FINAL STATUS SURVEY REPORT **BUILDING 250 INTERIOR** MALLINCKRODT, INC. **COLUMBIUM- TANTULUM PROJECT- PHASE 1 MARCH 2004 M**ALLINCKRODT Mallinckrodt, Inc. St. Louis, Missouri

808 Lyndon Lane, Suite 201 Louisville, Kentucky 40222 502/339-9767 (Voice) 502/339-9275 (Fax)

BURNS & MCDONNELL 9400 Ward Parkway Kansas City, Missouri 64114 Phone (816) 333-9400 Fax (816) 822-3463

NEXTEP ENVIRONMENTAL 808 Lyndon Lane, Suite 201 Louisville, Kentucky 40222 Phone (502) 339-9767 Fax (502) 339-9275

MALLINCKRODT, Inc. c-t project - phase i
FINAL STATUS SURVEY REPORT
Building 250 Interior
Survey Units 2502, 2503, & 2504
Revision 0
Prepared by
BMNX
Joint Venture
Approved by: Halling Date: 3/26/04
Approved by: Mark Puet Date: 4/12/04
Mallinckrodt C-T Decommissioning Project Manager
Approved by: I'm O. Woodford Date: 4-6-04
Mallinckrodt Radiation Safety Officer
Approved by: <u>HMMWman</u> Date: <u>3/24/2004</u>
BMNX C-T Decommissioning Project Manager
Approved by: <u>HMUNMON</u> Date: <u>3/26/2004</u>
BMNX Environment, Safety and Health Representative
Issued by: 12_ M. Cen Date: 4-14-04
BMNX Quality Assurance Manager

Mallinckrodt C-T Project-Phase I Final Status Survey Report Building 250 Interior

Revision: 0 March 2004 BURNS & MCDONNELL 9400 Ward Parkway Kansas City, Missouri 64114 Phone (816) 333-9400 Fax (816) 822-3463

NEXTEP ENVIRONMENTAL 808 Lyndon Lane, Suite 201 Louisville, Kentucky 40222 Phone (502) 339-9767

Fax (502) 339-9275

MALLINCKRODT, Inc. *c-t project – phase i*

FINAL STATUS SURVEY REPORT

Building 250 Interior Survey Units 2502, 2503, & 2504 Revision 0

1. INTRODUCTION

- 1.1. PURPOSE
 - 1.1.1. This Final Status Survey Report (FSSR) is being submitted by Mallinckrodt, Inc. to the U.S. Nuclear Regulatory Commission (NRC) for the interior surfaces of Building 250 on the Mallinckrodt St. Louis site (designated as Survey Units (SU) 2502, 2503, and 2504). This report is being provided in accordance with the Mallinckrodt C-T Project, Phase I Decommissioning Plan (D Plan). This FSS was performed in accordance with Field Instruction (FI) CT-FI-003¹ and CT-FI-004² to demonstrate that the established guidelines for unrestricted release have been met. The results of the FSS are presented in this FSSR as justification for release of these survey units from License STB-401 for unrestricted use.

1.2. HISTORICAL BACKGROUND

1.2.1. From 1942 to 1961 Mallinckrodt was involved in radiological activities outside of the scope of this report which terminated in 1977. Mallinckrodt's facilities have either been released from the applicable license or are being remediated by the US Army Corps of Engineers in the affected areas. License STB-401 was issued to Mallinckrodt in 1961 by the Atomic Energy Commission (AEC), later the Nuclear

¹ CT-FI-003, Final Status Survey Guide for Survey Units 2502 and 2503.

² CT-FI-004, Final Status Survey Guide for Survey Unit 2504.

Regulatory Commission (NRC), to allow extraction of columbium and tantalum (C-T) from natural ores and tin slag, since the ores and byproducts of processing contain uranium and thorium isotopes. Mallinckrodt has not performed C-T extraction since 1987. On July 12, 1993, NRC amended License STB-401 to possession-only for D&D and license termination.

2. SCOPE OF FINAL STATUS SURVEY

- 2.1. DEFINITION AND CLASSIFICATION OF SURVEY UNIT
 - 2.1.1. The affected interior walls and floors on the 2nd floor of Building 250 excluding the stairwells have been designated as 2 survey units, SU-2502 and SU-2503. The affected interior walls and floors on the 1st floor of Building 250 including the stairwells, have been designated as a single survey unit, SU-2504. Each survey unit has been classified Class 2.
 - 2.1.2. Table 2.1 below contains the description provided in Appendix A of the D Plan for the areas referenced by this FSSR.

Area	Survey Unit	Location / Surface	
273	2504	1st Floor - Rm 101 Closet: Area remodeled for entrance to lobby area. Walls are studded and drywalled on north side. South side masonry painted with epoxy coating.	
274	2504	1st Floor - Rm 103/A/B Doors: Removed and area remodeled for new conference room. Walls are studded and drywalled.	
275	2504	1st Floor - Rm 110 Desk Drawer: Removed and disposed of.	
276	2504	1st Floor - Rm 115 Doorways: Removed and disposed of. New walls installed. Area is studded and drywalled for labs and office cubicles on north side. New drop ceilings.	
280	2504	1st Floor - East Stairwell-original	
281	2504	1st Floor - West Stairwell-original	
282	2504	1st Floor - CT Lead Well	
283	2504	1st Floor CT Lab Office - Interior Walls-mostly drywall covered post CT operations, block walls original and covered with one coat of epoxy paint since CT.	
284	2504	1st Floor CT Lab Office - Floor: removed and replaced with linoleum post CT operations.	
285	2504	1st Floor CT Lab Office - Ceiling: all new ceiling tiles post CT, drop ceiling structural components accessible.	

Table 2.13Survey Area Descriptions

³ Appendix A of D Plan.

Area	Survey Unit	Location / Surface	
286	2504	1st Floor CT Lab Hall - Interior Walls: drywall post CT except areas of exposed block. Exposed block painted with one coat epoxy paint.	
287	2504	1st Floor CT Lab Hall - Floor: replaced with new tile post CT operations.	
288	2504	1st Floor CT Lab Hall - Ceiling: all new ceiling tiles post CT, drop ceiling structural components accessible.	
289	2504	1st Floor CT Lab Count - Interior Walls: all drywall covered post CT operations.	
290	2504	1st Floor CT Lab Count - Floor tile replaced post CT operations.	
292	2504	1st Floor CT Lab Count - Ceiling Drain Pipes-original	
293	2503	2nd Floor Rm 201 - Countertops/Sinks: original	
294	2503	2nd Floor Rm 201 - East Hood: original	
297	2503	2nd Floor Rm 201 - North Wall: Painted with epoxy coating.	
298	2503	2nd Floor Rm 202 - Floors: New inlaid linoleum installed.	
299	2503	2nd Floor Rm 202 - Interior Walls: Repainted with epoxy coating.	
303	2502	2nd Floor Rm 205 - East Wall: Repainted with epoxy coating.	
305	2502	2nd Floor Rm 207 - Staging Area: floor under sink remediated post CT operations	
308	2502	2nd Floor Rm 209 - Countertops: original	
309	2502	2nd Floor Rm 209 - Drains: original	
310	2502	2nd Floor Rm 209 - Floors: original	
311	2502	2nd Floor Rm 210 - Floors: original	
312	2502	2nd Floor Rm 210 - North and West Walls: original	
313	2502	2nd Floor Rm 210 - Mechanical Room Equipment: Vacuum hold tank, air compressor, air handler, and chiller unit - original.	
314	2502	2nd Floor Rm 211 - West Hood: original	
315	2502	2nd Floor Rm 211 - Countertops: original	
316	2502	2nd Floor Rm 211 - Drain: original	
317	2502	2nd Floor Rm 211 - Cabinets: original	

2.1.3. A summary report for the survey units listing all the surfaces and fixed apparatus assigned to SU-2502, SU-2503, and SU-2504 is presented in Appendix 1. Drawings of the first and second floor of Building 250 showing the location of the rooms that were surveyed are presented in Appendix 2, Figures 2.1 and 2.2. The blue numbers in the drawings represent rooms that were surveyed as part of the FSS.⁴ Where possible, the original room number was used. When necessary, new

⁴ Rooms 102, 103, and 120-123 were surveyed and reported separately under survey unit 2501.

numbers were created to identify each space that was surveyed. Walls shown with dashed lines are walls which have been removed since 1985 and which could not be surveyed. Walls shown in red have been constructed since the C-T era and need not be surveyed since they are unaffected. Some rooms have been outlined in blue to clarify the old boundaries of the rooms that were surveyed in the current building configuration.

- 2.1.4. Details of the laboratory rooms on the second floor are illustrated in Appendix 2, Figures 2.3 through 2.9 showing the location of all items of installed apparatus not part of the ceiling.
- 2.2. IDENTIFICATION OF THE RADIOLOGICAL CONTAMINANTS
 - 2.2.1. The radionuclides on the St. Louis site under license STB-401 are the uranium and thorium series. Both series are assumed to be in radioactive equilibrium and to exist in a uranium-to-thorium ratio of two to one.⁵
- 2.3. REFERENCE BACKGROUND LEVELS
 - 2.3.1. When the initial characterization (CH) surveys were performed from 1992 through 1996, beta backgrounds were determined for several matrices. For matrices where no background data were available, a value of zero was used.
 - 2.3.2. Where additional background measurements were required for the FSS, they were taken on unaffected surfaces nearby or offsite. All background levels were determined by taking direct readings on the specified matrix on unaffected surfaces using the same methods and type equipment as were used for the FSS. Background levels for the contaminants of interest are presented in Table 2.2.

⁵ Mallinckrodt C-T Project D Plan Appendix D.

Matrix	Code	Mean (dpm _p /100cm ²) ⁶	Standard Deviation (dpm _p /100cm ²)
Asbestos Tile	AT	0	0
Asphalt	A	78	52
Brick	В	192	16
Carpet	CPT	0	0
Celotex Ceiling Tile	CTX	153	15
Ceramic Tile	СТ	214	40
Concrete	С	35	20
Concrete Block	CB	96	22
Counter Top - Lab (Bldg 250)	СТР	144	29
Giberglass	FG	0	0
Glass	G	0	0
Gypsum Board	GB	0	0
Metal	M	24	16
Other Non Metal	0	0	0
Plastic	Р	0	0
Red Clay Tile	R	0	0
Rubber Base	RB	0	0
Tar/roofing	TR	78	52
Transite Wall Panels	TS	0	0
Vinyl Tile	VT	15	24
Wood	W	13	24

Table 2.2Background Reference Data

2.3.3. <u>Gamma background</u>. The average of the gamma background levels recorded in the rooms where gamma measurements were taken is presented in Table 2.3

Room	Ambient BK (cpm)
101C	7,000
103AB	6,500
110	7,000
115	6,770**
127	6,500
139	6,500
140	6,500

 Table 2.3

 Gamma Background Reference Data*

* 3" x 3" shielded NaI detector

** Average of 4 readings.

2.3.4. The average value for the building was 6,700 cpm and standard deviation (σ) was 250 cpm. For all net gamma scan measurements, the average gamma background

⁶ $Dpm_p/100 \text{ cm}^2$ refers to the disintegrations per minute per 100 cm² for the combined nuclide series.

of **6,700 cpm** was used. For direct measurements the local background value from Table 2.3 was used.

2.4. RELEASE CRITERIA

- 2.4.1. Table 2.4 displays the Derived Concentration Guideline (DCGLw) for measurements on building surfaces and fixed equipment. This value is the primary release criterion from the D Plan and is applied net of background to building surfaces. It also applies to items of installed apparatus such as vents, air handlers, and piping.
- 2.4.2. To limit the dose from residual materials as much as possible an Administrative Release Guideline (ARG)⁷ was developed and was used during the FSS as if it were the DCGLw with certain exceptions.⁸

Criterion	(dpm _p /100 cm ²)
DCGLw	13,000
ARG	2,600

Table 2.4Building Surface and Installed Apparatus Release Criteria

- 2.4.3. Elevated Measurements Criterion (EMC).
 - 2.4.3.1. Because the units surveyed in this FSS were Class 2, all measurements are required to be less than the DCGLw. Therefore, the EMC criteria do not apply to this FSS.

2.5. SURVEY INSTRUMENTS

- 2.5.1. The instrumentation utilized to generate FSS data was maintained, calibrated, and tested according to the requirements of the D Plan. All procedures, responsibilities, and schedules for calibrating and testing equipment have been documented.
- 2.5.2. Maintenance information and use limitations provided in the vendor documentation of the instruments used during this FSS were adhered to. Measuring and analyzing equipment were tested and calibrated before initial use and were recalibrated periodically and whenever previous calibrations were invalidated. Field and laboratory equipment specifically used for obtaining final radiological survey data were calibrated based on standards traceable to NIST. Minimum frequencies for calibrating equipment have been established and documented.

Final Status Survey Design Guide (Phase I), Section 3.2, covers the rules governing use of the ARG.

⁷ NEXTEP Tech Memo 0211, Recommendation for an Administrative Release Guideline for the Mallinckrodt C-T Project, A.H. Thatcher, CHP.

- 2.5.3. Measuring equipment were tested at least once on each day the equipment was used for FSS. Test results were recorded in tabular or graphic form and compared to predetermined, acceptable performance ranges. Equipment not conforming to the performance criteria was promptly removed from service and any data gathered in the interim evaluated for quality until the deficiencies were resolved.
- 2.5.4. All calibration and source check records were completed, reviewed, signed-off and retained in accordance with the Mallinckrodt Quality Assurance Program. The original Calibration Sheets for the instruments used in this FSS are provided in Appendix 3.
- 2.5.5. <u>L2221/AB-100</u> The primary instrument used for the detection of surface radioactivity was the AB-100 scintillation detector configured for beta detection. The AB-100 detector houses a ZnS/BC-408 organic scintillator and is paired with the Ludlum 2221 scaler/ratemeter for fixed and scan surveys. The window of the AB-100 was modified to increase the thickness of the mylar to 7-9 mg/cm² for the purpose of alpha attenuation⁹. The detector window was unshielded (open) for a time period during counting at each sample location, and shielded (closed) for the same time period at the same location¹⁰. The difference in the two readings is attributable to beta emissions above 80 KeV in energy.¹¹ The sensitivity of the AB-100 was derived from experiments by Lucas and Colyott which were reported in Attachment 3 to the D Plan.¹² The actual instruments used were calibrated and normalized to the reference instrument tested by Lucas and Colyott as prescribed in CT-QA-6.1¹³.
- 2.5.6. <u>L2241-2/AB-100</u> The AB-100 detector mentioned above paired with the Ludlum 2241-2 scaler/ratemeter was used in the same way for direct and/or scan beta measurements.
- 2.5.7. <u>L43-89</u> The Ludlum 43-89 scintillation detector is a newer design that is functionally and physically equivalent to the AB-100. It has a slightly lower efficiency as a rule, and it may be paired on the same ratemeters and scalers.
- 2.5.8. <u>L3030</u> The Ludlum Model 3030 alpha/beta scaler houses ZnS(Ag) and plastic scintillators and was used to count removable contamination collected on paper swipes. Smear papers were counted in the laboratory and results were reported in β pm/100 cm². Removable contamination measurements were not compared with

⁹ As specified in Appendix D of the D Plan. Measurements taken with only the mylar covering the probe were "open window" measurements.

¹⁰ The "closed window" reading was taken with a 1/8" soft Aluminum plate covering the face of the detector. It is sufficient to exclude β rays from the U and Th series.

¹¹ Internal Conversion Electrons (ICE) will also be included in this number but are a second order effect and may be ignored.

¹² Energy Dependent Calibrations for the Bicron Model AB-100 Beta Ray Survey Probe, A. Lucas, CHP and L. Colyott, Ph.D., submitted as Attachment 3 to the Mallinckrodt Phase I Decommissioning Plan.

¹³ CT-QA-6.1 - Calibration and Control of Measuring and Survey Equipment.

the release criteria for purposes of releasing the survey unit, but only to confirm that the removable fraction was less than 20% of the DCGLw.

2.5.9. <u>L2221/3x3NaI</u> - When beta measurements could not be taken, the 3"x3" Sodium Iodide (NaI) detector was used. This instrument was calibrated off site and no modification or normalization (as was required for the AB-100) was performed.

2.6. LOWER LIMIT OF DETECTION

- 2.6.1. The terminology adopted to reflect the measurement (detection) capability of an instrument is the "Lower Limit of Detection" (LLD) or the "Minimum Detectable Activity" (MDA). It refers to the intrinsic detection capability of the entire measurement process. The LLD, or MDA, is the lowest level of radioactivity that will yield a net count, above system blank, that will be detected with at least 95% probability with no greater than a 5% probability of falsely concluding that a blank observation represents a real signal. It is desirable to express the MDA as minimum detectable areal density (MDAD) or minimum detectable concentration (MDC) in units comparable to a regulatory limit with which a measurement may be compared. For a more detailed discussion regarding LLD and equations involved in calculation of LLD, refer to CT-QA-6.1.¹⁴
- 2.6.2. The LLD requirements for the FSS have been developed in accordance with MARSSIM¹⁵ Chapter 4 guidelines. They are contained in the Design Guide and are listed in Table 2.4.

Measurement Type	MDC Requirement
Direct	50% of ARG
Class 2 Scans	ARG

Table 2.4MDC Requirements

2.6.3. The MDCs for the instruments used in the FSS were calculated according to Appendix D of the D Plan. A comparison of the MDCs calculated for the AB-100 and the NaI gamma detector with the requirements is provided in Table 2.5. Details of the MDC calculations for the AB-100 are presented in NEXTEP Tech Memo 0230.¹⁶

Mallinckrodt C-T Project-Phase I Final Status Survey Report Building 250 Interior

¹⁴ CT-QA-6.1, Ibid.

¹⁵ NUREG 1575, Multi Agency Radiation Survey and Site Investigation Manual.

¹⁶ NEXTEP Tech Memo 0230, Technical Basis Document for Mallinckrodt Final Status Surveys, A.H. Thatcher, CHP (included with FSSR 235 Roof).

			4	
Measurement	Matrix	Calculated MDC (dpmp/100 cm ²)	Required MDC (dpmp/100 cm ²)	
BETA DIRECT	Brick	100	1,300	
BETA SCAN	Brick	760	2,600	
	Vinyl Tile	1,170	1 200	
GAMMA DIKECI	Carpet	1,090	1,300	
CADAL SCAN	Vinyl Tile	1,130	2 (00	
UAMIMA SCAN	Carpet	1,030	2,000	

 Table 2.5

 Minimum Detectable Concentration (MDC) Comparison¹⁷

2.6.4. MDCs for the 3"x3" shielded NaI Gamma Detector were calculated using Equation 1^{18} . The conversion factors, F_g , for direct gamma readings taken through carpet and vinyl tile over concrete were calculated in NEXTEP Tech Memo 0317^{19} and are presented in Table 2.6.

Equation 1

$$\frac{2.71 + 3.29 * \sigma_b * \sqrt{\left(1 + \frac{t_{s+b}}{t_b}\right)}}{F_g * t_{s+b}} \left(\frac{dpm_p}{100 cm^2}\right)$$

Calculated Gamma Direct MDC =

Where:

 σ_b = Shielded gamma background sample standard deviation²⁰ (250 cpm)

 F_g = gamma conversion factor (Table 2.6)

 $t_b = Background \ count \ time \ (5 \ minutes)$

 t_{s+b} = Sample count time (1 minute)

¹⁷ All Values given are net of background.

¹⁸ NEXTEP Tech Memo 0230, Equation 6.

¹⁹ NEXTEP Tech Memo 0317, Use of the 3" x 3" Nal Detector for Measurement of Contamination on Concrete through Vinyl Tile and Carpet, Ning Zhang

²⁰ Section 2.3

Measurement Type and Floor Covering		Conversion Factor (cpm/dpm/100cm ²)
ect	Vinyl Tile	0.77
Dir	Carpet	0.83
an	Vinyl Tile	0.60
Sc	Carpet	0.66

 Table 2.6

 Gamma Conversion Factors²¹

2.6.5. Scan MDCs for the 3"x3" shielded NaI Gamma Detector were calculated using Equation 2 which is the combination of Equations 8 and 9 from NEXTEP Tech Memo 0230²². The background value from Section 2.3 and conversion factors from Table 2.6 were used in the calculations.

Equation 2

$$Scan MDC = \frac{d'}{F_g} \sqrt{\frac{60*BK}{p*i}} = 8.3 \frac{\sqrt{BK}}{F_g}$$

Where:

- d' = 1.38 when decision error, $\alpha = 0.60$, and correct decision fraction, $1-\beta = 0.95^{23}$
- $i = observation interval^{24} (sec) = (detector area)^{1/2}/scan speed = 3.33sec$
- BK = background (cpm) = 6,700 cpm
- 60 = conversion, 60 (sec/min)
- $p = surveyor efficiency, assumed^{25}$ to be 0.5
- $Fg = gamma \ conversion \ factor \ for \ scans \ from \ Table \ 2.6$

2.7. ACTION THRESHOLDS

- 2.7.1. Action thresholds based upon the release criteria were calculated for each type of instrument used in this FSS and the results are presented in Table 2.7.
- 2.7.2. The action threshold for beta scans is derived in NEXTEP Tech Memo 0230²⁶ and is based upon the ARG.

²⁵ Abelquist, E.W., et.al., §6.7.1.
 ²⁶ NEXTEP Tech Memo 0230, ibid.

Mallinckrodt C-T Project-Phase I

Final Status Survey Report Building 250 Interior

²¹ NEXTEP Tech Memo 0317, Ibid.

²² NEXTEP Tech Memo 0230, Ibid.

²³ Abelquist, E.W., Table 6.1 p 6.23.

 ²⁴ The observation interval is based upon a scan speed of 30 cm/s and an effective detector area of 10,000 cm² (see TM 0229).
 ²⁵ Abelouit F W, et al. 86.7.1

- 2.7.3. The action thresholds for both direct and scan gamma measurements were calculated using equations presented in NEXTEP Tech Memo 0230²⁷ and gamma conversion factors, F_g, from Table 2.6. Since gamma readings were occasionally at or above the ARG, these thresholds were based upon the less conservative DCGLw.
- 2.7.4. The calculation for the direct gamma action threshold is given by Equation 3.

Equation 3

$$T_{inv} = DCGLw * F_g$$

Where:

 $T_{inv} = The investigation threshold. (cpm)$ $F_g = The direct gamma conversion factor (Listed in Table 2.6)$

2.7.5. The calculation for the gamma scan action threshold is given by Equation 4.

Equation 4

$$T_{inv} = DCGLw * F_g * \sqrt{p}$$

Where:

 F_g = The gamma conversion factor for scans. (Listed in Table 2.6) p = surveyor efficiency (assumed to be = 0.50)

Table 2.7 Action Thresholds²⁸

Measurement	Floor Covering	T _{inv} (cpm)
BETA SCAN	NA	2,000
CAMMA DIDECT	Vinyl Tile	10,000
GAMMA DIKEU I	Carpet	10,800
CANDLA SCAN	Vinyl Tile	7,080
GAMINIA SCAN	Carpet	7,630

2.8. INSTRUMENT SENSITIVITY, BACKSCATTER AND PAINT ATTENUATION

2.8.1. Beta direct measurements taken in the field were converted to $dpm_p/100 \text{ cm}^2$ of the parent nuclide series in accordance with Section 9 of the Design Guide using the following equation:

²⁷ NEXTEP Tech Memo 0230, ibid.

²⁸ The Class 3 action threshold is always equal to the greater of the T_{BK} or the MDC of the instrument used. T_{BK} is defined for each matrix as mean background plus two standard deviations (2 σ) as described in Section 3.5.4.

Equation 5

$$AD = \frac{Co - Cc}{PAF * S_i * S_b(m) * t}$$

Where:

AD	=	Areal Density in $dpm_p/100 \text{ cm}^2$ for the parent nuclides
Со	=	Counts measured in the open window configuration
Сс	=	Counts measured in the closed window configuration
PAF	=	Paint attenuation factor derived from the number of coats of paint applied to the surface since C-T operations ceased. ²⁹
S _i	=	Normalized Instrument sensitivity without backscatter.
S _b (m)	=	Backscatter factor (a function of matrix)
t	=	Integration time in minutes.

2.8.2. Justification and calculations for separation of backscatter (as a function of the matrix) and instrument sensitivity were presented in NEXTEP Tech Memo 0215.³⁰ Reference backscatter coefficients for several matrices were generated using an MCNP model and are described in NEXTEP Tech Memo 0213.³¹ These coefficients were stored in the Matrix table in the Database and were used in the calculations according to the matrix upon which the measurement was taken.

3. SURVEY METHODS

- 3.1. SURVEY PROCEDURES
 - 3.1.1. The FSS conformed to the procedures and plans listed in Table 3.1. The primary guidance for the FSS is contained in the Design Guide and the FI.

²⁹ When the majority of the data used were FSSE data taken in the 1990's, zero coats of paint were assumed to cover those measurements and PAF was set to 1.0 for the entire surface.

³⁰ NEXTEP Tech Memo 0215, Separation of Backscatter & Derivation of Instrument Sensitivity, A.H. Thatcher CHP, (Included with FSSR 2501).

³¹ NEXTEP Tech Memo 0213, Beta Backscatter Factors for Several Materials at the Mallinckrodt Site, N. Zhang and D. Wilson, (Included with FSSR 2501).

Table 3.1

Survey Procedures and Documents
CT Decommissioning Plan (Phase I)
CT Decommissioning Project, Final Status Survey Design Guide (Phase I)
CT-FI-003, Final Status Survey Guide for Survey Units 2502 and 2503
CT-FI-004, Final Status Survey Guide for Survey Unit 2504
CT-QA-6.1: Calibration and Operation of Measuring and Survey Equipment
CT-RP-66: Operation of Scalers, Rate Meters, and Contamination Detectors
CT-RP-39: Performance of Radiation and Contamination Surveys
CT-RP-40: Survey Documentation and Review

- 3.1.2. All FSS data recorded in the field was submitted to the Quality Assurance Manager, or designee for processing and review. The data collection forms and annotated drawings were signed by the technician taking the data and reviewed by the Radiation Protection, Health & Safety (RPHS) Manager or designee overseeing the survey. After data entry and review, QA approved the data sheets and filed them with the permanent Mallinckrodt records. The QA checklist³² developed for quality verification of FSS data was used as a guide to data verification.
- 3.1.3. All the data generated by the surveys were entered into the C-T Radiation Database (RDB) and analyzed as outlined in Section 4.4 of the D Plan.
- 3.2. SPECIFIC SURVEY METHODS
 - 3.2.1. Rooms 110 and 115
 - 3.2.1.1. Only portions of the original rooms 110 and 115 remain in place. Each room consists of the floor, 1 wall, and small items of equipment attached to the ceiling. The floor has been at least partially recovered with vinyl tile since CT operations ceased and approximately 4 coats of paint exist on the concrete block walls. Therefore, characterization surveys were the primary source of data in the rooms. Rooms 110 and 115 contain 9 and 26 FSS measurements on wall and floor surfaces respectively. Of these, only 2 regular grid (RG) points in each room were taken during the FSS surveys in 2003. Therefore, the surfaces in these two rooms were coded for zero paint (PAF=1.0) to reflect the condition of the surfaces when characterization data were collected.

³² NEXTEP Tech Memo 0206, QA Data Verification for MI CT Final Status Survey Data, B. Anderson, (Included with FSSR 2501).

- 3.2.1.2. Four coats of paint (PAF=0.10) would have the effect of inflating the four RG readings by a factor of 10. Since all four RG measurements were less than 45 $dpm_p/100cm^2$ the affect of the additional paint would raise the values to something less than 450 $dpm_p/100cm^2$ and would not affect the outcome of the analysis performed.
- 3.2.1.3. β scans were taken on the exposed concrete block to cover at least 10% of the total wall area and 100% of the floor area was scanned with a shielded NaI gamma detector.
- 3.2.2. Room 103AB
 - 3.2.2.1. Only portions of the original rooms 103A and 103B remain in place. The middle partition between them has been removed, and the rooms have been consolidated into one room, 103AB. The affected areas consist of the floor, 2 walls, and small items of equipment attached to the ceiling. The floor has been recovered with carpet since C-T operations ceased and the walls have been studded and drywalled.
 - 3.2.2.2. Existing FSSE measurements were used for the FSS. Bias β measurements were also collected on the equipment attached to the ceiling and on any exposed portion of the original walls above the suspended ceiling.
 - 3.2.2.3. β scans were taken on exposed concrete block to cover at least 10% of the total wall area and 100% of the floor was scanned with a shielded NaI detector.
- 3.2.3. Room 101C
 - 3.2.3.1. Room 101C consists of the floor, 4 walls, and a sink. The walls have been painted with two coats of paint and the north wall has been studded and drywalled. The floor covering was assumed to be new.
 - 3.2.3.2. Direct β measurements were taken on the grid locations where possible. Bias direct β measurements were collected in the sink basin, and on the light and vent.
 - 3.2.3.3. β scans were taken on at least 10% of the exposed concrete block on the walls, and 100% of the floor was scanned with a shielded NaI detector.
- 3.2.4. Rooms 139 and 140
 - 3.2.4.1. Rooms 139 and 140 each consist of the floor, 4 walls, and small items of equipment attached to the ceiling. The floor of room 139 has been recovered with vinyl floor covering and the floor of room 140 with tile. Most wall surfaces have been studded and drywalled. Remaining exposed concrete block on non-drywalled walls has been painted with 1 coat of paint since C-T operations.

- 3.2.4.2. Room 139 has 54 FSS measurements on the walls and floor. Of these only 2 RG data points were taken in 2003. Therefore the surfaces of this room were coded for zero paint (PAF=1.0) to reflect the condition of the surfaces when characterization data were collected. One coat of paint (PAF=0.357) would have the effect of inflating these readings by a factor of about 3. Since both RG measurements were less than 55 $dpm_p/100cm^2$, the effect of the additional paint would raise the values to something less than 165 $dpm_p/100cm^2$ and would not affect the outcome of the analysis performed.
- 3.2.4.3. All but 2 of the direct beta measurements recorded on the building surfaces in room 140 were FSSE measurements from the characterization program. Therefore the walls were also coded for zero paint. The 2 bias measurements taken in 2003 were below $88 \text{ dpm}_p/100 \text{cm}^2$. The affect of paint on these points would raise the values to something less than 265 $\text{dpm}_p/100 \text{cm}^2$ and would not affect the outcome of the analysis performed.
- 3.2.4.4. Direct β measurements were also taken on small pieces of equipment attached to the ceiling including the fire sprinkler system and the electrical track in room 139.
- 3.2.4.5. β scans were taken on at least 10% of the exposed concrete block on the walls and 100% of the floor was scanned with a shielded NaI detector.
- 3.2.5. Room 127
 - 3.2.5.1. Room 127 consists of the floor, 4 walls, and small items of equipment attached to the ceiling. The floor has been recovered with floor tile since CT operations ceased and the walls have been studded, drywalled, and mostly covered by wall lockers.
 - 3.2.5.2. Portions of a drain line running through the ceiling of Building 250 above room 127 were removed during decommissioning remediation activity in the period between February and March 2003. The connecting pipes that were cut to allow removal of the main line were surveyed with direct beta measurements and capped off.
 - 3.2.5.3. A full compliment of FSSE measurements were taken on the original surfaces, and those measurements were used for the FSS. For this reason, the coats of paint on the wall surfaces of room 127 (which were applied post C-T operations) were set to zero as shown in Appendix 1. Bias measurements were also taken on installed apparatus.
 - 3.2.5.4. β scans were taken on at least 10% of the exposed concrete block on the walls and 100% of the floor was scanned with a shielded NaI detector.

3.3. SURVEY MEASUREMENTS

3.3.1. Beta Measurements:

- 3.3.1.1. Direct A systematic grid of direct beta measurements was obtained on the wall and floor surfaces as described in the FI. Direct beta measurements were collected on the surfaces of the survey units. Bias measurements were taken on building surfaces and on fixed apparatus at locations determined by the surveyor in an effort to fully characterize the fixed apparatus.
- 3.3.1.2. Scans Beta scans were performed using the same instruments used for the direct beta measurements. Beta Scans were performed on the wall surfaces and on the floor surfaces except in rooms 101C, 103AB, 110, 127, 139, and 140. Scans were performed at a scan rate of less than one detector width per second with a probe height less than one inch from the surface being scanned.

3.3.2. Gamma Measurements:

- 3.3.2.1. Direct Direct gamma measurements were taken on the floor of room 115 which was covered with new vinyl tile. A 3"x3" Sodium Iodide (NaI) gamma detector was placed on each location on the surface and the count was taken for one minute.
- 3.3.2.2. Scans Gamma Scans were performed in straight lines 5 cm above the surface of the floor in rooms 101C, 103AB, 110, 115, 127, 139, and 140 with each scan line separated from the next by 1 meter. The scan rate did not exceed 1 ft/s.

3.3.3. <u>Removable Contamination Measurements:</u>

3.3.3.1. Swipes - Removable contamination samples were collected at all regular grid locations on the surfaces of each survey unit. The swipes were counted in the laboratory and recorded in the database. Sampling of removable contamination was performed to confirm the assumption, used in derivation of the DCGLw, that the removable fraction measures less than 20% of the DCGLw³³.

3.4. MEASUREMENT LOCATIONS

- 3.4.1. Statistical Grid Data Points
 - 3.4.1.1. The Visual Sample Plan[©] (VSP)³⁴ software was used to develop a MARSSIM grid for all three survey units. The minimum number of

³³ Section 3.3 of the C-T Design Guide.

³⁴ NEXTEP Tech Memo 0008, Verification and Validation of Applicable Portions of VSP Software, A. H. Thatcher, CHP.

points required and their spacing were calculated in accordance with the statistical guidance given in MARSSIM Sections 5.5.2.2 and 5.5.2.5.

3.4.1.2. VSP uses the Data Quality Objective (DQO) input values to calculate the number of measurement points, N, required to satisfy MARSSIM statistical guidance. A summary of all the input parameters used with VSP for this Report is presented in Table 3.2.

DQO	Value
Type I error rate	5%
Type II error rate	5%
Width of Gray Region	$200 \text{ dpm}_{p}/100 \text{ cm}^{2}$
Level (ARG)	$2,600 \text{ dpm}_{p}/100 \text{ cm}^{2}$
Estimated Std Deviation	$200 \text{ dpm}_{p}/100 \text{ cm}^{2}$

Table 3.2VSP Inputs for Building 250 Interior

- 3.4.1.3. The minimum required number of grid measurements for all survey units was 24. The number 29 was used for survey planning to account for approximately 20% inaccessible or unusable locations.
- 3.4.1.4. A rectangular grid pattern was used for all three survey units. Grid spacing varied from room to room wherever FSSE data taken during previous surveys was used for the FSS. For all cases the spacing of old data points was less than that called for by VSP. The number of grid points actually recorded for each survey unit is presented in Table 3.3.

Survey Unit	Class	N (actual)
SU-2502	2	31
SU-2503	2	28
SU-2504	2	68

Table 3.3Grid Points Recorded by Survey Unit

3.4.2. Bias Measurement Locations

- 3.4.2.1. Bias direct measurements were taken at the discretion of the HP technician performing the survey.
- 3.4.2.2. Bias surveys were also taken at hot spot locations identified by scans as directed in the Hot Spot Protocol³⁵.

³⁵ CT-FI-004, ibid.

- 3.5. Reference Coordinate System
 - 3.5.1. A unified reference system was prescribed for the location of all data points taken on all building surfaces and on the surface of installed apparatus. A description of the reference coordinate system is provided below.
 - 3.5.2. A data point's unique location is specified by a combination of the following data elements: building, room, surface ID, X, and Y. The surface ID refers to the four walls, floor, ceiling and roof as shown in Table 3.4. X and Y are distances from the origin measured as shown in the table. An example of X and Y axes for floors and walls is presented in Appendix 2, Figure 3.1.

