FINAL STATUS SURVEY REPORT BUILDING 240 INTERIOR

MALLINCKRODT, INC. COLUMBIUM- TANTULUM PROJECT- PHASE 1

DECEMBER 2003

MALLINCKRODT

Mallinckrodt, Inc. St. Louis, Missouri

808 Lyndon Lane, Suite 201 Louisville, Kentucky 40222 502/339-9767 (Voice) 502/339-9275 (Fax)

BURNS & MCDONNELL 9400 Ward Parkway Kansas City, Missouri 64114 Phone (816) 333-9400 Fax (816) 822-3463

•

١

NEXTEP ENVIRONMENTAL

808 Lyndon Lane, Suite 201 Louisville, Kentucky 40222 Phone (502) 339-9767 Fax (502) 339-9275

- -

MALLINCKRODT, Inc. <i>c-t project – phase i</i> FINAL STATUS SURVEY REPORT		
Building 240 Interior Survey Unit 2401 Revision 0 Prepared by		
BMNX Joint Venture		
Approved by: <u>Hullun</u> Date: <u>13/07</u> Survey Designer		
Approved by: Mallinckrodt C-T Decommissioning Project Manager		
Approved by: <u>//m Woodby</u> Date: <u>/2-//-03</u> Mallinckrodt Radiation Safety Officer		
Approved by: 12/8/83 BMNX C-T Decommissioning Project Manager Approved by: 12/8/83 Date: 12/8/83		
Approved by: <u>MUMM</u> Date: <u>40/15</u> BMNX Environment, Safety and Health Representative Issued by: <u>D. M. Cen</u> Date: <u>1-5-04</u> BMNX Quality Assurance Manager		

Mallinckrodt C-T Project–Phase I Final Status Survey Report Building 240 Interior **BURNS & MCDONNELL**

9400 Ward Parkway Kansas City, Missouri 64114 Phone (816) 333-9400 Fax (816) 822-3463

NEXTEP ENVIRONMENTAL

808 Lyndon Lane, Suite 201 Louisville, Kentucky 40222 Phone (502) 339-9767 Fax (502) 339-9275

MALLINCKRODT, Inc. *c-t project -- phase i*

FINAL STATUS SURVEY REPORT

Building 240 Interior Survey Unit 2401 Revision 0

1. INTRODUCTION

- 1.1 PURPOSE
 - 1.1.1. This Final Status Survey Report (FSSR) is being submitted by Mallinckrodt, Inc. to the U.S. Nuclear Regulatory Commission (NRC) for the floor of Building 240 on the Mallinckrodt St. Louis site (designated as Survey Unit (SU) 2401). This report is being provided in accordance with the Mallinckrodt C-T Project, Phase I Decommissioning Plan (D Plan). This Final Status Survey (FSS) was performed in accordance with Field Instruction (FI) CT-FI-005¹ to demonstrate that the established guidelines for unrestricted release have been met. The results of the FSS are presented in this FSSR as justification for release of this survey unit from License STB-401 for unrestricted use.

1.2. HISTORICAL BACKGROUND

1.2.1. From 1942 to 1961 Mallinckrodt was involved in radiological activities outside of the scope of this report which terminated in 1977. Mallinckrodt's facilities have either been released from the applicable license or are being remediated by the US Army Corps of Engineers in the affected areas. License STB-401 was issued to Mallinckrodt in 1961 by the Atomic Energy Commission (AEC) (later the Nuclear

¹ CT-FI-005, Final Status Survey Guide for Survey Unit 2401: Building 240 Floor.

Regulatory Commission (NRC)) to allow extraction of columbium and tantalum (C-T) from natural ores and tin slag, since the ores and byproducts of processing contain uranium and thorium isotopes. Mallinckrodt has not performed C-T extraction since 1987. On July 12, 1993, NRC amended License STB-401 to possession-only for D&D and license termination.

2. SCOPE OF FINAL STATUS SURVEY

- 2.1. DEFINITION AND CLASSIFICATION OF SURVEY UNIT
 - 2.1.1. The affected interior surfaces of Building 240 have been designated as a single survey unit see paragraph 2.1.3. SU-2401 consists of the interior floor and doorways of Building 240. SU-2401 is classified as Class 2.
 - 2.1.2. Table 2.1 below contains the description provided in Appendix A of the D Plan for the areas referenced by this FSSR.

Survey Area Descriptions			
Area	Surface	Location / Surface	
170	F	Floor/Doorways	

- Table 2.1² Survey Area Descriptions
- 2.1.3. A summary report for each survey unit listing all the surfaces and fixed apparatus assigned to SU-2401 is presented in Appendix 1. A drawing of the survey unit showing the location of key fixed apparatus items is presented in Appendix 2, Figure 2.1.
- 2.2. IDENTIFICATION OF THE RADIOLOGICAL CONTAMINANTS
 - 2.2.1. The radionuclides on the St. Louis site under license STB-401 are the uranium and thorium series. Both series are assumed to be in radioactive equilibrium and to exist in a uranium-to-thorium ratio of two to one.³

2.3. REFERENCE BACKGROUND LEVELS

When the initial characterization (CH) surveys were performed from 1992 2.3.1. through 1996, beta backgrounds were determined for several matrix materials. Where additional background measurements were required for the FSS, they were taken on unaffected surfaces nearby or offsite. All background levels were determined by taking direct readings on the specified matrix on unaffected surfaces using the same methods and type equipment as were used for the FSS. Natural background levels for the contaminants of interest in the survey units are presented in Table 2.2.

Appendix A of D Plan.

Mallinckrodt C-T Project D Plan Appendix D

Matrix	Mean (dpmp/100cm ²) ⁴	Standard Deviation (dpm _p /100cm ²)
Concrete	35.4	20.1
Metal	24.0	15.7
Vinyl Tile	15.1	24.0
Wood	13.4	24.0

Table 2.2Background Reference Data

2.4. RELEASE CRITERIA

- 2.4.1. Table 2.3 displays the Derived Concentration Guideline (DCGLw) for measurements on building surfaces and fixed equipment. This value is the primary release criterion from the D Plan and is applied net of background to building surfaces such as floors. It also applies to items of installed apparatus such as drains and doors.
- 2.4.2. To limit the dose from residual materials as much as possible an Administrative Release Guideline (ARG)⁵ was developed and was used during the FSS as if it were the DCGLw with certain exceptions.⁶

Criterion	$(dpm_p/100 \text{ cm}^2)$
DCGLw	13,000
ARG	2,600

Table 2.3Building Surface and Installed Apparatus Release Criteria

- 2.4.3. <u>Elevated Measurements Criterion (EMC).</u>
 - 2.4.3.1. Because all the measurements within a Class 2 survey unit must be less than the DCGLw, there is no EMC criterion applicable to this survey.

⁴ $Dpm_p/100 \text{ cm}^2$ refers to the disintegrations per minute per 100 cm² for the combined parent nuclide series.

⁵ NEXTEP Tech Memo 0211, Recommendation for an Administrative Release Guideline for the Mallinckrodt C-T Project, A.H. Thatcher, CHP, (included with FSSR 2501).

⁶ Final Status Survey Design Guide (Phase I), Section 3.2, covers the rules governing use of the ARG.

2.5. SURVEY INSTRUMENTS

- 2.5.1. The instrumentation utilized to generate FSS data was maintained, calibrated, and tested according to the requirements of the D Plan. All procedures, responsibilities, and schedules for calibrating and testing equipment have been documented.
- 2.5.2. Maintenance information and use limitations provided in the vendor documentation for the instruments used during this FSS were adhered to. Measuring and analyzing equipment were tested and calibrated before initial use and were recalibrated periodically and whenever previous calibrations were invalidated. Field and laboratory equipment specifically used for obtaining final radiological survey data were calibrated based on standards traceable to NIST. Minimum frequencies for calibrating equipment have been established and documented.
- 2.5.3. Measuring equipment were tested at least once on each day the equipment was used for FSS. Test results were recorded in tabular or graphic form and compared to predetermined, acceptable performance ranges. Equipment not conforming to the performance criteria was promptly removed from service and any data gathered in the interim evaluated for quality until the deficiencies were resolved.
- 2.5.4. All calibration and source check records were completed, reviewed, signed-off and retained in accordance with the Mallinckrodt Quality Assurance Program. The original Calibration Sheets for the instruments used in this FSS are provided in Appendix 3.
- 2.5.5. <u>L2221/AB-100</u> The primary instrument used for the detection of surface radioactivity was the AB-100 scintillation detector configured for beta detection. The AB-100 detector houses a ZnS/BC-408 organic scintillator and is paired with the Ludlum 2221 scaler/ratemeter for fixed and scan surveys. The window of the AB-100 was modified to increase the thickness of the mylar to 7-9 mg/cm² for the purpose of alpha attenuation⁷. The detector window was unshielded (open) for a time period during counting at each sample location and shielded (closed) for the same time period at the same location⁸. The difference in the two readings is attributable to beta emissions above 80 KeV in energy.⁹ The sensitivity of the AB-100 was derived from experiments by Lucas and Colyott which were reported in Attachment 3 to the D Plan.¹⁰ The actual instruments used were calibrated and

ł

⁷ As specified in Appendix D of the D Plan. Measurements taken with only the mylar covering the probe were "open window" measurements.

⁸ The "closed window" reading was taken with a 1/8" soft Aluminum plate covering the face of the detector. It is sufficient to exclude β rays from the U and Th series.

⁹ Internal Conversion Electrons (ICE) will also be included in this number but are a second order effect and may be ignored.

Energy Dependent Calibrations for the Bicron Model AB-100 Beta Ray Survey Probe, A. Lucas, CHP and L. Colyott, Ph.D., submitted as Attachment 3 to the Mallinckrodt Phase I Decommissioning Plan.

normalized to the reference instrument tested by Lucas and Colyott as prescribed in CT-QA-6.1¹¹.

- 2.5.6. <u>L2241-2/AB-100</u> The AB-100 detector mentioned above paired with the Ludlum 2241-2 scaler/ratemeter was used in the same way for direct and/or scan beta measurements.
- 2.5.7. <u>L43-89</u> The Ludlum 43-89 scintillation detector is a newer design that is functionally and physically equivalent to the AB-100. It has a slightly higher efficiency as a rule, and it may be paired on the same ratemeters and scalers.
- 2.5.8. <u>L3030</u> The Ludlum Model 3030 alpha/beta scaler houses ZnS(Ag) and plastic scintillators and was used to count removable contamination collected on paper swipes. Smear papers were counted in the laboratory and results were reported in β pm/100 cm². Removable contamination measurements were not compared with the release criteria for purposes of releasing the survey unit, but only to confirm that the removable fraction was less than 20% of the DCGLw.
- 2.6. LOWER LIMITS OF DETECTION AND DETECTION THRESHOLDS
 - 2.6.1. The terminology adopted to reflect an instrument's measurement (detection) capability is the lower limit of detection (LLD) or the minimum detectable activity (MDA). It refers to the intrinsic detection capability of the entire measurement process. The LLD, or MDA, is the lowest level of radioactivity that will yield a net count, above system blank, that will be detected with at least 95% probability with no greater than a 5% probability of falsely concluding that a blank observation represents a real signal. It is desirable to express the MDA as minimum detectable areal density (MDAD) or minimum detectable concentration (MDC) in units comparable to a regulatory limit with which a measurement may be compared. For a more detailed discussion regarding LLD and equations involved in calculation of LLD, refer to CT-QA-6.1.¹²
 - 2.6.2. The LLD requirements for the FSS have been developed in accordance with MARSSIM¹³ Chapter 4 guidelines. They are contained in the Design Guide and are listed in Table 2.4.

Measurement Type	MDC Requirement ¹⁴
Direct Beta	50% of ARG
Class 1 Beta Scans	ARG EMC
Class 2 or 3 Beta Scans	ARG

Table 2.4
MDC Requirements for CT FSS

¹⁴ Requirements are stated in terms of the ARG which may be adjusted upward by the area factor or paint attenuation factor as described in Section 3.2 of the Design Guide.

Mallinckrodt C-T Project-Phase I Final Status Survey Report Building 240 Interior

¹¹ CT-QA-6.1 - Calibration and Control of Measuring and Survey Equipment.

¹² CT-QA-6.1, Ibid.

¹³ NUREG 1575, Multi Agency Radiation Survey and Site Investigation Manual.

- 2.6.3. The MDCs for the instruments used in the FSS were calculated according to Appendix D of the D Plan. A comparison of the MDCs calculated for the AB-100 with the requirement for this FSS is provided in Table 2.5.
- 2.6.4. Action thresholds based upon the release criteria were calculated for each instrument in both direct and scan modes of operation. All thresholds were based on the ARG and are presented in Table 2.5. Details of the MDC calculations and derivation of the action thresholds are provided in NEXTEP Tech Memo 0230¹⁵.

