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ABSTRACT 

Implicit and explicit numerical flow routing models are developed. 

Computational stability and efficiency of the techniques are discussed. 

Each model possesses relative advantages which requires that model 

selection be contingent upon the application. A case study is made 

using Wheeler Reservoir of the Tennessee River. Results of flow compu- 

tations are presented and compared with field measurements. 



- INTRODUCTION 

Flow routing in rivers and reservoirs has been accomplished 

in recent years using a wide variety of numerical techniques. Explicit 

and implicit finite difference, method of characteristics and finite ele- 

ment models have been developed for this purpose. In this report two 

finite-difference models will be discussed and applied to Wheeler Reser- 

voir of the Tennessee River situated in north Alabama as shown in 

Figure 1. These techniques were explored in an effort to improve the 

accuracy and computational economy of the flow predictions used in the 

computerized technique which predicts the optimum cooling system 

operation for the TVA Browns Ferry Nuclear Plant (Reference 1). 

The first modei presented uses an explicit finite difference 

method which, like all explicit methods, is subject to stability con- 

straints. However, this technique has proven to be stable at time 

steps approaching the Courant stability limit. Compared to other flow 

routing techniques, the model is computationally efficient. 

The second model discussed uses an implicit finite difference 

solution technique. The time step of the computation with implicit 

techniques is not subject to Courant stability limitations. Time steps 

that are many times that of an explicit technique can be used. This 

model, as is typical of those using implicit methods, involves a simul- 

taneous solution of the finite difference approximations to the conserva- 

tion equations throughout the entire length of channel. The solution 

procedure is iterative, hence, each time step requires more computation 

than an explicit method. ,This disadvantage must be weighed against 
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the obvious advantages of larger time steps, more flexibility in situating 

grid points and relatively little concern for computational stability. 

Each of these numerical techniques for solving the conserva- 

tion equations describing one-dimensional flow in rivers and reservoirs 

is discussed. Numerical stability considerations of each method are 

noted. Finally , computed flows and water surface elevations in Wheeler 

Reservoir are presented and compared with field measurements. 
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ONE-DIMENSIONAL CONSERVATION EQUATIONS 

The equations to be solved in the two models are the conser- 

vation of mass and conservation of momentum equations for unsteady, 

gradually varying flow (Reference 2) : 

where 

B 

H 

A 

q 

Q 

- -  A I ~ Q  a t  t--($)+- A t a  a x  qvx A + g  ($+sf> = o  

= width of channel at the water surface 

= elevation of the water surface above a datum 

= cross-sectional area at a section 

= local volume inflow per unit time per unit length of 

channel 

= volume flow rate 

Sf = slope of the energy grade line 

g = acceleration due to gravity 

t = time 

x = distance along the channel 

V, = x- component of velocity of the local inflow 

R = hydraulic radius = Alwetted perimeter 

Equations (1) and (2) were developed subject to the following assump- 

tions : 

a> One-dimensional incompressible flow 

b) Uniform velocity throughout each cross-section 
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c) Free surface is level at each cross-section 

d) Course of the river can be analyzed as a straight line; 

no river bends 

e) Vertical pressure distribution is hydrostatic 

f) Slope of the riverbed is small 

g) Ef€ects of friction and turbulence can be included as a 

resistance force which is a function of the square of the 

velocity and the depth of the stream (Manning equation) 

The Manning equation used in each model to describe the 

slope of the energy grade line Sf is given as 

Q I Q l n 2  Sf = 
(l .486AR2’3)2 

(3) 

The inflows of tributary streams are distributed evenly over the reach 

in which they enter the reservoir. 
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S SOLUTION OF THE CONSERVATION EQUATIONS 

B As discussed , two numerical techniques are presented for 

solving the conservation equations--an explicit and an implicit method. 

The explicit technique uses flows and water surface heights at a grid 

point and adjacent grid points along with a €inite difference approxima- 

tion to the governing equations to compute the flow and surface height 

at that point at a time A t  later. The implicit technique uses known (to) 

and unknown (to + A t )  flows and surface heights a t  grid locations and a 

similar representation of the governing equations to determine the 

unknown flows and surface heights. The solution process differs from 

an explicit method in that the finite difference equations for all of the 

grid points at (to + A t )  must be solved simultaneously. Both of the 

methods described in this report are accurate to second order in time 

and space, truncating terms of order A t 3  (i.e. , O(At3) , and order of 

 AX^ (i.e. ,  AX)^). 



Computational Procedure 
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Explicit Method 

The explicit method presented in this report is an adaptation 

of a method developed for gas dynamics (References 3 and 4). This 

technique solves a finite-difference approximation to Equations 1 and 2 

to determine H and Q at a time A t  later than when all conditions are 

known (to). This is accomplished by a two-step process for each 

location in the river where computations are performed. 

