FINAL STATUS SURVEY REPORT BUILDING 235/236 INTERIOR

MALLINCKRODT, INC. COLUMBIÚM- TANTULUM PROJECT- PHASE 1

DECEMBER 2003

MALLINCKRODT

Mallinckrodt, Inc. St. Louis, Missouri

808 Lyndon Lane, Suite 201 Louisville, Kentucky 40222 502/339-9767 (Voice) 502/339-9275 (Fax)

BURNS & MCDONNELL 9400 Ward Parkway Kansas City, Missouri 64114 Phone (816) 333-9400 Fax (816) 822-3463

· · · · ·

<u>ه</u>٠.

NEXTEP ENVIRONMENTAL 808 Lyndon Lane, Suite 201 Louisville, Kentucky 40222 Phone (502) 339-9767 Fax (502) 339-9275

MALLINCKRODT, Inc. <i>c-t project – phase i</i> FINAL STATUS SURVEY REPORT
Buildings 235 & 236 Interior Survey Units 23501, 23502, & 23601
Revision 0
Prepared by
BMNX
Joint Venture
Approved by: Date: 12/2/03
Approved by: Mallinckrodt C-T Decommissioning Project Manager Mallinckrodt C-T Decommissioning Project Manager
Approved by: <u>//mC. Ubroaltor</u> Date: <u>12/13/03</u> Mallinckrodt Radiation Safety Officer
Approved by: <u>Hallewman</u> Date: <u>12/12/03</u> BMNX C-T Decommissioning Project Manager
Approved by: <u>1777777777777777777777777777777777777</u>
Issued by: <u>BMNX Quality Assurance Manager</u> Date: <u>1-5-04</u>

1

Mallinckrodt C-T Project–Phase I Final Status Survey Report Buildings 235 & 236 Interior

.

Revision: 0 December 2003

.

BURNS & MCDONNELL 9400 Ward Parkway Kansas City, Missouri 64114 Phone (816) 333-9400 Fax (816) 822-3463

NEXTEP ENVIRONMENTAL 808 Lyndon Lane, Suite 201 Louisville, Kentucky 40222

Louisville, Kentucky 40222 Phone (502) 339-9767 Fax (502) 339-9275

MALLINCKRODT, Inc.

FINAL STATUS SURVEY REPORT

Buildings 235 and 236 Interior Survey Units 23501, 23502, & 23601 Revision 0

1. INTRODUCTION

- 1.1 PURPOSE
 - 1.1.1. This Final Status Survey Report (FSSR) is being submitted by Mallinckrodt, Inc. to the U.S. Nuclear Regulatory Commission (NRC) for the floors and walls of Buildings 235 and 236 on the Mallinckrodt St. Louis site (designated as Survey Units (SU) 23501, 23502, and 23601). This report is being provided in accordance with the Mallinckrodt C-T Project, Phase I Decommissioning Plan (D Plan). This Final Status Survey (FSS) was performed in accordance with Field Instruction CT-FI-007¹ to demonstrate that the established guidelines for unrestricted release have been met. The results of the FSS are presented in this FSSR as justification for release of this survey unit from License STB-401 for unrestricted use.
- 1.2. HISTORICAL BACKGROUND
 - 1.2.1. From 1942 to 1961 Mallinckrodt was involved in radiological activities outside of the scope of this report which terminated in 1977. Mallinckrodt's facilities have either been released from the applicable license or are being remediated by the US Army Corps of Engineers in the affected areas. License STB-401 was issued to

¹ CT-FI-007, Final Status Survey Guide for Survey Unit 23501 & 23601.

Mallinckrodt in 1961 by the Atomic Energy Commission (AEC) (later the Nuclear Regulatory Commission (NRC)) to allow extraction of columbium and tantalum (C-T) from natural ores and tin slag, since the ores and byproducts of processing contain uranium and thorium isotopes. Mallinckrodt has not performed C-T extraction since 1987. On July 12, 1993, NRC amended License STB-401 to possession-only for D&D and license termination.

2. SCOPE OF FINAL STATUS SURVEY (FSS)

- 2.1. DEFINITION AND CLASSIFICATION OF SURVEY UNIT (SU)
 - 2.1.1. The affected interior surfaces of Buildings 235 and 236 have been designated as three survey units (SU). SU-23501 consists of the interior floor and walls of building 235, rooms 101 and 102. SU-23502 consists of the ground rods in building 235, room 101. SU-23601 consists of the interior floor and walls of building 236. SU-23501 and SU-23601 are each classified as Class 2. SU-23502 are classified as Class 1.
 - 2.1.2. Table 2.1 below contains the description provided in Appendix A of the D Plan for the areas referenced by this FSSR.

Area	Building	Location / Surface
71	235	East Room - Interior Walls: One new 36" mandoor located on southeast corner installed for accessing new hydrogenation room. Several new penetrations in wall to accommodate piping modifications. This work was performed in 1998.
72	235	East Room - Floor: Epoxy coating applied in July 1998.
73	235	East Room - Ceiling
74	235	West Room - Interior Walls: New dryer room installed in 1998 at southwest corner of main room. Room is approximately 29' 6" long and 20' deep with 18' ceilings. New 8" masonry walls on east side and north side with4' double doors for each room. South walls of each room have old brick exposed and have been coated with one coat of epoxy paint. West room drier is also old brick with epoxy coating. New vault installed in 1996 1997 approximately 44' long and 24' 9" deep with 16' ceiling. There is a 2' 8" chase between west wall of vault and old brick interior wall leaving brick exposed.
75	235	West Room - Floor: Epoxy coating installed 7-98
76	235	West Room - Expansion Joint: Sealed with epoxy when new floor wating was installed.
77	235	West Room - Ground Rod Holes
84	236	Interior Walls/Ledges: New offices, locker rooms, showers and security office constructed inside of building within 2 floors. All walls are studded and drywalled covering inside brick surfaces. Areas where old brick is exposed are as follows: North wall approximately 35' long by 10' high. West wall approximately 36' long by 10' high. Men's shower area east wall south approximately 18' long by 7' 6" high. Upper level janitors room east wall north side, approximately 8' long by 10' high. All building modifications were performed in 2000. All exposed brick wall coated with one layer of epoxy paint.
85	236	Floor: An area of 48' by 25' of concrete was removed in 2000 for construction of the locker room and offices. This area is 18' south of north wall. It consists of new sewer ties for locker room, showers and restrooms. Floor is tile except for showers which are epoxy coated or ceramic tile.

Table 2.12Survey Area Descriptions

- 2.1.3. A summary report for each survey unit listing all the surfaces and fixed apparatus assigned to SU-23501, SU-23502, and SU-23601 is presented in Appendix 1. A drawing of each survey unit showing the location of key fixed apparatus items is presented in Appendix 2, Figure 2.1.
- 2.2. Identification of the radiological contaminants
 - 2.2.1. The radionuclides on the St. Louis site under license STB-401 are the uranium and thorium series. Both series are assumed to be in radioactive equilibrium and to exist in a uranium-to-thorium ratio of two to one.³

³ Mallinckrodt C-T Project D Plan Appendix D

² Appendix A of D Plan

2.3. Reference Background Levels

2.3.1. When the initial characterization (CH) surveys were performed from 1992 through 1996, beta backgrounds were determined for several matrix materials. Where additional background measurements were required for the FSS, they were taken on unaffected surfaces nearby or offsite. All background levels were determined by taking direct readings on the specified matrix on unaffected surfaces using the same methods and type equipment as were used for the FSS. Natural background levels for the contaminants of interest in the survey units are presented in Table 2.2.

Matrix	Mean (Dpm _p /100cm ²) ⁴	Standard Deviation (Dpm _p /100cm ²)	
Brick	192.4	16.0	
Concrete	35.4	20.1	
Concrete Block	96.1	21.7	
Metal	24.0	15.7	

Table 2.2
Background Reference Data

2.4. RELEASE CRITERIA

- 2.4.1. Table 2.3 displays the Derived Concentration Guideline (DCGLw) for measurements on building surfaces and fixed equipment. This value is the primary release criterion from the D Plan and is applied net of background to building surfaces such as floors and walls. It also applies to items of installed apparatus such as I-beams and expansion joints.
- 2.4.2. To limit the dose from residual materials as much as possible an Administrative Release Guideline (ARG)⁵ was developed and was used during the FSS as if it were the DCGLw with certain exceptions.⁶

Table 2.3
Building Surface and Installed Apparatus Release Criteria

Criterion	$(Dpm_p/100 \text{ cm}^2)$
DCGLw	13,000
ARG	2,600

⁶ Final Status Survey Design Guide (Phase I), Section 3.2, covers the rules governing use of the ARG.

⁴ $Dpm_p/100 \text{ cm}^2$ refers to the disintegrations per minute per 100 cm² for the combined nuclide series.

⁵ NEXTEP Tech Memo 0211, Recommendation for an Administrative Release Guideline for the Mallinckrodt C-T Project, A.H. Thatcher, CHP.

2.4.3. Elevated Measurements Criterion (EMC).

2.4.3.1. The magnitude by which the concentration of radioactivity within a small area can exceed the DCGLw while maintaining compliance with the release criterion is defined as the area factor. It is calculated as the ratio of two composite dose factors and is presented graphically in Appendix C of the D Plan as a function of area. The area curve has been reduced to a calculation in the CT Design Guide⁷. Using the derived equation from the Design Guide a localized release limit for elevated concentrations was defined as:

Equation 1

$$DCGL_{EMC} = 23.4 * DCGLw * A_0^{-0.672}$$

Where A_0 is the area, in square meters containing the elevated level of radioactivity.

- 2.4.3.2. The smaller the area of contamination the higher the permissible value for $DCGL_{EMC}$ up to a maximum of 10 times⁸ the DCGLw.
- 2.4.3.3. The area factor was also applied to the ARG to produce an administrative release guideline, ARG_{EMC} , for elevated concentrations above the ARG. Equation 1 was used substituting ARG for DCGLw in the same manner.

2.5. SURVEY INSTRUMENTS

- 2.5.1. The instrumentation utilized to generate FSS data was maintained, calibrated, and tested according to the requirements of the D Plan. All procedures, responsibilities, and schedules for calibrating and testing equipment have been documented.
- 2.5.2. Maintenance information and use limitations provided in the vendor documentation of the instruments used during this FSS were adhered to. Measuring and analyzing equipment were tested and calibrated before initial use and were recalibrated periodically and whenever previous calibrations were invalidated. Field and laboratory equipment specifically used for obtaining final radiological survey data were calibrated based on standards traceable to NIST. Minimum frequencies for calibrating equipment have been established and documented.
- 2.5.3. Measuring equipment were tested at least once on each day the equipment was used for FSS. Test results were recorded in tabular or graphic form and compared to predetermined, acceptable performance ranges. Equipment not conforming to

⁸ D Plan, Appendix C.

⁷ Final Status Survey Plan Design Guide (Phase I), Section 5.4.

the performance criteria was promptly removed from service and any data gathered in the interim evaluated for quality until the deficiencies were resolved.

- 2.5.4. All calibration and source check records were completed, reviewed, signed-off and retained in accordance with the Mallinckrodt Quality Assurance Program. The original Calibration Sheets for the instruments used in this FSS are provided in Appendix 3 along with a calibration summary report from the C-T Radiation Database showing the normalized sensitivity calculated for each instrument at each calibration cycle.
- 2.5.5. <u>L2221/AB-100</u> The primary instrument used for the detection of surface radioactivity was the AB-100 scintillation detector configured for beta detection. The AB-100 detector houses a ZnS/BC-408 organic scintillator and is paired with the Ludlum 2221 scaler/ratemeter for fixed and scan surveys. The window of the AB-100 was modified to increase the thickness of the mylar to 7-9 mg/cm² for the purpose of alpha attenuation⁹. The detector window was unshielded (open) for a time period during counting at each sample location, and shielded (closed) for the same time period at the same location¹⁰. The difference in the two readings is attributable to beta emissions above 80 KeV in energy.¹¹ The sensitivity of the AB-100 was derived from experiments by Lucas and Colyott which were reported in Attachment 3 to the D Plan.¹² The actual instruments used were calibrated and normalized to the reference instrument tested by Lucas and Colyott as prescribed in CT-QA-6.1¹³.
- 2.5.6. <u>L2241-2/AB-100</u> The AB-100 detector mentioned above paired with the Ludlum 2241-2 scaler/ratemeter was used in the same way for direct and/or scan beta measurements.
- 2.5.7. <u>L43-89</u> The Ludlum 43-89 scintillation detector is a newer design that is functionally and physically equivalent to the AB-100. It has a slightly higher efficiency as a rule, and it may be paired on the same ratemeters and scalers.
- 2.5.8. <u>L3030</u> The Ludlum Model 3030 alpha/beta scaler houses ZnS(Ag) and plastic scintillators and was used to count removable contamination collected on paper swipes. Smear papers were counted in the laboratory and results were reported in β pm/100 cm². Removable contamination measurements were not compared with the release criteria for purposes of releasing the survey unit, but only to confirm that the removable fraction was less than 20% of the DCGLw.

⁹ As specified in Appendix D of the D Plan. Measurements taken with only the mylar covering the probe were "open window" measurements.

¹⁰ The "closed window" reading was taken with a 1/8" soft Aluminum plate covering the face of the detector. It is sufficient to exclude β rays from the U and Th series.

¹¹ Internal Conversion Electrons (ICE) will also be included in this number but are a second order effect and may be ignored.

¹² Energy Dependent Calibrations for the Bicron Model AB-100 Beta Ray Survey Probe, A. Lucas, CHP and L. Colyott, Phd., submitted as Attachment 3 to the Mallinckrodt Phase I Decommissioning Plan.

¹³ CT-QA-6.1 - Calibration and Control of Measuring and Survey Equipment.

2.6. LOWER LIMITS OF DETECTION (LLD) AND DETECTION THRESHOLDS

- 2.6.1. The terminology adopted to reflect an instruments' measurement (detection) capability is the lower limit of detection (LLD) or the minimum detectable activity (MDA). It refers to the intrinsic detection capability of the entire measurement process. The LLD, or MDA, is the lowest level of radioactivity that will yield a net count, above system blank, that will be detected with at least 95% probability with no greater than a 5% probability of falsely concluding that a blank observation represents a real signal. It is desirable to express the MDA as minimum detectable areal density (MDAD) or minimum detectable concentration (MDC) in units comparable to a regulatory limit with which a measurement may be compared. For a more detailed discussion regarding LLD and equations involved in calculation of LLD, refer to CT-QA-6.1.¹⁴
- 2.6.2. The LLD requirements for the FSS have been developed in accordance with MARSSIM¹⁵ Chapter 4 guidelines. They are contained in the Design Guide and are listed in Table 2.4.

Measurement Type	MDC Requirement ¹⁶
Direct Beta	50% of ARG
Class 1 Beta Scans	ARG EMC
Class 2 or 3 Beta Scans	ARG

Table 2.4MDC Requirements for CT FSS

- 2.6.3. The MDCs for the instruments used in the FSS were calculated according to Appendix D of the D Plan. A comparison of the MDCs calculated for the AB-100¹⁷ with the requirement for this FSS is provided in Table 2.5.
- 2.6.4. Action thresholds based upon the release criteria were calculated for each instrument in both direct and scan modes of operation. All thresholds were based on the ARG and are presented in Table 2.5. Details of the MDC calculations and derivation of the action thresholds are provided in NEXTEP Tech Memo 0230.¹⁸

¹⁴ CT-QA-6.1, Ibid.

¹⁵ NUREG 1575, Multi Agency Radiation Survey and Site Investigation Manual.

¹⁶ Requirements are stated in terms of the ARG which may be adjusted upward (not to exceed the DCGLw) by the area factor or paint attenuation factor as described in Section 3.2 of the Design Guide.

¹⁷ The MDC for the L43-89 is comparable to the AB-100 detector.

¹⁸ NEXTEP Tech Memo 0230, *Technical Basis Document for Mallinckrodt Final Status Surveys*, A.H. Thatcher CHP (included with FSSR 235 Roof).

