SOUTHWEST RESEARCH INSTITUTE NUCLEAR PROJECT CLIENT: Div. 20 TASK ORDER: 031021-4 SRR: 25126 SDG: 236555 CASE: CNWRA VTSR: October 21, 2003 PROJECT#: 06002.01.081

FINAL REPORT

SAMPLE ANALYSIS DATA SHEET

Lab Name: Southwest Research Institute

Lab Code: SwRI

Matrix: Liquid

SRR: 25126

Lab Iron Results (mg/L) Sample ID System ID Prep Blank < 0.025 ----Lab Control ----1.04 True Value 1.00 ----Recovery ----104% 236555 0.140 Vessel A Vessel B 236556 1.13 Vessel C 236557 1.29 Duplicate result 236557 1.11 RPD 236557 15.0% Vessel D 236558 1.17 Spike result 236558 5.98 Spike added 236558 5.00 96.2% 236558 Recovery

Reporting Limit:

0.025 mg/L

Client: Division 20

Date Received: 10/21/03

Project No.: 20.06002.01.081

TO: 031021-4

SOUTHWEST RESEARCH INSTITUTE NUCLEAR PROJECT CLIENT: Div. 20 TASK ORDER: 031021-4 SRR: 25126 SDG: 236555 CASE: CNWRA VTSR: October 21, 2003 PROJECT#: 06002.01.081

Task Orders/01-QPP-015

Laboratory Task Order

TO #: 031021-4 Revision: 1

SDG: 236555 VTSR: 10/21/03 CASE: DIV 20 - CNWRA SRR #'s: 25126 Client(s): DIV 20

Project(s): 06002.01.081 Manager(s): DAMMANN, MIKE To PM: 11/04/03 To QA: 12/12/03 To Client: 12/15/03

010001

Instructions DIVISION 20 - CNWRA. 2-week TAT listed on COC, 21-day TAT for hardcopy, subject to change. Point of Contact is Lietai Yang at ext. 2483 (lietai.yang@swri.org). Work is 10 CFR 50, Part 21, Appendix B. Contact Charlie Butcher (ext. 5928, pager 271-5172) before starting ANY WORK. ICP analysis for IRON content. CONTACT PM WITH ANY QUESTIONS. revision 1: Changing due dates to allow time for copies of C of As. (dr120203)

Documents Related to this task order: 6985

Test: DIL-DILUTION

Holding: 28 days from CED

Section: METALPREP			Prep, Dilution Cr							Cnt: 4
System ID	Туре	Cont	Matrix	Customer ID	i delta.	CED	u shannina apri Na shannina apri	Meth	iod D	ate
236555		1	Liquid	Vessel A	20	Oct	03	17	Nov	03
236556		1	Liquid	Vessel B	20	Oct	03	17	Nov	03
236557		1	Liquid	Vessel C	20	Oct	03	17	Nov	03
236558		1	Liquid	Vessel D	20	Oct	03	17	Nov	03

Test: ICP-SWRI Section: METALS			Holding: 180 days from CED ICP Analysis by SwRI Method Cnt:							
System ID	Туре	Cont	Matrix	Customer ID		CED		Method D	ate	
236555		1	Liquid	Vessel A	20	Oct	03	17 Apr	04	
236556		1	Liquid	Vessel B	20	Oct	03	17 Apr	04	
236557		1	Liquid	Vessel C	20	Oct	03	17 Apr	04	
236558		1	Liquid	Vessel D	20	. Oct	03	17 Apr	04	

01-QPP-015 Division 01 Revision 4 November 2002

010002

Document No.____

Chemistry and Chemical Engineering Division

QUALITY PROJECT PLAN FOR

PERFORMANCE OF CHEMICAL ANALYSES FOR COMMERCIAL NUCLEAR POWER PLANTS WITHIN THE DEPARTMENT OF ANALYTICAL AND ENVIRONMENTAL CHEMISTRY

SOUTHWEST RESEARCH INSTITUTE Chemistry and Chemical Engineering Division 6220 CULEBRA ROAD, SAN ANTONIO, TEXAS 78238

CHEMISTRY AND CHEMICAL ENGINEERING DIVISION Division 01 Quality Project Plan

01-QPP-015 Division 01 Rev 4/November 2002 Page i

QUALITY PROJECT PLAN FOR PERFORMANCE OF CHEMICAL ANALYSES FOR COMMERCIAL NUCLEAR POWER PLANTS WITHIN THE DEPARTMENT OF ANALYTICAL AND ENVIONMENTAL CHEMISTRY

SwRI AUTHORIZATION SIGNATORIES

This is to certify that this Quality Project Plan of Southwest Research Institute (SwRI) has been reviewed and approved by the following personnel:

JO ANN BOYD Quality Assurance Manager (210) 522-2169

DATE

DATE

DATE

REZA KARIMI (210) 522-2412 Director, Department of Analytical and Environmental Chemistry

MICHAEL G. MACNAUGHTON (210) 522-5162 Vice President, Chemistry and Chemical Engineering Division

CHRISTOPHER HOBSON Quality Assurance Engineer (210) 522-5838

DATE

Southwest Research Institute Proprietary

CHEMISTRY AND CHEMICAL ENGINEERING DIVISION Division 01 Quality Project Plan

01-QPP-015 Division 01 Rev 4/November 2002 Page ii

TABLE OF CONTENTS

.0 INTR				
			•	
0 5001	٤			
.0 REFE	RENCES		••••••	
	ICARLE SECTIONS OF SWELDEROGRAM OIL		EAR)	
WAPPL				
4.1	Indoctrination and Training		••••••	
4.2	Qualification of Personnel		•••••	••••••
4.3	Design Control			
4.4	Right of Access	••••••••	•••••••••••••••••••••••••••••••••••	•••••
4.5	Control of Supplier-Generated Documents	÷	••••••	•••••
4.6	Acceptance of Services Unly	•••••••••••••••••••••••••••••••••••••••	•••••	•••••
4.7	Inspection	•••••••••••••••••••••••••••••••••••••••		
4 9	Inspection and Testing		•••••••	
4.8	mapeorion and rearing	n. and Delivery		
4.8 4.9 4 10	Handling Storage Packaging Preservation			
4.8 4.9 4.10 4.11	Handling, Storage, Packaging, Preservatic Quality Assurance Records	•		
4.8 4.9 4.10 4.11 4.12	Handling, Storage, Packaging, Preservatic Quality Assurance Records 10 CFR. Part 21			
4.8 4.9 4.10 4.11 4.12 4.13	Handling, Storage, Packaging, Preservatic Quality Assurance Records 10 CFR, Part 21 Certified Test Report			

CHEMISTRY AND CHEMICAL ENGINEERING DIVISION Division 01 Quality Project Plan

01-QPP-015 Division 01 Rev 4/November 2002 Page 1 of 6

PERFORMANCE OF CHEMICAL ANALYSES FOR COMMERCIAL NUCLEAR POWER PLANTS WITHIN THE DEPARTMENT OF ANALYTICAL AND ENVIRONMENTAL CHEMISTRY

1.0 INTRODUCTION

This Quality Project Plan (QPP) defines the Quality Assurance (QA) program requirements for personnel providing the chemical analyses for commercial nuclear power plants. Southwest Research Institute (SwRI) *Program Quality Plan (PQP-Nuclear), Nuclear Services* shall implement the QA requirements. Project activities controlled by the PQP-Nuclear shall be accomplished as specified by the appropriate sections of 01-QAP-004, *Quality Assurance Plan for Analytical and Environmental Services* and/or nationally recognized testing methods as specified on individual purchase orders. This QPP shall be applied to all projects initiated for nuclear utilities in the Department of Analytical and Environmental Chemistry. If, as a result of complexity, duration, or other factors, it is determined that a unique, project-specific quality plan is required, the project QAE shall notify the Project Manager and a project-specific quality plan shall be generated in accordance with SOP-01-5.2, *Preparation and Revision of Plans*.

2.0 SCOPE

This Quality Project Plan shall be applied to the chemical analyses performed for commercial nuclear power plants by the Department of Analytical and Environmental Chemistry within the Chemistry and Chemical Engineering Division. Although the majority of the work performed for nuclear facilities resides within the Department of Analytical and Environmental Chemistry, other departments within the division may utilize this Quality Project Plan as deemed necessary when nuclear projects are conducted.

3.0 REFERENCES

- 3.1 SwRI Quality System Manual 2000
- 3.2 10 CFR 50, Appendix B, ASME NQA-1
- 3.3 SwRI Program Quality Plan (PQP-Nuclear), Nuclear Services
- 3.4 01-QAP-004, Quality Assurance Plan for Analytical and Environmental Services

4.0 APPLICABLE SECTIONS OF SWRI PROGRAM QUALITY PLAN (PQP-NUCLEAR)

4.1 Indoctrination and Training

- 4.1.1 Personnel performing duties affecting quality shall receive quality training to the *SwRI Program Quality Plan (PQP-Nuclear), Nuclear Services* prior to performing any work on projects for nuclear utilities. Institute Quality Systems (IQS) personnel shall perform this training and documentation shall be evident in the personnel training files maintained in Division Quality Assurance.
- 4.1.2 Indoctrination and training of personnel shall be conducted in accordance with SOP-01-18.1, *Qualification and Training.*

Southwest Research Institute Proprietary

CHEMISTRY AND CHEMICAL ENGINEERING DIVISION Division 01 Quality Project Plan

01-QPP-015 Division 01 Rev 4/November 2002 Page 2 of 6

4.2 Qualification of Personnel

- 4.2.1 Testing personnel shall be designated as qualified to perform applicable project activities as specified in SOP-01-18.1, Qualification and Training.
- 4.2.2 During the performance of each testing process, testing personnel shall have access to the necessary documented procedures, i.e., QPP, QAP, Work Order, Division Quality System Standard Operating Procedures (SOPs), and applicable test/analytical procedures (TAPs) available for ready reference.
- 4.2.3 Any person who has not performed testing activities associated with any particular method being used for nuclear utilities projects for a period of one year shall be reevaluated prior to the conduct of the test.
- 4.2.4 Quality Assurance personnel witnessing the testing process for nuclear utilities shall have documented evidence of qualifications maintained by Institute Quality Systems.

4.3 Design Control

Not applicable to activities conducted within the Department of Analytical and Environmental Chemistry.

4.4 Right of Access

- 4.4.1 Procurement documents shall provide for access to the suppliers' facilities and records for surveillance, inspection, or audit by SwRI and clients.
- 4.4.2 Where appropriate, quality clause Q32 shall be noted on the procurement documents to indicate that right of access for inspection and surveillance of activities associated with the order shall be afforded to SwRI and clients.

4.5 Control of Supplier-Generated Documents

- 4.5.1 Client documents shall be controlled in accordance with procedures under SOP-01-5.0, *Document and Data Control*, depending on the type of document supplied. These procedures provide the requirements for the preparation, review, approval, issue, distribution, and revision of documents controlled by the Chemistry and Chemical Engineering Division.
- 4.5.2 Documents may be controlled as Plans or Work Instructions and shall be accessible through the Division Intranet link, *Contract Requirements* as PDF files.
- 4.5.3 Nationally recognized test methods shall be of the most current issue or as specified in the purchase order. Work orders shall identify the applicable test methods to be used on the nuclear project.

CHEMISTRY AND CHEMICAL ENGINEERING DIVISION Division 01 Quality Project Plan

01-QPP-015 Division 01 Rev 4/November 2002 Page 3 of 6

4.6 Acceptance of Services Only

Not applicable to activities conducted within the Department of Analytical and Environmental Chemistry.

4.7 Commercial Grade Items

- 4.7.1 Where an item is to be incorporated into a test or deliverable to a client, and that item is not subject to design or specification requirements that are unique to nuclear facilities, used in applications other then nuclear facilities, and procured from the supplier on the specifications set forth in the manufacturers' published product and description, the item shall be considered "commercial grade".
- 4.7.2 Chemical reagents and standards used for testing purposes shall be ordered to specific chemical grades and certificates of analysis shall be required with each lot.
- 4.7.3 Controls for procurement planning, supplier selection, supplier performance evaluation, and acceptance of procured items and services other than chemical reagents and standards shall be as identified in SOP-01-6.1, *Purchasing*, and any referenced document within that procedure.
- 4.7.4 Receipt inspection of chemical reagents, standards, and test items for use on nuclear safety-related projects shall be performed by department personnel and documented on the *SwRI Receipt Traveler* or FRM-109, *Item Receipt Report*, as specified in SOP-01-10.1, *Inspection and Test Conduct*. Any discrepancy such as a damaged container or container label shall be documented on the form and the client shall be contacted for disposition.
- 4.7.5 Prior or acceptance of a commercial grade item, the receipt inspection shall determine the following:
 - (a) Damage was not sustained during shipment;
 - (b) The item has satisfied the specified acceptance criteria; and
 - (c) Specified documentation, as applicable to the item, was received and is acceptable.
- 4.7.6 Receipt inspection of chemical reagents and standards shall also consist of verification of chemical type, grade, container integrity, certificate of analysis, and shelf life, where applicable. Upon acceptance of chemical reagents and standards, the containers shall be labeled with the following:
 - (a) Chemical name;
 - (b) Chemical grade;
 - (c) Lot code;
 - (d) Date received; and
 - (e) Shelf life, when applicable.

CHEMISTRY AND CHEMICAL ENGINEERING DIVISION Division 01 Quality Project Plan

01-QPP-015 Division 01 Rev 4/November 2002 Page 4 of 6

- 4.7.7 Expired shelf life items shall not be used for testing purposes.
- 4.7.8 Lot codes of chemical reagents and standards used during equipment standardization and testing shall be recorded on the individual testing data sheets to provide traceability.
- 4.7.9 Samples supplied to SwRI for testing shall be received by the Sample Custodian and logged into the laboratory logbook. Sample documentation and sample custody shall be maintained in accordance with TAP-01-0407-001, Sample Receipt and Login, and TAP-01-0407-035, Sample/Extract Storage and Custody.
- 4.7.10 Samples supplied to SwRI for testing shall be labeled with the following:
 - (a) Sample control number;
 - (b) Purchase order number;
 - (c) Purchase order line item number, as applicable;
 - (d) Work order number;
 - (e) Nuclear QA label; and
 - (f) Sample retention date, when applicable.
- 4.7.11 In the event that samples are damaged upon receipt, a *Sample Discrepancy Record* shall be generated from the Division Intranet.
- 4.7.12 The testing work order shall list the project number, tests required, test methods required, and shall be labeled *Nuclear Quality*.
- 4.7.13 Identification and traceability shall be maintained in accordance with SOP-01-8.1, Item Identification and Traceability.

4.8 Inspection

- 4.8.1 Inspection for acceptance shall be performed by qualified persons other than those who conduct or directly supervise the work being inspected.
- 4.8.2 Institute Quality System (IQS) personnel shall perform surveillance activities as required to ensure compliance with the contract and this Quality Project Plan. Specific areas in which IQS may perform surveillance activities include, but are not limited to, the following:
 - (a) Receiving inspection and labeling of chemical reagents, standards, and testing samples;
 - (b) Testing processes;
 - (c) Calibration and major equipment;
 - (d) Sample and record retention; and

Southwest Research Institute Proprietary

CHEMISTRY AND CHEMICAL ENGINEERING DIVISION Division 01 Quality Project Plan

01-QPP-015 Division 01 Rev 4/November 2002 Page 5 of 6

(e) Test records.

4.9 Inspection and Testing

- 4.9.1 Required tests for acceptance shall be conducted under appropriate environmental conditions using the tools and equipment necessary to conduct the test in a manner to fulfill test requirements and acceptance criteria.
- 4.9.2 Tests shall be conducted, controlled, and verified in accordance with SOP-01-10.1, *Inspection and Test Conduct*.
- 4.9.3 Controls for measuring and test equipment shall be as specified in SOP-01-11.1, Control of Measuring and Test Equipment.
- 4.9.4 Controls for identification, segregation, reporting, and resolution of nonconforming items and conditions shall be as specified in SOP-01-13.1, *Nonconformance Reporting*.
- 4.10 Handling, Storage, Packaging, Preservation, and Delivery
 - 4.10.1 Controls for handling, storage, packaging, preservation, and delivery of items are identified in SOP-01-15.1, *Handling, Storage, Packaging, Preservation, and Delivery of Items*.
 - 4.10.2 Samples specified on the purchase order to be returned to the client shall be prepared and packaged as specified on the purchase order. Each package shall be marked legibly and indelibly with the purchase order/release number and line item number(s) relevant to the package.

4.11 Quality Assurance Records

- 4.11.1 Quality assurance records shall furnish documentary evidence that items or activities meet specified quality requirements. Documents that ensure this evidence include TAP-01-0407-014, *Inventory of Case File Purges*, and SOP-01-16.1, *Storage and Maintenance of Quality Records*. These documents and this QPP ensure that QA records shall be legible, identifiable, retrievable, and maintained in dual storage.
- 4.11.2 Records shall be traceable to associated items and activities and shall accurately reflect the work accomplished or information required.
- 4.11.3 Documents shall be considered valid records only if stamped, initialed or signed and dated by authorized personnel or otherwise authenticated.
- 4.11.4 Records of test analyses performed by the Department of Analytical and Environmental Chemistry are classified as *nonpermanent* and shall be retained for a minimum of five years. Nonpermanent records are those required to show evidence that an activity was performed in accordance with the applicable requirements, but need not be retained for the life of the item. Based on the use of the final data, the client shall be responsible for determining and implementing permanent storage requirements.

CHEMISTRY AND CHEMICAL ENGINEERING DIVISION Division 01 Quality Project Plan

01-QPP-015 Division 01 Rev 4/November 2002 Page 6 of 6

4.11.5 In order to satisfy duplicate storage requirements, one copy of the QA record shall maintained by the Project Manager in Building 70 and a separate copy shall be maintained in the Division Quality Assurance Archives in Building 201. Storage requirements shall be as stated in SOP-01-16.1, *Storage and Maintenance of Quality Records*, to ensure protection against the risk of damage or destruction.

4.12 10 CFR, Part 21

- 4.12.1 SwRI procurement documents shall include requirements for reporting and approving disposition of supplier nonconformances and, when required, compliance to 10 CFR, Part 21.
- 4.12.2 The Manager of Institute Quality Assurance or Director of Institute Quality Systems shall determine if a nonconforming condition is reportable under 10 CFR, Part 21, and initiate reporting and condition in accordance with the SwRI Operating Policies and Procedures (OPP). Safety hazards or defects that could create a substantial safety hazard shall be reported. Substantial safety hazard means a loss of safety function to the extent that there is a major reduction in the degree of protection provided to public health and safety.

4.13 Certified Test Report

The Project Manager and Institute Quality Assurance Manager as complying with all contractual requirements shall certify test reports. The certified test report shall reference the purchase order/release number, the test methods performed, and the purchase order/release line item number.

4.14 Valid Documents List

The Department of Analytical and Environmental Chemistry work order shall specify all applicable documents and appropriate document revision level for each document. The work order shall then serve as the Valid Documents List (VDL) for each individual project.

5.0 HISTORY OF REVISIONS

Revision 4

Title of document changed from the Standard Project Quality Plan SPQP-CH/AN to Quality Project Plan, QPP-015

Extensive revision to comply with Project Quality Plan PQP-Nuclear, *Nuclear Services*, which replaces SwRI NQAPM, *Nuclear Quality Assurance Program Manual*.

Valerie DeJesus

From: Sent: To: Cc: Subject: Valerie DeJesus [vdejesus@bams.ccf.swri.edu] Monday, November 10, 2003 2:01 PM Lietai Yang Jacqueline M. Ranger preliminary sample results - TO#031021-4, SRR#25126

010011

Attached are the preliminary results for the samples received on 10/21/03, task order 031021-4, SRR 25126. The report for Metals is attached as an Excel (031021-4.xls) and PDF (031021-4.pdf) file. Hard copies of the report will follow shortly. If you have any questions, please contact Jackie Ranger (522.3320).

1

Thank you,

Valerie DeJesus Southwest Research Institute Department of Analytical and Environmental Chemistry Division 01 Phone 210-522-3129 Fax 210-522-5938 SOUTHWEST RESEARCH INSTITUTE NUCLEAR PROJECT CLIENT: Div. 20 TASK ORDER: 031021-4 SRR: 25126 SDG: 236555 CASE: CNWRA VTSR: October 21, 2003 PROJECT#: 06002.01.081

Chain of Custody/Login Paperwork

Client Shipper Name/ Address	LYCNS OC CIErr				C	SAMPLE LIST/CHAIN OF CUSTODY Southwest Research Institute Chemistry and Chemical Engineering Division 6220 Culebra Road San Antonio, Texas 78238-5166 Client Purchase Order/Other ID Site/Zone) ID		Requested Turnaround: 2 Weeks 3 Weeks Other: SwRI Contact Lictai Pans (X) 2483				
Sample ID VCSSCR A VCSSCR B VCSSCR B VCSSCR C VCSSCR D	Concertion Date Concertion Date Concertion Date	လ် လွှင် စစ် လွှ Sample Collection Time	rrr Matrix Type	Sample Type	<pre>/ / / / # of Containers</pre>	< < < > iron content									REMARKS Preservation a = HCl to pH <2 b = HNO3 to pH <2 c = H ₂ SO ₄ to pH <2 d = NaOH to pH >12 e = Cool (4°C±2°C) f = Other (specify) Squeles Intert
Matrix Types: A – Air B – Biota D - Dust E – Emission/Stack L - Liquid P – Product Sd - Solid S – Soil SED – Sediment T - Tissue W - Water WP - Wipe Temp: 22.0°(Sample 1 D - Duplic ER – Equ ES – Env FB – Fiel T – Fiel MS – Mat MSD – M IB – Trip	Types: ate ipment R ironmenta d Blank d Duplica rix Spike atrix Spik Blank	insate al Samp te e Dup	le	Relinqui Receive Relinqui Receive	shed by (d by (Prin shed by (d by (Prin shed by (Print/Signat VSignat&re Print/Signat t/Signature	tture)	ez fo	tea		Date 10/21/03 Date Date Date	Time Jago Time Time Time	SwRI Project#: 20. OCOGA .01.081 Received by SwBr Lab: (Signature) Date 10 21 03 0930 Samples Disposed: Time N Samples Disposed by:

Div 01 COC Form 01-01-001, Rev 8/02

Page _____ of ___

FORM FOR REQUESTING WORK FROM OTHER DIVISIONS

A. TO BE COMPLE	TED BY D	IVISION 20 PE	010013		
Requester: hic ties	ų,	2ma	Request Date:	10/21/C	3
Project No.: 20,06002	1.01,081		Phone No.:	248	<u></u>
Description of Work Req	uested: 🔼 🛆	matusco	Sor is	Por in in	<u></u>
context =	ICP Dre	calita.			
				_	
······································					· · · · · · · · · · · · · · · · · · ·
	<u> </u>	······································			
Optical Microscopy	□ SEM	□ Hardness	D Profilometer	D Auger	Ø Other

QUALITY REQUIREMENTS: The work requested is governed by the CNWRA Quality Assurance Program which addresses requirements of 10CFR50, Appendix B. Personnel performing this work shall be qualified under the CNWRA QA program or equivalently under the SwRI Nuclear QA program. Test and analysis methods shall be documented by approved procedures or recognized, standard methods. Measuring and test equipment shall be calibrated and controlled according to CNWRA and SwRI Nuclear QA program requirements.

Sample Iden	tification	Description							
VESSER A VESSER C VESSER C		Medicine A Postación No Daci Postación No Daci Postación Naci Postación / 0.5 M Naci							
. TO BE COMPLETED BY DIVISION PERFORMING WORK ¹									
□ Optical Microscopy □ SEM □ Hardness □ Profilometer □ Auger □ Other Person Assigned:									
Software Used (If any): Standards Used (If any):_ Photographic Negative Nu	mbers (If Applica	able):							

¹ Please sign and date any hardcopy of analysis or list of photographs (The photographs themselves need not be signed). If error occurred during entry, do not erase or overwrite, but strikeout with single line, initial and date, and then reenter correct information.

SAMPLE LOG-IN SHEET

010014

Lab	Name Southwest Res	earch Institute					Page 1 of 1
Rec	eived By (Print Name)						Log-in Date
Rec	KHALED EDRISI eived By (Signature)						10/21/2003
	plef	l			·		
Cas	e Number CNWRA		Sample Deli	very Grou	ıp No.		SAS Number
Ren	emarks: 06002.01.081				Corre	esponding	Remarks: Condition of Sample
			EPA Sa	mple #	Sample Tag #	Assigned Lab #	Sinpinent, etc
1.	Custody Seal(s)	Intact/Broken	Vessel A		None	236555	Intact
2.	Custody Seal Nos.		Vessel B	3	None	236556	Intact
		N [19	Vessel C		None	236557	Intact
3.	Chain-of Custody Records	eresent Absent*	Vessel D)	None	236558	Intact
4.	Traffic Reports or Packing Lists	Present Absent					
5.	Airbill	Airbill/Sticker Tesent/Absent*					
6.	Airbill No.	HAND DELIVERED	\square				
7.	Sample Tags	Present Absent					
	Sample Tag Numbers	Listed Not listed on Chain of Custody					-
8.	Sample Condition	Intact/Broken*/ Leaking					
9.	Cooler Temperature	22.0C					
10.	Does Information on custody records, traffic reports, and sample tags agree?	(es)No*					
11.	Date Received at Lab	10/21/2003					
12.	Time Received	09:30:00					\perp
	Sample	e Transfer					
Frac	tion r	Praction					/
<u></u> Area	1679911C	Area #					/
By	HALED EDRIST	Ву					
On	1/21/2003	On					
۲. ۲.	Contact SMO and attach recor	rd of resolution	N				
Rev	iewed By	1 50.0000			Logbook No.	Sample Recei	pt (25126)
Date	10.23.200	3			Logbook Page No.	4866 (SEC12	ON1,2053)

SOUTHWEST RESEARCH INSTITUTE NUCLEAR PROJECT CLIENT: Div. 20 TASK ORDER: 031021-4 SRR: 25126 SDG: 236555 CASE: CNWRA VTSR: October 21, 2003 PROJECT#: 06002.01.081

Copies of Login Book

Sample Login Book Oct 21, 2003

SwRI Login Area Division 1

Sample Receipt: 25123		Project: 03162.20.10X	Client: HEE		
VTSR Date:	Oct 21, 2003	VTSR Time: 08:03:00	Manager: SCHATTEN	IBERG, HERB	
System ID	Customer Sample ID			Matrix	
236537	(WY-A)Strawberries			PRODUCE	
236538	(9W-A)Mustard Green, Packag	je		PRODUCE	
236539	(J5-A)collard greens			PRODUCE	
236540	(IL-A)Lettuce, Iceburg			PRODUCE	
236541	(EAG-A)Green Bartlett Pears 2	26#		PRODUCE	
236542	(ACK-A)IFCO Broccoli			PRODUCE	
236543	(GG-A)Grapes,Black Sdless (C	Chi)		PRODUCE	
236544	(29-A)Grapes, Red (Chilean)			PRODUCE	
236545	(29-B)Grapes, Red (Chilean)			PRODUCE	
236546	(AHG-A)Peaches			PRODUCE	

Sample Receipt: 25124		Project: 06232.17.00X	Client: NFT, Inc.
VTSR Date:	Oct 21, 2003	VTSR Time: 08:40:00	Manager: DAMMANN, MIKE
System ID	Customer Sample ID		Matrix
236548	XB348		Water
236549	XB350		Water

Sample Receipt: 25125		Project: 06685.02.00X	Client: EPA REGION III
VTSR Date: Oct 21, 2003		VTSR Time: 08:40:00	Manager: TAN, CK
System ID	Customer Sample ID		Matrix
236550	C0110		Air #141
236551	C0111		Air #60
236552	C0112		Air #123
236553	C0113	·····	Air #237
236554	C0114		Air #66

Sample Receipt: 25126		Project: 06002.01.081	Client: DI				
VTSR Date:	Oct 21, 2003	VTSR Time: 09:30:00	Manager:	DAMMANN, MIKE			
System ID	Customer Sample ID			Matrix			
236555	Vessel A		•	Liquid			

Sample Login Book Oct 21, 2003

010016

SwRI Login Area Division 1

Sample Receipt: 25126 VTSR Date: Oct 21, 2003		Project: 06002.01.081	Cli	ent: DIV 20
		VTSR Time: 09:30:00	Manager: DAMM	Manager: DAMMANN, MIKE
System ID	Customer Sample ID			Matrix
236556	Vessel B			Liquid
236557	Vessel C			Liquid
236558	Vessel D			Liquid

Sample Receipt: 25127		Project: 06232.33.00X	Client: NFT, In	IC.
VTSR Date:	Oct 21, 2003	VTSR Time: 08:40:00	Manager: DAMMANN, MIK	٢E
System ID	Customer Sample ID		Matrix	
236559	444T2177RE	,	Liquid	
236560	444T2177RED		Liquid	

Sample Receipt: 25128		Project: 10192.01.10X	Client: Lynx	
VTSR Date:	Oct 21, 2003	VTSR Time: 13:55:00	Manager:	SUN, GANG
System ID	Customer Sample ID			Matrix
236564	0310161235	·		Water
236565	0310161306			Water
236566	0310161324			Water
236567	0310161405			Water
236568	0310170936			Water
236569	0310170937			Water
236570	0310171300			Water
236571	0310171335	,		Water
236572	0310171346		•	Water
236573	0310200904			Water

Sample Receipt: 25129		Project: 10079.06.003	Client: DPT Laboratories
VTSR Date: Oct 21, 2003		VTSR Time: 14:10:00	Manager: DAMMANN, MIKE
System ID	Customer Sample ID		Matrix
236561	Blank-1		Wipe

SOUTHWEST RESEARCH INSTITUTE NUCLEAR PROJECT CLIENT: Div. 20 TASK ORDER: 031021-4 SRR: 25126 SDG: 236555 CASE: CNWRA VTSR: October 21, 2003 PROJECT#: 06002.01.081

RAW DATA

Div 20 to#031021-4 06002.01.081

system id	elem	result	qual	units	ri	tv	rec	Πı	ug/ml	date	time	iv	fv	mg/L
236555	Fe2714	0.140		mg/L	0.025				0.13970	11/06/03	12:07	5	5	0.1397
236556	Fe2714	1.13		mg/L	0.125				0.22578	11/04/03	12:58	1	5	1.1289
236557	Fe2714	1.29		mg/L	0.125				0.25781	11/04/03	13:03	1	5	1.28905
236557d	Fe2714	1.11		mg/L	0.125				0.22249	11/04/03	13:08	1	5	1.11245
236558	Fe2714	1.17		mg/L	0.125			Π	0.23436	11/04/03	13:13	1	5	1.1718
236558s	Fe2714	5.98		mg/L	0.125	5	96.2%		1.19676	11/04/03	13:18	1	5	5.9838
lcsw-L04w3	Fe2714	1.04		mg/L	0.025	1	103.5%		1.03513	11/04/03	12:15	5	5	1.03513
pbw-L04W2 pg54-273	Fe2714	0.025	U	mg/L	0.025				-0.00950	11/04/03	12:05	5	5	-0.0095

 $()^{2}$

Ø 11/10/03

010017

PROJ. NO. PROJECT TO# DATE MATRIX LOGBK PG 06007.01.081 Div 20 03/0214 11-4-03 Liguid 54273

INSTRUMENT: TLACEL FILENAME: A031104A

INSTRUMENT DL:_____

11/04/03 11:06:54 AM

page 1

lethod: DAILY1 Standard: blk {un Time: 11/04/03 11:02:25

010018

Elem	Ag3280	A13082	As1890	B 2496	Ba4934	Be3130	Bi2230
Avge	.00000	.0005	0000	.0001	0000	0001	.0000
SDev	.00001	.0000	.0000	.0000	.0000	.0000	.0000
%RSD	141.42	1.379	60.06	45.58	10.29	4.322	18.10
#1	. 00001	. 0005		.0000	0000	0001	. 0000
#2	. 00000	. 0005		.0001	0000	0001	. 0000
Elem	Ca3179	Cd2265	Co2286	Cr2677	Cu3247	Fe2714	K 7664
Avge	.0000	.0000	0000	.0001	.0004	0000	.0011
SDev	.0000	.0000	.0000	.0000	.0000	.0000	.0004
XRSD	.4300	46.76	60.96	46.71	3.209	.4300	42.17
#1	. 0000	. 0000	0000	.0001	.0004	0000	.0007
#2	. 0000	. 0000	0000	.0001	.0004	0000	.0014
Elem	La4086	Li6707	Mg2790	Mn2576	Mc2020	Na5889	Na3302
Avge	.0005	.0003	0000	.0000	0000	0050	0002
SDev	.0000	.0000	.0000	.0000	.0000	.0002	.0000
%RSD	1.799	2.343	.4300	32.34	75.84	3.521	4.748
#1	.0005	. 0003	0000	. 0000	0000	005i	0002
#2	.0005	. 0003	0000	. 0000	0000	0049	
Elem	Ni2316	P_1782	2203/1	2203/2	Pd3404	S_1820	Sb2068
A∨ge	.0001	.0000	.0001	0001	.0000	.0000	.0000
SDev	.0001	.0000	.0001	.0001	.0000	.0000	.0000
≭RSD	86.29	54.63	115.6	69.14	2067.	62.51	75.84
#1	. 0001	. 8888	. 0000	0000	0000	. 0000	. 0000
#2	. 0000	. 8881		0001	.0000	. 0000	. 0000
Elem	Sc3613	1960/1	1960/2	Si2881	Sn1899	Sr4215	Th2837
Avge	73.13	0001	.0003	.0015	0000	.0000	.0000
SDev	.31	.0000	.0000	.0000	.0001	.0000	.0000
XRSD	.4283	32.02	7.664	.4956	2709.	7.163	19.78
#1	72.91	0001	.0003	.0015	0000	.0000	. 0000
#2	73.35	0000	.0003	.0015	.0000	.0000	. 0000
Elem	Ti3372	T11908	U_3859	V_2924	W_2079	Y_3710	2n2062
Avge	0014	0000	.0040	0000	.0000	.0000	.0000
SDev	.0000	.0000	.0000	.0000	.0000	.0000	.0000
%RSD	1.962	260.3	.1381	46.76	18.87	141.4	.0000
#1	0014		. 0040	0000	.0001	.0000	. 0000
#2	0014		. 0040	0000	.0000	.0000	. 0000
Elem Avge SDev ×RSD	Zr3496 .0002 .0000 5.768						

#1 .0002 #2 .0002

500002 12/03 M-1,

11-9-03

11/04/03 11:06:54 AM **010019** page 2

IntStd Mode	i *Counts	2 Time	3 NOTUSED	4 NOTUSED	5 NOTUSED	6 NOTUSED NOTUSED
Elem Wavlen Avge SDev %RSD	Sc 361.384 731194 3144.504 .4300503	10000 .0000000 .0000000			· · · · · · · · · · · · · · · · · · ·	
#1 #2	728971 733418	10000 10000		••••		

11/04/03 11:10:46 AM

page 1

N R	ethod: D un Time:	AILY1 11/04/03	Standar 11:07:04	d: clp_std	4		01002	0
1	Elem Avge SDev ×RSD	Ag3280 .05135 .00013 .25838	As1890 .0972 .0003 .2705	2203/1 .3865 .0002 .0621	2203/2 .3981 .0054 1.366	Sb2068 .1072 .0008 .7409	1960/1 .2150 .0013 .6072	1960/2 .3712 .0063 1.708
	#1 #2	.05126 .05145	.0970 .0974	.3863 .3866	.3943 .4020	.1067 .1078	.2141 .2159	. 3667 . 3757
	Elem A∨ge SDe∨ ≭RSD	T11908 .0271 .0001 .3749						
:	#1 #2	.0270 .0271						
	IntStd Mode Elem Wavlen Avge SDev XRSD	1 *Counts Sc 361.384 776570 953.8870 .1228334	2 Time 10000 :0000000 :0000000	3 MOTUSED	NOTUSED	NOTUSED	NOTUSED	NOTUSED
	#1 #2	775895	10000				···· ···	

11/04/03 11:14:44 AM

Method: DAILY1 Standard: clp_std1 Run Time: 11/04/03 11:10:56

010021

page 1

Elem Al	3082 Ca317	79 Fe2714	K 766	4 Li6707	Mg2790	Na3302
Avge .1	304 .1319	5 .0956	1.798	3.429	.0520	.0127
SDev .0	006 .0000	5 .0007	.009	.018	.0004	.0000
XRSD .4	896 .442	7 .7435	.5203	.5390	.7729	.0394
#1 .1	299 .131:	1 .0951	1.791	3.416	.0517	:0127
#2 .1	308 .132(3 .0961	1.804	3.442	.0522	:0127
IntStd 1 Mode *C Elem Sc Wavlen 36 Avge 79 SDev 68 *RSD .0	ounts Time 1.384 7076 1000 5.8936 .000 860512 .000	3 NOTUSEI 3 3000	> NOTUS	ED NOTUSE	D NOTUSEI	NOTUSED
#1 79 #2 79	6591 1000 7561 1000	a a	9,	••••		•••••

11/04/03 11:18:14 AM

page 1

Method: DAILY1 Standard: clp_std5 Run Time: 11/04/03 11:14:54

010022

Elem Avge SDev XRSD	B_2496 .3644 .0020 .5528	Bi2230 .0576 .0000 .0548	Mo2020 .1415 .0019 1.324	P_1782 .0326 .0004 1.363	Si2881 .1232 .0008 .6052	Sn1899 .1636 .0007 .4298	Sr4215 1.538 .008 .5207
林1 林2	.3630 .3658	.0576 .0576	.1402 .1429	.0329 .0323	.1227 .1237	.1631 .1641	1.544 1.533
Elem Avge SDev XRSD	Ti3372 1.055 .003 .2710						
料1 料2	1.053 1.057						
IntStd Mode Elem Wavlen Avge SDev XRSD	1 *Counts Sc 361.384 808347 295.5707 .0365648	2 Time 10000 :0000000 :0000000	NOTUSED	A NOTUSED	5 NOTUSED	NOTUSED	
#1 #2	808138 808556	10000 10000			···· ····	and a second second Second second second Second second	**** ****

11/04/03 11:21:24 AM

Method: DAILY1 Standard: clp_std2
Run Time: 11/04/03 11:18:24

Run Time:	: 11/04/03	11:18:24				010000
Elem Avge SDev %RSD	Ba4934 .6541 .0028 .4334	Be3130 .1995 .0021 1.048	Cr2677 .2683 .0010 .3579	Cu3247 .3248 .0001 .0314	Ni2316 .6894 .0005 .0749	VIV023
#1 #2	.6561 .6521	.1981 .2010	.2676 .2690	.3247 .3248	.6890 .6897	
IntStd Mode Elem	1 *Counts Sc	2 Time	BOTUSED	4 NOTUSED	NOTUSED	NOTUSED NOTUSED
Wavlen Avge SDev %RSD	361.384 781152 14659.03 1.876593	10000 .0000000 .0000000		· · · · · · · · · · · · · · · · · · ·	······	
#1 #2	770786 791517	10000 10000			••••••••••••••••••••••••••••••••••••••	

1ethod: DAILY1 Standard: clp_std3
{un Time: 11/04/03 11:21:34

010024

Elem Avge SDev XRSD	Cd2265 1.057 .000 .0133	Co2286 .2543 .0002 .0956	Mn2576 .3732 .0001 .0131	V 2924 .0719 .0000 .0132	Zn2062 .0761 .0001 .1470		
#1 #2	1.057 1.057	.2545 .2541	.3732 .3733	.0719 .0719	.0762 .0760		
IntStd Mode Flem	i *Counts	2 Time	3 NOTUSED	4 NOTUSED	S NOTUSED	6 NOTUSED	7 NOTUSED
Wavlen Avge	361.384 787797	10000	···· · ···		···· ····	···· ····	····
×RSD	.1552805		· · · · · · · · · · · · · · · · · · ·	****			
₩2 ₩2	788662	10000	4.444 4.444	**** ****	****	****	•••• ••••

11/04/03 11:29:52 AM

page 1

Method: DAILY1 Standard: clp_std6 Run Time: 11/04/03 11:25:26 010025

Elem Avge SDev XRSD	La4086 .3845 .0002 .0546	Na5889 .1364 .0012 .8813	Pd3404 .1429 .0005 .3708	S_1820 .0335 .0005 1.559	Th2837 .0173 .0001 .2993	U_3859 .0333 .0001 .3554	W_2079 .0263 .0001 .4952
#1 #2	. 3844 . 3847	.1355 .1372	.1425 .1432	.0331 .0339	.0173 .0173	.0332 .0334	.0262 .0264
Elem Avge SDev *RSD	Y 3710 .9751 .0002 .0209	Zr3496 1.185 .001 .0925					
#1 #2	.9753 .9750	i.185 1.184					
IntStd Mode Elem Wavlen Avge SDev XRSD	1 *Counts Sc 361.384 781564 9021.976 1.154348	2 Time 10000 .0000000 .0000000	NOTUSED	ANDTUSED	5 NOTUSED	Sotused	
#1 #2	775185 787944	1.0000 1.0000		****	· · · · · · · · · · · · · · · · · · ·		*** ***

Standard	lization	Report		11/04/6	03 11:29:53 A	i n	page 1
lethod:	DAILYI	Slop	e = Conc(Sl	R)/IR		01002	26
$\begin{array}{l} 1 \\ \text{end} \\ \text{measure} \\ \text{measure} \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ $	Wavelen 328.215 189.042 249.678 493.409 313.042 237.932 2217.502 2217.502 2228.016 3226.716 3226.201 2228.016 3226.201 2228.021 2228.021 2228.022 2228.035 2228.035 2228.035 2252.035	High std clp_std1 clp_std1 clp_std2 clp_std2 clp_std2 clp_std3 clp_std3 clp_std3 clp_std3 clp_std3 clp_std4 clp_std6 clp_st	Low std blk blk blk blk blk blk blk blk blk blk	$\begin{array}{l} \text{S10pe} \\ \text{3402.4490} \\ \text{3402.4462} \\ \text{25.24462} \\ \text{25.24462} \\ \text{25.21790} \\ \text{25.21790} \\ \text{25.21790} \\ \text{25.21790} \\ \text{25.21790} \\ \text{25.21790} \\ \text{25.221790} \\ \text{25.221790} \\ \text{25.221790} \\ \text{25.221790} \\ \text{25.221790} \\ \text{25.222240} \\ \text{26.002740} \\ \text{27.31400} \\ 2$	Y-intercept 000160 196162 .003168 001500 .001867 002831 010399 002831 010399 002960 012290 .020019 029376 012445 000814 .003289 002568 .000627 .035412 .035412 .0035412 .001955 0008964 015114 003302 .001955 000828 000993 002704 002704 002704 002704 .002704 002704 002704 .000093 008978 .000093 008000 .000133 000093 0080718 .000093 008570 008570 008570 008578 .000000 000000 000000 000000	Date Stan 11/04/03	

malysis	Report	QC Stand	lard	11/04/0	33 11:54:3	86 AM	page	1.
lethod: 1 Run Time	DAILY1 : 11/04/03	Sample Nam 11:50:10	ne: icv/ccv	•	Ope	erator:	010027	
fode: CO	VC Corr.	Factor: 1						
Elem	Ag3280	A13082	As1890	B_2496	Ba4934	Be3130	Bi2230	
Units	ppm	PPM	ppm	ppm	ppm	ppm	PPm	
Avge	1.0154	9.852	5.153	4.959	10.26	1.084	5.127	
SDev	.0102	.028	.020	.013	.05	.004	.022	
%RSD	1.0087	.2821	.3948	.2642	.5260	.3547	.4298	
#1	1.0081	9.832	5.139	4.950	10.30	1.081	5.143	
#2	1.0226	9.872	5.168	4.968	10.22	1.087	5.112	
Errors	QC Pass	QC Pass	QC Pass	QC Pass	QC Pass	QC Pass	QC Pass	
Valu <i>e</i>	1.0000	10.00	5,000	5.000	10.00	1.000	5.000	
Range	10.000	10.00	10.00	10.00	10.00	10.00	10.00	
Elem	Ca3179	Cd2265	Co2286	Cr2677	Cu3247	Fe2714	K_7664	
Units	ppm	Ppm	ppm	ppm	ppm	PPm	ppm	
Avge	20.01	.9782	4.871	1.960	2.069	10.28	18.89	
SDev	.18	.0003	.029	.013	.004	.07	.01	
%RSD	.9058	.0317	.6040	.6608	.1911	.7102	.0786	
#1	19.88	.9779	4.850	1.951	2.072	10.23	18.88	
#2	20.14	.9784	4.892	1.969	2.066	10.33	18.90	
Errors	QC Pass	QC Pass	QC Pass	QC Pass	QC Pass	QC Pass	QC Pass	
Value	20.00	1.000	5.000	2.000	2.000	10.00	20.00	
Range	10.00	10.00	10.00	10.00	10.00	10.00	10.00	
Elem	La4086	Li6707	Mg2790	Mn2576	Mo2020	Na5889	Na3302	
Units	PPm	ppm	ppm	ppm	ppm	PPm	ppm	
Avge	5.296	4.991	19.96	1.019	5.083	Q47.12	026.71	
SDev	.010	.009	.06	.006	.044	.00	.44	
XRSD	.1887	.1803	.3198	.6112	.8661	.0022	1.629	
#1	5.304	4.998	19.92	1.015	5.052	Q47.12	Q26.40	
#2	5.289	4.985	20.01	1.024	5.114	Q47.12	27.01	
Errors	QC Pass	QC Pass	QC Pass	QC Pass	QC Pass	QC Fail	QC Fail	
Value	5.000	5.000	20.00	1.000	5.000	30.00	30.00	
Range	10.00	10.00	10.00	10.00	10.00	10.00	10.00	
Elem	Ni2316	P_1782	2203/1	2203/2	Pd3404	S_1820	Sb2068	
Units	ppm	ppm	Ppm	ppm	Ppm	ppm	ppm	
Avge	4.870	5.138	5.085	5.103	1.074	1.007	1.022	
SDev	.002	.055	.008	.004	.001	.023	.007	
XRSD	.0503	1.063	.1617	.0757	.0521	2.318	.6417	
詳1	4.869	5.099	5.079	5.100	1.073	.9903	1.017	•
料2	4.872	5.176	5.090	5.105	1.074	1.023	1.026	
Errors Value Range	QC Pass 5.000 10.00	QC Pass 5.000 10.00	NOCHECK	NOCHECK	QC Pass 1.000 10.00	QC Pass 1.000 10.00	QC Pass 1.000 10.00	
Elem	Sc3613	1960/1	1960/2	Si2881	Pb220	Se196	Sn1899	
							-	

				010028				
Analysis	Report	QC Star	ndand	11/04/	/03 11:54:3	36 AM	page 2	
Units Avge SDev %RSD	xR 96.49 .65 .6690	225 5.532 .084 .0801	ppm 5.454 .045 .8222	ppm 4.919 .007 .1467	ppm 5.091 .005 .1043	ppm 5.474 .031 .5725	ppm 4.945 .035 .7122	
#1 #2	96.03 96.95	5.529 5.535	5.422 5.485	4.914 4.924	5.088 5.095	5.452 5.496	4.921 4.970	
Errors Value Range	NOCHECK	NOCHECK	NOCHECK	QC Pass 5.000 10.00	QC Pass 5.000 10.00	QC Pass 5.000 10.00	QC Pass 5.000 10.00	
Elem Units Avge SDev %RSD	Sr4215 ppm 5.372 .027 .4976	Th2837 ppm Q3.466 .030 .8687	Ti3372 ppm 4.900 .014 .2788	T11908 05.515 .010 .1795	U_3859 PPm .9974 .0143 1.438	V_2924 ppm 4.943 .017 .3474	W_2079 ppm Q4.513 .011 .2327	
料1 料2	5.391 5.353	Q3.445 Q3.487	4.890 4.909	Q5.508 Q5.522	.9872 1.008	4.930 4.955	Q4.506 Q4.520	
Errors Value Range	QC Pass 5.000 10.00	QC Fail 1.000 10.00	QC Pass 5.000 10.00	QC Fail 5.000 10.00	QC Pass 1.000 10.00	QC Pass 5.000 10.00	QC Fail 1.000 10.00	
Elem Units Avge SDev *RSD	Y_3710 ppm 5.288 .010 .1980	Zn2062 ppm .9808 .0120 1.228	Zr3496 ppm 4.852 .000 .0102					
#1 #2	5.296 5.281	.9723 .9893	4.852 4.853					
Errors Value Range	QC Pass 5.000 10.00	QC Pass 1.000 10.00	QC Pass 5.000 10.00					

malysis	Report	QC Stan	dard	11/04/	03 11:54:3	16 AM	page 3
IntStd Mode	1 *Counts	2 Time	3 NOTUSED	4 NOTUSED	5 NOTUSED	6 NOTUSED	7 NOTUSED
Llem Wavlen Avge SDev XPSD	50 361.384 705650 4709.331 6677749	10000 .0000000	· · · · · · · · · · · · · · · · · · ·	···· ····	······································		
料1 料2	702320 708980	10000 10000		ere (m.	· · · · · · · · · · · · · · · · · · ·	••••••••••••••••••••••••••••••••••••••	
Analysi	s Report	Blank Sample		11/04	/03 12:01:0	90 PM	page 1
-----------------------	--------------------------	--------------------------	-------------	---------	--------------------------	--------------------------	--------------------------
Method: Run Time	DAILY1 e: 11/04/03	Sample N 11:56:33	ame: icb/co	rb	Ope	erators	
lode: C	ONC Corr.	Factor:	i.				
Elem	Ag3280	A13082	As1890	B_2496	Ba4934	Be3130	Bi2230
Units	PPm	Ppm	ppm	Ppm	ppm	ppm	Ppm
Ayge	.00044	.0198	.0016	.0120	H.0106	.0009	.0024
SDev	.00059	.0009	.0032	.0051	.0060	.0008	.0012
%RSD	136.02	4.352	202.7	42.66	56.91	87.23	49.94
#1	.00085	.0192	.0039	.0156	H.0149	.0014	.0033
#2	.00002	.0204	0007	.0083	H.0064	.0003	.0016
Errors	LC Pass	LC Pass	LC Pass	LC Pass	LC High	LC Pass	LC Pass
High	.00500	.0500	.0050	.0500	.0050	.0050	.0050
Low	00500	0500	0050	0500	0050	0050	0050
Elem	Ca3179	Cd2265	Co2286	Cr2677	Cu3247	Fe2714	K_7664
Units	ppm	ppm	ppm	ppm	Ppm	PPm	ppm
Avge	.0198	.0010	H.0051	0011	.0016	0008	.0174
SDev	.0118	.0005	.0027	.0010	.0015	.0004	.0097
XRSD	59.48	54.19	52.58	90.25	93.56	52.21	55.84
#1	.0281	.0014	H.0070	0004	.0027	0005	.0105
#2	.0114	.0006	.0032	0019	.0005	0010	.0242
Errors	LC Pass	LC Pass	LC High	LC Pass	LC Pass	LC Pass	LC Pass
High	.0500	.0050	.0050	.0050	.0050	.0250	.1000
Low	0500	0050	0050	0050	0050	0250	1000
Elem	La4086	Li6707	Mg2790	Mn2576	Mo2020	Na5889	Na3302
Units	PPm	Ppm	ppm	ppm	ppm	ppm	ppm
Avge	H.0052	-0033	.0186	.0006	H.0127	.0320	0069
SDev	.0027	-0018	.0103	.0006	.0047	.0139	.1909
XRSD	52.35	54.35	55.67	97.61	37.04	43.57	2754.
#1	H.0071	.0046	.0259	.0011	H.0161	.0418	L1419
#2	.0033	.0020	.0113	.0002	H.0094	.0221	H.1281
Errors	LC High	LC Pass	LC Pass	LC Pass	LC High	LC Pass	LC Pass
High	.0050	.0050	.0500	.0050	.0050	.0500	.0500
Low	0050	0050	0500	0050	0050	0500	0500
Elem	Ni2316	P_1782	2203/1	2203/2	Pd3404	S_1820	Sb2068
Units	Ppm	PPm	ppm	PPm	Ppm	PPm	Ppm
Avge	.0038	.0125	.0030	.0079	.0007	-0082	.0006
SDev	.0027	.0064	.0006	.0026	.0007	-0001	.0012
XRSD	71.41	51.27	21.43	32.84	97.07	-7659	200.4
#1	H.0057	H.0170	.0035	.0097	.0002	.0082	0003
#2	.0019	.0080	.0026	.0060	.0012	.0081	.0015
Errors High Low	LC Pass .0050 0050	LC High .0100 0100	NOCHECK	NOCHECK	LC Pass .0050 0050	LC Pass .0100 0100	LC Pass .0100 0100
Elem	Sc3613	1960/1	1960/2	Si2881	P9556	Se196	Sn1899

malysis	Report	Blank (Sample	11/04	/03 12:01:	90 PM	page 2
Units	*R	ppm	ppm	ppm	ррт	ppm	РР
Avge	99.79	.0031	.0058	.0041	Н.0062	- 0049	. 0050
SDev	.54	.0054	.0069	.0048	.0019	- 0028	. 0004
%RSD	.5397	176.2	118.8	117.7	31.01	57.01	8. 768
#1	99.41	0008	.0107	.0075	H.0076	H.0069	H.0053
#2	100.2	.0069	.0009	.0007	H.0049	.0029	.0047
Errors High Low	NOCHECK	NOCHECK	NOCHECK	LC Pass .0100 0100	LC High .0030 0030	LC Pass .0050 0050	LC High .0050 0050
Elem	Sr4215	Th2837	Ti3372	T11908	U_3859	V_2924	W_2079
Units	ppm	ppm	ppm	ppm	PPM	ppm	ppm
Avge	H.0057	.0038	.0044	- 0015	.0096	.0049	H.0273
SDev	.0032	.0015	.0028	- 0028	.0088	.0030	.0076
XRSD	56.79	39.54	63.20	184.8	91.87	62.09	27.73
#1	H.0080	.0027	H.0064	.0005	.0034	H.0070	H.0327
#2	.0034	.0048	.0024	0035	.0158	.0027	H.0220
Errors	LC High	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass	LC High
High	.0050	.0100	.0050	.0100	.1000	.0050	.0100
Low	0050	0100	0050	0100	1000	0050	0100
Elem Units Avge SDev XRSD	Y_3710 ppm H.0055 .0031 56.79	Zn2062 ppm .0011 .0005 48.12	Zr3496 ppm .0045 .0025 54.93				
#1 #2	H.0077 .0033	.0014 .0007	H.0062 .0027				
Errors High	LC High .0050	LC Pass .0050	LC Pass .0050				

