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°... Introduction to the CP Method 1

MMMMMMMM
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¢... ' The Transport Equation
The transport equation is a neutron balance equation
L(F, E,Q) =0(F E,Q)
® [ represents neutron lost from the system:
L=Q-VO(F, E,Q)+ X(F, E)d(F, E, Q)
#® O represents neutron created in the system
Q, = / dE' Q% (F, E' — E, Q) — Qo7 E', Q)

—

Qr =x(7, E) | dE'd*QuX (7, ENO(F, E', Q)
f f
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¢... ' The Transport Equation

MMMMMMMM

Multigroup transport equation
0V + 29(7) + D7) B2| (7, D) = Q4(7, D) + Q47 D)

Scattering source QJ(7, Q)
Z / Q7 Y — Q) (r, )
h=1

Fission source Q%(7, Q)

G
QR =0 Y vEh(7) / 2D (7 )
h=1
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¢... 'The Transport Equation 3

MMMMMMMM

Transport equation in the absence of external sources is an
eigenvalue problem:
1. k eigenvalue with imposed leakage (D?(7)B? fixed):

# [ indicates how the fission rate should be modified to
make the system critical (reach a non-trivial solution
to the transport equation)

2. Buckling eigenvalue with imposed k:

® DI(7)B?* represent the amount of leakage required to
make the system critical
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The Transport Equation

Boundary conditions are required to close the system
# Albedo conditions

6— (75, — 2(Ng - Q) =6(s, ) p+ (Fs, Q)

AN

—>
@,

Q

for void BC
for reflective BC

X®R
N
O}l SQl
N——"
|
_ O
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MONTREAL

® Periodic conditions

gb—(_)57 Q) — gb—i—(FS’a ﬁ)

S' S




¢... ' The Transport Equation

MMMMMMMM

Integral transport equation (case without leakage)
# Flux at a point 7 due to neutrons created at any point

=/

7 = 7 — R surrounding it

] ) N o
[_ﬁ e RQ)] DI(7— RE. ) —Q9(7 — G, G)

# |Integrate transport equation over R and {2
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¢... ' The Transport Equation

MMMMMMMM

Definitions
o) = [ dP00s(rSh
R —
T9(R) = / »9(7 — R'Q)dR’
O
. 1 ifr=+"+ RO
o, 7' ) = IT 7 T.—I—R
0 otherwise

and &7 (7, Q) is the incoming angular flux on surface S
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¢... ' The Transport Equation 3

MMMMMMMM

Equation for the outgoing flux ¢, (rs) at S

R
#+(7s) = / Q- Ny) /0 e T QI DO (s, 7, D)d R

i / QO N Q- N2) e ) (7, D)0 (7, 5, Q)

where
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¢... 'The Transport Equation 9

MMMMMMMM

CP approximations

# Divide domain into Ny regions of volume V; where the
cross sections sources are independent of 7~ and (2

¥9(r) =27 for e V;
S
Q7 0) = a7 =g for7eV,

(the source is assumed isotropic)

# Divide the external boundary S into Ng surfaces of area
S~ and assume angular flux constant on these surfaces

L= 1
(I)g_ (Ts, Q) :E¢g’_
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¢... 'The Transport Equation 11

MMMMMMMM

Transport equations in CP form

Ng Ny
B WIS W
a=1 g=1
Ng Ny
Lo =Dttt Dt
B=1 g=1
where
o = [ e
7 vz v
g 1 2,109 =
+a o d“ro (TS)
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¢... 'The Transport Equation 12

MMMMMMMM

Four types of probabilities

. e T 3.1 13
pgj zpw / / 1 2 @z’@jd r'd°r

g _Tg (£s) 3 / 2
ﬁgi — pm / / 47TR2 )@ O, d>r' d3r
_Tg RS — — —
A — NS N
o=t = [ [, G @ NNy

X@a@ﬁdQTdQT/
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¢... ' The Transport Equation 13