Measurement	Units	Calculated Value	Required Value	Required Value
BETA DIRECT	!		Class 1	Class 2
MDC	$Dpm_p/100 \text{ cm}^2$	100	1,300	1,300
Tinv ²⁰	cpm		2,900	2,900
BETA SCAN	**************************************		•	
MDC	$Dpm_p/100 \text{ cm}^2$	760	1,300	2,600
Tinv	cpm		2,000	2,000

Table 2.5LLD and Action Thresholds¹⁹

2.7. INSTRUMENT SENSITIVITY, BACKSCATTER AND PAINT ATTENUATION

2.7.1. Beta direct measurements taken in the field were converted to $dpm_p/100 \text{ cm}^2$ of the parent nuclide series in accordance with Section 9 of the Design Guide using the following equation:

Equation 2

$$AD = \frac{Co - Cc}{PAF * S_i * S_b(m) * t}$$

Where:

=	Areal Density in $dpm_p/100 \text{ cm}^2$ for the parent nuclides
=	Counts measured in the open window configuration
=	Counts measured in the closed window configuration
=	Paint attenuation factor derived from the number of coats of paint applied to the surface since C-T operations ceased.
=	Normalized Instrument sensitivity without backscatter.
=	Backscatter factor (a function of matrix)
=	Integration time in minutes.
	2 2 2 2

2.7.2. There were six painted surfaces in building 235 and five in building 236 which were covered with one coat of paint. The paint attenuation factor (PAF) was equal to 0.357 for these surfaces²¹. All other surfaces in building 235 had a PAF equal to 1.

¹⁹ All Values given are net of background.

²⁰ Investigation Threshold

²¹ NEXTEP Tech Memo 0212: Paint Attenuation Factor Calculations, B.P. Anderson.

2.7.3. Justification and calculations for separation of backscatter (as a function of the matrix) and instrument sensitivity were presented in Nextep Tech Memo 0215.²² Reference backscatter coefficients for several matrix materials were generated using an MCNP model and are described in Nextep Tech Memo 0213.²³ These coefficients were stored in the Matrix table in the Database and were used in the calculations according to the matrix material upon which the measurement was taken.

3. SURVEY METHODS

- 3.1. SURVEY PROCEDURES
 - 3.1.1. The FSS conformed to the procedures and plans listed in Table 3.1. The primary guidance for the FSS is contained in the Design Guide and the FI.

Survey Procedures and Documents
CT Decommissioning Plan (Phase I)
CT Decommissioning Project, Final Status Survey Design Guide (Phase I)
CT-FI-007, Final Status Survey Guide for Survey Units 23501 and 23601
CT-QA-6.1: Calibration and Operation of Measuring and Survey Equipment
CT-RP-66: Operation of Scalers, Rate Meters, and Contamination Detectors
CT-RP-39: Performance of Radiation and Contamination Surveys
CT-RP-40: Survey Documentation and Review

Table 3.1

- 3.1.2. All FSS data recorded in the field was submitted to the Quality Assurance Coordinator for processing and review. The data collection forms and annotated drawings were signed by the technician taking the data and reviewed by the Radiation Protection, Health & Safety (RPHS) Manager or designee overseeing the survey. After data entry and review, QA approved the data sheets and filed them with the permanent Mallinckrodt records. The QA checklist²⁴ developed for quality verification of FSS data was used as a guide to data verification.
- 3.1.3. All the data generated by the surveys were entered into the CT Radiation Database (RDB) and analyzed as outlined in Section 4.4 of the D Plan.

²² NEXTEP Tech Memo 0215: Separation of Backscatter & Derivation of Instrument Sensitivity, A.H. Thatcher CHP (included with FSSR 2501).

²³ NEXTEP Tech Memo 0213: Beta Backscatter Factors for Several Materials at the Mallinckrodt Site, N. Zhang and D. Wilson (included with FSSR 2501).

²⁴ NEXTEP Tech Memo 0206, QA Data Verification for MI CT Final Status Survey Data, B. Anderson, (included with FSSR 2501).

3.2. SURVEY MEASUREMENTS

3.2.1. Beta Measurements:

- 3.2.1.1. *Direct* A systematic grid of direct measurements were obtained on the floor and wall surfaces as described in the FI. Bias measurements were taken on building surfaces and fixed apparatus at locations determined by the surveyor and to more fully characterize the fixed apparatus.
- 3.2.1.2. *Scans* Beta scans were performed using the same instruments used for the direct beta measurements. Beta Scans were performed on the floor and wall surfaces. Scans were performed at a scan rate of less than one detector width per second with a probe height less than one inch from the surface being scanned.

3.2.2. <u>Removable Contamination Measurements</u>:

3.2.2.1. *Swipes* - Removable contamination samples were collected at 100% of all regular grid locations on the floor and walls of SU-23501 and as bias data on the floor and walls of SU-23601 where the original surfaces were exposed. The swipes were counted in the laboratory and recorded in the database. Sampling of removable contamination was performed to confirm the assumption, used in derivation of the DCGLw, that the removable fraction measures less than 20% of the DCGLw²⁵.

3.3. MEASUREMENT LOCATIONS

- 3.3.1. Statistical Grid Data Points
 - 3.3.1.1. The Visual Sample Plan© (VSP)²⁶ software was used to develop a MARSSIM grid for each survey unit. The minimum number of points required and their spacing were calculated in accordance with the statistical guidance given in MARSSIM Sections 5.5.2.2 and 5.5.2.5.
 - 3.3.1.2. VSP users the Data Quality Objective (DQO) input values to calculate the number of measurement points, N, required to satisfy MARSSIM statistical guidance. The calculations include 20% excess to allow for inaccessible locations. A summary of all the input parameters used with VSP for this report is presented in Table 3.2.

²⁵ Section 3.3 of the C-T Design Guide.

²⁶ NEXTEP Tech Memo 0008, Verification and Validation of Applicable Portions of VSP Software, A. H. Thatcher, CHP.

DQO	Value
Type I error rate	5%
Type II error rate	5%
Width of Gray Region	200 Dpmp/100cm ²
Level (ARG)	2,600
Estimated Std Deviation	200 Dpmp/100cm ²
Excess % sample points	20%

Table 3.2VSP Inputs for Building 235/236 Interior

3.3.1.3. The number N for SU-23501 and SU-23601 was 29.²⁷ A rectangular grid was used for both survey units. The maximum grid interval spacing, L, was calculated from the total area of each survey unit, A, and the required number of data points, N, according to the following equation: Equation 3

$$L \leq \sqrt{\frac{A}{N}}$$

3.3.1.4. Table 3.3 presents the calculated values for L and N for this FSS.

				4
Survey Unit	Class	N	\mathbf{A} (ft ²)	L (ft)
SU-23501	2	29	22,538	27.9
SU-23601	2	29	9,025	17.6

Table 3.3SU-23501 and SU 23601 Calculated Grid Point Separation

3.3.2. Bias Measurement Locations

- 3.3.2.1. Bias direct measurements were taken at the discretion of the HP technician performing the survey.
- 3.3.2.2. Bias surveys were also taken at hot spot locations identified by scans as directed in the Hot Spot Protocol²⁸.

²⁷ Since SU-23502 is made up of two ground rods and one ground rod hole, no grid spacing was calculated. Instead, readings were taken on each rod and on the ground rod hole.

²⁸ CT-FI-002, Final Status Survey Guide for Survey Units 235NES & 236NSW.

- 3.4. Reference Coordinate System
 - 3.4.1. A unified reference system was prescribed for the location of all data points taken on all building surfaces and on the surface of installed apparatus. A description of the reference coordinate system is provided below.
 - 3.4.2. A data point's unique location is specified by a combination of the following data elements: building, room, surface ID, X, and Y. The surface ID refers to the four walls, floor, ceiling and roof as shown in Table 3.2. X and Y are distances from the origin measured as shown in the table. An example of X and Y axes for floors and walls is presented in Appendix 2, Figure 3.1

Location	Identifier	x	Y
North Wall	N	Feet right from	Feet up from floor
South Wall	S	leftmost edge of	or the lowest point
East Wall	E	the wall surface	in the room
West Wall	W		
Floor	F	Feet east from	Feet North of
Ceiling	C	western most sedge of the surface	southernmost edge
Roof	R		

Table 3.2Coordinate System Locators

- 3.4.3. The surface ID for a roof applies only in the case when measurements are being made on the exterior surface of a building. In this unique case the "room" assigned has the special number "999".
- 3.4.4. Systematic grid data points which fell on external surfaces of installed apparatus were located with the primary coordinate system. The ID code of the apparatus was recorded in the remarks. For example: Let Q2 be identified as a large air conditioning unit located on the roof. Any systematic grid measurement points for the roof surface which landed on the air conditioner would have been identified using the X and Y coordinates from the southwest corner of the roof. "Q2 A/C unit" would be noted in the remarks. The surface ID would be "R".
- 3.4.5. All bias data points taken on installed apparatus were numbered and located on the drawings provided. This number was recorded as the X coordinate on the data sheet and amplifying information was entered in the remarks section.

3.5. DATA EVALUATION

3.5.1. All of the direct, swipe and scan data were entered into the CT Radiation Database (RDB) for easy access and analysis. The direct beta measurements are the primary means for documenting the survey unit and justifying its release. Therefore, a special report was programmed to perform all the tests specified in Section 4.4.8 of the D Plan and to provide a clear report of the results for evaluation. The calculations in this report have been validated and verified as described in NEXTEP Tech Memo 0231^{29} .

- 3.5.2. The purpose of the screening software is to compare each direct beta reading taken in the survey unit with specified threshold levels, to apply the statistical tests called for in MARSSIM when appropriate, and to present the results in a clear and useful manner so that an analyst can accurately assess the action to be taken or declare that the survey unit meets the requirements for release.
- 3.5.3. Some of the screening tests apply to each record in the survey unit and failure of one data point results in failure of the survey unit. Other tests do not apply to each survey record but generate a single PASS/FAIL verdict for the entire data set. The tests are described in the following paragraphs³⁰. An abbreviated summary of these tests is presented in Table 3.5.
- 3.5.4. Background Screen.
 - 3.5.4.1. For each MATRIX code in the database, calculate the mean background reading, its standard deviation, and its minimum value. Calculate and store the Background Threshold, T_{bk}, with its matrix code according to the following equation:

Equation 4

$$T_{bk}(m) = \overline{BK}(m) + 2 * \sigma_{bk}(m)$$

- 3.5.4.2. T_{bk} is equal to the mean of the background readings (\overline{BK}) for a given matrix plus two times its standard deviation (2 σ).
- 3.5.4.3. Compare each data point in the filtered survey unit with T_{bk} . If the survey reading > T_{bk} the data point fails the test. One data point failure implies failure of the background screen test for the survey unit.
- 3.5.5. Min/Max Test.
 - 3.5.5.1. Find the maximum direct survey result, in $dpm_p/100cm^2$, for the survey data set.
 - 3.5.5.2. Find the minimum background reading among all the background data points having MATRIX codes that match those in the data set.
 - 3.5.5.3. If the difference between these two values is greater than DCGLw³¹ the MIN/MAX test fails for the survey unit.

²⁹ NEXTEP Tech Memo 0231, Validation and Verification of the C-T Database Analysis Report, B. Anderson, (included with FSSR 2501).

³⁰ A more detailed explanation is provided in the Design Guide.

³¹ Normally, the ARG is used as DCGL_w wherever the Threshold Comparison Test Report (TCTR) is run.

- 3.5.6. DCGLw Screen.
 - 3.5.6.1. For each matrix code calculate and store a DCGLw Threshold (T_d). T_d is calculated by adding the value of DCGLw to T_{bk} .

Equation 5

$$T_d(m) = T_{bk} + DCGLw$$

- 3.5.6.2. Compare each data point in the survey unit with T_d . If the survey reading > T_d the data point fails the test. One data point failure implies failure of the DCGLw screen test for the survey unit.
- 3.5.7. EMC Screen.
 - 3.5.7.1. For each matrix code calculate and store an EMC Threshold (T_e). T_e is calculated by adding the value of EMC to T_{bk}. The EMC value selected is normally dependent upon the area involved. However, if no specific area was known, the EMC was normally set to 13,000 dpm_p/100 cm².³²
 - 3.5.7.2. Compare each data point in the filtered survey unit with T_e . If the survey reading > T_e the data point fails the test. One data point failure implies failure of the EMC test for the survey unit.
- 3.5.8. DCGL Average Test.
 - 3.5.8.1. For each matrix material in the survey unit, calculate the mean activity density, (in $dpm_p/100cm^{2}$), in the survey data set. Subtract from this value, the mean value of background activity for the same matrix. If the remainder is greater than DCGLw for any matrix in the survey unit, the test fails.

Equation 6

$$\overline{AD}(m) - \overline{BK}(m) > DCGLw$$

3.5.9. Statistical Tests.

- 3.5.9.1. The statistical tests prescribed by MARSSIM operate only on the data points of MEASUREMENT TYPE = RG (Regular Grid) and PG (Post-Remediation Grid). The program narrows the filter to include only these points before proceeding.
- 3.5.9.2. The Wilcoxon Rank Sum Test³³ is applicable for survey units with measurements on a single matrix type or on matrices with similar

³³ Described in Appendix I of MARSSIM.

³² Since the ARG was normally used in place of the DCGLw, the value for DCGLw (13,000 dpm/100 cm²) was normally used as the EMC threshold for the TCTR.

background characteristics. Where more than one matrix was present, the Sign Test for Paired Data³⁴ was used.

- 3.5.10. The output of the Threshold Comparison Test Report (TCTR) was used for analysis of the data for buildings 235 and 236 floors and walls and the results are presented in Appendix 4. The TCTR is divided into eight sections which are briefly described in the following paragraphs to assist the unfamiliar reader.
 - 3.5.10.1. General: date, survey unit number, class, and grid information.
 - 3.5.10.2. <u>Survey Unit Table</u>: building surface included, affected fixed apparatus, and total surface area of the survey unit.
 - 3.5.10.3. <u>Initialization Data</u>: On startup of the analysis report program, the analyst must tell the program which parameters to use while running the tests described in this section. The *Initialization Data* section of the report output displays the options that were chosen for the run. The measurement types listed are those chosen by the analyst to be included in the report. The date range chosen is also listed. The default value is "All Dates". Values for DCGLw (ARG) and DCGL_{EMC} are also specified at the start of the run and are listed in this section. If remediated data points are included in the run, it will be noted in this section. Normally they will be excluded.
 - 3.5.10.4. <u>Survey Unit Test Status</u>: Lists Pass/Fail status of all tests and gives a high level summary of key activity levels in the SU.
 - 3.5.10.5. <u>Points that failed tests</u>: Lists all points that failed each specified threshold test (EMC, DCGL, and Background).
 - 3.5.10.6. <u>Points that passed all the tests</u>: This includes the remainder of all the points in the data set. These data points have passed all the tests.
 - 3.5.10.7. <u>Summary of background data</u> used in the calculations. This table includes the matrix materials included in the survey and the thresholds calculated for each of the tests discussed in this section.
 - 3.5.10.8. <u>Statistical Test Results</u>: This page lists the results of the Sign Test for Paired Data or the Wilcoxon Rank Sum test, whichever is selected. If the Test Status line reads Pass then the survey unit passes the Sign Test for Paired Data. The Data Summary section lists the number of background points and the number of survey points used from the data set. If the operator selects the option to show all data, a table of all data points used in the test is printed out.

³⁴ Described in NEXTEP Tech Memo 0231, Ibid.

Test	Test Criteria for PASS
Min/Max	Difference between minimum background measurement and maximum survey value less than DCGLw
Background	All samples must be less than the background threshold ^a
DCGL _w	All samples must be no more than $DCGL_w$ + the background threshold
DCGL _{avg}	The average of all net survey values must be less than $DCGL_w$
EMC	All samples must be less than $DCGL_{EMC}$ + the background threshold
Sign Test for Paired Data	The Sign Test for Paired Data is described in detail in NUREG 1505 ³⁵
Wilcoxon Rank Sum Test	This statistical test is described in detail in MARSSIM, Appendix I.

Table 3.5Threshold Screening Tests

[•] The background threshold is equal to the mean background value plus twice q_{bK} .

3.5.11. Provided all additional considerations such as scan data, swipes, sampling of removable contamination or sludge from traps, etc. indicate that the survey unit meets the release criteria, the release of the survey unit can be determined from the test report according to Table 3.6.

Test	Class 1	Class 2	Class 3
Min/Max	not required ^a	not required [*]	PASS
Background	not required	not required	PASS
DCGLw	not required	PASS	PASS
DCGLavg	PASS	PASS	PASS
EMC	PASS	PASS	PASS
Sign Test for Paired Data	PASS	PASS	PASS

Table 3.6Requirements for SU Release36

^a Class 1 or 2 survey units which pass Min/Max may be released without further consideration.

³⁶ See MARSSIM, Chapter 8, Table 8.2

³⁵ NUREG 1505, A Nonparametric Statistical Methodology for the Design and Analysis of Final Status Decommissioning Surveys.

4. **FSS Results and Discussion**

4.1. CHARACTERIZATION DATA

4.1.1. The characterization data taken in SU-23501 from 1992 to 1996 were very limited. Since the data on file in the characterization report were all taken with an HP-210 instrument they could not be normalized to the AB-100 calibration standards and therefore are not included in the data set. The characterization data taken in SU-23601 from 1992 to 1996 were taken with an AB-100 and were numerous. Those data were included in the data set as RG and CH data. CH data was treated as bias.

