

DRAGON Theory for 3-D CANDU Problems

G. Marleau

Institut de génie nucléaire Ecole Polytechnique de Montr ´Ecole Polvtechnique de Montréal

- 1. Introduction to the Collision Probability Method
- 2. 3–D Collision Probability Calculations
- 3. 3–D DRAGON Examples
- 4. Solving the Collision Probability Equations
- 5. Condensation and Homogenization Techniques
- 6. Managing ^a DRAGON Execution
- 7. Discussion and Conclusion

Introduction to the CP Method 1 ÉCOLE

Contents

- **C** The Transport Equation
- **C** The Collision Probability Technique
- **C** Boundary Conditions
- Cross Sections Considerations

The Transport Equation 1 ③}
◎ ÉCOLE
<mark>DLYTECHNIQUE</mark>

The transport equation is ^a neutron balance equation

$$
\mathcal{L}(\vec{r},E,\vec{\Omega})=\!\mathcal{Q}(\vec{r},E,\vec{\Omega})
$$

 $\mathcal L$ represents neutron lost from the system:

$$
\mathcal{L} = \vec{\Omega} \cdot \vec{\nabla} \Phi(\vec{r}, E, \vec{\Omega}) + \Sigma(\vec{r}, E) \Phi(\vec{r}, E, \vec{\Omega})
$$

Q represents neutron created in the system \bullet

$$
Q_s = \int dE' d^2\Omega \Sigma_s(\vec{r}, E' \to E, \vec{\Omega}' \to \vec{\Omega}) \Phi(\vec{r}, E', \vec{\Omega}')
$$

$$
Q_f = \chi(\vec{r}, E) \int dE' d^2\Omega \nu \Sigma_f(\vec{r}, E') \Phi(\vec{r}, E', \vec{\Omega}')
$$

The Transport Equation 2 O
SE ÉCOLE
POLYTECHNIQUE

Multigroup transport equation

$$
\left[\vec{\Omega}\cdot\vec{\nabla}+\Sigma^g(\vec{r})+D^g(\vec{r})B^2\right]\Phi^g(\vec{r},\vec{\Omega})=Q_s^g(\vec{r},\vec{\Omega})+\frac{1}{k}Q_f^g(\vec{r},\vec{\Omega})
$$

Scattering source Q_s^g $_{s}^{g}(\vec{r}%)\sim\vec{r}^{2}\sqrt{\vec{r}^{2}-\vec{r}^{2}^{2}}$ $\vec{r}, \vec{\Omega})$

$$
Q_s^g(\vec{r}, \vec{\Omega}) = \sum_{h=1}^G \int d^2\Omega' \Sigma_s^{hg}(\vec{r}, \vec{\Omega}' \to \vec{\Omega}) \Phi^h(\vec{r}, \vec{\Omega}')
$$

Fission source $Q^g_{\,\,\mu}$ $\frac{g}{f}(\vec{r})$ $\vec{r}, \vec{\Omega})$

$$
Q_f^g(\vec{r}) = \chi^g \sum_{h=1}^G \nu \Sigma_f^h(\vec{r}) \int d^2\Omega' \Phi^h(\vec{r}, \vec{\Omega}')
$$

The Transport Equation 3 (<mark>⑥</mark>)
POLYTECHNIQUE
M. Q. N. T. P. É. A. L

Transport equation in the absence of external sources is an eigenvalue problem:

- 1. k eigenvalue with imposed leakage $(D^g(\vec{r})B)$ 2 fixed):
	- k indicates how the fission rate should be modified to make the system critical (reach ^a non-trivial solution to the transport equation)
- 2. Buckling eigenvalue with imposed k :
	- $D^g(\vec{r})B$ 2 represent the amount of leakage required to make the system critical

The Transport Equation 4 ୍ଞ୍ୟୁ
ାଧ≺ ÉCOLE
<mark>OLYTECHNIQUE</mark>

Boundary conditions are required to close the system Albedo conditions

$$
\phi_-(\vec{r}_S,\vec{\Omega}-2(\vec{N}_S\cdot\vec{\Omega}))=\beta(\vec{r}_S,\vec{\Omega})\phi_+(\vec{r}_S,\vec{\Omega})
$$

 $\beta(\vec{r}_S,\vec{\Omega})=0$ $\Omega)=0$ for void BC $\beta(\vec{r}_S,\vec{\Omega})=1$ $\Omega) = 1$ for reflective BC