Symmetry relations

Virg; =Vjpj;
4‘/7fpzoz Sapon
Sapaﬁzzsbpﬁa

Conservation properties
Na N
g g
D Vit Qi) =1
a=1 1=1
N3 N;
g _
IFEDWRT
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¢... Boundary Conditions 1

MMMMMMMM

Surface flux approximation:

# Incoming angular flux on outer surfaces assumed to be
independent of O

Comments
# QOutgoing angular flux on outer surfaces integrated over

—

()
# Angular flux not used at region interfaces

# Approximation for incoming angular flux exact for
vacuum BC

# Approximation for incoming angular flux leads to large
errors in surface flux when flux is not isotropic

17/92



¢... Boundary Conditions

lllustration of approximate BC

Reflection Translation

specular

isotropic
isotropic
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¢... Boundary Conditions 3

MMMMMMMM

Recommendations to reduce errors due to approximate use
of BC for a fixed direction

# No special treatment for 2 vacuum BC
® Unfold cell once for 1 vacuum and 1 reflection BC

o Multiply unfold cell for 2 reflection or periodic cell, apply
approximate BC on final surfaces and consider results
in cell located far from these surfaces.
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¢... Boundary Conditions

MMMMMMMM

Example of cell unfolding in direction X

6 51 5 6 6 50 5 6
y g)zzg} 4 | 4 g)mQ} y
5 6 5 6 5 6 5 6
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¢... Boundary Conditions

MMMMMMMM

Simplifying CP equations using approximate BC
#® Assume

— —

JU =A9JY
# Final transport equation
)

with the complete collision probability matrix P¢,,,:

P{,, = (Pl + PL((AY) ™ — PL) P, )

C, 0V
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9.. Cross Sections Consideration 1

MMMMMMMM

Two types of multigroup cross-section database can be
read by DRAGON

#® Mixture macroscopic cross-section

# Isotope microscopic cross-section that contains itself a
macroscopic cross-section database
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9.. Cross Sections Consideration 2

MMMMMMMM

Minimum cross-section requirements for each mixture m
# The multigroup total cross section X7,

# The isotropic component of the multigroup scattering
cross section ¥ 9 defined as

m,s,0

Y= / d2QPEh9(Q) — Q) Py(Q - Q)
47

m,s,0

# The product of the average neutron emitted per fission
with the multigroup fission cross section vX

® The multigroup fission spectrum 7,
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9.. Cross Sections Consideration 3

MMMMMMMM

The linearly isotropic component of the multigroup
scattering cross section X9

m,s,1

9= / d2Q*El9(Q — Q)P (R - Q)
4

m,s,1

# Required only if B, leakage method is used
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9.. Cross Sections Consideration

MMMMMMMM

The transport correction %7,

# The transport calculations are performed using

transport corrected total (£,) and scattering ()., %)
cross sections

29 =x9 — %9

m,tc

e = e §9hyd

m,s,0 — “m,s,0 m,ic

# Takes partially into account the linearly anisotropic
scattering contributions
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9.. Cross Sections Consideration 5

MMMMMMMM

For contribution of multi-neutron production reactions such
as

X4 +n] = X4_; +2n) +

The scattering cross section must be corrected to take into
account this effect

Mg =00+ 209080

m,s,0 = “m,s,0 ,(n,2n)

where E?n 2n) IS the macroscopic cross section associated

with the reaction
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9.. Cross Sections Consideration 6

MMMMMMMM

Macroscopic cross section data base can be created using
# from the input file using the MAC: module

# from a GOXS file using the MAC: module

# from a microscopic library using the LIB: module

o

from the homogenization and condensation module
EDI:

°

from a WIMS-AECL execution using the information
available on TAPE16 (side-step method)

® from a HELIOS execution
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¢... Microscopic libraries 1

MMMMMMMM

Many formats can be processed by DRAGON including
» WIMS-AECL format

» MATXS format

o WIMD-D4 format

In DRAGON resonance self-shielding calculations are pre-

formed using the Stamm’ler method
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¢.. 3—D CP Calculations

