

Inspection Plan for Reactor Vessel Closure Head Penetrations in U.S. PWR Plants (MRP-117)

MRP / NRC

September 8, 2004

Craig Harrington, TXU Power

Alloy 600 Issue Task Group (ITG) RPV Head Working Group

Agenda

- MRP-117 Overview
- Analyses Completed
- Visual Examination
 - Coverage
 - Frequency
- Volumetric & Surface Examinations
 - Coverage
 - Frequency
- Alternative Methods/Analyses
- Future Actions

Overview of MRP-117

- Goal to Maintain Structural Integrity
 - Maintain an acceptably low probability of developing cracking that could lead to nozzle ejection or loss of ASME Code margins due to consequential wastage
 - Change in Core Damage Frequency (~ 10⁻⁶/year)
 - Low probability of leakage (~10⁻²/year)
 - Given a leak, very low probability of structurally significant wastage (<< 10⁻⁴)

Overview of MRP-117 (cont'd)

- MRP-110 Safety Assessment provides technical basis
 - Submitted in April 2004 along with other detailed supporting calculations
- MRP-117 provides Inspection Requirements
- MRP-117 has been reviewed by Alloy 600 ITG and MRP IIG, not yet through the Executive Committee
- Draft Code Case intended to mimic MRP-117

Table of Contents

- 1 Introduction
- 2 Scope
- 3 Inspection Methodology Bases
- 4 Acceptance Criteria
- **5 Examination Requirements**
- 6 Plant-specific Inspection Schedule
- 7 Ongoing MRP Activities
- 8 References
- A Analysis Procedure For Exception To NDE Exam Zone & Coverage Requirements
- B Calculation Of Effective Time At Temperature

Scope of MRP-117

- Applicable to all reactor vessel closure heads (RVCHs) in domestic PWR plants
- Nozzles fabricated from Alloy 600 material and attached with Alloy 82/182 J-groove attachment welds
- Inspection requirements for replacement heads made with Alloy 690/52/152
- In the original heads, there are 30 nozzles that do not include J-groove attachment welds
 - Not addressed in MRP-117
 - To be addressed in plant-specific in-service inspection (ISI) programs.

Analyses

- Acceptable ? CDF demonstrated via Probabilistic Fracture Mechanics (PFM) model of penetration cracking
 - Benchmarked to known cracks and leaks
 - Conservative assumptions
 - Includes probability of leak and nozzle ejection versus time
 - Effect of volumetric and surface inspections included in model
 - Deterministic analyses confirm frequencies are conservative

- Visual inspection requirements were established by reviewing plant leakage and wastage experience (only DB had significant wastage)
 - Frequencies confirmed by deterministic and probabilistic models to be conservative

Inspection Timing Parameters

 PWSCC susceptibility grouped according to Effective Degradation Years (EDY)

> EDY = EFPY normalized to 600°F using 50 kcal/mole activation energy (characteristic of PWSCC initiation)

 Examination frequencies based on Re-Inspection Years (RIY)

RIY = ?EFPY normalized to 600°F using 31 kcal/mole activation energy (characteristic of PWSCC growth)

Visual Examination Attributes

- Bare Metal Visual Examination
 - Looking for boric acid deposits and evidence of leakage or corrosion
 - Uphill and downhill of obstructions
 - Includes intersections of all nozzles to head
 - 95% of head surface in the penetration region (see figure on next slide)

Visual Examination Coverage

Visual Examination Coverage

Visual Examination Frequency

- Bare metal visual examination every outage
 - If EDY <8, extend to every 3rd outage or 5 years
 - Low probability of cracking
 - Slow crack growth for cold head plants
 - General visual required other outages
 - Multiple access points
 - Defense in depth
- Heads with Alloy 690/52/152 material
 - Bare metal visual every 3rd outage or 5 years
 - No general visual required in between

Additional Visual Examination

- For all plants
 - Visual inspections each refueling outage to identify potential boric acid leaks from pressure-retaining components above the RVCH

Volumetric/Surface Exam Attributes

- Three types of examination defined:
 - Type 3 Tube volume only OR wetted surface only
 - Type 2 Tube volume PLUS 50% of welds
 - Type 1 Tube volume PLUS 100% of welds
- Examination volume or surface area based on generic residual stress calculations that bound the US PWR fleet for the cases examined (51 of 69 units)

Volumetric/Surface Exam Coverage

a = 1.5" for Incidence Angle, T < 30° and ICI nozzles or 1" for Incidence Angle, T > 30°

