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Stochastic Failure Model  
for the Davis-Besse RPV Head 

P. T. Williams and B. R. Bass 
Oak Ridge National Laboratory 

P. O. Box 2009 
Oak Ridge, TN, 37831-8056 

 

Abstract 
The development of a set of six stochastic models is described in this report in which the uncertainties 
associated with predictions of burst pressure for circular diaphragms using computational or analytical 
methods are estimated. It is postulated that the trends seen in predicting the burst pressure with nine 
experimental disk-burst tests (using materials, geometries, and pressure loadings relevant to the Davis-
Besse analysis) will be representative of the computational predictions of the burst pressure in the Davis-
Besse wastage-area problem. Given a computational prediction of the pressure at numerical instability, 
PNI , for a specific configuration of the wastage area, the scaled stochastic models provide estimates of the 
failure pressure with a specific associated probability. 

The stochastic models were developed from the following technical bases: 

(1) experimental data obtained during disk-burst tests with loadings, geometries, and materials 
relevant to the Davis-Besse pressure loading, wastage-area footprint, and cladding, 

(2) nonlinear, large-deformation, elastic-plastic discrete-element analyses of the disk-burst tests, 
(3) nonlinear, finite-strain, elastic-plastic finite-element analyses performed for the current study, 

and 
(4) a theoretical criterion for plastic instability in a circular diaphragm under pressure loading, 

applied to the disk-burst tests. 

Among the twenty-six continuous distributions investigated, six passed all of the heuristic and Goodness 
of Fit tests applied in the analysis. The six distributions, ranked in relative order, are: (1) Log-Laplace, 
(2) Beta, (3) Gamma, (4) Normal, (5) Random Walk, and (6) Inverse Gaussian. Due to the small sample 
size (n = 26) used in the stochastic model development, no definitive claim can be made that one 
distribution is significantly superior to the other five; however, the Log-Laplace is shown to have the 
highest ranking given the available data, and it produces the highest failure probabilities when 
extrapolating to service pressures well below the range of the data, e.g., to the nominal operating pressure 
or safety-valve set-point pressure. It is, therefore, recommended that the Log-Laplace stochastic model be 
applied in future studies for the Davis-Besse wastage-area problem. 

As an example application, estimates are provided for a bounding calculation of the “as-found” Davis-
Besse wastage area. The bounding calculation predicted a PNI value of 6.65 ksi. From the Log-Laplace 
stochastic model, the corresponding median failure pressure is 7.35 ksi. The Log-Laplace model also 
estimates a cumulative probability of failure of 74.14 10−×  at the operating pressure of 2.165 ksi and 

62.15 10−×  at the safety-valve set-point pressure of 2.5 ksi. Using all six distributions, the average 
probability of failure is 86.91 10−×  at 2.165 ksi, 73.60 10−×  at 2.5 ksi, and 0.2155 at 6.65 ksi. 
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1. Introduction 

1.1. Objective 

This report presents stochastic models of failure for the stainless steel cladding in the wastage area of the 
Davis-Besse Nuclear Power Station reactor pressure vessel (RPV) head. For a given internal pressure, the 
statistical models provide estimates of the cumulative probability (probability of nonexceedance) that the 
exposed cladding will have failed at a lower pressure. The failure mode addressed by this model is 
incipient tensile plastic instability (i.e., plastic collapse) of the cladding. 

1.2. Background 

The following was taken from ref. [1]. 

On February 16, 2002, the Davis-Besse facility began a refueling outage that included 
inspection of the vessel head penetration (VHP) nozzles, which focused on the inspection of 
control rod drive mechanism (CRDM) nozzles, in accordance with the licensee’s 
commitments to NRC Bulletin 2001-01, “Circumferential Cracking of Reactor Pressure 
Vessel Head Penetration Nozzles,” which was issued on August 3, 2001. These inspections 
identified axial indications in three CRDM nozzles, which had resulted in pressure boundary 
leakage. Specifically, these indications were identified in CRDM nozzles 1, 2, and 3, which 
are located near the center of the RPV head. …  Upon completing the boric acid removal on 
March 7, 2002, the licensee conducted a visual examination of the area, which identified a 
large cavity in the RPV head on the downhill side of CRDM nozzle 3. Followup 
characterization by the ultrasonic testing indicated wastage of the low alloy steel RPV head 
material adjacent to the nozzle. The wastage area was found to extend approximately 5 inches 
downhill on the RPV head from the penetration for CRDM nozzle 3, with a width of 
approximately 4 to 5 inches at its widest part. 

See Fig. 1. for a photograph of the Davis-Besse RPV, a schematic of a typical nuclear power reactor, and 
a sketch and photographs of the wastage area. 

1.3. Scope 
In support of the investigation by the United States Nuclear Regulatory Commission’s (NRC) Office of 
Nuclear Regulatory Research, the Heavy-Section Steel Technology Program at Oak Ridge National 
Laboratory has developed statistical models for a specific failure mode for the exposed stainless steel 
cladding in the cavity of the Davis-Besse RPV head. Section 2 reviews the technical bases employed in 
the development of the models; Section 3 presents the details of the stochastic models; Section 4 
demonstrates an application of the proposed candidate Log-Laplace model to the results of a bounding 
calculation for the “as found” condition of the wastage area; and Section 5 provides a summary and 
conclusions. 
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Fig. 1. (a) Davis-Besse Nuclear Power Station RPV and (b) sketch of RPV head degradation. 
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Fig. 1 (continued) (c) schematic of a typical nuclear power reactor showing the relationship of the 

CRDM nozzles to the RPV head. 
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Fig. 1. (continued) (d) photographs of the wastage area with Nozzle 3 removed. 



   
 

  9 
 
 

2. Technical Bases 

The technical bases employed in the construction of the stochastic models are: 

(1) experimental data obtained during disk-burst tests reported by Riccardella [2] with loadings, 
geometries, and materials relevant to the Davis-Besse pressure loading, wastage-area footprint, and 
cladding, 

(2) nonlinear, large-deformation, elastic-plastic discrete-element analyses of the disk-burst tests also 
reported in [2] (GAPL-3 discrete-element code[3]),  

(3) nonlinear, finite-strain, elastic-plastic finite-element analyses performed for the current study 
(ABAQUS finite-element code[4]) of the nine disk-burst test specimens reported in [2], and 

(4) a theoretical criterion for plastic instability in a circular diaphragm under pressure loading, due to 
Hill [5] with extensions by Chakrabarty and Alexander [6] (as cited in [7]), applied to the disk-burst 
tests. 