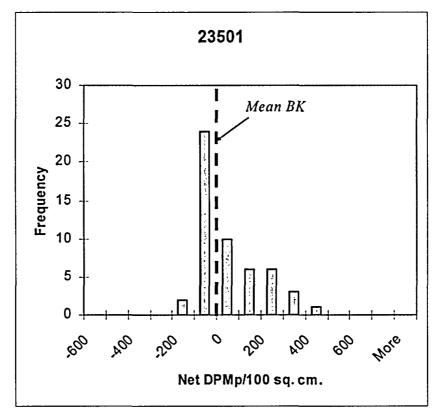
4.2. SURVEY UNIT 23501

- 4.2.1. SU-23501 was surveyed in June 2003. Measurements were taken on the floor and walls.
- 4.2.2. Direct Beta Measurements on Building Surfaces
 - 4.2.2.1. 33 direct beta measurements were taken on the floor and wall surfaces of the survey unit. 33 of these were included in the systematic grid. Diagrams of each surface in SU-23501 are presented in Appendix 2, Figures 4.1 4.2.
 - 4.2.2.2. A summary of the direct measurement results is presented in Table 4.1 and shows that the maximum activity measured, net of background, was $390 \text{ dpm}_p/100 \text{ cm}^2$. The average value for the survey unit was $76 \text{ dpm}_p/100 \text{ cm}^2$.

	(2	ung Durjuccs)	
Matrix	Points	Avg Net Activity	Max Net Activity
• •		(Dpm _p /100cm ²)	(Dpm _p /100cm ²)
Brick	8	130.4	389.9
Concrete	18	42.8	286.7
Concrete Block	6	118.6	381.3
Metal	1	-10.9	-10.9

Table 4.1SU-23501 Direct Measurements Summary
(Building Surfaces)

4.2.3. Direct Beta Measurements on Installed Apparatus


4.2.3.1. All 3 items of installed apparatus which are listed in Appendix 1 were surveyed by direct beta measurements. A summary of the measurements taken is provided in Table 4.2 sorted by matrix material. The values observed ranged from -161 to 434 dpm_p/100cm². All values were less than the ARG. The data confirm that negligible residual radioactivity was measured on the 3 items of installed apparatus in SU-23501.

Matrix	Points	Avg Net Activity (Dpmp/100cm ²)	Max Net Activity (Dpmp/100cm ²)
Concrete	9	116.5	433.5
Metal	10	-21.4	-4.7

Table 4.2SU-23501 Fixed Equipment Direct Measurements Summary

4.2.4. Direct Beta Analysis and Threshold Tests

4.2.4.1. A histogram of the net activity values found in SU-23501 is provided in Figure 4.1. The distribution appears to have a single mode with the majority of the data centered at approximately $0 \text{ dpm}_p/100 \text{cm}^2$. This is consistent with a normal distribution of background radioactivity with residual contamination just above background levels but well below the ARG.

Histogram of Net Direct Beta Measurements Figure 4.1

4.2.4.2. All the direct measurements in the survey unit were analyzed using the Threshold Comparison Test Report and the results are presented in Appendix 4 for SU-23501. The TCTR report contains a complete listing of all the beta direct measurements taken in the Final Status Survey within SU-23501 sorted by activity. The summary pages indicate that all tests described in the D Plan passed except background. All the tests required for release of Class 2 survey units were passed. A comparison of test results and requirements for release of the survey unit is presented in Table 4.3.

Test	Class 2	SU-23501
Min/Max	not required*	P
Background	not required	F
DCGLw	PASS	P
DCGLavg	PASS	Р
EMC	PASS	Р
Wilcoxon Rank Sum Test	PASS	Р

Table 4.3TCTR Results for SU-2501

- ^a Class 2 survey units which pass Min/Max may be released without further consideration.
- 4.2.4.3. As the histogram in Figure 4.1 shows, the survey unit has some radioactivity above background, but well below the ARG. These results are consistent with a passing of all tests except background for this survey unit.

4.2.5. Measurements of removable contamination

4.2.5.1. Swipes were taken at each location where a direct grid measurement was performed. The results of these measurements are presented in Table 4.4.

Surface	Points	Avg Net Beta (βpm/100cm ²)	Max Net Beta (βpm/100cm ²)	Avg Net Activity ^a (Dpm _p /100cm ²)	Max Net Activity (Dpmp/100cm ²)
N	5	7.8	14	1.6	2.9
Е	4	9.8	31	2.0	6.5
S	5	-1.0	14	-0.2	2.9
W	6	15.3	42	3.2	8.8
F	13	14.5	36	3.0	7.5

Table 4.4SU-23501 Removable Contamination Summary

^{*} Activity was converted to $dpm_p/100 \text{ cm}^2$ from $\beta pm/100 \text{ cm}^2$ using an approximate figure of 4.8 betas per disintegration.

4.2.5.2. The results show that removable contamination averages near zero $dpm_p/100cm^2$ and varies between -4.0 and +8.8 $dpm_p/100cm^2$. The data confirm that virtually no removable contamination is present within SU-23501.

4.2.6. Beta Scan Measurements

- 4.2.6.1. Beta scans were performed on about 15% of the surface of the interior walls and floor. Diagrams of the areas surveyed are presented in Appendix 2, Figures 4.3 and 4.4.
- 4.2.6.2. The scan threshold used for these surveys was 2,000 cpm (net of background) which corresponds to the ARG of 2,600 dpm_p/100cm². The calculation of threshold count rate and MDC for scans is presented in NEXTEP Tech Memo 0230^{37} .
- 4.2.6.3. All scans performed on the floor surfaces were taken on brick, concrete or concrete block. The average background value used for analysis of the brick, concrete, and concrete block data was obtained from the average of all the open window, direct beta readings (in cpm) taken in the survey unit, by matrix. This value was 356 cpm for brick, 260 cpm for concrete, and 313 cpm for concrete block. The average of all open window survey readings taken in the background data set was 552 cpm, 331 cpm, and 412 cpm for brick, concrete, and concrete block respectively.
- 4.2.6.4. During the surveys the maximum and average gross count rates were recorded for each area scanned. The beta scan data are summarized for SU-23501 and presented in Table 4.5.

Matrix	Areas	Maximum (cpm)	Average (cpm)	Max Net (cpm)	Avg Net (cpm)
Brick	6	280	183	-76	-173
Concrete	26	500	156	240	-105
Concrete Block	2	240	190	-73	-123

 Table 4.5

 SU-23501 Scan Measurements Summary

4.2.6.5. The maximum net scan value of 240 cpm is well below the scan threshold of 2000 cpm. No beta scan data were observed in SU-23501 above the scan threshold.

³⁷ NEXTEP Tech Memo 0230, ibid.

4.3. SURVEY UNIT 23502

- 4.3.1. SU-23502 exists to cover item 77 in Appendix A of the D Plan (see Table 2.1). This item came from a diagram in Volume 2 of the Characterization Report³⁸ which showed a 50,000 cpm NaI scan reading taken in the SW corner of the west bay of Building 235. The text below the diagram says, "the 50K reading was recorded near a hole in concrete for grounding rod". A copy of the diagram is reproduced in Appendix 2, Figure 4.6 of this report and shows the measurement to be near or among a large group of 55 gallon drums.
- 4.3.2. Although two other ground rods were identified in room 101 of B235 (see Figure 2.1) the original ground rod hole has been obliterated probably by new construction which created the two dryer rooms shown in Figure 4.7.
- 4.3.3. Direct beta measurements were taken on the ground rods in Room 101 of Building 235 in October 2003. In November 2003 beta scans were performed in and around the dryer rooms in search of contamination which might be related to the high scan reading obtained near the ground rod hole in that area in 1994.
- 4.3.4. Direct Beta Measurements on Ground Rods
 - 4.3.4.1. Direct beta measurements were taken on two ground rods located in room 101 of Building 235 on the south and east walls. A summary of the direct measurement results is presented in Table 4.6 and shows that the maximum activity measured, net of background, was 38.7 dpm_p/100cm². The average value for the rods was 9.3 dpm_p/100cm². All measurements were well below the ARG.

	•		·	· · · · ·
Γ	Matrix	Points	Avg Net Activity	Max Net Activity
			$(Dpm_p/100cm^2)$	(Dpm _p /100cm ²)
	Metal	2	9.3	38.7

Table 4.6SU-23502 (Ground Rods) Direct Measurements Summary

4.3.5. Beta Scans

4.3.5.1. The floors of the east and west dryer rooms in room 101 of Building 235 were scanned with a beta detector. About 75% of the floor surface of both rooms was scanned with special attention given to the SW corner of the building. No measurements in these rooms were obtained in excess of 200 cpm, well below the beta scan threshold of 2,000 cpm. A diagram of the areas scanned in the dryer rooms is presented in Figure 4.7.

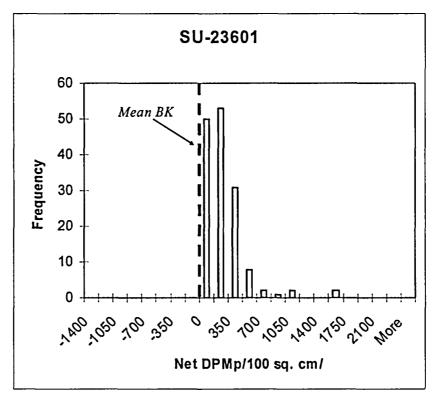
³⁸ Radiological Data Set for the Mallinckrodt Chemical C-T Plant, Revised October, 1998

4.3.6. No scan or direct measurements were obtained in SU-23502 above the release criteria or scan investigation threshold.

4.4. SURVEY UNIT 23601

4.4.1. SU-23601 was surveyed during the Characterization program from 1992 to 1996 and some additional survey work was performed in June 2003. Because adequate characterization data exist, no direct measurements were added to the data set from SU-23601. Smears were collected from the floor and walls at accessible points. Due to extensive remodeling of Building 236 since C-T operations ceased, few areas from the original C-T building configuration are accessible today due to new interior brick walls which cover the drywall construction.

4.4.2. Direct Beta Measurements on Building Surfaces


- 4.4.2.1. 145 direct beta measurements were taken on the floor and wall surfaces of the survey unit. 120 of these were included in the systematic grid. A diagram of the surfaces in SU-23601 is presented in Appendix 2, Figure 4.8.
- 4.4.2.2. A summary of the direct measurement results is presented in Table 4.7 and shows that the maximum activity measured, net of background, was $1,681 \text{ dpm}_p/100 \text{ cm}^2$. The average value for the survey unit was $303 \text{ dpm}_p/100 \text{ cm}^2$. All measurements were well below the ARG.

Matrix	Points	Avg Net Activity (dpm _p /100cm ²)	Max Net Activity (dpmp/100cm ²)
Brick	78	337.0	1681.4
Concrete	56	301.0	1604.3
Concrete Block	2	328.0	364.0
Gypsum Board	10	109.6	205.6
Metal	3	74.0	153.8

Table 4.7SU-23601 Direct Measurements Summary
(Building Surfaces)

4.4.3. Direct Beta Measurement Distribution and Threshold Tests

4.4.3.1. A histogram of the net activity values found in SU-23601 is provided in Figure 4.2. The distribution appears to have a single mode with the majority of the data centered close to $260 \text{ dpm}_p/100 \text{ cm}^2$. There are some data which lie outside of this distribution. This is consistent with a normal distribution of background radioactivity with a small amount of residual radioactivity above background. All measurements were well below the ARG.

Histogram of Net Direct Beta Measurements Figure 4.2

4.4.3.2. All the direct measurements in the survey unit were analyzed using the Threshold Comparison Test Report and the results are presented in Appendix 4 for SU-23601. The TCTR report contains a complete listing of all the beta direct measurements taken in the Final Status Survey within SU-23601 sorted by activity. The summary pages indicate that all tests described in the D Plan passed except background. All the tests required for release of Class 2 survey units were passed. A comparison of test results and requirements for release of the survey unit is presented in Table 4.8.

Test	Class 2	SU-23501
Min/Max	not required*	Р
Background	not required	F
DCGLw	PASS	Р
DCGL _{avg}	PASS	Р
EMC	PASS	Р
Wilcoxon Rank Sum Test	PASS	Р

Table 4.8
Requirements for SU Release

4.4.3.3. As the histogram in Figure 4.2 shows, the survey unit has some radioactivity above background, but well below the ARG. These results are consistent with passing all tests except background for this survey unit.

4.4.4. Measurements of removable contamination

4.4.4.1. Swipes were taken at accessible locations on exposed areas of the floor and walls to supplant the smear samples that would normally coincide with the direct grid measurement locations. The results of the measurements are presented in Table 4.9.

Surface	Points	Avg Net Beta (βpm/100cm ²)	Max Net Beta (βpm/100cm ²)	Avg Net Activity ^a (Dpm _p /100cm ²)	Max Net Activity (Dpmp/100cm ²)
E	2	-10.0	11.0	-2.1	2.3
F	5	-0.6	36.0	-0.1	7.5
N	1	-11.0	-11.0	-2.3	-2.3
S	1	-28.0	-28.0	-5.8	-5.8
W	2	-22.0	-19.0	-4.6	-4.0

Table 4.9 SU-23601 Removable Contamination Summary

^a Activity was converted to $dpm_p/100 \text{ cm}^2$ from $\beta pm/100 \text{ cm}^2$ using an approximate figure of 4.8 betas per disintegration.

4.4.4.2. The results show that removable contamination averages near zero $dpm_p/100cm^2$ and varies between -6.5 and +7.5 $dpm_p/100cm^2$. The data confirm that virtually no removable contamination is present within SU-23601.

^a Class 2 survey units which pass Min/Max may be released without further consideration.

4.4.5. Beta Scan Measurements

- 4.4.5.1. Beta scans were performed on about 15% of the floor surface and on about 10% of the wall surfaces. A diagram of the areas surveyed in SU-23601 is presented in Appendix 2, Figure 4.9.
- 4.4.5.2. The scan threshold used for these surveys was 2,000 cpm (net of background) which corresponds to the ARG of 2,600 dpm_p/100cm². The calculation of threshold count rate and MDC for scans is presented in NEXTEP Tech Memo 0230^{39} .
- 4.4.5.3. All scans performed on the wall and floor surfaces were taken on brick and concrete respectively. The average background value used for analysis of the brick and concrete raw data was obtained from the average of all the open window, direct beta readings (in cpm) taken in the background data set, by matrix. This value was 552 cpm for brick and 331 cpm for concrete. The average of all open window survey readings taken in the survey unit was 742 cpm and 636 cpm for brick and concrete respectively.
- 4.4.5.4. During the surveys the maximum and average gross count rates were recorded for each area scanned. The beta scan data are summarized for SU-23601 and presented in Table 4.10.

Matrix	Areas	Maximum (cpm)	Average (cpm)	Max Net (cpm)	Avg Net (cpm)
Brick	7	360	191.4	-192.2	-360.8
Concrete	2	130	100.0	-201.2	-231.2

Table 4.10SU-23601 Scan Measurements Summary

4.4.5.5. The maximum net scan value of -192 cpm is well below the scan threshold of 2000 cpm. No beta scan data were observed in SU-23601 above the scan threshold.

5. CONCLUSIONS

- 5.1. SU-23501 passed all the tests described in the D Plan except background. All the tests required for release of a Class 2 Survey unit were passed. (Par. 4.2.4.2)
- 5.2. No significant residual radioactivity was measured on the 3 items of installed apparatus in SU-23501. (Par. 4.2.3.1)
- 5.3. Virtually no removable contamination is present within SU-23501. (Par. 4.2.5.2)

³⁹ NEXTEP Tech Memo 0230, Ibid.

- 5.4. No beta scan data were observed in SU-23501 above the scan threshold of 2,000 cpm. (Par. 4.2.6.5)
- 5.5. All direct beta measurements taken on the ground rods (SU-23502) were well below the ARG. (Par. 4.3.4.1)
- 5.6. SU-23601 passed all the tests described in the D Plan except background. All the tests required for release of a Class 2 Survey unit were passed. (Par. 4.4.3.2)
- 5.7. Virtually no removable contamination is present within SU-23601. (Par. 4.4.4.2)
- 5.8. No beta scan data were observed in SU-23601 above the scan threshold of 2,000 cpm. (Par. 4.4.5.5)
- 5.9. Within the scope of this survey, Survey Units 23501, 23502, and 23601 meet all the requirements of the D Plan and MARSSIM for unconditional release.