IntStd Mode Flom	1 *Counts	2 Time	3 NOTUSED	NOTUSED	NOTUSED	6 NOTUSED	7 NOTUSED
Wavlen Avge SDev %RSD	361.384 729741 3898.987 .5342974	10000 .0000000 .0000000			••••		
#1 #2	726984 732498	10000 10000	· · · · · · · · · · · · · · · · · · ·			••••	••••

Analysis	Report			11/04/03 12:05:37 PM				
Method: Run Time	DAILY1 : 11/04/03	Sample Na 3 12:01:10	me: pbw-L0	14W1 pg54-2	72 Op	erator:		
Node: CC	INC Corr.	Factor: 1						
Elem	Ag3280	A13082	As1890	B_2496	Ba4934	Be3130	Bi2230	
Units	Ppm	ppm	Ppm	PPm	ppm	ppm	ppm	
Avge	.00021	.0214	0010	- 0019	.0005	0005	0012	
SDev	.00002	.0022	.0038	- 0008	.0003	.0001	.0004	
XRSD	9.5341	10.17	369.9	39.91	56.34	18.52	31.11	
#1	.00020	.0229	.0017	.0024	.0007	0004	0010	
#2	.00023	.0199	0037	.0013		0005	0015	
Errors	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass	
High	.00500	.0500	.0050	.0500	.0050	.0050	.0050	
Low	00500	0500	0050	0500	0050	0050	0050	
Elem	Ca3179	Cd2265	Co2286	Cr2677	Cu3247	Fe2714	K_7664	
Units	Ppm	ppm	ppm	ppm	ppm	Ppm	ppm	
Avge	.0311	.0002	.0002	0031	.0003	0104	.0109	
SDev	.0002	.0000	.0004	.0005	.0003	.0073	.0115	
%RSD	.6734	9.521	246.5	17.12	78.68	69.93	105.4	
#1	.0312	.0002	.0005	0027	.0005	0053	.0191	
#2	.0309		0001	0034	.0001	0156	.0028	
Errors	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass	
High	.0500	.0050	.0050	.0050	.0050	.0250	.1000	
Low	0500	0050	0050	0050	0050	0250	1000	
Elem	La4086	Li6707	Mg2790	Mn2576	Mo2020	Na5889	Na3302	
Units	ppm	Ppm	Ppm	ppm	Ppm	ppm	Ppm	
Avge	.0004	.0002	.0040	0001	.0026	H.0856	.0019	
SDev	.0004	.0001	.0029	.0001	.0007	.0016	.1770	
*RSD	110.9	68.76	72.42	87.68	27.52	1.838	9361.	
#1	.0007	.0003	.0019	0000	.0032	H.0867	H.1270	
#2	.0001	.0001	.0060	0001		H.0845	L1233	
Errors	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass	LC High	LC Pass	
High	.0050	.0050	.0500	.0050	.0050	.0500	.0500	
Low	0050	0050	0500	0050	0050	0500	0500	
Elem	Ni2316	P_1782	2203/1	2203/2	Pd3404	S_1820	Sb2068	
Units	Ppm	PPm	PPm	ppm	Ppm	Ppm	Ppm	
Avge	0012	H.0185	.0028	0006	.0013	H.0147	.0016	
SDev	.0011	.0038	.0001	.0013	.0008	.0083	.0014	
%RSD	96.19	20.61	4.722	228.8	64.25	56.93	91.76	
#1	0004	H.0158	.0028	0015	.0019	.0088	.0026	
#2	0020	H.0212		.0004	.0007	H.0206	.0006	
Errors High Low	LC Pass .0050 0050	LC High .0100 0100	NOCHECK	NOCHECK	LC Pass .0050 0050	LC High .0100 0100	LC Pass .0100 0100	
Elem	Sc3613	1960/1	1960/2	Si2881	Pb220	Se196	Sn1899	

Analysis Report

11/04/03 12:05:37 PM page 2

Units	%R	ppm	ppm	ppm	ppm	ppm	ppm
Avge	95.61	.0003	0038	4.0241	.0006	0024	.0018
SDev	.65	.0010	.0006	.0037	.0009	.0008	.0006
%RSD	.6812	345.3	16.88	15.41	160.6	31.36	31.21
#1	95.15	.0010	0033	H.0215	0001	0019	.0014
#2	96.07	0004	0042	H.0267	.0012	0029	.0021
Errors High Low	NOCHECK	NOCHECK	NOCHECK	LC High .0100 0100	LC Pass .0030 0030	LC Pass .0050 0050	LC Pass .0050 0050
Elem	Sr4215	Th2837	Ti3372	T11908	U_3859	V_2924	W_2079
Units	PPm	ppm	PPM	PPm	ppm	ppm	PPM
Avge	.0003	0027	.0002	.0038	.0021	.0002	H.0209
SDev	.0001	.0087	.0000	.0082	.0024	.0003	.0123
XRSD	38.81	323.4	7.583	214.5	113.9	141.4	59.13
#1	.0004	.0035	.0002	.0020	.0004	.0004	H.0296
#2	.0002	0088		0096	.0038	.0000	H.0122
Errors	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass	LC High
High	.0050	.0100	.0050	.0100	.1000	.0050	.0100
Low	0050	0100	0050	0100	1000	0050	0100
Elem Units Ayge SDev XRSD	Y_3710 ppm .0002 .0003 110.2	Zn2062 ppm .0013 .0000 .2972	Zr3496 Ppm .0001 .0003 626.5				
#1 #2	.0004	.0013 .0013	.0003 0002				
Errors High Low	LC Pass .0050 0050	LC Pass .0050 0050	LC Pass .0050 0050				

Analysis Report

11/04/03 12:05:37 PM page 3

IntStd Mode Elem	1 *Counts Sc	2 Time	3 NOTUSED	4 NOTUSED	S NOTUSED	NOTUSED	7 Notused
Wavlen Avge SDev %RSD	361.384 699187 4775.799 .6830503	10000 .0000000 .0000000	····			······································	
#1 #2	695810 702564	10000 10000	····		**** ****	••••	••••

Analysis Report

11/04/03 12:10:13 PM

<pre>dethod: DAILY1 Sample Mame:</pre>	pbw-L04W2 pg54-273 Operator:
Run Time: 11/04/03 12:05:46	
Comment:	
Mode: CONC Corr. Factor: 1	

Elem	Ag3280	A13082	As1890	B_2496	Ba4934	Be3130	Bi2230
Units	Ppm	Ppm	Ppm	Ppm	ppm	Ppm	Ppm
Avge	00010	.0152	.0004	.0001	.0000	0005	.0001
SDev	.00004	.0002	.0037	.0003	.0000	.0000	.0006
%RSD	41.277	1.510	899.3	276.4	43.03	8.961	626.1
#1	00007	.0151	0022	.0004	.0000	0005	.0006
#2	00014	.0154	.0030	0001	.0001	0005	0004
Errors	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass
High	.00500	.0500	.0050	.0500	.0050	.0050	.0050
Low	00500	0500	0050	0500	0050	0050	0050
Elem	Ca3179	Cd2265	Co2286	Cr2677	Cu3247	Fe2714	K_7664
Units	ppm	PPm	ppm	ppm	ppm	Ppm	PPm
Avge	.0143	.0000	.0001	0031	.0018	- 0095	0150
SDev	.0003	.0000	.0000	.0001	.0003	.0002	.0349
%RSD	2.114	125.2	57.10	2.423	17.21	1.966	232.1
#1	.0145	. 0000	.0001	0032	.0016	0096	0397
#2	.0141	. 0000	.0000	0031	.0021	0094	.0096
Errors	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass
High	.0500	.0050	.0050	.0050	.0050	.0250	.1000
Low	0500	0050	0050	0050	0050	0250	1000
Elem	La4086	Li6707	Mg2790	Mn2576	Mc2020	Na5889	Na3302
Units	ppm	ppm	PPm	ppm	ppm	ppm	ppm
Avge	.0001	0001	.0019	0001	.0013	H.0782	L1728
SDev	.0001	.0001	.0000	.0000	.0005	.0063	.2671
*RSD	42.26	58.07	.6391	27.10	39.12	8.090	154.6
#1	.0001	0001	.0019	0001	.0009	H.0738	L3617
#2		0001	.0018	0001	.0016	H.0827	.0161
Errors	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass	LC High	LC Low
High	.0050	.0050	.0500	.0050	.0050	.0500	.0500
Low	0050	0050	0500	0050	0050	0500	0500
Elem	Ni2316	P_1782	2203/1	2203/2	Pd3404	S_1820	Sb2068
Units	ppm	PPm	PPm	PPm	PPm	PPm	ppm
Avge	- 0018	.0063	.0015	- 0003	0004	H.0119	0008
SDev	.0009	.0045	.0002	.0003	.0002	.0013	.0010
%RSD	47.92	71.26	11.08	132.1	54.70	10.56	121.5
#1 #2	0024 0012	.0094 .0031	.0014 .0016	0000	0002	H.0128 H.0110	0001 0015
Errors High Low	LC Pass .0050 0050	LC Pass .0100 0100	NOCHECK	NOCHECK	LC Pass .0050 0050	LC High .0100 0100	LC Pass .0100 0100
Elem	Sc3613	1960/1	1960/2	Si2881	P6250	Se196	Sn1899

Inalysis Report

11/04/03 12:10:13 PM page 2

							and the second
Units Avge SDev %RSD	XR 94.32 .29 .3093	PPM .0001 .0015 2244.	ppm 0042 .0005 11.49	ррт Н.0282 .0040 14.08	ppm .0003 .0002 51.39	ppm - 0027 - 0008 29.33	Ppm .0001 .0003 382.2
#1 #2	94.12 94.53	0010 .0011	0045 0038	H.0254 H.0310	.0005	0033	0003 .0001
Errors High Low	NOCHECK	NOCHECK	NOCHECK	LC High .0100 0100	LC Pass .0030 0030	LC Pass .0050 0050	LC Pass .0050 0050
Elem Units Ayge SDey %RSD	Sr4215 Ppm .0000 .0000 26.56	Th2837 ppm 0011 .0064 558.4	Ti3372 PPm 0002 .0001 43.32	T11908 ppm L0138 .0035 24.95	U_3859 PPm 0170 .0057 33.22	V_2924 PPm 0001 .0002 122.0	W_2079 ppm .0068 .0122 179.8
#1 #2	.0000 .0001	.0034 0057	0003 0001	L0163 L0114	0210 0130	0002 I 0000	4.0154 0018
Errors High Low	LC Pass .0050 0050	LC Pass .0100 0100	LC Pass .0050 0050	LC Low .0100 0100	LC Pass .1000 1000	LC Pass .0050 0050	LC Pass .0100 0100
Elem Units Avge SDev XRSD	Y_3710 PPm 0000 .0000 210.7	Zn2062 ppm .0005 .0001 29.64	Zr3496 ppm 0003 .0001 37.51				
#1 #2	0000	.0004 .0006	0002 0003				
Errors High Low	LC Pass .0050 0050	LC Pass .0050 0050	LC Pass .0050 0050				

Analysis Report

IntStd Mode Elem	i *Counts Sc	2 Time	3 NOTUSED	NOTUSED	5 NOTUSED	NOTUSED	7 NOTUSED
Wavlen Avge	361.384 689799	10000	**** ****		···· ···	**** ****	**** ****
SDev XRSD	2112.835	. 0000000 . 0000000	4974 4400	**** ****	···· ··· ·		
¥1 ¥2	688305 691293	10000 10000		···· ···		••••	****

malysis Report

11/04/03 12:14:54 PM page 1

							• •
lethod: Cun Time	DAILY1 : 11/04/03	Sample Na 12:10:23	me: lcsw-	_04W1	Op	erator:	
lode: CC	MC Corr.	Factor: 1					
Elem	Ag3280	A13082	As1890	B_2496	Ba4934	Re3130	Bi2230
Units	Ppm	ppm	Ppm	ppm	ppm	ppm	PPm
Avge	.05127	1.963	2.159	.0006	2.140	.0583	-0048
SDev	.00056	.002	.003	.0006	.002	.0001	.0002
%RSD	1.1001	.0820	.1353	105.3	.1015	.1570	4.976
#1	.05088	1.964	2.157	. 0001	2.139	.0583	0046
#2	.05167	1.962	2.161	. 0010	2.142	.0584	0049
Elem Units Avge SDev %RSD	Ca3179 20.76 .02 .1169	Cd2265 ppm .0514 .0000 .0025	Co2286 ppm .5128 .0016 .3221	Cr2677 ppm .2045 .0002 .1189	Cu3247 ppm .2621 .0011 .4336	Fe2714 ppm 1.031 .004 .4104	K_7664 ppm 16.49 .02 .1356
#1	20.75	.0514	.5116	.2043	.2613	1.034	$16.48 \\ 16.51$
#2	20.78	.0514	.5139	.2046	.2629	1.028	
Elem	La4086	Li6707	Mg2790	Mn2576	Mc2020	Na5889	Na3302
Units	ppm	PPm	ppm	PPM	ppm	PPm	ppm
Avge	0001	0000	20.53	.5327	.0004	29.71	16.79
SDev	.0005	.0000	.03	.0004	.0007	.07	.08
%RSD	698.4	923.7	.1310	.0729	184.2	.2470	.4814
#1	0004	0000	20.55	.5329	.0008	29.76	16.73
#2	.0003	. 0000		.5324	0001	29.66	16.84
Elem	Ni2316	P_1782	2203/1	2203/2	Pd3404	S_1820	Sb2068
Units	Ppm	ppm	ppm	PPm	ppm	ppm	PP
Avge	.5119	4.153	5286	.5330	.0005	.0103	- 5252
SDev	.0021	.146	.0051	.0016	.0019	.0037	- 0039
XRSD	.4068	3.509	.9667	.3096	360.4	36.42	- 7373
#1 #2	.5105 .5134	4.050 4.256	. 5250	.5319 .5342	0008 .0018	.0076 .0129	. 5225
Elem Units Avge SDev %RSD	Sc3613 %R 93.62 .75 .8063	1960/1 Ppm 2.198 .007 .2994	1960/2 2.232 .019 .8731	Si2881 PPM .0320 .0010 3.111	Pb220 Ppm .5310 .0028 .5274	Se196 ppm 2.219 .015 .6839	Sn1899 ppm 0004 .0006 143.8
#1	93.08	2.193	2.219	.0313	.5291	2.208	.0000
#2	94.15	2.203	2.246	.0327	.5330		-,0009
Elem	Sr4215	Th2837	Ti3372	T11908	U_3859	V_2924	W_2079
Units	ppm	PPm	PPm	PPM	ppm	ppm	ppm
Avge	.0003	0185	0005	2.236	.0122	.5147	.0319
SDev	.0000	.0036	.0003	.007	.0173	.0004	.0020
XRSD	9.634	19.38	64.35	.3101	141.7	.0723	6.193
#1 #2	.0003 .0003	0160 0211	0007 0003	2.231 2.240	0000 .0244	.5149	.0305

Analysis Report

Elem Units Avge SDev %RSD	Y_3710 ppm .0001 .0001 69.25	Zn2062 PPM .5205 .0014 .2700	Zr3496 ppm .0001 .0001 57.92				
#1 #2	0001 0000	.5195 .5214	.0001 .0002				
IntStd Mode Elem Wavlen Avge SDev %RSD	1 *Counts Sc 361.384 684651 5468.764 .7987667	2 Time 10000 .0000000 .0000000	3 NOTUSED	4 NOTUSED	S NOTUSED	6 NOTUSED	7 NOTUSED
#1 #2	680784 688518	10000 10000	••••	••••	4974 4489 2844 4844		

malysis Report

11/04/03 12:19:30 PM page 1

Operator:

lethod: DAILY1 (un Time: 11/04	Sample N 12:15:04	ame: lesw-l	.@4w3	Ope	erator:	
Comment: Tode: CONC Co	orr. Factor:	L				
Elem Ag3280) A13082	As1890	R_2496	Ba4934	Be3130	Bi2230
Units ppm	ppm	ppm	PPm	PPm	Ppm	PPm
Avge .05119	1.954	2.171	.3734	2.116	.0575	.0029
SDev .00033	. 015	.008	.0013	.010	.0006	.0019
%RSD .60088	. 7697	.3878	.3487	.4511	1.105	67.79
#1 .0509(1.965	2.177	.3743	2.122	.0580	.0015
#2 .0514:	1.944	2.165	.3725	2.109	.0571	.0043
Elem Ca317) Cd2265	Co2286	Cr2677	Cu3247	Fe2714	K_7664
Units ppm	PPM	ppm	ppm	ppm	ppm	ppm
Avge 20.59	.0521	.5107	.1999	.2611	1.035	16.16
SDev .13	.0807	.0056	.0023	.0005	.006	.04
%RSD .6529	1.405	1.095	1.169	.1903	.6073	.2306
#1 20.68 #2 20.49	.0526	.5146 .5067	.2015 .1982	.2607 .2614	1.040 1.031	$16.13 \\ 16.18$
Elem La4080	5 Li6707	Mg2790	Mn2576	Mo2020	Na5889	Na3302
Units ppm	ppm	ppm	ppm	ppm	PPM	PP ^m
Avge000	40000	20.22	.5337	4.198	29.14	16.60
SDev .000	1 .0000	.16	.0058	.006	.02	.10
%RSD 27.01	137.7	.7718	1.085	.1489	.0673	.5757
#1000	30000	20.33	.5378	4.194	29.15	$16.54 \\ 16.67$
#2000	50000	20.11	.5296	4.203	29.13	
Elem Ni231	S P_1782	2203/1	2203/2	Pd3404	S_1820	Sb2068
Units ppm	Ppm	PPm	ppm	PPM	ppm	PPm
Avge .5158	.0234	.5509	.5413	.0013	.0198	-5344
SDev .0059	.0132	.0151	.0017	.0021	.0013	-0025
%RSD 1.140	56.42	2.735	.3150	162.4	6.364	-4599
#1 .5200	.0327	.5616	.5425	.0028	.0207	.5326
#2 .5117	.0141	.5403	.5401	0002	.0189	.5361
Elem Sc361 Units XR Avge 94.82 SDev 1.60 XRSD 1.692	3 1960/1 ppm 2.144 .014 .6432	1960/2 ppm 2.165 .016 .7608	Si2881 ppm - 1574 .0058 3.664	Pb220 ppm .5440 .0062 1.131	Se196 20156 .016 .7223	Sn1899 Ppm .0022 .0007 33.20
#1 93.69	2.153	2.177	1615	.5483	2.167	.0017
#2 95.96	2.134	2.154	1533	.5396	2.145	.0027
Elem Sr421 Units ppm Avge .0002 SDev .0000 %RSD .0000	5 Th2837 ppm 0207 .0033 15.94	Ti3372 ppm 0004 .0003 74.66	T11908 2253 .007 .3001	U_3859 ppm .0817 .0104 12.77	V_2924 ppm .5141 .0016 .3042	W_2079 ppm 19.35 .08 .3916
#1 .0002 #2 .0002	0230 0184	0002	2.257 2.248	.0890	.5152	19.40 19.29

malysis Report

11/04/03 12:19:30 PM page 2

Elem Units Avge SDev %RSD	Y_3710 ppm -0000 .0000 98.53	Zn2062 ppm .5198 .0066 1.276	Zr3496 ppm .0080 .0013 15.63				
#1 #2	0000 0001	.5245 .5151	.0089 .0071				
IntStd Mode Elem Wavlen Avge SDev XRSD	1 *Counts Sc 361.384 693471 11725.25 1.690805	2 Time 10000 .0000000 .0000000	NOTUSED	A NOTUSED	5 NOTUSED	6 MOTUSED	NOTUSED
¥1 #2	685180 701762	10000 10000				••••••••••••••••••••••••••••••••••••••	

Operator:

Analysis Report

11/04/03 12:24:06 PM

lethod: Run Time	DAILY1 : 11/04/03	Sample Name: 12:19:40	237179
Comment: Mode: CC	INC Corr.	Factor: 1	
Elam	0n 3280	013002 Qc	1890 F

Elem	Ag3280	A13082	As1890	R_2496	Ba4934	Ke3130	B12230
Units	PPm						
Avge	00182	.3530	.0026	.2154	.0118	- 0001	0086
SDev	.00276	.0062	.0075	.0023	.0039	.0002	.0082
%RSD	151.67	1.756	291.3	1.079	33.33	142.9	94.73
#1	.00013	.3574	.0079	.2171	.0146	.0000	0028
#2	00378	.3486	0027	.2138	.0090	0003	0144
Elem	Ca3179	Cd2265	Co2286	Cr2677	Cu3247	Fe2714	K_7664
Units	PPm						
Avge	.3977	.0001	.0023	0015	.0159	0088	2.996
SDev	.0462	.0006	.0026	.0006	.0006	.0104	.021
XRSD	11.61	760.3	111.1	36.28	3.473	118.3	.6907
#1	.4303	.0005	.0041	0011	.0163	0014	3.010
#2	.3650	0004	.0005	0019	.0156	0161	2.981
Elem	La4086	Li6707	Mg2790	Mn2576	Mo2020	Na5889	Na3302
Units	PPm						
Avge	0009	.0006	.1236	.0020	.0269	12.58	7.299
SDev	.0021	.0001	.0536	.0011	.0113	.20	.381
%RSD	241.2	18.96	43.36	54.56	42.03	1.582	5.218
#1	.0006	.0006	.1614	.0028	.0349	12.44	7.568
#2	0024	.0005	.0857	.0012	.0189	12.72	7.030
Elem	Ni2316	P_1782	2203/1	2203/2	Pd3404	S_1820	Sb2068
Units	PPm						
Avge	.0009	.6776	.0073	.0087	0044	1.556	.1814
SDev	.0015	.0068	.0092	.0057	.0080	.065	.0076
XRSD	182.2	1.003	125.0	65.73	179.9	4.186	4.198
#1	.0020	.6824	0009	.0047	.0012	1.602	.1868
#2	0002	.6728	0138	.0127	0101	1.510	.1760
Elem	Sc3613	1960/1	1960/2	Si2881	Pb220	Se196	Sn1899
Units	XR	Ppm	PPm	PPm	Ppm	Ppm	ppm
Avge	97.91	.0000	.0125	1.953	.0034	.0083	.0000
SDev	1.79	.0097	.0035	.009	.0008	.0056	.0022
%RSD	1.827	57840.	28.30	.4378	22.61	67.10	6451.
#1	99.18	.0069	.0150	1.947	.0028	.0123	.0015
#2	96.65	0069	.0180	1.959	.0039	.0044	0016
Elem	Sr4215	Th2837	Ti3372	T11908	U_3859	V_2924	W_2079
Units	Ppm						
Avge	.0006	0004	0004	0125	.0028	.0020	.0823
SDev	.0001	.0021	.0013	.0163	.0630	.0005	.0655
XRSD	17.19	529.6	365.5	130.3	2253.	23.82	79.58
¥1	.0007	0019	.0006	0010	.0473	.0024	.1287
¥2	.0005	.0011	0013	0241	0417	.0017	.0360

malysis Report

11/04/03 12:24:06 PM page 2

Elem Units Avge SDev %RSD	Y_3710 ppm 0000 .0001 243.3	Zn2062 ppm .0049 .0025 50.82	Zr3496 ppm 0001 .0006 654.1				
#1 #2	. 0000 0001	.0066 .0031	.0003 0005				
IntStd Mode Elem Wavlen Avge SDev XRSD	1 *Counts Sc 361.384 715992 13050.36 1.822697	2 Time 10000 .0000000 .0000000	NOTUSED	4 10TUSED 	5 NOTUSED	6 NOTUSED	
料1 料2	725220 706764	10000 10000	••••••••••••••••••••••••••••••••••••••				-

page 1

Analysis Report

11/04/03 12:28:42 PM

Method: DAILY1 Sample Name: 237179d Run Time: 11/04/03 12:24:16 Comment: Mode: CONC Corr. Factor: 1

Operator:

							Second States and States
Elem	Ag3280	A13082	As1890	B_2496	Ba4934	Be3130	Bi2230
Units	ppm	PPm	ppm	PPM	ppm	PPm	Ppm
Avge	00065	.3621	.0020	.2210	.0052	0004	0013
SDev	.00038	.0057	.0019	.0010	.0001	.0001	.0004
%RSD	57.460	1.569	93.83	.4627	2.401	20.67	32.74
#1	00092	.3661	.0007	.2202	.0053	0004	0016
#2	00039	.3581	.0033	.2217		0003	0010
Elem	Ca3179	Cd2265	Co2286	Cr2677	Cu3247	Fe2714	K_7664
Units	ppm	Ppm	ppm	PPm	ppm	PPm	PPm
Avge	.3472	.0003	.0018	0024	.0152	0055	3.008
SDev	.0031	.0001	.0001	.0605	.0003	.0014	.006
%RSD	.9042	49.53	6.956	20.12	1.765	24,53	.2140
#1	. 3494	.0002	.0019	0021	.0150	0046	3.013
#2	. 3450	.0004	.0018		.0153	0065	3.004
Elem	La4086	Li6707	Mg2790	Mn2576	Mc2020	Na5889	Na3302
Units	ppm	ppm	ppm	ppm	Ppm	ppm	ppm
Avge	0000	-0006	.0686	.0010	.0067	12.64	7.565
SDev	.0002	-0000	.0011	.0000	.0011	.03	.186
*RSD	1091.	5.814	1.669	4.397	16.64	.2412	2.465
#1	.0001	.0006	.0695	.0010	.0075	12.66	7.696
#2	0001		.0678	.0010	.0059	12.62	7.433
Elem	Ni2316	P_1782	2203/1	2203/2	Pd3404	S_1820	Sb2068
Units	ppm	ppm	ppm	ppm	Ppm	ppm	ppm
Avge	0010	.6964	.0007	0013	.0008	1.640	.1844
SDev	.0007	.0028	.0026	.0012	.0021	.053	.0037
XRSD	69.91	.3973	356.8	92.34	272.2	3.227	1.996
#1 #2	0014 0005	.6944	.0026 0011	0022	.0022 0007	1.603	.1871 .1818
Elem	Sc3613	1960/1	1960/2	Si2881	Pb220	Se196	Sn1899
Units	%R	ppm	ppm	ppm	Ppm	Ppm	ppm
Avge	97.31	-0024	0014	2.003	0006	0001	.0017
SDev	1.00	-0061	.0037	.000	.0001	.0004	.0010
XRSD	1.025	249.6	253.6	.0080	8.778	300.8	61.82
#1	96.60	.0067	0040	2.004	0006	0004	.0024
#2	98.01	0019	.0011	2.003	0007		.0010
Elem Units Avge SDev %RSD	Sr4215 PPm .0007 .0000 .5645	Th2837 ppm 0025 .0039 158.9	Ti3372 Ppm .0005 .0000 .0000 9.063	T11908 ppm .0041 .0022 53.55	U_3859 ppm .0323 .0077 23.77	V_2924 ppm .0001 .0001 99.53	W_2079 ppm .0241 .0161 66.58
#1 #2	.0007 .0007	0053 .0003	.0004	.0025	.0269 .0378	.0002	.0355

Analysis Report

11/04/03 12:28:42 PM

Elem Units Avge SDev XRSD	Y_3710 ppm 0001 .0000 61.37	Zn2062 ppm .0048 .0003 6.353	Zr3496 ppm 0003 .0002 54.92			
#1 #2	0000 0001	.0050 ,0046	0005			
IntStd Mode Elem Wavlen Avge SDev XRSD	1 *Counts Sc 361.384 711570 7312.191 1.027615	2 Time 10000 .0000000 .0000000	NOTUSED	NOTUSED NOTUS	ED NOTUSED	7 NOTUSED
#1 #2	706399 716740	10000 10000	**** ****			••••

Operator:

Analysis Report

11/04/03 12:33:18 PM

1ethod: DAILY1	Sample Name:	237181
Comment:	l ma mo a Jm	
fode: CONC Corr.	Factor: 1	

Elem	Ag3280	A13082	As1890	B_2496	Ba4934	Be3130	Bi2230
Units	ppm	PPm	ppm	ppm	ppm	ppm	ppm
Avge	00051	.1329	0036	.2808	.2099	0004	0021
SDev	.00009	.0034	.0025	.0032	.0011	.0001	.0034
#RSD	17.509	2.569	70.63	1.143	.5354	29.61	162.9
#1	00045	.1353	0018	.2785	.2091	0003	.0003
#2	00058	.1305	0053	.2831	.2107	0004	0044
Elem	Ca3179	Cd2265	Co2286	Cr2677	Cu3247	Fe2714	K_7664
Units	ppm	Ppm	PPm	ppm	PPm	PPm	Ppm
Avge	9.942	.0003	.0009	0029	.0022	0066	3.506
SDev	.058	.0000	.0002	.0005	.0000	.0067	.019
XRSD	.5861	14.10	17.51	18.31	.5997	101.8	.5431
#1	9.984	.0003	.0008	0025	.0023	0019	3.492
#2	9.901	.0003	.0010	0033		0114	3.519
Elem	La4086	Li6707	Mg2790	Mn2576	Mc2020	Na5889	Na3302
Units	PPm	PPm	PPm	ppm	Ppm	ppm	Ppm
Avge	.0002	.0027	2.546	0001	.0013	12.60	7.395
SDev	.0005	.0000	.008	.0000	.0008	.05	.053
%RSD	229.0	i.209	.2987	12.10	61.41	.4346	.7219
#1	.0006	.0027	2.552	0001	.0019	12.56	7.432
#2	0001	.0028	2.541	0001	.0007	12.64	7.357
Elem	Ni2316	P_1782	2203/1	2203/2	Pd3404	S_1820	Sb2068
Units	PPm	Ppm	Ppm	ppm	ppm	PPm	Ppm
Ayge	.0006	.0259	0021	.0021	.0005	9.578	.0027
SDey	.0000	.0064	.0001	.0002	.0014	.181	.0019
XRSD	2.991	24.69	5.481	9.935	268.7	1.891	68.90
#1	.0006	.0304	0021	.0023	.0015	9.450	.0014
#2	.0006	.0213	0022	.0020	0005	9.706	.0040
Elem	Sc3613	1960/1	1960/2	Si2881	Pb220	Se196	Sn1899
Units	%R	PPm	ppm	ppm	Ppm	ppm	ppm
Avge	94.96	.0043	0042	1.783	.0007	0014	.0019
SDev	1.01	.0015	.0011	.003	.0002	.0012	.0027
*RSD	1.067	35.71	25.01	.1763	25.45	89.00	141.6
#1 #2	94.24 95.67	.0032 .0054	0050 0035	1.785 1.780	. 0008	0022	0000 .0038
Elem	Sr4215	Th2837	Ti3372	T11908	U_3859	V_2924	W_2079
Units	PPm	PPm	PPm	PPM	ppm	ppm	ppm
Avge	.0177	0061	0003	0066	.0167	.0000	.0116
SDev	.0801	.0082	.0000	.0054	.0037	.0000	.0026
*RSD	.4929	133.6	8.120	81.71	22.48	42.35	22.02
#1	.0176	0003	0003	0104	.0140	. 0000	.0134
#2	.0177	0119	0003	0028	.0193	. 0000	.0098

malysis Report

11/04/03 12:33:18 PM page 2

Elem Units Avge SDev %RSD	Y_3710 ppm 0001 .0001 99.39	Zn2062 ppm .0020 .0001 5.467	Zr3496 				
#1 #2	0000 0001	.0019 .0021	0000 0003				
IntStd Mode Elem Wavlen Avge SDev #RSD	1 *Counts Sc 361.384 694433 7420.378 1.068552	2 Time 10000 .0000000 .0000000	3 NOTUSED	4 NOTUSED	5 NOTUSED	6 NOTUSED	7 NOTUSED
#1 #2	689186 699680	10000 10000	 			••••	••••••••••••••••••••••••••••••••••••••

Operator:

malysis Report

11/04/03 12:38:07 PM

lethod: DAILY1	Sample Name:	23718is
Run Time: 11/04/03	12:33:28	
Comment:		
lode: CONC Corr.	Factor: 1	

		and the second					
Elem	Ag3280	A13082	As1890	B_2496	Ba4934	Be3130	Bi2230
Units	PBM	PPM	ppm	PPm	ppm	ppm	PPm
Avge	.05154	2.097	2.156	.2870	2.322	.0560	0028
SDev	.00044	.000	.002	.0017	.011	.0003	.0005
%RSD	.84752	.0173	.0843	.5983	.4891	.4992	18.66
#1	.05185	2.098	2.158	.2858	2.314	.0558	0032
#2	.05123	2.097	2.155	.2882	2.330	.0562	0025
Elem Units Avge SDev %RSD	Ca3179 ppm 31.11 .05 .1739	Cd2265 ppm .0510 .0005 1.011	Co2286 ppm .5086 .0017 .3261	Cr2677 PPM .2022 .0002 .1077	Cu3247 ppm .2657 .0010 .3624	Fe2714 ppm 1.025 .009 .8649	K_7664 23.08 .08 .3637
#1 #2	31.15 31.07	.0507	.5074	.2024 .2021	.2650 .2664	1.018 1.031	23.02 23.14
Elem Units Avge SDev XRSD	La4086 ppm .0001 .0001 88.07	Li6707 ppm .0032 .0000 .3560	Mg2790 25.72 .03 .1432	Mn2576 PPM .5239 .0015 .2885	Mo2020 ppm .0005 .0004 85.56	Na5889 ppm 46.75 .08 .1634	Na3302 26.52 .07 .2468
#1 #2	.0002	.0032	23.69 23.74	.5228 .5249	.0002 .0008	46.70 46.81	26.56 26.47
Elem	Ni2316	P_1782	2203/1	2203/2	Pd3404	S_1820	Sb2068
Units	PPM	ppm	PPM	PPM	ppm	PPm	Ppm
Avge	.5072	4.074	.5243	.5317	.0007	9.769	.5150
SDev	.0015	.052	.0013	.0034	.0007	.063	.0068
%RSD	.2944	1.281	.2414	.6418	98.44	.6433	1.328
#1	.5062	4.038	.5234	.5341	.0002	9.813	.5101
#2	.5083	4.111	.5252	.5293	.0012	9.725	.5198
Elem	Sc3613	1960/1	1960/2	Si2881	Pb220	Se196	Sn1899
Units	%R	ppm	ppm	ppm	ppm	ppm	ppm
Avge	92.27	2.243	2.262	1.845	.5287	2.253	.0009
SDev	.82	.008	.002	.001	.0019	.004	.0036
#RSD	.8867	.3671	.0719	.0565	.3501	.1697	408.8
#1	91.69	2.249	2.263	1.844	.5300	2.256	.0034
#2	92.85	2.237	2.261	1.846	.5274	2.251	0017
Elem	Sr4215	Th2837	Ti3372	T11908	U_3859	V_2924	W_2079
Units	ppm	ppm	ppm	PPM	ppm	ppm	PPm
Avge	.0181	0186	0000	2.228	.0119	.5073	.0279
SDev	.0000	.0092	.0001	.024	.0093	.0002	.0060
*RSD	.2028	49.44	1933.	1.071	77.92	.0328	21.53
林1	.0181	0121	.0001	2.211	.0184	.5072	.0322
林2	.0181	0251	0001	2.245	.0053	.5075	.0237

Analysis Report

11/04/03 12:38:07 PM

Elem Units Avge SDev %RSD	Y_3710 ppm 0001 .0001 49.57	Zn2062 Ppm .5115 .0041 .8073	Zr3496 ppm .0002 .0002 82.67				
#1 #2	0001 0001	.5086 .5144	.0001 .0003				
IntStd Mode Elem Wavlen Avge SDev XRSD	1 *Counts Sc 361.384 674832 6001.215 .8892896	2 Time 10000 .0000000 .0000000	3 NOTUSED	4 NOTUSED	5 NOTUSED	6 NOTUSED	NOTUSED
#1 #2	670589 679076	10000 10000	···· ····	****	· · · · · · · · · · · · · · · · · · ·		

Analysis	Report	QC Stand	lard	11/04/	03 12:47:0	01 PM	page 1
Aethod: 1 Run Time	DAILY1 : 11/04/03	Sample Nar 12:42:12	me: icv∕cc≀	 A state of the sta	Op	erator:	
lode: CO	NC Corr.	Factor: 1					
Elem	Ag3280	A13082	As1890	B_2496	Ba4934	Be3130	Bi2230
Units	ppm	ppm	ppm	ppm	ppm	ppm	Ppm
Avge	1.0327	9.849	5.218	4.998	10.15	1.070	5.138
SDev	.0030	.011	.005	.005	.00	.005	.016
XRSD	.29290	.1107	.1035	.0949	.0035	.4627	.3025
#1	1.0349	9.856	5.214	4.995	10.15	1.074	5.149
#2	1.0306	9.841	5.222	5.002	10.15	1.067	5.127
Errors	QC Pass	QC Pass	QC Pass	QC Pass	QC Pass	QC Pass	QC Pass
Value	1.0000	10.00	5.000	5.000	10.00	1.000	5.000
Range	10.000	10.00	10.00	10.00	10.00	10.00	10.00
Elem	Ca3179	Cd2265	Co2286	Cr2677	Cu3247	Fe2714	K_7664
Units	Ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avge	20.75	1.004	5.003	2.015	2.059	10.49	18.57
SDev	.00	.001	.025	.011	.007	.03	.03
XRSD	.0124	.0924	.4912	.5488	.3268	.3261	.1745
#1	20.75	1.004	5.020	2.023	2.063	10.51	18.59
#2	20.75	1.003	4.985	2.007	2.054	10.46	18.55
Errors	QC Pass	QC Pass	QC Pass	QC Pass	QC Pass	QC Pass	QC Pass
Value	20.00	1.000	5.000	2.000	2.000	10.00	20.00
Range	10.00	10.00	10.00	10.00	10.00	10.00	10.00
Elem	La4086	Li6707	Mg2790	Mn2576	Mo2020	Na5889	Na3302
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avge	5.259	4.958	20.26	1.049	5.187	Q46.96	Q26.70
SDev	.001	.015	.13	.005	.009	.21	.22
%RSD	.0195	.3044	.6250	.4907	.1826	.4453	.8250
#1	5.260	4.969	20.35	1.052	5.181	Q47.11	Q26.85
#2	5.258	4.947	28.17	1.045	5.194	Q46.81	Q26.54
Errors	QC Pass	QC Pass	QC Pass	QC Pass	QC Pass	QC Fail	QC Fail
Value	5.000	5.000	20.00	1.000	5.000	30.00	30.00
Range	10.00	10.00	10.00	10.00	10.00	10.00	10.00
Elem	Ni2316	P_1782	2203/1	2203/2	Fd3404	S_1820	Sb2068
Units	ppm	PPm	ppm	PPm	PPm	ppm	ppm
Avge	4.960	5.053	5.183	5.255	1.074	1.071	1.029
SDev	.004	.007	.026	.050	.001	.008	.004
%RSD	.0891	.1292	.5067	.9502	.1389	.7077	.3505
#1	4.964	5.049	5.202	5.291	1.073	1.076	1.027
#2	4.957	5.058	5.165	5.220	1.075	1.065	1.032
Errors Value Range	QC Pass 5.000 10.00	QC Pass 5.000 10.00	NOCHECK	NOCHECK	QC Pass 1.000 10.00	QC Pass 1.000 10.00	QC Pass 1.000 10.00
Elem	Sc3613	1960/1	1960/2	Si2881	Pb220	Se196	Sn1899

malysis	Report	QC Standard		11/04/	page 2		
Units Avge SDev %RSD	%R 94.37 1.28 1.354	ppm 5.511 .019 .3411	8.532 .042 .7620	ppm 4.987 .625 .4989	ppm 5.226 .042 .8037	05.519 .034 .6220	ppm 5.097 .048 .9324
料1 排2	93.47 95.28	5.525 5.498	5.562	5.005 4.969	5.256 5.196	Q5.544 5.495	5.130 5.063
Errors Value Range	NOCHECK	NOCHECK	NOCHECK	QC Pass 5,000 10.00	QC Pass 5.000 10.00	QC Fail 5.000 10.00	QC Pass 5.000 10.00
Elem Units Avge SDev %RSD	Sr4215 ppm 5.371 .016 .2901	Th2837 ppm Q3.504 .016 .4669	Ti3372 ppm 4.952 .001 .0259	T11908 PPM Q5.575 .001 .0152	U_3859 ppm 1.019 .010 .9711	V_2924 ppm 5.025 .009 .1818	W_2079 ppm Q4.651 .030 .6410
#1 #2	5.382 5.360	03.516 03.493	4.953 4.951	85.576 85.574	1.012 1.026	5.032 5.019	Q4.630 Q4.672
Errors Value Range	QC Pass 5.000 10.00	QC Fail 1.000 10.00	QC Pass 5.000 10.00	QC Fail 5.000 10.00	QC Pass 1.000 10.00	QC Pass 5.000 10.00	QC Fail 1.000 10.00
Elem Units Ayge SDev XRSD	Y_3710 ppm 5.300 .005 .1026	Zn2062 ppm 1.023 .008 .7970	Zr3496 ppm 4.849 .017 .3514				
#1 #2	5.296 5.304	1.029 1.018	4.837 4.861				
Errors Value Range	QC Pass 5.000 10.00	QC Pass 1.000 10.00	QC Fass 5.000 10.00				

Analysis	Report	QC Stan	dard	11/04/	03 12:47:0	L [P]	page 3
IntStd Mode Elem Wavlen Avge SDev XRSD	1 *Counts Sc 361.384 690116 9314.718 1.349731	2 Time 10000 00000000	3 NOTUSED	4 NOTUSED	S NOTUSED	6 NOTUSED	NOTUSED
#1 #2	683530 696703	10000 10000	••••••••••••••••••••••••••••••••••••••	•••• ••••	· · · · · · · · · · · · · · · · · · ·	••••	**** ***

lethod: i (un Time	DAILY1 : 11/04/03	Sample Nar 12:49:11	ne: icb/cc	b	0 p	erator:	
lomment: lode: CO	NC Corr.	Factor: 1					
Elem	Ag3280	A13082	As1890	B_2496	Ba4934	Re3130	Bi2230
Units	PPm	ppm	ppm	ppm	PPm	Ppm	PPm
Ayge	.00028	.0199	.0018	.0083	H.0055	.0002	0002
SDev	.00032	.0032	.0002	.0026	.0031	.0002	.0024
%RSD	117.47	16.30	8.676	31.29	56.58	129.2	951.7
#1	.00005	.0222	.0019	.0101	H.0077	. 0003	0019
#2	.00051	.0176	.0017	.0064	.0033	. 0000	.0014
Errors	LC Pass	LC Pass	LC Pass	LC Pass	LC High	LC Pass	LC Pass
High	.00500	.0500	.0050	.0500	.0050	.0050	.0050
Low	00500	0500	0050	0500	0050	0050	0050
Elem	Ca3179	Cd2265	Co2286	Cr2677	Cu3247	Fe2714	K_7664
Units	ppm	PPm	ppm	PPm	ppm	Ppm	Ppm
Avge	.0121	.0006	.0029	- 0019	.0004	.0004	.0254
SDev	.0061	.0003	.0013	- 0012	.0005	.0030	.0034
XRSD	50.48	49.33	43.87	62.53	130.0	684.3	13.48
#1	.0164	.0009	.0038	0010	.0007	.0025	.0230
#2	.0078	.0004	.0020	0027	.0000	0017	.0278
Errors	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass
High	.0500	.0050	.0050	.0050	.0050	.0250	.1000
Low	0500	0050	0050	0050	0050	0250	1000
Elem	La4086	Li6707	Mg2790	Mn2576	Mc2020	Na5889	Na3302
Units	ppm	Ppm	PPm	ppm	Ppm	ppm	ppm
Avge	.0033	.0017	.0115	.0002	H.0081	.0158	H.1660
SDev	.0017	.0010	.0058	.0003	.0029	.0066	.0707
%RSD	52.37	59.22	50.23	215.3	35.66	41.52	42.62
計1	.0045	.0024	.0157	.0004	H.0101	.0205	H.1160
料2	.0021	.0010	.0074	0001	H.0061	.0112	H.2160
Errors	LC Pass	LC Pass	LC Pass	LC Pass	LC High	LC Pass	LC High
High	.0050	,0050	.0500	.0050	.0050	.0500	.0500
Low	0050	0050	0500	0050	0050	0500	0500
Elem	Ni2316	P_1782	2203/1	2203/2	Pd3404	S_1820	Sb2068
Units	Ppm	PPM	Ppm	PBM	Ppm	PPM	Ppm
Avge	.0013	.0207	.0028	- 0020	.0010	H.0396	.0020
SDev	.0014	.0119	.0007	- 0025	.0002	.0058	.0002
%RSD	111.8	57.31	25.35	120-3	22.29	14.65	ii.81
#1	.0023	H.0123	.0023	.0038	.0008	H.0437	.0018
#2	.0003	H.0291	.0033		.0011	H.0355	.0021
Errors High Low	LC Pass .0050 0050	LC High .0100 0100	NOCHECK	NOCHECK	LC Pass .0050 0050	LC High .0100 0100	LC Pass .0100 0100
Flom	Sc3613	1960/1	1960/2	SIPAAI	0522A	Se196	SniA99

malysis Report Wethod: DAILY1 Blank Sample

11/04/03 12:53:56 PM

halysis	Report	Blank Sample		11/04/03 12:53:56 PM			page 8
Units Avge SDev %RSD	%R 97.28 .99 1.022	ppm .0041 .0019 45.37	ppm 0048 .0019 39.56	ppm .0014 .0627 197.8	ppm .0023 .0014 61.58	ppm 0018 .0019 103.9	ppm .0018 .0008 42.46
#1 #2	96.58 97.98	.0028 .0054	0061	.0033 0006	H.0033 .0013	0031 0005	.0023
Errors High Low	NOCHECK	NOCHECK	NOCHECK	LC Pass .0100 0100	LC Pass .0030 0030	LC Pass .0050 0050	LC Pass .0050 0050
Elem Units Ayge SDev XRSD	Sr4215 ppm .0030 .0017 56.42	Th2837 ppm .0032 .0027 83.40	Ti3372 ppm .0021 .0014 63.74	T11908 PPm .0018 .0187 1026.	U_3859 ppm .0400 .0072 17.87	V_2924 ppm .0025 .0016 62.50	W_2079 ppm H.0187 .0082 44.09
#1 #2	.0041 .0018	.0013 .0051	.0031 .0012	H.0150 L0114	.0350	.0036 .0014	H.0129 H.0245
Errors High Low	LC Pass .0050 0050	LC Pass .0100 0100	LC Pass .0050 0050	LC Pass .0100 0100	LC Pass .1000 1000	LC Pass .0050 0050	LC High .0100 0100
Elem Units Avge SDev *RSD	Y_3710 ppm .0028 .0017 59.33	Zn2062 ppm .0009 .0005 56.04	Zr3496 ppm .0024 .0014 57.42				
#1 #2	.0040 .0017	.0005	.0033 .0014				
Errors High Low	LC Pass .0050 0050	LC Pass .0050 0050	LC Pass .0050 0050				

malysis Report Blank Sample

11/04/03 12:53:56 PM page 3

IntStd Mode Elem	1 *Counts Sc	2 Time	3 NOTUSED	4 NOTUSED	5 NOTUSED	6 NOTUSED	NOTUSED
Waylen	361.384		****		**** ****		
Avee	711312	10000	****	···· ···			****
SDev	7236.531	.00000000	****		····		****
ZRSD	1.017350	.0000000	**** ****			**** ****	****
	······································	4 (3 (3 (3 (3	·	****	• • • • •		
\$\$ 1.	706190	10000		4411 4411	s		
11 il.	716429	10000					

Analysis Report

11/04/03 12:58:49 PM

ļ	Method: 1 Run Time	DAILY1 : 11/04/03	Sample Mai 12:54:06	me: 236555		Ope	»rator:	
	Mode: CO	NC Corr.	Factor: 1					
	Elem	Ag3280	A13082	As1890	B_2496	Ra4934	Be3130	Bi2230
	Units	ppm	PPM	PPM	PPm	Ppm	ppm	<u>Ppm</u>
	Avge	00045	.0378	.0004	.0305	.0012	0004	-0031
	SDev	.00009	.0013	.0005	.0001	.0000	.0001	-0019
	%RSD	19.241	3.432	126.9	.3051	1.364	17.51	61.51
	#1	00051	.0387	.0000	.0304	.0012	0004	0045
	#2	00039	.0369	.0008	.0306	.0012	0005	0018
	Elem	Ca3179	Cd2265	Co2286	Cr2677	Cu3247	Fe2714	K_7664
	Units	Ppm	PPM	PPm	PPm	ppm	ppm	ppm
	Avge	7.481	.0001	.0001	0024	.0020	.0188	61.43
	SDev	.021	.0001	.0000	.0002	.0000	.0006	.22
	%RSD	.2797	117.5	1.237	6.469	.1188	3.238	.3609
	#1 #2	7.466 7.496	. 0002 . 0000	.0001 .0001	0025	.0020 .0020	.0193 .0184	61.28 61.59
	Elem Units Avge SDev %RSD	La4086 ppm .0015 .0005 35.11	Li6707 PPm .0009 .0001 10.02	Mg2790 ppm 63.82 .26 .4150	Mn2576 PPm .0007 .0000 3.722	Mo2020 ppm .0054 .0004 6.637	Na5889 PPm 558.23 .74 1.265	Na3302 ppm 623.0 .1460
	#1	.0018	.0009	63.63	.0007	.0052	S58.75	622.3
	#2	.0011	.0010	64.00	.0007	.0057	S57.71	623.6
	Elem	Ni2316	P_1782	2203/1	2203/2	Pd3404	S_1820	Sb2068
	Units	Ppm	PPm	ppm	ppm	ppm	ppm	Ppm
	Avge	.0005	23.98	.0040	.0028	0006	148.4	.0034
	SDev	.0005	.09	.0010	.0021	.0010	4.2	.0004
	%RSD	91.21	.3917	24.13	77.50	149.3	2.819	11.09
	#1 #2	.0002	23.92 24.05	.0033 .0047	.0012 .0043	0013 .0000	151.3 145.4	.0032 .0037
	Elem	Sc3613	1960/1	1960/2	Si2881	Pb220	Se196	Sn1899
	Units	%R	Ppm	ppm	PPm	Ppm	Ppm	ppm
	Avge	94.50	.0096	0004	.6310	.0032	.0029	.0154
	SDev	.04	.0036	.0008	.0025	.0017	.0006	.0018
	XRSD	.0434	37.53	196.0	.3967	55.10	21.83	11.80
	¥1	94.47	.0071	.0002	.6292	.0019	.0025	.0141
	¥2	94.53	.0122	0010	.6327	.0044	.0034	.0167
	Elem	Sr4215	Th2837	Ti3372	T11908	U_3859	V_2924	W_2079
	Units	Ppm	PPm	ppm	ppm	ppm	PPm	ppm
	Avge	.0037	0228	.0000	0243	0487	-0003	.0292
	SDev	.0000	.0066	.0001	.0045	.0061	.0002	.0014
	%RSD	.5917	28.95	1886.	18.70	12.54	47.09	4.830
	特1 特2	.0037 .0037	0181 0274	.0001	0275 0211	0444 0530	0004	.0302

Inalysis Report

11/04/03 12:58:49 PM page 2

Elem Units Avge SDev %RSD	Y_3710 ppm .0000 .0001 564.8	Zn2062 ppm .3098 .0027 .8736	Zr3496 Ppm .0057 .0025 44.22				
#1 #2	0000 .0001	.3079 .3117	.0075 .0039				
IntStd Mode Elem Wavlen Avge SDev XRSD	1 *Counts Sc 361.384 691068 265.1650 .0383703	2 Time 10000 .0000000 .0000000	3 NOTUSED	A NOTUSED	S NOTUSED	NOTUSED	7 NOTUSED
封1 封2	690881 691256	10000 10000					

#1

#2

.0030

page 1

Bi2230 ppm -.0001 .0016 1083.

