result of a measurement or the value of a standard whereby it can be related to stated references, usually national or international standards, through an unbroken chain of comparisons all having stated uncertainties." (ISO VIM, 2nd ed., 1993, definition 6.10)

☐ This IV product is Traceable to NIST via direct comparison to NIST SRMs. The uncertainties for each certified value are reported, taking into account the SRM uncertainty error and the measurement, weighing and volume dilution errors.

4.1

Assay Method #1

1007 ± 4 μg/mL

ICP Assay NIST SRM 3105a Lot Number: 892707

Assay Method #2

1002 µg/mL

Gravimetric NIST SRM Lot Number: See Sec. 4.2

- 4.2 BALANCE CALIBRATION All balances are checked daily using in-house procedure number 6-IMM-001. The weights used for testing are annually compared to Gerhart Scale Corporation's master weights and are traceable to the National Institute of Standards and Technology (NIST). The NIST Traceability numbers are 692476 Class 1 and 692476A Class 2. The NIST test number is 822/260017-98. All analytical balances are calibrated every 4 months by Gerhart Scale Corp. of South Amboy. The balances are calibrated with a class 1 and/or class 2 analytical weight set. These weights are tested annually by a NIST / NVLAP accredited calibration lab. The NIST test number is 822/260017-98.
- 4.3 THERMOMETER CALIBRATION The thermometers used in the determination of the final densities are calibrated vs standard thermometer No. 903-2680 which was certified in accordance with the procedures outlined by ASTM E77-87 and NiST Monograph 150 using NIST Test Nos. and Std Nos.: 769543, 217368/769543, 217368/P14452, 176240/P14452, 176240. The in-house procedure No. is 2-QC-001. Thermometers which are not calibrated vs standard thermometer No. 903-2680 are traceable to NIST Identification Nos. 92564, 119016, 471047 and NIST test report Nos. 811/258522, 811/2557078, and 236090.
- 4.4 GLASSWARE CALIBRATION In-house procedure 3-QC-002 is used to calibrate all Class A Glassware used in the manufacture and quality control of Custom Grade Standards.

5.0 TRACE METALLIC IMPURITIES (TMI) DETERMINED BY ICP/MS AND ICP-OES IN µg/mL

Custom-Grade solutions are tested for trace metallic impurities by Axial ICP-OES and ICP-MS. The result from the most sensitive method for each element, is reported below. Solutions tested by ICP-MS were analyzed in an ULPA-Filtered Clean Room. An ULPA-Filter is 99,9985% efficient for the removal of particles down to 0.3 µm.

			i e	
O0800.0 > IA O	<u>M</u> Dy < 0.01305	Q Li < 0.00002	<u>M</u> Pr < 0.00065	<u>M</u> Te < 0.06525
M Sb < 0.00109	<u>M</u> Er < 0.01087	<u>M</u> Lu < 0.00087	<u>M</u> Re < 0.00218	M Tb < 0.00065
M As < 0.02175	<u>M</u> Eu < 0.00652	Q Mg < 0.00003	M Rh < 0.00218	M TI < 0.00218
<u>M</u> Ba < 0.02175	M Gd < 0.00218	<u>O</u> Mn < 0.00002	M Rb < 0.00218	<u>M</u> Th < 0.00218
<u>s</u> Be	M Ga < 0.00218	Q Hg < 0.01500	<u>M</u> Ru < 0.00435	M Tm < 0.00087
M Bi < 0.00087	M Ge < 0.01305	M Mo < 0.00435	M Sm < 0.00218	<u>M</u> Sn < 0.01087
<u>O</u> B < 0.01200	<u>M</u> Au < 0.00652	M Nd < 0.00435	<u>Q</u> Sc < 0.00009	M Ti < 0.10874
<u>M</u> Cd < 0.00652	M Hf < 0.00435	M Ni < 0.65245	M Se < 0.01740	<u>M</u> W < 0.02175
O Ca 0.00164	<u>M</u> Ho < 0.00109	M Nb < 0.00109	<u>O</u> Si 0.00649	<u>M</u> U < 0.00435
M Ce < 0.01087	<u>M</u> In < 0.02175	<u>n</u> Os	<u>M</u> Ag < 0.00435	<u>M</u> V < 0.00435
M Cs < 0.00065	M ir < 0.01087	M Pd < 0.01087	<u>Q</u> Na 0.00368	<u>M</u> Yb < 0.00218
O Cr < 0.00900	<u>O</u> Fe 0.00268	<u>n</u> P	M Sr < 0.00109	<u>M</u> Y < 0.08699
M Co < 0.00652	<u>M</u> La < 0.00109	M Pt < 0.00435	i s	<u>M</u> Zn < 0.04350
<u>M</u> Cu < 0.01305	<u>M</u> Pb < 0.00652	<u>O</u> K < 0.10000	<u>M</u> Ta < 0.01522	<u>M</u> Zr < 0.01087
M - Checked by ICP-MS	O - Checked by ICP-OES	i - Spectral Interference	n - Not Checked For	s - Solution Standard Element

6.0 INTENDED USE

For the calibration of analytical instruments including but not limited to the following:

ICP-MS, ICP-OES, FAAS, GFAA, XRF, and DCP

For the validation of analytical methods

For the preparation of "working reference samples"

For interference studies and the determination of correction coefficients

For detection limit and linearity studies

For additional intended uses, contact IV Technical Staff

7.0 INSTRUCTIONS FOR THE CORRECT USE OF THIS REFERENCE MATERIAL

Storage & Handling - Keep tightly sealed when not in use. Store and use at 20 ± 4 %. Do not pipet from container. Do not return portions removed for pipetting to container.

Atomic Weight; Valence; Coordination Number; Chamical Form in Solution - 9.01218; +2; 4; Be'(H,O).12

Chemical Compatibility - Soluble in HCl, HNO₃, H₂SO₄ and HF aqueous matrices. Stable with all metals and inorganic anions. Stability - 2-100 ppb levels stable for months in 1 % HNO₃ /LDPE container. 1-10,000 ppm solutions chemically stable for years in 5-10 % HNO₃ /LDPE container.

Be Containing Samples (Preparation and Solution) - Meta I(is best dissolved in diluted H₂SO₂). BeO (boiling nitric, hydrochloric, or sulfuric acids or KHSO₂ fusion). Ores (H₂SO₂)HF digestion or carbonate fusion in Pt^a). Organic Matrices (sulfuric/percycle digestion or nitric/sulfuric/percycle acid decomposition, or dry ashand dissolution according to the BeO procedure above).

MU	Withing about respublic all of the fire - oca prime at a figure of						
	hnique		Estimated D.L.	Order	Type	Interferences (underlined indicates sev	ere at 🕳 Doncs.)
ICP.	-OES	313.042 nm	0.0003 / 0.00009 µg/mL	1	ion	V, Ce, U	
ICP-	-OES	234.861 nm	0.0003 / 0.00016 µg/mL	1	atom	Fe, Ta, Mo	
ICP.	-OES	313.107 nm	0.0007 / 0.0005 µg/mL	1	ion	Ce, Th, Tm	
IÇP-	-MS	9 amu	4 ppt	n/a	M'		

- 8.0 HAZARDOUS INFORMATION Please refer to the enclosed Material Saftey Data sheet for information regarding this CRM.
- 9.0 HOMOGENEITY This solution was mixed according to procedure IV-MPM-004 and is guaranteed to be homogeneous.

10.0 QUALITY STANDARD DOCUMENTATION

10.1 ISO 9001:2000 Quality Management System Registration - QMI Certificate Number 010105 Recognized by:

Registrar Accreditation Board (ANSI-RAB)

Standards Council of Canada (SCC)

Dutch Council for Accreditation (RVA)

Entidad Mexicana de Acreditacion, a.c.(EMA)

Members of IQ Net International Certification Network:

Argentina (IRAM), Australia (QAS), Austria (ÖQS), Belgium (Avinter), Brazil (FCAV), Canada (QMI), Hong Kong (HKQAA), Columbia (ICONTEC), Czech Republic (CQS), Denmark (DS), Finland (SFS), France (AFAQ), Germany (DQS), Greece (ELOT). Hungary (MSZT), Ireland (NSAI), Israel (SII), Italy (CISQ), Japan (JQA), Korea (KSA-QA), Netherlands (KEMA), Norway (NCS), Poland (NCSC), Spring (AFNOR), Suitzerland (SOS)

Poland(PCBC), Portugal (APCER), Singapore (PSB), Slovenia (SIQ), Spain (AENOR), Switzerland (SQS) 10.2 ISO/IEC 17025 - 1999 "General Requirements for the Competence of Testing and Calibration"

- Chemical Testing - Accredited A2LA Certificate Number 883.01

- Reference Materials Production - Accredited A2LA Certificate Number 883.02

A2LA Mutual Recognition Agreement Partners:

Australia (NATA), Austria (BmwA), Belgium (BELTEST) (BKO-OBE), Canada (SCC), Chinese Taipei (CNLA), Czech Republic (NAO), Denmark (DANAK), Finland (FINAS), France (COFRAC), Germany (DAR), Hong Kong (HKAS, Ireland (NAB), Italy (SIT) (SINAL), Japan (JAB) (JNLA), Republic of Korea (KOLAS), The Netherlands (RvA), New Zealand (IANZ), Norway (NA), Portugal (IPQ), Singapore (SAC-SINGLAS), Spain (ENAC), Sweden (SWEDAC), Switzerland (SAS), United Kingdom (UKAS) and United States (NVLAP) (ICBO ES)

- 10.4 10CFR50 Appendix B Nuclear Regulatory Commission
 - Domestic Licensing of Production and Utilization Facilities
- 10.5 10CFR21 Nuclear Regulatory Commission Reporting Defects and Non-Compliance
- 10.6 MIL-STD-45662A (Obsolete/Observed)

11.0 DATE OF CERTIFICATION AND PERIOD OF VALIDITY

- 11.1 IV Shelf Life The period of time during which the concentration of the analyte(s) in a property packaged, unopened, and unused standard stored under environmentally controlled and monitored conditions will remain within the specified uncertainty range. Shelf life is limited primarily by transpiration (loss of water from the solution) and infrequently, by chemical instability. Transpiration studies (P-SP01020) of chemically-stable solutions performed at Inorganic Ventures / IV Labs indicate a CRM shelf-life of four years for solutions packaged in 500-mL low density polyethylene bottles. When stored under special conditions that minimize transpiration and instability, the shelf life can be extended past this limit.
- 11.2 Expiration Date The date after which a CRM should not be used. Routine laboratory use of a CRM increases transpiration losses and the chance of contamination which affect the integrity of the CRM and limit its useful life. Inorganic Ventures / IV Labs concurs with state and federal regulatory agencies' recommendations that solution standards be assigned a one-year expiration date.

Certification Date: January 08, 2004

Expiration Date:

INOF	RGANIC LAB	S/RADCHEM LABS13.3043
DATE	RECEIVED:	06/01/04
DATE	EXPIRED:	06/01/2005 1/05
DATE	OPENED:	06/01/2005 VOS 401/0/30
		FD: F53393

12.0 NAMES AND SIGNATURES OF CERTIFYING OFFICERS

Certificate Prepared By:

Debbie Newman, Production Manager

Certificate Approved By:

Katalin Le, QC Manager

Certifying Officer:

Paul Gaines, Chemist, Senior Technical Director

Leberi Newman Known in Park Haim

inorganic ventures / iv labs

195 lehigh avenue, suite 4, lakewood, nj 08701 usa phone: 800-669-6799 • 732-901-1900 • fax: 732-901-1903

e-mail: ivsales@ivstandards.com • website: www.ivstandards.com

certificate of analysis

CUSTOM-GRADE SOLUTION 1000 µg/mL Chromium +3 in 1.4% HNO₃ (abs)

Catalog Number: CGCR(3)1-1, CGCR(3)1-2 and CGCR(3)1-5

Lot Number: W-QCR02033		INORGANIC LABS/RADCHEM LABS DATE RECEIVED: 11513
Starting Material:		DATE EXPIRED: 10/1004
Starting Material Purity:	99.995%	DATE OPENED:
Starting Material Lot No:	F16l22	INUKU: _42/2

CERTIFIED CONCENTRATION: 995 \pm 3 μ g/mL

The Certified Value is the instrument analysis value. The following equations are used in the calculation of the certified value and the uncertainty:

Certified Value (\bar{x}) = \sum_{x}	Uncertainty (±) = $2[(\sum_{s})^2]^{1/2}$
n	$(n)^{1/2}$

n (n)^{1/2}

(\bar{x}) = mean x_i = individual results n = number of measurements $\sum S_i$ = The summation of all significant estimated errors.

Instrument Analysis: 995 \pm 3 μ g/mL (Avg of 3 runs)

Method: Inductively Coupled Plasma Spectroscopy (ICP) vs NIST SRM 3112a.

Calculated Value: 1002 µg/mL

Method: Calculated, based on starting material.

TRACE METALLIC IMPURITIES DETERMINED BY ICP-MS AND ICP-OES IN µg/mL:

Custom-Grade solutions tested for trace metallic impurities by ICP-MS were analyzed in an ULPA-Filtered Clean Room. An ULPA-Filter is 99.9985% efficient for the removal of particles down to 0.3 μ m.

Q	ΑI	0.0028	M	Dγ	<0.00060	M	Li	< 0.0010	M	Pr	< 0.000030	М	Te	< 0.0030
M	Sb	< 0.000050	M	Er	< 0.00050	M	Lu	< 0.000040	<u>M</u>	Re	< 0.00010	M	Tb	< 0.000030
M	As	< 0.0010	M	Eu	< 0.00030	Q	Mg	< 0.010	M	Rh	< 0.00010	<u>M</u>	TI	< 0.00010
M	₿a	< 0.0010	M	Gd	< 0.00010	<u>o</u>	Mn	< 0.050	<u>M</u>	Rb	0.0066	<u>M</u>	Th	< 0.00010
<u>M</u>	Вe	< 0.000050	M	Ga	0.00070	<u>o</u>	Hg	<0.10	M	Ru	0.017	<u>M</u>	Tm	< 0.000040
M	Bi	< 0.000040	M	Ge	< 0.00060	M	Mo	< 0.00020	<u>M</u>	Sm	< 0.00010	<u>M</u>	Sn	< 0.00050
M	В	< 0.0070	M	Αu	<0.00030	M	Nd	< 0.00020	M	Sc	< 0.0010	<u>M</u>	Ti	< 0.0050
M	Сđ	< 0.00030	<u>M</u>	Hf	< 0.00020	ō	Ni	< 0.10	į	Se	•	M	W	< 0.0010
0	Св	0.0011	M	Ho	< 0.000050	M	Nb	< 0.000050	<u>o</u>	Si	<0.10	M	U	<0.00020
M	Ce	<0.00050	Q	In	< 0.10	n	Os		M	Ag	0.00070	i	٧	
M	Cs	< 0.000030	M	lr	< 0.00050	<u>M</u>	Pd	< 0.00050	<u>o</u>	Na	0.016	M	Yb	< 0.00010
<u>s</u>	Cr		<u>o</u>	Fe	<0.10	i	P		<u>M</u>	Sr	< 0.000050	M	Y	< 0.0040
Q	Co	< 0.10	M	La	< 0.000050	M	Pt	< 0.00020	n	s		<u>o</u>	Zn	<0.10
M	Cu	< 0.00060	M	Pb	0.00039	<u>n</u>	K		M	Ta	< 0.00070	<u>M</u>	Zr	<0.00050
М -	chec	ked by ICP-MS	0 - 0	check	ed by ICP-OES	i - sp	pectra	l interference	n - no	t che	cked for	s - solution	stand	lard element

ANALYZED DENSITY OF SOLUTION (measured at 22°C): 1.010 g/mL

(over)

QA:KSL Rev.080403JTS

Paul R. Haines

Evniree:

EXPIRES

Quality Assurance Manager

QUALITY STANDARD DOCUMENTATION

1. ISO 9001:2000 QMI Registered Quality System (Certificate Number 010105)

Members of IQ Net: Argentina (IRAM), Australia (QAS), Austria (ÖQS), Belgium (Avinter), Brazil (FCAV), Canada (QMI), Hong Kong (HKQAA), Columbia (ICONTEC), Czech Republic (CQS), Denmark (DS), Finland (SFS), France (AFAQ), Germany (DQS), Greece (ELOT), Hungary (MSZT), Ireland (NSAI), Israel (SII), Italy (CISQ), Japan (JQA), Korea (KSA-QA), Netherlands (KEMA), Norway (NCS), Poland(PCBC), Portugal (APCER), Singapore (PSB), Siovenia (SIQ), Spain (AENOR), Switzerland (SQS)

- ISO/IEC Guide 34-2000 "General Requirements for the Competence of Reference Material Producers" Reference Materials Production - Accredited A2LA Certificate 883.02
- ISO/IEC17025-1999 "General Requirements for the Competence of Testing and Calibration" Chemical Testing -Accredited A2LA Certificate 883.01
- 4. MIL-STD-45662A
- 5. 10CFR50 Appendix B Nuclear Regulatory Commission Domestic Licencing of Production and Utilization Facilities
- 10CFR21 Nuclear Regulatory Commission Reporting Defects and Non-Compliance
 Please contact our Quality Assurance Department for further information and copies of documents pertaining to our
 Quality Standard certifications.

STABILITY/ EXPIRATION DOCUMENTATION

Shelf Life - The length of time that a properly stored and packaged standard will remain within the

specified uncertainty. Shelf life is affected by chemical stability and transpiration issues. Inorganic Ventures' Standard Solutions are chemically stable indefinitely. Transpiration loss is linear with time and limits the time a standard can be used with confidence. The smaller the bottle the higher the rate of transpiration. Inorganic Ventures' studies indicate that the shelf life of our 500 mL bottle is 4 years and the shelf life of our 125 mL bottle is 21 months.

Expiration Date - The date after which a standard solution should not be used. A one year expiration date

recommended by most state and federal regulatory agencies. Transpiration issues repeated use of solutions over a one year period may adversely affect the integrity of the

standard.

PACKAGING DOCUMENTATION

Purified acid, 18 megohm double deionized water that has been filtered through a 0.2 µm filter and in-house procedure IV-PACK-001 is used to clean all bottles. Contact us for technical information relating to contamination issues in packaging materials.

GLASSWARE CALIBRATION

In-house procedure 3-QC-002 is used to calibrate all Class A Glassware used in the manufacture and quality control of Custom Grade Standards.

BALANCE CALIBRATION

All balances are checked daily using in-house procedure number 6-IMM-001. The weights used for testing are annually compared to Gerhart Scale Corporation's master weights and are traceable to the National Institute of Standards and Technology (NIST). The NIST Traceability numbers are 428359B and 454678. The NIST test number is 822/260017-98.

All analytical balances are calibrated every 4 months by Gerhart Scale Corp. of South Amboy. The balances are calibrated with a class 1 analytical weight set. These weights are tested annually by a NIST / NVLAP accredited calibration lab. The NIST test number is 822/260017-8.

THERMOMETER CALIBRATION

The thermometers used in the determination of the final densities are calibrated vs standard thermometer No. 903-2680 which was certified in accordance with the procedures outlined by ASTM E77-87 and NIST Monograph 150 using NIST Test Nos. and Std Nos.: 769543, 217368/769543, 217368/P14452, 176240/P14452, 176240. The in-house procedure No. is 2-QC-001. Thermometers which are not calibrated vs standard thermometer No. 903-2680 are traceable to NIST Identification Nos. 92564, 119016, 471047 and NIST test report Nos. 811/258522, 811/2557078, and 236090.

TECHNICAL SUPPORT

All customers are encouraged to contact us for technical support for the proper use of our products.

TEL 1-800-569-6799 INT'L 1-732-901-1900 FAX 1-732-901-1903 E-MAIL IVtech@ivstandards.com

inorganic ventures

195 lehigh avenue, suite 4, lakewood, nj 08701 usa phone: 800-669-6799 • 732-901-1900 • fax: 732-901-1903

e-mail: ivsales@ivstandards.com • website: www.ivstandards.com

certificate of analysis

Inorganic Ventures / IV Labs is an ISO Guide 34-2000 Certified Reference Material (CRM) Manufacturer: 1.0 Certificate #883-02. The certificate is designed and the certified value(s) and uncertainty(ies) are determined in accordance with ISO Guide 31-2000 (Reference Materials - Contents of certificates and label(s), ISO Guide 34-2000 "Quality System Guidelines for the Production of Reference Materials," and ISO Guide 35-1989 "Certification of Reference Materials - General and Statistical Principles."

2.0	DESCRIPTION OF CRM	Custom-Grade 1000 µ	g/mL Copper in 2% (abs) HNO₃
	Catalog Number: Lot Number: Starting Material: Starting Material Purity (%):	CGCU1-1, CGCU1-2 W-CU02064 Cu shot 99.999437	and CGCU1-5
	Starting Material Lot No Matrix:	K09C13 2% (abs) HNO3	INDRGANIC LABS/RADCHEM LABS Pg. 1 of DATE RECEIVED: 03/35/04 DATE EXPIRED: 03/01/2005 VIO
3.0	CERTIFIED VALUES AND	UNCERTAINTIES	DATE OPENED: 03/35/04
	Certified Concentration:	1005 ± 2 µg/mL	INORG: 4469 FO: F53333

1.014 g/mL (measured at 22° C) Certifled Density:

The Certified Value is based upon the most precise method used to analyze this CRM. The following equations are used in the calculation of the certified value and the uncertainty:

Certified Value (CDI = @21X)

DESCRIPTION OF CRM

(C) = mean

x = individual results

Uncertainty $(\pm) = 2[(ars_i)^2]$

n = number of measurements

■S = The summation of all significant estimated errors.

(Most common are the errors from instrumental measurement, weighing, dilution to volume, and the fixed error reported on the

NIST SRM certificate of analysis.)

The Independent samples t-test was used to determine if there is agreement between the above assay methods at the 95% confidence interval. Both methods were compared and showed agreement within the stated uncertainties. This agreement is a confirmation of the accuracy of this CRM.

4.0 TRACEABILITY TO NIST AND VALUES OBTAINED BY INDEPENDENT METHODS

☐ "Property of the result of a measurement or the value of a standard whereby it can be related to stated references, usually national or international standards, through an unbroken chain of comparisons all having stated uncertainties." (ISO VIM, 2nd ed., 1993, definition 6.10)

This IV product is Traceable to NIST via direct comparison to NIST SRMs. The uncertainties for each certified value are reported, taking into account the SRM uncertainty error and the measurement, weighing and volume dilution errors.

4.1 Assay Method #1 $1005 \pm 2 \mu g/mL$

ICP Assay NIST SRM 3114 Lot Number: 891811

Assay Method #2

1005 ± 2 µg/mL

EDTA NIST SRM 928 Lot Number: 880710

- 4.2 BALANCE CALIBRATION All balances are checked daily using in-house procedure number 6-IMM-001. The weights used for testing are annually compared to Gerhart Scale Corporation's master weights and are traceable to the National Institute of Standards and Technology (NIST). The NIST Traceability numbers are 692476 Class 1 and 692476A Class 2. The NIST test number is 822/260017-98. All analytical balances are calibrated every 4 months by Gerhart Scale Corp. of South Amboy. The balances are calibrated with a class 1 and/or class 2 analytical weight set. These weights are tested annually by a NIST / NVLAP accredited calibration lab. The NIST test number is 822/260017-98.
- 4.3 THERMOMETER CALIBRATION The thermometers used in the determination of the final densities are calibrated vs standard thermometer No. 903-2680 which was certified in accordance with the procedures outlined by ASTM E77-87 and NIST Monograph 150 using NIST Test Nos. and Std Nos.: 769543, 217368/769543, 217368/P14452, 176240/P14452, 176240. The In-house procedure No. is 2-QC-001. Thermometers which are not calibrated vs standard thermometer No. 903-2680 are traceable to NIST Identification Nos. 92564, 119016, 471047 and NIST test report Nos. 811/258522, 811/2557078, and 236090.
- 4.4 GLASSWARE CALIBRATION In-house procedure 3-QC-002 is used to calibrate all Class A Glassware used in the manufacture and quality control of Custom Grade Standards.

5.0 TRACE METALLIC IMPURITIES (TMI) DETERMINED BY ICP/MS AND ICP-OES IN µg/mL

Custom-Grade solutions are tested for trace metallic impurities by Axial ICP-OES and ICP-MS. The result from the most sensitive method for each element, is reported below. Solutions tested by ICP-MS were analyzed in an ULPA-Filtered Clean Room. An ULPA-Filter is 99.9985% efficient for the removal of particles down to 0.3 µm.

<u>0</u>	AJ	<	0.00090		M	Dу	<	0.03027	Ō	LI	<	0,00002	M	Pr	<	0.00151	М	Te	<	0.15134	
M	Sb	<	0.00252		M	Er	<	0.02522	М	Lu	<	0.00202	M	Re	<	0.00504	М	Tb	<	0.00151	
M	As	<	0.05045	ļ	М	Eu	<	0.01513	Q	Mg		0.00001	М	Rh	<	0.00504	М	Ti	<	0.00504	
<u>M</u>	Ва	<	0.05045	ļ	М	Gd	<	0.00504	M	Mn	<	0.02018	M	Rb	<	0.00504	<u>M</u>	Th	<	0.00504	
M	Ве	<	0.00252		M	Ga	<	0.00504	<u>o</u>	Hg	<	0.01500	М	Ru	<	0.01009	M	Tm	<	0.00202	
М	Bi	<	0.00202		М	Ge	<	0.03027	М	Мо	<	0.01009	М	Sm	<	0.00504	<u>o</u>	Sn		0.00439	
M	В	<	0.35312		M	Au	<	0.01513	<u>M</u>	Nd	<	0.01009	М	Sc	<	0.05045	М	Ti	<	0.25223	
M	Cd	<	0.01513		M	Hf	<	0.01009	M	Ni	<	0.04036	M	Se	<	0.04036	М	W	<	0,05045	
<u>o</u>	Са		0.00011		M	Но	<	0.00252	M	Nb	<	0,00252	ō	Si	<	0.00340	М	U	<	0.01009	Ì
M	Се	<	0.02522		M	In	<	0.05045	ū	Os			M	Ag	<	0.01009	0	٧	<	0.00300	•
M	Cs	<	0.00151		M	Ir	<	0.02522	M	Pd	<	0.02522	Q	Na		0.00044	М	Yb	<	0.00504	
M	Cr	<	0.02522		0	Fe		0.00054	Q	P	<	0.00260	M	Sr	<	0.00252	М	Y	<	0.20178	
M	Со	<	0.01513		М	La	<	0.00252	<u>M</u>	Pt	<	0.01009	Ū	s			М	Zn	<	0.10089	
<u>s</u>	Cu				M	Pb		0.00050	Q	κ	<	0.00180	M	Ta	<	0.03531	M	Zr	<	0.02522	
M - Checked by ICP-MS O - Checked by ICP-OES i - Spe									pectr	al I	nterference	n - ł	Vot C	hed	cked For	s -	Soluti	on	Standard Element		

6.0 INTENDED USE

For the calibration of analytical instruments including but not limited to the following:

ICP-MS, ICP-OES, FAAS, GFAA, XRF, and DCP

For the validation of analytical methods

For the preparation of "working reference samples"

For interference studies and the determination of correction coefficients

For detection limit and linearity studies

For additional intended uses, contact IV Technical Staff

010353

7.0 INSTRUCTIONS FOR THE CORRECT USE OF THIS REFERENCE MATERIAL

Storage & Handling - Keep tightly sealed when not in use. Store and use at 20 ± 4~6. Do not pipet from container. Do not return portions removed for pipetting to container.

Atomic Weight; Valence; Coordination Number; Chemical Form in Solution - 63.546, +2; 6, Cu(H₂O).

Chemical Competibility - Stable in HCI, HNO₃, H₂SO₄, HF, H₂PO₄. Avoid basic media. Stable with most metals and inorganic enfors in acidic media.

Stability - 2-100 ppb levels stable for months in 1% HNO₃ /LDPE container. 1-10,000 ppm solutions chemically stable for years in 1-5% HNO₃ /LDPE container.

Cu Containing Samples (Preparation and Solution) - Metal (soluble in HNO₂); Oxides (Soluble in HCl); Ores (Dissolve in HCl / HNO₂).

Atomic Spectroscopic Information (ICP-OES D.L.s are given as radial/axiat view):

Technique	/Line	Estimated D.L.	Order	<u>Type</u>	Interferences (underlined indicates severe at affoncs.)
CP-OES	324.754 nm	0.06/.001 µg/ml.	1	atom	Nb, U, Th, Mo, Hf
ICP-OES	224,700 nm	0.01/.001µg/mL	1	ion	<u>Pb,</u> Ir, Ni, W
ICP-OES	219.958 nm	0.01/.002 ua/mL	1	atom	Th, Ta, Nb, U, Hf
ICP-MS	63 amu	10 ppt	n/a	M'	"APANA "Ti "O, "N'"C"CI, "O"C"CI, "Ca "O, "Na"Ca

- 8.0 HAZARDOUS INFORMATION Please refer to the enclosed Material Saftey Data sheet for information regarding this CRM.
- 9.0 HOMOGENEITY This solution was mixed according to procedure IV-MPM-004 and is guaranteed to be homogeneous.
- 10.0 QUALITY STANDARD DOCUMENTATION
 - 10.1 ISO 9001:2000 Quality Management System Registration QMI Certificate Number 010105 Recognized by:

Registrar Accreditation Board (ANSI-RAB)

Standards Council of Canada (SCC)

Dutch Council for Accreditation (RVA)

Entidad Mexicana de Acreditacion, a.c.(EMA)

Members of IQ Net International Certification Network:

Argentina (IRAM), Australia (QAS), Austria (ÖQS), Belgium (Avinter), Brazil (FCAV), Canada (QMI), Hong Kong (HKQAA).

Columbia (ICONTEC), Czech Republic (CQS), Denmark (DS), Finland (SFS), France (AFAQ), Germany (DQS), Greece (ELOT),
Hungary (MSZT), Ireland (NSAI), Israel (SII), Italy (CISQ), Japan (JQA), Korea (KSA-QA), Netherlands (KEMA), Norway (NCS).

Poland(PCBC), Portugal (APCER), Singapore (PSB), Slovenia (SIQ), Spain (AENOR), Switzerland (SQS) 10.2 ISO/IEC 17025 - 1999 "General Requirements for the Competence of Testing and Calibration"

- Chemical Testing - Accredited A2LA Certificate Number 883.01

10.3 ISO/IEC Guide 34 - 2000 "General Requirements for the Competence of Reference Material Producers"

- Reference Materials Production - Accredited A2LA Certificate Number 883.02

A2LA Mutual Recognition Agreement Partners:

Australia (NATA), Austria (BmwA), Belgium (BELTEST) (BKO-OBE), Canada (SCC), Chinese Taipei (CNLA), Czech Republic (NAO), Denmark (DANAK), Finland (FINAS), France (COFRAC), Germany (DAR), Hong Kong (HKAS, Ireland (NAB), Italy (SIT) (SINAL), Japan (JAB) (JNLA), Republic of Korea (KOLAS), The Netherlands (RvA), New Zealand (IANZ), Norway (NA), Portugal (IPQ), Singapore (SAC-SINGLAS), Spain (ENAC), Sweden (SWEDAC), Switzerland (SAS), United Kingdom (UKAS) and United States (NVLAP) (ICBO ES)

- 10.4 10CFR50 Appendix B Nuclear Regulatory Commission
 - Domestic Licensing of Production and Utilization Facilities
- 10.5 10CFR21 Nuclear Regulatory Commission Reporting Defects and Non-Compliance
- 10.6 MIL-STD-45662A (Obsolete/Observed)

INORGANIC LABS.	RADCHEM LABS 73-2 42
DATE RECEIVED:	09/95/04
DATE EXPIRED:	03/01/2005 103
DATE OPENED:	03/35/04
	PD: F53333

DATE OF CERTIFICATION AND PERIOD OF VALIDITY

- 11.1 IV Shelf Life The period of time during which the concentration of the analyte(s) in a properly packaged, unopened, and unused standard stored under environmentally controlled and monitored conditions will remain within the specified uncertainty range. Shelf life is limited primarily by transpiration (loss of water from the solution) and infrequently, by chemical instability. Transpiration studies (P-SP01020) of chemically-stable solutions performed at Inorganic Ventures / IV Labs indicate a CRM shelf-life of four years for solutions packaged in 500-mL low density polyethylene bottles. When stored under special conditions that minimize transpiration and instability, the shelf life can be extended past this limit,
- 11.2 Expiration Date The date after which a CRM should not be used. Routine laboratory use of a CRM increases transpiration losses and the chance of contamination which affect the integrity of the CRM and limit its useful life. Inorganic Ventures / IV Labs concurs with state and federal regulatory agencies' recommendations that solution standards be assigned a one-year expiration date.

Certification Date: May 02, 2003

Expiration Date:

NAMES AND SIGNATURES OF CERTIFYING OFFICERS 12.0

Certificate Prepared By:

JoAnn Struthers, QA Administrative Assistant

Certificate Approved By:

Katalin Le, QC Supervisor

Certifying Officer:

Paul Gaines, Chemist, Senior Technical Director

folm Strutten known in Park Lains

inorganic ventures

195 lehigh avenue, suite 4, lakewood, nj 08701 usa phone: 800-669-6799 • 732-901-1900 • fax: 732-901-1903 e-mail; ivsales@ivstandards.com • website: www.ivstandards.com

certificate of analysis

Inorganic Ventures / IV Labs is an ISO Guide 34-2000 Certified Reference Material (CRM) Manufacturer: 1.0 Certificate #883-02. The certificate is designed and the certified value(s) and uncertainty(les) are determined in accordance with ISO Guide 31-2000 (Reference Materials - Contents of certificates and label(s), ISO Guide 34-2000 "Quality System Guidelines for the Production of Reference Materials," and ISO Guide 35-1989 "Certification of Reference Materials - General and Statistical Principles."

DESCRIPTION OF CRM Custom-Grade 1000 µg/mL Nickel in 1.4% (abs) HNO3 2.0

Catalog Number:

CGNI1-1, CGNI1-2, and CGNI1-5

Lot Number:

W-NI02030

Starting Material:

Ni pieces

Starting Material Purity (%): Starting Material Lot No

99.999371 L06L02

Matrix:

3.0

1.4% (abs) HNO₃

INORGANIC LABS/RADCHEM LABS 6.100

DATE RECEIVED: ____02/25/04

CERTIFIED VALUES AND UNCERTAINTIES

DATE EXPIRED: 03/01/3005 VDS DATE OPENED: _______02/35/04

Certified Concentration:

 $1002 \pm 2 \mu g/mL$

INORG: 4473 PO: F59333

Certified Density:

1.011 g/mL (measured at 22° C)

The Certified Value is based upon the most precise method used to analyze this CRM. The following equations are used in the calculation of the certified value and the uncertainty:

Certified Value (C) = 82X

(C) = mean

x = individual results

Uncertainty $(\pm) = 2i(e_1 \cdot s_1)^T$

n = number of measurements

The summation of all significant estimated errors

(Most common are the errors from instrumental measurement, weighing, dilution to volume, and the fixed error reported on the

NIST SRM certificate of analysis.)

The independent samples t-test was used to determine if there is agreement between the above assay methods at the 95% confidence interval. Both methods were compared and showed agreement within the stated uncertainties. This agreement is a confirmation of the accuracy of this CRM.

4.0 TRACEABILITY TO NIST AND VALUES OBTAINED BY INDEPENDENT METHODS

□ "Property of the result of a measurement or the value of a standard whereby it can be related to stated references, usually national or international standards, through an unbroken chain of comparisons all having stated uncertainties." (ISO VIM, 2nd ed., 1993, definition 6.10)

☐ This IV product is Traceable to NIST via direct comparison to NIST SRMs. The uncertainties for each certified value are reported, taking into account the SRM uncertainty error and the measurement, weighing and volume dilution errors.

4.1

Assay Method #1

999 ± 5 µg/mL

ICP Assay NIST SRM 3136 Lot Number: 000612

Assay Method #2

1002 ± 2 µg/mL

EDTA NIST SRM 928 Lot Number: 880710

- 4.2 BALANCE CALIBRATION All balances are checked daily using in-house procedure number 6-IMM-001. The weights used for testing are annually compared to Gerhart Scale Corporation's master weights and are traceable to the National Institute of Standards and Technology (NIST). The NIST Traceability numbers are 692476 Class 1 and 692476A Class 2. The NIST test number is 822/260017-98. All analytical balances are calibrated every 4 months by Gerhart Scale Corp. of South Amboy. The balances are calibrated with a class 1 and/or class 2 analytical weight set. These weights are tested annually by a NIST / NVLAP accredited calibration lab. The NIST test number is 822/260017-98.
- 4.3 THERMOMETER CALIBRATION The thermometers used in the determination of the final densities are calibrated vs standard thermometer No. 903-2680 which was certified in accordance with the procedures outlined by ASTM E77-87 and NIST Monograph 150 using NIST Test Nos. and Std Nos.: 769543, 217368/769543, 217368/P14452, 176240/P14452, 176240/P144
- 4.4 GLASSWARE CALIBRATION In-house procedure 3-QC-002 is used to calibrate all Class A Glassware used in the manufacture and quality control of Custom Grade Standards.

5.0 TRACE METALLIC IMPURITIES (TMI) DETERMINED BY ICP/MS AND ICP-OES IN µg/mL

Custom-Grade solutions are tested for trace metallic impurities by Axial ICP-OES and ICP-MS. The result from the most sensitive method for each element, is reported below. Solutions tested by ICP-MS were analyzed in an ULPA-Filtered Clean Room. An ULPA-Filter is 99.9985% efficient for the removal of particles down to 0.3 µm.

Q	ΑI	<	0.00938	M	Dy	<	0.06577	Q	Li	<	0.00006	M	Pr	<	0.00329	M	Te	<	0.32886
M	Sb	<	0.00548	М	Er	<	0.05481	M	Lu	<	0.00439	M	Re	<	0.01096	W	Tb	<	0.00329
<u>0</u>	As	<	0.01689	M	Eu	<	0.03289	Q	Mg		0.00002	М	Rh	<	0.01096	M	TI	<	0.01096
M	Ва	<	0.10962	М	Gd	<	0.01096	M	Mn	<	0.04385	M	Rb	<	0.01096	М	Th	<	0.01096
Q	Ве	<	0.00626	М	Ga	<	0.01096	Q	Hg	<	0.03441	M	Ru	<	0.02192	M	Tm	<	0.00439
<u>M</u>	Bi	<	0.00439	М	Ge	<	0.06577	M	Мо	<	0.02192	М	Sm	<	0.01096	<u>M</u>	Sn	<	0.05481
<u>0</u>	В	<	0.03097	M	Au	<	0.03289	М	Nd	<	0.02192	М	Sc	<	0.10962	M	Ti	<	0.54811
M	Cd	<	0.03289	M	Hf	<	0.02192	<u>s</u>	Ni			ō	Se	<	0.01877	М	W	<	0.10962
0	Ca	<	0.01157	M	Но	<	0.00548	M	Nb	<	0.00548	Ω	Si		0.00188	M	U	<	0.02192
<u>M</u>	Çe	<	0.05481	М	in	<	0.10962	ū	Os			W	Ag	<	0.02192	<u>M</u>	٧	<	0.02192
M	Cs	<	0.00329	M	Ir	<	0.05481	M	Pd	<	0.05481	ō	Na		0.00102	М	Yb	<	0.01096
M	Cr	<	0.05481	Q	Fe		0.00156	Q	P	<	0.31280	M	Sr	<	0.00548	<u>M</u>	Y	<	0.43849
<u>0</u>	Со		0.00182	М	La	<	0.00548	M	Pt	<	0.02192	Q	s	<	0.07820	M	Zn		0.00189
. <u>M</u>	Cu	<	0.06577	M	Pb	`<	0.03289	Q	κ		0.00043	М	Та	<	0.07674	M	Zr	<	0.05481
М-	Check	ed	by iCP-MS	0-	Chec	ke	by ICP-OES	1 - S	pecti	al l	nterference	n - i	Not C	hec	ked For	s - ·	Soluti	on i	Standard Element

6.0 INTENDED USE

For the calibration of analytical instruments including but not limited to the following:

ICP-MS, ICP-OES, FAAS, GFAA, XRF, and DCP

For the validation of analytical methods

For the preparation of "working reference samples"

For interference studies and the determination of correction coefficients

For detection limit and linearity studies

For additional intended uses, contact IV Technical Staff

7.0 INSTRUCTIONS FOR THE CORRECT USE OF THIS REFERENCE MATERIAL

Storage & Handling - Keep tightly sealed when not in use. Store and use at 20 ± 4 °C. Do not pipet from container. Do not return portions removed for pipetting to container.

Atomic Weight; Valence; Coordination Number; Chemical Form in Solution - 58.69; +2; 6; Ni(H₂O).**

Chemical Competibility - Stable in HCl, HNO_a, H₂SO₄, HF, H₂PO₄. Avoid basic media. Stable with most metals and inorganic anions in acidic media.