6. **Recommendations**

6.1. Survey Units 23501, 23502, and 23601 should be released from the license.

Appendix 1 Building Survey Unit Listing for Buildings 235 & 236 Interior

	Surj	faceCode	Xmax Y	'max	Area (sq.ft.)	Paint (Coats)	Description
SurveyUni	tID:	23501					Class: 2
Room 101							
		F	78.7	81.3	6,398	1.0	
		N	78.7	23.0	1,809	1.0	
		S	78.7	23.0	1,809	1.0	
		E	81.3	23.0	1,871	1.0	
		w	81.3	23.0	1,871	1.0	
		Q1				0.0	l Beams
Summary for	Room	Q3 101 (7 dei	tail records	.)			Expansion Joint 8 Sg. Feet
Summary for Room 102	Room		tail records)			Expansion Joint 8 Sq. Feet
	<u>Room</u>		tail records, 39.6	81.3	3,218		
	<u>Room</u>	101 (7 de			3,218 910	13,75	
	<u>Room</u>	<u>101 (7 de</u>	39.6	81.3		<i>13,75</i> 1.0	
	<u>Room</u>	F N	39.6 39.6	81.3 23.0	910	<i>13,75</i> 1.0 0.0	
	<u>Room</u>	F N S	39.6 39.6 39.6	81.3 23.0 23.0	910 910	<i>13,75</i> 1.0 0.0 0.0	
	<u>Room</u>	F N S E	39.6 39.6 39.6 81.3	81.3 23.0 23.0 23.0	910 910 1,871	<i>13,75</i> 1.0 0.0 0.0 0.0	

Building Survey Unit Listing

TOTAL for Survey Unit 23501

22,538 Sq. Feet

SurfaceCode Xmax Ymax	Area (sq.ft.)	Paint (Coats)	Description
SurveyUnitID: 23502			Class: 1
Room 101			
Q4		0.0	Ground Rods (3)
Summary for Room 101 (1 detail record)			0 Sq. Feet
TOTAL for Survey Unit 23502			0 Sq. Feet

Building Survey Unit Listing Are

Surj		faceCode	Xmax Y	max	Area (sq.ft.)	Paint (Coats)	Description	
SurveyUn	itID:	23601					Class: 2	
Room 101								
		F	41.5	81.3	3,375	1.0		
		N	41.5	23.0	955	1.0	3.5' of brick above drywall is affected	
		S	41.5	23.0	955	1.0	3.5' of brick above drywall is affected	
		E	81.3	23.0	1,871	1.0	3.5' of brick above drywall is affected	
		w	81.3	23.0	1,871	1.0	3.5' of brick above drywall is affected	
Summary for Room 101 (5 detail records)					9,02	5 Sq. Feet		
Summary for Room 101 (5 detail records) TOTAL for Survey Unit 23601					9,02	affected		

Building Survey Unit Listing

APPENDIX 2 Figures

÷

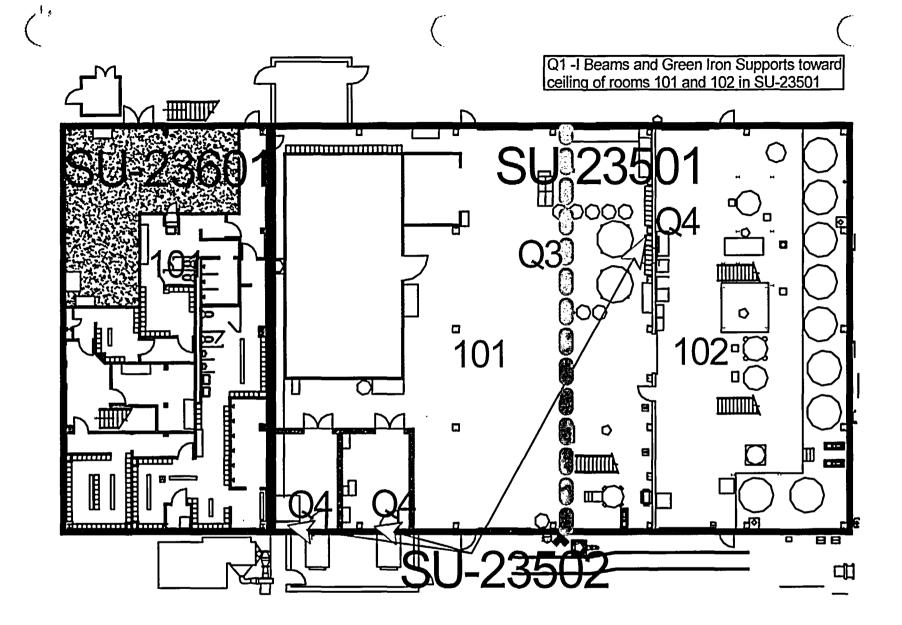
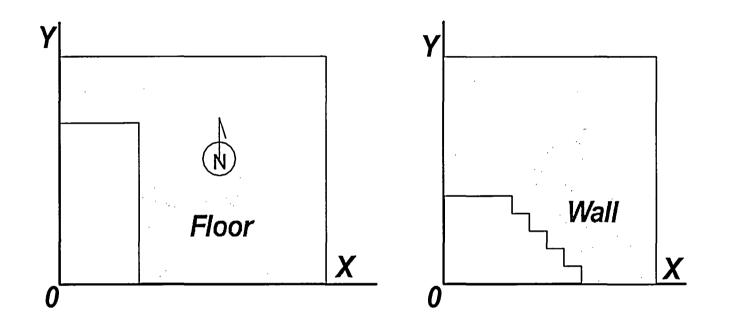
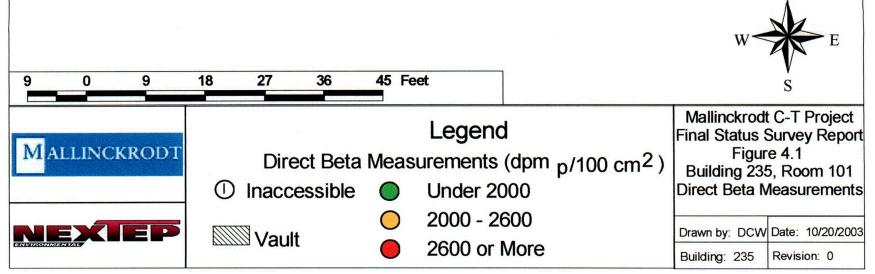
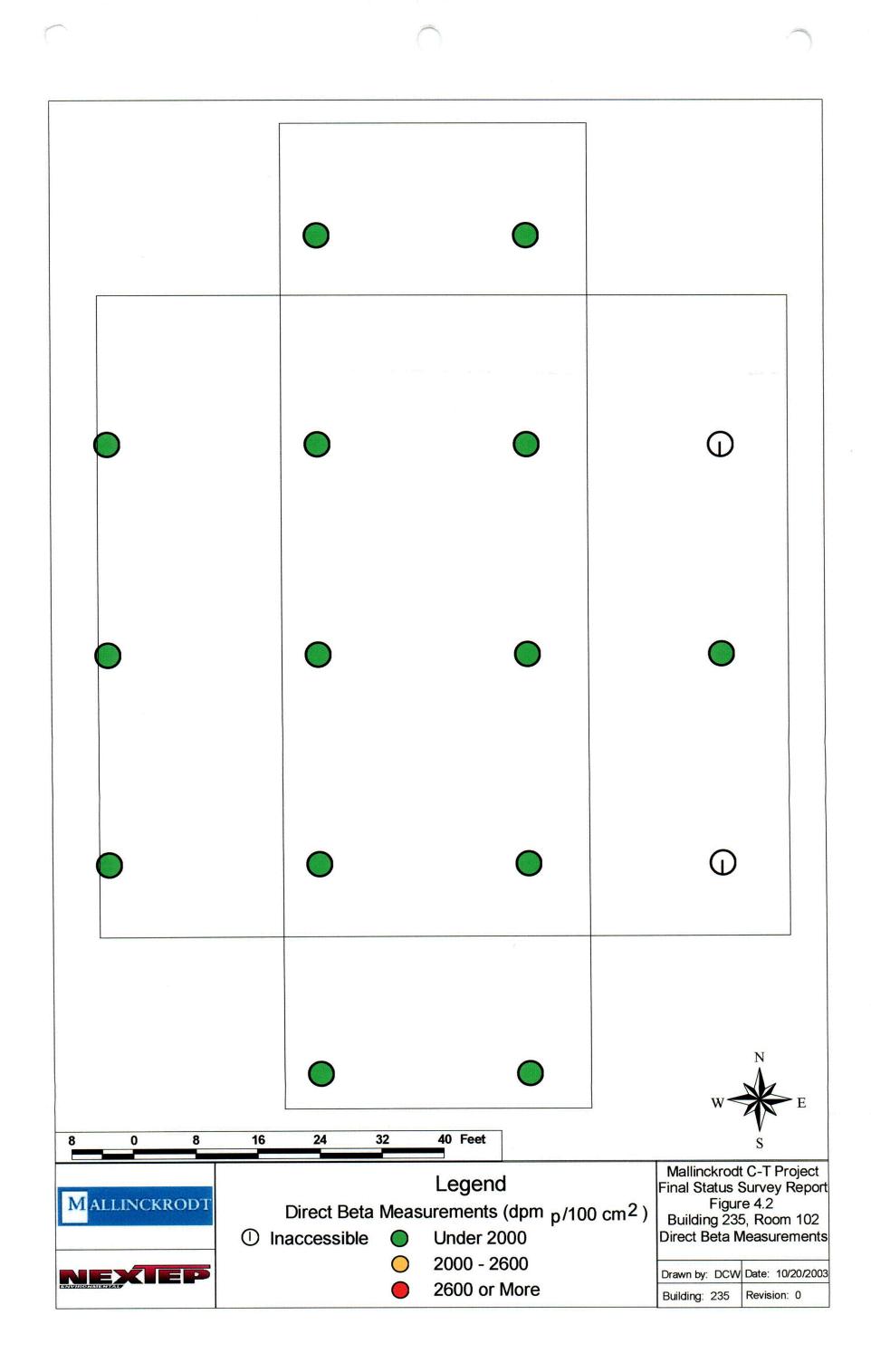



Figure 2.1 *SU-23501 & SU-23601*



؛ بر

i



N

Mallinckrodt C-T Project–Phase I	
Final Status Survey Report Buildings 235 & 236 Interior	

C01

Mallinckrodt C-T Project–Phase I Final Status Survey Report Buildings 235 & 236 Interior Revision: 0 December 2003 APPENDIX 2