Measurement	Units	Calculated Value	Required Value
BETA DIRECT			Class 2
MDC	$dpm_p/100 \text{ cm}^2$	100	1,300
Tinv ¹⁷	cpm		2,900
BETA SCAN			
MDC	$dpm_p/100 \text{ cm}^2$	760	2,600
Tinv	cpm		2,000

Table 2.5
LLD and Action Thresholds ¹⁶

2.7. INSTRUMENT SENSITIVITY, BACKSCATTER AND PAINT ATTENUATION

2.7.1. Beta direct measurements taken in the field were converted to $dpm_p/100 \text{ cm}^2$ of the parent nuclide series in accordance with Section 9 of the Design Guide using the following equation:

Equation 1

$$AD = \frac{Co - Cc}{PAF * S_i * S_b(m) * t}$$

Where:

AD	=	Areal Density in $dpm_p/100 \text{ cm}^2$ for the parent nuclides
Co	=	Counts measured in the open window configuration
Cc	=	Counts measured in the closed window configuration
PAF	=	Paint attenuation factor derived from the number of coats of paint applied to the surface since C-T operations ceased.
S_i	=	Normalized Instrument sensitivity without backscatter.
S _b (m)	=	Backscatter factor (a function of matrix)
t	=	Integration time in minutes.

¹⁵ NEXTEP Tech Memo 0230, *Technical Basis Document for Mallinckrodt Final Status Surveys*, A.H. Thatcher CHP, (included with FSSR 2501).

- ¹⁶ All Values given are net of background.
- ¹⁷ Investigation Threshold.

- 2.7.2. No painted surfaces were surveyed in SU-2401, so the paint attenuation factor (PAF) was equal to one for all surfaces.
- 2.7.3. Justification and calculations for separation of backscatter (as a function of the matrix) and instrument sensitivity were presented in Nextep Tech Memo 0215.¹⁸ Reference backscatter coefficients for several matrix materials were generated using an MCNP model and are described in Nextep Tech Memo 0213.¹⁹ These coefficients were stored in the Matrix table in the Database and were used in the calculations according to the matrix material upon which the measurement was taken.

3. SURVEY METHODS

- 3.1. SURVEY PROCEDURES
 - 3.1.1. The FSS conformed to the procedures and plans listed in Table 3.1. The primary guidance for the FSS is contained in the Design Guide and the FI, which implemented the requirements contained in the D Plan.

Table 3	3.1
---------	-----

Survey Procedures and Documents		
CT Decommis	sioning Plan (Phase I)	
CT Decommis	sioning Project, Final Status Survey Design Guide (Phase I)	
CT-FI-005, Fir	al Status Survey Guide for Survey Unit 2401	
CT-QA-6.1: C	alibration and Operation of Measuring and Survey Equipment	
CT-RP-66: Op	eration of Scalers, Rate Meters, and Contamination Detectors	
CT-RP-39: Pe	rformance of Radiation and Contamination Surveys	
CT-RP-40: Su	rvey Documentation and Review	

3.1.2. All FSS data recorded in the field was submitted to the Quality Assurance Manager or designee for processing and review. The data collection forms and annotated drawings were signed by the technician taking the data and reviewed by the Radiation Protection, Health & Safety (RPHS) Manager or designee overseeing the survey. After data entry and review, QA approved the data sheets and filed them with the permanent Mallinckrodt records. The QA checklist²⁰

¹⁸ NEXTEP Tech Memo 0215, Separation of Backscatter & Derivation of Instrument Sensitivity, A.H. Thatcher CHP, (included with FSSR 2501).

¹⁹ NEXTEP Tech Memo 0213, Beta Backscatter Factors for Several Materials at the Mallinckrodt Site, N. Zhang and D. Wilson, (included with FSSR 2501).

²⁰ NEXTEP Tech Memo 0206, QA Data Verification for MI CT Final Status Survey Data, B. Anderson, (included with FSSR 2501).

developed for quality verification of FSS data was used as a guide to data verification.

- 3.1.3. All the data generated by the surveys were entered into the C-T Radiation Database (RDB) and analyzed as outlined in Section 4.4 of the D Plan.
- 3.2. SURVEY MEASUREMENTS
 - 3.2.1. Beta Measurements:
 - 3.2.1.1. *Direct* A systematic grid of direct measurements were obtained on the floor surfaces as described in the FI. Bias measurements were taken on the floor and fixed apparatus at locations determined by the surveyor in an effort to fully characterize the fixed apparatus.
 - 3.2.1.2. Scans Beta scans were performed using the same instruments used for the direct beta measurements. Beta Scans were performed on the floor surface at a scan rate of less than one detector width per second with a probe height less than one inch from the surface being scanned.
 - 3.2.2. <u>Removable Contamination Measurements:</u>
 - 3.2.2.1. Swipes Removable contamination samples were collected at 100% of all regular grid locations. The swipes were counted in the laboratory and recorded in the database. Sampling of removable contamination was performed to confirm the assumption, used in derivation of the DCGLw, that the removable fraction measures less than 20% of the DCGLw²¹.

3.3. MEASUREMENT LOCATIONS

- 3.3.1. Statistical Grid Data Points
 - 3.3.1.1. The Visual Sample Plan© (VSP)²² software was used to develop a MARSSIM grid for SU-2401. The minimum number of points required and their spacing were calculated in accordance with the statistical guidance given in MARSSIM Sections 5.5.2.2 and 5.5.2.5.
 - 3.3.1.2. VSP receives the Data Quality Objective (DQO) input values necessary to calculate the number of measurement points, N, required to satisfy MARSSIM statistical guidance. The calculations include 20% excess to allow for inaccessible locations. A summary of all the input parameters used with VSP for this report is presented in Table 3.2.

²¹ Section 3.3 of the C-T Design Guide.

²² NEXTEP Tech Memo 0008, Verification and Validation of Applicable Portions of VSP Software, A. H. Thatcher, CHP.

DQO	Value
Type I error rate	5%
Type II error rate	5%
Width of Gray Region	$200 \text{ dpm}_{p}/100 \text{ cm}^{2}$
Level (ARG)	$2,600 \text{ dpm}_{p}/100 \text{ cm}^{2}$
Estimated Std Deviation	$200 \text{ dpm}_{p}/100 \text{ cm}^{2}$
Excess % sample points min.	20%

Table 3.2VSP Inputs for Building 240 Floor

3.3.1.3. A rectangular grid was used for SU-2401. The grid maximum interval spacing, L, was calculated from the total area of the survey unit, A, and the required number of data points, N, according to the following equation:

Equation 2

$$L \leq \sqrt{\frac{A}{N}}$$

3.3.1.4. Table 3.3 presents the calculated values for L and N for SU2401.

Table 3.3SU-2401 Floor Calculated Grid Point Separation

Survey Unit	Class	N Number of Data Points	A (ft ²)	L (ft)
SU-2401	2	29	4,084	11.9

- 3.3.2. Bias Measurement Locations
 - 3.3.2.1. Bias direct measurements were taken at the discretion of the HP technician performing the survey.
 - 3.3.2.2. Bias surveys were also taken at hot spot locations identified by scans as directed in the Hot Spot Protocol²³.

3.4. Reference Coordinate System

3.4.1. A unified reference system was prescribed for the location of all data points taken on all building surfaces and on the surface of installed apparatus. A description of the reference coordinate system is provided below.

²³ CT-FI-002, Final Status Survey Guide for Survey Units 235NES & 236NSW, Attachment E.

3.4.2. A data point's unique location is specified by a combination of the following data elements: building, room, surface ID, X, and Y. The surface ID refers to the four walls, floor, ceiling and roof as shown in Table 3.4. X and Y are distances from the origin measured as shown in the table. An example of X and Y axes for floors and walls is presented in Appendix 2, Figure 3.1

Location	Identifier	x	Y	
North Wall	N	Feet right from	Feet up from floor	
South Wall	S	leftmost edge of	or the lowest point	
East Wall	E	the wall surface	in the room	
West Wall	W			
Floor	F	Feet east from	Feet North of	
Ceiling	C	western most	southernmost edge	
Roof	R	edge of the surface		

Table 3.4Coordinate System Locators

- 3.4.3. The surface ID for a roof applies only in the case when measurements are being made on the exterior surface of a building. In this unique case the "room" assigned has the special number "999".
- 3.4.4. Systematic grid data points which fell on external surfaces of installed apparatus were located with the primary coordinate system. The ID code of the apparatus was recorded in the remarks. For example: Let Q2 be identified as a large air conditioning unit mounted on the floor. Any systematic grid measurement points for the floor surface which landed on the air conditioner would be identified using the X and Y coordinates from the southwest corner of the room. "Q2 A/C unit" would be noted in the remarks. The surface ID would be "F".
- 3.4.5. All bias data points taken on installed apparatus were numbered and located on the drawings provided. This number was recorded as the X coordinate on the data sheet and amplifying information was entered in the remarks section.

3.5. DATA EVALUATION

3.5.1. All of the direct, swipe and scan data were entered into the C-T Radiation Database (RDB) for easy access and analysis. The direct beta measurements are the primary means for documenting the survey unit and justifying its release. Therefore, a special report was programmed to perform all the tests specified in Section 4.4.8 of the D Plan and to provide a clear report of the results for evaluation. The calculations in this report have been validated and verified as described in NEXTEP Tech Memo 0231²⁴.

²⁴ NEXTEP Tech Memo 0231, Validation and Verification of the C-T Database Analysis Report, B. Anderson, (included with FSSR 2501).

- 3.5.2. The purpose of the screening software is to compare each direct beta reading taken in the survey unit with specified threshold levels, to apply the statistical tests called for in MARSSIM when appropriate, and to present the results in a clear and useful manner so that an analyst can accurately assess the action to be taken or declare the survey unit meets the requirements for release.
- 3.5.3. Some of the screening tests apply to each record in the survey unit and failure of one data point results in failure of the survey unit. Other tests do not apply to each survey record but generate a single PASS/FAIL verdict for the entire data set. The tests that were performed are described in the following paragraphs²⁵. An abbreviated summary of these tests is presented in Table 3.5.
- 3.5.4. Background Screen.
 - 3.5.4.1. For each MATRIX code in the database, calculate the mean background reading, its standard deviation, and its minimum value. Calculate and store the Background Threshold, T_{bk}, with its matrix code according to the following equation:

Equation 3

$$T_{bk}(m) = \overline{BK}(m) + 2 * \sigma_{bk}(m)$$

- 3.5.4.2. T_{bk} is equal to the mean of the background readings (\overline{BK}) for a given matrix plus two times its standard deviation (2 σ).
- 3.5.4.3. Compare each data point in the survey unit with T_{bk} . If the survey reading > T_{bk} the data point fails the test. One data point failure implies failure of the background screen test for the survey unit.
- 3.5.5. Min/Max Test.
 - 3.5.5.1. Find the maximum direct survey result, in $dpm_p/100cm^2$, for the survey data set.
 - 3.5.5.2. Find the minimum background reading among all the background data points having MATRIX codes that match those in the data set.
 - 3.5.5.3. If the difference between these two values is greater than DCGLw the MIN/MAX test fails for the survey unit.
- 3.5.6. DCGLw Screen.
 - 3.5.6.1. For each matrix code calculate and store a DCGLw Threshold (T_d). T_d is calculated by adding the value of DCGLw to T_{bk} .

²⁵ A more detailed explanation is provided in the Design Guide.

$$T_d(m) = T_{bk}(m) + DCGLw$$

- 3.5.6.2. Compare each data point in the survey unit with T_d . If the survey reading > T_d the data point fails the test. One data point failure implies failure of the DCGLw screen test for the survey unit.
- 3.5.7. EMC Screen.
 - 3.5.7.1. For each matrix code calculate and store an EMC Threshold (T_e). T_e is calculated by adding the value of EMC to T_{bk} . The EMC value selected is normally dependent upon the area involved. However, if no specific area was known, the EMC was normally set to the a priori DCGL_{EMC}.
 - 3.5.7.2. Compare each data point in the survey unit with T_e . If the survey reading > T_e the data point fails the test. One data point failure implies failure of the EMC test for the survey unit.
- 3.5.8. DCGL Average Test.
 - 3.5.8.1. For each matrix material in the survey unit, calculate the mean activity density, (in $dpm_p/100cm^2$), in the survey data set. Subtract from this value, the mean value of background activity for the same matrix. If the remainder is greater than DCGLw for any matrix in the survey unit, the test fails.

Equation 5

$$\overline{AD}(m) - \overline{BK}(m) > DCGL_{W}$$

3.5.9. Statistical Tests.

- 3.5.9.1. The statistical tests prescribed by MARSSIM operate only on the data points of MEASUREMENT TYPE = RG (Regular Grid) and PG (Post-Remediation Grid). The program narrows the filter to include only these points before proceeding.
- 3.5.9.2. The Wilcoxon Rank Sum Test²⁶ is applicable for survey units with measurements on a single matrix type or on matrices with similar background characteristics. Where more than one matrix was present, the Sign Test for Paired Data²⁷ was used.
- 3.5.10. The output of the Threshold Comparison Test Report (TCTR) was used for analysis of the data for the Building 240 interior and the results are presented in

²⁷ Described in NEXTEP Tech Memo 0231, ibid.

²⁶ Described in Appendix I of MARSSIM.

Appendix 4. The TCTR is divided into eight sections which are briefly described in the following paragraphs to assist the unfamiliar reader.