.0010-.0013

K__7664

2358

74.11 74.36

Na3302

ppm 938.2 1.3 .1438

939.1 937.2

Sb2068 ppm .0039 .0008

.0045

Sn1899 ppm .0094 .0001 . 8155

.0094

W_2079

ppm .0240 .0001

.3393

.0241 .0240

.0001 .0003

malysis	Report			11/04/0	33 01:03:3	9 PM
lethod: D Run Time:	AILY1 11/04/03	Sample Nan 12:58:58	ne: 236556		Ope	nator:
tode: CON	IC Corr.	Factor: 1				
Elem	Ag3280	A13082	As1890	B_2496	Ba4934	Be3130
Units	PPm	PPM	ppm	PPm	PPm	Ppm
Avge	- 00010	.0585	0024	.0854	.0012	0004
SDev	- 00055	.0115	.0011	.0003	.0000	.0002
%RSD	537.16	19.73	44.99	.3341	1.296	48.12
#1	00049	.0504	0031	.0852	.0012	0006
#2	.00029	.0667	0016	.0856	.0012	0003
Elem	Ca3179	Cd2265	Co2286	Cr2677	Cu3247	Fe2714
Units	PPM	ppm	ppm	ppm	ppm	PPm
Avge	2.767	.0000	.0010	0024	.0014	- 2258
SDev	.009	.0000	.0001	.0000	.0004	- 0057
%RSD	.3134	67.60	8.427	1.835	27.55	2.529
#1	2.760	0000	.0009	0025	.0011	.2217
#2	2.773	0000	.0010	0024	.0016	.2298
Elem	La4086	Li6707	Mg2790	Mn2576	Mo2020	Na5889
Units	ppm	PPm	ppm	ppm	ppm	ppm
Avge	.0016	.0015	1.543	.0007	.0148	s49.23
SDev	.0006	.0001	.065	.0001	.0004	.93
#RSD	38.81	9.561	4.192	11.99	2.400	1.892
#1	.0012	.0014	1.589	.0006	.0146	849.89
#2	.0021	.0016	1.497	.0008	.0151	848.57
Elem	Ni2316	P_1782	2203/1	2203/2	Pd3404	S_1820
Units	Ppm	PPM	PPM	ppm	ppm	PPm
Avge	.0001	27.95	.0019	.0008	.0011	215.5
SDev	.0001	.32	.0006	.0001	.0003	2.5
*RSD	74.34	1.137	31.47	17.61	24.06	1.137
#1	.0001	28.18	.0015	.0009	.0009	217.3
#2	.0002	27.73	.0023	.0007	.0012	213.8
Elem	Sc3613	1960/1	1960/2	Si2881	Pb220	Se196
Units	%R	ppm	ppm	ppm	Ppm	Ppm
Avge	91.92	.0048	0062	1.213	.0012	0025
SDev	.10	.0058	.0025	.004	.0001	.0036
XRSD	.1034	121.0	39.50	.3695	8.986	139.8
#1	91.86	.0088	0045	1.210	.0011	0000
#2	91.99	.0007	0080	1.216	.0012	0051
Elem	Sr4215	Th2837	Ti3372	T11908	U_3859	V_2924
Units	PPm	ppm	PPM	ppm	ppm	ppm
Avge	.0030	0042	.0001	0286	0383	.0002
SDev	.0000	.0036	.0003	.0070	.0090	.0001
XRSD	.7996	83.62	265.4	24.54	23.61	81.94

-.0001 .0003

-.0068

-.0017

-.0336 -.0236

-.0447 -.0319

Analysis Report

11/04/03 01:03:39 PM page 2

Elem Units Avge SDev %RSD	Y_3710 ppm .0000 .0001 489.4	Zn2062 PPm .3584 .0042 1.171	Zr3496 ppm .0049 .0001 1.656				
#1 #2	0000 .0001	.3554 .3614	.0050 .0049				
IntStd Mode Elem Wavlen Avge SDev XRSD	1 *Counts Sc 361.384 672276 686.6007 .1021307	2 Time 10000 .0000000 .0000000	3 NOTUSED	4 HOTUSED 	S NOTUSED	SNOTUSED	NOTUSED
特1 特2	671791 672762	10000 10000	•••••••••	••••••••••	••••••••••		**** **** **** ****

Operator:

Analysis Report

11/04/03 01:08:31 PM

ethod: DAILY1 un Time: 11/04/03	Sample Name: 13:03:49	236557
omment: ode: CONC Corr.	Factors i	

Elem	Ag3280	A13082	As1890	B_2496	Ba4934	Be3130	Bi2230
Units	PPm	Ppm	Ppm	Ppm	Ppm	ppm	PPm
Avge	00121	.0594	.0002	.0417	.0012	0006	0063
SDev	.00319	.0059	.0045	.0014	.0000	.0000	.0107
%RSD	263.47	9.923	2250.	3.384	1.519	.2494	169.3
#1	.00104	.0553	.0034	.0427	.0012	0006	.0012
#2	00346	.0636	0030	.0407	.0012		0139
Elem	Ca3179	Cd2265	Co2286	Cr2677	Cu3247	Fe2714	K_7664
Units	ppm	PPm	ppm	ppm	ppm	PPm	ppm
Avge	2.489	- 0002	.0010	- 0021	.0023	.2578	111.2
SDev	.026	- 0005	.0016	- 0002	.0004	.0079	2.7
%RSD	1.036	283.5	163.0	9.172	16.31	3.075	2.448
#1	2.507	.0002	.0021	0023	.0021	.2522	109.2
#2	2.471	0006	0002	0020	.0026	.2634	113.1
Elem	La4086	Li6707	Mg2790	Mn2576	Mo2020	Na5889	Na3302
Units	Ppm	Ppm	ppm	ppm	PPm	9Pm	PPM
Avge	.0025	.0035	1.265	.0010	.0027	5-89.22	7097.
SDev	.0020	.0005	.017	.0001	.0014	126.22	84.
%RSD	80.79	13.52	1.336	8.071	52.93	141.5	1.178
#1	.0039	.0039	1.277	.0009	.0037	S.0354	7038.
#2	.0011	.0032	1.253	.0011	.0017	S-178.5	7156.
Elem Units Avge SDev %RSD	Ni2316 Ppm .0004 .0000 9.805	P_1782 PPm 29.00 .71 2.444	2203/1 ppm 0010 .0076 741.7	2203/2 ppm .0025 .0067 265.3	Pd3404 ppm - 0019 .0058 305.0	S_1820 253.7 .0557	Sb2068 PPm -0023 .0076 333.9
#1	.0004	29.51	.0044	0022	.0022	233.7	.0031
#2	.0004	28.50	0064	.0073	0060	233.8	0076
Elem	Sc3613	1960/1	1960/2	Si2881	Pb220	Se196	Sn1899
Units	%R	Ppm	ppm	PPm	Ppm	PPm	PPm
Avge	78.06	.0088	0041	.6959	.0013	.0002	.0075
SDev	1.99	.0113	.0066	.0057	.0019	.0006	.0090
XRSD	2.549	127.9	160.8	.8136	144.0	295.1	120.2
#1	79.47	.0168	0088	.6999	0000	0002	.0139
#2	76.66	.0008	.0006	.6919	.0027	.0007	.0011
Elem	Sr4215	Th2837	Ti3372	T11908	U_3859	V_2924	W_2079
Units	Ppm	Ppm	PPm	ppm	PPm	ppm	Ppm
Avge	.0108	.0104	0013	0331	2546	.0003	.0148
SDev	.0001	.0008	.0022	.0147	.0652	.0003	.0211
%RSD	.5243	7.418	174.0	44.22	25.62	103.9	142.5
#1	.0108	.0099	.0003	0228	2084	. 0001	.0297
#2	.0109	.0110	0028		3007	. 0005	0001

Analysis Report

11/04/03 01:08:31 FM

Elem Units Avge SDev XRSD	Y_3710 ppm .0000 .0000 98.97	Zn2062 ppm .0900 .0027 3.032	Zr3496 Ppm .0007 .0001 i1.79				
#1 #2	.0000 .0001	.0920 .0881	.0006 .0007			an An Araba An Araba an Araba	
IntStd Mode Elem Wavlen Avge SDev %RSD	1 *Counts Sc 361.384 571089 14566.40 2.550636	2 Time 10000 .0000000 .0000000	3 MOTUSED	4 NOTUSED	S NOTUSED	G MOTUSED	7 NOTUSED
#1 #2	581389 560789	10000 10000		4244 4254 4200 4284	**** ****		

malysis Report

lethod: :un Time	DAILY1 : 11/04/03	Sample Na 13:08:41	me: 236557	d	Op	erator:	
lode: CO	NC Corr.	Factor: 1					
Elem	Ag3280	A13082	As1890	B_2496	Ba4934	Be3130	Bi2230
Units	ppm	Ppm	PPm	ppm	ppm	ppm	PPm
Avge	00178	.0564	0013	.0427	.0013	0005	0086
SDev	.00306	.0018	.0008	.0022	.0002	.0000	.0042
XRSD	172.13	3.212	59.94	5.182	12.58	6.754	49.05
#1	.00039	.0552	0008	.0442	.0014	0006	0056
#2	00394	.0577	0019	.0411	.0012	0005	0116
Elem	Ca3179	Cd2265	Co2286	Cr2677	Cu3247	Fe2714	K_7664
Units	ppm	ppm	ppm	ppm	ppm	PPm	ppm
Avge	2.558	0003	.0002	- 0017	.0033	.2225	116.0
SDev	.030	.0005	.0016	.0012	.0005	.0277	2.0
XRSD	1.186	160.0	834.2	68.67	16.44	12.44	1.748
#1	2.580	.0000	.0013	0009	.0037	.2421	114.5
#2	2.537	0007	0009	0026	.0029	.2029	117.4
Elem	La4086	Li6707	Mg2790	Mn2576	Mc2020	Na5889	Na3302
Units	ppm	ppm	ppm	ppm	PPm	ppm	PPm
Avge	- 0018	.0033	1.297	.0009	.0013	5-90.87	7342.
SDev	- 0027	.0004	.023	.0001	.0012	128.56	113.
*RSD	153.3	11.49	1.772	16.64	94.78	141.5	1.540
#1	.0037	.0035	1.313	.0010	.0022	S.0354	7262.
#2	0001	.0030	1.280	.0008	.0004	S-181.8	7422.
Elem Units Avge SDev %RSD	Ni2316 Ppm .0014 .0010 70.77	P_1782 29.71 28.71 .28 .9507	2203/1 ppm .0079 .0116 146.9	2203/2 ppm .0083 .0053 63.94	Pd3404 Ppm - 0030 - 0080 262.8	S_1820 237.8 .2171	Sb2068 ppm 0039 .0032 82.55
#1	.0022	29.51	.0003	.0046	.0026	238.1	0016
#2	.0007	29.91	0161	.0121	0087	237.4	
Elem	Sc3613	1960/1	1960/2	Si2881	Pb220	Se196	Sn1899
Units	*R	ppm	ppm	PPm	ppm	ppm	Ppm
Avge	76.93	0037	0010	.7193	.0029	0019	.0065
SDev	.88	.0039	.0068	.0087	.0003	.0032	.0071
*RSD	1.144	105.2	685.3	1.213	10.86	171.1	109.6
#1	77.55	0010	0058	.7254	.0031	0042	.0116
#2	76.31		.0038	.7131	.0027	.0004	.0015
Elem	Sr4215	Th2837	Ti3372	T11908	U_3859	V_2924	W_2079
Units	ppm	ppm	ppm	Ppm	ppm	PPm	ppm
Avge	.0112	.0175	- 0017	-0250	-2692	.0005	0071
SDev	.0001	.0040	.0016	.0216	.0606	.0007	.0239
XRSD	1.306	22.87	92.13	86.45	22.49	135.6	338.0
#1	.0113	.0203	0006	0097	2264	.0010	.0098
#2	.0111	.0147	0028	0403	3120	.0000	0240

malysis Report

11/04/03 01:13:25 PM page 2

Elem Units Avge SDev *RSD	Y_3710 ppm .0001 .0003 303.9	Zn2062 ppm .0897 .0028 3.089	Zr3496 Ppm .0010 .0012 123.8				
#1 #2	.0003 0001	.0917 .0878	.0018 .0001				
IntStd Mode Elem Wavlen Avge SDev %RSD	1 *Counts Sc 361.384 562832 6364.668 1.130828	2 Time 10000 .0000000 .0000000	3 NOTUSED	4 NOTUSED 	S NOTUSED	6 NOTUSED	NOTUSED
#1 #2	567333 558332	10000 10000	6844 8777 6784 6889	****		· · · · · · · · · · · · · · · · · · ·	

Operator:

Analysis Report

11/04/03 01:18:22 PM

lethod: DAILY1 (un Time: 11/04/03	Sample Name: 13:13:41	236558	
Comment: Lode: CONC Corr.	Factor: 1		

Elem	Ag3280	A13082	As1890	B_2496	Ba4934	863130	B12230
Units	Ppm	ppm	Ppm	Ppm	ppm	ppm	ppm
Avge	- 60080	.0674	.0012	.0758	.0011	- 0005	0011
SDev	- 00019	.0190	.0024	.0012	.0002	- 0001	.0024
%RSD	23.924	28.18	199.2	1.539	19.30	22.82	225.4
#1	.00067	.0540	0005	.0750	.0013	0004	0028
#2	.00094	.0808	.0029	.0766	.0010	0006	.0006
Elem	Ca3179	Cd2265	Co2286	Cr2677	Cu3247	Fe2714	K_7664
Units	ppm	PPm	Ppm	ppm	ppm	PPm	PPm
Avge	2.646	- 0001	.0013	.0030	.0021	.2344	124.4
SDev	.027	- 0002	.0001	.0018	.0010	.0213	.6
%RSD	1.017	476.3	10.31	57.96	47.26	9.101	.4628
#1	2.627	0002	.0012	0018	.0028	.2494	124.0
#2	2.666	.0001	.0014	0043	.0014	.2193	124.8
Elem	La4086	Li6707	Mg2790	Mn2576	Mc2020	Na5889	Na3302
Units	ppm	Ppm	ppm	Ppm	ppm	PPm	ppm
Avge	- 0044	.0029	1.318	.0010	.0012	S-99.48	8193.
SDev	- 0005	.0003	.013	.0001	.0007	140.73	11.
%RSD	10.57	11.62	.9680	15.01	62.06	141.5	.1401
#1	. 0048	.0031	1.309	.0011	.0017	S-199.0	8185.
#2	. 0041	.0026	1.327	.0009	.0007	S.0354	8201.
Elem	Ni2316	P_1782	2203/1	2203/2	Pd3404	S_1820	Sb2068
Units	Ppm	PPm	Ppm	Ppm	ppm	ppm	Ppm
Avge	.0010	29.42	.0297	.0243	.0023	244.9	.0021
SDev	.0009	.48	.0099	.0056	.0014	2.6	.0012
×RSD	88.88	1.637	33.39	23.20	60.07	1.081	56.85
#1	.0017	29.08	.0227	.0283	.0013	243.1	.0029
#2	.0004	29.76	.0367	.0203	.0032	246.8	.0012
Elem	Sc3613	1960/1	1960/2	Si2881	Pb220	Se196	Sn1899
Units	*R	ppm	ppm	PPm	Ppm	Ppm	ppm
Avge	75.76	.0109	0075	.9509	.0261	0014	.0089
SDev	.24	.0041	.0107	.0099	.0004	.0057	.0015
%RSD	.3232	38.10	142.5	1.042	1.736	424.1	16.38
#1	75.59	.0079	.0001	.9438	. 0264	.0027	.0079
#2	75.94	.0138	0150	.9579	. 0257	0054	.0100
Elem	Sr4215	Th2837	Ti3372	T11908	U_3859	V_2924	W_2079
Units	Ppm	Ppm	Ppm	Ppm	ppm	ppm	ppm
Avge	.0132	.0075	0002	0020	2375	0008	.0283
SDev	.0000	.0164	.0002	.0056	.0031	.0009	.0267
XRSD	.0491	217.7	99.48	278.5	1.303	104.3	94.52
#1	.0132	.0191	0001	.0020	2397	0002	.0094
#2		0041	0003	0060	2353	0015	.0472
Analysis Report

11/04/03 01:18:22 PM page 2

Elem Units Avge SDev *RSD	Y_3710 ppm 0001 .0003 349.0	Zn2062 ppm .6401 .0095 1.485	Zr3496 Ppm .0023 .0014 59.02				
#1 #2	.0001 0003	.6334 .6468	.0032 .0013		an an an Arrange. An an Arrange		
IntStd Mode Elem Wavlen Avge SDev XRSD	1 *Counts Sc 361.384 554280 1772.717 .3198230	2 Time 10000 .0000000 .0000000	3 MOTUSED	ÅOTUSED	5 NOTUSED	6 NOTUSED	NOTUSED
#1 #2	553027 555534	10000 10000	···· ···	•••• ••••	· · · · · · · · · · · · · · · · · · ·		ules 9945

page 1

Bi2230

ppm - 0027 - 0073 272.6

-.0079.0025

K_7664 ppm 170.9 .2079

170.7

Na3302 ppm 8529. . 1098

8523. 8536.

Sb2068 ppm .6057 .0081 1.340

. 6000 .6114 Sn1899

Ppm .0075 .0061 81.86

.0031 .0118 W_2079

ppm 18.58 .06 .3305

 $\begin{array}{r}
 18.62 \\
 18.53
 \end{array}$

Analysis	Report			11/04/	(03 01:23:	13 PM
Method: Run Time	DAILY1 : 11/04/03	Sample Na 13:18:32	me: 236558	\$	0 p	erator:
Mode: CO	NC Corr.	Factor: 1				
Elem	Ag3280	A13082	As1890	B_2496	Ba4934	Be3130
Units	ppm	PPm	Ppm	ppm	ppm	Ppm
Avge	.06190	2.571	2.397	.4337	2.225	.0470
SDev	.00227	.015	.006	.0008	.003	.0004
XRSD	3.6630	.5936	.2568	.1916	.1317	.8388
#1	.06030	2.561	2.401	.4331	2.223	.0473
#2	.06351	2.582	2.393	.4343	2.227	.0468
Elem	Ca3179	Cd2265	Co2286	Cr2677	Cu3247	Fe2714
Units	ppm	ppm	ppm	ppm	PPm	ppm
Avge	21.28	.0454	.4856	.1895	.3203	1.197
SDev	.01	.0008	.0002	.0006	.0011	.003
%RSD	.0292	1.780	.0498	.3289	.3384	.2911
#1	21.28	.0448	.4858	.1900	.3195	1.194
#2	21.27	.0459	.4855	.1891	.3211	1.199
Elem	La4086	Li6707	Mg2790	Mn2576	Mo2020	Na5889
Units	Ppm	PPm	PPm	Ppm	ppm	ppm
Avge	.0026	.0027	19.90	.5106	4.184	S-105.8
SDev	.0021	.0004	.04	.0008	.033	149.6
XRSD	80.47	14.54	.2019	.1465	.7848	141.5
#1	.0011	.0029	19.88	.5112	4.161	S-211.6
#2	.0040	.0024	19.93	.5101	4.208	S.0354
Elem	Ni2316	P_1782	2203/1	2203/2	Pd3404	S_1820
Units	ppm	PPm	Ppm	ppm	ppm	Ppm
Avge	.4861	29.53	.5963	.6072	-0021	250.5
SDev	.0013	.02	.0099	.0001	.0029	4.3
XRSD	.2723	.0733	1.659	.0243	143.1	1.723
#1	.4852	29.55	.5893	.6073	0041	247.4
#2	.4871	29.52	.6033	.6071	.0000	253.5
Elem	Sc3613	1960/1	1960/2	Si2881	Pb220	Se196
Units	%R	ppm	ppm	Ppm	Ppm	ppm
Avge	72.61	2.371	2.459	.9777	.6029	2.427
SDev	.06	.010	.026	.0093	.0032	.021
%RSD	.0874	.4362	1.045	.9511	.5302	.8468
#1	72.66	2.364	2.441	.9712	.6007	2.413
#2	72.57	2.379	2.477	.9843	.6052	2.442
Elem	Sr4215	Th2837	Ti3372	T11908	U_3859	V_2924
Units	ppm	ppm	PPm	ppm	ppm	ppm
Avge	-0138	.0020	0009	2.864	.2339	.5051
SDev	-0001	.0088	.0013	.004	.0256	.0002
XRSD	-6483	450.7	151.2	.1375	10.95	.0460

-.0018

.0001

2.867

-.2520

.5053 .5050

.0082

-.0043

#1 #2

.0138 .0139

Malysis Report

page 2

Elem Units Avge SDev %RSD	Y_3710 ppm 0000 .0001 118.9	Zn2062 ppm 1.148 .001 .1048	Zr3496 ppm .0065 .0003 4.720				
#1 #2	0001 0000	1.147 1.149	.0063 .0067				
IntStd Mode Elem Wavlen Avge SDev %RSD	1 *Counts Sc 361.384 531303 456.7910 .0859756	2 Time 10000 .0000000 .0000000	AOTUSED	4 NOTUSED	5 NOTUSED	6 NOTUSED	NOTUSED
#1 #2	531626 530980	10000 10000		 	••••••••••••••••••••••••••••••••••••••	····	**** ****

malysis Report	QC Stand	ard	11/04/0	03 01:32:0	18 FM	page 1
lethod: DAILY1 (un Time: 11/04/0)	Sample Nam 13:27:22	e: icv/ccv	•	Ope	erator:	
lode: CONC Corr.	Factor: 1				an an the second se	
Elem Ag3280	A13082	As1890	B_2496	Ba4934	Re3130	Bi2230
Units ppm	Ppm	ppm	PPm	ppm	ppm	ppm
Avge 1.0406	9.791	5.262	5.012	10.00	Q1.108	5.114
SDev .0043	.010	.004	.006	.03	.003	.004
*RSD .41508	.0994	.0709	.1117	.2761	.2920	.0686
#1 1.0375	9.798	5.259	5.008	10.02	Q1.110	5.117
#2 1.0436	9.784	5.265	5.016	9.984	Q1.106	5.112
Errors QC Pass	QC Pass	QC Pass	QC Pass	QC Pass	QC Fail	QC Pass
Value 1.0000	10.00	5.000	5.000	10.00	1.000	5.000
Range 10.000	10.00	10.00	10.00	10.00	10.00	10.00
Elem Ca3179	Cd2265	Co2286	Cr2677	Cu3247	Fe2714	K_7664
Units ppm	ppm	PPm	ppm	PPm	ppm	ppm
Avge 21.28	1.026	5.047	2.048	2.035	10.66	18.35
SDev .05	.001	.029	.008	.000	.01	.01
%RSD .2318	.0543	.5731	.3937	.0103	.0654	.0723
#1 21.25	1.027	5.068	2.053	2.034	10.66	18.34
#2 21.32	1.026	5.027	2.042	2.035	10.65	18.36
Errors QC Pass	QC Pass	QC Pass	QC Pass	QC Pass	QC Pass	QC Pass
Value 20.00	1.000	5.000	2.000	2.000	10.00	20.00
Range 10.00	10.00	10.00	10.00	10.00	10.00	10.00
Elem La4086 Units ppm Avge 5.209 SDev .022 %RSD .4281	Li6707 ppm 4.890 .006 .1218	Mg2790 20.33 .07 .3202	Mn2576 ppm 1.060 .006 .5276	Mc2020 PPM 5.256 .005 .1010	Na5889 ppm Q47.43 .52 1.094	Na3302 Ppm 27.52 .11 .3849
#1 5.225	4.895	20.38	1.064	5.252	047.80	27.59
#2 5.194	4.886	20.29	1.056	5.260	047.86	27.44
Errors QC Pass	QC Pass	QC Pass	QC Pass	QC Pass	QC Fail	QC Pass
Value 5.000	5.000	20.00	1.000	5.000	30.00	30.00
Range 10.00	10.00	10.00	10.00	10.00	10.00	10.00
Elem Ni2316 Units ppm Avge 5.050 SDev .004 %RSD .0791	P_1782 PPm 5.112 .003 .0510	2203/1 PPm 5.231 .009 .1798	2203/2 5.280 .011 .2009	Pd3404 ppm 1.066 .001 .1066	S_1820 ppm Q1.104 .031 2.774	Sb2068 ppm 1.029 .001 .0521
#1 5.053	5.110	5.238	5.272	1.065	Q1.125	1.029
#2 5.047	5.114	5.224	5.287	1.067	1.082	1.028
Errors QC Pass Value 5.000 Range 10.00	QC Pass 5.000 10.00	NOCHECK	NOCHECK	QC Pass 1.000 10.00	QC Fail 1.000 10.00	QC Pass 1.000 10.00
Elem Sc3613	1960/1	1960/2	Si2881	P6220	Sei96	Sn1899

Inalysis Report QC Standard 11/04/03 01:32:08 PM

page 2

						and the second	
Units Avge SDev %RSD	×R 96.52 .83 .8608	ppm 5.483 .014 .2617	ppm 5.445 .029 .5278	ppm 5.006 .008 .1552	ppm 5.258 .004 .0748	ppm 5.452 .014 .2634	ppm 5.179 .005 .0987
#1 #2	95.93 97.11	5.493 5.473	5.424 5.465	5.012 5.001	5.256 5.261	5.442 5.462	5.183 5.176
Errors Value Range	NOCHECK	NOCHECK	NOCHECK	QC Pass 5.000 10.00	QC Pass 5.000 10.00	QC Pass 5.000 10.00	QC Pass 5.000 10.00
Elem Units Avge SDev %RSD	Sr4215 Ppm 5.313 .028 .5341	Th2837 QS.516 .017 .4888	Ti3372 ppm 4.964 .008 .1546	T11908 PPM 05.596 .012 .2209	U_3859 ppm 1.029 .004 .4169	V_2924 ppm 5.067 .007 .1427	W_2079 04.711 .006 .1272
#1 #2	5.333 5.293	Q3.528 Q3.503	4.959 4.970	Q5.588 Q5.605	1.026 1.032	5.072 5.062	Q4.715 Q4.707
Errors Value Range	QC Pass 5.000 10.00	QC Fail 1.000 10.00	QC Pass 5.000 10.00	QC Fail 5.000 10.00	QC Pass 1.000 10.00	QC Pass 5.000 10.00	QC Fail 1.000 10.00
Elem Units Avge SDev %RSD	Y_3710 ppm 5.292 .009 .1636	Zn2062 ppm 1.053 .002 .2225	Zr3496 ppm 4.891 .003 .0661				
#1 #2	5.298	1.054 1.051	4.888 4.893				
Errors Value Range	QC Pass 5.000 10.00	QC Pass 1.000 10.00	QC Pass 5.000 10.00				

Analysis Report 3 NOTUSED 4 NOTUSED 5 NOTUSEI 2 Time IntStd 1. *Counts Mode *Counts Sc 361.384 705814 6083.240 .8618751 Elem Wavlen ---- ----10000

.....

.....

****

Avge SDev XRSD .0000000 .0000000 701513 710116 $10000\\10000$ #1 #2 11/04/03 01:32:08 PM page 3

.....

....

.....

D	6 N01	US	ED	7 NO	TUS	SED
				•••• •••		
	**** ****			••••		
					1.11	
	**** ****					
		1.1	1.8.5			
			- 1 - L			

QC Standard

malysis	Report	Blank 9	Sample	11/04	/03 01:39:	02 PM	page 1
lethod: (un Time	DAILY1 : 11/04/03	Sample Na 13:34:17	ame: icb/cd	e b	Op	erator:	
lode: CO	NC Corr.	Factor: 1	l.				
Elem	Ag3280	A13082	As1890	B_2496	Ba4934	Be3130	Bi2230
Units	PPm	Ppm	PPm	ppm	ppm	Ppm	PPm
Avge	.00074	.0191	.0023	.0100	H.0062	.0005	.0014
SDev	.00069	.0004	.0053	.0038	.0037	.0003	.0014
%RSD	93.827	1.983	226.9	37.77	60.75	64.33	97.84
#1	.00123	.0188	H.0061	.0126	H.0088	.0007	.0024
#2	.00025	.0193	0014	.0073	.0035	.0003	.0004
Errors	LC Pass	LC Pass	LC Pass	LC Pass	LC High	LC Pass	LC Pass
High	.00500	.0500	.0050	.0500	.0050	.0050	.0050
Low	00500	0500	0050	0500	0050	0050	0050
Elem	Ca3179	Cd2265	Co2286	Cr2677	Cu3247	Fe2714	K_7664
Units	ppm	Ppm	ppm	ppm	ppm	ppm	Ppm
Avge	.0150	.0005	.0030	0017	.0001	0002	.0217
SDev	.0083	.0005	.0024	.0011	.0009	.0118	.0043
*RSD	55.75	97.97	82.41	62.73	1722.	5544.	20.02
#1	.0209	.0008	.0047	0009	.0007	.0081	.0248
#2	,0091	.0001	.0012	0024	0006	0085	.0186
Errors	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass
High	.0500	.0050	.0050	.0050	.0050	.0250	.1000
Low	0500	0050	0050	0050	0050	0250	1000
Elem	La4086	Li6707	Mg2790	Mn2576	Mo2020	Na5889	Na3302
Units	Ppm	ppm	PPm	Ppm	ppm	Ppm	ppm
Avge	.0036	.0018	.0155	.0002	H.0088	.0294	0144
SDev	.0022	.0011	.0058	.0004	.0042	.0115	.0461
XRSD	62.39	60.45	37.34	196.8	47.36	39.25	321.5
#1	H.0052	.0026	.0196	.0005	H.0117	.0376	-,0470
#2	.0020	.0010	.0114	0001	H.0058	.0213	.0183
Errors	LC Pass	LC Pass	LC Pass	LC Pass	LC High	LC Pass	LC Pass
High	.0050	.0050	.0500	.0050	.0050	.0500	.0500
Low	0050	0050	0500	0050	0050	0500	0500
Elem	Ni2316	P_1782	2203/1	2203/2	Pd3404	S_1820	Sb2068
Units	Ppm	PPm	ppm	Ppm	Ppm	ppm	ppm
Avge	.0018	1.0170	.0025	.0051	.0009	H.0142	.0031
SDev	.0025	.0071	.0004	.0022	.0031	.0024	.0013
XRSD	142.9	41.80	17.23	43.52	343.2	17.24	40.06
#1	.0035	1.0120	.0029	.0067	.0031	H.0160	.0040
#2	0000	1.0220		.0036	0013	H.0125	.0022
Errors High Low	LC Pass .0050 0050	LC High .0100 0100	NOCHECK	NOCHECK	LC Pass .0050 0050	LC High .0100 0100	LC Pass .0100 0100
Elem	Sc3613	1960/1	1960/2	Si2881	PP550	Se196	Sn1899

Analysis	Report	Blank S	ample	11/04	/03 01:39:0)2 FIM	page 2
Units	%R	ppm	ррт	ppm	ррт	ppm	PPM
Avge	98.07	.0021	0014	.0009	H.0043	0002	- 0039
SDev	.51	.0009	.0021	.0041	.0016	.0017	- 0029
%RSD	.5186	44.89	147.6	461.5	38.29	797.1	72.65
#1	97.71	.0028	.0001	.0038	H.0054	.0010	H.0059
#2	98.43		0029	0020	H.0031	0014	.0019
Errors High Low	NOCHECK	NOCHECK	NOCHECK	LC Pass .0100 0100	LC High .0030 0030	LC Pass .0050 0050	LC Pass .0050 0050
Elem	Sr4215	Th2837	Ti3372	T11908	U_3859	V_2924	W_2079
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avge	.0033	0003	.0024	.0062	.0537	.0032	H.0272
SDev	.0020	.0009	.0021	.0007	.0113	.0025	.0043
XRSD	60.06	338.5	88.13	10.68	20.96	79.21	15.89
#1	.0048	.0004	.0039	0058	.0617	.0049	H.0302
#2	.0019	0009	.0009	0067	.0458	.0014	H.0241
Errors	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass	LC High
High	.0050	.0100	.0050	.0100	.1000	.0050	.0100
Low	0050	0100	0050	0100	1000	0050	0100
Elem Units Ayge SDev %RSD	Y_3710 ppm .0032 .0020 62.78	Zn2062 ppm .0011 .0005 48.31	Zr3496 ppm .0026 .0021 78.75				
#1 #2	.0046 .0018	.0015 .0007	.0041 .0012				
Errors High Low	LC Pass .0050 0050	LC Pass .0050 0050	LC Pass .0050 0050				

11/04/03 01:39:02 PM page 3 **malysis** Report Blank Sample 5 NOTUSED 7 6 NOTUSED 4 NOTUSED 2 Time 3 NOTUSED IntStd 1 NOTUSED Mode Elem *Counts *** *** Se ----361.384 717157 3662.813 .5107408 Wavlen 10000 .0000000 .0000000 ----.... Avge SDev %RSD · ----..... 714567 719747 #1 #2 10000 10000 ----....

	<u> </u>	2	AN.	ALYSIS	
PROJ. NO. 06002.01.081	PROJECT	TO# 031021-4	DATE <u>11-6-03</u>	MATRIX	LOGBK PG
INSTRU	MENT:	l pcz l	F	ILENAME:	<u>A031106</u>

INSTRUMENT DL:___

16
2
00
01

...;

Standarı	dization Rp	÷.		11/06	/03 11:32:	57 AM	əbed
Method: Run Tim	DAILY1 *: 11/06/03	Standar 11:28:27	d: blk				
Н Коре Коре Коре Коре		A13088 0006 1.723 1.723	As1898 6888 . 6888 189. 8	R 2436 6000 6010 6017	Ha 4934 	Fe3138 - 6881 - 88881 - 88881	Ri2230 .0000 .0000 61.10
	00000 00001	. 0005 . 0006	. 0000 0000	9999 9999	 		. 8888
А ХО С С С С С С С С С С С С С С С С С С С	Ca3179 . 6008 34. 24	Cd2265 00000 .00000 7.335		Cr2677 .0001 52.80	Cu3247 .0004 .0000 1.711	Fe2714 0000 41.04 41.04	K 7664 . 0004 . 0013 . 0013 . 26. 4
101 101	. 0000	. 8888 . 8888		. 0001 0001 001	. 6664 . 6664	 	0005 .0013
Elem XRSC XRSC XRSC	га 84888 86886 8686 8686 8686 8686 8686 8	L16707 .0002 21.67	Н <mark>в</mark> 2000 - 00000 - 00000 - 00000 - 00000	7 7 7 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	Mo 80000 918000 918000 9180000	Na5889 	Na3302 0003 42.37
##	. 0005	. 0001 . 0002		. 866 866 866 866 866 866 866 866 866 866	8888 8888		
Elen XSDer XCSC XCSC XCSC XCSC XCSC XCSC XCSC XCS	Ni Ni 0001 14.6	5 178 6001 12.26	2003/1 20002 26:75 26:75	- 203/2 - 603/2 - 6001 - 26	Pd340 00000 944.8		552068 .0000 4.887
(i) ###	. 0000 . 0000	. 8881 . 8881	. 0001 . 0002		- 0000 - 0000	. 6666 . 6666	8888 8888
XSDege XCO XCO XCO XCO XCO XCO XCO XCO XCO XCO	863613 71.29 6048	1960/1 0001 0001 20.40	1960/2 .0002 39.94	81 80 80 80 80 80 80 80 80 80 80 80 80 80	571893 	8 - 8 - 8 - 8 - 8 - 8 - 8 - 8 - 8 - 8 -	Th2037 .0000 .0000 234.6
+0 ##	70.99 71.60		6663	. 6614 6614	. 6666 6666	. 8888	. 0000
Elen XSO XSO XSO XSO XSO XSO XSO XSO XSO XSO	Ti3372 - 6014 3.943	- 11 - 10000 - 10000 - 110000 - 1110000 - 1110000 - 1110000 - 11100000 - 11100000 - 11100000 - 11100000 - 1100000 - 1100000 - 11000000 - 1000000 - 10000000 - 100000000 - 100000000 - 100000000 - 100000000 - 10000000000	U 3809 98888 379888 379986 37988 37988 37988 37988 37988 37988 37988 37988 37988 37988 379		w 2009 . 0001 .2.71 .2.71	Y3718 88888 71.16	Zn2062 - 0000 - 60000
	0014		. 0040 . 0040		. 0001		
X 00 20 20 20 20 20 20 20 20 20 20 20 20 2	Zr3496 .0001 1.408						

Colul

11-6-03

り

. 0001 . 0001

--0 ##

Spar 67

Standardization Rpt.

ounts Zime 1.384 2893 10000 89.310 .0000 016765 .0000	З МОТИSED —— 000 ——	4 NOTUSED	S NOTUSED	6 NOTUSED	7 NOTUSED
9860 10000 5926 10000	**** ****	**** ****	****	**** ****	
	cunts Time 1.384 2893 10000 89.310 .0000 016765 .0000 9860 10000 5926 10000	2 3 1.384 2893 10000 89.310 .0000000 916765 .0000000 9860 10000 10000	2 3 4 Dunts Time NOTUSED NOTUSED 1.384 2893 10000 89.310 .0000000 016765 .0000000 9860 10000 9860 10000	2 3 4 5 1.384 2893 10000 310 20000000 21.384 2893 10000 29.310 20000000 216765 20000000 2860 10000 2926 10000	2 3 4 5 6 1.384 2893 10000 310 20000000 21.384 2893 10000 2893 10000 29.310 20000000 216765 20000000 2860 10000 2926 10000

page 1

Standardization Rpt.

11/06/03 11:36:49 AM

Method: DAILY1 Standard: clp_std4 Run Time: 11/06/03 11:33:07

Elem Avge SDev %RSD	Ag3280 .05200 .00035 .68079	As1890 .1016 .0006 .5795	2203/1 .4016 .0007 .1762	2203/2 .4158 .0005 .1281	Sb2068 .1081 .0007 .6723	1960/1 .2139 .0019 .9081	1960/2 .3697 .0043 1.176
#1 #2	.05175 .05225	.1012 .1020	.4011 .4021	.4154 .4161	.1076 .1086	.2126 .2153	.3666 .3727
Elem Avge SDev XRSD	T11908 .0280 .0001 .4141						
#1 #2	.0279 .0281						
IntStd Mode Elem Wavlen Avge SDev %RSD	1 *Counts Sc 361.384 729871 6235.268 .8542972	2 Time 10000 .0000000 .0000000	3 NOTUSED	4 NOTUSED 	5 NOTUSED	6 NOTUSED 	7 Notused
#1. #2	725462 734280	10000	**** ****	**** ****	1100 0000 1100 0000		**** ****

Standardization Rpt.

11/06/03 11:40:42 AM

Method: DAILY1 Standard: clp_std1 Run Time: 11/06/03 11:36:59

Elem	A13082	Ca3179	Fe2714	K_7664	Li6707	Mg2790	Na3302
Avge	.1262	.1418	.0985	1.675	3.328	.0527	.0121
SDev	.0011	.0009	.0003	.023	.034	.0001	.0001
XRSD	.8958	.6535	.2923	1.363	1.034	.1186	.7550
#1	.1254	.1425	.0987	1.659	3.304	.0526	.0120
#2	.1270	.1412	.0983	1.692	3.353	.0527	.0122
IntStd Mode Elem Wavlen Avge SDev %RSD	1 *Counts Sc 361.384 704300 5844.237 .8297944	2 Time 	3 NOTUSED	A NOTUSED	5 NOTUSED	6 NOTUSED	NOTUSED
#1 #2	708432 700167	10000 10000					····· ····

Standardization Rpt.

11/06/03 11:44:12 AM

Method: DAILY1 Standard: clp_std5 Run Time: 11/06/03 11:40:51

Elem Avge SDev %RSD	B_2496 .3700 .0023 .6302	Bi2230 .0571 .0001 .0852	Mc2020 .1449 .0011 .7748	P_1782 .0321 .0002 .6587	Si2881 .1236 .0003 .2073	Sn1899 .1674 .0002 .1364	Sr4215 1.540 .005 .2943
#1 #2	.3684 .3717	.0571 .0572	.1441 .1457	.0319 .0322	.1238 .1235	.1672 .1676	1.543 1.537
Elem Avge SDev XRSD	Ti3372 1.063 .003 .3195						
#1 #2	1.065 1.060						
IntStd Mode Elem Wavlen Avge SDev XRSD	1 *Counts Sc 361.384 712429 2449.418 .3438122	2 Time 10000 .0000000 .6000000	3 NOTUSED	4 NOTUSED	5 NOTUSED	6 NOTUSED	7 NOTUSED
#1 #2	710697 714161	10000 10000	·····	· · · · · · · · · · · · · · · · · · ·		···· ····	···· ···

Standardization Rpt.

page 1

Method: DAILY1 Standard: clp_std2 Run Time: 11/06/03 11:44:22

Elem Avge SDev %RSD	Ba4934 .6303 .0004 .0572	Be3130 .1982 .0000 .0150	Cr2677 .2814 .0013 .4731	Cu3247 .3155 .0009 .3017	Ni2316 .7125 .0006 .0776		
#1 #2	.6300 .6305	.1982 .1982	.2823 .2804	.3161 .3148	.7128 .7121		
IntStd Mode Elem Wavlen Avge SDev XRSD	1 *Counts Sc 361.384 708226 18004.35 2.542176	2 Time 10000 .0000000 .0000000	3 NOTUSED	4 NOTUSED	5 NOTUSED	6 NOTUSED	7 NOTUSED
#1 #2	695495 72 8 957	10000 10000	•••• •••• •••• •••	···· ···		**** ****	···· ···

Standardization Rpt.

11/06/03 11:51:14 AM

page 1

Method: DAILY1 Standard: clp_std3 Run Time: 11/06/03 11:47:31

Elem Avge SDev XRSD	Cd2265 1.055 .002 .1674	Co2286 .2566 .0001 .0563	Mn2576 .3848 .0008 .1987	V_2924 .0716 .0001 .1159	Zn2062 .0779 .0001 .1103		
#1 #2	1.054 1.056	.2567 .2565	.3843 .3854	.0715 .0716	.0780 .0779		
IntStd Mode Elem Wavlen Avge SDev XRSD	1 *Counts Sc 361.384 701265 9058.038 1.291671	2 Time 10000 .0000000 .0000000	3 NOTUSED	4 NOTUSED	5 NOTUSED	6 NOTUSED	NOTUSED
#1 #2	694860 707670	10000 10000		•••• ••••	···· ···	**** ****	

.....

....

Standardization Rpt. 11/06/03 11:55:50 AM Method: DAILY1 Standard: clp_std6 Run Time: 11/06/03 11:51:24 S_1820 .0333 .0005 Th2837 W 2079 .1215 La4086 .3974 .0012 Na5889 -1370 Pd3404 .1536 U_3859 .0332 Elem Avge . 0004 .0001 . 0001 . 0004 .0005 SDev %RSD .3087 . 3739 .2881 1.561 .1955 .3673 .3313 .3965 .1533 .1539 .0774 .0772 #1 .1366 .0330 .0331 .1212 .3983 #2 .1373 .0337 .0332 .1218 Y_3710 1.025 Elem Zr3496 1.182 Avge . 000 SDev .000 %RSD .0464 .0007 1.026 #1 1.182 #2 1.025 1.182 IntStd 7 2 З 4 5 1 6 *Counts NOTUSED NOTUSED NOTUSED NOTUSED NOTUSED Mode Time Elem \mathbf{Sc} ----.... 361.384 703006 Wavlen •••• •••• 10000 Avge **** **** ----.... 3406.133 .4845095 . 0000000 SDev **** **** **XRSD** .0000000 **** **** 700598 10000 #1 ----.....

.....

....

#2

705415

10000

....

page 1

Standardiz	ation	Report			11/06/0	3 11:55:50 A	19	page	1.
Method: DA	ILY1	Slop	e ==	Conc (SI	R)/IR				
Element Wa Ag3288 30 Al32882 30 Al32882 30 Al32882 30 Al32896 249 Al32896 249 BB24934 49 BB223179 31 CCC2222 22 CCC222214 22 CCC22227 22 CCC22227 22 CCC22227 22 CCC22227 22 CCC22227 22 CCC22227 22 CC22227 22 CC2227	191 18.068 18.042 19.0478 19.0478 19.0478 19.0478 19.0478 19.0478 19.0478 19.0478 19.0478 19.0478 19.0478 19.0478 19.0478 19.0478 19.0478 19.0478 19.0478 19.0478 10.1441 10.1441 10.1441 10.1441 10.1441 10.1441 10.1441 10.1441 10.1441 10.1441 10.1441 10.1441 10.1441 10.1441 10.1441 10.1441 10.1451 10.1451 10.1451 10.1451 10.1451 10.1451 10.1451 10.1451 10.1451 10.1451 10.1451 10.14	<pre>High std4 clp_std4 clp_st</pre>	ааааааааааааааааааааааааааааааааааааа	std	S_{39}^{+} P_{23}^{+} P_{23}^{+} P_{23}^{-} $P_{$	Y-intercept .000323 220714 .001235 001235 000227 .0002599 0002137 0002137 0002140 .000410 000410 000410 0011352 .012086 011962 011837 0004155 .004983 001966 004983 001966 002966 002966 002966 002966 0029142 002966 0029142 0029186 0029142 0029186 0029142 0029186 0029186 0029186 0029186 0029186 002917 111105 .000000 .000000 .000000 .000000 .000000	Date Star 11/06/03 11/06	id111111111111111111111111111111111111	
W 2079 20 Y 3710 37	1.030 c	clp_std6 clp_std6	blk blk		41.1642 9.75018	002543 .000055	11/06/03 11/06/03	11:51 11:51	:24
Zn2062 20 7~3494 34	6.200 (clp_std3	blk Kil		128.336	.000270	11/06/03	11:51	124

I	Analysis	Report	QC Stand	dard	11/06/	03 12:00:8	8 PM	page 1
	Method: 1 Run Time:	AILY1 : 11/06/03	Sample Nam 11:56:00	me: icv/ccv	v	Ope	rator:	
1	Jomment: Mode: COM	Corr.	Factor: 1					
	Elem	Ag3280	A13082	As1890	B_2496	Ba4934	Be3130	Bi2230
	Units	PPm	ppm	PPm	ppm	ppm	ppm	PPm
	Avge	.99833	10.04	5.000	4.832	10.39	1.068	5.080
	SDev	.00095	.04	.015	.018	.09	.005	.010
	XRSD	.09530	.3954	.3042	.3800	.8733	.4364	.1928
	#1	.99900	10.06	4.989	4.819	10.45	1.064	5.087
	#2	.99766	10.01	5.011	4.845	10.32	1.071	5.074
	Errors	QC Pass	QC Pass	QC Pass	QC Pass	QC Pass	QC Pass	QC Pass
	Value	1.0000	10.00	5.000	5.000	10.00	1.000	5.000
	Range	10.000	10.00	10.00	10.00	10.00	10.00	10.00
	Elem	Ca3179	Cd2265	Co2286	Cr2677	Cu3247	Fe2714	K_7664
	Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm
	Avge	19.60	1.011	4.999	1.942	2.100	9.933	19.49
	SDev	.06	.002	.013	.004	.013	.026	.20
	%RSD	.3275	.2268	.2540	.2187	.6019	.2593	1.008
	#1	19.55	1.009	5.008	1.945	2.109	9.915	19.63
	#2	19.64	1.012	4.990	1.939	2.091	9.951	19.35
	Errors	QC Pass	QC Pass	QC Pass	QC Pass	QC Pass	QC Pass	QC Pass
	Value	20.00	1.000	5.000	2.000	2.000	10.00	20.00
	Range	10.00	10.00	10.00	10.00	10.00	10.00	10.00
	Elem	La4086	Li6707	Mg2790	Mn2576	Mo2020	Na5889	Na3302
	Units	ppm	ppm	ppm	ppm	PPm	ppm	PPm
	Avge	4.968	5.028	19.90	1.026	5.075	Q45.60	27.88
	SDev	.017	.057	.08	.004	.049	.43	.30
	XRSD	.3344	1.138	.3791	.4117	.9722	.9380	1.088
	#1	4.979	5.068	19.96	1.029	5.040	Q45.90	28.09
	#2	4.956	4.988	19.85	1.023	5.109	Q45.30	27.66
	Errors	QC Pass	QC Pass	QC Pass	QC Pass	QC Pass	QC Fail	QC Pass
	Value	5.000	5.000	20.00	1.000	5.000	30.00	30.00
	Range	10.00	10.00	10.00	10.00	10.00	10.00	10.00
	Elem	Ni2316	P_1782	2203/1	2203/2	Pd3404	S_1820	Sb2068
	Units	ppm	ppm	ppm	PPm	ppm	ppm	ppm
	Avge	4.803	5.131	4.945	5.022	1.045	1.025	1.024
	SDev	.008	.006	.003	.003	.019	.012	.001
	XRSD	.1624	.1095	.0667	.0581	1.791	1.191	.0670
	#1	4.798	5.134	4.948	5.020	1.058	1.033	1.023
	#2	4.809	5.127	4.943	5.025	1.032	1.016	1.024
	Errors Value Range	QC Pass 5.000 10.00	QC Pass 5.000 10.00	NOCHECK	NOCHECK	QC Pass 1.000 10.00	QC Pass 1.000 10.00	QC Pass 1.000 10.00
	Elem	Sc3613	1960/1	1960/2	Si2881	P6220	Se196	Sn1899

Analysis	Report QC Stan		ndard	lard 11/06/03 12:00:28 PM			
Units	XR	Ppm	ppm	ppm	ppm	ppm	ppm
Avge	100.9	5.429	5.446	4.976	4.992	5.435	4.968
SDev	2.9	.023	.029	.019	.001	.027	.016
%RSD	2.884	.4221	.5298	.3860	.0169	.4939	.3251
#1	98.82	5.445	5.467	4.989	4.991	5.454	4.979
#2	102.9	5.412	5.426	4.962	4.992	5.416	4.957
Errors Value Range	NOCHECK	NOCHECK	NOCHECK	QC Pass 5.000 10.00	QC Pass 5.000 10.00	QC Pass 5.000 10.00	QC Pass 5.000 10.00
Elem	Sr4215	Th2837	Ti3372	T11908	U_3859	V_2924	W_2079
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avge	5.304	Q.7148	4.908	5.342	1.030	5.072	1.006
SDev	.020	.0248	.004	.045	.021	.004	.001
XRSD	.3852	3.469	.0744	.8337	2.080	.0865	.1329
特1	5.318	Q.7323	4.906	5.310	1.045	5.075	1.005
林2	5.290	Q.6973	4.911	5.373		5.069	1.007
Errors	QC Pass	QC Fail	QC Pass	QC Pass	QC Pass	QC Pass	QC Pass
Value	5.000	1.000	5.000	5.000	1.000	5.000	1.000
Range	10.00	10.00	10.00	10.00	10.00	10.00	10.00
Elem Units Avge SDev XRSD	Y_3710 ppm 5.026 .004 .0801	Zn2062 ppm 1.020 .000 .0162	Zr3496 ppm 4.868 .000 .0014				
特1 特2	5.029 5.023	1.020 1.020	4.868 4.868				
Errors Value Ranne	QC Pass 5.000 10.00	QC Pass 1.000 10.00	QC Pass 5.000 10.00				

Analysis Report — QC Standard

page 3

IntStd Mode Flem	1 *Counts	2 Time	3 NOTUSED	4 NOTUSED	5 NOTUSED	6 NOTUSED	7 NOTUSED
Wavlen	361.384				•••• ••••		
Avge	719174	10000	**** **** .	*** ***			
SDev	20707.62	.0000000	**** ****	**** ****	**** ****	**** ****	**** ****
XRSD	2.879360	.00000000	**** ****	**** ****	*** ***	**** ****	**** ***
				х.			
## 1	704532	10000	*** ***			**** ****	**** ****
#2	733817	1 8 8 8 8	**** ****	****	**** ****	**** ****	**** ****

Analysis	Report	Blank S	ample	11/06	/03 12:06:5	51 PM	page
Method: D Run Time	DAILY1 : 11/06/03	Sample Na 12:02:25	me: icb∕cc	b	Ope	rator:	
Node: CO	NC Corr.	Factor: 1					
Elem	Ag3280	A13082	As1890	B_2496	Ba4934	Be3130	Bi2230
Units	PPm	ppm	ppm	ppm	PPm	ppm	Ppm
Avge	.00093	.0169	.0016	.0118	H.0070	.0006	.0010
SDev	.00033	.0138	.0005	.0036	.0042	.0006	.0001
%RSD	35.205	81.72	33.00	30.88	60.30	36.03	13.71
#1	.00070	.0267	.0012	.0143	H.0100	.0010	.0011
#2	.00117	.0072	.0020	.0092	,0040	.0002	.0009
Errors	LC Pass	LC Pass	LC Pass	LC Pass	LC High	LC Pass	LC Pass
High	.00500	.0500	.0050	.0500	.0050	.0050	.0050
Low	00500	0500	0050	0500	0050	0050	0050
Elem	Ca3179	Cd2265	Co2286	Cr2677	Cu3247	Fe2714	K_7664
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avge	.0137	.0007	.0034	0028	.0006	.0032	.0409
SDev	.0073	.0003	.0021	.0007	.0006	.0041	.0038
%RSD	53.18	48.24	61.65	23.68	113.2	128.3	9.370
#1	.0189	.0009	.0049	0024	.0010	0003	.0382
#2	.0086	.0004	.0019	0033	.0001	0061	.0437
Errors	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass
High	.0500	.0050	.0050	.0050	.0050	.0250	.1000
Low	0500	0050	0050	0050	0050	0250	1000
Elem	La4086	Li6707	Mg2790	Mn2576	Mo2020	Na5889	Na3302
Units	ppm	ppm	PPm	Ppm	PPm	ppm	PPm
Avge	.0043	.0023	.0165	.0000	H.0096	.0245	H.2745
SDev	.0019	.0014	.0059	.0004	.0036	.0106	.0072
XRSD	43.76	59.60	35.52	889.8	37.31	43.19	2.616
#1	H.0057	.0032	.0207	.0003	H.0121	.0320	H.2694
#2	.0030	.0013	.0124	0002	H.0071	.0170	H.2796
Errors	LC Pass	LC Pass	LC Pass	LC Pass	LC High	LC Pass	LC High
High	.0050	.0050	.0500	.0050	.0050	.0500	.0500
Low	0050	0050	0500	0050	0050	0500	0500
Elem	Ni2316	P_1782	2203/1	2203/2	Pd3404	S_1820	Sb2068
Units	Ppm	ppm	PPm	ppm	Ppm	PPm	ppm
Avge	.0007	0024	.0027	.0046	.0007	0031	.0018
SDev	.0019	.0027	.0045	.0019	.0009	.0012	.0015
XRSD	254.5	111.9	168.0	40.74	141.9	39.72	80.86
#1 #2	.0021	0043 0005	.0058	.0059 .0033	.0013 0000	0023 0040	.0008 .0029
Errors High Low	LC Pass .0050 0050	LC Pass .0100 0100	NOCHECK	NOCHECK	LC Pass .0050 0050	LC Pass .0100 0100	LC Pass .0100 0100
Elem	Sc3613	1960/1	1960/2	Si2881	P-6250	Se196	Sn1899

1.