Periodic conditions

$$
\phi_-(\vec{r}_S,\vec{\Omega})=\phi_+(\vec{r}_{S'},\vec{\Omega})
$$

The Transport Equation 6 <u>®</u>
◎ ÉCOLE
<mark>OLYTECHNIQUE</mark>

Integral transport equation (case without leakage)

Flux at a point \vec{r} due to neutrons created at any point $\vec{r}^{\, \prime} = \vec{r} - R \vec{\Omega}$ surrounding it

$$
\left[-\frac{d}{dR} + \Sigma^g(\vec{r} - R\vec{\Omega})\right] \Phi^g(\vec{r} - R\vec{\Omega}, \vec{\Omega}) = Q^g(\vec{r} - R\vec{\Omega}, \vec{\Omega})
$$

Integrate transport equation over R and $\vec{\Omega}$

$$
\phi^g(\vec{r}) = \int d^2\Omega \ e^{-\tau^g(R_S)} (\vec{\Omega} \cdot \vec{N}_-) \Phi_-^g(\vec{r}'_S, \vec{\Omega}) \Theta(\vec{r}, \vec{r}'_S, \vec{\Omega}) + \int d^2\Omega \int_0^R e^{-\tau^g(R')} Q^g(\vec{r}', \vec{\Omega}) \Theta(\vec{r}, \vec{r}', \vec{\Omega}) dR'
$$

The Transport Equation 7 O
POLYTECHNIQUE
MONTRÉAL

De finitions

$$
\phi^g(\vec{r}) = \int d^2\Omega \Phi^g(\vec{r}, \vec{\Omega})
$$

$$
\tau^g(R) = \int_O^R \Sigma^g(\vec{r} - R'\vec{\Omega})dR'
$$

$$
\Theta(\vec{r}, \vec{r}', \vec{\Omega}) = \begin{cases} 1 & \text{if } \vec{r} = \vec{r}' + R'\vec{\Omega} \\ 0 & \text{otherwise} \end{cases}
$$

and Φ g $\frac{g}{\Gamma}(\vec{r}^{\, \prime}_S,\vec{\Omega})$ is the incoming angular flux on surface S

The Transport Equation O

ECOLE

POLYTECHNIQUE

Equation for the outgoing flux $\phi_+(\vec{r}_S)$ at S

$$
\phi^g_+(\vec{r}_S) = \int d^2\Omega(\vec{\Omega} \cdot \vec{N}_+) \int_0^R e^{-\tau^g(R')} Q^g(\vec{r}', \vec{\Omega}) \Theta(\vec{r}_S, \vec{r}', \vec{\Omega}) dR'
$$

$$
+ \int d^2\Omega(\vec{\Omega} \cdot \vec{N}_+)(\vec{\Omega} \cdot \vec{N}_-) e^{-\tau^g(R_S)} \Phi^g_-(\vec{r}'_S, \vec{\Omega}) \Theta(\vec{r}_S, \vec{r}'_S, \vec{\Omega})
$$

where

$$
\phi^g_+(\vec{r}_S) = \int d^2\Omega \ \Phi^g_+(\vec{r}_S, \vec{\Omega}) (\vec{\Omega} \cdot \vec{N}_+)
$$

The Transport Equation 9

- CP approximations
	- Divide domain into N_V regions of volume V_i where the cross sections sources are independent of \vec{r} and $\vec{\Omega}$

$$
\Sigma^{g}(\vec{r}) = \Sigma^{g}_{j} \qquad \text{for } \vec{r} \in V_{j}
$$
\n
$$
Q^{g}(\vec{r}, \vec{\Omega}) = \frac{1}{4\pi} q^{g}(\vec{r}) = q^{g}_{j} \qquad \text{for } \vec{r} \in V_{j}
$$

(the source is assumed isotropic)