2.1. Experimental – Disk-Burst Tests 

In the early 1970s, constrained disk-burst tests were carried out under the sponsorship of the PVRC 
Subcommittee on Effective Utilization of Yield Strength [8]. This test program employed a range of 
materials and specimen geometries that were relevant to components in a nuclear power plant steam 
supply system1. The geometries of the three test specimens analyzed in [2] are shown in Fig. 2, the test 
matrix is shown in Table 1, and the properties of the three materials are presented in Table 2. The nine 
disk-burst tests produced three center failures and six edge failures over a range of burst pressures from 
3.75 to 15 ksi as shown in Table 1.  

Table 1. Test Matrix for Disk-burst Tests [2] 
Effective

Test M aterial Geometry Fillet Diaphragm Diaphragm Burst Location of
Number Radius Thickness Radius Pressure Failure

(in.) (in.) (in.) (ksi)
1 SS 304 A 0.375 0.250 2.625 15 Edge
2 B 0.125 0.125 2.875 6.8 Center
3 C 0.375 0.125 2.625 7.7 Center
4 A533B A 0.375 0.250 2.625 11 Edge
5 B 0.125 0.125 2.875 5.3 Edge
6 C 0.375 0.125 2.625 6.7 Center
7 ABS-C A 0.375 0.250 2.625 9.8 Edge
8 B 0.125 0.125 2.875 3.75 Edge
9 C 0.375 0.125 2.625 4.94 Edge

Experimental Results

 

                                                      
1 The three materials are representative of reactor core support structures and piping, the reactor pressure vessel, and 
plant component support structures [2]. 



   
 

  10 
 
 

Table 2. Property Data for Materials in Disk-burst Tests [2] 

 Yield Strength Ultimate Strain at True Stress True Ultimate Log Strain
Material 0.2% offset Strength Ultimate 0.2% offset Stress at Ultimate K n

(ksi) (ksi) (-) (ksi) (ksi) (-) (ksi) (-)
SS304 34 84 0.54 34.07 129.36 0.432 162.41 0.27

A-533B 74 96 0.17 74.15 112.32 0.157 139.41 0.12
ABS-C 39 64 0.31 39.08 83.84 0.270 105.20 0.17

Power Law Fit*

 

*The power-law parameters in Table 2 were fitted for the current study where 
n

Kσ ε=  and , σ ε  are the 
effective true stress and effective total true strain, respectively. 
 
 
 
 
 

 
Fig. 2. Geometric descriptions of the three disk-burst specimens used in [1] (all dimensions are 

inches). Images on the right are Photoworks®-rendered views of ½-symmetry solid models 
of the three specimens. 
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2.2. Computational – Axisymmetric Discrete-Element and Finite-Element Models 

The results of a computational study were presented in [2] in which the nine tests were simulated using 
the GAPL-3 computer code [3]. GAPL-3 applied the discrete-element method using a two-layered system 
of elements: one layer for the strain-displacement field and a second layer for the stress field to perform 
an elasto-plastic large-deformation analysis of stresses, strains, loads, and displacements of thin plates or 
axisymmetric shells with pressure loading. At each incremental load step, the code iterated to resolve both 
geometric and material nonlinearities, thus establishing a condition of static equilibrium. The GAPL-3 
code did not account for the reduction in thickness of the diaphragm with increasing load, and, therefore, 
was unable to demonstrate the “tailing up” of the experimental center-deflection histories. As discussed in 
[2], the thin-shell approximation of the GAPL-3 code is not strictly valid in the fillet region. The GAPL-3 
model did include a plastic-hinge type of strain redistribution, but the strain concentration effect due to 
the fillet radius was not accounted for, since the predicted strain distribution in the cross-section of the 
fillet was linear by assumption. These approximations in the analysis were driven by the limitations of the 
computer resources available at the time of the study in 1972. 

The current study reanalyzed all nine disk-burst tests using the ABAQUS [4] finite-element code. With 
current computing power, many of the simplifying assumptions required in 1972 could be removed to 
provide a more detailed analysis. The fundamental assumptions made in the current study are: 

(1) the material is assumed to be homogenous and isotropic before and throughout plastic defor-
mation; 

(2) the material is assumed to be free of pre-existing defects; 

(3) the volume of the material undergoing plastic deformation is assumed to be constant (i.e., incom-
pressible with a Poisson’s ratio, ν  = 0.5), for linear-elastic deformation ν  = 0.3; 

(4) the hydrostatic component of the stress tensor has no effect on yielding; and 

(5) the plastic deformation follows incremental J2 flow theory (Mises yield criterion) with its 
associated flow rule (Levy-Mises) and isotropic strain hardening. 

The finite-element meshes shown in Fig. 3 were developed using 8-node quadratic, axisymmetric, solid 
elements with reduced integration (ABAQUS element type CAX8R). The material property data given in 
Table 2 were used to fit power-law constitutive models for the plastic region of the three materials (see 
Fig. 4). The analyses applied a nonlinear finite-strain procedure with an incrementally increasing pressure 
load applied from zero up to the load at which numerical instabilities caused ABAQUS to abort the 
execution. 
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Fig. 3. Axisymmetric finite-element meshes used in the analyses of disk-burst tests reported in [2]. 

Quadratic 8-node axisymmetric (CAX8R) elements with reduced integration were used in a 
nonlinear finite-strain elastic-plastic analysis of the three disk-burst geometries with three 
materials. 

 
Fig. 4. True stress vs true strain curves of the three materials used in the disk-burst tests compared 

to SS308 at 600 °F. These three test material curves were developed using a power-law 
strain-hardening model fitted to yield and ultimate strength/strain data for each material 
given in [2]. (See Table 2). 
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2.3. Theory – Hill’s Plastic Instability Theory 

A plastic instability theory due to Hill [5] for a pressurized circular diaphragm constrained at the edges is 
presented in [7]. Figure 5 shows the geometry of the diaphragm, both undeformed and deformed, along 
with the nomenclature used in the development of the theory.  

