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Relevance of “Confirmatory” Research
• Loss-of-Coolant Accident: NRC (RES, NRR), EPRI

- Embrittlement criteria specified in 10 CFR 50.46
PCT ≤ 1204ºC; Effective Cladding Reacted (Oxidized) ECR ≤ 17%
Protect against clad. fragmentation during and following ECCS quench 

- Confirm for high-burnup fuel (62 GWd/MTU) with Zircaloy cladding
- Confirm for advanced alloys:  ZIRLO (licensed) & M5 (under review)

• SNF Dry Cask Storage: NRC (RES & SFPO), EPRI
- Data for license renewal criteria for low-burnup fuel (≤45 GWd/MTU)
- Data for licensing of high-burnup fuel (>45 GWd/MTU)

ISG-11, Rev. 2 (Aug. 2002) & Rev. 3 (Nov. 2003):  PCT ≤ 400ºC
Protect against degradation that could lead to gross ruptures during:
Pool-to-storage operations (drying and transfer), cask storage
Removal from storage for transportation to repository site

• SNF Transport to Repository: DOE-RW
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Summary of High-Burnup Cladding Programs

• Loss-Of-Coolant-Accident (LOCA) Research
- Advanced alloy post-quench ductility (PQD) testing (unirradiated)
- Steam oxidation of high-burnup BWR and PWR cladding
- LOCA Integral Tests with fueled BWR and PWR cladding
- Post-quench ductility of high-burnup LOCA integral test specimens

• Reactivity-Insertion-Accident (RIA) & LOCA Research
- High and low strain-rate tensile properties:  axial and hoop
- Biaxial tests:  limit and failure strains

• Dry Cask Storage & Transportation of SNF Casks
- High burnup: tensile properties & limits; creep properties & limits; fuel 

isotopic analysis; annealing, hydride reorientation/redistribution, etc.
- Drying T vs. σθ conditions for radial hydride formation during cooling

Ductility (DOE-RW) & impact failure-energy (NRC) screening tests
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Commercial LWR Fuel Rod Segments at ANL
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Parameters for Irradiated Cladding Test Specimens

Zry-4

Zry-4
Low-Sn

Zry-2
Lined

Zry-4

Clad.

≤300≤40736Surry
15×15 PWR

<270≤30949TMI-1
15×15 PWR

≈70≈10 +
≈10 crud

1157Limerick
9×9 BWR

≤800≤1001467Robinson
15×15 PWR

H
wppm

Oxide
µm

Fast
Fluence
1026 n/m2

Burnup
GWd/MTU

Reactor
(Design)



Pioneering 
Science and
Technology

Nonirradiated Zr-Alloy Tubing  and Cladding

Cladding, 0.14 µm
Cladding, 0.11 µm

0.11
TBD

0.71
0.66

11.18
10.3

9×9 Zry-2
10×10 Zry-2

Tubing, 0.35 µm
ANL-Polished, 0.13 µm
Cladding, Pick. & Anod. 

0.0500.719.17E110

Cladding, 0.12 µm
Cladding, 0.12 µm 

0.145
0.145

0.61
0.57

9.50
9.50

17 ×17 M5
Cladding, 0.11 µm 0.120.579.5017×17 ZIRLO

Tubing, 0.36 µm
Tubing, 0.31 µm

Cladding, 0.14 µm

0.14
0.14
0.12

0.79
0.76
0.57

10.82
10.77
9.50

Zry-4
15×15 (HBR)

15×15 (low-Sn)
17×17 (low-Sn)

Outer Surface
Finish & Roughness

Oxygen
wt.%

h, mmDo, mmMaterial



Pioneering 
Science and
Technology

Advanced Alloy Post Quench Ductility
• 1000°C-1100°C Oxidation, Quench, RT Ring Compression

- 17×17 Zry-4, ZIRLO, M5 ductile at ECR >17%
- Low weight gain of M5 at 1000ºC does not enhance ductility

• 1200°C, Oxidation, Quench, RT Ring Compression
- Ductile-to-brittle transition ECR lower than 10 CFR 50.46 criteria