- 3.5.10.1. General: date, survey unit number, class, and grid information.
- 3.5.10.2. <u>Survey Unit Table</u>: building surfaces included, affected fixed apparatus, and total surface area of the survey unit.
- 3.5.10.3. <u>Initialization Data</u>: On startup of the analysis report program, the analyst must tell the program which parameters to use while running the tests described in this section. The *Initialization Data* section of the report output displays the options that were chosen for the run. The measurement types listed are those chosen by the analyst to be included in the report. The date range chosen is also listed. The default value is "All Dates". Values for DCGLw (ARG) and DCGL_{EMC} are also specified at the start of the run and are listed in this section. If remediated data points are included in the run, it will be noted in this section. Normally they will be excluded.
- 3.5.10.4. <u>Survey Unit Test Status</u>: Lists Pass/Fail status of all tests and gives a high level summary of key activity levels in the SU.
- 3.5.10.5. <u>Points that failed tests</u>: Lists all points that failed each specified threshold test (EMC, DCGL, and Background).
- 3.5.10.6. <u>Points that passed all the tests</u>: This includes the remainder of all the points in the data set. These data points have passed all the tests.
- 3.5.10.7. <u>Summary of background data</u> used in the calculations. This table includes the matrix materials in the survey and the thresholds calculated for each of the tests discussed in this section.
- 3.5.10.8. <u>Statistical Test Results</u>: This page lists the results of the Sign Test for Paired Data or the Wilcoxon Rank Sum test, whichever is selected. If the Test Status line reads Pass then the survey unit passes the Sign Test for Paired Data. The Data Summary section lists the number of background points and the number of survey points used from the data set. If the operator selects the option to show all data, a table of all data points used in the test is printed out.

Test	Test Criteria for PASS
Min/Max	Difference between minimum background measurement and maximum survey value less than DCGLw
Background	All samples must be less than the background threshold ^a
DCGL _w	All samples must be no more than $DCGL_w$ + the background threshold
DCGL _{avg}	The average of all net survey values must be less than $DCGL_w$
EMC	All samples must be less than $DCGL_{EMC}$ + the background threshold
Sign Test for Paired Data	The Sign Test for Paired Data is described in detail in NUREG 1505 ²⁸
Wilcoxon Rank Sum Test	This statistical test is described in detail in MARSSIM, Appendix I.

Table 3.5 **Threshold Screening Tests**

^{*} The background threshold is equal to the mean background value plus twice σ_{BK} .

3.5.11. Provided all additional considerations such as scan data, swipes, sampling of removable contamination or sludge from traps, etc. indicate that the survey unit met the release criteria, the release of the survey unit can be determined from the test report according to Table 3.6.

Test	Class 1	Class 2	Class 3	
Min/Max	not required ^a	not required ^a	PASS	
Background	not required	not required	PASS	
DCGLw	not required	PASS	PASS	
DCGLavg	PASS	PASS	PASS	
EMC	PASS	PASS	PASS	
Sign Test for Paired Data	PASS	PASS	PASS	

Table 3.6 Requirements for SU Release²⁹

* Class 1 or 2 survey units which pass Min/Max may be released without further consideration.

29

²⁸ NUREG 1505, A Nonparametric Statistical Methodology for the Design and Analysis of Final Status Decommissioning Surveys. See MARSSIM, Chapter 8, Table 8.2.

4. **FSS RESULTS AND DISCUSSION**

4.1. CHARACTERIZATION DATA

- 4.1.1. The characterization data taken in these survey units from 1992 to 1996 was very limited. Since the data on file in the characterization report were all taken with an HP-210 instrument they cannot be normalized to the AB-100 calibration standards and therefore are not included in the data set.
- 4.2. SURVEY UNIT 2401
 - 4.2.1. SU-2401 was surveyed in May 2003. Measurements were taken on the floor and on the doorways.
 - 4.2.2. Direct Beta Measurements on Building Surfaces.
 - 4.2.2.1. 42 direct beta measurements were taken on the floor surfaces of the survey unit.³⁰ 28 of these were included in the systematic grid. A diagram of the survey unit layout of the floor with the beta measurements taken is presented in Appendix 2, Figure 4.1.
 - 4.2.2.2. A summary of the direct measurement results taken on floor surfaces is presented in Table 4.1 and shows that the maximum activity measured, net of background, was 121 dpm_p/100cm². The average value for the survey unit was -4.7 dpm_p/100cm² after background subtraction.

Matrix	Points	Avg Net Activity (dpm _o /100cm ²)	Max Net Activity (dpm _o /100cm ²)	
Concrete	24	-15.0	43.9	
Vinyl Tile	18	9.0	120.6	

Table 4.1SU-2401 Direct Measurements Summary

4.2.3. Direct Beta Measurements on Installed Apparatus

4.2.3.1. All 19 items of installed apparatus which are listed in Appendix 1 were surveyed by direct beta measurements. A summary of the measurements taken is provided in Table 4.4 sorted by matrix. The values observed ranged from -48 to 65 dpm_p/100cm². All values were less than 3% of the ARG. The data confirm that no significant residual radioactivity was measured on the 19 items of installed apparatus in SU-2401.

³⁰ Excluding measurements on installed apparatus.

Matrix	Points	Avg Net Activity (dpm _p /100cm ²)	Max Net Activity (dpm _p /100cm ²)
Metal	14	-16.6	19.3
Wood	23 .	0.1	65.4

Table 4.2
SU-2401 Fixed Equipment Direct Measurements Summary

4.2.4. Direct Beta Measurement Distribution and Threshold Tests

4.2.4.1. A histogram of the net activity values found in the survey unit is provided in Figure 4.1. The distribution appears to have a single mode with the majority of the data centered at approximately -10³¹ dpm_p/100cm². This is consistent with a normal distribution of background radioactivity. One point fell slightly outside of the background distribution. All measurements were well below the ARG.

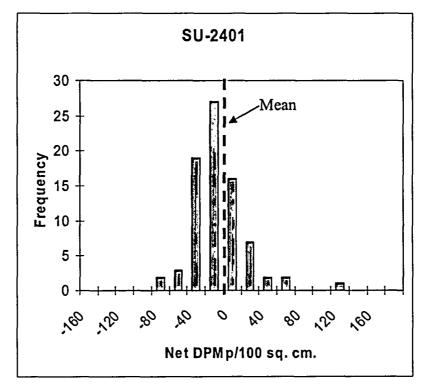


Figure 4.1 Histogram of Net Direct Beta Measurements

4.2.4.2. All the direct measurements in the survey unit were analyzed using the Threshold Comparison Test Report and the results are presented in Appendix 4 for SU-2401. The TCTR report contains a complete listing

³¹ Actually this mode represents the number of occurrences where the activity fell between -25 and 0 dpm_p/100cm².

of all the beta direct measurements taken in the Final Status Survey within SU-2401 sorted by activity. The summary pages indicate that all tests described in the D Plan passed except background. All tests required for release of a Class 2 survey unit passed. A comparison of test results and requirements for release of the survey unit is presented in Table 4.3.

Test	Class 2	SU-2401
Min/Max	not required ^a	Р
Background	not required	F
DCGL	PASS	Р
DCGLavg	PASS	Р
ЕМС	PASS	Р
Wilcoxon Rank Sum Test	PASS	Р

Table 4.3Requirements for SU Release

^a Class 2 survey units which pass Min/Max may be released without further consideration.

- 4.2.4.3. As the histogram in Figure 4.1 shows, the survey unit surfaces are at background levels with the exception of one measurement. These results are consistent with a passing of all tests except background for this survey unit.
- 4.2.5. Measurements of removable contamination
 - 4.2.5.1. Swipes were taken at each location where a regular grid measurement was performed plus at selected bias locations. The results of the measurements are presented in Table 4.4.

Table 4.4
SU-2401 Removable Contamination Summary

Surfa	ace	Points	Avg Net Beta	Max Net Beta	Avg Net Activity ^a	Max Net Activity
			(βpm/100cm ²)	(βpm/100cm ²)	(dpmp/100cm ²)	(dpmp/100cm ²)
F		41	-15.8	22.0	-3.3	4.6

^a Activity was converted to $dpm_p/100 \text{ cm}^2$ from $\beta pm/100 \text{ cm}^2$ using an approximate figure of 4.8 betas per disintegration.

4.2.5.2. The results show that removable contamination averages near zero $dpm_p/100cm^2$ and varies between -15.6 and +4.6 $dpm_p/100cm^2$. The data confirm that virtually no removable beta contamination is present within SU-2401.

4.2.6. Beta Scan Measurements

- 4.2.6.1. Beta scans were performed on about 15% of the surface of the floor. A diagram of the areas surveyed is presented in Appendix 2, Figure 4.2.
- 4.2.6.2. The scan threshold used for these surveys was 2,000 cpm (net of background) which corresponds to the ARG of 2,600 dpm_p/100cm². The calculation of threshold count rate and MDC for scans is presented in NEXTEP Tech Memo 0230^{32} .
- 4.2.6.3. All scans performed on the floor surface were taken on concrete or vinyl tile. The average background value used for analysis of the concrete raw data was obtained from the average of all the open window, direct beta readings (in cpm) taken in the survey unit. This value was 211 cpm. The average of all open window survey readings taken on concrete in the background data set was 331 cpm. For vinyl tile, the average of all the open window, direct beta readings in the background data set was used. This value was 161 cpm. The average of all open window direct beta survey readings taken on vinyl tile in the survey unit was 252 cpm.
- 4.2.6.4. During the surveys the maximum and average gross count rates were recorded for each area scanned. The beta scan data are summarized for SU-2401 and presented in Table 4.5.

Matrix	Areas	Maximum (cpm)	Average (cpm)	Max Net (cpm)	Avg Net (cpm)
Concrete	3	400	266.6	189.3	56.0
Vinyl Tile	4	650	317.5	489.4	156.9

Table 4.5SU-2401 Scan Measurements Summary

4.2.6.5. The maximum net scan value of 489 cpm is well below the scan threshold of 2000 cpm which corresponds to the ARG. No beta scan data were observed in SU-2401 above the scan threshold.

5. CONCLUSIONS

- 5.1. SU-2401 passed all the tests described in the D Plan except background. All tests required for release of a Class 2 Survey unit passed. (Par. 4.2.4.2)
- 5.2. No significant residual radioactivity was measured on the 19 items of installed apparatus in SU-2401.(Par. 4.2.3.1)
- 5.3. Virtually no removable beta contamination is present within SU-2401. (Par. 4.2.5.2)

³² NEXTEP Tech Memo 0230, ibid.

- 5.4. No beta scan data were observed in SU-2401 above the scan threshold of 2,000 cpm which corresponds to the ARG. (Par. 4.2.6.5)
- 5.5. SU-2401 meets all the requirements of the D Plan for unconditional release.
- 6. **RECOMMENDATIONS**
- 6.1. SU-2401 should be released from the license.

Appendix 1 Building Survey Unit Listing for Building 240 Interior

	Su	rfaceCode	Xmax	Ymax	Area (sq.ft.)	Paint (Coats)	Description	1	
Survey	UnitID	: 2401						Class:	2
Room	101								
		F	9.0	9.0	81	0.0			
		Q1				0.0	door/doorway		
Summa	ry for Roo	m 101 (2 de	tail record	ls)			1 Sq. Feet		
Room	102								
		F	9.0	9.0	81	0.0			
		Q1				0.0	door/doorway		
Summa	ry for Roo	m 102 (2 de	tail record	ts)			1 Sq. Feet		
Room	103								
		F	14.0	9.0	126	0.0			
		Q1				0.0	door/doorway		
Summa	ry for Roo	m 103 (2 de	tail record	ts)		12	6 Sq. Feet		
Room	104								
		F	9.0	9.0	81	0.0			
		Q1				0.0	door/doorway		
Summa	ry for Roo	m 104 (2 de	tail record	ls)			1 Sq. Feet		
Room	105								
		F	9.0	9.0	81	0.0			
		Q1					door/doorway		
Summa	ry for Roo	m 105 (2 de	tail record	ls)			1 Sq. Feet		
Room	106								
		F	14.0	24.6	296	0.0			
		Q1				0.0	door/doorway		
	ry for Roo								

Building Survey Unit Listing

Mallinckrodt C-T Project–Phase I Final Status Survey Report Building 240 Interior

		SurfaceCode	Xmax	Ymax	Area (sq.ft.)	Paint (Coats)	Description
Room	107						
Noom	107	F	40.0		00	0.0	
		F Q1	10.0	9.0	90	0.0 0.0	door/doorway
						0.0	domdormay
Summa	ary for	Room 107 (2 dei	tail record	ds)		9	0 Sq. Feet
Room	108						
		F	10.0	9.0	90	0.0	
		Q1				0.0	door/doorway
Summa	ary for	Room 108 (2 dei	tail record	ds)		9	0 Sq. Feet
D	100						
Room	109	F	9.0	9.0	81	0.0	
		Q1	0.0	0.0		0.0	door/doorway
Summ	any for	Room 109 (2 dei	tail record	10)		A	1 Sq. Feet
Canan	119 101 1			.0/			
Room	110						
		F	10.0	14.0	126	0.0	
		Q1				0.0	door/doorway
Summa	ary for a	Room 110 (2 dei	tail record	is)		12	6 Sq. Feet
Room	111						
		F	20.0	24.0	330	0.0	
		Q1				0.0	door/doorway
Summa	ary for	Roo <u>m 111 (2</u> dei	tail record	is)		33	0 Sq. Feet
	,						
Room	112	F	9.0	16.0	144	0.0	
		F Q1	9.0	10.0	144	0.0	door/doorway
							• • • • •
Summa	ary for	Room 112 (2 dei	tail record	ds)		14	4 Sq. Feet