OR

To the end of tube whichever is less

A-B-C-D = Volumetric examination zone for the tube (base metal)

A-D = Surface examination zone for the tube ID

F-E-C = Surface examination zone for the J-groove weld (filler metal and buttering) and tube OD below the weld

F-E = Surface examination zone for the Jgroove weld (filler metal and buttering)

Volumetric/Surface Exam Coverage

- MRP-95 Rev 1 used to determine MRP-117 exam volume
 - 20 ksi stress limit
 - Fracture mechanics analyses of postulated flaws outside of exam volume
 - Review of prior exam data flaw locations relative to exam volume
- MRP-117 inspection coverage limitations (studied via MRP-105 methodology):
 - 90% of each nozzle base metal exam volume*
 AND
 - 95% of the total nozzle base metal exam volume* for entire head
 - * or wetted surface area

Exam Volume Based on Characteristic Plants

- Plant A B&W plant
 - nozzle angles ranging from 0° to 38°
 - nozzle yield strengths ranging from 36.8 to 50 ksi
- Plant B Westinghouse 2-loop plant
 - nozzle angles ranging from 0° to 43.5°
 - nozzle yield strength of 58 ksi
- Plant C Westinghouse 4-loop plant
 - nozzle angles ranging from 0° to 48.8°
 - nozzle yield strength of 63 ksi
- Plant D large CE plant
 - CEDM nozzles
 - angles ranging from 0° to 49.7°
 - nozzle yield strengths ranging from 52.5 to 59 ksi
 - ICI nozzles
 - 55.3° nozzle angle
 - yield strength = 39.5 ksi

Weld Parameters of Characteristic Plants

EPGI

Characteristic Plants and the PWR Fleet

- Characteristic plants & nozzles selected for analysis bound nozzle angles and weld geometry factors that influence residual stresses
 - 51 of the 69 U.S. PWRs weld geometries have been evaluated
 - Analyses span expected range of nozzle yield strengths
- Therefore, examination zone definition based on these stresses is judged to be applicable to all U.S. PWRs
- MRP-117 requires that all plants
 - Verify that their specific RVCH penetration designs are bounded by the MRP-95 examination zone

OR

20

Develop appropriate site-specific examination zone

Typical Nozzle Stress Distributions

Uphill Side of Nozzle

Summary of Nozzle Stresses at Edge of Exam Volume (Above Weld)

	Nozzle Angle-	Inspection	Stresses at Edge of Inspection			
		Zone Dist.	Zone Above Weld (ksi)			
Plant	Azimuth	from Weld	ID-	OD-	ID-	OD-
		(inches)	Ноор	Ноор	Axial	Axial
А	38-Downhill	5.65	8	1.4	1.8	3.1
	38-Sidehill	3.29	-3.1	-1.3	1.0	-0.1
	38-Uphill	1.00	14.2	-20.1	4.2	-7.6
Α	26-Downhill	4.39	6.9	3.6	2.0	3.8
	26-Sidehill	2.93	0.0	3.1	2.3	3.7
	26-Uphill	1.50	5.4	-5.8	1.7	0.0
Α	18-Downhill	3.37	4.6	0.4	4.2	1.2
	18-Sidehill	2.43	1.7	-0.2	5.5	0.1
	18-Uphill	1.50	3.9	-2.7	4.7	-2.3
A	0-All	1.50	7.0	-1.6	12.3	-7.8
В	43-Downhill	4.66	8.1	1.2	2.9	9.6
	43-Sidehill	2.80	1.1	0.6	-2.1	-4.8
	43-Uphill	1.00	15.8	-14.3	4.6	-7.0
В	30-Downhill	3.75	6.3	0.9	3.4	5.7
	30-Sidehill	2.62	2.5	2.4	-0.2	-1.3
	30-Uphill	1.50	1.3	-4.0	1.0	-3.6
В	13-Downhill	2.47	1.4	-1.4	7.7	1.6
	13-Sidehill	1.98	1.7	-1.9	7.4	-4.6
	13-Uphill	1.50	1.3	-4.4	6.3	-4.7
В	0-All	1.50	6.8	-3.9	14.4	-10.3
С	48-Downhill	5.15	13.7	-2.4	10.9	13.6
	48-Sidehill	3.04	-2.5	7.2	-1.0	0.4
	48-Uphill	1.00	11.5	-6.5	2.3	-7.4
D	49-Downhill	6.31	11.1	0.3	2.0	4.5
	49-Sidehill	3.59	-1.7	2.6	-2.1	1.3
	49-Uphill	1.00	15.5	-23.3	4.5	-12.4
D	8-Downhill	2.11	4.3	-2.0	10.6	-6.7
	8-Sidehill	1.81	4.1	-2.2	10.6	-6.3
	8-Uphill	1.50	6.0	-0.7	10.7	-7.3
D	55-Downhill(ICI)	9.88	20.2	1.7	2.2	4.6
	55-Sidehill(ICI)	5.51	5.4	13.9	-2.2	5.2
	55-Uphill(ICI)	1.50	19.1	-3.5	-1.9	-3.2

