Validation of WIMS-IST

J.D. Irish and S.R. Douglas Atomic Energy of Canada Limited Chalk River Laboratories

Validation of WIMS-IST

- What is WIMS-IST?
- Reactor physics phenomena
- Experimental data
- Method of comparing WIMS-IST and experiment
- WIMS-IST input model
- Comparison of WIMS-IST and experiment for different phenomena
- Summary of results

What is WIMS-IST?

- IST Industry Standard Toolset
- 2-dimensional collision probability solution of the neutron transport equation for a CANDU lattice cell.
- Calculates critical bucklings, k-effective, and cellaverage parameters to use in subsequent calculations.
- WIMS-AECL Release 2-5d, used with the ENDF/B-VIbased NDAS library Version 1a.

Reactor physics phenomena

- 16 phenomena, 11 simulated by WIMS-IST
- Associated with reactivity changes due to
 - Fuel, coolant, or moderator temperature changes
 - Coolant or moderator density changes
 - Moderator purity or poison-concentration change
 - Coolant purity change
 - Lattice geometry change

and

- Flux and power distribution
- Fuel-isotopic-composition change

Experimental data

• For flux distribution and fuel-isotopic-composition change, compare calculated fluxes and fuel-isotopic compositions directly to experimental quantities

- For reactivity effects, critical buckling is the important parameter
- Obtained from flux-mapped or substitution experiments

A

DETERMINING BUCKLING BY FLUX MAP

Buckling =
$$(2.405/R_{EX})^2 + (\pi/H_{EX})^2$$

Pg 6

SETUP FOR THE ROOM-TEMPERATURE SUBSTITUTION EXPERIMENTS

O Substitution Region

○ Reference Fuel
O Test Fuel

Reference Lattice	1-Rod Substitution	
\bigcirc \bigcirc	\circ \circ	
$\circ \circ \circ$	\bigcirc O \bigcirc	
\bigcirc \bigcirc	\bigcirc \bigcirc	
3-Rod Substitution		
O \bigcirc		
O O O		
\bigcirc	0	
5-Rod Substitution	7-Rod Substitution	
O O	0 0	
000	0 0 0	
○ O	0 0	

Method of comparing WIMS-IST and experiment for reactivity effects

- Direct buckling method
 - Compare calculated and measured buckling coefficients of reactivity to get bias and uncertainty.
- K-eff method
 - Calculate k-eff with WIMS-IST and the measured critical bucklings at different values of the parameter of interest.
 - The deviation from a constant value is a measure of the bias and the scatter is a measure of the uncertainty.
- Both methods are essentially the same

WIMS-IST input model

- Compromise between accuracy and required resources
- For normal design and fuel management calculations
- Combination of 1- and 2-dimensional collision probability methods
- 33 energy groups
- Shielded Zr cross-sections
- End regions
- Reasonable spatial mesh

Â

Coolant-Density-Change Induced Reactivity

- Void effect voiding coolant causes a positive reactivity effect
- Leads to power pulse during a loss-of-coolant accident
- Uncertainties in void effect cause uncertainties in power pulse
- Void effect studied extensively

Overestimate of Void Reactivity by WIMS-IST

Fuel	Void
22 °C, 99.75 wt% Heavy Water, 31-cm Hexagonal Pitch	Reactivity
	Discrepancy
	(mk)
28-element FNU (flux mapped)	$\boldsymbol{0.57\pm0.4}$
28-element FNU (AECL calibration)	0.78
28-element FNU (OPG method)	0.73
37-element FNU (AECL calibration)	1.89 ± 0.64 [2]
37-element FNU (OPG method)	1.90 ±0.45
37-element MOX (AECL calibration)	1.68 ± 0.75 [2]
37-element MOX (OPG method)	1.29 ±0.78
43-element CANFLEX FNU (AECL calibration)	1.83