The geometry of deformation is assumed to be a spherical dome or bulge of radius, R. The undeformed 
ring element (defined by its position, width, and thickness, 0 0 0( , , )r r hδ , respectively) is assumed to 
deform to an axisymmetric shell element with surface length, Lδ , deformed thickness, h, radial position, 
r, and angle φ . The nonuniform thickness of the dome reaches its minimum at the pole with polar height 
H. For a spherical coordinate system with its origin at the center of the dome, the principal strains for the 
thin-shell (i.e., the strains are assumed constant through the thickness) element are 

 
0 0 0

ln ; ln ; lnh
r L h
r r hθ φ

δε ε ε
δ

⎛ ⎞ ⎛ ⎞ ⎛ ⎞
= = =⎜ ⎟ ⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠ ⎝ ⎠
 (1) 

A geometric relationship exists between the radius and chord of a circle such that 

 
2 2

2
H aR

H
+

=  (2) 

where a is the effective radius of the undeformed diaphragm. Using Eqs. (1) - (2) and the geometry shown 
in Fig. 5, ref. [7] derives the following relations for the meridional, φε , and hoop, θε , strains at any point 
on the spherical bulge 

 2( | , ) ( | , ) ln 1 z Hz H a z H a
aφ θε ε ⎡ ⎤⎛ ⎞= = + ⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

 (3) 

where the geometric parameter z is shown in Fig. 5. Applying the constant volume assumption, i.e., 
0hφ θε ε ε+ + = , produces the following equation for the radial (“thickness”) strain 

 
( )

2

2

1( | , ) 2 ( | , ) ln
1 /h z H a z H a

zH aφε ε
⎡ ⎤
⎢ ⎥= − =

+⎢ ⎥⎣ ⎦
 (4) 
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Fig. 5. Spherical geometry of deformation assumed in Hill’s [5] plastic instability theory. 
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The effective strain then becomes 

 ( ) ( ) ( )2 2 2
2

2( , , ) ( | , ) 2ln 1
3h h h h

z Hz H a
aφ θ φ θ φ θε ε ε ε ε ε ε ε ε ε ε ⎡ ⎤⎛ ⎞≡ − + − + − = − = + ⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

 (5) 

The maximum radial strain, therefore, occurs at the pole of the spherical bulge. Applying the thin-walled 
assumption (which is not made in the computational finite-element model) for an axisymmetric shell 
element, the equilibrium relation between the meridional, φσ , and hoop, θσ , membrane stresses and the 
internal pressure, pi , loading is 

 ip
R R h

φ θ

φ θ

σ σ
+ =  (6) 

For a spherical dome, R R Rθ φ= = , and a state of equibiaxial stress is assumed to prevail near the pole of 
the dome with the principal stresses being 

 ; 0
2

i
r

p R
hφ θσ σ σ= = =  (7) 

and the effective stress , ( ) ( ) ( )2 2 21
2 r rφ θ φ θσ σ σ σ σ σ σ= − + − + − , is 

 
2

ip R
hφ θσ σ σ= = =  (8) 

To establish an instability criterion, a surface can be constructed in pressure, effective stress, and 
deformation/strain space by expressing Eq. (8) as a total differential of the form 

 
2
2 2

i

i i

i

i

Rp h
Rdp p dR hd dh

dp d dh dR
p h R

σ
σ σ

σ
σ

=
+ = +

= + −

 (9) 

An unstable condition exists at a point of maximum pressure on the surface where 0idp = . The condition 
is unstable because any perturbation from this position always involves a reduction in load (pressure), 
even in a rising stress field. The instability criterion for a deformed bulge of radius R is, therefore, 
established by the following relation between stress and the deformed geometry for any point on the dome 
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 d dR dh
R h

σ
σ

= −  (10) 

or in terms of effective strain 

 1 11d dR
d R d
σ

σ ε ε
= +  (11) 

If the instability condition is attained, it will first occur at the point of maximum effective strain at the top 
of the dome (at z = H) such that Eq. (11) can be stated as 

 1 3 1 2 1
2 4 2

d
d
σ ε

σ ε ε
⎛ ⎞⎛ ⎞= − +⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

 (12) 

Applying a power-law constitutive form to relate effective stress to effective strain in the plastic region, 

  ,nKσ ε=  (13) 

the effective strain at instability is, after a great deal of algebraic manipulation, 

 ( )4 2 1
11crit nε = +  (14) 

where n is the power-law exponent in the constitutive equation, Eq. (13). 

An alternative instability criterion was developed by Chakrabarty and Alexander [6] which was based on 
a Tresca yield surface. The critical effective strain was found to be 

 2(2 )(1 2 )
11 4crit

n n
n

ε − +
=

−
 (15) 
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For a given material and diaphragm geometry ( n, a, h0 ), the pressure at the instability condition (i.e., the 
burst pressure) can be determined by the following procedure: 

• Calculate the effective critical strain.    ( )4 2 1
11crit nε = +  

• Calculate the corresponding effective critical stress.   n
crit Kσ ε=  

• Calculate the critical thickness.     ( )0 expcrit crith h ε= −  

• Calculate the polar height at the critical condition.  exp 1
2
crit

critH a ε⎛ ⎞= −⎜ ⎟
⎝ ⎠

 

• Calculate the corresponding bulge curvature radius.  
2 2

2
crit

crit
crit

H aR
H

+
=  

• Finally, calculate the predicted burst pressure.  2 crit crit
burst

crit

hp
R

σ
=  
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3. Stochastic Model Development 

3.1. Computational and Theoretical Model Results 

Computational results using the GAPL-3 code were presented in [2]. Converged solutions were obtained 
for eight of the nine tests. Comparison of experimental and computational centerline deflections showed 
good agreement for the eight converged cases. In the nonconverged case (ABS-C, geometry C), some 
difficulty was reported in getting convergence at high pressures. In all cases the experimental data showed 
a “tailing up” as the pressure approached burst pressure, which the computational model was unable to 
capture. In general, the prediction of the burst pressure for the eight converged cases showed good 
agreement with the experimentally-determined burst pressures. Defining α  as the ratio of the 
experimental burst pressure to the computationally-predicted pressure at numerical instability, the mean 
for α  was 1.19 with a standard error for the mean of 0.0484±  and a standard deviation for the sample of 
0.137. 

The finite-element models using ABAQUS were able to obtain burst pressures for all nine tests, where the 
pressure at numerical instability, PNI , is defined as the pressure at which a breakdown occurs in the 
numerical procedure, causing the run to abort. For a nonlinear, finite-strain, static load step, ABAQUS 
uses automatic sizing of the load increment to maintain numerical stability. The number of iterations 
needed to find a converged solution for a load increment varies depending on the degree of nonlinearity in 
the system. If the solution has not converged within 16 iterations or if the solution appears to diverge, 
ABAQUS abandons the increment and starts again with the increment size set to 25% of its previous 
value. An attempt is then made at finding a converged solution with this smaller load increment. If the 
increment still fails to converge, ABAQUS reduces the increment size again. ABAQUS allows a 
maximum of five cutbacks in an increment before aborting the analysis. Therefore, ABAQUS will 
attempt a total of 96 iterations with six increments sizes before abandoning the solution. The initial load 
size for the failing increment was typically already very small due to difficulties in convergence with the 
previous and final successfully-converged load increment. 