MONTREAL

Contents

# Collision Probabilities in 3-D

# Numerical Quadrature and Tracking

# Collision Probability Integration

# Neutron Conservation and CP Normalization
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¢... 3—-D CP Calculations

MONTREAL

Recall CP approximations
# Divide domain into Ny regions of volume V;

# Assume total cross sections constant inside each
region
#® Assume sources constant inside each region
s This has an impact on the selection of the spatial
mesh
# Assume sources isotropic inside each region

s This may lead to problem when scattering is highly
anisotropic.
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¢... 3—-D CP Calculations 3

MONTREAL

Recall BC approximations

# Divide the external boundary S into Ng surfaces of area
Sa
# Assume flux constant on external surfaces
s This has an impact on the selection of the spatial
mesh
#® Assume flux isotropic on external surfaces

s This may lead to problems when flux is highly
anisotropic near external boundaries
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EEEEE
POLYTECHNIQUE
MMMMMMMM

Collision Probabilities in 3-D

Collision probability definition

. e T A 3.1 13
pgj zpw / / 1 2 @i@jd r'd°r

® Spherical coordinates for d°r integral

/ d*rO; = / d*Q / * R%2dRO;
A7

_l
2

® Cartesian coordinates for d*r' integral

/ Pr'e; = / dz’ / dy/ / dR'©;
Vi

32/92
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9.. Collision Probabilities in 3-D 3

MMMMMMMM

Final form for collision probability integration

pz] / /d$ /dy/ / " dR €_TQ(R/’R)@Z'@]'
4 1 1

™ =(Rip1 — R)XJ + Z ARE + (B Rjy
k=1+1

l\DI
l\DI

g
)%

with ARy = Ry 1 — Ry 1.
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9.. Collision Probabilities in 3-D

MMMMMMMM

Notation for optical path

33333



wims ECOLE
POLYTECHNIQUE
MMMMMMMM

Collision Probabilities in 3-D

After integration over R’ and R, one obtains

4
. 20y
p‘g] —47T2929/ d“ () /daj /dy@ il
[1_6Xp( —5it3 )} eXp( a J—1>

. [1_6Xp( yglj#)}
27 2
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wims ECOLE
POLYTECHNIQUE
MMMMMMMM

Collision Probabilities in 3-D

Case where X =0

41
20)
pw 47r29/ d=() /d:z:/dy@@

X AR; exp(— . {1 — exp(—T ;]

2%7 2

Case where ¥j =37 =0

1

p” 4

47
d*Q /daz /dy@@ AR;ARjexp(—T
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9.. Collision Probabilities in 3-D

MMMMMMMM

For p7., one obtains after integration over R’ and R

- Zg /MdQ o [ 4 [ayee,
« {72—5, Wy (1 —eXp( z—§,z+ ))}

For ©¢ = 0 this is simplified to

A7
Pl = - d*Q /da;/dy@@ AR;)’

. . . . ~( ~(
Similar relations are obtained for p; and Pog
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«. Quadrature and Tracking

= EC
POLYTEC
MONTREA

3-D Adjuster model in DRAGON
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¢... Quadrature and Tracking 2

MMMMMMMM

Angular quadrature

® S, type EQy quadrature with 4Nq(Nq + 2)/8 angular
directions €21 ;, Q24, Q3; and €y

# Global quadrature weight W = 2/(Nq(Nq + 2))

Tracking in lower half sphere only

°

#® Number of tracking quadrant automatically reduced for
symmetric cell

# Select as many angles as possible (Neutrons travel on
a straight line)
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EEEEEEEEEEEEE .. Quadrature and Tracking

