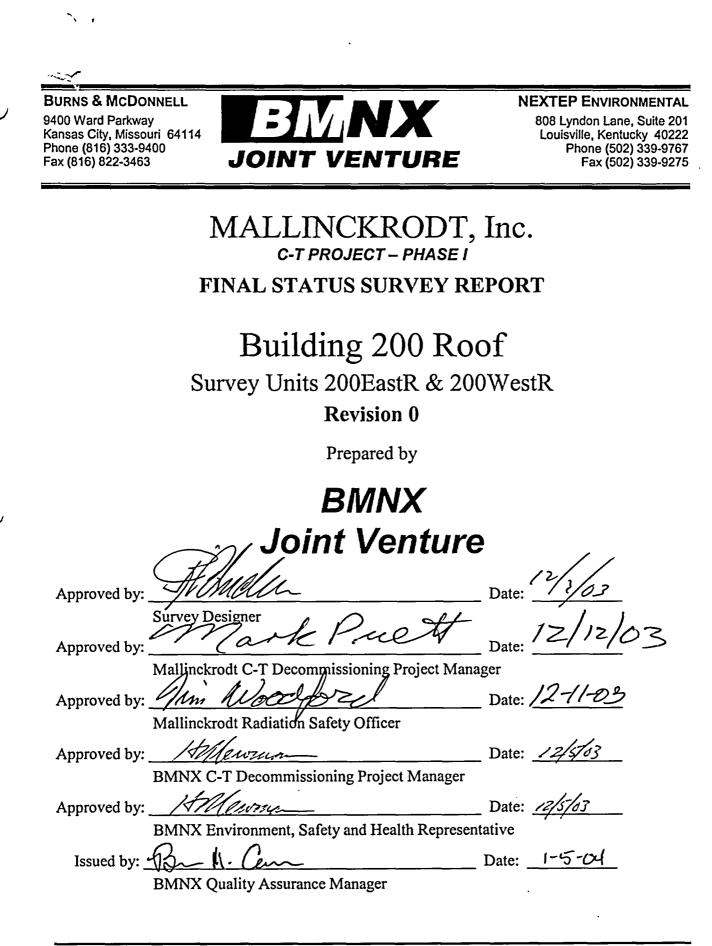
FINAL STATUS SURVEY REPORT BUILDING 200 ROOF

MALLINCKRODT, INC. COLUMBIUM- TANTULUM PROJECT- PHASE 1


DECEMBER 2003

MALLINCKRODT

Mallinckrodt, Inc. St. Louis, Missouri

808 Lyndon Lane, Suite 201 Louisville, Kentucky 40222 502/339-9767 (Voice) 502/339-9275 (Fax)

Mallinckrodt C-T Project-Phase I Final Status Survey Report Building 200 Roof

٢.

BURNS & MCDONNELL

9400 Ward Parkway Kansas City, Missouri 64114 Phone (816) 333-9400 Fax (816) 822-3463

NEXTEP Environmental

808 Lyndon Lane, Suite 201 Louisville, Kentucky 40222 Phone (502) 339-9767 Fax (502) 339-9275

MALLINCKRODT, Inc. *c-t project – phase i*

FINAL STATUS SURVEY REPORT

Building 200 Roof Survey Units 200EastR & 200WestR Revision 0

1. INTRODUCTION

- 1.1. PURPOSE
 - 1.1.1. This Final Status Survey Report (FSSR) is being submitted by Mallinckrodt, Inc. to the U.S. Nuclear Regulatory Commission (NRC) for the roof of Building 200 on the Mallinckrodt St. Louis site (designated as Survey Units (SU) 200EastR and 200WestR). This report is being provided in accordance with the Mallinckrodt C-T Project, Phase I Decommissioning Plan. This FSS was performed in accordance with the Field Instruction (FI) CT-FI-010¹ to demonstrate that the established guidelines for unrestricted release have been met. The results of the FSS are presented in this FSSR as justification for release of this SU from License STB-401 for unrestricted use.

1.2. HISTORICAL BACKGROUND

1.2.1. From 1942 to 1961 Mallinckrodt was involved in radiological activities outside of the scope of this report which terminated in 1977. Mallinckrodt's facilities have either been released from the applicable license or are being remediated by the US Army Corps of Engineers in the affected areas. License STB-401 was issued to Mallinckrodt in 1961 by the Atomic Energy Commission (AEC), later the Nuclear

¹ CT-FI-010, Final Status Survey Guide for Survey Units 200EastR and 200WestR

Regulatory Commission (NRC), to allow extraction of columbium and tantalum (C-T) from natural ores and tin slag, since the ores and byproducts of processing contain uranium and thorium isotopes. Mallinckrodt has not performed C-T extraction since 1987. On July 12, 1993, NRC amended License STB-401 to possession-only for D&D and license termination.

- 2. SCOPE OF FINAL STATUS SURVEY
- 2.1. DEFINITION AND CLASSIFICATION OF SURVEY UNIT
 - 2.1.1. The roof of Building 200 has been designated as two survey units, SU-200EastR and SU-200WestR. Although both were initially Class 3 they have been reclassified as Class 2 based upon evaluation of the data.
 - 2.1.2. Table 2.1 below contains the description provided in Appendix A of the D Plan for the areas referenced by this FSSR.

Area	Building	Location / Surface
16	200E	Roof: Roof repaired in several spots where old equipment was removed. New roof installed on building annex east side after C-T operations ceased. Original roof decking.
17	200E	Roof Equipment: New FRP panels installed on roof and side of stairwell penthouse. All equipment, blowers, condensers, piping and piping supports removed and disposed. New exhaust blower installed on building annex eastside.
18	200W	Roof: Roof replaced in spring of 2000, original roof decking.
19	200W	Roof Equipment: New FRP scrubber system with FRP ductwork installed in center of building roof. 1 old HVAC system on northwest side of building roof was removed and disposed after C-T operations ceased.

Table 2.12Survey Area Descriptions

- 2.1.3. A summary report for the survey units listing all the surfaces and fixed apparatus assigned to SU-200EastR and SU-200WestR is presented in Appendix 1. A drawing of the survey units showing the location of key fixed apparatus items is presented in Appendix 2, Figure 2.1.
- 2.2. Identification of the radiological contaminants
 - 2.2.1. The radionuclides on the St. Louis site under license STB-401 are the uranium and thorium series. Both series are assumed to be in radioactive equilibrium and to exist in a uranium-to-thorium ratio of two to one.³

³ Mallinckrodt C-T Project D Plan Appendix D.

² Appendix A of D Plan.

2.3. REFERENCE BACKGROUND LEVELS

2.3.1. When the initial characterization (CH) surveys were performed from 1992 through 1996, beta backgrounds were determined for several matrices. Where additional background measurements were required for the FSS, they were taken on unaffected surfaces nearby or offsite. All background levels were determined by taking direct readings on the specified matrix on unaffected surfaces using the same methods and type equipment as were used for the FSS. Natural background levels for the contaminants of interest in the survey units are presented in Table 2.2.

Matrix	Mean (dpm _p /100cm ²) ⁴	Standard Deviation (dpm _p /100cm ²)	
Metal	20.4	13.3	
Tar/Roofing ⁵	87.5	58.2	

Table 2.2	
Background Reference D	ata

2.3.2. <u>Gamma background</u>. NaI gamma background was collected on Building 25 Roof.⁶ The average and standard deviations were 4,079 cpm and 196 cpm respectively. These values were used for both direct and scan gamma surveys.

2.4. RELEASE CRITERIA

- 2.4.1. Table 2.3 displays the Derived Concentration Guideline (DCGLw) for measurements on building surfaces and fixed equipment. This value is the primary release criterion from the D Plan and is applied net of background to building surfaces such as roofs. It also applies to items of installed apparatus such as vents, air handlers, and piping.
- 2.4.2. To limit the dose from residual materials as much as possible an Administrative Release Guideline (ARG)⁷ was developed and was used during the FSS as if it were the DCGLw with certain exceptions.⁸

⁴ $Dpm_p/100 \text{ cm}^2$ refers to the disintegrations per minute per 100 cm² for the combined nuclide series.

⁵ The tar/roofing matrix consists of an asphalt binder. The asphalt background samples from the database were used as a close approximation of the tar/roofing matrix background.

⁶ See Appendix A of NEXTEP Tech Memo 0230, *Technical Basis Document for Mallinckrodt Final Status Survey*. A.H. Thatcher, CHP.

⁷ NEXTEP Tech Memo 0211, Recommendation for an Administrative Release Guideline for the Mallinckrodt C-T Project, A.H. Thatcher, CHP.

⁸ Final Status Survey Design Guide (Phase I), Section 3.2, covers the rules governing use of the ARG.

Criterion	$(dpm_p / 100 \text{ cm}^2)$	
DCGLw	13,000	
ARG	2,600	

Table 2.3Building Surface and Installed Apparatus Release Criteria

- 2.4.3. <u>Elevated Measurements Criterion (EMC).</u>
 - 2.4.3.1. Because the two units surveyed in this FSS were Class 2, all measurements are required to be less than the DCGLw. Therefore, the EMC criteria do not apply to this FSS.

2.5. SURVEY INSTRUMENTS

- 2.5.1. The instrumentation utilized to generate FSS data was maintained, calibrated, and tested according to the requirements of the D Plan. All procedures, responsibilities, and schedules for calibrating and testing equipment have been documented.
- 2.5.2. Maintenance information and use limitations provided in the vendor documentation of the instruments used during this FSS were adhered to. Measuring and analyzing equipment were tested and calibrated before initial use and were recalibrated periodically and whenever previous calibrations were invalidated. Field and laboratory equipment specifically used for obtaining final radiological survey data were calibrated based on standards traceable to NIST. Minimum frequencies for calibrating equipment have been established and documented.
- 2.5.3. Measuring equipment were tested at least once on each day the equipment was used for FSS. Test results were recorded in tabular or graphic form and compared to predetermined, acceptable performance ranges. Equipment not conforming to the performance criteria was promptly removed from service and any data gathered in the interim evaluated for quality until the deficiencies were resolved.
- 2.5.4. All calibration and source check records were completed, reviewed, signed-off and retained in accordance with the Mallinckrodt Quality Assurance Program. The original Calibration Sheets for the instruments used in this FSS are provided in Appendix 3.
- 2.5.5. <u>L2221/AB-100</u> The primary instrument used for the detection of surface radioactivity was the AB-100 scintillation detector configured for beta detection. The AB-100 detector houses a ZnS/BC-408 organic scintillator and is paired with the Ludlum 2221 scaler/ratemeter for fixed and scan surveys. The window of the AB-100 was modified to increase the thickness of the mylar to 7-9 mg/cm² for the

purpose of alpha attenuation⁹. The detector window was unshielded (open) for a time period during counting at each sample location, and shielded (closed) for the same time period at the same location¹⁰. The difference in the two readings is attributable to beta emissions above 80 KeV in energy.¹¹ The sensitivity of the AB-100 was derived from experiments by Lucas and Colyott which were reported in Attachment 3 to the D Plan.¹² The actual instruments used were calibrated and normalized to the reference instrument tested by Lucas and Colyott as prescribed in CT-QA-6.1¹³.

- 2.5.6. <u>L2241-2/AB-100</u> The AB-100 detector mentioned above paired with the Ludlum 2241-2 scaler/ratemeter was used in the same way for direct and/or scan beta measurements.
- 2.5.7. <u>L43-89</u> The Ludlum 43-89 scintillation detector is a newer design that is functionally and physically equivalent to the AB-100. It has a slightly higher efficiency as a rule, and it may be paired on the same ratemeters and scalers.
- 2.5.8. <u>L3030</u> The Ludlum Model 3030 alpha/beta scaler houses ZnS(Ag) and plastic scintillators and was used to count removable contamination collected on paper swipes. Smear papers were counted in the laboratory and results were reported in $\beta pm/100 \text{ cm}^2$. Removable contamination measurements were not compared with the release criteria for purposes of releasing the survey unit, but only to confirm that the removable fraction was less than 20% of the DCGLw.
- 2.5.9. <u>L2221/3x3NaI</u> When beta measurements could not be taken, the 3"x3" Sodium Iodide (NaI) detector was used. This instrument was calibrated off site and no modification or normalization (as was required for the AB-100) was performed.
- 2.6. LOWER LIMIT OF DETECTION AND DETECTION THRESHOLD
 - 2.6.1. The terminology adopted to reflect the measurement (detection) capability of an instrument is the lower limit of detection (LLD) or the minimum detectable activity (MDA); it refers to the intrinsic detection capability of the entire measurement process. The LLD, or MDA, is the lowest level of radioactivity that will yield a net count, above system blank, that will be detected with at least 95% probability with no greater than a 5% probability of falsely concluding that a blank observation represents a real signal. It is desirable to express the MDA as minimum detectable areal density (MDAD) or minimum detectable concentration

⁹ As specified in Appendix D of the D Plan. Measurements taken with only the mylar covering the probe were "open window" measurements.