Stability - 2-100 ppb levels stable for months in 1% HNO₃ / LDPE container. 1-10,000 ppm solutions chemically stable for years in 1-5% HNO₃ / LDPE container.

Ni Containing Samples (Preparation and Solution) - Metal (Solution in HNO₂); Oxides (Solution in HCl.); Ores (Dissolve in HCl.)

Atomic Spectroscopic Information (ICP-OES B.L.s are given as radial/axial view):

Technique	Line	Estimated D.L.	Order 1	<u>Type</u> <u>Interferences f</u> underlined Indicates severe at allones.)
ICP-OES	221.647 nm	0.01 / 0.0009 µg/mL	1	ion Si
ICP-OES	232.003 nm	0.02 / 0.006 µg/mL 1	atom	<u>Cr</u> , Re, Os, No, Ag, Pt, Fe
ICP-OES	231.604 nm	0.02 / 0.002 ug/mL 1	ion	Sb, Ta, Co
ICP-MS	60 amu	100 ppt	n/a	M' "Ca'"O'H , "Ca'"O, "Na"Ci

- 8.0 HAZARDOUS INFORMATION Please refer to the enclosed Material Saftey Data sheet for information regarding this CRM.
- 9.0 HOMOGENEITY This solution was mixed according to procedure IV-MPM-004 and is guaranteed to be homogeneous.

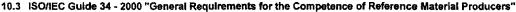
10.0 QUALITY STANDARD DOCUMENTATION

10.1 ISO 9001:2000 Quality Management System Registration - QMI Certificate Number 010105 Recognized by:

Registrar Accreditation Board (ANSI-RAB)

Standards Council of Canada (SCC)

Dutch Council for Accreditation (RVA)


Entidad Mexicana de Acreditacion, a.c.(EMA)

Members of IQ Net International Certification Network:

Argentina (IRAM), Australia (QAS), Austria (ŌQS), Belgium (Avinter), Brazil (FCAV), Canada (QMI), Hong Kong (HKQAA), Columbia (ICONTEC), Czech Republic (CQS), Denmark (DS), Finland (SFS), France (AFAQ), Germany (DQS), Greece (ELOT), Hungary (MSZT), Ireland (NSAI), Israel (SII), Italy (CISQ), Japan (JQA), Korea (KSA-QA), Netherlands (KEMA), Norway (NCS), Poland (PCRC), Portugal (APCER), Singapore (PSR), Slovenia (SIQ), Spain (AFNOR), Switzedard (SOS)

Poland(PCBC), Portugal (APCER), Singapore (PSB), Slovenia (SQ), Spain (AENOR), Switzerland (SQS) 10.2 ISO/IEC 17025 - 1999 "General Requirements for the Competence of Testing and Calibration"

- Chemical Testing - Accredited A2LA Certificate Number 883.01

- Reference Materials Production - Accredited A2LA Certificate Number 883.02

A2LA Mutual Recognition Agreement Partners:

Australia (NATA), Austria (BmwA), Belgium (BELTEST) (BKO-OBE), Canada (SCC), Chinese Taipel (CNLA), Czech Republic (NAO), Denmark (DANAK), Finland (FINAS), France (COFRAC), Germany (DAR), Hong Kong (HKAS, Ireland (NAB), Italy (SIT) (SINAL), Japan (JAB) (JNLA), Republic of Korea (KOLAS), The Netherlands (RvA), New Zealand (IANZ), Norway (NA), Portugal (IPQ), Singapore (SAC-SINGLAS), Spain (ENAC), Sweden (SWEDAC), Switzerland (SAS), United Kingdom (UKAS) and United States (NVLAP) (ICBO ES)

- 10.4 10CFR50 Appendix B Nuclear Regulatory Commission
 - Domestic Licensing of Production and Utilization Facilities
- 10.5 10CFR21 Nuclear Regulatory Commission Reporting Defects and Non-Compliance
- 10.6 MIL-STD-45662A (Obsolete/Observed)

11.0 DATE OF CERTIFICATION AND PERIOD OF VALIDITY

- 11.1 IV Shelf Life The period of time during which the concentration of the analyte(s) in a properly packaged, unopened, and unused standard stored under environmentally controlled and monitored conditions will remain within the specified uncertainty range. Shelf life is limited primarily by transpiration (loss of water from the solution) and infrequently, by chemical instability. Transpiration studies (P-SP01020) of chemically-stable solutions performed at Inorganic Ventures / IV Labs indicate a CRM shelf-life of four years for solutions packaged in 500-mL low density polyethylene bottles. When stored under special conditions that minimize transpiration and instability, the shelf life can be extended past this limit.
- 11.2 Expiration Date The date after which a CRM should not be used. Routine laboratory use of a CRM increases transpiration losses and the chance of contamination which affect the integrity of the CRM and limit its useful life. Inorganic Ventures / IV Labs concurs with state and federal regulatory agencies' recommendations that solution standards be assigned a one-year expiration date.

Certification Date: July 23, 2003 Expiration Date:

INORGANIC LABS/RADCHEM LABS Pg. 2007 DATE RECEIVED: 03/01/2005 VO)
DATE EXPIRED: 03/01/2005 VO)
DATE OPENED: 03/35/04
INORG: 14473 Po: E53333

12.0 NAMES AND SIGNATURES OF CERTIFYING OFFICERS

Certificate Prepared By:

JoAnn Struthers, QA Administrative Assistant

Certificate Approved By:

Katalin Le, QC Supervisor

Certifying Officer:

Paul Gaines, Chemist, Senior Technical Director

folm Stutten Known in an Pour Aaim

1.0

inorganic ventures

195 lehigh avenue, suite 4, lakewood, nj 08701 usa phone: 800-669-6799 • 732-901-1900 • fax: 732-901-1903 e-mall: lvsales@ivstandards.com • website: www.ivstandards.com

certificate analysis

Inorganic Ventures / IV Labs is an ISO Guide 34-2000 Certified Reference Material (CRM) Manufacturer: Certificate #883-02. The certificate is designed and the certified value(s) and uncertainty(ies) are determined in accordance with ISO Guide 31-2000 (Reference Materials - Contents of certificates and label(s). ISO Guide 34-2000 "Quality System Guidelines for the Production of Reference Materials," and ISO Guide 35-1989 "Certification of Reference Materials - General and Statisical Principles."

DESCRIPTION OF CRM Custom-Grade 1000 µg/mL Boron in H20 2.0 Catalog Number: CGB1-1, CGB1-2, and CGB1-5 Lot Number: W-B02042 Starting Material: **H3BO3** Starting Material Purity (%): 99.99998 INORGANIC LABS/RADCHEM LABS 10-10-10 Starting Material Lot No DATE RECEIVED: 07/31/03 OV0133 DATE EXPIRED: 08/01/3004 Matrix: H₂0 DATE OPENED: 08/0/03 INORG: 4001 PO: E50383

CERTIFIED VALUES AND UNCERTAINTIES 3.0

> **Certified Concentration:** 999 ± 2 µg/mL

1.001 g/mL (measured at 22° C) **Certified Density:**

The Certified Value is the instrument analysis value. The following equations are used in the calculation of the certified value and the uncertainty:

Certified Value (C) = erx

(C) = mean

x = individual results

n = number of measurements

Uncertainty (±) = $2[(2r^2)]^{1/2}$

#S = The summation of all significant estimated errors. (Most common are the errors from instrumental measurement. weighing, dilution to volume, and the fixed error reported on the

NIST SPM certificate of analysis)

TRACEABILITY TO NIST AND VALUES OBTAINED BY INDEPENDENT METHODS 4.0

□ "Property of the result of a measurement or the value of a standard whereby it can be related to stated references, usually national or international standards, through an unbroken chain of comparisons all having stated uncertainties." (ISO VIM, 2nd ed., 1993, definition 6.10)

☐ This IV product is Traceable to NIST via direct comparison to NIST SRMs. The uncertainties for each certified value are reported, taking into account the SRM uncertainty error and the measurement, weighing and volume dilution errors.

4.1 Assay Method #1 999 ± 2 μg/mL (Avg 2 runs)

ICP Assay NIST SRM 3107 Lot Number: 991907

- 4.2 BALANCE CALIBRATION All balances are checked dally using in-house procedure number 6-IMM-001. The weights used for testing are annually compared to Gerhart Scale Corporation's master weights and are traceable to the National Institute of Standards and Technology (NIST). The NIST Traceability numbers are 692476 Class 1 and 692476A Class 2. The NIST test number is 822/260017-98. All analytical balances are calibrated every 4 months by Gerhart Scale Corp. of South Amboy. The balances are calibrated with a class 1 and/or class 2 analytical weight set. These weights are tested annually by a NIST / NVLAP accredited calibration lab. The NIST test number is 822/260017-98.
- 4.3 THERMOMETER CALIBRATION The thermometers used in the determination of the final densities are calibrated vs standard thermometer No. 903-2680 which was certified in accordance with the procedures outlined by ASTM E77-87 and NIST Monograph 150 using NIST Test Nos. and Std Nos.: 769543, 217368/769543, 217368/P14452, 176240/P14452, 176240/P14452, 176240. The in-house procedure No. is 2-QC-001. Thermometers which are not calibrated vs standard thermometer No. 903-2680 are traceable to NIST Identification Nos. 92564, 119016, 471047 and NIST test report Nos. 811/258522, 811/2557078, and 236090.
- 4.4 GLASSWARE CALIBRATION In-house procedure 3-QC-002 is used to calibrate all Class A Glassware used in the manufacture and quality control of Custom Grade Standards.

5.0 TRACE METALLIC IMPURITIES (TMI) DETERMINED BY ICP/MS AND ICP-OES IN μg/mL

Custom-Grade solutions are tested for trace metallic impurities by Axial ICP-OES and ICP-MS. The result from the most sensitive method for each element, is reported below. Solutions tested by ICP-MS were analyzed in an ULPA-Filtered Clean Room. An ULPA-Filter is 99.9985% efficient for the removal of particles down to 0.3 µm.

<u>0</u>	ΑJ	<	0.00090	M	Dy	<	0.00600	<u>0</u>	Li	<	0.00002	<u>M</u>	Pr	<	0.00030	W	Те	<	0.03000
М	Sb	<	0.00050	M	Er	<	0.00500	M	Lu	<	0.00040	М	Re	<	0.00100	М	Tb	<	0.00030
M	As	<	0.01000	М	Eu	<	0.00300	Q	Mg	<	0.00006	M	Rh	<	0.00100	М	TI	<	0.00100
Q	Ва	<	0.00010	М	Gd	<	0.00100	<u>o</u>	Mn	<	0.00002	M	Rb	<	0.00100	М	Th	<	0.00100
Q	Вe	<	0.00017	<u>o</u>	Ga	<	0.00160	Q	Hg	<	0.01500	М	Ru	<	0.00200	M	Tm	<	0.00040
M	Bi	<	0.00040	М	Ge	<	0.00600	M	Mo	<	0.00200	M	Sm	<	0.00100	М	Sn	<	0.00500
ş	В			M	Au	<	0.00300	M	Nd	<	0.00200	<u>o</u>	Sc	<	0.00002	M	Ti	<	0.05000
M	Cd	<	0.00300	M	Hf	<	0.00200	Q	Ni	<	0.00230	Q	Se	<	0.00620	М	W	<	0.01000
Q	Ca	<	0.00007	М	Но	<	0.00050	M	Nb	<	0.00050	ō	Si		0.00067	М	U	<	0.00200
Q	Ce	<	0.00300	М	In	<	0.01000	Ū	Os			M	Ag	<	0.00200	Q	٧	<	0.00083
М	Cs	<	0.00030	М	l r	<	0.00500	М	Pd	<	0.00500	ō	Na	<	0.00010	М	Yb	<	0.00100
М	Cr	<	0.00500	0	Fe	<	0.00110	ō	Р	<	0.00250	М	Sr	<	0.00050	М	Y	<	0.04000
0	Со	<	0.00110	М	La	<	0.00050	М	Pt	<	0.00200	0	s	<	0.10000	0	Zn	<	0.00019
M	Cu	<	0.00600	М	Pb	<	0.00300	Q	K	<	0.00300	M	Ta	<	0.00700	М	Zr	<	0.00500
M - C	hed	æd	by ICP-MS	0-	Chec	kec	by ICP-OES	1-8	pect	al I	nterference	n - 1	Not C	hed	cked For	s - :	Soluti	on :	Standard Element

6.0 INTENDED USE

For the calibration of analytical Instruments Including but not limited to the following:

ICP-MS, ICP-OES, FAAS, GFAA, XRF, and DCP

For the validation of enalytical methods

For the preparation of "working reference samples"

For interference studies and the determination of correction coefficients

For detection limit and linearity studies

For additional Intended uses, contact IV Technical Staff

7.0 INSTRUCTIONS FOR THE CORRECT USE OF THIS REFERENCE MATERIAL

Storage & Handling - Keep tightly sealed when not in use. Store and use at 20 ± 4°C. Do not pipet from container. Do not return portions removed for pipetting to container.

Atomic Weight; Valence; Coordination Humber; Chemical Form in Solution - 10.811; +3; 4; B(OH), and B(OH), of

Chemical Competibility - Moderately soluble in HCl, HNO_a, H₂SO_a and HF equeous matrices and very soluble in NH₄OH. Stable with all metals and inorganic anions at lowto moderate ppm levels.

Stability - 2-100 ppb levels stable for months in 1% HNO_a / LDPE container. 1-1,000 ppm solutions chemically stable for years in 1% HNO_a / LDPE container. 1000 -10,000 ppm stable for years in diute NH₂OH / LDPE container.

B Containing Samples (Preparation and Solution) - Metal (Crystalline form is scarcely attacked by acids or alkaline solutions; amorphous form is soluble in conc. HNO₂ or H₂SO₂); B(OH)₂ (water soluble); Orestavoid acid digestions and use caustic fusions in Pt→, Organic Matrices (dry ash mixed with Ne₂CO₂ in Pt→el 450→€ then increase heat to 1000→€ to fuse; or perform a Ne₂O₂ fusion in a Ni¬erucible / Perr bomb.).

Atomic Spectroscopic Information (ICP-OES B.L.s are given as radial/axial view):

TRUITE U	WALLE AND THE BUILD	HINNING THE THE PERSON		derived And	A STATE OF THE PARTY OF THE PAR	
Technique	:/Line	Estimated D.L.	Order	Type	Interferences Aunderlined indicates	severe at wallones.)
ICP-OES	249.773 nm	0.003 / 0.001 µg/mL	1	atom	W, Ce, Co, Th, Ta, Mn, Mo, Fe	
ICP-OES	249.678 nm	0.004 / 0.003 µg/mL	1	atom	Os,W,Co,Cr,HI	
ICP-OES	208.959 nm	0.007 / 0.0005 µg/mL	1	atom	Mo	
ICP-MS	11amu	700 ppt	n/a	M'		

- 8.0 HAZARDOUS INFORMATION Please refer to the enclosed Material Saftey Data sheet for information regarding this CRM.
- 9.0 HOMOGENEITY This solution was mixed according to procedure IV-MPM-004 and is guaranteed to be homogeneous.

10.0 QUALITY STANDARD DOCUMENTATION

10.1 ISO 9001:2000 Quality Management System Registration - QMI Certificate Number 010105 Recognized by:

Registrar Accreditation Board (ANSI-RAB)

Standards Council of Canada (SCC)

Dutch Council for Accreditation (RVA)

Entidad Mexicana de Acreditación, a.c.(EMA)

Members of IQ Net International Certification Network:

Argentina (IRAM), Australia (QAS), Austria (ÖQS), Belgium (Avinter), Brazil (FCAV), Canada (QMI), Hong Kong (HKQAA), Columbia (ICONTEC), Czech Republic (CQS), Denmark (DS), Finland (SFS), France (AFAQ), Germany (DQS), Greece (ELOT), Hungary (MSZT), Ireland (NSAI), Israel (SII), Italy (CISQ), Japan (JQA), Korea (KSA-QA), Netherlands (KEMA), Norway (NCS),

Poland(PCBC), Portugal (APCER), Singapore (PSB), Slovenia (SIQ), Spain (AENOR), Switzerland (SQS) 10.2 ISO/IEC 17025 - 1999 "General Requirements for the Competence of Testing and Calibration"

- Chemical Testing - Accredited A2LA Certificate Number 883.01

10.3 ISO/IEC Guide 34 - 2000 "General Requirements for the Competence of Reference Material Producers"

- Reference Materials Production - Accredited A2LA Certificate Number 883.02

A2LA Mutual Recognition Agreement Partners:

Australia (NATA), Austria (BmwA), Belgium (BELTEST) (BKO-OBE), Canada (SCC), Chinese Taipei (CNLA), Czech Republic (NAO), Denmark (DANAK), Finland (FINAS), France (COFRAC), Germany (DAR), Hong Kong (HKAS, Ireland (NAB), Italy (SIT) (SINAL), Japan (JAB) (JNLA), Republic of Korea (KOLAS), The Netherlands (RvA), New Zealand (IANZ), Norway (NA), Portugal (IPQ), Singapore (SAC-SINGLAS), Spain (ENAC), Sweden (SWEDAC), Switzerland (SAS), United Kingdom (UKAS) and United States (NVLAP) (ICBO ES)

- 10.4 10CFR50 Appendix B Nuclear Regulatory Commission
 - Domestic Licensing of Production and Utilization Facilities
- 10.5 10CFR21 Nuclear Regulatory Commission Reporting Defects and Non-Compliance
- 10.6 MiL-STD-45662A (Obsolete/Observed)

INORGANIC LABS/	RADCHEM LABSP3.262
DATE RECEIVED:	07/31/03
DATE EXPIRED:	08/01/0004 405
	08/01/03
	PO: <u>F53383</u>

11.0 DATE OF CERTIFICATION AND PERIOD OF VALIDITY

- 11.1 IV Shelf Life The period of time during which the concentration of the analyte(s) in a properly packaged, unoperied, and unused standard stored under environmentally controlled and monitored conditions will remain within the specified uncertainty range. Shelf life is limited primarily by transpiration (loss of water from the solution) and infrequently, by chemical instability. Transpiration studies (P-SP01020) of chemically-stable solutions performed at Inorganic Ventures / IV Labs indicate a CRM shelf-life of four years for solutions packaged in 500-mL low density polyethylene bottles. When stored under special conditions that minimize transpiration and instability, the shelf life can be extended past this limit.
- 11.2 Expiration Date The date after which a CRM should not be used. Routine laboratory use of a CRM increases transpiration losses and the chance of contamination which affect the integrity of the CRM and limit its useful life. Inorganic Ventures / IV Labs concurs with state and federal regulatory agencies' recommendations that solution standards be assigned a one-year expiration date.

Certification Date: March 21, 2003

Expiration Date:

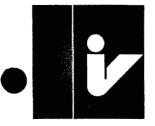
EXPIRES

12.0 NAMES AND SIGNATURES OF CERTIFYING OFFICERS

Certificate Prepared By:

JoAnn Struthers, QA Administrative Assistant

Certificate Approved By:


Katalin Le, QC Supervisor

Certifying Officer:

Paul Gaines, Chemist, Senior Technical Director

known h

Paux dain

inorganic ventures

195 lehigh avenue, suite 4, lakewood, nj 08701 usa phone: 800-669-6799 • 732-901-1900 • fax: 732-901-1903

e-mail: ivsales@ivstandards.com • website: www.ivstandards.com

certificate of analysis

Inorganic Ventures / IV Labs is an ISO Guide 34-2000 Certified Reference Material (CRM) Manufacturer: 1.0 Certificate #883-02. The certificate is designed and the certified value(s) and uncertainty(ies) are determined in accordance with ISO Guide 31-2000 (Reference Materials - Contents of certificates and label(s), ISO Guide 34-2000 "Quality System Guidelines for the Production of Reference Materials," and ISO Guide 35-1989 "Certification of Reference Materials - General and Statistical Principles."

DESCRIPTION OF CRM Custom-Grade 1000 µg/mL Molybdenum in H20 tr. NH4OH 2.0

Catalog Number:

CGMO1-1, CGMO1-2, and CGMO1-5

Lot Number:

W-MO01132

Starting Material:

(NH4)6Mo7O24xH2O

Starting Material Purity (%):

99.995947

Starting Material Lot No Matrix:

21410

H₂0 tr. NH₄OH

INORGANIC LABS/RADCHEM LABS \$ 100 2

DATE RECEIVED: 09/95/04

3.0 **CERTIFIED VALUES AND UNCERTAINTIES** DATE EXPIRED: 03/01/2005 DATE OPENED: 03/35/04

Certified Concentration:

 $1004 \pm 2 \mu g/mL$

INORG: 4471 FO: F53333

Certified Density:

0.998 g/mL (measured at 22° C)

The Certified Value is based upon the most precise method used to analyze this CRM. The following equations are used in the calculation of the certified value and the uncertainty:

Certified Value (C) = erx

(C)≡= mean

x₁ = individual results

Uncertainty $(\pm) = 2i(e_1 \cdot s_1)^2i$

n = number of measurements

BS = The summation of all significant estimated errors. (Most common are the errors from instrumental measurement. weighing, dilution to volume, and the fixed error reported on the

NIST SRM certificate of analysis.)

4.0 TRACEABILITY TO NIST AND VALUES OBTAINED BY INDEPENDENT METHODS

"Property of the result of a measurement or the value of a standard whereby it can be related to stated references, usually national or international standards, through an unbroken chain of comparisons all having stated uncertainties." (ISO VIM, 2nd ed., 1993, definition 6.10)

☐ This IV product is Traceable to NIST via direct comparison to NIST SRMs. The uncertainties for each certified value are reported, taking into account the SRM uncertainty error and the measurement, weighing and volume dilution errors.

4.1

Assay Method #1

1004 ± 2 μg/mL (Avg 2 runs)

ICP Assay NIST SRM 3134 Lot Number: 891307

Assay Method #2

1008 µg/mL

Gravimetric NIST SRM Lot Number: See Sec. 4.2

- 4.2 BALANCE CALIBRATION All balances are checked daily using in-house procedure number 6-IMM-001. The weights used for testing are annually compared to Gerhart Scale Corporation's master weights and are traceable to the National Institute of Standards and Technology (NIST). The NIST Traceability numbers are 692476 Class 1 and 692476A Class 2. The NIST test number is 822/260017-98. All analytical balances are calibrated every 4 months by Gerhart Scale Corp. of South Amboy. The balances are calibrated with a class 1 and/or class 2 analytical weight set. These weights are tested annually by a NIST / NVLAP accredited calibration lab. The NIST test number is 822/260017-98.
- 4.3 THERMOMETER CALIBRATION The thermometers used in the determination of the final densities are calibrated vs standard thermometer No. 903-2680 which was certified in accordance with the procedures outlined by ASTM E77-87 and NIST Monograph 150 using NIST Test Nos. and Std Nos.: 769543, 217368/769543, 217368/P14452, 176240/P14452, 176240. The in-house procedure No. is 2-QC-001. Thermometers which are not calibrated vs standard thermometer No. 903-2680 are traceable to NIST Identification Nos. 92564, 119016, 471047 and NIST test report Nos. 811/258522, 811/2557078, and 236090.
- 4.4 GLASSWARE CALIBRATION In-house procedure 3-QC-002 is used to calibrate all Class A Glassware used in the manufacture and quality control of Custom Grade Standards.

5.0 TRACE METALLIC IMPURITIES (TMI) DETERMINED BY ICP/MS AND ICP-OES IN µg/mL

Custom-Grade solutions are tested for trace metallic impurities by Axial ICP-OES and ICP-MS. The result from the most sensitive method for each element, is reported below. Solutions tested by ICP-MS were analyzed in an ULPA-Filtered Clean Room. An ULPA-Filter is 99.9985% efficient for the removal of particles down to 0.3 µm.

<u>0</u>	ΑI	<	0.05000	М	Dу	<	0.01198	Q	Li	<	0.01000	<u>o</u>	Pr	<	0.10000	i	Те			
M	Sb		0.00939	M	Er	<	0.00998	M	Lu	<	0.00080	М	Re	<	0.00200	<u>M</u>	Тъ	<	0.00060	
М	As	<	0.01997	M	Eu	<	0.00599	Q	Mg	<	0.05000	M	Rh	<	0.00200	М	TI	<	0.00200	
<u>M</u>	Ba	<	0.01997	M	Gd	<	0.00200	M	Mn	<	0.00799	M	Rb		0.02445	<u>M</u>	Th	<	0.00200	
M	Ве	<	0.00100	M	Ga	<	0.00200	i	Hg			M	Ru	<	0.00399	M	Tm	<	0.00080	
M	Bi	<	0.00080	M	Ge	<	0.01198	<u>s</u>	Мо			M	Sm	<	0.00200	М	Sn	<	0.00998	
<u>0</u>	В	<	0.50000	M	Au	<	0.00599	Q	Nd	<	0.05000	Q	Sc	<	0.05000	0	Ti	<	0.00500	
Ō	Cd	<	0.50000	М	Hf	<	0.00399	M	Ni	<	0.01597	М	Se	<	0.01597	M	W		0.05576	
Q	Ca		0.00026	M	Но	<	0.00100	Q	Nb	<	0.10000	Q	Si	<	0.10000	M	บ	<	0.00399	
Ω	Се	<	0.05000	M	In		0.00235	п	Os			М	Ag	<	0.00399	M	V	<	0.00399	
M	Cs	<	0.00060	M	ir	<	0.00998	M	Pd	<	0.00998	Q	Na	<	0.10000	<u>M</u>	Yb	<	0.00200	
M	Cr	<	0.00998	<u>o</u>	Fe	<	0.50000	į	P			M	Sr	<	0.00100	W	Υ	<	0.07987	
M	Со	<	0.00599	M	La	<	0.00100	M	Pt	<	0.00399	Ì	\$			<u>M</u>	Zn	<	0.03993	
M	Cu	<	0.01198	M	Pb	<	0.00599	Q	ĸ		0.00980	M	Ta	<	0.01398	M	Zr	<	0.00998	
M - C	heck	æd	by ICP-MS	0-	Chec	kec	by ICP-OES	i-S	pect	al l	nterference	n - l	Not C	he	cked For	s - S	Soluti	on ·	Standard Element	!

6.0 INTENDED USE

For the calibration of analytical instruments including but not limited to the following:

ICP-MS, ICP-OES, FAAS, GFAA, XRF, and DCP

For the validation of analytical methods

For the preparation of "working reference samples"

For interference studies and the determination of correction coefficients

For detection limit and linearity studies

For additional intended uses, contact IV Technical Staff

7.0 INSTRUCTIONS FOR THE CORRECT USE OF THIS REFERENCE MATERIAL

Storage & Handling - Keep tightly sealed when not in use. Store and use at 20 ± 4 €. Do not pipet from container. Do not return portions removed for pipetting to container.

Atomic Weight; Valence; Coordination Humber; Chemical Form in Solution - 95.94; +6; 6,7,8,9; [MoO.] (chemical form as

Charnical Competibility - Mo is received in a NH. OH matrix giving the operator the option of using HCI or HF to stabilize acidic solutions. The [MoO.] is soluble in concentrated HCI [MoOC], idiute HF / HNO, [MoOF.] and basic media [MoO.] is Stable at ppm levels with some metals provided it is fluorinated. Do not mix with Alkaline or Rare Earths when HF is present. Stable with most inorganic anions provided it is in the [MoO.] chemical form.

Stability - 2-100 ppb levels stable (alone or mixed with all other metals that are at comparable levels) as the [MoOF,] or months in 1% HINO, / LDPE container. 1-10,000 ppm single element solutions as the [MoO.] chemically stable for years in 1% NH.OH in a LDPE container.

Mo Containing Samples (Preparation and Solution) - Metal (Solutie in HF / HNO, or hot dilute HCI), Oxide (soluble in HF or NH.OH); Organic Matrices (Dry ash at 450 € in Pt* and dissolve oxide with HF or HCl.).

Atomic Spectroscopic Information (ICP-OES B.L.s are given as radial/axial view):

Technique/Line		Order 1	vpe in	terferences (underlined indicates severe at «albonos.)
ICP-OES 202.0	30 nm 0.008 / 0.0002 µg/	mL 1 ic		s,Hf
ICP-OES 203.8	344 nm 0.012 / 0.002 μg/m	aL 1 id	on.	
ICP-OES 204.5	98 nm 0.012 / 0.001 µg/m	nL 1 io	on Ir.	Ta
ICP-MS 95 a	mu 3 ppt	nuta N	4 . →	₩KıO, ™BrıO, ™Osı', ™Ptı

- 8.0 HAZARDOUS INFORMATION - Please refer to the enclosed Material Saftey Data sheet for information regarding this CRM.
- 9.0 HOMOGENEITY - This solution was mixed according to procedure IV-MPM-004 and is guaranteed to be homogeneous.

10.0 QUALITY STANDARD DOCUMENTATION

10.1 ISO 9001:2000 Quality Management System Registration - QMI Certificate Number 010105 Recognized by:

Registrar Accreditation Board (ANSI-RAB)

Standards Council of Canada (SCC)

Dutch Council for Accreditation (RVA)

Entidad Mexicana de Acreditacion, a.c.(EMA)

Members of IQ Net International Certification Network:

Argentina (IRAM), Australia (QAS), Austria (ÖQS), Belgium (Avinter), Brazil (FCAV), Canada (QMI), Hong Kong (HKQAA), Columbia (ICONTEC), Czech Republic (CQS), Denmark (DS), Finland (SFS), France (AFAQ), Germany (DQS), Greece (ELOT), Hungary (MSZT), Ireland (NSAI), Israel (SII), Italy (CISQ), Japan (JQA), Korea (KSA-QA), Netherlands (KEMA), Norway (NCS), Poland(PCBC), Portugal (APCER), Singapore (PSB), Slovenia (SIQ), Spain (AENOR), Switzerland (SQS) 10.2 ISO/IEC 17025 - 1999 "General Requirements for the Competence of Testing and Calibration"

- Chemical Testing - Accredited A2LA Certificate Number 883.01

10.3 ISO/IEC Guide 34 - 2000 "General Requirements for the Competence of Reference Material Producers"

- Reference Materials Production - Accredited A2LA Certificate Number 883.02

A2LA Mutual Recognition Agreement Partners:

Australia (NATA), Austria (BmwA), Belgium (BELTEST) (BKO-OBE), Canada (SCC), Chinese Taipei (CNLA), Czech Republic (NAO), Denmark (DANAK), Finland (FINAS), France (COFRAC), Germany (DAR), Hong Kong (HKAS, Ireland (NAB), Italy (SIT) (SINAL), Japan (JAB) (JNLA), Republic of Korea (KOLAS), The Netherlands (RvA), New Zealand (IANZ), Norway (NA), Portugal (IPQ), Singapore (SAC-SINGLAS), Spain (ENAC), Sweden (SWEDAC), Switzerland (SAS), United Kingdom (UKAS) and United States (NVLAP) (ICBO ES)

- 10.4 10CFR50 Appendix B Nuclear Regulatory Commission
 - Domestic Licensing of Production and Utilization Facilities
- 10.5 10CFR21 Nuclear Regulatory Commission Reporting Defects and Non-Compliance
- 10.6 MIL-STD-45662A (Obsolete/Observed)

INOF	RGANIL	LABS/I	RADOH	EM LAE	€ £ 3-9 æ.	9
DATE	RECEIV	ED:	6/80 	5/04		
DATE	EXPIRE	D:	03/0	1/2005	V02	
DATE	OPENED	5	<u> </u>	40.25		
	i: 447					

11.0 DATE OF CERTIFICATION AND PERIOD OF VALIDITY

- 11.1 IV Shelf Life The period of time during which the concentration of the analyte(s) in a properly packaged, unopened, and unused standard stored under environmentally controlled and monitored conditions will remain within the specified uncertainty range. Shelf life is limited primarily by transpiration (loss of water from the solution) and infrequently, by chemical instability. Transpiration studies (P-SP01020) of chemically-stable solutions performed at Inorganic Ventures / IV Labs indicate a CRM shelf-life of four years for solutions packaged in 500-mL low density polyethylene bottles. When stored under special conditions that minimize transpiration and instability, the shelf life can be extended past this limit.
- 11.2 Expiration Date The date after which a CRM should not be used. Routine laboratory use of a CRM increases transpiration losses and the chance of contamination which affect the integrity of the CRM and limit its useful life. Inorganic Ventures / IV Labs concurs with state and federal regulatory agencies' recommendations that solution standards be assigned a one-year expiration date.

Certification Date: July 23, 2003

Expiration Date:

EXPIRES

12.0 NAMES AND SIGNATURES OF CERTIFYING OFFICERS

Certificate Prepared By:

JoAnn Struthers, QA Administrative Assistant

Certificate Approved By:

Katalin Le, QC Supervisor

Certifying Officer:

Paul Gaines, Chemist, Senior Technical Director

folm stutten known an Park Ani

inorganic ventures / iv labs

195 lehigh avenue, suite 4, lakewood, nj 08701 usa phone: 800-669-6799 • 732-901-1900 • fax: 732-901-1903 e-mail: ivsales@ivstandards.com • website: www.ivstandards.com

certificate of analysis

CUSTOM-GRADE SOLUTION

1000 µg/mL Phosphorus in H₂0

Catalog Number: CGP1-1, CGP1-2 and CGP1-5

Lot Number: W-P01123

Starting Material: Starting Material Purity: Starting Material Lot No:

Phosphoric Acid 99.999% J18804 DATE RECEIVED: 06/01/04

DATE EXPIRED: 06/01/05 VOS

DATE OPENED: 06/01/04

INORG: 4593 PO: E53393

INORGANIC LABS/RADCHEM LABS

CERTIFIED CONCENTRATION: 1006 \pm 4 μ g/mL

The Certified Value is the wet assay value. The following equations are used in the calculation of the certified value and the uncertainty:

Certified Value $(\dot{x}) = \frac{\sum x_1}{n}$

Uncertainty (±) = $2[(\sum_s)^2]^{1/2}$ (n)^{1/2}

(x) = mean

 $x_i = individual results$

n = number of measurements

 $\sum S_i$ = The summation of all significant estimated errors.

Classical Wet Assay: 1006 ± 4 µg/mL

Method: Acidimetric Titration vs NIST SRM 84k KHP.

Instrument Analysis: 1002 ± 4 µg/mL

Method: Inductively Coupled Plasma Spectroscopy (ICP) vs NIST SRM 3139a.

The independent samples t-test was used to determine if there is agreement between the above assay methods at the 95% confidence interval. Both methods were compared and showed agreement within the stated uncertainties. This agreement is a confirmation of the accuracy of this CRM.

TRACE METALLIC IMPURITIES DETERMINED BY ICP-MS AND ICP-OES IN μ_g/mL :

Custom-Grade solutions tested for trace metallic impurities by ICP-MS were analyzed in an ULPA-Filtered Clean Room. An ULPA-Filter is 99.9985% efficient for the removal of particles down to 0.3 μ m.

Q	Al	< 0.040	M	Dy	< 0.00060	M	Li	< 0.0010	M	Pr	< 0.000030	<u>M</u>	Te	< 0.0030
M	Sb	0.012	M	Er	< 0.00050	M	Lu	< 0.000040	M	Re	< 0.00010	M	Tb	< 0.000030
M	As	< 0.0010	M	Eu	< 0.00030	M	Mg	< 0.0030	M	Rh	<0.00010	M	TI	< 0.00010
M	Ba	< 0.0010	M	Gd	< 0.00010	M	Mn	< 0.00040	M	Rb	<0.00010	M	Th	< 0.00010
M	Be	< 0.000050	M	Ga	0.00070	Q	Hg	< 0.020	<u>M</u>	Ru	< 0.00020	M	Tm	< 0.000040
M	Bi	< 0.000040	M	Ge	< 0.00060	M	Мо	< 0.00020	M	Sm	<0.00010	M	\$n	< 0.00050
M	В	< 0.0070	<u>M</u>	Au	< 0.00030	<u>M</u>	Nd	< 0.00020	Ω	Sc		<u>n</u>	Ti	
M	Cd	< 0.00030	M	Hf	< 0.00020	Q	Ni	< 0.050	Q	Se	< 0.40	M	W	< 0.0010
<u>0</u>	Ca	< 0.010	M	Ho	< 0.000050	<u>M</u>	Ŋ₽	< 0.000050	<u>o</u>	Si	< 0.020	M	U	< 0.00020
M	Ce	< 0.00050	M	łn	< 0.030	<u>n</u>	Os		M	Αg	< 0.00020	M	٧	< 0.00020
M	Cs	< 0.000030	M	lr	< 0.00050	M	Pd	< 0.00050	ð	Ne	< 0.090	M	Yb	< 0.00010
M	Cr	< 0.00050	Ō	Fe	< 0.050	<u>s</u>	Р		<u>M</u>	Sr	< 0.000050	M	Υ	< 0.0040
M	Co	< 0.00030	M	La	< 0.000050	M	Pt	< 0.00020	<u>n</u>	S		M	Zn	0.0035
M	Cu	0.080	M	Pb	< 0.00030	ū	Κ		<u>M</u>	Ta	< 0.00070	M	Zr	< 0.00050
						_								

M - checked by ICP-MS

O - checked by ICP-OES

i - spectral interference

n - not checked for

s - solution standard element

ANALYZED DENSITY OF SOLUTION (measured at 22°C): 1.001 g/mL

(over)

QA:KL Rev.0108040N

Paul R. Haines

Expires:

112005

QUALITY STANDARD DOCUMENTATION

1. ISO 9001:2000 QMI Registered Quality System (Certificate Number 010105)

Members of IQ Net: Argentina (IRAM), Australia (QAS), Austria (ÖQS), Belgium (Avinter), Brazil (FCAV), Canada (QMI), Hong Kong (HKQAA), Columbia (ICONTEC), Czech Republic (CQS), Denmark (DS), Finland (SFS), France (AFAQ), Germany (DQS), Greece (ELOT), Hungary (MSZT), Ireland (NSAI), Israel (SII), Italy (CISQ), Japan (JQA), Korea (KSA-QA), Netherlands (KEMA), Norway (NCS), Poland(PCBC), Portugal (APCER), Singapore (PSB), Slovenia (SIQ), Spain (AENOR), Switzerland (SQS)

- ISO/IEC Guide 34-2000 "General Requirements for the Competence of Reference Material Producers" Reference Materials Production - Accredited A2LA Certificate 883.02
- 3. ISO/IEC17025-1999 "General Requirements for the Competence of Testing and Calibration" Chemical Testing Accredited A2LA Certificate 883.01
- 4. MIL-STD-45662A
- 5. 10CFR50 Appendix B Nuclear Regulatory Commission Domestic Licencing of Production and Utilization Facilities
- 10CFR21 Nuclear Regulatory Commission Reporting Defects and Non-Compliance
 Please contact our Quality Assurance Department for further information and copies of documents pertaining to our
 Quality Standard certifications.

STABILITY/ EXPIRATION DOCUMENTATION

Shelf Life -

The length of time that a properly stored and packaged standard will remain within the specified uncertainty. Shelf life is affected by chemical stability and transpiration issues. Inorganic Ventures' Standard Solutions are chemically stable indefinitely. Transpiration loss is linear with time and limits the time a standard can be used with confidence. The smaller the bottle the higher the rate of transpiration. Inorganic Ventures' studies indicate that the shelf life of our 500 mL bottle is 4 years and the shelf life of our 125 mL bottle is 21 months.

Expiration Date -

The date after which a standard solution should not be used. A one year expiration date is recommended by most state and federal regulatory agencies. Transpiration issues and repeated use of solutions over a one year period may adversely affect the integrity of standard.

PACKAGING DOCUMENTATION

Purified acid, 18 megohm double deionized water that has been filtered through a 0.2

m filter and in-house procedure IV-PACK-001 is used to clean all bottles. Contact us for technical information relating to contamination issues in packaging materials.

GLASSWARE CALIBRATION

In-house procedure 3-QC-002 is used to calibrate all Class A Glassware used in the manufacture and quality control of Custom Grade Standards.

BALANCE CALIBRATION

All balances are checked daily using in-house procedure number 6-IMM-001. The weights used for testing are annually compared to Gerhart Scale Corporation's master weights and are traceable to the National Institute of Standards and Technology (NIST). The NIST Traceability numbers are 428359B and 454678. The NIST test number is 822/260017-98.

All analytical balances are calibrated every 4 months by Gerhart Scale Corp. of South Amboy. The balances are calibrated with a class 1 analytical weight set. These weights are tested annually by a NIST / NVLAP accredited calibration lab. The NIST test number is 822/260017-8.

THERMOMETER CALIBRATION

The thermometers used in the determination of the final densities are calibrated vs standard thermometer No. 903-2680 which was certified in accordance with the procedures outlined by ASTM E77-87 and NIST Monograph 150 using NIST Test Nos. and Std Nos.: 769543, 217368/769543, 217368/P14452, 176240/P14452, 176240. The in-house procedure No. is 2-QC-001. Thermometers which are not calibrated vs standard thermometer No. 903-2680 are traceabl to NIST Identification Nos. 92564, 119016, 471047 and NIST test report Nos. 811/258522, 811/2557078, and 236090.

TECHNICAL SUPPORT

All customers are encouraged to contact us for technical support for the proper use of our products.