Analysis	Report	Blank	Sample	11/06	/03 12:06:	51 PM	page 2
Units Avge SDev XRSD	%R 99.18 1.54 1.556	PPM .0028 .0033 116.8	PPM .0070 .0043 61.61	ppm .0051 .0026 52.16	ppm H.0039 .0027 69.28	ррт Н.0056 .0040 70.70	ppm H.0062 .0007 12.02
#1 #2	98.09 100.3	.0051 .0005	.0100 .0039	.0069	H.0059 .0020	H.0084 .0028	H .00 67 H.0056
Errors High Low	NOCHECK	NOCHECK	NOCHECK	LC Pass .0100 0100	LC High .0030 0030	LC High .0050 0050	LC High .0050 0050
Elem Units Avge SDev XRSD	Sr4215 ppm - 0036 - 0022 60.88	Th2837 ppm .0012 .0013 108.8	Ti3372 ppm .0030 .0016 54.35	T11908 ppm H.0114 .0093 81.75	U_3859 ppm .0226 .0105 46.46	V_2924 PPm .0036 .0022 59.36	W_2079 PPm -0058 -0008 13.55
#1 #2	H.0052 .0021	.0021	.0042	.0048 H.0180	.0152 .0301	H.0052 .0021	.0063 .0052
Errors High Low	LC Pass .0050 0050	LC Pass .0100 0100	LC Pass .0050 0050	LC High .0100 0100	LC Pass .1000 1000	LC Pass .0050 0050	LC Pass .0100 0100
Elem Units Avge SDev XRSD	Y_3710 ppm .0036 .0021 57.85	Zn2062 ppm .0016 .0004 25.01	Zr3496 ppm .0034 .0015 42.38				
#1 #2	H.0051 .0021	.0019 .0013	.0045 .0024				
Errors High Low	LC Pass .0050 0050	LC Pass .0050 0050	LC Pass .0050 0050				

Analysis Report

11/06/03 12:06:51 PM

IntStd Mode Elem Wavlen Avge SDev XRSD	1 *Counts Sc 361.384 707092 10960.86 1.550131	2 Time 10000 .0000000 .0000000	3 NOTUSED	4 NOTUSED	5 NOTUSED	6 NOTUSED	NOTUSED
#1	699342	10000		<i></i>	••••	*** ***	****
#2	714843	10000		*** ***	*** ***		

Analysis Report

Method: DAILY1 Sample Name: 236555 Run Time: 11/06/03 12:07:01 Comment: Mode: CONC Corr. Factor: 1 Ag3280 Elem A13082 As1890 B 2496 Ba4934 Be3130 Bi2230 Units ppm .1412 ppm ppm ppm ppm ppm ppm -.00071 . 1297 . 6056 -, 0004 -.0060 Avge . 0008 SDev .00031 .0031 .0060 .0001 .0001 .0020 %RSD 43.188 2.399 34.93 .5495 1.155 12.33 33.42 -.00093 -.0129 .1417 .0056 -.0005 -.0074 # 1 .1275 #2 -.00050 .1319 -.0214 .1406 .0055 -.0046 K 7664 Ca3179 Cd2265 Co2286 Cr2677 Fe2714 Elem Cu3247 ррт .000Э ppm 31.58 Units ppm .0105 ppm .1397 ppm 344.6 ppm ppm -:0003 -.0006 Avge .1729 .0003 .0016 SDev .0001 .0015 .0001 1.7 ×RSD 502.8 14.58 6.139 2.418 .4818 1.181 . 0008 .0007 -.0005 .0107 . 1408 343.4 #1 31.54 #2 31.62 .0009 -.0013 -.0006 .0103 .1385 345.8 Mg2790 Mn2576 Elem La4086 Li6707 Mo2020 Na5889 Na3302 ppm .0028 ppm .0034 ppm . 0047 ppm .0189 ppm 284.6 ppm s-50.18 ppm 3846. Units Avge .0002 7.888 1.56 SDëv .0002 .0000 .0005 24. . 5 . 1742 4.682 3.103 .6153 %RSD .5120 2.507 .0029 .0033 .0047 .0186 3862. #1 284.2 S-49.08 #2 .0035 .0047 5-51.28 .0026 284.9 .0193 3829. P 1782 Elem Ni2316 2203/1 2203/2 Pd3404 S 1820 Sb2068 ppm .0059 ppm 101.7 ppm .0014 ppm .0160 ppm ppm 512.4 ppm .0021 Units -.0036 Avge .0002 . 8 SDev .0144 .0077 .0053 2.0 .0002 XRSD 2.977 . 7973 .3968 1012. 48.42 147.4 10.15 .0057 102.3 .0105 .0002 510.9 .0019 科生 .0116 101.1 -.0074 #2 -.0088 513.8 .0060 .0214 .0022 Elem Sc3613 1960/1 1960/2 Si2881 Pb220 Se196 Sn1899 ppm .0268 ppm .0413 ppm 3.180 ppm .0111 ppm .0316 ppm .0605 Units メ校 90.02 Avge . 000 .0094 35.22 .0025 7.868 SDev .10 .0003 .0114 .0036 .1069 %RSD 27.62 .0009 5.888 90.09 3.1803.180#1 .0493 .0201 .0109 .0298 .0630 #2 89.95 .0332 . 0334 .0333 .0114 .0579 Elem Sr4215 Th2837 Ti3372 T11908 U_3859 V 2924 W 2079 ppm .0025 ppm .0176 Units ppm .0052 ppm ppm ppm ppm -13254 .0021 -. 0880 -.0026 Avge . 0000 .0018 69.78 . 0023 2.563 .0113 SDev .0003 .0003 .0024 %RSD .0626 15.80 3.466 12.18 45.72

.0023

.0019

-.0896

-.0864

-.0038

-.0013

#1

#2

.0176

.0176

page 1

Operator:

.0027

.0022

-.3334

.0069

.0035

11/06/03 12:11:27 PM

Analysis Report

11/06/03 12:11:27 PM

page 2

Elem Units Avge SDev %RSD	Y_3710 ppm .0001 .0001 106.8	Zn2062 ppm 1.418 .001 .0776	Zr3496 ppm .0075 .0019 25.21				
#1 #2	.0002 .0000	1.417 1.419	.0088 .0062				
IntStd Mode Elem Wavlen Avge SDev %RSD	1 *Counts Sc 361.384 641810 685.8936 .1068686	2 Time 10000 .0000000 .0000000	3 NOTUSED 	4 NOTUSED 	5 HOTUSED	6 NOTUSED	NOTUSED
#1 #2	642295 641325	10000 10000	**** ****	••••	**** ****	-135 - 411. 414 411.	0440 4799 8768 4888

Analysis	Report	QC Stan	dard	11/06/	03 12:20:	09 PM	page
Method: 1 Run Time	DAILY1 # 11/06/03	Sample Na 12:15:25	me: icv/cc	v	0p	erator:	
Node: CO	NC Corr.	Factor: 1					
Elem	Ag3280	A13082	As1890	B_2496	Ba4934	Re3130	Bi2230
Units	ppm	ppm	ppm	ppm	ppm	ppm	PPm
Ayge	1.0067	10.01	5.098	4.879	10.26	1.088	5.090
SDev	.0054	.07	.003	.045	.06	.001	.027
%RSD	.53491	.7347	.0592	.9213	.5893	.0955	.5262
#1	1.0029	9.956	5.096	4.847	10.22	1.087	5.071
#2	1.0105	10.06	5.100	4.911	10.31	1.089	5.109
Errors	QC Pass	QC Pass	QC Pass	QC Pass	QC Pass	QC Pass	QC Pass
Value	1.0000	10.00	5.000	5.000	10.00	1.000	5.000
Range	10.000	10.00	10.00	10.00	10.00	10.00	10.00
Elem Units Avge SDev %RSD	Ca3179 20.19 .00 .0214	Cd2265 ppm 1.038 .000 .0437	Co2286 PPm 5.106 .012 .2322	Cr2677 ppm 1.988 .005 .2454	Cu3247 Ppm 2.087 .013 .6298	Fe2714 ppm 10.13 .03 .3044	K_7664 ppm 19.33 .17 .8832
#1	20.18	1.038	5.097	1.984	2.078	10.11	19.21
#2	20.19	1.038	5.114	1.991	2.096	10.16	19.45
Errors	QC Pass	QC Pass	QC Pass	QC Pass	QC Pass	QC Pass	QC Pass
Value	20.00	1.000	5.000	2.000	2.000	10.00	20.00
Range	10.00	10.00	10.00	10.00	10.00	10.00	10.00
Elem	La4086	Li6707	Mg2790	Mn2576	Mo2020	Na5889	Na3302
Units	ppm	ppm	ppm	ppm	PPM	ppm	Ppm
Avge	4.906	4.984	20.13	1.046	5.151	Q45.39	28.00
SDev	.018	.034	.06	.002	.027	.16	.16
XRSD	.3716	.6917	.3077	.2049	.5276	.3509	.5872
#1	4.893	4.960	20.08	1.044	5.131	Q45.28	28.12
#2	4.919	5.008	20.17	1.047	5.170	Q45.50	27.89
Errors	QC Pass	QC Pass	QC Pass	QC Pass	QC Pass	QC Fail	QC Pass
Value	5.000	5.000	20.00	1.000	5.000	30.00	30.00
Range	10.00	10.00	10.00	10.00	10.00	10.00	10.00
Elem	Ni2316	P_1782	2203/1	2203/2	Pd3404	S_1820	Sb2068
Units	ppm	PPm	ppm	ppm	PPm	ppm	PPm
Avge	4.909	5.124	5.041	5.121	1.017	Q1.119	1.026
SDev	.005	.006	.037	.036	.007	.055	.003
%RSD	.1062	.1153	.7404	.6960	.6751	4.931	.2849
#1	4.905	5.120	5.015	5.096	1.012	Q1.158	1.028
#2	4.913	5.128	5.068	5.146	1.022	1.080	1.024
Errors Value Range	QC Pass 5.000 10.00	QC Pass 5.000 10.00	NOCHECK	NOCHECK	QC Pass 1.000 10.00	QC Fail 1.000 10.00	QC Pass 1.000 10.00
Elem	Sc3613	1960/1	1960/2	Si2881	P6220	Se196	Sn1899

Analysis Report QC Standard

11/06/03 12:20:09 PM

page 3

IntStd Mode Elem Wavlen Avge SDev %RSD	1 *Counts Sc 361.384 734436 444.7702 .0605595	2 Time 10000 .0000000 .0000000	3 NOTUSED	4 NOTUSED	5 NOTUSED	6 NOTUSED	7 NOTUSED
#1	734121	10000	**** ****		**** ****	**** ****	**** ****
#5	734750	10000		**** ***			****

Analysis	Report	Blank Sa	ample	11/06	/03 12:27:0	97 PM	page :
Method:) Run Time	DAILY1 # 11/06/03	Sample Nam 12:22:19	ne: icb∕cc∣	3	Ope	erator:	
Yode: CO	NC Corr.	Factor: 1					
Elem	Ag3280	A13082	As1890	B_2496	Ba4934	Be3130	Bi2230
Units	ppm	Ppm	ppm	PPm	ppm	Ppm	PPm
Ayge	.00028	.0162	0003	- 0094	.0044	.0002	.0025
SDev	.00019	.0085	.0007	- 0029	.0026	.0007	.0021
%RSD	69.311	52.33	216.0	30.45	59.28	319.7	82.34
#1	.00042	.0222	0002	.0115	H.0063	.0007	.0040
#2	.00014	.0102	0009	.0074	.0026	0003	.0011
Errors	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass
High	.00500	.0500	.0050	.0500	.0050	.0050	.0050
Low	00500	0500	0050	0500	0050	0050	0050
Elem	Ca3179	Cd2265	Co2286	Cr2677	Cu3247	Fe2714	K_7664
Units	ppm	Ppm	ppm	ppm	ppm	PPm	ppm
Avge	.0079	.0003	.0020	0033	.0006	0113	.0319
SDev	.0053	.0003	.0014	.0007	.0007	.0029	.0122
XRSD	66.93	116.1	67.17	20.40	108.9	25.69	38.28
#1	.0116	.0005	.0030	0028	.0011	0093	.0406
#2	.0042	.0000	.0011	0038	.0001	0134	.0233
Errors	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass
High	.0500	.0050	.0050	.0050	.0050	.0250	.1000
Low	0500	0050	0050	0050	0050	0250	1000
Elem	La4086	Li6707	Mg2790	Mn2576	Mo2020	Na5889	Na3302
Units	ppm	Ppm	ppm	ppm	PPm	ppm	ppm
Avge	.0027	.0015	.0087	0002	H.0075	.0193	H.1941
SDev	.0011	.0008	.0043	.0003	.0021	.0085	.0950
XRSD	39.84	56.44	48.92	142.2	27.77	43.77	48.93
#1	.0034	.0021	.0118	.0000	H.0090	.0253	H.2612
#2	.0019	.0009	.0057	0004	H.0060	.0134	H.1269
Errors	LC Pass	LC Pass	LC Pass	LC Pass	LC High	LC Pass	LC High
High	.0050	.0050	.0500	.0050	.0050	.0500	.0500
Low	0050	0050	0500	0050	0050	0500	0500
Elem	Ni2316	P_1782	2203/1	2203/2	Pd3404	S_1820	Sb2068
Units	PPm	PPm	Ppm	Ppm	Ppm	PPm	ppm
Avge	0007	H.0149	.00016	.0028	.0001	H.0140	0000
SDev	.0009	.0052	.0001	.0007	.0019	.0092	.0007
XRSD	133.0	34.79	7.259	26.11	3665.	66.02	4636.
#1	0000	H.0112	.0017	.0033	.0014	.0075	.0005
#2	0013	H.0186	.0015	.0023	0013	H.0205	0005
Errors High Low	LC Pass .0050 0050	LC High .0100 0100	NOCHECK	NOCHECK	LC Pass .0050 0050	LC High .0100 0100	LC Pass .0100 0100
Elem	Sc3613	1960/1	1960/2	Si2881	P6220	Se196	Sn1899

Analysis	Report	Blank §	Sample	11/06/	03 12:27:	07 PM	page 2
Units	%R	PPm	ppm	ppm	ppm	ррм	ppm
Avge	99.51	.0057	- 0009	.0015	.0024	.0025	.0037
SDev	.24	.0012	- 0061	.0004	.0005	.0044	.0039
%RSD	.2449	20.18	680-3	29.52	21.88	176.5	107.8
#1	99.33	.0065	.0052	.0019	.0028	H.0057	H.0064
#2	99.68	.0049	0034	.0012	.0020	0006	.0009
Errors High Low	NOCHECK	NOCHECK	NOCHECK	LC Pass .0100 0100	LC Pass .0030 0030	LC Pass .0050 0050	LC Pass .0050 0050
Elem	Sr4215	Th2837	Ti3372	T11908	U_3859	V_2924	W_2079
Units	PPm	ppm	PPm	PPm	Ppm	PPm	ppm
Avge	.0023	.0001	-0017	.0015	-0272	.0025	:0068
SDev	.0013	.0010	-0015	.0120	-0016	.0014	:0003
XRSD	58.96	1025.	88-82	806.0	5.831	55.90	4.568
林1	.0032	.0006	.0027	.0100	.0261	.0035	.0066
林2	.0013	0008		0070	.0283	.0015	.0070
Errors	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass
High	.0050	.0100	.0050	.0100	.1000	.0050	.0100
Low	0050	0100	0050	0100	1000	0050	0100
Elem Units Avge SDev %RSD	Y_3710 ppm .0022 .0013 59.28	Zn2062 ppm .0006 .0005 82.45	Zr3496 ppm -0020 -0015 72.01				
#1 #2	.0031 .0013	.0010 .0003	.0031 .0010				
Errors High Low	LC Pass .0050 0050	LC Pass .0050 0050	LC Pass .0050 0050				

IntStd Mode Elem Wavlen Avge SDev XRSD	1 *Counts Sc 361.384 709354 1781.909 .2512017	2 Time 10000 .0000000 .0000000	3 NOTUSED	NOTUSED	5 NOTUSED	NOTUSED	NOTUSED
#1 #2	708094 710614	10000 10000	***** ****	**** ****	**** ****	**** ****	**** ****

SOUTHWEST RESEARCH INSTITUTE NUCLEAR PROJECT CLIENT: Div. 20 TASK ORDER: 031021-4 SRR: 25126 SDG: 236555 CASE: CNWRA VTSR: October 21, 2003 PROJECT#: 06002.01.081

PREPARATION SHEETS

TRACE METALS PREPARATORY LABORATORY DIGESTION LOG

SOUTHWEST RESEARCH INSTITUTE SAN ANTONIO, TEXAS 78228

BOØK / PAGE: 54 273

	<u></u>			~	0
CLIENT(S): DIV20				contid	from pg 260 BK 54
TASK ORDER(S): 031021-4		SDO	G(S): 236	555	· /s
PROJECT NO(S): 06002.01.08	-1				V10037
METHOD:3005A3050B3050B-7.5	_3010A	3020A7	760A7740	AHClO₄	_H₂SO₄ Sb
Microwave Fusion Teflon Rock	_OTHE	Rd	f 5 Silu	tions	· · · · · · · · · · · · · · · · · · ·
MATRIX: WaterSoilBiotaSolid	Liquid	✓TCLP Ext_	_OTHER		
INSTRUMENT: GFAAICP_V_ICP-MS		LAAHYDR		R	·
ACID INORG #: HNO₃# X-X HCI#	XX	H₂SO₄#	HCI	O₄#	HF#
INTERNAL STD: Sc @ 10 PPM 🖌 Be @ 10	PPM_	_SOURCE:_1	<u>√</u> INORG‡	<u> 4261 EX</u>	P: 10/04 AMT: 50NL
Oven/Hotplate ID:Tempera	ture (°C)		-		·
	1			1 mm 3.6 (1 3	1
SAMPLE IDENTIFICATION	рН	WT (g)	I.V. (mL)	F.V. (mL)	
<u> </u>	· · · ·		2	>	
LLSW-LOYWS X			2		
236755			1		
6556					
6557					- ··· ··· ··· ··· ··· ···
1.558					
1105583 *					
	1		V		
* Spile SONL Spikel	Sner#	4074	ELD 5/04		
J JONL Y-CALL	Soex#	4245	9104		
J ZONL W@ IKppm	10#	4203	Esp 3/04		
V ZUNL MO V"	1V#	3956	9501/04		
			U		
*X - RUB-02-032-04	170	HNO3 5%	HCL	Exp 1/04	
$\rho_{a} > \rho_{t} \sim \rho_{t}$, , 	
100 and CLSWare prepared up	- Junh	5-*7			
ICE Pileting and	. 1.1	Dat.	11 1 . Mal		
At 5 Recent are pilparer	es Imc	Scemptel.	TMLS-AA		
· · · · · · · · · · · · · · · · · · ·					
					· · · · · · · · · · · · · · · · · · ·
$\overline{}$		11-4-03			·····
	el				
				S	LOCATION:
					NA
PREPARED BY D. (1) alla				-4-02	1
	· ·	<u></u>	DATE	<u> </u>	
			DATE: 71.	<u> </u>	
DISPOSAL INT/DATE/LOC:					

010098 Trace Metals Reagent Logbook

SOUTHWEST RESEARCH INSTITUTE SAN ANTONIO, TEXAS 78228

BOOK / PAGE: 02 032

Reagent I.D.:	Preparation Description:	Prep Date:	Exp Date:	Initials:
RLB-02-032-01	10% HCL	10.2803	1-28-0\$	Ju
1	ell 180 m (3 di water to a 300 m L nalgent			
	I rottle, ald 20mLs HCL inorg # 4291			
	F-V. is 200mls	V		
RB02-032-02	10x 501. A3			
	9.50 L Asecubie#4272+18.756 KI	10-28-03	10-29-03	βV
	# 5758 + 18.75 Ne HCL# 4292 to			
	100 me with Rey water		\checkmark	\downarrow
		-		
RLB-02-032-03	1 70 HNO2 / 500 HCL	10.29-03	1-29.04	Sw
A	all 100 mls di water to a 250 ml nodge	re)		
	bottle, all 2.5mls HNO2 more \$ 4295			
	all 12 5mLs HCL inoigth 4292			
	F.V. to 550 mL3 with St walls	· · · ·		V
R1B-62-03204	170 HNO3 590 HCL	11.4-03	1-404	Jen 1
Í	aff 100 m/s liwater to 250 ml Malger	e		0
	bottle all 2.5 mls HND, inou # 4396,			
	off 12 Souls Hel manut 4292, F.V. to			
\checkmark	250 mls will be water		J	V.
RLB2-032-05	52 KMN03			- (
	1506 to 3 L reag. water			\downarrow
	#3663	11-4-03	11-4-04	BL
				-

SOUTHWEST RESEARCH INSTITUTE®

6220 Culebra Rd San Antonio, Texas 78228

TJA TRACE ICP DAILY LOG

ANALYST___

DATE 11-4-63

BOOK/ PAGE 15 020

As 189.042 Profile Line As Intensity: 400.24

PEAK POSITION _. 04 8019

VERNIER POSITION 283

AUTOSAMPLER Yes_x___ No____

QC PREP DATE:							
CCV/ICV	03403						
CRI	0 1-4-0						
ICSA	T						
ICSAB							

STDs PREP DATE:	
CLP_STD1_SC	03-301
CLP_STD2_SC	03301
CLP_STD3_SC	03301
CLP_STD4_SC	03301
CLP_STD5_SC	03301
CLP_STD6_SC	03329
BLK_SC	63329

010099

COMMENTS	FILE	CLIENT	TO#	PROJECT NO.	METHOD
A031104	DAILY 32	Div. 18	031028-6	14036.01.107	DAily 1 54 27
A031104A	DAILY32	Div + 4020	031021-4	06002.01.081	DAILYI 5427
		-			
		÷			
		Δ	107		
			17		
		T			

COMMENTS:__

REVIEWED BY: COrduna DATE: V 403
BOOK/ PAGE

010100

.

SOUTHWEST RESEARCH INSTITUTE®

6220 Culebra Rd San Antonio, Texas 78228

TJA TRACE ICP DAILY LOG

ANALYST

DATE 11-6-03

As 189.042 Profile Line As Intensity: 410.327

PEAK POSITION_035425

VERNIER POSITION 293

AUTOSAMPLER Yes____ No___

QC PREP DATE	
CCV/ICV	03403
CRI	5
ICSA	-1-1-6
ICSAB	- Be

STDs PREP DATE:	
CLP_STD1_SC	OBKOS
CLP_STD2_SC	03405
CLP_STD3_SC	03×05
CLP_STD4_SC	03405
CLP_STD5_SC	03-501
CLP_STD6_SC	03605
BLK_SC	03 329

15 024

COMMENTS	FILE	CLIENT	TO#	PROJECT NO.	METHOD
A031106	DAily32	Div CO	031021-4	06002.01.081	DAILYI NA
A031106A	DALIVJZ	Divis	031105-5	R9356,01,002	DAILY1 54 254
A031106B	DAILY 32	DIV ZU	031025-1	06002.01.081	1 54 285
A03110613	DAily32	Div 20	031016-9	06002.01.141	54 286
	•				
1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 -		1 1 4-	03		
		Delle			

COMMENTS:

REVIEWED BY:

MAINTENANCE: DATE: 11 14 03

Corduña

ICP Calibration Blank/ICB/CCB Solution

	0 010404
1D: BLK-03202	
Date Prepared: 9-2-03	Prepared By:
Make up as needed in 1000ml volumetric flas	ж.
Added 10 ml HNO3 INORG #:41	<u>17</u>
Added 50 ml HCL INORG #:A	
Added 1000ul of 10000ppm Sc (INOF	RG. VENT.) EXP. Date: <u>10-1-0⊃</u> INORG #: <u>368⊃</u>
ICP Calibration Blan	K/ICB/CCB Solution
ID: BLK-03325	1
Date Prepared: 9-25-0)	Prepared By:
Make up as needed in 1000ml volumetric flas	iκ.
Added 10 ml HNO3 INORG #: 423	
Added 50 ml HCL INORG #:424	<u>7</u>
Added1000ul of 10000ppm Sc (INOI	RG. VENT.) EXP. Date: <u>10-1-04</u> INORG #: <u>426</u>
ICP Calibration Blan	k/ICB/CCB Solution
ID: BLK- 0313-1 03 301	
Date Prepared: 9-31-03 10-1-03	Prepared By: D
Make up as needed in 1000ml volumetric flas	;К.
Added 10 ml HNO3 INORG #: 42	<u>57</u>
Added 50 ml HCL INORG #:_ 424 °	
Added 1000ul of 10000ppm Sc (INO	RG. VENT.) EXP. Date: <u>/0-1-04</u> INORG #: <u>426</u>
ICP Calibration Blan	K/ICB/CCB Solution
ID: BLK-03529	\mathcal{O}
Date Prepared: 10-29-03	Prepared By:
Make up as needed in 1000ml volumetric flas	؛k.
Added 10 ml HNO3 INORG #:42	15
Added 50 ml HCL INORG #: 425	2
Added1000ul of 10000ppm Sc (INO	RG. VENT.) EXP. Date: 16-1-A-INORG #: 4262

FRM-296 (Rev 0/May 02)

ICP ICV/CCV SOLUTION

CCV-03103	Λ
Date Prepared: 11 - 3 - 2003	_Prepared By:
HNO3 INORG #: 4296	HCI INORG #: 4292

Make up as needed in 1000ml volumetric flask in 1% HNO3 AND 5% HCl.

Element	Std Conc	Amt added	Check	Source	Inorg #	Stock Conc	Exp Date
	(ppm)					(ppm)	
Sc	10	1ml		INORGVENT	A262	10000	10-1-04-
В	5	5ml	V	SPEX	4139	1000	6-30-04
Li	5	5ml	V	SPEX	4065	1000	5-15-04
Мо	5	5ml		SPEX	4066	1000	5-15-04
P	5	5ml		SPEX	4307	1000	10-30-04
Si	5	5ml		SPEX	4232	1000	8-30-A
Ti	5	5ml	\checkmark	SPEX	4234	1000	8-36-04
Sr	5	5ml	\checkmark	SPEX	4308	1000	10-30-04
Sn	5	5ml	\checkmark	SPEX	4141	1000	6-30-04
Bi	5	5ml		SPEX	4138	1000	6-30-04
La	5	5ml	\checkmark	SPEX	4064	1000	5-15-04
Y	5	5ml		SPEX	4067	1000	5-15-04-
Pd	1	1ml	/	SPEX	3924	1000	1-15-04
S	1	1ml	\checkmark	SPEX	4140	1000	6-30-04
Th	1	1ml	\checkmark	SPEX	4233	1000	8-30-04
U	.1	1ml	~	SPEX	4142	1000	6-30-0A
W	1	1ml	~	SPEX _	4212	1000	8-15-A
Zr	5	5m1	$\boldsymbol{\mathcal{V}}$	SPEX	4213	1000	8-15-04
Na	10	1ml	\checkmark	SPEX	3951	10000	2-15-04
ICV-2A	vary	10ml	V	SPEX	3773	mix	11-50-03
ICV-2B	vary	1ml	2	SPEX	3774	mix	11-30-03
ICV-2C	vary	10ml	V	SPEX	3775	mix	11-30-03

Expiration Date: 11-36-03

ICP Calibration Standards

Date Prepared: 9-31-03

HNO3 INORG #: 4237

HCI INORG #: 4249

____ Prepared By:__

Make up as needed in 500 ml volumetric flasks in 1% HNO3 and 5% HCl.

10-1-03

Prepared	Standard	Element	Std Conc	Added	Check	Source	INORG #	Stock Conc	Exp Date
	Name		(mag)	ml				(ppm)	
		· · · · · · · · · · · · · · · · · · ·	(
	STD1-	Δ1	50	2.50	./	INORVENT	A220	10000	9-1-04
	5101-		50	2.50		INORVENT	19/20	10000	7-1.04
	X		50	2.50		INORVENT	19/1	10000	3-1-04
YAN .	~~~	Fe	50	2.50		INORVENT	1724	10000	11.1.03
D'D'	R-	<u>N</u>	05	1.05		INORVENT	17.2	10000	4.1.04
50	100	<u>Nig</u>	20	1.20		INORVENT	4205	10000	and the
OK S	10 m	ina ina	50	2.50		INORVENT	4149	10000	17.00
5	0	<u> </u>	10	5.00			191	1000	
N N		Sc	10	0.500		INURVENT	9666	10000	10-1-01
			10				70.01	1000	3
1 m	STD2-	Ba	10	5.00		INORVENT	3741	1000	3-1-07
y D	ð.	Be	5	2.50		INORVENT	4066	1000	6-1-04
NA M		Cr	10	5.00		INORVENT	5452	1000	1-1-0-2
al P	16 -	Cu	10	5.00	U	INORVENT	3955	1000	3-1-04
	Nº DO	Ni	10	5.00		INORVENT	3957	1000	3-1-04
V I	0 %	Sc	10	0.500	V	INORVENT	426 L	10000	10-1-04
	STD3-	Cd	10	5.00		INORVENT	3972	1000	3-1-04
\$ A	×	Co	10	5.00		INORVENT	3973	1000	3-1-04
M	0.	Mn	10	5.00		INORVENT	3921	1000	2-1-05
a d'	6	V	10	5.00		INORVENT	3740	1000	11-1-03
The point of the second	110	Zn	10	5.00	V	INORVENT	3741	1000	11-1-03
10	P 15	Sc	10	0.500		INORVENT	426Z	10000	10-1-04
	°°								
	STD4-	Ag	2	1.00	V	INORVENT	4222	1000	9-1-04
21	Ň	As	10	5.00	~	INORVENT	3499	1000	2-1-04
82	AIM	Pb	10	5.00	V	INORVENT	3735	1000	11-1-03
pm	4-	Sb	10	5.00	V	INORVENT	3953	1000	3-1-04
18 2	2 0	Se	10	5.00	~	INORVENT	4152	1000	7-1-04
9 5	N N	TI	10	5.00		INORVENT	3926	1000	2-1-04
	0	Sc	10	0.500		INORVENT	4262	10000	10-1-04
			·	Carles States					
	STD5-	B	10	5.00	~	INORVENT	2954	1000	3-1-04
		Mo	10	5.00		INORVENT	2956	1000	3-1-14
1 N	~	p nio	10	5.00	V	INORVENT	4049	1000	6-1-04
pr-s	a a	Si	10	5.00		INORVENT	Aich	1000	3.104
P	. 16	Ti	10	5.00		INORVENT	1262	1000	12-1-03
XN	14 -		10	5.00			LICL	1000	7.00
P	OR B		10	5.00		INORVENT	1 2.72	1000	A.L.A
19 X	1 m	<u>01</u>	10 F	2.00		INORVENT	4200	1000	40.04
0			5	2,50			A712	1000	
	1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 -	SC	10	0.500	-	INURVENT	765-	10000	70-1-0T
<u> </u>	OTDE		10	E CO		INORVENT	4221	1000	9-1-04
	5100-			0.00	111		A	1000	Sand
5		INA DU	1	0.05	40		1005	1000	21-07
	5	<u>Ра</u>	10	5.00			21.20	1000	27.07
	S	5	10	5.00			2731	1000	10-1-0-3
V	0	<u> </u>	10	5.00			50-81	1000	10-1-03
			10	5.00			- 37.44	1000	2-1-04
· · ·		W	5	2.50			4203	1000	8-1-04
		Y	10	5.00			4065	1000	6-1-04
		Zr	10	5.00			3958	1000	5-1-04
		SC	10	0.500			47.62	10000	101-04

EXP. Orderi

Expiration Dates: STD1: //- (-03 STD2: //- (-03 STD3: //- (-03)

STD4: 11-1-03 STD5: 12-1-03

STD6: #1=1-03 10-1-03

FRM-299 (Rev 0/May 02) ICP Calibration Standards

Date Prepared: ノローこち - つう

____ Prepared By:_

HNO3 INORG #: 4795

HCI INORG #: 4 742

Make up as needed in 500 ml volumetric flasks in 1% HNO3 and 5% HCl.

Prepared	Standard	Element	Std Conc	Added	Check	Source	INORG #	Stock Conc	Exp Date
· · · · ·	Name		(ppm)	ml				(ppm)	· · · ·
				ege - a da					
									· · · · ·
	STD1-	Al	50	2.50		INORVENT		10000	
		Ca	50	2.50		INORVENT		10000	
		Fe	50	2.50		INORVENT		10000	
		<u>к</u>	50	2.50		INORVENT		10000	
		Mg	25	1.25				10000	
		Na	50	2.50				10000	
		Li	10	5.00		INORVENT		1000	
		Sc	10	0.500		INORVENT		10000	
	CTD0		10	F 00				1000	
	STD2-	Ba	10	5.00				1000	
1		Be	5	2.50				1000	
		Cr	10	5.00				1000	
		NB	10	5.00		INORVENT		1000	
		So.	10	0.500			· · · · · · · · · · · · · · · · · · ·	10000	
			10	0.000		INCITVEIN		10000	
	STD3-	Cd	10	5.00		INOBVENT		1000	
	5105		10	5.00		INORVENT		1000	
		Mn	10	5.00		INORVENT		1000	
		V	10	5.00		INORVENT		1000	
		Zn	10	5.00		INORVENT		1000	
		Sc	10	0.500		INORVENT		10000	
	STD4-	Ag	2	1.00		INORVENT		1000	
		As	10	5.00		INORVENT		1000	
		Pb	10	5.00		INORVENT		1000	
		Sb	10	5.00		INORVENT		1000	
		Se	10	5.00		INORVENT		1000	
		TL	10	5.00		INORVENT		1000	
		Sc	10	0.500		INORVENT	· · · ·	10000	
								1000	
	STD5-	В	10	5.00				1000	
		Mo	10	5.00		INORVENT		1000	
		P	10	5.00		INORVENT		1000	
		Si	10	5.00		INORVENT		1000	
			10	5.00				1000	
		Sr	10	5.00				1000	
1		Sn	<u> </u>	5.00		INORVENT		1000	
		Di	5	2.50				10000	
		<u>Sc</u>	10	0.500		INORVENT		10000	
	STD6-	19	10	5.00	V	INORVENT	4721	1000	9.1.04
	CTD0-	Na	1	0.05		INOBVENT	47.24	10000	8-1-04
	-	Pd	10	5.00		INORVENT	3964	1000	3-1-04
1.	67	S	10	5.00		INORVENT	2229	1000	11-1-03
	14	Th	10	5.00		INORVENT	47.45	1000	11-1-04
150	1.0	U	10	5.00		INORVENT	3924	1000	3-1-A
	1.0	W	5	2.50		INORVENT	4203	1000	8-1-04
		Y	10	5.00	~	INORVENT	4063	1000	6-1-04
		Zr	10	5.00	V	INORVENT	34954	1000	3-1-04
		SC	10	0.500	~	INORVENT	4262	10000	10-1-04
						1	10-29.03		

Expiration Dates: STD1:

STD4: STD5:

STD2:

STD3:

STD6: 11-1-63

FRM-299 (Rev 0/May 02)

ICP Calibration Standards

010105

Date Prepared: 11 - 5-05

HNO3 INORG #: 4296

Prepared By: _____ HCI INORG #: _ 4293

Make up as needed in 500 ml volumetric flasks in 1% HNO3 and 5% HCl.

Prepared	Standard	Element	Std Conc	Added	Check	Source	INORG #	Stock Conc	Exp Date
	Name		(ppm)	ml				(ppm)	
						· · · · ·			
······································	STD1-	Al	50	2.50	~	INORVENT	4220	10000	9-1-04
· · ·		Ca	50	2.50	~	INORVENT	3900	10000	2-1-04
		Fe	50	2.50	3	INORVENT	3963	10000	3-1-04
. 5	13V	К	50	2.50	V	INORVENT	4320	10000	12-1-04
101	and and	Ma	25	1.25	~	INORVENT	4204	10000	8-1-04
1,10	•	Na	50	2.50	V	INORVENT	A205	10000	8-1-A
1		Li	10	5.00	~	INORVENT	4149	1000	7-1-04
		Sc	10	0.500	~	INORVENT	4262	10000	10-1-04
	STD2-	Ba	10	5.00	V	INORVENT	3971	1000	3-1-04
M	/	Be	5	2.50	V	INORVENT	4062	1000	6-1-04
<u>م</u>	5 5	Cr	10	5.00		INORVENT	4318	1000	12-1-04
5	Nº-	Cu	10	5.00	~	INORVENT	3955	1000	3-1-04
1 N	່້າ	Ni	10	5.00	V	INORVENT	3957	1000	3-1-04
	V	Sc	10	0.500	V	INORVENT	4262	10000	10-1-04
	STD3-/	Cd	10	5.00	~	INORVENT	3972	1000	3-1-04
<u>^</u>		Co	10	5.00		INORVENT	3973	1000	3-1-04
6	5	Mn	10	5.00	V	INORVENT	3921	1000	Z-1-04
N N	15	V	10	5.00	V	INORVENT	4321	1000	12-1-04
	0	Zn	10	5.00	/	INORVENT	4319	1000	12-1-04
		Sc	10	0.500	V	INORVENT	A262	10000	10-1-04-
									· · · ·
	STD4- /	Aq	2	1.00	V	INORVENT	AZZZ	1000	9-1-04
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	/	As	10	5.00	V	INORVENT	3499	1000	Z-1-04
	ຸດັ	Pb	10	5.00	V	INORVENT	4313	1000	11-1-04
, ²	134	Sb	10	5.00		INORVENT	3953	1000	3-1-04
1	0-	Se	10	5.00		INORVENT	4152	1000	7-1-04
		TL	10	5.00	V	INORVENT	3922	1000	2-1-04
		Sc	10	0.500	V	INORVENT	A262	10000	10-1-24
	STD5-	В	10	5.00		INORVENT		1000	
		Мо	10	5.00		INORVENT		1000	
		P	10	5.00		INORVENT		1000	
		Si	10	5.00		INORVENT		1000	
		Ti	10	5.00		INORVENT		1000	
		Sr	10	5.00		INORVENT		1000	-
		Sn	10	5.00		INORVENT		1000	
		Bi	5	2.50		INORVENT		1000	
		Sc	10	0.500		INORVENT		10000	
	STD6-	La	10	5.00		INORVENT	4221	1000	9-1-04
		Na	1	0.05		INORVENT	4205	10000	8-1-04
		Pd	10	5.00		INORVENT	3964	1000	3-1-04
~	5	S	10	5.00		INORVENT	4317	1000	12-1-04
, P'	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	Th	10	5.00		INORVENT	A283	1000	11-1-04
5	6	U	10	5.00		INORVENT	3974	1000	3-1-04
		W	5	2.50	V	INORVENT	4203	1000	5-1-04
		Y	10	5.00	-	INORVENT	4063	1000	6-1-04
		Zr	10	5.00	V	INORVENT	3958	1000	3-1-04
		SC	10	0.500	V	INORVENT	4762	10000	10-1-04

SOUTHWEST RESEARCH INSTITUTE NUCLEAR PROJECT CLIENT: Div. 20 TASK ORDER: 031021-4 SRR: 25126 SDG: 236555 CASE: CNWRA VTSR: October 21, 2003 PROJECT#: 06002.01.081

# **Certificates of Analysis**

# FISHER SCIENTIFIC TRACEMETAL GRADE NITRIC ACID

# **CERTIFICATE OF ANALYSIS**

Catalog No. A509	Lot No: Release Date: Expiry Date:	1103070 July, 2003 July, 2006
<u>Tests</u>	Units	<u>Value</u>
Assay	%	69%
Color	APHA	<10
Aluminum	ppb	<0.2
Antimony	ppb	<0.1
Arsenic	ppb	<0.1
Barium	ppb	<0.1
Beryllium	ppb	<0.1
Bismuth	ppb	<0.1
Boron	ppb	<u> </u>
Cadmium	ppb	<0.1
Calcium	ppb	<0.5
Chromium	ppb	<0.1
Cobalt	ppb	<0.1
Copper	ppb	<0.1
Iron	ppb	<0.5
Lead	ppb	<0.1
Lithium	ppb	<0.1
Magnesium	ppb	<0.2
Manganese	ppb	<0.1
Mercury	ppb	<0.2
Molybdenum	ppb	<0.1
Nickel	ppb	<0.1
Potass ium	ppb	<0.2
Selenium	ppb	<0.1
Silver	ррь	<0.1
Sodium	ррЬ	<0.2
Stronti um	ppb	<0.1
Thorium	ppb	<0.1
Tin	ppb	<0.1
Titanium	ppb	<0.1
Uranium	ppb	<0.1
Vanadium	ppb	<0.1
Zinc	ppb	<0.2
Zirconium	ppb	<0.1

INDRG: _ 4395- 4300	DATE OPENED:	DATE EXPIRED:	DATE RECEIVED:	INORGANIC LABS/
PO: ESaana	10/13/03	10/10/3013	10/10/03	RADCHEM LABS

Element concentrations are at the point of bottling. Concentrations of some elements in particular, Ca, Si, K, Na, B, Al, Mg & Mn will increase due to storage in glass bottles.

B Mc Kelver

Dr. B. McKelvey QA/QC Manager Fisher Scientific Chemical Division Pittsburgh, PA., 15275 Phone (412) 490-8300



.

INDRGANIC LABS/RADCHEM LABS

## **FISHER SCIENTIFIC** TRACEMETAL GRADE NITRIC ACID

## **CERTIFICATE OF ANALYSIS**

_ /	
Date: May, 2003	
Tests Units Value	
Assay % 69%	
Color APHA <10	
Aluminum ppb <0.2	•
Antimony ppb <0.1	
Arsenic ppb <0.1	
Barium ppb <0.1	2222
Bervilium ppb <0.1	5444°
Bismuth ppb <0.1	<u>w</u> mmm
Boron ppb <1	
Cadmium ppb <0.1	- 4 × A
Calcium ppb <0.5	อัตัจถึ
Chromium ppb <0.1	ת <u>ב</u> ב כ
Cobalt ppb <0.1	ショキリ
Copper ppb <0.1	
Iron ppb <0.5	51 - 8
Lead ppb <0.1	E P
Lithium ppb <0.1	9
Magnesium opb <0.2	
Manganese ppb <0.1	
Mercury ppb <0.2	
Molvbdenum ppb <0.1	م جماً
Nickel ppb <0.1	NEP
Potas sium ppb <0.2	16 4 IQ
Selenium ppb <0.1	1500
Silver ppb <0.1	1087
Sodium pob <0.2	
Strontium ppb <0.1	
Thorium ppb <0.1	2
Tin ppb <0.1	パート
Titanium ppb <0.1	iii
Uranium pob <0.1	
Vapadium ppb <0.1	
Zinc ppb <0.2	
Zirconium ppb <0.1	

Element concentrations are at the point of bottling. Concentrations of some elements in particular, Ca, Si, K, Na, B, Al, Mg & Mn will increase due to storage in glass bottles.

B M: Kelver

Dr. B. McKelvey QA/QC Manager

Fisher Scientific Chemical Division Pittsburgh, PA., 15275 Phone (412) 490-8300



#### FISHER SCIENTIFIC TRACEMETAL GRADE HYDROCHLORIC ACID

## **CERTIFICATE OF ANALYSIS**

Catalog No. A508		Lot No:	4103030
and the second		Date:	March, 2003
Tests	<u>Units</u>		Value
Assay	%		36%
Color	APHA		<10
Aluminum	ppb		<0.5
Antimony	ppb		<0.1
Arsenic	ppb		<0.1
Barium	ppb		<0.1
Beryllium	ppb		<0.1
Bismuth	ppb		<0.1
Boron	ppb		<1
Cadmium	ppb		<0.1
Calcium	ppb		<0.5
Chromium	ppb		<0.1
Cobalt	ppb		<0.1
Copper	ppb		<0.1
Iron	ppb		<0.5
Lead	ppb		<0.1
Lithium	ppb		<0.1
Magnesium	ppb		<0.5
Manganese	ppb		<0.1
Mercury	ppb		<0.2
Molybdenum	ppb		<0.1
Nickel	ррЬ		<0.1
Potass ium	ppb		<0.1
Selenium	ppb		<0.1
Silver	ppb		<0.1
Sodium	ppb		<0.5
Strontium	ppb		<0.1
Thorium	ppb		<0.1
Tin	ppb		<0.1
Titanium	ppb		<0.1
Uranium	ppb		<0.1
Vanadium	ppb		<0.1
Zinc	ppb		<0.5
Zirconium	ppb		<0.1

INORGANIC LABS/RADCHEM LABS DATE RECEIVED: _____IO/IO/O3_____ DATE EXPIRED: _____IO/IO/O3______ DATE OPENED: _____IO/I3/O3______ INORG: H389-H394 F0: _E53343_____

Element concentrations are at the point of bottling. Concentrations of some elements in particular, Ca, Si, K, Na, B, Al, Mg & Mn will increase due to storage in glass bottles.

B ME Kelver

Dr. B. McKelvey QA/QC Manager

Fisher Scientific Chemical Division Pittsburgh, PA., 15275 Phone (412) 490-8300



#### **FISHER SCIENTIFIC** TRACEMETAL GRADE HYDROCHLORIC ACID

CERTIFICATE OF ANALYSIS									
Catalog No. A508	Lot No: 41021 Date: Decei	10 mber, 2002							
<u>Tests</u>	<u>Units</u>	Value	:						
Assay	%	36%							
Color	APHA	<10							
Aluminum	ddd	<0.5	•						
Antimony	dqq	<0.1	нбло						
Arsenic	daa	<0.1	ZĂĂĂH						
Barium	dad	<0.1	으 넕 글 글 곶						
Beryllium	dad	<0.1	- A m m m <b>C</b>						
Bismuth	ppb	<0.1	- ០៣ភភ័						
Boron	daa	<1							
Cadmium	ppb	<0.1							
Calcium	ppb	<0.5	F6222						
Chromium	ppb	<0.1	7 0 m < [™]						
Cobalt	ppb	<0.1							
Copper	ppb	<0.1	D P						
Iron	ppb	<0.5							
Lead	ppb	<0.1	PIS						
Lithium	ppb	<0.1							
Magnesium	ppb	<0.5	NONO H						
Manganese	ppb	<0.1	PKPO						
Mercury	ppb	<0.2	1 D2 5 1						
Molybdenum	ppb	<0.1							
Nickel	ppb	<0.1	TORIO						
Potassium	ppb	<0.1	NOU UT						
Selenium	ppb	<0.1							
Silver	ppb	<0.1							
Sodium	ppb	<0.5	60						
Strontium	ppb	<0.1							
Thorium	ppb	<0.1							
Tin	ppb	<0.1	i i i i						
Titanium	ppb	<0.1							
Uranium	ppb	<0.1							
Vanadium	ppb	<0.1	•						
Zinc	ppb	<0.5							
Zirconium	ррЬ	<0.1							

Element concentrations are at the point of bottling. Concentrations of some elements in particular, Ca, Si, K, Na, B, Al, Mg & Mn will increase due to storage in glass bottles.

B ME Kelvey Dr. B. McKelvey QA/QC Manager

**Fisher Scientific Chemical Division** Pittsburgh, PA., 15275 Phone (412) 490-8300

Fisher Chemical



Catalog Number: Description: Matrix: SPIKE-1Lot No.: 25-23ASSpike Sample Standard 15% Nitric Acid/tr Tartaric Acid - HF

This ASSURANCE [®]certified reference material, CRM, is intended primarily for use as a calibration standard or quality control standard for inorganic spectroscopic instrumentation such as ICPOES, DCP, AA, ICPMS, and XRF. It can be employed in USEPA, ASTM and other methods relevant to the certified properties listed below.

The CRM is prepared from high purity single element concentrates of individual elements using Class A laboratory ware to give precise concentration.

Refer to side 2 for details of measurement uncertainties.

### Instrumental Analysis by ICP Spectrometer:

Element	Labeled (mg/L)	Measured (mg/L)	NIST SRM	Element	Labeled (mg/L)	Measured (mg/L)	NIST SRM
Al	200	199.51	3101a	Pb	50	49.98	3128
As	200	199.89	3103a	Sb	50	50.02	3102a
Ba	200	199.68	3104a	V	50	49.95	3165
Se	200	200.10	3149	Zn	50	50.02	31 <b>68a</b>
TL	200	200.07	3158	Cu	25	25.34	3114
Fe	100	99.91	3126a	Cr	20	20.04	3112a
Co	50	50.25	3113	Ag	5	5.00	3151
Mn	50	49.98	3132	Be	5	5.00	3105a
Ni	50	50.11	3136	Cd	5	4.99	3108

Spex Reference Multi: Lot #2-61BD, 17-55AS, 19-85ASREF

Balances are calibrated regularly with weight sets traceable to NIST#s 32856, 32867 and others. This CRM is guaranteed stable and accurate to +/-0.5% on the average of all the certified concentrations with no single component exceeding +/-2%. This guarantee is valid for a period of one year from the date of certification only when the material is kept tightly capped and transported and stored under laboratory conditions.

Date of Certification: MAY

^{'03} Certifying Officer: <u>N. Kochertakota</u>

S₽CXertífícate™

Certificate of Reference Material

Catalog Number: Description: Matrix: ICAL-1 Lot No.: 25-176AS Instrument Calibration Standard 1 5% Nitric Acid

This **ASSUR**^Å**NCE** [®]certified reference material, CRM, is intended primarily for use as a calibration standard or quality control standard for inorganic spectroscopic instrumentation such as ICPOES, DCP, AA, ICPMS, and XRF. It can be employed in USEPA, ASTM and other methods relevant to the certified properties listed below.