36

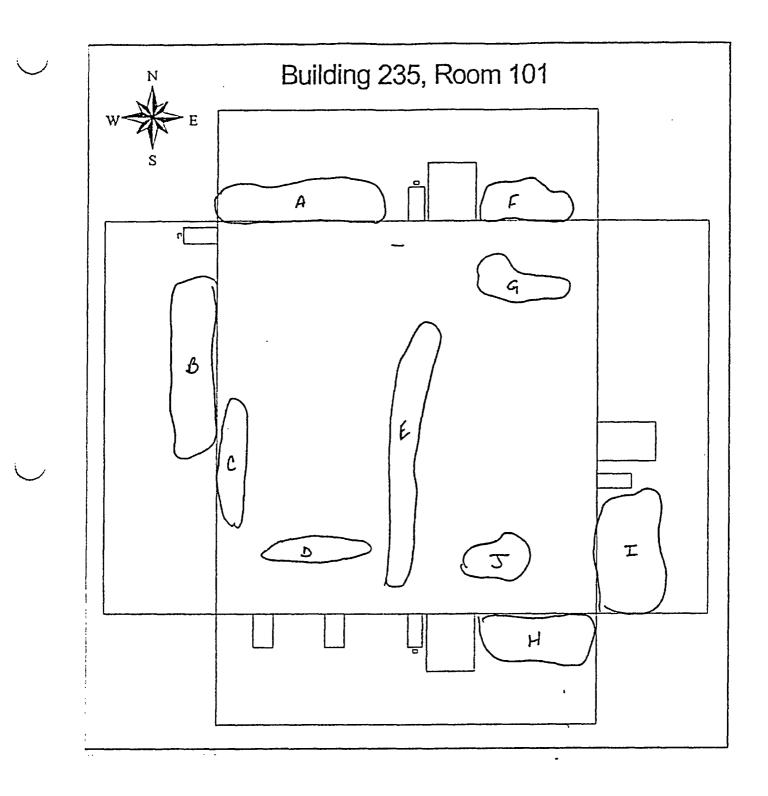


Figure 4.3 Building 235, Room 101 Scans

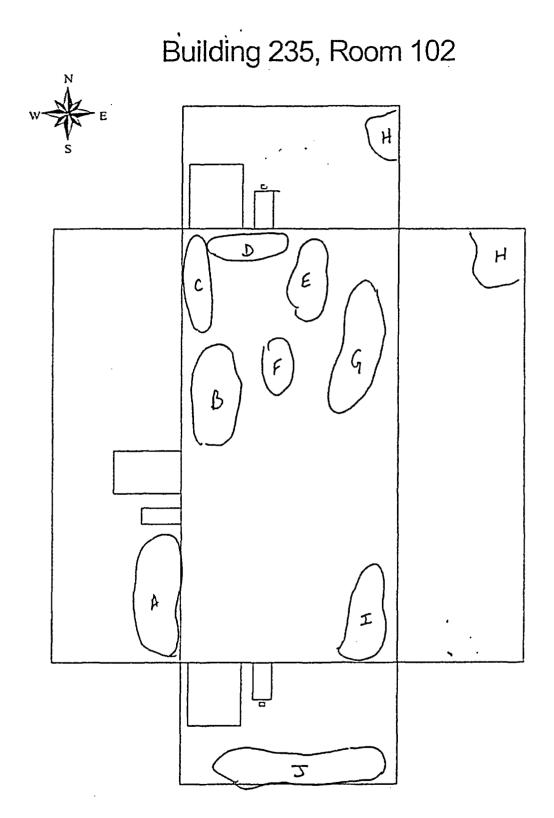


Figure 4.4 *Building 235, Room 102 Scans*

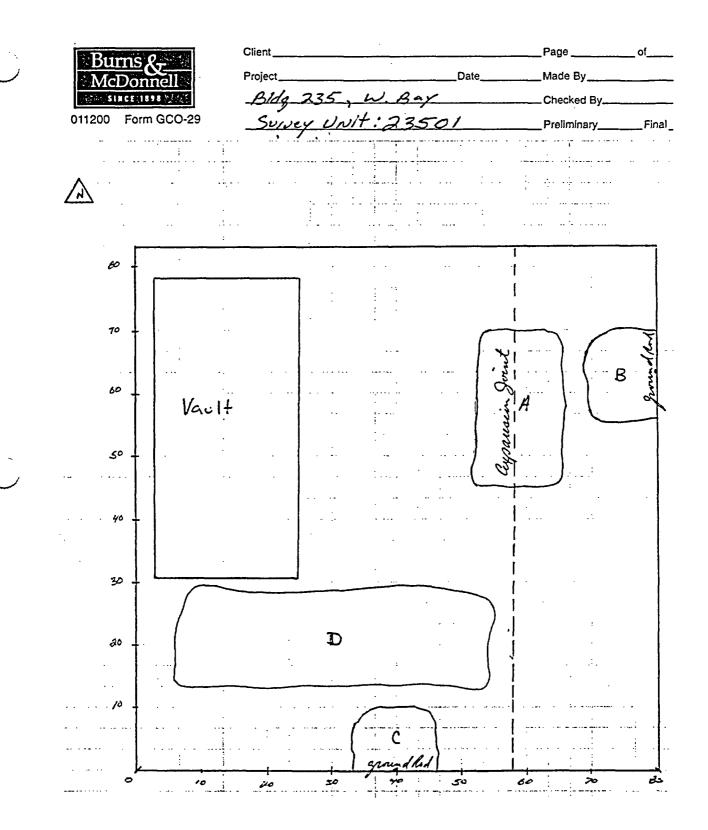


Figure 4.5 Building 235, Room 101 Expansion Joint Scans

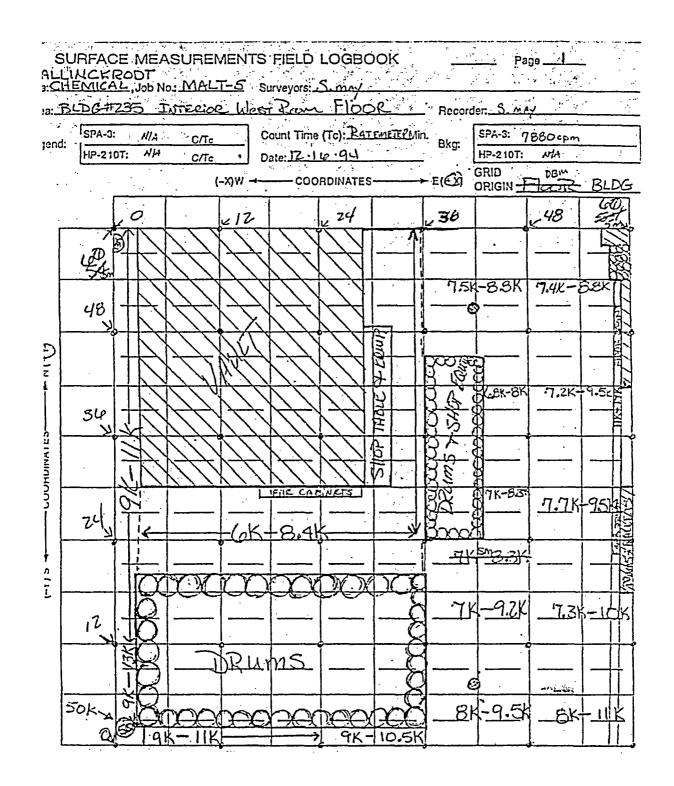
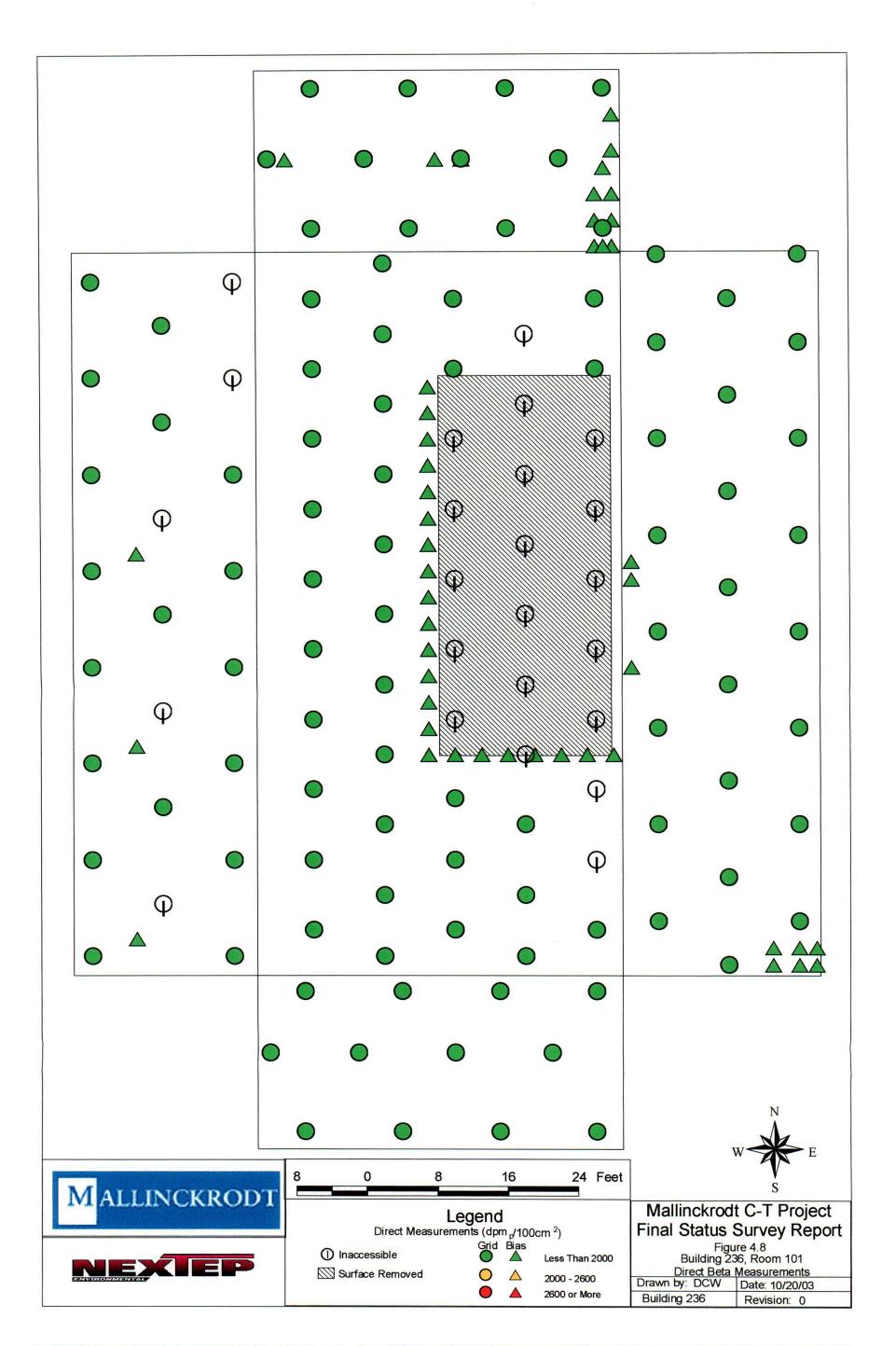



Figure 4.6 Building 235, Room 101 CH Scan Maps

Date 11-14-03 Blog RM 235 Dryer RM East and west Survey Unit 23501 DIRK HARTMAN Tech. East Dryer 2m 14 É \hat{D} ß Ċ west pryer &m A Ē ...B... _; ...

Figure 4.7 Building 235, Room 101 Dryer Room Scans

Revision: 0
December 2003
APPENDIX 2
ins modulineyegerek bi imake sugaran

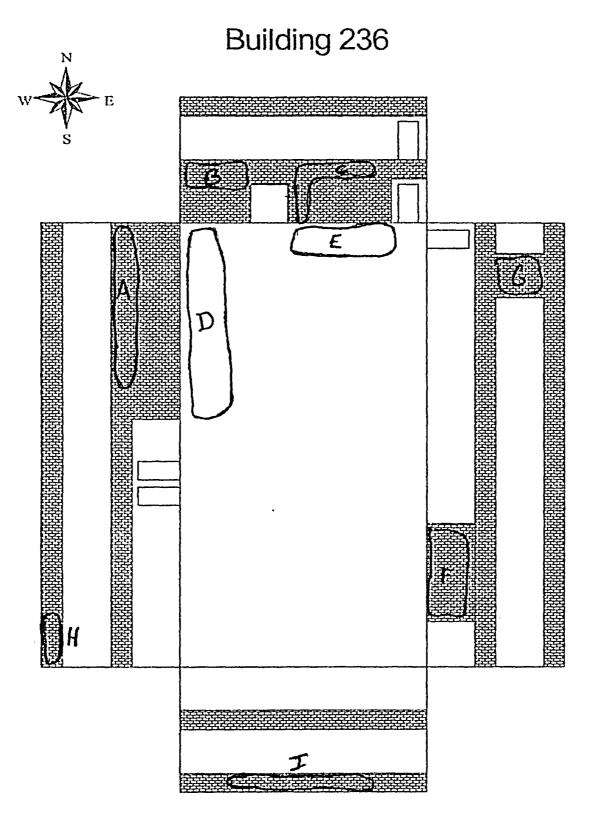


Figure 4.9 *Building 235 Scans*

APPENDIX 3

Instrument Calibration Sheets for SU-23501, 23502, and 23601

Туре	S/N	Cal Date
· · ·	131415/188704	6/17/03
F	163666/B426W	1/16/03
-	131410/188707	4/16/03
D-4-		1/18/96
Beta	117362/B860N	3/5/96
		10/20/99
-	126509/B861N	9/18/00
-	127220/B426W	10/6/99
Swipe	179577	2/26/03

•	Ludlum 43-89 AG-3-7 CALIERATION DATA SHEET	•
43-89 48-3-7 SN: 188704	Property of: BIALT	
Readout Inst.: <u>7241-2</u> Bete Nphe Source: The Sr 7-90 200		Date: <u>6-12-04</u> : <u>/6700</u> DPM
Date of Cal.: 10-74-04	2	
$2LATEAU:$ Source High Voltage (CPM) 600 M/A 650 $-$ 700 $-$ 750 $-$ 800 $/352_{-}$ 850 $\overline{277.1}$ 900 $\overline{3737}$ 950 $\underline{4542}$ 1000 5755	High Voltage Source (CPM) 1050 $159B$ 850 $159B$ 850 2165 1400 2165 1200 3251 925 $369E$ 1200 3251 925 $369E$ 1250 32551 955 $369E$ 1250 32551 955 3255 1250 32551 955 32551 955 3255 1200 32551 955 3255 1350 $$	Background Check High Voltage CPM - 25 Op. Voltage 169 Op. Voltage 169 + 25 Op. Voltage + 59 239
Efficiency: 5 Minute Gross Count Pos "A": Average (A + 6)/2: Background: CPM: Efficiency =	Pos "B": Gross CPM: Net CPM: Net CPM 	Imin Qt. 3213 Imin Bk6 183 3030 / 16700 Com 18.1 =/0
Date of Calibration: <u>6-17</u> Calibrated by: <u>Conde 11</u> Reviewed by: <u>Conde 11</u> EA4.10 Pov: 2 Late: 25 Feb 99	<u>-03</u> Expiration Date: <u>12-</u> <u>N.Sells</u> <u>(Signature</u> Ndme) (Signature Date: <u>()</u> (1)()	Page 4 of 4
	L2241-2/L43-89 S/N: 131415/188704	

Mallinckrodt C-T Project–Phase I Final Status Survey Report Buildings 235 & 236 Interior

.

CALN100A

Thermo NUtech

For Mallinckrodt Chemical, Inc

NATIONAL NUCLEAR ABP-100 MATERIAL SPECIFIC CALIBRATION DATA SHEET 43-89 ABP-100 SN: 188704 HIGH VOLTAGE 925 V PROPERTY OF: MALT READOUT INST: 2241-2 SN: 131415 CAL EXPIRE DATE: 12-12-03 ABP-100 EFFICIENCY TO Sry-90 ON 47 mm DISK: 18.1 % CAL DATE: 6-17-03 BACKGROUND BR Efficiency SOURCE SR SA SURFACE OPEN OPEN ' SHIELD Cls/1 min Cts/1 min SHIELD NET NET Source Source 1 32 1. MATERIAL Cls/2 min Cls/2 min СРМ Ħ Activity СРМ oncrete 396 308 6-A 88 5005 <u>4824</u> 25900 18 ÷ 181 4766 4945 179 18.1 4951 210 4741 A.0 513 180 <u> 1929</u> 10 259×100 = 25900 Averaçe = 18. Std Dov = <u>.</u> Ward 3781 1720 ٥ 0 0 4007 lm-2 226 3660 0 O 0 38761 216 0 3971 211 0 0 3760 0 3887 21.0 0 0 24 36A7 174×100 = 17400 21.3 Average = Sid Dov = 0.4 Masonite 0 0 3964 249 17400 21.4 0 3715 m·2 3698 0 Q ð 3889 21.3 191 0 0 3853 0 234 3619 20.8 0 198 3946 3748 <u> Z 1 1</u> Avarages Std Dav = • IMALIA 0 0 4362 224 0 4138 m·z 23.5 17400 0 0 0 211 25 22, 4344 4186 0 \sim 4358 0 23.1-4101 1230 T ۵ A390 72 ,Ľ 4160 Average = 23.0 Std Day # ÷.,. DATE OF CALIBRATION: 6-17-EXPIRATION DATE: CALIBRATED BY: C ande 6118103 **REVIEWED BY:** DATE: @ Contact Geomletry ÷ 1 L2241-2/L43-89 S/N: 131415/188704 6/17/03

Mallinckrodt C-T Project–Phase I Final Status Survey Report Buildings 235 & 236 Interior

CT-RP-66 Chi Squared Test

	on oquu	cu i cot	
Instrument Model #	2241	Date:	06/24/2003
Instrument Seria#	131415	Source Nuclide:	SrY90
Probe Model #	43-89	Source Serial #	2178-96 01
Probe Serial #	188704	Source dpm (4π);	56039
Window Setting:		Efficjoncy (cpm/dpm):	0.19
Threshold Setting:		Background cpm:	135.2
High Voltage:	925	BKGD N-1	4
		BKGD Count Time (min):	1
	Gross	Counts	
Count # (n)	Observed	Expected	Background Counts
1	10358	10449	121
2	10405	10449	130
3	10502	10449	122
4	10336	10449	148
5	10281	10449	155
6	10198	10449	
7	10620	10449	
8	10468	10449	
8	10454	10449	
10	10328	10449	
11	10525	10449	
12	10403	10449	
13	10382	10449	
14	10418	10449	
15	10471	10449	
16	10669	10449	
17	10552	10449	
18	10690	10449	
19	10392	10449	
20	10525	10449	
sample mean (xbar) ≃	10449	Multiplier to convert	
sample variance (s^2) =	15903		
background variance (b^2) =	239.7	to dpm:	5.4
sample sigma (s) =	127		
(95% Confidence) 2.752 s =	350		
(99% Confidence) 3.615 s =	459		
		MDA(cpm) =	57
df=n-1 =	19	MDA(dpm) =	306
chitest = $p(x < \chi^2)$ =	6.727E-02	wox(upin) =	308
chiequare $(\chi^2) =$	28.919		
	201010		
Acceptable x^2 min =	8.907		
Acceptable x^2 max =	32.852		
2^2 test passes (yes/no)?	YES		
99% Conf. Interval Test min =	9854		
95% Conf. Interval Test min =	9964		
Source Check Mean Net Counts	10313		
95% Conf. Interval Test max =	10863		
99% Conf. Interval Test max =	10773	~	
	1		
	l l l	I STIN	
Test performed by:	Steve Struck	E-KK	
	•		
Checked by:		Date:	

Date:

L2241-2/L43-89 S/N: 131415/188704 6/17/03

Mallinckrodt C-T Project-Phase I Final Status Survey Report Buildings 235 & 236 Interior

Daily

•.	LUDI	.UM 2221	Thermo NUtech A ThermoRetec Compa 601 Scarboro Road Oak Ridge, TN 37830	iny
	CALIBRADO	IN DATA SHAT	Internet	
Ludlum22215/N: 163	Slebb Pi	operty 0	ThermoRete smart Solutions. Positive Duto	
Battery Check	<u>a 56 P</u>			
High Voltage Check	Replace		(423) 481-0683 Phone (423) 481-0121 Fax	*
HV Moter: Eluke: Meter Reading	29 S/N: 65 Pre Cal	410232 Cal E Post Cal	xp. Date <u>Toleranc</u>	<u>-03</u> . :8
600 Volts	660_	605	10 % 10 %	
1000 Volts 1400 Volts	1540	-HIO- 1002	10 %	
Input Sensitivity:				
(Threshold 8 10 m MP-2 S/N: 684	nv) Pre Cal Cali	bration Exp. D		and the second
Rate/ MP-2	2221	Display	Display	Tol
Moter		Digtal	Analog	
400 CPM	<u>×1</u>	400	400	10%
4K CPM	<u>x10</u>	3998	4000	10%
40K CPM	<u>×100</u>	39999	40000	10≉
400K CPM	x1000	400080	400000	10%
Scaler:	- -	C 4 - 1 -	100000	104
100K CPM	0.5 sec	50010		10%
. 100K CPM	<u>1.0 min</u>	100020		102
100K CPM	<u>2.0 min</u>	200034		10-2
100K CPM	<u>5,0 min</u>	500097	Sk	- W.G
Log 400 <u>400</u> Functional Check:		40K 40K 4		_
Ext Count Kes	etSpea	eker Headph	pones Ligh	it
Date Of Calibrati	on: 1-16-0-	Expiration	n Date: 1-14-70	3
Calibrated By: K	erint)	els <u>Man</u> (Si	gnature M	Julia-
Reviewed By: _/	VV J	Date	:_1/39/03_	, <u>,,,,,,,,,,,,,,,,,,,</u> ,,,,,,,,,,,,,,,,
	(\mathcal{L}	Ĺ	
		*		