OOOOOOO

Cartesian surface quadrature




¢... Quadrature and Tracking 4

MMMMMMMM

Cartesian quadrature

# I|dentify the radius i, of the smallest sphere including
the geometry

® Select a tracking density p, and define the line spacing

2h,

6= Ny = (2¢/pph+) + 1
p

# |Integration line [,,,, passes through

ufn:<2m_1)5 U%Z(Qn—1>5
2 2

» Integration weight W, = §°
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¢... Quadrature and Tracking S

MMMMMMMM

Comments on Cartesian surface quadrature

# In Dragon 3 different planes are selected for each given
spatial direction

# Select tracking density as dense as possible

s Each region must be touched by a maximum number
of lines
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OOOOOOO

EEEEEEEEEEEEE .. Quadrature and Tracking

DRAGON tracking example

/////\§

-
N
N




¢... Quadrature and Tracking 7

MMMMMMMM

DRAGON tracking of a line [,, ,,
1. Follow the tracking line as it travels through the cell
2. ldentify each region i and surface s uniquely

3. ldentify final region number I associated with set of
regions : (a flux region)

4. ldentify final surface number S associated with sets of
surfaces s

5. ldentify external surfaces and regions ¢ crossed by line

6. Compute distance i},m,n the neutron travels in each
region

7. Store information on temporary tracking file
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EEEEEEEEEEEEE .. Quadrature and Tracking 3

OOOOOOO

Case of symmetric cells (mirror reflection on one side of the
cell)

# Unfold the cell according to symmetry

i=3 i4 6 i=o| =10
e

i=1 i=2 i=6 i=7

# Regions in unfolded cells are originally assigned new
region numbers

46/92



¢... Quadrature and Tracking 9

MMMMMMMM

Angle selection for symmetric cells

o For symmetry with respect to a (y, z) plane, track only in
quadrants corresponding to directions Q; ; and Qs ;

o For symmetry with respect to a (z, x) plane, track only in
quadrants corresponding to directions ) ; and Qs ;

o For symmetry with respect to a (z,y) plane, track only in
all quadrants

47/92



¢... Quadrature and Tracking 10

MMMMMMMM

Post treatment of tracking file

# Assign to all spatial region i its final flux region number
combining track segments as required

# For each direction, normalize tracks using

where
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¢... Quadrature and Tracking

MMMMMMMM

Comments on storage requirements for tracking
# Maximum number of line segments tracks d;

dy < 6N (Nq(Ng +2))pph*
® ForN = 1000, hy = 50, p, = 20 t/lcm? and Nq = 8
dy < 20 x 10°

tracks segments.

11
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. Quadrature and Tracking I

ACR control rods model in DRAGON
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¢« Quadrature and Tracking 13

MMMMMMMM

3-D cluster analysis not currently allowed in DRAGON
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¢... CP Integration

MMMMMMMM

For each energy group
# Read a line from tracking file

# Scan this line and add contribution to p?.

1 1
2(29) pzz _2(29) pzz

L > (i = )

me

where W,, = WqW, /3 and

'Ii;lq,n,m_ (1—exp[ 'Lgnm})

=i nm with m € i

1,M,M
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¢... CP Integration 2

MMMMMMMM

» Scan this line a second time and add contributions to 57

Y ngw —y9 ngw

—I_ZW S‘S:’%znm nm—l—lm 1'Ii]nm

metrm’ey

using

/
m

g _ 9
/{n,m,m’ T H CXp { 7 N) l}

l=m
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¢... CP Integration 3

MMMMMMMM

Finish CP calculations
# Only the contributions with m < m’ has been considered
» Symmetrize pj; using

g =g | =g
Pi; = Pj; + Dj;
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Decoe CP N Ol‘malization

MMMMMMMM

Compute errors on CP conservation rules

N, IS N;
«
R =%V — > =r%ipl; — D SisiVip};
a=1 1=1

g __ @ g 9.9
Ry = = 2. 5 Pas— 2 EIVirs

a=1 1=1
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Decoe CP N Ol’malization