	Coorai	nule System Locators	
Location	Identifier	X	Y
North Wall	N	Fact sight from	Footum from floor
South Wall	S	leftmost adap of	reet up from floor
East Wall	E	the wall surface	or the lowest point
West Wall	W	ule wan surface	
Floor	F	Feet east from	East North of
Ceiling	C	western most	Feet North of
Roof	R	edge of the surface	soumerninost euge

 Table 3.4

 Coordinate System Locators

- 3.5.3. The surface ID for a roof applies only in the case when measurements are being made on the exterior surface of a building. In this unique case the "room" assigned has the special number "999".
- 3.5.4. Systematic grid data points which fell on external surfaces of installed apparatus were located with the primary coordinate system. The ID code of the apparatus was recorded in the remarks. For example: Let Q2 be identified as a large air conditioning unit located on the roof. Any systematic grid measurement points for the roof surface which landed on the air conditioner would have been identified using the X and Y coordinates from the southwest corner of the roof. "Q2 A/C unit" would be noted in the remarks. The surface ID would be "R".
- 3.5.5. All bias data points taken on installed apparatus were numbered and located on the drawings provided. This number was recorded as the X coordinate on the data sheet and amplifying information was entered in the remarks section.

3.6. DATA EVALUATION

3.6.1. All of the direct, swipe and scan data were entered into the C-T Radiation Database (RDB) for easy access and analysis. The direct beta measurements are the primary means for documenting the survey unit and justifying its release. Therefore, a special report was programmed to perform all the tests specified in Section 4.4.8 of the D Plan and to provide a clear report of the results for evaluation. The calculations in this report have been validated and verified as described in NEXTEP Tech Memo 0231³⁶.

- 3.6.2. The purpose of the screening software is to compare each direct beta reading taken in the survey unit with specified threshold levels, to apply the statistical tests called for in MARSSIM when appropriate, and to present the results in a clear and useful manner so that an analyst can accurately assess the action to be taken or declare that the survey unit meets the requirements for release.
- 3.6.3. Some of the screening tests apply to each record in the survey unit and failure of one data point results in failure of the survey unit. Other tests do not apply to each survey record but generate a single PASS/FAIL verdict for the entire data set. The tests are described in the following paragraphs³⁷. An abbreviated summary of these tests is presented in Table 3.5.
- 3.6.4. Background Screen.

1

3.6.4.1. For each MATRIX code in the database, calculate the mean background reading, its standard deviation, and its minimum value. Calculate and store the Background Threshold, T_{bk}, with its matrix code according to the following equation:

Equation 3

$$T_{bk}(m) = \overline{BK}(m) + 2 * \sigma_{bk}(m)$$

- 3.6.4.2. T_{bk} is equal to the mean of the background readings (\overline{BK}) for a given matrix plus two times its standard deviation (2 σ).
- 3.6.4.3. Compare each data point in the filtered survey unit with T_{bk} . If the survey reading > T_{bk} the data point fails the test. One data point failure implies failure of the background screen test for the survey unit.
- 3.6.5. Min/Max Test.
 - 3.6.5.1. Find the maximum direct survey result, in $dpm_p/100cm^2$, for the survey data set.
 - 3.6.5.2. Find the minimum background reading among all the background data points having MATRIX codes that match those in the data set.
 - 3.6.5.3. If the difference between these two values is greater than DCGLw the MIN/MAX test fails for the survey unit.

³⁶ NEXTEP Tech Memo 0231, Validation and Verification of the C-T Database Analysis Report, B. Anderson, (included with FSSR 2501).

³⁷ A more detailed explanation is provided in the Design Guide.

3.6.6. DCGLw Screen.

3.6.6.1. For each matrix code calculate and store a DCGLw Threshold (T_d). T_d is calculated by adding the value of DCGLw to T_{bk} .

Equation 4

$$T_d(m) = T_{bk}(m) + DCGLw$$

- 3.6.6.2. Compare each data point in the survey unit with T_d . If the survey reading > T_d the data point fails the test. One data point failure implies failure of the DCGLw screen test for the survey unit.
- 3.6.7. EMC Screen.
 - 3.6.7.1. For each matrix code calculate and store an EMC Threshold (T_e). T_e is calculated by adding the value of EMC to T_{bk} . The EMC value selected is normally dependent upon the area involved. However, if no specific area was known, the EMC was normally set to the a priori DCGL_{EMC}.

Equation 5

$$T_{e}(m) = T_{bk}(m) + EMC$$

- 3.6.7.2. Compare each data point in the filtered survey unit with T_e . If the survey reading > T_e the data point fails the test. One data point failure implies failure of the EMC test for the survey unit.
- 3.6.8. DCGL Average Test.
 - 3.6.8.1. For each matrix material in the survey unit, calculate the mean activity density, (in $dpm_p/100cm^2$), in the survey data set. Subtract from this value, the mean value of background activity for the same matrix. If the remainder is greater than DCGLw for any matrix in the survey unit, the test fails.

Equation 6

$$\overline{AD}(m) - \overline{BK}(m) > DCGLw$$

3.6.9. Statistical Tests.

- 3.6.9.1. The statistical tests prescribed by MARSSIM operate only on the data points of MEASUREMENT TYPE = RG (Regular Grid). The program narrows the filter to include only these points before proceeding.
- 3.6.9.2. The Wilcoxon Rank Sum Test³⁸ is applicable for survey units with measurements on a single matrix type or on matrices with similar

³⁸ Described in Appendix I of MARSSIM.

background characteristics. Where more than one matrix was present, the Sign Test for Paired Data³⁹ was used.

Table 3.5Threshold Screening Tests

Test	Test Criteria for PASS
Min/Max	Difference between minimum background measurement and
	maximum survey value less than DCGLw
Background	All samples must be less than the background threshold ^a
DCGLw	All samples must be no more than $DCGL_w$ + the background
	threshold
DCGLavg	The average of all net survey values must be less than
	DCGL _w
EMC	All samples must be less than DCGL _{EMC} + the background
	threshold
Sign Test	The Sign Test for Paired Data is described in detail in
for Paired	NUREG 1505 ⁴⁰
Data	
Wilcoxon	This statistical test is described in detail in MARSSIM,
Rank Sum	Appendix I.
Test	

^a The background threshold is equal to the mean background value plus twice σ_{BK} .

- 3.6.10. The output of the Threshold Comparison Test Report (TCTR) was used for analysis of the data for the interior of Building 250 and the results are presented in Appendix 4. The TCTR is divided into eight sections which are briefly described in the following paragraphs to assist the unfamiliar reader.
 - 3.6.10.1. General: date, survey unit number, class, and grid information.
 - 3.6.10.2. <u>Survey Unit Table</u>: building surface included, affected fixed apparatus, and total surface area of the survey unit.
 - 3.6.10.3. <u>Initialization Data</u>: On startup of the analysis report program, the analyst must tell the program which parameters to use while running the tests described in this section. The *Initialization Data* section of the report output displays the options that were chosen for the run. The measurement types listed are those chosen by the analyst to be included in the report. The date range chosen is also listed. The default value is "All Dates". If remediated data points are included in the run, it will be noted in this section. Normally they will be excluded.

³⁹ Described in NEXTEP Tech Memo 0231, Ibid.

⁴⁰ NUREG 1505, A Nonparametric Statistical Methodology for the Design and Analysis of Final Status Decommissioning Surveys.

Mallinckrodt C-T Project-Phase I Final Status Survey Report Building 250 Interior

- 3.6.10.4. Values for DCGLw (ARG) and DCGL_{EMC} are also specified at the start of the run and are listed in this section. Normally, the values for DCGLw and DCGL_{EMC} are initialized to 2,600 and 13,000 dpm_p/100cm² respectively. If, however, measurements within the survey unit exceeded the ARG value of 2,600 dpm_p/100cm², the DCGLw initialization value was increased as necessary up to 13,000 dpm_p/100cm², the actual limit stipulated in the D Plan.
- 3.6.10.5. <u>Survey Unit Test Status</u>: Lists Pass/Fail status of all tests and gives a high level summary of key activity levels in the survey unit.
- 3.6.10.6. Points that failed tests: Lists all points that failed each specified threshold test (EMC, DCGL, and Background).
- 3.6.10.7. <u>Points that passed all the tests</u>: This includes the remainder of all the points in the data set. These data points have passed all the tests.
- 3.6.10.8. <u>Summary of background data</u> used in the calculations. This table includes the matrix materials included in the survey and the thresholds calculated for each of the tests discussed in this section.
- 3.6.10.9. <u>Statistical Test Results</u>: This page lists the results of the Sign Test for Paired Data or the Wilcoxon Rank Sum test, whichever is selected. If the Test Status line reads Pass then the survey unit passes the Sign Test for Paired Data. The Data Summary section lists the number of background points and the number of survey points used from the data set. If the operator selects the option to show all data, a table of all data points used in the test is printed out.
- 3.6.11. Provided all additional considerations such as scan data, swipes, sampling of removable contamination or sludge from traps, etc. indicate that the survey unit meet the release criteria, the release of the survey unit can be determined from the test report according to Table 3.6.

	1		
Test	Class 1	Class 2	Class 3
Min/Max	not required [®]	not required*	PASS
Background	not required	not required	PASS
DCGL	not required	PASS	PASS
DCGL _{avg}	PASS	PASS	PASS
EMC	PASS	PASS	PASS
Sign Test for Paired Data	PASS	PASS	PASS

Table 3.6
Requirements for SU Release ⁴¹

^a Class 1 or 2 survey units which pass Min/Max may be released without further consideration.

⁴¹ See MARSSIM, Chapter 8, Table 8.2

4. FSS RESULTS AND DISCUSSION

4.1. CHARACTERIZATION DATA

- 4.1.1. Characterization data taken in these survey units from 1992 to 1996 with an HP-210 instrument cannot be normalized to the AB-100 calibration standards and therefore are not included in the data set.
- 4.1.2. Data were taken in 9 rooms from 1995-1999 with an AB-100, and those data are included in the data set. In rooms where the original surface has since been covered with new vinyl tile, drywall, or carpet, survey measurements were taken from these data. All measurements included from characterization that were not counted as grid measurements were treated as bias measurements.
- 4.2. SURVEY UNIT 2502
 - 4.2.1. Direct Beta Measurements on Building Surfaces
 - 4.2.1.1. SU-2502 was surveyed in January 1995, April and July 2003. Sixty-nine direct beta measurements were taken on the floor and wall surfaces. 31 of these were included in the systematic grid. Diagrams of the room layouts of the walls and floor with the beta measurements taken are presented in Appendix 2, Figures 4.1 4.2.
 - 4.2.1.2. A summary of the direct measurement results is presented in Table 4.1 and shows that the maximum activity measured, net of background, was $526 \text{ dpm}_p/100 \text{ cm}^2$. The average value for the survey unit was $150 \text{ dpm}_p/100 \text{ cm}^2$.

(Danumg Darjuces)			
Matrix Points Avg		Avg Net Activity*	Max Net Activity
		(dpm _p /100cm ²)	(dpm _p /100cm ²)
Brick	6	177.4	353.7
Concrete	17	8.0	278.2
Concrete Block	33	224.7	526.2
Fiberglass	1	260.4	260.4
Metal	1	-15.3	-15.3
Other Non Metal	6	224.3	311.6
Plastic	1	-175.4	-175.4
Vinyl Tile	4	76.7	92.2

Table 4.1
SU-2502 Direct Measurements Summary
(Building Surfaces)

^a Dpm_p refers to disintegrations per minute of the parent nuclide series.

4.2.2. Direct Beta Measurements on Installed Apparatus

4.2.2.1. All items of installed apparatus assigned to SU-2502 (listed in Appendix 1) were surveyed by direct beta measurements. A summary of

the measurements taken is provided in Table 4.2 sorted by matrix. The net values observed ranged from -175 to 139 $dpm_p/100cm^2$. All values were less than 6% of the ARG.

Table 4.2
SU-2502 Direct Measurements Summary
(Installed Apparatus)

Matrix	Points	Avg Net Activity (dpmp/100cm ²)	Max Net Activity (dpmp/100cm ²)
Asbestos Tile	4	95.3	139.1
Celotex Ceiling Tile	2	12.1	127.7
Counter Top – Lab	20	-75.2	62.6
Fiberglass	1	31.0	31.0
Glass	7	22.5	58.0
Metal	55	3.3	117.6
Other Non Metal	2	68.7	104.7
Plastic	2	39.7	62.3

4.2.3. Direct Beta Measurement Distribution and Threshold Tests

4.2.3.1. A histogram of all the beta direct net activity values found in SU-2502 is provided in Figure 4.1. The distribution appears to have two modes, one at background and the other centered about 250 dpm_p/100cm². This is consistent with a normal distribution of background radioactivity with some residual radioactivity. All measurements were well below the ARG.

Figure 4.1

Mallinckrodt C-T Project-Phase I Final Status Survey Report Building 250 Interior 4.2.3.2. All the direct measurements in the survey unit were analyzed using the Threshold Comparison Test Report (TCTR) and the results are presented in Appendix 4 for SU-2502. The TCTR report contains a complete listing of all the beta direct measurements taken in the Final Status Survey within SU-2502 sorted by room, surface, and activity. The summary pages indicate that all tests described in the D Plan passed except for the background test. All tests required for release of a Class 2 survey unit were passed. A comparison of test results and requirements for release of the survey unit is presented in Table 4.3.

Test	Class 2	SU-2502
Min/Max	PASS	PASS
Background	PASS	FAIL
DCGLw	PASS	PASS
DCGLavg	PASS	PASS
EMC	PASS	PASS
Sign Test for Paired Data	PASS	PASS

Table 4.3
Requirements for SU Release ^a

^a Class 1 or 2 survey units which pass Min/Max may be released without further consideration.

4.2.4. Measurements of removable contamination

4.2.4.1. Swipes were taken at each location where a direct grid measurement was performed and on some fixed equipment. The results of the measurements are presented in Table 4.4.

Surface	Points	Avg Net Beta (βpm/100cm ²)	Max Net Beta (βpm/100cm ²)	Avg Net Activity ^a (dpm _p /100cm ²)	Max Net Activity (dpm _p /100cm ²)
N	5	9.2	29.0	1.9	6.0
Е	6	5.0	21.0	1.0	4.4
S	9 ⁻	-1.2	18.0	-0.3	3.8
W	5	12.8	20.0	2.7	4.2
F	8	-4.1	12.0	-0.9	2.5
Q2	2	15.5	17.0	3.2	3.5
Q3	2	4.5	6.0	0.9	1.3
Q9	2	-6.0	-6.0	-1.3	-1.3
Q10	2	-1.0	6.0	-0.2	1.3
Q12	18	7.6	36.0	1.6	7.5

Table 4.4SU-2502 Removable Contamination Summary

^a Activity was converted to $dpm_p/100 \text{ cm}^2$ from $\beta pm/100 \text{ cm}^2$ using an approximate figure of 4.8 betas per disintegration.

4.2.4.2. The results show that removable contamination averages near zero $dpm_p/100cm^2$ and varies between -3.5 and +7.5 $dpm_p/100cm^2$. The data confirm that virtually no removable contamination is present within SU-2502.

4.2.5. Beta Scan Measurements

- 4.2.5.1. Beta scans were performed on about 15% of the surfaces of the walls and floor. Diagrams of the areas surveyed are presented in Appendix 2, Figures 4.9 through 4.13.
- 4.2.5.2. The scan threshold used for these surveys was 2,000 cpm (net of background) which corresponds to the ARG of 2,600 dpm_p/100cm². The calculation of threshold count rate and MDC for scans is presented in NEXTEP Tech Memo 0230^{42} .
- 4.2.5.3. All scans performed on the wall and floor surfaces were taken on concrete, concrete block, and vinyl tile. The average background value used for analysis of the concrete and concrete block raw data was obtained from the open window, direct beta readings (in cpm) taken in the survey unit. This value was 244 cpm for concrete and 301 cpm for concrete block. The average background value used for analysis of the vinyl tile raw data was obtained from the open window, direct beta readings (in cpm) taken in the background value used for analysis of the vinyl tile raw data was obtained from the open window, direct beta readings (in cpm) taken in the background data set. This value was 161 cpm. The average of all open window survey readings taken on concrete and concrete block in the background data set were 331 cpm and 412 cpm respectively. The average of all open window, direct survey readings taken on vinyl tile in the survey unit was 262 cpm.
- 4.2.5.4. During the surveys the maximum and average gross count rates were recorded for each area scanned. The beta scan data are summarized for SU-2502 and presented in Table 4.5.

Matrix	Areas	Maximum (cpm)	Average (cpm)	Max Net (cpm)	Avg Net (cpm)
Concrete	9	350	239	19	-92
Concrete Block	6	400	300	-12	-112
Vinyl Tile	5	300	170	139	9

 Table 4.5
 SU-2502 Scan Measurements Summary

4.2.5.5. The maximum net scan value of 139 cpm is well below the scan threshold of 2000 cpm. No beta scan data were observed in SU-2502 above the scan threshold.

⁴² NEXTEP Tech Memo 0230, Ibid.

4.3. SURVEY UNIT 2503

- 4.3.1. Direct Beta Measurements on Building Surfaces
 - 4.3.1.1. SU-2503 was surveyed in February 1996, December 1999 and July 2003. One hundred and thirty-nine direct beta measurements were taken on the floor and wall surfaces. 28 of these were included in the systematic grid. Diagrams of the room layouts (walls and floor) with the beta measurements taken are presented in Appendix 2, Figure 4.3.
 - 4.3.1.2. A summary of the direct measurement results is presented in Table 4.6 and shows that the maximum activity measured, net of background, was 1054 dpm_p/100cm². The average value for the survey unit was 299 dpm_p/100cm². ⁴³

Matrix	Points	Avg Net Activity ^a	Max Net Activity
		$(dpm_p/100cm^2)$	(dpm _p /100cm ²)
Asbestos Tile	1	201.8	201.8
Ceramic Tile	1	-43.4	-43.4
Concrete	24	81.3	992.7
Concrete Block	86	447.2	1053.9
Counter Top - Lab	1	185.2	185.2
Metal	10	-29.9	77.8
Plastic	3	118.7	209.8
Vinyl Tile	13	51.6	102.8

 Table 4.6

 SU-2503 Direct Measurements Summary

^a Dpm_p refers to disintegrations per minute of the parent nuclide series.

4.3.2. Direct Beta Measurements on Installed Apparatus

- 4.3.2.1. All items of installed apparatus assigned to SU-2503 (listed in Appendix 1) were surveyed by direct beta measurements. A summary of the measurements taken is provided in Table 4.7 sorted by matrix. All net values observed ranged from -221 to 3,473 dpm_p/100cm² and, except for one, were less than the ARG.
- 4.3.2.2. One elevated value was measured on the laboratory countertops in Room 201. The activity measured, 3,473 $dpm_p/100cm^2$, exceeded the ARG but is still less than a third of the DCGLw.

⁴³ Since all of the walls are coded for 3 coats of paint, the characterization data points have been biased high because they were taken before some (or all) of the paint layers were applied and have been amplified by the paint attenuation factor (PAF) in equation 2.

Matrix	Matrix Points Avg Net Activity (dpmp/100cm ²)		Max Net Activity (dpmp/100cm ²)
Asbestos Tile	2	70.4	126.0
Celotex	2	0.4	56.8
Counter Top	15	148.6	3472.9
Glass	4	-1.3	38.7
Metal	9	-19.1	-3.4

Table 4.7SU-2503 Fixed Equipment Direct Measurements Summary

4.3.3. Direct Beta Measurement Distribution and Threshold Tests

4.3.3.1. A histogram of all the beta direct net activity values found in SU-2503 is provided in Figure 4.2. The distribution appears to have two modes with the majority of the data centered at approximately $0 \text{ dpm}_p/100 \text{cm}^2$ and $450 \text{ dpm}_p/100 \text{cm}^2$. This is consistent with a normal distribution of background radioactivity and low levels of residual radioactivity. The single elevated measurement on the countertop in Room 201 appears far to the right of the rest of the data. All measurements were below the DCGLw.

4.3.3.2. All the direct measurements in the survey unit were analyzed using the Threshold Comparison Test Report (TCTR) and the results are presented in Appendix 4 for SU-2503. Since a measurement in this survey unit exceed the ARG, the TCTR limits for SU-2503 were initialized at 5,000 and 13,000 dpm_p/100cm² instead of the normal values as described in paragraph 3.6.10.4. The TCTR report contains a complete listing of all the beta direct measurements taken in the Final Status Survey within SU-2503 sorted by room, surface, and activity. The summary pages indicate that all tests described in the D Plan passed except for the background test. All tests required for release of a Class 2 survey unit were passed. A comparison of test results and requirements for release of the survey unit is presented in Table 4.8.

Test	Class 2	SU-2503
Min/Max	Not required	PASS
Background	Not required	FAIL
DCGLw	PASS	PASS
DCGLavg	PASS	PASS
EMC	PASS	PASS
Sign Test for Paired Data	PASS	PASS

Table 4.8						
Requirements_	for SU Release ^a					

^a Class 1 or 2 survey units which pass Min/Max may be released without further consideration.

4.3.4. Measurements of removable contamination

4.3.4.1. Swipes were taken at each location where a direct grid measurement was performed and on some fixed equipment. The results of the measurements are presented in Table 4.9.

Surface	Points	Avg Net Beta	Beta Max Net Beta Avg Net Activity		Max Net Activity
		(βpm/100cm ²)	(βpm/100cm ²)	(dpm _p /100cm ²)	(dpmp/100cm ²)
N	3	9.3	17.0	1.9	3.5
Е	7	-9.3	19.0	-1.9	4.0
S	3	11.3	20.0	2.4	4.2
W	8	-12.9	3.0	-2.7	0.6
F	9	7.8	28.0	1.6	5.8
Q2	3	-4.7	0.0	-1.0	0.0
Q7	4	5.5	25.0	1.1	5.2
Q9	5	0.0	25.0	0.0	5.2

 Table 4.9

 SU-2503 Removable Contamination Summary

^a Activity was converted to $dpm_p/100 \text{ cm}^2$ from $\beta pm/100 \text{ cm}^2$ using an approximate figure of 4.8 betas per disintegration.

4.3.4.2. The results show that removable contamination averages near zero $dpm_p/100cm^2$ and varied between -7.5 and +5.8 $dpm_p/100cm^2$. The data confirm that virtually no removable contamination is present within SU-2503.

4.3.5. Beta Scan Measurements

- 4.3.5.1. Beta scans were performed on about 15% of the surfaces of the walls and floor. Scans were also performed on the casework in the survey unit. Diagrams of the areas surveyed are presented in Appendix 2, Figures 4.14 and 4.15.
- 4.3.5.2. The scan threshold used for these surveys was 2,000 cpm (net of background) which corresponds to the ARG of 2,600 dpm_p/100cm^{2.44}
- 4.3.5.3. All scans performed on the wall and floor surfaces were taken on concrete, concrete block, and vinyl tile. The scans performed on the casework were performed on counter top and metal. Background values for beta scans were calculated from the open window measurements in either the survey unit or the background data set for each matrix. The averages of these open window measurements are presented in Table 4.10. The lower of the two averages was used in each case when calculating net scan values.

Matrix	Survey Unit Data Set (cpm)	Background Data Set (cpm)	
С	378	331*	
CB	373*	412	
VT	286	161*	
СТ	379*	706	
М	238	167*	

Table 4.10Beta Scan Background Data(Open Window Averages)

*Background count rate used for calculation of net scan readings.

4.3.5.4. During the surveys the maximum and average gross count rates were recorded for each area scanned. Net scan values were obtained by subtracting the background count rate obtained from Table 4.10 for each matrix. The beta scan data are summarized for SU-2503 and presented in Table 4.11.

⁴⁴ NEXTEP Tech Memo 0230, Ibid.

Matrix	Areas	Maximum (cpm)	Average (cpm)	Max Net (cpm)	Avg Net (cpm)
Concrete	1	850	700.0	518.8	368.8
Concrete Block	1	175	150.0	-236.8	-261.8
Counter Top – Lab (Bldg 250)	1	2000	1000.0	1293.7	293.7
Metal	2	125	100.0	-42.2	-67.2
Vinyl Tile	2	250	150.0	89.4	-10.6

 Table 4.11

 SU-2503 Scan Measurements Summary

4.3.5.5. The maximum net scan value of 1,294 cpm is below the scan threshold of 2,000 cpm. No beta scan data were observed in SU-2503 above the scan threshold.

4.4. SURVEY UNIT 2504

- 4.4.1. The original floor of rooms 101C, 103AB, 110, 115, 127, 139, and 140 have been covered with carpet or vinyl tile since CT operations ceased. Therefore, beta detection methods are not adequate to characterize these portions of the survey unit and gamma methods were employed instead for scan measurements and to focus on elevated areas. The characterization data adequately covered the grid requirements, so the only direct measurements taken on the floor of these rooms, were bias measurements.
- 4.4.2. Direct Beta Measurements on Building Surfaces
 - 4.4.2.1. SU-2504 was surveyed in February and March 1995, July 1996, August 2003, and November 2003. Two hundred and seventy direct beta measurements were taken on the floor and wall surfaces. 68 of these were included in the systematic grid. Five bias measurements were taken in response to the elevated gamma scan reading described in paragraph 4.4.3. Diagrams of the room layouts (walls and floor) with the beta measurements taken are presented in Appendix 2, Figures 4.4 through 4.8.
 - 4.4.2.2. A summary of the direct beta measurement results is presented in Table 4.12 and shows that the maximum activity measured, net of background, was 811 dpm_p/100cm². The average value for the survey unit was 12 dpm_p/100cm².

Matrix	Points	Avg Net Activity (dpm _p /100cm ²)	Max Net Activity (dpmp/100cm ²)	
Concrete	5	-0.3	31.1	
Concrete Block	115	27.8	810.8	
Gypsum Board	32	18.7	66.6	
Metal	23	-24.7	67.9	
Other Non Metal	2	-8.2	27.8	
Rubber Base	19	10.9	43.1	
Vinyl Tile	74	-4.2	27.6	

Table 4.12
SU-2504 Direct Measurements Summary
Building Surfaces

4.4.3. Direct Gamma Measurements on Building Surfaces

- 4.4.3.1. Gamma direct measurements were taken to augment the data set of beta points and to confirm the scan results. The NaI readings were converted to $dpm_p/100cm^2$ using conversion factors calculated for carpet and vinyl tile overlaying the contamination as described in Table 2.6.
- 4.4.3.2. Eight direct gamma measurements were collected from the floor of Room 115. Five of these were to confirm an elevated gamma scan reading which was obtained over the carpeted portion of the floor. Figure 4.5 of Appendix 2 shows the layout of both gamma and beta confirmation samples, The insert in the figure shows a close- up of the offsets along with the values for both sets of readings. Although the maximum gamma count rate translated to a maximum value of 8,001 dpm_p/100cm², confirmation by beta measurement after removal of the carpet revealed that the elevated spot measured approximately 67 dpm_p/100cm² and was less than about one foot in diameter. The beta result is considered to be the most accurate and applicable reading for purposes of the FSS. However, both readings were substantially less than the DCGL_w.
- 4.4.3.3. A summary of the gamma direct measurement results for SU-2504 is presented in Table 4.13 and shows that the maximum activity measured, net of background, was $8,001 \text{ dpm}_p/100 \text{cm}^2$. The average for the survey unit was $1,672 \text{ dpm}_p/100 \text{cm}^2$. All the direct gamma measurements in the survey unit were less than the DCGLw.

Matrix	Points	Avg Net Activity ^a (dpm _p /100cm ²)	Max Net Activity (dpm _o /100cm ²)
Carpet	5	1787	8001
Vinyl Tile	3	1480	1923

Table 4.13SU-2504 Direct Gamma Measurements Summary
Building Surfaces

^a Dpm_p refers to disintegrations per minute of the parent nuclide series.

4.4.4. Direct Beta Measurements on Installed Apparatus

4.4.4.1. All 17 items of installed apparatus assigned to SU-2504 (listed in Appendix 1) were surveyed by direct beta measurements. The CT lead well in Room 127 had been previously removed and disposed of and was therefore not surveyed. A summary of the measurements taken on the installed apparatus is provided in Table 4.14 sorted by matrix. The net values observed ranged from -45 to 89 dpm_p/100cm². All values were less than 4% of the ARG.

Table 4.14SU-2504 Direct Measurements SummaryInstalled Apparatus

Matrix	Points	Avg Net Activity (dpmp/100cm ²)	Max Net Activity (dpmp/100cm ²)
Metal	25	-1.9	88.7

4.4.5. Direct Beta Measurement Distribution and Threshold Tests

4.4.5.1. A histogram of all the beta direct net activity values found in SU-2504 is provided in Figure 4.3. The distribution appears to have a single mode, with small amounts of residual activity out to a maximum of 811 dpm_p/100 cm². This is consistent with a normal distribution of background radioactivity with some residual activity above background. All measurements were below the ARG.

Histogram of Net Direct Beta Measurements Figure 4.3

4.4.5.2. All the direct beta measurements in the survey unit were analyzed using the Threshold Comparison Test Report (TCTR) and the results are presented in Appendix 4 for SU-2504. The TCTR report contains a complete listing of all the beta direct measurements taken in the Final Status Survey within SU-2504 sorted by room, surface, and activity. The summary pages indicate that all tests described in the D Plan passed except for the background test. All tests required for release of a Class 2 survey unit were passed. A comparison of test results and requirements for release of the survey unit is presented in Table 4.15.
Test	Class 2	SU-2504
Min/Max	Not required	PASS
Background	Not required	FAIL
DCGLw	PASS	PASS
DCGLavg	PASS	PASS
EMC	PASS	PASS
Sign Test for Paired Data	PASS	PASS

Table 4.15
Requirements for SU Release ^a

^a Class 1 or 2 survey units which pass Min/Max may be released without further consideration.

4.4.6. Measurements of Removable Contamination

4.4.6.1. Swipes were taken at all of the locations where a direct grid measurement was performed on the walls. Swipes were also taken at locations determined by the surveyor on the floor. The results of these measurements are presented in Table 4.16. The results show that removable contamination in SU-2504 averages near zero and ranges between -5 and +12 dpm_p/100cm². No significant removable contamination is present in SU-2504.

Table 4.16	
SU-2504 Removable Contamination	Summary

Surface	Points	Avg Net Beta	Max Net Beta	Avg Net Activity ⁴	Max Net Activity
		(βpm/100cm ²)	(βpm/100cm ²)	(dpmp/100cm ²)	(dpm _p /100cm ²)
N	8	4.9	33.0	1.0	6.9
Е	7	14.6	31.0	3.0	6.5
S	8	6.8	25.0	1.4	5.2
W	6	12.0	19.0	2.5	4.0
F	12	21.4	59.0	4.5	12.3

^aActivity was converted to $dpm_p/100 \text{ cm}^2$ from $\beta pm/100 \text{ cm}^2$ using an approximate figure of 4.8 betas per disintegration.

4.4.7. Beta Scan Measurements

- 4.4.7.1. Beta scans were performed on about 15% of the accessible surfaces in all rooms except 103AB and 115. Some beta scans were also performed under the carpet of room 115. Diagrams of the areas surveyed are presented in Appendix 2, Figures 4.16 through 4.26.
- 4.4.7.2. The scan threshold used for these surveys was 2,000 cpm (net of background) which corresponds to the ARG of 2,600 dpm_p/100cm². The calculation of threshold count rate and MDC for scans is presented in NEXTEP Tech Memo 0230^{45} .

⁴⁵ NEXTEP Tech Memo 0230, Ibid.

4.4.7.3. All scans performed on the wall and floor surfaces were taken on brick, concrete, concrete block, and vinyl tile. Background values for beta scans were calculated from the open window measurements in either the survey unit or the background data set for each matrix. The averages of these open window measurements are presented in Table 4.17. The lower of the two averages was used in each case when calculating net scan values.

	-	
Matrix	Survey Unit Data Set (cpm)	Background Data Set (cpm)
В	314*	552
С	244*	331
СВ	301*	412
VT	262	161*

	Table 4.17
Beta Sco	in Background Data
(Open	Window Averages)

* used for beta scan background

4.4.7.4. During the surveys the maximum and average gross count rates were recorded for each area scanned. The beta scan data are summarized for SU-2504 and presented in Table 4.18.

				-	
Matrix	Areas	Maximum (cpm)	Average (cpm)	Max Net (cpm)	Avg Net (cpm)
Brick	1	300	250	-252	-302
Concrete	8	270	172	-61	-159
Concrete Block	11	275	180	-137	-232
Vinyl Tile	2	230	165	69	4

Table 4.18SU-2504 Beta Scan Measurements Summary

4.4.7.5. The maximum net scan value of 69 cpm is well below the scan threshold of 2000 cpm. No beta scan data were observed in SU-2504 above the scan threshold.

4.4.8. Gamma Scan Measurements

- 4.4.8.1. Gamma scans were performed on portions of rooms 101C, 103AB, 110, 115, 127, 139, and 140. Diagrams of the areas surveyed are presented in Appendix 2, Figures 4.16 4.26.
- 4.4.8.2. The scan thresholds used for these surveys are presented in Table 2.7. They correspond to the DCGLw of 13,000 dpm_p/100cm² using conversion factors derived in NEXTEP Tech Memo 0317 and the threshold equation from NEXTEP Tech Memo 0230.⁴⁶
- 4.4.8.3. The average background value used for analysis of the raw data was the average ambient background described in section 2.3.
- 4.4.8.4. During the surveys the maximum and average gross count rates were recorded for each area scanned. The gamma scan data for SU-2504 are summarized and presented in Table 4.19.

Matrix	Points	Maximum* (cpm)	Average* (cpm)	Max Net (cpm)	Avg Net (cpm)
Carpet	2	14,000	7,000	7,300	300
Concrete	2	8,000	7,000	1,300	300
Vinyl Tile	4	8,000	6,500	1,300	-200

 Table 4.19
 SU-2504 Gamma Scan Measurements Summary

* Gross readings

- 4.4.8.5. One scan measurement was elevated considerably above the others and came close to the gamma scan threshold. This elevated measurement was examined and resolved by beta and gamma direct measurements as described in paragraph 4.4.3.2.
- 4.4.8.6. No net gamma scans were above the gamma scan threshold equivalent to the DCGLw.

5. CONCLUSIONS

5.1. SU-2502

- 5.1.1. SU-2502 passed all the tests described in the D Plan except background. (Par. 4.2.3.2)
- 5.1.2. No residual radioactivity was measured above 6% of the ARG on the items of installed apparatus in SU-2502. (Par. 4.2.2.1)

⁴⁶ ibid.

Mallinckrodt C-T Project–Phase I Final Status Survey Report Building 250 Interior

- 5.1.3. Virtually no removable contamination is present within SU-2502. (Par. 4.2.4.2)
- 5.1.4. No beta scan data were observed in SU-2502 above the scan threshold of 2,000 cpm. (Par. 4.2.5.5)
- 5.1.5. SU-2502 meets all the requirements of the D Plan for unconditional release.
- 5.2. SU-2503
 - 5.2.1. SU-2503 passed all the tests described in the D Plan except background. (Par. 4.3.3.2)
 - 5.2.2. All direct beta measurements in SU-2503 were below the ARG except one. The one elevated location on a lab countertop was less than one third of the DCGL_w. (Par. 4.3.2.1 and 4.3.2.2)
 - 5.2.3. Virtually no removable contamination is present within SU-2503. (Par. 4.3.4.2)
 - 5.2.4. No beta scan data were observed in SU-2503 above the scan threshold of 2,000 cpm. (Par. 4.3.5.5)
 - 5.2.5. SU-2503 meets all the requirements of the D Plan for unconditional release.