¹⁰ The "closed window" reading was taken with a 1/8" soft Aluminum plate covering the face of the detector. It is sufficient to exclude β rays from the U and Th series.

¹¹ Internal Conversion Electrons (ICE) will also be included in this number but are a second order effect and may be ignored.

¹² Energy Dependent Calibrations for the Bicron Model AB-100 Beta Ray Survey Probe, A. Lucas, CHP and L. Colyott, Ph.D., submitted as Attachment 3 to the Mallinckrodt Phase I Decommissioning Plan.

¹³ CT-QA-6.1 - Calibration and Control of Measuring and Survey Equipment.

(MDC) in units comparable to a regulatory limit with which a measurement may be compared. For a more detailed discussion regarding LLD and equations involved in calculation of LLD, refer to CT-QA-6.1.¹⁴

2.6.2. The LLD requirements for the FSS have been developed in accordance with MARSSIM¹⁵ Chapter 4 guidelines. They are contained in the Design Guide and are listed in Table 2.4.

Measurement Type	MDC Requirement ¹⁶
Direct Beta	50% of ARG
Class 1 Beta Scans	ARG _{EMC}
Class 2 or 3 Beta Scans	ARG

Table 2.4MDC Requirements for CT FSS

- 2.6.3. The MDCs for the instruments used in the FSS were calculated according to Appendix D of the D Plan. A comparison of the MDCs calculated for the AB-100 with the requirement for this FSS is provided in Table 2.5.
- 2.6.4. Action thresholds based upon the release criteria were calculated for each instrument in both direct and scan modes of operation. All thresholds were based on the ARG and are presented in Table 2.5. Details of the MDC calculations and derivation of the action thresholds are provided in NEXTEP Tech Memo 0230.¹⁷

¹⁶ Requirements are stated in terms of the ARG which may be adjusted upward by the area factor or paint attenuation factor as described in Section 3.2 of the Design Guide.

Mallinckrodt C-T Project-Phase I Final Status Survey Report Building 200 Roof

¹⁴ CT-QA-6.1, Ibid.

¹⁵ NUREG 1575, Multi Agency Radiation Survey and Site Investigation Manual.

¹⁷ NEXTEP Tech Memo 0230, *Technical Basis Document for Mallinckrodt Final Status Surveys*, A.H. Thatcher, CHP (included with FSSR 235 Roof).

Measurement	Units	Calculated Value	Required Value
BETA DIRECT			Class 2
MDC	$dpm_p/100 \text{ cm}^2$	100	1,300
T _{inv} ¹⁹	cpm		2,900
BETA SCAN			
MDC	$dpm_p/100 \text{ cm}^2$	760	2,600
T _{inv}	cpm		2,000
GAMMA DIRECT			
MDC (non-Gravel)	$dpm_p/100 \text{ cm}^2$	950	1,300
T _{inv} (non-Gravel)	cpm		1,950
GAMMA SCAN			
MDC (Gravel)	$dpm_p/100 \text{ cm}^2$	1,200	2,600
T _{inv} (Gravel)	cpm		800

Table 2.5 LLD and Action Thresholds¹⁸

2.7. INSTRUMENT SENSITIVITY, BACKSCATTER AND PAINT ATTENUATION

Beta direct measurements taken in the field were converted to $dpm_p/100 \text{ cm}^2$ of the parent nuclide series in accordance with Section 9 of the Design Guide using 2.7.1. the following equation:

Equation 2

$$AD = \frac{Co - Cc}{PAF * S_i * S_b(m) * t}$$

Where:

AD	=	Areal Density in $dpm_p/100 \text{ cm}^2$ for the parent nuclides
Со	=	Counts measured in the open window configuration
Cc	=	Counts measured in the closed window configuration
PAF	=	Paint attenuation factor derived from the number of coats of paint applied to the surface since C-T operations ceased.
S _i	=	Normalized Instrument sensitivity without backscatter.
S _b (m)	=	Backscatter factor (a function of matrix)

t Integration time in minutes.

¹⁸ All Values given are net of background.
¹⁹ Investigation Threshold.

2.7.2. Justification and calculations for separation of backscatter (as a function of the matrix) and instrument sensitivity were presented in NEXTEP Tech Memo 0215.²⁰ Reference backscatter coefficients for several matrices were generated using an MCNP model and are described in NEXTEP Tech Memo 0213.²¹ These coefficients were stored in the Matrix table in the Database and were used in the calculations according to the matrix upon which the measurement was taken.

3. SURVEY METHODS

- 3.1. SURVEY PROCEDURES
 - 3.1.1. The FSS conformed to the procedures and plans listed in Table 3.1. The primary guidance for the FSS is contained in the Design Guide and the FI.

Table 3.1

Survey Procedures and Documents
CT Decommissioning Plan (Phase I)
CT Decommissioning Project, Final Status Survey Design Guide (Phase I)
CT-FI-010, Final Status Survey Guide for Survey Units 200EastR and 200 West R
CT-QA-6.1: Calibration and Operation of Measuring and Survey Equipment
CT-RP-66: Operation of Scalers, Rate Meters, and Contamination Detectors
CT-RP-39: Performance of Radiation and Contamination Surveys
CT-RP-40: Survey Documentation and Review

- 3.1.2. All FSS data recorded in the field was submitted to the Quality Assurance Manager, or designee for processing and review. The data collection forms and annotated drawings were signed by the technician taking the data and reviewed by the Radiation Protection, Health & Safety (RPHS) Manager or designee overseeing the survey. After data entry and review, QA approved the data sheets and filed them with the permanent Mallinckrodt records. The QA checklist²² developed for quality verification of FSS data was used as a guide to data verification.
- 3.1.3. All the data generated by the surveys were entered into the C-T Radiation Database (RDB) and analyzed as outlined in Section 4.4 of the D Plan.

²⁰ NEXTEP Tech Memo 0215, Separation of Backscatter & Derivation of Instrument Sensitivity, A.H. Thatcher CHP. (Included with FSSR 2501).

²¹ NEXTEP Tech Memo 0213, Beta Backscatter Factors for Several Materials at the Mallinckrodt Site, N. Zhang and D. Wilson. (Included with FSSR 2501).

²² NEXTEP Tech Memo 0206, QA Data Verification for MI CT Final Status Survey Data, B. Anderson, (Included with FSSR 2501).

3.2. SURVEY MEASUREMENTS

3.2.1. Beta Measurements:

- 3.2.1.1. *Direct* A systematic grid of direct measurements was obtained on the roof surfaces as described in the FI. Direct beta measurements were collected on the asphalt binder layer of the roof. Bias measurements were taken on building surfaces and fixed apparatus at locations determined by the surveyor in an effort to fully characterize the fixed apparatus.
- 3.2.1.2. Scans Beta scans were performed using the same instruments used for the direct beta measurements. Beta Scans were performed on the roof surface. Scans were performed at a scan rate of less than one detector width per second with a probe height less than one inch from the surface being scanned.

3.2.2. <u>Gamma Measurements</u>:

- 3.2.2.1. *Direct* Because the roof of Building 200 west and 200 east annex had been replaced, it was not possible to detect residual contaminants beneath the surface with beta detectors. Instead, a 3"x3" Sodium Iodide (NaI) gamma detector was used in both the direct and scan modes to survey the roof in SU-200WestR. For direct measurements the detector was placed on the roof surface after the loose gravel had been cleared away and counts were taken for 1-minute.
- 3.2.2.2. Scans Gamma Scans were performed in straight lines 5 cm above the surface of the roof in SU-200WestR with each scan line separated from the next by 1 meter. The scan rate did not exceed 1 ft/s.

3.2.3. <u>Removable Contamination Measurements:</u>

3.2.3.1. Swipes - Removable contamination samples were collected at 100% of all regular grid locations on the roof. The swipes were counted in the laboratory and recorded in the database. Sampling of removable contamination was performed to confirm the assumption, used in derivation of the DCGLw, that the removable fraction measures less than 20% of the DCGLw²³.

²³ Section 3.3 of the C-T Design Guide.

3.3. MEASUREMENT LOCATIONS

3.3.1. Statistical Grid Data Points

- 3.3.1.1. The Visual Sample Plan© (VSP)²⁴ software was used to develop a MARSSIM grid for all six survey units. The minimum number of points required and their spacing were calculated in accordance with the statistical guidance given in MARSSIM Sections 5.5.2.2 and 5.5.2.5.
- 3.3.1.2. VSP uses the Data Quality Objective (DQO) input values to calculate the number of measurement points, N, required to satisfy MARSSIM statistical guidance. The calculations include 12% excess to allow for inaccessible locations. A summary of all the input parameters used with VSP for this Report is presented in Table 3.2.

1 9	0 0
DQO	Value
Type I error rate	5%
Type II error rate	5%
Width of Gray Region	$200 dpm_p / 100 cm^2$
Level (ARG)	$2,600 \text{ dpm}_{p}/100 \text{ cm}^{2}$
Estimated Std Deviation	$200 \text{ dpm}_{p}/100 \text{ cm}^{2}$
Excess % sample points min.	20%

Table 3.2VSP Inputs for Building 200 Roof

3.3.1.3. A rectangular grid was used for SU-200EastR and SU-200WestR. The maximum grid spacing (L) was calculated from the area (A) of the total survey unit and the required number of data points (N) according to the following equation:

Equation 3

$$L \leq \sqrt{\frac{A}{N}}$$

3.3.1.4. Table 3.3 presents the calculated values for L and N for SU-200EastR and SU-200WestR.

²⁴ NEXTEP Tech Memo 0008, Verification and Validation of Applicable Portions of VSP Software, A. H. Thatcher, CHP.

Survey Unit	Class	N	A (ft ²)	L (ft)
SU-200EastR	2	29	4,801	12.9
SU-200EastR	2	29	6,410	14.9

 Table 3.3

 SU-200EastR & SU-200WestR Calculated Grid Point Separation

3.3.2. Bias Measurement Locations

- 3.3.2.1. Bias direct measurements (gamma on SU-200WestR surfaces, beta on SU-200EastR surfaces, and beta on fixed apparatus) were taken at the discretion of the HP technician performing the survey.
- 3.3.2.2. Bias surveys were also taken at hot spot locations identified by scans as directed in the Hot Spot Protocol²⁵.

3.4. Reference Coordinate System

- 3.4.1. A unified reference system was prescribed for the location of all data points taken on all building surfaces and on the surface of installed apparatus. A description of the reference coordinate system is provided below.
- 3.4.2. A data point's unique location is specified by a combination of the following data elements: building, room, surface ID, X, and Y. The surface ID refers to the four walls, floor, ceiling and roof as shown in Table 3.4. X and Y are distances from the origin measured as shown in the table. An example of X and Y axes for floors and walls is presented in Appendix 2, Figure 3.1.

Location	Identifier	x	Y	
North Wall	N	Feet right from	Feet up from floor	
South Wall	S	leftmost edge of the wall surface		or the lowest point
East Wall	E		in the room	
West Wall	W			
Floor	F	Feet east from	Feet North of	
Ceiling	C	western most edge of the surface	southernmost edge	
Roof	R			

Table 3.4	
Coordinate System Locators	

3.4.3. The surface ID for a roof applies only in the case when measurements are being made on the exterior surface of a building. In this unique case the "room" assigned has the special number "999".

²⁵ CT-FI-004, Final Status Survey Guide for Survey Unit 2504.

- 3.4.4. Systematic grid data points which fell on external surfaces of installed apparatus were located with the primary coordinate system. The ID code of the apparatus was recorded in the remarks. For example: Let Q2 be identified as a large air conditioning unit located on the roof. Any systematic grid measurement points for the roof surface which landed on the air conditioner would have been identified using the X and Y coordinates from the southwest corner of the roof. "Q2 A/C unit" would be noted in the remarks. The surface ID would be "R".
- 3.4.5. All bias data points taken on installed apparatus were numbered and located on the drawings provided. This number was recorded as the X coordinate on the data sheet and amplifying information was entered in the remarks section.

3.5. DATA EVALUATION

- 3.5.1. All of the direct, swipe and scan data were entered into the C-T Radiation Database (RDB) for easy access and analysis. The direct beta measurements are the primary means for documenting the survey unit and justifying its release. Therefore, a special report was programmed to perform all the tests specified in Section 4.4.8 of the D Plan and to provide a clear report of the results for evaluation. The calculations in this report have been validated and verified as described in NEXTEP Tech Memo 0231²⁶.
- 3.5.2. The purpose of the screening software is to compare each direct beta reading taken in the survey unit with specified threshold levels, to apply the statistical tests called for in MARSSIM when appropriate, and to present the results in a clear and useful manner so that an analyst can accurately assess the action to be taken or declare that the survey unit meets the requirements for release.
- 3.5.3. Some of the screening tests apply to each record in the survey unit and failure of one data point results in failure of the survey unit. Other tests do not apply to each survey record but generate a single PASS/FAIL verdict for the entire data set. The tests are described in the following paragraphs²⁷. An abbreviated summary of these tests is presented in Table 3.5.