Equivalent plastic strain contours are shown in Fig. 4 for the geometry A (ABS-C carbon steel) specimen 
(Test No. 7) at the point of numerical instability. The experimental burst pressure for this specimen was 
9.8 ksi, and numerical instability of the solution occurred at approximately 9.05 ksi, for an 1.083α = . 
Highly localized plastic straining can be observed near the fillet, thus predicting an edge failure for this 
specimen which did in fact fail at its edge. 
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(a)  

(b)  

Fig. 4. Equivalent plastic strain contours for the Geometry A (ABS-C carbon steel) specimen at the 
point of numerical instability. Highly localized plastic straining provides a precondition for 
plastic collapse at the edge of the specimen. (ABAQUS analysis results) 
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Figure 5 compares the predicted centerline deflection load histories with the experimentally-observed 
deflections at failure (estimated from Figs. 3 and 4 in [2]). The “tailing up” of the experimental deflection 
curves near the point of failure is predicted by the model, indicating that the computational simulations 
are capturing the final localized “necking” of the diaphragm. For the nine ABAQUS predictions, the 
mean for α  was 1.055 with a standard error for the mean of 0.0331±  and a standard deviation for the 
sample of 0.0993. 

The results of applying Hill’s failure criterion are presented in Table 3. The mean for α  was 1.058 with a 
standard error for the mean of 0.0374±  and a standard deviation for the sample of 0.1123. The 
calculations were repeated using the theoretical critical strain of Chakrabarty and Alexander [6], Eq. (15), 
with the resulting burst pressures being essentially identical to those given in Table 3. 

Table 3. Application of Hill’s Instability Theory to Nine Disk-burst Tests 

Test K n a h 0 εcrit H crit R crit σcrit h crit P NI P burst(exp) α
(ksi) (in.) (in.) (in.) (in.) (ksi) (in.) (ksi) (ksi)

1 162.41 0.27 2.625 0.250 0.561 1.493 3.054 138.84 0.1427 12.98 15 1.156
2 162.41 0.27 2.875 0.125 0.561 1.635 3.345 138.84 0.0714 5.92 6.8 1.148
3 162.41 0.27 2.625 0.125 0.561 1.493 3.054 138.84 0.0714 6.49 7.7 1.187
4 139.41 0.12 2.625 0.250 0.449 1.316 3.276 126.96 0.1596 12.37 11 0.889
5 139.41 0.12 2.875 0.125 0.449 1.441 3.588 126.96 0.0798 5.65 5.3 0.938
6 139.41 0.12 2.625 0.125 0.449 1.316 3.276 126.96 0.0798 6.19 6.7 1.083
7 105.20 0.17 2.625 0.250 0.490 1.383 3.183 92.95 0.1532 8.95 9.8 1.095
8 105.20 0.17 2.875 0.125 0.490 1.514 3.486 92.95 0.0766 4.08 3.75 0.918
9 105.20 0.17 2.625 0.125 0.490 1.383 3.183 92.95 0.0766 4.47 4.94 1.104  

 

A summary of all 26 PNI values is given in Table 4. Combining the 26 cases into a single sample gives a 
mean for α  of 1.098 with a standard error for the mean of 0.0251±  and a standard deviation for the 
sample of 0.1281. Even though Hill’s theory is applicable only for center failures, the good agreement 
between the experiments (including those that failed at the edges) suggests that, for the edge-failure cases, 
the specimens were also close to a condition of plastic collapse at the center when they failed first at the 
edge. 
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(a)  

(b)  

(c)  
Fig. 5. Comparison of experimental centerline vertical deflections at failure to ABAQUS FEM 

vertical deflection histories at the center of the Geometry A and B specimens for (a) SS 304, 
(b) A533-B, and (c) ABS-C materials, and 
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(d)  

Fig. 5. (continued) (d) ABAQUS FEM vertical deflection histories at the center of Geometry C, all 
three materials compared to specimen failure. 
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Table 4. Comparison of Experimental Burst Pressures to Three Predictions 

Test Material Geometry Burst Location Pressure at Location Exp. BP Pressure at Location Exp. BP Pressure at Location Exp. BP
Number Pressure (BP) of Failure Instability (P NI ) of Failure P NI Instability (P NI ) of Failure P NI Instability (P NI ) of Failure P NI

(ksi) (ksi) (ksi) (ksi)
1 SS 304 A 15 Edge 12.3 Edge 1.22 12.98 Center 1.16 13.29 Edge 1.13
2 B 6.8 Center 4.8 Edge 1.42 5.92 Center 1.15 6.22 Edge 1.09
3 C 7.7 Center 7.4 Center 1.04 6.49 Center 1.19 6.59 Center 1.17
4 A533B A 11 Edge 9.8 Edge 1.12 12.37 Center 0.89 12.26 Edge 0.90
5 B 5.3 Edge 4.2 Edge 1.26 5.65 Center 0.94 5.24 Edge 1.01
6 C 6.7 Center 6.8 Center 0.99 6.19 Center 1.08 6.03 Edge 1.11
7 ABS-C A 9.8 Edge 8 Edge 1.23 8.95 Center 1.10 9.05 Edge 1.08
8 B 3.75 Edge 3 Edge 1.25 4.08 Center 0.92 4.19 Edge 0.89
9 C 4.94 Edge 4.47 Center 1.10 4.46 Edge/Center 1.11

Experimental Riccardella's ASME Paper ABAQUS SolutionsHill's Plastic Instability Theory
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3.2. Development of Stochastic Model of Failure 

The development of several stochastic models is described in this section in which the uncertainties 
associated with predictions of burst pressure for circular diaphragms using computational or analytical 
methods are estimated. It is postulated that the trends observed in the ratios of experimentally-observed 
failure pressures in the nine disk-burst tests in [2] to calculated PNI values will be representative of the 
predictive accuracy of computational estimates of the burst pressure in the Davis-Besse wastage-area 
problem. Given a calculated PNI for a specific configuration of the wastage area, the scaled stochastic 
models will provide estimates of the cumulative probability that the true burst pressure will be less than a 
given service pressure, specifically providing a failure pressure with its associated probability. This 
postulated linkage of the test specimens to the Davis-Besse problem is obviously an approximation, since 
the wastage area footprints are not identical to the circular diaphragms used in the tests. The 
appropriateness of this linkage is in part, therefore, dependent on the ability of the finite-element models 
to capture, as accurately as is feasible and based on the best current knowledge, the actual geometry of the 
wastage area footprint. Accurate material properties are also an important input to the analysis. 