The technique may be understood by first considering that Q 

and H will be computed at imax grid points (i.e. , stations or river 

miles) along the reach of river or reservoir under investigation. Be- 

cause two of these grid points must be positioned at  upstream and 

downstream boundaries, then (imax -2) interior grid points are avail- 

able. For this demonstration, the upstream and downstream boundaries 

correspond to locations of dams whose hourly average discharges , Q , 

are known. Also, the grid points are assumed to be evenly spaced by 

Ax, but this is merely for convenience in this demonstration. 

A t  time to, all values of the dependent variables, Q(x,t) and 

H(x,t), must be ‘known at each grid point i along the reach of the 

river. For the initial time step, Q ( x , o )  and H(x,o) must be assumed, 

but all subsequent values can be computed. These values of the de- 

pendent variables together with the boundary conditions are used to 

compute new values at a later time 
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The procedure for computing new values of Q(x,tl) and 

by considering the second order Taylor Series expansion of M (or Q),  

H(x,tl) (which in subscript notation is Q:' and Hi tl ) is best explained 

which can be approximated to the same order of accuracy as 

L At ' J  
Regrouping terms and simplifying, gives 

The (aH/at)i t0 can easily be computed from a finite differencing of Equa- 

tion (l), but (dH/dt):l is unknown because conditions at tl are re- 

quired. 

A two-step procedure is used to evaluate Equation ( 6 )  for 

H t l  and an analogus expression for Q:'. In the first step, provisional 

values of the dependent variables, denoted with a bar, "it', are com- 

puted from the first order Taylor Series 

and a forward finite difference approximation to Equation (l), 
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Once provisional values, R t l  and at1, have been computed 

€or all grid points, new values of H t l  and Q:' are computed as the 

second step in the procedure. The provisional values are used to 

approximate (d~/~t)til in Equation (61, or 

which, with Equation (7) , can be rearranged for computational economy 

as 

For the second step, a backward finite difference approximation to 

Equation (1) is used; 

(11) I @]Iu - [ Ax 

-tl -$I 
Qi i - I  

-q 

This backward difference combined with the forward difference in the 

first step provides the equivalent of second order spatial accuracy 

(i.e.,  terms of order ( k ) 3  neglected). This may be seen by substitut- 

ing Equations (8) and (11) into Equation (93, the result of which is a 

pseudo central difference in the spatial direction. The sequence of 

forward and backward differences for the first and second steps is 

reversed for odd time steps as an additional suppression of numerical 

instability. The process is continued with values at  tl used as to for 
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Stability Considerations 

Any explicit finite difference technique used to solve Equa- 

tions (1) and (2) will be limited in time step size by the theory of 

characteristics. A s  depicted in Figure 2 ,  the explicit methods use 

information at grid points A ,  B ,  and C to determine conditions at P. 

Inside the triangle formed by the C+ and C- characteristics, values of 

the dependent variables rely upon conditions at  points A ,  B ,  and C. 

This region is known as the ttdomain of dependence" of A ,  B ,  and C. 

Outside of the triangle, this relationship does not hold and the finite 

difference equations will produce erroneous results. 

The C+ and C- characteristics trace surface wave motion on 

the x-t (distance-time) plane (Reference 5). In subcritical flow , dis- 

turbances from a given point travel upstream and downstream. Char- 

acteristics can be constructed from any point in the plane and will map 

out the propagation of a disturbance from that point both up (C-) and 

down (C+) the channel with time. 

The grid spacing ratio At/& must be small enough to insure 

that P is within the triangle denoted in Figure 2.  This Courant stabil- 

ity criteria governing the computation of explicit techniques can be 

derived from the theory of characteristics as 

I < -  A t  
A% - v+c 
- 

where v is the speed at which the water is flowing and c is the free 

surface wave speed defined as 
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where ym is the mean depth of the river in the critical reach (i.e. 

having the greatest depth). 

It is important to use as large a value of At/& as possible in 

an unsteady flow computation to ensure that the numerical wave speeds 

are good approximations to the physical wave speeds. A stable numer- 

ical technique will permit the use of a time step very close to the 

stability limit to promote accuracy and economy of the computation. 

With the exception of time step size, identical cases were solved with 

the explicit model, and the flow results a t  the Browns Ferry Nuclear 

Plant are given in Figure 3 .  The calculation which used the three- 

minute time step exhibited numerical dispersion. This dispersion intro- 

duced a time lag and had an attenuating effect on the flow extremes. 

The stability limit for the sectioning scheme used was calculated as 21.4 

minutes. Time steps of 20 minutes produced stable results and were 

used in all subsequent computation. 