5.3. SU-2504

- 5.3.1. SU-2504 passed all the tests described in the D Plan except background. (Par. 4.4.3.4)
- 5.3.2. No residual radioactivity was measured above 1% of the $DCGL_{W}$ (Par. 4.4.4.1)
- 5.3.3. No significant removable contamination is present within SU-2504. (Par. 4.4.5.1)
- 5.3.4. No beta scan data were observed in SU-2504 above the scan threshold of 2,000 cpm. (Par. 4.4.7.5)
- 5.3.5. No gamma scans were above the DCGLw threshold. (Par. 4.4.8.5)
- 5.3.6. SU-2504 meets all the requirements of the D Plan for unconditional release.

6. **Recommendations**

6.1. Survey Units 2502, 2503, and 2504 should be released from the license.

Appendix 1 Building Survey Unit Listing for Building 250 Interior

	SurfaceC	ode Xmax	Ymax	Area (sq.ft.)	Paint (Coats)	Description
SurveyUni	<i>dID:</i> 250	02				Class: 2
Room 205						
	F	15.8	8 8.7	138	0.0	
	N	15.8	[.] 10	158	2.0	
	S	15.8	3 10	158	2.0	
	Е	8.7	/ 10	87	2.0	· · ·
	w	8.7	/ 10	87	2.0	
	Q1				0.0	Ceiling light fixture, piping and ducting above drop ceiling
	Q2				0.0	sink and glass drain line
	Q3				0.0	sink counter
	Q4				0.0	Supply lines near floor
	Q5				0.0	Dishwasher
	Q 6				0.0	Ventilaton filter
Summary for	Room 205 (11 detail reco	rds)		62	8 Sq. Feet
Room 207						
	F	6.83	18.1	124	0.0	
	N	6.83	14	9 6	2.0	
	S	6.83	i 14	9 6	2.0	
	E	18.1	14	253	2.0	
	w	18.1	14	253	2.0	
	Q1				0.0	Ceiling light fixture, ducting, piping, horizontal support surfaces
	Q2				0.0	All cabinetry in room
	Q3				0.0	Light switch and piping, pipe along south wall
	Q4				0.0	Towel holder on North wall
	De e 007	(0 , 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,				

.

	SurfaceCode	Xmax Y	max	Area (sq.ft.)	Paint (Coats)	Description
Room 209						
	F	18.4	28	515	0.0	
	N	18.4	10	184	2.0	
	S	18.4	14	258	2.0	
	ε	28	10	280	2.0	
	w	28	10	280	2.0	
	Q1				0.0	Drop ceiling, sprinkler system
	Q2				0.0	E. Hood and ducting
	Q3				0.0	East sink and glass drain
	Q4				0.0	East counters
	Q5				0.0	SS cabinets on E and W wall, 1" conduit on S wall
	Q6				0.0	Island counters
	Q7				0.0	West counters
	Q8				0.0	West sink and glass drain lines
	Q9				0.0	W. Hood and ducting
	Q10				0.0	East and West glass lines
	Q11				0.0	Chalk board on Northern wall
					0.0	Manuum Line Enduree (11)

		SurfaceCode	Xmax	Ymax	Area (sq.ft.)	Paint (Coats)	Description
Room	210						
		F	40.35	26.33	1,062	0.0	
		N	40.35	14	565	1.0	
		S	40.35	14	565	1.0	
		E	26.33	14	369	1.0	
		w	26.33	14	369	1.0	
		Q1 ·				0.0	Ceiling lights and associated supports
		Q2				0.0	Vent chase (2) and electrical panel in NW corner of room
		Q3				0.0	Motor Housing North central location in room
		Q4				0.0	Tank North central location in room
		Q5				0.0	Compressor and electrical motor, North eastern portion of room
		Q6				0.0	Exhaust fan on ceiling
		Q7				0.0	Pressure tank North eastern portion of room
		Q8				0.0	Misc piping, North eastern portion of room
		Q9				0.0	Cooling filter, louvered vent, North eastern portion of room
		Q10				0.0	Misc. piping - extends from east wall south of blowout panel to several feet onto south wall
		Q11				0.0	Electrical panels (6) in South west corner of room
		Q12				0.0	MCC unit, Western side of room near wall
		Q13				0.0	Old chase to roof attached to new ductwork
Summa	arv for l	Room 210 (18 de	etail recoi	rds)		2,93	0 Sa. Feet

		SurfaceCode	Xmax	Ymax	Area (sq.ft.)	Paint (Coats)	Description
Room	211						
		F	20.33	28	569	0.0	
		N	20.33	10	203	2.0	
		S	20.33	· 14	285	2.0	
		E	28	10	280	2.0	
		w	28	10	280	2.0	
		Q1				0.0	Drop ceiling, lights, sprinklers, vent. Ducting
		Q2				0.0	Cylinder rack on Northern wall
		Q3				0.0	E. Hood and ducting
		Q4				0.0	Eastern sink and glass drain line
		Q5				0.0	Eastern counters
		Q6 .				0.0	Glass line on Eastern wall, vent pipe on southern wall
		Q7				0.0	island counter
		Q8				0.0	Western counters
		Q9				0.0	Western sink and glass drain line
		Q10				0.0	W. Hood and ducting
		Q11				0.0	Chalk board on northern wall
		Q12				0.0	Vacuum Line Fixtures (10)
Summa	arv for l	Room 211 (17 d	etail reco i	rds)		1.61	7 Sa. Feet

TOTAL for Survey Unit 2502

7,514 Sq. Feet

<u>.</u>	SurfaceCode	Xmax Yn	nax	Area (sq.ft.)	Paint (Coats)	Description
SurveyUnitII	D: 2503					Class: 2
Room 201						
	F	20	29	544	0.0	
	N	20	10	200	3.0	
•	S	20	14	280	3.0	
	E	29	10	290	3.0	
	w	29	14	406	3.0	
	Q1				0.0	ceiling light fixtures, sprinkler
	02				0.0	north fume hood duct work
	Q3				0.0	glass drain/vents, N, S, & W walls (3)
	Q4				0.0	Island casework & countertop
	Q5				0.0	West sink
	Q6				0.0	West casework
	Q7				0.0	South sink
•	Q8				0.0	South casework
	Q9				0.0	Vacuum line fixtures (11)
Summary for Ro	om 201 (14 d	etail records)		1,72	0 Sq. Feet

		SurfaceCode	Xmax	Ymax	Area (sq.ft.)	Paint (Coats)	Description
Room	202						
		F	20	26.5	560	0.0	
		N	20	14	280	3.0	
		S	20	10	200	• 3.0	
		E	26.5	10	280	3.0	
		w	26.5	14	392	3.0	
		Q1				0.0	Ceiling light fixture, sprinkler system, ventilation ducting (top)
		Q2				0.0	E. Sink
		Q3				0.0	E. Casework
		Q4				0.0	Center Casework
		Q5				0.0	W. Sink
		Q6				0.0	W. Casework
		Q7				0.0	Vacuum Line Fixtures (9)
Summary for Room 202 (12 detail records)						1,71	2 Sq. Feet

TOTAL for Survey Unit 2503

3,432 Sq. Feet

	Sur	faceCode	Xmax	Ymax	Area (sq.ft.)	Paint (Coats)	Description
Survej	UnitID:	2504					Class: 2
Room	101C						
		F	3.3	6.1	20	0.0	
		N	3.3	14	46	2.0	
		S	3.3	14	46	2.0	
		Е	6.1	14	85	2.0	
		w	6.1	10	61	2.0	
		Q1				0.0	Light and vent
		Q2				0.0	sink
Summa	nry for Room	n 101C (7 d	letail recoi	rds)		25	9 Sq. Feet
Room	103AB						
		F	21	13	273	0.0	
		S	21	12	252	0.0	
		W	13	12	156	0.0	
		Q1				0.0	Small equipment attached to ceiling
Summa	ny for Room	103AB (4	detail rec	ords)		68	1 Sq. Feet
Room	110						
		F	10	11	108	0.0	
		N	10	10	100	0.0	
		Q1				0.0	Small equipment attached to ceiling
		Q2				0.0	Fire sprinkler system
Summa	nry for Room	110 (4 dei	ail record	s)		20	8 Sg. Feet

•

		SurfaceCode	Xmax	Ymax	Area (sq.ft.)	Paint (Coats)	Description
Room	115						
		F	39	17	663	0.0	
		S	34	12	408	0.0	
		Q1				0.0	Small equipment attached to ceiling
		Q2				0.0	Fire sprinkler system
Summ	ary for	Room 115 (4 de	tail record	is)		1,07	1 Sq. Feet
Room	118						
		F	10.8	5.88	64	0.0	
		N	7.5	14	105	2.0	
		S	10.8	14	151	2.0	
		E	5.88	14	82	2.0	
		w	5.88	14	82	2.0	
		Q1				0.0	Heater
Summ	ary for	Room 118 (6 dei	tail record	ls)		48	4 Sq. Feet
Room	119						
		F	3.92	4.5	18	0.0	
		N	3.92	14	55	2.0	
		S	3.92	14	55	2.0	
		Е	4.5	14	63	2.0	
Summ	ary for	Room 119 (4 dei	tail record	ls)		19	0 Sq. Feet
Room	127		-				
		F	15.5	10	155	0.0	
		N	15.5	14	217	0.0	
		S	15.5	14	217	0.0	
		E	10	14	140	0.0	
		w	10	14	140	0.0	
		Q1				0.0	Small equipment attached to ceiling
Summa	ary for i	Room 127 (6 dei	ail record	ls)		86	9 Sq. Feet

Mallinckrodt C-T Project–Phase I Final Status Survey Report Building 250 Interior

		SurfaceCode	Xmax 2	Ymax	Area (sq.ft.)	Paint (Coats)	Description
Room	139						
		F	5.9	5.6	33	0.0	
		N	5.9	14	83	0.0	
		S	5.9	14	83	0.0	
		E	5.6	14	78	0.0	
		w	5.6	14	78	0.0	
		Q1				0.0	Small equipment attached to ceiling
		Q2				0.0	Fire sprinkler system
		Q3				0.0	Electrical trac - south and west walls
Summa	ary for	Room 139 (8 dei	tail records	s)		35	5 Sq. Feet
Room	140						
		F	4.3	10	43	0.0	
		N	4.3	14	60	0.0	
		S	4.3	14	60	0.0	
		E	10	14	140	0.0	
		w	10	14	140	0.0	
		Q1				0.0	Fire sprinkler system
		Q2				0.0	Small equipment attached to ceiling
Summa	ary for	Room 140 (7 dei	tail records	s)		44	3 Sq. Feet
Room	218						
		F	10.83	19.92	170	0.0	
		N .	10.83	28	220	2.0	
		S	10.83	28	162	2.0	
		E	19.92	28	375	2.0	
		w	19.92	28	315	2.0	
Summa	arv for l	Room 218 (5 dei	ail records	5)		1.24	2 Sg. Feet

		SurfaceCode	Xmax	Ymax	Area (sq.ft.)	Paint (Coats)	Description
Room 2	219						
		F	20.4	14	223	0.0	
		N	20.4	28	416	2.0	Entire north wall, both levels, minus Rm 119 contribution
		S	20.4	28	415	2.0	
		E	14	28	299	2.0	
		w	14	28	372	2.0	
		Q1				0.0	Heater
		Q2				0.0	Ladder - upper stairwell
		Q3				0.0	Lights (2)
Summary for Room 219 (8 detail records)						1,72	'5 Sq. Feet

7,527

Building Survey Unit Listing

TOTAL for Survey Unit 2504

Sq. Feet

Mallinckrodt C-T Project–Phase I Final Status Survey Report Building 250 Interior

APPENDIX 2 Figures

C01

C02

(

Room 205

Figure 2.8

.

Coordinate System

Revision: 0 March 2004 APPENDIX 2

C04

65

Revision: 0 March 2004 APPENDIX 2

C07

	•	
	•	
ect	Final Status	Survey
250 ure 4 /este Meas	Interior 7 m Stairwell surements	
	Date: 12/20/	2003
	Revision: 0	

.

1

Figure 4.9 *Beta Scans Room 205*

Figure 4.10 *Beta Scans Room 207*

Mallinckrodt C-T Project-Phase I Final Status Survey Report Building 250 Interior

Figure 4.11 *Beta Scans Room 209*

Figure 4.12 *Beta Scans Room 210*

Figure 4.13 Beta Scans Room 211

Figure 4.14 Beta Scans Room 201

Figure 4.15 Beta Scans Room 202

Figure 4.16 Beta and Gamma Scans Room 101C a,b: beta c: gamma

Figure 4.17 *Gamma Scans Room 103AB*

Figure 4.18 Beta and Gamma Scans Room 110 a: beta b: gamma

Figure 4.19 Gamma Scans Room 115

Figure 4.20 Beta and Gamma Scans Room 127 a,b: beta c: gamma

Figure 1-3

Figure 4.21 Beta and Gamma Scans Room 139 a,b: beta c: gamma

(

Figure 4.22 Beta and Gamma Scans Room 140 a: beta b: gamma

١.

Figure 4.26 Beta Scans Room 219

APPENDIX 3 Calibration Sheets

Туре	S/N	Cal Date	Sensitivity
	106729/A0281	1/5/1995	0.777
	131415/188704	6/17/2003	0.611
	163666/B426W	1/16/2003	0.774
	131410/188707	4/16/2003	0.450
	115126/B861N	1/18/1996	1.078
	126509/B859N	1/18/1996	1.031
Beta	131415/B426W	5/15/2002	1.073
	106729/B859N	1/6/1995	0.879
	117332/A0446	1/17/1995	0.735
	117332/A0447	1/17/1995	0.644
	117332/A0448	1/17/1995	0.697
	117362/B860N	1/18/1996 3/5/1996 10/20/1999	1.039 0.979 1.089
	138368/201774	11/4/2003	
Gamma	157020/020429-6	4/26/2003	
Swipe	179562	11/8/2002 7/22/2003	
	179577	2/26/2003	

*** * * * * *** Thermo Analytical

601 Scarboro Rd.					
Oak Ridge, TN 37830					
(615) 481-0683 Fax (6	15) 483-4621				
	-	ABP-	-100		
· .	•	A	3-3-7-	-	
•		CALIBRATI	IN DATA SHEE	I .	•
ABP-100					
	10781		Econacty of:	5 BERLINS	INST.
	1.02.			میں الارندان الی	
Readout Inst	.:∠ <u>uo zz∞</u>	_ SN: <u>106</u>	729 Cal.	Exp. Date: _	4-4-95
ACTA ACTINA Source	R SRY.90	SN: /2	39/92 Ad	tivity: 228	00 Den
	•			•	
Date of Cal.	10-3-9	4	ر ا		
EL ATEAU. *	CALIBRATTO G	J 35 MU I	2.5.		
CHICHU:	Source		Source		
High Valtage	(CFM) Hid	h Voltage	(CPM) E	Ackoround Ch	ech
CON ACT	BETA BKED	_1050 Zas	6717 181 1	lich Voltace	-11
650 APR	<u> </u>	1100 225	7123 219 0	lp. Voltaçæ −3	NA ST
·····	~		T1.83 214 -		1
790		1150 406		n. Antreče	
- 750		1200 355	<u>7382 339</u> C	b. Voltag∉ +5	54. <u> </u>
300	. 1164 12	1250	8116 4E3	NOTE: MYUAR	SHEET ADDED
	1.02 17		A917 0	TO ATTEN	ATE ALPHA
S20	XIIC 23	1300	7003 702	RESPONCE	L TO "O" ()"
900	4111 78	:350		CONTRIBUT	ion .
 0 = ^-	CU36 10-	1.300		ALPHA SOURCE	@ 7500 DPM
73V <u></u>	. 272 / 165	1400			Nor.
1000	6426 147	High Volt	age set at:	1100	volta
	_	-			
atticlency:		A Pos G	FORWARD C	NTR POS.	
5 Minute	e Gross Count	s: B Fos @	. RUAR	WTHE PSS.	
	Sec. 504. 34	1 7 2	F	ne "8": 3223	20
Average (A + B)/2t .33	471.0	Gro	SE CPM: 6696	2
Backgrou	nd: CFM:_2	95.Z	 N	et CPM: 6400	2. 0
-	1481				
		N	et CPM		
	Effic	iency =	× 10 DEM	v = <u></u> /	
• •		-		·	5.95
Data of Calib	ration: <u>/</u> ~	5-95	Expirat	ion Date:	<u> </u>
••••	Kanne	Magaine	K.	the Mindon	hn
Lailbrated by	: <u>/12///2/74</u>	nt Name		(Signature)	0
	D- n	ILV NACOMET		(3) gine (un e/	
	g.W. Noa	ne	Date	e: 1/5/95	
Reviewed by:					••
Reviewed by:					
Reviewed by: EA4.10					
Reviewed by: EA4.10 Rev: 1	•				

L2200/ABP-100 S/N: 106729/A0281 1/5/95

c	Ludlum 43 4 9 ALIERATION DATA SHEET	T	•
43-89 10-3-7 SN: 188704	Property of:	MALT	
Readout Inst.: 7241-2	SN: 131415	Cal.Exp.Date:	<u>-12-0</u> 4.
Bete Source: The Sr Y-90	SN: 2158/96	Activity:_/676	<u>20</u> DPM
Date of Cal.: 10-74-00			
PLATEAU:	S	ource	
High Voltage (CPM)	High Voltage (C	2PM)	Background Check
600 <u>N/A</u>	1050 <u>15</u> 850 <u>15</u>	<u>98</u>	High Voltage CPM
650	1400 <u>Z/</u> 1975	65	Op. Voltage -60 _1.21
700	1463 <u>Z6</u> 900	,31	Op. Voltage //69
750	1200 <u>37</u> 925	<u>151</u>	Op. Voltage +60 A39
800 1552	1250 36 950	.98	
850 <u>2771</u>	1000 <u>4</u> 2 775 <u>4</u> 2	<u>35</u>	
900 <u>3737</u>	1350		
950 <u>4542</u>	1400		
1000 5755	High Voltage set a	n: <u>700 khs</u> 975	5_volts
Efficiency:		140	
S Minute Gross Counts.	- Pos "B"-	· _ ·	Inin Ct. 3213
Average (A + B)/2:	Gross CPM:	\geq 1	min BLG 185
Sackground. CPM			· 3030 / 16700 2000
Efficiency =	DPM x 100 = <u>18.1</u>	% ·	18.1 %
Date of Calibration: 6-17-0	Expiration D	ate: 12-17-02	3
Calibrated by: Kandall h	Sells Land	ult HA	the second
Reviewed by: / Alan / Ala	Her Date: 6	110103	
=====	/]	. L	*
244.10 Rev: 2			Done 4 of 4
Jate: 25 Feb 99			E BUG T OF T
	L224-2	LA3-89	
	S/N: 1314	415/188704	
	6/1	7/03	

Mallinckrodt C-T Project–Phase I Final Status Survey Report Building 250 Interior

- - -

~

Revision: 0 March 2004 APPENDIX 3

٠

CALN100A

••

Thermo NUtech For Mallinekrodt Chemical, Inc

	M	N/			R ABP-1	DO ATA SHEE	ΞΥ	-		
43-89 ABP-100 SN:	188704	1	High vol'	TAGE 92	<u>5</u> v	PROPERT	Y OF: <u>N</u>	ALT		
READOUT IN	IST: <u>224</u>	1-2		SN: <u>/3/-</u>	915	CAL EXPIR	E DATE:	12-123	23	
ABP-100 EFF	ICIENCY T	0 SrY-90 O	N 47 mm D	ISK: <u>18.1</u>	_%	CAL DATE	6-17	-03	•	
· · · · · · · · · · · · · · · · · · ·	BACKG	RUNN	BR	SOUT	RCE	SR		ŞA	Efficiency	
SURFACE	OPEN	SHIELD	NET	OPEN	SHIELD	NET	Source	Source	SR-BR	
MATERIAL	Cls/2 min	Cts/2 min	СРМ	Cis/1 min	Cts/1 min	СРМ	#	Activity		
	20.	200	00	CAAC	IAI	10074	L-A	25900	18.2	
Lancere	376	300	00	13005		47/1-	1	6	18.1	i
			⊢ f──-	4443		14741			18.0	·
			┝━-╊	4121	210	1070			18.7	
				12112	104	In Jan		Average =	18.5	ļ
209 x /00	5 z 239	00			•			Std Dev =	0.3	
					•					
Ililand		10	0	4007	726	3761	M-2	17400		5 4
percent.	10	0	0	3676	216	3660		L	12.0	
}{			0	3971	211	3760	\square	<u></u>	12:02-	:
1				3897	200	36A7			21.0	į
174.4.4		<u> </u>						Average =	21.3	i i
/ / 4	0 2 7 7			:	·			\$id Dev ≈	0.4]
Monaile	10	0	0	3964	249	3715	m·z	17400	21.4	-
The second se			a	13809	101	3698			121.3	1
	10			13953	734	3619			180.8	-
				3946	198	3148			21.5	_ .
<u>`</u>							•	Averaça =	2.22	···.
				• ·				• Std Dev =		
(AL., tau		Ta		14362	274	4130	Im·z	17400	23.0	.
Harmina		18	10-	ARCA	1011	14186	TC		24.1	<u> </u>
	$+ \frac{\nu}{2}$			14200	257	4101	TT		123.6	<u> </u>
	12-		1.	ALGA	280	14160	T		123.9	1.
					1000			Averege -	= 23.4	
				I I				Std Dev =	-	~
DATE OF			7-19		EVOID	AN DATE	12-	17.03	-	
DATEOFU		バ: <u>_6-7</u> フ		1			de	11	7	~
CALIBRAT	ED BY: 🎵	andall	H. Se	115	Ra	Stanster	[4]-	y us	The st	
	Ľ.	Brink Noc	`` /				in ton			
REVIEWE	D BY: //	lan y	regely			61	18143			
0	Contant		U	•						
C	Contact	Geordel	·'4 '	1						1
•			1						5 - F	
				L224-2/T	43-89					
			¢/N	<u></u> , <u>_</u> , <u>_</u> J· 12141	5/18870	4				
			3/1	1, 13141. 6/14/	0/100/0 02	т				
				0/1//	03					

Mallinckrodt C-T Project-Phase I Final Status Survey Report Building 250 Interior

CT-RP-66 Chi Squared Test 06/24/2003 2241 Instrument Model # Date: 131415 Source Nuclide: SrY90 Instrument Serial# or-Probe Model # 43-89 Source Serial # 2178-96 Probe Serial # 188704 Source dpm (4x): 56039 Window Setting: Efficiency (cpm/dpm): 0.19 Background com: Threshold Setting: 135.2 BKGD N-1 High Voltage: 925 4 **BKGD Count Time (min):** 1 Gross Counts Count # (n) Observed Expected Background Counts 10358 10449 121 1 2 10405 10449 130 10502 10449 122 3 10336 10449 148 4 10449 156 5 10281 6 7 10449 10196 10449 10620 10449 8 10468 9 10454 10449 10 10328 10449 11 10625 10449 10449 12 10403 10382 10449 13 14 10418 10449 15 10471 10449 10669 10449 16 17 10552 10449 18 10690 10449 19 20 10392 10449 10525 10449 sample mean (xbar) = 10449 Multiplier to convert sample variance (s^2) = 15903 to dpm: 5.4 background variance (b^2) = 239.7 sample sigma (s) = 127 (95% Confidence) 2.752 s = 350 (99% Confidence) 3.615 s = 459 MDA(cpm) = 57 df = n-1 = 19 MDA(dpm) = 305 chites: = $p(x < \chi^{A2})$ = chisquare (χ^{A2}) = 6.727E-02 28.919 Acceptable x^2 min = 8.907 Acceptable x^2 max = 32.852 YE\$ x⁴2 test passes (yes/no)? 99% Conf. Interval Test min = **98**54 95% Conf. Interval Test min = 9984 **Dally Source Check Mean Net Counts** 10313 95% Conf. Interval Test max = 10663 99% Conf. Interval Test max = 10773

Test performed by: Steve Struck

Checked by:

Mallinckrodt C-T Project-Phase I Final Status Survey Report Building 250 Interior Revision: 0 March 2004 APPENDIX 3

Date:

•			Thermo NUtech A ThermoRetec Comp 601 Scarboro Road	iany
	LUDI	UM 2221	Oak Ridge, TN 37830	
	Calibrado	ON DATA SHE		
Ludlum22215/N: 163	SL-66 Pi	roperty O	Thermoket	ec
	6 EA PI	2<	Smart Solutions. Positive Out	COMES.
Battery Check Dr.	Reolace	ā4	2109) 101 0603 Dhone	
<u>High Voltage Check</u>		-	(423) 481-0121 Fax	
HV Meter: Fluke	29 S/N: 65	410232 Cal E	xp. Date 50	-03
Meter Reading	Pre Cal	Post Cal	Toleran	<u>çe</u>
600 Volts	660	665	10 %	
1000 Volts	1100	1002	10 %	
1400 Volts Input Sensitivity:				
(Threehold 8 10 m	W) Pre Cal	: 35 mJ . P	ost Cal: <u>85</u>	<u>rti</u>
MP-2 S/N: LoB4	Cali	bration Exp. D	ate: 1-29-05	Tal
Rate/ MP-2	2221	Display	DISPLAY	101
Meter		Digtal	Anelog	
400 CPM	<u>×1</u>	460	400	10%
4K CPM	<u>x10</u>	3998	4000	102
40K CPM	<u>×100</u>	39999	40000	102
400K CPM	<u>×1000</u>	400080	400000	10%
Scaler:				
100K CPM	0.5 sec	50010	100000	10%
100K CPM	<u>1.0 min</u>	<u>100020</u>	- (10%
100K CPM	2.0 min	200039	<u> </u>	10%
100K CPM	<u>5.0 min</u>	500097		20%
Log 400 400 Functional Check:	4K <u>4K</u>	40K 40K 4	100k 400 K	-
Ext Count Res	etSpea	kerHeadpl	ponesLigi	ht_
Date Of Calibrati	on: <u>1-16-04</u>	Expiration	n Date: 1-16-74	13
Calibrated By:	(erint)	els <u>Kan</u> (Si	anature A	JUA
Reviewed By:	NN M	Date	1/30/03	and the second secon
	(J	L	

L2221/AB-100 S/N: 163666/B426W 1/16/03

Revision: 0 March 2004 APPENDIX 3

CALNIOOA -•

.

Thermo NUtech

For Mallinckrodt Chemical, Inc

		NA	TIONAL	NUCLEA	R ABP-1	00		•		
	M	ATERIAL	SPECIFI	C CALIER	ATION D	ata shee	=1 p	HS VCA F	5.	
ABP-100 SN:	BAZG	W	High vol	.TAGE: 87	<u>5</u> V	PROPERT	108:			
READOUT IN	ST: Luc	2221		SN: 163	alela.	CAL EXPIR	E DATE:	7-14-9	13	
ABP-100 EFF	ICIENCY T	'O SrY-90 O	N 47 mm l	olsk: <u>42.0</u>	<u>}_</u> %	CAL DATE:	<u></u>	2-03	•	
[]	BACKG	ROUND	BR	SOU	RCE	SR		SA	Efficiency	
SURFACE	OPEN	SHIELD	NET	OPEN	SHIELD	NET	Source	Activity	SKON	
MATERIAL	Cis/2 min	Cla/2 min	CPM	Cls/1 min	Cts/1 min	CPM	×	- Montring		
Concele	5/-1		73	6857	292	6625	6-A	33250	19.9	
Concrete	1	7	1	6853	246	6601		-f	19.9	
				1.846	242-	6104			lad	•
		5	5	6784	236	6548		Lalen	19.1	
266×125	- 555 3	3250		ملاب کر یداد				Average =	19.9	
dpm	210	-						Std Dev =	0.1	
ITALI				15777	1280	14984	M·Z.	22252	27.4	
1000d			6	5201	240	5041	1		22.33	
		0		CIA'	1224	1957	1		22.3	
		0	2	6701	252	15064	J.	J.	22.8	ł
in a day is				1.02-10				Average =	22.5	ł
(*) ¥ QJ M,X	143 2 2	2200						Std Dev =	a.2	
_						·		15	1200	1
Mesonite	6	0	0	5296	232	5064	IM.Z	72250	66.2	Į
	0	C	0	530Z	234	5068	+-	<u>↓</u> _{	14.2	ł
	0	0	0	15311	248	5063	4-)-	┼╌┼╌┯	140.2	5 N -
	0	0	δ	5366	236	15130	L.Y.		Act in	
178 dan #	125 - 2	2250		•.			•	Average =		
					•			· 310 Dav -		ت م
Aleman	0	10	0	1.037	723	1584	TM.Z	22250	26.	
	10	10	0	5101	256	5470		1.1-	24.6	
	0	10	0	6013	1248	5765		\bot	125.9	4 :.
	0	0	0	589Z	227	5665		10	125.5	1.
178 dam 1	C/75 2 7	2750						Average	= 73.5	
		~~-0				\sim		Std Dov =		
DATE OF C		Nº 1-29	i-03		EXPIRA	NON DATE:	7-2	-03		
		<u> </u>		11.	\mathcal{I}		112	TA.	IL.	
CALIBRAT	ED BY: A	andall	11.2	-115	<u>70</u>	ulli	1,54	<i>f4</i> 5		
	4	- Erint Nor	00			- Viteron -		L		
REVIEWED) BY:	MA	sury.	• • • · · · · · · · · · · · · · · · · ·	DATE:	1130	<u>lo</u>		·	
		·····	77		-					
	•		\cup							
]	L2221/AB	B-100					
			S/N	: 163666	/B426W					
				1/16/0	3					
					<u> </u>				avision. O	

Mallinckrodt C-T Project-Phase I Final Status Survey Report Building 250 Interior

Revision: 0 March 2004 **APPENDIX 3** ÷

.:

CT-RP-66 Chi Squared Test

		,	0010400000
Instrument Model #	2221	Date:	02/04/2003
Instrument Serial#	163656	Source Nuclide:	87790
Probe Model #	AB 100	Source Serial W	2178-96
Probe Serial #	B426W	Source dom (4x):	55489
Window Setting:	3720	Efficiency (cpm/dpm):	0.28
Threshold Setting:	352	Background com:	183.4
Hich Voltage:	875	BKGD N-1	4
Linger AdminiSor	B	(GD Count Time (min):	1
	Gross Cr	NOTS	
Count # (o)	Obeonued	Expected	Background Counts
Coont a tim	45320	16646	185
1	10000	15548	193
2	10301	465/8	179
3	104//	48646	179
4	10002	10040	181
5	10520	10046	
5	15987	10040	
7	154/0	10040	
8	16382	15540	
· •	15639	10040	
10	15609	10040	
11	15401	15546	
12	15433	15546	
13	15601	15546	
14	15743	15548	
15	16608	15546	
16	15828	16546	
17	16577	15546	
18	15518	15546	
19	15510	15546	
20	15599	15546	
		to internet	
sample mean (xbar) =	15546	Multiplier to convert	36
sample veriance (s*2) =	15181	to april:	4.9
background variance (b^2) =	34.8		
sampio sigma (s) =	123		
(95% Confidence) 2.752 s 🌣	339		
(99% Confidence) 3.615 s =	446		
			6 4
1	14	MUA (cpm) =	240
01 = n-1 =	19	MLA (opin) +	
chilest = $p(x < \chi^2)$ =	4.8585-01		
chisquere $(\chi^2) =$	18.834		
8	B 607		
Acceptable χ^2 min =	0.90/		
Acceptable X-2 max =	94.004 Mer		
X-5 rest basess (Aee/uo),	129		
99% Coof Inteoral Test min =	14917		
66% Configuration Test and a	15023		
Bolly Round Check Moun Not Countr	16383		
DER Cool IntermitTert may -	15702		
9375 GORT, HILORYOU 1961 MOX =	15200		
	10008	• 1	

Test performed by: Steve Struck H-DD 2/4/03 Checked by: Min C. Woodford Dete: 2-4-03

L2221/AB-100 S/N: 163666/B426W 1/16/03

Mallinckrodt C-T Project-Phase I Final Status Survey Report Building 250 Interior

4/16/03

96

CALN100A

Thermo NUtech For Mallinckrodt Chemical, Inc

Lud	м	N/ ATERIAL	ATIONAI SPECIFI	L NUCLEA	R ABP-1 Ation D	00 Ata shei	ET	-	
ABP-100 SN:	1807	07	HIGH VOI		<u>10_</u> V	PROPERT	Y OF: M	ALT	
READOUT IN	IST: Lud	2241-2	, 	SN: 1314	110	CAL EXPIR	RE DATE:	10-16-	<u>63</u>
ABP-100 EFF	ICIENCY T	O SrY-90 O	N 47 mm I	DISK: 17.	7_%	CAL DATE	: <u>4-1</u> 6	03	-
	BACKG	ROUND	BR	SOU	RĈE	SR		SA	Efficiency
SURFACE	OPEN	SHIELD	NET	OPEN	SHIELD	NET	Source	Source	\$5.25/
MATERIAL	Cu/2 min	Cts/2 min	CPM	Cts/1 min	Cts/1 min	CPM	#	Activity	<u> </u>
7	1 24 4		1.57	Tiers		14474		7504-	
LADCIELE	2004	230		4755	211	4710	10-0	62400	
6	{			4877	301_	4576	Lf		17.12
1				14811	297	4514			17.4
L	1		4	4705	315	4390	L		169
		البيد جي تيوسيه		ليتمتخ أعكا أمياسيا م				A Vorarda E	1 17.5

259 x 100 = 25900

Average = 17.5Std Dev = 0.3

					•			and the second se	the second se
Wood	0	6	6	3725	256	13469	M·Z	17400	19.9
	0	6	0	3606	243	3365			14.3
	0	0	0	3581	223	3358			103
2	0	D	0	3544	245	3309	12		10.0
17X Y IA	A + 18/14					13249		Average =	19.4
1170-10	0 - 1 144	00		:				Std Dev =	04

Musmile	0	0	6	3646	318	3328	M-2	17400	19.1
	0	0	0	3713	324	13389			19.5
	0	0	0	3735	319	3416			1 <u>5.6</u>
	0	0	0	13600	327	3273	<u> </u>	<u> </u>	115.3

Average =

Aleninum	٥	0	0	14203	193	14010	M.Z	17400	20.1
	0	0	0	418.60	207	3978		1	22.9
	0	0	0	1119	193	3936.			22.6
4	0	0	0	402.5	195	3828			22.0
								Average =	22.7

Std Dev = 0.5

DATE OF CALIBRATION: 4-17-03 EXPIBATION DATE: 10-17 Alcun andall H CALIBRATED BY: REVIEWED BY:

L2241-2/L43-89 S/N: 131410/188707 4/16/03

Mallinckrodt C-T Project-Phase I Final Status Survey Report Building 250 Interior

CT-RP-66

Chi Squared Test

Instrument Model #	2241	Date:	04/28/2003
Instrument Serial#	131410	Source Nuclide:	SrY90
Probe Model #	43-89	Source Serial #	2178-95
Probe Serial #	188707	Source dom (4x):	55258
Window Setting:		Efficiency (com/dom);	0.14
Threshold Setting:	35 mV	Background com:	78.8
High Voltage:	770	BKGD N-1	4
	6	KGD Count Time (min):	1
	Gross C	Counts	•
Count # (n)	Observed	Expected	Bockemund Counte
1	7865	7848	SO
2	7914	7848	40 80
3	7726	7848	80
4	8036	7949	80
5	7001	7040	82
Ģ	7861	7040	/5
57	7042	. 7040	
	7020	7848	
8	7003	7848	
10	7093	7848	
10	7690	7848	
10	7674	7848	
12	7831	7648	
10	7929	7848	
14	/061	7848	
15	7700	7648	
10	7852	7648	
17	7828	7648	
18	7861	7848	
18	7724	7648	
20	7805	7848	
BBMALE MARA (Vhar) -	** **	a <i>d</i> : 115 at 1	
Sector and a sector and a sector and a sector a	7040	Muttiplier to convert	
hickonound uselonen (hA2) -	1213	to apm:	7.2
	8.2		
(061/ Cooldenae) 0.750	65	FSB Normalization	
	235	S ₁ =	0.287
(99% Confidence) 3.615 s =	306	•	
		MDA(com) =	45
df = n-1 =	19	MDA(dom) =	10
chilest = $p(x$	6.487E-01		çe v
chlequare (x^2) =	17.609		
Acceptable y^2 min =	8 007	·	
Acceptable y^2 may =	92 SK2		
12 1861 Dasses (ves/no)?	VEC		
	163		
99% Conf. Interval Test min =	7459		
95% Conf. Interval Test min =	7533		
Ually Source Check Mean Not Counts	7768		
95% Conf. Interval Test max =	8003		
99% Conf. Interval Test max *	8076		
		A	

Test performed by: Steve Struck the Checked by: An C. What for Date: 4-28-03

L2241-2/L43-89 S/N: 131410/188707 4/16/03

Site: Job #:

AB-100 AE-3-7

CALIBRATION DATA SHEET

AB-100 B 861 N Property of: _____AC AC-3-7 SN: Readout Inst .: Ludium 272/ SN: 7-8-96 115126 Cal. Exp. Date: Beng Alpha Source: 5-190 1239/92 20300 DPM SN: _ Activity: _ Date of Cal.: ______ 10-1-95 PLATEAU: * CALIB@ 35MV Source Source High Voltage (CPM) High Voltage (CPM) Backoround Check 8754 600 1050 High Voltage <u>CPM</u> 240 650 1100 Op. Voltage -50 315 700 1150 Op. Voltage 355 750 Op. Voltage +50 1200 2180 800 1250 4226 850 1300 .. . 6334 900 1350 925 950 1400 1000 1000 1025 High Voltage set at: volts 87 A = FRONT CUTE Pos. Efficiency: B. REAR CATE POS. 5 Minute Gross Counts: CNTR"C" 40 7.34 41487 41508 Pos "A": Pos "B": + B)/2: 41243 213 Gross CPM: 8248.4 Average (A-Background: CPM: 322.6 Net CPM: 7924 Net CPM ----- × 100 = <u>39.0 %</u> Efficiency * DFM 7-18-96 Date of Calibration: _ 1-18-96 Expination Date: SARA SMITH mith <u>A</u>AA Calibrated by: (Print Name) (Sionature) 1-23-96 Date: Reviewed by: EA4.10 Rev: 1 EA4.10-60 Date: 25 Jan 88 L2221/AB-100 S/N: 115126/B861N 1/18/96

Mallinckrodt C-T Project-Phase I Final Status Survey Report Building 250 Interior

Site:	
Job #:	

AB-100 AC-3-7 Calibration data sheet

۰.