Table 5 summarizes some descriptive statistics for the ratio, α , of experimental burst pressure to the 
calculated pressure at numerical instability for the three predictive methods discussed in the previous 
section. Also shown in the table are the results of combining the three samples into one larger sample of 
26 data points. This combined sample was used to develop the stochastic models with α  treated as a 
random variate. Combining the three sets into a single sample produced a sample size large enough to 
make a reasonably thorough statistical analysis of a range of continuous distributions feasible. Also given 
in Table 6 is a ranking of the 26 data points where the median rank order statistic is  

 ( )
0.3
0.4i

iP
n

−
=

+
 (16) 

The Expert Fit© [9] computer program was used to develop several stochastic models of the sample data 
presented in Table 6. Using a combination of heuristic criteria and Goodness of Fit statistics, twenty-six 
continuous distributions were tested with the results shown in ranked order in Table 7. The point-
estimation procedures noted in Table 7 include Maximum Likelihood (ML), Method of Moments (MM), 
and Quantile Estimates. Table 8 compares three Goodness of Fit statistics (Anderson-Darling, 2χ , and 
Kolmogorov-Smirnoff (K-S)) for the top six distributions. None of these distributions were rejected by the 
Goodness of Fit tests, and all received an absolute rating of Good by the Expert Fit© computer program. 
The remaining twenty distributions investigated were either rejected by one or more of the Goodness of 
Fit tests at some significance level and/or received a less than Good heuristic absolute rating by the 
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Expert Fit© software. Figure 6 shows a density/histogram overplot of the six candidate continuous 
distributions. 

Table 5. Descriptive Statistics for the Ratio of Experimental Burst Pressure 
 to Predicted Burst Pressures 

Descriptive Statistics Riccardella (1972) Hill's Theory ABAQUS Combined
Sample Size 8 9 9 26
Mean 1.1902 1.0576 1.0549 1.0975
Standard Error 0.0484 0.0374 0.0331 0.0251
Median 1.2223 1.0953 1.0939 1.1057
Standard Deviation 0.1368 0.1123 0.0993 0.1281
Sample Variance 0.0187 0.0126 0.0099 0.0164
Kurtosis -0.0506 -1.4799 -0.4349 0.2593
Skewness 0.0007 -0.5892 -0.9683 0.1714
Range 0.4314 0.2979 0.2739 0.5277
Minimum 0.9853 0.8889 0.8943 0.8889
Maximum 1.4167 1.1868 1.1682 1.4167
Confidence Level(95.0%) 0.1144 0.0863 0.0764 0.0517  

Table 6. Combined Sample Used in Development of Stochastic Model 
Rank Method Material Geometry α * Order Statistic

1 Hill's Theory A533B A 0.8889 0.0265
2 ABAQUS Soln. ABS-C B 0.8943 0.0644
3 ABAQUS Soln. A533B A 0.8972 0.1023
4 Hill's Theory ABS-C B 0.9180 0.1402
5 Hill's Theory A533B B 0.9382 0.1780
6 Ricarrdella (1972) A533B C 0.9853 0.2159
7 ABAQUS Soln. A533B B 1.0119 0.2538
8 Ricarrdella (1972) SS 304 C 1.0405 0.2917
9 ABAQUS Soln. ABS-C A 1.0827 0.3295
10 Hill's Theory A533B C 1.0829 0.3674
11 ABAQUS Soln. SS 304 B 1.0939 0.4053
12 Hill's Theory ABS-C A 1.0953 0.4432
13 Hill's Theory ABS-C C 1.1042 0.4811
14 ABAQUS Soln. ABS-C C 1.1072 0.5189
15 ABAQUS Soln. A533B C 1.1104 0.5568
16 Ricarrdella (1972) A533B A 1.1224 0.5947
17 ABAQUS Soln. SS 304 A 1.1288 0.6326
18 Hill's Theory SS 304 B 1.1479 0.6705
19 Hill's Theory SS 304 A 1.1560 0.7083
20 ABAQUS Soln. SS 304 C 1.1682 0.7462
21 Hill's Theory SS 304 C 1.1868 0.7841
22 Ricarrdella (1972) SS 304 A 1.2195 0.8220
23 Ricarrdella (1972) ABS-C A 1.2250 0.8598
24 Ricarrdella (1972) ABS-C B 1.2500 0.8977
25 Ricarrdella (1972) A533B B 1.2619 0.9356
26 Ricarrdella (1972) SS 304 B 1.4167 0.9735

*α = Experimental Burst Pressure/Prssure at Numerical Instability  
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Table 7. Continuous Distributions Investigated – Ranked by Goodness of Fit 
Model Parameters Point Estimator Parameter Values 

1 - Log-Laplace Location Default 0 
 Scale ML estimate 1.1057 
 Shape ML estimate 11.45441 

2 - Beta Lower endpoint MOM estimate 0.61449 
 Upper endpoint MOM estimate 1.78866 
 Shape #1 MOM estimate 7.95564 
 Shape #2 MOM estimate 11.38552 

3 - Gamma Location Default 0 
 Scale ML estimate 0.01444 
 Shape ML estimate 76.01293 

4 - Log-Logistic Location Default 0 
 Scale ML estimate 1.09586 
 Shape ML estimate 15.21867 

5 - Normal Mean ML estimate 1.09747 
 Standard Dev. ML estimate 0.12811 
6 - Weibull Location Default 0 

 Scale ML estimate 1.15383 
 Shape ML estimate 9.03948 

7 - Lognormal Location Default 0 
 Scale ML estimate 0.08641 
 Shape ML estimate 0.11516 

8 - Random Walk Location Default 0 
 Scale ML estimate 0.92335 
 Shape ML estimate 69.18788 

9 - Inverse Gaussian Location Default 0 
 Scale ML estimate 1.09747 
 Shape ML estimate 82.23451 

10 - Pearson Type V Location Default 0 
 Scale ML estimate 81.42582 
 Shape ML estimate 75.1846 

11 - Inverted Weibull Location Default 0 
 Scale ML estimate 1.02827 
 Shape ML estimate 8.88835 

12 - Weibull(E) Location Quantile estimate 0.88884 
 Scale ML estimate 0.21562 
 Shape ML estimate 1.15868 