Building Survey Unit Listing

		SurfaceCode	Xmax Y	max	Area (sq.ft.)	Paint (Coats)	Description
Room	113						
		F	11.0	8.0	88	0.0	
		Q1	11.0	0.0	00	0.0	door/doorway
		Q2				0.0	Valve box in floor
Summ	ary for	Room 113 (2 de	tail records)			8	8 Sq. Feet
Room	114						
		F	4.0	8.0	32	0.0	
		Q1				0.0	door/doorway
		Q2				0.0	floor drains (1)
Summa	ary for	Room 114 (3 dei	tail records)			3	2 Sq. Feet
Room	115						
		F	38.0	50.0	1,900	0.0	
		Q1				0.0	doors/doorways (3)
Summ	ary for	Room 115 (2 de	tail records)		<u> </u>	1,90	0 Sq. Feet
Room	116						
		F	14.0	4.0	52	0.0	
Summa	ary <u>for</u>	Room 116 (2 de	tail records)			5	2 Sq. Feet
Room	117						
Room	11/	F	27.0	47.0	405	0.0	
		Q1					doors/doorway
Summ	ary foi	r Room 117 (2 d	etail recor	ds)		40	5 Sq. Feet
TOTA	l for	Survey Unit 1	2401			108	A Sa Feet
IUIA		Survey Unit 2	401			4,00	4 Sq. Feet

Building Survey Unit Listing

-- --

APPENDIX 2 Figures

1

- · **.**

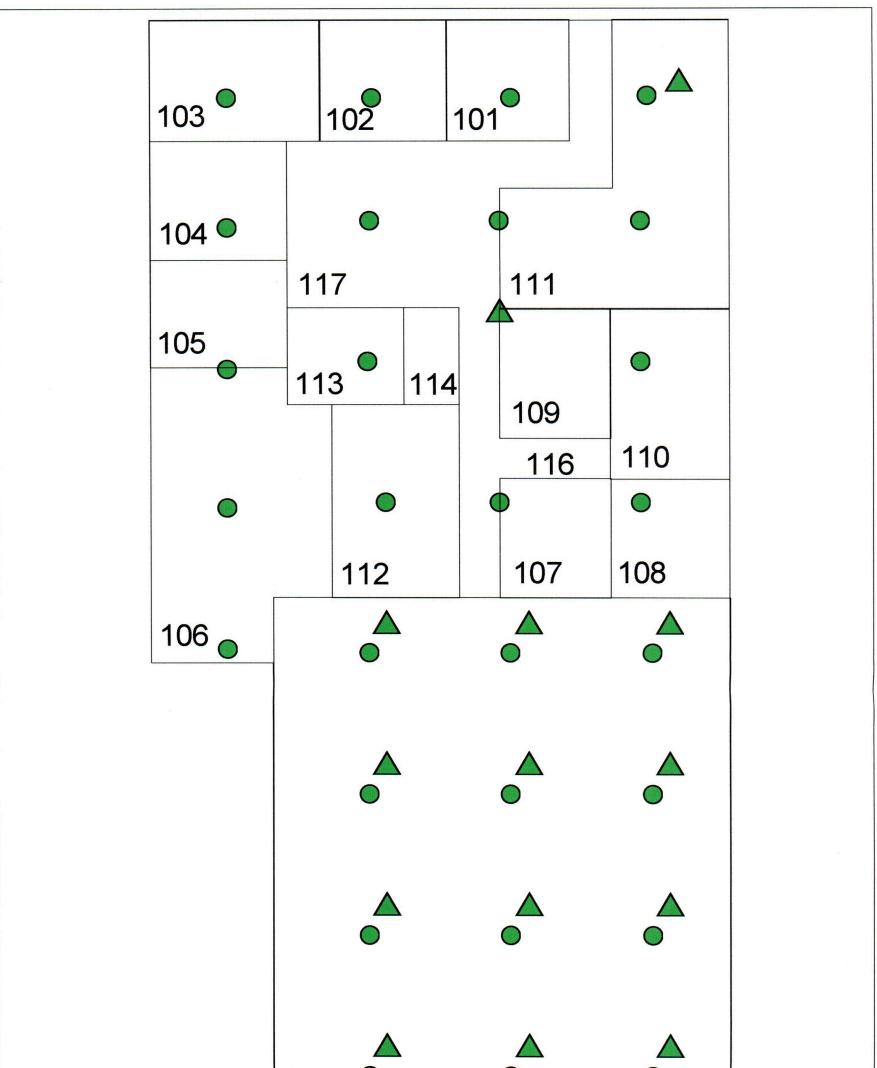
 $\hat{\mathbf{U}}$

.-

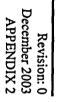

105 01 01 104 .103 .106 E Q1 Q1 101 8 .115 10<u>11</u>3 12 00 .112 0 102 02.114 017 1.01 .117 001 ᆌᄂ ʻ 🖓 🗖 701 01 н 101 116 109 107 Q1 \Q1 Q1 <u>Q1</u> .110 <u>Q1</u> 108 .111 Q1 Q1

()

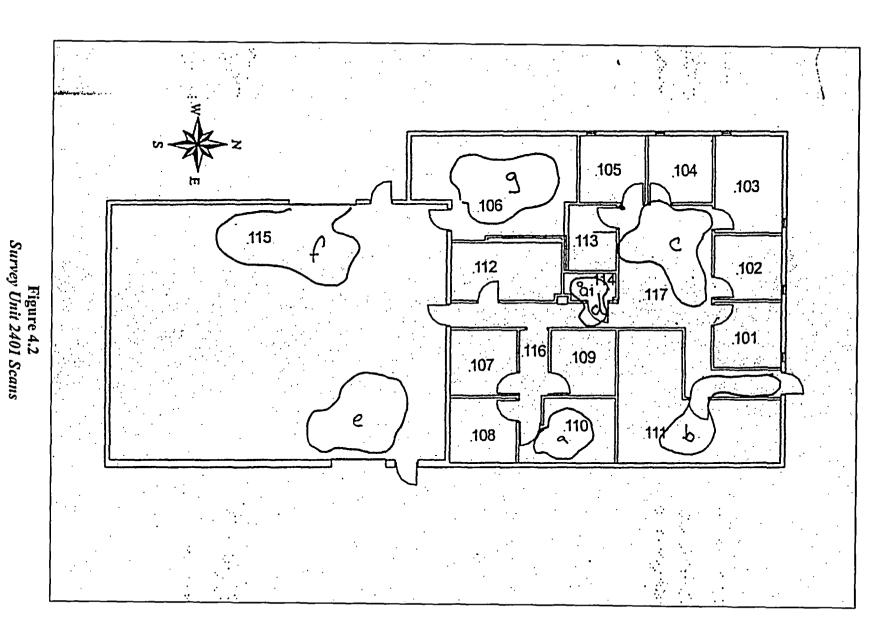
Figure 2.1 *SU-2401 Floor Only*


(,

(


·

 \bigcirc


			\bigcirc								
	1	15			2 - 2 ¹					N	
MALLINGVDODT	5	0	5	10	15	20	25	Feet	W	S E	
	Direct	Le Direct Measurements (dpm _p /100cm Regular Grid Under 2000			Bias Less Than 200		s Than 2000		Final Status Su Figure Building 24	Mallinckrodt C-T Project inal Status Survey Report Figure 4.1 Building 240, Floor Direct Beta Measurements	
		ĕ	2000 - 2600 2600 or More			2000 - 2600 2600 or More			Drawn by: DCW Building 240	Date: 8/14/03 Revision: 0	

Mallinckrodt C-T Project-Phase I	Revision: 0
Final Status Survey Report Building 240 Interior	December 2003
2	8 APPENDIX 2

(;

29

APPENDIX 3 Calibration Sheets

....

Туре	S/N	Cal Date
Beta	131415/188704	6/17/2003
	163666/B426W	1/16/2003
Swipe	179562	11/8/2002 7/22/2003
	179577	2/26/2003

•		Lud lu- 43-89	7		
	CA	AG-3-7 LIBRATION DATA SI	HEET		
43-89			of: BIALT		
Readout Inst.:			•	Date: 6-12-04	
	H-Sr Y-90	SN: 2158/9		<u>/6700</u> _DPM	
Date of Cal.:	10-74-00				
PLATEAU:	Source		Source		
High Voltage	(CPM)	High Voltage	(CPM)	Background Check	
600	NIA	1050- ASC	1598	- 75	<u>-M</u>
650		1400 1975	2165	Op. Voltage 50 13	L
700		1467 1467 900	2631	ع <i>د Le</i> +75	
750		1200. 925	3251	Op. Voltage +50 73	9
800	1552	725 1759- 950	3698	•	
850	2771	4000 475	<u>4z35</u>		
900	3737	1350			
950	4542	1400			
1000	5755	High Voltage	set at : 90	<u>A KHS volts</u>	
Efficiency:		•	タズ	5	
	te Gross Counts:			Inin Ct. 3213	
	s "A":	Pos "B": Gross CPM:		Imin BL6 185	
Average (A + I Background: C	B)/2: CPM:	Net CPM:			16700 200
		et CPM			
	Efficiency =	x 100 = <u>_/8</u> DPM	<u>•1</u> _%		8.1%
Date of Calibra	ation: <u>6-17-0</u>	3Expire	tion Date: 12	.17-03	
Calibrated by:		Sells Ta	udull?	All	
Reviewed by:	Dan (Print Ndr		GILBLOP	9) -/	
		, <u>)</u>	ι.		
EA4.10 Rev: 2 Date: 25 Fet	5 99			Page 4 of 4	
		1,22	4-2/L43-89		
			31415/1887	04	
		(6/17/03		
allinckrodt C-	T Project–Phase I				Revisio

Mallinckrodt C-T Project–Phase I Final Status Survey Report Building 240 Interior

. .

 $\langle \cdot \rangle$

 $\overline{\bigcirc}$

Revision: 0 December 2003 APPENDIX 3 : : CALN100A

Thermo NUtech For Mallinckrodt Chemical, Inc

43-89	M			- NUCLEA C CALIBR			Et	-	
ABP-100 SN:	18870	9	HIGH VOL	TAGE: 93	<u>5</u> v	PROPERT	Y OF: _[NALT	
READOUTIN	IST: 224	1-2		SN: /3/	415	CAL EXPIR	RE DATE	: 12-12-	03
ABP-100 EFF	ICIENCY T	'O SrY-90 C	N 47 mm [olsk: <u>18.</u>	<u> _%</u>	CAL DATE	:6-17	-03	~
		ROUND	BR	SOU	RCE	SR		SA	Efficie
SURFACE	OPEN	SHIELD	NET	OPEN '	SHIELD	NET	Source	Source	1 52.5
MATERIAL	Cts/2 min	Cts/2 min	СРМ	Cis/1 min	Cts/1 mln	<u>CPM</u>	#	Activity	
Concrete	396	308	88	5005	181	4824	la-A	25900	118.
((C		4945	179	4766	19	C	18.
				4951	210	4741	-(IE.
J	4			5(13	184	4929			12
259 × 100	1 259	200						Average =	-{i-
								Std Dev =	<u>.</u>
Wood	0	0	0	4007	226	3781	m-2	17400	1. 7. 1
(0	0	0	38761		3660	1	1	÷
	0	0	0	3971	211	3760			12:14
	0	0	0	3887	240	36A7		1 <u>j</u>	121.0
174×100			<u> </u>	10001				Average =	
	/ / 7	-00			~ ,	• • •		\$Id Dev =	0,
Masonite	0	0	0	3964:	249	3715	m-z	17400	21.
	0	0	0	3889	191	3698	1	1	21.
	0	0	0	3853	234	3619			1800
d d	0	0		3946	198	3148		<u> </u>	171
				•			-	Averaça = • Std Dav =	
				1124			1	1.	100
Aluninum		0	0	4362.	224	4138	m·z	17400	
Aluminum	0	0	0	4399	211	4186	m·z	17400	74,
Aluminum	.0 0	0	0	4399	211 257	4186	$\left\{ \right\}$		24.
Aluminum	0	0	0	4399	211	4186	m·z		24, 23. 23.
Aluminum	.0 0	0	0	4399	211 257	4186	$\left\{ \right\}$		24, 23, 23,
	0000	0000	000	4399	211 257 230	4186 4101 . 4160	$\left\{ \right\}$		24, 23, 23,
Alun:num	0000	0 0 10 10	000	4358	211 257 230	4186	$\left\{ \right\}$		24, 23, 23,
		0 0 10 10	000	4358	211 257 230	4186 4101 4160 5N DATE:	$\left\{ \right\}$		24. 23. 23.
DATE OF CA		0 0 10 10	000	4358	211 257 230 EXPIBATION	AIBG AIGI AIGO DN DATE:	12-1		24, 23, 23,
DATE OF CA		0 0 10 10	000	4358	211 257 230 EXPIRATI	4186 4101 4160 5N DATE:	12-1		24. 23. 23.
DATE OF CA CALIBRATE		0 0 10 10	000	4358	211 257 230 EXPIBATION	AIBG AIGI AIGO DN DATE:	12-1		24. 23. 23.
DATE OF CA CALIBRATE		0 0 10 10	000	4358	211 257 230 EXPIBATION	AIBG AIGI AIGO DN DATE:	12-1		24. 23. 23.
DATE OF CA CALIBRATE		0 0 10 10	0 0 0 1. Sel	4358	211 257 230 EXPIRATION Care	AIBG AIGI AIGO DN DATE:	12-1		24. 23. 23.
DATE OF CA CALIBRATE		0 0 10 10	0 0 0 1. Sel 1. Sel 1 1	4394 4350 4350 4350 //s	211 257 230 EXPIBATO 7 Gui DATE:	AIBG AIGI AIGO DN DATE:	12-1		24. 23. 23.
DATE OF CA CALIBRATE		0 0 10 10	0 0 0 1. Sel 1. Sel 1 1	4358	211 257 230 EXPIBATO 7 Gui DATE:	AIBG AIGI AIGO DN DATE:	12-1		
DATE OF CA CALIBRATE		0 0 10 10	0 0 0 1. Sel 1. Sel 1 1	4394 4350 4350 4350 //s	211 257 230 EXPIBATO 7 Cau DATE: 3-89 /188704	AIBG AIGI AIGO DN DATE:	12-1		24, 23, 23,