3.5.4. Background Screen.

3.5.4.1. For each MATRIX code in the database, calculate the mean background reading, its standard deviation, and its minimum value. Calculate and store the Background Threshold, T_{bk}, with its matrix code according to the following equation:

Equation 4

$$T_{bk}(m) = \overline{BK}(m) + 2 * \sigma_{bk}(m)$$

²⁷ A more detailed explanation is provided in the Design Guide.

²⁶ NEXTEP Tech Memo 0231, Validation and Verification of the C-T Database Analysis Report, B. Anderson, (included with FSSR 2501).

- 3.5.4.2. T_{bk} is equal to the mean of the background readings (\overline{BK}) for a given matrix plus two times its standard deviation (2 σ).
- 3.5.4.3. Compare each data point in the filtered survey unit with T_{bk} . If the survey reading > T_{bk} the data point fails the test. One data point failure implies failure of the background screen test for the survey unit.
- 3.5.5. Min/Max Test.
 - 3.5.5.1. Find the maximum direct survey result, in $dpm_p/100cm^2$, for the survey data set.
 - 3.5.5.2. Find the minimum background reading among all the background data points having MATRIX codes that match those in the data set.
 - 3.5.5.3. If the difference between these two values is greater than DCGLw the MIN/MAX test fails for the survey unit.
- 3.5.6. DCGLw Screen.
 - 3.5.6.1. For each matrix code calculate and store a DCGLw Threshold (T_d). T_d is calculated by adding the value of DCGLw to T_{bk} .

Equation 5

$$T_d(m) = T_{bk} + DCGLw$$

- 3.5.6.2. Compare each data point in the survey unit with T_d . If the survey reading > T_d the data point fails the test. One data point failure implies failure of the DCGLw screen test for the survey unit.
- 3.5.7. EMC Screen.
 - 3.5.7.1. For each matrix code calculate and store an EMC Threshold (T_e). T_e is calculated by adding the value of EMC to T_{bk} . The EMC value selected is normally dependent upon the area involved. However, if no specific area was known, the EMC was normally set to the a priori DCGL_{EMC}.
 - 3.5.7.2. Compare each data point in the filtered survey unit with T_e . If the survey reading > T_e the data point fails the test. One data point failure implies failure of the EMC test for the survey unit.
- 3.5.8. DCGL Average Test.
 - 3.5.8.1. For each matrix material in the survey unit, calculate the mean activity density, (in $dpm_p/100cm^{2}$), in the survey data set. Subtract from this value, the mean value of background activity for the same matrix. If the remainder is greater than DCGLw for any matrix in the survey unit, the test fails.

- 3.5.9. Statistical Tests.
 - 3.5.9.1. The statistical tests prescribed by MARSSIM operate only on the data points of MEASUREMENT TYPE = RG (Regular Grid). The program narrows the filter to include only these points before proceeding.
 - 3.5.9.2. The Wilcoxon Rank Sum Test²⁸ is applicable for survey units with measurements on a single matrix type or on matrices with similar background characteristics. Where more than one matrix was present, the Sign Test for Paired Data²⁹ was used.
- 3.5.10. The output of the Threshold Comparison Test Report (TCTR) was used for analysis of the data for the Building 200 roof and the results are presented in Appendix 4. The TCTR is divided into eight sections which are briefly described in the following paragraphs to assist the unfamiliar reader.
 - 3.5.10.1. <u>General</u>: date, survey unit number, class, and grid information.
 - 3.5.10.2. <u>Survey Unit Table</u>: building surface included, affected fixed apparatus, and total surface area of the survey unit.
 - 3.5.10.3. <u>Initialization Data</u>: On startup of the analysis report program, the analyst must tell the program which parameters to use while running the tests described in this section. The *Initialization Data* section of the report output displays the options that were chosen for the run. The measurement types listed are those chosen by the analyst to be included in the report. The date range chosen is also listed. The default value is "All Dates". Values for DCGLw (ARG) and DCGL_{EMC} are also specified at the start of the run and are listed in this section. If remediated data points are included in the run, it will be noted in this section. Normally they will be excluded.
 - 3.5.10.4. <u>Survey Unit Test Status</u>: Lists Pass/Fail status of all tests and gives a high level summary of key activity levels in the SU.
 - 3.5.10.5. <u>Points that failed tests</u>: Lists all points that failed each specified threshold test (EMC, DCGL, and Background).
 - 3.5.10.6. Points that passed all the tests: This includes the remainder of all the points in the data set. These data points have passed all the tests.
 - 3.5.10.7. <u>Summary of background data</u> used in the calculations. This table includes the matrix materials included in the survey and the thresholds calculated for each of the tests discussed in this section.
 - 3.5.10.8. <u>Statistical Test Results</u>: This page lists the results of the Sign Test for Paired Data or the Wilcoxon Rank Sum test, whichever is selected. If the

²⁸ Described in Appendix I of MARSSIM.

²⁹ Described in NEXTEP Tech Memo 0231, Ibid.

Test Status line reads Pass then the survey unit passes the Sign Test for Paired Data. The Data Summary section lists the number of background points and the number of survey points used from the data set. If the operator selects the option to show all data, a table of all data points used in the test is printed out.

r					
Test	Test Criteria for PASS				
Min/Max	Difference between minimum background measurement and				
	maximum survey value less than DCGLw				
Background	All samples must be less than the background threshold ^a				
DCGLw	All samples must be no more than $DCGL_w$ + the background				
	threshold				
DCGLavg	The average of all net survey values must be less than				
	DCGLw				
EMC	All samples must be less than DCGL _{EMC} + the background				
	threshold				
Sign Test	The Sign Test for Paired Data is described in detail in				
for Paired	NUREG 1505 ³⁰				
Data					
Wilcoxon	This statistical test is described in detail in MARSSIM,				
Rank Sum	Appendix I.				
Test					

Table 3.5Threshold Screening Tests

^a The background threshold is equal to the mean background value plus twice σ_{BK} .

3.5.11. Provided all additional considerations such as scan data, swipes, sampling of removable contamination or sludge from traps, etc. indicate that the survey unit meet the release criteria, the release of the survey unit can be determined from the test report according to Table 3.6.

³⁰ NUREG 1505, A Nonparametric Statistical Methodology for the Design and Analysis of Final Status Decommissioning Surveys.

Test	Class 1	Class 2	Class 3
Min/Max	not required ^a	not required ^a	PASS
Background	not required	not required	PASS
DCGL	not required	PASS	PASS
DCGLavg	PASS	PASS	PASS
EMC	PASS	PASS	PASS
Sign Test for Paired Data	PASS	PASS	PASS

Table 3.6
Requirements for SU Release ³¹

^a Class 1 or 2 survey units which pass Min/Max may be released without further consideration.

4. FSS RESULTS AND DISCUSSION

- 4.1. CHARACTERIZATION DATA
 - 4.1.1. The characterization data taken in these survey units from 1992 to 1996 was very limited. Since the data on file in the characterization report were all taken with an HP-210 instrument they cannot be normalized to the AB-100 calibration standards and therefore are not included in the data set.

4.2. SURVEY UNIT 200EASTR

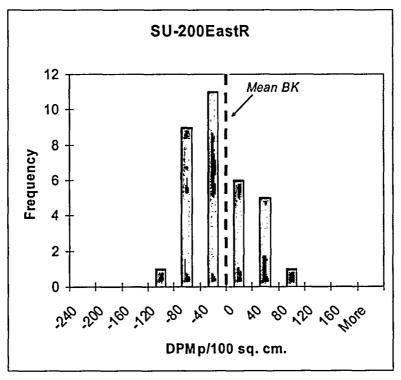
- 4.2.1. Direct Beta Measurements on Building Surfaces
 - 4.2.1.1. SU-200EastR was surveyed in June and July 2003. Twenty-seven direct beta measurements were taken on the surface of the roof. All 27 of these were included in the systematic grid. A diagram of the survey unit layout of the roof with the beta measurements taken is presented in Appendix 2, Figure 4.1.
 - 4.2.1.2. A summary of the direct measurement results is presented in Table 4.1 and shows that the maximum activity measured, net of background, was 84 dpm_p/100cm². The average value for the survey unit was -22 dpm_p/100cm². The background used for the asphalt binder of the roof (tar/roofing) was the asphalt background in the database.

Matrix	Points	Avg Net Activity ^a	Max Net Activity
		$(dpm_p/100cm^2)$	$(dpm_p/100cm^2)$
Tar/Roofing	27	-21.7	84.3

Table 4.1
SU-200EastR Direct Measurements Summary

* Dpm_p refers to disintegrations per minute of the parent nuclide series.

³¹ See MARSSIM, Chapter 8, Table 8.2


4.2.2. Installed Apparatus

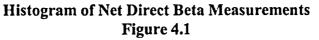

4.2.2.1. All 7 items of installed apparatus assigned to SU-200EastR (listed in Appendix 1) were surveyed by direct beta measurements. A summary of the measurements taken is provided in Table 4.2 sorted by matrix. The net values observed ranged from 5 to 52 dpm_p/100cm². All values were less than 2% of the ARG.

Table 4.2
SU-200EastR Fixed Equipment Direct Measurements Summary

Matrix	Points	Avg Net Activity (dpmp/100cm ²)	Max Net Activity (dpmp/100cm ²)
Metal	2	22.8	40.2
Plastic	1	11.3	11.3
Fiberglass	3	46.1	51.7

- 4.2.3. Direct Beta Measurement Distribution and Threshold Tests
 - 4.2.3.1. A histogram of all the beta direct net activity values found in SU-200EastR is provided in Figure 4.1. The distribution appears to have a single primary mode with the majority of the data centered at approximately -20 dpm_p/100cm². This is consistent with a normal distribution of background radioactivity. All measurements were well below the ARG.

4.2.3.2. All the direct measurements in the survey unit were analyzed using the Threshold Comparison Test Report (TCTR) and the results are presented in Appendix 4 for SU-200EastR. The TCTR contains a complete listing of all the direct beta measurements taken in the Final Status Survey within SU-200EastR sorted by activity. The summary pages indicate that all tests described in the D Plan passed except for the background test. All tests required for release of a Class 2 survey unit passed.

Test	Class 2	SU-200East R
Min/Max	not required	P
Background	not required	F
DCGLw	PASS	P
DCGL _{avg}	PASS	Р
EMC	PASS	Р
Wilcoxon Rank Sum Test	PASS	P

Table 4.3				
Requirements	for SU Release ^a			

^a Class 1 or 2 survey units which pass Min/Max may be released without further consideration.

4.2.3.3. As the histogram in Figure 4.1 shows, these results are consistent with a survey unit that is at background levels.

4.2.4. <u>Measurements of removable contamination</u>

4.2.4.1. Swipes were taken at each location where a direct grid measurement was performed. The results of the measurements are presented in Table 4.4.

Table 4.4SU-200EastR Removable Contamination Summary

Surface	Points	Avg Net Beta	Max Net Beta Avg Net Activity ^a M		Max Net Activity
		(βpm/100cm²)	(βpm/100cm²)	(dpmp/100cm ²)	(dpmp/100cm ²)
R	27	9.7	50	2.0	10.4

^a Activity was converted to $dpm_p/100 \text{ cm}^2$ from $\beta pm/100 \text{ cm}^2$ using an approximate figure of 4.8 betas per disintegration.

- 4.2.4.2. The results show that removable contamination averages near zero $dpm_p/100cm^2$ and varies between -4.2 and +10.4 $dpm_p/100cm^2$. The data confirm that virtually no removable contamination is present within SU-200EastR.
- 4.2.5. Beta Scan Measurements
 - 4.2.5.1. Beta scans were performed on about 15% of the surfaces of the roof. Diagrams of the areas surveyed are presented in Appendix 2, Figures 4.2 and 4.3.

- 4.2.5.2. The scan threshold used for these surveys was 2,000 cpm (net of background) which corresponds to the ARG of 2,600 dpm_p/100cm². The calculation of threshold count rate and MDC for scans is presented in NEXTEP Tech Memo 0230^{32} .
- 4.2.5.3. All scans performed on the roof surfaces were taken on tar/roofing after sweeping the gravel aside. The background used for the asphalt binder of the roof (tar/roofing) was the asphalt background in the database. The average background value used for analysis of the tar/roofing raw data was obtained from the open window, direct beta readings (in cpm) taken in the survey unit. This value was 253 cpm. The average of all open window survey readings taken on asphalt in the background data set was 267 cpm.
- 4.2.5.4. During the surveys the maximum and average gross count rates were recorded for each area scanned. The beta scan data are summarized for SU-200EastR and presented in Table 4.5.

