# **RFSP Model**



April 2004

ECL EACL



#### Static Two-Energy-Group Neutron Diffusion Equation for Eigenvalue Problems

#### Two-group equation solved by RFSP:

$$-\nabla \cdot D_{1}(\vec{r}) \nabla \Phi_{1}(\vec{r}) + (\Sigma_{a1}(\vec{r}) + \Sigma_{12}(\vec{r})) \Phi_{1}(\vec{r}) - \Sigma_{21}(\vec{r}) \Phi_{2}(\vec{r}) - \frac{1}{k_{eff}} (\nu \Sigma_{f1}(\vec{r}) \Phi_{1}(\vec{r}) + \nu \Sigma_{f2}(\vec{r}) \Phi_{2}(\vec{r})) = 0$$

 $-\nabla \bullet D_2(\vec{r}) \nabla \Phi_2(\vec{r}) + (\Sigma_{a2}(\vec{r}) + \Sigma_{21}(\vec{r})) \Phi_2(\vec{r}) - \Sigma_{12}(\vec{r}) \Phi_1(\vec{r}) = 0$ 

#### **Static Two-Energy-Group Neutron Diffusion Equation for Eigenvalue Problems (con't)**

where, at position  $\vec{r}$ 

 $\Phi_1(\vec{r})$  and  $\Phi_2(\vec{r})$  are the group-1 and group-2 neutron fluxes

respectively,

|            | $\Sigma_{a1}(\vec{r})$         | is the group-1 (fast) absorption cross section,                                                          |
|------------|--------------------------------|----------------------------------------------------------------------------------------------------------|
|            | $\Sigma_{a2}(\vec{r})$         | is the group-2 (thermal) absorption cross section,                                                       |
|            | $\nu \Sigma_{\rm fl}(\vec{r})$ | is the production cross section for the fast group,                                                      |
|            | $\nu \Sigma_{f2}(\vec{r})$     | is the production cross section for the thermal                                                          |
| group,     |                                |                                                                                                          |
|            | $\Sigma_{12}(\vec{r})$         | is the cross section for transfer from the fast group<br>to the thermal group (also called downscatter), |
|            | $\Sigma_{21}(\vec{r})$         | is the cross section for transfer from the thermal group to the fast group (also called upscatter),      |
|            | $D_1(\vec{r})$                 | is the group-1 (fast) diffusion coefficient,                                                             |
|            | $D_2(\vec{r})$                 | is the group-2 (thermal) diffusion coefficient, and                                                      |
|            | k <sub>eff</sub>               | is the reactor multiplication constant and is the                                                        |
| inverse of |                                |                                                                                                          |
|            |                                | the eigenvalue $Pg 3$                                                                                    |

Pg 3

#### Static Two-Energy-Group Neutron Diffusion Equation for Eigenvalue Problems (con't)

The diffusion coefficients  $D_g$  are related to the transport cross sections  $\sum_{tr,g} (g=1, 2)$  by:

$$D_{g}(\vec{r}) = \frac{1}{3\Sigma_{tr,g}(\vec{r})}$$
 g=1,2

where  $\Sigma_{tr,g}(\vec{r}) = \Sigma_{12}(\vec{r})(1-\mu_{0,g})$  and  $(1-\mu_{0,g})$  is the correction to the scattering cross-section to take account of non-isotropic scattering.

#### Data Prerequisite to Solve Diffusion Equation

- What is in the reactor
- Where it is
- In what state it is (e.g., irradiation)

#### <u>Geometry</u>

Length and radius of calandria, radius of notch Reflector thickness Lattice pitch, bundle length Mesh lines used in finite-difference model Distinction between *mesh array* (for flux calculation) and *lattice array* (defining fuel bundles) Axial and radial extrapolation lengths This data entered via \*DATA GEOMETRY cards.

## Mesh Spacing

- The finite-difference model is a collection of rectangular parallelepipeds, defined by the *mesh lines*. The RFSP user defines the mesh lines in the model.
- By definition, the nuclear properties are *uniform* over each parallelepiped (and the flux is calculated at its mid-point).
- However, the properties are not *directly* defined over the parallelepipeds. They are defined over:
  - lattice cells (for lattice properties)
  - defined volume of influence (for reactivity devices)

### **Top View of ACR Model**







Pg 9



Distance from the Edge of Calendria Shell (cm)

## **Lattice Properties Overview**

- Uniform Parameter Simplest Method
  - lattice properties are tabulated as functions of fuel burnup (or irradiation) only
  - assume effective core-average conditions for each fuel bundle
  - cannot account for local-parameter effects such as distributed power, xenon, coolant temperature, etc.
  - not suitable for accurate core-tracking and xenon transient simulations
  - Used for time-average and some static calculations (\*TIME-AVER, \*INSTANTAN and sometimes \*SIMULATE)

#### Lattice Properties Overview Cont.....

- Grid Based or Macro-Depletion Method
  - lattice properties are specified as functions of fuel burnup (or irradiation) and of other local parameters
  - macroscopic cross sections are generated beforehand at various assumed operating conditions
  - Interpolation is performed for each fuel bundle to generate local-parameter-dependent macroscopic cross sections
  - does not take into account the dependence of the cross sections on a bundle's history
  - Used in kinetics module of RFSP (\*CERBERUS)

### Lattice Properties Overview Cont.....

- Micro-Depletion Method
  - as simple as the macro-depletion model
  - but addresses both:
    - the microscopic cross section of a nuclide (independent of history) and
    - its number density, which depends on the depletion history
  - Used in the \*SIMULATE module for core tracking calculations

### Lattice Properties Overview Cont.....

- Direct use of WIMS Most Rigorous Method
  - history-based local-parameter method
  - lattice code is coupled directly with the coreanalysis code, and the lattice calculations are performed for each bundle at each time step
  - impractical for routine calculations at this time
  - Some work has been performed to demonstrate feasibility of parallel processing techniques using PVM or MPI.

## **Reactivity Devices**

- Device properties given as incremental crosssections over some volume of influence (usually lattice pitch x length x bundle length)
- Calculated by supercell code (e.g., DRAGON) and added to lattice cross sections over volume of influence

## **Property Smearing**

• If the boundaries of the lattice cells and/or of the device volumes of influence do not coincide with mesh lines, the properties will be smeared to the *next* (outwardly) mesh line. The smearing involves "diluting" the cross-sections in inverse proportion to volume.

Smearing is not recommended because:

• It denies the volume over which the cell code or device code "wanted" to act especially in terms of absorption, a wider volume of action increases the absorption (even in the presence of dilution); e.g., reactivity worth of shutoff rods is artificially enhanced - non conservative.

Moral of Story: ensure your model has no smearing



Mesh Lines to Which Device Properties are Smeared