.

.

ı

AB-100	R R S 9 N	Duoneutu	EAC	
Readout Inst	Ludlum 2221 EN	Property	01: <u></u>	8-910
<i>BetA</i> Alpha Source:	5- 190 SN:	1239/92	_ Activity: _2030	<u>0 70</u> 0DPM
Date of Cal.:	10-1-95			
PLATEAU: X	CALIB @ 35 MV			
<u>High Voltage</u>	Source <u>(CPM) High Vo</u> l	Source tage (CPM)	<u>Background Check</u>	
600	1050	<u> </u>	<u>Hich Voltage</u>	CPM
650	1100		Op. Voltage -50	223
700 ·	1150	·	Op. Voltage	250
750	1200)	Op. Voltage +50	317
800	<u>2705</u> 1250	•		
850	<u>4990</u> 1300			
900	<u>6847</u> 1350			
935 950	<u>7884</u> 1400			
1000	<u>9977</u> <u>8206</u> High	Voltage set a	at: <u>950</u>	volts
Efficiency: 5 Minute (Spore Counter	A= FRONT CAN B. REAR CAN	re. Bs. re Ass.	
5 hindle (CNTR "C"		
Btc) /3 Average (A	°os "A": <u>30633</u> + B)/2: <u>39/04.</u>	<u> </u>	Pos "B": <u>37447</u> Gross CPM: <u>7820</u> ,	93
Background	1: CPM: <u>258,4</u>	2 2	Net CPM: 7562	3.3
		Net CFM	277.2	
	Efficiency	DPM	100 = 37.3	
Date of Calibra	ation: <u>1-18</u> -	<u>96</u> Ехрі	ration Date:	18-96
Calibrated by:	SARA SM	<u>лтн С</u>	Jana Amith	
-	(Print Na	he)	(Signature)	
Reviewed by: _/	Jandall H.	Quill	Date: 1-23-96	
EA4.10	/			
Rev: 1 Date: 25 Jan 2	18			EA4.10-65
	т	2221/AR-100		
	S/N	: 126509/B859	N	
	2/11	1/18/96		