Table 4.5				
SU-200EastR Scan Measurements Summary				

Matrix	Areas	Maximum (cpm)	Average (cpm)	Max Net (cpm)	Avg Net (cpm)
Tar/Roofing	3	350	283	83	17

4.2.5.5. The maximum net scan value of 83 cpm is well below the scan threshold of 2000 cpm. No beta scan data were observed in SU-200EastR above the scan threshold.

4.3. SU-200WESTR

- 4.3.1. The original roof of SU-200WestR affected by C-T operations has been covered with new roofing material. Therefore, beta detection methods are not adequate to characterize the survey unit and gamma methods were employed instead.
- 4.3.2. Direct Gamma Measurements
 - 4.3.2.1. Thirty direct gamma measurements were taken on the roof of SU-200WestR. All of these were included in the systematic grid. A diagram of the roof layout with the gamma measurements taken in the survey unit is presented in Appendix 2, Figure 4.4.
 - 4.3.2.2. Gamma direct measurements were converted to $dpm_p/100cm^2$ using a conversion factor calculated for $\frac{1}{2}$ inch asphalt binder overlaying the

³² NEXTEP Tech Memo 0230, Ibid.

contamination as described in NEXTEP Tech Memo 0229^{33} . The conversion factor was 0.75 cpm/dpm_p.

4.3.2.3. A summary of the direct measurement results for SU-200WestR is presented in Table 4.6 and shows that the maximum activity measured, net of background, was -937 dpm_p/100cm². The average was -1,011 dpm_p/100cm².

Table 4.6
SU-200WestR Direct Gamma Measurements Summary

Matrix	Points	Avg Net Activity ^a	Max Net Activity
		(dpm _p /100cm ²)	$(dpm_p/100cm^2)$
Tar/Roofing	30	-1011	-937

^a Dpm_p refers to disintegrations per minute of the parent nuclide series.

4.3.2.4. All the direct measurements in the survey unit were less than the DCGLw. Therefore the direct measurements in SU-200WestR pass all the tests except background and min/max. A comparison of test results and requirements for release of the SU-200WestR is presented in Table 4.7.

Test	Class 2	SU-200WestR
Min/Max	not required	F
Background	not required	F
DCGL	PASS	Р
DCGLave	PASS	P
ЕМС	PASS	Р
Sign Test for Paired Data	PASS	P

Table 4.7Requirements for SU Release

- 4.3.2.5. The direct gamma measurements show that SU-200WestR passed all the tests required for release of a Class 2 survey unit.
- 4.3.3. Measurements of Removable Contamination
 - 4.3.3.1. Swipes were taken at all of the locations where a direct measurement was performed. The results of these measurements are presented in Table 4.8. The results show that removable contamination in SU-200WestR ranges between -5 and +10 dpmp/100cm² and averages just above zero dpmp/100cm². No significant removable contamination is present in SU-200WestR.

³³ NEXTEP Tech Memo 0229, MCNP Gamma Modeling of Mallinckrodt Roof Surfaces, N.Zhang.

Surface	Points	Avg Net Beta	Max Net Beta	Avg Net Activity ^a	Max Net Activity
		(βpm/100cm ²)	(βpm/100cm ²)	(dpmp/100cm ²)	(dpmp/100cm ²)
R	30	9.5	50.0	2.0	10.4

Table 4.8SU-200WestR Removable Contamination Summary

^a Activity was converted to $dpm_p/100 \text{ cm}^2$ from $\beta pm/100 \text{ cm}^2$ using an approximate figure of 4.8 betas per disintegration.

4.3.4. Installed Apparatus

4.3.4.1. All 19 items of installed apparatus which are listed in Appendix 1 were surveyed by direct beta measurements. A summary of the measurements taken is provided in Table 4.9 sorted by matrix. The values observed ranged from -25.7 to 245 dpm_p/100cm². All values were less than 1% of the ARG. The data confirm that no significant residual radioactivity was found on the 54 items of installed apparatus in SU-200WestR.

Table 4.9
SU-235R Fixed Equipment Direct Measurements Summary

Matrix	Points	Avg Net dpm ^a (dpm _p /100cm ²)	Max Net dpm _p (dpm _p /100cm ²)
Fiberglass	6	17.5	12.1
Metal	20	-5.1	24.5
Plastic	1	-3.8	-3.8

^a Dpm_p refers to DPM of the parent nuclide series.

4.3.5. Gamma Scan Measurements

- 4.3.5.1. Gamma scans were performed on 15% of SU-200WestR. Diagrams of the areas surveyed are presented in Appendix 2, Figure 4.5 and 4.6.
- 4.3.5.2. The scan threshold used for these surveys was 800 cpm (net of background) which corresponds to the ARG of 2,600 $dpm_p/100cm^2$ on a gravel roof surface.
- 4.3.5.3. The average background value used for analysis of the raw data was 4,079 cpm as described in paragraph 2.3.
- 4.3.5.4. During the surveys the maximum and average gross count rates were recorded for each area scanned. The gamma scan data for SU-200WestR are summarized and presented in Table 4.10.

Matrix	Points	Maximum (cpm)	Average (cpm)	Max Net (cpm)	Avg Net (cpm)
Gravel/Tar/Roofing	4	4800	3375	721	-704

Table 4.10
SU-200WestR Scan Measurements Summary

4.3.5.5. The maximum net scan value of 721 cpm is below the scan threshold of 800 cpm. No gamma scan data were observed in SU-200WestR above the scan threshold.

5. CONCLUSIONS

- 5.1. SU-200EastR passed all the tests described in the D Plan except background. (Par. 4.2.3.2)
- 5.2. No residual radioactivity was measured above 2% of the ARG on the items of installed apparatus in SU-200EastR. (Par. 4.2.2.1)
- 5.3. Virtually no removable contamination is present within SU-200EastR. (Par. 4.2.4.2)
- 5.4. No beta scan data were observed in SU-200EastR above the scan threshold of 2,000 cpm. (Par. 4.2.5.5)
- 5.5. SU-200EastR meets all the requirements of the D Plan for unconditional release.
- 5.6. SU-200WestR passed all the tests described in the D Plan except background and MIN/MAX. (Par. 4.3.2.5)
- 5.7. No significant residual radioactivity was measured outside of the background distribution on the items of installed apparatus in SU-200WestR. (Par. 4.3.4.1)
- 5.8. No significant removable contamination was measured in SU-200WestR. (Par. 4.3.3.1)
- 5.9. No gamma scan data were observed in SU-200WestR above the scan threshold. (Par. 4.3.5.5)
- 5.10. SU-200WestR meets all the requirements of the D Plan for unconditional release.
- 6. **RECOMMENDATIONS**
- 6.1. SU-200EastR should be released from the license.
- 6.2. SU-200WestR should be released from the license.

Appendix 1 Building Survey Unit Listing for Buildings 200E and 200W Roof

· - \

	SurfaceCode	Xmax	Ymax	Area (sq.ft.)	Paint (Coats)) Description
SurveyUnit11	D: 200Eastl	R				Class: 2
Room 999AN	7					
	R	13.7	39.6	543	0.0	
Summary for R	200m 999AN (1	detail re	cord)		543	3 Sq. Feet
Summary for R	<u>oom 999AN (1</u>	detail re	cord)		543	3 Sq. Feet
Summary for R Room 999E			<u> </u>	A 259		3 Sq. Feet
	R Q1	<i>detail re</i> 51	83.5	4,259	0.0 0.0	posts (8 affected)
			<u> </u>	4,259	0.0 0.0 0.0 0.0	posts (8 affected) stacks (2) supports/support brackets (2
	R Q1 Q5 Q7 Q17		<u> </u>	4,259	0.0 0.0 0.0 0.0 0.0	posts (8 affected) stacks (2) supports/support brackets (2 sets) stairs/steps (3)
	R Q1 Q5 Q7		<u> </u>	4,259	0.0 0.0 0.0 0.0 0.0 0.0	posts (8 affected) stacks (2) supports/support brackets (2 sets)

Building Survey Unit Listing

TOTAL for Survey Unit 200EastR

4,801 Sq. Feet

	SurfaceCode	Xmax	Ymax	Area (sq.ft.)	Paint (Coats) Description
SurveyUn	itID: 200W	estR				Class: 2
Room 999	AS					
	R Q16	27	24	648	0.0 0.0	blower (1)
Summary fo	or Room 999AS	(2 detail re	cords)	<u> </u>	64	8 Sq. Feet
R <i>oom</i> 999	H.					
	R	69	83.5	5,762	0.0	
	Q1				0.0	posts (10 affected)
	Q2				0.0	exhaust stack (1)
	Q3 Q4				0.0 0.0	handrail (1) vent (2)
	Q5				0.0	stacks (3)
	Q6				0.0	shed (1)
	Q7				0.0	supports/support brackets (4 sets)
	Q8				0.0	eyewash and shower (1 of each)
	Q9				0.0	hatch (4)
	Q10				0.0	tank (1)
	Q11				0.0	2" pipe (9)
	Q12 Q13				0.0 0.0	3" pipe (1) 6" pipe (2)
	Q13 Q14				0.0	8" pipe (2)
	Q15				0.0	air handler and supports (1)
	Q16				0.0	blower (3)
	Q17				0.0	stairs/steps (3)
	Q18 Q19				0.0 0.0	drains (3) roof access ladder (1)