8 
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Implicit Method 

Computational Procedure 

The finite difference form of Equations (1) and (2) in the 

implicit procedure is associated with a reach instead of a node as i t  was 

in the explicit technique. Using subscript and superscript notation, 

the H (or Q) derivatives are approximated by: 
/ 

&- 

L J 

with 0 being a weighting factor. The allowable range of B's will be 

discussed in the section dealing with stability of this procedure. In 

this application, Ax was a variable, but if advantageous, A t  could also 

vary. 

As previously mentioned, the implicit technique requires a 

simultaneous solution of the unknown discharges and water surface 

elevhtions throughout the study reach at a given time. The reason for 

this is that in an individual reach four unknowns appear (Hi tl , Qi tl , 

tl , Qi+ltl), but only two equations, the conservation of mass and Hi+l 
momentum, are available. Overlapping unknowns between reaches and 

boundary conditions bring the number of equations into balance with 

the unknowns, and the system is determinate by simultaneous solution. 

A further complication which enters is that the system of equations is 

nonlinear, and an iterative technique such as the Newton-Raphson 
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Written for the case of known discharges at method must be invoked. 

the boundaries, the system of equations can be expressed as 

1, (":I, H i 1 ,  Q: t , . . . H +I imax- I , Qtl imax-i  tHimax 

f, (H:', H2 I Q2 , . . . H 11 imax - I , 9'' Htl ) = 0 11 11 
imax-1'  imax 

or 

f i ( X ) = 0 , i = i , 2 , . .  . , 2 ( i m a x - l )  

The object of the Newton-Raphson procedure is to find the values of 

the unknowns at each new time step so that the nonlinear equations 

(16) are satisfied. Suppose that at the kth iteration the approximate 

solution, Xk , , does not satisfy Equation 16 within an allowable tolerance. 

A differential change in fi is 

- 

dxp(imax-i)  d f i =  - d x l  d f i  t -dx2 afi t . .  . + - a fi 
8x1 8x2  (i max - 1 1  

Finite changes hfi can be approximated by changing d? to Axi in Equa- 

tion 17. Hence, the approximate changes to be made to the solution, 

Xi, can be found by solving the following linear system 



- 
a', at, - -  
ax, dX2 

df2 af, at, 

ax, ax, 
- - . -  . .  . 

' 8x2 (imax- I )  

The Taylor series expansion of f i  (xk+l) has been truncated after the 

linear correction term to arrive at Equations (18). For a single equa- 

tion having only one unknown this is equivalent to solving 

. ,  
XK+, = x, t AX, 

When the proper X has been found 

Applying the AXi correction factors to the previous solution 

Xk, a test of convergence is made. If the required tolerance is not 

met, the procedure is repeated with xk+l as known values and xk+2 to 

be determined. Convergence is usually achieved rapidly, but a draw- 

back of the procedure is that the initial guess, X I  must be reasonable. 

If care is not taken, the solution may converge to an improper result or 

diverge. Values of the unknowns at the previous time have been used 

in this capacity, and the problem has been avoided. 
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against the ability of less implicit schemes to simulate more sharply 

defined transients. A 0 value of about 0.55 results in an optimal 

balance for many cases that have been reported. 

When frictional resistance suddenly becomes an important term 

in the momentum equation, a larger 8 may be required to maintain 

solution stability. For example, if at Guntersville Dam, the upstream 

I 

. 

Formulation of the implicit model using the Newton-Raphson 

The 
s 

procedure results in a coefficient matrix having a band structure. 
._ . _C_---- 

7 

IBM subroutine GELB was used for solving this matrix. When con- 

vergence is achieved, the solution is advanced in time and the process 
- 

i? is repeated. Variations in the friction term, Sf, with water surface 

elevation were not considered 

Stability Considerations 

Nhen forming the matrix in Equation (183. 1 ' 

Setting the weight,ig factor, 8 in Equation (151, equal to 

zerq simplifies the expression but removes the implicitness of the pro- 

cedure. An explicit procedure having the time step limitations dis- 

cussed above is the result. The intuitive value of 8 = 0.5 causes equal 

weighting to be given the X-derivatives at  the new and old time steps. 

Stability problems often arise, however, when this 0 is used (Refer- 

ences 6 and ?>. With 0 = 1,  the equations and computations are also 

simplified and the solution is termed fully implicit. 

The range of 0 available to an implicit technique is 0.5<051.0. 