TEL 1-800-569-6799

INT'L 1-732-901-1900

FAX 1-732-901-1903

E-MAIL IVtech@ivstandards.com

inorganic ventures

195 lehigh avenue, suite 4, lakewood, nj 08701 usa phone: 800-669-6799 • 732-901-1900 • fax: 732-901-1903 e-mail: ivsales@ivstandards.com • website: www.ivstandards.com

certificate of analysis

1.0 Inorganic Ventures / IV Labs is an ISO Guide 34-2000 Certified Reference Material (CRM) Manufacturer: Certificate #883-02. The certificate is designed and the certified value(s) and uncertainty(ies) are determined in accordance with ISO Guide 31-2000 (Reference Materials - Contents of certificates and label(s), ISO Guide 34-2000 "Quality System Guidelines for the Production of Reference Materials." and ISO Guide 35-1989 "Certification of Reference Materials - General and Statistical Principles."

2.0	DESCRIPTION OF CRM	Custom-Grade 1000 µg/n	nL Silicon in H20 tr. HNO3 tr. I	HF
	Catalog Number: Lot Number: Starting Material: Starting Material Purity (%):	CGSI1-1, CGSI1-2, and W-SI02082 SiO2 99.996367	CGSI1-5	
	Starting Material Lot No Matrix:	C05310C H20 tr. HNO3 tr. HF	DATE RECEIVED:	RADCHEM LABS % 1.6 2 01/30/04 03/01/3005 VPS
3.0	CERTIFIED VALUES AND	UNCERTAINTIES	DATE OFENED:	01/90/04
	Certified Concentration:	1000 ± 5 μg/mL	TMUKG: 43.57	_F0: F5 3303
	Certified Density	1.002 g/mL (measured at	22° C)	

The Certified Value is based upon the most precise method used to analyze this CRM. The following equations are used in the calculation of the certified value and the uncertainty:

Certified Value (C) = erx

(C)1 = mean

x₁ = individual results

n = number of measurements

Uncertainty $(\pm) = 2[(e_2 + s_1)^2]^{\frac{1}{2}}$

ES = The summation of all significant estimated errors.

(Most common are the errors from instrumental measurement. weighing, dilution to volume, and the fixed error reported on the

NIST SRM certificate of analysis.)

4.0 TRACEABILITY TO NIST AND VALUES OBTAINED BY INDEPENDENT METHODS

The property of the result of a measurement or the value of a standard whereby it can be related to stated references, usually national or international standards, through an unbroken chain of comparisons all having stated uncertainties." (ISO VIM, 2nd ed., 1993, definition 6.10)

This IV product is Traceable to NIST via direct comparison to NIST SRMs. The uncertainties for each certified value are reported, taking into account the SRM uncertainty error and the measurement, weighing and volume dilution errors.

4.1 Assay Method #1 1000 ± 5 μg/mL (Avg 2 runs)

ICP Assay NIST SRM 3150 Lot Number: 991108

Assay Method #2

1001 µg/mL

Gravimetric NIST SRM Lot Number: See Sec. 4.2

- 4.2 BALANCE CALIBRATION All balances are checked daily using in-house procedure number 6-IMM-001. The weights used for testing are annually compared to Gerhart Scale Corporation's master weights and are traceable to the National Institute of Standards and Technology (NIST). The NIST Traceability numbers are 692476 Class 1 and 692476A Class 2. The NIST test number is 822/260017-98. All analytical balances are calibrated every 4 months by Gerhart Scale Corp. of South Amboy, The balances are calibrated with a class 1 and/or class 2 analytical weight set. These weights are tested annually by a NIST / NVLAP accredited calibration lab. The NIST test number is 822/260017-98.
- 4.3 THERMOMETER CALIBRATION The thermometers used in the determination of the final densities are calibrated vs standard thermometer No. 903-2680 which was certified in accordance with the procedures outlined by ASTM E77-87 and NIST Monograph 150 using NIST Test Nos. and Std Nos.: 769543, 217368/769543, 217368/P14452, 176240/P14452, 176240. The in-house procedure No. is 2-QC-001. Thermometers which are not calibrated vs standard thermometer No. 903-2680 are traceable to NIST Identification Nos. 92564, 119016, 471047 and NIST test report Nos. 811/258522, 811/2557078, and 236090.
- 4.4 GLASSWARE CALIBRATION In-house procedure 3-QC-002 is used to calibrate all Class A Glassware used in the manufacture and quality control of Custom Grade Standards.

5.0 TRACE METALLIC IMPURITIES (TMI) DETERMINED BY ICP/MS AND ICP-OES IN μg/mL

Custom-Grade solutions are tested for trace metallic impurities by Axial ICP-OES and ICP-MS. The result from the most sensitive method for each element, is reported below. Solutions tested by ICP-MS were analyzed in an ULPA-Filtered Clean Room. An ULPA-Filter is 99.9985% efficient for the removal of particles down to 0.3 µm.

Q	Αl		0.02730	М	Dy	<	0.01358	Q	Li	<	0.00009	М	Pr	<	0.00068	М	Te	<	0.06791
~			0.02.00	<u> </u>	٠,		1.5.1555	Ξ.				-							
M	Sb	<	0.00113	M	Er	<	0.01132	M	Lu	<	0.00091	M	Re	<	0.00226	M	Tb	<	0.00068
M	As	<	0.02264	М	Eu	<	0.00679	ō	Mg	<	0.04991	M	Rh	<	0.00226	М	TI	<	0.00226
M	Ва	<	0.02264	М	Gd	<	0.00226	M	Mn	<	0.00906	M	Rb	<	0.00226	М	Th	<	0.00226
<u>o</u>	Ве	<	0.00091	М	Ga	<	0.00226	0	Hg	<	0.04991	M	Ru	<	0.00453	<u>M</u>	Tm	<	0.00091
M	Bi	<	0.00091	M	Ge	<	0.01358	<u>M</u>	Мо	<	0.00453	M	Sm	<	0.00226	М	Sn	<	0.01132
<u>0</u>	В		0.02409	M	Au	<	0.00679	М	Nd	<	0.00453	0	Sc	<	0.00091	ō	TI		0.01325
М	Cd	<	0.00679	M	Hf	<	0.00453	Q	Ni	<	0.01044	<u>M</u>	Se	<	0.01811	W	W	<	0.02264
Q	Са		0.00135	M	Ho	<	0.00113	M	Nb	<	0.00113	<u>s</u>	Si			М	U	<	0.00453
M	Сe	<	0.01132	M	In	<	0.02264	<u>n</u>	Os			M	Ag	<	0.00453	ō	٧	<	0.00408
M	Cs	<	0.00068	M	lr	<	0.01132	M	Pd	<	0.01132	2	Na		0.02008	М	Yb	<	0.00226
<u>o</u>	Cr	<	0.00681	0	Fe	<	0.00499	ō	Р	<	0.02269	0	Sr	<	0.00032	W	Y	<	0.09055
<u>M</u>	Co	<	0.00679	М	La	<	0.00113	M	Pt	<	0.00453	ō	s	<	0.11342	M	Zn	<	0.04528
ō	Cu	<	0.00454	<u>M</u>	Pb	<	0.00679	Q	ĸ	<	0.00771	M	Ta		0.00200	M	Zr	<	0.01132
M - C	Check	ed	by ICP-MS	0-	Chec	ke	i by ICP-OES	I - S	pect	al l	nterference	n - l	Not C	hed	ked For	s - :	Soluti	on	Standard Element

6.0 INTENDED USE

For the calibration of analytical instruments including but not limited to the following:

ICP-MS, ICP-OES, FAAS, GFAA, XRF, and DCP

For the validation of analytical methods

For the preparation of "working reference samples"

For interference studies and the determination of correction coefficients

For detection limit and linearity studies

For additional intended uses, contact IV Technical Staff

7.0 INSTRUCTIONS FOR THE CORRECT USE OF THIS REFERENCE MATERIAL

Storage & Handling - Keep tightly sealed when not in use. Store and use at 20 ± 4 ℃. Do not pipet from container. Do not return portions removed for pipetting to container.

Atomic Weight; Valence; Coordination Humber; Chamical Form in Solution - 28.0855; +4; 6; Si(OH)(F),2 Chemical Competibility - Soluble in HCl, HF, H,PO, H,SO, and HNO, as the SKOH) (F),2. Avoid neutral to basic media. Unstable at ppm levels with metals that would pull F away (i.e. Do not mix with Alkaline or Rare Earths, or high levels of transition elements unless they are fluorinated). Stable with most inorganic anions with a tendency to hydrolyze forming silicic acid (silicic acid is soluble up to ~100 ppm in water) in all dilute acids except HF.

Stability - 2-100 ppb levels - stability unknown - (alone or mixed with all other metals) as the Si(OH), (F), 1-10,000 ppm single element solutions as the Si(OH), (F), 2 chemically stable for years in 2-5 % HNO. I trace HF in a LDPE container. Si Containing Samples (Preparation and Solution) - Metal (Soluble In 1:1:1 H₂O /HF /HNO₃) Oxide - SiO₂, amorphic (Dissolve by heating in 1:1:1 H₂O /HF /HNO₃) Oxide - quartz (Fuse in Pt⁰-withNa₂CO₃); Geological Samples (Fuse in Pt⁰-with Na₂CO₃ tollowed by Hcl solution of the fuseate) Organic Matrices containing silicates and non volatile silicon compounds (Dry ash at 450°€ in Pt⁰ and dissolve by gently warming with 1:1:1 H₂O /HF /H₂SO₃ or fuse / ash with Na₂CO₃ and dissolve by gently warming with 1:1:1 H₂O /HF /H₂SO₃ or fuse / ash with Na₂CO₃ and dissolve by gently warming with 1:1:1 H₂O /HF /H₂SO₃ or fuse / ash with Na₂CO₃ and dissolve higher than 1:1:1 H₂O /HF /H₃SO₃ or fuse / ash with Na₂CO₃ and dissolve higher than 1:1:1 H₂O /HF /H₃SO₃ or fuse / ash with Na₂CO₃ and dissolve higher than 1:1:1 H₂O /HF /H₃SO₃ or fuse / ash with Na₂CO₃ and dissolve higher than 1:1:1 H₂O /HF /H₃SO₃ or fuse / ash with Na₂CO₃ and dissolve higher than 1:1:1 H₂O /HF /H₃SO₃ or fuse / ash with Na₂CO₃ and dissolve higher than 1:1:1 H₂O /HF /H₃SO₃ or fuse / ash with Na₂CO₃ and dissolve higher than 1:1:1 H₂O /HF /H₃SO₃ or fuse / ash with Na₂CO₃ and dissolve higher than 1:1:1 H₃O /HF /H₃SO₃ or fuse / ash with Na₂CO₃ and dissolve higher than 1:1:1 H₃O /HF /H₃SO₃ or fuse / ash with Na₃CO₃ and dissolve higher than 1:1:1 H₃O /HF /H₃SO₃ or fuse / ash with Na₃CO₃ and dissolve higher than 1:1:1 H₃O /HF /H₃SO₃ or fuse / ash with Na₃CO₃ and dissolve higher than 1:1:1 H₃O /HF /H₃SO₃ or fuse / ash with Na₃CO₃ and dissolve higher than 1:1:1 H₃O /HF /H₃SO₃ or fuse / ash with Na₃CO₃ and dissolve higher than 1:1:1 H₃O /HF /H₃SO₃ or fuse / ash with Na₃CO₃ and dissolve higher than 1:1:1 H₃O /HF /H₃SO₃ or fuse / ash with Na₃CO₃ and dissolve higher than 1:1:1 H₃O /HF /H₃SO₃ or fuse / ash with Na₃CO₃ and dissolve higher than 1:1:1 H₃O /HF /H₃SO H-O I Silicone Oils - climetryl silicones depolymerize to form volatile monomer units when heated (Measure directly in alcoholic KOH /xylene mixture where sample is treated first with the KOH at 60-100 % to "unzip" the Si-O-Si polymeric structure or digest with concentrated H2SOJH2O2 followed by cooling and dissolution of the dehydrated silica with HF.) Note that the direct analysis of silicone oils in an organic solvent will result in false high results due to high vapor pressure of volatile monomer units like hexamethylcyclotrisiloxane. The KOH forms the K₂ 'Si(CH₂)0' salt which is not volatile at room temperature.

Atomic Spectroscopic Information (ICP-OES D.L.s are given as radial/axial view):

The same of	nen canabas sum	and the same of th			
Technique	/Line	Estimated D.L.	Order	<u>Type</u>	<u>Interferences (underlined indicates severe at afforcs.)</u>
ICP-OES	251.611 nm	0.012 / 0.003 µg/mL	1	ion	Ta, U, Zn, Th
ICP-OES	212.412 nm	0.02 / 0.01 µg/mL	1	ion	Hf, Os, <u>Mo</u> , Ta
ICP-OES	288.158 nm	0.03 / 0.004 µg/mL 1	ion	Ta, Ce,	Cr, Cd, Th
ICP-MS	28 amu	4000 - 8000 ppt	n/a	M'	'1N ₄ , ¹² C 11O

HF Note: This standard should not be prepared or stored in glass.

- 8.0 HAZARDOUS INFORMATION - Please refer to the enclosed Material Saftey Data sheet for Information regarding this CRM.
- 9.0 **HOMOGENEITY** • This solution was mixed according to procedure IV-MPM-004 and is guaranteed to be homogeneous.
- 10.0 **QUALITY STANDARD DOCUMENTATION**
 - 10.1 ISO 9001:2000 Quality Management System Registration QMI Certificate Number 010105 Recognized by:

Registrar Accreditation Board (ANSI-RAB)

Standards Council of Canada (SCC)

Dutch Council for Accreditation (RVA)

Entidad Mexicana de Acreditacion, a.c.(EMA)

Members of IQ Net International Certification Network:

Argentina (IRAM), Australia (QAS), Austria (ÖQS), Belgium (Avinter), Brazil (FCAV), Canada (QMI), Hong Kong (HKQAA), Columbia (ICONTEC), Czech Republic (CQS), Denmark (DS), Finland (SFS), France (AFAQ), Germany (DQS), Greece (ELOT), Hungary (MSZT), Ireland (NSAI), Israel (SII), Italy (CISQ), Japan (JQA), Korea (KSA-QA), Netherlands (KEMA), Norway (NCS), Poland(PCBC), Portugal (APCER), Singapore (PSB), Slovenia (SIQ), Spain (AENOR), Switzerland (SQS) 10.2 ISO/IEC 17025 - 1999 "General Requirements for the Competence of Testing and Calibration"

- Chemical Testing - Accredited A2LA Certificate Number 883.01

10.3 ISO/IEC Guide 34 - 2000 "General Requirements for the Competence of Reference Material Producers"

- Reference Materials Production - Accredited A2LA Certificate Number 883.02

A2LA Mutual Recognition Agreement Partners:

Australia (NATA), Austria (BmwA), Belgium (BELTEST) (BKO-OBE), Canada (SCC), Chinese Talpei (CNLA), Czech Republic (NAO), Denmark (DANAK), Finland (FINAS), France (COFRAC), Germany (DAR), Hong Kong (HKAS, Ireland (NAB), Italy (SIT) (SINAL), Japan (JAB) (JNLA), Republic of Korea (KOLAS), The Netherlands (RvA), New Zealand (IANZ), Norway (NA), Portugal (IPQ), Singapore (SAC-SINGLAS), Spain (ENAC), Sweden (SWEDAC), Switzerland (SAS), United Kingdom (UKAS) and United States (NVLAP) (ICBO ES)

- 10.4 10CFR50 Appendix B Nuclear Regulatory Commission
 - Domestic Licensing of Production and Utilization Facilities
- 10.5 10CFR21 Nuclear Regulatory Commission Reporting Defects and Non-Compliance
- 10.6 MIL-STD-45662A (Obsolete/Observed)

INOF	RGANIC	LABS/	RADCHEM	LABS	みつきる
DATE	RECEIV	/ED#	OVACK	24	
DATE	EXPIRE	ED:	09/01/2	X05	VOS
DATE	OPENEL):	01/30/	O++	
INORG	i: 41	127	PO: F	522	33

11.0 DATE OF CERTIFICATION AND PERIOD OF VALIDITY

- 11.1 IV Shelf Life The period of time during which the concentration of the analyte(s) in a properly packaged, unopened, and unused standard stored under environmentally controlled and monitored conditions will remain within the specified uncertainty range. Shelf life is limited primarily by transpiration (loss of water from the solution) and infrequently, by chemical instability. Transpiration studies (P-SP01020) of chemically-stable solutions performed at Inorganic Ventures / IV Labs indicate a CRM shelf-life of four years for solutions packaged in 500-mL low density polyethylene bottles. When stored under special conditions that minimize transpiration and instability, the shelf life can be extended past this limit.
- 11.2 Expiration Date The date after which a CRM should not be used. Routine laboratory use of a CRM increases transpiration losses and the chance of contamination which affect the integrity of the CRM and limit its useful life. Inorganic Ventures / IV Labs concurs with state and federal regulatory agencies' recommendations that solution standards be assigned a one-year expiration date.

Certification Date: February 24, 2003

Expiration Date:

117005

12.0 NAMES AND SIGNATURES OF CERTIFYING OFFICERS

Certificate Prepared By:

JoAnn Struthers, QA Administrative Assistant

Certificate Approved By:

Katalin Le, QC Supervisor

Certifying Officer:

Paul Gaines, Chemist, Senior Technical Director

Park Haim

foll statem

inorganic ventures / iv labs

195 lehigh avenue, suite 4, lakewood, nj 08701 usa phone: 800-669-6799 • 732-901-1900 • fax: 732-901-1903 e-mail: ivsales@ivstandards.com • website: www.ivstandards.com

certificate of analysis

CUSTOM-GRADE SOLUTION

1000 µg/mL Titanium in 1.4% HNO₃ (abs) tr. HF

Catalog Number: CGTI1-1, CGTI1-2 and CGTI1-5

This standard should not be prepared or stored in glass.

Lot Number: T-TI02039

Starting Material: Starting Material Purity: Starting Material Lot No: Titanium Metal 99.999% F29114 INORGANIC LABS/RADCHEM LABS
DATE RECEIVED: 11/24/03
DATE EXPIRED: 12/01/2004 vos
DATE OPENED: 11/25/03
INORG: 4330 PO: F52079

CERTIFIED CONCENTRATION: 1010 \pm 3 μ g/mL

The Certified Value is based upon the most precise method used to analyze this CRM. The following equations are used in the calculation of the certified value and the uncertainty:

Certified Value (\hat{x}) = $\frac{\sum x_i}{n}$

Uncertainty (±) = $2[(\sum_{s})^2]^{1/2}$ (n)^{1/2}

 $(\bar{x}) = mean$

x_i = individual results

n = number of measurements

 $\sum S_i$ = The summation of all significant estimated errors.

Calculated Value: 1002 µg/mL

Method: Calculated, based on starting material.

Instrument Analysis: 1010 ± 3 µg/mL (Average of 3 runs)

Method: Inductively Coupled Plasma Spectroscopy (ICP) vs NIST SRM 3162a.

TRACE METALLIC IMPURITIES DETERMINED BY ICP-MS AND ICP-OES IN µg/mL:

Custom-Grade solutions tested for trace metallic impurities by ICP-MS were analyzed in an ULPA-Fittered Clean Room. An ULPA-Fitter is 99.9985% efficient for the removal of particles down to 0.3 μ m.

ō	ΑI	< 0.010	M	Dy	< 0.00060	M	Li	< 0.0010	M	Pr	<0.000030	M	Te	< 0.0030
M	Sb	< 0.000050	M	Er	< 0.00050	<u>M</u>	Lu	< 0.000040	M	Re	< 0.00010	M	Tb	< 0.000030
M	As	< 0.0010	M	Eu	< 0.00030	<u>0</u>	Mg	< 0.020	<u>M</u>	Rh	< 0.00010	M	TI	< 0.00010
M	Ba	< 0.0010	M	Gd	< 0.00010	M	Mn	0.0020	<u>M</u>	Rb	< 0.00010	M	Th	< 0.00010
M	Be	< 0.000050	M	Ga	< 0.00010	<u>o</u>	Hg	< 0.050	M	Ru	< 0.00020	M	Tm	< 0.000040
M	Bi	< 0.000040	M	Ge	< 0.00060	M	Mo	< 0.00020	M	Sm	< 0.00010	M	Sn	< 0.00050
Q	₿	<0.050	M	Αu	<0.00030	M	Nd	< 0.00020	Ω	Sc	< 0.0020	<u> 5</u>	Ti	
M	Cd	<0.00030	M	Hf	< 0.00020	O	Ni	< 0.050	<u>o</u>	Şe	< 0.40	M	W	<0.0010
ο	Са	< 0.010	M	Но	< 0.000050	M	Nb	< 0.000050	Q	Si	<0.010	M	U	< 0.00020
M	Ce	< 0.00050	Q	In	< 0.020	ο_	Os		M	Ag	<0.00020	M	٧	<0.00020
M	Cs	<0.000030	M	lr	< 0.00050	M	Pd	< 0.00050	Q	Na	0.12	M	Υb	< 0.00010
M	Çr	<0.00050	0	Fe	<0.010	į	P		<u>M</u>	Sr	< 0.000050	M	Υ	<0.0040
M	Co	<0.00030	M	Le	<0.000050	M	Pt	< 0.00020	Ĺ	\$		M	Zn	0.19
Q	Cu	<0.040	M	Pb	< 0.00030	<u>n</u>	K	0.23	<u>M</u>	Ta	< 0.00070	M	Zr	<0.00050

M - checked by ICP-MS

O - checked by ICP-OES

i - spectral interference

n - not checked for

s - solution standard element

ANALYZED DENSITY OF SOLUTION (measured at 22°C): 1.011 g/mL QA:KL Rev.0000020N

(over)

Faul R. Haines
Quality Assurance Manager

Expires:

QUALITY STANDARD DOCUMENTATION

1. ISO 9001:2000 QMI Registered Quality System (Certificate Number 010105)

Members of IQ Net: Argentina (IRAM), Australia (QAS), Australa (ÖQS), Belgium (Avinter), Brazil (FCAV), Canada (QMI), Hong Kong (HKQAA), Columbia (ICQNTEC), Czech Republic (CQS), Denmark (DS), Finland (SFS), France (AFAQ), Germany (DQS), Greece (ELOT), Hungary (MSZT), Ireland (NSAI), Israel (SII), Italy (CISQ), Japan (JQA), Korea (KSA-QA), Netherlands (KEMA), Norway (NCS), Poland(PCBC), Portugal (APCER), Singapore (PSB), Slovenia (SIQ), Spain (AENOR), Switzerland (SQS)

- 2. ISO/IEC Guide 34-2000 "General Requirements for the Competence of Reference Material Producers" Reference Materials Production Accredited A2LA Certificate 883.02
- ISO/IEC17025-1999 "General Requirements for the Competence of Testing and Calibration" Chemical Testing -Accredited A2LA Certificate 883.01
- 4. MIL-STD-45662A
- 5. 10CFR50 Appendix B Nuclear Regulatory Commission Domestic Licencing of Production and Utilization Facilities
- 10CFR21 Nuclear Regulatory Commission Reporting Defects and Non-Compliance
 Please contact our Quality Assurance Department for further information and copies of documents pertaining to our
 Quality Standard certifications.

STABILITY/ EXPIRATION DOCUMENTATION

Shelf Life -

The length of time that a properly stored and packaged standard will remain within the specified uncertainty. Shelf life is affected by chemical stability and transpiration issues. Inorganic Ventures' Standard Solutions are chemically stable indefinitely. Transpiration loss is linear with time and limits the time a standard can be used with confidence. The smaller the bottle the higher the rate of transpiration. Inorganic Ventures' studies indicate that the shelf life of our 500 mL bottle is 4 years and the shelf life of our 125 mL bottle is 21 months.

Expiration Date -

The date after which a standard solution should not be used. A one year expiration date recommended by most state and federal regulatory agencies. Transpiration issues repeated use of solutions over a one year period may adversely affect the integrity of the standard.

PACKAGING DOCUMENTATION

Purified acid, 18 megohm double deionized water that has been filtered through a 0.2 µm filter and in-house procedure IV-PACK-001 is used to clean all bottles. Contact us for technical information relating to contamination issues in packaging materials.

GLASSWARE CALIBRATION

In-house procedure 3-QC-002 is used to calibrate all Class A Glassware used in the manufacture and quality control of Custom Grade Standards.

BALANCE CALIBRATION

All balances are checked daily using in-house procedure number 6-IMM-001. The weights used for testing are annually compared to Gerhart Scale Corporation's master weights and are traceable to the National Institute of Standards and Technology (NIST). The NIST Traceability numbers are 428359B and 454678. The NIST test number is 822/260017-98.

All analytical balances are calibrated every 4 months by Gerhart Scale Corp. of South Amboy. The balances are calibrated with a class 1 analytical weight set. These weights are tested annually by a NIST / NVLAP accredited calibration lab. The NIST test number is 822/260017-8.

THERMOMETER CALIBRATION

The thermometers used in the determination of the final densities are calibrated vs standard thermometer No. 903-2680 which was certified in accordance with the procedures outlined by ASTM E77-87 and NIST Monograph 150 using NIST Test Nos. and Std Nos.: 769543, 217368/769543, 217368/P14452, 176240/P14452, 176240. The in-house procedure No. is 2-QC-001. Thermometers which are not calibrated vs standard thermometer No. 903-2680 are traceable to NIST Identification Nos. 92564, 119016, 471047 and NIST test report Nos. 811/258522, 811/2557078, and 236090.

TECHNICAL SUPPORT

All customers are encouraged to contact us for technical support for the proper use of our products.

TEL 1-800-569-6799

INT'L 1-732-901-1900

FAX 1-732-901-1903

E-MAIL IVtech@ivstandards.com

inorganic ventures / iv labs

195 lehigh avenue, suite 4, lakewood, nj 08701 usa phone: 800-669-6799 • 732-901-1900 • fax: 732-901-1903 e-mail: ivsales@ivstandards.com • website: www.ivstandards.com

certificate of analysis

1.0 Inorganic Ventures / IV Labs is an ISO Guide 34-2000 Certified Reference Material (CRM) Manufacturer: Certificate #883-02. The certificate is designed and the certified value(s) and uncertainty(les) are determined in accordance with ISO Guide 31-2000 (Reference Materials - Contents of certificates and label(s), ISO Guide 34-2000 "Quality System Guidelines for the Production of Reference Materials," and ISO Guide 35-1989 "Certification of Reference Materials - General and Statistical Principles."

2.0 DESCRIPTION OF CRM

Custom-Grade 1000 µg/mL Strontium in 0.1% (abs) HNO3

Catalog Number:

CGSR1-1, CGSR1-2, and CGSR1-5

Lot Number:

T-SR01123

Starting Material:

SrCO3

INDRGANIC LABS/RADCHEM LABS%-166

Starting Material Purity (%):

99.9951

DATE RECEIVED: 06/80/03

Starting Material Lot No

22593

DATE EXPIRED: 07/01/8004 VO

Matrix:

0.1% (abs) HNO₃

DATE OPENED: ______ QG/33/03_____ INDRG: ______PO: _____F53270_____

3.0 CERTIFIED VALUES AND UNCERTAINTIES

Certified Concentration:

998 ± 2 µg/mL

Certified Density:

1.000 g/mL (measured at 22° C)

The Certified Value is based upon the most precise method used to analyze this CRM. The following equations are used in the calculation of the certified value and the uncertainty:

Certified Value $(\bar{x}) = \sum x_i$

(≅) = mean

n

x = individual results

n = number of measurements

Uncertainty (±) = $2[(\sum_{s})^2]^{\frac{1}{2}}$

 $\sum S =$ The summation of all significant estimated errors.

(Most common are the errors from instrumental measurement, weighing, dilution to volume, and the fixed error reported on the

NIST SRM certificate of analysis.)

The independent samples t-test was used to determine if there is agreement between the above assay methods at the 95% confidence interval. Both methods were compared and showed agreement within the stated uncertainties. This agreement is a confirmation of the accuracy of this CRM.

4.0 TRACEABILITY TO NIST AND VALUES OBTAINED BY INDEPENDENT METHODS

- "Property of the result of a measurement of the value of a standard whereby it can be related to stated references, usually national or international standards, through an unbroken chain of comparisons all having stated uncertainties." (ISO VIM, 2nd ed., 1993, definition 6.10)
- This IV product is Traceable to NIST via direct comparison to NIST SRMs. The uncertainties for each certified value are reported, taking into account the SRM uncertainty error and the measurement, weighing and volume dilution errors.

4.1

Assay Method #1

998 ± 2 µg/mL

EDTA NIST SRM 928 Lot Number: 880710

Assay Method #2

1002 ± 8 µg/mL

ICP Assay NIST SRM 3153a Lot Number: 990906

- BALANCE CALIBRATION All balances are checked daily using in-house procedure number 6-IMM-001. The weights used for testing are annually compared to Gerhart Scale Corporation's master weights and are traceable to the National Institute of Standards and Technology (NIST). The NIST Traceability numbers are 692476 - Class 1 and 692476A - Class 2. The NIST test number is 822/260017-98. All analytical balances are calibrated every 4 months by Gerhart Scale Corp. of South Amboy. The balances are calibrated with a class 1 and/or class 2 analytical weight set. These weights are tested annually by a NIST / NVLAP accredited calibration lab. The NIST test number is 822/260017-98.
- THERMOMETER CALIBRATION The thermometers used in the determination of the final densities are calibrated vs standard thermometer No. 903-2680 which was certified in accordance with the procedures outlined by ASTM E77-87 and NIST Monograph 150 using NIST Test Nos. and Std Nos.: 769543, 217368/769543, 217368/P14452, 176240/P14452, 176240. The in-house procedure No. is 2-QC-001. Thermometers which are not calibrated vs standard thermometer No. 903-2680 are traceable to NIST identification Nos. 92564, 119016, 471047 and NIST test report Nos. 811/258522, 811/2557078, and 236090.
- GLASSWARE CALIBRATION In-house procedure 3-QC-002 is used to calibrate all Class A Glassware used in the manufacture and quality control of Custom Grade Standards.

TRACE METALLIC IMPURITIES (TMI) DETERMINED BY ICP/MS AND ICP-OES IN µg/mL 5.0

Custom-Grade solutions are tested for trace metallic impurities by Axial ICP-OES and ICP-MS. The result from the most sensitive method for each element, is reported below. Solutions tested by ICP-MS were analyzed in an ULPA-Filtered Clean Room. An ULPA-Filter is 99,9985% efficient for the removal of particles down to 0.3 µm.

											4				1				
Q	Al	<	0.00090	M	Dу	<	0.00600	Q	Li	<	0.00003	M	Pr	<	0.00030	Q	Те	<	0.10000
M	Sb	<	0.00050	M	Er	<	0.00500	M	Lu	<	0.00040	M	Re	<	0.00100	M	Tb	<	0.00030
Q	As	<	0.00500	М	Eu	<	0.00300	Q	Mg		0.00037	ō	Rh	<	0.00600	М	TI	<	0.00100
М	Ba		0.04001	М	Gd	<	0.00100	Q	Mn		0.00018	i	Rb			M	Th	<	0.00100
Q	Ве	<	0.00009	M	Ga	<	0.00100	<u>o</u>	Hg	<	0.01500	Q	Ru	<	0.00300	M	Tm	<	0.00040
M	В	<	0.00040	M	Ge	<	0.00600	M	Мо	<	0.00200	M	Sm	<	0.00100	M	Sn	<	0.00500
<u>o</u>	В	<	0.00060	М	Au	<	0.00300	М	Nd	<	0.00200	М	Sc	<	0.01000	M	Ti	<	0.05001
M	Cd	<	0.00300	M	Hf	<	0.00200	<u>o</u>	Ni	<	0.00300	<u>o</u>	Se	<	0.05000	<u>M</u>	W	<	0.01000
Q	Са		0.03600	<u>M</u>	Но	<	0.00050	M	Nb	<	0.00050	Q	Si		0.00056	M	U	<	0.00200
M	Се	<	0.00500	Ō	In	<	0.00200	Ω	Os			М	Ag	<	0.00200	M	٧	<	0.00200
M	Cs	<	0.00030	M	łr	<	0.00500	Q	Pd	<	0.00400	Q	Na		0.00520	M	Yb	<	0.00100
Q	Cr	<	0.00080	<u>o</u>	Fe		0.00080	Q	Ρ	<	0.00480	<u>s</u>	Sr			O	Y	<	0.00004
M	Со	<	0.00300	М	La	<	0.00050	М	Pt	<	0.00200	Ω	s			M	Zn	<	0.02000
Q	Cu	<	0.00140	M	Pb	<	0.00300	<u>0</u>	ĸ	<	0.00170	<u>M</u>	Ta	<	0.00700	M	Zr	<	0.00500
M - C			by ICP-MS	0-	Chec	ked	by ICP-OES	i-S	pecti	al I	nterference	n - I	Not C	hed	ked For	ş - S	Solutio	on :	Standard Element

6.0 INTENDED USE

For the calibration of analytical instruments including but not limited to the following:

ICP-MS, ICP-OES, FAAS, GFAA, XRF, and DCP For the validation of analytical methods

For the preparation of "working reference samples"

For interference studies and the determination of correction coefficients

For detection limit and linearity studies

For additional intended uses, contact IV Technical Staff

7.0 INSTRUCTIONS FOR THE CORRECT USE OF THIS REFERENCE MATERIAL

Storage & Handling - Keep tightly sealed when not in use. Store and use at 20 ± 4°C. Do not pipet from container. Do not return portions removed for pipetting to container.

Atomic Weight; Valence; Coordination Number; Chemical Form in Solution - 87.62; +2; 6; Sr(H₂O), 12

Chemical Compatibility - Soluble in HCl, and HNO₂. Avoid H₂SO₃, HF and neutral to basic media. Stable with most metals and inorganic anions forming insoluble silicate, carbonate, hydroxide, oxide, fluoride, sulfate, oxalate, chromate, arsenate and tungstate in neutral aqueous media.

Stability - 2-100 ppb levels stable for months in 1% HNO₂ / LDPE container. 1-10,000 ppm solutions chemically stable for years in 1 - 3.5% HNO₃ / LDPE container.

Sr Containing Samples (Preparation and Solution) - Metal (Best dissolved in diluted HNO₃); Ores (Carbonate fusion in Pt followed by HCI dissolution); Organic Matrices (Dry ash and dissolution in dilute HCI).

Atomic Spectroscopic information (ICP-OES D.L.s are given as radial/axial ylew):

Atomic operatoropic shomator (for one sheat are given as temperator very).										
Techniqu	e/Line	Estimated D.L.	Order	Type	Interferences (underlined indicates severe at = concs.)					
ICP-OES	407.771 nm	0.0004 / 0.00006 µg/mL	1	ion	U, Ce					
ICP-OES	421,552 nm	0.0008 / 0.00004 ug/mL	1	ion	Rb					
ICP-OES	460.733 nm	0.07 / 0.003 µg/mL	1	atom	Ce					
ICP-MS	88 amu	1200 ppt	n/a	M	72Ge(6O, 176Yb+2, 176Life2, 176Life2					

- 8.0 HAZARDOUS INFORMATION - Please refer to the enclosed Material Saftey Data sheet for information regarding this CRM.
- 9.0 HOMOGENEITY - This solution was mixed according to procedure IV-MPM-004 and is guaranteed to be homogeneous.

10.0 **QUALITY STANDARD DOCUMENTATION**

10.1 ISO 9001:2000 Quality Management System Registration - QMI Certificate Number 010105 Recognized by:

Registrar Accreditation Board (ANSI-RAB) Standards Council of Canada (SCC) Dutch Council for Accreditation (RVA)

Entidad Mexicana de Acreditacion, a.c.(EMA)

Members of IQ Net International Certification Network:

Argentina (IRAM), Australia (QAS), Austria (ÖQS), Belgium (Avinter), Brazil (FCAV), Canada (QMI), Hong Kong (HKQAA). Columbia (ICONTEC), Czech Republic (CQS), Denmark (DS), Finland (SFS), France (AFAQ), Germany (DQS), Greece (ELOT), Hungary (MSZT), Ireland (NSAI), Israel (SII), Italy (CISQ), Japan (JQA), Korea (KSA-QA), Netherlands (KEMA), Norway (NCS), Poland(PCBC), Portugal (APCER), Singapore (PSB), Slovenia (SIQ), Spain (AENOR), Switzerland (SQS)

10.2 ISO/IEC 17025 - 1999 "General Requirements for the Competence of Testing and Calibration" - Chemical Testing - Accredited A2LA Certificate Number 883.01

10.3 ISO/IEC Guide 34 - 2000 "General Regulrements for the Competence of Reference Material Producers"

- Reference Materials Production - Accredited A2LA Certificate Number 883.02

A2LA Mutual Recognition Agreement Partners:

Australia (NATA), Austria (BmwA), Belgium (BELTEST) (BKO-OBE), Canada (SCC), Chinese Taipei (CNLA), Czech Republic (NAO), Denmark (DANAK), Finland (FINAS), France (COFRAC), Germany (DAR), Hong Kong (HKAS, Ireland (NAB), Italy (SIT) (SINAL), Japan (JAB) (JNLA), Republic of Korea (KOLAS), The Netherlands (RVA), New Zealand (IANZ), Norway (NA), Portugal (IPQ), Singapore (SAC-SINGLAS), Spain (ENAC), Sweden (SWEDAC), Switzerland (SAS), United Kingdom (UKAS) and United States (NVLAP) (ICBO ES)

- 10.4 10CFR50 Appendix B Nuclear Regulatory Commission
 - Domestic Licensing of Production and Utilization Facilities
- 10.5 10CFR21 Nuclear Regulatory Commission Reporting Defects and Non-Compllance
- 10.6 MiL-STD-45662A (Obsolete/Observed)

11.0 DATE OF CERTIFICATION AND PERIOD OF VALIDITY

- 11.1 IV Shelf Life The period of time during which the concentration of the analyte(s) in a properly packaged, unopened, and unused standard stored under environmentally controlled and monitored conditions will remain within the specified uncertainty range. Shelf life is limited primarily by transpiration (loss of water from the solution) and infrequently, by chemical instability. Transpiration studies (P-SP01020) of chemically-stable solutions performed at Inorganic Ventures / IV Labs indicate a CRM shelf-life of four years for solutions packaged in 500-mL low density polyethylene bottles. When stored under special conditions that minimize transpiration and instability, the shelf life can be extended past this limit.
- 11.2 Expiration Date The date after which a CRM should not be used. Routine laboratory use of a CRM increases transpiration losses and the chance of contamination which affect the integrity of the CRM and limit its useful life. Inorganic Ventures / IV Labs concurs with state and federal regulatory agencies' recommendations that solution standards be assigned a one-year expiration date.

Certification Date: October 31, 2002

Expiration Date:

EXPIRES

INORGANIC LABS/RADCHEM LABS % 3 4 2 DATE RECEIVED: 06/20/03 DATE EXPIRED: 07/01/2004
DATE OPENED: 00/23/03 DATE OPENED: 00/23/03 INORG: 4154 PO: £50370

12.0 NAMES AND SIGNATURES OF CERTIFYING OFFICERS

Certificate Prepared By:

Debbie Newman, QA Administrator

Certificate Approved By:

Katalin Le, QC Supervisor

Certifying Officer:

Paul Gaines, Chemist, Senior Technical Director

Aleberi Newman Known in Paul Mains

inorganic ventures

195 lehigh avenue, suite 4, lakewood, nj 08701 usa phone: 800-669-6799 • 732-901-1900 • fax: 732-901-1903

e-mail: ivsales@ivstandards.com • website: www.ivstandards.com

certificate of analysis

Inorganic Ventures / IV Labs is an ISO Guide 34-2000 Certified Reference Material (CRM) Manufacturer: 1.0 Certificate #883-02. The certificate is designed and the certified value(s) and uncertainty(ies) are determined in accordance with ISO Guide 31-2000 (Reference Materials - Contents of certificates and label(s), ISO Guide 34-2000 "Quality System Guidelines for the Production of Reference Materials," and ISO Guide 35-1989 "Certification of Reference Materials - General and Statistical Principles."

DESCRIPTION OF CRM Custom-Grade 1000 µg/mL Tin in H20 tr. HNO3 tr. HF 2.0

Catalog Number:

CGSN1-1, CGSN1-2, and CGSN1-5

Lot Number:

X-SN01115

Starting Material:

Sn Shot

Starting Material Purity (%):

99.999438

Starting Material Lot No

G12M23

Matrix:

H₂0 tr. HNO₃ tr. HF

3.0 **CERTIFIED VALUES AND UNCERTAINTIES**

Certified Concentration:

995 ± 2 µg/mL

Certified Density:

0.998 g/mL (measured at 22° C)

The Certified Value is based upon the most precise method used to analyze this CRM. The following equations are used in the calculation of the certified value and the uncertainty:

Certified Value (C) = erx

(C) = mean

x_i = individual results

Uncertainty (±) = $2[(e_1 \cdot s_1)^2]^{1/2}$

n = number of measurements

#S = The summation of all significant estimated errors.