Divide the external boundary S into N_S surfaces of area S_α and assume angular flux constant on these surfaces

$$
\Phi^g_-(\vec{r}_S,\vec{\Omega})=\frac{1}{4\pi}\phi^g_{\alpha,-}
$$

110 The Transport Equation O

ECOLE

POLYTECHNIQUE MONTRÉAL

 $\alpha,$ —

$$
\int d^2\Omega \int_0^R e^{-\tau^g(R')} Q^g(\vec{r}', \vec{\Omega}) \Theta(\vec{r}, \vec{r}', \vec{\Omega}) dR' =
$$

$$
q_j^g \int_{V_i} e^{-\tau^g(R')} \Theta(\vec{r}, \vec{r}', \vec{\Omega}) \frac{d^3r}{4\pi |\vec{r} - \vec{r}'|^2}
$$

$$
\int d^2\Omega \ e^{-\tau^g(R_S)} \Phi_-^g(\vec{r}'_S, \vec{\Omega}) \Theta(\vec{r}, \vec{r}'_S, \vec{\Omega}) =
$$

$$
\phi_{\alpha,-}^g \int_{S_{\alpha}} e^{-\tau^g(R_S)} \Theta(\vec{r}, \vec{r}'_S, \vec{\Omega}) \frac{d^2r}{4\pi |\vec{r} - \vec{r}'|^2}
$$

 $-|\vec{r}'|^2$ |

Transport equations in CP form

where

$$
\phi_i^g = \frac{1}{V_i} \int_{V_i} d^3r \phi^g(\vec{r})
$$

$$
\phi_{+,\alpha}^g = \frac{1}{S_{\alpha}} \int_{S_{\alpha}} d^2r \phi^g(\vec{r}_S)
$$

Four types of probabilities

$$
\tilde{p}_{ij}^g = V_i p_{ij}^g = \int_{V_i} \int_{V_j} \frac{e^{-\tau^g(R)}}{4\pi R^2} \Theta_i \Theta_j d^3 r' d^3 r
$$
\n
$$
\tilde{p}_{i\alpha}^g = V_i p_{i\alpha}^g = \int_{V_i} \int_{S_\alpha} \frac{e^{-\tau^g(R_S)}}{4\pi R_S^2} (\vec{\Omega} \cdot \vec{N}_-) \Theta_i \Theta_\alpha d^3 r' d^2 r
$$
\n
$$
\tilde{p}_{\alpha i}^g = \frac{S_\alpha}{4} p_{\alpha i}^g = \int_{S_\alpha} \int_{V_i} \frac{e^{-\tau^g(R)}}{4\pi R^2} (\vec{\Omega} \cdot \vec{N}_+) \Theta_\alpha \Theta_i d^2 r' d^3 r
$$
\n
$$
\tilde{p}_{\alpha \beta}^g = \frac{S_\alpha}{4} p_{\alpha \beta}^g = \int_{S_\alpha} \int_{S_\beta} \frac{e^{-\tau^g(R_S)}}{4\pi R_S^2} (\vec{\Omega} \cdot \vec{N}_-) (\vec{\Omega} \cdot \vec{N}_+)
$$
\n
$$
\times \Theta_\alpha \Theta_\beta d^2 r d^2 r'
$$

Symmetry relations

$$
V_i p_{ij}^g = V_j p_{ji}^g
$$

$$
4V_i p_{i\alpha}^g = S_{\alpha} p_{\alpha i}^g
$$

$$
S_{\alpha} p_{\alpha \beta}^g = S_{\beta} p_{\beta \alpha}^g
$$

Conservation properties

$$
\sum_{\alpha=1}^{N_{\alpha}} p_{i\alpha}^{g} + \sum_{j=1}^{N_{j}} p_{ij}^{g} \Sigma_{j}^{g} = 1
$$

$$
\sum_{\beta=1}^{N_{\beta}} p_{\alpha\beta}^{g} + \sum_{i=1}^{N_{i}} p_{\alpha i}^{g} \Sigma_{i} = 1
$$

Boundary Conditions

Surface flux approximation:

Incoming angular flux on outer surfaces assumed to be independent of $\vec{\Omega}$

Comments

- Outgoing angular flux on outer surfaces integrated over $\vec{\Omega}$
- Angular flux not used at region interfaces
- Approximation for incoming angular flux exact for vacuum BC
- Approximation for incoming angular flux leads to large errors in surface flux when flux is not isotropic

Illustration of approximate BC

specular isotropic

Reflection Translation

isotropic

Boundary Conditions 3 [≠]
® ÉCOLE
⁄**TECHNIQUE**

Recommendations to reduce errors due to approximate use of BC for a fixed direction

- No special treatment for 2 vacuum BC
- Unfold cell once for 1 vacuum and 1 reflection BC
- Multiply unfold cell for 2 re flection or periodic cell, apply approximate BC on final surfaces and consider results in cell located far from these surfaces.