L2221/AB-100 S/N: 163666/B426W 1/16/03

• •

Thermo NUtech For Mallinckrodt Chemical, Inc

``

CALN100A

NATIONAL NUCLEAR ABP-100 MATERIAL SPECIFIC CALIBRATION DATA SHEET 215									
ABP-100 SN: B4264			•		PROPERT		Yee E	<u>.s.</u>	
READOUT INST: Lud			SN: 1630		CAL EXPIR				
ABP-100 EFFICIENCY TO					CAL DATE				
		5 b			SR		SA	Efficient	
BACKGF	SHIELD	BR	OPEN	SHIELD	NET	Source	Sourca	SRE	
SURFACE OPEN MATERIAL CIS/2 min	Cls/2 min	CPM	Cts/1 min	Cis/1 min	CPM	#	Activity i	<u>Ś,</u>	•
MARCINE CIAZ MAN	013/2 111111								
Concrete 561	416	73	6857	132	6625	6-A	33750	19.4	
Landrete Ster		1	685.3	246	4607			19.5	
			6846	2A2-	6100			19.9	•
	- <u>}</u>	-1	6784	236	6548	L	- Jun	19.7	•
2164126 - 385 3	3750			مب معلم المحمد الم			Avorago =	19.9.1	
266×125 = ==== 3: dpm				•			Sid Dev =	0.1	
			1000	238	14984	m.z	22252		
Wood 0	0	0	5222		5041	1		7.7	
	6	0	5281	240			1-1	22.3	
0	0	0	5181	224	4957	1-1-	1-2	22.8	
1 0	0	0	5296	252	15064	1.0			
178 donx 125 = 2;	1250		;				Averaga =		
			•				Sid Dev »	0.2	:
					<u></u>	1	12-064	22.9	
Masonite 0	0	0	5296	232	500A	IM.Z	22250		
	0	0	5302	234	15068		}_{	122.3	
0	0	0	5311	248	15063	4-1-	<u></u>	1 daile	
J O	0	δ	5366	236	5130	<u>LV</u>	1 5		
178 dp= x125 = 22	250					•	Average =	-	(
				•			→ Sid Dav =	0.12	
Rection 1		1	11 474	723	1584	Tm-Z	22250	24.1	
Aluminum 0	0	<u> 0</u>	16037		5470	1-7-	1	24.6]
f f	0	10-	5106		15765		+-(-	125.9	1
	<u> 0</u>	0	10013	248	5665		15	125.5	1
LV O	0	0	1589Z	224	1066		Average		
178 dpm x 125 = 22	7250						Std Dov -		
					\wedge			L	
		- 42			THEN DATE	-7-74	-03 [`]		2
DATE OF CALIBRATIO	N: <u>/-27</u>	<u></u>		EXPIRA	TION UATE	-17		14	• ••
CALIBRATED BY:	1 11	ILC.	, ile'	40		// k=1	Au	12-	
CALIBRATED BY: 1	Indri	<u></u>			Signatur	0	7-1		
. ፓ			• .				-		
REVIEWED BY:	MA~	shere >		_ DATE:_	130	<u>[</u>	ے۔ روز میں		
henevice bit from		-75							
-		\odot							
、 ·									
		I	L2221/A	B-100					
		S/N	: 163660	6/B4261	W				
		0/14			••				
			1/16/	03					

Mallinckrodt C-T Project–Phase I Final Status Survey Report Buildings 235 & 236 Interior

\$

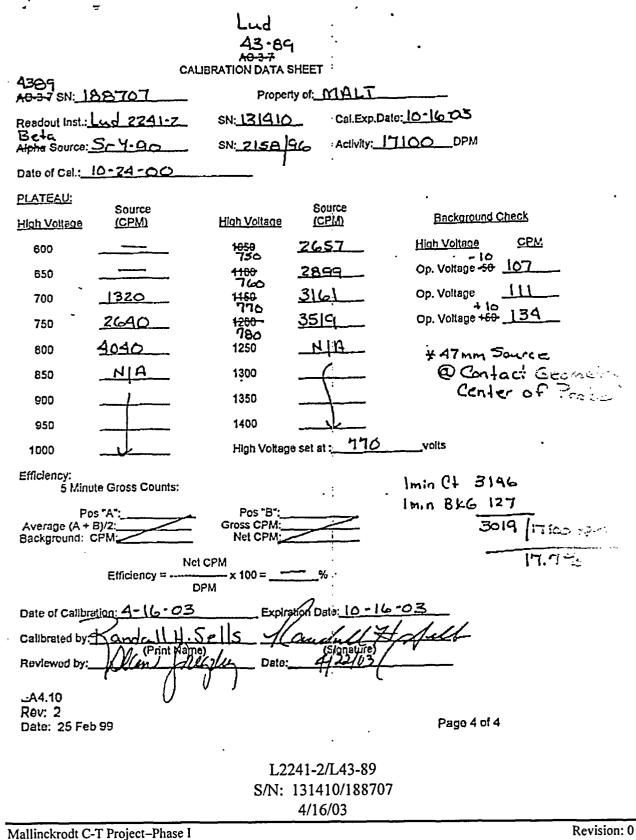
CT-RP-66 Chi Squared Test

Chi Squared Test								
Instrument Model #	2221	Date:	02/04/2003					
Instrument Sorial#	163655	Source Nuclide:	S/Y90					
Probe Model #	AB 100	Source Serial #	2178-96					
Probe Serial #	B426W	Source dpm (4x):	56489					
Window Setting:	3720	Efficiency (cpm/dpm):	0.28					
Threshold Setting:	352	Background cpm:	183.4					
	875	BKGD N-1	4					
High Voltage:	010	BKGD Count Time (min):	1					
		Counts						
	Obsorved	Expected	Background Counts					
Count # (n)	15360	15546	185					
1	15361	15546	193					
2		15546	179					
2 3 4	15477	15546	179					
	16562	15546	181					
5	15520	15546						
6	15587	16546						
7	15476	1						
8	15392 15639	15546						
9	15609	15546						
10		15546						
11	15401 15433							
12	15601							
13		1						
14	15743							
15	15608							
16	15828							
17	15577							
18	15518	· · · · · · · · · · · · · · · · · · ·						
19	15510							
20	15599							
sample mean (xbar) =	15540							
sample variance (s^2) =	1518	t to dpm:	3.6					
background variance (b^2) =	34.	В						
samplo sigma (s) =	12	3						
(95% Confidence) 2.752 s =	33	9						
(99% Confidence) 3.615 6 =	44	6						
		MDA (cpm) P	65					
di = n-1 =	1	9 * MDA (dpm) =	240					
chilest = $p(x =$	4.858E-0	1						
ch'square (x^2) =	18.65	4						
Acceptable x^2 min =	8.90	17						
Acceptable x ² max =	32.85							
x ² test passas (yes/no)?	YE							
Y S rest haarda (hearin)		-						
99% Cont. Interval Test min =	1491	17						
		10						

99% Conf. Interval Test min = 95% Conf. Interval Test min = Dally Source Chack Mean Not Counts 95% Conf. Intervel Test max = 99% Conf. Interval Test max =

Test performed by: Steve Struck

by: Steve Struck HOD 2/4/03 by: Min C. Waryford Date: 2-4-03 Checked by:


L2221/AB-100 S/N: 163666/B426W 1/16/03

15023

15363

15702

Mallinckrodt C-T Project-Phase I Final Status Survey Report Buildings 235 & 236 Interior

Final Status Survey Report Buildings 235 & 236 Interior

CALN100A	•		The	rmo NU	ech					
	For Mallinckrodt Chemical, Inc									
	NATIONAL NUCLEAR ABP-100 MATERIAL SPECIFIC CALIBRATION DATA SHEET									
48.89				•						
ABP-100 SN:_				TAGE: 1	_	PROPERT				
READOUT INS	T: Lud	2241-2	e	SN: 1314	10	CAL EXPIR	E DATE:	10-16-03		
ABP-100 EFFI	CIENCY T	0 Sr7-90 OI	N 47 mm D	16K: 17.	1_%	CAL DATE	<u>A-10</u>			
	BACKG		BR	SOU		SR	Courses	SA Efficia Source 53-5		
SURFACE	OPEN Cts/2 min	SHIELD Cls/2 min	NET CPM	OPEN Cls/1 mln	SHIELD Cis/1 min	NET CPM	Sourco #_	Activity S		
		Otar2 mart	01111							
Conceld	264	230	17	4753	277	4476	6-A	2500-		
			f	4877	301_	4576			1	
			<u> </u>	481	297	4390	-5			
259 X 100	2500		~~~~~	14702			L	Average = 17	.5	
237 2 100	- 2040	0			•			Sid Dav= 0.	<u> </u>	
	•				<u>.</u>					
Wood	0	6	6	3725	250	3469	M·Z	17400 -19-		
-	0	م	0	3606	243	3363	├ {			
	0	0	0	3581	223	3358	 _}_	1	<u> </u>	
<u> </u>	_0	0	0	3544	245	13309		Average = 10		
174× 100	0 = 1740	0		;	•	9611		Std Dov = 04		
Mumile	0	0	0	13646	318	133ZB	M·Z	17400 19.		
(Cleans	0	0	0	13713	1324	3389		1.10		
	6	0	0	3735	319	3416		15	<u> </u>	
4	0	0	0	13600	327	3273	1 4			
				•			•	Average =		
					•			• Sta Dav =		
1				14203	1193	14010	IM-2	11740-1 23		
Aluminum	0	<u> </u>	0	4185		3978	11	1 122	5	
	0	0	0	1119	1.103	3936	1-1-	122.	6	
1	0	0	0	4023	1 195	3828		0 22.		
								Average = 27.		
								Std Dev =	<u>5</u>	
		A		•	/	1	14. 1-			
DATE OF CA	LIBRATIO	<u>н: т-1-1-</u>	0,5	<u>ــــــــــــــــــــــــــــــــــــ</u>	EXPIRAT	ION DATE:	10-1-		·	
CALIBRATE	BY. K	andall	H.Sel	S	1la	udull.	HA	Julia		
		Print Nom	<u>n</u>			Signaturo		,		
REVIEWED	nv. //	Vins A	treast	4	DATE:	42:	103			
REVIEWED			r-71-7	,	, <i>DATE</i>					
	•		νι							
				1 22/1 2	π μο ος					
				L2241-2		~ =				
			S/	N: 1314		07				
				4/16	/03					
linckrodt C-T I	Project-Pl	hase I							Revi	

Mallinckrodt C-T Project-Phase I Fínal Status Survey Report Buildings 235 & 236 Interior

1

	CT-RP-66							
Chi Squared Test								
Instrument Model #	2241	Date:	04/28/2003					
Instrument Serial#	131410	Source Nuclide:	SrY90					
Probe Model #	43-89	Source Serial #	2178-96					
Probe Serial #	188707	Source dpm (4x):						
Window Setting:		Efficiency (cpm/dpm):	56268					
Threshold Setting:	35 mV	:Background com:	<u>0.14</u> 79.8					
High Voltage:	770	BKGD N-1						
		BKGD Count Time (min):	4					
		Counts	1					
Count # (n)	Observed		Rooks much Count-					
1	7865	Expected	Background Counts					
2	7914	7848	82					
3	7726	7848	80					
4		7848	80					
5	8036	7848	82					
6	7901	7848	75					
8	7851	. 7848						
, 8	7923	7848						
8 9	7889	7848						
10	7693	7848						
	7890	7848						
11	7874	7848						
12	7831	7848						
13	7929	7848						
14	7861	7848						
15	7700	7848						
16	7852	7848						
17	7828	7848						
18	7861	7848						
19	7724	7848						
20	7805	7848						
sample mean (xbar) >	7848	Multiplier to convert						
semple variance (s^2) =	7273	to dpm:	7,2					
background variance (b^2) =	8.2		2 . 4					
sample sigma (s) =	85	FSS Normalization						
(95% Confidence) 2.752 s =	235	Si =	0.007					
(99% Confidence) 3.815 s =			0.287					
(0018 001808120) 2.010 § =	308	•						
		MDA(cpm) =	45					
df = n-1 =	19	MDA(dpm) =	320					
chirest = $p(x < \chi^2) =$	5.487E-01	,						
chisquare (χ^2) ≂	17.609							
Acceptable x^2 min =	8.907							
Acceptable x*2 max =	32.852							
x^2 test passes (yes/no)?	YES							
99% Conf. Interval Test min =		:						
25% Conf. Interval Test min = 95% Conf. Interval Test min =	7459	•						
Dally Source Check Mean Net Counts	7533							
95% Conf. Interval Test max =	7768							
95% Conf. Interval Test max = 99% Conf. Interval Test max =	8003							
33% Coni. mtgrvai 185t màx ≂	8076	· •						
Test performed by: S		had-	4.28-03					
Checked by: 4	An C. Uka		4-28-03					
			,					

L2241-2/L43-89 S/N: 131410/188707

4/16/03

Mallinckrodt C-T Project-Phase I Final Status Survey Report Buildings 235 & 236 Interior

Si	te	::		
Jot	5	ŧł	:	t

AB-100 AC-3-7-CALIBRATION DATA SHEET . AB-100 R SGON AE-3-7 SN: Property of: EAC Readout Inst.: Ludlum 2001 SN: __117362_ Cal. Exp. Date: 7-8-96 SrY-90 Alpha Source: 1239/92 SN: 1239/92 Activity: 20300 DPM 10-1-95 Date of Cal.: PLATEAU: * CALIB @ 35 MV Source Source High Voltage (CF'M) High Voltage Background Check (CPM) 600 1050 High Voltage <u>CFM</u> 650 1100 Op. Voltage -50 284 700 1150 440 Op. Voltage 750 574 1200 Op. Voltage +50 446D 800 1250 850 1300 875 900 1350 925 950 1400 975 950 1000 High Voltage set at: volts A= FRONT CNTR POS. Efficiencv: B: REAR CNTR Pos. 5 Minute Gross Counts: CNTR "C" (A+G+C)/3 Average (A+ B)/2: 40181 40964 40956 Pos "B":_ Gross CPM: 8036.2 Background: CPM: 396.4 Net CPM: 7639.8 1982 Net CPM Efficiency = $----- \times 100 = 37.6 \%$ DFM 1-18-96 7-18-96 Date of Calibration: Expiration Date: SMITH SARA ana Smith Calibrated by: (Print Name) (Signature) Reviewed by: _/ Date: _1-23-96 ander EA4.10 Rev: 1 Date: 25 Jan 83 EA4.10-65

L2221/AB-100 S/N: 117362/B860N 1/18/96

Site:______

AB-100

AE-7-7 CALIBRATION DATA SHEET

•	•	CALIBRATI	DATA SH	EET				
AB-100	_			-1-	·			
				ot: <u>EAC</u>				
0				1. Exp. Date: 7				
Auto Source:	<u>_SrY-</u>	90_ SN: 12	39 92_	Activity: 203	3 <u>00</u> _DPM			
Date of Cal.:		-25-95						
PLATEAU:	-		6					
<u>High Voltage</u>	Source <u>(CPM)</u>	<u>High Voltage</u>	Source . <u>(CPM)</u>	Background Che	<u>ek</u>			
600	0	1050	8796	<u>Hich Voltage</u>	CPM			
650	2	1100	15162	Op. Voltage -5	o			
700 .	106_	1150	N/A	Op. Voltage				
750	699_	1200	<u> </u>	Op. Voltage +5	о			
800	2042	1250						
850	4403	1300	<u> </u>					
700	6287	1350						
950	7569	1499	1					
1000	7950	High Volt	tage set a	t: <u>950</u>	volts			
Efficiency:								
5 Minute	e Gross C			·	^			
Average		: 37171		Pos "B":// Gross CFM:7434	4			
Hverage Backgrou	ind: CPM	247.8		Net CFM: 7/86	.4			
	1239	, t	let CPM	A				
	Ε.	fficiency =	DF'M	100 = <u>35.4 %</u>				
Date of Calit	oratjec:	3-5-96	Expi	vation Date: 7	-5-96			
Calibrated by	Dan	Jall H. Sells (Frint Name)		andell H. (Signature)	Ault			
Reviewed by:	·			Date:				
EA4.10		•						
Rev: 1 Date: 25 Jan	n 89 .				EA4.10-65			

L2221/AB-100 S/N: 117362/B860N 3/5/96

Mallinckrodt C-T Project-Phase I Final Status Survey Report Buildings 235 & 236 Interior

٩

Thermo NUtech A ThermoRetec Company 601 Scarboro Road Oak Ridge, TN 37830

Bicron hermoRetec AB-100 Smart Solutions, Positive Outcomes. 40-3-7 CALIBRATION DATA SHEET AB-100 (423) 481-0683 Phone AG-3-7 SN: BB601 (423) 481-0121 Fax Property of: 7-72 mermoretec.com Readout Inst .: 22 SN: 117362 Cal.Exp.Date: 21/2000 Bete Alpha Source: Se 4 SN: 123892 Activity: DPM 15200 Jpm RHS Date of Cal. ⊬ @35mV 16 @Contact Geometry PLATEAU; Source Source High Voltage Background Check (CPM) High Voltage (CPM) 600 1050 694Z High Voltage CFM 650 9136 Op. Voltage -245 1100 700 1150 Op. Voltage 261 750 🖉 5077 Op. Voltage + بَحَرَّ 26 925 800 1062 5652 750 1000-6913 850 2726 6046 1889 975 900 4438 1350 6324 1000 950 5594 1466-649 1025 1000 1470 High Voltage set at :_ 1000 volts Efficiency: 5 Minute Gross Counts: Pos "A": <u>30485</u> Average (A + B)/2: <u>3/214</u> Eackground: CPM: <u>257-1</u> Pos "B": <u>31943</u> Gross CPM: <u>6242.8</u> Net CPM: <u>5985.6</u> 1286 Net CPM x 100 = <u>39.4 %</u> Efficiency = DPM محيته Date of Calibration: 10170 ac Date Se Calibrated by: (Signature (Priat Name) Reviewed by Date EA4.10 Rev: 2 Date: 25 Feb 99 Page 4 of 4 A subsidiary of Thermo TerraTech Inc., a Thermo Electron company L2221/AB-100