Final Status Survey Report Building 240 Interior

0 December 2003 **APPENDIX 3**

CT-RP-66 Chi Squared Test

Instrument Model #	2241	Date:	06/24/2003
Instrument Serial#	131415	Source Nuclide:	Sry90
Probe Model #	43-89	Source Serial #	2178-96
Probe Serial #	188704	Source dom (4x):	56039 -
Window Setting:		Efficiency (cpm/dpm):	0.19
			135.2
Threshold Setting:		Background com:	
High Voltage:	925	BKGD N-1	4
	E	KGD Count Time (min):	1
	Gross C	ounts	
Count # (n)	Observed	Expected	Background Counts
1	10358	10449	121
2	10405	10449	130
3		10449	122
	10502		148
4	10336	10449	
5	10281	10449	155
6	10198	10449	
7	10620	10449	
8	10468	10449	
9	10454	10449	
10	10328	10449	
-			
11	10525	10449	
12	10403	10449	
13	10382	10449	
14	10418	10449	
15	10471	10449	
16	10669	10449	
17	10552	10449	
18	10690	10449	
19	10392	10449	
20	10525	10449	
sample mean (xbar) =	10449	Multiplier to convert	
sample variance (s^2) =	15903	to dom:	5.4
background variance (b^2) =	239.7	•	
sample signe (s) =	127		
(95% Confidence) 2.752 s =	350		
(99% Confidence) 3 615 s =	459		
		MDA(cpm) =	57 306
df ≈ n-1 =	19	MDA(dpm) =	206
chitest = $p(x < \chi^2)$ =	6.727E-02		
chiequare $(\chi^2) =$	28.919		
Acceptable x^2 min =	8.907		
Acceptable x^2 max =	32.852		
χ ² test passes (yes/no)?	YES		
89% Conf. Interval Test min =	9854		
95% Conf. Interval Test min =	9964		
Dally Source Check Mean Net Counts	10313		
95% Conf. Interval Test max =	10663		
	10773		
99% Conf. Interval Test max =	10//3	\land	
	1.	Ath	
	. <u> </u>	L (1 V)	
Test performed by: 1	Steve Struck	- Kyton	
	•	•	

Checked by:

L224-2/L43-89 S/N: 131415/188704 6/17/03

Revision: 0 December 2003 APPENDIX 3

- --

Date:

•.		UM 2221	Thermo NUtech A ThermoRetec Compa 601 Scarboro Road Oak Ridge, TN 37830	iny
Ludlum22215/N: <u>16</u> Battery Check <u>Or</u> High Voltage Chec HV Moter: Fluke Meter Reading 600 Volts	Replace	roperty 000000000000000000000000000000000000	10 %	ons. ; ∴्र्
1000 Volts 1400 Volts <u>Input Sensitivity</u>		1003	10 % 10 %	
(Threshold @ 10 MP-2 S/N: <u>[@84</u> Rate/ <u>MP-2</u>	mv) Pre Cal Cali <u>2221</u>	: <u>35 mu</u> , F bration Exp. D Display	Post Cal: <u>35 M</u> Date: <u>1-29-03</u> Display	Tol
Moter		<u>Digtal</u>	Analog	
400 CPM	<u>×1</u>	400	400	10%
4K CPM	<u>x10</u>	3998	4000	10%
40K CPM	<u>×100</u>	39999	40000	10%
400K CPM	<u>×1000</u>	400080	400000	10%
Scaler:				
100K CPM	0 <u>5 sec</u>	50010	100000	10%
100K CPM	<u>1.0 min</u>	100020	<u> </u>	102
100K CPM	2.0 min	200039		10%
100K CPM	5.0 min	500097		102
Log 400 <u>400</u> Functional Check	4K <u>4K</u>	40K 40K	400k <u>400K</u>	
Ext Count Res	setSpor	eker Headp	honesLigh	t
Date Of Calibrat	ion: <u>1-16-0-</u>	Expiratio	n Date: 1-16-	3
Calibrated By:	andull H.S (erint)	ells Icu	gnature)	1.11A-
Reviewed By:	NN	Dat	o: 1/39/03	

L2221/AB-100 S/N: 163666/B426W 1/16/03

۰.

.

x)

Revision: 0 December 2003 APPENDIX 3

.

Thermo NUtech For Mallinckrodt Chemical, Inc

CALNIOOA

NATIONAL NUCLEAR ABP-100 MATERIAL SPECIFIC CALIERATION DATA SHEET RHS ABP-100 SN: BAZGW PROPERTY OF: TYCO E.S. HIGH VOLTAGE: 1875 V READOUT INST: Lud 2221 SN: 163666 CAL EXPIRE DATE: 7-16-03 ABP-100 EFFICIENCY TO SrY-90 ON 47 mm DISK: A2.0 % CAL DATE: 1-22-03 BACKGROUND BR SA Efficiency SOURCE SR SURFACE OPEN SHIELD SR-EP NET Source Sourca OPEN SHIELD NET MATERIAL Cis/2 min Cts/2 min СРМ **CPM** # Activity ŝ Cls/1 min Cts/1 mln 73 19.0 56 416 6625 6-A 33750 Concrete 6857 232 9 685.3 246 4601 9 6846 6100 ZAZ G. 6784 236 6548 266×125 = 35 33250 19.0 Avorage = Sid Dev = 0 Ward 0 M۰z \boldsymbol{o} ٥ 5222 238 4984 22250 * 1 5041 ۵ 240 Zž 6 0 5281 0 224 495 0 O 22. 5181 0 0 D 252 5064 22.8 5296 178 dam x 125 = 22250 Average = 22. Sid Dov = 0.2 Masonite 6 0 m-22250 22. Q 232 Ø 5296 50CA 0 C 5068 5063 **Q** <u>5307</u> 234 Ő 0 ò <u>53 II</u> **z48** ٥ Σ 6 \mathcal{D} 5366 236 5130 178 dpm x 125 - 22250 Average = + Std Dav = C 0 0 0 m 22250 26. uminy 1-03'7 5814 0 G 0 570% 236 5470 **1**4.(_ 0 O 603 5765 5.9 0 248 J 0 Ċ D 0 58AZ 178 dpm x 125 = 22250 Average = Std Dev = DATE OF CALIBRATION: EXPIRATION DATE: CALIBRATED BY: 1 and Signaturo Print No 113010 **REVIEWED BY:** DATE:

> L2221/AB-100 S/N: 163666/B426W 1/16/03

Mallinckrodt C-T Project-Phase I Final Status Survey Report Building 240 Interior

Revision: 0 December 2003 APPENDIX 3

CT-RP-66 Chi Squared Test

C	hi Square	ed lest	
Instrument Model #	2221	Date:	02/04/2003
Instrument Sorial#	163666	Source Nuclide:	87Y90
Probe Model #	AB 100	Source Serial #	2178-96
Probe Sedal #	8426W	Source dpm (4x):	56489
Window Setting:	3720	Efficiency (cpm/dpm):	0.28
Threshold Setting:	352	Blickground cpm:	183.4
High Voltage:	875	BKGD N-1	4
		BKGD Count Time (min):	•
	Gross !	Counts	Background Counts
Count # (n)	Obsorved	Expected 15546	185
1	15350	15546	193
2	15361	15546	179
3	15477	15546	179
4	15862	15546	181
5	15520 15587	15546	
6 7	15476	15546	
, 8	15392	15546	
9	15639	15546	
10	15609	15546	
11	15401	15546	
12	15433	15546	
13	15801	15546	
14	15743	15546	
15	15608	15546	
16	15828	15546	
17	16577	15546	
18	15518	15546	
19	15510	15546	
20	15599	15546	
sample mean (xbar) =	15546	Multiplier to convert	
sample variance (s*2) =	15181		3.5
background variance (b*2) =	34.8		
samplo sigma (\$) =	123	i	
(95% Confidence) 2.752 s =	339	1	
(99% Confidence) 3.615 6 =	446	1	
-			66
		MDA (cpm) ≈ MDA (dpm) ≠	240
df = n-1 =	19 4.858E-01		
chilest = $p(x < \chi^2) =$	4.0302-01		
chisquare $(\chi^2) =$	10.03	•	
Acceptable x^2 min =	8.907	7	
Acceptable x ² max =	32.852	2	
x*2 test passes (yes/no)?	YES	3	
DOM Cost Internal Test min -	1491	7	
99% Conf. Interval Test min =	1502		
95% Conf. Interval Test min = Dally Source Check Mean Not Counts	1536		
95% Conf. Interval Test max =	1570		
99% Conf. Interval Test max =	1580		
		lot.	· 14/03
			~ 111/03

Test performed by: Sieve Struck HOD 2/4/03 Checked by: Min C. Woodford Date: 2-4-03

L2221/AB-100 S/N: 163666/B426W 1/16/03

Mallinckrodt C-T Project-Phase I Final Status Survey Report Building 240 Interior

Revision: 0 December 2003 **APPENDIX 3**

M scientific	of Acceleration CERTIFIC	MALLINCKROUT	12114 P.000 LUDIUM MEASUKEMEN POST OFFICE BOX 810 PH.9 501 OAK STREET FAX1 SWEETWATER, TEXAS 79656, UL	113, INC. 2 15-235-5494 10. 915-235-467
CUSTOMER TYCO	HEALTHCARE/MALUNCKRODT		ORDER NO28	5367 / 268024
Mtg. Lucium M	feasurements Inc Model		Serial No <u>/79522</u>	
Col Date		e 6-May-03 Ca	d binned Alientie	•
		tor IAW m/g. spec. 172_		400 8 mm li
		Toler. +10% [] 10-20% [] Out of I		
Mechanical ck.	Mindow Operation	120 mV Beta Secultivity		
	rdance with LMI SOP 14.8 rev 12/0			1114
-	v High Vollage set with		•	•
	points) Ref./inst. 491		.Anst	
	poendy kongitan		· · · · · · · · · · · · · · · · · · ·	<u> </u>
Instrument in DPM r	node.	(EEF) (PC) Count Tir	ROM Settings) me: 10	
GC mode turned C		Alpha Alam:		
Firmware version:	NOISIO	Beta Alam: 5	•	
Overload set at 1/4	tum past OFF.	Alpha/Beta A	Jam: 50000 cpm	•
. Battery voltage me	csund at <u>11 yo</u> Vdc.	Calibration D	ue Date: _7/10/02	
C-14 Efficiency =	9%(4 pt) Net	LOC (Loss of C	Count) time = 30 minutes (default)	
Alpha Channel	REFERENCE CAL POIL	NT INSTRUMENT RECEIVED	INSTRUMENT METER READING	 ;•
Dictici Readout		199264	799264	
	40K com	39927	29827	
	4K.com	2493	3992	
	400 com	400	400	
	40 cpm		<u>%</u>	
Beta/Gamma C	REFERENCE CAL POIN	T INSTRUMENT RECEIVED	INSTRUMENT METER READING	•
Dialtal Readout	400K com	299449	289449	
	40K.com	39850	21950	
	4K cpm	1995	2995	
	400 cpm			
	40 cpm		40	
Uncertainty within ± 10%	C.F. within ± 20%	(D) inclicates 0.1 minute	count	
COMMENTS: 21. for Th-230 s	/n 2748-00, 3070cpm, read	d exy in 1 minute - Pt 21	, pi	
ther International Standards O	He hat he down intrument has been call gartation members, of have been derived to he requirement of ANS/INCS, 2540-1-144	broked by increasing incompose to the National in form accessing volume of natural physical consta M and And Nation 2020	ר ווזינים of Standards and Technology, at to the a nits or have been derived by the ratio type of a State of Testas Calibration 1	albedion techniques
Reference Instrumen			· · · · · · · · · · · · · · · · · · ·	
Alpha S/N _21-2	10. 171-00. 2-111 112-4 F Beto	ISTN ZOPENICEY	Other	····
	[] Osci	Soscope S/N	Muttimeter S/N	
🗹 m 500 S/N		· · · · ·	to The d	
_	rad Blink	Do		
_	ad Jalinto		cto_IINmoz	
Callereted By:	wad Ja Bindo			and Continuity Te
	and Harm	poroval of Lucium Measurements, Inc.	AC INT. C Prosed Disloctic (HPO)	ond Continuity Te
	and Harm		AC INT. C Prosed Disloctic (HPO)	and Continuity Te
	and Harm	coroval of Lucium Measurements. Inc.	AC INT. C Prosed Disloctic (HPO)	and Continuity Te