13 - Rayleigh(E) Location Quantile estimate 0.88884 
 Scale ML estimate 0.24352 

14 - Erlang(E) Location Quantile estimate 0.88884 
 Scale ML estimate 0.20862 
 Shape ML estimate 1 

15 - Gamma(E) Location Quantile estimate 0.88884 
 Scale ML estimate 0.21819 
 Shape ML estimate 0.95616 

16 - Exponential(E) Location ML estimate 0.8889 
 Scale ML estimate 0.20857 

17 - Pearson Type VI(E) Location Quantile estimate 0.88884 
 Scale Default 1 
 Shape #1 ML estimate 1.00117 
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Model Parameters Point Estimator Parameter Values 
 Shape #2 ML estimate 5.43892 

18 - Lognormal(E) Location Quantile estimate 0.88884 
 Scale ML estimate -2.17414 
 Shape ML estimate 1.86865 

19 - Random Walk(E) Location Quantile estimate 0.88884 
 Scale ML estimate 699.32509 
 Shape ML estimate 4.82644 

20 - Pareto(E) Location ML estimate 0.8889 
 Shape ML estimate 4.8976 

21 - Chi-Square Location Quantile estimate 0.88884 
 d.f. ML estimate 0.72313 

22 - Wald Location Default 0 
 Shape ML estimate 48.03951 

23 - Rayleigh Location Default 0 
 Scale ML estimate 1.10463 

24 - Exponential Location Default 0 
 Scale ML estimate 1.09747 

25 - Wald(E) Location Quantile estimate 0.88884 
 Shape ML estimate 1.43E-03 

26 - Inverse Gaussian(E) Location Quantile estimate 8.89E-04 
 Scale ML estimate 0.20862 
 Shape ML estimate 1.44E-03 
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Table 8. Continuous Distributions That Passed All Goodness of Fit Tests 
Rank Model Relative Score Rating Anderson-Darling χ2 Statistic K-S

1 Log-Laplace 98 Good 0.44952 2.15385 0.59218
2 Beta 93 Good 0.44697 4.92308 0.81037
3 Gamma 89 Good 0.46050 3.53846 0.81894
4 Normal 83 Good 0.39325 1.23077 0.74664
5 Random Walk 75 Good 0.50448 3.53846 0.85840
6 Inverse Gaussian 71 Good 0.50514 3.53846 0.85891  

 

 

 
Fig. 6. Overplot of probability densities with histogram for fitted stochastic models. 
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The six distributions in Table 8 have the following analytical forms: 

Log-Laplace Distribution 
The Log-Laplace distribution has the highest relative ranking among the twenty-six distributions 
investigated. The general three-parameter Log-Laplace continuous distribution has the following 
probability density function, fLP, and cumulative distribution function, FLP,  
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where a is the location parameter, b is the scale parameter, and c is the shape parameter. 

Beta Distribution 
The Beta distribution has the following probability density function, fBe, and cumulative distribution 
function, FBe,  
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where 1 2

1
1 1

1 2
0

( , ) (1 )B u u duα αα α − −= −∫ , a is the lower endpoint, b is the upper endpoint, 1α  is the first 

shape parameter, and 2α  is the second shape parameter. 
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Gamma Distribution 
The Gamma distribution has the following probability density function, fGa, and cumulative distribution 
function, FGa,  
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where α  is the shape parameter, β  is the scale parameter, γ  is the location parameter, and 

1
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Normal Distribution 
The Normal distribution has the following probability density function, fN, and cumulative distribution 
function, FN, 

 

( )2

22

1( | , ) exp    for all real numbers 
22

( | , ) ( ) ( | 0,1)   for ( ) /

N

z

N N

x
f x x

F x z f d z x

µ
µ σ

σπσ

µ σ ξ ξ µ σ
−∞

⎡ ⎤− −
= ⎢ ⎥

⎢ ⎥⎣ ⎦

= Φ = = −∫
 (20) 

where µ  is the mean (location parameter) and σ  is the standard deviation (scale parameter). 
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Random Walk Distribution 
The Random Walk distribution has the following probability density function, fRW, and cumulative 
distribution function, FRW 
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where α  is the shape parameter, β  is the scale parameter, γ  is the location parameter, and Φ  is defined 
in Eq. (20). 

Inverse Gaussian Distribution 
The Inverse Gaussian distribution has the following probability density function, fIG, and cumulative 
distribution function, FIG 
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where α  is the shape parameter, β  is the scale parameter, γ  is the location parameter, and Φ  is defined 
in Eq. (20). 

Figures 7 and 8 compare the probabilities and the cumulative distribution functions, respectively, of the 
top-three ranked models. 
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Fig. 7. Probability-probability plot comparing top three fitted distributions. 

 
Fig. 8. Log-Laplace statistical failure model (n = 26) compared to a beta and gamma cumulative 

distribution functions. 
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As a specific example from the Expert Fit© [9] analysis, the Log-Laplace stochastic model of failure has 
the following form 
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where α  is the ratio of the true (but unknown) burst pressure to the calculated pressure at numerical 
instability, PNI. The percentile function is given by 
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The stochastic models in Table 8 can be used to provide statistical estimates of the expected predictive 
accuracy of computational methods applied to burst pressure calculations for service pressures within the 
range of the data used to develop the model, i.e., 0.8889 1.4167NI NIP SP P× ≤ ≤ × , where, SP, is a service 
pressure, and PNI is the calculated pressure at numerical instability for the condition under investigation. 
Extrapolating significantly beyond the range of the data becomes somewhat problematic due to the small 
sample size of twenty-six data points. All six models in Table 8 are plausible candidates to describe the 
population from which the sample in Table 6 was drawn, but the relative ranking of these distributions 
may be sensitive to sample size. Due to the small sample size (n = 26) used in the stochastic model 
development, no definitive claim can be made that one distribution is significantly superior to the other 
five; however, the Log-Laplace is shown to have the highest ranking given the available data, and it 
produces the highest failure probabilities when extrapolating to service pressures well below the range of 
the data, e.g., to the nominal operating pressure or safety-valve set-point pressure. 

Table 9 provides an example of the sensitivity of the fitting process to the sample size for the case of the 
“as-found” cavity condition (to be discussed in the next section). Normal distributions were fitted to two 
samples from the predictions of the disk-burst tests: (1) the ABAQUS finite-element results (n = 9) and 
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(2) the combined data set (n = 26). The two stochastic models were then scaled by the calculated PNI of 
6.65 ksi for the “as-found” condition. Extrapolating beyond the range of the data for the “as-found” case 
study produces approximately three orders-of-magnitude difference in estimated failure probability at the 
operating pressure of 2.165 ksi. This difference in estimated failure probability decreases as the service 
pressure increases towards the range of data used to develop the models. 