(Most common are the errors from instrumental measurement, weighing, dilution to volume, and the fixed error reported on the

NIST SRM certificate of analysis.)

TRACEABILITY TO NIST AND VALUES OBTAINED BY INDEPENDENT METHODS 4.0

□ "Property of the result of a measurement or the value of a standard whereby it can be related to stated references, usually national or International standards, through an unbroken chain of comparisons all having stated uncertainties." (ISO VIM, 2nd ed., 1993, definition 6.10)

☐ This IV product is Traceable to NIST via direct comparison to NIST SRMs. The uncertainties for each certified value are reported, taking into account the SRM uncertainty error and the measurement, weighing and volume dilution errors.

4.1

Assay Method #1

995 ± 2 μg/mL (Avg 2 runs)

ICP Assay NIST SRM 3161a Lot Number: 993107

Assay Method #2

998 µg/mL

Gravimetric NIST SRM Lot Number: See Sec. 4.2

INORGANIO	LABS/RAD	CHEM LA	88 <i>7</i> 9. 1 of a
DATE RECEI	VED: Q3	3/30/04	
DATE EXPIR	ED: OH	101/900F	s vas
DATE OPENE	D: 03	5/30/04_	
DATE OPENE INORG: 45	519	E533	36 L

- 4.2 BALANCE CALIBRATION All balances are checked daily using in-house procedure number 6-IMM-001. The weights used for testing are annually compared to Gerhart Scale Corporation's master weights and are traceable to the National Institute of Standards and Technology (NIST). The NIST Traceability numbers are 692476 Class 1 and 692476A Class 2. The NIST test number is 822/260017-98. All analytical balances are calibrated every 4 months by Gerhart Scale Corp. of South Amboy. The balances are calibrated with a class 1 and/or class 2 analytical weight set. These weights are tested annually by a NIST / NVLAP accredited calibration lab. The NIST test number is 822/260017-98.
- 4.3 THERMOMETER CALIBRATION The thermometers used in the determination of the final densities are calibrated vs standard thermometer No. 903-2680 which was certified in accordance with the procedures outlined by ASTM E77-87 and NIST Monograph 150 using NIST Test Nos. and Std Nos.: 769543, 217368/769543, 217368/P14452, 176240/P14452, 176240. The in-house procedure No. is 2-QC-001. Thermometers which are not calibrated vs standard thermometer No. 903-2680 are traceable to NIST Identification Nos. 92564, 119016, 471047 and NIST test report Nos. 811/258522, 811/2557078, and 236090.
- 4.4 GLASSWARE CALIBRATION In-house procedure 3-QC-002 is used to calibrate all Class A Glassware used in the manufacture and quality control of Custom Grade Standards.

5.0 TRACE METALLIC IMPURITIES (TMI) DETERMINED BY ICP/MS AND ICP-OES IN µg/mL

Custom-Grade solutions are tested for trace metallic impurities by Axial ICP-OES and ICP-MS. The result from the most sensitive method for each element, is reported below. Solutions tested by ICP-MS were analyzed in an ULPA-Filtered Clean Room. An ULPA-Filter is 99.9985% efficient for the removal of particles down to 0.3 µm.

<u>o</u>	Al		0.00050	<u>M</u>	D	y	< (0.01205	Ō	Li	<	0.00002	M	Pr	<	0.00060	M	Te	<	0.06026
Q	Sb	<	0.01000	М	E	r	< ,	0.01004	M	Lu	<	0.00080	М	Re	<	0.00201	<u>M</u>	Tb	<	0.00060
W	As	<	0.02009	М	Ε	u	< (0.00603	<u>0</u>	Mg	<	0.00003	M	Rh	<	0.00201	M	TI	<	0.00201
Q	Ва	<	0.00070	M	G	d	< 1	0.00201	M	Mn	<	0.00804	М	Rb	<	0.00201	М	Th	<	0.00201
<u>M</u>	Ве	<	0.00100	M	G	а	< 1	0.00201	<u>0</u>	Hg	<	0.01500	M	Ru	<	0.00402	M	Tm	<	0.00080
M	Bi	<	0.00080	M	G	е	< (0.01205	M	Мо	<	0.00402	М	Sm	<	0.00201	ş	Sn		
Ω	В	<	0.01200	М	Α	u	< (0.00603	M	Nd	<	0.00402	M	\$c	<	0.02009	М	Ti	<	0.10043
<u>0</u>	Cd		0.00009	M	Н	f	< (0.00402	Q	Ni	<	0.01000	M	Se	<	0.01607	<u>M</u>	W	<	0.02009
<u>o</u>	Са	<	0.00150	M	Н	0	< (0.00100	<u>M</u>	Nb	<	0.00100	0	Si	<	0.00340	M	U	<	0.00402
M	Се	<	0.01004	М	tr		<	0.02009	<u>n</u>	Os			<u>M</u>	Ag	<	0.00402	M	٧	<	0.00402
<u>M</u>	Cs	<	0.00060	M	Ir		< 1	0.01004	M	Pd	<	0.01004	Q	Na	<	0.00010	М	Yb	<	0.00201
<u>M</u>	Cr	<	0.01004	<u>o</u>	F	e	< 1	0.00110	Q	P	<	0.00500	М	Sr	<	0.00100	М	Y	<	0.08035
Q	Ço	<	0.00200	M	L	3	< (0.00100	<u>M</u>	Pt	<	0.00402	n	s			M	Zn	<	0.04017
<u>M</u>	Си	<	0.01205	M	P	b	ļ	0.00593	Q	Κ	<	0.00200	M	Ta	<	0.01406	M	Zr	<	0.01004
M - C	heck	eď	by ICP-MS	0-	Ch	eck	ed i	by ICP-OES	i - S	pect	ral l	nterference	n - 1	lot C	hec	ked For	s -	Soluti	on :	Standard Element

6.0 INTENDED USE

For the calibration of analytical instruments including but not limited to the following:

ICP-MS, ICP-OES, FAAS, GFAA, XRF, and DCP

For the validation of analytical methods

For the preparation of "working reference samples"

For interference studies and the determination of correction coefficients

For detection limit and linearity studies

For additional intended uses, contact IV Technical Staff

7.0 INSTRUCTIONS FOR THE CORRECT USE OF THIS REFERENCE MATERIAL

Storage & Handling - Keep tightly sealed when not in use. Store and use at 20 ± 4 %. Do not pipet from container. Do not return portions removed for pipetting to container.

Atomic Weight; Valence; Coordination Number; Chemical Form in Solution - 118.710; +4; 4,5, 6,7,8 Sn(OH),F,*

Chemical Compatibility - Soluble in HCI and dilute HF / HNO₂. Avoid neutral to basic media. Unstable at poin levels with metals that would pull F-away. (i.e. Do not mix with Alkaline or Rare Earths or high levels of transition elements unless they are fluorinated.) Stable with most inorganic anions provided it is in the chemical form shown above.

Stability - 2-100 ppb levels stable (alone or mixed with all other metals that are at comparable levels) as the Sn(OH).F,' for 1 year in 1% HNO, / LDPE container. 1-10,000 ppm single element solutions as the Sn(OH).F,' chemically stable for years in 2-5% HNO, / trace HF in a LDPE container.

Sn Containing Samples (Preparation and Solution) - Metal (Solutie in HF /HNO, or HCl); Oxides - SnO (soluble in HCl), SnO, -very resistant to all acids including HF (Fusion with equal parts of Na,CO) and S. It is then soluble in water or cliude acids as the thiostamate.); Alloys (Treat first 0.1 g with 10 mL conc. H,SO, to boiling until the alloy disintegrates and nearly all of the sulfuric acid is expelled. Then add 100 mL O, free water and 50 mL of tone HCl or transfer to a plastic container and add 1 mL HF in either case warming gently to bring about solution.); Organic Matrices (Volatility and precipitation of the insoluble stannic oxide are problems. Consultation of the literature should be made for individual matrices / Sn compounds.)

Atomic Spectroscopic Information (ICP-OES D.L.s are given as radial/axial view):

Technique/Line		ated D.L. Order	Type	Interferences (underlined indicates severe at vallono	s .)
ICP-OES 189.9	389nm 0.03 <i>!</i>	0.003 µg/mL 1	ion		
ICP-OES 242.9	949 nm 0.1/0	.01 µg/mL 1	atom	VV, Mo, Rh, Ta, Co	
ICP-MS 1204	amu 5 ppt	n/a	M'	'*Te, '*Ru"O, '*Pd"O	

HF Note: This standard should not be prepared or stored in glass.

- 8.0 HAZARDOUS INFORMATION Please refer to the enclosed Material Saftey Data sheet for information regarding this CRM.
- 9.0 HOMOGENEITY This solution was mixed according to procedure IV-MPM-004 and is guaranteed to be homogeneous.

10.0 QUALITY STANDARD DOCUMENTATION

10.1 ISO 9001;2000 Quality Management System Registration - QMI Certificate Number 010105

Recognized by:

Registrar Accreditation Board (ANSI-RAB)

Standards Council of Canada (SCC)

Dutch Council for Accreditation (RVA)

Entidad Mexicana de Acreditacion, a.c.(EMA)

Members of IQ Net International Certification Network:

Argentina (IRAM), Australia (QAS), Austria (ÖQS), Belgium (Avinter), Brazil (FCAV), Canada (QMI), Hong Kong (HKQAA), Columbia (ICONTEC), Czech Republic (CQS), Denmark (DS), Finland (SFS), France (AFAQ), Germany (DQS), Greece (ELOT), Hungary (MSZT), Ireland (NSAI), Israel (SII), Italy (CISQ), Japan (JQA), Korea (KSA-QA), Netherlands (KEMA), Norway (NCS), Polycol (ARCEN), Signapore (SSE), Signapo

Poland(PCBC), Portugal (APCER), Singapore (PSB), Slovenia (SiQ), Spain (AENOR), Switzerland (SQS) 10.2 ISO/IEC 17025 - 1999 "General Requirements for the Competence of Testing and Calibration"

- Chemical Testing - Accredited A2LA Certificate Number 883.01

10.3 ISO/IEC Guide 34 - 2000 "General Requirements for the Competence of Reference Material Producers"

- Reference Materials Production - Accredited A2LA Certificate Number 883.02

A2LA Mutual Recognition Agreement Partners:

Australia (NATA), Austria (BmwA), Belgium (BELTEST) (BKO-OBE), Canada (SCC), Chinese Taipei (CNLA), Czech Republic (NAO), Denmark (DANAK), Finland (FINAS), France (COFRAC), Germany (DAR), Hong Kong (HKAS, Ireland (NAB), Italy (SIT) (SINAL), Japan (JAB) (JNLA), Republic of Korea (KOLAS), The Netherlands (RvA), New Zealand (IANZ), Norway (NA), Portugal (IPQ), Singapore (SAC-SINGLAS), Spain (ENAC), Sweden (SWEDAC), Switzerland (SAS), United Kingdom (UKAS) and United States (NVLAP) (ICBO ES)

- 10.4 10CFR50 Appendix B Nuclear Regulatory Commission
 - Domestic Licensing of Production and Utilization Facilities
- 10.5 10CFR21 Nuclear Regulatory Commission Reporting Defects and Non-Compliance
- 10.6 MIL-STD-45662A (Obsolete/Observed)

	S/RADCHEM LABS Pylofa
DATE RECEIVED:_	03/30/04
DATE EXPIRED:	04/01/2005 100
DATE OPENED:	03/30/04
INORG: 4510	PD: E5336 1

- 11.1 IV Shelf Life The period of time during which the concentration of the analyte(s) in a properly packaged, unopened, and unused standard stored under environmentally controlled and monitored conditions will remain within the specified uncertainty range. Shelf life is limited primarily by transpiration (loss of water from the solution) and infrequently, by chemical instability. Transpiration studies (P-SP01020) of chemically-stable solutions performed at Inorganic Ventures / IV Labs indicate a CRM shelf-life of four years for solutions packaged in 500-mL low density polyethylene bottles. When stored under special conditions that minimize transpiration and instability, the shelf life can be extended past this limit.
- 11.2 Expiration Date The date after which a CRM should not be used. Routine laboratory use of a CRM increases transpiration losses and the chance of contamination which affect the Integrity of the CRM and limit its useful life. Inorganic Ventures / IV Labs concurs with state and federal regulatory agencies' recommendations that solution standards be assigned a one-year expiration date.

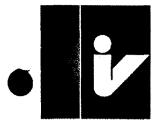
Certification Date: February 11, 2004

Expiration Date:

NAMES AND SIGNATURES OF CERTIFYING OFFICERS 12.0

Certificate Prepared By:

JoAnn Struthers, QA Administrative Assistant


Certificate Approved By:

Katalin Le, QC Manager

Certifying Officer:

Paul Gaines, Chemist, Senior Technical Director

folh Stutten known an Park Asim

inorganic ventures / iv labs

195 lehigh avenue, suite 4, lakewood, nj 08701 usa phone: 800-669-6799 • 732-901-1900 • fax: 732-901-1903

e-mail: ivsales@ivstandards.com • website: www.ivstandards.com

certificate of analysis

1.0 Inorganic Ventures / IV Labs is an ISO Guide 34-2000 Certified Reference Material (CRM) Manufacturer: Certificate #883-02. The certificate is designed and the certified value(s) and uncertainty(ies) are determined in accordance with ISO Guide 31-2000 (Reference Materials - Contents of certificates and label(s), ISO Guide 34-2000 "Quality System Guidelines for the Production of Reference Materials," and ISO Guide 35-1989 "Certification of Reference Materials - General and Statistical Principles."

2.0 DESCRIPTION OF CRM

Custom-Grade 1000 µg/mL Bismuth In 3.5% (abs) HNO3

Catalog Number:

CGBI1-1 and CGBI1-5

Lot Number:

W-BI01089

Starting Material:

Bi needles

Starting Material Purity (%):

99.999090

INORGANIC LABS/RADCHEM LABS & 1.4 2
DATE RECEIVED: 07/31/03

Starting Material Lot No

G25L16

DATE EXPIRED: 08/01/3004 VOS

Matrix:

3.5% (abs) HNO₃

DATE OPENED: 08/01/03 INORG: 4900 PO: F59383

3.0 CERTIFIED VALUES AND UNCERTAINTIES

Certified Concentration:

 $1002 \pm 4 \mu g/mL$

Certified Density:

1.026 g/mL (measured at 22° C)

The Certified Value is based upon the most precise method used to analyze this CRM. The following equations are used in the calculation of the certified value and the uncertainty:

Certified Value (C) = exx

(□) = mean

n

 $x_i = individual results$

n = number of measurements

Uncertainty (±) = $2[(\alpha - s_i)^2]^{1/2}$

II = number of measurements

■S = The summation of all significant estimated errors.

(Most common are the errors from instrumental measurement, weighing, dilution to volume, and the fixed error reported on the

NIST SRM certificate of analysis.)

4.0 TRACEABILITY TO NIST AND VALUES OBTAINED BY INDEPENDENT METHODS

□ "Property of the result of a measurement or the value of a standard whereby it can be related to stated references, usually national or international standards, through an unbroken chain of comparisons all having stated uncertainties." (ISO VIM, 2nd ed., 1993, definition 6.10)

☐ This IV product is Traceable to NIST via direct comparison to NIST SRMs. The uncertainties for each certified value are reported, taking into account the SRM uncertainty error and the measurement, weighing and volume dilution errors.

4.1

Assay Method #1

 $1002 \pm 4 \mu g/mL (Avg 2 runs)$

ICP Assay NIST SRM 3106 Lot Number: 991212

Assay Method #2

1002 µg/mL

Gravimetric NIST SRM Lot Number: See Sec. 4.2

- 4.2 BALANCE CALIBRATION All balances are checked daily using in-house procedure number 6-IMM-001. The weights used for testing are annually compared to Gerhart Scale Corporation's master weights and are traceable to the National Institute of Standards and Technology (NIST). The NIST Traceability numbers are 692476 Class 1 and 692476A Class 2. The NIST test number is 822/260017-98. All analytical balances are calibrated every 4 months by Gerhart Scale Corp. of South Amboy, The balances are calibrated with a class 1 and/or class 2 analytical weight set. These weights are tested annually by a NIST / NVLAP accredited calibration lab. The NIST test number is 822/260017-98.
- 4.3 THERMOMETER CALIBRATION The thermometers used in the determination of the final densities are calibrated vs standard thermometer No. 903-2680 which was certified in accordance with the procedures outlined by ASTM E77-87 and NIST Monograph 150 using NIST Test Nos. and Std Nos.: 769543, 217368/769543, 217368/P14452, 176240/P14452, 176240. The in-house procedure No. is 2-QC-001. Thermometers which are not calibrated vs standard thermometer No. 903-2680 are traceable to NIST Identification Nos. 92564, 119016, 471047 and NIST test report Nos. 811/258522, 811/2557078, and 236090.
- 4.4 GLASSWARE CALIBRATION In-house procedure 3-QC-002 is used to calibrate all Class A Glassware used in the manufacture and quality control of Custom Grade Standards.

5.0 TRACE METALLIC IMPURITIES (TMI) DETERMINED BY ICP/MS AND ICP-OES IN µg/mL

Custom-Grade solutions are tested for trace metallic impurities by Axial ICP-OES and ICP-MS. The result from the most sensitive method for each element, is reported below. Solutions tested by ICP-MS were analyzed in an ULPA-Filtered Clean Room. An ULPA-Filter is 99.9985% efficient for the removal of particles down to 0.3 µm.

Q	ΑJ		0.00012	M	Dy	<	0.01202	<u>0</u>	Li	<	0.00002	M	Pr	<	0.00060	W	Te	<	0.06008
<u>M</u>	Sb	<	0.00100	М	Er	<	0.01001	M	Lu	<	0.00080	М	Re	<	0.00200	М	Tb	<	0.00060
M	As	<	0.02003	М	Εu	<	0.00601	ō	Mg		0.00070	М	Rh	<	0.00200	М	TI	<	0.00200
M	Ва	<	0.02003	М	Gđ	<	0.00200	Q	Mn	<	0.00020	M	Rb	<	0.00200	М	Th	<	0.00200
<u>M</u>	Вe	<	0.00100	M	Ga	<	0.00200	<u>o</u>	Hg	<	0.01500	М	Ru	<	0.00401	М	Tm	<	0.00080
<u>s</u>	ВІ			M	Ge	<	0.01202	M	Мо	<	0.00401	M	Sm	<	0.00200	М	Sn	<	0.01001
М	В	<	0.14018	М	Au	<	0.00601	M	Nd	<	0.00401	M	Sc	<	0.02003	М	Ti	<	0.10013
<u>o</u>	Cd		0.00017	M	Hf	<	0.00401	М	Ni	<	0.01602	M	Se	<	0.01602	W	W	<	0.02003
<u>o</u>	Ca		0.00245	М	Но	<	0.00100	<u>M</u>	Nb	<	0.00100	ō	Si		0.00105	M	Ų	<	0.00401
M	Се	<	0.01001	<u>0</u>	In		0.00105	<u>n</u>	Os			W	Ag	<	0.00401	M	٧	<	0.00401
M	Cs	<	0.00060	М	ir	<	0.01001	<u>0</u>	Pd	<	0.00400	ō	Na		0.00240	<u>M</u>	Υb	<	0.00200
Ō	Cr		0.00020	<u>o</u>	Fe		0.00014	<u>o</u>	Ρ	<	0.01000	М	Sr	<	0.00100	М	Υ	<	0.08011
M	Со	<	0.00601	М	La	<	0.00100	M	Pt	<	0.00401	0	s	<	0.03000	0	Zn		0.00008
Q	Cu		0.00014	<u>0</u>	Pb		0.00135	ō	κ		0.00039	M	Та	<	0.01402	M	Zr	<	0.01001
M - C	heck	ced	by ICP-MS	0-	Chec	ked	by ICP-OES	i - S	pectr	al I	nterference	n - f	Not C	hed	cked For	s -	Soluti	on:	Standard Element

6.0 INTENDED USE

For the calibration of analytical instruments including but not limited to the following:

ICP-MS, ICP-OES, FAAS, GFAA, XRF, and DCP

For the validation of analytical methods

For the preparation of "working reference samples"

For interference studies and the determination of correction coefficients

For detection limit and linearity studies

For additional intended uses, contact IV Technical Staff

7.0 INSTRUCTIONS FOR THE CORRECT USE OF THIS REFERENCE MATERIAL

Storage & Handling - Keep tightly sealed when not in use. Store and use at 20 ± 4~6. Do not pipet from container. Do not return portions removed for pipetting to container.

Atomic Weight; Valence; Coordination Number; Chemical Form in Solution - 208,9804; +3, 6; Bi(O)(H,O)."

Chemical Compatibility - Stable in HCl, HNO, H,SO, and HF. Avoid basic media forming insoluble hydroxide. Stable with most metals and inorganic anions in acidic media. Many salts that are insoluble in water are soluble in HCl, HNO, and HF. The major problem with Bir is its tendency to hydrolyze at higher concentrations or in dilute acid. Nitric acid solutions should be 5% to hold the Bi in solution in the 100 to 10000 µa/mL concentration range

Stability - 2-100 ppb levels stable for months in 1 % HNO, /LDPE container. 1-10,000 ppm solutions chemically stable for years in 5 - 7% HNO, /LDPE container.

Bi Containing Samples (Preparation and Solution) - Metal (soluble in HNO,); Oxides (Soluble in HNO,) Alloys (Dissolve in conc. 4:1 HCl /HNO, Heating may be required.), Organic based (dry ash at 450 € and dissolve ash in HNO, or acid digestion with conc. hat sulfuric acid adding hydrogen peroxide dropwise and carefully until clear.)

Atomic Spectroscopic Information (ICP-OES D.L.s are given as radial/axial view):

Technique	Line	Estimated D.L.	Order	Type	Interferences (underlined indicates severe at altitionics.)						
ICP-OES	223.061 nm	0.04 / 0.005 µg/mL	1	atom	Th, Ir, Ti Cu						
ICP-OES	306.772 nm	0.08 / 0.01 µg/mL	1	atom	<u>Th</u> , U, <i>Z</i> r, Hf, Fe						
ICP-OES	222.825 nm	0.1 / 0.02 µg/mL	1	atom	Cr, Hf, Ce, Os						
ICP-MS	209 amu	2 ppt	n∕a	M'	in Fig. C						

- 8.0 HAZARDOUS INFORMATION - Please refer to the enclosed Material Saftey Data sheet for information regarding this CRM.
- 9.0 HOMOGENEITY - This solution was mixed according to procedure IV-MPM-004 and is guaranteed to be homogeneous.

10.0 QUALITY STANDARD DOCUMENTATION

10.1 ISO 9001:2000 Quality Management System Registration - QMI Certificate Number 010105 Recognized by:

Registrar Accreditation Board (ANSI-RAB)

Standards Council of Canada (SCC)

Dutch Council for Accreditation (RVA)

Entidad Mexicana de Acreditación, a.c.(EMA)

Members of IQ Net International Certification Network:

Argentina (IRAM), Australia (QAS), Austria (ÖQS), Belgium (Avinter), Brazil (FCAV), Canada (QMI), Hong Kong (HKQAA), Columbia (ICONTEC), Czech Republic (CQS), Denmark (DS), Finland (SFS), France (AFAQ), Germany (DQS), Greece (ELOT), Hungary (MSZT), Ireland (NSAI), Israel (SII), Italy (CISQ), Japan (JQA), Korea (KSA-QA), Netherlands (KEMA), Norway (NCS), Poland(PCBC), Portugal (APCER), Singapore (PSB), Slovenia (SIQ), Spain (AENOR), Switzerland (SQS) 10.2 ISO/IEC 17025 - 1999 "General Requirements for the Competence of Testing and Calibration"

- Chemical Testing - Accredited A2LA Certificate Number 883.01

10.3 ISO/IEC Guide 34 - 2000 "General Requirements for the Competence of Reference Material Producers"

- Reference Materials Production - Accredited A2LA Certificate Number 883.02

A2LA Mutual Recognition Agreement Partners:

Australia (NATA), Austria (BmwA), Belgium (BELTEST) (BKO-OBE), Canada (SCC), Chinese Talpel (CNLA), Czech Republic (NAO), Denmark (DANAK), Finland (FINAS), France (COFRAC), Germany (DAR), Hong Kong (HKAS, Ireland (NAB), Italy (SIT) (SINAL), Japan (JAB) (JNLA), Republic of Korea (KOLAS), The Netherlands (RvA), New Zealand (IANZ), Norway (NA), Portugal (IPQ), Singapore (SAC-SINGLAS), Spain (ENAC), Sweden (SWEDAC), Switzerland (SAS), United Kingdom (UKAS) and United States (NVLAP) (ICBO ES)

- 10.4 10CFR50 Appendix B · Nuclear Regulatory Commission
 - Domestic Licensing of Production and Utilization Facilities
- 10.5 10CFR21 Nuclear Regulatory Commission Reporting Defects and Non-Compliance
- 10.6 MIL-STD-45662A (Obsolete/Observed)

	/RADCHEM LABS % 3 4 3
DATE RECEIVED:_	07/31/03
DATE EXPIRED:	08/01/2004 VOS
DATE OPENED:	08/01/03
INORG: 4200	PO:_ f5 a 383

11.0 DATE OF CERTIFICATION AND PERIOD OF VALIDITY

- 11.1 IV Shelf Life The period of time during which the concentration of the analyte(s) in a properly packaged, unopened, and unused standard stored under environmentally controlled and monitored conditions will remain within the specified uncertainty range. Shelf life is limited primarily by transpiration (loss of water from the solution) and infrequently, by chemical instability. Transpiration studies (P-SP01020) of chemically-stable solutions performed at Inorganic Ventures / IV Labs indicate a CRM shelf-life of four years for solutions packaged in 500-mL low density polyethylene bottles. When stored under special conditions that minimize transpiration and instability, the shelf life can be extended past this limit.
- 11.2 Expiration Date The date after which a CRM should not be used. Routine laboratory use of a CRM increases transpiration losses and the chance of contamination which affect the integrity of the CRM and limit its useful life. Inorganic Ventures / IV Labs concurs with state and federal regulatory agencies' recommendations that solution standards be assigned a one-year expiration date.

Certification Date: March 28, 2003

Expiration Date:

EXPIRES

12.0 NAMES AND SIGNATURES OF CERTIFYING OFFICERS

Certificate Prepared By: JoAnn Struthers, Qu

JoAnn Struthers, QA Administrative Assistant

Certificate Approved By:

Katalin Le, QC Supervisor

Certifying Officer:

Paul Gaines, Chemist, Senior Technical Director

folk Stutten Known in

inorganic ventures / iv labs

195 lehigh avenue, suite 4, lakewood, nj 08701 usa phone: 800-669-6799 • 732-901-1900 • fax: 732-901-1903

e-mail: ivsales@ivstandards.com • website: www.ivstandards.com

certificate of analysis

1.0 Inorganic Ventures / IV Labs is an ISO Guide 34-2000 Certified Reference Material (CRM) Manufacturer: Certificate #883-02. The certificate is designed and the certified value(s) and uncertainty(ies) are determined in accordance with ISO Guide 31-2000 (Reference Materials - Contents of certificates and label(s), ISO Guide 34-2000 "Quality System Guidelines for the Production of Reference Materials," and ISO Guide 35-1989 "Certification of Reference Materials - General and Statistical Principles."

2.0 DESCRIPTION OF CRM Custom-Grade 1000 µg/mL Lithium in 0.1% (abs) HNO3

Catalog Number:

CGLI1-1 and CGLI1-5

Lot Number:

W-LI02073

Starting Material:

Li2CO3

Starting Material Purity (%):

99.997165

Starting Material Lot No Matrix:

3.0

1123

INDRGANIC LABS/RADCHEM LABS \$ 146

DATE RECEIVED: ___OT/OU/OH

0.1% (abs) HNO₃

CERTIFIED VALUES AND UNCERTAINTIES

DATE EXPIRED: 08/01/3005 003 DATE OPENED: 07/01/04 INORG: 468 PO: F53406

Certified Concentration: 99

995 ± 2 µg/mL

Certified Density:

1.004 g/mL (measured at 22° C)

The Certified Value is based upon the most precise method used to analyze this CRM. The following equations are used in the calculation of the certified value and the uncertainty:

Certified Value (C) = exx

(C)i= mean

x_i = individual results

n = number of measurements

Uncertainty (±) = $2[(\alpha_1 s_1)^2]^{1/2}$

BS = The summation of all significant estimated errors.

(Most common are the errors from instrumental measurement, weighing, dilution to volume, and the fixed error reported on the

NIST SRM certificate of analysis.)

The independent samples t-test was used to determine if there is agreement between the above assay methods at the 95% confidence interval. Both methods were compared and showed agreement within the stated uncertainties. This agreement is a confirmation of the accuracy of this CRM.

4.0 TRACEABILITY TO NIST AND VALUES OBTAINED BY INDEPENDENT METHODS

□ "Property of the result of a measurement or the value of a standard whereby it can be related to stated references, usually national or international standards, through an unbroken chain of comparisons all having stated uncertainties." (ISO VIM, 2nd ed., 1993, definition 6.10)

☐ This IV product is Traceable to NIST via direct comparison to NIST SRMs. The uncertainties for each certified value are reported, taking into account the SRM uncertainty error and the measurement, weighing and volume dilution errors.

4.1 Assay Method #1

995 ± 2 μg/mL

ICP Assay NIST SRM 3129a Lot Number: 000505

Assay Method #2

995 ± 6 µg/mL

Gravimetric NIST SRM Lot Number: See Sec. 4.2

- 4.2 BALANCE CALIBRATION All balances are checked daily using in-house procedure number 6-IMM-001. The weights used for testing are annually compared to Gerhart Scale Corporation's master weights and are traceable to the National Institute of Standards and Technology (NIST). The NIST Traceability numbers are 692476 Class 1 and 692476A Class 2. The NIST test number is 822/260017-98. All analytical balances are calibrated every 4 months by Gerhart Scale Corp. of South Amboy. The balances are calibrated with a class 1 and/or class 2 analytical weight set. These weights are tested annually by a NIST / NVLAP accredited calibration lab. The NIST test number is 822/260017-98.
- 4.3 THERMOMETER CALIBRATION The thermometers used in the determination of the final densities are calibrated vs standard thermometer No. 903-2680 which was certified in accordance with the procedures outlined by ASTM E77-87 and NIST Monograph 150 using NIST Test Nos. and Std Nos.: 769543, 217368/769543, 217368/P14452, 176240/P14452, 176240. The in-house procedure No. is 2-QC-001. Thermometers which are not calibrated vs standard thermometer No. 903-2680 are traceable to NIST Identification Nos. 92564, 119016, 471047 and NIST test report Nos. 811/258522, 811/2557078, and 236090.
- 4.4 GLASSWARE CALIBRATION In-house procedure 3-QC-002 is used to calibrate all Class A Glassware used in the manufacture and quality control of Custom Grade Standards.

5.0 TRACE METALLIC IMPURITIES (TMI) DETERMINED BY ICP/MS AND ICP-OES IN µg/mL

Custom-Grade solutions are tested for trace metallic impurities by Axial ICP-OES and ICP-MS. The result from the most sensitive method for each element, is reported below. Solutions tested by ICP-MS were analyzed in an ULPA-Filtered Clean Room. An ULPA-Filter is 99.9985% efficient for the removal of particles down to 0.3 µm.

<u>0</u>	Al		0.00120		M	Dy	<	0.01199	Ş	Li			M	P٢	<	0.00060	M	Те	<	0.05994
М	Sb	<	0.00100		M	Er	<	0.00999	M	Lu	<	0.00080	<u>M</u>	Re	<	0.00200	M	Tb	<	0.00060
<u>M</u>	As	<	0.01998		<u>M</u>	Eu	<	0.00599	Q	Mg		0.00650	M	Rh	<	0.00200	M	TI	<	0.00200
M	Ba	<	0.01998		M	Gd	<	0.00200	<u>0</u>	Mn		0.00006	M	Rb	<	0.00200	M	Th	<	0.00200
<u>o</u>	Ве	<	0.00020		М	Ga	<	0.00200	O	Hg	<	0.01500	М	Ru	<	0.00400	M	Tm	<	0.00080
<u>M</u>	Bi	<	0.00080		М	Ge	<	0.01199	M	Мо	<	0.00400	M	Sm	<	0.00200	Q	Sn	<	0.00600
<u>o</u>	В		0.00020		M	Au	<	0.00599	<u>M</u>	Nd	<	0.00400	<u>M</u>	Sc	<	0.01998	0	Ti	<	0.00070
М	Cd	<	0.00599		М	Hf	<	0.00400	0	Ni	<	0.00230	М	Se	<	0.01598	0	W	<	0.00400
<u>0</u>	Ça		0.04050		M	Но	<	0.00100	M	Nb	<	0.00100	Q	Si		0.04650	M	U	<	0.00400
M	Се	<	0.00999		Q	In	<	0.00400	ם	Os			М	Ag	<	0.00400	O	٧		0.00009
M	Cs	<	0.00060		Μ	1 r	<	0.00999	M	Pd	<	0.00999	ō	Na		0.03200	M	Yb	<	0.00200
М	Cr	<	0.00999		Q	Fe		0.00200	<u>0</u>	₽	<	0.00250	0	Sr		0.00026	M	Y	<	0.07992
M	Со	<	0.00599		<u>M</u>	La	<	0.00100	М	Pt	<	0.00400	ō	s		0.01250	O	Zn		0.00145
Ō	Cu		0.00100		М	Pb	<	0.00599	Q	ĸ		0.00950	M	Та	<	0.01399	M	Zr	<	0.00999
M - C	heck	ed	by ICP-MS	(5 - C	Chec	kec	by ICP-OES	i-S	Specti	al I	nterference	n - 1	Not C	hed	ked For	s - S	Soluti	on:	Standard Element

6.0 INTENDED USE

For the calibration of analytical instruments including but not limited to the following:

ICP-MS, ICP-OES, FAAS, GFAA, XRF, and DCP

For the validation of analytical methods

For the preparation of "working reference samples"

For interference studies and the determination of correction coefficients

For detection limit and linearity studies

For additional intended uses, contact IV Technical Staff

7.0 INSTRUCTIONS FOR THE CORRECT USE OF THIS REFERENCE MATERIAL

Storage & Handling - Keep tightly sealed when not in use. Store and use at 20 ± 4 €. Do not pipet from container. Do not return portions removed for pipetting to container.

Atomic Weight; Valence; Coordination Number; Chemical Form in Solution - 6.941; +1; (6), Li'(aq) large effective radius due to hydration sphere (Coordination Number in parentheses is assumed, not certain.)

Chartrical Compatibility - Soluble in HCl, HNOs, HSOs and HF aqueous matrices. Stable with all metals and inorganic anions. Stability - 2-100 ppb levels stable for months in 1% HNO. / LDPE container. 1-10,000 ppm solutions chemically stable for years in 1-5% HNO, / LDPÉ container.

Li Containing Samples (Preparation and Solution) - Metal (Dissolves very rapidly in water); Ores (Sodium carbonate fusion in Pt^o tollowed by HCI dissolution-blank levels of Li in sodium carbonate critical); Organic Matrices (Sulfuric / perceide digestion or nitric / sulfuric / perchloric acid decomposition).

Atomic Spectroscopic Information (ICP-DES D.L.s are given as radial/ayig) view):

Techniqu		Estimated D.L.		Type	
ICP-OES	670.784 nm	0.002/0.00002 µg/mL	1	atom	2 rd order radiation from R.E.s on some optical designs
ICP-OES	460.286 nm	0.9 / 0.04 µg/mL	1	atom	Zr, Th
ICP-OES	323.261 nm	1.1 / 0.05 µg/mL	1	atom	Sb, Th, Ni
ICP-MS	7 amu	10 ppt		n/a	M'

- 8.0 HAZARDOUS INFORMATION - Please refer to the enclosed Material Saftey Data sheet for information regarding this CRM.
- 9.0 HOMOGENEITY - This solution was mixed according to procedure IV-MPM-004 and is guaranteed to be homogeneous.

10.0 QUALITY STANDARD DOCUMENTATION

10.1 ISO 9001:2000 Quality Management System Registration - QMI Certificate Number 010105 Recognized by:

Registrar Accreditation Board (ANSI-RAB)

Standards Council of Canada (SCC)

Dutch Council for Accreditation (RVA)

Entidad Mexicana de Acreditacion, a.c.(EMA)

Members of IQ Net International Certification Network:

Argentina (IRAM), Australia (QAS), Austria (ÖQS), Belgium (Avinter), Brazil (FCAV), Canada (QMI), Hong Kong (HKQAA), Columbia (ICONTEC), Czech Republic (CQS), Denmark (DS), Finland (SFS), France (AFAQ), Germany (DQS), Greece (ELOT), Hungary (MSZT), Ireland (NSAI), Israel (SII), Italy (CISQ), Japan (JQA), Korea (KSA-QA), Netherlands (KEMA), Norway (NCS). Poland(PCBC), Portugal (APCER), Singapore (PSB), Slovenia (SIQ), Spain (AENOR), Switzerland (SQS) 10.2 ISO/IEC 17025 - 1999 "General Requirements for the Competence of Testing and Calibration"

- Chemical Testing - Accredited A2LA Certificate Number 883.01

10.3 ISO/IEC Guide 34 - 2000 "General Requirements for the Competence of Reference Material Producers"

- Reference Materials Production - Accredited A2LA Certificate Number 883.02

A2LA Mutual Recognition Agreement Partners:

Australia (NATA), Austria (BmwA), Belgium (BELTEST) (BKO-OBE), Canada (SCC), Chinese Taipei (CNLA), Czech Republic (NAO), Denmark (DANAK), Finland (FINAS), France (COFRAC), Germany (DAR), Hong Kong (HKAS, Ireland (NAB), Italy (SIT) (SINAL), Japan (JAB) (JNLA), Republic of Korea (KOLAS), The Netherlands (RvA), New Zealand (IANZ), Norway (NA), Portugal (IPQ), Singapore (SAC-SINGLAS), Spain (ENAC), Sweden (SWEDAC), Switzerland (SAS), United Kingdom (UKAS) and United States (NVLAP) (ICBO ES)

- 10.4 10CFR50 Appendix B Nuclear Regulatory Commission
 - Domestic Licensing of Production and Utilization Facilities
- 10.5 10CFR21 Nuclear Regulatory Commission Reporting Defects and Non-Compliance
- 10.6 MIL-STD-45662A (Obsolete/Observed)

INOF	RGANIC	LABS.	/RADCHE	EM LAE	e recepted
DATE	RECEIV	ED:	07/01/0	<u>/G</u> \	obs Mark Both along force below
DATE	EXPIRE	ED:	08/01	12005	Z0X
DATE	OPENE):	07/01	104	
	i: _463				

- 11.1 IV Shelf Life The period of time during which the concentration of the analyte(s) in a properly packaged, unopened, and unused standard stored under environmentally controlled and monitored conditions will remain within the specified uncertainty range. Shelf life is limited primarily by transpiration (loss of water from the solution) and infrequently, by chemical instability. Transpiration studies (P-SP01020) of chemically-stable solutions performed at Inorganic Ventures / IV Labs indicate a CRM shelf-life of four years for solutions packaged in 500-mL low density polyethylene bottles. When stored under special conditions that minimize transpiration and instability, the shelf life can be extended past this limit.
- 11.2 Expiration Date The date after which a CRM should not be used. Routine laboratory use of a CRM increases transpiration losses and the chance of contamination which affect the integrity of the CRM and limit its useful life. Inorganic Ventures / IV Labs concurs with state and federal regulatory agencies' recommendations that solution standards be assigned a one-year expiration date.

Certification Date: August 12, 2003

Expiration Date:

EXPIRES 0122005

12.0 NAMES AND SIGNATURES OF CERTIFYING OFFICERS

Certificate Prepared By:

JoAnn Struthers, QA Administrative Assistant

Certificate Approved By:

Katalin Le, QC Supervisor

Certifying Officer:

Paul Gaines, Chemist, Senior Technical Director

folm Stutten Known in Park Alain

Nitnte N BOOK NO. Work continued from Page 010391 178-01-1C4 Nitrite N, 100 mg/L

0.0493g Sodium nitrite (Fisher, Let # 944033 | 100 mg # 0277) deluted to 100 ml D1 H₂O.

Balance #12. 30 Work continued to Page

DISCLOSED TO AND UNDERSTOOD BY

DATE WITNESS

*6/22/04

AIE

Certificate of Reference Alaterial

Catalog Number: AS-F9-2X/2Y

Lot No. 25-5AS

Description:

1000 mg/L Fluoride

Matrix:

H₂O

This ASSURANCE ®certified reference material, CRM, is intended primarily for use as a calibration standard or quality control standard for Ion Chromatography instrumentation. It can be employed in USEPA, ASTM and other methods relevent to the certified properties listed below.

Certified Value: 998 mg/L

Uncertainty Associated with Measurement: +/- 3.0 mg/

Certified Value is Traceable to: NIST SRM 3183

The CRM is prepared gravimetrically using high purity Sodium Fluoride certified value listed is the average of values obtained by classical wet assay and Ion Chromatography analysis.