The CRM is prepared from high purity single element concentrates of individual elements using Class A laboratory ware to give precise concentration.

Refer to side 2 for details of measurement uncertainties.

Instrumental Analysis by ICP Spectrometer:

Element	Labeled (mg/L)	Measured (mg/L)	NIST SRM
Ca	5,000	4,984.92	3109a
K	5,000	4,990.26	3141a
Mg	5,000	4,991.82	3131a
Na	5,000	4,998.07	3152a

Spex Reference Multi: Lot #10-100AS, 12-113AS, 5-198VY, 6-28VY-REF

Balances are calibrated regularly with weight sets traceable to NIST#s 32856, 32867 and others. This CRM is guaranteed stable and accurate to +/- 0.5% on the average of all the certified concentrations with no single element exceeding +/-2%. This includes uncertainty of measurements and other effects, such as transpiration losses. This guarantee is valid for a period of one year from the date of certification only when the material is kept tightly capped and transported and stored under laboratory conditions.

SEP____ Certifying Officer: N. Kochertakota Date of Certification:

# inorganic ventures / iv labs

195 lehigh avenue, suite 4, lakewood, nj 08701 usa phone: 800-669-6799 • 732-901-1900 • fax: 732-901-1903 e-mail: ivsales@ivstandards.com • website: www.ivstandards.com

# certificate of analysis

Inorganic Ventures / IV Labs is an ISO Guide 34-2000 Certified Reference Material (CRM) Manufacturer: Certificate #883-02. The certificate is designed and the certified value(s) and uncertainty(ies) are determined in accordance with ISO Guide 31-2000 (Reference Materials - Contents of certificates and label(s), ISO Guide 34-2000 "Quality System Guidelines for the Production of Reference Materials," and ISO Guide 35-1989 "Certification of Reference Materials - General and Statisical Principles."

2.0

.0

1.0

DESCRIPTION OF CRM Custom-Grade 1000 µg/mL Tungsten in 1% (abs) HNO3/1% (abs) HF

Catalog Number:	•
Lot Number:	
Starting Material:	
Starting Material Purity (%):	
Starting Material Lot No	
Matrix:	

CGW1-1	and	CGW	1-5
W-W0108	0		
N Powde	r		
99.99070	)3		
		•	

INORGANIC LAB	S/RADCHEM LABS 19.104 a
DATE RECEIVED:	07/31/03
DATE EXPIRED:_	08/01/2004
DATE OPENED:	08/01/03
INDRG: 4303	PD: <u>E59383</u>

21418,C31H46,D02J21,E03K06,D11F29 1% (abs) HNO3/1% (abs) HF

#### CERTIFIED VALUES AND UNCERTAINTIES

**Certified Concentration:** 

**Certified Density:** 

1001 ± 2 µg/mL

1.006 g/mL (measured at 22° C)

The Certified Value is based upon the most precise method used to analyze this CRM. The following equations are used in the calculation of the certified value and the uncertainty:

Certified Value (C) = <u>erx</u>

Uncertainty (±) =  $2[(a-s)]^{1/2}$ 

(□) = mean x_i = individual results n = number of measurements ■S = The summation of all significant estimated errors. (Most common are the errors from instrumental measurement, weighing, dilution to volume, and the fixed error reported on the NIST SFM certificate of analysis.)

## 4.0 TRACEABILITY TO NIST AND VALUES OBTAINED BY INDEPENDENT METHODS

□ "Property of the result of a measurement or the value of a standard whereby it can be related to stated references, usually national or international standards, through an unbroken chain of comparisons all having stated uncertainties." (ISO VIM, 2nd ed., 1993, definition 6.10)

□ This IV product is Traceable to NIST via direct comparison to NIST SRMs. The uncertainties for each certified value are reported, taking into account the SRM uncertainty error and the measurement, weighing and volume dilution errors.

 4.1
 Assay Method #1
 1001 ± 2 μg/mL (Avg 2 runs)

 ICP Assay NIST SRM 3163
 Lot Number: 990209

 Assay Method #2
 1000 μg/mL

 Gravimetric NIST SRM
 Lot Number: See Sec. 4.2

- 4.2 BALANCE CALIBRATION All balances are checked daily using in-house procedure number 6-IMM-001. The weights used for testing are annually compared to Gerhart Scale Corporation's master weights and are traceable to the National Institute of Standards and Technology (NIST). The NIST Traceability numbers are 692476 Class 1 and 692476A Class 2. The NIST test number is 822/260017-98. All analytical balances are calibrated every 4 months by Gerhart Scale Corp. of South Amboy. The balances are calibrated with a class 1 and/or class 2 analytical weight set. These weights are tested annually by a NIST / NVLAP accredited calibration lab. The NIST test number is 822/260017-98.
- 4.3 THERMOMETER CALIBRATION The thermometers used in the determination of the final densities are calibrated vs standard thermometer No. 903-2680 which was certified in accordance with the procedures outlined by ASTM E77-87 and NIST Monograph 150 using NIST Test Nos. and Std Nos.: 769543, 217368/769543, 217368/P14452, 176240/P14452, 176240. The in-house procedure No. is 2-QC-001. Thermometers which are not calibrated vs standard thermometer No. 903-2680 are traceable to NIST Identification Nos. 92564, 119016, 471047 and NIST test report Nos. 811/258522, 811/2557078, and 236090.
- 4.4 GLASSWARE CALIBRATION In-house procedure 3-QC-002 is used to calibrate all Class A Glassware used in the manufacture and quality control of Custom Grade Standards.

#### 5.0 TRACE METALLIC IMPURITIES (TMI) DETERMINED BY ICP/MS AND ICP-OES IN µg/mL

Custom-Grade solutions are tested for trace metallic impurities by Axial ICP-OES and ICP-MS. The result from the most sensitive method for each element, is reported below. Solutions tested by ICP-MS were analyzed in an ULPA-Filtered Clean Room. An ULPA-Filter is 99.9985% efficient for the removal of particles down to 0.3 µm.

<u>0</u>	Al		0.01792	М	Dy	<	0.00595	<u>o</u>	Li	<	0.00008	M	Pr	<	0.00030	M	Те	<	0.02974
<u>M</u>	Sb	<	0.00050	M	Er	<	0.00496	M	Lu	<	0.00040	1	Re			M	ть	<	0.00030
<u>M</u>	As	<	0.00991	M	Eu	<	0.00297	<u>0</u>	Mg		0.00120	M	Rh	<	0.00099	M	TI	`<	0.00099
M	Ва	<	0.00991	M	Gd	<	0.00099	м	Mn	<	0.00397	м	Rb	<	0.00099	M	Th	<	0.00099
M	Be	<	0.00050	M	Ga	<	0.00099	<u>0</u>	Hg	<	0.04778	м	Ru	<	0.00198	M	Tm	. <	0.00040
М	Bi	<	0.00040	M	Ge	<	0.00595	M	Мо		0.00050	M	Sm	<	0.00099	M	Sn.	<	0.00496
<u>o</u>	В	<	1.19460	M	Au	<	0.00297	М	Nd	<	0.00198	۳ <u>o</u>	Sc	<	0.00036	M	Ti		0.00198
М	Cd	<	0.00297	M	Hf	<	0.00198	M	Ni	<	0.00793	M	Se	<	0.00793	<u>s</u>	Ŵ		
<u>0</u>	Са		0.00080	M	Но	<	0.00050	<u>0</u>	Nb	<	0.06371	<u>o</u>	Si	<	0.01354	M	U	<	0.00198
<u>M</u>	Ce	<	0.00496	M	. In _, ,	<	0.00991	n	Os			м	Ag	<	0.00198	M	V	<	0.00198
M	Cs	<	0.00030	M	Ir	<	0.00496	M	Pd	<	0.00496	<u>0</u>	Na		0.04778	M	Yb	<	0.00099
М	Cr	<	0.00496	<u>0</u>	Fe	<	0.03982	<u>n</u>	P			м	Sr	<	0.00050	M	Y	<	0.03965
M	Со	<	0.00297	М	La	<	0.00050	M	Pt	<	0.00198	<u>n</u>	S		· .	M	Zn	<	0.01983
M	Cu	<	0.00595	М	Pb		0.00060	<u>0</u>	к		0.03146	<u>o</u>	Та	<	0.39820	M	Zr		0.00079
Λ-(	Check	ed	by ICP-MS	0-	Chec	ker	by ICP-OES	i-S	nect	all	nterference	n-t	Not C	her	ked For	s - !	Soluti	on :	Standard Flem

#### 6.0 INTENDED USE

For the calibration of analytical instruments including but not limited to the following:

ICP-MS, ICP-OES, FAAS, GFAA, XRF, and DCP

For the validation of analytical methods

For the preparation of "working reference samples"

For interference studies and the determination of correction coefficients

For detection limit and linearity studies

For additional intended uses, contact IV Technical Staff

#### 7.0 INSTRUCTIONS FOR THE CORRECT USE OF THIS REFERENCE MATERIAL

Storage & Handling - Keep tightly sealed when not in use. Store and use at 20 ± 4 ∞. Do not pipet from container. Do not return portions removed for pipetting to container.

Atomic Weight; Valence; Coordination Number; Chemical Form in Solution - 183.85; +6; 6,7,8,9 WOFs*(chemical form as received)

**Chemical Compatibility** - W is very readily hydrolyzed requiring 0.1 to 1% HF solutions for stable acidic solutions. The WOF, * is soluble in % levels of HCI and HNO, provided it is in the WOF, * form. Stable at ppm levels with some metals provided it is fluorinated. <u>Do not mix with Alkaline or Rare Earths</u>. Is best to be mixed only with other fluorinated metals (Ti, Zr, Hf, Nb, Ta, Mo, Si, Sn, Ge). Look for yellow WO, precipitate if mixed with other transition elements at higher levels indicating instability. The yellow WO, will form over a period of weeks even in trace HF, therefore, <u>HF levels of W multi-element blends should be ~ 1 %</u>. **Stability** - 2-100 ppb levels stable (Alone or mixed with all other metals that are at comparable levels) as the WOF, * for months in 1% HNO, / LDPE container. 1-10,000 ppn single element solutions as the WOF, * chemically stable for years in 1% HF in an LDPE container.

W Containing Samples (Preparation and Solution) - Metal (Soluble in HF / HNO₃); Oxide (Soluble in HF or NH.OH); Organic Matrices (Dry ash at 450 ℃ in Pt^e and dissolve oxide with HF).

Atomic Spectroscopic Information (ICP-OES B.L.s are given as radial/axial view):

Techniqu	e/Line	Estimated D.L.	<u>Order</u>	Туре	Interferences (	underlined indicates	severe at vaffoncs.)
ICP-OES	207.911 nm	0.03/0.001 µg/mL	1	ion	Ru, In		
ICP-OES	224.875 nm	0.05 / 0.005 µg/mL	1	ion	Co, Rh, Ag		
ICP-OES	209.475 nm	0.05 / 0.005 µg/mL	1	ion	Мо		
ICP-MS	182 amu	5 ppt	n/a	M.	"#Er "O		

HF Note: This standard should not be prepared or stored in glass.

- 8.0 HAZARDOUS INFORMATION Please refer to the enclosed Material Saftey Data sheet for information regarding this CRM.
- 9.0 HOMOGENEITY This solution was mixed according to procedure IV-MPM-004 and is guaranteed to be homogeneous.

#### 10.0 QUALITY STANDARD DOCUMENTATION

- 10.1 ISO 9001:2000 Quality Management System Registration QMI Certificate Number 010105 Recognized by:
  - Registrar Accreditation Board (ANSI-RAB) Standards Council of Canada (SCC)

Dutch Council for Accreditation (RVA)

Entidad Mexicana de Acreditacion, a.c.(EMA)

Members of IQ Net International Certification Network:

Argentina (IRAM), Australia (QAS), Austria (ÖQS), Belgium (Avinter), Brazil (FCAV), Canada (QMI), Hong Kong (HKQAA), Columbia (ICONTEC), Czech Republic (CQS), Denmark (DS), Finland (SFS), France (AFAQ), Germany (DQS), Greece (ELOT), Hungary (MSZT), Ireland (NSAI), Israel (SII), Italy (CISQ), Japan (JQA), Korea (KSA-QA), Netherlands (KEMA), Norway (NCS), Delege (RCAC), Destand (NSAI), Israel (SII), Italy (CISQ), Serie (AFAQ), Serie (AFAQ), Serie (AFAQ), Netherlands (KEMA), Norway (NCS),

Poland(PCBC), Portugal (APCER), Singapore (PSB), Slovenia (SIQ), Spain (AENOR), Switzerland (SQS) 10.2 ISO/IEC 17025 - 1999 "General Requirements for the Competence of Testing and Calibration" - Chemical Testing - Accredited A2LA Certificate Number 883.01



10.3 ISO/IEC Guide 34 - 2000 "General Requirements for the Competence of Reference Material Producers"
 Reference Materials Production - Accredited A2LA Certificate Number 883.02
 A2LA Mutual Recognition Agreement Partners:

Australia (NATA), Austria (BmwA), Belgium (BELTEST) (BKO-OBE), Canada (SCC), Chinese Taipei (CNLA), Czech Republic (NAO), Denmark (DANAK), Finland (FINAS), France (COFRAC), Germany (DAR), Hong Kong (HKAS, Ireland (NAB), Italy (SIT) (SINAL), Japan (JAB) (JNLA), Republic of Korea (KOLAS), The Netherlands (RvA), New Zealand (IANZ), Norway (NA), Portugal (IPQ), Singapore (SAC-SINGLAS), Spain (ENAC), Sweden (SWEDAC), Switzerland (SAS), United Kingdom (UKAS) and United States (NVLAP) (ICBO ES)

- 10.4 10CFR50 Appendix B Nuclear Regulatory Commission - Domestic Licensing of Production and Utilization Facilities
- 10.5 10CFR21 Nuclear Regulatory Commission Reporting Defects and Non-Compliance

10.6 MIL-STD-45662A (Obsolete/Observed)

INORGANIC LABS/RADCHEM LABS P3.202 DATE RECEIVED: 07/31/03 DATE EXPIRED: 08/01/2004 DATE OPENED: 08/01/03 INORG: 4203 PD: F52383





- 11.1 IV Shelf Life The period of time during which the concentration of the analyte(s) in a properly packaged, unopened, and unused standard stored under environmentally controlled and monitored conditions will remain within the specified uncertainty range. Shelf life is limited primarily by transpiration (loss of water from the solution) and infrequently, by chemical instability. Transpiration studies (P-SP01020) of chemically-stable solutions performed at Inorganic Ventures / IV Labs indicate a CRM shelf-life of four years for solutions packaged in 500-mL low density polyethylene bottles. When stored under special conditions that minimize transpiration and instability, the shelf life can be extended past this limit.
- **11.2 Expiration Date** The date after which a CRM should not be used. Routine laboratory use of a CRM increases transpiration losses and the chance of contamination which affect the integrity of the CRM and limit its useful life. Inorganic Ventures / IV Labs concurs with state and federal regulatory agencies' recommendations that solution standards be assigned a one-year expiration date.

Certification Date: February 10, 2003

Expiration Date:

EXPIRES 122004

#### 12.0 NAMES AND SIGNATURES OF CERTIFYING OFFICERS

**Certificate Prepared By:** 

JoAnn Struthers, QA Administrative Assistant

Certificate Approved By:

Katalin Le, QC Supervisor

Certifying Officer:

Paul Gaines, Chemist, Senior Technical Director



Instrument Analysis: 997 ± 3 µg/mL (Average of 2 runs) Method: Inductively Coupled Plasma Spectroscopy (ICP) vs NIST SRM 3134.

TRACE METALLIC IMPURITIES DETERMINED BY ICP-MS AND ICP-OES IN µg/mL: Custom-Grade solutions tested for trace metallic impurities by ICP-MS were analyzed in an ULPA-Filtered Clean Room.

An ULPA-Filter is 99.9985% efficient for the removal of particles down to 0.3  $\mu$ m.

							103	-070 (1	NATE OF AN AND A STREET AND A ST							
<u>0</u>	AI	< 0.050	<u>M</u>	Dy	<0.012		<u>0</u>	Li	<0.010	<u>o</u>	Pr	<0.10		i	Те	
M	Sb	0.0094	M	Er	< 0.010		M	Lu	<0.00080	M	Re	<0.0020		M	Tb	< 0.00060
<u>M</u>	As	<0.020	<u>M</u>	Eu	<0.0060		<u>0</u>	Mg	<0.050	<u>M</u>	Rh	< 0.0020		M	ΤI	< 0.0020
M	Ba	< 0.020	M	Gd	<0.0020		M	Mn	<0.0080	<u>M</u>	Rb	0.025		M	Th	< 0.0020
M	Be	< 0.0010	M	Ga	<0.0020		i	Hg		M	Ru	<0.0040		M	Tm	<0.00080
M	Bi	<0.00080	M	Ge	<0.012	1. S.	<u>s</u>	Мо		M	Sm	<0.0020		M	Sn	< 0.010
<u>0</u>	в	<0.50	M	Au	< 0.0060		~ <u>O</u>	Nd	< 0.050	<u>0</u>	Sc	< 0.050		<u>0</u>	Ti	< 0.0050
<u>o</u>	Cd	<0.50	<u>M</u>	Hf	<0.0040		M	Ni	<0.016	<u>M</u>	Se	< 0.016		<u>M</u>	W	0.056*
<u>0</u>	Ca	0.00026	<u>M</u>	Ho	<0.0010		<u>0</u>	Nb	<0.10	<u>0</u>	Si	<0.10		M	U	< 0.0040
<u>0</u>	Ce	< 0.050	M	In	0.0024		<u>n</u>	Os		M	Ag	< 0.0040		<u>M</u>	$\mathbf{V}_{i}$	<0.0040
M	Cs	< 0.00060	<u>M</u>	ir	<0.010		<u>M</u>	Pd	<0.010	<u>0</u>	Na	< 0.10		Μ	Yb	<0.0020
<u>M</u>	Cr	<0.010	<u> </u>	Fe	<0.50		1	Ρ		M	Sr	<0.0010		<u>M</u>	Y	<0.080
M	Co	< 0.0060	<u>M</u>	La	< 0.0010		M	Pt	< 0.0040	Ĺ	S			<u>M</u>	Zn	< 0.040
M	Cu	< 0.012	M	Pb	< 0.0060		<u>0</u>	K	0.0098	M	Та	< 0.014		M	Zr	< 0.010
м -	chec	ked by ICP-MS	0 -	check	ed by ICP-O	FS	i.en	octra	l interference	n - n/	t che	cked for	e - e	oluti	on et	andard olom(

 $^{m \star}$ W impurity may be due to Mo doubly charged ion and represents the maximum concentration possible.

ANALYZED DENSITY OF SOLUTION (measured at 22°C): 0.999 g/mL

(over)

QA:KL Rev.073102DN



**Inorganic Venturés, Inc.** 195 Lehigh Avenue • Suite 4 • Lakewood, NJ 08701

Orders: 800-669-6799 • FAX (732) 901-1903 Technical Support: 800-569-6799 Quality Assurance Manager





# inorganic ventures / iv labs

195 lehigh avenue, suite 4, lakewood, nj 08701 usa phone: 800-669-6799 • 732-901-1900 • fax: 732-901-1903 e-mail: ivsales@ivstandards.com • website: www.ivstandards.com

# certificate of analysis

# **CUSTOM-GRADE SOLUTION**

1000  $\mu$ g/mL Scandium IN 5% HNO₃ (abs)

Catalog Number: CGSC1-1and CGSC1-5

Lot Number: W-SC02055

Starting Material: Starting Material Purity: Starting Material Lot No:

Sc ₂ O ₃
99.99%
632-5721

INOR	GANIC LA	BS/RADCHEN	1 LABS
DATE	RECEIVED	: 09/04/0	ავ
DATE	EXPIRED:	10/01/2	004
DATE	OPENED:	09/24	/03
INORG	i: 4001	P0: 1	52223

#### CERTIFIED CONCENTRATION: 1000 $\pm$ 5 $\mu$ g/mL

The Certified Value is based upon the most precise method used to analyze this CRM. The following equations are used in the calculation of the certified value and the uncertainty:

Certified Value  $(\bar{x}) = \sum_{n \neq i} x_{i}$ 

Uncertainty (±) = 
$$2[(\sum_{j=1}^{2})^{2}]^{1/2}$$

 $(\tilde{x}) = mean$   $x_i = individual results$ 

 $\sum S_i$  = The summation of all significant estimated errors.

010117

### Classical Wet Assay: $1000 \pm 5 \mu g/mL$

Method: EDTA Titration vs NIST SRM 928 Lead Nitrate.

#### Instrument Analysis: 995 $\pm$ 5 $\mu$ g/mL

Method: Inductively Coupled Plasma Spectroscopy (ICP) vs NIST SRM 3148a.

The independent samples t-test was used to determine if there is agreement between the above assay methods at the 95% confidence interval. Both methods were compared and showed agreement within the stated uncertainties. This agreement is a confirmation of the accuracy of this CRM.

## TRACE METALLIC IMPURITIES DETERMINED BY ICP-MS AND ICP-OES IN µg/mL:

Custom-Grade solutions tested for trace metallic impurities by ICP-MS were analyzed in an ULPA-Filtered Clean Room. An ULPA-Filter is 99.9985% efficient for the removal of particles down to 0.3  $\mu$ m.

м -	check	ed by ICP-MS	0 - cl	hecked	t by ICP-OES	i - sp	ectral	interference	n - not	check	ed for	s - solutio	on star	ndard element
M	Cu	< 0.00060	M	Pb	0.00050	<u>o</u>	к	<5.01	М	Ta	<0.00070	<u>M</u>	Zr	0.032
	0	< 0.00030	M	La	< 0.000050	M	Pt	<0.00020	<u>n</u>	S		M	Zn	0.0075
M	Cr	< 0.00050	<u>0</u>	Fe	<0.16	<u>0</u>	P	ì	<u>M</u>	Sr	<0.000050	M	Y	<0.0040
M	Cs	< 0.000030	M	lr	<0.00050	<u>M</u>	Pd	<0.00050	<u>o</u>	Na	<0.16	M	Yb	<0.00010
M	Ce	< 0.00050	M	ln	<0.00010	<u>n</u>	Os		<u>M</u>	Ag	0.0050	M	V	<0.00020
¥.	Ca	0.010	M	Но	< 0.000050	M	Nb	<0.000050	<u>0</u>	Sì	<0.034	M	U	<0.00020
<u>1</u>	Ca	<0.00030	M	HT	0.0030	<u>o</u>	Ni	<0.084	<u>o</u>	Se	<0.67	M	w	<0.0010
×	6	<0.020	M	AU	< 0.00030	M	Nd	<0.00020	<u>s</u>	Sc		M	Tí	<0.0050
<u> </u>	e	<0.0043		Ge	< 0.00060	M	Mo	<0.00020	M	Sm	<0.00010	M	Sn	<0.00050
M	Ri	0.0043	111	Ga Co	<0.00010	<u>0</u>	нg	1	M	Ru	<0.00020	M	Tm	<0.000040
M	Be	<0.000050	<u></u>	6.	<0.00010	<u>w</u>	11-	<0.00040	M	HD	< 0.00010	M	Th	0.0028
M	Ba	< 0.0010	M	Gd	<0.00010	<u>IVI</u> M	Ma	<0.0030	M	KD D	< 0.00010	M	TI	<0.00010
м	As	< 0.0010	M	Fu	< 0.00030	M	Ma	<0.000040	11/1		<0.00010	M	10	< 0.000030
M	Sb	< 0.000050	M	Er	< 0.00050	M	tu	< 0.000040	<u></u>	 Po	<0.000000	<u>IVI</u>	10	<0.0030
<u>0</u>	AI	<0.070	м	Dγ	< 0.00060	м	Li	<0.0010	м	Pr	< 0.000030	M	Та	<0.0020

## ANALYZED DENSITY OF SOLUTION (measured at 22°C): 1.038 g/mL

QA:KL Rev.031303JTS

Paul R. Apaines

Quality Assurance Manager

Expires:



# inorganic ventures

195 lehigh avenue, suite 4, lakewood, nj 08701 usa phone: 800-669-6799 • 732-901-1900 • fax: 732-901-1903 e-mail: ivsales@ivstandards.com • website: www.ivstandards.com

# certificate of analysis

CUSTOM-GRADE SOLUTION

10,000 µg/mL Scandium IN 5% HNO3 (abs) 010118

Uncertainty (±) =  $2[(\sum_{s} \frac{1}{s})^2]^{1/2}$ 

Catalog Number: CGSC10-1and CGSC10-5

Lot Number: T-SC02053

**Starting Material: Starting Material Purity: Starting Material Lot No:** 

Sc.O.
00,0000/
99.999%
632-5721
002-0721

#### INORGANIC LABS/RADCHEM LABS DATE RECEIVED: 09/24/03 DATE EXPIRED: 10/01/2004 DATE OPENED: 09/24/03 INORG: 4262 PO: 5323

#### CERTIFIED CONCENTRATION: 10,047 $\pm$ 29 $\mu$ g/mL

The Certified Value is based upon the most precise method used to analyze this CRM. The following equations are used in the calculation of the certified value and the uncertainty:

Certified Value (
$$\bar{x}$$
) =  $\frac{\sum x}{n}$ 

 $x_i = individual results$  $(\bar{x}) = mean$ 

n = number of measurements

 $\sum S_i$  = The summation of all significant estimated errors.

Classical Wet Assay: 10,047 ± 29 µg/mL Method: EDTA Titration vs NIST SRM 928 Lead Nitrate.

#### Instrument Analysis: 9994 ± 41 µg/mL

Method: Inductively Coupled Plasma Spectroscopy (ICP) vs NIST SRM 3148a.

The independent samples t-test was used to determine if there is agreement between the above assay methods at the 95% confidence interval. Both methods were compared and showed agreement within the stated uncertainties. This agreement is a confirmation of the accuracy of this CRM.

#### TRACE METALLIC IMPURITIES DETERMINED BY ICP-MS AND ICP-OES IN $\mu$ g/mL:

Custom-Grade solutions tested for trace metallic impurities by ICP-MS were analyzed in an ULPA-Filtered Clean Room. An ULPA-Filter is 99.9985% efficient for the removal of particles down to 0.3  $\mu m$  .

Q	AI	<0.070	M	Dy	< 0.0060	M	Li	<0.010	<u>M</u>	Pr	<0.00030		М	Te	<0.030
M	Sb .	<0.00050	M	Er	<0.0050	<u>M</u>	Lu	<0.00040	М	Re	<0.0010		M	Tb	<0.00030
М	As	<0.010	M	Eu	<0.0030	M	Mg	<0.030	<u>M</u>	Rh	<0.0010		<u>M</u> .	TI	<0.0010
M	Ba	<0.010	M	Gd	<0.0010	M	Mn	<0.0040	<u>M</u>	Rb	<0.0010		M	Th	0.028
M	Be	< 0.00050	M	Ga	<0.0010	i	Hg		M	Ru	<0.0020		M	Tm	<0.00040
M	Bi	0.043	M	Ge	<0.0060	M	Мо	<0.0020	M	Sm	<0.0010		м	Sn	<0.0050
<u>0</u>	в	<0.034	M	Au	< 0.0030	M	Nd	<0.0020	<u>s</u>	Sc			n	Ti	
Μ	Cd	<0.0030	Μ	Hf	0.030	Q	Ni	<0.084	<u>o</u>	Se	<0.67		M	W	<0.010
<u>o</u>	Ca	0.17	м	Но	< 0.00050	M	Nb	<0.00050	<u>0</u>	Si	<0.034		M	U	<0.0020
М	Ce	< 0.0050	M	In	<0.0010	n	Os		M	Ag	0.0050		M	V	<0.0020
М	Cs	<0.00030	M	lr	<0.0050	<u>M</u>	Pd	<0.0050	<u>o</u>	Na	<0.16		м	Yb	<0.0010
M	Cr	<0.0050	Q	Fе	<0.16	i	Р	a	<u>M</u>	Sr	<0.00050		M	Y	<0.040
м	Co	< 0.0030	M	La	< 0.00050	M	Pt	<0.0020	<u>n</u>	S			м	Zn	0.075
М	Cu	<0.0060	M	Pb	0.0050	<u>o</u>	к	<5.01	М	Ta	<0.0070		М	Zr	0.32
м -	chec	ked by ICP-MS	0-0	heck	ed by ICP-OES	i-sp	oectra	l interference	n - no	t che	cked for	s - solu	ition	stand	ard element

M - checked by ICP-MS

O - checked by ICP-OES

i - spectral interference

#### ANALYZED DENSITY OF SOLUTION (measured at 22°C): 1.073 g/mL QA:KL Rev.021203DN

(over)

Paul R. Haines

Quality Assurance Manager

Expires:



SP	EXertificate
	C M. C. Martiniat



тм

Lot No. 9-143B

Certificate of Reference Material

Catalog Number:PLB9-2X/2Y/2TDescription:1000 mg/L BoronMatrix:H2O

This ASSURANCE [®] certified reference material, CRM, is intended primarily for use as a calibration standard or quality control standard for inorganic spectroscopic instrumentation such as ICPOES, DCP, AA, ICPMS, and XRF. It can be employed in USEPA, ASTM and other methods relevent to the certified properties listed below.

Certified Value: 999.5 mg/L

Uncertainty Associated with Measurement: +/-3.0mg/L

Certified Value is Traceable to: NIST SRM 3107

The CRM is prepared gravimetrically using high purity (NH4)2(B4O7)-4H2O Lot# 08001E. The certified value listed is the average of values obtained by classical wet assay and ICP spectrometer analysis

Refer to side 2 for details of measurement uncertainties.

Classical Wet Assay: 1001 mg/L

Method: Titration with Sodium Hydroxide using Phenolphthalein as indicator. Sodium Hydroxide standardized against Potassium Biphthalate NIST SRM #84K.

Instrumentation Analysis By ICP spectrometer: 998 mg/L Uncertified Properties:

Density: 1.000 @ 23.7 Degrees Celsius

Trace Metallic Impurities in the Actual Solution via ICP / ICPMS Analysis:

Element	mg/L	Element	mg/L	Element	mg/L
Al	0.06	Cu	< 0.001	Pb	< 0.001
As	<0.001	Fe	0.001	Re	< 0.001
Ag	<0.002	Ga	<0.001	Rb	< 0.001
Ba	<0.001	In	< 0.001	Sr	< 0.001
Be	<0.001	K	< 0.01	Sb	< 0.001
Bi	< 0.001	Li	<0.001	Sn	< 0.001
Cd	<0.001	Mn	<0.001	Ti	< 0.001
Co	< 0.001	Mo	< 0.001	Tl	< 0.001
Ca	0.003	Mg	<0.001	V	0.004
Cr	< 0.003	Na	0.026	Zr	< 0.001
		Ni	< 0.001	Zn	< 0.007

JUN

Balances are calibrated regularly with weight sets traceable to NIST #32856, #32857 and others. This CRM is guaranteed stable to +/-0.5% of the certified concentration inclusive of uncertainty of measurements and other effects, such as transpiration losses, for a period of one year from the date of certification. This guarantee is valid only when the material is kept tightly capped and transported and stored under laboratory conditions.

Ό3

Date of Certification:

Certifying Officer: N. Kochertakofa

© 2000 SPEX CertiPrep, Inc.

010120

SPEXertificate

Certificate of Reference Material

Catalog Number:PLLI2-2X/2YDescription:1000 mg/L LithiumMatrix:2% HNO3

Lot No. 9-102LI

тм

This ASSURANCE [®] certified reference material, CRM, is intended primarily for use as a calibration standard or quality control standard for inorganic spectroscopic instrumentation such as ICPOES, DCP, AA, ICPMS, and XRF. It can be employed in USEPA, ASTM and other methods relevent to the certified properties listed below.

**Certified Value:** 1002 mg/L **Uncertainty Associated with Measurement:** +/- 3 mg/L **Certified Value is Traceable to:** NIST SRM 3129a

Certified value is fractable to: 14151 5104 51254

The CRM is prepared gravimetrically using high purity Lithium Carbonate Lot# 03021A. The certified value listed is the average of values obtained by classical wet assay and ICP spectrometer analysis

Refer to side 2 for details of measurement uncertainties.

Classical Wet Assay: 1002 mg/L

Method: Evaporate to dryness. Fume with Sulfuric Acid. Ignite and weigh as Li2SO4.

**Instrumentation Analysis By ICP spectrometer:** 1002 mg/L **Uncertified Properties:** 

Density: 1.014 @ 24.5 Degrees Celsius

Trace Metallic Impurities in the Actual Solution via ICP / ICPMS Analysis:

Element	mg/L	Element	mg/L	Element	mg/L
AI	0.009	Cu	0.01	Pb	0.001
As	0.004	Fe	0.045	Re	0.002
Ag	<0.001	Ga	< 0.001	Rb	<0.001
В	< 0.004	In	< 0.001	Sr	0.001
Ba	0.004	ĸ	0.05	Sb	0.002
Be	0.002	Mn	<0.001	Sn	< 0.001
Bi	<0.001	Мо	0.002	Ti	0.005
Ca	0.03	Mg	0.003	TI	< 0.001
Cr	<0.001	Na	0.02	V	< 0.001
Cd	< 0.001	Ni	<0.001	Zr	<0.001
Со	0.002			Zn	0.20

Balances are calibrated regularly with weight sets traceable to NIST #32856, #32857 and others. This CRM is guaranteed stable to +/-0.5% of the certified concentration inclusive of uncertainty of measurements and other effects, such as transpiration losses, for a period of one year from the date of certification. This guarantee is valid only when the material is kept tightly capped and transported and stored under laboratory conditions.

'03

MAY

Date of Certification:

Certifying Officer: N. Kochertakola

						ТМ			
		51	ICX	ertífi	fate		01012	21	
		<b>C</b> ertifical	e of Ret	erence M	aterial		* <b>.</b>		
Catalog ]	Number:	PLMO9-	2X/2Y/21	[	Lot No.	9-49M0	C		
Descripti	ion:	1000 mg/	L Molybo	denum					
Matrix:		H2O		. "	•		 		
This ASSUI calibration st ICPOES, DC relevent to th	RANCE [®] ( andard or qua P, AA, ICPM e certified pro	certified refe lity control S, and XRF operties liste	erence mates standard for . It can be of d below.	rial, CRM, is r inorganic spe employed in U	intended pr ectroscopic JSEPA, AS	imarily for instrumenta TM and oth	use as a ation such as er methods		05/19 05/19 05/19
Certified V	Value: 100	0 mg/L							5000
Uncertainty	y Associated	l with Mea	surement	: +/- 3 mg	;/L		· · ·	1	
Certified V	alue is Trac	eable to:	NIST SR	M 3134					
The CRM is provide the certified value	prepared grav e listed is the	imetrically average of v	using high p values obtai	ourity Ammondering Ammondering Ammondering Ammondering Ammondering Ammondering Ammondering Ammondering Ammonder	onium Moly cal wet assa	ybdate Lo y and ICP s	ot# 03011 pectrometer	C. The analysis	
Refer to side	2 for details	of measure	ement unce	rtainties.					
Classical V	<b>Vet Assay:</b>	999 n	ng/L						
Method: P	recipitation u	sing 8-Hvdr	oxvauinolii	ne. Filter, drv	, and weigh	n as MoO2(	C9H6NO)2		
Instrumon	totion Ano	lucie Ry I	CP speed	trometer: 1	1001 m a/1				
Incortified	d Pronortie	119515 DY 1	CI speci	uometei.	. oor mg/i	<i></i>			
D	u i roperne			_				•	
De	nsity: 0.998	7@24.6 D	egrees Cels	ius					
Trace Me	tallic Impui	rities in the	e Actual S	olution via l	ICP / ICP	MS Analy	sis:		
Element	mg/L	Element	mg/L	Element	mg/L		. ·		
Al	0.001	Cu	0.004	Pb	0.001				
As	0.04 ·	Fe	<0.01	Re	0.03				
Ag	<0.001	Ga	<0.001	Rb	<0.001				
B	<0.003	In	<0.001	Sr	<0.001				
Ba	<0.001	K	0.02	Sb	<0.001				
Be	<0.001	Li	<0.001	Sn	<0.001				
Bi	<0.001	Mg	0.007	Ti	0.004		· ·		
Ca	0.006	Mn	<0.001	11	< 0.001				
Cr	<0.005	Na	0.009	V	0.004				
Cđ	<0.05	NI	<0.001	2r 7-	<0.001				
Co	<0.001			Zn	<0.001				
Balances are This CRM is	calibrated reg guaranteed st	gularly with table to +/-0	weight sets .5% of the o	traceable to N certified conce	VIST #3285 entration in	66, #32857 a clusive of u	nd others.		
of measurem	ents and othe	r effects, suc	n as transp	iration losses,	tor a perio	a of one yea	ar from the		
date of certif	cation. This	guarantee is	valid only	when the mat	erial is kep	t tightly cap	ped and		
transported a	nd stored und	ler laborator	y condition	S.					
Date of Ce	rtification:	MAY	03	Certify	ing Offic	er: <u>N. K</u>	ochertak	da	

SP	EXI	ertít	ficate

010122

тм

Lot No. 9-150P

Certificate of Reference Material

Catalog Number:	PLP9-2X/2Y/2T
Description:	1000 mg/L Phosphorus
Matrix:	H2O

This ASSURANCE [®] certified reference material, CRM, is intended primarily for use as a calibration standard or quality control standard for inorganic spectroscopic instrumentation such as ICPOES, DCP, AA, ICPMS, and XRF. It can be employed in USEPA, ASTM and other methods relevent to the certified properties listed below.

**Certified Value:** 1002.5 mg/L **Uncertainty Associated with Measurement:** +/- 3 mg/L **Certified Value is Traceable to:** NIST SRM 3139a

The CRM is prepared gravimetrically using high purity (NH4)H2(PO4) Lot# W1002B. The certified value listed is the average of values obtained by classical wet assay and ICP spectrometer analysis

Refer to side 2 for details of measurement uncertainties.

Classical Wet Assay: 1003 mg/L

Method: Precipitation using Magnesia Mixture. Filter, ignite, and weigh as Mg2P2O7.

Instrumentation Analysis By ICP spectrometer: 1002 mg/L Uncertified Properties:

Density: 0.9996 @ 24.0 Degrees Celsius

Trace Metallic Impurities in the Actual Solution via ICP / ICPMS Analysis:

mg/L	Element	mg/L	Element	mg/L
0.002	Cu	<0.001	Pb	<0.001
0.001	Fe	<0.001	Rb	<0.001
< 0.002	Ga	<0.001	Re	< 0.001
<0.002	In	< 0.001	Sn	<0.001
<0.001	K	0.006	Sr	<0.001
<0.001	Li	<0.001	Sb	0.004
<0.001	Mg	<0.001	Ti	0.004
0.004	Mn	<0.001	TI	< 0.001
<0.008	Мо	<0.001	V	< 0.006
< 0.001	Na	0.003	Zr	< 0.001
<0.001	Ni	<0.001	Zn	0.07
	mg/L 0.002 0.001 <0.002 <0.001 <0.001 <0.001 0.004 <0.008 <0.001 <0.001	mg/L         Element           0.002         Cu           0.001         Fe           <0.002	mg/L         Element         mg/L           0.002         Cu         <0.001	mg/L         Element         mg/L         Element           0.002         Cu         <0.001

**OCT** 

Balances are calibrated regularly with weight sets traceable to NIST #32856, #32857 and others. This CRM is guaranteed stable to +/-0.5% of the certified concentration inclusive of uncertainty of measurements and other effects, such as transpiration losses, for a period of one year from the date of certification. This guarantee is valid only when the material is kept tightly capped and transported and stored under laboratory conditions.

- 2003

Date of Certification:

Certifying Officer: N. Kochertakola

SPEXertificate	ТМ
autiliants of Defenses Material	

ADCHEM

LABS

Certificate of Reference Material

Catalog Number:PLSI9-2X/2Y/2TDescription:1000 mg/L SiliconMatrix:H2O / 0.4% F-

Lot No. 10-07SI

This ASSURANCE [®] certified reference material, CRM, is intended primarily for use as a calibration standard or quality control standard for inorganic spectroscopic instrumentation such as ICPOES, DCP, AA, ICPMS, and XRF. It can be employed in USEPA, ASTM and other methods relevent to the certified properties listed below.

Certified Value: 998.5 mg/L

Uncertainty Associated with Measurement: +/- 3 mg/L

Certified Value is Traceable to: NIST SRM #3150

The CRM is prepared gravimetrically using high purity (NH4)2SiF6 Lot# 02021D. The certified value listed is the average of values obtained by classical wet assay and ICP spectrometer analysis

Refer to side 2 for details of measurement uncertainties.

Classical Wet Assay: 997 mg/L

Method: Precipitation using Ammonium Molybdate and 8-Hydroxy Quinoline. Filter, dry, and weigh as (C9H7ON)4(H4)[Si(Mo12O40)]

## Instrumentation Analysis By ICP spectrometer: 1000 mg/L Uncertified Properties:

Density: 1.010 @ 26.5 Degrees Celsius

Trace Metallic Impurities in the Actual Solution via ICP / ICPMS Analysis:

Element	mg/L	Element	mg/L	Element	mg/L
Al	0.002	Cu	<0.001	Pb	< 0.001
As	<0.001	Fe	0.020	Rb	<0.001
Ag	< 0.001	Ga	<0.001	Re	<0.001
B	< 0.003	In	<0.001	Sr	< 0.001
Ba	< 0.001	K	<0.010	Sb	0.03
Be	<0.001	Li	<0.001	Ti	<0.001
Bi	<0.001	Mg	<0.001	П	<0.001
Ca	0.018	Mn	<0.001	v	<0.001
Cr	< 0.002	Мо	<0.001	Zr	0.05
Cd	<0.001	Na	0.02	Zn	0.06
Co	<0.001	Ni	0.001		

AIG

Balances are calibrated regularly with weight sets traceable to NIST #32856, #32857 and others. This CRM is guaranteed stable to +/-0.5% of the certified concentration inclusive of uncertainty of measurements and other effects, such as transpiration losses, for a period of one year from the date of certification. This guarantee is valid only when the material is kept tightly capped and transported and stored under laboratory conditions.

Ό3

Date of Certification:

Certifying Officer: N. Kocherlakola

SPEXertificate	TM
Certificate of Reference Material	

RADCHEM

LABS

10-38TI

Lot No.

Catalog Number:PLTI9-2X/2Y/2TDescription:1000 mg/L TitaniumMatrix:H2O/ 0.24% F-

This ASSURANCE [®] certified reference material, CRM, is intended primarily for use as a calibration standard or quality control standard for inorganic spectroscopic instrumentation such as ICPOES, DCP, AA, ICPMS, and XRF. It can be employed in USEPA, ASTM and other methods relevent to the certified properties listed below.

Certified Value: 1001 mg/L

Uncertainty Associated with Measurement: 3.0mg/L

Certified Value is Traceable to: NIST SRM #3162a

The CRM is prepared gravimetrically using high purity (NH4)2TiF6 Lot# 02021E. The certified value listed is the average of values obtained by classical wet assay and ICP spectrometer analysis

Refer to side 2 for details of measurement uncertainties.

Classical Wet Assay: 1003 mg/L

Method: Precipitation using Ammonium Hydroxide. Filter, ignite, and weigh as TiO2.

Instrumentation Analysis By ICP spectrometer: 999 mg/L Uncertified Properties:

Density: 1.001 @ 22.5 Degrees Celsius

Trace Metallic Impurities in the Actual Solution via ICP / ICPMS Analysis:

Element	mg/L	Element	mg/L	Element	mg/L
Al	0.006	Cu	<0.10	РЬ	<0.001
As	< 0.001	Fe	<0.01	Rb	<0.001
Ag	<0.001	Ga	<0.001	Re	<0.001
B	0.003	In	<0.001	Si	0.52
Ba	<0.001	K	<0.01	Sr	0.001
Be	<0.001	Li	< 0.001	Sb	<0.001
Bi	<0.001	Mg	<0.001	TI	< 0.001
Ca	0.013	Mn	<0.001	v	<0.001
Cr	< 0.003	Мо	<0.001	Zr	0.01
Cd	<0.001	Na	0.02	Zn	0.03
Co	0.002	Ni	<0.001		

AliG

Balances are calibrated regularly with weight sets traceable to NIST #32856, #32857 and others. This CRM is guaranteed stable to +/-0.5% of the certified concentration inclusive of uncertainty of measurements and other effects, such as transpiration losses, for a period of one year from the date of certification. This guarantee is valid only when the material is kept tightly capped and transported and stored under laboratory conditions.

Ό3

Date of Certification:

Certifying Officer: N. Kochertakota



9-166SR

Lot No.

Catalog Number: PLSR2-2X/2Y/2T **Description:** 1000 mg/L Strontium in 2% HNO3 2% HNO3 **Matrix:** 

This ASSURANCE [®] certified reference material, CRM, is intended primarily for use as a calibration standard or quality control standard for inorganic spectroscopic instrumentation such as ICPOES, DCP, AA, ICPMS, and XRF. It can be employed in USEPA, ASTM and other methods relevent to the certified properties listed below.

Certified Value: 1002.5 mg/L

Uncertainty Associated with Measurement: +/- 3 mg/L

Certified Value is Traceable to: NIST SRM 3153a

Lot# 02001B. The The CRM is prepared gravimetrically using high purity Strontium Carbonate certified value listed is the average of values obtained by classical wet assay and ICP spectrometer analysis

Refer to side 2 for details of measurement uncertainties.

**Classical Wet Assay:** 1002 mg/L

Method: EDTA titration using Methyl Thymol Blue as indicator. EDTA standardized against Pb(NO3)2 NIST SRM #928.

## Instrumentation Analysis By ICP spectrometer: 1003 mg/L **Uncertified Properties:**

Density: 1.010 @ 22.7 Degrees Celsius

Trace Metallic Impurities in the Actual Solution via ICP / ICPMS Analysis:

Element	mg/L	Element	mg/L	Element	mg/L
Al	0.02	Cu	< 0.001	Pb	< 0.001
As	< 0.001	Fe	0.001	Rb	< 0.001
Ag	< 0.002	Ga	< 0.001	Re	< 0.001
В	< 0.003	In	< 0.001	Si	0.043
Ba	0.008	K	0.10	Sb	< 0.001
Be	< 0.001	Li	0.007	Ti	< 0.002
Bi	< 0.001	Mg	<0.003	Tl	< 0.001
Ca	0.014	Mn	<0.001	v	<0.001
Cr	0.001	Mo	< 0.001	Zr	< 0.001
Cd	< 0.001	Na	0.01	Zn	0.04
Со	< 0.001	Ni	< 0.001		

DCT --- 2003

Balances are calibrated regularly with weight sets traceable to NIST #32856, #32857 and others. This CRM is guaranteed stable to +/-0.5% of the certified concentration inclusive of uncertainty of measurements and other effects, such as transpiration losses, for a period of one year from the date of certification. This guarantee is valid only when the material is kept tightly capped and transported and stored under laboratory conditions.

Date of Certification:

Certifying Officer: N. Kocherta.kol

SPEXertificate
Certificate of Reference Material

010126

Catalog Number:PLSN5-2X/2Y/2TDescription:1000 mg/L TinMatrix:20% HCL

Lot No. 9-62SN

TM

This **ASSURANCE** ^(B) certified reference material, CRM, is intended primarily for use as a calibration standard or quality control standard for inorganic spectroscopic instrumentation such as ICPOES, DCP, AA, ICPMS, and XRF. It can be employed in USEPA, ASTM and other methods relevent to the certified properties listed below.

Certified Value: 1000 mg/L

Uncertainty Associated with Measurement: +/- 3 mg/L

Certified Value is Traceable to: NIST SRM 3161a

The CRM is prepared gravimetrically using high purity Tin Metal Lot# 02891N. The certified value listed is the average of values obtained by classical wet assay and ICP spectrometer analysis

Refer to side 2 for details of measurement uncertainties.

Classical Wet Assay: 999 mg/L

Method: Precipitation using Ammonium Hydroxide. Filter, ignite, and weigh as SnO2.

**Instrumentation Analysis By ICP** spectrometer: 1001 mg/L Uncertified Properties:

Density: 1.034 @ 24.8 Degrees Celsius

Trace Metallic Impurities in the Actual Solution via ICP / ICPMS Analysis:

Element	mg/L	Element	mg/L	Element	mg/L
Al	0.007	Cu	<0.001	Pb	0.001
As	0.01	Fe	0.02	Rb	<0.001
Ag	0.002	Ga	<0.001	Re	< 0.001
В	< 0.03	İn	< 0.001	Sr	< 0.001
Ba	< 0.001	К	0.10	Sb	0.002
Be	<0.001	Li	< 0.001	Ti	<0.001
Bi	<0.001	Mg	< 0.001	TI	<0.001
Ca	0.004	Mn	<0.001	V	<0.001
Cr	<0.005	Мо	<0.001	Zr	<0.001
Cd	<0.001	Na	0.02	Zn	0.03
Со	0.008	Ni	<0.01		

Balances are calibrated regularly with weight sets traceable to NIST #32856, #32857 and others. This CRM is guaranteed stable to +/-0.5% of the certified concentration inclusive of uncertainty of measurements and other effects, such as transpiration losses, for a period of one year from the date of certification. This guarantee is valid only when the material is kept tightly capped and transported and stored under laboratory conditions.

'nЗ

JIN

Date of Certification:

Certifying Officer: N. Kochertakola

SPEXertificate	тм
Certificate of Reference Material	

Lot No. 9-36BI

Catalog Number:PLBI4-2X/2YDescription:1000 mg/L BismuthMatrix:10% HNO3

This ASSURANCE [®] certified reference material, CRM, is intended primarily for use as a calibration standard or quality control standard for inorganic spectroscopic instrumentation such as ICPOES, DCP, AA, ICPMS, and XRF. It can be employed in USEPA, ASTM and other methods relevent to the certified properties listed below.

Certified Value: 1001 mg/L

Uncertainty Associated with Measurement: +/- 3 mg/L

Certified Value is Traceable to: NIST SRM 3106

The CRM is prepared gravimetrically using high purity Bismuth Metal Lot# 04941B. The certified value listed is the average of values obtained by classical wet assay and ICP spectrometer analysis

Refer to side 2 for details of measurement uncertainties.

Classical Wet Assay: 1001 mg/L

Method: EDTA titration using Xylenol Orange as indicator. EDTA standardized against Pb(NO3)2 NIST SRM #928.

### Instrumentation Analysis By ICP spectrometer: 1001 mg/L Uncertified Properties:

Density: 1.052 @ 23.1 Degrees Celsius

Trace Metallic Impurities in the Actual Solution via ICP / ICPMS Analysis:

Element	mg/L	Element	mg/L	Element	mg/L
Al	0.002	Cu	0.034	Pb	0.006
As	< 0.001	Fe	0.001	Re	< 0.001
Ag	0.002	Ga	< 0.001	Rb	< 0.001
B	< 0.04	In	< 0.001	Sr	< 0.001
Ba	< 0.001	K	0.001	Sb	< 0.001
Be	<0.001	Li	< 0.001	Sn	< 0.001
Cd	<0.001	Mn	< 0.001	Ti	< 0.001
Co	<0.001	Mo	<0.001	Tl	< 0.001
Ca	0.006	Mg	< 0.001	v	< 0.002
Cr	<0.005	Na	0.005	Zr	< 0.001
		Ni	< 0.001	Zn	0.02

Balances are calibrated regularly with weight sets traceable to NIST #32856, #32857 and others. This CRM is guaranteed stable to +/-0.5% of the certified concentration inclusive of uncertainty of measurements and other effects, such as transpiration losses, for a period of one year from the date of certification. This guarantee is valid only when the material is kept tightly capped and transported and stored under laboratory conditions.

*'*03

JUN.

Date of Certification:

Certifying Officer: N. Kochertakola



010122

Catalog Number:PLLA2-2X/2YDescription:1000 mg/L LanthanumMatrix:2% HNO3

Lot No. 10-17LA

This ASSURANCE [®] certified reference material, CRM, is intended primarily for use as a calibration standard or quality control standard for inorganic spectroscopic instrumentation such as ICPOES, DCP, AA, ICPMS, and XRF. It can be employed in USEPA, ASTM and other methods relevent to the certified properties listed below.

Certified Value: 996.5 mg/L

Uncertainty Associated with Measurement: +/- 3 mg/L

Certified Value is Traceable to: NIST SRM 3127a

The CRM is prepared gravimetrically using high purity Lanthanum Oxide Lot# 06981D. The certified value listed is the average of values obtained by classical wet assay and ICP spectrometer analysis

Refer to side 2 for details of measurement uncertainties.