Building Survey Unit Listing

 $\widehat{\bigcirc}$

TOTAL for Survey Unit 200WestR

6,410 Sq. Feet

APPENDIX 2 Figures

 $\widehat{\mathbb{O}}$

t

 $\overline{\bigcirc}$

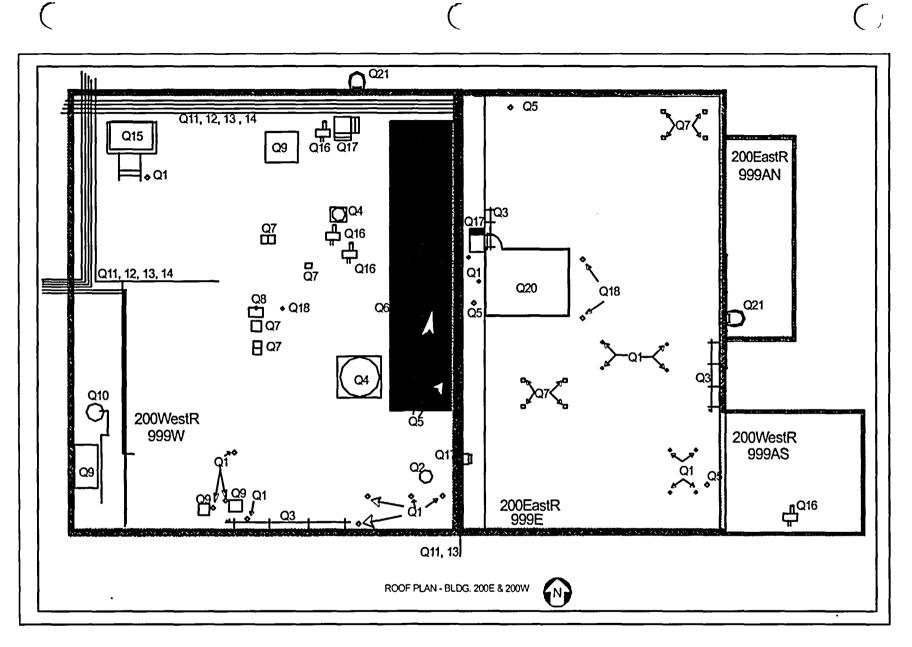


Figure 2.1 *SU-222/223R*

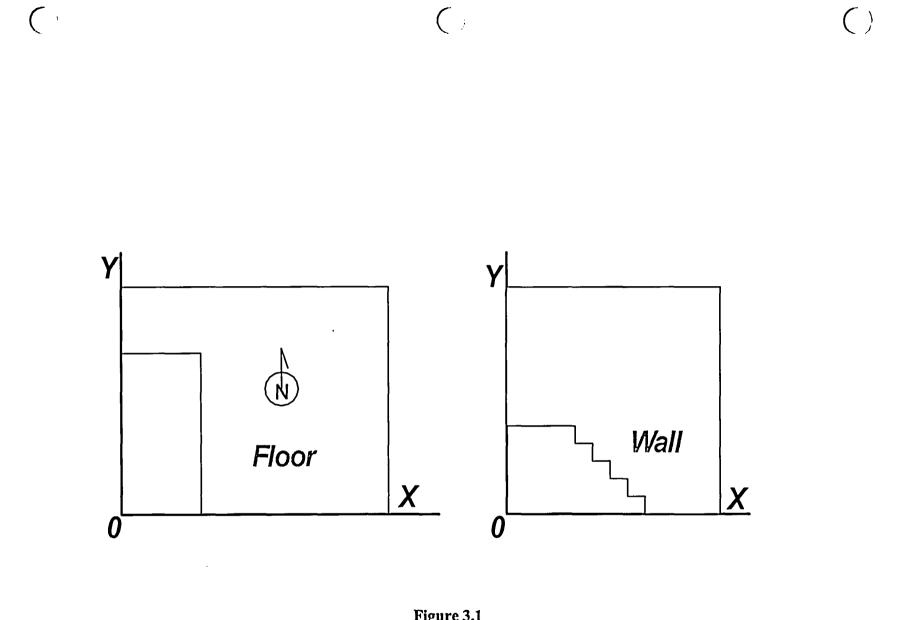
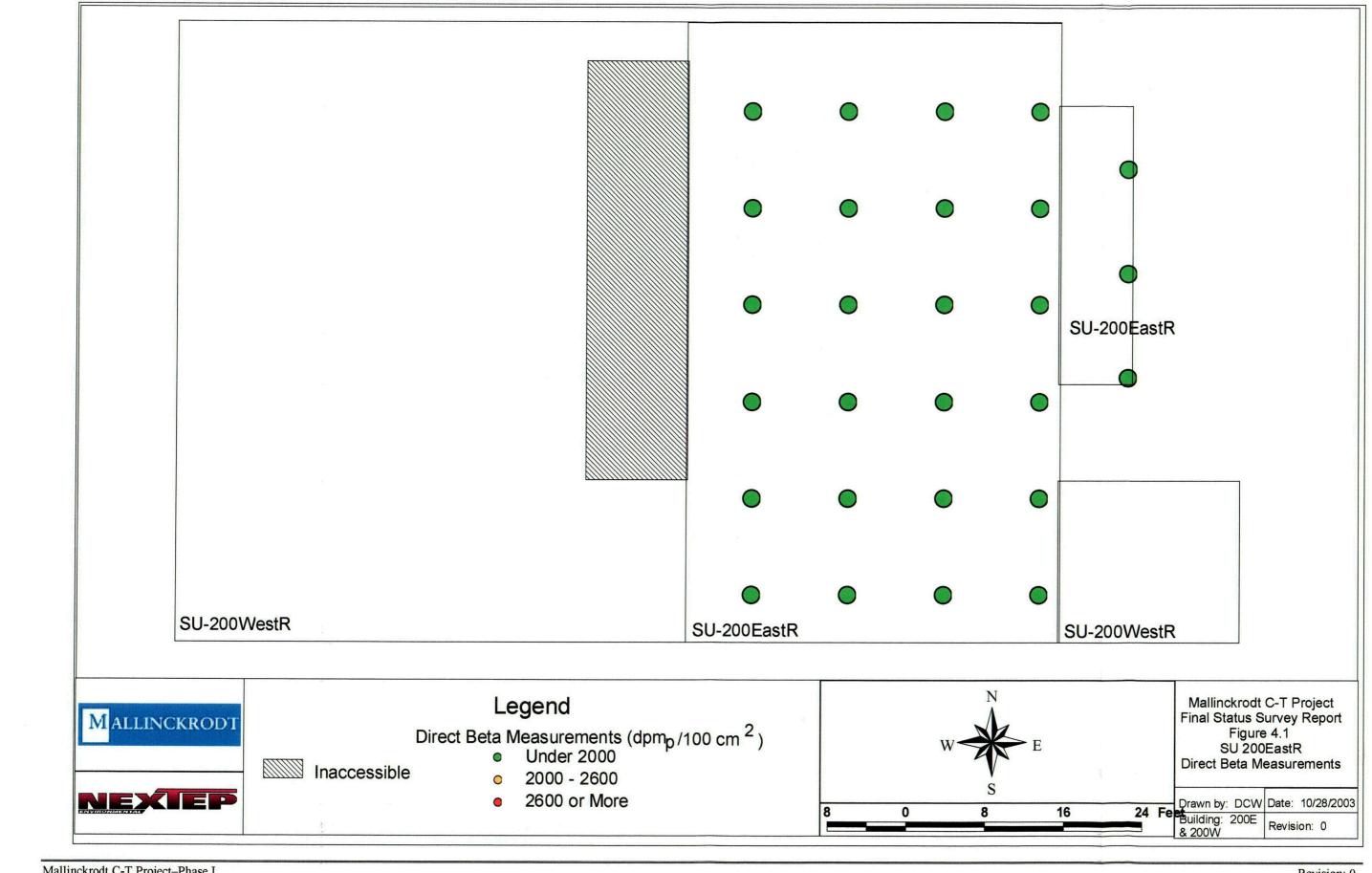



Figure 3.1 *Coordinate System*

1

Mallinckrodt C-T Project–Phase I Final Status Survey Report Building 200 Roof

Revision: 0 December 2003 APPENDIX 2

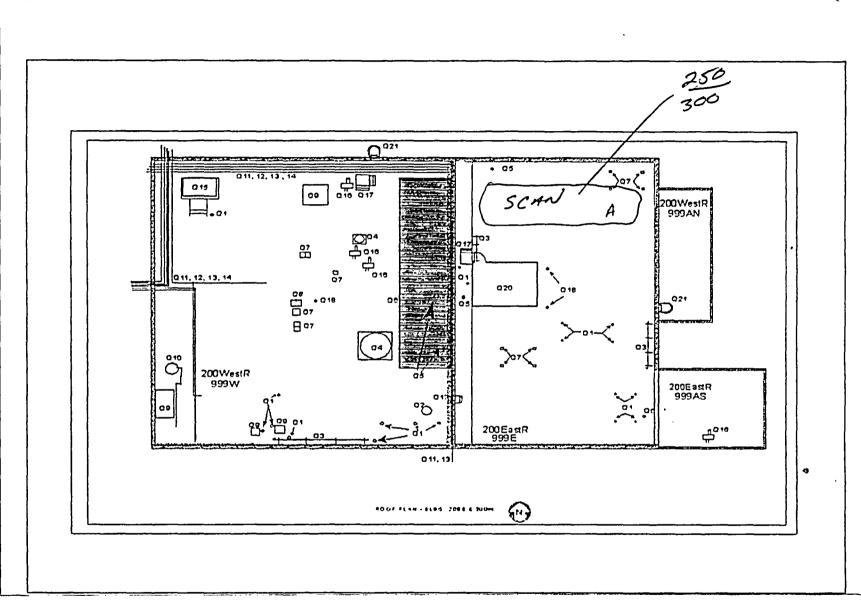
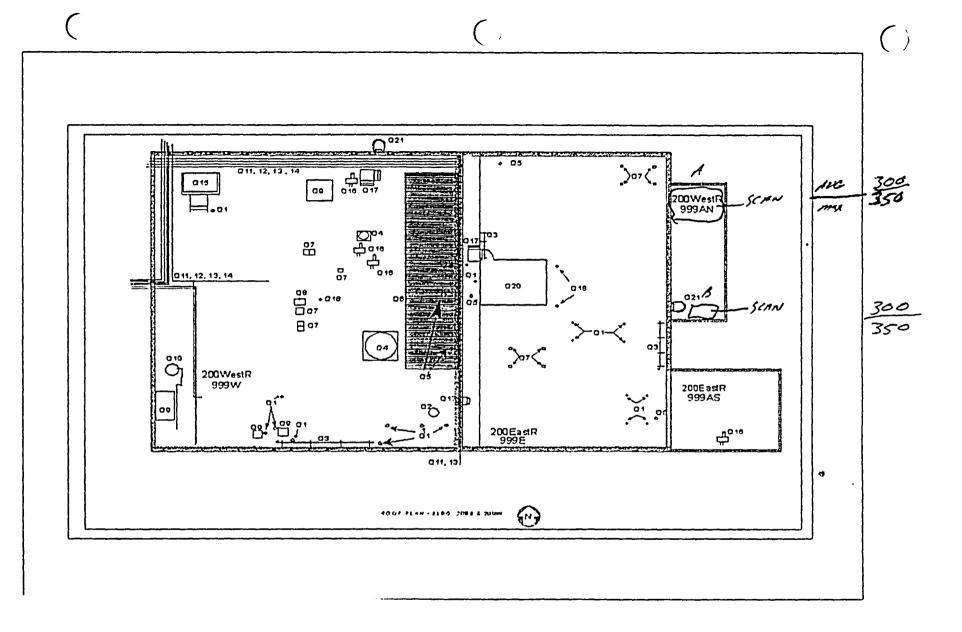
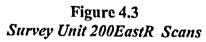
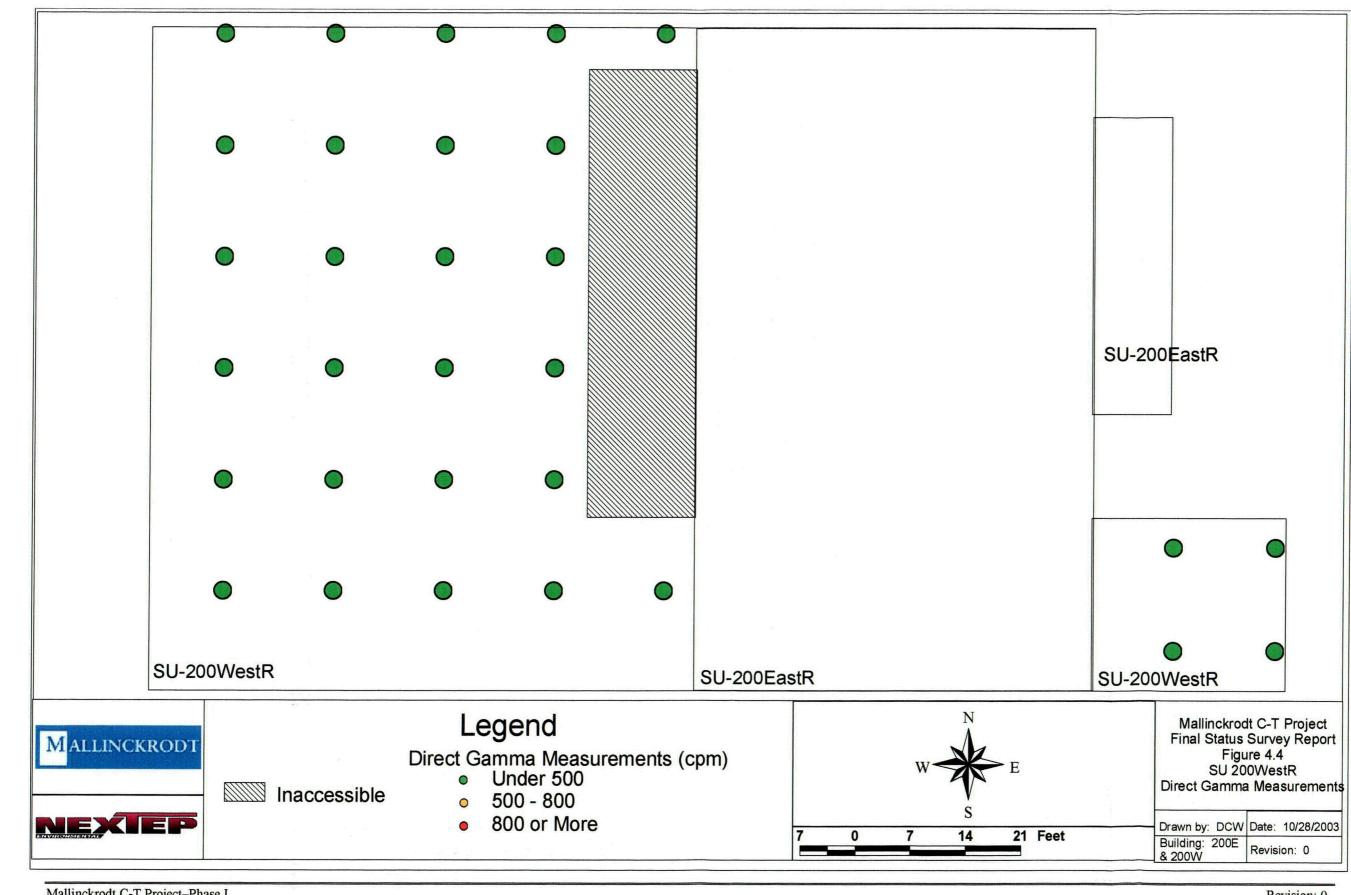