~

 \bigcirc

	2003 16:53 314 654 1	51 MALLINCKRODT	\$2114 P.011
	surements, Inc. Plateau Data		
			לעי 10 ביי יש
11/11/02 11:25:35 AN			•
• • •			÷.
ieader 1: Jol	m O Public, cial#179567		. 4
Header 3: Si	erBuilding 1		· .
Hender 4: 200	x 7-EastWall		
Header 5: No.	re Comments?		
	•		
Calibration I	Due Date: 5/8/03		
Mođel 3030 Da	11/8/02		•
	imar 10:16:33 AM		
User PC Time:	1.0		
Alpha Isotope			
	Size (dpa): 25200		•
Alpha Scurce	Size (#Ci): 0.011351351		
Seta Isotope:		· •	
	Size (dcm): 22500		
seta source :	Size (µCi): 0.01018018		
	Voltage: 625		
Starting High	Voltage: 750 Increment: 25		•
urdir Antenda	LLFUL CHRELIG I & J	· · ·	
	Node:, SCALER		
	Time (min): 0001.0 punt Time (min): 1.0		
	· · · · · · · · · · · · · · · · · · ·		
HV Source	ALPHA (Beta) Background El	f CroszTalk Source (Alpha) Background	Eff Crosstalk
	***************************************		*******
	5 (348) 1 30 7 (311) 2. 31	.94 3.54 5347 (0) 25 .64 2.94 5243 (4) 40	
	(328) 3 38	-24 -243 (4) 40 -24 -306 7209 (3) 41	27.4% 0.0% 31.7% 0.0%
	(340) 5.38		35.64 0.04
700 9759	(267) 2 3	.21 2.11 8928 (3) 68	

L3030 S/N: 179562 11/8/02

1

•

 \bigcirc

JUL 16-2003 16-53 311 651 1651 CMALLINCKRODT	#2114 P.010
Hodel -3030 -101 Calculation Cata	
11/11/02 11.75:19 AV	

Alpha Background(cpu): 3.0 Reta Background(cpu): 41.0 Alpha Efficiency 3: 38.2

Beta Efficiency &: 31.7 Confidence Lavel: 95%

Count Time	ha KDA (dom). Beta KDA ldo	
0.1 120	305.9	
0:5 . 49 1:0 28	.0 102;5	
2.0 - 21 5.0 - 17	.8 .8 .74.5	
10:0 16 50.0 15	.4 70.6 2 67.1	
2C (1.0) 28	.2 102.5	

L3030 S/N: 179562 11/8/02

CUSTOMIC TOC/ MALLINGROOT Opportunity Mrg. Luddem/Jeanuarisant, Inc. Model 3030 Solid No. 72 9722 Mrg. Luddem/Jeanuarisant, Inc. Model 3030 Solid No. 72 9722 Col: Stere Solid No. 72 9722 Total Total No. 72 9722 Col: Stere Solid No. 72 9722 Total No. 72 9722 Col: Stere Col: Network Address Address New Participant Institution Network Address Address Address New Participant Mindaw Operation Address Address Address Address Col: Statework Address V High Voltoge set with delector connected. V Mindaw Model Address Addres Address Address	Instruments	CERTIFICATE	OF CALIBRATION	POST OFFICE BOX 810 PH. 325-235-5494 501 OAK STREET 557 FAX NO. 325-235 SWEETWATER, TEXAS 79556, U.S.A.
Mig. Luclem/Hearurements inc. Model 300 Sond No. 72.972.2 Cit: State 22-0040 Coll Die Bate 22-0040 Coll Interval	CUSTOMER TYCO/ MALLI			
Check merk & Capter to depletable Mit, and/or detector LW mitg, spinc. TT. T	Mfg. Ludium Measure	ments Inc. Model	3030	
Check merk & Capter to depletable Mit, and/or detector LW mitg, spinc. TT. T			ار در میشند. این از میشند با با در میشوند میشود از میشود از میشود از میشود از میشود. این میشود از میشود میشود میشود از میشود از میشود از میشود از میشود.	
New Pathometer Instrument Received [] Within Tole:+102 [] 10-205 [] Out of 10. [] Requiring Report [] Other-See comm Matchenized ck. Apple Sensithity120mV Bate Sensithity4mV Beta Window _50_mV Catitation of Veta Set656V High Vetage set with defector connected. /				
Action c. Apple Senditivity mV Beta Senditivity mV Beta WindowS0_ mV Catalog c. Apple Senditivity mV Beta Senditivity mV Beta WindowS0_ mV Catalog c. Apple Senditivity mV Beta Senditivity mV Beta WindowS0_ mV Catalog c. Catalog c. Apple Senditivity MV Beta Senditivity mV Beta WindowS0_ mV Catalog c. C				
			-10% [] 10-20% [] Out of Tol.	🗌 Requiring Repoir 🔄 Other-See comr
Alpho Senditivity 122 mV Beta Senditivity 4_mV Beta Window 50_mV CCT bracted in occordance with UMI S01 14.5 test 12005/80. Instrument Wolf Sel65/		Window Operation		
Instrument Volt SetGSV High Voltage set with detector connected.		Alpha Sensitivity <u>120</u>	_ mV Beta Sensitivity4	mV Beta Window50 mV
✓ MV Readout (2 points) Ref./nst502 /500V Ref./nst572 /100 CC mode turned CFF.	Cct brated in accordance	with LMI SOP 14.8 rev 12/05/89.		
(EFROM Settings) Comose surged off: Marke surged off: Marke surged off: Outrod start 1/4 km post OFF: Beta Alorn: Outrod start 1/4 km post OFF: Colspan="2">Outrod of J222	Instrument Volt Set _ 650	V High Voltage set with detec	tor connected.	
CC mode tumed CFF. Apha Alam: #9859	🗹 HV Readout (2 points)	Ref./inst501	/500V Ref./Ir	nst/
SC mode turned CFF. Abba Alorm: \$93592com The verse version: \$220100			(EEPRO)	M Settings)
Detroited variation: <u>2993899</u>			-	. 10
Over ood set ct 1/4 km post OFF. Aphol/Bella Adam:			Alpha Alarm:	•
Bit fary volidge measured of 222				
Arthor Channel REFERENCE CAL POINT INSTRUMENT RECEIVED INSTRUMENT METER READING* Archor Channel 400K cpm 197901 36782 36782 Julio Channel 400K cpm 19791 36782 36782 Julio Channel 400K cpm 19792 36782 36782 Julio Channel 400 cpm 400 400 400 Julio Channel 400 cpm 400 400 400 Julio Channel 400 cpm 400 9091 36917 36917 Julio Channel 400 cpm 400 90917 36917 36917 Julio Channel 400 cpm 199917 39177 3177 Julio Channel 400 cpm 49913 3177	•			
Alcho Channel REFERENCE CAL POINT INSTRUMENT RECEIVED INSTRUMENT METER READING* Digital Readout 400K cpm 19990 3997 3992 Altho Channel 19991 3997 3992 Altho Channel 19991 3997 3992 Altho Channel 400 cpm 400 cpm 400 cpm Altho Channel 400 cpm 400 cpm 400 cpm Bato/Gomma Channel Com 19972 19972 Bato/Gomma Channel 400 cpm 19972 19972 Altho Cpm 19972 19972 19972 Altho Cpm 19972 19972 1977 Altho Cpm 400 cpm 400 cpm 400 cpm Althout Com 19972 1977 1977 Althout Com 19972 1977 1977 Althout Com 200 cpm 400 cpm 400 cpm Com 100 cpm 4920 10		•		
Abbe Channel Digital Readout 400K cpm 40K cpm 40K cpm 400 cpm	<u>2:9</u> Encency = <u>7.7</u>	%(4 pi) Nei		uni) timo = 30 minutes (derouir)
Digital Readout 400K cpm 199901 39921 40K cpm 3997 3997 400 cpm 4002 400 cpm 19952 400 cpm 19971 400 cpm 19972 400 cpm 19972 400 cpm 19972 400 cpm 49952 400 cpm 49972 400 cpm 4997 5127 cpm	Alaba Chassel	REFERENCE CAL POINT	INSTRUMENT RECEIVED	INSTRUMENT METER READING*
		400K com	199901	109971
AK com 3497 3997 400 cpm 4/00 4/00 Batc/Gommo Chonnel KEFERENCE CAL POINT INSTRUMENT RECEIVED INSTRUMENT METER READING* Batc/Gommo Chonnel 400K cpm 19972 19972 Batc/Gommo Chonnel 400 cpm 19972 19972 Batc/Structure 400 cpm 4992 400 Batc/Structure 400 cpm 49972 19972 Batc/Structure 400 cpm 4997 19972 Batc/Structure 400 cpm 4997 19972 Batc/Structure 400 cpm 4992 400 Colver 400 cpm 4992 400 Colver 400 cpm 4992 400 Colver 50 structure 19972 19972 Structure 100 structure 100 structure 100 structure Colver 100 structure 100 structure 100				
400 cpm 400 40 cpm 400 Batc//Gomma Channel REFERENCE CAL POINT INSTRUMENT RECEIVED INSTRUMENT METER READING* Distail Recodult 400K cpm 19952 19972 40K cpm 19972 19972 19972 40K cpm 19972 19972 19972 400 cpm 4000 19972 19972 400 cpm 4000 4000 4000 400 cpm 4000 4000 4000 400 cpm 4000 4000 4000 400 cpm 4000 4000 4000 4000 COV MINTS: 125.000 1000000000000000000000000000000000000				
Satis/Germinal Channel 200K.cpm 199357 19972			<u> </u>	<u> </u>
Satis/Germinal Channel 200K.cpm 199357 19972				
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		4		
	ה מיימי אפכבסתי			
				•
40.cpm 49 49 COMMENTE: (0) Indicates 0.1 minute = 77% 2p1 Comments in the comments of the down instrument in a been calculated by transmit increase in now been derived by the notional instruments of the down instruction include instruments of the down instruction include instruments of the down instruction include instruments of the down insthe down instruments of the down instruments of		· · · · · ·		· · · · · · · · · · · · · · · · · · ·
(0) Indicates Q1 minute count (0) Indicates Q1 (0) Indicates				
Life: for Th-230 s/n 2748-00, 3070cpm read 2377 in 1 minute = 771 2p1 Life: Th-230 s/n 2748-00, 3070cpm read 2377 in 1 minute = 771 2p1 Life: Th-230 s/n 2748-00, 3070cpm read 2377 in 1 minute = 771 2p1 Life: Th-230 s/n 2748-00, 3070cpm read 2377 in 1 minute = 771 2p1 Life: Th-230 s/n 2748-00, 3070cpm read 2377 in 1 minute = 771 2p1 Life: Th-230 s/n 2748-00, 3070cpm read 2377 in 1 minute = 771 2p1 Life: Th-230 s/n 2748-00, 3070cpm read 2377 in 1 minute = 771 2p1 Reference instruments of Neinership of the sectore only of the collocation technology. of the collocation technology. The of the collocation technology. The collecation technology. The collecatis techology. The collecation technology. The collecat	LITER C.F. WITTIN & 10% C.F. WITT		• • • •	
Licuit Meckadements No. Certifies that the above instrument has been actioned by itanaards increated to the Notional Instrume of Standards and instruments of Nove been derived by iteration access of notword provide constraints on hove been derived by the ratio hove been derived by the ratio of Standards of Nove been deriv		·····		
Collection Methods of New Deen derived from occepted values of noticed physical contrains or how been derived by the ratio has of a cathorin to the sourcements of New Deen derived by the ratio has of a cathorin to the sourcements of New Deen derived by the ratio has of a cathorin to the sourcements of New Deen derived by the ratio has of a cathorin to the sourcements of New Deen derived by the ratio has of a cathorin to the sourcements of New Deen derived by the ratio has of a cathorin to the sourcements of New Deen derived by the ratio has of a cathorin to the sourcements of New Deen derived by the ratio has of a cathorin to the sourcements of a cathoring by the source of the cathoring of of the	232. for Th-230 s/n 274	18-00, 3070cpm read 2377	in 1 minute = 77% 2pi	
Image: Control is string conforming the recurrents of ANSINCE 23:01-1004 and ANSINC	LUCUM Measurements, inc. centres that t	he above instrument has been calibrated by	standards increable to the National Institu	the of Standards and Technology, or to the calibration lacity
A cho S/N Beta S/N Other Other I m 500 S/N S7390613 Oscilloscope S/N Multimeter S/N S7390613 Collected Ev: Date 12 July 03 Date 12 July 03 Low erved By: Date 12 July 03	ליביביבים אפיפית הטיביבים ברי	autements of ANSI/NCSL 2540-1-1994 and AN	ipted values of natural physical constants ISI N323-1978.	or have been durived by the ratio type of calbration techn State of Texas Calibration License No. LC
Image: State of the second in the without the w				
Collected Ev: Livie ved By:		Beta S/N	na ser a na anna an tha ser an thair. Tha anna an tha anna an tha	Other
L3030 S/N: 179562	M 500 S/N134	7 <u>09</u> Oscilloscop	e S/N	Multimeter S/N57390613
L3030 S/N: 179562	Collected Ev: Connad	thing	Date	1270/03
L3030 S/N: 179562	1011	bin		
L3030 S/N: 179562			Date	
<u>aleadead Thairtean</u> a dòr brillion Santhaitheadh 192 An Santhairtean Santhairtean An L3030 S/N: 179562	This som tisate shall not be reproduced FORM C25-3 D4/29/2003	except in full, without the written approval of		Clinst. Dessed Dielectric (-B-Pot) and Continuit
L3030 S/N: 179562			· · · · · · · · · · · · · · · · · · ·	
S/N: 179562				
		-		
7/22/03			S/N: 179562	
		L.		