Refer to side 2 for details of measurement uncertainties.

Classical Wet Assay:

997 mg/L

Method: Potentiometric using Fluoride combination electrode

Instrumentation Analysis By Ion Chromatography: 999 mg/L

Uncertified Properties:

Trace Ionic Impurities in the Actual Solution via IC Analysis:

mg/L	Iom	mg/I
<0.2	NO3	<0.2
<10	PO4	<1
<0.2	SO4	<0.5
	<0.2 <10	<0.2 NO3 <10 PO4

Balances are calibrated regularly with weight sets traceable to NIST #32856, #32857 and others This CRM is guaranteed stable to +/-0.5% of the certified concentration inclusive of uncertainty of measurements and other effects, such as transpiration losses, for a period of one year from the date of certification. This guarantee is valid only when the material is kept tightly capped and transported and stored under laboratory condition

Date of Certification:

Certifying Officer: N. Kochevlakola

Report of Certification

This Certified Reference Material has been prepared and certified under an ISO 9001 system consistent with the following guides:

Guide To The Expression Of Uncertainty In Measurement 1995

EURACHEM/CITAC Guide: Quantifying Uncertainty in Analytical Measurement - Second Edition

ASTM Guide D6362-98

ISO Guide 34: Quality system guidelines for the production of reference materials.

ISO Guide 17025: Certification of reference materials, general and statistical principles

ISO Guide 31: Contents of certificates of reference materials

NIST Technical Note 1297

ILAC-G12-2000: Guidelines for the requirements for the competence of reference materials producers

ISO/REMCO N280

Material Source:

All analytes and matrix materials are obtained and verified by SPEX CertiPrep from pre-qualified vendors as per ISO 9000 guidelines. Vendor identifications are proprietary, however sources of all materials used in the preparation and testing of SPEX CertiPrep CRMs are tracked and documented. For further information contact CRM Sales.

Instructions for Use:

Primary usage of this CRM is in neat form or diluted serially with matrix of a purity at or greater than the purity of the original matrix solution. If dilution is required the diluent must be compatible with all certified analytes and contain stabilizers appropriate for the period of intended use. The CRM can also be used as a spike or with a spike, again with appropriate compatibility considerations. All solutions should be thoroughly mixed, by shaking, prior to use and never pipetted directly from the bottle. All surfaces that come in contact with the solution must be thoroughly cleaned and leached prior to use. Dilutions should be performed only with Class A volumetric glassware.

Method of Preparation:

Clean laboratory procedures and techniques have been used throughout the preparation. All materials, equipment, analytical instrumentation and personnel have been qualified prior to use. The highest purity acids applicable, 18 megohm, double deionized water, acid-leached triple-rinsed bottles, and Class A glassware have been used in all preparations.

Homogeneity:

The Homogeneity of the CRM has been confirmed by procedures consistent with ISO guide 17025, ISO/REMCO N280 and ASTM D6362-98 Appendix X2. Random, replicate samples of the final, packaged material have been analyzed for the certified values by procedures consistent with the intended use of the CRM.

The mathematical expression k, = s²m is employed to determine the sampling size

S = relative standard deviation in % for one component of the sample. (ie. The sub-sampling uncertainty)

m = the sub-sampling mass

 k_1 = mass of sub-sample necessary to ensure a relative sub-sampling error of 1% (68% confidence level) in a single determination

Statistical estimator and Confidence limits:

The certified value 'x' listed on the reverse of this document is at the 95% level of confidence and can be expressed as

X = x+/-U where X = True value (Labeled Value), U= Expanded uncertainty

U=ku, where k=2 is the coverage factor at the 95% confidence level

 u_e is obtained by combining the individual element standard uncertainty components u_i and $u_{ee} \sqrt{\Sigma u_i^2}$

Certification Traveler Report:

All certified values reported were derived from Traveler Report (Spex CertiPrep's traceability documentation) identified by the lot number of this CRM. For further information contact CRM Sales.

Legal Notice:

SPEX CertiPrep reference materials are not for any cosmetic, drug or household application and are to be used only by qualified individuals who are trained in appropriate procedures. No claims against SPEX CertiPrep, Inc. of any kind whatsoever, whether based on breach of warranty, alleged negligence, or otherwise, with respect to this RM shall be greater than the purchase price. In no event shall SPEX CertiPrep, Inc. be liable for any loss of profits or any incidental, special, or consequential damages.

SPEXertificate

Certificate of Reference Material

Catalog Number: AS-CL9-2X/2Y

Lot No. 7-147VY

Description:

1000 mg/L Chloride

Matrix:

H₂O

This ASSURANCE ® certified reference material, CRM, is intended primarily for use as a calibration standard or quality control standard for Ion Chromatography instrumentation. It can be employed in USEPA, ASTM and other methods relevent to the certified properties listed below.

Certified Value: 997 mg/L

Uncertainty Associated with Measurement: +/- 3 mg/L Certified Value is Traceable to: NIST SRM 3182

The CRM is prepared gravimetrically using high puritySodium Chloride certified value listed is the average of values obtained by classical wet assay and Ion Chromatography analysis.

Refer to side 2 for details of measurement uncertainties.

Classical Wet Assay:

997 mg/L

Method: Gravimetry: Precipitation using AgNO3, filtering, drying and weighing as AgCl.

Instrumentation Analysis By Ion Chromatography:997 mg/L

Uncertified Properties:

Trace Ionic Impurities in the Actual Solution via IC Analysis:

Element	mg/L	Element	mg/L
F	<0.05	Br	<0.1
PO4	< 0.05	NO3	<0.1
SO4	< 0.05	NO2	<0.2

Balances are calibrated regularly with weight sets traceable to NIST #32856, #32857 and others. This CRM is guaranteed stable to +/-0.5% of the certified concentration inclusive of uncertainty of measurements and other effects, such as transpiration losses, for a period of one year from the date of certification. This guarantee is valid only when the material is kept tightly capped and transported and stored under laboratory conditions.

Date of Certification:

Certifying Officer: N. Kocherlakol

Report of Certification

This Certified Reference Material has been prepared and certified under an ISO 9001 system consistent with the following guides:

Guide To The Expression Of Uncertainty In Measurement 1995

EURACHEM/CITAC Guide: Quantifying Uncertainty in Analytical Measurement - Second Edition

ASTM Guide D6362-98

ISO Guide 34: Quality system guidelines for the production of reference materials.

ISO Guide 17025: Certification of reference materials, general and statistical principles

ISO Guide 31: Contents of certificates of reference materials

NIST Technical Note 1297

ILAC-G12-2000: Guidelines for the requirements for the competence of reference materials producers

ISO/REMCO N280

Material Source:

All analytes and matrix materials are obtained and verified by SPEX CertiPrep from pre-qualified vendors as per ISO 9000 guidelines. Vendor identifications are proprietary, however sources of all materials used in the preparation and testing of SPEX CertiPrep CRMs are tracked and documented. For further information contact CRM Sales.

Instructions for Use:

Primary usage of this CRM is in neat form or diluted serially with matrix of a purity at or greater than the purity of the original matrix solution. If dilution is required the dilutent must be compatible with all certified analytes and contain stabilizers appropriate for the period of intended use. The CRM can also be used as a spike or with a spike, again with appropriate compatibility considerations. All solutions should be thoroughly mixed, by shaking, prior to use and never pipetted directly from the bottle. All surfaces that come in contact with the solution must be thoroughly cleaned and leached prior to use. Dilutions should be performed only with Class A volumetric glassware.

Method of Preparation:

Clean laboratory procedures and techniques have been used throughout the preparation. All materials, equipment, analytical instrumentation and personnel have been qualified prior to use. The highest purity acids applicable, 18 megohm, double deionized water, acid-leached triple-rinsed bottles, and Class A glassware have been used in all preparations.

Homogeneity:

The Homogeneity of the CRM has been confirmed by procedures consistent with ISO guide 17025, ISO/REMCO N280 and ASTM D6362-98 Appendix X2. Random, replicate samples of the final, packaged material have been analyzed for the certified values by procedures consistent with the intended use of the CRM.

The mathematical expression $k_i = s^2 m$ is employed to determine the sampling size

S = relative standard deviation in % for one component of the sample. (ie. The sub-sampling uncertainty)

m = the sub-sampling mass

k, = mass of sub-sample necessary to ensure a relative sub-sampling error of 1% (68% confidence level) in a single determination

Statistical estimator and Confidence limits:

The certified value 'x' listed on the reverse of this document is at the 95% level of confidence and can be expressed as X = x+/-U where X = True value (Labeled Value), U = Expanded uncertainty

U=ku, where k=2 is the coverage factor at the 95% confidence level

 u_e is obtained by combining the individual element standard uncertainty components u_i and $u_e \sqrt{\Sigma u_i^2}$

Certification Traveler Report:

All certified values reported were derived from Traveler Report (Spex CertiPrep's traceability documentation) identified by the lot number of this CRM. For further information contact CRM Sales.

Legal Notice:

SPEX CertiPrep reference materials are not for any cosmetic, drug or household application and are to be used only by qualified individuals who are trained in appropriate procedures. No claims against SPEX CertiPrep, Inc. of any kind whatsoever, whether based on breach of warranty, alleged negligence, or otherwise, with respect to this RM shall be greater than the purchase price. In no event shall SPEX CertiPrep, Inc. be liable for any loss of profits or any incidental, special, or consequential damages.

Certificate of Beference Alaterial

Catalog Number: AS-NO2N9-2X/2Y

Lot No. 7-158VY

Description:

1000 mg/L Nitrite-N

Matrix:

H2O

This ASSURANCE ® certified reference material, CRM, is intended primarily for use as a calibration standard or quality control standard for Ion Chromatography instrumentation. It can be employed in USEPA, ASTM and other methods relevant to the certified properties listed below.

Certified Value: 1001.5 mg/L

Uncertainty Associated with Measurement:

+/- 3.0 mg/L

Certified Value is Traceable to:

SPEX CRM 0902

Lot# 0791R . The The CRM is prepared gravimetrically using high purity Sodium Nitrite certified value listed is the average of values obtained by classical wet assay and Ion Chromatography analysis.

Refer to side 2 for details of measurement uncertainties.

Classical Wet Assay:

1000mg/L

Method: Titration with KMNO4 that was standardized against Sodium Oxalate NIST SRM 40h.

Instrumentation Analysis By Ion Chromatography: 1003 mg/L

Uncertified Properties:

Trace Ionic Impurities in the Actual Solution via IC Analysis:

Ion	mg/L	Ion	mg/L
Br	<20	NO3	<40
Cl	<20	PO4	<0.8
F	<0.4	SO4	<0.4

Balances are calibrated regularly with weight sets traceable to NIST #32856, #32857 and others This CRM is guaranteed stable to +/-0.5% of the certified concentration inclusive of uncertainty of measurements and other effects, such as transpiration losses, for a period of one year from the date of certification. This guarantee is valid only when the material is kept tightly capped and transported and stored under laboratory conditions.

Date of Certification:

Certifying Officer: N. Kochertakota

Report of Certification

010397

This Certified Reference Material has been prepared and certified under an ISO 9001 system consistent with the following guides:

Guide To The Expression Of Uncertainty In Measurement 1995

EURACHEM/CITAC Guide: Quantifying Uncertainty in Analytical Measurement - Second Edition

ASTM Guide D6362-98

ISO Guide 34: Quality system guidelines for the production of reference materials.

ISO Guide 17025: Certification of reference materials, general and statistical principles

ISO Guide 31: Contents of certificates of reference materials

NIST Technical Note 1297

ILAC-G12-2000: Guidelines for the requirements for the competence of reference materials producers

ISO/REMCO N280

Material Source:

All analytes and matrix materials are obtained and verified by SPEX CertiPrep from pre-qualified vendors as per ISO 9000 guidelines. Vendor identifications are proprietary, however sources of all materials used in the preparation and testing of SPEX CertiPrep CRMs are tracked and documented. For further information contact CRM Sales.

Instructions for Use:

Primary usage of this CRM is in neat form or diluted serially with matrix of a purity at or greater than the purity of the original matrix solution. If dilution is required the diluent must be compatible with all certified analytes and contain stabilizers appropriate for the period of intended use. The CRM can also be used as a spike or with a spike, again with appropriate compatibility considerations. All solutions should be thoroughly mixed, by shaking, prior to use and never pipetted directly from the bottle. All surfaces that come in contact with the solution must be thoroughly cleaned and leached prior to use. Dilutions should be performed only with Class A volumetric glassware.

Method of Preparation:

Clean laboratory procedures and techniques have been used throughout the preparation. All materials, equipment, analytical instrumentation and personnel have been qualified prior to use. The highest purity acids applicable, 18 megohm, double deionized water, acid-leached triple-rinsed bottles, and Class A glassware have been used in all preparations.

Homogeneity:

The Homogeneity of the CRM has been confirmed by procedures consistent with ISO guide 17025, ISO/REMCO N280 and ASTM D6362-98 Appendix X2. Random, replicate samples of the final, packaged material have been analyzed for the certified values by procedures consistent with the intended use of the CRM.

The mathematical expression k=s2m is employed to determine the sampling size

S = relative standard deviation in % for one component of the sample. (ie. The sub-sampling uncertainty)

m = the sub-sampling mass

k, = mass of sub-sample necessary to ensure a relative sub-sampling error of 1% (68% confidence level) in a single determination

Statistical estimator and Confidence limits:

The certified value 'x' listed on the reverse of this document is at the 95% level of confidence and can be expressed as X = x+/-U where X = True value (Labeled Value), U = Expanded uncertainty

U=kue where k=2 is the coverage factor at the 95% confidence level

 u_e is obtained by combining the individual element standard uncertainty components u_i and $u_e \sqrt{\Sigma u_i^2}$

Certification Traveler Report:

All certified values reported were derived from Traveler Report (Spex CertiPrep's traceability documentation) identified by the lot number of this CRM. For further information contact CRM Sales.

Legal Notice:

SPEX CertiPrep reference materials are not for any cosmetic, drug or household application and are to be used only by qualified individuals who are trained in appropriate procedures. No claims against SPEX CertiPrep, Inc. of any kind whatsoever, whether based on breach of warranty, alleged negligence, or otherwise, with respect to this RM shall be greater than the purchase price. In no event shall SPEX CertiPrep, Inc. be liable for any loss of profits or any incidental, special, or consequential damages.

SPEXertificate

Certificate of Reference Alaterial

Catalog Number: AS-BR9-2X/2Y

Lot No. 27-128AS

Description:

1000 mg/L Bromide

Matrix:

H₂O

This ASSURANCE ®certified reference material, CRM, is intended primarily for use as a calibration standard or quality control standard for Ion Chromatography instrumentation. It can be employed in USEPA, ASTM and other methods relevant to the certified properties listed below.

Certified Value: 1003.5 mg/L

Uncertainty Associated with Measurement: +/- 3.0 mg/L

Certified Value is Traceable to: NIST SRM 3184

The CRM is prepared gravimetrically using high purity Sodium Bromide Lot# 017400 . The certified value listed is the average of values obtained by classical wet assay and Ion Chromatography analysis.

Refer to side 2 for details of measurement uncertainties.

Classical Wet Assay: 1003 mg/L:

Method: Precipitation using Silver Nitrate, filter, dry and weigh as AgBr.

Instrumentation Analysis By Ion Chromatography: 1004 mg/L:

Uncertified Properties:

Trace Ionic Impurities in the Actual Solution via IC Analysis:

lon	mg/L	lon	mg/L
Cl	<1.50	NO3	< 0.05
F	< 0.02	PO4	< 0.20
NO2	< 0.05	SO4	< 0.05

Balances are calibrated regularly with weight sets traceable to NIST #32856, #32857 and others. This CRM is guaranteed stable to +/-0.5% of the certified concentration inclusive of uncertainty of measurements and other effects, such as transpiration losses, for a period of one year from the date of certification. This guarantee is valid only when the material is kept tightly capped and transported and stored under laboratory conditions.

Date of Certification:

Certifying Officer: N. Kockerakota

This Certified Reference Material has been prepared and certified under an ISO 9001 system consistent with the following guides:

Guide To The Expression Of Uncertainty In Measurement 1995

EURACHEM/CITAC Guide: Quantifying Uncertainty in Analytical Measurement - Second Edition

ASTM Guide D6362-98

ISO Guide 34: Quality system guidelines for the production of reference materials.

ISO Guide 17025: Certification of reference materials, general and statistical principles

ISO Guide 31: Contents of certificates of reference materials

NIST Technical Note 1297

ILAC-G12-2000: Guidelines for the requirements for the competence of reference materials producers

ISO/REMCO N280

Material Source:

All analytes and matrix materials are obtained and verified by SPEX CertiPrep from pre-qualified vendors as per ISO 9000 guidelines. Vendor identifications are proprietary, however sources of all materials used in the preparation and testing of SPEX CertiPrep CRMs are tracked and documented. For further information contact CRM Sales.

Instructions for Use:

Primary usage of this CRM is in neat form or diluted serially with matrix of a purity at or greater than the purity of the original matrix solution. If dilution is required the dilutent must be compatible with all certified analytes and contain stabilizers appropriate for the period of intended use. The CRM can also be used as a spike or with a spike, again with appropriate compatibility considerations. All solutions should be thoroughly mixed, by shaking, prior to use and never pipetted directly from the bottle. All surfaces that come in contact with the solution must be thoroughly cleaned and leached prior to use. Dilutions should be performed only with Class A volumetric glassware.

Method of Preparation:

Clean laboratory procedures and techniques have been used throughout the preparation. All materials, equipment, analytical instrumentation and personnel have been qualified prior to use. The highest purity acids applicable, 18 megohm, double deionized water, acid-leached triple-rinsed bottles, and Class A glassware have been used in all preparations.

Homogeneity:

The Homogeneity of the CRM has been confirmed by procedures consistent with ISO guide 17025, ISO/REMCO N280 and ASTM D6362-98 Appendix X2. Random, replicate samples of the final, packaged material have been analyzed for the certified values by procedures consistent with the intended use of the CRM.

The mathematical expression k,-s2m is employed to determine the sampling size

s = relative standard deviation in % for one component of the sample. (ie. The sub-sampling uncertainty)

m = the sub-sampling mass

 k_s = mass of sub-sample necessary to ensure a relative sub-sampling error of 1% (68% confidence level) in a single determination

Statistical estimator and Confidence limits:

The certified value 'x' listed on the reverse of this document is at the 95% level of confidence and can be expressed as X = x+/-U where X = True value (Labeled Value), U = Expanded uncertainty

U=ku, where k=2 is the coverage factor at the 95% confidence level

 u_e is obtained by combining the individual element standard uncertainty components u_i and $u_{ee}\sqrt{\Sigma u_i^2}$

Certification Traveler Report:

All certified values reported were derived from Traveler Report (Spex CertiPrep's traceability documentation) identified by the lot number of this CRM. For further information contact CRM Sales.

Legal Notice:

SPEX CertiPrep reference materials are not for any cosmetic, drug or household application and are to be used only by qualified individuals who are trained in appropriate procedures. No claims against SPEX CertiPrep, Inc. of any kind whatsoever, whether based on breach of warranty, alleged negligence, or otherwise, with respect to this RM shall be greater than the purchase price. In no event shall SPEX CertiPrep, Inc. be liable for any loss of profits or any incidental, special, or consequential damages.

Certificate of Reference Alaterial

Catalog Number: AS-NO3N9-2X/2Y

Lot No. 25-65AS

Description:

1000 mg/L Nitrate Nitrogen

Matrix:

H2O

This ASSURANCE ®certified reference material, CRM, is intended primarily for use as a calibration standard or quality control standard for Ion Chromatography instrumentation. It can be employed in USEPA, ASTM and other methods relevent to the certified properties listed below.

Certified Value: 1003.5 mg/L

Uncertainty Associated with Measurement: +/- 3.0 mg/L

Certified Value is Traceable to: NIST SRM 3185

The CRM is prepared gravimetrically using high purity Sodium Nitrate certified value listed is the average of values obtained by classical wet assay and Ion Chromatography

Refer to side 2 for details of measurement uncertainties.

Classical Wet Assay:

1004 mg/L

Method: Precipitate using Nitron Acetate, filter, dry and weigh as C20H16N4HNO3

Instrumentation Analysis By Ion Chromatography: 1003 mg/L

Uncertified Properties:

Trace Ionic Impurities in the Actual Solution via IC Analysis:

Ion	mg/L	Ion	mg/I
Br	<0.5	NO2	<0.2
Cl	<0.2	PO4	<2.0
F	<0.05	SO4	<0.5

Balances are calibrated regularly with weight sets traceable to NIST #32856, #32857 and others This CRM is guaranteed stable to +/-0.5% of the certified concentration inclusive of uncertainty of measurements and other effects, such as transpiration losses, for a period of one year from the date of certification. This guarantee is valid only when the material is kept tightly capped and transported and stored under laboratory conditions.

Date of Certification:

Certifying Officer: N. Kocherlakola

Report of Certification

This Certified Reference Material has been prepared and certified under an ISO 9001 system consistent with the following guides:

Guide To The Expression Of Uncertainty In Measurement 1995

EURACHEM/CITAC Guide: Quantifying Uncertainty in Analytical Measurement - Second Edition

ASTM Guide D6362-98

ISO Guide 34: Quality system guidelines for the production of reference materials.

ISO Guide 17025: Certification of reference materials, general and statistical principles

ISO Guide 31: Contents of certificates of reference materials

NIST Technical Note 1297

ILAC-G12-2000: Guidelines for the requirements for the competence of reference materials producers

ISO/REMCO N280

Material Source:

All analytes and matrix materials are obtained and verified by SPEX CertiPrep from pre-qualified vendors as per ISO 9000 guidelines. Vendor identifications are proprietary, however sources of all materials used in the preparation and testing of SPEX CertiPrep CRMs are tracked and documented. For further information contact CRM Sales.

Instructions for Use:

Primary usage of this CRM is in neat form or diluted serially with matrix of a purity at or greater than the purity of the original matrix solution. If dilution is required the dilutent must be compatible with all certified analytes and contain stabilizers appropriate for the period of intended use. The CRM can also be used as a spike or with a spike, again with appropriate compatibility considerations. All solutions should be thoroughly mixed, by shaking, prior to use and never pipetted directly from the bottle. All surfaces that come in contact with the solution must be thoroughly cleaned and leached prior to use. Dilutions should be performed only with Class A volumetric glassware.

Method of Preparation:

Clean laboratory procedures and techniques have been used throughout the preparation. All materials, equipment, analytical instrumentation and personnel have been qualified prior to use. The highest purity acids applicable, 18 megohm, double deionized water, acid-leached triple-rinsed bottles, and Class A glassware have been used in all preparations.

Homogeneity:

The Homogeneity of the CRM has been confirmed by procedures consistent with ISO guide 17025, ISO/REMCO N280 and ASTM D6362-98 Appendix X2. Random, replicate samples of the final, packaged material have been analyzed for the certified values by procedures consistent with the intended use of the CRM.

The mathematical expression k₁=s²m is employed to determine the sampling size

S = relative standard deviation in % for one component of the sample. (ie. The sub-sampling uncertainty)

m = the sub-sampling mass

 k_i = mass of sub-sample necessary to ensure a relative sub-sampling error of 1% (68% confidence level) in a single determination

Statistical estimator and Confidence limits:

The certified value 'x' listed on the reverse of this document is at the 95% level of confidence and can be expressed as X = x+/-U where X = True value (Labeled Value), U = Expanded uncertainty

U=ku, where k=2 is the coverage factor at the 95% confidence level

 u_e is obtained by combining the individual element standard uncertainty components u_L and $u_e \sqrt{\Sigma v_i^2}$

Certification Traveler Report:

All certified values reported were derived from Traveler Report (Spex CertiPrep's traceability documentation) identified by the lot number of this CRM. For further information contact CRM Sales.

Legal Notice:

SPEX CertiPrep reference materials are not for any cosmetic, drug or household application and are to be used only by qualified individuals who are trained in appropriate procedures. No claims against SPEX CertiPrep, Inc. of any kind whatsoever, whether based on breach of warranty, alleged negligence, or otherwise, with respect to this RM shall be greater than the purchase price. In no event shall SPEX CertiPrep, Inc. be liable for any loss of profits or any incidental, special, or consequential damages.

SPEXertificate ™

Certificate of Reference Material

Catalog Number: AS-PO4P9-2X/2Y

Lot No. 7-145VY

Description:

1000 mg/L Phosphate-P

Matrix:

H20

This ASSURANCE ®certified reference material, CRM, is intended primarily for use as a calibration standard or quality control standard for Ion Chromatography instrumentation. It can be employed in USEPA, ASTM and other methods relevent to the certified properties listed below.

Certified Value: 998 mg/L

Uncertainty Associated with Measurement: +/- 3 mg/L Certified Value is Traceable to: NIST SRM #318b

The CRM is prepared gravimetrically using high purityKH2PO4 Lot# V35142 . The certified value listed is the average of values obtained by classical wet assay and Ion Chromatography analysis.

Refer to side 2 for details of measurement uncertainties.

Classical Wet Assay:

998 mg/L

Method: Precipitation using Magnesia Mixture. Filter, ignite, and weigh as Mg2P2O7

Instrumentation Analysis By Ion Chromatography:998 mg/L

Uncertified Properties:

Trace Ionic Impurities in the Actual Solution via IC Analysis:

Element	mg/L	Element	mg/l
Cl	<3.0	Br	<0.3
F	<0.2	NO3	<0.5
NO2	<0.3	SO4	<0.5

Balances are calibrated regularly with weight sets traceable to NIST #32856, #32857 and others. This CRM is guaranteed stable to +/-0.5% of the certified concentration inclusive of uncertainty of measurements and other effects, such as transpiration losses, for a period of one year from the date of certification. This guarantee is valid only when the material is kept tightly capped and transported and stored under laboratory conditions.

Date of Certification:

JAN - - 2004

Certifying Officer: N. Kochertakola

NOTE OPENED: 01/06/04 V

Report of Certification

This Certified Reference Material has been prepared and certified under an ISO 9001 system consistent with the following guides:

Guide To The Expression Of Uncertainty In Measurement 1995

EURACHEM/CITAC Guide: Quantifying Uncertainty in Analytical Measurement - Second Edition

ASTM Guide D6362-98

ISO Guide 34: Quality system guidelines for the production of reference materials.

ISO Guide 17025: Certification of reference materials, general and statistical principles

ISO Guide 31: Contents of certificates of reference materials

NIST Technical Note 1297

ILAC-G12-2000: Guidelines for the requirements for the competence of reference materials producers

ISO/REMCO N280

Material Source:

All analytes and matrix materials are obtained and verified by SPEX CertiPrep from pre-qualified vendors as per ISO 9000 guidelines. Vendor identifications are proprietary, however sources of all materials used in the preparation and testing of SPEX CertiPrep CRMs are tracked and documented. For further information contact CRM Sales.

Instructions for Use:

Primary usage of this CRM is in neat form or diluted serially with matrix of a purity at or greater than the purity of the original matrix solution. If dilution is required the diluent must be compatible with all certified analytes and contain stabilizers appropriate for the period of intended use. The CRM can also be used as a spike or with a spike, again with appropriate compatibility considerations. All solutions should be thoroughly mixed, by shaking, prior to use and never pipetted directly from the bottle. All surfaces that come in contact with the solution must be thoroughly cleaned and leached prior to use. Dilutions should be performed only with Class A volumetric glassware.

Method of Preparation:

Clean laboratory procedures and techniques have been used throughout the preparation. All materials, equipment, analytical instrumentation and personnel have been qualified prior to use. The highest purity acids applicable, 18 megohm, double deionized water, acid-leached triple-rinsed bottles, and Class A glassware have been used in all preparations.

Homogeneity:

The Homogeneity of the CRM has been confirmed by procedures consistent with ISO guide 17025, ISO/REMCO N280 and ASTM D6362-98 Appendix X2. Random, replicate samples of the final, packaged material have been analyzed for the certified values by procedures consistent with the intended use of the CRM.

The mathematical expression k₁=s²m is employed to determine the sampling size

S = relative standard deviation in % for one component of the sample. (ie. The sub-sampling uncertainty)

m = the sub-sampling mass

 k_s = mass of sub-sample necessary to ensure a relative sub-sampling error of 1% (68% confidence level) in a single determination

Statistical estimator and Confidence limits:

The certified value 'x' listed on the reverse of this document is at the 95% level of confidence and can be expressed as X = x+/-U where X = True value (Labeled Value), U = Expanded uncertainty

U=ku_e where k=2 is the coverage factor at the 95% confidence level

 u_c is obtained by combining the individual element standard uncertainty components u_i and u_{c} , $\sqrt{\Sigma}u_i^2$

Certification Traveler Report:

All certified values reported were derived from Traveler Report (Spex CertiPrep's traceability documentation) identified by the lot number of this CRM. For further information contact CRM Sales.

Legal Notice:

SPEX CertiPrep reference materials are not for any cosmetic, drug or household application and are to be used only by qualified individuals who are trained in appropriate procedures. No claims against SPEX CertiPrep, Inc. of any kind whatsoever, whether based on breach of warranty, alleged negligence, or otherwise, with respect to this RM shall be greater than the purchase price. In no event shall SPEX CertiPrep, Inc. be liable for any loss of profits or any incidental, special, or consequential damages.

Catalog Number: AS-SO4S9-2X/2Y

Lot No. 27-98AS

Description:

1000 mg/L Sulfate-S

Matrix:

H2O

This ASSURANCE ®certified reference material, CRM, is intended primarily for use as a calibration standard or quality control standard for Ion Chromatography instrumentation. It can be employed in USEPA, ASTM and other methods relevant to the certified properties listed below.

Certified Value: 1000.5 mg/L

Uncertainty Associated with Measurement: +/- 3.0 mg/L

Certified Value is Traceable to: NIST SRM 3181

The CRM is prepared gravimetrically using high purity Potassium Sulfate Lot# X34146 . The certified value listed is the average of values obtained by classical wet assay and Ion Chromatography analysis.

Refer to side 2 for details of measurement uncertainties.

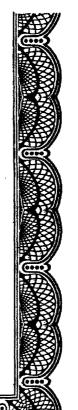
Classical Wet Assay:

998 mg/L:

Method: Precipitated using Barium Chloride, filtered, ignited and weighed as BaSO4.

Instrumentation Analysis By Ion Chromatography: 1003 mg/L:

Uncertified Properties:


Trace Ionic Impurities in the Actual Solution via IC Analysis:

lon	mg/L	lon	mg/L
Br	<0.03	NO3	<0.03
CI	<0.03	PO4	<0.30
F	<0.02		
NO2	<0.03		

Balances are calibrated regularly with weight sets traceable to NIST #32856, #32857 and others. This CRM is guaranteed stable to +/-0.5% of the certified concentration inclusive of uncertainty of measurements and other effects, such as transpiration losses, for a period of one year from the date of certification. This guarantee is valid only when the material is kept tightly capped and transported and stored under laboratory conditions.

Date of Certification:

Certifying Officer: N. Kocheraks

Report of Certification

This Certified Reference Material has been prepared and certified under an ISO 9001 system consistent with the following guides:

Guide To The Expression Of Uncertainty In Measurement 1995

EURACHEM/CITAC Guide: Quantifying Uncertainty in Analytical Measurement - Second Edition

ASTM Guide D6362-98

ISO Guide 34: Quality system guidelines for the production of reference materials.

ISO Guide 17025; Certification of reference materials, general and statistical principles

ISO Guide 31: Contents of certificates of reference materials

NIST Technical Note 1297

ILAC-G12-2000: Guidelines for the requirements for the competence of reference materials producers

ISO/REMCO N280

Material Source:

All analytes and matrix materials are obtained and verified by SPEX CertiPrep from pre-qualified vendors as per ISO 9000 guidelines. Vendor identifications are proprietary, however sources of all materials used in the preparation and testing of SPEX CertiPrep CRMs are tracked and documented. For further information contact CRM Sales.

Instructions for Use:

Primary usage of this CRM is in neat form or diluted serially with matrix of a purity at or greater than the purity of the original matrix solution. If dilution is required the diluent must be compatible with all certified analytes and contain stabilizers appropriate for the period of intended use. The CRM can also be used as a spike or with a spike, again with appropriate compatibility considerations. All solutions should be thoroughly mixed, by shaking, prior to use and never pipetted directly from the bottle. All surfaces that come in contact with the solution must be thoroughly cleaned and leached prior to use. Dilutions should be performed only with Class A volumetric glassware.

Method of Preparation:

Clean laboratory procedures and techniques have been used throughout the preparation. All materials, equipment, analytical instrumentation and personnel have been qualified prior to use. The highest purity acids applicable, 18 megohm, double deionized water, acid-leached triple-rinsed bottles, and Class A glassware have been used in all preparations.

Homogeneity:

The Homogeneity of the CRM has been confirmed by procedures consistent with ISO guide 17025, ISO/REMCO N280 and ASTM D6362-98 Appendix X2. Random, replicate samples of the final, packaged material have been analyzed for the certified values by procedures consistent with the intended use of the CRM.

The mathematical expression k=s²m is employed to determine the sampling size

S = relative standard deviation in % for one component of the sample. (ie. The sub-sampling uncertainty)

m = the sub-sampling mass

k, = mass of sub-sample necessary to ensure a relative sub-sampling error of 1% (68% confidence level) in a single determination

Statistical estimator and Confidence limits:

The certified value 'x' listed on the reverse of this document is at the 95% level of confidence and can be expressed as X = x+/-U where X = True value (Labeled Value), U = Expanded uncertainty

U=ku_e where k=2 is the coverage factor at the 95% confidence level

 u_e is obtained by combining the individual element standard uncertainty components u_i and $u_e \sqrt{\Sigma u_i^2}$

Certification Traveler Report:

All certified values reported were derived from Traveler Report (Spex CertiPrep's traceability documentation) identified by the lot number of this CRM. For further information contact CRM Sales.

Legal Notices

SPEX CertiPrep reference materials are not for any cosmetic, drug or household application and are to be used only by qualified individuals who are trained in appropriate procedures. No claims against SPEX CertiPrep, Inc. of any kind whatsoever, whether based on breach of warranty, alleged negligence, or otherwise, with respect to this RM shall be greater than the purchase price. In no event shall SPEX CertiPrep, Inc. be liable for any loss of profits or any incidental, special, or consequential damages.

Certificate of Reference Material

Catalog Number:

ICMIX2-100

Lot No.: 25-145AS

Description:

IC Instrument Check Standard 2

Matrix:

Η₂Ο

This ASSURANCE ©certified reference material, CRM, is intended primarily for use as a calibration standard or quality control standard for Ion Chromatography instrumentation. It can be employed in USEPA, ASTM and other methods relevant to the certified properties listed below.

The CRM is prepared from high purity single ion concentrates of individual elements using Class A laboratory ware to give precise concentration.

Refer to side 2 for details of measurement uncertainties.

Instrumental Analysis by ION Chromatography:

Analyte	Labeled (mg/L)	Measured (mg/L)	NIST SRM
F	100	100	3183
Cl	200	200	3182
Br*	400	399	3184
NO_3	400	402	3185
HPO₄ ⁻²	600	600	3186
SO ₄ -2	400	399	3181

Spex Reference Multi: Lot #IC6-77VY

Balances are calibrated regularly with weight sets traceable to NIST#s 32856, 32867 and others. This CRM is guaranteed stable and accurate to +/- 0.5% on the average of all the certified concentrations with no single component exceeding +/- 2%. This guarantee is valid for a period of one year from the date of certification only when the material is kept tightly capped and transported and stored under laboratory conditions.

Date of Certification: APR - 2004 Certifying Officer: N. Kochertakola

Report of Certification

This Certified Reference Material has been prepared and certified under an ISO 9001 system consistent with the following guides:

Guide To The Expression Of Uncertainty In Measurement 1995

EURACHEM/CITAC Guide: Quantifying Uncertainty in Analytical Measurement - Second Edition

ASTM Guide D6362-98

ISO Guide 34: Quality system guidelines for the production of reference materials.

ISO Guide 17025: Certification of reference materials, general and statistical principles

ISO Guide 31: Contents of certificates of reference materials

NIST Technical Note 1297

ILAC-G12-2000: Guidelines for the requirements for the competence of reference materials producers

ISO/REMCO N280

Material Source:

All analytes and matrix materials are obtained and verified by SPEX CertiPrep from pre-qualified vendors as per ISO 9000 guidelines. Vendor identifications are proprietary, however sources of all materials used in the preparation and testing of SPEX CertiPrep CRMs are tracked and documented. For further information contact CRM Sales.

Instructions for Use:

Primary usage of this CRM is in neat form or diluted serially with matrix of a purity at or greater than the purity of the original matrix solution. If dilution is required the diluent must be compatible with all certified analytes and contain stabilizers appropriate for the period of intended use. The CRM can also be used as a spike or with a spike, again with appropriate compatibility considerations. All solutions should be thoroughly mixed, by shaking, prior to use and never pipetted directly from the bottle. All surfaces that come in contact with the solution must be thoroughly cleaned and leached prior to use. Dilutions should be performed only with Class A volumetric glassware.

Method of Preparation:

Clean laboratory procedures and techniques have been used throughout the preparation. All materials, equipment, analytical instrumentation and personnel have been qualified prior to use. The highest purity acids applicable, 18 megohm, double deionized water, acid-leached triple-rinsed bottles, and Class A glassware have been used in all preparations.

Homogeneity:

The Homogeneity of the CRM has been confirmed by procedures consistent with ISO guide 17025, ISO/REMCO N280 and ASTM D6362-98 Appendix X2. Random, replicate samples of the final, packaged material have been analyzed for the certified values by procedures consistent with the intended use of the CRM.

The mathematical expression k=s²m is employed to determine the sampling size

S = relative standard deviation in % for one component of the sample. (ie. The sub-sampling uncertainty)

m = the sub-sampling mass

k, = mass of sub-sample necessary to ensure a relative sub-sampling error of 1% (68% confidence level) in a single determination

Statistical estimator and Confidence limits:

The certified value 'x' listed on the reverse of this document is at the 95% level of confidence and can be expressed as X = x+/-U where X = True value (Labeled Value), U = Expanded uncertainty

U=ku, where k=2 is the coverage factor at the 95% confidence level

 u_e is obtained by combining the individual element standard uncertainty components u_i and $u_{e^-}\sqrt{\Sigma}u_i^2$

Certification Traveler Report:

All certified values reported were derived from Traveler Report (Spex CertiPrep's traceability documentation) identified by the lot number of this CRM. For further information contact CRM Sales.

Legal Notice:

SPEX CertiPrep reference materials are not for any cosmetic, drug or household application and are to be used only by qualified individuals who are trained in appropriate procedures. No claims against SPEX CertiPrep, Inc. of any kind whatsoever, whether based on breach of warranty, alleged negligence, or otherwise, with respect to this RM shall be greater than the purchase price. In no event shall SPEX CertiPrep, Inc. be liable for any loss of profits or any incidental, special, or consequential damages.

Work continued from Page 178-01-1C4 Nitrite N, 100 mg/L 0.0493g. Sodium nitrite (Fisher, Lot # 944033 1norg # 0277) delluted to 100 ml D/H₂O. Balance #12. Work continued to Page FROM: Fisher Scientific TO: Extension PAGES: 2

FISHER SCIENTIFIC CHEMICAL DIVISION
One Reagent Lane, Fair Lawn, NJ 07410

010409

ANALYTICAL CONTROL LABORATORY ANALYSIS

Name & Grade:

SODIUM NITRITE, A.C.S. Catalog Number: 5347 Lot Number: 944033

P.O. / Other Customer ID:

Date of Testing/Mfg: 07/14/94

This is to certify that units of the above mentioned lot number were tested and found to comply with the specifications of the grade listed. The following are the actual analytical results obtained:

Test	Unit	Result
APPEARANCE	PASS/FAIL	PASS-WHITE CRYSTS W/YEL TINT
ASSAY	%	99.5000
CALCIUM IN %	%	0.0030
CHLORIDE	%	0.0020
FLUORIDE (F)	PPM	0.400
HEAVY METALS	%	0.0003
IDENTIFICATION		PASS
INSOLUBLE MATTER	%	0.0020
I RON	%	0.00030
POTASSIUM	%	0.00100
SULFATE (SO4)	%	0.0020

Approved by: Frederick H. Turk, or Edgar E. Hess, FL Analytical QA Supv. BPF Analytical BPF Analytical QA Supv.

(Signed and dated original is on file) Date: 07/18/94

NOTE: The data listed is valid for all package sizes of this lot of product, expressed as a extension of the catalog number listed above. If there are any questions with this certificate, please call Steven P. Davis, Analytical QA Manager, at (201) 703-3149.