Figure 4.2 Survey Unit 200EastR Scans

Mallinckrodt C-T Project–Phase I Final Status Survey Report Building 200 Roof

Revision: 0 December 2003 APPENDIX 2

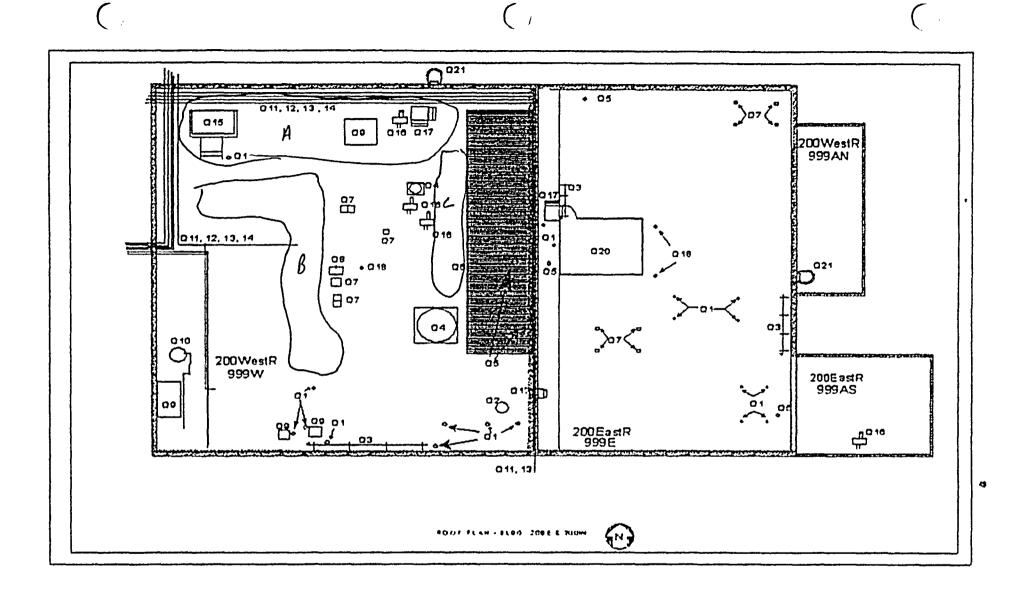
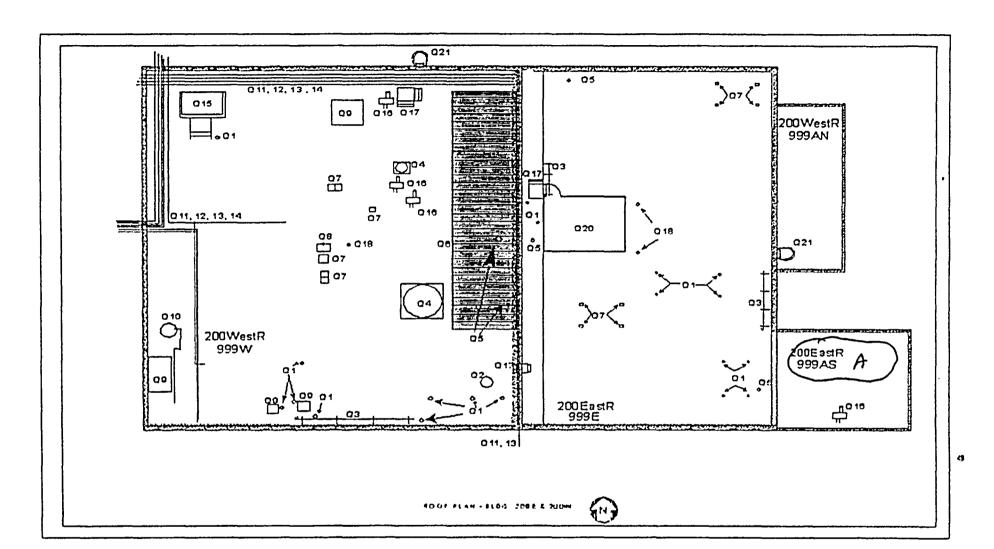



Figure 4.5 Survey Unit 200WestR Scans

()

Figure 4.6 Survey Unit 200WestR Scans

(

1

APPENDIX 3 Calibration Sheets

Туре	S/N	Cal Date
Beta	163666/B426W	1/16/2003
Gamma	157020/020429-6	4/26/2003
Swipe	179577	2/26/2003

•		UM 2221	Thermo NUtech A ThermoRetec Compa cot Scarboro Road Oak Ridge, TN 37830	ny
Ludlum22215/N: 163 Battery Check	CALIBRADOD	operty 0	ThermoRete Smart Solutions. Positive Dutc	2C D7735.
High Voltage Check		-	(423) 481-0683 Phone (423) 481-0121 Fax www.thcimpretec.com	:
HV Moter: Fluke: Meter Reading	29 S/N: (5) Pre Cal	410232 Cal E: Post Cal	p. Date <u>1.30</u> <u>Toleran</u> c	<u>-03</u> ·
600 Volts 1000 Volts 1400 Volts <u>Input Sensitivity</u> :		405 1003 410	10 % 10 % 10 %	
(Threshold 8 10 m MP-2 S/N: LeA4 Rate/ <u>MP-2</u>	NV) Pre Cali Calil 2221	: <u>35 mu</u> , P pration Exp. D Display	ost Cal: <u>35 M</u> ate: <u>1-29-03</u> Display	Tol
Meter		<u>Digtal</u>	Analog	
400 CPM	<u>×1</u>	400	400	10%
4K CPM	<u>×10</u>	3998	4000	10%
40K CPM	×100	39999	40000	10%
400K CPM	<u>x1000</u>	400080	400000	10%
Scaler: 100K CPM	0.5 sec	50010	100000	10%
100K CPM	<u>1.0 min</u>	<u>100020</u>	<u> </u>	10%
100K CPM	2.0 min	200039		10%
100K CPM	<u>5.0 min</u>	500097		10%
Log 400 <u>400</u> Functional Check:	4K.4K	40K 40K	100k <u>400 K</u>	~
Ext Count Res	etSpea	kerHeadpl	ponesLigt	nt_
Date Of Calibrati	on: 1-16-0=	Expiration	n Date:]-1670	13
Calibrated By:	andull H.S (Print)	els <i>Man</i> (Si		Jula-
Reviewed By:	NN	Dat.	o: 1/30/03	
	Ň	\bigcirc		

L2221/AB-100 S/N: 163666/B426W 1/16/03

Revision: 0 APPENDIX 3 December 2003

İ

CALN100A

Thermo NUtech For Mallinckrodt Chemical, Inc

NATIONAL NUCLEAR ABP-100 MATERIAL SPECIFIC CALIÉRATION DATA SHEET RHS PROPERTY OF: TYCO E.S. ABP-100 SN: BAZGW HIGH VOLTAGE: 875 v CAL EXPIRE DATE: 7-16-03 d 2221 READOUT INST: SN: 163666 1-22-03 CAL DATE: ABP-100 EFFICIENCY TO SIY-90 ON 47 mm DISK: AZ.O % TEfficiency SA SR BACKGROUND BR SOURCE Source 1 SR-8F Source OPEN | SHIELD NET NET SURFACE OPEN SHIELD 2 Activity # Cls/1 min Cts/1 min CPM MATERIAL Cts/2 min СРМ Cis/2 min 19.9 33750 232 6-A 416 73 6857 6625 Conceste 56 9 246 6607 6853 6100 6846 2A7 c 6548 236 6784 19.9 Avorage = 266×125 - 333350 Std Dev = O. dom 22250 4984 M-2 - 1 238 5222 0 ω ٥ Wood 240 5041 0 6 0 5281 224 4957 SIBI 0 0 0 22 252 5064 0 0 0 5296 Average = 22 178 dam x 125 = 22250 Std Dov = 0.

Mesanite	6	10	0	5296	232	5060 M.	2 77250 22.8
	0	0	0	5302	234	5068 (-	
	0	0	0	5311	Z48	5063	
Y	0	0	δ	5366	236	5130 LV	
17 Bdpm F.	125 - 2	2250		···.		•	Averege = C.

					•					1 1 1 1
[Aluminum	0	10	0	6037	223.	584	M·Z	2220	26.
ľ	C.	.0	10	0	5704	256	5470		I	24.6
ł			10	10	10113	240	5765		1	25.9
		-7-	+	1	5007	774	5665	Y		25.5
્ય			10		12016				Average =	125.5

178 dpm x 125 = 22250

Average = 25 Std Dov = 1

EXPIRATION DATE: DATE OF CALIBRATION: 1-29-03 l. Sel andall CALIBRATED BY: int Non 3 DATE REVIEWED BY:

L2221/AB-100 S/N: 163666/B426W 1/16/03

Mallinckrodt C-T Project- Phase I Final Status Survey Report Building 200 Roof Revision: 0 APPENDIX 3 December 2003

Ċ.	T-RP-66		
C	hi Squared	Test	
Instrument Model # Instrument Sorial# Probe Model # Probe Serial # Window Satting: Threshold Setting: High Voltage:	2221 163656 AB 100 B428W 3720 B52 B75	Date: Source Nuclida: Source Seriel # Source dem (4π): Efficiency (cpm/dpm): Background cpm: BKGD N-1 SD Ccunt Time (min):	02/04/2003 Sry90 2178-96 S6489 <u>0.28</u> 183.4 4 1
	Gross Cou		•
<u>Count # (n)</u> 1 2 3 4 5 6 7 8 9 10 11 11 12 13 14 15 16 17 18 19 20	QDsorved 15380 15361 15477 15662 15587 15476 15587 15476 15592 15609 15609 15401 15433 15609 15401 15743 15608 15577 15518 15510 15599	<u>Expected</u> 16546 15546 15546 15546 15546 15546 15546 15546 15546 15546 15546 15546 15546 15546 15546 15546 15546 15546 15546 15546	<u>Background Counts</u> 185 193 179 179 181
samplo moan (xbar) = samplo veriance (s^2) = background variance (b^2) = samplo sigma (s) = (95% Confidence) 2.752 s = (99% Confidence) 3.615 s =	· 15546 15181 34.8 123 339 446	Multiplier to convert to dpm:	3.6
df = n-1 = chitest = p(x <x^2) =<br="">chisquare (x^2) = Acceptable x^2 min = Acceptable x^2 max = x^2 test passes (yes/no)? 99% Conf. Interval Test min = 95% Conf. Interval Test min = 95% Conf. Interval Test max = 99% Conf. Interval Test max =</x^2)>	19 4.858E-01 18.554 8.907 32.852 YES 14917 15023 15303 15702 15809	MDA (cpm) ¤ MDA (dpm) ≠	66 240

Test performed by: Steve Struck At-OD- 2/4/03 Checked by: A. C. Washerson Date: 2-4-03

L2221/AB-100 S/N: 163666/B426W 1/16/03

Mallinckrodt C-T Project- Phase I Final Status Survey Report Building 200 Roof

Revision: 0 **APPENDIX 3** December 2003

Designer and Manufa of Sckintific and induit Instruments	inal CER	RTIFICATE OF CA	LIBRATION	POST OFFICE BOX 501 OAK STREET SWEETWATER, TEX	
CUSTOMER TYCO/MALUNC			<u> </u>	ORDER N	0296103/271822
J. Ludium Measuren				Serial No	
Mig. <u>Lucium Measuren</u>				Sarial NoO.	
			. –		Meterlace 204 59
Theck mark Mapples to applic					
New Instrument Instrume	Veter Zeroex		Background Su		nput Sens. Unscritty
 ✓ F/S Resp. ck ✓ Aucto ck. ✓ Calibrated in accordance v 	Alarm Setting) ck. 🗹	Batt, ck. (Min. V	'on) <u>6.0_</u> VDC	
L'Calibrated in accordance v	with LMI SOP 14 8 rev	/12/05/69.	Calibrated in ac	cordonce with LMI SOP 14 Thre	.9 rev 02/07/97. shold 10 - 10 - 71
ostiument Volt Set Commts_	V Input Sens. Com	IncertsmV Det. Ope	Concerts	V at <u>Commark</u> ty Dia	Ratio 100= 10 mil
HV Readout (2 points)	Rel./inst	500/	<u>49'a</u> ^	Ref./Inst2000	_/_1990 v
COMMENTS:			!		
P High Voltage:	eak settings			1 2221 currently se Gross Counts	t
Threshold dial:	437V 642	650√ 100 (10π.v)		voltage set with d	etector
Window dial:	40	n/a	. cou	ectod.	
Window Position: Resolution for Cs137:	~10 1	"CUT" n/a	Fire	ware: 26 10 10	
Jamma Calibration - GM catacions positionad part		M 449 in which the literial of pico ERENCE		IENT REC'D INS	TRUMENT
RANGE/MULTIPUI		_ POINT			TER READING
X 1000	420 Kcr 100 Kcr			90	<u> 390 </u>
X 100		200		90	340
<u>X 100</u>			- !!	10	390
_X 10		2m		10	
	<u>400 c</u>	<u>m</u>		+00	400
X1	<u>100 c</u> ;	om	- :	<u> </u>	100
*Uncertainty within ± 10%	C.F. within ± 20%	· ·		ALL Range	e(s) Calibrated Electroniccity
REFERENCE	INSTRUMENT	INSTRUMENT	REFER		
CAL. POINT	RECEIVED	METER READING	CALI		METER READING"
readout 400 K com	338106	-338100		K com <u>450</u>	
<u>40 K com</u>	3984 (e) _398 (e)	<u>398461</u> 3980		Kcom	<u> </u>
400 cpm_	<u>_ 40(0)</u> _	40(p)	5	00.com 500	<u> </u>
40.com	4(0)	<u> </u>	·	<u>50 com 55</u>	
Jokum Moccusimons, Inc. conflips that the their imemotional Standards Organization in the calibration system conforms to the requ	nombors or have been de	which from accorpted varues	I of natural physical c	onstants of have been derived by t	e rollo type of collocated local 2.5. Is Collocated local 2.5.
Reference Instruments and/a	or Sources:				
Cs-137 Gamma S/N 1162 6	112 🗆 M565 🔲 610				Neutron Am-241 Eo 3/N (2022)
[] Alpha S/N	0	Bota S/N		Omer	<u> </u>
; m 500 S/N8108	د C_			🖌 Multimoter S/f	80040300
Collbrated By: Mul	111	homas_	-	Dote 26 . April	-03
2	I.	- Mall More -			
Reviewed By Manue	UTenin -	·····		Dote 30 Cipo 0.	
Trac conflicted shall not be reproduced en FORM C224 04/09/2003	icept in full without the wi	men approval of Lucium Ma	iosuraments inc !		chic (Hi-Pot) and Continuity (C.
		т	2221/3x3		
				100 (
			7020/020	429-0	
		4	4/26/03		

_ -

Mallinckrodt C-T Project-Phase I Final Status Survey Report Building 200 Roof

Ć

 $\hat{\bigcirc}$

		Λ	
в			

Designer and Manufacturer of Scientific and industrial Instruments

 LUDLUM MEASUREMENTS, INC.

