Spatial Kinetics (*CERBERUS Module)

April 2004

***CERBERUS Module**

- • **Time-dependent problem in 3 dimensions and 2 energy groups**
- **Fast transients (e.g., LOCA arrested by SDS action)**
- • **Delayed-neutron effects very important; assume G delayed-neutron precursor groups (G=6 or 17)**
- **Time–dependent neutron diffusion equation in two energy groups and three spatial dimensions (in matrix notation):**

$$
(-M+F_p)\phi(\vec{r},t) + \sum_{g=1}^{G} \lambda_g C_g(\vec{r},t) \begin{pmatrix} 1 \\ 0 \end{pmatrix} = \begin{pmatrix} 1 \\ v \end{pmatrix} \frac{\partial \phi(\vec{r},t)}{\partial t}
$$

***CERBERUS Module Cont….**

where,

$$
\Phi(\vec{r},t) = \begin{pmatrix} \Phi_1(\vec{r},t) \\ \Phi_2(\vec{r},t) \end{pmatrix}
$$

$$
\begin{pmatrix} 1 \\ - \end{pmatrix} = \begin{pmatrix} \frac{1}{v_1} & 0 \\ 0 & 0 \\ 0 & 1 \end{pmatrix}
$$

 $\rm 0$

v

 \int

 \setminus

 $\begin{array}{cc} 1 & 1 \end{array}$

 $\begin{pmatrix} 0 & v_1 \end{pmatrix}$

M is the leakage, absorption, and scattering matrix:

2

 $\overline{}$ $\overline{}$

 $\bf V$

$$
M = \begin{pmatrix} -\vec{\nabla} \cdot D_1 \vec{\nabla} + \Sigma_{a1}(\vec{r}, t) + \Sigma_{1 \to 2}(\vec{r}, t) & 0 \\ -\Sigma_{1 \to 2}(\vec{r}, t) & -\vec{\nabla} \cdot D_2 \vec{\nabla} + \Sigma_{a2}(\vec{r}, t) \end{pmatrix}
$$

(

(

(

***CERBERUS Module Cont….**

 F_P is the prompt-production matrix:

$$
F_p \equiv (1 - \beta(\vec{r}, t))F_T = \begin{pmatrix} 0 & \frac{(1 - \beta(\vec{r}, t))v\Sigma_f(\vec{r}, t)}{k_0} \\ 0 & 0 \end{pmatrix}
$$

and β($\vec{\mathrm{r}},$ t) is the total delayed fraction at position $(\vec{\mathrm{r}},\mathrm{t})$:

$$
\beta\!=\!\textstyle\sum\limits_{g=1}^{G}\beta_{g}
$$

 $\mathrm{C}_{\,\mathrm{g}}(\vec{\mathrm{r}}\,,\mathrm{t})$ = space-time concentration of group-g delayedneutron precursor with decay constant $\,\lambda_{\mathrm{g}}^{}$. Satisfies balance equation: ,

$$
\frac{\partial}{\partial t}C_{g}(\vec{r},t) = \beta_{g}(r)\frac{v\Sigma_{f}(\vec{r},t)}{k_{0}}\phi_{2}(\vec{r},t) - \lambda_{g}C_{g}(\vec{r},t)
$$

 ${\rm k}_0$ = initial multiplication constant of reactor (*not* related to time-dependent dynamic reactivity P $\,$

Improved Quasi-Static (IQS) Method

CERBERUS based on IQS method. Flux factorized into spaceindependent amplitude *A* **and space-and-time-dependent shape function** Ψ **:**

 $\mathsf{\Phi}(\vec{\mathrm{r}},t)$ = $\mathrm{A(t)} \mathsf{\Psi}(\vec{\mathrm{r}},t)$

[Normalization A(0) = 1]

Most of time dependence cast into *amplitude* **by demanding that an integral in the shape function be constant in time:**

$$
\int \left[\frac{1}{v_1} \phi_1^*(\vec{r}) \psi_1(\vec{r}, t) + \frac{1}{v_2} \phi_2^*(\vec{r}) \psi_2(\vec{r}, t) \right] d\vec{r} = K
$$

$$
\phi^* = \text{initial adjoint flux}
$$

IQS Method Cont….