- 、

~ <u>ر</u> ۱

 $\widehat{\mathbb{C}}$

40

December 2003 **APPENDIX 3** Ludium Measuremonts, Inc. Nodel 3030 Plateau Data 7/22/03 5:45:42 AM Cader 1: John Q Public Seder 2: Serial\$179562 Seder 3: Site:Building 1 Header 4: Room 7 EastWall Header 5: More Comments? Header 6: More Comments? Calibration Due Date: 5/8/03 and the second Nedel 3030 Date: 7/19/04

fofal 3030 Cime: 8:32:16 AM

User FC Time: 1.0

Alpha Isotope: Pu-239 Alpha Source Size (dpm): 25200 Alpha Source Size (#Ci): 0.011351351

Deta Isotope: Tc-99 Pota Source Size (dom): 22600 Ecta Source Size (#Ci): 0.01018018

Starting High Voltage: 600 Starting High Voltage: 750 Righ Voltage Increment: 25

Tierres Count Vode: SCALER former Count Time (min): 0001.0 ar ground Count Time (min): 1.0

	Source	(Beta)	ALPHA Background	Eff	CrossTalk	Source	(Alpha)	BETA Background	Eff	Crosstalk
500	9397	(383)	0	37.3%	3.7%	4580	(2)	32	20.1%	0.0%
525	9455	(358)	1	37.5%	3.5%	5493	(3)	29	24.2%	0.0%
550	9483	(363)	0	37.6%	3.5%	6502	(3)	33	28.6%	0.0%
675	9586	(357)	1	38.0%	3.3%	7454	(3)	36	32.8%	0.0%
20	9537	(343)	C	37.8%	3.2%	8354	(0)	34	36.8%	0.0%
25	9618	(305)	0	38.2%	2.5%	9100	(6)	63	40.0%	0.1%
750	9666	(356)	1	38.48	0.8%	10029	(5)	276	43.2%	0.0%

Ludium Meàsuremonts, Inc.

۰.

• • •

1.1

L3030 S/N: 179562 7/22/03

- 7	
- 8	
1	a serie was a serie of the series of the
- X	Ludlum Measurements, Inc.
1	
7	Model 3030 MDA Calculation Data
2	nger (skole in den den den de parte in den den de provinsion de la deres de la den de la deres de la deres de s Inderes de la deres de la d
- 2	经过2011年,上午2011年,1971年,

77/22/0			a hara	
9:/2:5				
				n n' - S
Alpha	Background (c	pm): 0.0		
ita B	ackground (cp	m): 33.0		
				•
	Efficiency &		· · · · ·	÷ .
- Seta E	fficiency %:	28.6		
Confid	ence Level:	95%		• •
M				
Comple	""mo [1]	The MDA (dom	Bata M	na (de

count lime	ATONA WNA (opm)	Beca MDA(dpm)
0.1		313.9
0.5	14.4	133.4
1.0	7.2	102.9
2.0	3.6	85.7
5.0	1.4	74.3
10.0	0.7	70.3
ST 12	0.1	66.8
20 (1.3)	7.2	102.9

L3030 S/N: 179562 7/22/03

•

CUSTOMER <u>VCO / MALUNCKRC</u>	CERTIFICA	TE OF CAUBRATION	SWEETWATER TEXAS 79556 U	NO. 915-235-4072
Mfg. Lucium Measurements.	hc Model	3030	Serial No. 179577	 이상값 * 상황교
n in the second seco	•	ار در این که در بال می این که در به در میرود در در بال در به		
Ccl. Dote <u>25 Feb-03</u>	Cal Due Date		L Interval _ 6 Months	م در
Checkmark Z apples to applicable	•			701.8_ mm Hg
Mechanical ck. 🗹 Wind	gow Obelation	er. ←10% []10-20% []Out of 1	ol. 🔲 Requiring Repair 🔲 Oth	er-See comments
Y Aucio ck.	Inho Sensitivity 12) mV Bata Sacettuty	4mV Beta Window50	mV
Calibrated in accordance with U				
nstrument Volt Set_225V H				
IV HV Readout (2 points) Ref.			Jinst14&1	1500V
	/ = 131.			<u>1500</u> V
		(EEPR (PC) Count Tir	IOM Settings) ne: 1.0	
SC mode turned OFF.		Alpha Alarm:	cpm	
Francie version: <u>J90/J#/Z</u>		Beta Alarm:		
Ove- cod set at 1/4 turn past OFF		Alpha/Beta A	larm: <i>999999</i> cpm	
Battery voltage measured at <u>22,2</u>	2Vdc.	Calibration De	ue Date: <u>03/26/200</u> 2	
<u>C-19</u> Efficiency = _//	%(4 pi) Net	LOC (Loss of C	count) time = 30 minutes (default)	
DE	ERENCE CAL POINT	INSTRUMENT RECEIVED	INSTRUMENT METER READING	<u></u>
Alcha Channel			_	9
Digita' Readout	400K.cpm	299414	<u> </u>	
	40K.cpm	<u> </u>	39544	
<u> </u>		3995		
	400.ccm		400	
	40 cpm	40	<u> </u>	
REFE	RENCE CAL POINT	INSTRUMENT RECEIVED	INSTRUMENT METER READING	;•
Beta/Gamma Channel D!g tai Readout	1001/	399439	100000	
	400K.cpm	39945	<u>399439</u> 	
• •	4K com	3995	3995	
	400 cpm	400	.400	
-	40 cpm	40	40	
**************************************	· · · · · · · · · · · · · · · · · · ·	(0) indicates 0.1 minute	count	<u>.</u>
COMMENTS: ESI. L. S. A.M. S. M. HOL, 4450	ann. mad 28782 u	are simule: Lui 201		
EST. for 74. 130 Sh 2748-00, 3070	,	are minute = 802 281		
Judum Measurements, Inc. certifies that the above other international Standards Organization member	is, or have been derived from	accepted volues of natural physical consta	uture of Standards and Technology, or to the in this or have been derived by the ratio type of a	coloranan facines of
Reference Instruments and/or Sou		1 AN'I NO23-1978	State of Texas Collocation	Ucense No. LO-1963
Alenesin Pu-231 Dyy	(7-Bota S/A	7 -90 <i>4</i>	Other	· · · · · · · ·
		and the second	Carrier Treaters and	· · · · · · · · · · · · · · · · · · ·
T m 500 S/N <u>134709</u>		ope s/N	[] Muttimeter S/N	· · · · · · ·
Colord By: Concol Ja	li_la	Do	te 25 Fel 07	
Reviewed By: Room H	0.000	Dr	to 4 Mars	
		1 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997	AC Inst. Possed Dielectric (H&Pot)	and Contra the Tart
This certificate shot not be reproduced except in FCRM 025-3 10/022002	i uli, without the written oppro	VOLOT LUCIUM Macaurements Inc.	Only Failed	······································
	alati i ili ante sogre Richte a contraction		ىرى ئىرىكى مۇلىرى ئىلىغى ئىلى ئىلىرىكى يېچى ئىلى يېچى ئىلى ئېرىكى ئېرىكى ئېرىكى ئېرىكى ئېچىكى ئېچىكى ئېچىكى ئېچى	مينونونونونونونونونونونونونونونونونونونو
		L3030		
		S/N: 179577		
		2/26/03		
fallinckrodt C-T Project-Phas	se I			Re
inal Status Survey Report Bui		or		Decemb
	-	43		APPE

.

L

11

 \bigcirc

on: 0 December 2003 APPENDIX 3

.

25/03 38:50 PM ader 1: John Q Public ader 2: Serial#179577 ader 3: Site:Building 1 ader 4: Room 7 EastWall ader 5: More Comments? ader 5: More Comments?	•				
ader 2: Serial#179577 eader 3: Site:Building 1 eader 4: Room 7 EastWall eader 5: More Comments?	•	•			
ader 5: More Comments?					
libration Due Date: 2/26/04					
del 3030 Date: 2/26/03 del 3030 Time: 11:42:00 AM					
ser PC Time: 1.0					
lpha Isotope: Pu-239 lpha Scurce Size (dpm): 365000 lpha Source Size (μCi): 0.164414414					•
eta Isotope: Tc-99 eta Source Size (dpm): 22600 eta Source Size (μCi): 0.01018018					
tarting High Voltage: 675 tarting High Voltage: 800 Igh Voltage Increment: 25					
lateau Count Mode: SCALER curce (cunt Time (min): 0001.0 Ackground Count Time (min): 1.0					
ALPHA E7 Source (Beta) Background Eff	CrossTalk		 BETA	Éff	Crosstal)

.37	Source	(Beta)	Background	Eff	CrossTalk	Source	(Alpha)	Background	Eff	Crosstalk
675	137685	(3889)	0	37.78	2.8%	6010	(1)	36	26.4%	0.0%
700	137877	(3657)	0	37.8%	2.6%	6966	(1)	45	30.6%	0.0%
723	138583	(2500)	2	38.0%	1.8	7969	(1)	49	35.01	0.0%
730	137851	(1493)	0	37.8%	1.0%	8551	(3)	50	37.6%	0.03
775	137047	(1071)	1	37.5%	0.78	9470	(1)	70	41.6%	0.0%
:00	137105	(783)	1	37.6%	0.4% j	10082	(2)	203	43.7%	0.0%

L3030 S/N: 179577 2/26/03

 $\overline{\bigcirc}$

2/26/03 1:42:00 PM Alpha Backgro	NDA Calcula und(cpm): 2.0 nd(cpm): 49.0	tion Data			
Alpha Efficie Beta Efficien Confidence Le Count Time	xy %: 35.0 -	om) Beta MDA	(dpm)		
0.1 0.5 1.0 2.0 5.0 10.0 50.0 50.0 FC (1.0)	111.9 35.5 24.4 18.6 14.8 13.6 12.5 24.4	295.7 129.5 100.8 84.5 73.6 69.8 66.5 100.8	·		

L3030 S/N: 179577 2/26/03

 $\overline{\bigcirc}$

APPENDIX 4 Threshold Comparison Test Reports (TCTR)

Threshold Comparison Test Report - Buildings

Run Date: Wednesday, December 03, 2003

Survey Unit Number: 2401	Class:	2	Data Points: Beta	Grid Type: R	Spacing:	11.9
--------------------------	--------	---	-------------------	--------------	----------	------

SURVEY UNIT TABLE

Bldg	Rm	Surface	Fixed Equipment	Surface Area Included (sq. ft)	Remarks
B240	101	F	Q1	81	
B240	102	F	Q1	81	
B240	103	F	Q1	126	
B240	104	F	Q1	81	
B240	105	F	Q1	81	
B240	106	F	Q1	296	
B240	107	F	Q1	90	
B240	108	F	Q1	90	
B240	109	F	Q1	81	
B240	110	F	Q1	126	
B240	111	F	Q1	330	
B240	112	F	Q1	144	
B240	113	F	Q1Q2	88	
B240	114	F	Q1Q2	32	
B240	115	F	Q1	1900	·
B240	116	F	Q1	52	
<u>B240</u>	117	F	Q1	405	_
			Total Are	ea 4084	

ft.