		QUEET		~
AB-101 AG-3-7 SN: <u>B4Z</u>	CALIBRATION DATA	erty of: E.S.		
Readout Inst.: 224	1-2	S Cal.Exp.Date:	5-1503	
Alpha Source: Sry	<u>-90</u> SN: 2156	96 Activity: 175	5 <u>00</u> DPM	
Date of Cal.: 10-2	4-00			
PLATEAU:		Source		•
High Voltage (Cl	PM) High Voltage	(CPM)	Background Check	
600	1050		High Voltage CPM	
650 <u>99</u> 8	<u>3 1400</u> 775	5992	Op. Voltage -58 _244	
700 <u>30</u>	<u>53</u> 1158 820	6612	Op. Voitage 272	
750 <u>547</u>	2 <u>2</u> 1200 825	6999	Op. Voltage +60 353	
300 <u>66</u>	B 1250 850	7358	+ Calad C	- 1
850 <u>755</u>	<u>50</u> 1 300 .875	6880	@ Proba C	eonetry
900 <u>233</u>	05 1350			enter
950	1400			
1000	High Voltag	e set at :_825	volts	
Efficiency: 5 Minute Gros	s.Counts:			
Pos "A":	Pos *B*:		min Ct 7054	
Average (A + B)/2: Background: CPM:	Gross CPM: Net CPM:			
	Net CPM		180 29	Laff 11
Effici	ency = x 100 =	% ·	J0+0	in with
Date of Calibration:	5-15-07 Expire	ation Date: 5-15-C	3	
Calibrated by: Rein	dallH.Sells M	and Al	dill	
Reviewed by:	(Print Name)	(Signature) 5 / 5 / 02	7-0	
	<u> </u>	L		
、 1.10 Rev: 2	* Realered	Tana		
Date: 25 Feb 99	Outro Mul	-inter ¿	Page 4 of 4	
		~~~		
	τοο	41_2/AB_100		
	S/N·	13145/B426W		
	2/1/1	5/15/02		
Mallinckrodt C-T Proj	ect-Phase I		<u></u>	Revision: 0

•

.

Thermo NUtech

For Mallinckrodt Chemical, Inc

NATIONAL NUCLEAR ABP-100 MATERIAL SPECIFIC CALIBRATION DATA SHEET								
ABP-100 SN: BAZGW HIGH VOLTAGE: 825 V PROPERTY OF: E.S.								
READOUT INST: 2241-2 SN: 131415 CAL EXPIRE DATE: 5-15-02							RHS BZ	
ABP-100 EFFICIE	NCY TO SrY-90	ON 47 mm C	olsk: 39.	0%	CAL DATE: 5-15-07		-	
SURFACE OF	ACKGROUND	8R NFT	SOU	RCE	SR	Source	SA Sauto	Efficiency
MATERIAL CIS/	2 min Cts/2 min	CPM	Cts/1 min	Cts/1 min	СРМ	#	Activity	SA
Concrete 64	8 550	98	8744	294	8450	lo-A	33250	25.4
+++++			8696	299	8397			25.3
		┼-}	8522	292	8230		<b> }</b>	24.8
125× 26600	33750		18697	294	16403		Averene =	25.2
266	yn i Dococ	<b>,</b>					Std Dav =	0.3
Wood (	0 0	0	6691	251	6440	m.z	22250	28.9
		(	6772	28z	6490	(		29.1
	└── <u>┤</u> ── <del>↓</del> ──	<u> -</u> }	6793	240	6503		<u>}</u>	29.2
1754 170 - 0		<u> </u>	6588	283	6305			28.3
100 100 20	200						Average =	25.9
			<b></b>					
Mismite C		0	6682	300	6378	m-z	22250	28.7
		┼-{	6635	268	6367	-{		28.6
	1.1.2	12	6031	304	6330			20 4
125×178dom	= 22250			004	6366			28.0
						4	Std Dev =	0.5
Aluminun O	0	0	7468	312 .	7156	M.Z	22250	32.Z
			7578	300	7278		<u> </u>	32.7
		+	7411	305	1106			3.4
125×178	= 7778 4		1564	696	1268		<u> </u>	32.1
(a are the gam							Std Dev =	0.4
DATE OF CALIBR	ATION: 5-15	-02		EXPIRATIO	ON DATE:	5-15-0	23	
CALIBRATED BY:	Kandull 1	J. Sell	<u>s</u>	Luna	LI H Signature	A.	ıll-	
REVIEWED BY:	Klen X	really	•	DATE:	5/15/	bz		-
	0				•			
		L22	241-2/AE	B-100				
		S/N:	13145/E	3426W				
	5/15/02							

Mallinckrodt C-T Project-Phase I Final Status Survey Report Building 250 Interior

CALNIODA

.

TIVIA Thermo Analytical

• •

	TMA/Eberline	. <u>.</u>		Site:
	601 Scarboro Rd.			Job #:
	Oak Ridge, TN 37830	3.4621		
	(010)401-0000 1 84 (010)40	-	18-100	
		, P	<del>C-3-7</del> -	
		CALIBRATI	ON DATA SHEET	
	AB-100			
	AC-3-7 SH: B	859 N	Property of: <u> </u>	AC
	Readout Inst.: 4	0 2200 SN: 10	06727 Cal. Exp.	Date: <u>4-4-95</u>
	Aisha Source: <u>S</u>	<u>RY-90</u> SN: <u>123</u>	9/92 Activi	ty: ZZ800 DEnt
	Date of Cal.:	10-3-94	<u>s</u>	
	FLATEAU: * CAL	18.@ 35 mu I.S.		
•	Sc High Voltage (C	ource (PM), <u>High Voltage</u>	Source (CPM) Backo	round Check
	600 SEC 3	<u>90</u> 1050	HA Hich	Voltage CFM
	650 <u>82 1</u>	594 74 1100	Op. V	oltage -50 🔪
	700 172 4	129 163 1150	Op. V	oltage
	. 750 229 6	996 214 1200	Op. V	oltage +50
	800 266 8	088 265 1250	NOTE:	MYLAR SHEET ADDED ATTENUATE ALPIIA
	850 <b>338 E</b>	8591 <u>301</u> 1300	cı	WITRIBUTION TO "O"CPM
	900 <u>453 8</u>	693 440 1350		HA SOURCE @ 7500 DPM
	930 <u>922 10</u>	148 815 1400		Nom.
	1000 <u>I</u>	17 <i>09</i> High Vol	tage set at:2	Voits
	Efficiency:			e 103.
	5 Minute Gr	oss Counts: 20-1	C FURWARD CNT	r Pus.
	_	17951 (		37185
		5 "A": <u> </u>	FOS Groes fi	B": <u>5 1705</u>
•.	Background:	CPM: 3/4.8	Net C	PM: 7259.8
	1.	574		
	•	Efficiency = -	x 100 = .	31,8 %
		-	DPM	
	· .			·
	Date of Calibrat	ion: 1-6-95	Expiration	Date: 7-6-95
	Calibrated by:	KENNETH MURPHY	Konart	Mufly
		(Print Name)	// (8	Tõueraime) .
·	Reviewed by:	andall H . Club	Date: _	1-6-95
	EA4.10			••
	Rev: 1			
		L2200/A	AB-100	
		S/N: 1067.	29/B859N	
		1/6/	95	

1

# TIVIA Thermo Analytical

TU & Eberline				Citra A	AIT-5
601 Scarborn Rd.				Site: <u>//</u>	~
Oak Ridge, TN 37830	······································			500 #: _	
(615) 481-0683 Fax (61	5) 483-4621				
	•	Al	BP-100		
	-		<del>C-3-7</del>		
		CALIBRATI	ON DATA 5	HEET	
ABP-100	OYY		Property	at SAC	
	4.04.4		110per ()		
Readout Inst.	SRY-90	<u>2221</u> SN: <u>117</u>	<u>552</u> L	al. Exp. Date: <u>/-/</u>	7-95
Alpha Source:	1239/9	2 5N: _/23	9/92	_ Activity: 22800	DPts
Date of Cal.:		-3-94	1		
FLATEAU: *	CALIB	@ 35 mv	_ •		
High Voltage	Source (CPM)	<u>High Voltage</u>	Source <u>(CPM)</u>	Background Check	Ĺ
600		1050	2562	<u>Hich Voltage</u>	<u>CFM</u>
650		1100	3686	Op. Voltage -100	-133-
700		1150	4985	Op. Voltage	253
- 750		1200	5894	Op. Voltage +300	263
300		1250	6194.1	94	
850	•~~	1300	6708 - 2		
900		1350	6662.2	<u>51</u>	
950		1400	1013.2	<u>93</u>	
1000	1606	High Volt	age set a	at: <u>1325</u>	volts
Enflerenzy		A	FORWARD	CHIR POS.	
5 Minute	Gross Co	unts: 8~	REAR CI	NTR Pas.	
	Pos #4"	79957	57817	Pos "B". 21791	
Average M	+ 5772:	3/522.0	20011	Gross CPM: 6304 4	
Backgroun	d: CPM:	245.6		Net CPM: 6058.8	
	1	N	et CPM		
·	Ef	ficiency =	x	100 = 26.6 %	
			DPM		
Date of Calibr	ation: _	1-17-95	E×pi	ration Date:	7-95
Calibrated by:	KENNET	H MURPHY	he	meet Mulehon	
	(	Print Name)		(Signature)	
Reviewed by: _	Marian	ne mcNar	ne	Date: <u>1-17-95</u>	
EA4.10					••
Rev: 1					
Date: 23 Jan	89				EA4, 101 - 1
		I 2221/A B	P-100		
		LEELIAD	~100		

S/N: 117332/A0446 1/17/95

### ТИА

Thermo Analytical

Site: MALT-S TMA/Eberline 601 Scarboro Rd. Job #: ___ ~ Oak Ridge, TN 37830 (615) 481-0683 Fax (615) 483-4621 ABP-100 HC-3-7-CALIBRATION DATA SHEET ABP-100 0447 Property of: <u>EAC</u> <del>-------</del> SIN: Readout Inst.: LUOWM 222/ SN: __17332__ Cal. Exp. Date: 7-17-95 BETA Aiste Source: 584-90 SN: 1239/92 Activity: 22800 DFth Date of Cal.: 10-3-94 ۲ FLATEAU: * CALIB. @ 35 mu Source Source <u>High Voltage</u> (CPM) Background Check High Voltage (CF'M) <u>C F-1-1</u> 600 1050 3100 High Voltage 4382 Op. Voltage - Re 96 1100 650 -185 - 50 5184-185 Op. Voltage 5521-233 + 50 5767-290 Op. Voltage+180 5,134-306 700 1150 290 -1175 ~ - 750 1200 521 1250 ----6475.401 800 7364 850 ~ 1300 618 900 1350 . 950 1269 1400 2118 High Voltage set at: 1200 volts 1000 A = FORWARD CATE Pas Efficiency: B = REAR CHTR POJ 5 Minute Gross Counts: ONTR Pos, "B": 28277 Gross CPM: <u>5557.6</u> Net CPM: <u>5306.2</u> Fos "A": 25943 Average (A + B)/2: 27193.0 29159 Background: CPN: 252.4 ł Net CPM ----- × 100 = <u>23.3</u> % Efficiency = DPM Date of Calibration: ______ Expiration Date: 7-17-95 math Mulle Calibrated by: KENNETH MURPHY (Signature) (Print Name) Reviewed by: Mariann McNames EA4.10 Rev: 1 Date: 25 Jan 88 EA4. 10-00 L2221/ABP-100

L2221/ABP-100 S/N: 117332/A0447 1/17/95

Mallinckrodt C-T Project-Phase I Final Status Survey Report Building 250 Interior

### ТМА

Thermo Analytical

Site: MALT-5 TMA/Eberline 601 Scarboro Rd. Job #: Oak Ridge, TN 37830 (615) 481-0683 Fax (615) 483-4621 ABP-100 AC-3-7 CALIBRATION DATA SHEET ABP-100 Property of: <u>SAC</u> ---- BIA: A 0448 Readout Inst.: 4000 7221 SN: 117332 Cal. Exp. Date: 7-17-95 BETA Source: SRY-90 BN: 1239/92 Activity: 22800 DFM Date of Cal.: 10-3-94 ٢. PLATEAU: * CAUB@ 35mu Source Source <u>High Voltage</u> Background Check (CPM) High Voltage (CFM) 1050 2941 High Voltage CFIH 600 4000 -63 1100 Op. Voltage -650 - 20 _ 700 1150 <u>5255</u> Op. Voltage 236 + 5+ 6066:119 Op. Voltage +100 483 1200 - 750 1225 300 1250 6443 .236 1275 8709.383 650 1300 246 1350 7393.483 . 900 887 950 1400 FJK 1250 1732 High Voltage set at: _ _~olts 1000 Efficiency: A= FRONT CATE POS. B = REAR CNTR POS. 5 Minute Gross Counts: CNTR Pos "A": <u>30/92</u> Average (A + B)/<u>3: 29958.33</u> __ Pos, "B": <u>27835</u> Gross CPM: <u>5991-46</u> 31848 Net CFM: 5743.67 Background: CFM: 248.0 1240 4 Net CPM  $----- \times 100 = 2.5.2$ Efficiency = DPM Date of Calibration: 1-17-95 Expiration Date: 7-17-95 (Signature) KENNETH MURPHY Calibrated by: (Print Name) Reviewed by: Marian McNamer EA4.10 Rev: 1 Date: 25 Jan 68 EA4.10-10 L2221/ABP-100

### L2221/ABP-100 S/N: 117332/A0448 1/17/95

Site: ______ Job #: _____

#### AB-100 AC-3-7 CALIBRATION DATA SHEET

.

•

• .

AB-100 AE-3-7 SN:	BBGON		Property	of: <u>EAC</u>		
Readout Ins	st.: <u>Ludlum 2</u>	221 SN:	7362 C	al. Exp. Date	7-8-9	16
Alpha Sourc	:e: <u>1239/92</u>	_ SN: 12	39/92	_ Activity: _	20300	DPM
Date of Cal	:	-1-95				
PLATEAU: 🛪	CALIB @ 35	mν	_			
<u>High Voltac</u>	<u>le (CPM) Hi</u>	<u>gh Voltage</u>	Source <u>(CPM)</u>	<u>Backoround</u>	<u>Check</u>	
600		1050	<u> </u>	<u>Hich Volta</u>	ve C	<u>PM</u>
65¢		1100		Op. Voltage	≥ -50 <u>_</u>	284
700	-	1150		Op. Voltage	e <u>4</u>	140
750		1200	<u> </u>	Op. Voltage	e +50 _ <u>`</u>	574
800	4460	1250				
850 876	<u>6636</u>	1300				
900	7759	1350		·		
7-5 950	8115	1400				
775 1000	<u> </u>	High Volt	age set a	at: 950	v	olts
Efficiency:		A	FRONT C	CNTR POS. CNTR POS.		
5 Minu	te Gross Count	ts: O	CNTR	r `		
(A+8+C)/3 Average Backgr	Fos "A": ( <del>A +- B) /2</del> : ound: CPM: <i>1982</i>	8683 10181 396.4	40904	- Pos "B": Gross CPM: Net CPM:	10954 8036.2 7639.8	- · ·
	Eff	N iency =	et CPM , DFM	< 100 = <u>37.4</u>	<u>~</u> %	
Date of Cal	ibration:	1-18-94	Ехрі	iration Date:	7-18-	96
Calibrated	by: <u>SAR</u>	A Smith	+	Jana Ami'i (Signatu	lh re)	<u> </u>
Reviewed by	: Kan <i>deils</i>	A.du		Date: _/-23	5-96	
EA4.10	/				·	
Rev: 1 Date: 25 J	an 83				EA	4.10-66

L2221/AB-100 S/N: 117362/B860N 1/18/96

107
Si	te	:		
Joł	D	#	;	

#### AB-100

---7 46 CALIBRATION DATA SHEET

.

AB-100				-	
AC	BBGON		Property o	of: <u>EAC</u>	
Readout Inst.	: 2221	SN: //7	1362 Cal	1. Exp. Date: <u>7-8</u>	3-96
Alsha Source:	<u>Sry-90</u>	SN: <u>12</u>	<u>192</u>	Activity: _2030	<u>0</u> DPM
Date of Cal.:	10-25	-95			
PLATEAU:	<b>C</b>		Source		
<u>High Voltage</u>	<u>(CPM)</u> Hig	<u>h Voltage</u>	<u>(CPM)</u>	Background Check	
600	0	1050	8796	<u>Hich Voltage</u>	CPM
650	2	1100	1516Z	Op. Voltage -50	
700	106_	1150	NIA	Op. Voltage	<del></del>
750	699	1200	-f *	<b>Op. Voltage +5</b> 0	
800	2042	1250	<u> </u>		
850	4403	1300	<u> </u>		
900	6287	1350			
750	7569	1490	1		
1000	7950	High Volt	age set at	t: <u>950</u>	volts
<u>Efficiency</u> : 5 Minute	<u>Gross</u> Count	5:			
Average ( Backgrou	Pos "A"; <u>3</u> A + B)/2: nd: CPM: <u>2</u> 1239	717  	(	Pos "8": <u>//A</u> Gross CPM: <u>7434</u> Net CPM: <u>7/86.4</u>	2
	Effic	iency =	et LFM X	100 = <u>35.4 %</u>	
			DPM		
Date of Calib	ration: _3	-5-96	Expi	ation Date: 9-5	-16
Calibrated by	: Dandall	H. Sells		and all H. (Signature)	Aul
Reviewed by:			I	Date:	······································
, EA4.10	·				
Rev: 1 Date: 25 Jac	83				EA4.10-66
and the first of the first of the first of					
		L2221/A	<b>B-100</b>		

Mallinckrodt C-T Project-Phase I Final Status Survey Report Building 250 Interior Revision: 0 March 2004 APPENDIX 3

S/N: 117362/B860N 3/5/96

Thermo NUtech A ThermoRetec Company 601 Scatboro Road Oak Ridge, TN 37830

Bicron hermoRetec AB-100 Smart Solutions. Positive Outcomes. AC 3-7 CALIBRATION DATA SHEET AB-100 (423) 481-0683 Phone (423) 481-0121 Fax AG-3-7 SN: 3860 M Property of: 7-72 . thermoretec.com Cal.Exp.Date: <u>|z1|z000</u> Readout Inst .: 222 SN: 117362 Betc-Alpha Source: Sr _DPM 15200 Jpm 90 SN: 123892 Activity:_ RHS * @35mV Date of Cal 190 @ Contact Geometry PLATEAU: Source Source Background Check (CPM) High Voltage High Voltage (CPM) 600 1050 694Z High Voltage CPM Op. Voltage -50 _245 650 1100 9136 Op. Voltage 261 700 1150 Op. Voltage +53 261 750 ÷ 5077 1200-925 1250 750 800 1062 5652 1000-6913 6046 850 2726 1<del>360</del> 975 6324 4438 1350 900 1000 5594 1400 950 6493 1025 1000 High Voltage set at :_ 1000 volts 6470 Efficiency: 5 Minute Gross Counts: Pos "B": 31943 Pos "A": 30 485 Average (A + B)/2: 3/2/4 Background: CPM: 257.2 Gross CPM: 6242.8 Net CPM: 59BT. C 1286 Net CPM x 100 = <u>39.4 %</u> Efficiency = DPM Date of Calibration: 96 Expl Date Se Calibrated by: (Signature) (Print Name) Reviewed by 99 Øate EA4.10 Rev: 2 Date: 25 Feb 99 Page 4 of 4 A subsidiary of Thermo TerraTech Inc., a Thermo Electron company L2221/AB-100

S/N: 117362/B860N 10/20/99

#### Certificate of Calibration



Voltage Plateau Form

Environmental Restoration Groups and 2019 Arrays De Vista NJ Albuquenque NM 10111 (\$155.298.308

Detector Mig.:	t-udlum	Model	44-20	Serial No.: PR 201774			
Counter Mfg.:	l schum	Mindel:	5531	Serial No.: /38368			
Counter Threshol	d Setting:	10 mV	(1014)	actry / Distance to source:	6-inches		
Source - 1820	n (m. † 1, Star Jove, a	n <b>4</b> 093-01	1 149	9 (in 196, 200) dans an aktivisati			
V	1 4 4 4 . 4						

Cosuit fime: 0.5 minute(s)

High Voltage	Gross Source Cogats	Background Coupts
600	59843	
700	\$8697	
800	97759	
900	105063	
1000	106569	15542
1100	107134	
1150	110266	
1200	132170	

Recommended Operating Voltage: 1000 withs

Cambrated By-

Calibration Date: @4N02@3 Calibration Dire: @4N02@3

Honowed Hy: Keroud R. S. R.

Date 114/03

L2221/3x3 S/N: 138368/201774 11/4/03

#### Certificate of Calibration

Rotemeter / Scalor Certificate of Calibration

ERG Envirogmental Restantion Group, Inc. 12809 Arroyo De Vista NE Albuquerque, NM 87111 (505) 298-4224

Manufacturer: Ludium _____ Model: ______ Serial No.: / 3836 F 97743 All Ranges Calibrated Electronically, Ludham Pulser Generator S.N.

Reser -Audio -Mechanical -Battery - Window Operation ---

High Voltage 500v-1000v -1500v ----

Instrument found within tolerance (+/- 10%) (Ye) No

Reference Setting	Ratemeter		Instrument "As found reading"	
400 Kepm	4JOK		4 co K	
100 Kcpm	10014		_ OUL	
40 Kcpm	YOK		40K	
10 Kepm	IOK		IOR	
4 Kepm	<u>412</u>		4K	
l Kopm	115		1K	
400 cpm	400		400	
100 cpm	100		100	
Rolance Setting	Integrated Counts (1-miaute count)	Log Scale Count Rate	Instrument "As found reading"	
400 Kopm	400071	LICO K	year	
40 Kcpm	39986	4.0K	_4.4 FC_	
4 Kcpm	4008	416	410	
400 cpm	401	uw	4 UD	

Calibrated By: <u>Calibration Date:</u> <u>10.21.03</u> Reviewed By: <u>Patricial Balen</u> <u>Calibration Date:</u> <u>10.21.03</u> Calibration Date: <u>10.21.09</u> Date: <u>10.21.09</u> Calibration Due: 10.21.04

L2221/3x3 S/N: 138368/201774 11/4/03

## CT-RP-66 Chi Squared Test

1	Uni Squar	ed lest		
Instrument Model #	2221	Date:	11/11/2003	
Instrument Serial#	138368	Source Nuclide:	<b>cs-1</b> 37	
Probe Model #	3x3	Source Serial #	2538-99	
Probe Serial #	201774	Source dom $(4\pi)$ :	228660	
Window Setting:		Efficiency (com/dom):	0.13	
Threshold Setting:		Background com:	3510.4	
High Voltage	1000	BKGD N-1	4	
right tutago.		BKGD Count Time (min):	1	
	Gross	Counts		
Count # (n)	Observed	Expected	Background Counts	
<u>1</u>	29749	29733	3559	
2	29919	29733	3525	
3	29500	29733	3508	
4	29688	29733	3475	
5	29999	29733	3485	
ě.	29908	29733		
7	29779	29733		
Å	29505	29733		
8	29771	29733		
10	29534	29733		
11	29892	29733		
12	29462	29733		
13	29937	29733		
14	29599	29733		
15	29341	29733		
18	29728	29733		
17	29743	29733		
18	29865	29733		
19	29886	29733		
20	20853	29733		
	20000			
sample mean (xbar) =	29733	Multiplier to convert		
sample variance (s^2) =	34474	to dom:	7.7	
background variance (b^2) =	1119.8	•		
sample sigma (s) =	189			
(95% Confidence) 2.752 s =	519			
(99% Confidence) 3.615 s =	682			
			970	
AF 4	40	MDA (cpm) =	410 0140	
=  -  =  0 	2 0205 01	MDA (opin) -	2174	
chicouses $(\sqrt{2}) =$	2.0405-01			
	£5.030			
Accentable v42 min =	8 907			
Accentable v ^A 2 may =	32 852			
v ⁴ 2 test passes (ves/no)?	YES			
99% Conf. Interval Test min =	25540			
95% Conf. Interval Test min =	25703			
ally Source Check Mean Net Counts	26223			
95% Conf. Interval Test max =	26742			
99% Conf. Interval Test max =	26905			
Test performed by:	Dirk Hartman			1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1
Checked by:	Drew Thatcher	Date:	11/11/2003	n national de la constante de l La constante de la constante de

#### L2221/3x3 S/N: 138368/201774 11/4/03

	Designer and Manu of	locturer		:	LUDUUM MEASUREI	MENTS, INC.
	Scientific and ind	utrial CERT	IFICATE OF CALI	BRATION	SOI OAK STREET SWEETWATER, TEXAS 7955	FAX NO. 325-236-4572 6. U.S.A.
CUSTON	AR TYCO/MALLIN	CKRODT STLOUIS			ORDER NO.	296103/271822
. <b>J</b> .	Ludium Measure	ments, inc. Mod	əl	2221	Serial No. 1570	20
Mia.	Luckum Measure	ments inc. Mod		3X3	Serial No. 02.04	29.0
Cal. Da	te 26-Apr	-03 Coi Due D	cite 26-4		nterval   Year Mater	toce 202-149
Theck m	ark Krappies to apoi	icobie instr. and/or def	ector IAW mfg. spec.	T. 77 °F	RH .31.% A	t595.6_ m™ √_
Nev	vinstrument instrum	nent Received	nin Tolor. +-10% [] 10	0-20% () Out or Tol.		her-Sea comatein L
	chanical ck	Meter Zeroed		ackground Subtract	M Input Sei	hs. Linecrity
LA AUG	ROSP. CK In ck	Alorn Setting (		nicidow Operation at all Min Volto	60 VDC	86
	rated in accordance	with LMI SOP 14.8 rev 1	12/05/69. 00	starated in accordar	ce with LMI SOP 14.9 rev 02	/07/97
nstrumen	Volt Set Commts	_ V Input Sens. Course	toutsmV Det. Oper.(	Comments V of C	inreshold <u>commarko</u> / Diai Ratio_	<u>100= 10 mv</u>
21	IV Readout (2 points)	Ref./inst50	0/4	9 <u>9</u> V Ref./k	ut. <u>2000</u> //	990 V
COMM	ENTS:			!		
		Peak settings	Gross Counts	Model 222	1 currently set	
,	Righ Voltage:	434 v	6501	for Gro	ss counts	-
	Window dial:	40	n/a	Connected	ago set with detect	1
¥:	Indow Position:	"IN"	"OUT"			
Resolut	tion for Cal37:	- 10 1	n/a	Firmware:	26 10 10	
lenaren Gester	nlion, GM detertors positioned pa	rpanskauler ja eource eucept for M	44-8 in which the front of proba is	co) souro,		
		REFER	RENCE	INSTRUMENT R	EC'D INSTRUME	NT
	RANGE/MULTIPL	LER CAL	POINT	AS FOUND RE	ADING" METER RE	ADING"
	X 1000	400 Kcpr		100	<u> </u>	20
	X 100		ñ	390	3	90
	X 100	10 Kcpr	n	10		10
	X 10	<u>4 Kcpr</u>	0	390	<u>-</u>	90
	<u>X 10</u>		<u>n</u>			0
•	X1	<u>400cpr</u>	n	100		00
			······			
	"Uncertainty within ± 10%	C.F. within ±20%				OFCINO MOCHONISCHY
	REFERENCE	INSTRUMENT	INSTRUMENT		INSTRUMENT	INSTRUMENT METER READINGS
Haitai	Ura Ponti	RECEIVED	MCIER REALING	00	AL COL	LIPAS
tuoboot:	400 K cpm	21810 61	348100) IS	COR K CO		<u></u>
	4X com	3986	3980	j <u></u> 6K.cor	n <u>45k</u>	4.54
	400 com	400	400	600 cor	n <u>500</u>	500
	40.com	4(0)	<u> </u>	<u>50 cor</u>	n <u>55</u>	55
Jolum Mocu	uromoniu inc. comilios that it	nood solve instrument has been	collumied by standards that ad from seconded values of	ecible to the National Institut natural physical constants of	e of Standards and Tochnology, or k in have been derived by the ratio hip	o of collocation lock/tock
	n system conforms to the reg	urements of ANS/NCSL 2540-1	-1994 and ANS N323-1978		State of Texas Calibra	tion License No. LC-1963
Call? Co				an Tree		mon Am 241 Po 8 1 1944
	ha \$/N		eta S/N		() Other	
·	00 \$/N 810					80040300
,	Mil	<u> </u>	cwoscope ang			MODEN VALUE
Calibrat	od By: I'UCh	of Joh	omal	Dote	26. April - 03	<b></b>
Reviewe	od By: Branda	Hami_		Date	30 Cin 07	
The conflict FORM C22	ate shall not be reproduced ( A = 04/09/2003	except in tul, whout the with	in approval of Lucium Meas.	romonts inc. AC	Inst. Powed Dielectric (Hi-P	or) and Contrainy four
		• • ·			-r i l'herre sound ar anna	
			L222	1/3x3		
			S/N: 15702	20/020429_6	ί.	
			JIN 10702	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	•	
			4/2	0/03		

Mallinckrodt C-T Project–Phase I Final Status Survey Report Building 250 Interior

.

Designer and Manufacturer of Scientific and industrial instruments LUDLUM MEASUREMENTS, INC. POST OFFICE BOX 810 PH. 325-235-549:1 501 OAK STREET FAX NO. 325-235-4672 SWEETWATER TEXAS 79556, U.S.A.

#### Bench Test Data For Detector

Customer TYC	O/MALLINCKR	ODT STLOUIS	Order #			
Counter	<u>2221</u> \$	erial No. 157020		_ Counter Input Se	ensitivity <u>10</u> m	
Count Time	6 sec			Distance Source to De	tector Surface	
Other	· • • • • • • • • • • • • • • • • • • •			میں میں میں میں میں میں میں میں میں ورون و میں		
High Voltage	Background	ste <u>20.17uCi</u>	otope Size	isotope Size	kotope Sze	
450	1443	5324				
500	1654	18326				
550	1572	22461				
600	1614	22466				
<u>&gt;630</u>	1687	22705				
700	1729	22867				
750	2057	23047				
800	2521	259 48				
850	3899	29 371		· /		
900	6780	40237				
<u> </u>	16139	53980		· · · · · · · · · · · · · · · · · · ·		
1000	19708	78799		· · · · · · · · · · · · · · · · · · ·		
	! ↓ ··					
	ļ					
				· · · · · · · · · · · · · · · · · · ·		
				·		
· <u>••</u>				<b>_</b>		
	•··•			· · · · · · · · · · · · · · · · · · ·		
	ļ			<u>.                                    </u>		
	 	· .		······		
. <u></u> ,						
Signature	Michae	f J Thomas	J		Dote 26 - Apr-03	
		l				
C4A 04/09/2003		· ····				

L2221/3x3 S/N: 157020/020429-6 4/26/03

Mallinckrodt C-T Project-Phase I Final Status Survey Report Building 250 Interior

## CT-RP-66 Chi Squared Test

Instrument Model #	2221	Date	: 05/07/2003
Instrument Serial#	157020	-Source Nuclide	: Cs137
Probe Model #	Nal 3x3	Source Serial 1	# 2558
Probe Serial #	020429-6	Source dom (4x)	: 21534000
Window Setting:	3700 3420	Efficiency (com/dom)	: 0.01
Thrashold Setting:	100mV /64	Background com	3676.2
High Voltage	850V	BKGD N-	1 4
Tagit Folidgo.	5001	KGD Count Time (min)	. 1
	Gross		. ,
	Channed	dauua Excenter	1 Background Counts
COUNTRAL	00501400	<u>CAPOLICI</u> 007200	
1	220001	22/00:	
2	221218	22100	4 JOM 1 4010
3	228251	22768	
4	227614	22768	3/01
5	228344	22768	3615
6	228647	22768	9
7	227269	22768	ð
. 8	227708	22768	
9	227138	22768	9
10	227004	22768	9
11	227520	22768	9
12	227819	22768	9
13	228608	22768	<b>b</b>
14	228680	22768	
15	207778	22769	
48	227078	22768	÷
10	22/0/0	00768	2 D
17	44/5/4	22100	*
18	22/6/3	22768	
19	227841	22768	
20	227443	22768	8
samplé mean (xhar) ≈	227689	Multiplier to convey	1
samole variance (s^2) =	334344	to dom	: 94.6
hackoround verlance (b^2) =	8750.2		
	688		
(0.6% Confidence) 2752 e a	4812		
	1914		
(39% Connoance) 3.515 5 .	2117		
41 - x 4 -	**		- <b>20</b> 3 960.46
	19	where (abu) a	20 <b>948</b>
$cnitest = p(x < \chi^{n}Z) =$	8.537E-02		
chiequare (x^2) =	27.900		
Acceptable x^2 min *	8.907		
Acceptable x^2 max =	32.852		
χ^2 test passes (yes/no)?	YES		
99% Conf. Interval Test min =	221895		
95% Conf. Interval Test min =	222401		
Delly Source Check Mean Net Counts	274013		
95% Conf Intorval Test may =	225625		
99% Conf Interiol Test may -	223020		
99 VE ACHT HERBIANI LAPT LINY	£20 130	- An	
	011	$(\mathcal{M})$	8-7-2003
Test performed by S St	urk At	- Khand	745 3-7-02
1001 Partie (1100 03- 0 00	// .	1	

Date:

Checked by:



Revision: 0 March 2004 APPENDIX 3

## CT-RP-66 Chi Squared Test

Instrument Model #	2221	Date:	06/04/2003
Instrument Serial#	157020	Source Nuclide:	Cs137
Probe Model #	Nal 3x3	Source Serial #	2538-99
Probe Serial #	020429-6	Source dom (4n):	2256600
Window Setting:	3680	Efficiency (cpm/dpm):	0.01
Threshold Setting:	104mV	Backmound com:	3985.8
High Voltage:	650V	EKGD N-1	4
t ngri t Gringa.	0001	BKGD Count Time (min):	i
	Greek	Counte -	•
	Observed	Everted	Beckgmund Counts
	20202	28402	A019
1	20/42	20402	4086
2	20/02	20482 08400	3076
3	20477	20992	3970
4	28166	26492	3504
5	28711	28492	3904
6	28701	. 28492	
7	28491	28492	
6	28304	28492	
9	28412	28492	
10	28667	28492	
11	28084	28492	
12	28349	28492	
13	28087	28492	
14	28460	28492	
15	28454	28492	
16	28882	28492	
10	20002	28403	
17 40	2011	20102	
10	20/10	20432	
19	20000	20492	
20	28592	. 20492	
sample mean (shar) =	28492	Multiplier to convert	
sample variance (s^2) =	44338	to dom:	80.3
background variance (b^2) =	3699.2		
	210		
(05% Confidence) 2752 a a	603		
	702		
(8870 Colimberide) 3.013 8 -	132		
			907
- <b>1</b> 1	**		1¥1 47004
oī = n-1 =	19	MUA (opm) =	23001
$chitest = p(x < \chi^2) =$	5.769E-02	: `	
chisquare (x^2) =	29.566		
Acceptable x^2 min =	8.907		
Acceptable x^2 max =	32.852	•	
x ² test passes (yes/no)?	YES	:	
99% Conf. Interval Test min >	23714		
95% Conf. Interval Test min =	23903		
Dally Source Check Mean Net Counts	24506	•	
95% Conf. Interval Test max =	25110		
99% Conf. Interval Test max =	25289		
	n	A	
Test performed by: \$	s Struck		-4-03

Checked by:

#### L2221/3x3 S/N: 157020/020429-6 4/26/03

Mallinckrodt C-T Project–Phase I Final Status Survey Report Building 250 Interior Revision: 0 March 2004 APPENDIX 3

Date:

Scientific and inc	Lania CERTIFICATE	OF CALIBRATION	POST OFFICE BOX 810 PH 501 OAK STREET FA SWEETWATER, TEXAS 79666	1916-235-6494 X NO. 915-235-46
CUSTOMER TYCOMEALT	ICARE/MALUNCKRODT		ORDER NO.	288367 / 268024
Mig. Lucium Measure	ments inc. Model	3030	Seriel No. /79562	
Col. Date 6-No	H12 Cal Due Date	6-May-03 Ca	L Inferval <u>6 Months</u>	
Check mark 🖉 applies to app	acable instr. and/or detector IAW	m/g.spec. T. 72_1	F. RH. 32 % Alt	<u></u>
New Instrument     Instrument       Mechanical ck.     *[]       Machanical ck.     *[]       Aucio ck.     *[]	Mindow Operation	-10% [] 10-20% [] Out of To	). Requiring Repair O	ther-See comman
	with I MI STIP 14 R row 12/15/20			mv
iorin ment Volt Set 27	V High Voltage act with data	tor consorted	•	•
M HV Readour (2 points)	Ner./Init. <u>971</u>	/500V Ref.	/nst/_794/	1500V
insis mant in DOLL mode	:	(EEPR	OM Settings)	
		UCUCH III Amba Alaama		•
Firmwore version: JOII	0	Rate Airen &	vvv veni 1000 com	
Overload set at 1/4 turn o	ast OFF.	Alnho/Rein Al		•
Battery voltade measured	at 1140 Vac.	Collocation Di	e Date:A	
C-14 Efficiency =9	%(4 p5) Net	LOC (Loss of C	ouni) time = 30 minutes (default	3 ·
				-
	REFERENCE CAL POINT	INSTRUMENT RECEIVED	INSTRUMENT METER READI	NG"
Alpha Channel Diattal Readout		900110	96031 <i>4</i>	
		223569		
	AV com	1000	1491	•
	400 com		<u> </u>	•
	40 com		¥0	•
		· · · · ·		
Beta/Gamma Channe	REFERENCE CAL POINT	INSTRUMENT RECEIVED	INSTRUMENT METER READIN	ig.
Digital Readout	400K.cpm	299449	799449	•
	40K com	39950	29950	-
•	4K.com	1995	2995	
,	400 com		400	•
	40 cpm		- 40	-
COLUMN WITHIN & TOS C.F. WIT	neza.	ga indicares 0.1 minute o	<b>0U</b> M	
COMMENIS: Sff. for Th-230 s/n 27	18-00, 3070cpm, read 4455	in 1 minute = Pt 2m	<b>i</b> .	
			· · · · · · · · · · · · · · · · · · ·	•
Johan Mecrulements, Inc. certifies that t	he above instrument has been calibrated by n members, or have been derived ham acce	stoncards flagsable to the National Inst ated values of natural advects constant	ivie of Brandotch and Technology, of to the s of frame been derived by the ratio have a	e coloration tachiles of f collocation technicules
Te colorion anien contone to the se Balance and Inclusion and and	Animents of ANSI/NC3, 2540-1-1994 and AN	3 NOZ2-1978.	Giate of Texas Calibratio	n License No. LC-196
				•
		NY WICK		
[1] m 500 S/N134		9 S/N	Muttimeter S/N	······································
Colloroted By: Connad	- Elinto	Dat	a Troud	
Parlower Br RL-1	Harris	<b>~~</b>	+ HNAU02	
	100	Ø		
The certificate shall not be reproduced PORM C25-2 05/03/2002	secsor in I.J. whout the witten opproval of	Luckyn Macaurements Inc.	Only Foliect	to and Continuity Tes
		L3030		
	(	NN 179562		
	<i>د</i>	, I.I. IIJJUL		
		11/0/00		

Sec. 195 WC. 16'2003 16:53 314 654 1251 Xr 425 A State of the second second HADLINCKROBT #2114 P.011 Judlum Measurements, Inc. £ 20 Model 3030 Platest Date ر آر ب 11/11/02 11:25:35 AN ieader 1: John Q Public. Header 2: Serial\$179563 Beader 3: Site:Building T Wender 4: 2000 7 Benthall Boader 5: More Communts? Reader 5: Yore Comments? Calibration Due Date: 5/8/03 Nodel 3030 Date: 1176/02 Nodel 3030 Time: 10:16:13 AM User PC Time: 1.0 Alpha Isotope: Ru-239 Alpha Source Size (dou): 25200 Alpha Source Size (gCi): 0.011351351 Seta Isotope: Tc-99 Beta Source Size (dom): 22500 Beta Source Size (#Ci): 0.01018018 Starting High Voltage: 625 Starting High Voltage: 750 High Voltage Increment: 25 Flateau Count Node:, SCALER Source Count Time (min): 0001.0 Background Count Time (min): 1.0 1 ALPHA . . BETA 1

. HV	Source	(Beta)	Background	TH	CrossTalk	Source	(Alpha)	Background	eft	Crosstalk
625 650 675 700 725	9306 9457 9632 9755 9627	(348) (311) (328) (340) (360) (267)	1 2 3 5 2	16.94 37.54 38.23 38.74 38.74 38.23	3,54 2,95 3.04 3:04 3:04 3:04	5347 6243 7209 8087 8928	(0) (4) (3) (1) (3)	25 40 41 43 68	23.51 27.63 31.74 35.64 39.25	0.0% 0.0% 0.0% 0.0% 0.0%
750	9773	(316)		38.81	2.41	9645	(1)	• <b>.183</b>	41.94	0.04

L3030 S/N: 179562 11/8/02

Alpha Backgroundignal: 3.6 Reta Beckgroundignal: 41.0 Alpha Efficiency 5: 38.2 Sets Efficiency 4: 31.7 Confidence Layel: 354 Count Time Alpha MDA (son). Beta MDA (dom) 0.1 120.4 305.9 0.5 50.0 132.2 1.0 28.2 102.5 0.5 50.0 50.0 50.9	12/11/02 11,25:19 AM						• • •	
Confidence Level: 954 Count Time Alpha KDA (shan). Beta MDA (dom) 0.1 120.4 305.9 0.5 40.0 132.2 1.0 28.2 102.5 0.1 8	Alpha Backgreinis Jeta Backgreinis Alpha Efficiency Seta Efficiency A	spa): -3.8 gail: 41.0 9:-38.2 11.7						
0.1 120.4 305.9   0.5 \$0.0 132.2   1.0 28.2 102.5   2.0 21.8 55.9	Confidence Level: Count Time	954 Ipha MDA (Ann	I. Beta MDA	láoni		•	•`	·
●第2	0.1 0.5 1.0 2.0	20.4 0.0 8.2 1.8	305.9 132.2 102.5 85.7				; ;	

L3030 S/N: 179562 11/8/02

Designer and Manufa of Scientific and Indus Instruments	xcture mta CERTIFICATI	E OF CALIBRATION	FUDLUM MEASUREM POST OFFICE BOX 810 PF 501 OAK STREET SWEETWATER, TEXAS 79556	ENTS, INC. L 325-235-6494 XX NO. 325-235-4672 .USA
CUSTOMER TYCO/MALLING	KRODT			200546 / 274002
Mfg. <u>Ludium Measurem</u>	ents inc. Model	3030	\$9rial No. <u>_779563_</u>	and a second
	Cri Duo Dato	22 Im M	A gran and A Months	an a
	chie instrand/or detector IA)	M mfg spec T 73 1	RH 30 % Alt	7(13.8 mm Hm
New instrument	ant Received PWithin Toler.	+10% 10-20% CUt of To		ther-See comments
Mechanical ck.	Window Operation			
Audio cic				
		mv berd Senanvity4	mv sera window <u>au</u>	mv