 

Table 9. Sensitivity of Cumulative Probability of Failure to Sample Size: 
 “As-Found” Condition (see Sect. 4) 

Internal
Pressure ABAQUS Combined

(ksi) n =9 n =26
6.65 0.2902 0.2233

2.155 1.04E-12 7.81E-10
2.165 1.17E-12 8.40E-10
2.200 1.53E-13 1.08E-09
2.225 2.02E-13 1.30E-09
2.250 2.68E-13 1.55E-09
2.275 3.53E-13 1.85E-09
2.300 4.66E-13 2.21E-09
2.325 6.13E-13 2.64E-09
2.350 8.05E-13 3.14E-09
2.375 1.06E-12 3.75E-09
2.400 1.39E-12 4.46E-09
2.425 1.81E-12 5.30E-09
2.450 2.37E-12 6.30E-09
2.475 3.09E-12 7.48E-09
2.500 4.03E-12 8.87E-09

Normal Distribution
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4. Application of Stochastic Model to Bounding Calculation 

A bounding calculation was carried out for the “as-found” condition of the wastage area in the 
Davis-Besse head. The finite-element model used in the analysis is shown in Fig. 9. An adjusted stress-
strain curve (see Fig. 10) was constructed to lower-bound the available data [10, 11] for the cladding 
material. The geometry of the wastage area footprint was taken from Fig. 13 in the Root Cause Analysis 
Report [12]. As an estimate of the uncertainty in the current wastage area measurements, the footprint was 
extended by approximately 0.25 inches (see Table 10 and Fig. 11 for a geometric description of the 
adjusted footprint). A uniform cladding thickness of 0.24 inches (the minimum cladding thickness value 
based on ultrasonic testing (UT) measurements on a ½ inch grid as depicted in Fig. 14 of ref. [12]) was 
assumed in the model. The finite-element model was then loaded with increasing pressure until the point 
of numerical instability at an internal pressure of 6.65 ksi (see Fig. 12) was attained. Decreasing the 
cladding thickness from 0.24 inches to 0.1825 inches (the minimum design allowable) resulted in a 
calculated pressure at numerical instability of 5.18 ksi. In the following, an example is provided of how 
the statistical distributions in Table 8 can be scaled and applied to the analysis of failure of the cladding in 
the wastage area. 

As an example, the Log-Laplace statistical failure model can be scaled to provide estimates of cumulative 
probability of failure (or probability of nonexceedance) as a function of internal service pressure for the 
specific condition of the wastage area simulated by the finite-element analysis. The scaled Log-Laplace 
model (see Fig. 13) has the following form  
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where, SP, is the service pressure under consideration, PNI is the calculated pressure at numerical 
instability, and BP(true) is the unknown true burst pressure. To calculate as estimated burst (failure) 
pressure, BPp , with probability, p, the scaled percentile function is applied 
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Table 10. Wastage-Area-Footprint Geometry Data 

Description Scaling Factor Area Perimeter
x c y c I xx I yy I xy I 1 I 2 I 1 I 2

(in2) (in.) (in.) (in.) (in4) (in4) (in4) (in4) (in4) < n x , n y  > < n x , n y  >

As-Found  Footprint 1 35.36 30.36 16.4122 -0.1194 98.89 9699.33 -117.16 75.26 197.41 <0.9004, -0.4351> <0.4351, 0.9004>

Adjusted Footprint 0.25 in. 40.06 31.78 16.4301 -0.1255 129.02 11031.81 -141.35 99.00 245.71 <0.8943, -0.4476> <0.4476, 0.8943>
for Bounding Calculation

Footprint centroid is in global coordinates.
Global coordinate system has its z-axis aligned with the vertical centerline of the vessel.
The x-y plane of the global coordinate system is a horizontal plane
with the x-axis along the line between the centerlines of Nozzles 3 and 11.

Eigenvalue Extraction for Prinicipal Moments and Directions
Area Footprint About the Centroid Principal Moments Principal Directions

Moments of InteriaCentroid of Wastage
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Table 10 (continued) Details of Wastage Area Footprint Before Adjustment for Bounding 
Calculation (Figure taken from Fig. 13 ref. [12]) 

 
Point x* y* Point x* y*

0 -0.639 -1.895 24 8.000 0.334
1 -0.334 -2.280 25 7.500 0.483
2 0.000 -2.235 26 7.000 0.582
3 0.500 -2.492 27 6.500 0.829
4 1.000 -2.522 28 6.000 1.046
5 1.500 -2.482 29 5.500 1.303
6 2.000 -2.581 30 5.000 1.778
7 2.500 -2.730 31 4.500 2.460
8 3.000 -2.769 32 4.000 3.023
9 3.500 -2.759 33 3.500 3.300
10 4.000 -2.789 34 3.000 3.221
11 4.500 -2.819 35 2.500 3.250
12 5.000 -2.819 36 2.000 3.300
13 5.500 -2.759 37 1.500 3.349
14 6.000 -2.700 38 1.000 3.240
15 6.500 -2.621 39 0.500 3.122
16 7.000 -2.512 40 0.000 3.000
17 7.500 -2.364 41 -0.210 2.578
18 8.000 -2.216 42 -0.364 2.000
19 8.500 -2.087 43 -0.242 1.985
20 9.000 -1.712
21 9.135 -1.000
22 9.000 -0.555
23 8.500 0.137

 
Origin of local coordinate system located at centerline of Nozzle 3. (inches) 
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 (a)  

(b)  
Fig. 9. Finite-element global and submodels of the Davis-Besse head and wastage area. The 

displacements at the vertical side boundaries of the submodel are driven by the global 
model. Both models are exposed to the same internal pressure loading. 
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(c)  

Fig 9.  (continued) (c) geometry of RPV head and closure flange used in global model (B&W 
proprietary dimensions have been blacked out), 
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(d)  

Fig 9. (continued) (d) relative location of submodel within full RPV head, 
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(e)  