Summary of Nozzle Stresses at Edge of Exam Volume (Below Weld)

	Nozzlo Anglo	Inspection Zone Dist	Stresses at Edge of Inspection			
Plant	Δzimuth	from Weld				0D-
i iain	Azimuti	(inches)	Hoon	Hoon	Axial	Axial
۵	38-Downhill	1.00	-24.0	_13.2	-1.5	0.2
~	38-Sidehill	3.07	-24.5	-13.2	-1.5	-9.5
	38-Uphill	5.08	-16.0	-0.2	-1.3	-0.9
Δ	26-Downhill	1.50	-31.0	-20.5	1.8	-3.5
73	26-Sidehill	2.77	-4.9	-9.9	4.8	-9.5
	26-Uphill	4.02	-10.8	-5.6	0.6	-5.2
А	18-Downhill	1.50	-25.1	-19.8	5.8	-7.6
	18-Sidehill	2.34	-13.5	-14.0	8.1	-11.7
	18-Uphill	3.18	-12.3	-11.8	5.4	-9.9
А	0-All	1.50	-23.0	-28.4	6.8	-11.0
В	43-Downhill	1.00	5.5	13.1	20.0	-18.5
	43-Sidehill	2.62	8.3	-12.3	17.2	-21.2
	43-Uphill	4.19	-14.6	-2.2	1.0	-1.3
В	30-Downhill	1.50	-8.4	-10.6	15.7	-15.5
	30-Sidehill	2.42	-1.9	-11.9	13.2	-15.7
	30-Uphill	3.32	-10.4	-6.4	2.9	-7.3
В	13-Downhill	1.50	-0.1	-13.1	18.8	-20.5
	13-Sidehill	1.78	-10.3	-14.3	18.2	-19.7
	13-Uphill	2.07	-10.1	-17.2	14.2	-17.2
В	0-All	1.50	-27.8	-33.2	8.1	-12.4
С	48-Downhill	1.00	-8.9	9.0	14.9	-7.8
	48-Sidehill	3.30	12.6	-12.4	9.9	-18.9
	48-Uphill	5.52	-12.1	-0.9	2.7	1.5
D	49-Downhill	1.00	2.3	7.5	15.8	-5.4
	49-Sidehill	3.55	4.2	-9.8	9.1	-18.1
	49-Uphill	5.99	-10.8	-0.4	-0.2	3.2
D	8-Downhill	1.50	6.3	-4.4	20.3	-20.6
	8-Sidehill	1.82	2.3	-7.7	18.6	-19.8
	8-Uphill	2.13	-1.4	-10.4	16.2	-17.9
D	55-Downhill(ICI)	1.50	N/A*	N/A*	N/A*	N/A*
	55-Sidehill(ICI)	5.48	N/A*	N/A*	N/A*	N/A*
	55-Uphill(ICI)	9.58	N/A*	N/A*	N/A*	N/A*