	Min LMI 50P 14.8 (ev 12/05/69.			
Instrument voit ser	V High vonage set with dete	ctor connected.		
<u>'V</u> HV Readout (2 points)	Ref./inst	_/500V Ref./	last. <u>/5/2</u> /	<u>1500                                   </u>
		(EEPRO	DM Settings)	
SC mode timed OFF		(PC) Court lat	<u>98889</u>	
Finnance version: 390/344	<b>,</b>	Reta Alam:	<i>999999</i> com	•
Overbood set of 1/4 turn pos	t OFF.	Aloha/Beta Ak	m: <u>9999999</u> cpm	
Bottery voltage measured a	t /1.76Vdc.	Calibration Du	e Date: 01/22/2004	
<u>C:19</u> Efficiency = _7.1		LOC (Loss of C	ount) fime = 30 minutes (defaul	Ŋ
<b></b>				
Alobe Coenel	REFERENCE CAL POINT	INSTRUMENT RECEIVED	INSTRUMENT METER READ	ING*
Digital Readout	400K com	199901	199901	_
-	40K.cpm	19992	39997	
	4K cpm	3997	3095	-
	400 cpm	400	400	-
	40 cpm	<u> </u>	40	-
Beta/Gamma Channel				ve
D gital Recdout	400K cpm	399507	399557	<b>-</b> .
			1997	-
	4K.com			-
	<u>400 com</u>	(40	<u> </u>	-
Concepto the Within & 10% C.F. within	± 20%	(0) indicates 0.1 minute o	ount	-
COMMENTS:				
115. for Th-230 s/n 2748	-00, 3070cpm read 237	7 in 1 minute = 77% 2pi		
Licken Mecavements inc. cartilles that the	above instrument has been calibrated i	w standards (raceable to the National Inst	iule of Standards and Jechnology, or to t	ne collection facilities of
other Interactional Standards Organization n	nembers, or hove been derived from go rements of ANSI/NCSL 2540-1-1994 and A	cepted values of natural physical constant MSI NSI23-1978.	s or have been derived by the ratio type ( State of Texas Calibrati	of collocation techniques. on License No. LO-1963
Reference Instruments and/o	r Sources:		이 아이는 아이들 것이 하네.	
Aipho S/N	Beta S/N _		Other	<u>ang pang pang</u> ang
M 500 S/N 13470		pe S/N	Multimeter S/N	67390613
<i>А</i>				
Constance by: <u>Constance</u>	Columba		B	
Jeviewed By LAS 1605	Un	Dat	· 12 July 03	
in the second	coot in full, without the written accounts	of Lucium Mecaurements. Inc.	AC Inst. Passed Dialectric GB-P	of) and Continuity Test
FCRM C25-3 04/09/2003	n an	and a second construction of the second s	Only Rolled;	
			e sata postantina data da seta da	n y grant y an de traditione d'Anti- Anti-Anti-Anti-Anti-Anti-Anti-Anti-Anti-
		L3030		
		S/N· 179562		
		7/22/02		
		1144103		

Mallinckrodt C-T Project–Phase I Final Status Survey Report Building 250 Interior

.

Ludium Measurements, Inc. Nodel 3030 Plateau Data 

?/22/03 9:45:42 Ax 'cader 1: John Q Public :ader 2: Serial#179562 .edder 3: Sice:Building 1 Header 4: Room 7 EastWall Header 5: More Comments? Header 6: More Comments? Header 6: More Comments? Calibration Due Date: 5/8/03 wodel 3030 Date: 7/19/04

Nodel 3030 Date: 7/19/04 Aodel 3030 Time: 8:32:16 AM

User PC Time: 1.0

Alpha Isotope: Pu-239 Alpha Source Size (dpm): 25200 Alpha Source Size (pCi): 0.011351351

Deta Isotope: TC-99 Beta Source Size (dpm): 22600 Beta Source Size (#Ci): 0.01018018

Starting High Voltage: 600 Starting High Voltage: 750 Righ Voltage Increment: 25

Therese Count Moder SCALER Frynce Count Time (min): 0001.0 capagement Count Time (min): 1.0

	Sauraa	(9012)	ALPHA Background		CrossTalk	Source	(Alpha)	BETA Background	Eff	Crosstalk
100	9387	{383}	0	37.3%	3.7%	4580	(2)	32	20.1%	0.0%
623	9455	(358)	1	37.5%	3.5%	5493	(3)	29	24.28	0.0%
550	9483	(363)	Ō	37.6%	3.5%	6502	(3)	33	28.61	0.0%
675	9586	(357)	1	38.0%	3.3%	7454	(3)	36	32.8%	0.0%
20	9537	(343)	0	37.8%	3.2%	8354	{0}	34	36.8%	0.0%
25	9618	(305)	Ċ	38.29	2.5	9100	(6)	63	40.0%	0.14
750	9666	(356)	1	38.4%	0.8%	10029	(5)	276	43.2%	0.0%

L3030 S/N: 179562 7/22/03

416-1

-----

Ludlum Measurements, Inc. Model 3030 MDA Calculation Data STREET, STORE 5/22/03 

1-1-

9-42-53 M.

Alpha Background(cpm): 0.0

ta Background(cpm): 33.0 

Alpha Efficiency %: 37.6 Beta Efficiency %: 28.6

المتحقة والترارية بالمجارة تروفان والمحار

Confidence Level: 95%

Count Time	: Alpha MDA (dom)	Beta MDA (dpm)
0.1	72.1	313.9
0.5	14.4	133.4
1.0	7.2	102.9
2.0	3.6	85.7
5.0	1.4	74.3
10.0	0.7	70.3
50.0	0.1	66.8
PC (1.0)	7.2	102.9

L3030 S/N: 179562 7/22/03

4

Ň

CL	Scientific and indu		OF CALIERATION	501 OAK STREET FAX NO. 916-235-4	8679
CL	USTOMER TYCO / MALLIN				210
CL	USTOMER TYCO / MALLIN	이 가지 않는 것 같아요. 나는 것 같아요. 이 것 같아요. 나는 것 같아요.		SWEETWATER TEXAS 79556 U.S.A.	* 19 h 1 - 1 - 1 - 1
M		CKRODT		ORDER NO 292439 / 270031	<u></u>
	fg. Lucturn Mecsuren	nents. Inc Model	3030	Serial No7 9 577	<u> 1875</u> -
-				化橡胶的 化光谱器 网络拉克拉克 计数据字句 化合物分子 化分子管 化分子 网络第三人称单数 化分子分子 化分子分子 化分子子	
Ç	cl. Dore <u>26-Feb-</u>	Cal Due Date	<u>26 Aug 03</u> Cal	Interval <u>&amp; Months</u>	
Che	eck mark 🗹 applies to applik	able instr. and/or detector IAW	mfg. apec. T. <u>72</u> °F	RH20 % Alt701.8 mm	HQ
	New instrument instrum	ent Received PWithin Toler.+	-10% 🗌 10-20% 🗍 Out of Tol	Requiring Repair Other-See comme	ante
	Mechanical cic.	Window Operation	* * * *	· · ·	. e.
ليت .		Alpha SensitMity 120	mV Beta Sensitivity4		
Q	Calibrated in accordance v	with LMI SOP 14.8 rev 12/05/89.			
nstru	ument Volt Set_725	V High Voltage set with detect	or connected.		
	W HV Readout (2 points)	Pot Inst 4/95	500 V Dof 8	net 1618 1 1500 1	
		······································	V (661.)1		¥
			(EEPRC	M Settings)	
	SC mode turned OFF.		Aloba Alama	993997 com	
	Ettrade version: J90/3/	z	Rato Alorm:	9999999 CDD	
	Overload set at 1/4 turn pas	1 OFF.	Alcho/Reta Alc		
	Battery voltage measured a	1/2,27 Vdc.	Collocation Due	Date: 08/26/2007	
i	C-14 Efficiency = _//	%(4 pi) Net	LOC (Loss of Co	uni) time = 30 minutes (detouit)	
	Alcho Channel	REFERENCE CAL POINT	INSTRUMENT RECEIVED	INSTRUMENT METER READING*	
	Digital Readout	400K com	299414	369014	
	-	40K com	39944	39844	
		4K.com	3995	2995	
		400 ccm	400	400	
		40 com	40	40	
	Beta/Gamma Channel	REFERENCE CAL POINT	INSTRUMENT RECEIVED	INSTRUMENT METER READING*	
	Digital Readout	4DOK com	399439	1994929	
		40K cpm		29945	
	•	4K com	2995	2895	
		400 com	400	400	
		40 com	40	40	
*?~?	entrin within a 10% C.F. within	± 20%.	(0) indicates 0.1 minute co		
ĊO	MMENTS:		in has said the		
EA.	1. for TA-130 Sh 2748-00 ,	sore your , rend care yo are	minute : 69% 29%		
JUCLUT	Necessements Inc. certiles for the	above instrument has been calibrated by s	andards traceable to the National Institu	te of Standards and Technology, or to the collingtion Incident (	<u>a</u>
the col	International Standards Organization m Horation system conforms to the reaul	embers, or have been derived from Occess ements of ANSI/NCSI, 2540-1-1994 and ANSI	ted values of natural physical constants N323-1978.	at have been derived by the rolio type of collocation technique State of Texas Calibration Basenen No. LO-19	NE. 963
Refe	erence instruments and/o	Sources:	and the second		
B	Apha S/N 20-239 17	Beto S/N _Z	-99 Ni+V	Other	
3	m 500 S/N 13470		S/N	🗂 Multimeter S/N	
-	1		机动动动物的		
78	C'C'30 BY: <u>Connend's</u>	Jali do	Dote	ZEFEL 07 Control of the second	
Rev	rewed By: Klash	Hami	Dots	H Mmes	
Thum -				Chut. 14 Annual Distances of Data and Containing	
PORM	M C25-3 10/022002	war in the willion opproval of L	Court Mecaulements Inc.		
<b>-</b> *			an te na sea an te s Te sea an te		
·					

S/N: 179577 2/26/03

Mallinckrodt C-T Project–Phase I Final Status Survey Report Building 250 Interior

____

JUL.16'2003 16:52 314 654 1251 LUCLUM MEASUREMENTS, ANC. MCCSI 3030 Plateau Data

2/26/03 1:38:50 PM

ž

3 I.

Header 1: John Q Public Header 2: Serial#179577 wder 3: Site:Building 1 .der 4: Room 7 EastWall neader 5: More Comments? Header 5: More Comments?

Calibration Due Date: 2/25/04

Kodel 3030 Date: 2/25/03 Model 3030 Time: 11:42:00 AM

User PC Time: 1.0

Alpha Isotope: Pu-239 Alpha Source Size (dpm): 365000 Alpha Source Size (µCi): 0.164414414

Beta Isotope: TC-99 Beta Source Size (dpm): 22600 Beta Source Size (µCi): 0.01018018

Starting High Voltage: 675 Starting High Voltage: 800 High Voltage Increment: 25

Plateau Count Mode: SCALER Scurce Count Time (min): 0001.0 Background Count Time (min): 1.0

EV	Source	(Beta)	ALFHA Background	Eff	CrossTalk	Source	(Alpha)	BETA Background	Eff	Crosstalk
675	137685	(3889)	0	37.7%	2.8%	6010	(1)	36	26.4%	0.0%
700	137877	(3657)	0	37.8%	2.6%	6966	(1)	45	30.6%	0.01
725	138583	(2500)	2	38.0%	1.8	7969	(1)	49	35.0%	0.0%
750	137851	(1483)	0	37.8%	1.0%	8551	(3)	50	37.6%	0.0%
775	137047	(1071)	1	37.54	0.7%	9470	(1)	70	41.6%	0.0%
0	137105	(783)	1	37.6%	0.4%	10082	(2)	203	43.78	0.0%

MALLINCKRODT-

L3030 S/N: 179577 2/26/03 #2114 P.007

44 H A

ν.

# JUL 16 2003 16:52 314 654 1251 Model 3030 HDA Calculation Data

2/26/03 1:42:00 Pu Alpha Background(cpn): 2.0

Seta Background (cpm): 2.0 Seta Background (cpm): 49.0

at Efficiency 1: 38.0

beta Efficiency 1: 35.0 -

Confidence Level: 95%

.

Count Time	Alpha MDA(dpm)	Beta MDA (dom)
0.1	111.9	295.7
0.5	35.5	129.5
1.0	24.4	100.8
2.0	18.6	84.5
5.0	14.8	73.6
· · · ·	13.6	69.8
50.0	12.5	66.5
PC (1.0)	24.4	100.8

L3030 S/N: 179577 2/26/03

Mallinckrodt C-T Project- Phase I Final Status Survey Report Building 250 Interior #2114 P.008

## **APPENDIX 4**

## **Threshold Comparison Test Reports (TCTR)**

,

#### Threshold Comparison Test Report - Buildings

Run Date: Wednesday, December 24, 2003

Survey Unit Number: 2502 Class: 2 Data Points: Beta Grid Type: R

#### SURVEY UNIT TABLE

				Surface Area	
			Fixed	Included	
Bldg	Rm	Surface	Equipment	(sq. fi)	Remarks
B250	205	FNSEW	Q1-6	628	* Dishwashing Room
B250	207	FNSEW	Q1-4	822	Storage Room. Had contaminated sink that was
B250	209	FNSEW	Q1-12	1517	Lab
B250	210	FNSEW	Q1-13	2930	Mechanical Room
B250	211	FNSEW	Q1-12	1617	Lab
			Total Area	7514	

#### **INITIALIZATION DATA**

Measurement	Types Selec	ted: RG	i, BI, CH
Date Range:		All	
Thresholds:			
EMC:	13.000	DCGLw:	2.600

#### SURVEY UNIT TEST STATUS

Test Performed	Status			dpm _p /100 cm ²
Min/Max	Pass	Maximum Survey Value	CB	622.0
Background	Fail	Minimum Background	VT	-26.0
DCGLw	Pass	Difference		648.0
DCGLavg	Pass	Average Activity	119.4	
EMC	Pass	Average Below DCGL	119.4	
Wilcoxon Rank Sum Tes	st N/A	Average Background	87.7	
Sign Test for Paired Data	a Pass			

Mallinckrodt C-T Project-Phase I Final Status Survey Report Building 250 Interior

Threshold Comparison Test Report - Buildings

THE FOLLOWING DATA POINTS FAILED THE EMC TEST:

NONE

#### THE FOLLOWING DATA POINTS FAILED THE DCGLw TEST:

Building: B250

NONE

Survey Linit # 2502

#### THE FOLLOWING DATA POINTS FAILED THE BACKGROUND TEST:

					Meas.			Gross Activity	,			
Room	SFC	X (ft)	Y (ft)	Mtx	Туре	Min	SID	(dpm p/100cm ² )	Remarks	Exc Res.		
205	Ε	6.5	2.5	СВ	BI	1	6460	330.4		С		
205	N	1.2	0.0	СВ	RG	1	6458	622.3		С		
205	Q2	2.0	0.0	G	BI	1	6465	7.1		С		
205	Q4	2.0	0.0	Р	BI	1	6469	62.3		С		
205	Q4	1.0	0.0	Р	Bl	1	6468	17.0		С		
205	S	14.0	6.8	· CB	RG	1	6459	236.8		С		
207	W	10.4	3.0	СВ	RG	1	6476	490.1		С		
207	w	0.3	5.5	СВ	RG	1	6478	192.7		С		
209	F	11.8	20.5	VΤ	RG	1	6542	91.7		С		
209	F	11.8	9.2	VT	RG	1	6543	75.3		С		
209	N	11.8	3.9	CB	RG	1	6539	230.2		С		
209	Q10	2.0	0.0	G	Bl	1	6571	58.0		С		
209	Q10	1.0	0.0	G	BI	1	6570	38.7		С		
209	Q11	1.0	0.0	0	BI	1	6572	32.7		С		
209	Q2	3.0	0.0	AT	BI	1	6551	68.7		С		
209	Q2	2.0	0.0	AT	BI	1	6550	55.6		С		
209	Q8	2.0	0.0	G	BI	1	6564	55.4		С		
209	Q9	2.0	0.0	AT	BI	1	6566	139.1		С		
209	Q9	1.0	0.0	AT	BI	1	6565	117.8		С		
209	S	6.7	2.3	CB	RG	1	6544	167.4		С		

Mallinckrodt C-T Project-Phase I Final Status Survey Report Building 250 Interior

					Meas.		1	Gross Activity			
Room	SFC	X (ft)	Y (ft)	Mtx	Туре	Min	SID	(dpm /100cm ² )	Remarks	Exc	Res.
209	s	67	10.6	CB	RG	1	6545	153 5		C	
200	Ŵ	20.5	8.0	CB	RG	1	6540	355.8		č	
200	Ŵ	9.2	8.0	CB	RG	1	6541	313.9		č	
210	F	5.1	12.3	B	RG	1	6494	455 7		č	
210	Ē	16.6	12.3	č	RG	1	6497	313.6		č	
210	Ň	6.0	6.0	ČB.	СН	2	2103	509.8		č	
210	N	6.0	0.0	CB	СН	2	2101	506 1		č	
210	N	29.6	6.5	B	RG	1	6491	491.8		č	
210	N	6.0	3.0	ČB.	СН	2	2102	394.5		č	
210	N	12.0	6.0	õ	СН	2	2123	311.6		č	
210	N	6.5	6.5	FG	RG	1	6490	260.4		č	
210	N	12.0	0.0	<b>1</b> 0	CH	2	2121	257.6		č	
210	N	12.0	3.0	ŏ	CH	2	2121	246.8		č	
210	N	16.0	0.0	ŏ	СН	5	2124	221.6		č	
210	N	16.0	6.0	ŏ	СН	2	2126	160 3		č	
210	N	16.0	3.0	ŏ	СН	2	2120	138 7		č	
210	01	10.0	0.0	м	BI	1	6502	141 6		č	
210	01	2.0	0.0	8.6	BI ·	1	6503	128 4		č	
210	01	2.0	0.0	1V1 8.4	RI	1	6504	118 4		č	
210		1.0	0.0	N/	BI	1	6512	93.6		č	
210	06	2.0	0.0	8.4	BI	1	6513	71 0		č	
210	ŝ	10.8	1.8	B	RC	4	6499	546 1		č	
210	s	33.0	13.4	B	RG	4	6500	405.0		č	
210	ě	10.8	13.4	B	RG	4	6501	343.6		č	
210	Ŵ	24.0	3.0	CB	CH	2	2141	435 0		č	
210	W/	6.0	0.0	CB	СН	2	2131	426.0		č	
210	Ŵ	24.0	0.0	CB	СН	2	2142	374 7		č	
210	Ŵ	12.0	3.0	CB	СН	2	2135	367.5		č	
210	Ŵ	6.0	3.0	CB	СН	2	2130	340.4		č	
210	Ŵ	18.0	0.0	CB	СН	2	2132	336.8		č	
210	Ŵ	18.0	3.0	CB	СН	2	2138	333.2		č	
210	Ŵ	12.0	6.0	CB	СН	2	2136	329.6		č	
210	Ŵ	0.0	3.0	CB	СН	2	2120	302.6		č	
210	Ŵ	6.0	6.0	CB	СН	2	2133	300.8		č	
210	Ŵ	0.0	6.0	CB	СН	2	2130	300.8		č	
210	Ŵ	12.0	0.0	CB	СН	2	2134	270.2		č	
210	ŵ	24.0	0.0	CB	СН	2	2140	237.8		č	
211	F	8.8	51	CB	RG	1	6727	319.4		č	
211	F	16.0	84	νŤ	RG	1	6724	107.2		õ	
211	F	32	19.2	νŤ	RG	· i	6726	93.0		č	
211	Ň	16.0	2.6	СВ	BI	1	6722	391.0		č	
211	01	2.0	0.0	ĊŤ	BI	1	6730	280.4		č	
211	<b>0</b> 1	10	0.0	M	BI	1	6729	78.1		č	
211	010	2.0	0.0	M	BI	i	6751	62.7		č	
211	011	1.0	0.0	ö	BI	1	6755	104.7		č	
211	Q4	2.0	0.0	Ğ	BI	· 1	6739	19.3		č	
211	Q6	2.0	0.0	FG	BI	1	6743	31.0		č	
211	Q8	2.0	0.0	CT	BI	1	6747	206.7		č	
211	S	17.2	3.0	CB	RG	1	6728	517.6		č	
211	w	8.4	6.2	CB	RG	. 1	6723	280.8		C	

## Threshold Comparison Test Report - Buildings

Mallinckrodt C-T Project–Phase I Final Status Survey Report Building 250 Interior

#### Threshold Comparison Test Report - Buildings

# THE FOLLOWING DATA POINTS PASSED BACKGROUND, DCGLw, AND EMC SCREENING TESTS:

Building: B250

Survey Unit # 2502

Room	SFC	X (ft)	Y (ft)	Mtx	Meas. Type	Min	Gi SID (d	ross Activity	Remarks	Exc	Res.
								<u> </u>	<u> </u>		
205	Q1	2.0	0.0	M	BI	1	6462	34.0			
205	Q1	1.0	0.0	M	BI	1	6461	24.0			
205	Q1	3.0	0.0	M	BI	1	6463	16.2			
205	Q2	1.0	0.0	CI	BI	1	6464	45.2			
205	Q3	2.0	0.0	CI	BI	1	6467	/1.1			
205	Q3	1.0	0.0	CI	BI	1	6466	58.1			
205	Q5	1.0	0.0	M	BI	1	6470	28.6			
205	Q5	2.0	0.0	M	BI	1	6471	16.2			
205	26	1.0	0.0	M	BI	1	6472	15.5			
207	E	1.1	10.5	CB	RG	1	04//	82.0			
207	E	17.0	10.5		RG DI		04/9	11.0			
207		2.0	0.0	M	BI	1	0401	40.2			
207		1.0	0.0	IVI	DI	1	6460	22.4			
207		3.0	0.0		DI		6402	20.9			
207	Q3	2.0	0.0			1	6404	30.7			
207	03	1.0	0.0			4	6405	13.2			
207	01	1.0	0.0			4	040J 6546	49.5			
209		1.0	0.0			4	6549	49.1			
209		3.0	0.0	7¥1 8.4		4	6547	20.5			
209		2.0	0.0	IVI NA	DI	4	6552	4.9	Riewer Motor		
209	02	4.0	0.0	N/		1	6540	19.0	DIOWEI MIOLOI		
203	03	1.0	0.0	OT.	DI BI	4	6554	-2.0			
209	03	2.0	0.0	č	RI	1	6555	-14.2			
209	04	2.0	0.0	СТ	RI	1	6557	135.8			
203	04	1.0	0.0	ČŤ	RI	1	6556	132.6			
203	05	1.0	0.0	M	RI	4	6558	32 3			
200	06	1.0	0.0	СТ	RI	4	6559	19.6			
200	06	20	0.0	ст	RI	1	6560	16			
209	07	10	0.0	ст	BI	1	6561	173.5		•	
209	07	20	0.0	čŤ	BI	1	6562	163.7			
209	08	1.0	0.0	ĊŤ	BI	1	6563	-29.5			
209	<u>09</u>	4.0	0.0	M	BI	1	6568	49.0	Blower Motor		
209	09	3.0	0.0	M	BI	1	6567	-5.9			
210	F	24.0	0.0	Ĉ	CH	2	2108	75.4			
210	F	30.0	0.0	č	CH	2	2113	74.9			
210	F	29.6	9.7	Č	RG	1	6496	73.7			
210	F	30.0	10.6	Ċ	CH	2	2115	50.3			
210	F	30.0	24.0	C	СН	2	2117	49.3			
210	F	24.0	12.0	С	СН	2	2110	39.2			
210	F	18.0	22.0	С	СН	2	2106	25.6			
210	F	6.5	9.7	С	RG	1	6495	24.2			
210	F	30.0	18.0	С	СН	2	2116	13.1			
210	F	18.0	12.0	С	СН	2	2104	11.1			
210	F	18.0	18.0	С	СН	2	2105	5.0			
210	F	24.0	24.0	С	СН	2	2112	2.5			
210	F	23.0	18.0	C	СН	2	2111	1.0			
210	F	20 6	213	C	RG	1	6493	-20			

٦

					Meas.			<b>Gross Activity</b>				
Room	SFC	X (ft)	Y (ft)	Mtx	Туре	Min	SID	(dpm p/100cm ² )	Remarks	Exc	Res.	
210	F	24.0	0.0	С	СН	2	2109	-9.0				
210	F	30.0	6.0	č	СН	2	2114	-11.1				
210	F	6.5	21.3	B	RG	1	6492	-23.3				
210	O10	2.0	0.0	M	BI	1	6521	27.1				
210	Q10	1.0	0.0	M	BI	1	6520	26.3				
210	Q10	3.0	0.0	M	BI	1	6522	16.2				
210	Q11	1.0	0.0	M	BI	1	6523	26.3				
210	Q11	3.0	0.0	M	BI	1	6525	-6.2				
210	Q11	2.0	0.0	М	BI	1	6524	-10.1				
210	Q12	1.0	0.0	М	BI	1	6526	16.2				
210	Q2	2.0	0.0	м	BI	1	6506	13.9				
210	Q2	1.0	0.0	м	Bí	1	6505	-4.6				
210	Q2	3.0	0.0	М	BI	1	6507	-9.3				
210	Q3	2.0	0.0	М	BI	1	6509	35.6				
210	Q3	1.0	0.0	М	Bł	1	6508	-7.0				
210	Q4	1.0	0.0	M	BI	1	6510	-8.5				
210	Q5	1.0	0.0	M	BI	1	6511	16.2				
210	Q7	1.0	0.0	M	BI	1	6514	48.0				
210	Q8	2.0	0.0	М	Bl	1	6516	44.1				
210	Q8	3.0	0.0	M	BI	1	6517	37.1				
210	Q8	1.0	0.0	М	BI	1	6515	28.6				
210	Q9	1.0	0.0	М	BI	1	6518	-0.8				
210	Q9	2.0	0.0	M	BI	1	6519	-38.7				
210	S	33.9	1.8	M	RG	1	6498	8.7				
210	W	18.0	6.0	P	СН	2	2139	-175.4				
211	Q1	3.0	0.0	M	Bl	1	6731	19.3				
211	Q10	4.0	0.0	M	BI	1	6753	28.6	Blower Motor			
211	Q10	1.0	0.0	M	BI	1	6750	9.3				
211	Q10	3.0	0.0	M	BI	1	6752	-6.2				
211	Q2	1.0	0.0	M	BI	1	6732	25.5				
211	Q3	3.0	0.0	M	BI	1	6735	20.9				
211	Q3	4.0	0.0	M	BI	1	6736	16.2	Blower Motor			
211	Q3	2.0	0.0	M	BI	1	6/34	11.6				
211	Q3	1.0	0.0	M	BI	1	6733	-10.8				
211	Q4	1.0	0.0		BI		6738	18.1				
211	<b>U</b> 5	2.0	0.0		BI		6741	150.3				
211	<b>U</b> 5	1.0	0.0		DI DI		6740	84.U 71				
211	07	1.0	0.0	CT CT	DI BI	1	014Z	-7.1				
211	07	1.0	0.0	CT	BI	4	0/44 67/5	42.0 29 A				
211	~~~~	2.0	0.0	CT	E1	1	6740	20.4 122 7				
211		1.0	0.0		BI .	1	6740	-20.7				
211	00	2.0	0.0	čt	BI	1	6749	-20.7				
211	6	1.0	13 0		PC	4	6725	-31.0				
<b>2</b> 11	3	4.3	13.6		KG.	I	0/23	141.4				

## Threshold Comparison Test Report - Buildings

Threshold Comparison Test Report - Buildings

Summary of Background Data and Thresholds Used in this Analysis

*Measurement Type:* BK *DCGL:* 2,600 *EMC:* 13,000

Matrix	Number of	Average	Sigma	Background	DCGLw	ЕМС
	Data Points	Background		Threshold	Threshold (Td)	Threshold (Tc)
Baaaan ah	(dpmp/100cm ² )	(dpmp/100cm ² )	(dpmp/100cm ² )	(dpmp/100cm ² )	(dpm _p /100cm ² )	(dpmp/100cm ² )
AT	0	0.0	0.0	0.0	2,600	13,000
В	30	192.4	16.0	224.4	2,824	13,224
С	90	35.4	20.1	75.5	2,675	13,075
СВ	51	96.1	21.7	139.4	2,739	13,139
CTP	10	144.1	29.2	202.4	2,802	13,202
СТХ	30	152.6	15.1	182.9	2,783	13,183
FG	0	0.0	0.0	0.0	2,600	13,000
G	0	0.0	0.0	0.0	2,600	13,000
М	10	24.0	15.7	55.3	2,655	13,055
ο	0	0.0	0.0	0.0	2,600	13,000
P	0	0.0	0.0	0.0	2,600	13,000
VT	10	15.1	24.0	63.0	2,663	13,063

Threshold Comparison Test Report - Buildings

#### STATISTICAL TEST RESULTS

Run Date:	12/24/200	3 10:34:08	1
Survey Unit Number	2502	Class:	2
Selected Test:	SIGN TES	ST FOR PA	IRED DATA
Test Status	Pass		
Thresholds:			

EMC 13,000 DCGL 2,600

#### DATA SUMMARY TABLE

31 Survey points processed and 6 matrices processed

S+ = 31 Wc = 20

#### ****** The survey unit has passed the SIGN TEST FOR PAIRED DATA ******

#### Threshold Comparison Test Report - Buildings

Run Date: Wednesday, December 24, 2003

Survey Unit 2503 Class: 2 Data Points: Beta Grid Type: R

#### SURVEY UNIT TABLE

				Surface Area	
			Fixed	Included	
Bldg	Rm	Surface	Equipment	(sq. ft)	Remarks
B250	201	FNSEW	Q1-9	1720	CT Lab. Highest contamination of upstairs labs
B250	202	FNSEW	Q1-7	1712	Test production Lab. FSS data already taken.

Total Area 3432

#### **INITIALIZATION DATA**

Measurement	Types Sele	cted: RG	6, BI, CH
Date Range:		All	
Thresholds:			
EMC:	13,000	DCGLw:	5,000

#### SURVEY UNIT TEST STATUS

_	Test Performed	Status			dpmp/100 cm ²
	Min/Max	Pass	Maximum Survey Value	СТР	3,617.0
	Background	Fail	Minimum Background	<u>vт</u>	-26.0
	DCGLw	Pass	Difference		3,643.0
	DCGLavg	Pass	Average Activity	329.0	
	EMC	Pass	Average Below DCGL	329.0	
	Wilcoxon Rank Sum Te	st N/A	Average Background	111.3	
	Sign Test for Paired Dat	la Pass			

Threshold Comparison Test Report -

THE FOLLOWING DATA POINTS FAILED THE EMC TEST:

NONE

#### THE FOLLOWING DATA POINTS FAILED THE DCGLw TEST:

NONE

#### THE FOLLOWING DATA POINTS FAILED THE BACKGROUND TEST:

Survey Unit # 2503

Building: B250

					Meas.		C	Gross Activity			
Room	SFC	X (ft)	Y (ft)	Mtx	Туре	Min	SID	(dpm p/100cm ² )	Remarks	Exc	Res.
201	Е	8.5	0.0	СВ	СН	2	2487	747.4		С	
201	Е	2.5	0.0	CB	CH	2	2481	730.5		С	
201	Е	2.5	3.0	СВ	СН	2	2482	713.7		С	
201	Ε	5.5	3.0	СВ	CH	2	2485	674.3		С	
201	Ε	11.5	3.0	СВ	СН	2	2491	564.7		С	
201	Е	8.5	6.0	CB	СН	2	2489	508.5		С	
201	Е	2.5	6.0	CB	СН	2	2483	458.0		С	
201	E	11.5	6.0	CB	СН	2	2492	452.4		С	
201	Е	2.5	9.0	СВ	СН	2	2493	415.8		С	
201	Ε	25.8	9.3	СВ	RG	1	6608	393.0		С	
201	Е	17.8	9.3	СВ	RG	1	6605	393.0		С	
201	Е	5.5	6.0	CB	СН	2	2486	354.0		С	
201	Ε	8.5	3.0	CB	СН	2	2488	348.4		С	
201	Е	8.5	9.0	CB	СН	2	2495	281.0		С	
201	Ε	11.5	9.0	СВ	CH	2	2496	264.1		С	
201	Е	11.5	0.0	СВ	СН	2	2490	255.7		С	
201	Е	5.5	0.0	СВ	СН	2	2484	179.8		С	
201	F	9.7	11.7	С	BI	1	6612	1,028.0		С	
201	F	9.7	13.3	С	BI	1	6611	714.8		С	
201	F	13.1	19.3	VT	RG	1	6601	117.8		С	
201	F	13.1	3.2	VΤ	RG	1	6607	96.6		С	
201	F	13.1	11.3	VT	RG	1	6604	94.9		С	
201	F	14.0	23.5	VT	СН	2	2476	90.0		С	
201	F	17.0	25.3	VΤ	СН	2	2472	88.3		С	
201	F	11.0	23.5	VT	СН	2	2479	82.3		С	
201	F	14.0	25.3	VT	СН	2	2475	81.0		С	
201	F	14.0	20.5	VΤ	СН	2	2477	78.4		С	
201	F	11.0	25.3	VΤ	СН	2	2478	77.5		С	
201	N	13.1	6.5	СВ	RG	1	6596	775.4		С	
201	N	20.0	3.0	СВ	СН	2	2498	590.0		С	
201	N	17.0	0.0	СВ	СН	2	2501	581.6	,	С	
201	N	17.0	6.0	CB	СН	2	2503	564.7		С	
201	Ν	17.0	3.0	СВ	СН	2	2502	542.3		С	
201	Ν	20.0	0.0	СВ	СН	2	2497	519.8		С	
201	N	14.0	3.0	СВ	СН	2	2506	407.4		С	

## Threshold Comparison Test Report - Buildings

					Meas.		C	<b>Gross Activity</b>		
Room	SFC	X (ft)	Y (ft)	Mtx	Туре	Min	SID	(dpm _/100cm ² )	Remarks	Exc Res.
						_				-
201	N	14.0	9.0	CB	CH	2	2508	373.7		C
201	N	14.0	6.0	СВ	CH	2	2507	373.7		С
201	N	20.0	6.0	CB	СН	2	2499	351.2		С
201	N	14.0	0.0	СВ	СН	2	2505	199.5		C
201	N	17.0	9.0	СВ	СН	2	2504	179.8		C
201	Q1	1.0	0.0	СТ	BI	1	6613	209.5		C
201	Q2	3.0	0.0	ΆT	BI	1	6618	126.0		С
201	Q2	2.0	0.0	AT	BI	1	6617	14.7		С
201	Q3	2.0	0.0	G	BI	1	6620	38.7		С
201	Q3	3.0	0.0	G	B!	1	6621	6.4		С
201	Q4	3.0	0.0	СТ	BI	1	6625	3,617.0		С
201	S	6.9	12.9	CB	RG	1	6610	648.0	No Paint	С
201	S	6.9	4.8	СТ	RG	1	6609	329.3		С
201	w	27.4	3.0	AT	RG	1	6597	201.8		Č
201	w	3.2	3.0	M	RĠ	1	6606	101.8		č
201	W	19.3	3.0	M	RG	1	6600	76.3		č
202	E	2.0	0.0	СВ	СН	3	2659	956.9		č
202	Ē	12.9	2.0	ČВ	CH	3	2662	820.5		č
202	Ē	18.5	2.0	CB	CH	3	2661	772 2		č
202	F	24.1	2.0	CB	СН	3	2660	738.6		č
202	Ē	19.2	87	ČB	CH	ă	2690	679.9		č
202	Ē	74	2.0	CB	CH	à	2663	631.6		č
202	Ē	23.1	87	CB	СН	2	2680	610.6		č
202	Ē	3.5	87	CB	СH	3	2003	597.6		č
202	5	19.0	5.6		PG	1	6683	573.6		0
202	5	10.4	2.0			2	2664	515.0		0
202	E	1.9	2.0			3	2004	J 10.J		C
202	5	10.2	5.6		PC		2031	409.0		C C
202	5	44.2	9.0			2	2602	400.0		C
202	5	40.4	0.1			3	2032	400.0		C
202	5	10.4	0.0			1	0000	440.1		C
202	5	7.4	0.7			3	2093	402.9		C
202	E	3.0	0.0	CB	CH	3	2688	381.9		C C
202	E	26.3	5.0	M	RG	1	0680	95.4		C
202	F	1.0	0.0	C	CH	2	2644	97.0		C
202	N	8.0	13.5	CB	RG	1	6673	679.8		C
202	N	1.6	9.8	CB	UH	3	6819	666.3		C
202	N	9.5	9.8	CB	CH	3	6821	644.2		C
202	N	10.8	2.3	CB	CH	3	2/11	642.1		C
202	N	8.0	5.5	CB	RG	1	6674	552.4		U C
202	N	13.5	9.8	CB	CH	3	6822	545.9		C
202	N	5.0	9.8	CB	CH	3	6820	519.8		C
202	N N	10.4	2.3	r		1	2/12	209.8	Window	U C
202	N	5.2	2.3	٢			2/10	82.8	WODUIV	U C
202	N	9.5	13.5	M	CH		6826	75.7		C
202	N	17.4	13.5	M	CH	1	6828	75.7		C
202	N	17.4	9.8	۲	CH	1	6823	63.4		C C
202	S	10.2	5.2	CB	CH	3	2666	646.3		C
202	S	14.8	5.2	CB	CH	3	2665	591.7		C
202	S	10.5	9.5	CB	CH	3	2697	572.0		C
202	5	2.6	9.5	CB	CH	3	2699	545.9		C
202	S	14.4	9.5	CB	CH	3	2696	521.8		C
202	S	3.6	5.2	CB	CH	3	2667	518.3		C
202	S	18.4	9.5	CB	CH	3	2695	447.5		C
202	S	10.3	6.3	CB	RG	1	6687	308.0		C
202	S	6.5	9.5	CB	СН	3	2698	301.0		C
202	W	19.1	11.9	CB	СН	3	2705	1,149.9		C
202	W	24.6	0.3	СВ	СН	3	2674	927.5		C
202	W	11.3	11.9	CB	СН	3	2703	842.9		C
202	W	13.6	0.3	CB	CH	3	2671	816.3		C
202	W	15.2	11.9	СВ	CH	3	2704	814.8		С

Mallinckrodt C-T Project-Phase I Final Status Survey Report Building 250 Interior

.

Revision: 0 March 2004 APPENDIX 4

202	W	24.6	5.9	СВ	СН	3	2708	814.2	С
202	W	8.0	0.3	СВ	ĊH	3	2670	797.4	С
202	W	19.1	0.3	СВ	СН	3	2672	778.5	С
202	W	7.3	11.9	СВ	СН	3	2702	752.6	С
202	W	4.0	0.0	СВ	СН	3	2668	751.2	С
202	W	3.4	11.9	CB	СН	3	2701	686.4	С
202	W	25.5	7.9	СВ	RG	1	6675	648.0	С
202	W	23.0	11.9	CB	СН	3	2706	616.1	С
202	W	19.1	5.9	CB	СН	3	2678	614.8	С
202	W	1.7	7.9	СВ	RG	1	6684	573.6	С
202	W	13.6	5.9	СВ	СН	3	2677	558.2	С
202	W	24.6	0.3	СВ	СН	3	2707	503.6	С
202	W	8.0	5.9	СВ	СН	3	2676	430.2	С
202	W	2.4	0.3	СВ	СН	3	2669	379.8	С
202	W	2.4	5.9	CB	СН	3	2675	375.6	С
202	W	17.6	7.9	СВ	RG	1	6678	329.3	С
202	W	6.0	0.0	С	СН	2	2700	326.9	С
202	W	9.6	7.9	СВ	RG	1	6681	318.7	С

#### THE FOLLOWING DATA POINTS PASSED BACKGROUND, DCGLw, AND EMC

#### Screen Tests:

Survey Unit #	2503	Building:	B250
Ourvey Onthe	2000	Dunung.	0200

					Meas.			Gross Activity	,		
Room	SFC	X (ft)	Y (ft)	Mtx	Туре	Min	SID	(dpm p/100cm ² )	Remarks	Exc	Res.
201	Ε	5.5	9.0	СВ	СН	2	2494	104.0			
201	Е	9.7	9.3	м	RG	1	6602	-216.3			
201	F	20.0	20.5	С	СН	2	2471	73.7			
201	F	17.0	20.5	С	СН	2	2474	66.3			
201	F	11.0	20.5	VΤ	СН	2	2480	54.5			
201	F	17.0	23.5	С	СН	2	2473	48.0			
201	F	20.0	23.5	С	CH	2	2470	37.2			
201	F	20.0	25.3	С	CH	2	2469	27.1			
201	Ν	20.0	9.0	СВ	СН	2	2500	104.0			
201	Q1	2.0	0.0	М	BI	1	6614	3.9			
201	Q1	3.0	0.0	М	BI	1	6615	2.0			
201	Q2	1.0	0.0	М	BI	1	6616	7.8			
201	Q3	4.0	0.0	G	BI	1	6622	-23.2			
201	Q3	1.0	0.0	G	BI	1	6619	-27.1			
201	Q4	1.0	0.0	СТ	Bl	1	6623	72.0			
201	Q4	2.0	0.0	СТ	BI	1	6624	-22.9			
201	Q5	1.0	0.0	СТ	BI ·	1	6626	111.3			
201	Q5	2.0	0.0	м	BI	1	6627	7.8			
201	<b>Q</b> 6	1.0	0.0	СТ	BI	1	6628	198.0			
201	Q6	2.0	0.0	СТ	BI	1	6629	198.0			

					Meas.			<b>Gross Activity</b>				
Room	SFC	X (ft)	Y (ft)	Mtx	Туре	Min	SID	(dpm /100cm ² )	Remarks	Exc	Res.	
201	07	1.0	0.0	ст	RI	4	6630	26.2				
201	07	2.0	0.0	M	BI	1	6631	40				
201	08	1.0	0.0	СТ	RI	4	6632	112.9				
201	08	2.0	0.0	ĊT	81	1	6633	108.0				
201	Ŵ	11.3	3.0	M	RG	1	6603	-209.9				
202	F	8.0	17	СТ	RG	1	6685	170.2				
202	F	5.2	24	č	СН	2	2645	64.0				
202	F	16.4	2.4	č	СН	2	2653	57.6				
202	Ē	10.4	8.0	č	CH	2	2650	47.0				
202	Ē	10.8	24.6	č	СН	2	2658	28.8				
202	F	5.2	8.0	č	СH	2	2646	27.7				
202	F	10.8	19.1	č	СН	2	2652	26.5				
202	F	10.8	13.6	č	СН	2	2651	25.8				
202	F	8.0	25.5	ŇТ	RG	1	6676	22.9				
202	F	16.4	24.6	ċ	CH	2	2709	19.7				
202	F	16.4	13.6	č	CH	2	2655	15.5				
202	F	5.2	19.1	Č.	ĊH	2	2648	15.2				
202	F	5.2	24.6	Č	CH	2	2657	14.8				
202	F	10.8	2.4	Č	CH	2	2649	13.3				
202	F	16.4	8.0	C	СН	2	2654	12,1				
202	F	16.4	19.1	С	СН	2	2656	7.6				
202	F	5.2	13.6	С	СН	2	2647	6.8				
202	F	8.0	17.6	VΤ	RG	1	6679	6.5				
202	F	8.0	9.6	VΤ	RG	1	6682	-24.5				
202	N	5.6	13.5	M	СН	1	6825	-10.8				
202	N	13.5	13.5	м	СН	1	6827	-14.4				
202	N	1.6	13.5	м	СН	1	6824	-32.4				
202	Q1	2.0	0.0	СТ	BI	1	6689	96.6	Ceiling Tile			
202	Q1	3.0	0.0	М	BI	1	6690	19.6	Piping			
202	Q1	1.0	0.0	м	BI	1	6688	-13.7	Light			
202	Q2	1.0	0.0	СТ	Bl	1	6691	44.2				
202	Q2	2.0	0.0	м	Bi	1	6692	20.6				
202	Q3	1.0	0.0	СТ	BI	1	6693	-1.6				
202	Q3	2.0	0.0	СТ	BI	1	6694	-76.9				
202	Q5	1.0	0.0	СТ	BI	1	6695	11.5				
202	Q5	2.0	0.0	M	Ы	1	6696	-8.8				
202	Q6	1.0	0.0	СТ	Ы	1	6697	13.1				
202	Q6	2.0	0.0	СТ	BI	1	6698	-21.3				

## Threshold Comparison Test Report - Buildings

#### Threshold Comparison Test Report - Buildings

#### Summary of Background Data and Thresholds Used in this Analysis

Measurement Type: BK DCGL: 5,000 EMC: 13,000								
Matrix	Number of	Average	Sigma	Background	DCGLw	EMC		
	Data Points	Background		Threshold	Threshold	Threshold		
	and a second a second second second second	an ann a' stair an Mar a na a m- anna tha aide	a name o recención de la constante de la const	(Tbk)	(Td)	(Tc)		
	(dpmp/100cm ² )	(dpm _p /100cm ² )	(dpmp/100cm ² )	(dpm _p /100cm ² )	(dpmp/100cm ² )	(dpmp/100cm ² )		
AT	0	0.0	0.0	0.0	5,000	13,000		
с	90	35.4	20.1	75.5	5,075	13,075		
СВ	51	96.1	21.7	139.4	5,139	13,139		
СТ	77	213.6	39.5	292.7	5,293	13,293		
СТР	10	144.1	29.2	202.4	5,202	13,202		
стх	30	152.6	15.1	182.9	5,183	13,183		
G	0	0.0	0.0	0.0	5,000	13,000		
М	10	24.0	15.7	55.3	5,055	13,055		
Р	0	0.0	0.0	0.0	5,000	13,000		
VT	10	15.1	24.0	63.0	5,063	13,063		

.

Threshold Comparison Test Report - Buildings

#### STATISTICAL TEST RESULTS

Run D	ate:	12/24/200	12/24/2003 10:59:02						
Surve	y Unit Numbe	r 2503	Class:	2					
Select	ed Test:	SIGN TE	ST FOR PA	NRED DATA					
Test S	itatus	Pass							
Thres	holds:								
	EMC	13,000 DCG	L 5,00	0					

#### DATA SUMMARY TABLE

28 Survey points processed and 6 matrices processed

#### S+ = 28 Wc = 18

****** The survey unit has passed the SIGN TEST FOR PAIRED DATA ******

## Threshold Comparison Test Report - Buildings

Run Date: Monday, January 12, 2004

Survey Unit Number: 2504 Class: 2 Data Points: Beta Grid Type: R

#### **SURVEY UNIT TABLE**

<u>Bldg</u>	Rm	Surface	Fixed Equipment	Surface Area Included (sq. ft)	Remarks
B250	1010	ENSEW	0102	259	lanitor's closet
B250	1034	FSW	01	681	
B250	110	FN	0102	208	
B250	115	FS	0102	1071	
B250	118	FNSEW	01	484	Floor of eastern stairwell to first tread
B250	119	FNSE	<b>.</b> .	190	Upper stairwell hallway, only floor to stairs, no
B250	127	FNSEW	01	869	CT Laboratory
B250	139	FNSEW	020301	355	CT lab office
B250	140	FNSEW	0102	443	CT hallway
B250	218	FNESW		1242	Upper stairwell East, Incl. All treads, risers, walls,
B250	219	FNSEW	Q1Q2Q3	1725	Upper stairwell West. Incl. All treads, risers, walls
			Total	Area 7527	

Total Area

#### **INITIALIZATION DATA**

Measurement	Types Selec	ted: RG	, BI, CH
Date Range:		All	
Thresholds:			
EMC:	13.000	DCGLw:	2.600

#### SURVEY UNIT TEST STATUS

Test Performed	Status			dpm _p /100 cm ²
Min/Max	Pass	Maximum Survey Value	СВ	907.0
Background	Fail	Minimum Background	<u>vr_</u>	-26.0
DCGLw	Pass	Difference		933.0
DCGLavg	Pass	Average Activity	54.3	
EMC	Pass	Average Below DCGL	54.3	
Wilcoxon Rank Sum T	est N/A	Average Background	52.3	
Sign Test for Paired D	ata Pass			

Mallinckrodt C-T Project-Phase I Final Status Survey Report Building 250 Interior

#### Threshold Comparison Test Report - Buildings

#### THE FOLLOWING DATA POINTS FAILED THE EMC TEST:

Building: B250

NONE

#### THE FOLLOWING DATA POINTS FAILED THE DCGLw TEST:

NONE

Survey Unit # 2504