Equations for shape Ψ and precursor concentrations *Cg***:** $(-M+F_p)\psi(\vec{r},t) + \frac{1}{A(t)}\sum_{g=1}^{G} \lambda_g C_g(\vec{r},t) \begin{pmatrix} 1 \\ 0 \end{pmatrix} = \left(\frac{1}{v}\right) \frac{\dot{A}(t)}{A(t)} \psi(\vec{r},t)$ \setminus $\binom{1}{2}$ J \vert = $\bigg($ \setminus $\begin{pmatrix} 1 \\ - \end{pmatrix}$ \int $\sum_{i=1}^{J} \lambda_{g} C_{g}(\vec{r},t) \begin{pmatrix} 1 \\ 0 \end{pmatrix} = \left(\frac{1}{V}\right) \frac{A(t)}{A(t)} \psi(\vec{r},t) +$ $M + F_n \psi(\vec{r}, t) + \frac{1}{\sqrt{2}} \Sigma$ A (t $C_g(\vec{r},t)\begin{pmatrix} 0 \end{pmatrix} = \begin{pmatrix} \frac{1}{\sqrt{2}} \\ 0 \end{pmatrix}$ $A(t$ A (t $\mathcal{L}_{\rm p}[\psi(\vec{\rm r},t)+\frac{1}{\mathcal{A}(t)}\sum\limits_{{\rm g}=1}\lambda_{\rm g}C_{\rm g}(\vec{\rm r},t)]_{\rm g}(t) = \left(\frac{1}{\mathcal{V}}\right)\frac{1}{\mathcal{A}(t)}\psi(\vec{\rm r},t)+\frac{1}{\partial t}$ $\Psi(\vec{r},t) + \frac{1}{\Lambda(\vec{r})} \frac{G}{\Sigma} \lambda_{\rho} C_{\rho}(\vec{r},t) \Big|_{\rho}^{1} = \Big(\frac{1}{\Gamma}\Big) \frac{A(t)}{A(t)} \Psi$ ∂ ψ ∂ $(t, t) + \frac{1}{\sqrt{2}} \sum_{\alpha}^{\alpha} \lambda_{\alpha} C_{\alpha}(\vec{r}, t) \begin{pmatrix} 1 \\ 1 \end{pmatrix} = \left(\frac{1}{\alpha}\right) \frac{\vec{A}}{2}$ $\frac{1}{\sqrt{2}} \sum_{\alpha}^{\alpha} \lambda_{\alpha} C_{\alpha}(\vec{r},t) \begin{pmatrix} 1 \\ 0 \end{pmatrix} = \left(\frac{1}{\sqrt{2}}\right) \frac{\dot{A}(t)}{\sqrt{2}} \psi(\vec{r},t)$ 01 1 $\frac{\partial}{\partial y} C_{\rm g}(\vec{r},t) = \beta_{\rm g}(\vec{r}) \frac{\nu \Sigma_{\rm f}(\vec{r},t)}{1} A(t) \psi_2(\vec{r},t) - \lambda_{\rm g} C_{\rm g}(\vec{r},t)$ $\beta_{\rm g}(\vec{\rm r})\frac{{\rm v}\Sigma_{\rm f}(\vec{\rm r},{\rm t})}{1}{\rm A}({\rm t})\psi_{2}(\vec{\rm r},{\rm t})-\lambda$ $C_{\alpha}(\vec{r},t) = \beta_{\alpha}(\vec{r})$ $\vec{\mathrm{r}}$, t $\beta_{\rm g}(\vec{r},t) = \beta_{\rm g}(\vec{r}) \frac{\sqrt{2}f(1,t)}{1} A(t) \psi_2(\vec{r},t) - \lambda_{\rm g} C_{\rm g}(\vec{r},t)$ \rightarrow \rightarrow \rightarrow \rightarrow → \mathbf{H} , t) = $\beta_{\circ}(\vec{r}) \frac{\mathbf{H}(\vec{r},t)}{T} A(t) \psi_{\circ}(\vec{r},t) - \lambda_{\circ} C_{\circ}(\vec{r},t)$ 2

 $\rm k$

0

∂

t

Similar to time-independent equation, with extra terms in the amplitude and the precursor concentrations.

IQS Method Cont….

Equation for amplitude obtained by integrating - weighted by adjoint. Get point-kinetics-like equation:

$$
\dot{A}(t) = \frac{(\rho(t) - \beta_{\text{eff}})}{l^*(t)} A(t) + \frac{1}{K} \sum_{g=1}^{G} \lambda_g \eta_g(t)
$$

where:
$$
\rho(t) = 1 - \frac{\langle \phi^*(\vec{r}), M \psi(\vec{r},t) \rangle}{\langle \phi^*(\vec{r}), F_T \psi(\vec{r},t) \rangle}
$$

"Dynamic reactivity" = [−]1 losses production

Neutron generation time: *l* $f^{*}(t) = \frac{1}{1 + t^{2}}$ $f(t) = \frac{1}{\langle \phi^*(\vec{r}), F_{\vec{T}} \psi(\vec{r}, t) \rangle}$ K $\vec{\mathrm{r}}$), $\mathrm{F_T}\psi(\vec{\mathrm{r}},t)$ $=\frac{}{\langle \phi^*(\vec{\bf r}), {\bf F}_{\rm T} \psi(\vec{\bf r})\rangle}$

IQS Method Cont….