MMMMMMMM

Diagonal Normalization

g
D, 1% (23)2%
4R?,

g — 9
pD — paa T
, Ol S,

o May result in non-physical negative probabilities
o Cannot be applied to problems involving voided zones
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Decoe CP N Ol’malization 3

MMMMMMMM

HELIOS Type Normalization
p?—[,ij :(wzg T wg)pfj pg{,aa — (w(g)c + w%)pga

# Apply conservation laws to above relation
# Solve resulting system for w9 using an iterative process

# Does not lead to negative probabilities and works for
void regions

# Default option in DRAGON
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Decoe CP N Ol’malization

MMMMMMMM

Comments on storage requirements for CP matrices
» Number of elements per groups is N*

o Memory space required for execution is about 5N?

# Total disk space required for storage of G group CP is
GN*?
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Solving the CP Equations

Contents

#® The Power lteration

#® The Multigroup Iteration
# Leakage Models
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Decoe SOlVing the CP Equations

MMMMMMMM

The multigroup transport equation has the form

—

I
0 :PC,UU(QS + EQf)
Gs :Esg
qf ZXVEfCE

® ¢isa N x G dimensional vector

® P.,, is the multigroup CP matrix
s Diagonal in energy, full in space.

® xvX, is a matrix for neutron production by fission and
35 IS the scattering matrix
s Diagonal in space, full in energy
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Decoe SOlVing the CP Equations 3

MMMMMMMM

We can decompose the scattering matrix as

23 :Ed,s - Eu,s + Ew,s

with
® ¥, ; the up-scattering matrix (lower triangular in energy)

® 3>, . the down-scattering matrix (upper triangular in
energy)

® ¥, s the within-group scattering matrix (diagonal in
energy)
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Decoe SOlVing the CP Equations 4

Defining W the scattering modified CP matrix
W = (I — Pc,vvzw,s)_ch,vv

the transport equation now becomes

—

= - 1
Qb — W(Ed,sgb - Eu,sgb + EQf)

Assuming
® g¢/kisfixedand X, =0

The above equation can be solved directly from group g = 1
tog=G
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Decoe SOlVing the CP Equations 5

MMMMMMMM

The general equation can be solve using two iteration
processes

#® The Power iteration
illustrated by solving the transport problem with 3, ; =0

# The multigroup iteration
illustrated by solving the transport problem with ¢;/k
fixed

63/92



¢.. The Power Iteration

MMMMMMMM

® Assume X, ;=0

o Write an iterative group by broup solution to the
transport problem as

G(1) =W (Sa,0(0) + (ZX_ 1)v2f5(l - 1))
G N G
b) =303 Vid w6
g=1 1=1 h=1

with ¢(0) a known arbitrary flux distribution and

ZZfoZVEhZ

g=1 1=1
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MONTREAL

< €9 | 7=

ol —1) o(1)
k (1)

are both satisfied

# The parameters ¢; and ¢ can be defined independently
in DRAGON
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¢... ' The Multigroup Iteration 1

MMMMMMMM

® Assume qr/k = q'is fixed

# Solve group-by-group this fixed source problem using a
Gauss-Seidel strategy

—

3(1) = W (Sa,0(0) + Busdll = 1) +4)

& |terate until

S < €3
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¢... ' The Multigroup Iteration

MMMMMMMM

Multigroup rebalancing technique

# Neutron conservation states that for a converged
solution ¢? (1)

N N

> Sl (1) = RIVig! (1)

1=1 1=1
N g

+ Y RIVi [ mh e () + Z 2I960(1)
i=1 h=1 h=g+1

with R =1 - S, X075

67/92



¢... ' The Multigroup Iteration

MMMMMMMM

# The multigroup problem we effectively solve yields

N N
> SWiel(l) = RIVig (1)
1=1 1=1

+ZR9 (Zzhﬁ% ) + Z »h—9 gl zn)

h=1 h=g+1
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¢... ' The Multigroup Iteration