#### THE FOLLOWING DATA POINTS FAILED THE BACKGROUND TEST:

Room     SFC     X (ft)     Y (ft)     Mtx     Type     Min     SID     (dpm p/100cm ³ )     Remarks     E       101C     E     3.1     4.2     CB     RG     1     6921     146.5     0       103AB     Q1     2.0     0.0     M     BI     1     6919     56.8     Vent     C       103AB     W     9.0     1.0     GB     BI     3     7955     25.5     C     C       103AB     W     7.1     7.5     GB     RG     3     7950     20.7     C     C       110     Q2     1.0     0.0     M     BI     1     6979     112.7     Fire Sprinkler     C       115     S     24.3     4.4     O     RG     1     6984     27.8     Drywall     C       115     S     21.9     7.4     GB     CH     3     2823     17.5     C       118     E     3.1     1	-
101C   E   3.1   4.2   CB   RG   1   6921   146.5   0   0   0   0   M   BI   1   6919   56.8   Vent   0   0   0   M   BI   1   6919   56.8   Vent   0   0   0   M   BI   3   7955   25.5   0   0   0   0   M   BI   1   6919   56.8   Vent   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0	KC Res.
103AB   Q1   2.0   0.0   M   BI   1   6919   56.8   Vent   Q     103AB   W   9.0   1.0   GB   BI   3   7955   25.5   Q     103AB   W   7.1   7.5   GB   RG   3   7950   20.7   Q     110   Q2   1.0   0.0   M   BI   1   6979   112.7   Fire Sprinkler   Q     115   S   24.3   4.4   O   RG   1   6984   27.8   Drywall   Q     115   S   39.0   1.0   GB   CH   3   2823   17.5   Q     115   S   21.9   7.4   GB   CH   3   2822   15.8   Q   Q     118   E   3.1   10.7   CB   RG   1   6832   286.0   Q   Q     118   W   2.8   6.5   M   RG   1   6850   327.9   Q   Q     127   E   7.0 <t< td=""><td>;</td></t<>	;
103AB   W   9.0   1.0   GB   BI   3   7955   25.5   0   0     103AB   W   7.1   7.5   GB   RG   3   7950   20.7   0   0   0   M   BI   1   6979   112.7   Fire Sprinkler   0   0     115   S   24.3   4.4   O   RG   1   6984   27.8   Drywall   0   0     115   S   24.3   4.4   O   RG   1   6984   27.8   Drywall   0   0     115   S   39.0   1.0   GB   CH   3   2823   17.5   0   0     115   S   21.9   7.4   GB   CH   3   2822   15.8   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0	;
103AB   W   7.1   7.5   GB   RG   3   7950   20.7   C0     110   Q2   1.0   0.0   M   BI   1   6979   112.7   Fire Sprinkler   C0     115   S   24.3   4.4   O   RG   1   6984   27.8   Drywall   C0     115   S   39.0   1.0   GB   CH   3   2823   17.5   C0     115   S   21.9   7.4   GB   CH   3   2822   15.8   C0     118   E   3.1   10.7   CB   RG   1   6831   509.2   C0     118   S   3.3   11.2   CB   RG   1   6832   286.0   C0     118   W   2.8   6.5   M   RG   1   6850   327.9   C0     119   E   0.5   8.1   CB   RG   1   6850   327.9   C0     127   E   7.0   8.0   GB   CH   2	;
110   Q2   1.0   0.0   M   BI   1   6979   112.7   Fire Sprinkler   Q     115   S   24.3   4.4   O   RG   1   6984   27.8   Drywall   Q     115   S   39.0   1.0   GB   CH   3   2823   17.5   Q     115   S   21.9   7.4   GB   CH   3   2822   15.8   Q     118   E   3.1   10.7   CB   RG   1   6831   509.2   Q     118   S   3.3   11.2   CB   RG   1   6832   286.0   Q     118   W   2.8   6.5   M   RG   1   6832   286.0   Q   Q     118   W   2.8   6.5   M   RG   1   6850   327.9   Q   Q     119   E   0.5   8.1   CB   CH   2   2002   33.5   Q   Q     127   E   7.0   6.0   GB<	;
115   S   24.3   4.4   O   RG   1   6984   27.8   Drywall   0     115   S   39.0   1.0   GB   CH   3   2823   17.5   0     115   S   21.9   7.4   GB   CH   3   2822   15.8   0     118   E   3.1   10.7   CB   RG   1   6831   509.2   0     118   S   3.3   11.2   CB   RG   1   6832   286.0   0     118   W   2.8   6.5   M   RG   1   6832   286.0   0   0     118   W   2.8   6.5   M   RG   1   6829   91.9   0   0     119   E   0.5   8.1   CB   RG   1   6850   327.9   0   0     127   E   1.0   3.0   GB   CH   2   2002   33.5   0   0     127   E   7.0   6.0   GB <td< td=""><td>;</td></td<>	;
115   S   39.0   1.0   GB   CH   3   2823   17.5   C     115   S   21.9   7.4   GB   CH   3   2822   15.8   C     118   E   3.1   10.7   CB   RG   1   6831   509.2   C     118   S   3.3   11.2   CB   RG   1   6832   286.0   C   C     118   W   2.8   6.5   M   RG   1   6832   286.0   C   C     118   W   2.8   6.5   M   RG   1   6829   91.9   C   C     119   E   0.5   8.1   CB   RG   1   6850   327.9   C   C     127   E   7.0   8.0   GB   CH   2   2004   50.2   C   C   C   C   C   C   C   C   C   C   C   C   C   C   C   C   C   C   C   C   C	;
115   S   21.9   7.4   GB   CH   3   2822   15.8   C     118   E   3.1   10.7   CB   RG   1   6831   509.2   C     118   S   3.3   11.2   CB   RG   1   6832   286.0   C   C     118   W   2.8   6.5   M   RG   1   6829   91.9   C   C     119   E   0.5   8.1   CB   RG   1   6850   327.9   C   C     127   E   7.0   8.0   GB   CH   2   2004   50.2   C   C     127   E   7.0   6.0   GB   RG   2   1997   24.5   C   C     127   E   7.0   0.0   RB   CH   2   1997   24.5   C   C     127   E   7.0   0.0   RB   CH   2   1995   24.5   C   C     127   E   10.0   6.0	;
118   E   3.1   10.7   CB   RG   1   6831   509.2   0     118   S   3.3   11.2   CB   RG   1   6832   286.0   0   0     118   W   2.8   6.5   M   RG   1   6829   91.9   0   0     119   E   0.5   8.1   CB   RG   1   6850   327.9   0   0     127   E   7.0   8.0   GB   CH   2   2004   50.2   0   0     127   E   7.0   6.0   GB   RG   2   1997   24.5   0   0     127   E   7.0   0.0   RB   CH   2   1997   24.5   0   0     127   E   7.0   0.0   RB   CH   2   1995   24.5   0   0     127   E   4.0   6.0   GB   CH   2   1995   24.5   0   0     127   E   10.0	;
118   S   3.3   11.2   CB   RG   1   6832   286.0   C     118   W   2.8   6.5   M   RG   1   6829   91.9   C     119   E   0.5   8.1   CB   RG   1   6850   327.9   C     127   E   7.0   8.0   GB   CH   2   2004   50.2   C     127   E   7.0   8.0   GB   CH   2   2002   33.5   C     127   E   7.0   6.0   GB   RG   2   1997   24.5   C   C     127   E   7.0   0.0   RB   CH   2   1995   24.5   C   C     127   E   7.0   6.0   GB   CH   2   1995   24.5   C   C     127   E   10.0   6.0   GB   CH   2   1994   14.8   C     127   E   1.0   6.0   GB   CH   2   1994 <td>;</td>	;
118   W   2.8   6.5   M   RG   1   6829   91.9   0     119   E   0.5   8.1   CB   RG   1   6850   327.9   0     127   E   7.0   8.0   GB   CH   2   2004   50.2   0     127   E   1.0   3.0   GB   CH   2   2002   33.5   0     127   E   7.0   6.0   GB   RG   2   1997   24.5   0     127   E   7.0   0.0   RB   CH   2   1995   24.5   0   0     127   E   7.0   6.0   GB   CH   2   1995   24.5   0   0     127   E   4.0   6.0   GB   CH   2   2000   19.3   0   0     127   E   10.0   6.0   GB   CH   2   1994   14.8   0     127   E   1.0   6.0   GB   CH   2   1993	;
119   E   0.5   8.1   CB   RG   1   6850   327.9   0     127   E   7.0   8.0   GB   CH   2   2004   50.2   0     127   E   1.0   3.0   GB   CH   2   2002   33.5   0     127   E   7.0   6.0   GB   RG   2   1997   24.5   0     127   E   7.0   0.0   RB   CH   2   1995   24.5   0     127   E   7.0   6.0   GB   CH   2   1995   24.5   0   0     127   E   4.0   6.0   GB   CH   2   1995   24.5   0   0     127   E   10.0   6.0   GB   CH   2   1994   14.8   0   0     127   E   1.0   6.0   GB   CH   2   1993   10.3   0     127   E   1.0   3.0   GB   CH   2   1993 <td>;</td>	;
127   E   7.0   8.0   GB   CH   2   2004   50.2   50.2     127   E   1.0   3.0   GB   CH   2   2002   33.5   60     127   E   7.0   6.0   GB   RG   2   1997   24.5   60     127   E   7.0   0.0   RB   CH   2   1995   24.5   60     127   E   7.0   6.0   GB   CH   2   1995   24.5   60     127   E   4.0   6.0   GB   CH   2   1995   24.5   60     127   E   10.0   6.0   GB   CH   2   1995   14.8   60     127   E   10.0   6.0   GB   RG   2   2003   12.2   60     127   E   10.0   3.0   GB   CH   2   1993   10.3   60     127   E   10.0   3.0   GB   CH   2   1993   10.3   60 <td>;</td>	;
127   E   1.0   3.0   GB   CH   2   2002   33.5   GC     127   E   7.0   6.0   GB   RG   2   1997   24.5   GC     127   E   7.0   0.0   RB   CH   2   1997   24.5   GC     127   E   7.0   0.0   RB   CH   2   1995   24.5   GC     127   E   4.0   6.0   GB   CH   2   2000   19.3   GC     127   E   10.0   6.0   GB   CH   2   1994   14.8   GC     127   E   1.0   6.0   GB   RG   2   2003   12.2   GC     127   E   1.0   6.0   GB   CH   2   1993   10.3   GC     127   E   10.0   3.0   GB   CH   2   1993   10.3   GC	;
127   E   7.0   6.0   GB   RG   2   1997   24.5   0     127   E   7.0   0.0   RB   CH   2   1995   24.5   0     127   E   4.0   6.0   GB   CH   2   1995   24.5   0     127   E   4.0   6.0   GB   CH   2   2000   19.3   0     127   E   10.0   6.0   GB   CH   2   1994   14.8   0     127   E   1.0   6.0   GB   RG   2   2003   12.2   0     127   E   1.0   6.0   GB   CH   2   1993   10.3   0     127   E   10.0   3.0   GB   CH   2   1993   10.3   0	;
127   E   7.0   0.0   RB   CH   2   1995   24.5   C     127   E   4.0   6.0   GB   CH   2   2000   19.3   C     127   E   10.0   6.0   GB   CH   2   1994   14.8   C     127   E   1.0   6.0   GB   RG   2   2003   12.2   C     127   E   1.0   3.0   GB   CH   2   1993   10.3   C     127   E   10.0   3.0   GB   CH   2   1993   10.3   C	;
127   E   4.0   6.0   GB   CH   2   2000   19.3   C     127   E   10.0   6.0   GB   CH   2   1994   14.8   C     127   E   1.0   6.0   GB   RG   2   2003   12.2   C     127   E   10.0   3.0   GB   CH   2   1993   10.3   C	;
127     E     10.0     6.0     GB     CH     2     1994     14.8     C       127     E     1.0     6.0     GB     RG     2     2003     12.2     C       127     E     10.0     3.0     GB     CH     2     1993     10.3     C	;
127     E     1.0     6.0     GB     RG     2     2003     12.2     O       127     E     10.0     3.0     GB     CH     2     1993     10.3     O	;
127 E 10.0 3.0 GB CH 2 1993 10.3	;
	;
127 E 2.0 9.0 GB CH 2 2005 9.0 C	;
127 E 10.0 0.0 RB CH 2 1992 7.1 C	;
127 E 1.0 0.0 RB CH 2 2001 5.1 C	
127 E 4.0 0.0 RB CH 2 1998 0.6 C	;
127 N 9.0 0.0 RB CH 2 1981 27.0 C	
127 N 12.0 0.0 RB CH 2 1984 24.5 C	•
127 N 15.0 0.0 RB CH 2 1987 23.2 C	
127 N 6.0 0.0 RB CH 2 1977 18.0 C	
127 N 0.0 0.0 RB CH 2 1971 10.9 C	;
127 S 15.5 0.0 RB CH 2 2006 43.1 C	:
127 S 0.5 0.0 RB CH 2 2022 9.7 C	;
127 S 6.5 0.0 RB CH 2 2016 5.8 C	
127 S 3.5 0.0 RB CH 2 2019 5.1 C	;
127 W 3.0 3.0 GB RG 2 2031 43.8 C	
127 W 0.0 3.0 GB CH 2 2028 39.3 C	;
127 W 0.0 0.0 RB CH 2 2027 19.3 C	
127 W 9.0 3.0 GB RG 2 2037 10.9 C	;
127 W 9.0 0.0 RB CH 2 2036 8.4 C	;
127 W 3.0 0.0 RB CH 2 2030 7.7 C	;
127 W 7.0 9.0 GB CH 2 2040 3.9 C	;

Mallinckrodt C-T Project–Phase I Final Status Survey Report Building 250 Interior Revision: 0 March 2004 APPENDIX 4

					Meas.			Gross Activity			
Room	SFC	X (ft)	Y (ft)	Mtx	Туре	Min	SID	(dpm p/100cm ² )	Remarks	Exc	Res.
127	w	2.0	8.0	GB	СН	2	2039	1.9		С	
139	Q2	1.0	0.0	М	BI	1	6909	88.2	Fire Sprinkler	С	
140	Е	1.0	3.0	GB	СН	2	2074	66.6	•	С	
140	Е	7.0	6.0	GB	СН	2	2069	50.1		С	
140	Е	7.0	3.0	GB	СН	2	2068	40.4		С	
140	Е	7.0	7.0	GB	СН	2	2076	39.8		С	
140	Е	10.0	3.0	GB	СН	2	2065	25.6		С	
140	Е	10.0	0.0	GB	СН	2	2064	23.3		С	
140	E	10.0	6.0	GB	СН	2	2066	22.2		С	
140	Е	7.0	0.0	GB	СН	2	2067	19.9		С	
140	E	1.0	6.0	GB	СН	2	2075	11.4		С	
140	Е	1.0	0.0	GB	СН	2	2073	4.6		С	
140	W	3.0	6.0	CB	СН	2	2090	156.4		С	
140	W	0.0	6.0	CB	СН	2	2087	150.7		С	
218	Е	14.9	22.6	СВ	RG	1	6858	411.6		С	
218	Е	0.9	22.6	СВ	RG	1	6855	265.1		С	
218	N	5.3	27.1	СВ	RG	1	6851	830.1		С	
218	Ν	5.3	13.1	СВ	RG	1	6852	460.4		С	
218	S	5.4	23.4	СВ	RG	1	6860	565.0		С	
218	w	18.6	22.7	СВ	RG	1	6853	906.9		С	
218	W	4.6	22.7	CB	RG	1	6856	258.1		С	
219	N	1.3	4.8	CB	RG	1	6875	851.1	•	C	
219	N	15.3	18.8	СВ	RG	1	6874	341.8		С	
219	N	1.3	18.8	CB	RG	1	6872	279.0		С	
219	S	17.9	9.2	CB	RG	1	6889	272.1		С	
219	S	3.9	23.2	СВ	RG	1	6891	272.1		С	
219	S	17.9	23.2	СВ	RG	1	6890	244.2		С	

## Threshold Comparison Test Report - Buildings

## THE FOLLOWING DATA POINTS PASSED BACKGROUND, DCGLw, AND EMC SCREENING TESTS:

Survey Unit #

2504 Building: B250

					Meas.			Gross Activity	1	
_Room	SFC	X (ft)	Y (ft)	Mtx	Туре	Min	SID	(dpm p/100cm ² )	Remarks	Exc Res.
_										
101C	Q1	1.0	0.0	М	BI	1	6922	40.2	Light	
101C	Q2	1.0	0.0	М	BI	1	6923	-3.9	Sink	
101C	w	3.0	6.5	М	RG	1	6920	-33.4		
103AB	F	2.0	8.8	VΤ	RG	4	4942	22.3		
103AB	F	8.8	2.0	VΤ	RG	4	4941	21.6		
103AB	F	15.6	2.0	VΤ	RG	4	2513	12.0		
103AB	F	8.8	8.8	VΤ	RG	4	4943	10.7		
103AB	F	2.0	2.0	VΤ	RG	4	4940	10.0		
103AB	F	15.6	8.8	VT	RG	4	2514	-17.9		
103AB	Q1	1.0	0.0	М	BI	1	6918	-10.8	Light	
103AB	S	10.0	6.4	CB	BI	3	2556	128.0	•	
103AB	S	5.3	6.4	CB	RG	3	2557	113.8		
103AB	S	18.0	6.4	СВ	RG	3	2541	113.2		
103AB	S	21.0	1.0	CB	BI	3	2540	111.0		
103AB	S	10.0	1.0	CB	Bl	3	2555	<b>96.2</b>		
103AB	S	11.1	1.0	CB	BI	3	2542	61.2		
103AB	w	4.6	6.4	СВ	СН	3	2531	76.1		
103AB	w	9.3	1.0	СВ	ĊH	3	2532	60.6		
110	F	1.7	6.5	VT	RG	1	6977	40.9		
110	F	62.9	41.0	VT	CH	3	2870	7.4		
110	F	62.0	41.5	ŶŤ	CH	2	2543	6.1	•	
110	F	62.9	35.2	VT	CH	3	2866	3.1		_

Mallinckrodt C-T Project-Phase I Final Status Survey Report Building 250 Interior Revision: 0 March 2004 APPENDIX 4

.
### Threshold Comparison Test Report - Buildings

Room     SFC X (ft)     Y (ft)     Mix     Type     Min     SD (spm_rloam)     Remarks     Exc     Res.       110     F     68.6     35.2     VT     CH     3     2867     1.0       110     N     58.8     1.0     CH     3     2261     105.7       110     N     58.8     1.0     CH     3     2261     105.7       110     N     57.5     CB     CH     3     2261     105.7       110     N     110     0.0     M     BI     16878     2.0     Vent       1115     F     10.0     110     CB     BI     7989     65.5     gamme hot spot       1115     F     10.0     110     CB     1     7981     32.4     West 1'       115     F     1.0     1.0     VT     RG     3     22601     22.2       115     F     1.0     VT     RG     3     22601     1.3 <td< th=""><th></th><th></th><th></th><th></th><th></th><th></th><th>Meas.</th><th></th><th></th><th><b>Gross Activity</b></th><th>,</th><th></th><th></th></td<>							Meas.			<b>Gross Activity</b>	,		
110   F   68.6   35.2   VT   CH   3   2267   1.0     110   F   68.6   41.0   VT   CH   3   2267 $7.7$ 110   N   58.9   1.0   CB   CH   3   2241   105.7     110   N   58.9   1.0   CB   CH   3   2242   106.7     110   Q1   1.0   0.0   M   BI   6800   32.3   Fire Sprinker     115   F   10.0   11.0   C   BI   17912   47.3   South 1'     115   F   10.0   11.0   C   BI   17912   47.3   South 1'     115   F   10.0   10.0   C   BI   17912   47.3   South 1'     115   F   10.0   10.0   C   BI   17912   47.3   South 1'     115   F   32.7   27.3   VT   RG   3   2261   10.7     115   F   10.0   VT   RG   3 <td></td> <td>Room</td> <td>SFC</td> <td>X (ft)</td> <td>Y (ft)</td> <td>Mtx</td> <td>Туре</td> <td>Min</td> <td>SID</td> <td>(dpm /100cm²)</td> <td>Remarks</td> <td>Exc</td> <td>Res.</td>		Room	SFC	X (ft)	Y (ft)	Mtx	Туре	Min	SID	(dpm /100cm ² )	Remarks	Exc	Res.
110   F   68.6   3.2.   VT   CH   3   2267   -7.7     110   N   59.9   1.0.   CE   CH   3   2241 $87.9$ 110   N   59.9   1.0.   CE   CH   3   2241 $87.9$ 110   N   1.7   2.5.   CB   RG   1   59.24   42.6     110   Q1   1.0.   0.0   M   BI   1   6807   32.3   Filespinkler     110   Q2   0.0   M   BI   1   6807   32.3   Somminold spoil     115   F   100   15.0   C   BI   1   7681   34.4   New Flooring     115   F   1.0   17.0   C   BI   1   7681   34.4   New Flooring     115   F   1.0   17.0   VT   CH   3   2215   21.0     115   F   1.6   VT   RG   3   22001   1.0   1.0     115   F   1.0	-												
110   F   68.6   41.0   VT   CH   3   2871   -7.7     110   N   59.9   4.7   CB   CH   3   2842   105.7     110   N   17.7   South   11.1   CB   CB   CH   3   2841   87.9     110   N   1.7   SC   CB   CH   3   2841   87.9     110   D2   2.0   D.0   M   BI   1   6802   32.3   Fire Sprinkler     115   F   10.0   11.0   C   BI   1   7131   33.4   West '     115   F   3.0   O   BI   1   7131   24.7   North '     115   F   3.0   O   T   St   2804   24.4   Mee Tooing     115   F   3.0   0.0   T   RG   3   2805   11.8     115   F   15.9   0.7   VT   CH   3   2806   0.9     115   F   16.0	•	110	F	68.6	35.2	VT	СН	3	2867	1.0			
110   N   599   4.7   CB   CH   3   2241   87.9     110   N   1.7   0.5   CB   RG   1   6573   2.0   Vent     110   Q1   1.0   0.0   M   BI   1   6573   2.0   Vent     110   Q2   2.0   0.0   M   BI   1   6587   2.0   Vent     115   F   10.0   11.0   C   BI   1   7909   65.5   gamma hot spot     115   F   10.0   11.0   C   BI   1   7911   34.4   West 1'     115   F   10.0   C   BI   1   7913   21.7   North 1'     115   F   10.0   VT   RG   3   2801   10.9   10.9     116   F   2.8   8.4   VT   RG   3   2806   10.9   11.5     115   F   18.0   VT   RG   3   2806   10.9   11.5     116		110	F	68.6	41.0	VΤ	СН	3	2871	-7.7			
110   N   59.9   4.7   CB   CH   3   2841   87.9     110   Q1   1.0   0.0   M   BI   1   6802   3.2   Vent     110   Q2   Q0   M   BI   1   6807   3.2   Fire Sprinkler     115   F   10.0   11.0   C   BI   1   7909   66.5   gamma hot spot     115   F   10.0   11.0   C   BI   1   7911   38.4   West 1'     115   F   10.0   1.0   C   BI   1   7813   22.4   New Flooring     116   F   1.0   12.0   C   BI   7813   22.1   North 1'     115   F   1.0   10.0   VT   RG   3   2805   11.8     115   F   2.5.0   10.0   VT   RG   3   2806   0.9     115   F   1.0   0.0   VT   RG   3   2806   0.9     115   F   <		110	N	59.9	1.0	СВ	СН	3	2842	106.7			
110   N   1.7.   9.5   CB   RG   1   6576   2.0   Vent     110   Q2   2.0   0.0   M   BI   1   6576   2.0   Vent     115   F   10.0   12.0   C   BI   1   7509   65.5   gamma hol spot     115   F   10.0   11.0   C   BI   1   7711   38.4   West 1'     115   F   10.0   11.0   C   BI   1   7711   38.4   West 1'     115   F   10.0   VT   RG   3   2804   25.6     115   F   10.0   VT   RG   3   2812   18.7     115   F   23.6   0.7   VT   CH   3   2813   10.9     116   F   25.4   10.0   VT   RG   3   2806   10.9     115   F   12.0   VT   RG   3   2805   10.9   11.6     116   F   12.0   VT		110	N	59.9	4.7	СВ	СН	3	2841	87.9			
110   Q1   1.0   0.0   M   BI   1   6878   2.0   Vent     115   F   10.0   12.0   C   BI   1   7690   66.5   gamma hot spot     115   F   11.0   12.0   C   BI   1   7912   47.3   South 1'     115   F   11.0   12.0   C   BI   1   6881   34.4   New Flooring     115   F   10.0   VT   RG   3   2201   23.2     115   F   10.0   VT   RG   3   2215   21.0     115   F   13.0   OT   VT   CH   3   2213   15.8     115   F   8.4   0.7   VT   RG   3   2200   10.9     115   F   15.9   0.7   VT   RG   3   2200   10.9   21.0     115   F   10.0   VT   RG   3   2800   10.9   21.0     115   F   8.4   2.3		110	N	1.7	9.5	СВ	RG	1	6924	42.6			
110   Q2   2.0   0.0   M   Bi   1   6680   32.3   File Sprinkler     115   F   10.0   11.0   C   Bi   1   7909   66.5   gamma hot spot     115   F   11.0   C   Bi   1   7911   34.4   West 1'     115   F   11.0   12.0   C   Bi   1   7913   34.4   New Flooring     115   F   3.0   C   Bi   1   7913   21.7   North 1'     115   F   23.6   8.4   VT   CH   3   2812   13.7     115   F   25.6   0.7   VT   CH   3   2813   15.8     115   F   15.2   O.0   VT   RG   3   2800   10.9     115   F   16.2   O.0   VT   RG   3   2800   10.9     115   F   16.0   11.0   VT   Bi   1   6991   0.0     115   F   10.0		110	Q1	1.0	0.0	М	BI	1	6978	2.0	Vent		
115   F   10.0   12.0   C   Bi   1   7009   66.5   gamma hot spot     115   F   11.0   12.0   C   Bi   1   7912   47.3   South 1'     115   F   10.0   11.0   C   Bi   1   7912   47.3   South 1'     115   F   0.0   VT   RG   3   2801   23.2     115   F   10.0   13.0   C   Bi   1   7913   21.7   North 1'     115   F   12.0   O   VT   RG   3   2815   15.6     115   F   23.0   0.7   VT   CH   3   2810   10.9     115   F   23.0   10.0   VT   RG   3   2800   10.9     115   F   12.0   10.0   VT   RG   3   2800   1.7     115   F   12.0   VT   RG   3   2800   0.7     115   F   10.0   10.0   VT		110	Q2	2.0	0.0	М	BI	1	6980	32.3	Fire Sprinkler		
115   F   10.0   11.0   C   Bi   1   7911   34.4   Wext     115   F   0.8   9.6   VT   Bi   1   6981   34.4   Wext   11     115   F   0.8   9.6   VT   Bi   1   6981   34.4   Wext   11     115   F   32.7   VT   RG   3   2804   22.6     115   F   10.0   10.0   VT   RG   3   2812   21.0     115   F   23.6   8.4   VT   CH   3   2813   15.8     115   F   25.6   0.7   VT   CH   3   2813   15.8     115   F   12.0   VT   RG   3   2800   10.9   13.7     115   F   12.0   VT   RG   3   2800   8.7   14.7     115   F   10.0   12.0   VT   BI   1   6991   0.0   14.7     115   F   10.0		115	F	10.0	12.0	C	BI	1	7909	66.5	gamma hot spot		
115   F   110   120   C   Bit   1   7911   38.4   West if     115   F   0.8   65   VT   RG   3   2804   26.6     115   F   10.0   VT   RG   3   2804   23.2     115   F   10.0   13.0   C   Bit   1   7913   23.1     115   F   23.6   0.7   VT   CH   3   2812   10     115   F   23.6   0.7   VT   CH   3   2812   10     115   F   23.6   0.7   VT   RG   3   2803   10.9     115   F   16.2   10.0   VT   RG   3   2800   8.7     115   F   16.1   10.0   VT   RG   3   2800   10.9     115   F   16.0   11.0   VT   Bit   1   6891   0.0     115   F   10.0   13.0   CP   Bit   1   7845		115	F	10.0	11.0	č	BI	1	7912	47.3	South 1'		
115   F   0.8   0.8   0.7   El   1   0.881   3.4.4   New Flooring     115   F   3.2   3.7   North 1   North 1'     115   F   1.0   VT   RG   3   2804   23.2     115   F   2.3   VT   CH   3   2815   21.7   North 1'     115   F   2.3.6   0.7   VT   CH   3   2812   18.8     115   F   2.3.6   0.7   VT   CH   3   2813   18.8     115   F   8.4   0.0   VT   RG   3   2803   10.9     115   F   1.2   10.0   VT   RG   3   2800   0.9     115   F   1.0   VT   BI   1   6991   0.0     115   F   1.0.1   VT   BI   1   6991   0.0     115   F   10.0   1.2.0   CP BI   1   7445   0.0   West of Hotspot 1'     115		115	F	11.0	12.0	č	BI	1	7911	38.4	West 1'		
115   F   32.7   2.3   VT   RG   3   2804   28.6   100   VT   RG   3   2804   23.2     115   F   10.0   VT   RG   3   2801   23.2     115   F   10.0   VT   RG   3   2815   21.0     115   F   28.6   8.4   VT   CH   3   2812   18.7     115   F   28.6   0.7   VT   CH   3   2813   15.8     115   F   28.6   0.7   VT   RG   3   2800   10.9     115   F   16.2   0.0   VT   RG   3   2800   8.7     115   F   18.0   11.0   VT   BI   1   6999   0.0     115   F   10.0   11.0   VT   BI   1   6999   0.0     115   F   10.0   11.0   VT   BI   1   7845   0.0   West of Motspot 1'     115   F   10		115	F	0.8	9.6	vт	BI	1	6981	34.4	New Flooring		
115   F   100   100   VT   Node   23.2     115   F   100   13.0   C   B   1   7913   21.7   North 1'     115   F   123.6   0.7   VT   CH   3   2815   21.7     115   F   123.6   0.7   VT   CH   3   2813   15.8     115   F   23.6   10.0   VT   RG   3   2808   10.9     115   F   8.4   2.3   VT   RG   3   2800   0.9     115   F   8.4   2.3   VT   RG   3   2806   0.9     115   F   10.0   VT   RG   3   2806   0.0     115   F   10.0   11.0   VT   BI   1   6991   0.0     115   F   10.0   12.0   CP   BI   1   7845   0.0   West of Hotspot 1'     115   F   10.0   11.0   VT   BI   1   7843   <		115	Ē	32.7	23	vī	RG	ં	2804	26.6	ite it leening		
115   F   100   130   C   B   1   7813   21.7   North 1'     115   F   23.6   8.4   VT   CH   3   2215   21.0     115   F   23.6   0.7   VT   CH   3   2215   21.0     115   F   23.6   0.7   VT   CH   3   2213   15.8     115   F   23.6   0.7   VT   CH   3   2200   11.8     115   F   16.2   10.0   VT   RG   3   2200   8.7     115   F   16.2   10.0   VT   RG   3   2200   7.4     115   F   10.0   VT   Bi   1   6989   0.0     115   F   10.0   VT   Bi   1   6990   0.0     115   F   10.0   10.0   CP   Bi   1   7842   0.0   North of Hotspot 1'     115   F   10.0   13.0   CP   Bi   1 <th< td=""><td></td><td>115</td><td>F</td><td>1 9</td><td>10.0</td><td>vi</td><td>RG</td><td>à</td><td>2801</td><td>23.2</td><td></td><td></td><td></td></th<>		115	F	1 9	10.0	vi	RG	à	2801	23.2			
110   F   23.0   R.4   VT   CH   3   2812   21.0   Nomini     115   F   13.9   0.7   VT   CH   3   2812   18.7     115   F   23.0   0.7   VT   CH   3   2813   15.8     115   F   23.0   VT   RG   3   2803   10.9     115   F   16.2   10.0   VT   RG   3   2806   0.9     115   F   8.4   2.3   VT   RG   3   2806   0.9     115   F   8.4   2.3   VT   RG   3   2806   0.9     115   F   10.0   VT   BI   1   6990   0.0     115   F   10.0   11.0   VT   BI   1   6990   0.0     115   F   10.0   12.0   CP   BI   1   7645   0.0   West of Hotspot 1''     115   F   10.0   13.0   CP   BI   1   76		115	F	10.0	13.0	Ċ	BI	1	7013	23.2	North 1'		
115   F   150   0.7   VT   CH   3   2213   15.6     115   F   23.6   0.7   VT   CH   3   2213   15.6     115   F   23.6   0.7   VT   CH   3   2213   15.6     115   F   16.2   100   VT   RG   3   2200   11.8     115   F   16.2   100   VT   RG   3   2200   8.7     115   F   1.9   2.3   VT   RG   3   2800   0.9     115   F   1.0   10.0   VT   RG   3   2800   0.0     115   F   1.0   11.0   VT   BI   1   6989   0.0     115   F   1.0   1.20   CP   BI   1   7843   0.0   West of Hotspot 1'     115   F   1.0   1.0   CP   BI   1   7843   0.0   Local Scan   X     115   F   1.0   1.0   CP		115	Ë	23.6	8.4	vr	CH	2	2915	21.7			
115   F   23.6   0.7   VT   CH   3   2212   15.7     115   F   23.0   10.0   VT   RG   3   2205   11.8     115   F   8.4   10.0   VT   RG   3   2200   10.9     115   F   16.2   10.0   VT   RG   3   2200   8.7     115   F   8.4   2.3   VT   RG   3   2200   8.7     115   F   8.4   2.3   VT   RG   3   2200   8.7     115   F   10.0   VT   RG   3   2200   8.7     115   F   10.0   VT   BI   1   6999   0.0     115   F   10.0   11.0   VT   BI   1   6991   0.0     115   F   10.0   12.0   CP   BI   1   7845   0.0   Vest of Hotspot 1'     115   F   10.0   12.0   CP   BI   1   7843   0.0<		115	5	15.0	0.4	ŴТ		3	2010	19.7			
115   F   25.0   0.7   VI   CH   3   2203   10.0     115   F   8.4   10.0   VT   RG   3   2206   10.9     115   F   19.2   2.3   VT   RG   3   2200   8.7     115   F   1.9   2.3   VT   RG   3   2200   8.7     115   F   8.0   1.0   VT   RG   3   2200   8.7     115   F   10.0   11.0   VT   RG   3   2200   0.0     115   F   10.0   12.0   CP   BI   1   7845   0.0   Vest of Hotspot 1'     115   F   10.0   11.0   CP   BI   1   7844   0.0   East of		115	r E	10.9	0.7	VT.		3	2012	10.7			
115   F   25.0   10.0   VI   NG   3   2005   11.8     115   F   16.2   10.0   VI   NG   3   2200   1.8     115   F   16.2   10.0   VI   NG   3   2200   8.7     115   F   8.4   2.3   VI   RG   3   2200   8.7     115   F   9.0   12.0   C   BI   1   5991   0.0     115   F   10.0   VI   BI   1   5991   0.0     115   F   10.0   VI   BI   1   5991   0.0     115   F   10.0   VI   BI   1   5991   0.0     115   F   10.0   12.0   CP   BI   1   7845   0.0   Vestof (Potenter     115   F   10.0   12.0   CP   BI   1   7842   0.0   Noth of Hotspot 1'     115   F   10.0   12.0   CP   BI   1   7842		110		23.0	40.0			3	2013	10.0			
115   F   8.4   10.0   VI   RG   3   2808   10.9     115   F   1.9   2.3   VT   RG   3   2800   8.7     115   F   8.0   12.0   C   BI   1   7910   1.3   East 1'     115   F   30.7   10.0   VT   RG   3   2806   0.9     115   F   10.0   VT   BI   1   6989   0.0     115   F   10.0   VT   BI   1   6989   0.0     115   F   10.0   11.0   VT   BI   1   6989   0.0     115   F   10.0   12.0   CP   BI   1   7845   0.0   Vest of Hotspot 1'     115   F   10.0   13.0   CP   BI   1   7842   0.0   South of Hotspot 1'     115   F   10.0   12.0   CP   BI   1   7843   0.0   East of Hotspot 1'     115   F   10.0   CP		115	<u> </u>	<b>∠</b> 5.0	10.0		RG	3	2805	11.8			
115   F   16.2   10.0   VI   RG   3   2210   10.9     115   F   1.2.0   C   BI   17910   1.3   East 1'     115   F   32.7   10.0   VT   RG   3   2807   7.4     115   F   32.7   10.0   VT   RG   3   2806   0.9     115   F   16.0   11.0   VT   BI   1   6991   0.0     115   F   10.0   11.0   VT   BI   1   6990   0.0     115   F   10.0   12.0   CP   BI   1   7845   0.0   Westor Hotspot 1'     115   F   10.0   13.0   CP   BI   1   7844   0.0   East of Hotspot 1'     115   F   10.0   12.0   CP   BI   1   7844   0.0   East of Hotspot 1'     115   F   10.0   0.0   MB   1   6983   -4.9   New Flooring     115   C1   1.0		115	<b>_</b>	8.4	10.0		RG	3	2808	10.9			
115   F   1.9   2.3   VT   RG   3   2800   8.7     115   F   8.0   1.20   C   BI   1   7910   1.3   East 1'     115   F   3.0   10.0   VT   RG   3   2806   0.9     115   F   16.0   11.0   VT   BI   1   6989   0.0     115   F   10.0   12.0   CP   BI   1   6989   0.0     115   F   10.0   12.0   CP   BI   1   7845   0.0   West of Hotspot 1'     115   F   10.0   11.0   CP   BI   1   7843   0.0   South of Hotspot 1'     115   F   10.0   13.0   CP   BI   1   7843   0.0   Local Scan   X     115   F   11.0   12.0   CP   BI   1   7844   0.0   East of Hotspot 1'     115   F   28.8   9.6   VT   RG   3   2809   -18.9		115	-	16.2	10.0	VI	RG	3	2810	10.9			
115   F   8.4   2.3   VT   RG   3   2807   7.4     115   F   9.0   12.0   C   BI   1   7910   1.3   East 1'     115   F   16.0   11.0   VT   BI   1   6989   0.0     115   F   10.0   11.0   VT   BI   1   6990   0.0     115   F   10.0   12.0   CP   BI   1   6990   0.0     115   F   10.0   12.0   CP   BI   1   7845   0.0   Hotspot @ Center     115   F   10.0   13.0   CP   BI   1   7843   0.0   South of Hotspot 1'     115   F   10.0   13.0   CP   BI   1   7843   0.0   East of Hotspot 1'     115   F   10.0   13.0   CP   BI   1   7843   0.0   East of Hotspot 1'     115   F   15.0   8.4   VT   CH   3   2803   -42.4		115	F	1.9	2.3	VT	RG	3	2800	8.7			
115   F   30.1   20.0   C   BI   1   7910   1.3   East 1'     115   F   32.7   10.0   VT   RG   3   2006   0.9     115   F   16.0   11.0   VT   BI   1   6989   0.0     115   F   25.0   11.0   VT   BI   1   6989   0.0     115   F   10.0   12.0   CP   BI   1   6990   0.0     115   F   10.0   12.0   CP   BI   1   7845   0.0   West of Hotspot 1'     115   F   10.0   11.0   CP   BI   1   7842   0.0   North of Hotspot 1'     115   F   10.0   11.0   CP   BI   1   7842   0.0   Local Scan   X     115   F   28.0   2.3   VT   RG   3   2803   -2.4     115   G   2.3   VT   RG   3   2803   -3.5   Fire Sprinkler     1		115	F	8.4	2.3	VT	RG	3	2807	7.4			