Zry-4 < ZIRLO ≈ M5 < 17% ECR

• 1200°C, Oxidation, Quench, Ring Tests at 100°C & 135°C
- Ductility at 135ºC would guaranty ductility during LOCA quench
- Ductility at 100ºC would guaranty ductility during long-term cooling
- Results show high ductility and embrittlement ECR > 17%

• Tests on Pre-Hydrided Zry-4 are in Progress
- Significant embrittlement due to ≥300 wppm H



Pioneering 
Science and
Technology

Post-Quench, Non-Deformed Zry-4: 20% ECR at 1100ºC
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Ring Compression Test

8 mm

F

d

δp = d – F/K

dp = Doi - Dof

Temperature
RT, 100ºC, 100ºC

Strain Rate
0.35-3.5%/s
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1200ºC-Oxidized & Quenched 17x17 Zry-4
Ring Compression Test Data at RT & 135ºC (0.35%/s)
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Permanent Strain Methodology (for δp < 0.3 mm)

Stop test after first crack
(tight through-wall)

Measure  dp= Doi – Dof
In loading direction

dp = 0.05 mm

Offset Strain = 1.0%

Permanent Strain = 0.5%

Based on Screening Criteria, Material is Brittle
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Offset Strain for ZIRLO Oxidized at 1200±5ºC
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Offset Strain for M5 Oxidized at 1200±5ºC
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1204ºC-Oxidized & Quenched 15x15 Zry-4
Ring Compression Data: RT, 100ºC & 135ºC (0.31%/s)
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Effects of Hydrogen on Post-Quench Ductility at 135°C 
– Preliminary Data 
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High-Burnup LOCA Integral Tests

• High-Burnup BWR Limerick Tests (70 wppm H)
- ICL#1:  ramp-to-burst in argon
- ICL#2:  ramp to 1204ºC, oxidize in steam for 5 min., slow cool 
- ICL#3 (12-04-03):  partial quench, secondary hydriding profile

3 handling failures -- brittle at RT (1 location)
- ICL#4 (03-04-04): full sequence with quench, sample intact

• Robinson LOCA Integral Tests Plans (400-800 wppm H)
- Use baseline data on prehydrided 15×15 Zry-4 
- Reduce hold time ≤60 s:  (corrosion + transient) ECR = 17% peak 

Or set hold time (≤120 s) to give <5% ECR in beyond-neck regions
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LOCA Integral Test Sequence
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Burst Opening Comparison

High-Burnup BWR Zry-2 ICL#1 (RAMP-to-Burst)

Unirradiated Zry-2



Pioneering 
Science and
Technology

Hydrogen Peaks in Non-Irradiated Zry-2 after 
LOCA Integral Test:  1200°C for 5 Min.
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Hydrogen Peak in High-Burnup Zry-2 after 
LOCA Integral Test:  1200°C for 5 Min.
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Mechanical Properties Tests

• Embrittlement of High-Burnup (HB) Cladding
- Radiation-induced embrittlement: saturates at <45 GWd/MTU

Strength increase:  yield strength (YS), ultimate tensile strength (UTS)
Ductility decrease: uniform (UE) and total (TE) elongation

- Hydrogen-induced embrittlement;  increases with burnup
Mainly reduces ductility (TE)

• Axial Tension Results at Room Temperature
- Ductility decrease: TE = 14% 4%
- Decrease in strain energy density at failure: CSED = 106 46 J/cm3
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RT Axial Stress vs. PLASTIC Strain at 0.1%/s Strain Rate
High-Burnup PWR vs. Non-Irradiated Zry-4
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RT Axial Stress vs. TOTAL Strain at 0.1%/s Strain Rate 
High-Burnup PWR vs. Non-Irradiated Zry-4
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“Normal” Hydride Morphology at 20” Above Midplane 
in HB-PWR Zry-4 Cladding (HBR Rod R01)
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Radial Redistribution of Hydrogen and Annealing of
HB PWR Zry-4 (HBR A02) after 72 Hours at 420ºC

Stress-Free
Annealing

75% Recovery
Of Radiation
Hardening

“Expected”
Behavior for
σθ < 90 MPa
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Cooling of HB PWR Zry-4 Creep Sample 
under High Pressure