Reference 6 ,  7 and 8 present consequences of various choices within 

this range for a number of case studies. Large values of 8 result in a 

more stable but smoothed solution. Computational simplicity and stabil- 

ity achieved when using the fully implicit formulation must be balanced 
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boundary of the modeled reach, the flow release is rapidly increased, a 

numerical instability occurs at the adjacent section when 8 = 0.55 is 

used. If 8 is increased temporarily, stability is maintained. In the 

present model 8 is increased automatically when a large positive dis- 

charge fluctuation occurs at the upstream boundary. After passage of 

the initial wave, 0 is reset to 0.55 and the computation proceeds. A 

comparison of computed flows in Wheeler Reservoir between the variation 

of 0 technique described and the fully implicit procedure, 0 = 1.0,  at 

the Browns Ferry Nuclear Plant are given in Figure 4.  
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RESULTS 

Wheeler Reservoir flow simulations for the period of November 

20-24, 1976, were conducted using the explicit and implicit models. 

The 24-mile (119-kilometer) long reservoir was modeled using eight 

reaches. In each case, information was desired at  and downstream of 

the Browns Ferry Nuclear Plant. Numerical stability and dispersion are 

additional considerations when sectioning and selecting the computational 

time step to be used in the explicit model. The maximum computational 

time step is limited by the fast wave transmission in the deep, lower 

portion of the reservoir. A compromise between these considerations 

resulted in the equally spaced sectioning scheme shown in Figure 5a. 

Sectioning for the implicit model is not constrained by Courant stability 

limitations. Information requirements can be conveniently treated 

(Figure 5b). 

Boundary conditions used in each model were the hourly 

average flow releases at Guntersville (Tennessee River Mile [TRM] 

349.0) and Wheeler (TRM ZZ5.0) Dams (Figure 6). The computation was 

begun on October 20, starting from a fictitious zero-flow-flat-pool initial 

condition. The initial twenty-four hours of computation were discounted 

to eliminate the effect of the initial condition. Results are given for 

the period of October 21-23. 

The measured and computed water surface elevations at  the 

Guntersville Dam tailwater are shown in Figure 7. Reservoir stage 

comparisons are given in Figure 8 a t  the Browns Ferry Nuclear Plant 

and the Wheeler Dam headwater. The agreement with measured values 
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4 stability can be noted in the Wheeler Dam headwater computation by the 

explicit method. Resectioning locally or reduction of the computational 

time step are methods which could be used to stabilize the results. 
e 

Computed flow in the reservoir at the Browns Ferry Nuclear 

Plant is given in Figure 9. Flow data for the study period were not 

available at any lacation in the reservoir. Infbrmation on flow direction 

at  Browns Ferry is available for the period of October 22-28, 1976, and 

revealed that on October 22, upstream flow was present between 0400 

and 0700 hours. Another flow reversal began at 0330 and remained 

until 0700 hours on October 23. On each of these days, downstream 

. 

flow persisted at all other times. 

lated with the implicit model. 

These data were most closely simu- 

Generally, the computed flows at  the plant using each model 

Magnitude of the flow peaks and timing of the €low are in agreement. 

troughs are points of discrepancy. Computations in upstream reaches 

of the explicit model are being made at  a small percentage of the stabil- 

ity limit. As  was shown in Figure 3 ,  lagging and rounding of the 

computed hydrograph can result. Experiments with the models revealed 

that the implicit model propagated waves more quickly in the upper 

portion of the reservoir than did the explicit model. An hour lag at 

Browns Ferry was fairly typical of the explicit model in response to a 

flow change at  Guntersville Dam. The error in timing of the trough as 

computed by the explicit model can be attributed to this dispersion 

affect. Improved model performance could be expected if more sections 

L were placed in the upper portion of the reservoir. The three major 

flow peaks were the result of large and sudden flow increases at 

Wheeler Dam. Under these conditions the implicit model exhibited a 
n 
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0 slight tendency toward instability in the computed flows. It is sus- 

pected that these peaks are being overpredicted as a result. 

rary increase in 0 would likely resolve this problem. 

A tempo- 
* 

c 
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CONCLUSIONS 

Each of the flow routing techniques described in this report 

have advantages which are problem-dependent . The primary advan- 

tages of the explicit model are its small core requirements and computa- 

tional simplicity. If computer limitations exist or if the problem being 

modeled is large (i.e., simulations for a large system or an extended 

time period), the size and economy of the model become important model 

selection considerations. Hydroelectic operations for which flow releases 

are typically rapidly varying and known on an hourly time scale, is a 

case where the explicit model is computationally more efficient relative 

to other routing techniques. 

Advantages of the implicit model include flexibility in selection 

of the computational time step and placement of sections. Detailed 

information in a certain reservoir reach can be obtained by concentrat- 

ing a large number of sections in the reach. Consideration of time step 

and associated computational stability is not a limitation. The implicit 

model achieves relative computational economy for cases where the 

prescribed boundary conditions are not rapidly varying. Flood move- 

ment in natural streams is an example of such a case. 
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