115   F   32.7   10.0   VT   RG   3   2806   0.9     115   F   10.0   11.0   VT   BI   1   6989   0.0     115   F   1.0   11.0   VT   BI   1   6990   0.0     115   F   1.0   11.0   VT   BI   1   6990   0.0     115   F   1.0   11.0   VT   BI   1   6990   0.0     115   F   1.0   11.0   VT   BI   1   6990   0.0     115   F   10.0   13.0   CP   BI   1   7843   0.0   South of Hotspot 1'     115   F   1.0   12.0   CP   BI   1   7843   0.0   Least of Hotspot 1'     115   F   1.0   12.0   CP   BI   1   7844   0.0   East of Hotspot 1'     115   C1   0.0   M   BI   1   6983   -4.9   New Flooring     115   G2   1.		115	F	9.0	12.0	С	Bl	1	7910	1.3	East 1'		
115   F   16.0   11.0   VT   BI   1   6999   0.0     115   F   25.0   11.0   VT   BI   1   6990   0.0     115   F   25.0   11.0   VT   BI   1   6990   0.0     115   F   10.0   12.0   CP   BI   1   7845   0.0   West of Hotspot 1'     115   F   10.0   11.0   CP   BI   1   7842   0.0   North of Hotspot 1'     115   F   10.0   11.0   CP   BI   1   7842   0.0   North of Hotspot 1'     115   F   11.0   12.0   CP   BI   1   7842   0.0   North of Hotspot 1'     115   F   11.0   12.0   CP   BI   1   7843   0.0   East of Hotspot 1'     115   F   15.0   2.3   VT   RG   3   2814   -9.5     115   G   1.0   0.0   M   BI   6988   23.5   Fire Sprin		115	F	32.7	10.0	VT	RG	3	2806	0.9			
115   F   1.0   VT   BI   1   6990   0.0     115   F   10.0   12.0   CP   BI   1   6990   0.0     115   F   10.0   12.0   CP   BI   1   7845   0.0   West of Hotspot 1'     115   F   10.0   11.0   CP   BI   1   7843   0.0   South of Hotspot 1'     115   F   10.0   13.0   CP   BI   1   7842   0.0   North of Hotspot 1'     115   F   11.0   11.0   CP   BI   1   7844   0.0   East of Hotspot 1'     115   F   11.0   12.0   CP   BI   1   7844   0.0   East of Hotspot 1'     115   F   10.0   N   BI   1   6983   -4.9   New Flooring     115   F   15.0   8.4   VT   CH   3   2814   -5.5     115   Q2   1.0   0.0   M   BI   6986   21.6   Light		115	F	16.0	11.0	VT	BI	1	6989	0.0			
115   F   25.0   11.0   VT   BI   1   6990   0.0     115   F   10.0   12.0   CP   BI   1   7846   0.0   West of Hotspot 1'     115   F   10.0   11.0   CP   BI   1   7843   0.0   South of Hotspot 1'     115   F   10.0   13.0   CP   BI   1   7843   0.0   Nowth of Hotspot 1'     115   F   10.0   13.0   CP   BI   1   7345   0.0   Local Scan   X     115   F   11.0   CP   BI   1   7345   0.0   Local Scan   X     115   F   12.0   CP   BI   1   7844   0.0   East of Hotspot 1'     115   F   16.2   2.3   VT   RG   3   2809   -2.4     115   G2   1.0   0.0   M   BI   1   6986   21.6   Light     115   Q2   1.0   0.0   M   BI   1   6		115	F	1.0	11.0	VΤ	BI	1	6991	0.0			
115   F   10.0   12.0   CP   BI   1   7846   0.0   Hotspot @ Center     115   F   10.0   11.0   CP   BI   1   7845   0.0   West of Hotspot 1'     115   F   10.0   11.0   CP   BI   1   7842   0.0   North of Hotspot 1'     115   F   11.0   12.0   CP   BI   1   7843   0.0   Local Scan   X     115   F   11.0   12.0   CP   BI   1   7844   0.0   Least of Hotspot 1'     115   F   11.0   12.0   CP   BI   1   7844   0.0   East of Hotspot 1'     115   F   11.0   12.0   CP   BI   1   6983   -4.9   New Flooring     115   F   16.2   2.3   VT   RG   3   2814   -9.5     115   G2   1.0   0.0   M   BI   1   6988   23.5   Fire Sprinkler     115   Q2   1.0   0.0 </td <td></td> <td>115</td> <td>F</td> <td>25.0</td> <td>11.0</td> <td>VΤ</td> <td>BI</td> <td>1</td> <td>6990</td> <td>0.0</td> <td></td> <td></td> <td></td>		115	F	25.0	11.0	VΤ	BI	1	6990	0.0			
115   F   9.0   12.0   CP   BI   1   7845   0.0   West of Hotspot 1'     115   F   10.0   13.0   CP   BI   1   7843   0.0   South of Hotspot 1'     115   F   10.0   13.0   CP   BI   1   7843   0.0   Local Scan   X     115   F   11.0   12.0   CP   BI   1   7844   0.0   Least of Hotspot 1'     115   F   11.0   12.0   CP   BI   1   7844   0.0   East of Hotspot 1'     115   F   28.8   9.6   VT   BI   1   6983   -4.9   New Flooring     115   F   15.9   8.4   VT   CH   3   2814   -9.5     115   F   15.9   8.4   VT   CH   3   2814   -9.5     115   Q2   1.0   0.0   M   BI   1   6986   21.6   Fire Sprinkler     115   Q2   1.0   0.0   M   BI<		115	F	10.0	12.0	CP	Bl	1	7846	0.0	Hotspot @ Center		
115   F   10.0   11.0   CP   BI   1   7843   0.0   South of Hotspot 1'     115   F   10.0   13.0   CP   BI   1   7842   0.0   North of Hotspot 1'     115   F   11.0   11.0   CP   BI   1   7842   0.0   Local Scan   X     115   F   11.0   12.0   CP   BI   1   7843   0.0   Local Scan   X     115   F   11.0   12.0   CP   BI   1   7844   0.0   East of Hotspot 1'     115   F   25.0   2.3   VT   RG   3   2803   -4.9   New Flooring     115   F   16.2   2.3   VT   RG   3   2809   -18.9     115   Q2   1.0   0.0   M   BI   1   6988   23.6   Fire Sprinkler     115   Q2   1.0   0.0   M   BI   1   6830   -6.5     118   Q1   2.0   0.0   M		115	F	9.0	12.0	CP	BI	1	7845	0.0	West of Hotspot 1'		
115F10.013.0CPBI178420.0North of Hotspot 1' Local ScanX115F11.012.0CPBI173450.0Local ScanX115F11.012.0CPBI178440.0East of Hotspot 1'115F25.02.3VTRG32803-2.4115F28.89.6VTBI16983-4.9115F16.22.3VTRG32809-18.9115F16.22.3VTRG32809-18.9115G11.00.0MBI1698621.6Light115G21.00.0MBI1698721.6Fire Sprinkler115G21.00.0MBI16985-44.2Drywali118F7.52.8VTRG168330.0127E7.03.0GBCH21996-10.9127F0.03.0VTCH2196632.2127F15.09.0VTRG2196632.7127F9.09.0VTRG2196627.7127F9.09.0VTCH2196627.7127F9.09.0VT		115	F	10.0	11.0	CP	BI	1	7843	0.0	South of Hotspot 1'		
115   F   1.0   11.0   CP   BI   1   7345   0.0   Local Scan   X     115   F   11.0   12.0   CP   BI   1   7844   0.0   East of Hotspot 1'     115   F   28.8   9.6   VT   BI   1   6983   -4.9   New Flooring     115   F   28.8   9.6   VT   BI   1   6983   -4.9   New Flooring     115   F   15.9   8.4   VT   CH   3   2814   -9.5     115   G1   1.0   0.0   M   BI   1   6986   21.6   Light     115   Q2   1.0   0.0   M   BI   1   6987   -44.2   Drywall     118   Q1   2.0   0.0   M   BI   1   6833   0.0     127   E   4.0   3.0   GB   CH   2   1999   -10.3     127   F   9.0   6.0   VT   CH   2   1996   30.2		115	F	10.0	13.0	CP	BI	1	7842	0.0	North of Hotspot 1'		
115   F   11.0   12.0   CP   Bi   1   7844   0.0   East of Hotspot 1'     115   F   25.0   2.3   VT   RG   3   2803   -2.4     115   F   25.0   8.4   VT   CH   3   2814   -9.5     115   F   15.9   8.4   VT   CH   3   2814   -9.5     115   F   16.2   2.3   VT   RG   3   2809   -18.9     115   Q2   2.0   0.0   M   BI   1   6986   21.6   Light     115   Q2   1.0   0.0   M   BI   1   6987   21.6   Fire Sprinkler     115   Q2   1.0   0.0   M   BI   1   6830   -6.5     118   Q1   2.0   0.0   M   BI   1   6833   0.0   127     118   Q1   1.0   0.0   M   BI   1   6833   0.0   127   F   15.0   3.0		115	F	1.0	11.0	ĊР	BI	1	7345	0.0	Local Scan		X
115   F   25.0   2.3   VT   RG   3   2803   -2.4     115   F   28.8   9.6   VT   BI   1   6983   -4.9   New Flooring     115   F   15.9   8.4   VT   CH   3   2814   -9.5     115   F   16.2   2.3   VT   RG   3   2809   -18.9     115   Q1   1.0   0.0   M   BI   1   6986   21.6   Light     115   Q2   2.0   0.0   M   BI   1   6987   21.6   Fire Sprinkler     115   Q2   1.0   0.0   M   BI   1   6985   -44.2   Drywall     118   Q1   1.0   0.0   M   BI   1   6833   0.0     127   E   4.0   3.0   GB   CH   2   1996   -10.9     127   F   9.0   S0   VT   CH   2   1960   38.0     127   F   15.0		115	F	11.0	12.0	CP	BI	1	7844	0.0	East of Hotspot 1'		
115   F   28.8   9.6   VT   RG   3   2614   -9.5     115   F   15.9   8.4   VT   CH   3   2814   -9.5     115   F   16.2   2.3   VT   RG   3   2809   -18.9     115   Q1   1.0   0.0   M   BI   1   6986   21.6   Light     115   Q2   2.0   0.0   M   BI   1   6986   21.6   Fire Sprinkler     115   Q2   1.0   0.0   M   BI   1   6985   -44.2   Drywall     118   F   7.5   2.8   VT   RG   1   6830   -6.5     118   Q1   1.0   0.0   M   BI   1   6833   0.0     127   E   7.0   3.0   GB   CH   2   1999   -10.3     127   F   9.0   6.0   VT   CH   2   1960   38.0     127   F   9.0   9.0   VT		115	F	25.0	23	VT	RG	3	2803	-24			
115   F   15.9   8.4   VT   CH   3   2814   -9.5     115   F   16.2   2.3   VT   RG   3   2809   -18.9     115   Q1   1.0   0.0   M   BI   1   6986   21.6   Light     115   Q2   1.0   0.0   M   BI   1   6987   21.6   Fire Sprinkler     115   Q2   1.0   0.0   M   BI   1   6987   21.6   Fire Sprinkler     115   Q2   1.0   0.0   M   BI   1   6987   21.6   Fire Sprinkler     118   Q1   2.0   0.0   M   BI   1   6833   -6.5     118   Q1   1.0   0.0   M   BI   1   6833   0.0     127   E   4.0   3.0   GB   CH   2   1996   -10.9     127   F   9.0   OVT   CH   2   1966   36.7   77     127   F   9.0 </td <td></td> <td>115</td> <td>F</td> <td>28.8</td> <td>9.6</td> <td>vī</td> <td>BI</td> <td>1</td> <td>6983</td> <td>49</td> <td>New Flooring</td> <td></td> <td></td>		115	F	28.8	9.6	vī	BI	1	6983	49	New Flooring		
115   F   16.2   2.3   VT   RG   3   2809   -18.9     115   Q1   1.0   0.0   M   BI   1   6986   21.6   Light     115   Q2   2.0   0.0   M   BI   1   6986   21.6   Fire Sprinkler     115   Q2   1.0   0.0   M   BI   1   6987   21.6   Fire Sprinkler     115   Q2   1.0   0.0   M   BI   1   6985   -44.2   Drywall     118   F   7.5   2.8   VT   RG   1   6830   -6.5     118   Q1   2.0   0.0   M   BI   1   6833   0.0     127   E   4.0   3.0   GB   CH   2   1999   -10.3     127   F   0.0   3.0   VT   CH   2   1960   38.0     127   F   9.0   VT   RG   2   1960   34.7     127   F   9.0   9.0		115	F	15.0	84	vr	СН	3	2814	-9.5	new riconing		
115   Q1   1.0   0.0   M   BI   1   6986   21.6   Light     115   Q2   1.0   0.0   M   BI   1   6987   21.6   Fire Sprinkler     115   Q2   1.0   0.0   M   BI   1   6987   21.6   Fire Sprinkler     115   S   10.3   4.4   O   RG   1   6987   24.2   Drywall     118   F   7.5   2.8   VT   RG   1   6833   -6.5     118   Q1   1.0   0.0   M   BI   1   6833   0.0     127   E   4.0   3.0   GB   CH   2   1996   -10.9     127   F   0.0   3.0   VT   CH   2   1947   40.5     127   F   9.0   6.0   VT   CH   2   1960   38.0     127   F   15.0   9.0   VT   RG   2   1961   32.2     127   F   3.0		115	F	16.2	23	vт	RG	3	2014	-9.5			
115   Q2   1.0   0.0   M   BI   1   6988   23.5   Fire Sprinkler     115   Q2   1.0   0.0   M   BI   1   6987   21.6   Fire Sprinkler     115   S   10.3   4.4   O   RG   1   6987   21.6   Fire Sprinkler     115   S   10.3   4.4   O   RG   1   6987   21.6   Fire Sprinkler     118   G1   2.0   0.0   M   BI   1   6833   -6.5     118   Q1   1.0   0.0   M   BI   1   6833   0.0     127   E   4.0   3.0   GB   CH   2   1999   -10.3     127   F   0.0   3.0   VT   CH   2   1960   38.0     127   F   9.0   6.0   VT   CH   2   1963   32.2     127   F   15.0   9.0   VT   RG   2   1950   30.2     127   F <t< td=""><td></td><td>115</td><td>01</td><td>10.2</td><td>2.5</td><td>M</td><td>BI</td><td>1</td><td>6086</td><td>-10.9</td><td>Light</td><td></td><td></td></t<>		115	01	10.2	2.5	M	BI	1	6086	-10.9	Light		
115   Q2   1.0   0.0   M   BI   1   6987   21.6   Fire Sprinkler     115   S   10.3   4.4   0   RG   1   6985   -44.2   Drywall     118   F   7.5   2.8   VT   RG   1   6883   9.8     118   Q1   2.0   0.0   M   BI   1   6833   0.0     127   E   4.0   3.0   GB   CH   2   1999   -10.3     127   F   0.0   3.0   GB   CH   2   1996   -10.9     127   F   0.0   3.0   GB   CH   2   1996   -10.3     127   F   9.0   6.0   VT   CH   2   1960   38.0     127   F   9.0   0.0   VT   RG   2   1970   34.7     127   F   9.0   0.0   VT   RG   2   1961   32.2     127   F   3.0   9.0   VT   CH		115	02	2.0	0.0	R.A	BI	1	6988	21.0	Eire Sprinkler		
115   G2   1.0   0.0   M   D   1   0907   21.0   PRE Splitter     115   S   10.3   4.4   O   RG   1   6987   -44.2   Drywall     118   F   7.5   2.8   VT   RG   1   6830   -6.5     118   Q1   1.0   0.0   M   BI   1   6833   0.0     127   E   4.0   3.0   GB   CH   2   1999   -10.3     127   F   0.0   3.0   GB   CH   2   1947   40.5     127   F   0.0   3.0   VT   CH   2   1960   38.0     127   F   9.0   6.0   VT   CH   2   1960   38.0     127   F   15.0   9.0   VT   RG   2   1961   32.2     127   F   15.0   0.0   VT   CH   2   1953   27.0     127   F   15.0   0.0   VT   CH		115	02	1.0	0.0	NA NA	DI	4	6097	23.5	Fire Oprinkler		
113   3   10.3   4.4   0   NG   1   6963   44.2   Drywan     118   F   7.5   2.8   VT   RG   1   6830   -6.5     118   Q1   1.0   0.0   M   BI   1   6833   0.0     127   E   4.0   3.0   GB   CH   2   1999   -10.3     127   E   7.0   3.0   GB   CH   2   1996   -10.9     127   F   0.0   3.0   VT   CH   2   1960   38.0     127   F   9.0   6.0   VT   CH   2   1960   38.0     127   F   9.0   9.0   VT   RG   2   1961   32.2     127   F   3.0   0.0   VT   CH   2   1950   30.2     127   F   3.0   0.0   VT   CH   2   1955   26.4     127   F   3.0   9.0   VT   CH   2   1955<		115	6	10.3	0.0 A A	ő	BC	4	6095	21.0	Drawall		
110   1   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0		118	5	7 5	7.7 7.0	v.	PC	4	0300		Diywall		
110   Q1   2.0   0.0   Wi   Di   1   0034   9.0     118   Q1   1.0   0.0   M   BI   1   6833   0.0     127   E   4.0   3.0   GB   CH   2   1999   -10.3     127   E   7.0   3.0   GB   CH   2   1996   -10.9     127   F   0.0   3.0   VT   CH   2   1996   -10.9     127   F   0.0   3.0   VT   CH   2   1996   38.0     127   F   9.0   0.0   VT   RG   2   1961   32.2     127   F   9.0   9.0   VT   RG   2   1950   30.2     127   F   3.0   0.0   VT   CH   2   1966   27.7     127   F   3.0   0.0   VT   CH   2   1953   27.0     127   F   6.0   3.0   VT   CH   2   1955   26.4 </td <td></td> <td>118</td> <td></td> <td>1.0</td> <td>2.0</td> <td>V 1 64</td> <td></td> <td>4</td> <td>6030</td> <td>-0.0</td> <td></td> <td></td> <td></td>		118		1.0	2.0	V 1 64		4	6030	-0.0			
110   0.1   1.0   0.0   Mi   Di   1   0835   0.0     127   E   4.0   3.0   GB   CH   2   1999   -10.3     127   E   7.0   3.0   GB   CH   2   1996   -10.9     127   F   0.0   3.0   VT   CH   2   1947   40.5     127   F   0.0   6.0   VT   CH   2   1960   38.0     127   F   9.0   VT   RG   2   1961   32.2     127   F   9.0   VT   RG   2   1950   30.2     127   F   3.0   0.0   VT   CH   2   1950   30.2     127   F   3.0   9.0   VT   RG   2   1953   27.0     127   F   6.0   3.0   VT   CH   2   1955   26.4     127   F   0.0   VT   CH   2   1958   18.0     127   F <td></td> <td>110</td> <td></td> <td>Z.U</td> <td>0.0</td> <td>IVI Ra</td> <td></td> <td>4</td> <td>0034</td> <td>9.0</td> <td></td> <td></td> <td></td>		110		Z.U	0.0	IVI Ra		4	0034	9.0			
127   E   4.0   3.0   GB   CH   2   1999   -10.3     127   E   7.0   3.0   GB   CH   2   1996   -10.9     127   F   0.0   3.0   VT   CH   2   1947   40.5     127   F   9.0   6.0   VT   CH   2   1960   38.0     127   F   9.0   9.0   VT   RG   2   1961   32.2     127   F   9.0   9.0   VT   RG   2   1950   30.2     127   F   3.0   0.0   VT   CH   2   1950   30.2     127   F   3.0   0.0   VT   CH   2   1953   27.0     127   F   3.0   9.0   VT   RG   2   1955   26.4     127   F   0.0   VT   CH   2   1958   18.0     127   F   9.0   0.0   VT   CH   2   1963   17.4  <		110		1.0	0.0			2	0033	0.0			
127   E   7.0   3.0   GB   CH   2   1996   -10.9     127   F   0.0   3.0   VT   CH   2   1947   40.5     127   F   9.0   6.0   VT   CH   2   1960   38.0     127   F   9.0   6.0   VT   CH   2   1960   38.0     127   F   15.0   9.0   VT   RG   2   1961   32.2     127   F   3.0   0.0   VT   CH   2   1950   30.2     127   F   15.0   0.0   VT   CH   2   1953   27.0     127   F   3.0   9.0   VT   RG   2   1955   26.4     127   F   0.0   9.0   VT   CH   2   1955   26.4     127   F   0.0   VT   CH   2   1958   18.0     127   F   9.0   0.0   VT   CH   2   1963   17.4		121	-	4.0	3.0	GD		4	1999	~10.3			
127   r   0.0   3.0   VI   CH   2   1947   40.5     127   F   9.0   6.0   VT   CH   2   1960   38.0     127   F   15.0   9.0   VT   RG   2   1970   34.7     127   F   9.0   9.0   VT   RG   2   1961   32.2     127   F   9.0   0.0   VT   CH   2   1950   30.2     127   F   15.0   0.0   VT   CH   2   1956   27.7     127   F   3.0   9.0   VT   RG   2   1953   27.0     127   F   6.0   3.0   VT   CH   2   1955   26.4     127   F   0.0   9.0   VT   CH   2   1949   25.1     127   F   9.0   0.0   VT   CH   2   1958   18.0     127   F   12.0   0.0   VT   CH   2   1963   17.4<		127	5	7.0	3.0	GB		2	1996	-10.9			
127   F   9.0   6.0   VT   CH   2   1960   38.0     127   F   15.0   9.0   VT   RG   2   1970   34.7     127   F   9.0   9.0   VT   RG   2   1961   32.2     127   F   3.0   0.0   VT   CH   2   1950   30.2     127   F   15.0   0.0   VT   CH   2   1950   30.2     127   F   15.0   0.0   VT   CH   2   1966   27.7     127   F   3.0   9.0   VT   RG   2   1953   27.0     127   F   6.0   3.0   VT   CH   2   1955   26.4     127   F   0.0   VT   CH   2   1949   25.1     127   F   9.0   0.0   VT   CH   2   1963   17.4     127   F   12.0   3.0   VT   CH   2   1962   17.2		127	-	0.0	3.0	VI	CH	2	1947	40.5			
127   F   15.0   9.0   VT   RG   2   1970   34.7     127   F   9.0   9.0   VT   RG   2   1961   32.2     127   F   3.0   0.0   VT   CH   2   1950   30.2     127   F   15.0   0.0   VT   CH   2   1966   27.7     127   F   3.0   9.0   VT   RG   2   1953   27.0     127   F   6.0   3.0   VT   CH   2   1955   26.4     127   F   0.0   VT   CH   2   1955   26.4     127   F   0.0   VT   CH   2   1949   25.1     127   F   0.0   VT   CH   2   1958   18.0     127   F   12.0   3.0   VT   CH   2   1963   17.4     127   F   12.0   0.0   VT   CH   2   1964   15.8     127   F </td <td></td> <td>127</td> <td>F</td> <td>9.0</td> <td>6.0</td> <td>VT</td> <td>CH</td> <td>2</td> <td>1960</td> <td>38.0</td> <td></td> <td></td> <td></td>		127	F	9.0	6.0	VT	CH	2	1960	38.0			
127   F   9.0   VT   RG   2   1961   32.2     127   F   3.0   0.0   VT   CH   2   1950   30.2     127   F   15.0   0.0   VT   CH   2   1966   27.7     127   F   3.0   9.0   VT   RG   2   1953   27.0     127   F   6.0   3.0   VT   CH   2   1955   26.4     127   F   0.0   VT   CH   2   1955   26.4     127   F   0.0   VT   CH   2   1955   26.4     127   F   0.0   VT   CH   2   1958   18.0     127   F   0.0   VT   CH   2   1963   17.4     127   F   12.0   0.0   VT   CH   2   1963   17.4     127   F   12.0   0.0   VT   CH   2   1962   17.2     127   F   12.0   6.0 </td <td></td> <td>127</td> <td>F</td> <td>15.0</td> <td>9.0</td> <td>VT</td> <td>RG</td> <td>2</td> <td>1970</td> <td>34.7</td> <td></td> <td></td> <td></td>		127	F	15.0	9.0	VT	RG	2	1970	34.7			
127   F   3.0   0.0   VT   CH   2   1950   30.2     127   F   15.0   0.0   VT   CH   2   1966   27.7     127   F   3.0   9.0   VT   RG   2   1953   27.0     127   F   6.0   3.0   VT   CH   2   1955   26.4     127   F   0.0   9.0   VT   CH   2   1949   25.1     127   F   0.0   9.0   VT   CH   2   1958   18.0     127   F   9.0   0.0   VT   CH   2   1963   17.4     127   F   12.0   3.0   VT   CH   2   1963   17.4     127   F   12.0   0.0   VT   CH   2   1962   17.2     127   F   12.0   6.0   VT   CH   2   1964   15.8     127   F   15.0   3.0   VT   RG   2   1968   14.		127	F	9.0	9.0	VT	RG	2	1961	32.2			
127   F   15.0   0.0   VT   CH   2   1966   27.7     127   F   3.0   9.0   VT   RG   2   1953   27.0     127   F   6.0   3.0   VT   CH   2   1955   26.4     127   F   0.0   9.0   VT   CH   2   1949   25.1     127   F   9.0   0.0   VT   CH   2   1958   18.0     127   F   9.0   0.0   VT   CH   2   1963   17.4     127   F   12.0   0.0   VT   CH   2   1963   17.4     127   F   12.0   0.0   VT   CH   2   1962   17.2     127   F   12.0   6.0   VT   CH   2   1964   15.8     127   F   12.0   6.0   VT   CH   2   1964   15.8     127   F   15.0   3.0   VT   RG   2   1968   14		127	F	3.0	0.0	VT	CH	2	1950	30.2			
127   F   3.0   9.0   VT   RG   2   1953   27.0     127   F   6.0   3.0   VT   CH   2   1955   26.4     127   F   0.0   9.0   VT   CH   2   1949   25.1     127   F   9.0   0.0   VT   CH   2   1958   18.0     127   F   12.0   3.0   VT   CH   2   1963   17.4     127   F   12.0   0.0   VT   CH   2   1962   17.2     127   F   12.0   0.0   VT   CH   2   1964   15.8     127   F   12.0   6.0   VT   CH   2   1964   15.8     127   F   15.0   3.0   VT   RG   2   1968   14.8		127	F	15.0	0.0	VT	CH	2	1966	27.7			
127   F   6.0   3.0   VT   CH   2   1955   26.4     127   F   0.0   9.0   VT   CH   2   1949   25.1     127   F   9.0   0.0   VT   CH   2   1958   18.0     127   F   12.0   3.0   VT   CH   2   1963   17.4     127   F   12.0   0.0   VT   CH   2   1962   17.2     127   F   12.0   6.0   VT   CH   2   1964   15.8     127   F   12.0   6.0   VT   CH   2   1964   15.8     127   F   15.0   3.0   VT   RG   2   1968   14.8		127	F	3.0	9.0	VT	RG	2	1953	27.0			
127   F   0.0   9.0   VT   CH   2   1949   25.1     127   F   9.0   0.0   VT   CH   2   1958   18.0     127   F   12.0   3.0   VT   CH   2   1963   17.4     127   F   12.0   0.0   VT   CH   2   1962   17.2     127   F   12.0   6.0   VT   CH   2   1964   15.8     127   F   15.0   3.0   VT   RG   2   1968   14.8		127	F	6.0	3.0	VT	СН	2	1955	26.4			
127   F   9.0   0.0   VT   CH   2   1958   18.0     127   F   12.0   3.0   VT   CH   2   1963   17.4     127   F   12.0   0.0   VT   CH   2   1962   17.2     127   F   12.0   6.0   VT   CH   2   1964   15.8     127   F   15.0   3.0   VT   RG   2   1968   14.8		127	F	0.0	9.0	VT	СН	2	1949	25.1			
127   F   12.0   3.0   VT   CH   2   1963   17.4     127   F   12.0   0.0   VT   CH   2   1962   17.2     127   F   12.0   6.0   VT   CH   2   1964   15.8     127   F   15.0   3.0   VT   RG   2   1968   14.8		127	F	9.0	0.0	VT	СН	2	1958	18.0			
127 F 12.0 0.0 VT CH 2 1962 17.2 127 F 12.0 6.0 VT CH 2 1964 15.8 127 F 15.0 3.0 VT RG 2 1968 14.8		127	F	12.0	3.0	VT	CH	2	1963	17.4			
127 F 12.0 6.0 VT CH 2 1964 15.8 127 F 15.0 3.0 VT RG 2 1968 14.8		127	F	12.0	0.0	VΤ	СН	2	1 <del>9</del> 62	17.2			
127 F 15.0 3.0 VT RG 2 1968 14.8		127	F	12.0	6.0	VT	СН	2	1 <del>9</del> 64	15.8			
		127	F	15.0	3.0	VΤ	RG	2	1968	14.8			

Mallinckrodt C-T Project–Phase I Final Status Survey Report Building 250 Interior

					Meas.			Gross Activity			
Room	SFC	X (ft)	Y (ft)	Mtx	Туре	Min	SID	(dpm /100cm ² )	Remarks	Exc	Res.
	····· =										
127	F	3.0	3.0	VΤ	RG	2	1951	12.2			
127	F	6.0	0.0	VΤ	CH	2	1954	7.2			
127	F	3.0	6.0	VT	СН	2	1952	2 7.1			
127	F	6.0	6.0	VT	СН	2	1956	5.7			
127	Ē	0.0	1.0	vī	CH	2	1946	43			
127	'e	12.0	0.0	vr	СН	2	1065	10			
407		12.0	3.0	VT.		2	1900	1.3			
127	5	9.0	3.0			2	1958	7 1.3			
127	<u> </u>	0.0	9.0	VI.		2	1957	-7.1			
127	F	15.0	3.0	VI	CH	2	1967	-7.7			
127	F	0.0	6.0	VT	CH	2	1948	-12.2			
127	F	15.0	6.0	VT	СН	2	1969	) -19.9			
127	Ν	9.0	6.0	CB	RG	2	1983	120.3			
127	Ν	3.0	3.0	CB	СН	2	1975	5 <b>9</b> 3.3			
127	N	6.0	3.0	СВ	CH	2	1978	88.8			
127	N	15.0	3.0	СВ	СН	2	1988	85.6			
127	N	12.0	3.0	CB	ĊН	2	1985	i 81.7			
127	Ň	0.0	6.0	CB	CH	2	1973	75.3			
127	N	6.0	6.0	CB.	СН	2	1980	75.3			
107	N	12.6	7.0			2	1001	74.0			
407		5.0	7.0			2	1991	77.0			
127	N	5.0	9.0			2	1990	/ /2.1			
127	N	3.0	6.0	CB	RG	2	1976	8.07			
127	N	9.0	3.0	СВ	CH	2	1982	63.7			
127	N	15.0	6.0	СВ	RG	2	1989	) 50.8			
127	N	12.0	6.0	CB	СН	2	1986	5 32.2			
127	N	0.0	3.0	СВ	СН	2	1972	10,9			
127	N	3.0	0.0	RB	СН	2	1974	-13.5			
127	Q1	1.0	0.0	М	BI	1	6917	15.7	Light Fixture		
127	S	9.5	3.0	CB	СН	2	2014	122.9	0		
127	š	6.5	3.0	CB	RG	2	2017	88.8			
127	ĕ	12.5	6.0	CB	CH	2	2011	84.9			
127	č	0.5	0.0 6 0	20		2	2011	80.4			
407	5	45.5	0.0			2	2024	770			
127	3	15.5	0.0			~	2000	70.0			
127	S	3.5	6.0	CB	CH	2	2021	70.8			
127	S	1.5	9.0	CB	CH	2	2026	70.8			
127	S	6.5	6.0	СВ	СН	2	2018	65.6			
127	S	9.5	6.0	СВ	СН	2	2015	64.4			
127	S	0.5	3.0	СВ	RG	2	2023	63.7			
127	S	3.5	3.0	СВ	СН	2	2020	55.3			
127	S	11.5	8.0	CB	СН	2	2025	54.1			
127	S	15.5	3.0	CB	СН	2	2007	' 37.3			
127	S	12.5	3.0	CB	RG	2	2010	8.4			
127	S	9.5	0.0	RB	СН	2	2013	-9.0			
127	S	12.5	0.0	RB	СН	2	2009	-10.3			
127	Ŵ	6.0	6.0	M	CH	2	2035	21.2			
127	Ŵ	6.0	0.0	M	CH	2	2033	-31			
127	Ŵ	3.0	6.0	GB	СН	2	2032	-64			
127	107	0.0	6.0	GB	СН	2	2022	-77			
127		0.0	0.0	GD		2	2023	20.4			
12/	VV.	0.0	3.0			4	2034	-20.4			
127	w	9.0	6.0	GB	CH	2	2038	-24.5			
139	E	2.6	7.0	CB	CH	2	1918	116.9			
139	E	5.6	7.0	CB	CH	2	1917	111.9			
139	Ε	0.0	7.0	CB	СН	2	1919	68.9			
139	Έ	2.6	3.0	CB	СН	2	1915	i 58.8			
139	Е	1.6	7.0	СВ	СН	2	1941	53.4			
139	Е	0.0	3.0	CB	СН	2	1916	45.9			
139	Е	5.6	0.0	СВ	СН	2	1911	38.7			
139	Е	2.6	0.0	CB	СН	2	1912	28.7			
139	Ē	46	4 4	CB	RG	1	6907	26.2			
130	Ē	0.0	0.0	CB	СН	2	1013	25.1			
130	-	5.5 5.6	2.0	č	СН	2	1014	70			
133	<b>E</b>	0.0	3.0		<b>VII</b>	4	1314				

### Threshold Comparison Test Report – Buildings

Mallinckrodt C-T Project–Phase I Final Status Survey Report Building 250 Interior Revision: 0 March 2004 APPENDIX 4

· _ -

Threshold Comparison Test Report – Buildings

					Meas.			<b>Gross Activity</b>	1	
Room	SFC	X (ft)	Y (ft)	Mtx	Туре	Min	SID	(dpm /100cm ² )	Remarks	Exc Res.
		· · ·	····						· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·
139	F	0.0	0.0	VT	СН	2	1892	42.7		
139	F	0.0	3.0	VT	СН	2	1895	30.8		
139	F	5.9	0.0	VT	СН	2	1894	29.5		
139	F	5.9	5.6	VΤ	CH	2	1900	28.0		
139	F	0.0	5.6	VΤ	СН	2	1898	14.8		
139	F	3.0	3.0	VТ	СН	2	1896	2.2		
139	F	3.0	0.0	VT	СН	2	1893	-17.9		
139	F	5.9	3.0	VТ	СН	2	1897	-21.5		
139	F	3.0	5.6	VT	CH	2	1899	-27.3		
139	Ň	5.9	0.0	ĊB	CH	2	1908	77.6		
139	Ň	0.0	3.0	ČB	CH	2	1903	76.2		
139	Ň	0.0	7.0	CB	СH	2	1904	70.1		
130	N	3.0	0.0	CB	CH	2	1905	66.0		
139	N	5.0	6.0	CB	СН	2	1010	57 1		
135	N N	3.5	0.0			2	1007	37 4		
139		3.U E 0	2.0			2	1907	37.4		
139	IN AL	5.9	3.0			4	1909	91.4 95 A		
139	N N	3.0	3.0			4	1900	30.4 26 E		
139	N	0.0	0.0	CB		4	1902	20.0		
139	N	5.6	8.0	CB	CH	Z	1940	18.7	Cabinat	
139	Q1	1.0	0.0	M	BI	1	6908	-20.6		
139	Q2	2.0	0.0	м	BI	1	6910	28.4	Fire Sprinkler	
139	Q3	1.0	0.0	M	BI	1	6911	5.9	Electrical Track	
139	S	0.0	3.0	CB	CH	2	1927	118.4		
139	S	5.9	6.0	CB	CH	2	1922	102.0		
139	S	2.9	7.0	CB	CH	2	1925	96.6		
139	S	0.0	0.0	СВ	СН	2	1926	93.9		
139	S	0.0	7.0	CB	СН	2	1928	87.8		
139	S	5.9	0.0	СВ	СН	2	1920	85.7	•	
139	S	2.9	3.0	CB	СН	2	1924	74.1		
139	S	3.9	8.0	CB	СН	2	1942	65.0		
139	S	2.9	0.0	CB	СН	2	1923	38.1		
139	S	5.9	3.0	СВ	СН	2	1921	24.5		
139	Ŵ	3.0	7.0	CB	СН	2	1935	107.5		
139	Ŵ	0.0	0.0	CB	СН	2	1929	72.1		
139	Ŵ	3.0	0.0	CB	CH	2	1933	66.0		
139	Ŵ	0.0	6.0	CB	СН	2	1932	61.9		
139	Ŵ	10	37	CR	RG	1	6906	54.0		
139	Ŵ	50	8.0	CR	СН	2	1939	48.9		
130	Ŵ	3.0	3.0	CR	СН	2	1934	46.9		
130	14/	0.0	20	CB	CH	2	1031	40.8		
130	10/	0.0	3.0	CB CB	CH	2	1027	36.1		
139	VV \\\/	0.0 E E	5.0			5	1020	15.0		
139	VV	5.0	7.0			4	1930	10.0		
139	VV E	5.6	0.0			4	1930	-0.0		
140	5	4.0	0.0	M		4	20/2	19.1		
140	E	4.0	0.0	M	CH	2	20/0	0.1		
140	E	4.0	3.0	M	CH	2	2071	-4.4		
140	F	3.0	6.0	VT	CH	2	2053	42.1		
140	F	0.0	9.0	VT	CH	2	2054	42.1		
140	F	3.0	9.0	VT	CH	2	2055	27.9		
140	F	0.0	6.0	VT	CH	2	2052	17.9		
140	F	3.0	0.0	VT	СН	2	2049	14.2		
140	F	0.0	3.0	VΤ	СН	2	2050	-18.2		
140	F	3.0	3.0	VΤ	СН	2	2051	-19.9		
140	F	0.0	0.0	VT	СН	2	2048	-20.2		
140	N	2.0	7.0	СВ	СН	2	2063	84.3		
140	N	0.0	6.0	м	СН	2	2058	18.4		
140	N	3.5	0.3	CB	BI	1	6912	11.5		
140	N	0.0	3.0	M	СН	2	2057	10.2		
140	N	0.0	0.0	M	CH	2	2056	10.2		

Mallinckrodt C-T Project-Phase I

1

Final Status Survey Report Building 250 Interior

					Meas.			Gross Activity			
Room	SFC	X (ft)	Y (ft)	Mtx	Туре	Min	SID	(dpm /100cm ² )	Remarks	Exc	Res.
140	N	3.0	0.0	M	RG	2	2059	3.1			
140	N	3.0	6.0	M	CH	2	2061	1.7			
140	N	3.0	3.0	M	CH	2	2060	-1.0			
140	Q1	2.0	0.0	M	BI	1	6916	17.6	Fire Sprinkler		
140	Q1	1.0	0.0	М	BI	1	6915	2.9	Fire Sprinkler		
140	Q2	1.0	0.0	M	BI	1	6914	18.6	Light		
140	S	1.3	8.0	СВ	СН	2	2084	119.0			
140	S	1.3	3.0	CB	RG	2	2081	112.1			
140	S	1.3	6.0	CB	СН	2	2082	99.0			
140	S	0.8	3.8	СВ	Bl	1	6913	88.4			
140	S	1.3	0.0	СВ	СН	2	2080	29.6			
140	S	4.3	6.0	М	СН	2	2079	20.4			
140	S	4.3	0.0	М	СН	2	2077	12.6			
140	S	4.3	3.0	М	СН	2	2078	2.7			
140	w	0.0	3.0	CB	СН	2	2086	129.7			
140	w	9.0	6.0	CB	СН	2	2096	124.6			
140	W	9.0	0.0	СВ	СН	2	2094	114.9			
140	w	9.0	3.0	СВ	СН	2	2095	113.2			
140	w	3.0	3.0	CB	СН	2	2089	111.5			
140	w	3.0	0.0	CB	СН	2	2088	100.1			
140	W	0.0	0.0	CB	ĊН	2	2085	67.1			
140	Ŵ	7.0	7.0	ĊВ	СН	2	2097	61.8			
140	Ŵ	6.0	6.0	M	СН	2	2093	14.0			
140	ŵ	6.0	0.0	M	СН	2	2091	3.7			
140	ŵ	6.0	3.0	M	СН	2	2092	-10.9			
218	F	5.3	4.6	νī	RG	1	6857	13.1			
218	F	5.3	18.6	vī	RG	1	6854	6.5			
218	Ň	7.5	10.9	M	BI	1	6835	20.9			
219	F	92	10.0	M	RG	1	6888	-142.0			
219	F	13	4.8	ντ	RG	i	6886	-1.6			
219	01	20	0.0	M	BI	i	6902	38.2	Heater		
219	01	1.0	0.0	M	BI	1	6901	12 7	Heater		
219	02	2.0	0.0	M	BI	1	6904	18.6	Ladder		
210	02	10	0.0	M	BI	1	6003	13.7	Ladder		
210	03	1.0	0.0	M	BI	1	6905	59	Light		
210	Ŵ	1.0	12.8	R.A	PG	1	6883	-58.5	9.11		
213	W V	<b>₩.</b> 0	12.0	IVI	NO	•	0000	-90,0			

### Threshold Comparison Test Report – Buildings

Threshold Comparison Test Report - Buildings

#### Summary of Background Data and Thresholds Used in this Analysis

Measuren	<i>nent Type:</i> BK	DCGL	: 2,600 <b>I</b>	EMC: 13,000		
	Matrix	Number of	Average	Sigma	Background	DCGLw
ЕМС				e general de la Artes Santo de La Artes de la Artes Artes de la Artes de la Arte Artes de la Artes de la Arte		
	Data Points	Background	가 바람한 것 가지는 동안하겠어.	Threshold	Threshold	Threshold
		ر این میں الاصفوان کے ایک	n in the state of	(Tbk)	(Td)	(Tc)
	(dpmp/100cm ² )	(dpmp/100cm ² )	(dpmp/100cm ² )	(dpmp/100cm ² )	(dpm _p /100cm ² )	(dpmp/100cm ² )
с	90	35.4	20.1	75.5	2,675	13,075
CB	51	96.1	21.7	139.4	2,739	13,139
CPT	0	0.0	0.0	0.0	2,600	13,000
GB	0	0.0	0.0	0.0	2,600	13,000
м	10	24.0	15.7	55.3	2,655	13,055
0	0	0.0	0.0	0.0	2,600	13,000
RB	1	0.0	0.0	0.0	2,600	13,000
VT	10	15.1	24.0	63.0	2,663	13,063

Threshold Comparison Test Report - Buildings

#### STATISTICAL TEST RESULTS

Run Date:1/12/2004 4:38:38 PMSurvey Unit Number2504Class: 2Selected Test:SIGN TEST FOR PAIRED DATATest StatusPassThresholds:EMC13,000 DCGL2,600

#### DATA SUMMARY TABLE

68 Survey points processed and 5 matrices processed

#### S+ = 68 Wc = 41

****** The survey unit has passed the SIGN TEST FOR PAIRED DATA ******