Effective total delayed fraction:

 $\beta_{\text{eff}} \equiv \sum_{g=1}^{G} \beta_{g,\text{eff}} = \sum_{g=1}^{G} \frac{\langle \phi^{*}(\vec{r}), \beta_{g} F_{T} \psi \rangle}{\langle \phi^{*}(\vec{r}), F_{T} \psi \rangle}$ G $g_{\text{eff}} - g$ $\frac{G}{E}$ $\langle \phi$ (r), $\beta_g F_T$ T \vec{r}), $\beta_{\alpha}F_{\tau}\psi(\vec{r},t)$ \vec{r}), $F_{\rm T} \psi(\vec{r},t)$ $\equiv \sum_{g=1}^{\infty}$ $p_{g,eff} = \sum_{g=1}^{\infty}$ $\sum_{g=1} \beta_{g,eff} = \sum_{g=1}$ * * $(\vec{\textbf{r}}), \beta_{\scriptscriptstyle{\alpha}} \text{F}_{\scriptscriptstyle{\text{T}}} \text{ }\!\mathsf{V}(\vec{\textbf{r}},t)$ $(\vec{\textbf{r}}), \text{F}_{\!\top} \text{\bf \Psi}(\vec{\textbf{r}}, t)$ \rightarrow 11 \Box \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow

and adjoint-weighted integrated precursors:

 $\eta_g(t) = \int \phi_1^*(\vec{r}) C_g(\vec{r}, t) d\vec{r}$ $g = 1,..., G$

which satisfy the balance equations

$$
\dot{\eta}_g(t) = K \frac{\beta_{g,eff} A(t)}{l^*(t)} \!-\! \lambda_g \eta_g(t)
$$

We have a coupled system of equations for the shape, the amplitude, and the precursor concentrations

General Scheme of Solution

- •***CERBERUS follows from a *SIMULATE calculation**
- **The starting point is:**
	- −**a specific point in a reactor operating history**
	- − **or an instantaneous snapshot calculated with random or patterned channel ages**
	- − **or an instantaneous snapshot constructed to be neutronically equivalent (or nearly so) to the timeaverage model**
- ***CERBERUS is coupled to the thermal-hydraulics code, and expects thermal-hydraulic data from that code at each execution,i.e.**
	- −**coolant density**
	- −**coolant temperature,**
	- − **and fuel temperatures at specified "nodes" of the thermal-hydraulic model**

- **A two-energy-group WIMS grid-based fuel table is required for each fuel type in the core**
- **The WIMS grid-based fuel table is contained in the single file:**
	- − **The first line in the file is a case identifier**
	- − **The second line in the file is the number of values in the fuel table, needed for transferring the fuel table into RFSP-IST**
	- **The third and following lines contain irradiationdependent lattice properties for the reference condition followed by irradiation-dependent lattice properties for the perturbed conditions**

- • **Delayed neutron parameters are also required**
	- − **delayed-neutron partial fractions vary with the fuel irradiation (or burnup)**
	- − **bundle-specific (spatially varying) delayed-neutron partial fractions and core-average precursor decay constants are used in the *CERBERUS calculation**
- • **Delayed neutron parameters can be generated by the WIMS post-processing program KINPAR**
- • **It produces a table containing:**
	- − **delayed-neutron partial fractions for each delayedneutron group for each bundle**
	- − **as well as the total delayed-neutron partial fractions for each bundle, and**
	- − **core-average precursor decay constants for each delayed-neutron group**

- Choose points in time, $t_0 = 0$, t_1 , t_2 ,... at which **shape function will be calculated**
	- **Intervals of 50-100 ms found appropriate for the first 2 or 3 seconds of LOCA transients**
	- **During SDS action,** *tj* **normally selected as, e.g., times when leading edge of shutoff rods coincides with model mesh lines**
	- **Following SDS action, larger intervals, up to several seconds, may be used**
	- $-$ Solution follows recursively from each t_j to t_{j+1} .
- • **Starting point is solution to initial steady-state problem**

- **At each subsequent time step the coupled set of equations is solved to find flux shape, amplitude, reactivity, precursors**
- **The point-kinetics equations for the amplitude and integrated precursors are very quick to solve over a smaller time step**
- **The shape equation requires most effort**
- **A transient is solved as a sequence of flux-shape cases:**
	- − Case 1
	- − Case 2
	- $-$ Cases 3 and beyond... $\qquad \qquad =$ time-dependent cases
- $=$ initial steady state
- **Case 2 = steady-state adjoint**
-

Other features:

- **Capability to couple to thermalhydraulics calculation (e.g. CATHENA, TUF or NUCIRC) - files exchanged at each flux-shape time step or as "outer" iteration**
- ***TRIP_TIME module used to determine SDS actuation time**
- **SDS** *dynamic reactivity* **more negative than** *static reactivity* **because precursors not in equilibrium with flux**

The total bundle power during the transient can be written as:

 $P_{T}(t) = P_{P}(t) + D(t) + d(t)$

Where:

- **t is the time, with an origin of 0 at the start of the transient,**
- **P T(t) is the total bundle power at time t,**
- **P P(t) is the prompt component of bundle power at time t,**
- **D(t) is the decay power at time t due to fission products existing before time zero, and**
- **d(t) is the extra decay power at time t due to fission products created after time zero**

Schematic of a Physics Analysis for a Large LOCA

Two-Tiered Numerical Computational Scheme