* - Inspection zone extends beyond bottom edge of nozzle

Fracture Mechanics Analysis Model – Axial Flaws below Weld

24

Fracture Mechanics Analysis Results – Axial Flaws below Weld

PLANT/ NOZZLE	LOCATION	K @ STARTING FLAW SIZE	CRACK GROWTH TIME TO BOTTOM OF J-GROOVE WELD			
		(KSI-vIN)	EFPHs @600°F	EFPYs $(a)600^{\circ}F = RIYs$		
Plant A						
	DOWNHILL	< 8.19	No Growth	No Growth		
(B&W 38°)	SIDEHILL	< 8.19	No Growth	No Growth		
	UPHILL	< 8.19	No Growth	No Growth		
(B&W 0°)	ALL	< 8.19	No Growth	No Growth		
Plant B						
	DOWNHILL	< 8.19	No Growth	No Growth		
(W 2-LOOP 43.5°)	SIDEHILL	21.8	135000	15.4		
	UPHILL	< 8.19	No Growth	No Growth		
	DOWNHILL	< 8.19	No Growth	No Growth		
(W 2-LOOP 30°)	SIDEHILL	< 8.19	No Growth	No Growth		
	UPHILL	< 8.19	No Growth	No Growth		
	DOWNHILL	< 8.19	No Growth	No Growth		
(W 2-LOOP 13°)	SIDEHILL	< 8.19	No Growth	No Growth		
	UPHILL	< 8.19	No Growth	No Growth		
(W 2-LOOP 0°)	ALL	< 8.19	No Growth	No Growth		
Plant C						
	DOWNHILL	< 8.19	No Growth	No Growth		
(W 4-LOOP 48.8°)	SIDEHILL	< 8.19	No Growth	No Growth		
	UPHILL	37.7	Arrests	Arrests		
Plant D						
	DOWNHILL	< 8.19	No Growth	No Growth		
(CE 49.7°)	SIDEHILL	32.4	182000	20.8		
· · · ·	UPHILL	< 8.19	No Growth	No Growth		
	DOWNHILL	< 8.19	No Growth	No Growth		
(CE 8°)	SIDEHILL	< 8.19	No Growth	No Growth		
	UPHILL	< 8.19	No Growth	No Growth		

25

Fracture Mechanics Analysis Model – Circumferential Flaws above Weld

Fracture Mechanics Analysis Results – Circumferential Flaws above Weld

Growth Time from 30° to 300° Circumferential Cracks in Limiting Nozzles in Four Characteristic Plants (Assumed top head temperature = 600°F)

PLANT / NOZZLE	UPHILL (EFPH)	UPHILL EFPYs@600F =RIYs	DOWNHILL (EFPH)	DOWNHILL EFPYs@600F =RIYs
Plant A - 38° Nozzle	154874	17.68	193501	22.09
Plant B - 43.5° Nozzle	521114	61.89	94970	10.84
Plant C – 48.8° Nozzle	no growth	no growth	81572	9.31
Plant D – 49.7° Nozzle	167465	19.12	164293	18.75

27

Volumetric/Surface Exam Volume Technical Basis Summary

- Exam Volume selected based on 20 ksi tension stress limit
- Fracture Mechanics analyses demonstrate that postulated flaws outside of and just impinging on exam volume will not grow unacceptably in time period until next inspection (RIY = 3)
- Review of prior inspection data, encompassing 237 detected flaws, indicates that all would have been detected if inspections had been performed over just the MRP-117 Exam Volume

Volumetric/Surface Exam Frequency

- Baseline based on EDY
 - EDY > 12; next outage
 - EDY \geq 8; 2nd outage
 - EDY < 8; February 10, 2008</p>
- Re-Inspection Before RIY = 2.25 or 8 calendar years
 - Extend to RIY = 3.0 or 10 calendar years if:
 - Last Vol/Sur was Type 2 <u>AND</u> CCDP < 5x10⁻³ OR
 - Last Vol/Sur was Type 1
 - Maintains ? CDF ~ 10^{-6}
- Re-inspection limited to 2 cycles if flaw requiring repair found in any previous outage

Volumetric/Surface Reinspection Interval Technical Basis

- The reinspection intervals of MRP-117 are bounded by the probabilistic fracture mechanics (PFM) case studies of MRP-105
 - RIY = 2.25 equivalent or more conservative than EDY = 2.0
 - RIY = 3.0 is more conservative than EDY = 3.0
- The coverage and probability of detection assumptions of the PFM analyses bound the requirements within MRP-117
 - 90/95% coverage assumption in MRP-117
- Therefore the nozzle ejection evaluations in MRP-105 support the volumetric/surface reinspection intervals and examination coverage requirements of MRP-117

Volumetric/Surface Exam Frequency

- Heads with Alloy 690/52/152 material
 - Pre-service Inspection
 - In-service Inspections
 - Initial in-service within 6 to 10 years after head replacement
 - Re-Inspection every 10 years
 - Future revisions to inspection requirements could be demonstrated by on-going Alloy 690 studies

Discovery Outage

- If indication found:
 - Characterize the flaw
 - Evaluate flaw for continued service
 - IWB-3600; Code Case N-694
 - If repair required, expand to 100% Volumetric examination and BMV if not already performed
 - Repair/Replacement per Code or relief request

Alternate Methods/Analysis

- Appendix A to MRP-117 outlines analyses to demonstrate alternate exam volumes if MRP-117 exam volume is not achievable
- Three analysis methods (and acceptance criteria) described:
 - 20 ksi tension stress limit
 - Fracture Mechanics analysis
 - Probabilistic Fracture Mechanics
- Evaluating necessary combinations of methods for specific circumstances (lack-of-coverage location)