Total Area

INITIALIZATION DATA

Meas	urement	cted: RG	RG, BI		
Date	Range:		All		
Thres	sholds:				
	EMC:	13,000	DCGLw:	2,600	

SURVEY UNIT TEST STATUS

Test Performed	Status			dpm _p /100 c
Min/Max	Pass	Maximum Survey Value	vт	136.0
Background	Fail	Minimum Background	<u>vt_</u>	-26.0
DCGLw	Pass	Difference		162.0
DCGLavg	Pass	Average Activity	16.9	
EMC	Pass	Average Below DCGL	16.9	
Wilcoxon Rank Sum Test	N/A	Average Background	30.9	
Sign Test for Paired Data	Pass			

Mallinckrodt C-T Project-Phase I Final Status Survey Report Building 240 Interior

Threshold Comparison Test Report - Buildings

THE FOLLOWING DATA POINTS FAILED THE EMC TEST:

NONE

THE FOLLOWING DATA POINTS FAILED THE DCGLw TEST:

NONE

THE FOLLOWING DATA POINTS FAILED THE BACKGROUND TEST:

Survey Unit # 2401				Вι	ilding:	B240					
Room	SFC	X (ft)	Y (ft)	Mbx	Meas. Type	Min	SID	Gross Activity (dpm_/100cm ²)	Remarks	Exc_Res.	
103	Q1	10.0	0.0	w	BI	1	5978	77.5		c	
108	Q1	26.0	0.0	W	BI	1	5994	78.8		С	
110	F	2.1	5.5	VT	RG	1	5950	135.7		С	
115	F	31.3	32.6	С	RG	1	7329	79.3		С	

THE FOLLOWING DATA POINTS PASSED BACKGROUND, DCGLw, AND EMC SCREENING TESTS:

Survey Unit # 2401

Building: B240

Room SFC X (ft) Y (ft) Mtx Type Min SID (dpm_s/100cm²) Remarks Exc Res. 101 F 5.4 2.9 VT RG 1 5941 -2.6 101 Q1 6.0 0.0 W BI 1 5974 11.6 101 Q1 5.0 0.0 W BI 1 5973 -3.9 102 F 3.7 2.9 VT RG 1 5976 60.7 102 Q1 8.0 0.0 W BI 1 5975 2.6 103 F 6.2 2.9 VT RG 1 5939 20.7 103 Q1 9.0 0.0 W BI 1 5977 -6.5 104 F 6.2 1.9 VT RG 1 5980 20.7 104 Q1 12.0 0.0 W	
101Q1 6.0 0.0 WBI1 5974 11.6 101Q1 5.0 0.0 WBI1 5973 -3.9 102F 3.7 2.9 VTRG1 5940 -18.1 102Q1 8.0 0.0 WBI1 5976 60.7 102Q1 7.0 0.0 WBI1 5975 2.6 103F 6.2 2.9 VTRG1 5939 20.7 103Q1 9.0 0.0 WBI1 5977 -6.5 104F 6.2 1.9 VTRG1 5980 20.7 104Q1 12.0 0.0 WBI1 5979 12.9 105Q1 14.0 0.0 WBI1 5982 5.2 105Q1 13.0 0.0 WBI1 5981 1.3	
101Q1 6.0 0.0 WBI1 5974 11.6 101Q1 5.0 0.0 WBI1 5973 -3.9 102F 3.7 2.9 VTRG1 5940 -18.1 102Q1 8.0 0.0 WBI1 5976 60.7 102Q1 7.0 0.0 WBI1 5975 2.6 103F 6.2 2.9 VTRG1 5939 20.7 103Q1 9.0 0.0 WBI1 5977 -6.5 104F 6.2 1.9 VTRG1 5943 42.6 104Q1 12.0 0.0 WBI1 5979 12.9 105Q1 14.0 0.0 WBI1 5982 5.2 105Q1 13.0 0.0 WBI1 5981 1.3	
101Q1 5.0 0.0 WBI1 5973 -3.9 102F 3.7 2.9 VTRG1 5940 -18.1 102Q1 8.0 0.0 WBI1 5976 60.7 102Q1 7.0 0.0 WBI1 5975 2.6 103F 6.2 2.9 VTRG1 5939 20.7 103Q1 9.0 0.0 WBI1 5977 -6.5 104F 6.2 1.9 VTRG1 5980 20.7 104Q1 12.0 0.0 WBI1 5979 12.9 105Q1 14.0 0.0 WBI1 5982 5.2 105Q1 13.0 0.0 WBI1 5981 1.3	
102F 3.7 2.9 VTRG 1 5940 -18.1 102 Q1 8.0 0.0 WBI 1 5976 60.7 102 Q1 7.0 0.0 WBI 1 5975 2.6 103 F 6.2 2.9 VTRG 1 5939 20.7 103 Q1 9.0 0.0 WBI 1 5977 -6.5 104 F 6.2 1.9 VTRG 1 5980 20.7 104 Q1 12.0 0.0 WBI 1 5979 12.9 105 Q1 14.0 0.0 WBI 1 5982 5.2 105 Q1 13.0 0.0 WBI 1 5981 1.3	
102Q18.00.0WBI1597660.7 102 Q17.00.0WBI159752.6 103 F6.22.9VTRG1593920.7 103 Q19.00.0WBI15977-6.5 104 F6.21.9VTRG1598020.7 104 Q112.00.0WBI1598020.7 104 Q111.00.0WBI1597912.9 105 Q114.00.0WBI159815.2 105 Q113.00.0WBI159811.3	
102 Q1 7.0 0.0 W BI 1 5975 2.6 103 F 6.2 2.9 VT RG 1 5939 20.7 103 Q1 9.0 0.0 W BI 1 5977 -6.5 104 F 6.2 1.9 VT RG 1 5980 20.7 104 Q1 12.0 0.0 W BI 1 5980 20.7 104 Q1 12.0 0.0 W BI 1 5980 20.7 104 Q1 11.0 0.0 W BI 1 5980 20.7 104 Q1 11.0 0.0 W BI 1 5979 12.9 105 Q1 14.0 0.0 W BI 1 5982 5.2 105 Q1 13.0 0.0 W BI 1 5981 1.3	
103 F 6.2 2.9 VT RG 1 5939 20.7 103 Q1 9.0 0.0 W BI 1 5977 -6.5 104 F 6.2 1.9 VT RG 1 5943 42.6 104 Q1 12.0 0.0 W BI 1 5980 20.7 104 Q1 11.0 0.0 W BI 1 5979 12.9 105 Q1 14.0 0.0 W BI 1 5982 5.2 105 Q1 13.0 0.0 W BI 1 5981 1.3	
103 Q1 9.0 0.0 W BI 1 5977 -6.5 104 F 6.2 1.9 VT RG 1 5943 42.6 104 Q1 12.0 0.0 W BI 1 5980 20.7 104 Q1 11.0 0.0 W BI 1 5979 12.9 105 Q1 14.0 0.0 W BI 1 5982 5.2 105 Q1 13.0 0.0 W BI 1 5981 1.3	
104 F 6.2 1.9 VT RG 1 5943 42.6 104 Q1 12.0 0.0 W Bl 1 5980 20.7 104 Q1 11.0 0.0 W Bl 1 5979 12.9 105 Q1 14.0 0.0 W Bl 1 5982 5.2 105 Q1 13.0 0.0 W Bl 1 5981 1.3	
104 Q1 12.0 0.0 W BI 1 5980 20.7 104 Q1 11.0 0.0 W BI 1 5979 12.9 105 Q1 14.0 0.0 W BI 1 5982 5.2 105 Q1 13.0 0.0 W BI 1 5981 1.3	
104 Q1 11.0 0.0 W BI 1 5979 12.9 105 Q1 14.0 0.0 W BI 1 5982 5.2 105 Q1 13.0 0.0 W BI 1 5981 1.3	
105 Q1 13.0 0.0 W Bi 1 5981 1.3	
105 Q1 13.0 0.0 W BI 1 5981 1.3	
106 F 6.2 12.8 VT RG 1 5951 33.6	
106 F 6.2 24.6 VT RG 1 5947 0.0	
106 F 6.2 0.8 VT RG 1 5955 -16.8	
106 Q1 36.0 0.0 M BI 1 6004 2.3	
106 Q1 35.0 0.0 M BI 1 6003 -16.2	
107 F 0.2 7.4 VT RG 1 5953 -14.2	
107 Q1 27.0 0.0 W BI 1 5995 23.3	
107 Q1 28.0 0.0 W BI 1 5996 15.5	
108 F 2.1 7.4 VT RG 1 5954 42.6	
108 Q1 25.0 0.0 W BI 1 5993 -3.9	
109 F 0.2 8.9 VT BI 1 5949 42.6	
109 Q1 21.0 0.0 W BI 1 5989 25.8	
110 Q1 23.0 0.0 W BI 1 5991 -22.0	
110 Q1 24.0 0.0 W BI 1 5992 -34.9	
111 F 12.1 6.7 VT RG 1 5946 40.1	
111 F 12.8 17.3 VT RG 1 7319 36.0	

Threshold Comparison Test Report - Buildings

					Meas.			Gross Activity				
Room	SFC	X (ft)	Y (ft)	Mbx	Type	Min		(dpm /100cm ²)	Remarks	Exc	Res.	
				10	01		5040	40.4				
111	F	15.4	18.7	VT	BI	1	5942	18.1				
111		0.2	6.7	VT	RG	1	5945 5972	6.5				
111	Q1	4.0	0.0	M	BI	1						
111 112	Q1 F	3.0 4.5	0.0 7.4	M VT	BI RG	1	5971 5952	5.4 29.7				
112	Q1	19.0	0.0	Ŵ	Bt	1	5952					
112	Q1	20.0	0.0	Ŵ	BI	1	5988					
113	F	7.8	2.1	ντ	RG	1	5948					
113	Q1	15.0	0.0	ŵ	BI	1	5983	23.3				
113	Q1	16.0	0.0	ŵ	BI	1	5984					
113	Q2	1.0	0.0	м	BI	1	5968	2.3	Valve Box			
114	Q1	17.0	0.0	Ŵ	BI	1	5985		Valve Dox			
114	Q1	18.0	0.0	ŵ	BI	1	5986					
114	Q2	1.0	0.0	м	BI	1	6005		Drain			
115	F	32.6	11.3	Ċ	BI	1	5967	69.6	Didini			
115	Ę.	31.3	8.6	č	RG	i	7323					
115	F	20.7	11.3	č	BI	i	5966	43.4				
115	F	7.3	8.6	č	RG	i	7321	39.6				
115	F	7.3	32.6	č	RG	i	7327	39.6				
115	F	31.3	44.6	č	RG	1	7332	37.1				
115	F	32.6	35.3	č	BI	1	5961	34.3				
115	F	20.7	47.3	Č	BI	1	5957	33.3				
115	F	19.2	44.6	č	RG	1	7331	28.1				
115	F	20.7	23.3	Č	BI	1	5963	27.3				
115	F	8.7	11.3	C	BI	1	5965	19.2				
115	F	32.6	47.3	C	BI	1	5958					
115	F	32.6	23.3		BI	1	5964	13.1				
115	F	19.2	32.6	С	RG	1	7328	12.8				
115	F	19.2	20.6	С	RG	1	7325					
115	F	7.3	44.6		RG	1	7330	6.4				
115	F	8.7	47.3	С	BI	1	5956	3.0				
115	F	19.2	8.6	С	RG	1	7322	1.3				
115	F	7.3	20.6	С	RG	1	7324	-3.8				
115	F	8.7	23.3		BI	1	5962					
115	F	31.3	20.6		RG	1	7326	-16.6				
115	F	20.7	35.3	С	BI	1	5960					
115	F	8.7	35.3	С	Bl	1	5959		٠			
115	Q1	32.0	0.0	М	BI	1	6000					
115	Q1	34.0	0.0	М	BI	1	6002					
115	Q1	29.0	0.0	Μ	BI	1	5997					
115	Q1	31.0	0.0	Μ	Bl	1	5999					
115	Q1	30.0	0.0		Bl	1	5998					
115	Q1	33.0	0.0	M	BI	1	6001	-3.9				
117	F	8.0	6.7	VT	RG	1	5944		_ .			
117	Q1	1.0	0.0	M	BI	1	5969		Entrance			
117	Q1	2.0	0.0	М	Bl	1	5970	-0.8				

Mallinckrodt C-T Project–Phase I Final Status Survey Report Building 240 Interior

Threshold Comparison Test Report - Buildings

Summary of Background Data and Thresholds Used in this Analysis

Measurement Type: BK DCGL: 2,600 EMC: 13,000

Matrix	Number of	Average	Sigma	Background	DCGLw	EMC
	Data Points	Background		Threshold	Threshold	Threshold
	•		-	(Tbk)	(Td)	(Tc)
	(dpm,/100cm ²)	(dpmp/100cm ²)	(dpm,/100cm ²)	(dpm/100cm ²)	(dpm,/100cm ²)	(dpmp/100cm ²)
с	90	35.4	20.1	75.5	2,675	13,075
м	10	24.0	15.7	55.3	2,655	13,055
VT	10	15.1	24.0	63.0	2,663	13,063
w	10	13.4	24.0	61.3	2,661	13,061

Threshold Comparison Test Report - Buildings

STATISTICAL TEST RESULTS

Run Date:	12/3/2003 9:50:42 PM				
Survey Unit Number	2401	Class:	2		
Selected Test:	SIGN TEST	FOR PAI	RED DATA		
Test Status	Pass				
Thresholds:					

EMC 13,000 DCGL 2,600

DATA SUMMARY TABLE

28 Survey points processed and 2 matrices processed

S+= 28 WC = 18

****** The survey unit has passed the SIGN TEST FOR PAIRED DATA ******