• HBR Sample C15 (400°C, 190 MPa hoop, 101 days, ≈3.5% ε)
was cooled from 400°C under full pressure (29.5 MPa)
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Radial Hydride Formation in HB PWR Zry-4 Cladding 
Cooling from 400ºC 205ºC at σθ ≈ 205 MPa

≈320
wppm H

What
happens
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σθ↓ vs. t
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SNF Dry-Cask Storage & Transportation Program 

• Low-Burnup (36 GWd/MTU) Surry Fuel Rods
- Provide data for license renewal (>20 y):  completed
- Thermal creep (360-400ºC) and axial tensile data (RT-400ºC)

• High-Burnup PWR Dry Storage: Robinson Fuel (NRC)
- RT axial tensile properties determined, elevated T tests in progress
- 2 thermal creep tests (C14, C15) completed: ≈100 days, 400ºC, 190 MPa

2 samples completed 400 h at 380°C: 190 MPa and 220 MPa, 400 h
- Fuel isotopic analyses (actinides & fission products)

1 Limerick BWR sample for burnup determination (800 mm above MP)
2 Robinson samples from Rod A02 (-15 mm & 750 mm relative to MP)
2 Robinson samples from Rod R01 are in progress
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SNF Dry-Cask Storage & Transportation Program 

• High-Burnup PWR Storage, Transport, Retrieval
- Effects of drying and transfer operations on cladding integrity

Hold times & temperatures:  ≈4 days at 380ºC, 400ºC and 420ºC
Hoop stress at temperature:  60 MPa, 90 MPa, 120 MPa, 150 MPa
Cool at ≈4ºC/h under decreasing gas pressure and stress
Compare performance of as-irradiated to annealed specimens

- Ring-compression ductility screening tests:  RT, 150ºC

- Impact-crush failure-energy screening tests: RT, 150ºC

- Determine initial cooling T and σ for which there is a decrease in 
ductility and/or failure energy
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SNF Transportation Cask Hypothetical Accident (HAC) 
Scenario Defined in 10 CFR 71.73

Free Drop - 30 ft on Unyielding Surface Fire- 1475°F for 30 min

Puncture - 40 in onto a Steel Bar Water Immersion - 8 hrs

1

2

3

4

Throughout HAC
scenario, SNF cask 
must maintain

• Containment of 
radioactivity

• Shielding for 
radiation protection

• Subcriticality

Behavior of high-
Burnup SNF during 
Accidents??? 
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SNF Response During Cask Bottom-End-Drop

From
SAND90-2406
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SNF Assembly Response during Cask Side-Drop 

Assembly grid 
spacer - basket 

Interactions

From
SAND90-2406
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Fuel-Rod Cladding Failure Modes and Criteria

Ductility 
Criterion

Fracture-
Toughness
Criterion or 

Critical Strain-
Energy Density

(CSED)

Fracture-
Toughness

Criterion
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Diametral (Ring) Compression Test
To Study Cladding Degradation due to Radial Hydrides 

8 mm

F

δ

δp = δ – F/K

Maximum
Hoop Tensile

Stresses

Strain Rates
0.1-100%/s

Temperature
RT, 150ºC



Pioneering 
Science and
Technology

Crush Impact Sample & Apparatus Configuration
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Crush Impact Sample & Apparatus Configuration
Initial Impact of Sample

Load Cell 
Transducer

Striking 
Tup

Guide Columns

Movable Crosshead

Stop Blocks
Anvil

Base Plate

Ring 
Specimen
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Summary of Current Research Activities

• In-Cell LOCA-Relevant Testing: High-Burnup PWR Samples
- Oxidation, quench and post-quench ductility of 25-mm-long samples
- LOCA integral tests with fueled ≈300-mm-long samples

• Mechanical Properties of High-Burnup PWR Cladding
- Axial tensile tests, hoop tensile tests, biaxial tensile tests

• Effects of Annealing & H-Reorientation/Redistribution
- Ring-compression ductility screening tests
- Impact failure-energy screening tests

• Isotopic Analysis of High-Burnup PWR Fuel
• Post-Quench Ductility of Advanced Alloys
• Thermal Creep of High-Burnup PWR Cladding