1001 West Saint Paul Avenue Milwaukee, WI 53233 USA

Tel.: 800-558-9160 • (414) 273-3850 Fax: 800-962-9591 • (414) 273-4979

e-mail: aldrich@sial.com

Certificate of Analysis

SOUTHWEST RESEARCH INST DANNY RAMIREZ 6220 CULEBRA RD SAN ANTONIO TX 78238 PO NBR: 130686E

INORGANICS LAB 27/38/29/30/34

DATE RECEIVED: 1/9/30/3 1) P

DATE EXPIRED: 1/9/30/3 1) P

DATE OPENED: 1/9/30/2

INORG: 3/6/6 PO: 1/3/6/86/E

PRODUCT NUMBER: 236527-500G

LOT NUMBER: 15308EI

PRODUCT NAME: SODIUM HYDROGENCARBONATE, 99.7+%,

A.C.S. REAGENT

FORMULA: NAHCO3

R2O3 PRECIPITATE

FORMULA WEIGHT: 84.01

APPEARANCE WHITE POWDER

TITRATION 100.3 % (WITH HCL)

ICP ASSAY CONFIRMS SODIUM COMPONENT

INSOLUBLE MATTER 0.001% *

CALCIUM 0.0050%

CHLORIDE 0.0014% *

IRON < 0.0001% *

HEAVY METALS <5PPM (AS PB) *

POTASSIUM <0.0020 % *

MAGNESIUM 0.00025%

AMMONIUM <5PPM *

PHOSPHATE <0.001% *

CALCIUM, MAGNESIUM & 0.016% *

ALDRICH CHEMICAL COMPANY DAVID SWESSEL JANUARY 5, 2001

Sigma-Aldrich, Inc. warrants that its products conform to the information contained in this and other Sigma-Aldrich publications. Purchaser must determine the suitability of the product(s) for their particular use. Additional terms and conditions may apply. Please see reverse side of the invoice or packing slip.

Aldrich brand products are sold exclusively through Sigma-Aldrich, Inc.

CONTINUED ON NEXT PAGE

Certificate of Analysis

THE RIGHT CHEMICALS THE RIGHT CHEMISTRY

INORGANIC LABS/RADCHEM LABS 10411

DATE RECEIVED: 02/27/03
DATE EXPIRED: 02/27/2013 YES

DATE OPENED: 04/10/03

INORG: 4033 PD: 330176E

Sodium carbonate, ACS primary standard, 99.95-100.05% (dried basis)

Stock Number: 33377 Lot Number: L06M34

Analysis

Test	Limits	Results
Assay (dried basis)	99.95 – 100.05 %	100.0 %
Insoluble	0.01 % max	< 0.01 %
Loss on heating (285°C)	1.0 % max	< 0.05 %
Chloride	0.001 % max	< 0.001 %
Nitrogen compounds	0.001 % max	< 0.001 %
Phosphate	0.001 % max	< 0.001 %
Silica	0.005 % max	< 0.005 %
Sulfur compounds	0.003 % max	< 0.003 %
NH₄OH precipitate	0.01 % max	< 0.01 %
Potassium	0.005 % max	< 0.001 %
Calcium	0.02 % max	< 0.01 %
Magnesium	0.004 % max	< 0.004 %
Heavy metals (as Pb)	0.0005 % max	< 0.0005
•		%
Iron	0.0005 % max	< 0.0005
		%

Traceable to NIST? Yes

Certified by:

Quality Control:

SOUTHWEST RESEARCH INSTITUTE

NUCLEAR PROJECT CLIENT: Division 20 TASK ORDER: 040616-1

SRR: 26046 SDG: 246046 CASE: CNWRA VTSR: June 15, 2004

PROJECT#: 06002.01.081

Pipette Calibrations

Book/Page: 03 033

SwRI – Div. 01, Inorganic Labs' Fixed Volume Pipette Verification Log

(Space provide for Inorganic Laboratories' Fixed Volume Pipette Verification Spreadsheet)

SwRI - Div. 01, Inorganic Labs' Fixed Volume Pipette Spreadsheet

010413

Eppendorf #	True Value (uL)	1st Reading (g)	2nd Reading (g)	3rd Reading (g)	Avg Wt (g)	% of True Value
Lab30	1000	1.0072	1.0068	1.0054	1.01	100.65
TMA1	1000	1.0059	1.0072	1.0094	1.01	100.75
TMA2	1000	1.0040			1.00	100.33
TMA3	1000	OUT	OF	SERVICE		
TMA6	1000	1.0093			1.01	100.92
TMB1	900	0.9033	0.9018	0.9013	0.90	100.24
TMC1	800	0.8002			0.80	100.08
TMDD1	750	0.7568	0.7521	0.7501	0.75	100.40
TMD1	700	0.7054			0.70	100.44
TMD2	700	0.7099			0.71	100.90
TME1	600	0.6027			0.60	100.29
TMF2	500	0.5011			0.50	100.45
TMF5	500	0.5058			0.51	101.35
ICF1	500	0.5054			0.50	100.77
L30-500	500	0.5013			0.50	100.07
TMG3	400	0.3946			0.39	98.65
TMH1	300	OUT	OF	SERVICE		
TMH2	300	0.3031	0.3001	0.3000	0.30	100.36
TMJ1	250	0.2524	0.2504	0.2500	0.25	100.37
TMJ2	250	0.2501	0.2507	0.2502	0.25	100.13
TMJ3	250	0.2525	0.2530		0.25	101.03
TMK2	200	0.2015		0.2012	0.20	100.47
TML1	150	0.1513		0.1504	0.15	100.73
TMM1	120	0.1210	0.1209	0.1203	0.12	100.61
TMN3	100	0.1026	0.1004	0.1004	0.10	101.13
ICN1	100	0.0990	0.1002	0.1001	0.10	99.77
TMQ1	80	0.0806			0.08	100.58
TMR1	70	OUT	OF	SERVICE		
TMS1	60	OUT	OF	SERVICE		
LAB-30A		NOT	FOUND			
TMU1	40	0.0404	0.0402	0.0400	0.04	100.50
TMU2	40	0.0399	0.0400	0.0399	0.04	99.83
TMV1	30	0.0300	0.0300	0.0299	0.03	99.89
L30-20	20	0.0201	0.0202	0.0201	0.02	100.67
TMW1	25	0.0251	0.0250	0.0251	0.03	100.27
TMY1	15	OUT	OF	SERVICE		

FRM-246 (Rev 1/Mar 03)

Book/Page _

03 034

SwRI - Div. 01, Inorganic Labs' Fixed Volume Pipette Verification Log

Balance #: 34 Thermometer #: GO/1 diH20 Temperature (°C): 31

Eppendorf #	True Value (μL)	1st Reading (g)	2nd Reading (g)	3rd Reading (g)
Lab30	1000	1.0072	1.0068	1,0084
TMA1	1000	1.0059	1-0072	1,0894
TMA2	1000	1.0040	1.0039	1.0031
TMA3	1000	out	0F	Strvice
TMA6	1000	NOT 1.0093	1086 Found	1,0098
TMB1	900	.9033	.9018	,9013
TMC1	800	.8002	, 80//	. 8007
TMDD1	750	.7568	.7521	7501
TMD1	700	,7054	,7018	,7021
TMD2	700	.7099	.7058	,7031
TME1	600	.6027	,6018	.6007
TMF2	500	.5011	,5037	.5019
TMF5	500	. 5058	,5084	,5060
ICF1	500	.5054	,5032	.5030
L30-500	500	.5013	, 4998	4999
TMG3	400	.394L	, 3948	. 3944
TMH1	300	out	OF	Strvict
TMH2	300	. 3031	,3001	,3000
TMJ1	250	, 2524	.2504	.2500
TMJ2	250	. 2501	,2507	,2502
TMJ3	250	.2525	.2530	,2522
TMK2	200	. 2015	. 2001	, 2012
TML1	150	,1573	,1516	. 1504
TMM1	120	.1210	,1209	./263
TMN3	100	. 1026	,1004	,1004
ICN1	100	. 0990	.1002	.1001
TMQ1	80	.0806	0804 0F	.0804
TMR1	70	out		Service
TMS1	60	out	of-	service
LAB-30A	50	NOT	Found	
TMU1	40	.0404	,0402	,0400
TMU2	40	, 0 399	,0400	, 6399
TMV1	30	,0300	.0300	,0299
L30-20	20	1050.	.0202	,० ५०।
TMW1	25	.0251	. 0250 OF	. 0251
TMY1	15	out	OF	SEVVICE
() ^	$\gamma = \alpha \gamma$			

Analyst: John Will Date: 7-1-04

Reviewed by: 07/12/04

FRM-243b (Rev 3/Mar 03)

7.204 90

Book/page:	06	037
------------	----	-----

SwRI - Div. 01, Inorganic Labs' Adjustable Volume Pipette Verification Log

(Space provided for Inorganic Laboratories' Adjustable Volume Pipette Verification Spreadsheet)

Chila To and 6/21/04

010415

SwRI - Div. 01, Inorganic Laboratory Adjustable Pipette Verification Spreadsheet

Eppendorf #	True Value (µL)	1st Reading (g)	2nd Reading (g)	3rd Reading (g)	Avg Wt (g)	% of True Value
	20				0.000	0.00
ADJ200-A	100				0.000	0.00
	200				0.000	0.00
	20				0.000	0.00
ADJ200-C	100				0.000	0.00
	200				0.000	0.00
	20				0.000	0.00
ADJ200-D	100				0.000	0.00
	200				0.000	0.00
	20	0.0205	0.0203	0.0204	0.020	102.00
ADJ200-G	100	0.0996	0.1011	0.1021	0.101	100.93
	200	0.1986	0.1974	0.2003	0.199	99.38
	20				0.000	0.00
ADJ200-H	100				0.000	0.00
	200				0.000	0.00
	20	0.0202	0.0203	0.0202	0.020	101.17
ADJ200-J	100	0.0991	0.1005	0.0989	0.100	99.50
	200	0.2013	0.2041	0.2027	0.203	101.35
	20				0.000	0.00
ADJ200	100				0.000	0.00
	200				0.000	0.00
	20				0.000	0.00
ADJ200	100				0.000	0.00
	200				0.000	0.00
	20				0.000	0.00
ADJ200	100				0.000	0.00
	200				0.000	0.00

FRM-247a (Rev 3/Oct 03)

SwRI Div. 01 - Inorganic Laboratory Adjustable Pipette Verification Log

Balance #:	Thermometer #: GOI	diH20 Temperature (° C) 21
Balance #:	Thermometer #:	diH20 Temperature (° C)

[Eppendorf #	True Value (μL)	1 st Reading (g)	2 nd Reading (g)	3 rd Reading (g)
		20	•		
	ADJ200-A	100			
		200			
		20		1 lot	
	ADJ200-C	100		10/21/0	
		200	M		
		20		·	
	ADJ200-D	100			
3	•	200			
		20	0,0005	0.0203	0.0204
200	ADJ200-G	100	0.0996	0.1011	0.1021
N		200	0.1986	0.1974	0.2003
		20			
	ADJ200-H	100	mul D	NOT FIND	
1		200			
		20	0.0202	0.0203	0.0303
20	ADJ200-J	100	0.0991	0.1005	0.0989
		200	0.2013	0.2041	0.2027
		20			
	ADJ200-K	100		1 104	
		200		6/2/04	
		20		*	
	ADJ200	100		<u> </u>	
		200			

Analyst:
Reviewed by:

Date: $\frac{6/21/0+}{7/7/04}$

SwRI - Div. 01, Inorganic Labs' Adjustable Volume Pipette Verification Log

(Space provided for Inorganic Laboratories' Adjustable Volume Pipette Verification Spreadsheet)

010417

SwRI - Div. 01, Inorganic Laboratory Adjustable Pipette Verification Spreadsheet

Eppendorf #	True Value (µL)	1st Reading (g)	2nd Reading (g)	3rd Reading (g)	Avg Wt (g)	% of True Value
	20	0.0201	0.0201	0.0201	0.020	100.50
ADJ200-A	100	0.0997	0.0991	0.0994	0.099	99.40
	200	0.1997	0.1998	0.1992	0.200	99.78
	20	0.0203	0.0202	0.0203	0.020	101.33
ADJ200-C	100	0.1004	0.0998	0.1011	0.100	100.43
	200	0.1994	0.1995	0.1994	0.199	99.72
	20	0.0204	0.0202	0.0202	0.020	101.33
ADJ200-D	100	0.0991	0.0996	0.0998	0.100	99.50
	200	0.1994	0.1992	0.1989	0.199	99.58
	20					
ADJ200-G	100					
	200					
	20					
ADJ200-H	100					
	200					
	20					
ADJ200-J	100					
	200					
	20	0.0200	0.0201	0.0200	0.020	100.17
ADJ200-K	100	0.0998	0.1001	0.0993	0.100	99.73
	200	0.2001	0.1996	0.1996	0.200	99.88
	20					
ADJ200	100					
	200					
	20					
ADJ200	100					
	200					

FRM-247a (Rev 4/Apr 04)

010418

SwRI Div. 01 – Inorganic Laboratory Adjustable Pipette Verification Log

Balance #: 34 Thermometer #: 6-011 diH20 Temperature (° C)

Γ	Eppendorf #	True Value (µL)	1 st Reading (g)	2 nd Reading (g)	3 rd Reading (g)
		20	,0201	.0201	.0301
	ADJ200-A	100	, 0997	,099 1	.0994
		200	, 1997	. 1998	.1992
		20	,0263	,0202	,2503
	ADJ200-C	100	1004	0998	/011
		200	-1994	,1995	.1994
		20	,0204	,0302	,0202
•	ADJ200-D	100	.0991	,0994	. 0998
=		200	1994	1992	.1989
		20			
200	ADJ200-G	100			
N		200			
		20			
	ADJ200-H	100		0 6-25	04)
3		200	·	0)60	
		20			
20	ADJ200-J	100			
		200		-	
		20	,0200	,0201	.0200
	ADJ200-K	100	.0998	,1001	,0993
		200	,2001	1996	.1994
		20		1	1
	ADJ200	100		206.25-0	
		200		U	

Analyst: John Wills	
Reviewed by: 1000000000000000000000000000000000000	_

Date:	6-25-04	
Date:	06/30/04	

SwRI - Div. 01, Inorganic Labs' Adjustable Volume Pipette Verification Log

(Space provided for Inorganic Laboratories' Adjustable Volume Pipette Verification Spreadsheet)

010419

SwRI - Div. 01, Inorganic Laboratory Adjustable Pipette Verification Spreadsheet

Eppendorf #	True Value (µL)	1st Reading (g)	2nd Reading (g)	3rd Reading (g)	Avg Wt (g)	% of True Value
	20	0.0204	0.0203	0.0203	0.020	101.67
ADJ200-A	100	0.1003	0.1001	0.0996	0.100	100.00
	200	0.2009	0.2017	0.2014	0.201	100.67
	20	0.0202	0.0203	0.0201	0.020	101.00
ADJ200-C	100	0.0998	0.0986	0.0991	0.099	99.17
	200	0.1990	0.1996	0.1989	0.199	99.58
	20	0.0200	0.0200	0.0200	0.020	100.00
ADJ200-D	100	0.0995	0.0999	0.0998	0.100	99.73
	200	0.1989	0.2003	0.1994	0.200	99.77
	20					
ADJ200-G	100					
	200					
	20					
ADJ200-H	100		·			
	200					
	20					
ADJ200-J	100					
	200					
	20	0.0201	0.0202	0.0204	0.020	101.17
ADJ200-K	100	0.0996	0.1002	0.1008	0.100	100.20
	200	0.2000	0.1998	0.1998	0.200	99.93
	20					
ADJ200	100					
	200					
	20					
ADJ200	100			-		
	200					

FRM-247a (Rev 4/Apr 04)

SwRI Div. 01 - Inorganic Laboratory Adjustable Pipette Verification Log

Thermometer #:____GO [] diH20 Temperature (° C) Balance #: 34

ſ	Eppendorf #	True Value (µL)	1 st Reading (g)	2 nd Reading (g)	3 rd Reading (g)
		20	.0204	,0203	.0203
	ADJ200-A	100	,1003	.1001	0996
		200	, 2009	. 2017	.2014
		20	,0202	,0203	, 020/
	ADJ200-C	100	,0998	, 0986	,0991
		200	,1990	,1996	.1989.
		20	,0200	,0300	,0200
1 1	ADJ200-D	100	, 0995	.0999	. 0998
3		200	.1989	,2003	. 1994
		20			
200	ADJ200-G	100			
N		200			
		20			1
	ADJ200-H	100		7.2.0	
I		200			
		20		-0	
20	ADJ200-J	100			
		200			
		20	,0201	0202	.0204
	ADJ200-K	100	,0996	11002-11-1000 -9-3-0	
		200	12000	1998	.1998
		20			
	ADJ200	100		0.)7-2-04	
		200		0	

Reviewed by

SwRI - Div. 01, Inorganic Labs' Adjustable Volume Pipette Verification Log

(Space provided for Inorganic Laboratories' Adjustable Volume Pipette Verification Spreadsheet)

7/6/04

010421

SwRI – Div. 01, Inorganic Laboratory Adjustable Pipette Verification Spreadsheet

Eppendorf #	True Value (µL)	1st Reading (g)	2nd Reading (g)	3rd Reading (g)	Avg Wt (g)	% of True Value
	20				0.000	0.00
ADJ200-A	100				0.000	0.00
	200				0.000	0.00
	20				0.000	0.00
ADJ200-C	100				0.000	0.00
	200				0.000	0.00
	20				0.000	0.00
ADJ200-D	100				0.000	0.00
	200				0.000	0.00
	20	0.0204	0.0204	0.0203	0.020	101.83
ADJ200-G	100	0.0985	0.0982	0.0996	0.099	98.77
	200	0.1980	0.1978	0.1990	0.198	99.13
	20	0.0201	0.0200	0.0201	0.020	100.33
ADJ200-H	100	0.0988	0.0992	0.0987	0.099	98.90
	200	0.1988	0.1993	0.1984	0.199	99.42
	20	0.0202	0.0204	0.0204	0.020	101.67
ADJ200-J	100	0.0991	0.0994	0.0980	0.099	98.83
	200	0.1991	0.1979	0.1987	0.199	99.28
	20				0.000	0.00
ADJ200	100				0.000	0.00
	200				0.000	0.00
	20				0.000	0.00
ADJ200	100				0.000	0.00
	200				0.000	0.00
	20				0.000	0.00
ADJ200	100				0.000	0.00
	200				0.000	0.00

FRM-247a (Rev 3/Oct 03)

SwRI Div. 01 - Inorganic Laboratory Adjustable Pipette Verification Log

Balance #: 34 Thermometer #: 6011 diH20 Temperature (° C) 21

	Eppendorf #	True Value (µL)	1 st Reading (g)	2 nd Reading (g)	3 rd Reading (g)
		20			
	ADJ200-A	100			
		200		1	
		20		1/6/07	
	ADJ200-C	100		4	
1		200		\dagger	
		20			·
	ADJ200-D	100			
13		200			
0		20	0.0204	0.0204	0.0203
200	ADJ200-G	100	0.0985	0.0982	0.0996
2		200	0.1980	0.19-18	0.1990
		20	0.0201	0.0200	40201
	ADJ200-H	100	0.0988	0.0992	0.0981
1		200	0.1988	0.1993	0.1984
0		20	0.0202	0.0204	0.0204
20	ADJ200-J	100	0.0991	0.0994	0.0980
		200	0.1991	0.1979	0.1987
		20			
	ADJ200-K	100		1 1 104	
		200		7604	
		20	-4		
	ADJ200	100		V	
		200			

Reviewed by:

Book/page:	06	097	
DUUNDaub.	2 T T		

SwRI - Div. 01, Inorganic Labs' Adjustable Volume Pipette Verification Log

(Space provided for Inorganic Laboratories' Adjustable Volume Pipette Verification Spreadsheet)

And

6/21/04

010423

SwRI - Div. 01, Inorganic Laboratory Adjustable Pipette Verification Spreadsheet

Eppendorf #	True Value (µL)	1st Reading (g)	2nd Reading (g)	3rd Reading (g)	Avg Wt (g)	% of True Value
	100				0.000	0.00
ADJ1000-C	500				0.000	0.00
	1000				0.000	0.00
	100				0.000	0.00
ADJ1000-D	500				0.000	0.00
	1000				0.000	0.00
	100				0.000	0.00
ADJ1000-E	500				0.000	0.00
	1000				0.000	0.00
	100				0.000	0.00
ADJ1000-F	500				0.000	0.00
	1000				0.000	0.00
	100	0.0987	0.0989	0.0984	0.099	98.67
ADJ1000-G	500	0.5034	0.5047	0.5009	0.503	100.60
	1000	0.9925	0.9884	0.9907	0.991	99.05
	100	0.0990	0.0985	0.0983	0.099	98.60
ADJ1000-H	500	0.4938	0.4960	0.4941	0.495	98.93
	1000	1.0006	1.0019	0.9991	1.001	100.05
	100	0.0986	0.0997	0.0994	0.099	99.23
ADJ1000~J	500	0.5005	0.5021	0.5013	0.501	100.26
	1000	1.0041	1.0031	1.0026	1.003	100.33
	100				0.000	0.00
ADJ1000	500				0.000	0.00
	1000				0.000	0.00
	100				0.000	0.00
ADJ1000	500				0.000	0.00
	1000				0.000	0.00

FRM-247b (Rev 2/Oct 03)

Book/page: 06 098

SwRI Div. 01 - Inorganic Laboratory Adjustable Pipette Verification Log

Balance #: 16 Thermometer #: Got (diH20 Temperature (° C) 21

	Eppendorf #	True Value (μL)	1 st Reading (g)	2 nd Reading (g)	3 rd Reading (g)
		100			
	ADJ1000-C	500			
		1000			
1 1		100			
	ADJ1000-D	500	·	1 104	
		1000		1.12	
		100	1	101	
	ADJ1000-E	500		X	
		1000			
1		100			
000	ADJ1000-F	500		i.e	
2		1000			
12		100	0.0987	0.0989	0.0984
	ADJ1000-G	500	0.5034	0.5041	0.5009
		1000	0.9925	0.9884	0.9907
3		100	0.0990	0.0985	0.0983
	ADJ1000-H	500	0.4938	0.4960	0.4941
100		1000	1.0006	1.0019	0.9991
-		100	0.0186	0.0991	0.0994
	ADJ1000-J	500	0.5005	0.5021	0.5013
]		1000	1.0041	1.0031	1.0026
		100			
	ADJ1000-K	500		Joh	
		1000		4 84	
		100	1		
	ADJ1000	500			
		1000			

Analyst: Harris Reviewed by:

Date: $\frac{62104}{7704}$

SwRI – Div. 01, Inorganic Labs' Adjustable Volume Pipette Verification Log

(Space provided for Inorganic Laboratories' Adjustable Volume Pipette Verification Spreadsheet)

010425

SwRI - Div. 01, Inorganic Laboratory Adjustable Pipette Verification Spreadsheet

Eppendorf #	True Value (µL)	1st Reading (g)	2nd Reading (g)	3rd Reading (g)	Avg Wt (g)	% of True Value
	100	0.1017	0.1019	0.1016	0.102	101.73
ADJ1000-C	500	0.4986	0.4988	0.4991	0.499	99.77
	1000	0.9946	0.9961	0.9938	0.995	99.48
	100	0.0999	0.1014	0.1013	0.101	100.87
ADJ1000-D	500	0.4945	0.4962	0.4974	0.496	99.21
	1000	0.9936	0.9942	0.9938	0.994	99.39
	100	0.1004	0.1004	0.1016	0.101	100.80
ADJ1000-E	500	0.4968	0.4974	0.4963	0.497	99.37
	1000	0.9992	1.0040	1.0018	1.002	100.17
	100	0.1003	0.1010	0.1009	0.101	100.73
ADJ1000-F	500	0.4988	0.4991	0.4974	0.498	99.69
	1000	0.9951	0.9956	0.9954	0.995	99.54
	100					
ADJ1000-G	500					
	1000					
	100					
ADJ1000-H	500					
	1000					
	100					
ADJ1000-J	500					
	1000					
	100	0.1011	0.1010	0.0998	0.101	100.63
ADJ1000-K	500	0.4958	0.4964	0.4987	0.497	99.39
	1000	1.0001	0.9999	1.0002	1.000	100.01
	100					
ADJ1000	500					
	1000					

FRM-247b (Rev 3/Apr 04)

SwRI Div. 01 - Inorganic Laboratory Adjustable Pipette Verification Log

	Eppendorf #	True Value (μL)	1 st Reading (g)	2 nd Reading (g)	3 rd Reading (g)
		100	.1017	.1019	,10/6
1	ADJ1000-C	500	.4986	- 4988	.4991
		1000	,9946	.9961	-9938
		100	.0999	,1014	.1013
	ADJ1000-D	500	4945	4962	. 4974
İ		1000	.9936	19942	29938
1		100	,1004	.1004	,1016
	ADJ1000-E	500	.4968	, 49 74.	.4963
		1000	,9992	1.0040	1.0018
1		100	,1003	,1010	, 1009
0	ADJ1000-F	500	.4988	, 4991	,4974
1000		1000	.9951	,9956	,9954
1		100			·
	ADJ1000-G	500			
'.		1000			
7		100			- 1
	ADJ1000-H	500		0) (-	25-01
8		1000		July	
-		100			
	ADJ1000-J	500			
		1000			
		100	./0//	,10,0	10998
	ADJ1000-K	500	.4958	.4964	.4987
		1000	1.0001	. 9999	1.0002
		100			
	ADJ1000	500		DN 6-25-00	
		1000		7	

Analyst: Sold (i) Illu
Reviewed by: 100 m ald

Date: <u>6-25-04</u>
Date: 06/30/04

SwRI - Div. 01, Inorganic Labs' Adjustable Volume Pipette Verification Log

(Space provided for Inorganic Laboratories' Adjustable Volume Pipette Verification Spreadsheet)

010427

SwRI - Div. 01, Inorganic Laboratory Adjustable Pipette Verification Spreadsheet

Eppendorf #	True Value (µL)	1st Reading (g)	2nd Reading (g)	3rd Reading (g)	Avg Wt (g)	% of True Value
	100	0.1019	0.1018	0.1020	0.102	101.90
ADJ1000-C	500	0.4980	0.5004	0.4997	0.499	99.87
	1000	1.0011	1.0018	0.9979	1.000	100.03
	100	0.1020	0.1008	0.1018	0.102	101.53
ADJ1000-D	500	0.4934	0.4966	0.4971	0.496	99.14
	1000	1.0012	1.0011	1.0020	1.001	100.14
	100	0.1012	0.1007	0.1004	0.101	100.77
ADJ1000-E	500	0.4946	0.4968	0.4952	0.496	99.11
	1000	0.9938	0.9960	0.9968	0.996	99.55
	100	0.1010	0.1005	0.1001	0.101	100.53
ADJ1000-F	500	0.4994	0.5008	0.4978	0.499	99.87
	1000	0.9966	0.9999	1.0005	0.999	99.90
	100					
ADJ1000-G	500					
	1000					
	100					
ADJ1000-H	500					
	1000					
	100					
ADJ1000-J	500					
	1000					
	100	0.1007	0.1004	0.1001	0.100	100.40
ADJ1000-K	500	0.5022	0.5036	0.5040	0.503	100.65
	1000	1.0001	0.9998	1.0029	1.001	100.09
	100	·				
ADJ1000	500					
	1000					

FRM-247b (Rev 3/Apr 04)

Book/page: 06 102

SwRI Div. 01 - Inorganic Laboratory Adjustable Pipette Verification Log

Balance #: 34 Thermometer #: Goll diH20 Temperature (° C) 31

	Eppendorf #	True Value (μL)	1 st Reading (g)	2 nd Reading (g)	3 rd Reading (g)
		100	,1019	.1018	,1020
ĺ	ADJ1000-C	500	,4980	,5004	,4997
İ		1000	1.0011	1.0018	9979
		100	,1020	,1008	.1018
	ADJ1000-D	500	.4934	,496eC	.4971
		1000	1.0012	1.0011	1.0030
		100	.1012	.1007 0953 3	
İ	ADJ1000-E	500	,4946	,4968	4952
الــا		1000	,9938	.9960	.9968
7		100	. 1010	.1005	.1001
0	ADJ1000-F	500	.4994	5008	. 4978
1000		1000	,9946	9999	1.0005
10		100			
`,	ADJ1000-G	500			
		1000			<u> </u>
3		100		007-20	
	ADJ1000-H	500		A	
00		1000			
1		100			
	ADJ1000-J	500			
		1000			
		100	,1007	,1004	.1001
	ADJ1000-K	500	,5022	.5036	,5040
	······································	1000	1.0001	,9998	1.0029
		100		7.204	>
	ADJ1000	500			
	**************************************	1000		-	

Analyst: Analyst: Reviewed by:

Date: 7-2-04Date: 7/7/04

	06	11	13
Book/page:	<u></u>	<u></u> `	<i></i>

SwRI - Div. 01, Inorganic Labs' Adjustable Volume Pipette Verification Log

(Space provided for Inorganic Laboratories' Adjustable Volume Pipette Verification Spreadsheet)

7/6/04

010429

SwRI - Div. 01, Inorganic Laboratory Adjustable Pipette Verification Spreadsheet

Eppendorf #	True Value (µL)	1st Reading (g)	2nd Reading (g)	3rd Reading (g)	Avg Wt (g)	% of True Value
	100				0.000	0.00
ADJ1000-C	500				0.000	0.00
	1000				0.000	0.00
	100				0.000	0.00
ADJ1000-D	500				0.000	0.00
	1000				0.000	0.00
	100				0.000	0.00
ADJ1000-E	500				0.000	0.00
	1000				0.000	0.00
	100				0.000	0.00
ADJ1000-F	500				0.000	0.00
	1000				0.000	0.00
	100	0.1013	0.1019	0.1010	0.101	101.40
ADJ1000-G	500	0.4939	0.4941	0.4968	0.495	98.99
	1000	0.9823	0.9811	0.9832	0.982	98.22
	100	0.0990	0.0996	0.0992	0.099	99.27
ADJ1000-H	500	0.4925	0.4942	0.4911	0.493	98.52
	1000	0.9827	0.9836	0.9856	0.984	98.40
	100	0.0991	0.1002	0.1005	0.100	99.93
ADJ1000-J	500	0.4962	0.4943	0.4980	0.496	99.23
	1000	0.9871	0.9913	0.9889	0.989	98.91
·	100				0.000	0.00
ADJ1000	500				0.000	0.00
	1000				0.000	0.00
	100				0.000	0.00
ADJ1000	500				0.000	0.00
	1000				0.000	0.00

FRM-247b (Rev 2/Oct 03)

010430 SwRI Div. 01 – Inorganic Laboratory Adjustable Pipette Verification Log

Balance #:	Thermometer #: Gol(diH20 Temperature (° C) 21

	Eppendorf #	True Value (μL)	1 st Reading (g)	2 nd Reading (g)	3 rd Reading (g)
	:	100	-		
	ADJ1000-C	500			
1		1000			
		100		/	
	ADJ1000-D	500		1.04	
1		1000	10	1/01	
		100		\aleph	
	ADJ1000-E	500			
		1000		·	
1		100			
0	ADJ1000-F	500			
000		1000			
12		100	0.1013	0.1019	0.1010
	ADJ1000-G	500	0.4939	0.4941	0.4968
'		1000	0.9823	0.9811	0.9832
3		100	0.0990	0.0996	0.0992
	ADJ1000-H	500	0.4925	0.4942	0-4911
100		1000	0.9827	0.9836	0.9856
1		100	0.0991	0.1002	0.1005
	ADJ1000-J	500	0.4962	0.4943	0.4980
		1000	0.9871	0.9913	0.9889
		100			
	ADJ1000-K	500		1 104	
		1000		7/6/04	
		100			
	ADJ1000	500		V	
		1000			

Analyst: Reviewed by:

Book/page:	06	157

SwRI - Div. 01, Inorganic Labs' Adjustable Volume Pipette Verification Log

(Space provided for Inorganic Laboratories' Adjustable Volume Pipette Verification Spreadsheet)

Chilapping 6/21/04

010431

SwRI - Div. 01, Inorganic Laboratory Adjustable Pipette Verification Spreadsheet

Eppendorf#	True Value (µL)	1st Reading (g)	2nd Reading (g)	3rd Reading (g)	Avg Wt (g)	% of True Value
	500				0.000	0.00
ADJ5000-C	2500				0.000	0.00
	5000				0.000	0.00
	500				0.000	0.00
ADJ5000-G	2500				0.000	0.00
	5000				0.000	0.00
	500				0.000	0.00
ADJ5000-H	2500				0.000	0.00
	5000				0.000	0.00
	500				0.000	0.00
ADJ5000-I	2500				0.000	0.00
	5000				0.000	0.00
	500	0.5044	0.5020	0.5036	0.503	100.67
ADJ5000-J	2500	2.5087	2.5021	2.5104	2.507	100.28
	5000	5.0216	5.0183	5.0227	5.021	100.42
	500	0.4917	0.4959	0.4967	0.495	98.95
ADJ5000-K	2500	2.5066	2.5013	2.5039	2.504 5.033	100.16 100.67
	5000	5.0327	5.0391	5.0283		
	500	0.5047	0.5011	0.5032	0.503	100.60
ADJ5000-L	2500	2.4905	2.4889	2.4922	2.491 5.050	99.62 100.99
	5000	5.0511	5.0481	5.0496		
	500				0.000	0.00
ADJ5000	2500				0.000	0.00
	5000					
	500	· · · · · · · · · · · · · · · · · · ·			0.000	0.00
ADJ5000	2500 5000				0.000	0.00 0.00
						
	500				0.000	0.00
ADJ5000	2500				0.000	0.00
	5000	·			0.000	0.00
	500				0.000	0.00
ADJ5000	2500				0.000	0.00
	5000				0.000	0.00

FRM-247c (Rev 2/Mar 03)

Book/page:____

06 158

SwRI Div. 01 – Inorganic Laboratory Adjustable Pipette Verification Log

Du 1984

Balance #: 16 Thermometer #: Goll diH20 Temperature (° C) 21

	Eppendorf #	True Value (µL)	1 st Reading (g)	2 nd Reading (g)	3 rd Reading (g)
		500			
	ADJ5000-C	2500			
		5000			
		500			
	ADJ5000-G	2500		1.2	
		5000	1	125/0	
		500		6	,
	ADJ5000-H	2500	Jr.)		
		5000		0	•
		500			
1 1	ADJ5000-I	2500			
		5000			
17		500	0.5044	0.5020	0.5036
5000	ADJ5000-J	2500	2.5087	2.5021	25104
		5000	5.0216	5.0183	5.0007
2		500	0.4917	0.4959	0.4967
1 . 1	ADJ5000-K	2500	2.5066	2.5013	2,5039
". [·	5000	5.0321	5.0391	5.0283
7		500	0.5047	0.5011	0.5032
7	ADJ5000-L	2500	2.4905	2.4889	2.4922
2		5000	5.0511	5.0481	5.0496
500		500			
	ADJ5000-M	2500			
		5000			
		500		1 la loct	
	ADJ5000-N	2500		1 12	
		5000		1000	
		500			
	ADJ5000	2500			
		5000			
		500			
	ADJ5000	2500			
		5000			

Analyst: Mighar Analyst: Reviewed by:

Date: $\frac{6/21/04}{7/7/09}$

SwRI - Div. 01, Inorganic Labs' Adjustable Volume Pipette Verification Log

(Space provided for Inorganic Laboratories' Adjustable Volume Pipette Verification Spreadsheet)

010433

SwRI - Div. 01, Inorganic Laboratory Adjustable Pipette Verification Spreadsheet

Eppendorf #	True Value (μL)	1st Reading (g)	2nd Reading (g)	3rd Reading (g)	Avg Wt (g)	% of True Value
	500	0.4987	0.4998	0.4993	0.499	99.85
ADJ5000-C	2500	2.5038	2.5040	2.5031	2.504	100.15
	5000	5.0338	5.0186	5.0341	5.029	100.58
	500					
ADJ5000-G	2500	OUT	OF	SERVICE		
	5000					
	500					
ADJ5000-H	2500	OUT	OF	SERVICE		
	5000					
	500	0.5012	0.5008	0.5004	0.501	100.16
ADJ5000-I	2500	2.4992	2.4989	2.4988	2.499	99.96
	5000	5.0338	5.0066	5.0061	5.016	100.31
	500					
ADJ5000-J	2500					
	5000					
	500					
ADJ5000-K	2500					
	5000					
	500					
ADJ5000-L	2500					
	5000					
	500	0.5028	0.5016	0.5010	0.502	100.36
ADJ5000-M	2500	2.5009	2.4986	2.4984	2.499	99.97
	5000	5.0093	5.0084	5.0006	5.006	100.12
	500	0.5074	0.5003	0.5001	0.503	100.52
ADJ5000-N	2500	2.5171	2.5001	2.5004	2.506	100.23
	5000	5.0298	5.0096	5.0110	5.017	100.34
	500					
ADJ5000	2500					
	5000					
	500					
ADJ5000	2500					
	5000					

FRM-247c (Rev 3/Apr 04)

010434 Book/page: 06 160

SwRI Div. 01 - Inorganic Laboratory Adjustable Pipette Verification Log

Balance #: 34 Thermometer #: 6011 diH20 Temperature (° C) 31

	Eppendorf #	True Value (μL)	1 st Reading (g)	2 nd Reading (g)	3 rd Reading (g)
		500	,4987	,4998	. 4993
	ADJ5000-C	2500	2,5038	2.5040	2.5031
		5000	5.0338	5.0186	5.0341
		500	1 22 73 8	7,0,00	5.0571
	ADJ5000-G	2500	Out	٥F	SERVICE
		5000		<u> </u>	1 - JE/CVICE
1		500			,
	ADJ5000-H	2500	art	oF	SERVICE
		5000		<u> </u>	
		500	.5012	,5008	,5004
	ADJ5000-I	2500	2.4992	2 4989	2.4988
		5000	5.0338	5.0066	5.0061
3		500			
5000	ADJ5000-J	2500			
12		5000			
5		500			
	ADJ5000-K	2500		2504	
'.		5000	\mathcal{O}	200	
7		500			
_	ADJ5000-L	2500	0		
500		5000			
5		500	5028	.50/6	.5010
	ADJ5000-M	2500	5.5009	2-4986	3.4984
		5000	5.0093	5.0084	5-0006
	AD 18000 11	500	,5074	.5003	.501
	ADJ5000-N	2500	2.5/7/	J. 5001	2.5004
		5000	5.0298	5.0096	5.0110
	AD IECO	500			
	ADJ5000	2500			
		5000		26-25-04	\rightarrow
	AD IFOOD	500			
	ADJ5000	2500			
<u> </u>		5000			

Analyst: William	Date:	625-04	
Reviewed by NULL Q	Date:	06/30/04	

Book/page: 06 161

SwRI - Div. 01, Inorganic Labs' Adjustable Volume Pipette Verification Log

(Space provided for Inorganic Laboratories' Adjustable Volume Pipette Verification Spreadsheet)

010435

SwRI - Div. 01, Inorganic Laboratory Adjustable Pipette Verification Spreadsheet

Eppendorf #	True Value (µL)	1st Reading (g)	2nd Reading (g)	3rd Reading (g)	Avg Wt (g)	% of True Value
	500	0.5056	0.5030	0.5031	0.504	100.78
ADJ5000-C	2500	2.4956	2.4948	2.4948	2.495	99.80
	5000	5.0400	5.0398	5.0421	5.041	100.81
	500					
ADJ5000-G	2500	OUT	OF	SERVICE		
	5000					
	500					
ADJ5000-H	2500	OUT	OF	SERVICE		
	5000					
	500	0.5025	0.4973	0.5040	0.501	100.25
ADJ5000-I	2500	2.5202	2.5176	2.5050	2.514	100.57
	5000	5.0111	5.0140	4.9979	5.008	100.15
	500			·		
ADJ5000-J	2500					
	5000					
	500					
ADJ5000-K	2500					
	5000					
	500					
ADJ5000-L	2500 5000					
		0.5051	0.5004	0.5006	0.500	400.04
	500	0.5061	0.5024	0.5006	0.503	100.61
ADJ5000-M	2500 5000	2.4991 5.0074	2.4996 5.0048	2.4980 5.0011	2.499 5.004	99.96 100.09
	500	0.5094	0.5046	0.5074	0.507	101.43
ADJ5000-N	2500 5000	2.4984 5.0254	2.5067 4.9996	2.5001 4.9999	2.502 5.008	100.07 100.17
		3.0234	4.9990	4.9999	5.006	100.17
	500					
ADJ5000	2500					
	5000					
	500					
. ADJ5000	2500					
	5000					

FRM-247c (Rev 3/Apr 04)

Book/page:_

06 162

010436

SwRI Div. 01 – Inorganic Laboratory Adjustable Pipette Verification Log

Balance #: 34 Thermometer #: G-0// diH20 Temperature (° C) _3/

	Eppendorf #	True Value (µL)	1 st Reading (g)	2 nd Reading (g)	3 rd Reading (g)
		500	,5054	,5030	15031
	ADJ5000-C	2500	2.4956	2.4948	9.4948
		5000	5.0400	5.0398	5,0421
		500			
	ADJ5000-G	2500	out.	oF	Stru.cc
		5000			
[500			,
[ADJ5000-H	2500	out	oF	SERVICE
		5000			
		500	,5025	.4973	.5040
	ADJ5000-I	2500	2,5202	2.5176	3.5050
		5000	5.0111	5.0140 "	4.9979
1		500			
5000	ADJ5000-J	2500			
2		5000			\rightarrow
2		500		1209	
	ADJ5000-K	2500		W I'm	
".		5000			
		500		0	
7	ADJ5000-L	2500			
500		5000			
2		500	.5061	.5024	.5006
	ADJ5000-M	2500	2-4991	2.4996	2,4980
		5000	5.0074	5.0048	5.0011
		500	.5094	.5046	.5074
	ADJ5000-N	2500	2.4984	3.5067	2.5001
		5000	5,0254	4.9996	4.9999
		500			
	ADJ5000	2500		- O ALL	
	·	5000	A	107-2-04	
		500			
	ADJ5000	2500	6		
		5000			

Analyst: William Reviewed by: Analyst:

Date: 7-2-04

Date: 7/7/04

Book/page: 06 163

SwRI - Div. 01, Inorganic Labs' Adjustable Volume Pipette Verification Log

(Space provided for Inorganic Laboratories' Adjustable Volume Pipette Verification Spreadsheet)

Circland 7/6/04

010437

SwRI - Div. 01, Inorganic Laboratory Adjustable Pipette Verification Spreadsheet

Eppendorf #	True Value (µL)	1st Reading (g)	2nd Reading (g)	3rd Reading (g)	Avg Wt (g)	% of True Value
	500				0.000	0.00
ADJ5000-C	2500				0.000	0.00
	5000				0.000	0.00
	500				0.000	0.00
ADJ5000-G	2500				0.000	0.00
	5000				0.000	0.00
	500				0.000	0.00
ADJ5000-H	2500				0.000	0.00
	5000				0.000	0.00
	500				0.000	0.00
ADJ5000-I	2500				0.000	0.00
	5000				0.000	0.00
	500	0.5068	0.5093	0.5049	0.507	101.40
ADJ5000-J	2500	2.4984	2.4924	2.4972	2.496	99.84
	5000	5.0151	5.0265	5.0194	5.020	100.41
	500	0.5066	0.5026	0.5031	0.504	100.82
ADJ5000-K	2500	2.4946	2.4927	2.4910	2.493	99.71
	5000	4.9937	4.9891	4.9953	4.993	99.85
	500	0.4958	0.4990	0.4981	0.498	99.53
ADJ5000-L	2500	2.4796	2.4792	2,4775	2.479	99.15
	5000	4.9738	4.9633	4.9662	4.968	99.36
	500				0.000	0.00
ADJ5000	2500				0.000	0.00
	5000				0.000	0.00
	500				0.000	0.00
ADJ5000	2500				0.000	0.00
	5000				0.000	0.00
	500				0.000	0.00
ADJ5000	2500			1	0.000	0.00
	5000				0.000	0.00
	500				0.000	0.00
ADJ5000	2500				0.000	0.00
	5000				0.000	0.00

FRM-247c (Rev 2/Mar 03)

010438

Book/page: 06 164

SwRI Div. 01 – Inorganic Laboratory Adjustable Pipette Verification Log

Balance #: 34 Thermometer #: Gott diH20 Temperature (° C) 21

	Eppendorf #	True Value (µL)	1 st Reading (g)	2 nd Reading (g)	3 rd Reading (g)
		500			
	ADJ5000-C	2500			
		5000			
		500			
	ADJ5000-G	2500		100	
	·	5000		110	
		500	N		,
	ADJ5000-H	2500)	
		5000			
		500			
	ADJ5000-I	2500			
		5000			
17		500	0.5068	0.5093	0.5049
5000	ADJ5000-J	2500	2.4984	2.4924	2.4972
8		5000	5.0151	5.0265	5.0194
2		500	0.5066	0.5026	0.5031
	ADJ5000-K	2500	2.4946	2.4927	2,4910
▎▝╻┆	· · · · · · · · · · · · · · · · · · ·	5000	4,9931	4.9891	4.9953
7		500	0.4958	0.4990	0.4981
	ADJ5000-L	2500	2.4796	2,4792	2,4775
18		5000	4,9738	4.9633	4.9662
500		500			
	ADJ5000-M	2500			
		5000	·		
		500		1 3	
	ADJ5000-N	2500	\	16/04	
-		5000	 		
-		500	· · · · · · · ·		
-	ADJ5000	2500		U	
		5000	/		
		500			
	ADJ5000	2500			
		5000			

Analyst: Curpa has Reviewed by:

Date: 7/6/04

Date: 7/7/04

Book/page:	06	15	8
			7

SwRI Div. 01 - Inorganic Laboratory Adjustable Pipette Verification Log

Ser) 4-1984

Balance #: 16 Thermometer #: 6011 diH20 Temp

diH20 Temperature (° C) 2 1

	Eppendorf #	True Value (µL)	1 st Reading (g)	2 nd Reading (g)	3 rd Reading (g)
		500).
	ADJ5000-C	2500			
		5000			
		500			
	ADJ5000-G	2500			
		5000	1	12/0	
		500		1013	
	ADJ5000-H	2500	J-)		
		5000		0	•
		500			
	ADJ5000-I	2500			
		5000			
3		500	0.5044	0.5020	0.5036
5000	ADJ5000-J	2500	2.5087	2.5021	25104
2		5000	5,0216	5.0183	5.0327
5		500	0.4917	0.4959	0.4967
	ADJ5000-K	2500	2.5066	2.5013	2.5039
		5000	5.0327	5.0391	5,0283
1		500	0.5047	0.5011	0.5032
1	ADJ5000-L	2500	2.4905	2.4889	2.4922
)(5000	5.0511	5.0481	5.0496
500		500			
	ADJ5000-M	2500			
		5000			
		500		1 Janost	
	ADJ5000-N	2500		102	
		5000			
}		500			
1	ADJ5000	2500			
		5000			
		500			
}	ADJ5000	2500	(<u> </u>	
		5000			

Analyst:

Reviewed by:

Date: 6/21/04

Date: 7/7/0

Book/page:_	06	157
Doon page.		