MMMMMMMM

To restore conservation at each iteration

® Use ¢/ = a9¢7 and assume ¢/ satisfies conservation
relations, then o9 must satisfy

G
> MMl =¢f
h=1

N
M9 = 37 RV (S — £47) of
1=1
N

0! =) RiVidf
1=1

® Solve for o9(k) and rebalance flux
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¢... ' The Multigroup Iteration )

MMMMMMMM

Add relaxation parameter to the Gauss—Seidel iteration
scheme

» For appromimate solution T'({)
Bl =W (zd,sf(l) + Sy L= 1) + (I)

# Define an improved flux distribution for the next iteration
using

5(1) =T(1) + w(DAQ)
R() =F(1) — 61— 1)

and w(l) will be computed using a variational procedure
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MMMMMMMM

¢... ' The Multigroup Iteration

Select w({) in such a way that ¢(I) minimizes the tranport

functional
1 S ~
Flo) =0T 2720 — 6T ZTW7
Z=1-W (Zgs+3u5)]
This yield




°.. Leakage Models

MMMMMMMM

In 3—D, the transport equation can be solved in DRAGON
using the By and B, leakage models

# Both of these models are based on the following
factorization of the flux

—

I (7, Q) ~0I(7, Q) exp(iB - 7)

o Transport equation with leakage

# In general we will assume that keﬁ=1
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°.. Leakage Models 2

MMMMMMMM

# For an infinite homogeneous media the scalar flux and
vector current are related to each other according to

QUI(Q) =J9(Q) = —iDIBWI(Q)

with DY is an homogeneous diffusion coefficient
® Apply to heterogeneous systems

# Find the homogeneous diffusion coefficient compatible
with this heterogeneous problem
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¢.. Leakage Models 3

MMMMMMMM

e

Assume an heterogeneous solution is known for B2 = 0

e

Use this solution to define an equivalent infinite
homogeneous problem

$IWI(Q) +iB - Q) = QU + QY
where the cross sections and sources are homogenized
using the heterogeneous flux

# Solve the homogeneous problem for D9 and B

# Insert in heterogeneous transport equation and obtain
an improved solution.

o Repeat until the iterative procedure is converged
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¢... Leakage Models

MMMMMMMM

Solving the homogeneous problem (B; model)

# Use a 2 terms expansion for the scattering cross
section in Legendre polynomials

ST — Q) =X + 3807960 - 4

® Define
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¢... Leakage Models

MMMMMMMM

# Insert into the homogeneous transport equation, and
integrate to obtain

g __ g h—>g h g h—>gB ]
V7 =« g + x VZ w + 30 g 2 52
_ 5 ]
e h— h Bw h—gq J
]9 :/89 E (Z g —+ gVZf) ZBQ —+ 32928,1 gﬁ

g1 arctan B
od =— —
B >.9

39 =1 — 2909
Solve for B, 49 and j9 and compute D9 = i - j9/B2y9
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¢... Leakage Models

MMMMMMMM

The By homogeneous problem

h—>g

® Assume ¥X_,” = 0 and obtain

wg —a9 Z(ZZLHQ 4 ngzg)wh
S’ _59232 Z L
The homogeneous diffusion coefficient is then given by
69

Dg -
o9
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°.... Condensation and Homogenization 1

Contents

# Condensation Technique

o Full Cell Homogenization

o Partial Cell Homogenization and SPH Factors
# Microscopic Cross Section Homogenization
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¢.... Condensation and Homogenization 2

MMMMMMMM

Condensation and homogenization techniques in DRAGON
are based on the following assumptions

# Reaction rates are physically meaningfull and should be
preserved by the condensation/nomogenization
procedure

R; = Z Vig)2! = Vigi %,
g
RY =Y Vi¢!S! = VgIss
# The eigenvalue is physically meaningfull and should be

preserved by the condensation/homogenization
procedure
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¢.. Condensation Technique

MMMMMMMM

Condensed transport equation (macrogroup K that
includes ¢ € Gk)