A

Fuel- and Coolant-temperature-change Induced Reactivity Experiments

- 37-element FNU fuel bundles
- 37-element MOX fuel bundles
 - 19-element boosters, room temperature extrapolation
 - 19-element boosters, measured temperature-dependent extrapolation
 - ZEEP rod boosters, room temperature extrapolation
- 43-element CANFLEX natural UO₂ fuel bundles
- Coolant temperature: zero bias, uncertainty ±4%
- Fuel temperature: zero bias, uncertainty ±10%
 - Overestimate for FNU
 - Underestimate for MOX

Coolant-temperature-change Induced Reactivity

Accuracy of WIMS-IST Coolant Temperature Coefficient

Fuel-temperature-change Induced Reactivity

Accuracy of WIMS-IST Fuel Temperature Coefficient

Moderator-density- and moderatortemperature-change induced reactivity

- Flux-mapped 19-element fuel
- 11 to 82°C (uniform reactor temperature)
- Comparing buckling coefficients leads to zero bias with uncertainty of ±2.6%

Difference between Moderator-Poison (Boron) Buckling Coefficients

Experiment	Coolant	Relative Difference in Coefficient
28-element air- cooled FNU	Air	-1.3%
37-element FNU	Air	1.7%
	D ₂ O	0.0%
37-element MOX	Air	-2.6%
	D ₂ O	-3.0%

Moderator-purity-change induced reactivity

- 28-element UO₂ fuel
- Moderator purity reactivity coefficient overestimated by 8% with uncertainty of ±3%

Coolant-purity-change induced reactivity

- 37-element FNU and MOX substitution experiments
- 31-cm hexagonal lattice pitch
- 3 purities from 99.76 to 95.1 wt% D₂O
- FNU bias and uncertainty 8%±11%
- MOX bias and uncertainty -10%±8%
- Overall assign a bias and uncertainty of 0±12%

Lattice geometry distortion effects

- Only channel sag
- Change in lattice pitch
- 19-element and 28-element UO₂ fuels
- Hexagonal pitches from 24 to 40 cm
- No bias with varying lattice pitch

Flux distribution within bundle

- 8 zero-power experiments with foils or other flux indicators
- 28, 31, 36, 37 and 43-element fuel
- Pitch mostly 31-cm hexagonal although 2 measurements with pitches of 24-cm hexagonal
- Number of different foil materials
- Flux depression through a fuel bundle calculated to an accuracy of about 1%

Fuel-isotopic-composition change

- 19-element NPD bundle half elements from each ring
- 28-element Pickering-A bundle outer element
- 37-element Bruce-A bundle half elements from each ring
- No or small bias and an uncertainty of ±2%

Bias and uncertainty using element data (all bundles)

Atom Ratio	Average C/M	Standard Deviation	Bias	Uncertainty
		C/M		
²³⁵ U/U	1.005	0.016	0.5%	±2%
²³⁶ U/U	0.961	0.040	-4%	±4%
²³⁸ U/U	1.000	0.000	0	0
²³⁹ Pu/Pu	0.996	0.004	-0.4%	±0.4%
²⁴⁰ Pu/Pu	1.006	0.008	0.6%	±0.8%
²⁴¹ Pu/Pu	1.037	0.023	4%	±2%
²⁴² Pu/Pu	1.001	0.024	0.1%	±2%
Pu/U	1.017	0.021	2%	±2%

Summary of bias and uncertainty

Description of Phenomenon	Bias	Uncertainty
Coolant void reactivity	Overestimate	<mark>±0.8 mk</mark>
	+1.9 mk (37-element FNU)	
Coolant-temperature	No bias	±4%
coefficient		
Moderator-density and	No bias	±3%
moderator-temperature		
coefficient		
Moderator-poison coefficient	No bias	±2%
Moderator-purity coefficient	Overestimate	<mark>±3%</mark>
	<mark>+8%</mark>	
Fuel-temperature coefficient	Overestimate for FNU	±10%
	Underestimate for simulated	
	mid-burnup fuel	
Fuel isotopic change	No or small bias for actinides	±2%
Flux-power distributions	No bias in bundle flux shape	$\pm 1\%$ in bundle flux shape
Lattice distortion reactivity	No bias in lattice cell with	
	varying pitch	
Coolant-purity coefficient	No bias	±12%