 POST OFFICE BOX 610
 PH. 325-235-5494

 501 OAK STREET
 FAX NO. 325-235-4672
 SWEETWATER TEXAS 79556, U.S.A.

..... ---

Bench Test Data For Detector

	O/MALLINCKRO			295103/27 83		
nter <u></u>	<u>2221</u> \$	erlai No. 157020		Counter Input Sensitivity		
unt Time	6 sec			Distance Source to Detector	Surface	
er			,			
High		150tope Am - 24	Isotope	botope	lsotope	
Voltage	Background	Size ~ 0.17uC			Ste	
450	1443	5324		:		
500_	1654	18326	ļ!			
<u>550</u>	1572	22461	ļ			
600	1614	22466	·			
630	1687	22705				
100	1729	22867				
750	2057	23047	<u> </u>			
800	2521	259 48				
850	3899	29 371	· · · · ·			
900	6780	40237				
950	16139	53980	į			
000	19708	78799				
				·		
		L				
	ļ					
	· · · · · ·	4 1				
	Mirla	f J Those	1	Date	26 - Apr-0	

FOTAL CAN 04/09/2003

Serving The Nuclear Industry Since 1962

L2221/3x3 S/N: 157020/020429-6 4/26/03

Mallinckrodt C-T Project-Phase I Final Status Survey Report Building 200 Roof

CT-RP-66

Chi Squared Test

.

	Ull Square	eu nest	
Instrument Model #	2221	Date:	05/07/2003
Instrument Serial#	157020	Source Nuclide:	Cs137
Probe Model #	Nal 3x3	Source Serial #	2558
		Source dpm (4n):	21534000
Probe Serial #	020429-6		
Window Setting:	3700 3 480	Efficiency (cpm/dpm):	0.01
Threshold Setting:	100mV / + +	Elackground cpm:	3676.2
High Voltage:	650V	BKGD N-1	4
		BKGD Count Time (min):	1
	Gross 9		
			Background Counts
Count # (n)	Observed	Expected	
1	226501	227689	3624
2	227278	227689	3830
3	228251	227689	3610
4	227614	227689	3701
5	228344	227689	3616
6		227689	÷
	228647		
7	227269	227689	
. 8	227708	227689	
9	227138	227689	
10	227004	227689	
11	227520	227689	
12	227819	227689	
13		227689	
	228608		
14	228689	227689	
15	227778	227689	
16	227078	227689	
17	227572	227689	
18	227573	227689	
19	227841	227689	
20	227443	227689	
sample mean (xbar) =	227689	Multiplier to convert	
sample variance (5^2) =	334344	to dom:	94.B
		to opini.	
background variance (b^2) =	8750.2		
sampie sigma (s) =	586	•	
(95% Confidence) 2.752 s 🖻	1812		
(99% Confidence) 3.615 s =	2117		
•••••••••••••••••••••••••••••••••••••••			
		MDA (cpm) =	285
df = n-1 =	19	: MDA (dpm) ≃	26948
chitest = p(x<χ^2) =	8.537E-02		
chisquare (x^2) =	27.900	•	
Acceptable x^2 min =	8.907		
Acceptable x^2 max =	32.852		
2^2 test passes (yes/no)?			
	120		
99% Conf. Interval Tost min =	221895		
95% Conf. Interval Test min =	222401		
Daily Source Check Mean Net Counts		·	
	225625		
95% Conf. Interval Test max =			
99% Conf. Interval Test max =	226130	Ann	
	Δ.	(
	<u>PI</u>	$()(\mathcal{U}) \rightarrow$	5-7-2003
Test performed by:	S Struck	· · · · · · · · · · · · · · · · · · ·	,
		•	
		•	

Checked by:

L2221/3x3 S/N: 157020/020429-6 4/26/03

Dato:

CT-RP-66 Chi Squared Test

:

	un Square	JU Ijesl	
Instrument Model #	2221	Date:	06/04/2003
Instrument Serial#	157020	[:] Source Nuclide:	Cs137
Probe Model #	Nal 3x3	Source Serial #	2538-99
Probe Serial #	020429-6	Source dpm (4π):	2286600
			0.01
Window Setting:	3680	Efficiency (cpm/dpm):	3985.8
Threshold Setting:	104mV	Background cpm:	
High Voltage:	650V	BKGD N-1	4
		BKGD Count Time (min):	1
	<u>Gross</u>		.
<u>Count # (n)</u>	<u>Observed</u>	Expected	Background Counts
1	28742	26492	4019
2	28702	28492	4066
3	28477	28492	3976
4	28166	28492	3904
5	28711	28492	3964
6	28701	. 28492	
7	28491	28492	
8	28304	28492	
ğ	28412	28492	
10	28667	28492	
11	28084	28492	
12	28349	28492	
13		28492	
13	28087		
	28460	28492	
15	28454	28492	
16	28682	28492	
17	28441	28492	
18	28716	28492	
19	28606	28492	
20	28592	. 28492	
campla meen (xbar) =	28492	Multiplier to convert	
sample variance (s^2) =	44336	to dom:	80.3
	3699.2	to opin.	00.0
background variance (b^2) =	219		
sample sigma (s) =	- · · ·		
(95% Confidence) 2.752 s =	603		
(99% Confidence) 3.615 s =	792		
			007
		MDA (com) =	297
df = n-1 =	19	MDA (dpm) =	23801
chitest = p(x <x^2) =<="" td=""><td>5.759E-02</td><td>:</td><td></td></x^2)>	5.759E-02	:	
chisquare (x^2) =	29.566		
Acceptable x^2 min =	8.907		
Acceptable x ² max =	32.852		
x^2 test passes (yes/no)?	YES	•	
99% Conf. Interval Test min =	23714		
95% Conf. Interval Test min =	23903		
Source Check Mean Net Counts	24506		
95% Conf. Interval Test max =	25110		
99% Conf. Interval Test max =	25299		
aa w oorn, miterati Leat Max =	20299		
	D, ,	ST)	
Test performed by:	s struck	which a	;-4-03
Charling has	•	Data	

Checked by:

Date:

L2221/3x3 S/N: 157020/020429-6 4/26/03

Daily

Scientific and indust			POST OFFICE BOX 810 PH. 915-235-5494
Research instruments	CERIIFICAT	E OF CALIBRATION	501 OAK STREET FAX NO. 915-235-467
			SWEETWATER TEXAS 79556 U.S.A.
CUSTOMER TYCO / MALUNC			ORDER NO 292439 / 270031
Mfg. Lucium Measurem	ents. Inc. Model	3030	Serial No 9,577
	•	and a second	
Ccl. Date 25-Feb-0	3 Cal Due Date	26-Aug-03C	cl. Interval <u>6 Months</u>
Check mark Capples to applic	able instr. and/or detector IA	W mfg. spec. 172_	•F RH 20 % Alt 701.8 mm H
🔄 New Instrument – Instrume	nt Received 🛛 Within Toler	. ←10% 🔲 10-20% 🗌 Out of 1	iol. 🔄 Requiring Repair 🔛 Other-See common
ゴ Mechanicalick. グ ゴ Autock.	Window Operation		
	Alpha Sensitivity120_	mV Beta Sensitivity	<u>4</u> mV Beta Window <u>50</u> mV
Collorated in accordance w	th LMI SOP 14.8 rev 12/05/89		
nstument Volt Set _725	V High Voltage set with dete	ector connected.	
HV Readout (2 points)	Ref./inst		f./inst/4&/1500V
• •			ROM Settings)
		(PC) Count Ti	/
SC mode furned OFF.		Alpha Alarm:	
Finition: 390/3//	2	Beta Alam:	
Over oad set at 1/4 turn past			Nam: <u>\$999999</u> cpm
Battery voltage measured at			ue Date: <u>03/21/2007</u>
<u>C.14</u> Efficiency =			Count) time = 30 minutes (default)
	REFERENCE CAL POINT	INSTRUMENT RECEIVED	INSTRUMENT METER READING*
Alcha Channel			_
Diçita' R e adout	400K.com	299414	<u></u>
	40K cpm	39944	39544
	4K cpm	2995	
	400 ccm		
	40.cpm	40	<u> </u>
8eta/Gamma Channel	REFERENCE CAL POINT	INSTRUMENT RECEIVED	INSTRUMENT METER READING*
Digital Readout	400K.com		199439
•	40% cpm		
•	4K com	2995	
	400 cpm	400	400
	40.com	40	40
"Inconstruction ± 10% C.F. within	* 20%	(C) Indicates 0.1 minute	count
COMMENTS:			
ESI. In S. A.M. S. Sh Vall, . ESI. In 74.20 Sh 2748-00 -			
			strute of Standards and Technology, or to the calibration facilities of
 alther International Standards Organization in the conformation system conforms to the reader 	writes, or have been derived from a	ceated volues of natural physical condo	shis or have been derived by the ratio type of collocation technique State of Terras Collocation Ucentes No. 10-19
Reference Instruments and/or		a shekara tanar a t	
Acho S/N 20-239 27		Tr-99 No-Cie	CT Other
2 m 500 S/N 13470	ହ Dsc≣osca	pe \$/N	Multimeter S/N
Torated By: Comercia:	Jaline	Do	ate 26 Fed of
0		·	and the second second second second second
Reviewed By:	Ham	D	ote 4 Mland 3
This certificate shaft not be reproduced and	cost in ML without the written cocord	for Lucium Mecaurements, Inc.	AC Inst. Possed Dielectric (HEPot) and Continuity Te
FCTTW C25-3 10/C22002		1. Sec. 21-2. 1. 4. 2. 4. 2. 1. 1. 1.	Only Follect
والمستحدين والمستحد			
د این و این جود کر مرد و میکود میدود. این و این جود کر مرد و مند و میکود می و داری میکود این میکود کر میکود م	こうかん しい うかもうない	Second and the second second second	ومعالم من مالا ماري توريسه ماية المالة ما الارمان بولو في المالي ولو

Mallinckrodt C-T Project-Phase I Final Status Survey Report Building 200 Roof

,

.