Classical Wet Assay: 998 mg/L

Method: EDTA titration using Methyl Thymol Blue as indicator. EDTA standardized against Pb(NO3)2 NIST SRM #928.

Instrumentation Analysis By ICP spectrometer: 995 mg/L Uncertified Properties:

Density: 1.010 @ 23.8 Degrees Celsius

Trace Metallic Impurities in the Actual Solution via ICP / ICPMS Analysis:

Elemen	t mg/L	Element	mg/L	Element	mg/L	
Ce	0.009	Lu	<0.001	Tm	< 0.001	
Ca	0.05	Mn	<0.001	Ti	<0.001	
Dy	<0.001	Мо	<0.001	Tb	<0.001	
Er	<0.001	Nd	<0.001	Ta	< 0.001	
Eu	<0.001	Ni	<0.001	TI	<0.001	Ĵ
Fe	0.006	Na	0.006	V	<0.001	
Gd	<0.2	Pr	<0.001	W	<0.001	
Ga	<0.001	Rb	<0.001	Y	<0.001	
Hf	<0.001	Sc	<0.003	Yb	<0.001	
Ho	<0.001	Sm	<0.001	Zr	<0.001	
In	<0.001	Th	<0.001			

Balances are calibrated regularly with weight sets traceable to NIST #32856, #32857 and others This CRM is guaranteed stable to +/-0.5% of the certified concentration inclusive of uncertainty of measurements and other effects, such as transpiration losses, for a period of one year from the date of certification. This guarantee is valid only when the material is kept tightly capped and transported and stored under laboratory conditions.

'**1**3

MAY

Date of Certification:

Certifying Officer: N. Kocherlakol



010129

Lot No. 9-152Y

Catalog Number:PLY2-2X/2Y/2TDescription:1,000 mg/L YttriumMatrix:2% HNO3

This ASSURANCE [®] certified reference material, CRM, is intended primarily for use as a calibration standard or quality control standard for inorganic spectroscopic instrumentation such as ICPOES, DCP, AA, ICPMS, and XRF. It can be employed in USEPA, ASTM and other methods relevent to the certified properties listed below.

Certified Value: 1001.5 mg/L

Uncertainty Associated with Measurement: +/- 3 mg/L

Certified Value is Traceable to: NIST SRM 3167a.

The CRM is prepared gravimetrically using high purity Yttrium Oxide Lot# 08001A. The certified value listed is the average of values obtained by classical wet assay and ICP spectrometer analysis

Refer to side 2 for details of measurement uncertainties.

Classical Wet Assay: 1002 mg/L

Method: EDTA titration using Methyl Thymol Blue as indicator. EDTA standardized against Pb(NO3)2 NIST SRM #928.

Instrumentation Analysis By ICP spectrometer: 1001 mg/L Uncertified Properties:

Density: 1.010 @ 24.8 Degrees Celsius

Trace Metallic Impurities in the Actual Solution via ICP / ICPMS Analysis:

Element	mg/L	Element	mg/L	Element	mg/L
Ce	< 0.001	La	<0.001	ТЬ	<0.001
Ca	0.007	Lu	< 0.001	Tm	< 0.001
Dy	< 0.001	Mn	< 0.001	Tl	<0.001
Er	<0.001	Мо	<0.001	Th	<0.001
Eu	<0.001	Nd	<0.001	Ta	<0.001
Fe	0.003	Ni	<0.001	Ti	<0.001
Gd	< 0.001	Na	0.005	v	< 0.001
Ga	< 0.001	Pr	<0.001	W	< 0.001
Hf	< 0.001	Rb	<0.001	Yb	< 0.001
Ho	< 0.001	Sc	< 0.001	Zr	0.003
In -	< 0.001	Sm	< 0.001		

MAY

Balances are calibrated regularly with weight sets traceable to NIST #32856, #32857 and others. This CRM is guaranteed stable to +/-0.5% of the certified concentration inclusive of uncertainty of measurements and other effects, such as transpiration losses, for a period of one year from the date of certification. This guarantee is valid only when the material is kept tightly capped and transported and stored under laboratory conditions.

**'0**3

Date of Certification:

Certifying Officer: N. Kocherlakola

N DA WORK , IRI .	тм
SAUXertiticate	

M 010130

9-74PD

Lot No.

Catalog Number:PLPD3-2X/2YDescription:1000 mg/L PalladiumMatrix:10% HCl

This **ASSURANCE** ^(®) certified reference material, CRM, is intended primarily for use as a calibration standard or quality control standard for inorganic spectroscopic instrumentation such as ICPOES, DCP, AA, ICPMS, and XRF. It can be employed in USEPA, ASTM and other methods relevent to the certified properties listed below.

Certificate of Reference Material

Certified Value: 995 mg/L

Uncertainty Associated with Measurement: +/- 3 mg/L

Certified Value is Traceable to: NIST SRM 3138

The CRM is prepared gravimetrically using high purity Palladium Powder Lot# 07991E. The certified value listed is the average of values obtained by classical wet assay and ICP spectrometer analysis

Refer to side 2 for details of measurement uncertainties.

Classical Wet Assay: 990 mg/L

Method: Precipitation using dimethyl glyoxime, filter, dry and weigh as Pd(C4H702N2)2.

**Instrumentation Analysis By ICP** spectrometer: 1000 mg/L Uncertified Properties:

Density: 1.025 @ 26.3 Degrees Celsius

Trace Metallic Impurities in the Actual Solution via ICP / ICPMS Analysis:

Element	mg/L	Element	mg/L	Element	mg/L
Al	<0.004	Cr	<0.009	Pt	<0.004
Au	0.03	Fe	0.02	Re	< 0.001
Ag	0.007	Ga	<0.001	Rh	0.002
В	<0.05	Ir	< 0.001	Rb	< 0.001
Be	< 0.002	In	<0.001	Ru	<0.001
Bi	< 0.001	Mg	<0.005	Sn	0.08
Ca	0.02	Mn	< 0.001	Te	< 0.001
Cd	< 0.001	Na	< 0.03	Ti	< 0.001
Co	< 0.001	Ni	0.004	W	< 0.001
Cu	<0.006	Pb	< 0.04	Zr	< 0.001
				Zn	0.16

Balances are calibrated regularly with weight sets traceable to NIST #32856, #32857 and others. This CRM is guaranteed stable to +/-0.5% of the certified concentration inclusive of uncertainty of measurements and other effects, such as transpiration losses, for a period of one year from the date of certification. This guarantee is valid only when the material is kept tightly capped and transported and stored under laboratory conditions.

JAN -- '03

Date of Certification:

Certifying Officer: N. Kochertakol

		S] Certificat	FEX. ie of Refi	erence Ma	CATE nterial	тм	0	.0131	INORG:	DATE REC DATE EXI DATE OPE
Catalog I Descripti Matrix:	Number on:	PLS9-2X 1000 mg/ H2O	/2Y/2T L Sulfur	]	Lot No.	8-74S			нно	NIC LABS
This ASSUR calibration sta ICPOES, DCI relevent to the	RANCE (R) Indard or qu P, AA, ICP e certified p	certified refe uality control s MS, and XRF, properties liste	rence mater standard for It can be e d below.	ial, CRM, is i inorganic spe mployed in U	ntended pr ctroscopic SEPA, AS	imarily for instrument TM and oth	use as a ation such her method	as s	Po: E	/RADCHEM
Certified V Uncertainty Certified V	Value: 10 Associat alue is Tra	003 mg/L ed with Mea aceable to:	surement: NIST SR	+/- 3 mg M 3154	/L				59370	
certified value Refer to side	e listed is the <b>2 for deta</b>	avimetrically to ne average of v ils of measure	alues obtair ment uncer	rity Ammo red by classic tainties.	al wet assa	y and ICP s	ot# 0589 pectromet	IM. The er analysis	91-19 91-19 91-19 91-19 91-19 91-19 91-19 91-19 91-19 91-19 91-19 91-19 91-19 91-19 91-19 91-19 91-19 91-19 91	
Classical V Method: _{Pi}	Vet Assay recipitation	y: 1003 n using barium	ng/L chloride,filt	er,ignite and	weigh as B	aS04.			•	
Instrument Uncertified	tation Ar I Propert	nalysis By I ties:	CP spect	rometer: 1	003 mg/l					
Trace Met	allic Imp	orities in the	egrees Celsi Actual Sc	us olution via I	CP / ICP	MS Analy	vsis:		- - -	
Element	mg/L	Element	mg/L	Element	mg/L					
AI	<0.001	Cu	<0.001	Pb	0.002					
As	<0.001	Fe	0.008	Rb	<0.001	•				
Ag	<0.001	Ga	<0.001	Re	<0.001					
B	<0.004 <0.001	in K	<0.001	5n Sr	<0.001 <0.001	•				
Be	<0.001	Li	< 0.001	Sb	<0.001					
Bi	< 0.001	Mg	0.005	Ti	< 0.002				-	
Ca	0.009	Mn	<0.001	TI	< 0.001					
Cr	<0.004	Мо	<0.001	v	<0.001					

Balances are calibrated regularly with weight sets traceable to NIST #32856, #32857 and others. This CRM is guaranteed stable to +/-0.5% of the certified concentration inclusive of uncertainty of measurements and other effects, such as transpiration losses, for a period of one year from the date of certification. This guarantee is valid only when the material is kept tightly capped and transported and stored under laboratory conditions.

Zr

Zn

< 0.001

0.0075

0.02

<0.001

'03

Date of Certification:

< 0.001

< 0.001

Na

Ni

JUN

Certifying Officer: N. Kocherta.kola

© 2000 SPEX CertiPrep, Inc.

Cd

Co

S#	EXertificate
Tortificato	of Reference Material

NORGANIC

RADCHEM LABS

тм

10-24TH

Lot No.

Catalog Number:PLTH2-2X/2YDescription:1000 mg/L ThoriumMatrix:2% HNO3

This ASSURANCE [®] certified reference material, CRM, is intended primarily for use as a calibration standard or quality control standard for inorganic spectroscopic instrumentation such as ICPOES, DCP, AA, ICPMS, and XRF. It can be employed in USEPA, ASTM and other methods relevent to the certified properties listed below.

Certified Value: 999 mg/L

Uncertainty Associated with Measurement: +/- 3.0 mg/L

Certified Value is Traceable to: NIST SRM #3159

The CRM is prepared gravimetrically using high purity Th(NO3)4-4H2O Lot# 01851R. The certified value listed is the average of values obtained by classical wet assay and ICP spectrometer analysis

Refer to side 2 for details of measurement uncertainties.

Classical Wet Assay: 1000 mg/L

Method: EDTA titration using Xylenol Orange as indicator. EDTA syandardized against Pb(NO3)2 NIST SRM #928.

Instrumentation Analysis By ICP spectrometer: 998 mg/L Uncertified Properties:

Density: 1.010 @ 22.0 Degrees Celsius

Trace Metallic Impurities in the Actual Solution via ICP / ICPMS Analysis:

Element	mg/L	Element	mg/L	Element	mg/L
Ce	0.01	La	0.003	ТЪ	< 0.001
Ca	0.27	Lu	<0.001	Tm	<0.001
Dy	< 0.001	Mn	<0.001	Ti	< 0.002
Er	< 0.001	Мо	<0.001	Ta	<0.001
Eu	< 0.001	Nd	0.003	T1	<0.001
Fe	< 0.01	Ni	<0.001	v	<0.001
Gd	< 0.001	Na	0.04	W	<0.001
Ga	< 0.001	Pr	<0.001	Y	0.002
Hf	< 0.001	Rb	<0.001	Yb	< 0.001
Но	<0.001	Sc	<0.03	Zr	< 0.001
In	< 0.001	Sm	< 0.001		

AUG

Balances are calibrated regularly with weight sets traceable to NIST #32856, #32857 and others This CRM is guaranteed stable to +/-0.5% of the certified concentration inclusive of uncertainty of measurements and other effects, such as transpiration losses, for a period of one year from the date of certification. This guarantee is valid only when the material is kept tightly capped and transported and stored under laboratory conditions.

03

Date of Certification:

Certifying Officer: N. Kochertakota



010133

9-179U

Lot No.

Certificate of Reference Material

Catalog Number:PLU2-2X/2YDescription:1000 mg/L UraniumMatrix:2% HNO3

This ASSURANCE [®] certified reference material, CRM, is intended primarily for use as a calibration standard or quality control standard for inorganic spectroscopic instrumentation such as ICPOES, DCP, AA, ICPMS, and XRF. It can be employed in USEPA, ASTM and other methods relevent to the certified properties listed below.

Certified Value: 999.5 mg/L

Uncertainty Associated with Measurement: +/- 3 mg/L

Certified Value is Traceable to: NIST SRM 3164.

The CRM is prepared gravimetrically using high purity Uranium Oxide Lot# 04001D. The certified value listed is the average of values obtained by classical wet assay and ICP spectrometer analysis

Refer to side 2 for details of measurement uncertainties.

Classical Wet Assay: 999 mg/L

Method: Evaporate to dryness. Ignite and weigh as U3O8.

## Instrumentation Analysis By ICP spectrometer: 1000 mg/L Uncertified Properties:

Density: 1.010 @ 23.6 Degrees Celsius

Trace Metallic Impurities in the Actual Solution via ICP / ICPMS Analysis:

Element	mg/L	Element	mg/L	Element	mg/L
Al	0.005	Cu	0.02	Рь	0.004
As	0.06	Fe	0.011	Rb	< 0.001
Ag	< 0.001	Ga	< 0.001	Re	< 0.001
В	<0.005	In	<0.001	Si	<0.10
Ba	0.004	K	0.008	Sr	0.003
Be	<0.001	Li	<0.001	Sb	0.003
Bi	< 0.001	Mg	0.003	Ti	< 0.001
Ca	0.012	Mn	0.003	Tl	< 0.001
Cr	<0.010	Мо	0.006	V	< 0.003
Cd	< 0.001	Na	0.10	Zr	< 0.001
Co	< 0.001	Ni	< 0.001	Zn	0.008

Balances are calibrated regularly with weight sets traceable to NIST #32856, #32857 and others. This CRM is guaranteed stable to +/-0.5% of the certified concentration inclusive of uncertainty of measurements and other effects, such as transpiration losses, for a period of one year from the date of certification. This guarantee is valid only when the material is kept tightly capped and transported and stored under laboratory conditions.

113

.UN Date of Certification:

Certifying Officer: N. Kochestakola



9-177W

Lot No.

INDRGANIC

- ABS /

RADCHEV

LABS

Certificate of Reference Material

Catalog Number:PLW9-2X/2YDescription:1000 mg/L TungstenMatrix:H2O

This ASSURANCE [®] certified reference material, CRM, is intended primarily for use as a calibration standard or quality control standard for inorganic spectroscopic instrumentation such as ICPOES, DCP, AA, ICPMS, and XRF. It can be employed in USEPA, ASTM and other methods relevent to the certified properties listed below.

**Certified Value:** 1,000 mg/L **Uncertainty Associated with Measurement:** +/- 3 mg/L **Certified Value is Traceable to:** NIST SRM 3163

The CRM is prepared gravimetrically using high purity Ammonium Tungstate Lot# 02001H. The certified value listed is the average of values obtained by classical wet assay and ICP spectrometer analysis

Refer to side 2 for details of measurement uncertainties.

Classical Wet Assay: 1000 mg/L

Method: Fume with Sulfuric Acid to dryness. Ignite and weigh as WO3.

**Instrumentation Analysis By ICP spectrometer:** 1000 mg/L **Uncertified Properties:** 

Density: 0.9979 @ 23.7 Degrees Celsius

Trace Metallic Impurities in the Actual Solution via ICP / ICPMS Analysis:

Element	mg/L	Element	mg/L	Element	mg/L
	0.000	0.	<0.001	Dl	<0.001
AI	0.002	Cu	<0.001	PD	<0.001
As	0.01	Fe	<0.01	Rb	<0.001
Ag	<0.003	Ga	<0.001	Re	0.004
В	<0.005	In	<0.001	Si	.56
Ba	<0.001	K	0.05	Sr	< 0.001
Be	<0.001	Li	<0.001	Sb	0.001
Bi	<0.001	Mg	<0.001	Ti	< 0.001
Ca	0.009	Mn	<0.001	TI	< 0.001
Cr	< 0.001	Мо	0.005	V	0.001
Cd	<0.001	Na	0.03	Zr	< 0.001
Co	0.001	Ni	<0.001	Zn	0.01

Balances are calibrated regularly with weight sets traceable to NIST #32856, #32857 and others. This CRM is guaranteed stable to +/-0.5% of the certified concentration inclusive of uncertainty of measurements and other effects, such as transpiration losses, for a period of one year from the date of certification. This guarantee is valid only when the material is kept tightly capped and transported and stored under laboratory conditions.

**'03** 

Alh

Date of Certification:

Certifying Officer: N. Kochertakofa
	SACXerti	fírate ™	010135	DATE INORG
	Certificate of Belerence	Hateríal		
Catalog Number: Description: Matrix:	PLZR2-2X/2Y/2T 1000 mg/L Zirconium 2% HNO3	Lot No. 10-05ZR		IVED:
This ASSURANCE [®] ( calibration standard or qua ICPOES, DCP, AA, ICPM relevent to the certified pro	certified reference material, CRM, ality control standard for inorgani IS, and XRF. It can be employed prerties listed below	, is intended primarily for us c spectroscopic instrumentat in USEPA, ASTM and othe	e as a ion such as r methods	08/11/2 08/15/2 08/13/ P0:E

Certified Value: 997 mg/L

Uncertainty Associated with Measurement: +/- 3.0 mg/L

Certified Value is Traceable to: NIST SRM 3169

The CRM is prepared gravimetrically using high purity Zirconyl Nitrate Lot# 11011C. The certified value listed is the average of values obtained by classical wet assay and ICP spectrometer analysis

Refer to side 2 for details of measurement uncertainties.

Classical Wet Assay: 997 mg/L

Method: Evaporate to dryness. Fume with Sulfuric Acid. Ignite and weigh as ZrO2.

Instrumentation Analysis By ICP spectrometer: 997 mg/L Uncertified Properties:

Density: 1.010 @ 23.6 Degrees Celsius

Trace Metallic Impurities in the Actual Solution via ICP / ICPMS Analysis:

Flow		<b>Fileman</b>	/T	The second	
Liemo	ent mB/T	Liement	mg/L	Liement	mg/L
Al	0.03	Cu	0.002	Ph	0.002
As	<0.001	Fe	0.017	Rb	<0.001
Ag	<0.05	Ga	<0.001	Re	<0.001
B	<0.004	În	<0.001	Si	0.10
Ba	<0.001	K	0.10	Sr	< 0.001
Be	<0.001	Li	0.002	Sb	<0.001
Bi	<0.001	Mg	0.003	Ti	<0.001
Ca	0.11	Mn	<0.001	TI	<0.001
Cr	<0.009	Мо	<0.001	v	<0.001
Cd	0.004	Na	0.04	Zn	0.02
Со	<0.001	Ni	<0.001		

ALC:

Balances are calibrated regularly with weight sets traceable to NIST #32856, #32857 and others This CRM is guaranteed stable to +/-0.5% of the certified concentration inclusive of uncertainty of measurements and other effects, such as transpiration losses, for a period of one year from the date of certification. This guarantee is valid only when the material is kept tightly capped and transported and stored under laboratory conditions.

រឿង

Date of Certification:

Certifying Officer: N. Kochertakota



Lot No.

010136

ABS/

T8-73NA

Certificate of Reference Material

Catalog Number:PLNA2-3X/3YDescription:10,000 mg/L SodiumMatrix:5% HNO3

This ASSURANCE [®] certified reference material, CRM, is intended primarily for use as a calibration standard or quality control standard for inorganic spectroscopic instrumentation such as ICPOES, DCP, AA, ICPMS, and XRF. It can be employed in USEPA, ASTM and other methods relevent to the certified properties listed below.

Certified Value: 10,036.5 mg/L

Uncertainty Associated with Measurement: +/- 30 mg/L

Certified Value is Traceable to: NIST SRM 3152a

The CRM is prepared gravimetrically using high purity Sodium Carbonate Lot# 02021A. The certified value listed is the average of values obtained by classical wet assay and ICP spectrometer analysis

Refer to side 2 for details of measurement uncertainties.

Classical Wet Assay: 10,039 mg/L

Method: Evaporate to dryness. Fume with Sulfuric Acid. Ignite and weigh as Na2SO4.

**Instrumentation Analysis By ICP spectrometer:** 10,034 mg/ L **Uncertified Properties:** 

Density: 1.048 @ 23.9 Degrees Celsius

Trace Metallic Impurities in the Actual Solution via ICP / ICPMS Analysis:

Element	mg/L	Element	mg/L	Element	mg/L
Al	0.02	Cu	<0.002	Pb	<0.001
As	<0.08	Fe	0.03	Re	< 0.001
Ag	< 0.02	Ga	<0.001	Rb	< 0.001
B	<0.1	In	< 0.001	Sr	< 0.001
Ba	0.008	K	1.36	Sb	< 0.001
Be	<0.01	Li	< 0.002	Sn	<0.001
Bi	< 0.001	Mg	0.60	Ti	< 0.03
Ca	0.60	Mn	<0.02	TI	<0.001
Cr	0.002	Мо	<0.001	v	< 0.001
Cd	< 0.01	Ni	< 0.003	Zr	<0.001
Co	< 0.001			Zn	< 0.05

FFR ---

-113

Balances are calibrated regularly with weight sets traceable to NIST #32856, #32857 and others. This CRM is guaranteed stable to +/-0.5% of the certified concentration inclusive of uncertainty of measurements and other effects, such as transpiration losses, for a period of one year from the date of certification. This guarantee is valid only when the material is kept tightly capped and transported and stored under laboratory conditions.

Date of Certification:

Certifying Officer: N. Kochertakola

S₽Certífícate™

010137

A B B B B B

Certificate of Reference Alaterial

Catalog Number: ICV-2A **Description:** Matrix:

Lot No.: 22-12AS **Initial Calibration Verification Standard II** 5% Nitric Acid

This ASSURANCE [®]certified reference material, CRM, is intended primarily for use as a calibration standard or quality control standard for inorganic spectroscopic instrumentation such as ICPOES, DCP, AA, ICPMS, and XRF. It can be employed in USEPA, ASTM and other methods relevant to the certified properties listed below.

The CRM is prepared from high purity single element concentrates of individual elements using Class A laboratory ware to give precise concentration.

Refer to side 2 for details of measurement uncertainties.

## Instrumental Analysis by ICP Spectrometer:

Element	Labeled (mg/L)	Measured (mg/L)	NIST SRM	Element	Labeled (mg/L)	Measured (mg/L)	NIST SRM	
Ca	2,000	2,005.40	3109a	Ni	500	500.58	3136	
K	2,000	1,997.89	3141a	v	500	504.23	3165	
Mg	2,000	1,992.26	3131a	Cr	200	203.21	3112a	
Na	2,000	1,992.99	3152a	Cu	200	199.75	3114	
Al	1,000	1,005.90	3101a	Ag	100	100.46	3151	
Ba	1,000	1,001.51	3104a	Be	100	100.04	3105a	
Fe	1,000	1,003.17	3126a	Mn	100	100.64	3132	
Co	500	505.10	3113	Zn	100	100.52	3168a	

Spex Reference Multi: Lot #4-63BD, 14-125AS

Balances are calibrated regularly with weight sets traceable to NIST#s 32856, 32867 and others. This CRM is guaranteed stable and accurate to +/- 0.5% on the average of all the certified concentrations with no single component exceeding +/- 2%. This guarantee is valid for a period of one year from the date of certification only when the material is kept tightly capped and transported and stored under laboratory conditions.

NOV -- '02

Date of Certification: _____ Certifying Officer: N. Kochertakofa



. AB©

Certificate of Reference Material

**Description:** Matrix:

Catalog Number: PLSB7-2X/2Y/2T Lot No.: 8-175SB-X/Y/T 1000 mg/L Antimony Water/0.6% Tartaric Acid/tr HNO₃

This ASSURANCE [®]certified reference material, CRM, is intended primarily for use as a calibration standard or quality control standard for inorganic spectroscopic instrumentation such as ICPOES, DCP, AA, ICPMS, and XRF. It can be employed in USEPA, ASTM and other methods relevant to the certified properties listed below.

Certified Value: Antimony(Sb): 999 mg/L + 3 mg/L Traceable to: NIST SRM 3102a

The CRM is prepared gravimetrically using high purity Antimony Metal (Sb) Lot#R1198A. The certified value listed is the average of values obtained by classical wet assay and ICP spectrometer analysis.

Refer to side 2 for details of measurement uncertainties.

## Classical Wet Assay: 998 mg/L

Method: Gravimetric analysis by evaporating to dryness, fuming with Nitric Acid, igniting and weighing as Sb₂O₄.

Instrumental Analysis by ICP spectrometer: 1000 mg/L **Uncertified Properties:** 

**Density:** 1.007 at 24.0°C

Trace Metallic Impurities in the Actual Solution via ICP Analysis:

Element	mg/L	Element	mg/L	Element	mg/L
Ag	< 0.001	Cu	< 0.001	Pb	< 0.001
AI	0.030	Fe	0.013	Rb	< 0.001
As	0.001	Ga	<0.001	Re	< 0.001
B	< 0.001	In	<0.001	Sn	<0.001
Ba	< 0.001	K	0.030	Sr.	< 0.001
Be	<0.001	Li	< 0.001	Ti	0.001
Bi	< 0.001	Mg	0.003	Tl	< 0.001
Ca	0.012	Mn	< 0.001	V	< 0.001
Cd	<0.001	Mo	<0.001	Zn	< 0.010
Co	< 0.001	Na	0.005	Zr	< 0.001
Cr	< 0.001	Ni	< 0.001		

Balances are calibrated regularly with weight sets traceable to NIST#s 32856, 32867 and others. This CRM is guaranteed stable to +/- 0.5% of the certified concentration inclusive of uncertainty of measurements and other effects, such as transpiration losses, for a period of one year from the date of certification. This guarantee is valid only when the material is kept tightly capped and transported and stored under laboratory conditions.

NOV - - '02 Date of Certification:

Certifying Officer: N. Kochertakola

. > m m

SPCCertificate™

Certificate of Reference Alaterial

Catalog Number: Description: Matrix:

## ICV-2C Lot No.: 22-13AS Initial Calibration Verification Standard II 5% Nitric Acid

This **ASSUR**^Å**NCE** [®]certified reference material, CRM, is intended primarily for use as a calibration standard or quality control standard for inorganic spectroscopic instrumentation such as ICPOES, DCP, AA, ICPMS, and XRF. It can be employed in USEPA, ASTM and other methods relevant to the certified properties listed below.

The CRM is prepared from high purity single element concentrates of individual elements using. Class A laboratory ware to give precise concentration.

Refer to side 2 for details of measurement uncertainties.

## Instrumental Analysis by ICP Spectrometer:

1

Element	Labeled (mg/L)	Measured (mg/L)	NIST SRM
As	500	497.85	3103a
Pb	500	495.41	3128
Se	500	501.98	3149
TL	500	501.89	3158
Ċđ	100	99.77	3108

Spex Reference Multi: Lot #4-51BDREF, 15-39AS, 11-173AS

Balances are calibrated regularly with weight sets traceable to NIST#s 32856, 32867 and others. This CRM is guaranteed stable and accurate to +/-0.5% on the average of all the certified concentrations with no single element exceeding +/-2%. This includes uncertainty of measurements and other effects, such as transpiration losses. This guarantee is valid for a period of one year from the date of certification only when the material is kept tightly capped and transported and stored under laboratory conditions.

Date of Certification: <u>NOV - - '02</u> Certifying Officer: N. Kochertakota

## inorganic ventures / iv labs

195 lehigh avenue, suite 4, lakewood, nj 08701 usa phone: 800-669-6799 • 732-901-1900 • fax: 732-901-1903 e-mail: ivsales@ivstandards.com • website: www.ivstandards.com

certificate of analysis

1.0 Inorganic Ventures / IV Labs is an ISO Guide 34-2000 Certified Reference Material (CRM) Manufacturer: Certificate #883-02. The certificate is designed and the certified value(s) and uncertainty(ies) are determined in accordance with ISO Guide 31-2000 (Reference Materials - Contents of certificates and label(s), ISO Guide 34-2000 "Quality System Guidelines for the Production of Reference Materials," and ISO Guide 35-1989 "Certification of Reference Materials - General and Statisical Principles."

010140 10000 µg/mL Aluminum in 5% (abs) HNO3 **DESCRIPTION OF CRM** Custom-Grade Catalog Number: CGAL10-1 and CGAL10-5 Lot Number: W-AL04008 Starting Material: Al metal 99.998460 Starting Material Purity (%): INORGANIC LABS/RADCHEM LABS B. 1. 42 DATE RECEIVED: 08/06/03 Starting Material Lot No 607116 DATE EXPIRED: 09/01/2004 Matrix: 5% (abs) HNO3 DATE OPENED: 08/26/03 INORG: 4000 PD: 50004 **CERTIFIED VALUES AND UNCERTAINTIES Certified Concentration:** 10070 ± 31 µg/mL 1.059 g/mL (measured at 22° C) **Certified Density:** The Certified Value is based upon the most precise method used to analyze this CRM. The following equations are used in the calculation of the certified value and the uncertainty: (🗂 = mean Certified Value (C) =*erx  $x_i = individual results$ n = number of measurements BS = The summation of all significant estimated errors. Uncertainty  $(\pm) = 2[(2r_s)]^{1/2}$ (Most common are the errors from instrumental measurement, weighing, dilution to volume, and the fixed error reported on the NIST SRM certificate of analysis.) The independent samples t-test was used to determine if there is agreement between the above assay methods at the 95%

The independent samples t-test was used to determine if there is agreement between the above assay methods at the 95% confidence interval. Both methods were compared and showed agreement within the stated uncertainties. This agreement is a confirmation of the accuracy of this CRM.

## 4.0 TRACEABILITY TO NIST AND VALUES OBTAINED BY INDEPENDENT METHODS

10070 ± 31 µg/mL

□ "Property of the result of a measurement or the value of a standard whereby it can be related to stated references, usually national or international standards, through an unbroken chain of comparisons all having stated uncertainties." (ISO VIM, 2nd ed., 1993, definition 6.10)

This IV product is Traceable to NIST via direct comparison to NIST SRMs. The uncertainties for each certified value are reported, taking into account the SRM uncertainty error and the measurement, weighing and volume dilution errors.

 4.1
 Assay Method #1
 10006 ± 55 μg/mL

 ICP Assay NIST SRM 3101a
 Lot Number: 992003

Assay Method #2

EDTA NIST SRM 928 Lot Number: 880710

2.0

3.0

- 4.2 BALANCE CALIBRATION All balances are checked daily using in-house procedure number 6-IMM-001. The weights used for testing are annually compared to Gerhart Scale Corporation's master weights and are traceable to the National Institute of Standards and Technology (NIST). The NIST Traceability numbers are 692476 Class 1 and 692476A Class 2. The NIST test number is 822/260017-98. All analytical balances are calibrated every 4 months by Gerhart Scale Corp. of South Amboy. The balances are calibrated with a class 1 and/or class 2 analytical weight set. These weights are tested annually by a NIST / NVLAP accredited calibration lab. The NIST test number is 822/260017-98.
- 4.3 THERMOMETER CALIBRATION The thermometers used in the determination of the final densities are calibrated vs standard thermometer No. 903-2680 which was certified in accordance with the procedures outlined by ASTM E77-87 and NIST Monograph 150 using NIST Test Nos. and Std Nos.: 769543, 217368/769543, 217368/P14452, 176240/P14452, 176240. The in-house procedure No. is 2-QC-001. Thermometers which are not calibrated vs standard thermometer No. 903-2680 are traceable to NIST Identification Nos. 92564, 119016, 471047 and NIST test report Nos. 811/258522, 811/2557078, and 236090.
- 4.4 GLASSWARE CALIBRATION In-house procedure 3-QC-002 is used to calibrate all Class A Glassware used in the manufacture and quality control of Custom Grade Standards.

### 5.0 TRACE METALLIC IMPURITIES (TMI) DETERMINED BY ICP/MS AND ICP-OES IN µg/mL

Custom-Grade solutions are tested for trace metallic impurities by Axial ICP-OES and ICP-MS. The result from the most sensitive method for each element, is reported below. Solutions tested by ICP-MS were analyzed in an ULPA-Filtered Clean Room. An ULPA-Filter is 99.9985% efficient for the removal of particles down to 0.3 µm.

<u>s</u> A	l		M	Dy	<	0.02695	<u>0</u>	Li		0.00011	M	Pr	<	0.00135	M	Те	<	0.13473
<u>M</u> S	b <	0.00225	M	Er	<	0.02245	M	Lu	<	0.00180	M	Re	<	0.00449	M	Tb	<	0.00135
<u>M</u> A	s <	0.04491	M	Eu	<	0.01347	<u>0</u>	Mg		0.00470	M	Rh	<	0.00449	M	TÍ	<	0.00449
<u>М</u> Ва	a <	0.04491	М	Gd	<	0.00449	M	Mn	<	0.01796	M	Rb	<	0.00449	M	Th	<	0.00449
<u>O</u> B	e <	0.00017	M	Ga	<	0.00449	<u>0</u>	Hg	<	0.00700	<u>M</u>	Ru	<	0.00898	M	Tm	<	0.00180
<u>М</u> Ві	i <	0.00180	M	Ge	<	0.02695	М	Мо	<	0.00898	M	Sm	<	0.00449	M	Sn	<	0.02245
<u>о</u> в		0.01164	M	Au	<	0.01347	М	Nd	<	0.00898	M	Sc	<	0.04491	M	Ті	<	0.22454
<u>M</u> C	d <	0.01347	М	Hf	<	0.00898	Q	Ni	<	0.00600	м	Se	<	0.03593	M	W	<	0.04491
<u>o</u> c	а	0.01903	М	Ho	<	0.00225	М	Nb	<	0.00225	Q	Si		0.07389	M	U	<	0.00898
<u>м</u> с	e <	0.02245	<u>o</u>	In	<	0.03000	n	Os			M	Âg	<	0.00898	M	V	<	0.00898
<u>м</u> с	s	0.00135	M	lr -	<	0.02245	М	Pd	<	0.02245	<u>0</u>	Na		0.03359	M	Yb	<	0.00449
<u>o</u> c	r	0.00336	<u>0</u>	Fe		0.00493	<u>0</u>	P.	<	0.03000	м	Sr	<	0.00225	M	Y	<	0.17963
<u>M</u> C	o <	0.01347	M	La	<	0.00225	М	Pt	<	0.00898	Q	S	<	0.10000	M	Źn	<	0,08982
<u>M</u> C	u <	0.02695	M	Pb	<	0.01347	<u>o</u>	к		0.02911	М	Та	<	0.03144	M	Zr	<	0.02245
M - Che	cked	by ICP-MS	0-0	Chec	ked	by ICP-OES	i - S	pectr	al I	nterference	n - 1	Not C	hec	ked For	s - S	Soluti	on :	Standard Element

### 6.0 INTENDED USE

For the calibration of analytical instruments including but not limited to the following:

ICP-MS, ICP-OES, FAAS, GFAA, XRF, and DCP

For the validation of analytical methods

For the preparation of "working reference samples"

For interference studies and the determination of correction coefficients

For detection limit and linearity studies

For additional intended uses, contact IV Technical Staff

010142

## 7.0 INSTRUCTIONS FOR THE CORRECT USE OF THIS REFERENCE MATERIAL

Storage & Handling - Keep tightly sealed when not in use. Store and use at 20 ± 4°C. Do not pipet from container. Do not return portions removed for pipetting to container.

Atomic Weight; Valence; Coordination Number; Chamical Form in Solution - 26.98154; +3, 6; Al(H₂O),**

Chemical Compatibility - Soluble in HCI, HNOs, HF and H2SO. Avoid neutral media. Soluble in strongly basic NaOH forming the Al(OH) (HrO), species. Stable with most metals and inorganic anions. The phosphate is insoluble in water and only slightly soluble in acid.

Stability - 2-100 ppb levels stable for months in 1% HNOs / LDPE container. 1-10,000 ppm solutions chemically stable for years in 2-5% HNOs / LDPE container.

Al Containing Samples (Preparation and Solution) - Metal (Best dissolved in HCI / HNO₂) α- Al₂O₂ (Na₂CO₂ fusion in Pt^e); γ- Al₂O₂ (Soluble in acids such as HCI); Ores (Carbonate fusion in Pt^e followed by HCI dissolution). Organic Matrices (sulfuric/peroxide digestion or nitric / sulfuric / perchloric acid decomposition, or dry ash and dissolution in dilute HCI. HOD ATO DI madiat (avial minute

HKUIIIC 3		1180.001 (ICL-OES D'I	ເສຍເຊ	1961105	<u>1 autra / a / a / a / a / a / a / a / a / a /</u>		
<b>Techniqu</b>	e/Line	Estimated D.L.	Order	Type	Interferences (underlined indicates s	severe at	efforcs.)
ICP-OES:	394.401 nm	0.05 / 0.006 µg/mL	1	atom	U, Ce	1	
ICP-OES:	396.152 nm	0.03 / 0.006 µg/mL	1	atom	Mo, Zr, Ce		
ICP-OES	167.078 nm	0.1 / 0.009 µg/mL	1	ion	Fe		
ICP-MS	27 amu	30 ppt	n/a	Μ'	'²C'ªN , '²C'"N , 'H'²C'"N , ''B'®O , **Cr²'	, ⁰Fe²'	

- 8.0 HAZARDOUS INFORMATION - Please refer to the enclosed Material Saftey Data sheet for information regarding this CRM.
- 9.0 HOMOGENEITY - This solution was mixed according to procedure IV-MPM-004 and is guaranteed to be homogeneous.

#### 10.0 **QUALITY STANDARD DOCUMENTATION**

10.1 ISO 9001:2000 Quality Management System Registration - QMI Certificate Number 010105 **Recognized by:** Registrar Accreditation Board (ANSI-RAB) Standards Council of Canada (SCC) **Dutch Council for Accreditation (RVA)** Entidad Mexicana de Acreditacion, a.c.(EMA)



Members of IQ Net International Certification Network: Argentina (IRAM), Australia (QAS), Austria (ÖQS), Belgium (Avinter), Brazil (FCAV), Canada (QMI), Hong Kong (HKQAA), Columbia (ICONTEC), Czech Republic (CQS), Denmark (DS), Finland (SFS), France (AFAQ), Germany (DQS), Greece (ELOT), Hungary (MSZT), Ireland (NSAI), Israel (SII), Italy (CISQ), Japan (JQA), Korea (KSA-QA), Netherlands (KEMA), Norway (NCS),

Poland(PCBC), Portugal (APCER), Singapore (PSB), Slovenia (SIQ), Spain (AENOR), Switzerland (SQS) 10.2 ISO/IEC 17025 - 1999 "General Requirements for the Competence of Testing and Calibration" - Chemical Testing - Accredited A2LA Certificate Number 883.01



10.3 ISO/IEC Guide 34 - 2000 "General Requirements for the Competence of Reference Material Producers" - Reference Materials Production - Accredited A2LA Certificate Number 883.02 **A2LA Mutual Recognition Agreement Partners:** 

Australia (NATA), Austria (BmwA), Belgium (BELTEST) (BKO-OBE), Canada (SCC), Chinese Taipei (CNLA), Czech Republic (NAO), Denmark (DANAK), Finland (FINAS), France (COFRAC), Germany (DAR), Hong Kong (HKAS, Ireland (NAB), Italy (SIT) (SINAL), Japan (JAB) (JNLA), Republic of Korea (KOLAS), The Netherlands (RvA), New Zealand (IANZ), Norway (NA), Portugal (IPQ), Singapore (SAC-SINGLAS), Spain (ENAC), Sweden (SWEDAC), Switzerland (SAS), United Kingdom (UKAS) and United States (NVLAP) (ICBO ES)

10.4 10CFR50 Appendix B - Nuclear Regulatory Commission - Domestic Licensing of Production and Utilization Facilities

10.5 10CFR21 - Nuclear Regulatory Commission - Reporting Defects and Non-Compliance

10.6 MIL-STD-45662A (Obsolete/Observed)

INORGANIC LABS/RADCHEM LABS P. Of O DATE RECEIVED: 08/26/03 DATE EXPIRED: 09/01/2004 DATE OPENED: _____08/26/03___ INORG: 4220 PO: F52224



- 11.1 IV Shelf Life The period of time during which the concentration of the analyte(s) in a properly packaged, unopened, and unused standard stored under environmentally controlled and monitored conditions will remain within the specified uncertainty range. Shelf life is limited primarily by transpiration (loss of water from the solution) and infrequently, by chemical instability. Transpiration studies (P-SP01020) of chemically-stable solutions performed at Inorganic Ventures / IV Labs indicate a CRM shelf-life of four years for solutions packaged in 500-mL low density polyethylene bottles. When stored under special conditions that minimize transpiration and instability, the shelf life can be extended past this limit.
- 11.2 Expiration Date The date after which a CRM should not be used. Routine laboratory use of a CRM increases transpiration losses and the chance of contamination which affect the integrity of the CRM and limit its useful life. Inorganic Ventures / IV Labs concurs with state and federal regulatory agencies' recommendations that solution standards be assigned a one-year expiration date.

Certification Date: February 13, 2003

**Expiration Date:** 

**EXPIRES** 1\$2004-

## 12.0 NAMES AND SIGNATURES OF CERTIFYING OFFICERS

**Certificate Prepared By:** 

JoAnn Struthers, QA Administrative Assistant

**Certificate Approved By:** 

Katalin Le, QC Supervisor

**Certifying Officer:** 

Paul Gaines, Chemist, Senior Technical Director

han Strutter





2.0

DESCRIPTION OF CRM Custom-Grade 10000 µg/mL Calcium in 1.4% (abs) HNO3

Catalog Number: CGCA10-1 AND CGCA10-5 Lot Number: T-CA03010 **Starting Material:** CaO 99.9981 Starting Material Purity (%): Starting Material Lot No C27L01 Matrix: 1.4% (abs) HNO3

INORGANIC LABS/RADCHEM LABS Pg. 10f 3 DATE RECEIVED: 01/09/03 DATE EXPIRED: 03/01/2004 DATE OPENED: 01/10/03 INORG: 3900 FO: F52071

labs

#### 3.0 **CERTIFIED VALUES AND UNCERTAINTIES**

10,007 ± 22 µg/mL **Certified Concentration:** 

**Certified Density:** 

1.037 g/mL (reasured at 22° C)

The Certified Value is based upon the most precise method used to analyze this CRM. The following equations are used in the calculation of the certified value and the uncertainty:

Certified Value (s) =  $\sum x$ Uncertainty  $(\pm) = 2[(\underline{\lambda}_{S})]^{1/2}$ 

 $(\mathbf{x}) = \text{mean}$  $\mathbf{x}_{i} =$ individual results n = number of measurements  $\Sigma$ S = The summation of all significant estimated errors.

Most cormon are the errors from instrumental measurement. weighing, dilution to volume, and the fixed error reported on the NIST SRM certificate of analysis.)

The independent samples t-test was used to determine if there is agreement between the above assay methods at the 95% confidence interval. Both methods were compared and showed agreement within the stated uncertainties. This agreement is a confirmation of the accuracy of this CRM.

#### 4.0 TRACEABILITY TO NIST AND VALUES OBTAINED BY INDEPENDENT METHODS

"Property of the result of a measurement or the value of a standard whereby it can be related to stated references, usually national or international standards, through an unbroken chain of comparisons all having stated uncertainties." (ISO VIM, 2nd ed., 1993, definition 6.10)

This IV product is Traceable to NIST via direct comparison to NIST SRMs. The uncertainties for each certified value are reported, taking into account the SRM uncertainty error and the measurement, weighing and volume dilution errors.

4.1	Assay Method #1	<b>10,034 ± 25 μg/mL</b> ICP Assay NIST SRM 3109a Lot Number: 000622
	Assay Method #2	10,007 ± 22 μg/mL
		EDTA NIST SRM 928 Lot Number: 880710

- 4.2 BALANCE CALIBRATION All balances are checked daily using in-house procedure number 6-IMM-001. The weights used for testing are annually compared to Gerhart Scale Corporation's master weights and are traceable to the National Institute of Standards and Technology (NIST). The NIST Traceability numbers are 692476 Class 1 and 692476A Class 2. The NIST test number is 822/260017-98. All analytical balances are calibrated every 4 months by Gerhart Scale Corp. of South Amboy. The balances are calibrated with a class 1 and/or class 2 analytical weight set. These weights are tested annually by a NIST / NVLAP accredited calibration lab. The NIST test number is 822/260017-98.
- 4.3 THERMOMETER CALIBRATION The thermometers used in the determination of the final densities are calibrated vs standard thermometer No. 903-2680 which was certified in accordance with the procedures outlined by ASTM E77-87 and NIST Monograph 150 using NIST Test Nos. and Std Nos.: 769543, 217368/769543, 217368/P14452, 176240/P14452, 176240. The in-house procedure No. is 2-QC-001. Thermometers which are not calibrated vs standard thermometer No. 903-2680 are traceable to NIST Identification Nos. 92564, 119016, 471047 and NIST test report Nos. 811/258522, 811/2557078, and 236090.
- 4.4 GLASSWARE CALIBRATION In-house procedure 3-QC-002 is used to calibrate all Class A Glassware used in the manufacture and quality control of Custom Grade Standards.
- 5.0 TRACE METALLIC IMPURITIES (TMI) DETERMINED BY ICP/MS AND ICP-OES IN µg/mL. Custom-Grade solutions are tested for trace metallic impurities by Axial ICP-OES and ICP-MS. The result from the most sensitive method for each element, is reported below. Solutions tested by ICP-MS were analyzed in an ULPA-Filtered Clean Room. An ULPA-Filter is 99.9985% efficient for the removal of particles down to 0.3 µm.

<u>O</u> AI 0.00064	<u>M</u> Dy < 0.02560	<u>O</u> Li < 0.00002	<u>M</u> Pr < 0.00128	<u>M</u> Te < 0.12798
<u>M</u> Sb < 0.00213	<u>M</u> Er < 0.02133	<u>M</u> Lu < 0.00171	<u>M</u> Re < 0.00427	<u>M</u> Tb < 0.00128
<u>M</u> As < 0.04266	<u>M</u> Eu < 0.01280	<u>O</u> Mg 0.07143	<u>M</u> Rh < 0.00427	<u>M</u> TI < 0.00427
<u>O</u> Ba 0.00071	<u>M</u> Gd < 0.00427	<u>O</u> Mn 0.00041	<u>M</u> Rb < 0.00427	<u>M</u> Th < 0.00427
<u>Q</u> Be < 0.00009	<u>M</u> Ga < 0.00427	<u>O</u> Hg < 0.01100	<u>M</u> Ru < 0.00853	<u>M</u> Tm < 0.00171
<u>M</u> Bi < 0.00171	<u>M</u> Ge < 0.02560	<u>M</u> Mo < 0.00853	<u>M</u> Sm < 0.00427	<u>M</u> Sn < 0.02133
<u>O</u> B < 0.00054	<u>M</u> Au < 0.01280	<u>M</u> Nd < 0.00853	<u>O</u> Sc < 0.00002	<u>M</u> Ti < 0.21329
<u>Q</u> Cd < 0.00450	<u>M</u> Hf < 0.00853	<u>Q</u> Ni < 0.00230	<u>O</u> Se < 0.00620	<u>M</u> W < 0.04266
<u>S</u> Ca	M Ho < 0.00213	<u>M</u> Nb < 0.00213	<u>O</u> Si 0.00214	<u>M</u> U < 0.00853
<u>M</u> Ce < 0.02133	<u>Q</u> In < 0.00200	<u>n</u> Os	Q Ag < 0.04000	<u>O</u> V < 0.00090
<u>M</u> Cs < 0.00128	<u>M</u> Ir < 0.02133	<u>M</u> Pd < 0.02133	<u>O</u> Na 0.00571	<u>M</u> Yb < 0.00427
<u>O</u> Cr 0.00238	<u>O</u> Fe < 0.00110	<u>O</u> P < 0.00480	<u>O</u> Sr 0.08095	<u>M</u> Y < 0.17064
<u>O</u> Co < 0.00120	<u>M</u> La < 0.00213	<u>M</u> Pt < 0.00853	<u>O</u> S 0.04048	<u>Q</u> Zn 0.07381
<u>O</u> Cu 0.00405	<u>M</u> Pb < 0.01280	<u>0</u> K < 0.00170	<u>M</u> Ta < 0.02986	<u>M</u> Zr < 0.02133
M - Checked by ICP-MS	O - Checked by ICP-OES	i - Spectral Interference	n - Not Checked For	s - Solution Standard Element

### 6.0 INTENDED USE

For the calibration of analytical instruments including but not limited to the following:

ICP-MS, ICP-OES, FAAS, GFAA, XRF, and DCP

For the validation of analytical methods

For the preparation of "working reference samples"

For interference studies and the determination of correction coefficients

For detection limit and linearity studies

For additional intended uses, contact IV Technical Staff

### 7.0 INSTRUCTIONS FOR THE CORRECT USE OF THIS REFERENCE MATERIAL

Storage & Handling - Keep tightly sealed when not in use. Store and use at 20 ± 4°C. Do not pipet from container. Do not return portions removed for pipetting to container.

Atomic Weight; Valence; Coordination Number; Chemical Form in Solution - 40.078, +2; & Ca(H,O),*

Chemical Compatibility - Soluble in HCI and HNO, . Avoid H,SO., HF, H,PO. and neutral to basic media. Stable with most metals and inorganic anions forming insoluble silicate, carbonate, hydroxide, oxide, fluoride, sulfate, oxalate, chromate, arsenate and tungstate in neutral aqueous media.

Stability - 2-100 ppb levels stable for months in 1% HNO, / LDPE container. 1-10,000 ppm solutions chemically stable for years in 1-10% HNO, / LDPE container.

Ca Containing Samples (Preparation and Solution) - Metal (best dissolved in diluted HNO,) Ores (Carbonate fusion in Pt⁴ followed by HCI dissolution); Organic Matrices (dry ash and dissolution in dilute HCI. Do not heat when dissolving to avoid precipitation of SiO₂). The oxide, hydroxide, carbonate, phosphate, and fluoride of calcium are soluble in % levels of HCI or HNO. The sulfates (gypsum, arhydrite, etc.), certain silicates and complex compounds require fusion with Na,CO, followed by HCI / water dissolution. Contamination is a very real problem when analyzing for trace levels.

Atomic Spectroscopic Information (ICP-OES D.L.s are given as radial/axial view):

Technique	Line	Estimated D.L.	Order	Type	Interferences (underlined indicates severe at-	concs.)
ICP-OES	393.366 nm	0.0002/0.00004 µg/mL	1	ion	U, Ce	
ICP-OES	396.847 nm	0.0005/0.00006ug/mL	1	ion	Th	
ICP-OES	422.673 nm	0.01 / 0.001 µa/mL	1	atom	Ge	
ICP-MS	44 amu	1200 ppt	n/a	М'	"O, "C, "Si"O, "Sr"	• •

- 8.0 HAZARDOUS INFORMATION Please refer to the enclosed Material Saftey Data sheet for information regarding this CRM.
- 9.0 HOMOGENEITY This solution was mixed according to procedure IV-MPM-004 and is guaranteed to be homogeneous.