Fig 9. (continued) (e) geometry of submodel relative to Nozzles 3, 11, 15, and 16. 
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Fig. 10. Adjusted SS308 stress vs. strain curve used in the bounding-case calculations compared to 

curves from a range of A8W heats. Strain hardening in the adjusted curve was reduced to 
lower-bound all of the data. The offset yield strength and strain at ultimate strength were 
retained from the unadjusted SS308 curve received from Framatome. 
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Fig. 11. Geometry of adjusted wastage area footprint. Lower figure is a Photoworks®-rendered 
image of the submodel with the adjusted “as-found” footprint. 
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Fig. 12. Effective plastic-strain histories at two high-strain locations in the wastage area: (a) near 
the center and (b) near Nozzle 3. 
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Fig. 13. Application of the failure statistical criterion produces a cumulative probability of failure 

(based on a Log-Laplace distribution) curve for the Bounding Case condition. Cumulative 
probability of failure as a function of internal pressure. 
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As discussed above, the “as-found” bounding calculation predicted a PNI value of 6.65 ksi which has a 
cumulative probability of failure of 0.158 for the Log-Laplace model. Additional predicted burst pressure 
percentiles can be calculated including from Eq. (26): 
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The Log-Laplace stochastic model also estimates a cumulative probability of failure of 74.14 10−×  at the 
operating pressure of 2.165 ksi and 62.15 10−×  at the safety-valve set-point pressure of 2.5 ksi. See 
Table 11 for additional estimates from all six models. For the six distributions in Tables 8 and 11, the 
average probability of failure is 86.91 10−×  at 2.165 ksi, 73.60 10−×  at 2.5 ksi, and 0.2155 at 6.65 ksi. 

Note in Table 11, that as the internal pressure decreases from PNI down to a nominal operating pressure, 
the variability in the failure probability estimates increases significantly. The standard deviation of the six 
estimates, when normalized by the sample mean, increases from 0.13 at 6.65 ksi to 2.44 at 2.165 ksi. The 
average values in Table 11 are dominated (at the lower tail) by the Log-Laplace distribution. For this 
reason, we recommend adopting the Log-Laplace model for future studies as the most appropriate 
distribution based on the available data. Note also that the Log-Laplace model produces the highest 
failure probabilities of the six candidates when extrapolating down into the lower tail of the distribution. 

Table 11. Estimated Cumulative Probability of Failures for the Bounding Calculation 

Distribution Parameters Point Estimator Paramter Values Relative Score 2.165 ksi 2.5 ksi 6.65 ksi
Log-Laplace Location Default 0 98 4.14E-07 2.15E-06 0.1582

Scale ML estimate 1.1057
Shape ML estimate 11.45441

Beta Lower endpoint MOM estimate 0.61449 93 0 0 0.2340
Upper endpoint MOM estimate 1.78866

Shape #1 MOM estimate 7.95564
Shape #2 MOM estimate 11.38552

Gamma Location Default 0 89 8.17E-19 1.50E-15 0.2236
Scale ML estimate 0.01444
Shape ML estimate 76.01293

Normal Mean ML estimate 1.09747 83.33 8.44E-10 8.90E-09 0.2234
Standard Dev. ML estimate 0.12811

Random Walk Location Default 0 75 0 0 0.2269
Scale ML estimate 0.92335
Shape ML estimate 69.18788

Inverse Gaussian Location Default 0 71 4.01E-29 1.79E-22 0.2269
Scale ML estimate 1.09747
Shape ML estimate 82.23451

Average= 6.91E-08 3.60E-07 0.2155
StdDev= 1.69E-07 8.77E-07 0.0283

StdDev/Average= 2.44 2.44 0.13

Failure Probability at Internal Pressure
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5. Summary and Conclusions 

Six stochastic models of the probability of failure associated with a computational prediction of the 
plastic collapse of the exposed cladding in the wastage area of the Davis-Besse RPV head have been 
developed from the following technical bases: 

(1) experimental data obtained during disk-burst tests reported by Riccardella [2] with loadings, 
geometries, and materials relevant to the Davis-Besse pressure loading, wastage-area 
footprint, and cladding, 

(2) nonlinear, large-deformation, elastic-plastic discrete-element analyses of the disk-burst tests 
also reported in [2] (GAPL-3 discrete-element code[3]),  

(3) nonlinear, finite-strain, elastic-plastic finite-element analyses performed for the current study 
(ABAQUS finite-element code[4]) of the nine disk-burst test specimens reported in [2], and 

(4) a theoretical criterion for plastic instability in a circular diaphragm under pressure loading, 
due to Hill [5] (as cited in [7]), applied to the disk-burst tests. 

Among the twenty-six continuous distributions investigated, six passed all of the heuristic and Goodness 
of Fit tests applied in the analysis. The six distributions ranked in relative order are: (1) Log-Laplace, 
(2) Beta, (3) Gamma, (4) Normal, (5) Random Walk, and (6) Inverse Gaussian. As an example of how the 
stochastic models may be applied to the Davis-Besse wastage area problem, the top-ranked Log-Laplace 
model has the scaled form of 
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 (27) 

Given a computationally-determined pressure at numerical instability, PNI, and service pressure, SP, the 
model gives an estimate of the cumulative probability of nonexceedance of the true but unknown burst 
pressure, ( )BP trueP , i.e., ( )Pr BP trueP SP⎡ ⎤≤⎣ ⎦ . 

Due to the small sample size (n = 26) used in the stochastic model development, no definitive claim can 
be made that one distribution is significantly superior to the other five; however, the Log-Laplace is 
shown to have the highest ranking given the available data, and it produces the highest failure 
probabilities when extrapolating to service pressures well below the range of the data, e.g., to the nominal 
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operating pressure or safety-valve set-point pressure. The Log-Laplace stochastic model is, therefore, the 
recommended candidate for future applications to the Davis-Besse wastage-area problem. 

As an example application, estimates are provided for a bounding calculation of the “as-found” Davis-
Besse wastage area. The bounding calculation predicted a PNI value of 6.65 ksi. From the Log-Laplace 
stochastic model, the corresponding median failure pressure is 7.35 ksi. Taking the average of the 
estimates from all six distributions produces a probability of failure of 86.91 10−×  at 2.165 ksi, 73.60 10−×  
at 2.5 ksi, and 0.2155 at 6.65 ksi. 

These results for the “as-found” Davis-Besse wastage area can be considered bounding due to the 
following factors: 

(a) The modeled wastage-area footprint is slightly larger than the exposed-cladding area reported 
in [12]. 

(b) The minimum cladding thickness of 0.24 inches reported in [12] was used in this analysis. 

(c) A lower-bound stress-strain curve was constructed from the available tensile data for the 
cladding material. 

(d) The reinforcing effect of the J-groove weld was not included in the simulation. 
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