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U.S. Nuclear Power Plants

• Regulatory Issue: Integrity of reactor components is subjected
to Environmentally Assisted Cracking (EAC).  Need to
- determine crack growth rates to assure that selected

inspection intervals are adequate to assure structural integrity
- identify susceptible materials and conditions, &
- verify effectiveness of industry–proposed mitigating

measures
• Current concerns focused on cracking of core internals,

EAC of nickel alloys & welds, wastage of PV head, &
aging and license renewal issue
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• Ni–Alloy Cracking
- CRDM nozzles
- Outlet nozzle weld
- BMI penetrations

• Reactor Vessel Head
Wastage

• Baffle Bolt Cracking
• Aging & License

Renewal Issues

Current Issues in PWRs
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Current Issues in BWRs

• Core shroud cracking
• Aging & License

Renewal Issues
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Program Scope
• Provide short–term assistance in regulatory treatment of critical

age–related degradation issues in LWRs
• In longer–term  develop independent technical information

needed to provide stable regulatory environment for future
decisions:
- Degradation of reactor vessel internal components
- PWSCC of Ni–alloy primary pressure boundary components
- Environmental effects on fatigue crack initiation
- Wastage of PV head material

• Work coordinated with industry cooperative groups to
leverage results, coordinate testing, verify unexpected results &
get peer review
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Cracking of Core Internals

• Technical Issues: High irradiation levels in core can increase
susceptibility to SCC by affecting both material & environment

• Program Activities:
- Understand mechanisms of various types of cracking;

needed to rank materials & identify solutions
- Determine crack growth rates as a function of

water chemistry, loading, & fluence;
needed to disposition components & determine
inspection intervals

- Determine fracture toughness as a function of fluence;
also needed to disposition components
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IGSCC of Austenitic Stainless Steels

• SSs with ≤0.002 wt.% S are resistant to IGSCC, whereas
susceptibility increases significantly at higher S contents
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Crack Growth Rate Data for Irradiated SSs

10-12

10-11

10-10

10-9

10-8

10-7

5 10 15 20 25 30

304 SS 0.9x1021 n/cm2

304 SS 2.0x1021 n/cm2

316 SS 2.0x1021 n/cm2

304 SS 0.3x1021 n/cm2

E
x
p

e
ri
m

e
n

ta
l 
C

G
R

 (
m

/s
)

Stress Intensity K (MPa·m1/2)

289°C

Open  Symbols:  High–DO
Closed Symbols: Low–DO

NUREG–0313
Curve

5 x 
NUREG 0313

Curve

• In BWR NWC, CGRs factor of
5 higher than NRC disposition
curve for sensitized SSs

• In BWR HWC, CGRs are an
order of magnitude lower
than in NWC

• SSRT data and PWR
experience show beneficial
effect of HWC lost at high
enough fluence

• Some CGR data suggest this
can occur at lower than
expected fluences
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CGR Data for Irradiated SS Weld HAZs
• In NWC BWR environment:

 CGRs of nonirradiated HAZ are
factor of 2 below the 0313 curve

 CGRs of HAZ irradiated to
5 x 1020 n/cm2 are a factor of
≈5 higher than 0313 curve

• CGRs decrease significantly in
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Nickel–Alloy Cracking

• Technical Issues: Determination of CGR curves for safety
assessment of cracking of Ni–alloy LWR components
- Industry CGR models proposed in BWRVIP and MRP reports are used to

disposition service cracks & assess effectiveness of mitigating measures
• Program Activities:

- Determine CGRs in Ni–alloys & welds in LWR
environments using laboratory heats & material from reactor
components

- User need request issues; review of industry CGR data &
models in  BWRVIP/MRP, participate in CRDM expert
panel review, perform CRDM probabilistic analyses
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• CGRs enhanced in high–DO water; material condition has little effect
• Environmental enhancement in low–DO depends on material condition

Crack Growth Rates in LWR Environments
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• Experimental CGRs correspond to 83rd percentile for D-B nozzle alloy
& 56th percentile for Heat NX131031

SCC CGRs of A600 in PWR Environment
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• Little or no enhancement of CGRs in PWR environments in limited data
available for CGRair < 5x10–10 m/s

• CGRs of Ni–alloy welds are factor of  ≈2 higher than for Alloy 600

Fatigue CGRs of Ni–Welds in PWR Water
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• ANL data on 2 lab–prepared welds, Davis Besse CRDM nozzle #11
J-groove weld, & V. C. Summer nozzle-to-pipe weld

SCC CGRs of Ni–Welds in PWR Water
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Environmental Effects on Fatigue
• Technical Issue: ASME design curves based on fatigue life in air

                             Life in LWR environments can be much shorter
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• Program Activities: Determine fatigue lives of materials in LWR
environments; identify critical regimes where lives are shortened

• Work with ASME, EPRI to develop code procedures
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Effect of Heat Treatment on Fatigue Life

• Heat treatment has no effect on fatigue life in air & PWR water
• In  BWR environments life decreases with degree of sensitization
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