#### **10.0 QUALITY STANDARD DOCUMENTATION**

10.1 ISO 9001:2000 Quality Management System Registration - QMI Certificate Number 010105 Recognized by: Registrar Accreditation Board (ANSI-RAB)

Standards Council of Canada (SCC)

Dutch Council for Accreditation (RVA)

Entidad Mexicana de Acreditacion, a.c.(EMA)

Members of IQ Net International Certification Network:

Argentina (IRAM), Australia (QAS), Austria (ÖQS), Belgium (Avinter), Brazil (FCAV), Canada (QMI), Hong Kong (HKQAA), Columbia (ICONTEC), Czech Republic (CQS), Denmark (DS), Finland (SFS), France (AFAQ), Germany (DQS), Greece (ELOT), Hungary (MSZT), Ireland (NSAI), Israel (SII), Italy (CISQ), Japan (JQA), Korea (KSA-QA), Netherlands (KEMA), Norway (NCS),

Poland(PCBC), Portugal (APCER), Singapore (PSB), Slovenia (SIQ), Spain (AENOR), Switzerland (SQS) 10.2 ISO/IEC 17025 - 1999 "General Requirements for the Competence of Testing and Calibration" - Chemical Testing - Accredited A2LA Certificate Number 883.01



10.3 ISO/IEC Guide 34 - 2000 "General Requirements for the Competence of Reference Material Producers"
 Reference Materials Production - Accredited A2LA Certificate Number 883.02
 A2LA Mutual Recognition Agreement Partners:

Australia (NATA), Austria (BmwA), Belgium (BELTEST) (BKO-OBE), Canada (SCC), Chinese Taipei (CNLA), Czech Republic (NAO), Denmark (DANAK), Finland (FINAS), France (COFRAC), Germany (DAR), Hong Kong (HKAS, Ireland (NAB), Italy (SIT) (SINAL), Japan (JAB) (JNLA), Republic of Korea (KOLAS), The Netherlands (RvA), New Zealand (IANZ), Norway (NA), Portugal (IPQ), Singapore (SAC-SINGLAS), Spain (ENAC), Sweden (SWEDAC), Switzerland (SAS), United Kingdom (UKAS) and United States (NVLAP) (ICBO ES)

- 10.4 10CFR50 Appendix B Nuclear Regulatory Commission - Domestic Licensing of Production and Utilization Facilities
- 10.5 10CFR21 Nuclear Regulatory Commission Reporting Defects and Non-Compliance

10.6 MIL-STD-45662A (Obsolete/Observed)

ŝ

INORGANIC LABS/RADCHEM LABS P3. 2. 4 DATE RECEIVED: 01/09/03 DATE EXPIRED: 03/01/2004 DATE OPENED: 01/10/03 INORG: 3900 PD: E52071



- 11.1 IV Shelf Life The period of time during which the concentration of the analyte(s) in a property packaged, unopened, and unused standard stored under environmentally controlled and monitored conditions will remain within the specified uncertainty range. Shelf life is limited primarily by transpiration (loss of water from the solution) and infrequently, by chemical instability. Transpiration studies (P-SP01020) of chemically-stable solutions performed at Inorganic Ventures / IV Labs indicate a CRM shelf-life of four years for solutions packaged in 500-mL low density polyethylene bottles. When stored under special conditions that minimize transpiration and instability, the shelf life can be extended past this limit.
- 11.2 Expiration Date The date after which a CRM should not be used. Routine laboratory use of a CRM increases transpiration losses and the chance of contamination which affect the integrity of the CRM and limit its useful life. Inorganic Ventures / IV Labs concurs with state and federal regulatory agencies' recommendations that solution standards be assigned a one-year expiration date.

Certification Date: August 26, 2002

Expiration Date:



## 12.0 NAMES AND SIGNATURES OF CERTIFYING OFFICERS

j.

Certificate Prepared By:

Debbie Newman, QA Administrator

Paul Gaines, Chemist, Senior Technical Director

**Certificate Approved By:** 

Katalin Le, QC Supervisor

**Certifying Officer:** 

Keblie Neuman Knonein an Pauk Ani

## inorganic ventures / iv labs

195 lehigh avenue, suite 4, lakewood, nj 08701 usa phone: 800-669-6799 • 732-901-1900 • fax: 732-901-1903 e-mail: ivsales@ivstandards.com • website: www.ivstandards.com

# certificate of analysis

1.0 Inorganic Ventures / IV Labs is an ISO Guide 34-2000 Certified Reference Material (CRM) Manufacturer: Certificate #883-02. The certificate is designed and the certified value(s) and uncertainty(ies) are determined in accordance with ISO Guide 31-2000 (Reference Materials - Contents of certificates and label(s), ISO Guide 34-2000 "Quality System Guidelines for the Production of Reference Materials," and ISO Guide 35-1989 "Certification of Reference Materials - General and Statisical Principles."

2.0

.0

DESCRIPTION OF CRM Custom-Grade 10000 µg/mL Iron in 3.5% (abs) HNO3

CGFE10-1 and CGFE10-5

3.5% (abs) HNO3

**T-FE03028** 

Fe metal 99.9992

23024

Catalog Number: Lot Number: Starting Material: Starting Material Purity (%): Starting Material Lot No Matrix:

I	NÓRG	ANIC L	ABS/RA	DCHEM	LABS	Pg. 1 of	Э
0	ATE	RECEIV	ED:	2/28	103		
0	ATE	EXPIRE)	D:	3/01/	2004		
)	ATE	OPENED		3/28	103		
ľ	NORG	:3960	3	PO: E	53064	t	

## CERTIFIED VALUES AND UNCERTAINTIES

Certified Concentration: 9920 ± 22 µg/mL

**Certified Density:** 

1.037 g/mL (measured at 22° C)

The Certified Value is based upon the most precise method used to analyze this CRM. The following equations are used in the calculation of the certified value and the uncertainty:

Certified Value  $(\bar{x}) = \sum x_i$ 

Uncertainty (±) =  $2[(\sum_{s})^{2}]^{1/2}$ 

(x) = mean
 x_i = individual results
 n = number of measurements
 ΣS = The summation of all significant size

 $\Sigma S$  = The summation of all significant estimated errors.

Most common are the errors from instrumental measurement,

weighing, dilution to volume, and the fixed error reported on the NIST SRM certificate of analysis.)

The independent samples t-test was used to determine if there is agreement between the above assay methods at the 95% confidence interval. Both methods were compared and showed agreement within the stated uncertainties. This agreement is a confirmation of the accuracy of this CRM.

## 4.0 TRACEABILITY TO NIST AND VALUES OBTAINED BY INDEPENDENT METHODS

• "Property of the result of a measurement or the value of a standard whereby it can be related to stated references, usually national or international standards, through an unbroken chain of comparisons all having stated uncertainties." (ISO VIM, 2nd ed., 1993, definition 6.10)

• This IV product is Traceable to NIST via direct comparison to NIST SRMs. The uncertainties for each certified value are reported, taking into account the SRM uncertainty error and the measurement, weighing and volume dilution errors.

4.1 Assay Method #1

9920 ± 22 μg/mL 🖅 🗇

ICP Assay NIST SRM 3126a Lot Number: 000606

Assay Method #2

**9962 ± 41 μg/mL** EDTA NIST SRM 928 Lot Number: 880710

- 4.2 BALANCE CALIBRATION All balances are checked daily using in-house procedure number 6-IMM-001. The weights used for testing are annually compared to Gerhart Scale Corporation's master weights and are traceable to the National Institute of Standards and Technology (NIST). The NIST Traceability numbers are 692476 Class 1 and 692476A Class 2. The NIST test number is 822/260017-98. All analytical balances are calibrated every 4 months by Gerhart Scale Corp. of South Amboy. The balances are calibrated with a class 1 and/or class 2 analytical weight set. These weights are tested annually by a NIST / NVLAP accredited calibration lab. The NIST test number is 822/260017-98.
- 4.3 THERMOMETER CALIBRATION The thermometers used in the determination of the final densities are calibrated vs standard thermometer No. 903-2680 which was certified in accordance with the procedures outlined by ASTM E77-87 and NIST Monograph 150 using NIST Test Nos. and Std Nos.: 769543, 217368/769543, 217368/P14452, 176240/P14452, 176240. The in-house procedure No. is 2-QC-001. Thermometers which are not calibrated vs standard thermometer No. 903-2680 are traceable to NIST Identification Nos. 92564, 119016, 471047 and NIST test report Nos. 811/258522, 811/2557078, and 236090.
- 4.4 GLASSWARE CALIBRATION In-house procedure 3-QC-002 is used to calibrate all Class A Glassware used in the manufacture and quality control of Custom Grade Standards.

## 5.0 TRACE METALLIC IMPURITIES (TMI) DETERMINED BY ICP/MS AND ICP-OES IN µg/mL

Custom-Grade solutions are tested for trace metallic impurities by Axial ICP-OES and ICP-MS. The result from the most sensitive method for each element, is reported below. Solutions tested by ICP-MS were analyzed in an ULPA-Filtered Clean Room. An ULPA-Filter is 99.9985% efficient for the removal of particles down to 0.3 µm.

							·												
<u>0</u>	Al	<	0.00270	M	Dy	<	0.02421	<u>0</u>	Li	<	0.00003	M	Pr	<	0.00121	M	Те	<	0.12103
<u>M</u>	Sb	<	0.00202	M	Er	<	0.02017	<u>M</u>	Lu	<	0.00161	M	Re	<	0.00403	M	Tb	<	0.00121
M	As	<	0.04034	M	Eu,	<	0.01210	<u>o</u>	Mg	<	0.00006	M	Rh	<	0.00403	M	TI	<	0.00403
M	Ва	<	0.04034	M	Gd	<	0.00403	<u>0</u>	Mn	<	0.05000	<u>M</u>	Rb	<	0.00403	M	Th	<	0.00403
<u>0</u>	Be	<	0.00005	M	Ga		0.00394	<u>0</u>	Hg	<	0.01100	M	Ru	<	0.00807	M	Tm	<	0.00161
M	Bi	<	0.00161	i	Ge			M	Мо	<	0.00807	М	Sm	<	0.00403	M	Sn		0.04920
<u>0</u>	в	<	0.00090	M	Au	<	0.01210	М	Nd	<	0.00807	<u>M</u>	Sc	<	0.04034	M	Ti	<	0.20172
M	Cd	<	0.01210	M	Hf	<	0.00807	<u>0</u>	Ni	<	0.00230	M	Se	<	0.03228	M	W	<	0.04034
<u>0</u>	Ca		0.00707	M	Ho	<	0.00202	M	Nb	<	0.00202	<u>0</u>	Si		0.00781	M	U	<	0.00807
M	Се	<	0.02017	<u>M</u> -	In	<	0.04034	<u>n</u>	Os			M	Ag	<	0.00807	M	v	<	0.00807
M	Cs	<	0.00121	M	Ir	<	0.02017	M	Pd	<	0.02017	<u>0</u>	Na		0.00756	M	Yb	<	0.00403
M	Cr		0.00541	<u>s</u>	Fe		н. -	i	Р			М	Sr	<	0.00202	M	Y	<	0.16138
<u>0</u>	Co	<	0.00110	<u>M</u>	La	<	0.00202	М	Pt	<	0.00807	<u>0</u>	S	<	0.07200	M	Zn		0.03739
M	Cu	<	0.02421	M	Pb	<	0.01210	<u>0</u>	к	<	0.00170	M	Та	<	0.02824	<u>M</u>	Zr	<	0.02017
/ - C	heck	ed	by ICP-MS	0-0	Chec	ked	by ICP-OES	i - S	pectr	al I	nterference	n - N	lot C	hec	ked For	s - S	Soluti	on (	Standard Element

#### 6.0 INTENDED USE

For the calibration of analytical instruments including but not limited to the following:

ICP-MS, ICP-OES, FAAS, GFAA, XRF, and DCP

For the validation of analytical methods

For the preparation of "working reference samples"

For interference studies and the determination of correction coefficients

For detection limit and linearity studies

For additional intended uses, contact IV Technical Staff

### 7.0 INSTRUCTIONS FOR THE CORRECT USE OF THIS REFERENCE MATERIAL

Storage & Handling - Keep tightly sealed when not in use. Store and use at 20 ± 4°C. Do not pipet from container. Do not return portions removed for pipetting to container.

Atomic Weight; Valence; Coordination Number; Chemical Form in Solution - 55.847; +3; 6; Fe(H₂O)₆³⁺

**Chemical Compatibility** - Stable in HCl, HNO₃, H₂SO₄, HF and H₃PO₄. Avoid basic media. Stable with most metals and inorganic anions in acidic media.

Stability - 2-100 ppb levels stable for months in 1% HNO₃ / LDPE container. 1-10,000 ppm solutions chemically stable for years in 1-5% HNO₃ / LDPE container.

Fe Containing Samples (Preparation and Solution) - Metal (Soluble in HCI); Oxides (If the oxide has been at a high temperature then Na₂CO₃ fusion in Pt^o followed by HCI dissolution otherwise dissolve in dilute HCI); Ores (See Oxides above using only the fusion approach).

Atomic Spectroscopic Information (ICP-OES D.L.s are given as radial/axial view):

	-
10P-0E5 238.204 nm 0.005 / 0.001 µg/mL 1 ION KU, CO	
ICP-OES 239.562 nm 0.005 / 0.001 µg/mL 1 ion Co, W, Cr	
ICP-OES 259.940 nm 0.006 / 0.001 µg/mL 1 ion Hf, Nb	
ICP-MS 56 amu 970 ppt n/a Mt 4ºAr1 ⁶ N1H, 4ºAr1 ⁶ O, ³⁶ Ar1 ⁷ O1H, ³⁸ Ar1 ⁸ O, ³⁷ Cl1 ⁶ O1H, ⁴	°Ca ¹⁶ C

- 8.0 HAZARDOUS INFORMATION Please refer to the enclosed Material Saftey Data sheet for information regarding this CRM.
- 9.0 HOMOGENEITY This solution was mixed according to procedure IV-MPM-004 and is guaranteed to be homogeneous.

#### **10.0 QUALITY STANDARD DOCUMENTATION**

- 10.1 ISO 9001:2000 Quality Management System Registration QMI Certificate Number 010105 Recognized by: Registrar Accreditation Board (ANSI-RAB)
  - Standards Council of Canada (SCC)

Dutch Council for Accreditation (RVA)

Entidad Mexicana de Acreditacion, a.c.(EMA)

Members of IQ Net International Certification Network:

Argentina (IRAM), Australia (QAS), Austria (ÖQS), Belgium (Avinter), Brazil (FCAV), Canada (QMI), Hong Kong (HKQAA), Columbia (ICONTEC), Czech Republic (CQS), Denmark (DS), Finland (SFS), France (AFAQ), Germany (DQS), Greece (ELOT), Hungary (MSZT), Ireland (NSAI), Israel (SII), Italy (CISQ), Japan (JQA), Korea (KSA-QA), Netherlands (KEMA), Norway (NCS), Poland (PCBC), Portugal (APCER), Singapore (PSB), Slovenia (SIQ), Spain (AENOR), Switzerland (SQS)

10.2 ISO/IEC 17025 - 1999 "General Requirements for the Competence of Testing and Calibration" - Chemical Testing - Accredited A2LA Certificate Number 883.01



10.3 ISO/IEC Guide 34 - 2000 "General Requirements for the Competence of Reference Material Producers"
 Reference Materials Production - Accredited A2LA Certificate Number 883.02
 A2LA Mutual Recognition Agreement Partners:

Australia (NATA), Austria (BmwA), Belgium (BELTEST) (BKO-OBE), Canada (SCC), Chinese Taipei (CNLA), Czech Republic (NAO), Denmark (DANAK), Finland (FINAS), France (COFRAC), Germany (DAR), Hong Kong (HKAS, Ireland (NAB), Italy (SIT) (SINAL), Japan (JAB) (JNLA), Republic of Korea (KOLAS), The Netherlands (RvA), New Zealand (IANZ), Norway (NA), Portugal (IPQ), Singapore (SAC-SINGLAS), Spain (ENAC), Sweden (SWEDAC), Switzerland (SAS), United Kingdom (UKAS) and United States (NVLAP) (ICBO ES)

- 10.4 10CFR50 Appendix B Nuclear Regulatory Commission - Domestic Licensing of Production and Utilization Facilities
- 10.5 10CFR21 Nuclear Regulatory Commission Reporting Defects and Non-Compliance
- 10.6 MIL-STD-45662A (Obsolete/Observed)

INORGANI	C LABS/R	ADCHEM	LABS	Pg. arfa
DATE REC	EIVED:	2/28/	03	
DATE EXF	IRED:	3/01/	2004	
DATE OPE	ENED:		103	
INORG:	3963	_PO:_F	5 200	<u>4</u>

## 11.0 DATE OF CERTIFICATION AND PERIOD OF VALIDITY



- 11.1 IV Shelf Life The period of time during which the concentration of the analyte(s) in a properly packaged, unopened, and unused standard stored under environmentally controlled and monitored conditions will remain within the specified uncertainty range. Shelf life is limited primarily by transpiration (loss of water from the solution) and infrequently, by chemical instability. Transpiration studies (P-SP01020) of chemically-stable solutions performed at Inorganic Ventures / IV Labs indicate a CRM shelf-life of four years for solutions packaged in 500-mL low density polyethylene bottles. When stored under special conditions that minimize transpiration and instability, the shelf life can be extended past this limit.
- 11.2 Expiration Date The date after which a CRM should not be used. Routine laboratory use of a CRM increases transpiration losses and the chance of contamination which affect the integrity of the CRM and limit its useful life. Inorganic Ventures / IV Labs concurs with state and federal regulatory agencies' recommendations that solution standards be assigned a one-year expiration date.

Certification Date: October 11, 2002

010151

Expiration Date:

EXPIRES

## 12.0 NAMES AND SIGNATURES OF CERTIFYING OFFICERS

Certificate Prepared By:

Debbie Newman, QA Administrator

**Certificate Approved By:** 

Katalin Le, QC Supervisor

Certifying Officer:

Paul Gaines, Chemist, Senior Technical Director

fiberi Menna

# Certificate of Analysis

M-GRADE SOLUTION

# 10,000 $\mu$ g/mL Potassium in 1.4% HNO₃ (abs) 010152

Catalog Number: CGK10-1and CGK10-5

Lot Number: T-K02102

Starting Material: Starting Material Purity: Starting Material Lot No: Potassium Nitrate 99.996% K18J19

INORGANIC LABS	RADCHEM LABS
DATE RECEIVED:	10/22/02
DATE EXPIRED:	11/01/2003
DATE OPENED:	10/23/03
INORG: 3738	P0: <u>F52057</u>

## CERTIFIED CONCENTRATION: 9999 $\pm$ 7 $\mu$ g/mL

The Certified Value is based upon the most precise method used to analyze this CRM. The following equations are used in the calculation of the certified value and the uncertainty:

Certified Value ( $\bar{x}$ ) =  $\sum_{i} x_{i}$ 

Uncertainty (±) =  $2[(\sum_{s})^{2}]^{1/2}$ 

 $(\bar{x}) = mean$ x_i = individual results n = number of measurements

 $\Sigma S_i$  = The summation of all significant estimated errors.

Classical Wet Assay: 9999 ± 7 µg/mL Method: Gravimetric as the Sulfate vs NIST weights #822/254143-94.

## Instrument Analysis: 10,002 ± 27 µg/mL

Method: Inductively Coupled Plasma Spectroscopy (ICP) vs NIST SRM 3141a.

The independent samples t-test was used to determine if there is agreement between the above assay methods at the 95% confidence interval. Both methods were compared and showed agreement within the stated uncertainties. This agreement is a confirmation of the accuracy of this CRM.

## TRACE METALLIC IMPURITIES DETERMINED BY ICP-MS AND ICP-OES IN µg/mL:

Custom-Grade solutions tested for trace metallic impurities by ICP-MS were analyzed in an ULPA-Filtered Clean Room. An ULPA-Filter is 99.9985% efficient for the removal of particles down to 0.3  $\mu$ m.

					1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.	· · · · · · · · · · · · · · · · · · ·	62207 N 2017	Contraction of the second s			and the second sec					
<u>0</u>	AI	< 0.00090	<u>M</u>	Dy	< 0.0060	<u>0</u>	Lì	<0.000030	<u>M</u>	Pr	< 0.00030		M	Te	<0.030	
M	Sb	< 0.00050	M	Er	<0.0050	<u>M</u>	Lu	<0.00040	M	Re	<0.0010		M	Tb	< 0.00030	
M	As	<0.010	М	Eu	< 0.0030	<u>o</u>	Mg	0.00015	M	Rh	<0.0010	· .	M	TI	<0.0010	
M	Ba	< 0.010	M	Gd	<0.0010	<u>0</u>	Mn	<0.000030	.⊨ <u>M</u> .	Rb	0.50		M	Th	<0.0010	
<u>0</u>	Be	< 0.00020	<u>M</u>	Ga	<0.0010	<u>0</u>	Hg	<0.015	<u> </u>	ิRu	<0.0020		M	Tm	< 0.00040	
M	Bi	<0.00040	<u>0</u>	Ge	< 0.0015	<ul> <li><u>M</u></li> </ul>	Мо	<0.0020	<u>M</u> (	Sm	<0.0010		<u>M</u> .	Sn	<0.0050	
<u>0</u>	В	<0.00060	<u>o</u>	Au	< 0.0030	M	Nd	<0.0020	<u>0</u>	Sc	< 0.000020		<u>0</u>	Ti	<0.00070	
M	Cd	< 0.0030	M	Hf	<0.0020	<u>0</u>	Ni	< 0.0023	<u>0</u>	Se	< 0.05		M	W	<0.0010	
<u>0</u>	Ca	0.0016	<u>M</u>	Но	< 0.00050	M	Nb	< 0.00050	<u>0</u>	Si	0.0025		M	U	< 0.0020	
M	Ce	<0.0050	<u>M</u>	In j	<0.0010	<u>n</u>	Os		• <u>M</u>	Ag	<0.0020		<u>0</u>	, V	< 0.00090	
M	Cs	<0.00030	<u>M</u>	lr	< 0.0050	M	Pd	< 0.0050	<u>0</u>	Na	0.61		M	Yb	<0.0010	
M	Cr	< 0.0050	<u>o</u>	Fe	0.0024	<u>0</u>	Ρ	< 0.0025	M	Sr	< 0.00050		M	Y	<0.040	
M	Со	< 0.0030	<u>M</u>	La	< 0.00050	M	Pt	<0.0020	<u> </u>	S	0.021		<u>0</u>	Zn	0.0021	
M	Cu	<0.0060	M	Pb	< 0.0030	<u>s</u>	· K		M	Та	<0.0070		<u>M</u> .	Zr	<0.0050	
м -	chec	ked by ICP-MS	[.] 0 - c	heck	ed by ICP-OES	i-sı	oectra	l interference	n - no	t che	cked for	s - s	oluti	on st	andard eleme	nt

M - checked by ICP-MS

0 - checked by ICP-OES

i - spectral interference n - not checked for

### ANALYZED DENSITY OF SOLUTION (measured at 22°C): 1.023 g/mL QA:KL Rev.03270200

(over)



Inorganic Ventures, Inc.

195 Lehigh Avenue • Suite 4 • Lakewood, NJ 08701 Orders: 800-669-6799 • FAX (732) 901-1903 Technical Support: 800-569-6799

**Quality Assurance Manager** 



abs

## inorganic ventures 195 lehigh avenue, suite phone: 800, 660, 6700, 6,700, 6,700, 6,700, 6,700, 6,700, 6,700, 6,700, 6,700, 6,700, 6,700, 6,700, 6,700, 6,700, 6,700, 6,700, 6,700, 6,700, 6,700, 6,700, 6,700, 6,700, 6,700, 6,700, 6,700, 6,700, 6,700, 6,700, 6,700, 6,700, 6,700, 6,700, 6,700, 6,700, 6,700, 6,700, 6,700, 6,700, 6,700, 6,700, 6,700, 6,700, 6,700, 6,700, 6,700, 6,700, 6,700, 6,700, 6,700, 6,700, 6,700, 6,700, 6,700, 6,700, 6,700, 6,700, 6,700, 6,700, 6,700, 6,700, 6,700, 6,700, 6,700, 6,700, 6,700, 6,700, 6,700, 6,700, 6,700, 6,700, 6,700, 6,700, 6,700, 6,700, 6,700, 6,700, 6,700, 6,700, 6,700, 6,700, 6,700, 6,700, 6,700, 6,700, 6,700, 6,700, 6,700, 6,700, 6,700, 6,700, 6,700, 6,700, 6,700, 6,700, 6,700, 6,700, 6,700, 6,700, 6,700, 6,700, 6,700, 6,700, 6,700, 6,700, 6,700, 6,700, 6,700, 6,700, 6,700, 6,700, 6,700, 6,700, 6,700, 6,700, 6,700, 6,700, 6,700, 6,700, 6,700, 6,700, 6,700, 6,700, 6,700, 6,700, 6,700, 6,700, 6,700, 6,700, 6,700, 6,700, 6,700, 6,700, 6,700, 6,700, 6,700, 6,700, 6,700, 6,700, 6,700, 6,700, 6,700, 6,700, 6,700, 6,700, 6,700, 6,700, 6,700, 6,700, 6,700, 6,700, 6,700, 6,700, 6,700, 6,700, 6,700, 6,700, 6,700, 6,700, 6,700, 6,700, 6,700, 6,700, 6,700, 6,700, 6,700, 6,700, 6,700, 6,700, 6,700, 6,700, 6,700, 6,700, 6,700, 6,700, 6,700, 6,700, 6,700, 6,700, 6,700, 6,700, 6,700, 6,700, 6,700, 6,700, 6,700, 6,700, 6,700, 6,700, 6,700, 6,700, 6,700, 6,700, 6,700, 6,700, 6,700, 6,700, 6,700, 6,700, 6,700, 6,700, 6,700, 6,700, 6,700, 6,700, 6,700, 6,700, 6,700, 6,700, 6,700, 6,700, 6,700, 6,700, 6,700, 6,700, 6,700, 6,700, 6,700, 6,700, 6,700, 6,700, 6,700, 6,700, 6,700, 6,700, 6,700, 6,700, 6,700, 6,700, 6,700, 6,700, 6,700, 6,700, 6,700, 6,700, 6,700, 6,700, 6,700, 6,700, 6,700, 6,700, 6,700, 6,700, 6,700, 6,700, 6,700, 6,700, 6,700, 6,700, 6,700, 6,700, 6,700, 6,700, 6,700, 6,700, 6,700, 6,700, 6,700, 6,700, 6,700, 6,700, 6,700, 6,700, 6,700, 6,700, 6,700, 6,700, 6,700, 6,700, 6,700, 6,700, 6,700, 6,700, 6,700, 6,700, 6,700, 6,700, 6,700, 6,700, 6,700, 6,700, 6,700, 6,700, 6,700, 6,700

195 lehigh avenue, suite 4, lakewood, nj 08701 usa phone: 800-669-6799 • 732-901-1900 • fax: 732-901-1903 e-mail: ivsales@ivstandards.com • website: www.ivstandards.com

certificate of analysis

**1.0** Inorganic Ventures / IV Labs is an ISO Guide 34-2000 Certified Reference Material (CRM) Manufacturer: Certificate #883-02. The certificate is designed and the certified value(s) and uncertainty(ies) are determined in accordance with ISO Guide 31-2000 (Reference Materials - Contents of certificates and label(s), ISO Guide 34-2000 "Quality System Guidelines for the Production of Reference Materials," and ISO Guide 35-1989 "Certification of Reference Materials - General and Statisical Principles."

2.0

DESCRIPTION OF CRM Custom-Grade 10000 µg/mL Magnesium in 1.4% (abs) HNO3

Catalog Number:	CGMG10-1 and CGMG	10-5
Lot Number:	T-MG03006	
Starting Material:	Mg metal	
Starting Material Purity (%):	99.9968	INDRGANIC LABS/RADCHEM LABS Pg. 2 . 4
Starting Material Lot No	RML91191	DATE RECEIVED: 07/31/03
Matrix:	1.4% (abs) HNO3	DATE OPENED: 08/01/03
		INDRG: 4204 FD: F5239

## β.0 CERTIFIED VALUES AND UNCERTAINTIES

Certified Concentration: 9921 ± 20 µg/mL

**Certified Density:** 

1.050 g/mL (measured at 22° C)

The Certified Value is the instrument analysis value. The following equations are used in the calculation of the certified value and the uncertainty:

Certified Value (s) =  $\sum x_{1}$ 

Uncertainty (±) =  $2!(\sum_{s})^{2!4}$ 

(x) = mean  $x_i = individual results$  n = number of measurements  $\Sigma S = The summation of all significant estimated errors.$ (Most common are the errors from instrumental measurement, weighing, dilution to volume, and the fixed error reported on the NIST SRM certificate of analysis.)

## 4.0 TRACEABILITY TO NIST AND VALUES OBTAINED BY INDEPENDENT METHODS

"Property of the result of a measurement or the value of a standard whereby it can be related to stated references, usually national or international standards, through an unbroken chain of comparisons all having stated uncertainties." (ISO VIM, 2nd ed., 1993, definition 6.10)

This IV product is Traceable to NIST via direct comparison to NIST SRMs. The uncertainties for each certified value are reported, taking into account the SRM uncertainty error and the measurement, weighing and volume dilution errors.

4.1	Assay Method #1	9998 ± 20 μg/mL
		EDTA NIST SRM 928 Lot Number: 880710
	Assay Method #2	9921 ± 20 μg/mL
		ICP Assay NIST SRM 3131a Lot Number: 991107

- 4.2 BALANCE CALIBRATION All balances are checked daily using in-house procedure number 6-IMM-001. The weights used for testing are annually compared to Gerhart Scale Corporation's master weights and are traceable to the National Institute of Standards and Technology (NIST). The NIST Traceability numbers are 692476 Class 1 and 692476A Class 2. The NIST test number is 822/260017-98. All analytical balances are calibrated every 4 months by Gerhart Scale Corp. of South Amboy. The balances are calibrated with a class 1 and/or class 2 analytical weight set. These weights are tested annually by a NIST / NVLAP accredited calibration lab. The NIST test number is 822/260017-98.
- 4.3 THERMOMETER CALIBRATION The thermometers used in the determination of the final densities are calibrated vs standard thermometer No. 903-2680 which was certified in accordance with the procedures outlined by ASTM E77-87 and NIST Monograph 150 using NIST Test Nos. and Std Nos.: 769543, 217368/769543, 217368/P14452, 176240/P14452, 176240. The in-house procedure No. is 2-QC-001. Thermometers which are not calibrated vs standard thermometer No. 903-2680 are traceable to NIST Identification Nos. 92564, 119016, 471047 and NIST test report Nos. 811/258522, 811/2557078, and 236090.
- 4.4 GLASSWARE CALIBRATION In-house procedure 3-QC-002 is used to calibrate all Class A Glassware used in the manufacture and quality control of Custom Grade Standards.
- 5.0 TRACE METALLIC IMPURITIES (TMI) DETERMINED BY ICP/MS AND ICP-OES IN μg/mL Custom-Grade solutions are tested for trace metallic impurities by Axial ICP-OES and ICP-MS. The result from the most sensitive method for each element, is reported below. Solutions tested by ICP-MS were analyzed in an ULPA-Filtered Clean Room. An

ULPA-Filter is 99.9985% efficient for the removal of particles down to 0.3 µm.

<u>0</u>	Ái		0.02454	м	Dy	<	0.02455	Q	Li		0.00797	M	Pr	<	0.00123	М	Те	<	0.12275
М	Sb		0.00306	М	Er	<	0.02046	M	Lu	<	0.00164	M	Re	<	0.00409	M	Tb	<	0.00123
М	As	<	0.04092	M	Eu	<	0.01228	<u>s</u>	Mg			M	Rh	<	0.00409	M	TI	<	0.00409
М	Ba	<	0.04092	⊻	Gd	<	0.00409	M	Mn	<	0.01637	M	Rb	<	0.00409	M	Th	<	0.00409
<u>0</u>	Be	<	0.00017	м	Ga	<	0.00409	Q	Hg	<	0.00900	M	Ru	<	0.00818	M	Tm	<	0.00164
M	Bi	<	0.00164	M	Ge	<	0.02455	M	Мо	<	0.00818	M	Sm	<	0.00409	М	Sn	<	0.02046
<u>0</u>	В		0.00871	М	Au	<	0.01228	М	Nd	<	0.00818	M	Sc	<	0.04092	Q	Ti		0.10206
М	Cd	<	0.01228	M	Hf	<	0.00818	Q	Ni		0.01404	M	Se	<	0.03273	M	w	<	0.04092
<u>o</u>	Ca		0.01070	М	Ho	<	0.00205	М	Nb	<	0.00205	0	Si		0.03186	M	υ	<	0.00818
M	Ce	<	0.02046	М	In	<	0.04092	n	Os			M	Ag	<	0.00818	M	V	<	0.00818
М	Cs	<	0.00123	М	lr -	<	0.02046	M	Pd .	<	0.02046	<u>0</u>	Na		0.01817	M	Yb	<	0.00409
<u>0</u>	Cr		0.02315	<u>0</u>	Fe		0.02467	<u>o</u>	P	<	0.01600	M	Sr	<	0.00205	M	Y	<	0.16367
M	Co	<	0.01228	М	La	<	0.00205	M	Pt	<	0.00818	n	S			<u>0</u>	Zn		0.01892
<u>0</u>	Cu		0.00672	<u>0</u>	Pb		0.03236	<u>0</u>	κ	<	0.05000	M	Та	<	0.02864	M	Zr	<	0.02046
M - C	heck	ed	by ICP-MS	0 - 1	Chec	ked	by ICP-OES	i - S	pectr	al lı	nterference	n - 1	lot C	hec	ked For	s - 5	Soluti	on (	Standard Element

## 6.0 INTENDED USE

For the calibration of analytical instruments including but not limited to the following:

ICP-MS, ICP-OES, FAAS, GFAA, XRF, and DCP

For the validation of analytical methods

For the preparation of "working reference samples"

For interference studies and the determination of correction coefficients

For detection limit and linearity studies

For additional intended uses, contact IV Technical Staff

#### 7.0 INSTRUCTIONS FOR THE CORRECT USE OF THIS REFERENCE MATERIAL

Storage & Handling - Keep tightly sealed when not in use. Store and use at 20 ± 4°C. Do not pipet from container. Do not return portions removed for pipetting to container.

Atomic Weight; Valence; Coordination Number; Chemical Form in Solution - 24.305; +2; 6; Mg(H₂O),¹²

Chemical Compatibility - Soluble in HCl, HNO_s, and H₂SO. avoid HF, H₂PO. and neutral to basic media. Stable with most metals and inorganic anions forming insoluble silicates, carbonates, hydroxides, oxides, and tungstates in neutral and slightly acidic media.

Stability - 2-100 ppb levels stable for months in 1% HNO, / LDPE container. 1-10,000 ppm solutions chemically stable for years in 1-10% HNO, / LDPE container.

Mg Containing Samples (Preparation and Solution) - Metal (Best dissolved in diluted HNO, ); Oxide (Readily soluble in above compatible aqueous acidic solutions). Ores (Carbonate tusion in Pt^e followed by HCI dissolution); Organic Matrices (Sulfuric / peroxide digestion or nitric / sulfuric / perchloric acid decomposition, or dry ash and dissolution in dilute HCI). Atomic Spectroscopic Information (ICP-OES D.L.s are given as <u>radial/axial</u> view):

Type Interferences (underlined indicates severe at = concs.) Technique/Line Estimated D.L. <u>Order</u> 0.0002 / 0.00003 µg/mL 0.0003 / 0.00005 µg/mL **ICP-OES** 279.553 nm ion Th U, V ICP-OES 280.270 nm 1 ion U, Hf, Cr, Zr 'Li''O, '*Ti'2, **Ca'2 0.002 / 0.00003 µg/mL ICP-OES 285.213 nm 1 atom ICP-MS Μ' 24 amu 42 pot n/a

- 8.0 HAZARDOUS INFORMATION Please refer to the enclosed Material Saftey Data sheet for information regarding this CRM.
- 9.0 HOMOGENEITY This solution was mixed according to procedure IV-MPM-004 and is guaranteed to be homogeneous.

### **10.0 QUALITY STANDARD DOCUMENTATION**

10.1 ISO 9001:2000 Quality Management System Registration - QMI Certificate Number 010105 Recognized by:

Registrar Accreditation Board (ANSI-RAB) Standards Council of Canada (SCC) Dutch Council for Accreditation (RVA)

Entidad Mexicana de Acreditacion, a.c.(EMA)

Members of IQ Net International Certification Network:

Argentina (IRAM), Australia (QAS), Austria (ÖQS), Belgium (Avinter), Brazil (FCAV), Canada (QMI), Hong Kong (HKQAA), Columbia (ICONTEC), Czech Republic (CQS), Denmark (DS), Finland (SFS), France (AFAQ), Germany (DQS), Greece (ELOT), Hungary (MSZT), Ireland (NSAI), Israel (SII), Italy (CISQ), Japan (JQA), Korea (KSA-QA), Netherlands (KEMA), Norway (NCS), Poland(PCBC), Portugal (APCER), Singapore (PSB), Slovenia (SIQ), Spain (AENOR), Switzerland (SQS)

Poland(PCBC), Portugal (APCER), Singapore (PSB), Slovenia (SIQ), Spain (AENOR), Switzerland (SQS) 10.2 ISO/IEC 17025 - 1999 "General Requirements for the Competence of Testing and Calibration" - Chemical Testing - Accredited A2LA Certificate Number 883.01



10.3 ISO/IEC Guide 34 - 2000 "General Requirements for the Competence of Reference Material Producers" - Reference Materials Production - Accredited A2LA Certificate Number 883.02 A2LA Mutual Recognition Agreement Partners:

Australia (NATA), Austria (BmwA), Belgium (BELTEST) (BKO-OBE), Canada (SCC), Chinese Taipei (CNLA), Czech Republic (NAO), Denmark (DANAK), Finland (FINAS), France (COFRAC), Germany (DAR), Hong Kong (HKAS, Ireland (NAB), Italy (SIT) (SINAL), Japan (JAB) (JNLA), Republic of Korea (KOLAS), The Netherlands (RvA), New Zealand (IANZ), Norway (NA), Portugal (IPQ), Singapore (SAC-SINGLAS), Spain (ENAC), Sweden (SWEDAC), Switzerland (SAS), United Kingdom (UKAS) and United States (NVLAP) (ICBO ES)

- 10.4 10CFR50 Appendix B Nuclear Regulatory Commission - Domestic Licensing of Production and Utilization Facilities
- 10.5 10CFR21 Nuclear Regulatory Commission Reporting Defects and Non-Compliance

10.6 MIL-STD-45662A (Obsolete/Observed)

INORGANIC LABS/RADCHEM LABS Por a DATE RECEIVED: 07/31/03 DATE EXFIRED: 08/01/2004 DATE OPENED: 08/01/03 INORG: 4004 FD: E50391



#### 11.0 DATE OF CERTIFICATION AND PERIOD OF VALIDITY

010156



- 11.1 IV Shelf Life The period of time during which the concentration of the analyte(s) in a properly packaged, unopened, and unused standard stored under environmentally controlled and monitored conditions will remain within the specified uncertainty range. Shelf life is limited primarily by transpiration (loss of water from the solution) and infrequently, by chemical instability. Transpiration studies (P-SP01020) of chemically-stable solutions performed at Inorganic Ventures / IV Labs indicate a CRM shelf-life of four years for solutions packaged in 500-mL low density polyethylene bottles. When stored under special conditions that minimize transpiration and instability, the shelf life can be extended past this limit.
- 11.2 Expiration Date The date after which a CRM should not be used. Routine laboratory use of a CRM increases transpiration losses and the chance of contamination which affect the integrity of the CRM and limit its useful life. Inorganic Ventures / IV Labs concurs with state and federal regulatory agencies' recommendations that solution standards be assigned a one-year expiration date.

Certification Date: August 28, 2002

Expiration Date:

EXPIRES n 1 02 nn 4

#### 12.0 NAMES AND SIGNATURES OF CERTIFYING OFFICERS

Certificate Prepared By:

Debbie Newman, QA Administrator

**Certificate Approved By:** 

Katalin Le, QC Supervisor

**Certifying Officer:** 

Paul Gaines, Chemist, Senior Technical Director

fibli Newman xnonun an



#### inorganic ventures labs 195 lehigh avenue, suite 4, lakewood, nj 08701 usa phone: 800-669-6799 • 732-901-1900 • fax: 732-901-1903 e-mail: ivsales@ivstandards.com • website: www.ivstandards.com certificate of analysis Inorganic Ventures / IV Labs is an ISO Guide 34-2000 Certified Reference Material (CRM) Manufacturer: 1.0 Certificate #883-02. The certificate is designed and the certified value(s) and uncertainty(ies) are determined in accordance with ISO Guide 31-2000 (Reference Materials - Contents of certificates and label(s), ISO Guide 34-2000 "Quality System Guidelines for the Production of Reference Materials," and ISO Guide 35-1989 "Certification of Reference Materials - General and Statisical Principles." DESCRIPTION OF CRM Custom-Grade 10000 µg/mL Sodium in 1.4% (abs) HNO3 .0 2 Catalog Number: CGNA10-1, CGNA10-2, and CGNA10-5 Lot Number: T-NA03006 Starting Material: Na2CO3 INORGANIC LABS/RADCHEM LABS 31 of 2 Starting Material Purity (%): 99.999936 DATE RECEIVED: 07/31/03 DATE EXPIRED: 08/01/2004 Starting Material Lot No 42095 DATE OPENED: 08/01/03 Matrix: 1.4% (abs) HNO3 INDRG: 4005 PD: F52391 **CERTIFIED VALUES AND UNCERTAINTIES** 3l0 **Certified Concentration:** $10.005 \pm 7 \mu a/mL$ **Certified Density:** 1.032 g/mL (measured at 22° C) The Certified Value is based upon the most precise method used to analyze this CRM. The following equations are used in the calculation of the certified value and the uncertainty; Certified Value ( $\Box I = er x_1$ (🗀 = mean x₁ = individual results n = number of measurements Uncertainty $(\pm) = 2[(e_1 + s_1)]$ ES = The summation of all significant estimated errors. (n) (Most cormon are the errors from instrumental measurement, weighing, dilution to volume, and the fixed error reported on the NIST SRM certificate of analysis.) The independent samples t-test was used to determine if there is agreement between the above assay methods at the 95% confidence interval. Both methods were compared and showed agreement within the stated uncertainties. This agreement is a confirmation of the accuracy of this CRM. .0 TRACEABILITY TO NIST AND VALUES OBTAINED BY INDEPENDENT METHODS "Property of the result of a measurement or the value of a standard whereby it can be related to stated references, usually national or international standards, through an unbroken chain of comparisons all having stated uncertainties." (ISO VIM, 2nd ed., 1993, definition 6.10) This IV product is Traceable to NIST via direct comparison to NIST SRMs. The uncertainties for each certified value are reported, taking into account the SRM uncertainty error and the measurement, weighing and volume dilution errors. 4.1 Assay Method #1 10,067 ± 75 µg/mL ICP Assay NIST SRM 3152a Lot Number: 990907 Assay Method #2 $10,005 \pm 7 \,\mu g/mL$ Gravimetric NIST SRM Lot Number: See Sec. 4.2

010157

- 4.2 BALANCE CALIBRATION All balances are checked daily using in-house procedure number 6-IMM-001. The weights used for testing are annually compared to Gerhart Scale Corporation's master weights and are traceable to the National Institute of Standards and Technology (NIST). The NIST Traceability numbers are 692476 Class 1 and 692476A Class 2. The NIST test number is 822/260017-98. All analytical balances are calibrated every 4 months by Gerhart Scale Corp. of South Amboy. The balances are calibrated with a class 1 and/or class 2 analytical weight set. These weights are tested annually by a NIST / NVLAP accredited calibration lab. The NIST test number is 822/260017-98.
- 4.3 THERMOMETER CALIBRATION The thermometers used in the determination of the final densities are calibrated vs standard thermometer No. 903-2680 which was certified in accordance with the procedures outlined by ASTM E77-87 and NIST Monograph 150 using NIST Test Nos. and Std Nos.: 769543, 217368/769543, 217368/P14452, 176240/P14452, 176240. The in-house procedure No. is 2-QC-001. Thermometers which are not calibrated vs standard thermometer No. 903-2680 are traceable to NIST Identification Nos. 92564, 119016, 471047 and NIST test report Nos. 811/258522, 811/2557078, and 236090.
- 4.4 GLASSWARE CALIBRATION In-house procedure 3-QC-002 is used to calibrate all Class A Glassware used in the manufacture and quality control of Custom Grade Standards.

### 5.0 TRACE METALLIC IMPURITIES (TMI) DETERMINED BY ICP/MS AND ICP-OES IN µg/mL

Custom-Grade solutions are tested for trace metallic impurities by Axial ICP-OES and ICP-MS. The result from the most sensitive method for each element, is reported below. Solutions tested by ICP-MS were analyzed in an ULPA-Filtered Clean Room. An ULPA-Filter is 99.9985% efficient for the removal of particles down to 0.3 µm.

<u>0</u>	Al	<	0.00090	M	Dy	<	0.02499	<u>0</u>	Li	<	0.00003	М	Pr	<	0.00125	M	Те	<	0.12494
M	Sb	<	0.00208	M	Er	<	0.02082	M	Lu	<	0.00167	М	Re	<	0.00417	M	Tb	<	0.00125
M	As	<	0.04165	M	Eu	<	0.01249	<u>0</u>	Mg		0.00015	M	Rh	<	0.00417	M	ΤI	<	0.00417
М	Ba	<	0.04165	М	Gd	<	0.00417	<u>0</u>	Mn	<	0.00003	M	Rb	<	0.00417	M	Th	<	0.00417
<u>0</u>	Ве	<	0.00020	M	Ga	<	0.00417	<u>0</u>	Hg	<	0.01500	. <u>M</u>	Ru	<	0.00833	M	Tm	<	0.00167
M	Bi	<	0.00167	<u>0</u>	Ge	<	0.00150	M	Мо	<	0.00833	м	Sm	<	0.00417	M	Sn	<	0.02082
<u>0</u>	в	<	0.00060	<u>0</u>	Au	<	0.00300	M	Nd	<	0.00833	<u>0</u>	Sc	<	0.00002	<u>0</u>	Ti	<	0.00070
M	Cd	<	0.01249	M	Hf	<	0.00833	<u>o</u>	Ni	<	0.00230	<u>0</u>	Se	<	0.05000	M	W	<	0.04165
<u>0</u>	Ca		0.00160	M	Ho	<	0.00208	M	Nb	<	0.00208	<u>0</u>	Si	<	0.00340	M	U	<	0.00833
M	Ce	<	0.02082	M	In	<	0.04165	n	Os			M	Ag	<	0.00833	<u>0</u>	۷	<	0.00090
<u>M</u>	Cs		0.00104	М	Ir	<	0.02082	M	Pd	<	0.02082	<u>s</u>	Na			M	Yb	<	0.00417
<u>M</u>	Cr	<	0.02082	<u>0</u>	Fe	<	0.00110	<u>0</u>	Р	<	0.04000	M	Sr	<	0.00208	M	Y	<	0.16658
М	Co	<	0.01249	M	La	<	0.00208	M	Pt	<	0.00833	<u>o</u>	s	<	0.07200	<u>o</u>	Zn		0.00130
<u>0</u>	Cu	<	0.00140	М	Pb	<	0.01249	<u>0</u>	к		0.00873	M	Та	<	0.02915	M	Zr	<	0.02082
л - C	heck	ed	by ICP-MS	0-	Cher	ker	by ICP-OES	i - S	nect	all	nterference	n - 1	Jot C	her	ked For	s - 9	Solut	ion	Standard Element

### 6.0 INTENDED USE

For the calibration of analytical instruments including but not limited to the following: ICP-MS, ICP-OES, FAAS, GFAA, XRF, and DCP

For the validation of analytical methods

For the preparation of "working reference samples"

For interference studies and the determination of correction coefficients

For detection limit and linearity studies

For additional intended uses, contact IV Technical Staff

## 7.0 INSTRUCTIONS FOR THE CORRECT USE OF THIS REFERENCE MATERIAL

Storage & Handling - Keep tightly sealed when not in use. Store and use at 20 ± 4 ∞. Do not pipet from container. Do not return portions removed for pipetting to container.

Atomic Weight; Valence; Coordination Number; Chemical Form in Solution - 22.98977; +1; (6); Na'(aq) largely ionic in nature (Coordination Number in parentheses is assumed, not certain.)

**Chemical Compatibility** - Soluble in HCl, HNO₂, H₂SO₄ and HF aqueous matrices. Stable with all metals and inorganic anions. **Stability** - 2-100 ppb levels stable for months in 1% HNO₂ / LDPE container. 1-10,000 ppm solutions chemically stable for years in 1-5% HNO₂ / LDPE container.

Na Containing Samples (Preparation and Solution) - Metal (Dissolves very rapidly in water). Ores (Lithium carbonate fusion in graphite crucible followed by HCI dissolution - blank levels of Na in lithium carbonate critical), Organic Matrices (Sulfuric / peroxide digestion or nitric/sulfuric/perchloric acid decomposition).

чатис эректовсорю	; Intormation (ICP-QES U.I	L.s are given as <u>radial/axial</u> view);
Factoria and the second		

Technique	<u>/Line</u>	Estimated D.L.	Order	Type	Interferences (underlined indicates severe at afoncs.)
ICP-OES	589.595 nm	0.07/0.00009 µg/mL	1	atom	2 rd order radiation from R.E.s on some optical designs
ICP-OES	588.995 nm	0.03 / 0.006 µg/mL	1	atom	2 ^{ref} order radiation from R.E.s on some optical designs
ICP-OES	330.237 nm	2.0/0.09 µg/mL	1	atom	Pd, Zn
ICP-MS	23 amu	310 ppt	n/a	M'	*#Ti'z , *#Ca'z



- 8.0 HAZARDOUS INFORMATION Please refer to the enclosed Material Saftey Data sheet for information regarding this CRM.
- 9.0 HOMOGENEITY This solution was mixed according to procedure IV-MPM-004 and is guaranteed to be homogeneous.

## 10.0 QUALITY STANDARD DOCUMENTATION

10.1 ISO 9001:2000 Quality Management System Registration - QMI Certificate Number 010105 Recognized by:

Registrar Accreditation Board (ANSI-RAB) Standards Council of Canada (SCC) Dutch Council for Accreditation (RVA)

Entidad Mexicana de Acreditacion, a.c.(EMA)

Members of IQ Net International Certification Network:



Argentina (IRAM), Australia (QAS), Austria (ÖQS), Belgium (Avinter), Brazil (FCAV), Canada (QMI), Hong Kong (HKQAA), Columbia (ICONTEC), Czech Republic (CQS), Denmark (DS), Finland (SFS), France (AFAQ), Germany (DQS), Greece (ELOT), Hungary (MSZT), Ireland (NSAI), Israel (SII), Italy (CISQ), Japan (JQA), Korea (KSA-QA), Netherlands (KEMA), Norway (NCS), Delard (PCPC), Dertust (APCEP), Giaceana (PSP), Status (SIQ), Status (AFNOR), Suitardard (COS),

Poland(PCBC), Portugal (APCER), Singapore (PSB), Slovenia (SIQ), Spain (AENOR), Switzerland (SQS) 10.2 ISO/IEC 17025 - 1999 "General Requirements for the Competence of Testing and Calibration" - Chemical Testing - Accredited A2LA Certificate Number 883.01



Australia (NATA), Austria (BmwA), Beigium (BELTEST) (BKO-OBE), Canada (SCC), Chinese Taipei (CNLA), Czech Republic (NAO), Denmark (DANAK), Finland (FINAS), France (COFRAC), Germany (DAR), Hong Kong (HKAS, Ireland (NAB), Italy (SIT) (SINAL), Japan (JAB) (JNLA), Republic of Korea (KOLAS), The Netherlands (RvA), New Zealand (IANZ), Norway (NA), Portugal (IPQ), Singapore (SAC-SINGLAS), Spain (ENAC), Sweden (SWEDAC), Switzerland (SAS), United Kingdom (UKAS) and United States (NVLAP) (ICBO ES)

- 10.4 10CFR50 Appendix B Nuclear Regulatory Commission - Domestic Licensing of Production and Utilization Facilities
- 10.5 10CFR21 Nuclear Regulatory Commission Reporting Defects and Non-Compliance
- 10.6 MIL-STD-45662A (Obsolete/Observed)

## 11.0 DATE OF CERTIFICATION AND PERIOD OF VALIDITY



- 11.1 IV Shelf Life The period of time during which the concentration of the analyte(s) in a properly packaged, unopened, and unused standard stored under environmentally controlled and monitored conditions will remain within the specified uncertainty range. Shelf life is limited primarily by transpiration (loss of water from the solution) and infrequently, by chemical instability. Transpiration studies (P-SP01020) of chemically-stable solutions performed at Inorganic Ventures / IV Labs indicate a CRM shelf-life of four years for solutions packaged in 500-mL low density polyethylene bottles. When stored under special conditions that minimize transpiration and instability, the shelf life can be extended past this limit.
- 11.2 Expiration Date The date after which a CRM should not be used. Routine laboratory use of a CRM increases transpiration losses and the chance of contamination which affect the integrity of the CRM and limit its useful life. Inorganic Ventures / IV Labs concurs with state and federal regulatory agencies' recommendations that solution standards be assigned a one-year expiration date.