Mallinckrodt C-T Project–Phase I Final Status Survey Report Buildings 235 & 236 Interior

Revision: 0 December 2003 APPENDIX 3

S/N: 117362/B860N 10/20/99

Thermo NUtech A ThermoRetec Company 601 Scarboro Road Dak Ridge, TN 37830

AB P-100 AC 3-7-SN: Readout Inst.: Beta Atcha Source;	8061 N 2221 Sry-90	Bicron ABP-100 ABP-100 BRATION DATA SHEE Property of: SN: 126509 SN: 1230/92	アル Cal.Exp.Date: <u>.</u> Activity: <u>/54</u>	
Date of Cal.:	<u>4 12 99</u>	(4	9 35mv · ((350)
<u>PLATEAU:</u> <u>High Voltage</u>	Source (CPM)	-	Source CPM)	Background Check
600		1050 <u>/o</u>	501	High Voltage CPM
650	· · · · · · · · · · · · · · · · · · ·	1100		Op. Voltage -50 _301
700	397	1450 900 Lel	88	Op. Voltage <u>397</u>
750 🐣	1495	1200925 Les	665	Op. Voltage +50 463
800 ⁻	3255	1250950 6	704	
850	5045	1399975 _72	<u>212</u> .	:
900	6218	· 1999/000 _7'	139	•
950	6980	1400		
1000	1158	High Voltage set a	at:_950	volts
Efficiency:. 5 Mint	te Gross Counts:		•	
Average (A +	s "A" <u>: 3405Z</u> B)/2: <u>33577</u> CPM: <u>1982</u> Net C Efficiency =	x100 = <u>41.0</u>	5.4 •4 •390	Net Cpm
Date of Calibra	DPI	M A	ate: <u>9/18/20</u>	<u></u>
Calibrated by:	Randall H.S.	11s Trank	UNA A	ullo
Reviewed by:_	Alan (Print Name)	teapley Date:	(Signature) 9/19/95	
EA4.10 Rev: 2	· · ·	-		Page 4 of 4
Date: 25 Fet	9.88			Page 4 of 4
				A subsidiary of Thermo TerraTech Inc., a Thermo Electron company

• :

.

:__

L2221/ABP-100 S/N: 126509/B861N 9/18/99

Thermo NUtech A ThermoRetec Company 601 Scarboro Road Oak Ridge, TN 37830 Bicron hermoRetec AB-100 Smart Solutions. Positive Outcomes. AG-3-7 CALIBRATION DATA SHEET AB-100 (423) 481-0683 Phone (423) 481-0121 Fax AC-3-7 SN:_ Property of: 7-R B4260 Cal.Exp.Date: 5/18/2000 Readout Inst. SN: 127270 222 Beta Activity: 15400 DPM 19z Alpha-Source: SN: 1238 91 Date of Cal.: 99 * @35 mu @ Contact PLATEAU: Source Source -Background Check (CPM) High Voltage (CPM) High Voltage CPM High Voltage 1050 9957 3 600 Op. Voltage -50 _264 . 1100 04 650 253 Op. Voltage 686 1150 700 Op. Voltage +50 _296 6376 1200 875 750 . . 2236 2032 4290 1250-900 800 2050 5996 1300-925 850 7095 1350.950 6665 900 1400-975 7397 7052 950 High Voltage set at : _ 925 volts 7695 1000 Efficiency:. 5 Minute Gross Counts: Pos "A": 32914 Average (A + B)/2: 33505 Pos "B": 34104 Gross CPM: 6701 - B Background: CPM: 268.6 Net CPM: 6433 1343 Net CPM -x100=<u>41.8</u>% Efficiency DPM 1250 Expiration Date Date of Calibration: 10 H.Se Tana Calibrated by Øate Reviewed by EA4.10 Rev: 2 Page 4 of 4 Date: 25 Feb 99 A subsidiary of Thermo TerraTech Inc., a Thermo Electron company L2221/B426W S/N: 127220/B426W 10/6/99

Mallinckrodt C-T Project-Phase I Final Status Survey Report Buildings 235 & 236 Interior

			are the state water the second
16:5016 2003 16:5		MALLINCKRODT	POST OFFICE BOX 810 PH, 915-235-5494
Scientific and in	ndustrial CERTIFICA	TE OF CALIBRATION	501 OAK STREET
	a • • • • • • • • • • • • • • • • • • •		SWEETWATER TEXAS 79554 U.S.A.
CUSTOMER TYCO / MAL	UNCKRODI		ORDER NO 292439 / 270031
and the second		3030 ····	Send No. 179577
Mfg. Luctum Measu			Sector and the sector of the sector and the sector of the
		بالشارية فكالمحارفة ومعاطرتها ويعتقدها	
	<u>eb-03</u> Col Due Date	and the second	Lintervol <u>6 Months</u>
	plcable instr. and/or detector i		
		ev. ⊷iove [] io-zove [] Our of io	I. Requiring Repair Other-See comments
 ✓ Mechanical ck. ✓ Aucto ck. 	Mindow Operation		
S Macoac	Alpha Sensitivity12	mV_Beta Sensitivity4	mV Beta Window <u>50</u> mV
C:Calibrated in accordance	co with LMI SOP 14.8 rev 12/05/8		
-			
NETUTER VOILSOI_ZZ	V High Voltage set with de		
M: HV Readout (2 point	s) Ref./inst	/500V Ref./	Inst. 1445 / 1500 V
		(EEPRC	DM Settings)
	•	(PC) Count Tim	
SC mode humed OFF.		Aloha Alom;	_ <u>979999</u> cpm
Firmurare version:	3,412	Seta Alam:	cpm
Over occi set at 1/4 turn	past OFF.	Alpha/Beta Ala	zm: <u>999999</u> cpm
Battery voltoge measure	od at <u>17.27</u> Vdc.	Caloration Due	e Date:
C.14 Efficiency =	/%(4 pf) Net	LOC (Loss of Co	ouni) time = 30 minutes (default)
			·.
	REFERENCE CAL POINT	INSTRUMENT RECEIVED	INSTRUMENT METER READING*
Alcha Channel			100.000
Digital Readout	400K.cpm		
	4CK cpm	39944	39544
	4K.cpm	3995	
	400 cpm	400	
	40 cpm	40	
	PCTPDP107 011 00		
Beta/Gamma Chann	REFERENCE CAL POINT	INSTRUMENT RECEIVED	Instrument meter reading.
Digital Readout	400K.com		<u></u>
. •	40K.cpm		
÷	<u>4K cpm</u>	2995	3995
	420 com	400	
	40 cpm	40	40
ייייניינייניישיאניינייניינייניינייניינייניינייניינייני		(Q) incloates 0.1 minute c	
COMMENTS.			
	15, 44Db com, read 28782 p		
	0,300 yon , soud 2444 in	<u></u>	
ither international Standards Organical	fon members, or have been derived from	accepted values of natural physical constant	Tute of Standards and Technology, or to the coloration lacrities of to or have been derived by the ratio type of calibration techniquos.
	requirements of ANSI/NCS1 2540-1-1994 re		Strile of Terral Collisions Unerse No. LD-1963
			arna an an tha an
E Apho SN 70-231	Beto S/	N <u>7-99 Ni-FV</u>	Other
	14709 Oscillos	cope \$/N	Muttimeter S/N
- 🖸 m ເວລ 2/13			
	later be and a second	Den	B 24 Feb 07
Torotod By	d Jali da	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	
The cost of By	d Jalino	Det	H Maria
ToTorcted By:	<i>il Jalino</i> Homi	Dot	March H March
	2 Jali - Ja - Horai od occet h LA without Bo withen appre	Dot	AC Inst. [] Passed Dielectric (H-Pot) and Continuity Test
FCRM 025-3 10/022002		Dof Not of Lucium Mecaurements Inc.	Only Foiled
FCRM C25-3 10/C22002		Dot	Cony Tollect
FCRM 025-3 10/022002		Dof Not of Lucium Mecaurements Inc.	Only Foiled
FCRM C25-3 10/C22002		Dof Not of Lucium Mecaurements Inc.	Cony Tollect
PCRM C25-3 10/C2202		Dort vot of Lucken Wecauserments Inc. L3030	Ony Tollect
PCRM C25-3 10/C2202		Dof vol of Lucken Vecaurements Inc.	Cony Tolect

Mallinckrodt C-T Project–Phase I Final Status Survey Report Buildings 235 & 236 Interior

JUL.16'2003 16:52 314 654 1251 MALLINCKRODT. #2114 P.007 LUCILL MEASURSMENCE, LNC . منابع فرف الم Mccel 3030 Plateau Data . ł 2/25/03 \$ 1:38:50 PM 4.4 Header 1: John Q Public Header 2: Serial#179577 Nder 3: Site:Building 1 der 4: Room 7 EastWall meader 5: Mora Comments? ۰. Reader 6: More Comments? ۰. Calibration Due Date: 2/25/04 Mcdel 3030 Date: 2/26/03 Model 3030 Time: 11:42:00 AM User PC Time: 1.0 Alpha Isotope: Pu-239 Alpha Scurce Size (dpm): 365000 Alpha Source Size (µCi): 0.164414414 Beta Isotope: Tc-99 Beta Source Size (dpm): 22600 Beta Source Size (#Ci): 0.01018018 Starting High Voltage: 675 Starting High Voltage: 800 Migh Voltage Increment: 25 Plateau Count Mode: SCALER Source Count Time (min): 0001.0 Background Count Time (min): 1.0

•	1		ALPHA					BETA		
127	Source	(Beta)	Background	Eff	CrossTalk	Source	(Alpha)	Background	Eff	Crosstalk
675	137685	(3889)	0	37.7%	2.8%	6010	{1}	36	26.42	0.0%
700	137877	(3657)	0	37.8%	2.6%	6966	(1)	45	30.6%	0.0%
725	138583	(2500)	2	38.0%	1.8%	7959	(1)	49	35.0%	0.0%
730	137851	(1483)	0	37.8%	1.0%	8551	(3)	50	37.5%	0.0%
775	137047	(1071)	1	37.5%	0.7%	9470	(1)	70	41.6%	0.0%
Q	137105	(783)	1	37.6%	0.4%	10082	(2)	203	43.78	0.0%

L3030 S/N: 179577 2/26/03

14333JUIA1612003-16:52-314-654-1251 MALLINCKRODT	#2114 P.008
	STATISTICS STATISTICS
Model 3030 MDA Calculation Data	
⋰ŷ <mark>⋰</mark> ⋰⋳⋲⋪⋈⋩⋳⋪⋑⋑⋬⋑⋑⋳⋳⋳⋳⋳⋳⋳⋳⋳⋳⋳⋳⋳⋳⋳⋳⋳⋳⋳⋳⋳⋳⋳⋳⋳⋳⋳⋳⋳⋳⋳⋳	
2/25/03	
1:42:00 PM	
A Birling Background (cpm): 2.0	
Seta Background(com): 49.0	
in Efficiency 8: 38.0	
beca Efficiency 4: 35.0 -	
Confidence Terral • 958 (a second	ر. ور 3 المراجع الوقع المراجع الم

a Efficiency 8:	38.0
moeta Efficiency 8: :	35.0 -
	• •
Confidence Level:	958

.

Count Time	Alpha MDA(dpm] Beta MDA(dpm)
0.1	111.9	295.7
0.5	35.5	129.5
1.0	24.4	100.8
2.0	18.6	84.5
5.0	14.8	73.6
10.0	13.6	59.8
50.0	12.5	66.5
FC (1.0)	24.4	100.8

L3030 S/N: 179577 2/26/03

APPENDIX 4 Threshold Comparison Test Reports (TCTR)

Threshold Comparison Test Report - Buildings

Run Date: Wednesday, December 10, 2003

Survey Unit Number: 23501 Class: 2 Data Points: Beta Grid Type: R Spacing: 27.9 ft.

SURVEY UNIT TABLE

Bldg	Rm	Surface	Fixed Equipment	Surface Area Included (sq. ft)	Remarks
B235	101	FNSEW	Q1Q3	13758	West room of building 235
B235	102	FNSEW	Q1	8780	East room of building 235
			Total Area	22538	

INITIALIZATION DATA

Measuremen	nt Types Sele	cted: RG	S, BI, CH
Date Range:		All	
Thresholds:			
EMC:	13,000	DCGLw:	2,600

SURVEY UNIT TEST STATUS

Test Performed_	Status		<u></u>	dpm _p /100 cm ²
Min/Max	Pass	Maximum Survey Value	в	582.0
Background	Fail	Minimum Background	<u>M</u>	1.0
DCGLw	Pass	Difference		581.0
DCGLavg	Pass	Average Activity	128.5	
EMC	Pass	Average Below DCGL	128.5	
Wilcoxon Rank Sum Tes	st N/A	Average Background	77.9	
Sign Test for Paired Dat	a Pass			

Threshold Comparison Test Report - Buildings

THE FOLLOWING DATA POINTS FAILED THE EMC TEST:

NONE

THE FOLLOWING DATA POINTS FAILED THE DCGLw TEST:

NONE

THE FOLLOWING DATA POINTS FAILED THE BACKGROUND TEST:

	Survey l	Jnit # 2	23501		Bu	ilding: I	B235					
	Room	SFC	X (ft)	Y (ft)	Mtx	Meas. Type	Min	SID	Gross Activity (dpm /100cm ²)	Remarks	Exc Res	
_	101	Е	18.0	16.7	СВ	RG	1	6213	477.4		C	
	101	Ē	72.0	16.7	ČВ	RG	1	6223			č	
	101	Ē	45.0	16.7	ČВ	RG	1	6218			č	
	101	Ē	68.3	63.3	č	RG	1	6212			č	
1	101	Ň	41.3	9.0	B	RG	1	6207			Ċ	
	101	N	14.3	9.0	В	RG	1	6206			Č	
	101	N	68.3	9.0	в	RG	1	6208	365.3		C	
	101	Q3	3.0	0.0		BI	1	7731	468.9	Expansion Joint	С	
	101	Q3	1.0	0.0	С	Bl	1	7729	354.3	Expansion Joint	С	
	101	Q3	4.0	0.0	С	BI	1	7732	325.7	Expansion Joint	С	
	101	Q3	2.0	0.0	С	BI	1	7730	268.4	Expansion Joint	С	
	101	W	63.3	12.7	В	RG	1	6209	582.2	•	С	
	101	W	36.3	12.7	в	RG	1	6214	397.8		С	
	102	F	5.4	36.0	С	RG	1	6234	308.0		С	
	102	F	5.4	9.0	С	RG	1	6238	189.3		С	
	102	F	32.4	63.0	С	RG	1	6231	178.0		С	
	102	F	5.4	63.0	С	RG	1	6230	118.7		С	
	102	F	32.4	9.0	С	RG	1	6239	93.2		С	
	102	S	7.2	18.0	С	RG	1	6242	78.7		С	

Threshold Comparison Test Report -Buildings

THE FOLLOWING DATA POINTS PASSED BACKGROUND, DCGLw, AND EMC SCREENING TESTS:

	Survey (Jnit # 2	23501		Bu	ilding:	B235						
_	Room	SFC	X (ft)	Y (ft)	Mtx	Meas. Type	Min	SID	Gross Activity (dpm J100cm ²)	Remarks	Exc	Res.	
	101	F	41.3	36.3	С	RG	1	6216	65.0	· · ·			
	101	F	41.3	63.3	Ċ	RG	1	6211	19.8				
	101	F	68.3	36.3	С	RG	1	6217	2.8				
	101	F	14.3	9.3	С	RG	1	6220	-8.5				
	101	F	41.3	9.3	С	RG	1	6221	-33.9				
	101	F	68.3	9.3	С	RG	1	6222	-45.2				
	101	Q1	3.0	0.0	М	BI	1	6245	14.7	Rm 101			
	101	Q1	4.0	0.0	м	BI	1	6246	4.6	Rm 101			
	101	Q1	1.0	0.0	М	BI	1	6243	3.9	Rm 101			
	101	Q1	2.0	0.0	М	Bl	1	6244	2.3	Rm 101			
	101	Q3	4.0	0.0	С	BI	1	7351	50.1	Expan. Joint			
	101	Q3	1.0	0.0	С	Bl	1	7348	42.9	Expan. Joint			
	101	Q3	2.0	0.0	С	BI	1	7349	3.6	Expan. Joint			
	101	Q3	3.0	0.0	C	BI	1	7350	-21.5	Expan. Joint			
	101	Q3	5.0	0.0	C	BI	1	7733	-125.3	Expansion Joint			
/	101	S	64.3	17.8	C	RG	1	6224	48.0				
	101	S	10.3	17.8	C	RG	1	6226	33.9				
	101	S	37.3	17.8	C	RG	1	6225	28.3				
	101	W	9.3	12.7	В	RG	1	6219	65.1				
	102	E	72.3	19.8	В	RG	1	6240	183.5				
	102	F	32.4	36.0	C	RG	1	6235	11.3				
	102	N	32.4	8.7	В	RG	1	6228	182.2				
	102	N	5.4	8.7	M	RG	1	6227	13.2	B 400			
	102	Q1	2.0	0.0	М	BI	1	6249	19.3	Rm 102			
	102	Q1	5.0	0.0	M	BI	1	6252	3.9	Rm 102			
	102	Q1	1.0	0.0	M M	BI	1	6248	-2.3	Rm 102			
	102 102	Q1	6.0 3.0	0.0	M	BI		6253	-3.1	Rm 102			
	102	Q1 Q1	3.0 4.0	0.0 0.0	M	BI BI	1	6250	-7.7	Rm 102			
	102	S	4.0 34.2	18.0	Č	RG	1	6251	-9.3	Rm 102			
	102	w	34.2 9.0	21.6	СВ	RG	1	6241 6237	-3.0 129.2				
	102	Ŵ	9.0 63.0	21.6	CB	RG	1	6229	129.2				
	102	Ŵ	36.0	21.6	CB	RG	1	6233	122.7				
								-					

Threshold Comparison Test Report -Buildings

Summary of Background Data and Thresholds Used in this Analysis

Me	easurement Type.	: вк <i>D</i>	<i>CGL:</i> 2,600	<i>EMC:</i> 13,000		
Matrix				Background		
	Data Points	Background		Threshold		na Thuến thế
÷	· · · · · · · · · · · · · · · · · · ·			(<i>Tbk</i>)	(Td)	(<i>Tc</i>)
	(dpmp/100cm ²)	(dpmp/100cm ²)	(dpmp/100cm ²)	(dpmp/100cm ²)	(dpmp/100cm ²)	(dpmp/100cm ²)
В	30	192.4	16.0	224.4	2,824	13,224
С	90	35.4	20.1	75.5	2,675	13,075
СВ	51	96.1	21.7	139.4	2,739	13,139
М	10	24.0	15.7	55.3	2,655	13,055

Threshold Comparison Test Report -Buildings

STATISTICAL TEST RESULTS

Run Date:	12/10/2003 4:14:57 PM				
Survey Unit Number	23501	Class: 2			
Selected Test:	SIGN TEST	FOR PAIRED DATA	4		
Test Status	Pass				
Thresholds:					

EMC 13,000 DCGL 2,600

DATA SUMMARY TABLE

33 Survey points processed and 4 matrices processed

****** The survey unit has passed the SIGN TEST FOR PAIRED DATA ******

Threshold Comparison Test Report -Buildings

Run Date: Wednesday, December 10, 2003

Survey Unit Number: 23601 Class: 2 Data Points: Beta Grid Type: T Spacing: 17.6 ft.

SURVEY UNIT TABLE

Bldg	Rm	Surface	Fixed Equipment	Surface Area Included (sq. ft)	Remarks
_B236	101	FNSEW		. 9025	verify wa
			Total Area	a 9025	

INITIALIZATION DATA

Measurement	cted: RO	RG, BI, CH		
Date Range:		All		
Thresholds:				
EMC:	13,000	DCGLw:	2,600	

SURVEY UNIT TEST STATUS

Test Performed	Status			dpm _p /100 cm ²
Min/Max	Pass	Maximum Survey Value	в	1,874.0
Background	Fail	Minimum Background	м	1.0
DCGLw	Pass	Difference		1,873.0
DCGLavg	Pass	Average Activity	418.6	
EMC	Pass	Average Below DCGL	418.6	
Wilcoxon Rank Sum Te	est N/A	Average Background	77.9	
Sign Test for Paired Da	ita Pass			

.

Threshold Comparison Test Report -Buildings

THE FOLLOWING DATA POINTS FAILED THE EMC TEST:

NONE

THE FOLLOWING DATA POINTS FAILED THE DCGLw TEST:

NONE

THE FOLLOWING DATA POINTS FAILED THE BACKGROUND TEST:

Survey Unit # 23601 Building: B236 Meas. **Gross Activity** SFC X (ft) Y (ft) Exc Res. Room Mtx Type Min SID (dpm p/100cm²) Remarks 1,873.8 101 Ε 27.3 19.0 В RG 2 1672 С 2 С 101 Ε 6.0 В СН 2455 633.6 2.3 101 Е 5.3 19.0 В RG 2 1670 623.3 EEEE В RG 101 38.3 19.0 607.9 1673 101 0.0 3.0 в CH 2457 606.6 101 54.3 11.0 В RG 1667 596.3 101 16.3 3.0 В RG 1655 585.3 BB 101 16.3 19.0 RG 1671 583.5 101 27.3 3.0 RG 1656 580.4 В 2453 101 2.3 1.0 CH 557.8 в RG 101 60.3 19.0 1675 542.3 в 101 43.3 11.0 RG 1666 535.9 в 101 RG 1661 81.3 3.0 528.3 101 19.0 В RG 1674 49.3 526.9 101 В RG 0.0 11.0 1662 511.5 в 101 44.3 22.0 CH 2450 507.6 B B 101 21.3 11.0 RG 1664 496.1 2456 101 0.0 1.0 СН 496.1 22.0 В СН 2451 101 46.3 493.5 B 101 71.3 3.0 RG 1660 493.2 101 6.0 В CH 2458 0.0 475.5 BB RG 101 49.3 3.0 1658 475.0 101 38.3 3.0 RG 1657 426.5 B 101 RG 1654 5.3 3.0 419.3 101 34.3 22.0 В CH 2452 419.0 101 **mmmmmm** 32.3 11.0 В RG 1665 393.3 101 10.3 11.0 В RG 1663 386.8 в 101 60.3 3.0 RG 1659 374.4 101 GB RG 1668 65.3 11.0 99.0 101 76.3 GB RG 1669 11.0 97.7 101 GB RG 19.0 1676 71.3 87.4 101 19.0 GB RG 1677 81.3 55.3 F 101 18.0 54.0 RG 222222 С 1784 1,639.6 F 101 30.0 24.0 С RG 1792 1,240.1 Ĉ 101 F 24.0 RG 18.0 1774 1,188.9 101 F 21.0 24.0 С RG 1789 995.0 č 101 F 33.0 RG 866.6 18.0 1777 F 101 24.0 24.0 RG 1790 809.7 63.0 С 2 1787 101 F 18.0 RG 691.0 С

Mallinckrodt C-T Project-Phase I

Final Status Survey Report Buildings 235 & 236 Interior

	Room	SFC	X (ft)	Y (ft)	Mtx	Meas. Type	Min	SID	Gross Activity (dpm p/100cm ²)	Remarks	Exc	Res.
\bigcirc	101	F	18.0	51.0	С	RG	2	1783	3 633.1		С	
	101	F	18.0	60.0	С	RĠ	2	1786			Ċ	
	101	F	18.0	57.0	С	RG	2	1785	5 607.0		С	
	101	F	5.0	28.0	С	RG	2	1623	3 593.5		С	
	101	F	18.0	66.0	С	RG	2	1788			С	
	101	F	39.0	24.0	С	RG	2	1795			С	
	101	F	18.0	36.0	С	RG	2	1778			С	
	101	F	27.0	24.0		RG	2	1791			С	
	101	F	18.0	48.0	C	RG	2	1782			C	
	101	F	36.0	24.0		RG	2	1794			C	
	101	F	18.0	39.0		RG	2	1779			C	
	101	F	18.0	45.0		RG	2	1781			C	
	101	F	18.0	27.0		RG	2	1775			C	
	101	F	18.0	30.0		RG	2	1776			C	
	101	F	13.0	24.0		RG	2	1632			C	
	101	F	18.0	42.0	c	RG	2	1780			c	
	101	F	13.0	32.0	ç	RG	2	1633			c	
	101	F	5.0	52.0	c	RG	2	1626			c	
	101	F	13.0	1.0	ç	RG	2	1651			c	
	101	F	13.0	16.0	c	RG	2	1631			C	
	101	F	33.0	24.0	С	RG	2	1793	3 172.7		С	

- - - -

THE FOLLOWING DATA POINTS PASSED BACKGROUND, DCGLw, AND EMC SCREENING TESTS:

Survey Unit # 23601

Building: B236

	Room	SFC	X (ft)	Y (ft)	Mtx	Meas. Type	Min	SID	Gross Activity (dpm p/100cm ²)	Remarks E	xc Res.
	101	F	29.0	80.0	С	СН	2	1647	· 172.7		<u> </u>
	101	F	29.0	72.0	č	СН	2	1646			
	101	F	29.0 5.0	36.0	č	RG	2	1624			
	101	F	13.0	64.0	č	RG	2	1637			
	101	F	21.0	4.0	č	RG	2	1640			
	101	F	21.0	12.0	č	RG	2	1641			2
	101	F	5.0	60.0	č	RG	2	1627			
	101	F	5.0	76.0	č	RG	2	1629			
	101	F	13.0	56.0	č	RG	2	1636			
	101	F	5.0	12.0	č	RG	2	1621			
	101	F	13.0	80.0	č	RG	2	1639			
	101	F	37.0	76.0	č	RG	2	1650			
	101	F	5.0	4.0	č	RG	2	1620		č	
	101	F	29.0	8.0	č	RG	2	1644			
	101	F	5.0	44.0	č	RG	2	1625			
	101	F	13.0	72.0	č	RG	2	1638			
	101	F	29.0	16.0		RG	2	1645			
	101	F	29.0	1.0	č	RG	2	1652			
	101	F	13.0	8.0	č	RG	2	1630			
	101	F	5.0	20.0		RG	2	1622			
	101	F	21.0	19.0		RG	2	1653			
	101	F	21.0	76.0		RG	2	1643			
	101	F	13.0	48.0	č	RG	2	1635			
	101	Ň	2.0	11.0	B	СН	2	1726			
	101	N	0.0	11.0	B	RG	2	1725			
	101	N	27.0	3.0	B	RG	2	1502			5
	101	N	5.0	19.0	B	RG	2	1507			5
	101	N	21.5	11.0	B	RG	2	1505			5
	101	N	10.5	11.0	B	RG	2	1504			5
	101	N	22.0	11.0	В	CH	2	1728			
	101	N	38.0	3.0	B	RG	2	1503			
	101	N	5.0	3.0	B	RG	2	1500			
	101	Ň	39.0	4.0	B	СН	2	2463			
\sim	101	<u>N</u>	38.0	10.0	В	СН	2	2465			>

Mallinckrodt C-T Project–Phase I Final Status Survey Report Buildings 235 & 236 Interior

						Meas.			oss Activity			
<u>،</u>	Room	SFC	X (ft)	Y (ft)	Mbx	Туре	Min	SID (dr	om p/100cm ²)	Remarks	Exc Re	S
\sim	101	Ν	39.0	1.0	в	СН	2	2462	577.0		С	
	101	N	16.0	19.0	в	RG	2	1508	561.6		С	
	101	N	16.0	3.0	B	RG	2	1501	547.7		C	
	101 101	N	32.5 37.0	11.0 4.0	B	RG CH	2	1506 2460	526.9 525.6		C C	
	101	N N	37.0	7.0	B B	СН	2 2	2460	525.0 505.1		č	
	101	Ň	39.0	7.0	B	СН	2	2464	499.9		0000 0000	
	101	Ň	37.0	1.0	В	СН	2	2459	496.1		C	
	101	N	19.0	11.0	В	CH	2	1727	476.8		C	
	101	N	39.0	16.0	B	CH	2	2468	472.9		C	
	101 101	N N	39.0 38.0	12.0 19.0	B B	CH RG	2 2	2466 1510	429.3 411.3		C C	
	101	N	38.0	1.0	B	СН	2	2467	407.4		č	
	101	Ň	27.0	19.0	B	RG	2	1509	393.3		č	
	101	S	36.5	3.0	В	RG	2	1734	515.0		С	
	101	S	41.0	10.0	В	RG	2	1738	514.1		C	
	101	S	31.0	10.0	CB	RG	2	1737	460.1		C	
	101 101	S S	20.0 25.5	10.0 3.0	В , В	RG RG	2 2	1736 1733	419.0 415.6		č	
	101	S	9.0	10.0	CB	RG	2	1735	388.1		0000000	
	101	Š	3.5	3.0	B	RG	2	1731	385.3		č	
	101	S	3.5	19.0	GB	RG	2	1739	205.6		с с с с с с	
	101	S	14.5	19.0	GB	RG	2	1740	141.4		C	
	101	S	36.5	19.0	GB	RG	2	1742	125.9		C	
	101 101	s W	25.5 72.0	19.0 19.0	GB B	RG RG	2 2	1741 1486	75.8 717.1		c	
	101	ŵ	72.0	3.0	В	RG	2	1471	710.7		č	
	101	Ŵ	83.0	3.0	B	RG	2	1472	710.7		č	
	101	w	55.5	8.0	В	СН	2	1477	643.9		00000000	
	101	W	77.5	8.0	B	CH	2	1479	587.3		C	
	101 101	w	50.0 81.3	3.0 19.0	B B	RG RG	2 2	1469 1487	538.5 512.8			
: .	101	ŵ	17.0	3.0	B	RG	2	1466	496.1		č	
\smile	101	Ŵ	61.0	19.0	B	RG	2	1485	484.5		č	
	101	w	28.0	19.0	В	RG	2	1482	411.3		С	
	101	w	44.5	11.0	В	RG	2	1476	399.7		C	
	101 101	w	50.0 61.0	19.0 3.0	B B	RG	2 2	1484	389.4		C	
	101	Ŵ	11.5	11.0	B	RG RG	2	1470 1473	371.4 359.9		č	
	101	ŵ	39.0	19.0	В	RG	2	1483	356.0		С С С	
	101	w	22.5	11.0	в	RG	2	1474	350.9		C C	
	101	W	6.0	3.0	В	RG	2	1465	339.3		C	
	101	w	66.5	11.0	В	RG	2	1478	332.9		C	
	101 101	w W	28.0 17.0	3.0 19.0	M GB	RG CH	2 2	1467 1481	177.8 105.4		C C	
	101	Ŵ	6.0	19.0	GB	СН	2	1480	102.8		č	
	101	Ŵ	33.5	8.0	M	СН	2	1475	74.6		č	
	101	Е	2.3	3.0	в	СН	2	2454	204.3			
	101	F	13.0	40.0	ç	RG	2	1634	74.3			
	101	F	21.0	68.0	C	RG	2	1642	72.9			
	101 101	F F	37.0 37.0	4.0 68.0	C C	RG RG	2 2	1648 1649	62.3 59.6			
	101	F	5.0	68.0	č	RG	2	1628	59.6			
	101	S	14.5	3.0	в	RG	2	1732	223.0			
	101	W	39.0	3.0	М	RG	2	1468	41.6			

Threshold Comparison Test Report -Buildings

Summary of Background Data and Thresholds Used in this Analysis

Measur	<i>етепt Туре:</i> вк	DCGL	. 2,600	<i>EMC:</i> 13,000			
Matrix	Number of	Average	Sigma	Background	DCGLw	EMC	
	Data Points	Background		Threshold	Threshold	Threshold	
	teres ter			(Tbk)	(Td)	(Tc)	
	(dpmp/100cm ²)	(dpmp/100cm ²)	(dpm,/100cm ²)	(dpmp/100cm ²)	(dpmp/100cm ²)	(dpm,/100cm ²)	
В	30	192.4	16.0	224.4	2,824	13,224	
С	90	35.4	20.1	75.5	2,676	13,076	
CB	51	96.1	21.7	139.4	2,739	13,139	
GB	0	0.0	0.0	0.0	2,600	13,000	
M	10	24.0	15.7	55.3	2,655	13,055	

Threshold Comparison Test Report -

STATISTICAL TEST RESULTS

Run Date:	12/10/2003 4:17:	12/10/2003 4:17:30 PM					
Survey Unit Numbe	er 23601 Clas	ss: 2					
Selected Test:	SIGN TEST FOR	SIGN TEST FOR PAIRED DATA					
Test Status	Pass						
Thresholds:							
EMC	13,000 DCGL 2	2,600					

DATA SUMMARY TABLE

120 Survey points processed and 5 matrices processed

****** The survey unit has passed the SIGN TEST FOR PAIRED DATA ******