Appendix A – Fracture Mechanics Analysis and Criteria (below weld)

Appendix A – Fracture Mechanics Analysis and Criteria (above weld)

Appendix A – Probabilistic Fracture Mechanics Analysis and Criteria

- For plants in which no service-induced cracking that required repair has been detected:
 - compute the percentage of total required inspection volume that is not inspected for all nozzles
 - demonstrate (using methods such as those documented in MRP-105) that missed inspection zone coverage does not lead to unacceptable probabilities of leakage or nozzle ejection. This shall be demonstrated by:
 - a low probability of leakage (e.g. 5% per vessel per year or less)
 - An extremely low probability of core damage associated with the potential for nozzle ejection (i.e., on the order of 1 x 10⁻⁶ per vessel per year or less)

36

Future Actions

- MRP-117 requirements were translated into draft Code Case
- Presented draft Code Case last week to ASME Task Group on Alloy 600
 - Following incorporation of comments, expected to go out for letter ballot
- MRP will pursue approval of draft Code Case and MRP-117
 in parallel

Discussion

- NRC Comments/Feedback
- Public Comment

MRP Alloy 600 RPV Head Document List

- MRP-110: Reactor Vessel Closure Head Penetration Safety Assessment for U.S. PWR Plants
 - MRP-103: Reactor Vessel Head Nozzle and Weld Safety Assessment for B&W Plants
 - MRP-104: RV Head Nozzle and Weld Safety Assessment for Westinghouse and Combustion Engineering Plants
 - MRP-105: Probabilistic Fracture Mechanics Analysis of PWR Reactor Pressure Vessel Top Head Nozzle Cracking
 - EPRI 1007842: Visual Examination for Leakage of PWR Reactor Head Penetrations
 - MRP-89: Demonstrations of Vendor Equipment and Procedures for the Inspection of CRDM Head Penetrations
- MRP-95: Generic Evaluation of Examination Coverage Requirements for Reactor Pressure Vessel Head Penetration Nozzles (Rev 1 pending)
- MRP-55: Crack Growth Rates for Evaluating Primary Water Stress Corrosion Cracking (PWSCC) of Thick-Wall Alloy 600 Material
- MRP-111: Resistance to Primary Water Stress Corrosion Cracking of Alloys 690, 52, and 152 in Pressurized Water Reactors
- MRP-117 (DRAFT): Inspection Plan for Reactor Vessel Closure Head Penetrations in US PWR Plants

Backup Slides

RPV Head Temperature Calculation

- Various methods have included:
 - thermo-hydraulic models that estimate water temperature in the upper head region
 - average of the hot leg temperatures (as measured with plant instruments)
 - plant specific models
 - measurement of the head temperature
- Where head temperature calculations were used in SA work:
 - MRP-105, Section 8 summarizes the sensitivity studies run on various parameters (stress, temperature, CGR) with the probabilistic fracture mechanics model.
 - analyzed the effect of +/- 5 deg standard deviation on the head temperature for a hot head plant - there was no significant effect on the change in core damage frequency.
 - MRP-110 Section 4 summarizes the upper head inspection results since spring 2001.
 - This section clearly demonstrates that our current temperature calculations which are used to calculate EDY are holding up well when compared to field results

RPV Head Temperature Calculation

- Role of temperature in managing issue:
 - Currently, temperature is the primary input into the EDY calculation using an activation energy of 50 kcal/mole. Once a plant calculates EDY, this determines when the first volumetric inspection should be done (per the order and MRP-117).
 - In MRP-117, re-inspection intervals are based on RIY calc using an activation energy for crack growth of 31 kcal/mole, which means temperature won't play as large a role.
 - All plants with EDY > 12 have either volumetrically inspected or replaced. Approximately half of the plants with 8 < EDY < 12 have completed volumetric inspections. And just now starting to collect volumetric inspection data on plants with EDY < 8.
 - As of Dec 2003, 100% of all upper head penetrations have been inspected by BMV, UT, or ECT; or the heads have been replaced.
 - Baseline inspections for low temperature plants will 'trip' on calendar years not EDY.

RPV Head Temperature Calculation

- Summary
 - Continue to monitor inspection data
 - Inspection results to date were used to develop model based on current head temperature estimates and have proven conservative
 - Shown by some 'high temperature, old plants' with no cracks identified during volumetric inspection

31 vs 50 kcal/mol