INORGANIC LABS/RADCHEM LABS B. 00f2 DATE RECEIVED: 07/31/03 DATE EXPIRED: 08/01/03 DATE OPENED: 08/01/03 INORG: 4005 PD: F50391

<b>Certification Date:</b>	January 24, 2003
Expiration Date:	<b>EXPIRES</b> 01\$2004

#### 12.0 NAMES AND SIGNATURES OF CERTIFYING OFFICERS

Certificate Prepared By:

Debbie Newman, LIMS Administrator

Certificate Approved By:

Katalin Le, QC Supervisor

**Certifying Officer:** 

Paul Gaines, Chemist, Senior Technical Director

Geblie Neuman Knonein an Pauk Laine





# Certificate of Analysis

## CUSTOM-GRADE SOLUTION

Lot Number: W-LI02066

1000  $\mu$ g/mL Lithium in 0.1% HNO₃ (abs)

Uncertainty (±) =  $2[(\sum_{j=1}^{2})^{2}]^{1/2}$ 

Catalog Number: CGLI1-1, CGLI1-2 and CGLI1-5

## INORGANIC LABS/RADCHEM LABS

		DATE RECEIVED:OG/20/03
Starting Material:	Li ₂ CO ₃	DATE EXPIRED: 07/01/2004
Starting Material Purity:	99.999%	DATE OPENED: 06/23/03
Starting Material Lot No:	1053	INDRG: 4149 PD: F52370

## CERTIFIED CONCENTRATION: 998 $\pm 2 \mu g/mL$

The Certified Value is based upon the most precise method used to analyze this CRM. The following equations are used in the calculation of the certified value and the uncertainty:

Certified Value ( $\bar{x}$ ) =  $\sum x_i$ 

 $x_i = individual results$  $(\vec{x}) = mean$ 

 $n = number of measurements <math>\sum S_i = The summation of all significant$ estimated errors.

(over)

Classical Wet Assay: 998 ± 2 µg/mL Method: Gravimetric as the Sulfate vs NIST weights #822/254143-94

Instrument Analysis: 1000 ± 4 µg/mL

Method: Inductively Coupled Plasma Spectroscopy (ICP) vs NIST SRM 3129a.

The independent samples t-test was used to determine if there is agreement between the above assay methods at the 95% confidence interval. Both methods were compared and showed agreement within the stated uncertainties. This agreement is a confirmation of the accuracy of this CRM.

## TRACE METALLIC IMPURITIES DETERMINED BY ICP-MS AND ICP-OES IN µa/mL:

Custom Grade solutions tested for trace metallic impurities by ICP-MS were analyzed in an ULPA-Filtered Clean Room. An ULPA-Filter is 99.9985% efficient for the removal of particles down to 0.3  $\mu$ m.

<u>0</u>	Aľ	<0.010	M	Dy	<0.00060	<b>S</b>	Ĺ		N	l Pr	< 0.000030	. <u>O</u>	Te	< 0.0090
M	Sb	<0.000050	` <u>М</u>	Er	<0.00050	<u>M</u>	Lu	< 0.000040	<u>N</u>	l Re	< 0.00010	<u>M</u>	Тb	< 0.000030
<u>0</u>	As	<0.044	<u>M</u>	Eu	<0.00030	<u>o</u>	Mg	<0.00010	<u>№</u>	L Rh	<0.00010	M	ΤI	<0.00010
M	Ba	<0.0010	M	Gd	<0.00010	<u>0</u>	Mn	<0.00020		Rb	<0.00010	M	Th	<0.00010
<u>0</u>	Be	<0.000050	<u>M</u>	Ga	<0.00010	<u>o</u>	Hg	< 0.0070	N	l 🗇 Ru	<0.00020	<u>M</u>	Tm	< 0.000040
M	Bi	<0.000040	M	Ge	< 0.00060	ે 😤 <u>M</u>	Мо	< 0.00020	N	ຼ່ Sm	n' <0.00010	. • <u>M</u>	Sn	< 0.00050
<u>0</u>	В	<0.0060	<u>0</u>	Au	<0.010	M	Nd	<0.00020	.≪ _{edi} st. <u>N</u>	Sc	< 0.0010	<u>0</u>	Ti	< 0.00030
<u>0</u>	Cd	<0.0018	<u>M</u>	Hf	<0.00020	<u>0</u>	Ni	< 0.0040	<u>0</u>	Se	< 0.020	M	W	<0.0010
<u>0</u>	Ca	0.051	. <u>M</u>	Ho	< 0.000050	<u>M</u>	Nb	< 0.000050	<u>0</u>	Si	0.023	<u>M</u>	U	<0.00020
M	Ċe	<0.00050	<u>o</u>	In	< 0.030	<u>n</u>	Os		<u> </u>	Ag	< 0.0040	<u>O</u>	ν	< 0.0010
<u>M</u>	Cs	0.0018	M	lr	< 0.00050	<u>M</u>	Pd	< 0.00050	0	Na	<0.10	M	Yb	< 0.00010
<u>0</u>	Çr	<0.0020	<u>0</u>	Fe	< 0.0020	<u>0</u>	P	<0.030	<u>0</u>	Sr	< 0.0010	M	Y	< 0.0040
M	Co	<0.00030	M	La	< 0.000050	M	Pt	<0.00020	<u>0</u>	s	< 0.050	0	Zn	< 0.030
M	Cu	<0.00060	М	Pb	< 0.00030	<u>0</u>	к	0.0070	N	Ta	<0.00070	M	Zr	< 0.00050
м -	chec	ked by ICP-MS	0 -	check	ed by ICP-OES	i - s	pectra	al interference	n - 1	not ch	ecked for	s - solu	tion st	andard elemen

## ANALYZED DENSITY OF SOLUTION (measured at 22°C): 1.004 g/mL

QA:KL Rev.022403DN



Inorganic Ventures, Inc.

195 Lehigh Avenue • Suite 4 • Lakewood, NJ 08701 Orders: 800-669-6799 • FAX (732) 901-1903 Technical Support: 800-569-6799



# inorganic ventures^{01,0162}v labs



195 lehigh avenue, suite 4, lakewood, nj 08701 usa phone: 800-669-6799 • 732-901-1900 • fax: 732-901-1903 e-mail: ivsales@ivstandards.com • website: www.ivstandards.com

# certificate of analysis

1.0 Inorganic Ventures / IV Labs is an ISO Guide 34-2000 Certified Reference Material (CRM) Manufacturer: Certificate #883-02. The certificate is designed and the certified value(s) and uncertainty(ies) are determined in accordance with ISO Guide 31-2000 (Reference Materials - Contents of certificates and label(s), ISO Guide 34-2000 "Quality System Guidelines for the Production of Reference Materials," and ISO Guide 35-1989 "Certification of Reference Materials - General and Statisical Principles."

2.0

DESCRIPTION OF CRM Custom-Grade 10000 µg/mL Potassium in 1.4% (abs) HNO3

W-K02111

99.997230

1.4% (abs) HNO3

KNO3

K18J19

CGK10-1, CGK10-2, and CGK10-5

Catalog Number: Lot Number: Starting Material: Starting Material Purity (%): Starting Material Lot No Matrix:

INORGANIC LABS/RADCHEM LABS DATE RECEIVED:___ DATE EXPIRED: DATE OPENED: INORG: 4320

3.0

## CERTIFIED VALUES AND UNCERTAINTIES

Certified Concentration: 9930 ± 9 µg/mL

Certified Density: 1.024 g/mL (measured at 22° C)

The Certified Value is based upon the most precise method used to analyze this CRM. The following equations are used in the calculation of the certified value and the uncertainty:

Certified Value (🗂 = <u>er x</u> u	(🗇 = mean
n	x, = individual results
	n = number of measurements
Uncertainty (±) = <u>2[(ers)]²</u>	S = The summation of all significant estimated errors.
(1) ^{1/2}	(Most common are the errors from instrumental measurement, weighing, dilution to volume, and the fixed error reported on the NIST SFM certificate of analysis.)

The independent samples t-test was used to determine if there is agreement between the above assay methods at the 95% confidence interval. Both methods were compared and showed agreement within the stated uncertainties. This agreement is a confirmation of the accuracy of this CRM.

## 4.0 TRACEABILITY TO NIST AND VALUES OBTAINED BY INDEPENDENT METHODS

9930 ± 9 µg/mL

[□] "Property of the result of a measurement or the value of a standard whereby it can be related to stated references, usually national or international standards, through an unbroken chain of comparisons all having stated uncertainties." (ISO VIM, 2nd ed., 1993, definition 6.10)

□ This IV product is Traceable to NIST via direct comparison to NIST SRMs. The uncertainties for each certified value are reported, taking into account the SRM uncertainty error and the measurement, weighing and volume dilution errors.

4.1 Assay Method #1 g

## **9926 ± 62 μg/mL** ICP Assay NIST SRM 3141a Lot Number: 891312

Assay Method #2

Gravimetric NIST SRM Lot Number: See Sec. 4.2

- 4.2 BALANCE CALIBRATION All balances are checked daily using in-house procedure number 6-IMM-001. The weights used for testing are annually compared to Gerhart Scale Corporation's master weights and are traceable to the National Institute of Standards and Technology (NIST). The NIST Traceability numbers are 692476 Class 1 and 692476A Class 2. The NIST test number is 822/260017-98. All analytical balances are calibrated every 4 months by Gerhart Scale Corp. of South Amboy. The balances are calibrated with a class 1 and/or class 2 analytical weight set. These weights are tested annually by a NIST / NVLAP accredited calibration lab. The NIST test number is 822/260017-98.
- 4.3 THERMOMETER CALIBRATION The thermometers used in the determination of the final densities are calibrated vs standard thermometer No. 903-2680 which was certified in accordance with the procedures outlined by ASTM E77-87 and NIST Monograph 150 using NIST Test Nos. and Std Nos.: 769543, 217368/769543, 217368/P14452, 176240/P14452, 176240. The in-house procedure No. is 2-QC-001. Thermometers which are not calibrated vs standard thermometer No. 903-2680 are traceable to NIST Identification Nos. 92564, 119016, 471047 and NIST test report Nos. 811/258522, 811/2557078, and 236090.
- 4.4 GLASSWARE CALIBRATION In-house procedure 3-QC-002 is used to calibrate all Class A Glassware used in the manufacture and quality control of Custom Grade Standards.

## 5.0 TRACE METALLIC IMPURITIES (TMI) DETERMINED BY ICP/MS AND ICP-OES IN µg/mL

Custom-Grade solutions are tested for trace metallic impurities by Axial ICP-OES and ICP-MS. The result from the most sensitive method for each element, is reported below. Solutions tested by ICP-MS were analyzed in an ULPA-Filtered Clean Room. An ULPA-Filter is 99.9985% efficient for the removal of particles down to 0.3 µm.

<u>0</u>	AI	<	0.00090	M	Dy	<	0.02400	<u>0</u>	Li	<	0.00003	M	Pr	<	0.00120	M	Те	<	0.11998
M	Sb	<	0.00200	M	Er	<	0.02000	M	Lu	<	0.00160	М	Re	<	0.00400	M	Tb	<	0.00120
M	As	<	0.03999	M	Eu	<	0.01200	<u>0</u>	Mg		0.00100	M	Rh	<	0.00400	<u>M</u>	TI.	<	0.00400
M	Ва	<	0.03999	M	Gd	<	0.00400	<u>o</u>	Mn	<	0.00003	M	Rb		0.49948	М	Th	<	0.00400
<u>0</u>	Be	<	0.00020	M	Ga	<	0.00400	<u>0</u>	Hg	<	0.01500	M	Ru	<	0.00800	M	Tm	<	0.00160
M	Bi	<	0.00160	<u>0</u>	Ge	<	0.00150	<u>M</u>	Мо	<	0.00800	<u>.</u> M	Sm	<	0.00400	M	Sn	<	0.02000
<u>0</u>	в	<	0.00060	<u>o</u>	Au	<	0.00300	M	Nd	<	0.00800	Q	Sc	<	0.00002	<u>0</u>	Ti	<	0.00070
<u>, М</u>	Cd	<	0.01200	M	Hf	<	0.00800	<u>0</u>	Ni	<	0.00230	Q	Se	<	0.05000	M	w	<	0.03999
<u>0</u>	Ca		0.00075	M	Но	<	0.00200	M	Nb	<	0.00200	Ō	Si	<	0.00340	М	U	<	0.00800
M	Ce	<	0.02000	M	In	<	0.03999	<u>n</u>	Os			M	Ag	<	0.00800	<u>0</u>	V	<	0.00090
М	Cs	<	0.00120	м	lr	<	0.02000	M	Pd	<	0.02000	<u>0</u>	Na		0.21730	M	Yb	<	0.00400
М	Cr.	<	0.02000	<u>0</u>	Fe		0.00212	<u>0</u>	Р	<	0.00250	M	Sr	<	0.00200	M	Y	<	0.15998
M	Со	<	0.01200	M	La	<	0.00200	M	Pt	<	0.00800	<u>0</u>	S	<	0.07200	<u>o</u>	Zn		0.00050
М	Cu	<	0.02400	M	Pb	<	0.01200	<u>s</u>	ĸ			М	Та	<	0.02800	M	Zr	<	0.02000
M - C	Check	(ed	by ICP-MS	0-	Chec	ked	by ICP-OES	i - S	spectr	al I	nterference	n - 1	Not C	he	ked For	s - :	Soluti	on	Standard Element

#### 6.0 INTENDED USE

For the calibration of analytical instruments including but not limited to the following:

ICP-MS, ICP-OES, FAAS, GFAA, XRF, and DCP

For the validation of analytical methods

For the preparation of "working reference samples"

For interference studies and the determination of correction coefficients

For detection limit and linearity studies

For additional intended uses, contact IV Technical Staff

## 7.0 INSTRUCTIONS FOR THE CORRECT USE OF THIS REFERENCE MATERIAL

Storage & Handling - Keep tightly sealed when not in use. Store and use at 20 ± 47€. Do not pipet from container. Do not return portions removed for pipetting to container.

Atomic Weight; Valence; Coordination Number; Chamical Form in Solution - 29.0983; +1; (6); K'(eq)

(Coordination Number in parentheses is assumed, not certain.)

Chemical Compatibility - Soluble in HCI, HNO₂, H₂SO₄ and HF aqueous matrices. Avoid use of HCIO₄ due to insolubility of the perchlorate. Stable with all metals and inorganic anions except CIO₄.

Stability - 2-100 ppb levels stable for months in 1% HNO₉ / LDPE container. 1-10,000 ppm solutions chemically stable for years in 1-5% HNO₉ / LDPE container.

K Containing Samples (Preparation and Solution) - Metal (Dissolves very rapidly in water); Ores (Sodium carbonate fusion in Pt[®] followed by HCI dissolution-blank levels of K in sodium carbonate critical); Organic Matrices (Sulfuric/peroxide digestion ) Atomic Spectroscopic Information (ICP-OES D.L.s are given as radial/axial view):

- MULLING OF	μεστογραμία πιο	118000 (102-025 0.	ven as	<u>racial/axaal</u> view):	
Techniqu	e/Line	Estimated D.L.	<u>Order</u>	Type	Interferences (underlined indicates severe at affoncs.)
ICP-OES	766.490 nm	0.4 / 0.001 µg/mL	1	atom	2 rd order radiation from R.E.s on some optical designs
ICP-OES	771.531 nm	1.0 / 0.03 µg/mL	1	atom	2 ^{re} order radiation from R.E.s on some optical designs
ICP-OES	404.721 nm	1.1 / 0.05 ug/mL	1	atom	U, Ce,
ICP-MS	39 amu	10 ppt	nta	M'	³³ ArH, ²⁴ Na ¹⁶ O, ¹³ Se ¹²



- 8.0 HAZARDOUS INFORMATION Please refer to the enclosed Material Saftey Data sheet for information regarding this CRM.
- 9.0 HOMOGENEITY This solution was mixed according to procedure IV-MPM-004 and is guaranteed to be homogeneous.

#### 10.0 QUALITY STANDARD DOCUMENTATION

10.1 ISO 9001:2000 Quality Management System Registration - QMi Certificate Number 010105 Recognized by:

Registrar Accreditation Board (ANSI-RAB) Standards Council of Canada (SCC)

Dutch Council for Accreditation (RVA) Entidad Mexicana de Acreditacion, a.c.(EMA)

Members of IQ Net International Certification Network:



010164

Argentina (IRAM), Australia (QAS), Austria (ÖQS), Belgium (Avinter), Brazil (FCAV), Canada (QMI), Hong Kong (HKQAA), Columbia (ICONTEC), Czech Republic (CQS), Denmark (DS), Finland (SFS), France (AFAQ), Germany (DQS), Greece (ELOT), Hungary (MSZT), Ireland (NSAI), Israel (SII), Italy (CISQ), Japan (JQA), Korea (KSA-QA), Netherlands (KEMA), Norway (NCS), Peland (ACCC), Deduced (ACCER), Singapore (ACS), Source (ACA), Socie (ACA), Socie (ACA), Norway (NCS),

Poland(PCBC), Portugal (APCER), Singapore (PSB), Slovenia (SIQ), Spain (AENOR), Switzerland (SQS) 10.2 ISO/IEC 17025 - 1999 "General Requirements for the Competence of Testing and Calibration" - Chemical Testing - Accredited A2LA Certificate Number 883.01



10.3 ISO/IEC Guide 34 - 2000 "General Requirements for the Competence of Reference Material Producers"
 Reference Materials Production - Accredited A2LA Certificate Number 883.02
 A2LA Mutual Recognition Agreement Partners:

Australia (NATA), Austria (BmwA), Belgium (BELTEST) (BKO-OBE), Canada (SCC), Chinese Taipei (CNLA), Czech Republic (NAO), Denmark (DANAK), Finland (FINAS), France (COFRAC), Germany (DAR), Hong Kong (HKAS, Ireland (NAB), Italy (SIT) (SINAL), Japan (JAB) (JNLA), Republic of Korea (KOLAS), The Netherlands (RvA), New Zealand (IANZ), Norway (NA), Portugal (IPQ), Singapore (SAC-SINGLAS), Spain (ENAC), Sweden (SWEDAC), Switzerland (SAS), United Kingdom (UKAS) and United States (NVLAP) (ICBO ES)

- 10.4 10CFR50 Appendix B Nuclear Regulatory Commission - Domestic Licensing of Production and Utilization Facilities
- 10.5 10CFR21 Nuclear Regulatory Commission Reporting Defects and Non-Compliance
- 10.6 MIL-STD-45662A (Obsolete/Observed)

## 11.0 DATE OF CERTIFICATION AND PERIOD OF VALIDITY



- 11.1 IV Shelf Life The period of time during which the concentration of the analyte(s) in a properly packaged, unopened, and unused standard stored under environmentally controlled and monitored conditions will remain within the specified uncertainty range. Shelf life is limited primarily by transpiration (loss of water from the solution) and infrequently, by chemical instability. Transpiration studies (P-SP01020) of chemically-stable solutions performed at Inorganic Ventures / IV Labs indicate a CRM shelf-life of four years for solutions packaged in 500-mL low density polyethylene bottles. When stored under special conditions that minimize transpiration and instability, the shelf life can be extended past this limit.
- 11.2 Expiration Date The date after which a CRM should not be used. Routine laboratory use of a CRM increases transpiration losses and the chance of contamination which affect the integrity of the CRM and limit its useful life. Inorganic Ventures / IV Labs concurs with state and federal regulatory agencies' recommendations that solution standards be assigned a one-year expiration date.

INORGANIC LABS/RADCHEM LABS DATE RECEIVED: DATE EXPIRED: /) DATE OPENED: __// INORG: 4370 PO: _F52250

Certification Date: January 30, 2003

**Expiration Date:** 



#### 12.0 NAMES AND SIGNATURES OF CERTIFYING OFFICERS

**Certificate Prepared By:** 

JoAnn Struthers, QA Administrative Assistant

**Certificate Approved By:** 

Katalin Le, QC Supervisor

010165 folm Stutten Known in in Park Aain

**Certifying Officer:** 

Paul Gaines, Chemist, Senior Technical Director

SOUTHWEST RESEARCH INSTITUTE NUCLEAR PROJECT CLIENT: Div. 20 TASK ORDER: 031021-4 SRR: 25126 SDG: 236555 CASE: CNWRA VTSR: October 21, 2003 PROJECT#: 06002.01.081

# **Pipette Calibrations**

010166

Book/Page:

SwRI – Div. 01, Inorganic Labs' Fixed Volume Pipette Verification Log

(Space provide for Inorganic Laboratories' Fixed Volume Pipette Verification Spreadsheet)

SwRI - Div. 01, Inorganic Labs' Fixed Volume Pipette Spreadsheet

Eppendorf #	True Value (uL)	1st Reading (g)	2nd Reading (g)	3rd Reading (g)	Avg Wt (g)	% of True Value
Lab30	1000	1.0184	1.0102	1.0165	1.015	101.50
TMA1	1000	1.0187	1.0064	1.0019	1.009	100.90
TMA2	1000	1.0175	1.0126	1.0052	1.012	101.18
TMA3	1000	Out of Service				
TMA6	1000	1.0013	1.0015	1.0033	1.002	100.20
TMB1	900	0.9002	0.9001	0.9005	0.900	100.03
TMC1	800	0.803	0.7978	0.7995	0.800	100.01
TMDD1	750	0.7484	0.7491	0.7479	0.748	99.80
TMD1	700	0.7009	0.6906	0.6998	0.697	99.59
TMD2	700	0.7065	0.7082	0.7049	0.707	100.93
_TME1	600	0.607	0.605	0.6051	0.606	100.95
TMF2	500	0.5077	0.5062	0.5026	0.506	101.10
TMF5	500	0.509	0.5061	0.501	0.505	101.07
ICF1	500	0.5012	0.5014	0.5003	0.501	100.19
L30-500	500	0.4997	0.4998	0.4989	0.499	99.89
TMG3	400	0.3979	0.3958	0.3995	0.398	99.43
TMH1	300	Out of Service				
TMH2	300	0.2993	0.2978	0.3009	0.299	99.78
TMJ1	250	0.25	0.2503	0.2499	0.250	100.03
TMJ2	250	0.2488	0.2492	0.2495	0.249	99.67
TMJ3	250	0.2504	0.2503	0.2519	0.251	100.35
TMK2		0.2	0.2001	0.2006	0.200	100.12
TML1	150	0.1486	0.1493	0.149	0.149	99.31
TMM1	120	0.1207	0.1202	0.1205	0.120	100.39
TMN3	100	0.1003	0.1001	0.1002	0.100	100.20
ICN1	100	0.1004	0.0999	0.0993	0.100	99.87
TMQ1	80	0.0799	0.08	0.0799	0.080	99.92
TMR1	70	Out of Service				
TMS1	60	Out of Service				
LAB-30A	50	0.0498	0.0497	0.0496	0.050	99.40
TMU1	40	0.0402	0.0403	0.0402	0.040	100.58
TMU2	40	0.04	0.0399	0.04	0.040	99.92
TMV1	30	0.0296	,0.0298	0.0297	0.030	99.00
L30-20	20	0.0199	0.0198	0.0199	0.020	99.33
TMW1	25	0.025	0.025	0.0249	0.025	99.87
<u>TMY1</u>	15	Out of Service				

FRM-246 (Rev 1/Mar 03)

5. . 5

 $\mathcal{Y}$ 

Book/Page <u>03</u>020

Balance #: <b></b>	2 Thermo	ometer #: <u>6011</u>	diH20 Temperat	ture (°C): <u>21</u> 010	167
Eppendorf #	True Value (µL)	1st Reading (g)	2nd Reading (g)	3rd Reading (g)	
Lab30	1000	1.0184	1.0102	1.0165	]
TMA1	1000	1 0187	1.0064	1.0019	]
TMA2	1000	1.0175	1.0126	1.0057_	1
-TMA3	1000-	out			131/09
(TMA6)	T 1000 1/3/0	1.0414 1.0013	1.02201.00	15 1-0105 1.00	33
TMB1	900	0.9002	0.9001	0.9005	
TMC1	800	0.9030	0.7978	0.7995	
TMDD1	750	0.7484	0.7491	0.7479	
TMD1	700	0.7009	0.6906	0.6998	
TMD2	700	0.7065	0.7082	0.7049	
TME1	600	0.6070	0.6050	0.6051	
TMF2	500	0.5077	0.5002	0.5026	
TMF5	500	0.5090	0.5061	0.5010	
ICF1	500	0,5012	0.5014	0.5003	
L30-500	500	0.4997	0.4998	0.4989	
TMG3	400	0.3979	0.3958	0.3995	
(TMH1)	nt. 3000/ 50	Vi8. 2192	0.2100	0.2182	1 · ·
TMH2	300 0	0.2993	0.2978	0.3009	
TMJ1	250	0.2500	0.2503	0.2499	
TMJ2	250	0.2488	0.2492	0.2495	
TMJ3	250	0.2504	0.2503	0.2519	
TMK2	200	0.2000	0.2001	0.2006	
TML1	150	0.1486	0,1493	0.1490	
TMM1	120	0.1207	0.1202	0.1205	
TMN3	100	0.1003	0.1001	0.1002	
ICN1	100	0.1004	0.0999	0.0993	1
TMQ1	80	0.0799	0.0800	0.0799	
	<del>70-</del>	out -			
_ <del></del>		out -			
LAB-30A	50	0.0498	0.0497	0.0496	
TMU1	40	0,0402	0.0403	0.0402	
TMU2	40	0.0400	0.0399	0.0400	
TMV1	30	0.0296	0.0298	0.0297	
L30-20	20	0.0199	0.0198	0.0199	
TMW1	25	0.0250	0.0250	0.0249	
_TMY1		out			

State of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state

and and a second se

- And - And - And - And - And - And - And - And - And - And - And - And - And - And - And - And - And - And - And - And - And - And - And - And - And - And - And - And - And - And - And - And - And - And - And - And - And - And - And - And - And - And - And - And - And - And - And - And - And - And - And - And - And - And - And - And - And - And - And - And - And - And - And - And - And - And - And - And - And - And - And - And - And - And - And - And - And - And - And - And - And - And - And - And - And - And - And - And - And - And - And - And - And - And - And - And - And - And - And - And - And - And - And - And - And - And - And - And - And - And - And - And - And - And - And - And - And - And - And - And - And - And - And - And - And - And - And - And - And - And - And - And - And - And - And - And - And - And - And - And - And - And - And - And - And - And - And - And - And - And - And - And - And - And - And - And - And - And - And - And - And - And - And - And - And - And - And - And - And - And - And - And - And - And - And - And - And - And - And - And - And - And - And - And - And - And - And - And - And - And - And - And - And - And - And - And - And - And - And - And - And - And - And - And - And - And - And - And - And - And - And - And - And - And - And - And - And - And - And - And - And - And - And - And - And - And - And - And - And - And - And - And - And - And - And - And - And - And - And - And - And - And - And - And - And - And - And - And - And - And - And - And - And - And - And - And - And - And - And - And - And - And - And - And - And - And - And - And - And - And - And - And - And - And - And - And - And - And - And - And - And - And - And - And - And - And - And - And - And - And - And - And - And - And - And - And - And - And - And - And - And - And - And - And - And - And - And - And - And - And - And - And - And - And - And - And - And - And - And - And - And - And - And - And - And - And - And - And - And - And - And - And - And - And - And - And - And - And - And - And - And

Analyst: <u>Xama Wright</u> Date: <u>10/21/03</u> Reviewed by: <u>NUUUU</u> Date: <u>12/03/03</u> FRM-243b (Rev 3/Mar 03)

12/02/03

FRM-243b (Rev 3/Mar 03)

Book/page: 04 011

SwRI – Div. 01, Inorganic Labs' Adjustable Volume Pipette Verification Log 010168 (Space provided for Inorganic Laboratories' Adjustable Volume Pipette Verification Spreadsheet)

SwRI - Div. 01, Inorganic Laboratory Adjustable Pipette Verification Spreadsheet

Eppendorf #	True Value (µL)	1st Reading (g)	2nd Reading (g)	3rd Reading (g)	Avg Wt (g)	% of True Value
	20	0.0201	0.0202	0.0203	0.020	101.00
ADJ200-A	100	0.1021	0.0993	0.0990	0.100	100.13
	200	0.1985	0.1987	0.1990	0.199	99.37
	20	0.0199	0.0202	0.0200	0.020	100.17
ADJ200-C	100	0.0991	0.1006	0.1000	0.100	99.90
	200	0.1998	0.1995	0.2010	0.200	100.05
	20	0.0203	0.0202	0.0204	0.020	101.50
ADJ200-D	100	0.0999	0.1000	0.1003	0.100	100.07
	200	0.2001	0.2001	0.2009	0.200	100.18
	20					
ADJ200-G	100					
	200					
	20					
ADJ200-H	100					
	200	:	•			
	20			0		
ADJ200-J	100					
	200		2.101	2		
	20					
ADJ200	100					
	200					
	20					
ADJ200	100					
	200					
	20					
ADJ200	100					
	200					

FRM-247a (Rev 3/Oct 03)

Dai F				and Deading (g)	2 rd Reading (g)
	Eppendorf #	True Value (µL)	1" Reading (g)	2 Reading (g)	3 neading (g)
		20	,0201	.0202	,0203
L	ADJ200-A	100	.1021	.0993	.0990
L		200	· 1985	. 1987	.1990
		20	,0199	.0202	,0200
	ADJ200-C	100	.0991	,1006	,1000
L		200	. 1998	. 1995	,2010
. [		20	.0203	,0202	.0204
	ADJ200-D	100	,0999	,1000	,1003
5		200	. 2001	,2001	,2009
5		20			
51	ADJ200-G	100			
N	· · ·	200			
1	<u> </u>	20			
	ADJ200-H	100			
5	· · · · · · · · · · · · · · · · · · ·	200			
5	· · · · · · · · · · · · · · · · · · ·	20			
J [	ADJ200-J	100			3
F		200		210-21	
F	······································	20		A	
	ADJ200	100			
F		200			
		20			
	ADJ200	100			
		200			

Analyst: Reviewed by

1 - 25

Date:	10-31-03		,	
Date:	19/09/03			

LO AC Book/page: 04 012
Book/page: 04 013

SwRI - Div. 01, Inorganic Labs' Adjustable Volume Pipette Verification Log

(Space provided for Inorganic Laboratories' Adjustable Volume Pipette Verification Spreadsheet)

ams 11/5/03

010170

SwRI – Div. 01, Inorganic Laboratory Adjustable Pipette Verification Spreadsheet

Eppendorf #	True Value (µL)	1st Reading (g)	2nd Reading (g)	3rd Reading (g)	Avg Wt (g)	% of True Value
	20				0.000	0.00
ADJ200-A	100				0.000	0.00
	200	······································			0.000	0.00
	20				0.000	0.00
ADJ200-C	100		0000 to2		0.000	0.00
	200		11151-		0.000	0.00
	20				0.000	0.00
ADJ200-D	100				0.000	0.00
	200	1			0.000	0.00
	20	0.0198	0.0199	0.0199	0.020	99.33
ADJ200-G	100	0.0991	0.0985	0.0984	0.099	98.67
	200	0.1971	0.1977	0.1970	0.197	98.63
	20	0.0202	0.0200	0.0199	0.020	100.17
ADJ200-H	100	0.0984	0.0982	0.0982	0.098	98.27
	200	0.1971	0.1969	0.1965	0.197	98.42
	20	0.0199	0.0199	0.0198	0.020	99.33
ADJ200-J	100	0.0985	0.0984	0.0981	0.098	98.33
	200	0.1991	0.1988	0.1981	0.199	99.33
	20				0.000	0.00
ADJ200	100				0.000	0.00
	200				0.000	0.00
	20		anna		0.000	0.00
ADJ200	100		1519	······································	0.000	0.00
	200		111-		0.000	0.00
	20				0.000	0.00
ADJ200	100				0.000	0.00
	200				0.000	0.00

FRM-247a (Rev 3/Oct 03)

Bal	ance #: <u>34</u>	Thermometer	#: <u>GOIL</u>	diH20 Tempera	ature (° C) <u>2</u>
	Eppendorf #	True Value (µL)	1 st Reading (g)	2 nd Reading (g)	3 rd Reading (g)
		20			
	ADJ200-A	100			
Γ	<u></u>	200			
-		20			[
Γ	ADJ200-C	100		am2103	
		200		101310	
· . [		20			
۱ſ	ADJ200-D	100			
3	<u>·····································</u>	200	12		
		20	0.0198	0.0199	0.0199
S	ADJ200-G	100	0.0991	0.0985	0.0984
Ñ		200	0.1971	0.1977	0.1970
I		20	0.0202	6.0200	0.0199
	ADJ200-H	100	0.0984	0.0982	0.0982
3		200	0.1971	0.1969	0.1965
o		20	0.0199	0.0199	0.0198
กั	ADJ200-J	100	6.0985	0.0984	0.0981
Γ		200	0.1991	0.1988	0.1981
		20			
	ADJ200	100			
Γ		200		0m 103	
Γ	· · · · · · · · · · · · · · · · · · ·	20		10311	
	ADJ200	100			
		200			

Book/page: 04 014

Analyst; Reviewed by:

, 73 Date: Date: (1) 18/03

Book/page:___04 065

## SwRI – Div. 01, Inorganic Labs' Adjustable Volume Pipette Verification Log

(Space provided for Inorganic Laboratories' Adjustable Volume Pipette Verification Spreadsheet)

010172 SwRI – Div. 01, Inorganic Laboratory Adjustable Pipette Verification Spreadsheet

Eppendorf #	True Value (µL)	1st Reading (g)	2nd Reading (g)	3rd Reading (g)	Avg Wt (g)	% of True Value
	100	0.1006	0.1004	0.1006	0.101	100.53
ADJ1000-C	500	0.4942	0.4960	0.4964	0.496	99.11
	1000	1.0033	1.0058	0.9936	1.001	100.09
	100	0.0997	0.1001	0.1002	0.100	100.00
ADJ1000-D	500	0.4928	0.4935	0.4939	0.493	98.68
	1000	0.9929	0.9967	0.9958	0.995	99.51
	100	0.1015	0.1016	0.1015	0.102	101.53
ADJ1000-E	500	0.4938	0.4946	0.4935	0.494	98.79
	1000	0.9962	0.9994	0.9940	0.997	99.65
	100	0.1008	0.1013	0.1012	0.101	101.10
ADJ1000-F	500	0.5044	0.4964	0.4951	0.499	99.73
	1000	0.9987	0.9925	0.9961	0.996	99.58
	100					
ADJ1000-G	500					
	1000					
	100					
ADJ1000-H	500					
-	1000					
	100				2	
ADJ1000-J	500			212	2	
	1000			10/21		
	100			<u>v</u>		
ADJ1000	500				·	
	1000					
	100					
ADJ1000	500					
	1000					

FRM-247b (Rev 2/Oct 03)

FRM-244 (Rev 2/Sept 02)

Balance	#:	Thermometer #	. <u> </u>	diH20 Tempera	ture (° C)
	Eppendorf #	True Value (µL)	1 st Reading (g)	2 nd Reading (g)	3 rd Reading (g)
		100	,1006	,1004	0006
	ADJ1000-C	500	.4942	.4960	, 4964
		1000	1.0033	1,0058	,9936
		100	.0997	,1001	,1002
	ADJ1000-D	500	. 4928	.4935	, 4939
		1000	.9929	,9947	,9958
		100	, 1015	,1016	.1015
	ADJ1000-E	500	,4938	,4946	.4935
┛		1000	.9962	, 9994	,9940
3	······································	100	.1008	, 1013	,1012
<b>&gt;</b>	ADJ1000-F	500	,5044	. 4964	, 4951
2		1000	,9987	,99.25	, 9961
2		100			
	ADJ1000-G	500			
		1000			
┥		100			
	ADJ1000-H	500			
2	· · · · · · · · · · · · · · · · · · ·	1000			
2		100		01-0	3
	ADJ1000-J	500		710-51	
· ·	· · · ·	1000		R	
		100		٣	
	ADJ1000	500	0		
		1000			
		100			
	ADJ1000	500			
		1000			

Analyst Reviewed by

Date:	10-31-03	
Date:	19/03/03	

010173 30 30 Book/page: 04 066

Book/page: 04 067

### SwRI – Div. 01, Inorganic Labs' Adjustable Volume Pipette Verification Log

(Space provided for Inorganic Laboratories' Adjustable Volume Pipette Verification Spreadsheet)

Eppendorf #	True Value (µL)	1st Reading (g)	2nd Reading (g)	3rd Reading (g)	Avg Wt (g)	% of True Value
	100				0.000	0.00
ADJ1000-C	500				0.000	0.00
	1000				0.000	0.00
	100				0.000	0.00
ADJ1000-D	500				0.000	0.00
	1000		- A Ao		0.000	0.00
	100		12-103		0.000	0.00
ADJ1000-E	500		11151		0.000	0.00
	1000				0.000	0.00
	100				0.000	0.00
ADJ1000-F	500				0.000	0.00
	1000				0.000	0.00
	100	0.1019	0.1015	0.1017	0.102	101.70
ADJ1000-G	500	0.4922	0.4912	0.4911	0.492	98.30
	1000	0.9861	0.9841	0.9826	0.984	98.43
	100	0.1011	0.1015	0.1006	0.101	101.07
ADJ1000-H	500	0.4926	0.4920	0.4909	0.492	98.37
	1000	0.9803	0.9806	0.9805	0.980	98.05
	100	0.1022	0.1016	0.1017	0.102	101.83
ADJ1000-J	500	0.4973	0.4978	0.4952	0.497	99.35
	1000	0.9998	0.9976	0.9981	0.999	99.85
	100				0.000	0.00
ADJ1000	500				0.000	0.00
	1000				0.000	0.00
	100		01-103		0.000	0.00
ADJ1000	500		Mist		0.000	0.00
	1000				0.000	0.00

SwRI – Div. 01, Inorganic Laboratory Adjustable Pipette Verification Spreadsheet

FRM-247b (Rev 2/Oct 03)

Bala	ince #: <u>51</u>	. Thermometer #	: (3011	diH20   empera	ture (~ C)
Γ	Eppendorf #	True Value (µL)	1 st Reading (g)	2 nd Reading (g)	3 rd Reading (g)
	· · · · · · · · · · · · · · · · · · ·	100			
	ADJ1000-C	500			
F	· · · · · · · · · · · · · · · · · · ·	1000			
		100			Ĺ
	ADJ1000-D	500			·
	an a	1000		and 102	
		100		131(0)	
ľ	ADJ1000-E	500	/		
Γ	······································	1000			
	· · · · · · · · · · · · · · · · · · ·	100			
	ADJ1000-F	500			
		1000	6		
		100	0.1019	0.1015	0.1017
	ADJ1000-G	500	0.4922	0.4912	0.4911
	· · · · · · · · · · · · · · · · · · ·	1000	0.9861	0.9841	0.9826
		100	0.1011	0.1015	0.1006
	ADJ1000-H	500	0.4926	0:4920	0.4909
		1000	0,9803	0.9806	0.9805
	· · · · · · · · · · · · · · · · · · ·	100	0.1022	0.1016	0.017
	ADJ1000-J	500	0.4973	0.4978	0.4952
	· · · · · · · · · · · · · · · · · · ·	1000	0.9998	0.9976	0.9981
		100			
	ADJ1000	500			
		1000		CIMUS	
Γ	· ·	100		131 03	)
	ADJ1000	500			
<b>—</b>		1000			

30

Book/page:_

04 068

Analyşt: Reviewed by

ĺ

I

Date: (03) 02 Date: 1 8 10.3

Book/page: 04 121

03103

### 010176

### SwRI - Div. 01, Inorganic Labs' Adjustable Volume Pipette Verification Log

(Space provided for Inorganic Laboratories' Adjustable Volume Pipette Verification Spreadsheet)

SwRI - Div. 01, Inorganic Laboratory Adjustable Pipette Verification Spreadsheet

Eppendorf #	True Value (µL)	1st Reading (g)	2nd Reading (g)	3rd Reading (g)	Avg Wt (g)	% of True Value
	500	0.4977	0.4998	0.5024	0.500	99.99
ADJ5000-C	2500	2.4913	2.4971	2.4955	2.495	99.79
	5000	4.9929	5.0040	4.9937	4.997	99.94
	500	0.5072	0.5075	0.5077	0.507	101.49
ADJ5000-G	2500	2.4994	2.5082	2.4940	2.501	100.02
	5000	4.9950	5.0078	5.0093	5.004	100.08
	500	0.4982	0.5028	0.5049	0.502	100.39
ADJ5000-H	2500	2.4966	2.4978	2.4956	2.497	99.87
	5000	5.0340	5.0190	5.0196	5.024	100.48
	500	0.5104	0.5096	0.5054	0.508	101.69
ADJ5000-I	2500	2.4940	2.4917	2.4996	2.495	99.80
	5000	5.0348	4.9907	4.9853	5.004	100.07
	500					
ADJ5000-J	2500					
	5000	•				
	500				-	
ADJ5000-K	2500					
	5000					
	500					
ADJ5000-L	2500					
	5000				2	
·	500			4	100	
ADJ5000	2500			10/5	1	
	5000					
	500			V		
ADJ5000	2500			AF .		
	5000					•
	500					
ADJ5000	2500	$\sim$				
	5000					
	500					
ADJ5000	2500					
	5000					

FRM-247c (Rev 2/Mar 03)

Book/page:

### SwRI Div. 01 - Inorganic Laboratory Adjustable Pipette Verification Log

Balance #: _____34

diH20 Temperature (° C)

04 122

Γ	Eppendorf #	True Value (µL)	1 st Reading (g)	2 nd Reading (g)	3 rd Reading (g)
		500	,4977	. 4998	,5024
	ADJ5000-C	2500	2.4913	2-4971	2.4955
		5000	4.9929	5.0040	4.9937
		500	.5072	,5075	,5077
	ADJ5000-G	2500	2.4994	2.5082	2.4940
		5000	4.9950	5-0078	5.0093
		500	.4982	,5028	,5049
	ADJ5000-H	2500	J. 4966	2.4978	2.4956
		5000	5,0340	5.0190	5-0196
		500	,5104	.5096	,5054
	ADJ5000-I	2500	7.4940	2.4917	2.4996
┥		5000	5-0348	4.9907	4.9853
		500			
2	ADJ5000-J	2500			
S		5000			·
ы		500			· · ·
ī.	ADJ5000-K	2500			$\searrow$
<b>.</b>		5000			
		500			
	ADJ5000-L	2500			
SL	· · · · · · · · · · · · · · · · · · ·	5000		31	
പ്പ		500		10	
	ADJ5000	2500		V	
		5000	A		
		500			
	ADJ5000	2500	/		· · · · · · · · · · · · · · · · · · ·
-		5000	/		
		500			
	ADJ5000	2500 (	·		
		5000			
		500			· · · · · · · · · · · · · · · · · · ·
	ADJ5000	2500			~
		5000			

( ) d Analyst: Reviewed by:

10-31-03 Date: 12/02/03 Date:

FRM-244 (c) (Rev 3/Mar 03)

Book/page: 04 123

### SwRI – Div. 01, Inorganic Labs' Adjustable Volume Pipette Verification Log

(Space provided for Inorganic Laboratories' Adjustable Volume Pipette Verification Spreadsheet)

Mar 11/5/03

SwRI - Div. 01, Inorganic Laboratory Adjustable Pipette Verification Spreadsheet

Eppendorf #	True Value (µL)	1st Reading (g)	2nd Reading (g)	3rd Reading (g)	Avg Wt (g)	% of True Value
	500				0.000	0.00
ADJ5000-C	2500				0.000	0.00
	5000				0.000	0.00
	500				0.000	0.00
ADJ5000-G	2500				0.000	0.00
	5000				0.000	0.00
	500		0		0.000	0.00
ADJ5000-H	2500		0 M 103		0.000	0.00
	5000		11151-		0.000	0.00
	500				0.000	0.00
ADJ5000-I	2500				0.000	0.00
	5000				0.000	0.00
	500	0.4949	0.4932	0.4928	0.494	98.73
ADJ5000-J	2500	2.4896	2.4871	2.4870	2.488	99.52
	5000	4.9863	4.9801	4.9824	4.983	99.66
	500	0.5099	0.5063	0.5078	0.508	101.60
ADJ5000-K	2500	2.5008	2.5036	2.4998	2.501	100.06
	5000	5.0627	5.0319	5.0572	5.051	101.01
	500	0.5050	0.5042	0.5027	0.504	100.79
ADJ5000-L	2500	2.5016	2.4991	2.5008	2.501	100.02
	5000	4.9949	5.0025	4.9866	4.995	99.89
	500				0.000	0.00
ADJ5000	2500				0.000	0.00
	5000				0.000	0.00
	500				0.000	0.00
ADJ5000	2500			·	0.000	0.00
·····	5000		MX 2		0.000	0.00
	500		450		0.000	0.00
ADJ5000	2500				0.000	0.00
	5000				0.000	0.00
	500				0.000	0.00
ADJ5000	2500				0.000	0.00
	5000	Z			0.000	0.00

FRM-247c (Rev 2/Mar 03)

Bal	ance #: <u>34</u>	Thermometer #	G011	diH20 Tempera	ture (° C) _2/
Γ	Eppendorf #	True Value (µL)	1 st Reading (g)	2 nd Reading (g)	3 rd Reading (g)
		500			
	ADJ5000-C	2500			
L		5000			
		500			
	ADJ5000-G	2500		NACTOR	
		5000		10/3/1	
		500			
	ADJ5000-H	2500			
		5000			
		500			
	ADJ5000-1	2500			
┛		5000	2		
4		500	0.4949	0.4932	0.4928
2	ADJ5000-J	2500	2.4896	2.4871	824870
S		5000	4.9863	4.9801	4.9824
<u>d</u>		500	0,5099	0.5063	0.5078
Ϋ́́	ADJ5000-K	2500	2,5008	2,5036	2.4998
'.L		5000	5,0627	5.0319	5.0572
╡└		500	0.50.50	0.5042	0.5027
	ADJ5000-L	2500	2.5016	2,4991	2,5008
SL		5000	4.9949	5.0025	4.9866
2L		500			
· [	ADJ5000	2500			
L		5000			
		500			
	ADJ5000	2500			
		5000		501200	
		500		9-131105	
	ADJ5000	2500		101	
		5000			
		500			· · ·
	ADJ5000	2500			
		5000	2		

Analyst: Reviewed by

Date: 10/31/03 Date: 11/18/03

FRM-244 (c) (Rev 3/Mar 03)

04 124

म् २ २ म. म. म

Book/page:__

010179

SOUTHWEST RESEARCH INSTITUTE NUCLEAR PROJECT CLIENT: Div. 20 TASK ORDER: 031021-4 SRR: 25126 SDG: 236555 CASE: CNWRA VTSR: October 21, 2003 PROJECT#: 06002.01.081

## **Balance Calibrations**

<b>BALANCE #</b>	LAB #:	SERIAL #:	<b>TOLERANCE:</b>	COMMENTS:
16	28	P37987	±0.0005	
Date	Std Wt (g)	Recorded Wt (g)	Operator	
10-28-03	\$-0000	1.99999	Jeo Jeo	5N: 99-J50536-15
10/29/03	2.0000	2.0000	W	11
10-30-03	20000	2.0000	Sev	"
10/31/03	2.0000	2.0000	W	li li
11-3-03	2.0000	2.0000	Jee	11
11-4-03	3.0000	2,0060	yen	11
11-5-03	J.0000	J.00ED	Qu	11
11-6-03	2.0000	2.0000	Der	1.
11-7-03	J.0000	2-0000	Jer,	1
11-10-03	2.0000	2.0000	De	

#### Southwest Research Institute Division 01 BALANCE VERIFICATION LOG

If balance is out of limits, clean the balance and re-calibrate using Class "S" weights. If balance is still out of limits, place a "DO NOT USE" sign on it and call (x5896) for service.

Page # ____9___

ams 11/17/03

FRM-112 (Rev 1/Dec 99)

#### Southwest Research Institute Division 01 BALANCE VERIFICATION LOG

BALANCE #	LAB #:	SERIAL #:	TOLERANCE:	COMMENTS:
19	27	0068597	±0.05	
Date	Std Wt (g)	Recorded Wt (g)	Operator	
10-28-03	10.00	10.00	Jei	SN: 99-550624-5
10/29/03	10.00	10.00	2 w	11
10-30-03	10.00	10.00	Jul .	
10/31/03	10.00	10.00	W	h
11-03-03	10.00	10.00	Sev.	. 77
11-4-03	10.00	10.00	Ger	11
11.5-03	/0.00	10.00	- And	a contraction of the second se
11-6-03	10.00	10.00	Ser	
11-7-03	10.00	12.00	Oer.	~ ~
11-10-03	10.00	10.00	qu	-

If balance is out of limits, clean the balance and re-calibrate using Class "S" weights. If balance is still out of limits, place a "DO NOT USE" sign on it and call (x5896) for service.

Page # ____5___

FRM-112 (Rev 1/Dec 99)

#### Southwest Research Institute Division 01 BALANCE VERIFICATION LOG

<b>BALANCE #</b>	LAB #:	SERIAL #:	<b>TOLERANCE:</b>	COMMENTS:
34	28	1116031935	±0.0005	
Date	Std Wt (g)	Recorded Wt (g)	Operator	
10-28-03	2.0000	3.0000	Je	SN:99-J50526-15
10/29/03	2.0000	2.000	Ow	11
10-30-03	2.0000	1.9999	- Dev	"
10/31/03	2.0000	2.0000	W	11
11-3-03	20000	2.0000	Ju Su	
11.4.03	2-0000	3,000	See	~
11-5-03	2.0000	3.0000	Der	
11-6-03	2-0000	20000	Geo	
11.7-03	I.0000	2.0000	Bey	1
11-10-03	3.0000	2.0000	Der	

If balance is out of limits, clean the balance and re-calibrate using Class "S" weights. If balance is still out of limits, place a "DO NOT USE" sign on it and call (x5896) for service.

Page #___11____

FRM-112 (Rev 1/Dec 99)

SOUTHWEST RESEARCH INSTITUTE NUCLEAR PROJECT CLIENT: Div. 20 TASK ORDER: 031021-4 SRR: 25126 SDG: 236555 CASE: CNWRA VTSR: October 21, 2003 PROJECT#: 06002.01.081

## **DI Water Verification**

## D.I. WATER SYSTEM NOTEBOOK METALS LAB # ⁽ SOUTHWEST RESEARCH INSTITUTE

01 028

010183

			SET PT./	CALL FOR		•
		READING	QC LT.	Service LT.	USAGE	
DATE	INITIALS	(M OHMS)	Green=OK	Green=OK	(GALS)	COMMENTS
9/23/03	pR	18.0	~	V	513913	5:47pm
9/24/03	DR	18.0	1	~	51398.6	5:26 nm
9/25/03	area un	der constau	ctions, Unal	le tored.	pralado3	
9126103	PR	18.0	Ż	$\sim$	5/4/9,0	6:43,000
9/20/03	DA	18.0		$\mathcal{L}$	51416.8	8:40/m
9/30/03	PR	18.0	V		51420.3	7:42pm
12/1/03	DR	18.0	·V	$\checkmark$	51424,2	7:30 pm
21/03	DR	181		$\mathcal{L}$	51431,3	hidd fm
10/3/03	PR	18.0	L	$\boldsymbol{\nu}$	514345	(13 Jon
10/6/63	pR	18.0	V	~	51445.0	Si 41 pm
112/03	pr.	18.0	V	$\sim$	51448.9	1:22 nm
1018/03	DA	18.0	V	~	51454.0	638AM
10/4/03	ĎR	18.0		1	51468.8	8 pm
jollo/B	DR	1811	1	/	51464.h	Giotom
4		VD-,	5 10/13/0	3		<u> </u>
10/13/13	DR	18.0	~	V	51474.8	6:r3nm
16/14/03	DR	78.0	V	V	51476.1	9:13/m
10/15/03	pR	18.0	V	~	5/478.3	AJORM
1010B	DA	18.0	$\mathcal{L}$	$\checkmark$	51482.3	6:401m
S/NB	NR 1	18.0		V	51486.5	8:11pm
16/03	OL	18.0	$\checkmark$	$\checkmark$	51489,2	8idlam
10/21/03	Dal	18-11	~	$\checkmark$	51495,4	fill pm
10/22/03	ĎR	18.0	V .	V	51502.2	S: OU AM
Maxis	DR	18.0	V		51519.0	9;16 pm
10/24/03	DR	18.0	V		51514.5	Silsim
10/27/03	W - R	eviewed				
1012763	DR	18.0	~	$\checkmark$	5152.9.5	9,00 m
1019813	DR	18.0	V	V	51523.6	6:02,m
10/29/13	DR	18.0		1	51526.4	7035pm
10/30/13	PR	180	V	$\mathcal{U}$	5/53 1.2	8:40pm
1)37/03	pr	18.0	V	V	51533,7	Si45pm
113/13	OR	18.0			51539.4	A: dr AM
11/4/03	DR	18.0	V	V	515489	J.U.F. MM
1115103	DR	18.0	$\checkmark$	V	51553.2	83 29 pm
116103	DR	18.0	V	V	515569	Fill Am

FRM-196 (Rev 0/Apr 01)

Vans 11/17/03

SOUTHWEST RESEARCH INSTITUTE NUCLEAR PROJECT CLIENT: Div. 20 TASK ORDER: 031021-4 SRR: 25126 SDG: 236555 CASE: CNWRA VTSR: October 21, 2003 PROJECT#: 06002.01.081

# SURVEILLANCE REPORTS From Division 30