SwRI - Div. 01, Inorganic Labs' Adjustable Volume Pipette Verification Log

(Space provided for Inorganic Laboratories' Adjustable Volume Pipette Verification Spreadsheet)

Grid Hand 6/21/04

010440

SwRI - Div. 01, Inorganic Laboratory Adjustable Pipette Verification Spreadsheet

Eppendorf#	True Value (µL)	1st Reading (g)	2nd Reading (g)	3rd Reading (g)	Ava Wt (a)	% of True Value
	500			0 (0)	0.000	0.00
ADJ5000-C	2500				0.000	0.00
	5000				0.000	0.00
	500				0.000	0.00
ADJ5000-G	2500				0.000	0.00
	5000				0.000	0.00
	500				0.000	0.00
ADJ5000-H	2500				0.000	0.00
	5000				0.000	0.00
	500				0.000	0.00
ADJ5000-I	2500				0.000	0.00
	5000				0.000	0.00
45 15000	500	0.5044	0.5020	0.5036	0.503	100.67
ADJ5000~J	2500 5000	2.5087	2.5021	2.5104	2.507	100.28
	500	5.0216	5.0183	5.0227	5.021	100.42
ADJ5000-K		0.4917	0.4959	0.4967	0.495	98.95
ADJ5000-K	2500 5000	2.5066	2.5013	2.5039	2.504	100.16
	500	5.0327	5.0391	5.0283	5.033	100.67
ADJ5000-L		0.5047	0.5011	0.5032	0.503	100.60
	2500 5000	2.4905 5.0511	2.4889	2.4922	2.491	99.62
	500	3.0311	5.0481	5.0496	5.050	100.99
ADJ5000	2500				0.000	0.00
AD33000	5000				0.000	0.00
	500				0.000	0.00
ADJ5000	2500				0.000	0.00
7.25000	5000				0.000	0.00
					0.000	0.00
ADJECCO	500				0.000	0.00
ADJ5000	2500				0.000	0.00
	5000				0.000	0.00
ADJESSO	500				0.000	0.00
ADJ5000	2500				0.000	0.00
	5000				0.000	0.00

FRM-247c (Rev 2/Mar 03)

010442

Book/page:_

06 098

SwRI Div. 01 - Inorganic Laboratory Adjustable Pipette Verification Log

Balance #:	Thermometer #:	diH20 Temperature (° C) 21
------------	----------------	----------------------------

	Eppendorf #	True Value (µL)	1 st Reading (g)	2 nd Reading (g)	3 rd Reading (g)
		100			
	ADJ1000-C	500			. /
		1000			
		100			
	ADJ1000-D	500		1 10+	
		1000		18	
		100	alo		
	ADJ1000-E	500	<u> </u>	<u>X</u>	
		1000		9	
1		100			
000	ADJ1000-F	500			
2		1000			
12		100	0.0987	0.0989	0.0984
	ADJ1000-G	500	0.5034	0.5041	0.5009
',		1000	0.9925	0.9884	0.9907
3		100	0.0990	0.09,5	0.0983
	ADJ1000-H	500	0.4438	0.4960	04941
100		1000	1.0006	1.0019	0.9991
		100	0.0986	0.06991	0.0974
	ADJ1000-J	500	0.5005	0.5031	<u>0.5613</u>
		1000	1,0041	1.0031	1.0026
		100			
	ADJ1000-K	500		1.	
		1000		1/24	
		100	.1		
	ADJ1000	500			
		1000			

Analyst:

Reviewed by:

Date: 6/21/04

Date: 7/7/0

Book/page:_	06	097	

SwRI - Div. 01, Inorganic Labs' Adjustable Volume Pipette Verification Log

(Space provided for Inorganic Laboratories' Adjustable Volume Pipette Verification Spreadsheet)

Crickal Judy 6/2

6/21/04

010444

SwRI - Div. 01, Inorganic Laboratory Adjustable Pipette Verification Spreadsheet

Eppendorf #	True Value (µL)	1st Reading (g)	2nd Reading (g)	3rd Reading (g)	Avg Wt (g)	% of True Value
	100				0.000	0.00
ADJ1000-C	500				0.000	0.00
	1000				0.000	0.00
	100				0.000	0.00
ADJ1000-D	500				0.000	0.00
	1000				0.000	0.00
	100				0.000	0.00
ADJ1000-E	500				0.000	0.00
	1000				0.000	0.00
	100				0.000	0.00
ADJ1000-F	500				0.000	0.00
	1000				0.000	0.00
	100	0.0987	0.0989	0.0984	0.099	98.67
ADJ1000-G	500	0.5034	0.5047	0.5009	0.503	100.60
	1000	0.9925	0.9884	0.9907	0.991	99.05
	100	0.0990	0.0985	0.0983	0.099	98.60
ADJ1000-H	500	0.4938	0.4960	0.4941	0.495	98.93
	1000	1.0006	1.0019	0.9991	1.001	100.05
	100	0.0986	0.0997	0.0994	0.099	99.23
ADJ1000-J	500	0.5005	0.5021	0.5013	0.501	100.26
	1000	1.0041	1.0031	1.0026	1.003	100.33
	100				0.000	0.00
ADJ1000	500				0.000	0.00
	1000				0.000	0.00
	100				0.000	0.00
ADJ1000	500				0.000	0.00
	1000				0.000	0.00

FRM-247b (Rev 2/Oct 03)

010446

Book/page: 06 038

SwRI Div. 01 - Inorganic Laboratory Adjustable Pipette Verification Log

,		· · · · · · · · · · · · · · · · · · ·
Balance #:	Thermometer #: Goll	diH20 Temperature (° C) 21

	Eppendorf #	True Value (µL)	1 st Reading (g)	2 nd Reading (g)	3 rd Reading (g)
		20			
	ADJ200-A	100			
		200			
		20	•	tot	
	ADJ200-C	100		6/2/04	
		200	M		
		20			
	ADJ200-D	100			
3		200			
0		20	0,0205	0.0203	0.0204
200	ADJ200-G	100	0.0996	0.1011	0.1021
N		200	0.1986	0.1974	0.2003
		20			
	ADJ200-H	100	mult	NOT FIND	
7		200	60.		
0		20	0.0202	0.0203	0.0303
20	ADJ200-J	100	0.0991	0.1005	0.0989
		200	0.2013	0.2041	0,2021
		20			
	ADJ200-K	100		104	
		200		0/21/04	
		20			
	ADJ200	100		V	
		200			

Analyst:

Reviewed by:

Date: 6/21/09

Date: 7/7/1/0

Book/page:	06'037	

SwRI - Div. 01, Inorganic Labs' Adjustable Volume Pipette Verification Log

(Space provided for Inorganic Laboratories' Adjustable Volume Pipette Verification Spreadsheet)

2 (and 6/21/04

SwRI - Div. 01, Inorganic Laboratory Adjustable Pipette Verification Spreadsheet

Eppendorf #	True Value (µL)	1st Reading (g)	2nd Reading (g)	3rd Reading (g)	Avg Wt (g)	% of True Value
	20				0.000	0.00
ADJ200-A	100				0.000	0.00
	200				0.000	0.00
	20				0.000	0.00
ADJ200-C	100				0.000	0.00
	200				0.000	0.00
	20				0.000	0.00
ADJ200-D	100				0.000	0.00
	200				0.000	0.00
	20	0.0205	0.0203	0.0204	0.020	102.00
ADJ200-G	100	0.0996	0.1011	0.1021	0.101	100.93
	200	0.1986	0.1974	0.2003	0.199	99.38
	20				0.000	0.00
ADJ200-H	100				0.000	0.00
	200				0.000	0.00
	20	0.0202	0.0203	0.0202	0.020	101.17
ADJ200-J	100	0.0991	0.1005	0.0989	0.100	99.50
	200	0.2013	0.2041	0.2027	0.203	101.35
	20				0.000	0.00
ADJ200	100				0.000	0.00
	200				0.000	0.00
	20				0.000	0.00
ADJ200	100				0.000	0.00
	200				0.000	0.00
	20				0.000	0.00
ADJ200	100				0.000	0.00
	200				0.000	0.00

FRM-247a (Rev 3/Oct 03)

SOUTHWEST RESEARCH INSTITUTE

NUCLEAR PROJECT CLIENT: Division 20 TASK ORDER: 040616-1

SRR: 26046 SDG: 246046 CASE: CNWRA

VTSR: June 15, 2004

PROJECT#: 06002.01.081

Balance Calibrations

Southwest Research Institute® Division 01 **BALANCE VERIFICATION LOG**

BALANCE #:	LOCATION:	SERIAL #:	TOLERANCE:	COMMENTS:
12	Bldg. 70 Lab 27	1122510787	±0.0005	
Date	Std Wt (g)	Recorded Wt (g)	Operator	
6-30-04	2,0000	2.0000	KE	SW! 99-J50526-19
7-1-04	2,0000	2.0000	KE	v
7-2-04	2.0000	2.0000	KE.	N
7-6-04	2.0080	2.0000	Jee	11
7-7-04	ゴ.0000	1,9999	Yeu	~,
7-8-04	2,0000	2,0000	Deci	"
7-904	2.000	5.0001	بهو	
7-12-04	9-0000	J.0000	Sev	
7-13-04	2,0000	2.0000	KE	10
7-14-04	2,000	2-0001	Sw	//

If balance is out of limits, clean the balance and re-calibrate using Class "S" weights.

If balance is still out of limits, place a "DO NOT USE" sign on it and call (DQA) for service.

Page 3 of 30

Southwest Research Institute Division 01 BALANCE VERIFICATION LOG

BALANCE #	LAB#:	SERIAL #:	TOLERANCE:	COMMENTS:	1
19	27	0068597	±0.05		
Date	Std Wt (g)	Recorded Wt (g)	Operator		
6-25-04	Lab 101 / 10,00g	10.020	10-15	S/N:99-J50624-5	
6-26-04	10.00	10.00	(Jec)	-1	
6-28-04	10.00	10.00	(Ser)	N	
6-29-04	10-00	10.01	5	N	
6-30-04	10.00	18-00	KE	*	
6-30-04	10-00	16.01	KE		1.12
6-30-04	10-00	10.00	KE	<i>N</i>	Lab 2
7-1-04	10.00	10-00	KE,	77	Cab Z
7-2-04	10.00	10.00	Qe o	-/	
7-6-04	10.00	10.00	Sei		

If balance is out of limits, clean the balance and re-calibrate using Class "S" weights.

If balance is still out of limits, place a "DO NOT USE" sign on it and call (x5896) for service.

Page # ___23____

FRM-112 (Rev 1/Dec 99)

Southwest Research Institute Division 01 **BALANCE VERIFICATION LOG**

BA	LANCE #	LAB#:	SERIAL #:	TOLERANCE:	COMMENTS:
Ī	19	27	0068597	±0.05	•
	Date	Std Wt (g)	Recorded Wt (g)	Operator	<u>a</u>
7/0	-7-04	10.00	10.00	Der	SN:99-J5064-5
76	8-04	10.00	10.01	Clee	// //
V716	9-04	10-00	10.00	Ben,	
*470	701204	10.00	10.01	- Ou	//
以 7/	12/04	(10.00	10.00	CYE	<i>N</i> .
7	1404	10.00	10.00	20	
7-	15-04	10.00	10.00	THE.	, .
7-	16-04	10.00	10.01	KE	
7-	19-04	10.00	10.02	KE	N
2-	20-04	10.00	10.01	KE	N

If balance is out of limits, clean the balance and re-calibrate using Class "S" weights. If balance is still out of limits, place a "DO NOT USE" sign on it and call (x5896) for service.

Page # ____24____

FRM-112 (Rev 1/Dec 99)

Southwest Research Institute® Division 01 **BALANCE VERIFICATION LOG**

BALANCE #:	LOCATION:	SERIAL #:	TOLERANCE:	COMMENTS:
34	Bldg. 70 Lab 27	1116031935	±0.0005	COMMENTS:
Date	Std Wt (g)	Recorded Wt (g)	Operator	
6-24-04	2.0000	2.0001		5N:99-J50526-19
6-25-04	7 10000	2,0000	(CE.	P - 030324-19
(-2804	2.0000	2.0000		
6-29-04	2.0000	2,0000	KE	N
6-30-64	2.0000	1.9999	K.E	N
7-1-04	2.0000	2.0000	KE	N
7-2-04	2.0000	2.0000	Jec.	N
7-6-04	2000	2.0000	See .	
7704	20000	2.0000	- Cou	-
If halance is out of lim	2.0000	2.0000	Sei	"

If balance is out of limits, clean the balance and re-calibrate using Class "S" weights.

If balance is still out of limits, place a "DO NOT USE" sign on it and call (DQA) for service.

Page 3 of 30

Southwest Research Institute Division 01 BALANCE VERIFICATION LOG

BALANCE #:	LOCATION:	SERIAL #:	TOLERANCE:	COMMENTS:
12	Bldg. 70 Lab 27	1122510787	±0.0005	COMMISSION.
Date	Std Wt (g)	Recorded Wt (g)	Operator	
6-17-04	2,0000	2.0000	pe 5	5N: 49-J50526 15
4-18-04	2.0000	2.6000	16	JN: 11-330326 13
6-21-04	210000	2.0000	KE	1
6-22-04	2.0000	2.0601	KE	N N
6-23-04	2.0000	2-6000	KE	~
6-24-04	2.0000	2.0000	K.€	
6-25-04	2000	1,9999	0,0	//
6-24-04	2.0000	2.0000	O KE	N
62804	5.000 C)	2,0000	Que	
6.29.00	2-0000	2 10000	J KE	~

If balance is out of limits, clean the balance and re-calibrate using Class "S" weights.

If balance is still out of limits, place a "DO NOT USE" sign on it and call (DQA) for service.

Page 2 of 30

Southwest Research Institute Division 01 **BALANCE VERIFICATION LOG**

BALANCE #:	LOCATION:	SERIAL #:	TOLEDANCE	COMPANIE
34			TOLERANCE:	COMMENTS:
	Bldg. 70 Lab 27	1116031935	±0.0005	
Date	Std Wt (g)	Recorded Wt (g)	Operator	SN: 99-J50526-15
6-10-04	2-0000	2.0600	KE	
6-11-04	2.0000	2.0000	KE	N
(-14-04	2,0000	1.9999	Oer	- N
6-15-04	2-0000	2.0001	Ø.5	
6-16-04	2,0000	2.0000	OKE	٠
6-17-04	2.0000	2:0000	14.65	<u> </u>
6-18-04	2.0000	2.0000	KE	N
6-21-04	2.0000	210000	KE	<i>p</i>
4-22-04	2.0000	2,6000	KE	N
6-23-04	2.0006	2.0000	KE	u u
If halance is out of lin	nita alaam tha hala	and re calibratei. Ol		<u> </u>

If balance is out of limits, clean the balance and re-calibrate using Class "S" weights. If balance is still out of limits, place a "DO NOT USE" sign on it and call (DQA) for service.

Page 2 of 30

Southwest Research Institute® Division 01 BALANCE VERIFICATION LOG

DALANCE #	LOCATION:	SERIAL #:	TOLERANCE:	COMMENTS:
BALANCE #:	Bldg. 70 Lab 27	1116031935	±0.0005	
Date	Std Wt (g)	Recorded Wt (g)	Operator	
6-24-04	2.0000	2.0001		5N:99-J50526-
6-25-04	2.0000	2.0000	(CE	0'
6-2804	2.0000	2.0000	IK6	N
6-29-04	2.0000	2,0000	KE	N
6-30-64	2.0000	2.0000	KE	N
7-1-04	2.0000	2.0000	Jet.	<i>(i)</i>
7-2-04	20000	2.0000	Jee .	//
7-6-04				
			loss "C" weights	

If balance is out of limits, clean the balance and re-calibrate using Class "S" weights.

If balance is still out of limits, place a "DO NOT USE" sign on it and call (DQA) for service.

Page 3 of 30

SOUTHWEST RESEARCH INSTITUTE

010456

NUCLEAR PROJECT

CLIENT: Division 20

TASK ORDER: 040616-1

SRR: 26046 SDG: 246046

CASE: CNWRA

VTSR: June 15, 2004

PROJECT#: 06002.01.081

DI Water Verification

D.I. WATER SYSTEM NOTEBOOK SOUTHWEST RESEARCH INSTITUTE BUILDING 70

Contact U.S. Filter (1-800-466-7873) for repairs/exchanges. (Make sure to have a P.O.)

HIGH PURITY SYSTEM (HP)

010457

		RESISTIVITY	MONITOR	QC LI	GHTS	USAGE	
DATE / TIME	INITIALS	(M OHMS)	QC LT.	QC 1	QC 2	(GALS)	COMMENTS
6/17/04 5:380m	OPC	16,04	V	7	/	2190,5	<u></u>
6/18/14 6:30pm	OR	18.06	<u></u>	_)	2199,8	
Galloy Salom	DR	18.05	V))	2239,7	
Glaploy Statem	DR	18.05	u	<u></u>		a263,3	سُ
Wasty 5:560m	DR	18,05	V	_	V	23028	
6/24/04 2:45m	Sw	18.04	/	\	\	2320.8	
6/25/04 4:394	Der	18.07	/	\		2380.5	V
6/28/84 30m	OPR	18.05	V	-	/	9233. F	
Maclis 40/86/20	OR	18.04		V	~	2607.8	
4/30/14 Rom	DR	18103	V	V		2666,7	
7/104 4520M	DR	1803	V	V	~	2694,6	
mole: F volate	DR	15.04	レ	~		2745.6	سن ا
		25	>				

Legend: Check = Green (OK); X = Red (call for service)

LOW PURITY SYSTEM (LP)

· · · · · · · · · · · · · · · · · · ·	QC L	IGHTS	USAGE	
DATE / TIME INITIALS	QC 1	QC 2	(GALS)	COMMENTS
6/17/04 57380M OR	~	(15)	923,3	L
6/18/04 6:300m DR	V	(15.5)	923.4	
Glarloy Statem DR	レ	(16)	923.6	
6/22/04 Sistem DR	レ	(165) V	923.8	
623/04 52560M PR	X	(17) V	929,5	need 1.0, call USFither
6/24/04 2:47an De	X	(17.5) V	930,2	VIS Filter called (Rec'alo)
6/25/04 4:41am See	X	(18)	930.4	Waitingon U.S. Pilher
6/28/04 3pm OR	<u> </u>	(15,5)	935.6	tankerchanged All ok.
6129/04 6:130m DR		(15.5) V	935.8	<u> </u>
6/3d14 Rem DK	<u></u>	(16) V	936.1	
3/1/64 4: Som DR	V	(16)	936.3	
Plaloy Piad om DR	✓	(16.5) V	95 S. Y	
	OSS			

Legend: Check = Green (OK); X = Red (call for service)

Parola

D.I. WATER SYSTEM NOTEBOOK SOUTHWEST RESEARCH INSTITUTE BUILDING 70

Contact U.S. Filter (1-800-466-7873) for repairs/exchanges. (Make sure to have a P.O.)

HIGH PURITY SYSTEM (HP)

010458

		RESISTIVITY	MONITOR	QC LI	GHTS	USAGE	
DATE / TIME	INITIALS	(M OHMS)	QC LT.	QC 1	QC 2	(GALS)	COMMENTS
7/404 5:200M	DIL	18,04	~	~)	2785,8	
7/7/04 Giolom	DR	16.03	V	7)	2798.6	
7/8/04 4:30pm	DP	18.04	V	v		2803,7	<u> </u>
79/24 5:05pm	DR	18.03	<i>L</i>	7	_	2819.7	
VHOY SIDSOM	DR	18.04	<u></u>	7	_	2845. J	
7/3/14 4:050m	OR	18,04	~	J	C	2879,8	2
7/14/04 11:10/m	OR	18.04	V	L	~	2900,3	1
7/5/14 8:40 m	DR	18.04		X	1	2932.7	1461.0
Aldey 7 pm	DR	18.04		X	~	2950.6	USFiller called
7/19/04 9:30 pm	DR	18,03	V	/	~	2960.5	tank xchange, anlin
HONDY GISUOM	DR	18,04	V	<u></u>		1,6495	<u> </u>
Hayley 60m	DR	18,04	V	L	_	2999,7	<u></u>
Nayly Sidsom	DR	18.03	/	V	~	3011,5	~
Mobbis vikely	DR	18.03	₩			3018,7	V
71X104 Gison	DR	18-04				3042.5	
APPRILL ROBELF	PR	18.04	V	レ		3081,3	

Legend: Check = Green (OK); X = Red (call for service)

LOW PURITY SYSTEM (LP)

		QC L	IGH TS	USAGE	
DATE / TIME	INITIALS	QC 1	QC 2	(GALS)	COMMENTS
AKJOY SIZOOM	PR		(17) V	955.9	
7/7/04 6:010M	DR	V	(12)4	956,1	- needlo. iallustika
7/8/04 4:30 pm	DR	1	(17.81)X	854.0	P.O. BIGINEL OSFIHON CANEL
7/8/64 5/851m	PR	1	(155) V	9576	TANKORCHANGE. BACK ON line.
Albloy 5:080m	DR	V	(16)	958.1	<u> </u>
2/3/14 41050m	OR		(16)	958. 2	
7/14/04 11/10pm	DR	<i>\</i>	(17) ~	958.9	
7/15/64 8:401M	DL	\	(17)	959,5	
7/16/64 7pm	pr	1	(17) X	963.1	USFFLTER Colla.
7/19/04 9/3/pm	PR	1	(15.5) V	965.4	tank enchange back antino.
7/20/04 G:50pm	DR	V	(15,5) V	965.5	
Flylog 60m	pR	/	(15.5) V	965.7	
Haaloy SidSom	OR	/	(16) V	965,7	
76364 Slavor	PR	<u> </u>	(16) ~	965,7	
7/26/04 6:30pm	PR	~	(16) ~	967.5	
767/04 11:40 M	DR		C16.51 V	967.6	

Legend: Check = Green (OK); X = Red (call for service)

D.I. WATER SYSTEM NOTEBOOK SOUTHWEST RESEARCH INSTITUTE BUILDING 70

Contact U.S. Filter (1-800-466-7873) for repairs/exchanges. (Make sure to have a P.O.)

010459

HIGH PURITY SYSTEM (HP)

		RESISTIVITY	MONITOR	QC LI	GHTS	USAGE	
DATE / TIME	INITIALS	(M OHMS)	QC LT.	QC 1	QC 2	(GALS)	COMMENTS
6/17/04 5:38om	OR	18.04	V	V		2190,5	<u></u>
6/18/14 6:30pm	0/2	18.06	<u></u>	<u></u>	~	2199,8	
6/21/04 52/om	DR	18.05	L	U		2239,7	
Walesz rolación	DR	18.05		<u></u>	~	a763,3	
W/23/04 5:56pm	DR	18.05	<i>✓</i>	س	V	2307.8	
6/24/04 2:45m	JU	18.04	✓	/	\	2320.8	
6/25/04 4:394	Der	18.07	·/		V	J380.5	V
6/28/84 30m	Opp	18.05	L	*	~	9237. A	<u> </u>
129/04 6/12M	OR	18.04		i	<u></u>	2607.8	
4/30/14 Rom	DR	18103	<u></u>	V	_	7666,7	
Wasse Holly	DR	18.03	V	٧	~	2694,6	
mole. F vorte	DR	18.04	レ	~		2745.6	<u> </u>
		25					

Legend: Check = Green (OK); X = Red (call for service)

LOW PURITY SYSTEM (LP)

	QC	LIGHTS	USAGE	
DATE / TIME INITIALS	S QC 1	QC 2	(GALS)	COMMENTS
C/12/04 51380M OR	✓	(15)	923.3	
6/18/04 6:300m DR	V	(15.5)	943.4	
Glarloy statem DR	V	(16)	923.6	
6/22/04 Sistem DR	<u></u>	(16.5) V	923.8	
GOSLOY SISCOM PR	X	(17) V	929, 5	nul P.D. call USFither
6/24/04 2:47pm DW	X	(17.5) V	930,2	VI Filter ralled /Recideo
6/25/04 4:41am Ser) X	(18) ~	930.4	Waitingon U.S. Filter
6/28/04 3pm Ope	<u></u>	(15,5) W	935.6	trankerchanged All ok.
G129/04 6:130m DR		(15.5) V	935.8	
Gladiy Rom DR	\ \	(16) V	936.1	
2/1/64 4:50m DR	V	(/6)	936.3	
Halor valor DR	<u></u>	(16.5) V	95 S. Y	₩
	LOSS			

Legend: Check = Green (OK); X = Red (call for service)

Philopy

SOUTHWEST RESEARCH INSTITUTE

NUCLEAR PROJECT CLIENT: Division 20 TASK ORDER: 040616-1

SRR: 26046 SDG: 246046 CASE: CNWRA

VTSR: June 15, 2004

PROJECT#: 06002.01.081

SURVEILLANCE REPORTS From Division 30

SOUTHWEST RESEARCH INSTITUTE

NUCLEAR PROJECT CLIENT: Division 20 TASK ORDER: 040616-1

SRR: 26046 SDG: 246046 CASE: CNWRA

VTSR: June 15, 2004

PROJECT#: 06002.01.081

DATA FOR ARCHIVE

Line	Sample	Sample Type	Level	Method	Data File	Dilution
1	ICV	Sample		anions040622.met	040624_001.dxd	20
2	√CB	Sample		anions040622.met	040624 002.dxd	1
3	246046	Sample		anions040622.met	040624_003.dxd	200
4	246046D	Sample		anions040622.met	040624_004.dxd	200
5	246046S	Sample		anions040622.met	040624_005.dxd	200
6	246047	Sample		anions040622.met	040624_006.dxd	200
7	246048	Sample		anions040622.met	040624_007.dxd	200
8	246049	Sample		anions040622.met	040624_008.dxd	200
9	246050	Sample		anions040622.met	040624_009.dxd	200
10	246051	Sample		anions040622.met	040624_010.dxd	200
11	246052	Sample		anions040622.met	040624_011.dxd	200
12	246053	Sample		anions040622.met	040624_012.dxd	200
13	CCV	Sample		anions040622.met	040624_013.dxd	20
14	CCB	Sample		anions040622.met	040624_014.dxd	1
15	246054	Sample		anions040622.met	040624_015.dxd	200
16	246055	Sample		anions040622.met	040624_016.dxd	200
17	246056	Sample		anions040622.met	040624_017.dxd	200
18	246057	Sample		anions040622.met	040624_018.dxd	200
19	246058	Sample		anions040622.met	040624_019.dxd	200
20	246059	Sample		anions040622.met	040624_020.dxd	200
21	246060	Sample		anions040622.met	040624_021.dxd	200
22	'CCV	Sample		anions040622.met	040624_022.dxd	20
23	CCB	Sample		anions040622.met	040624_023.dxd	1
24	246146	Sample		anions040622.met	040623_024.dxd	20
25	246146D	Sample		anions040622.met	040623_025.dxd	20
26	246146S	Sample		anions040622.met	040623_026.dxd	20
27	246147	Sample		anions040622.met	040623_027.dxd	20
28	246148	Sample		anions040622.met	040623_028.dxd	20
29	246149	Sample		anions040622.met	040623_029.dxd	20
30	246150	Sample		anions040622.met	040623_030.dxd	20
31	246151	Sample		anions040622.met	040623_031.dxd	20
32	246152	Sample		anions040622.met	040623_032.dxd	20
33	246153	Sample		anions040622.met	040623_033.dxd	20
34	CCV	Sample		anions040622.met	040623_034.dxd	20
35	CCB	Sample		anions040622.met	040623_035.dxd	1
36	PB	Sample		anions040622.met	040623_036.dxd	1
37	CCV	Sample		anions040622.met	040623_037.dxd	20
38	CCB	Sample		anions040622.met	040623_038.dxd	1

Default Method Path: C:\PEAKNET\METHOD Default Data Path: C:\PEAKNET\DATA\040624A

Comment:

DIV 20 10542.02.002 TO#040617-9 DIV 20 06002.01.081 TO#040616-1 QSPUZSIO4

ICV/CCV: Spex 25-145AS (Inorg# 4518)
NO2N 178-01-1C4
Speker 50ul of Spex & NO2N ento 5ml
Sample pample delution.

of Archive Only. Perun More Dolute! Revan Samplus on 6/2704.

Book/Page 12 007

Southwest Research Institute

Dionex DX500 Ion Chromatography Daily Log

Analyst:	K		mo
Conductivity:		7.	8

Date: 6/24/04

Client	Project #	TO #	Analytical Method
	10 /7/2 00 04 0	01/11/76	204
DIV 20	06002.01.081	040617-9	300
V	0000 a.01.081	240016]	v

	Loop:Column:Comments:	40el AS14#01	5-02-087	Metho Calibrati		anıs	no 040 6/22/0	62 4	2
ICV/CC	Lot #:_C CCV Conc:_ MS Conc:_	SPEX (Ir 15-145AS 1:100	wg# 4518)	_ ccv c	_ot #:	Nit	nte-N 8-01-10 1:20 1:100	4	
	Weight: Source: Lot:	JENT SOLUTION Sodium Bicarbonate O.1689 Udrich 15308 E. UNCL #34 er Eluent:		So		FV = 2.01 mM Sodiu	DI H20 m Carbonate 1419 G LOG M	34	Na₂HCO₃
- -		Autoregen (ASRS) or Regen:	FRM-226 (Rev : Page 2 o		FP	pend	orfs: 5	5000 1000)))

Sample Name: ICV Dilution Factor: 20.00

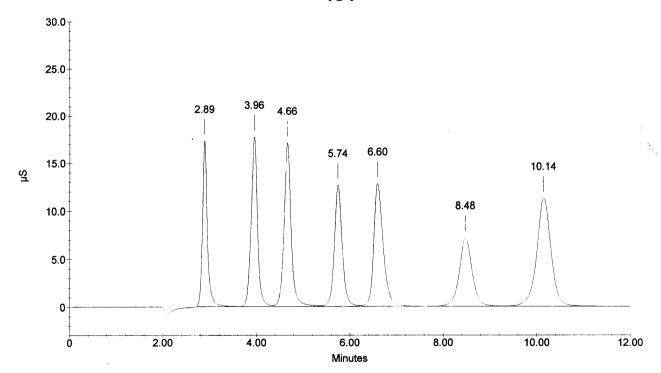
Injection Number: 1

Data File Name: c:\peaknet\data\040624a\040624_001.DXD Method File Name : c:\peaknet\method\anions040622.met

Schedule File Name: c:\peaknet\schedule\24jun04a.sch

Date Time Collected: 6/24/04 6:45:51 PM

System Name: Dx-500


Detector Name : Conductivity Detector

Column Type: AS14-#015724 AG14-#1018096

System Operator : RSS

Peak Information : All Components								
Pk. Num	Ret Time	Component Name	Concentration (ppm)	Height	Area	BI. Code	%Delta	
1	2.89	FLUORIDE	100.009	173045	1248264	2	0.00	
2	3.96	CHLORIDE	202.232	177246	1675963	2	-2.30	
3	4.66	NITRITE-N	96.938	170818	1816870	2	-1.20	
4	5.74	BROMIDE	404.449	126182	1490444	2	-0.98	
5	6.60	NITRATE-N	84.076	127760	1812469	2	0.87	
6	8.48	PHOSPHATE-P	193.943	71405	1383822	2	0.32	
7	10.14	SULFATE	392.885	112352	2408918	2	1.33	
	· 10= 3/4		total(s)					
	0.00		1474.532		11836752			

Current Date: 6/24/0 Current Time: 19:00:2

Sample Name: ICB

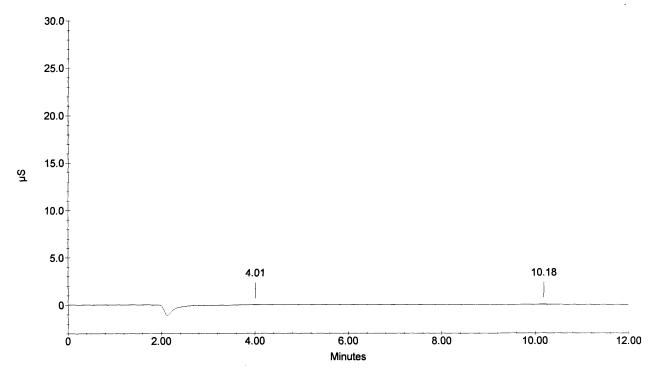
Dilution Factor: 1.00 Injection Number: 2

Data File Name: c:\peaknet\data\040624a\040624_002.DXD

Method File Name : c:\peaknet\method\anions040622.met Schedule File Name: c:\peaknet\schedule\24jun04a.sch

Date Time Collected: 6/24/04 7:00:35 PM

System Name: Dx-500


Detector Name : Conductivity Detector

Column Type : AS14-#015724 AG14-#1018096

System Operator : RSS

Peak Information : All Components							
Pk. Num	Ret Time	Component Name	Concentration (ppm)	Height	Area	BI. Code	%Delta
1	4.01	CHLORIDE	0.007	107	1033	1	-0.99
1	4.01	CHLORIDE NITRITE-N BROMIDE NITRATE-N PHOSPHATE-P	0.007	107	1033	1	-0.99
2	10.18	SULFATE	0.036	252	4248	1	1.73
	0.00		total(s) 0.050	, , , , , , , , , , , , , , , , , , , 	6313		

Current Date: 6/24/0 Current Time: 19:15:1

Dilution Factor: 200.00

Injection Number: 3

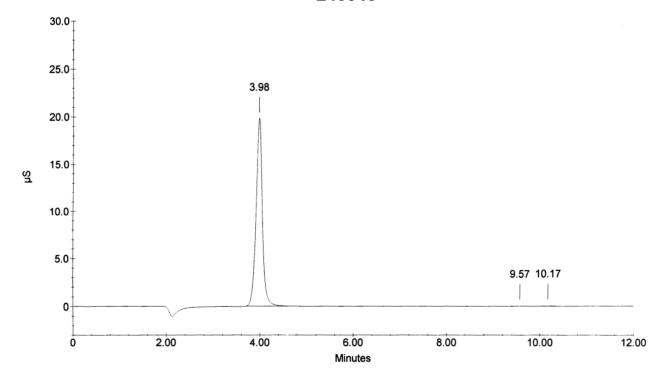
Data File Name: c:\peaknet\data\040624a\040624_003.DXD

Method File Name : c:\peaknet\method\anions040622.met

Schedule File Name: c:\peaknet\schedule\24jun04a.sch

Date Time Collected: 6/24/04 7:15:17 PM

System Name: Dx-500


Detector Name : Conductivity Detector

Column Type: AS14-#015724 AG14-#1018096

System Operator: RSS

Peak Information : All Components								
Pk. Num		Component Name	Concentration (ppm)	Height	Area	BI. Code	%Delta	
1	3.98	CHLORIDE	2218.242	197229	1853719	1	-1.65	
1	3.98	CHLORIDE NITRITE-N BROMIDE NITRATE-N PHOSPHATE-P	2218.242	197229	1853719	1	-1.65	
3	10.17		3.279	132	1916	1	1.60	
	0.00		total(s) 4439.762		3709354	- A.	***	