CUL.16'2003 16:52 314 654 1251 Lucium measurements, inc. Meccel 3030 Plateau Data	MALLINCKRODT	n de la constante La constante	#2114 F.00
2/25/03			
. 1:38:50 PM	-		
Header 1: John Q Public			
Header 2: Serial#179577			
nder 3: Site:Building 1 .der 4: Room 7 EastWall	• • • •		
neader 5: More Commente?			
Reader 6: More Comments?			
Calibration Due Date: 2/26/04			•
Model 3030 Date: 2/26/03			
Model 3030 Time: 11:42:00 AM			
User PC Time: 1.0			
Alpha Isotope: Fu-239			•
Alpha Source Size (dpm): 365000			
Alpha Source Size (µCi): C.164414414			
Beta Isotope: Tc-99			
Beta Source Size (dpm): 22600			
Beta Source Size (µCi): 0.01018018			
Starting High Voltage: 675			
Starting High Voltage: 800		•	
High Voltage Increment: 25			
Plateau Count Mode: SCALER			
Frunce Count Time (min): 0001.0			
Background Count Time (min): 1.0			
ALPHA		BETA	

:27	Source	(Beta)	ALPHA Background	Eff	CrossTalk	Source	(Alpha)	BETA Background	Eff	Crosstalk
675	137685	(3889)	0	37.78	2.8%	6010	(1)	36	26.4%	80.0
700	137877	(3657)	0	37.8%	2.6%	6966	(1)	45	30.6%	0.0%
723	138583	(2500)	2	38.0%	1.8%	7959	(1)	49	35.0%	0.0%
750	137651	(1483)	0	37.8%	1.0%	8551	(3)	50	37.6%	0.0%
775	137047	(1071)	1	37.5%	0.7%	9470	(1)	70	41.6%	0.0%
0	137105	(783)	1	37.6%	0.4%	10082	(2)	203	43.78	0.0%

L3030 S/N: 179577 2/26/03

Lunurm Lunurm	UE-16'200	3 16:52	314 6	54-125	1	is N	ALLINCKRODT.
Model	3030 MD	Calcu	lation	Data		1997 - 1997 - 1997 - 1997 1997 - 1997 - 1997 - 1997 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1 1997 - 1997	
2/26/03							ار بر این میکند. بر بیک میکند میکند. بر این میکند میکند میکند. میکند میکند میکند میکند میکند. میکند میکند میکند میکند میکند.

Alpha Background(cpm): 2.0 Beta Background(cpm): 49.0

ta Efficiency \$: 38.0

Deta Efficiency 8: 35.0 -

Confidence Level: 95%

Count Time	Alpha MDA(dpm)	Beta MDA(dom)
0.1	111.9	295.7
0.5	35.5	129.5
1.0	24.4	100.8
2.0	18.6	84.5
5.0	14.8	73.6
20.0	13.6	69.8
50.0	12.5	66.5
FC (1.0)	24.4	100.8

L3030 S/N: 179577 2/26/03 #2114 P.008

<u>_</u>____

APPENDIX 4

· _ ·

Threshold Comparison Test Reports (TCTR)

 \cup

Threshold Comparison Test Report - Buildings

Run Date: Thursday, December 04, 2003

Survey Unit Number: 200EastR Class: 2 Data Points: Beta Grid Type: R Spacing: 13.3 ft.

SURVEY UNIT TABLE

Bldg	Rm	Surface	Fixed Equipment	Surface Area Included (sq. ft)_	Remarks	
B200EW B200EW	999AN 999E	R	Q1,5,7,17-20	543 4259	200E Annex north roof 200W roof	
			Total Area	4801		

INITIALIZATION DATA

Measu	rement	ected: F	RG, BI	
Date F	lange:		F	NI .
Thresh	olds:			
	EMC:	13,000	DCGLw	: 2,600

SURVEY UNIT TEST STATUS

Test Performed	Status		dpm _p /100 cm ²
Min/Max	Pass	Maximum Survey Value TR	162.0
Background	Fail	Minimum Background M	1.0
DCGLw	Pass	Difference	161.0
DCGLavg	Pass	Average Activity	53.2
EMC	Pass	Average Below DCGL	53.2
Wilcoxon Rank Sum Test	N/A	Average Background	67.4
Sign Test for Paired Data	Pass		

Threshold Comparison Test Report - Buildings

THE FOLLOWING DATA POINTS FAILED THE EMC TEST:

NONE

THE FOLLOWING DATA POINTS FAILED THE DCGLw TEST:

NONE

THE FOLLOWING DATA POINTS FAILED THE BACKGROUND TEST:

Survey Unit # 200EastR

Building: B200E&W

Room	SFC	X (ft)	Y (ft)	Mbx	Meas. Type	Min	SID	Gross Activity (dpm /100cm ²)	Remarks	Exc Res.
999E	Q17	1.0	0.0	FG	BI	1	6377	45.2		С
999E	Q18	2.0	0.0	Р	BI	1	6380	11.3		С
999E	Q19	1.0	0.0	FG	BI	1	6381	41.3		С
999E	Q20	1.0	0.0	FG	BI	1	6382	51.7		С
999E	Q7	1.0	0.0	М	BI	1	6385			C

THE FOLLOWING DATA POINTS PASSED BACKGROUND, DCGLw, AND EMC SCREENING TESTS:

Survey Unit # 200EastR

Building: B200E&W

					Meas.			Gross Activity			_
Room	SFC	X (ft)	Y (ft)	Mtx	Туре	Min	SID	(dpm p/100cm ²)	Remarks	Exc	Res
999E	Q5	2.0	0.0	М	BI	1	6357	29.4			
999E	R	8.8	45.3	TR	RG	1	6296				
999E	R	21.8	32.3	TR	RG	1	6301	148.9			
999E	R	8.8	1.0	TR	RG	1	6314	104.0	200 North Anney		
999E	R	47.8	32.3	TR	RG	1	6303	95.3			
999E	R	8.8	15.0	TR	RG	1	6313	93.1	200 North Anney		
999E	R	47.8	6.3	TR	RG	1	6311	86.5			
999E	R	21.8	58.3	TR	RG	1	6293				
999E	R	34.8	6.3	TR	RG	1	6310				
999E	R	34.8	32.3	TR	RG	1	6302				
999E	R	21.8	6.3	TR	RG	1	6309				
999E	R	21.8	71.3	TR	RG	1	6289				
999E	R	21.8	19.3	TR	RG	1	6305				
999E	R	8.8	6.3	TR	RG	1	6308				
999E	R	34.8	58.3	TR	RG	1	6294				
9 99E	R	8.8	29.0	TR	RG	1	6312		200 North Anney		
999E	R	47.8	58.3	TR	RG	1	6295				
999E	R	8.8	58.3	TR	RG	1	6292				
999E	R	34.8	19.3	TR	RG	1	6306				
999E	R	8.8	71.3	TR	RG	1	6288		200 East Roof		
999E	R	47.8	71.3	TR	RG	1	6291				
999E	R	47.8	45.3	TR	RG	1	6299				
999E	R	34.8	71.3	TR	RG	1	6290				
999E	R	34.8	45.3	TR	RG	1	6298				
999E	R	8.8	19.3	TR	RG	1	6304				
999E	R	8.8	32.3	TR	RG	1	6300				
999E	R	21.8	45.3	TR	RG	1	6297				
999E	R	47.8	19.3	TR	RG	1	6307	-25.2			

Mallinckrodt C-T Project-Phase I Final Status Survey Report Building 200 Roof

Threshold Comparison Test Report - Buildings

Summary of Background Data and Thresholds Used in this Analysis

Measurement Type: BK

DCGL: 2,600

EMC: 13,000

Matrix	Number of Data Points	Average Background	Sigma	Background Threshold (Tbk)	DCGLw Threshold (Td)	EMC Threshold (Tc)
	(dpm,/100cm ²)	(dpm,/100cm ²)	(dpm,/100cm ²)	(dpm _p /100cm ²)	(dpm,/100cm ²)	(dpmp/100cm ²)
FG	0	0.0	0.0	0.0	2,600	13,000
м	10	24.0	15.7	55.3	2,655	13,055
Р	0	0.0	0.0	0.0	2,600	13,000
TR	42	77.7	51.6	181.0	2,781	13,181

Threshold Comparison Test Report - Buildings

STATISTICAL TEST RESULTS

Run Date:	12/4/2003 3:41:15 AM
Survey Unit Number	200EastR Class: 2
Selected Test:	SIGN TEST FOR PAIRED DATA
Test Status	Pass
Thresholds:	

EMC 13,000 DCGL 2,600

DATA SUMMARY TABLE

27 Survey points processed and 1 matrices processed

S+= 27 WC = 18

****** The survey unit has passed the SIGN TEST FOR PAIRED DATA ******

Threshold Comparison Test Report - Buildings

Run Date: Thursday, December 04, 2003Survey Unit Number: 200WestR Class:2Data Points: BetaGrid Type: RSpacing:15.4 ft.

SURVEY UNIT TABLE

Bldg	Rm	Surface	Fixed Equipment	Surface Area Included (sq. ft)	Remarks	
B200EV B200EV			Q16 Q1-19	648 5762	200E Annex south roof 200W roof	
			Total Area	6410		

INITIALIZATION DATA

Measurement	cted: Bl		
Date Range:		All	
Thresholds:			
EMC:	13,000	DCGLw:	2,600

SURVEY UNIT TEST STATUS

Test Performed	Status		dpm _p /100 cm ²
Min/Max	Pass	Maximum Survey Value M	65.0
Background	Fail	Minimum Background M	1.0
DCGLw	Pass	Difference	64.0
DCGLavg	Pass	Average Activity	10.8
EMC	Pass	Average Below DCGL	10.8
Wilcoxon Rank Sum Test	N/A	Average Background	67.4
Sign Test for Paired Data	Pass		

Threshold Comparison Test Report - Buildings

THE FOLLOWING DATA POINTS FAILED THE EMC TEST:

NONE

THE FOLLOWING DATA POINTS FAILED THE DCGLw TEST:

NONE

THE FOLLOWING DATA POINTS FAILED THE BACKGROUND TEST:

Survey I	Unit # 🕻	200West	R	Bu	ilding:	B200E&W					
Room	SFC	X (ft)	Y (ft)	Mtx	Meas Type		SID	Gross Activity (dpm /100cm ²)	Remarks	Exc Res.	
999W	Q10	1.0	0.0	FG	BI	1	6364	10.3		С	
999W	Q17	2.0	0.0	FG	BI	1	6378	20.7		С	
999W	Q2	1.0	0.0	м	BI	1	6383	65.0		С	
999W	Q2	2.0	0.0	FG	BI	1	6351	16.8		С	
999W	Q5	1.0	0.0	М	BI	1	6356	55.7		С	
999W	Q 6	3.0	0.0	FG	Bl	1	6360	47.8		С	
999W	Q6	2.0	0.0	FG	Bl	1	6359	24.5		С	
999W	Q9	1.0	0.0	FG	BI	1	6363	34.9		С	

THE FOLLOWING DATA POINTS PASSED BACKGROUND, DCGLw, AND EMC SCREENING TESTS:

					Meas.			Gross Activity			
Room	SFC	X (ft)	Y (ft)	Mtx	Туре	Min	SID	(dpm /100cm ²)	Remarks	Exc	Res.
999W	Q1	1.0	0.0	М	BI	1	6349	20.9			
999W	Q11	1.0	0.0	М	BI	1	6365	49.5			
999W	Q11	2.0	0.0	М	BI	1	6366	-3.9			
999W	Q12	1.0	0.0	М	BI	1	6367	36.4			
999W	Q12	2.0	0.0	М	BI	1	6368	15.5			
999W	Q13	2.0	0.0	М	BI	1	6370	34.0			
999W	Q13	1.0	0.0	М	BI	1	6369	7.7			
999W	Q14	1.0	0.0	M	BI	1	6371				
999W	Q14	2.0	0.0	M	BI	1	6372	15.5			
999W	Q15	1.0	0.0	M	BI	1	6373				
999W	Q15	2.0	0.0	M	BI	1	6374				
999W	Q16	2.0	0.0	M	BI	1	6376	21.7			
999W	Q16	1.0	0.0	M	BI	1	6375				
999W	Q18	1.0	0.0	P	BI	1	6379	-5.7			
999W	Q3	1.0	0.0	M	BI	1	6352				
999W	Q4	2.0	0.0	M	BI	1	6355				
999W	Q4	1.0	0.0	M	BI	1	6354				
999W	Q6	1.0	0.0	M	BI	i	6358				
999W	Q8	1.0	0.0	м	BI	1	6386				

Mallinckrodt C-T Project-Phase I Final Status Survey Report Building 200 Roof

Threshold Comparison Test Report - Buildings

Summary of Background Data and Thresholds Used in this Analysis

Measurement Type: BK DCGL: 2,600 EMC: 13,000

Matrix	Number of Data Points	Average Background	Sigma	Background Threshold (Tbk)	DCGLw Threshold (Td)	EMC Threshold (Tc)
	(dpm,/100cm ²)	(dpm,/100cm ²)	(dpm,/100cm ²)	(dpmp/100cm ²)	(dpmp/100cm ²)	(dpm,/100cm ²)
FG	0	0.0	0.0	0.0	2,600	13,000
м	10	24.0	15.7	55.3	2,655	13,055
Р	0	0.0	0.0	0.0	2,600	13,000
TR	42	77.7	51.6	181.0	2,781	13,181

Threshold Comparison Test Report - Buildings

STATISTICAL TEST RESULTS

Run Date:	12/4/2003 3:51:37 AM
Survey Unit Number	200WestR Class: 2
Selected Test:	SIGN TEST FOR PAIRED DATA
Test Status	Pass
Thresholds:	

EMC 13,000 DCGL 2,600

DATA SUMMARY TABLE

30 Survey points processed and 1 matrices processed

S+= 30 Wc = 20

****** The survey unit has passed the SIGN TEST FOR PAIRED DATA ******