Q-V Y IF D)+ Y SI(F)PI(F,Q

geGg geGg

It should reproduce condensed multigroup results

80/92



¢.. Condensation Technique 2

MMMMMMMM

The condensation procedure that satisfies our requirements

r= ¢

gEGK

5t oK Z 0K

Z geGk

SR =LY s

Z heGr geGk

-3«

gEGK

VZK,?; = Z VZh, gbg

Z geGk
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¢... Condensation Technique 3

MMMMMMMM

Multiplying CP transport equation by ¥¢V; and summing
over all regions i yields

1
2; SIVigl = Z VilQL; + Q%]

The equivalent transport equation in a homogeneous
infinite cell is

A A A 1 A
BV = VIQL; + Q%]

The homogenized and homogeneous transport equations
are identical if one selects a flux-volume homogenization

technique
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¢.. Condensation Technique 4

POLYTECHNIQUE
MMMMMMMM

Flux-volume homogenization technique

ngg
h—>g
9 v gb &y
~ g
23 ngg ¢
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¢.. Condensation Technique

MMMMMMMM

Flux-volume homogenization fails if
# The cell is finite (a cell with leakage) and

ZP% ¥ #1

# Partial cell homogenization cell is considered

84/92



¢.... Partial Cell Homogenization 1

MMMMMMMM

The heterogeneous N region transport equation
homogenized over M regions takes the form

VSl = 303 Y s QY + QY

1€M; eMr J jeMy

The M region heterogeneous transport equation takes the
from

VIXA] ijlzg ng+ Q ]

where PY,(39) indicates that the CP are computed using ho-

mogenized cross sections
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°... Partial Cell Homogenization

MMMMMMMM

We need

> Visie! = Viniel

€M

and

ZpJIA ng+ Q gl =

> P (E9)[Q5,; + %Qg,z']

eMy; J jeMy

to be simultaneously true
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¢.... Partial Cell Homogenization 3

MMMMMMMM

The flux-volume homogenization method is not longer
adequate because

® There is no simple relation between 5% ,(39) and p?;(£9)

The alternative here is to use a non-linear process
» Consider a flux-volume homogenization for ¢7 and 7

» Redefine the homogeneous flux ¢¢ and cross sections
»:9 as follows

A 1 A
g _ g g gwg
oy _M?gbl 27 = UXT
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°... Partial Cell Homogenization 4

MMMMMMMM

» Determine the SPH factors ;] numerically in such a

way that
ZpJI > QgJJF Q jl =
g g g 1 g
S: S: S: qu;(z )[Qs,z‘ T EQ ,@']
weMrp J jeM;
IS true

# The definition of the SPH factors automatically ensures

> Visde! = Vinied = Visied
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POLYTECHNIQUE
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Microscopic Cross Section

The macroscopic cross section associated with a material
IS simply the sum over all isotopes of the isotopic
macroscopic cross section X; namely

g __ g
$=> %7,
I
where
Z%i :NLZ’U?

with Ny ;, the concentration of isotope I in region ¢

o The homogenization and condensation procedure
described above remain valid for £ .
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¢... Microscopic Cross Section 2
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Since the final concentration of isotope I in the cell is given
by:

%ZNI,M

we can define the equivalent homogenized microscopic
cross section as:

;(_va¢K S‘ S‘ thaggbg

1€Mr geGk

where the microscopic cross sections now become
dependent on the spatial position
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¢.. Conclusions 1

MMMMMMMM

Some comments and warning on the CP method
# The sources are assumed constant inside each region

s Select an adequate spatial discretization
This may lead to a large number of region (CP is

proportionnal to N?)
Some regions may be very small causing problem

with tracking
# Select a problem that is not too heterogeneous
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¢.. Conclusions 2

MMMMMMMM

# The angular flux on each external surface are assumed
constant and isotropic

s Try to get rid of external surfaces with re-entrant
angular flux

s Select a model where the region of interest is far
from the external surfaces
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