246046

Current Date: 6/24/0 Current Time: 19:29:5

Sample Name : 246046D

Dilution Factor : 200.00 Injection Number : 4

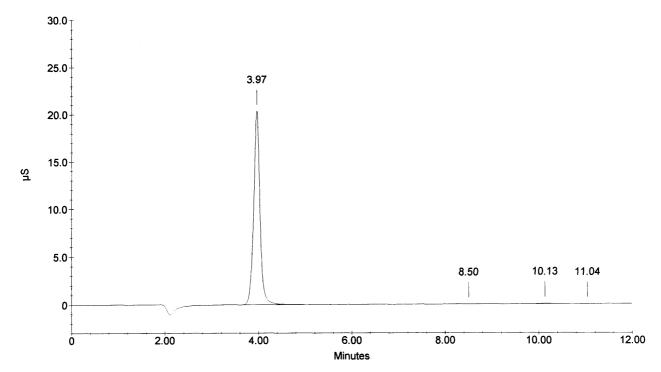
Data File Name: c:\peaknet\data\040624a\040624_004.DXD

Method File Name : c:\peaknet\method\anions040624_004.DXD

Schedule File Name : c:\peaknet\schedule\24jun04a.sch

Date Time Collected: 6/24/04 7:29:58 PM

System Name : Dx-500


Detector Name : Conductivity Detector

Column Type : AS14-#015724 AG14-#1018096

System Operator: RSS

Peak Information : All Components								
Pk. Num	Ret Time	Component Name	Concentration (ppm)	Height	Area	BI. Code	%Delta	
1	3.97	CHLORIDE	2273.333	203029	1904294	1	-1.98	
1	3.97	CHLORIDE NITRITE-N BROMIDE NITRATE-N	2273.333	203029	1904294	1	-1.98	
2	8.50		1.191	49	789	1	0.63	
3	10.13	SULFATE	13.010	369	7601	1	1.20	
	0.00		total(s) 4560.868		3816978			

246046D

Sample Name : 246046S

Dilution Factor: 200.00 Injection Number: 5

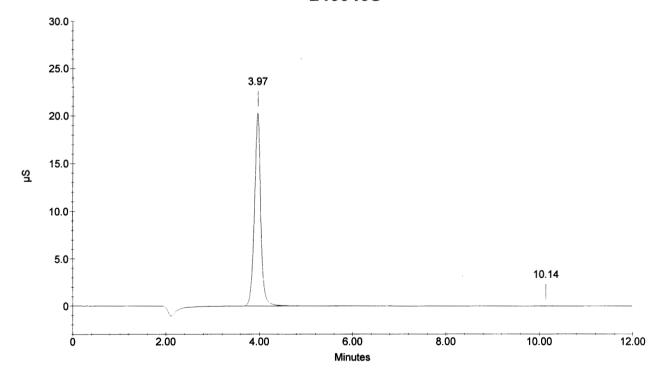
Data File Name: c:\peaknet\data\040624a\040624_005.DXD

Method File Name: c:\peaknet\method\anions040622.met

Schedule File Name: c:\peaknet\schedule\24jun04a.sch

Date Time Collected: 6/24/04 7:44:41 PM

System Name: Dx-500


Detector Name: Conductivity Detector

Column Type: AS14-#015724 AG14-#1018096

System Operator : RSS

Peak Information : All Components								
Ret Time	Component Name	Concentration (ppm)	Height	Area	BI. Code	%Delta		
3.97	CHLORIDE	2271.176	202574	1902308	1	-1.98		
3.97	CHLORIDE NITRITE-N BROMIDE NITRATE-N PHOSPHATE-P	2271.176	202574	1902308	1	-1.98		
10.14	SULFATE	4.793	169	2800	1	1.33		
		total(s)						
	3.97 3.97	3.97 CHLORIDE 3.97 CHLORIDE NITRITE-N BROMIDE NITRATE-N PHOSPHATE-P 10.14 SULFATE	3.97 CHLORIDE 2271.176 3.97 CHLORIDE 2271.176 NITRITE-N BROMIDE NITRATE-N PHOSPHATE-P 10.14 SULFATE 4.793	3.97 CHLORIDE 2271.176 202574 3.97 CHLORIDE 2271.176 202574 NITRITE-N BROMIDE NITRATE-N PHOSPHATE-P 10.14 SULFATE 4.793 169	3.97 CHLORIDE 2271.176 202574 1902308 3.97 CHLORIDE 2271.176 202574 1902308 NITRITE-N BROMIDE NITRATE-N PHOSPHATE-P 10.14 SULFATE 4.793 169 2800	3.97 CHLORIDE 2271.176 202574 1902308 1 3.97 CHLORIDE 2271.176 202574 1902308 1 NITRITE-N BROMIDE NITRATE-N PHOSPHATE-P 10.14 SULFATE 4.793 169 2800 1		

246046S

: PeakNet 5.1

Current Date: 6/24/0 Current Time: 19:59:1

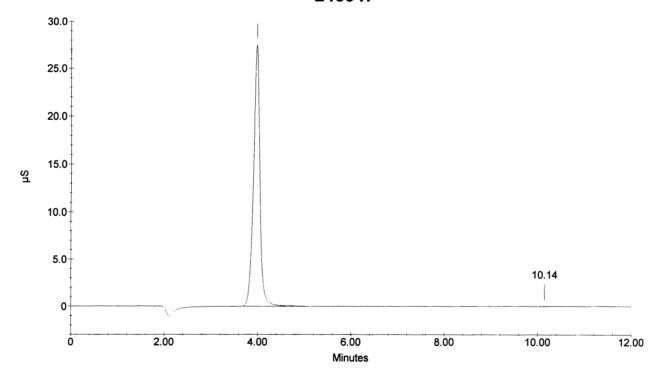
Dilution Factor: 200.00

Injection Number: 6 Data File Name : c:\peaknet\data\040624a\040624_006.DXD

Method File Name: c:\peaknet\method\anions040622.met Schedule File Name: c:\peaknet\schedule\24jun04a.sch

Date Time Collected: 6/24/04 7:59:22 PM

System Name: Dx-500


Detector Name : Conductivity Detector

Column Type : AS14-#015724 AG14-#1018096

System Operator : RSS

		Peak Information : All Components								
Pk. Num	Ret Time	Component Name	Concentration (ppm)	Height	Area	BI. Code	%Delta			
1	3.98	CHLORIDE	3032.554	274394	2630439	1	-1.65			
1	3.98	CHLORIDE NITRITE-N BROMIDE NITRATE-N PHOSPHATE-P	3032.554	274394	2630439	1	-1.65			
2	10.14	SULFATE	4.236	129	2475	1	1.33			
	0.00		total(s) 6069.344	413,	5263352	- law W				

Current Date: 6/24/0 Current Time: 20:13:5

Dilution Factor: 200.00

Injection Number: 7

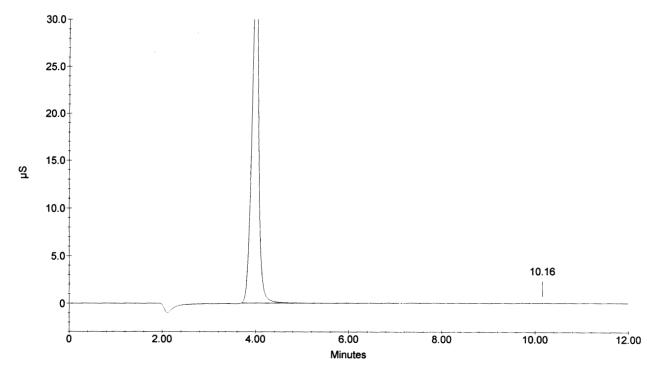
Data File Name : c:\peaknet\data\040624a\040624_007.DXD

Method File Name: c:\peaknet\method\anions040622.met

Schedule File Name: c:\peaknet\schedule\24jun04a.sch

Date Time Collected: 6/24/04 8:14:04 PM

System Name: Dx-500


Detector Name: Conductivity Detector

Column Type : AS14-#015724 AG14-#1018096

System Operator: RSS

			Peak Information : All Compo	onents			
Pk. Num	Ret Time	Component Name	Concentration (ppm)	Height	Area	BI. Code	%Delta
1	4.00		4089.493	377598	3753230		-1.32
1	4.00	CHLORIDE NITRITE-N BROMIDE NITRATE-N PHOSPHATE-P	4089.493	377598	3753230	1	-1.32
2	10.16	SULFATE	4.359	133	2547	1	1.47
	0.00		total(s)		7500007		
	0.00		8183.345		7509007		

Current Date: 6/24/0 Current Time: 20:28:3

Dilution Factor: 200.00

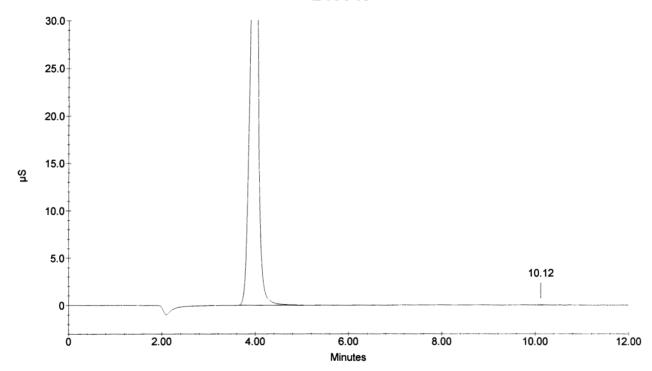
Injection Number: 8

Data File Name : c:\peaknet\data\040624a\040624_008.DXD

Method File Name: c:\peaknet\method\anions040622.met Schedule File Name: c:\peaknet\schedule\24jun04a.sch

Date Time Collected: 6/24/04 8:28:47 PM

System Name: Dx-500


Detector Name : Conductivity Detector

Column Type : AS14-#015724 AG14-#1018096

System Operator: RSS

at Times		Peak Information : All Components								
et iime	Component Name	Concentration (ppm)	Height	Area	BI. Code	%Delta				
4.00	CHLORIDE	5925.734	571940	6241996	1	-1.32				
4.00	NITRITE-N BROMIDE NITRATE-N	5925.734	571940	6241996	1	-1.32				
10.12		5.876	189	3433	1	1.07				
. 0.00		total(s)		10497405		, , , , , , , , , , , , , , , , , , , ,				
	4.00	4.00 CHLORIDE NITRITE-N BROMIDE NITRATE-N PHOSPHATE-P 10.12 SULFATE	4.00 CHLORIDE 5925.734 4.00 CHLORIDE 5925.734 NITRITE-N BROMIDE NITRATE-N PHOSPHATE-P 10.12 SULFATE 5.876	4.00 CHLORIDE 5925.734 571940 4.00 CHLORIDE 5925.734 571940 NITRITE-N BROMIDE NITRATE-N PHOSPHATE-P 10.12 SULFATE 5.876 189	4.00 CHLORIDE 5925.734 571940 6241996 4.00 CHLORIDE 5925.734 571940 6241996 NITRITE-N BROMIDE NITRATE-N PHOSPHATE-P 10.12 SULFATE 5.876 189 3433	4.00 CHLORIDE 5925.734 571940 6241996 1 4.00 CHLORIDE 5925.734 571940 6241996 1 NITRITE-N BROMIDE NITRATE-N PHOSPHATE-P 10.12 SULFATE 5.876 189 3433 1				

Current Date: 6/24/0 Current Time: 20:43:2 Sample Name: 246050 Dilution Factor: 200.00

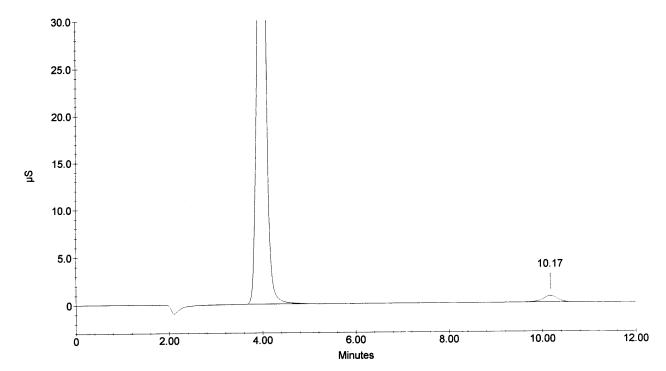
Injection Number: 9

Data File Name: c:\peaknet\data\040624a\040624_009.DXD

Method File Name : c:\peaknet\method\anions040622.met

Schedule File Name: c:\peaknet\schedule\24jun04a.sch

Date Time Collected: 6/24/04 8:43:28 PM


System Name: Dx-500

Detector Name : Conductivity Detector

Column Type : AS14-#015724 AG14-#1018096

			Peak Information : All Compo	onents			
Pk. Num	Ret Time	Component Name	Concentration (ppm)	Height	Area	BI. Code	%Delta
1	4.04	CHLORIDE	6707.212	671940	7769998	1	-0.33
1	4.04		6707.212	671940	7769998	1	-0.33
2	10.17	PHOSPHATE-P SULFATE	261.423	6992	153178	1	1.60
				4,4,4,			
	0.00		total(s) 13675.847		15693174		

Dilution Factor: 200.00

Injection Number: 10

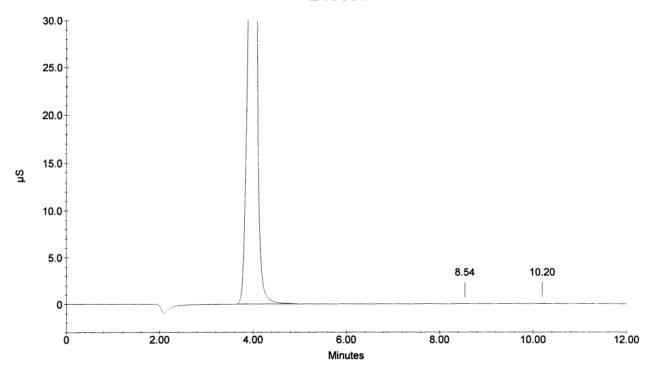
Data File Name: c:\peaknet\data\040624a\040624_010.DXD

Method File Name: c:\peaknet\method\anions040622.met

Schedule File Name: c:\peaknet\schedule\24jun04a.sch

Date Time Collected: 6/24/04 8:58:09 PM

System Name: Dx-500


Detector Name: Conductivity Detector

Column Type : AS14-#015724 AG14-#1018096

System Operator: RSS

			Peak Information : All Compo	onents			
Pk. Num	Ret Time	Component Name	Concentration (ppm)	Height	Area	BI. Code	%Delta
1	4.02	CHLORIDE	6883.258	699511	8209501	1	-0.66
1	4.02	CHLORIDE NITRITE-N BROMIDE NITRATE-N	6883.258	699511	8209501	1	-0.66
2	8.54	PHOSPHATE-P	1.459	55	967	1	1.10
3	10.20	SULFATE	5.090	174	2974	1	1.86
	0.00		total(s) 13773.064		16422942		

Current Date: 6/24/0 Current Time: 21:12:4

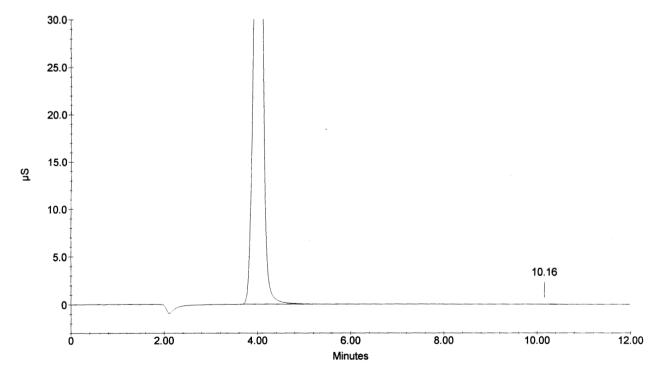
Dilution Factor: 200.00

Injection Number: 11 Data File Name: c:\peaknet\data\040624a\040624_011.DXD

Method File Name: c:\peaknet\method\anions040622.met

Schedule File Name: c:\peaknet\schedule\24jun04a.sch

Date Time Collected: 6/24/04 9:12:50 PM


System Name: Dx-500

Detector Name: Conductivity Detector

Column Type: AS14-#015724 AG14-#1018096

			Peak Information : All Com	ponents			
Pk. Num	Ret Time	Component Name	Concentration (ppm)	Height	Area	BI. Code	%Delta
1	4.05	CHLORIDE	7040.786	716922	8658999		0.00
1	4.05	CHLORIDE NITRITE-N BROMIDE NITRATE-N PHOSPHATE-P	7040.786	716922	8658999	1	0.00
2	10.16	SULFATE	3.994	138	2333	1	1.47
	0.00		total(s) 14085.566		17320332		

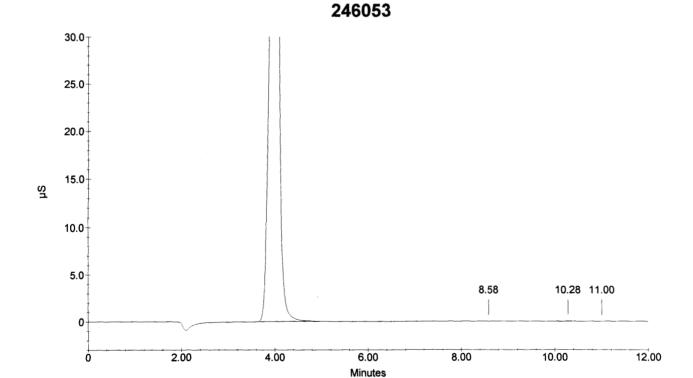
Dilution Factor: 200.00

Injection Number: 12

Data File Name: c:\peaknet\data\040624a\040624_012.DXD

Method File Name: c:\peaknet\method\anions040622.met

Schedule File Name: c:\peaknet\schedule\24jun04a.sch


Date Time Collected: 6/24/04 9:27:32 PM

System Name: Dx-500

Detector Name: Conductivity Detector

Column Type: AS14-#015724 AG14-#1018096

			Peak Information : All Compo	onents			
Pk. Num	Ret Time	Component Name	Concentration (ppm)	Height	Area	BI. Code	%Delta
1	4.02	CHLORIDE	7220.855	745091	9279615	1	-0.66
1		CHLORIDE NITRITE-N BROMIDE NITRATE-N	7220.855	745091	9279615	1	-0.66
2	8.58	PHOSPHATE-P	0.629	52	417	1	1.58
3	10.28	SULFATE	10.618	206	6204	1	2.66
	0.00		total(s) 14452.957	·	18565850		

Sample Name : CCV Dilution Factor: 20.00

Injection Number: 13

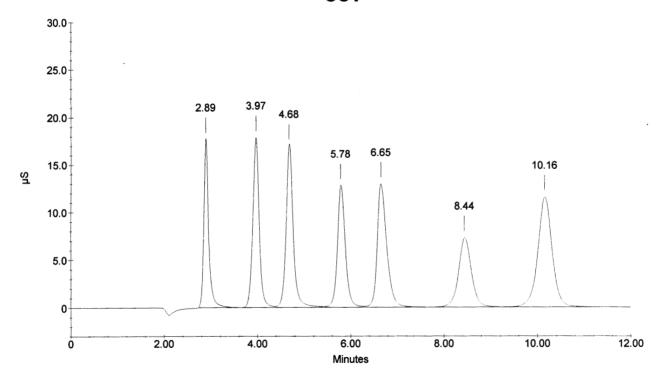
Data File Name: c:\peaknet\data\040624a\040624_013.DXD

Method File Name: c:\peaknet\method\anions040622.met

Schedule File Name: c:\peaknet\schedule\24jun04a.sch

Date Time Collected: 6/24/04 9:42:13 PM

System Name: Dx-500


Detector Name: Conductivity Detector

Column Type: AS14-#015724 AG14-#1018096

System Operator: RSS

			Peak Information : All Compo	onents			
Pk. Num	Ret Time	Component Name	Concentration (ppm)	Height	Area	BI. Code	%Delta
1	2.89	FLUORIDE	101.918	176420	1273800	2	0.00
2	3.97	CHLORIDE	204.834	178218	1699386	2	-1.98
3	4.68	NITRITE-N	97.501	169232	1827419	2	-0.92
4	5.78	BROMIDE	409.926	127286	1513804	2	-0.29
5	6.65	NITRATE-N	85.426	128995	1842593	2	1.68
6	8.44	PHOSPHATE-P	195.510	72273	1395941	2	-0.16
7	10.16	SULFATE	399.586	115236	2452190	2	1.47
	0.00		total(s) 1494.702		12005134		

CCV

Current Date: 6/24/0 Current Time: 21:56:4

Sample Name : CCB

Dilution Factor: 1.00

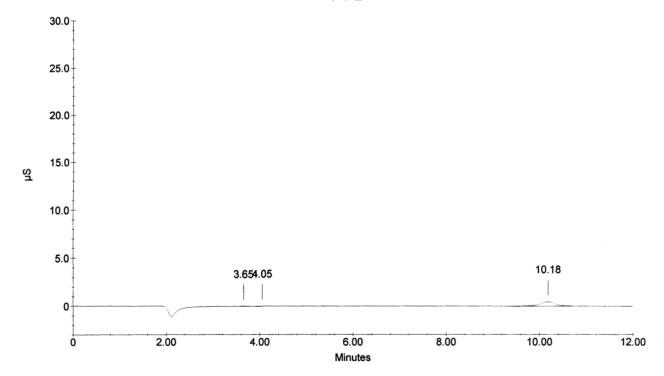
Injection Number : 14

Data File Name : c:\peaknet\data\040624a\040624_014.DXD

Method File Name : c:\peaknet\method\anions040622.met

Schedule File Name: c:\peaknet\method\anions040622.me

Date Time Collected: 6/24/04 9:56:55 PM


System Name: Dx-500

Detector Name : Conductivity Detector

Column Type: AS14-#015724 AG14-#1018096

			Peak Information : All Compo	onents			
Pk. Num	Ret Time	Component Name	Concentration (ppm)	Height	Area	BI. Code	%Delta
1	3.65		0.000	62	540	1	
2	4.05	CHLORIDE NITRITE-N BROMIDE NITRATE-N PHOSPHATE-P	0.014	167	2211	1	0.00
3	10.18	SULFATE	0.955	4644	111822	1	1.73
	0.00		total(s) 0.969		114574		

Dilution Factor : 200.00

Injection Number: 15

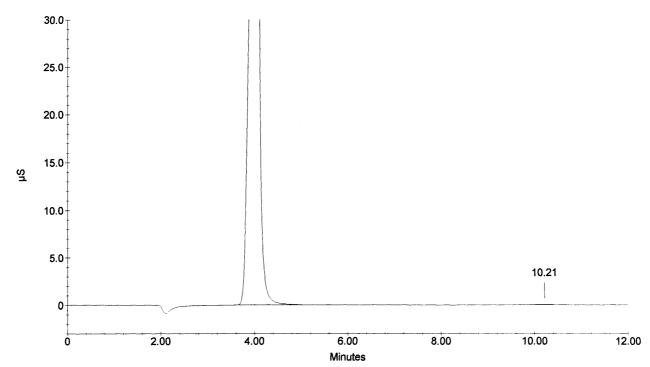
Data File Name: c:\peaknet\data\040624a\040624_015.DXD

Method File Name: c:\peaknet\method\anions040622.met

Schedule File Name: c:\peaknet\nethod\anions040022.me

Date Time Collected : 6/24/04 10:11:36 PM

System Name : Dx-500


Detector Name : Conductivity Detector

Column Type: AS14-#015724 AG14-#1018096

System Operator: RSS

			Peak Information : All Compo	onents			
Pk. Num	Ret Time	Component Name	Concentration (ppm)	Height	Area	BI. Code	%Delta
1	4.04	CHLORIDE	7401.666	785098	10159002	1	-0.33
1	4.04	CHLORIDE NITRITE-N BROMIDE NITRATE-N PHOSPHATE-P	7401.666	785098	10159002	1	-0.33
2	10.21	SULFATE	13.247	404	7740	1	2.00
	0.00		total(s) 14816.578		20325744		

Page 1 of 1

Current Date: 6/24/0 Current Time: 22:26:1

Dilution Factor: 200.00

Injection Number: 16

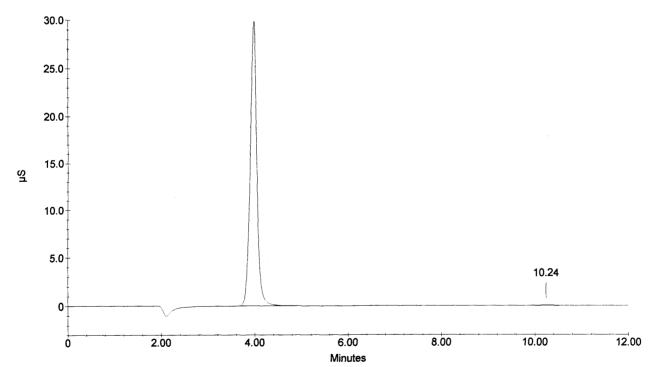
Data File Name: c:\peaknet\data\040624a\040624_016.DXD

Method File Name: c:\peaknet\method\anions040622.met

Schedule File Name: c:\peaknet\schedule\24jun04a.sch

Date Time Collected: 6/24/04 10:26:17 PM

System Name: Dx-500


Detector Name: Conductivity Detector

Column Type : AS14-#015724 AG14-#1018096

System Operator: RSS

		Peak Information : All Compo	onents			
Ret Time	Component Name	Concentration (ppm)	Height	Area	BI. Code	%Delta
3.98	CHLORIDE	3337.120	296064	2938941	1	-1.65
3.98	NITRITE-N BROMIDE NITRATE-N	3337.120	296064	2938941	1	-1.65
10.24	SULFATE	8.097	235	4731	1	2.26
		total(s)			-,	
	3.98 3.98	3.98 CHLORIDE NITRITE-N BROMIDE NITRATE-N PHOSPHATE-P 10.24 SULFATE	Ret Time Component Name Concentration (ppm) 3.98 CHLORIDE 3337.120 3.98 CHLORIDE 3337.120 NITRITE-N BROMIDE NITRATE-N PHOSPHATE-P 10.24 SULFATE 8.097	(ppm) 3.98 CHLORIDE 3337.120 296064 3.98 CHLORIDE 3337.120 296064 NITRITE-N BROMIDE NITRATE-N PHOSPHATE-P 10.24 SULFATE 8.097 235	Ret Time Component Name Concentration (ppm) Height Area 3.98 CHLORIDE 3337.120 296064 2938941 3.98 CHLORIDE 3337.120 296064 2938941 NITRITE-N BROMIDE NITRATE-N PHOSPHATE-P 10.24 SULFATE 8.097 235 4731	Ret Time Component Name Concentration (ppm) Height Area Bl. Code

Page 1 of 1

Current Date: 6/24/0

Current Time: 22:40:5

Dilution Factor: 200.00

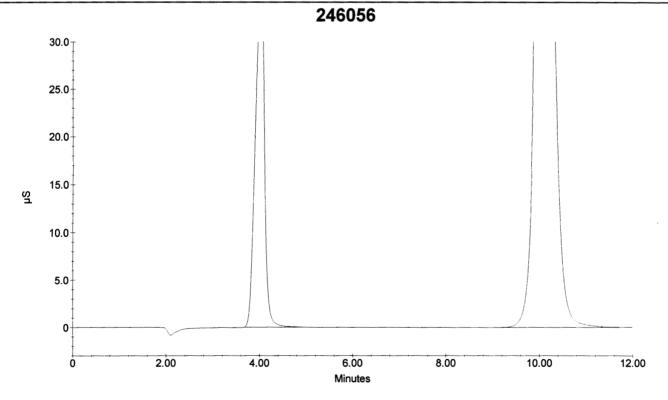
Injection Number: 17

Data File Name: c:\peaknet\data\040624a\040624_017.DXD

Method File Name: c:\peaknet\method\anions040622.met

Schedule File Name: c:\peaknet\schedule\24jun04a.sch

Date Time Collected: 6/24/04 10:40:59 PM


System Name: Dx-500

Detector Name : Conductivity Detector

Column Type: AS14-#015724 AG14-#1018096

System Operator: RSS

	Peak Information : All Components									
Pk. Num	Ret Time	Component Name	Concentration (ppm)	Height	Area	BI. Code	%Delta			
1	4.04	CHLORIDE	5062.697	356210	4954135	1	-0.33			
1	4.04	CHLORIDE NITRITE-N BROMIDE NITRATE-N PHOSPHATE-P	5062.697	356210	4954135	1	-0.33			
2	10.02	SULFATE	21826.864	1134805	25166232	1	0.13			
	0.00		total(s) 31952.257		35074502					

Current Date: 6/24/0 Current Time: 22:55:3

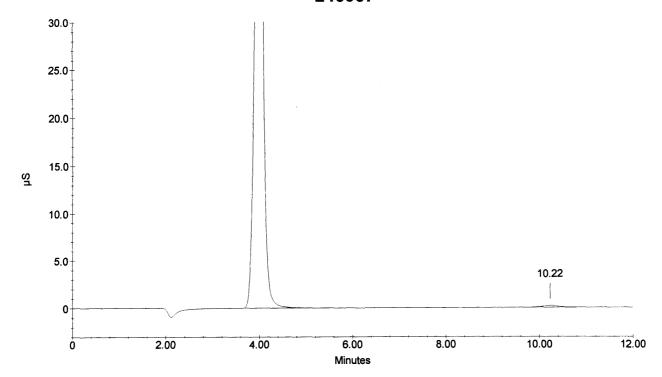
Sample Name: 246057 Dilution Factor: 200.00

Injection Number: 18

Data File Name: c:\peaknet\data\040624a\040624_018.DXD Method File Name: c:\peaknet\method\anions040622.met

Schedule File Name: c:\peaknet\schedule\24jun04a.sch

Date Time Collected: 6/24/04 10:55:39 PM


System Name : Dx-500

Detector Name : Conductivity Detector

Column Type : AS14-#015724 AG14-#1018096

			Peak Information : All Compo	onents			
Pk. Num	Ret Time	Component Name	Concentration (ppm)	Height	Area	BI. Code	%Delta
1	4.04	CHLORIDE	6657.905	646915	7655796	1	-0.33
1	4.04	CHLORIDE NITRITE-N BROMIDE NITRATE-N PHOSPHATE-P	6657.905	646915	7655796	1	-0.33
2	10.22	SULFATE	74.445	1992	43526	1	2.13
			total(s)				
	0.00		13390.254		15355118		

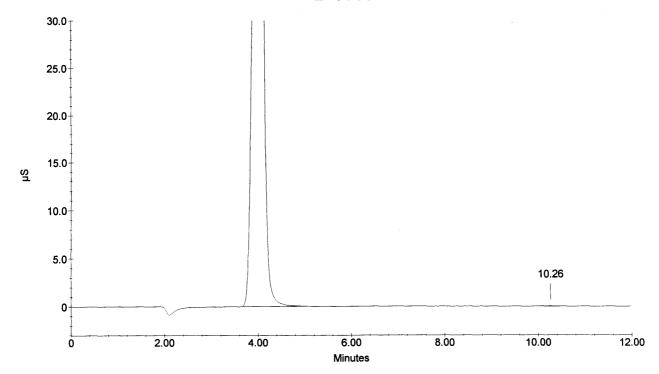
Dilution Factor: 200.00

Injection Number: 19 Data File Name: c:\peaknet\data\040624a\040624_019.DXD

Method File Name: c:\peaknet\method\anions040622.met Schedule File Name: c:\peaknet\schedule\24jun04a.sch

Date Time Collected: 6/24/04 11:10:22 PM

System Name: Dx-500


Detector Name : Conductivity Detector

Column Type: AS14-#015724 AG14-#1018096

System Operator : RSS

	Peak Information : All Components									
Ret Time	Component Name	Concentration (ppm)	Height	Area	BI. Code	%Delta				
4.06	CHLORIDE	7500.386	860183	11949758	1	0.33				
	CHLORIDE NITRITE-N BROMIDE NITRATE-N	7500.386	860183	11949758	1	0.33				
10.26		9.195	254	5372	1	2.53				
		total(s)		00004007		_				
_	4.06 4.06	4.06 CHLORIDE 4.06 CHLORIDE NITRITE-N BROMIDE NITRATE-N PHOSPHATE-P 10.26 SULFATE	4.06 CHLORIDE 7500.386 4.06 CHLORIDE 7500.386 NITRITE-N BROMIDE NITRATE-N PHOSPHATE-P 10.26 SULFATE 9.195	4.06 CHLORIDE 7500.386 860183 4.06 CHLORIDE 7500.386 860183 NITRITE-N BROMIDE NITRATE-N PHOSPHATE-P 10.26 SULFATE 9.195 254	4.06 CHLORIDE 7500.386 860183 11949758 4.06 CHLORIDE 7500.386 860183 11949758 NITRITE-N BROMIDE NITRATE-N PHOSPHATE-P 10.26 SULFATE 9.195 254 5372	4.06 CHLORIDE 7500.386 860183 11949758 1 4.06 CHLORIDE 7500.386 860183 11949758 1 NITRITE-N BROMIDE NITRATE-N PHOSPHATE-P 10.26 SULFATE 9.195 254 5372 1				

Current Date: 6/24/0 Current Time: 23:24:5

Dilution Factor: 200.00

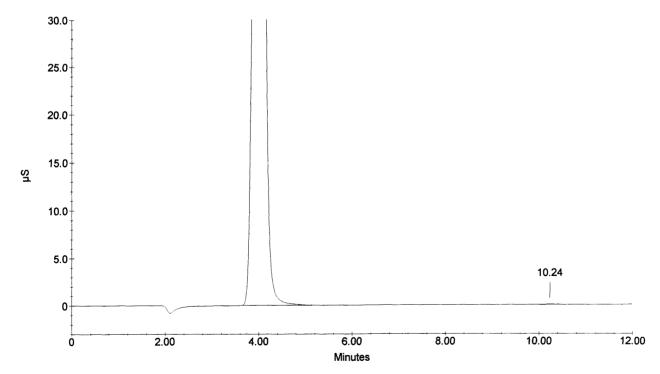
Injection Number: 20

Data File Name: c:\peaknet\data\040624a\040624_020.DXD

Method File Name : c:\peaknet\method\anions040622.met

Schedule File Name: c:\peaknet\schedule\24jun04a.sch

Date Time Collected: 6/24/04 11:25:03 PM


System Name : Dx-500

Detector Name : Conductivity Detector

Column Type: AS14-#015724 AG14-#1018096

			Peak Information : All Comp	onents			
Pk. Num		Component Name	Concentration (ppm)	Height	Area	BI. Code	%Delta
1	4.09	CHLORIDE	6361.145	1037658	16057869	1	0.99
1	4.09	CHLORIDE NITRITE-N BROMIDE NITRATE-N PHOSPHATE-P	6361.145	1037658	16057869	1	0.99
2	10.24	SULFATE	9.451	288	5522	1	2.26
	0.00		total(s) 12731.741		32121259		

Dilution Factor: 200.00

Injection Number: 21

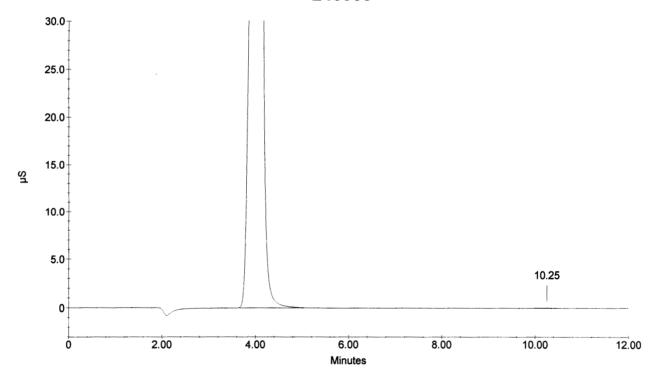
Data File Name: c:\peaknet\data\040624a\040624_021.DXD

Method File Name: c:\peaknet\method\anions040622.met

Schedule File Name: c:\peaknet\schedule\24jun04a.sch

Date Time Collected: 6/24/04 11:39:45 PM

System Name: Dx-500


Detector Name: Conductivity Detector

Column Type: AS14-#015724 AG14-#1018096

System Operator: RSS

Peak Information : All Components							
Ret Time	Component Name	Concentration (ppm)	Height	Area	BI. Code	%Delta	
4.09	CHLORIDE	6313.518	1030812	16150519	1	0.99	
4.09	CHLORIDE NITRITE-N BROMIDE NITRATE-N PHOSPHATE-P	6313.518	1030812	16150519	1	0.99	
10.25	SULFATE	6.622	222	3869	1	2.40	
		total(s)				-	
	4.09 4.09	4.09 CHLORIDE NITRITE-N BROMIDE	## Ret Time Component Name Concentration (ppm) 4.09 CHLORIDE 6313.518 4.09 CHLORIDE 6313.518 NITRITE-N BROMIDE NITRATE-N PHOSPHATE-P 10.25 SULFATE 6.622 total(s)	Ret Time Component Name Concentration (ppm) Height 4.09 CHLORIDE 6313.518 1030812 4.09 CHLORIDE 6313.518 1030812 NITRITE-N BROMIDE NITRATE-N PHOSPHATE-P 10.25 SULFATE 6.622 222	Ret Time Component Name Concentration (ppm) Height Area 4.09 CHLORIDE 6313.518 1030812 16150519 4.09 CHLORIDE 6313.518 1030812 16150519 NITRITE-N BROMIDE NITRATE-N PHOSPHATE-P 10.25 SULFATE 6.622 222 3869	Ret Time Component Name Concentration (ppm) Height Area Bl. Code	

Current Date: 6/24/0 Current Time: 23:54:2 Sample Name : CCV Dilution Factor: 20.00

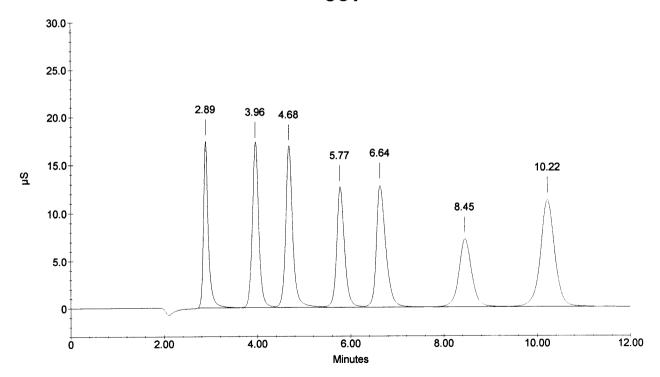
Injection Number: 22 Data File Name: c:\peaknet\data\040624a\040624_022.DXD

Method File Name: c:\peaknet\method\anions040622.met

Schedule File Name: c:\peaknet\schedule\24jun04a.sch

Date Time Collected: 6/24/04 11:54:27 PM

System Name : Dx-500


Detector Name : Conductivity Detector

Column Type: AS14-#015724 AG14-#1018096

System Operator: RSS

Peak Information : All Components							
Pk. Num	Ret Time	Component Name	Concentration (ppm)	Height	Area	BI. Code	%Delta
1	2.89	FLUORIDE	100.094	173745	1249395	2	0.00
2	3.96	CHLORIDE	202.076	170822	1674564	2	-2.30
3	4.68	NITRITE-N	95.754	168022	1794669	2	-0.92
4	5.77	BROMIDE	404.553	125322	1490887	2	-0.52
5	6.64	NITRATE-N	83.942	127860	1809496	2	1.48
6	8.45	PHOSPHATE-P	194.278	71778	1386411	2	0.00
7	10.22	SULFATE	393.854	112621	2415171	2	2.13
	0.00		total(s) 1474.552		11820593		

CCV

Page 1 of 1

Current Time: 00:09:0

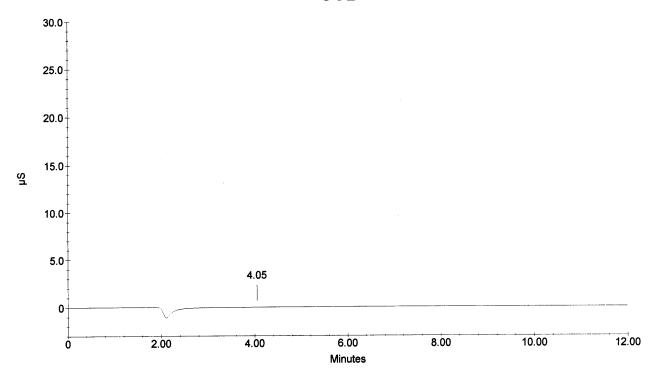
Sample Name : CCB Dilution Factor : 1.00

Injection Number : 23
Data File Name : c:\peaknet\data\040624a\040624_023.DXD

Method File Name : c:\peaknet\method\anions040622.met

Schedule File Name : c:\peaknet\schedule\24jun04a.sch

Date Time Collected: 6/25/04 12:09:09 AM


System Name : Dx-500

Detector Name : Conductivity Detector

Column Type: AS14-#015724 AG14-#1018096

Peak Information : All Components							
Pk. Num	Ret Time	Component Name	Concentration (ppm)	Height	Area	BI. Code	%Delta
1	4.05	CHLORIDE	0.002	38	277	1	0.00
1	4.05	CHLORIDE NITRITE-N BROMIDE NITRATE-N PHOSPHATE-P SULFATE	0.002	38	277	1	0.00
	0.00		total(s) 0.004		554		