Example of cell unfolding in direction X

Boundary Conditions 5 O

ECOLE

POLYTECHNIQUE

Simplifying CP equations using approximate BC **C** Assume

$$
\vec{J}^g_- = \mathbf{A}^g \vec{J}^g_+
$$

Final transport equation

$$
\vec{\phi}^g = \mathbf{P}^g_{c, vv} \vec{q}^g
$$

with the complete collision probability matrix **P** $_{c, vv}^g$.

$$
\mathbf{P}_{c, vv}^g = \left(\mathbf{P}_{vv}^g + \mathbf{P}_{vs}^g ((\mathbf{A}^g)^{-1} - \mathbf{P}_{ss}^g)^{-1} \mathbf{P}_{sv}^g \right)
$$

Two types of multigroup cross-section database can be read by DRAGON

- Mixture macroscopic cross-section
- Isotope microscopic cross-section that contains itself ^a macroscopic cross-section database

Minimum cross-section requirements for each mixture m

- The multigroup total cross section Σ g $\,m$
- The isotropic component of the multigroup scattering cross section Σ $h{\rightarrow}g$ $_{m,s,0}^{\prime\prime\rightarrow g}$ defined as

$$
\Sigma_{m,s,0}^{h\to g} = \int_{4\pi} d^2\Omega^2 \Sigma_{m,s}^{h\to g} (\vec{\Omega}' \to \vec{\Omega}) P_0 (\vec{\Omega}' \cdot \vec{\Omega})
$$

- The product of the average neutron emitted per fission with the multigroup fission cross section $\nu\Sigma$ g m,f
- The multigroup fission spectrum χ g $\,m$

Cross Sections Consideration 3 ⊬
®ÉCOLE

The linearly isotropic component of the multigroup scattering cross section Σ $h{\rightarrow}g$ $m,\!s,\!1$

$$
\Sigma_{m,s,1}^{h\to g} = \int_{4\pi} d^2\Omega^2 \Sigma_{m,s}^{h\to g} (\vec{\Omega}' \to \vec{\Omega}) P_1 (\vec{\Omega}' \cdot \vec{\Omega})
$$

Required only if B_1 leakage method is used

The transport correction Σ g $m,$ tc

C The transport calculations are performed using transport corrected total ($\tilde{\Sigma}_m^g$) and scattering ($\tilde{\Sigma}_{m.s.0}^{h\rightarrow g}$ $\binom{n \rightarrow y}{m,s,0}$ cross sections

$$
\begin{array}{l} \tilde{\Sigma}_m^g=\!\!\!\!\!\!\Sigma_m^g-\Sigma_{m,\text{tc}}^g\\ \tilde{\Sigma}_{m,s,0}^{h\to g}=\!\!\!\!\!\Sigma_{m,s,0}^{h\to g}-\delta^{gh}\Sigma_{m,\text{tc}}^g \end{array}
$$

Takes partially into account the linearly anisotropic scattering contributions

For contribution of multi-neutron production reactions such as

$$
\mathbf{X}_A^Z+\mathbf{n}_1^0\rightarrow\mathbf{X}_{A-1}^Z+2\mathbf{n}_1^0+\gamma
$$

The scattering cross section must be corrected to take into account this effect

$$
\tilde{\Sigma}_{m,s,0}^{h\to g} = \Sigma_{m,s,0}^{h\to g} + 2\delta^{gh}\Sigma_{m,(\text{n},2\text{n})}^g
$$

where Σ g $\mathcal{C}_{(n,2n)}^{(n)}$ is the macroscopic cross section associated with the reaction

Macroscopic cross section data base can be created using

- from the input file using the <code>MAC</code>: module
- from a GOXS file using the MAC: module
- from ^a microscopic library using the LIB: module
- **•** from the homogenization and condensation module EDI:
- from ^a WIMS-AECL execution using the information available on TAPE16 (side-step method)
- **•** from a HELIOS execution

Microscopic libraries 1 ÉCOLE
TECHNIQUE

Many formats can be processed by DRAGON including

- WIMS–AECL format
- **C** MATXS format
- WIMD-D4 format

In DRAGON resonance self-shielding calculations are preformed using the Stamm'ler method

Contents

- Collision Probabilities in 3-D
- **C** Numerical Quadrature and Tracking
- **Collision Probability Integration**
- **C** Neutron Conservation and CP Normalization

Recall CP approximations

- Divide domain into N_V regions of volume V_i
- Assume total cross sections constant inside eachregion
- Assume sources constant inside each region
	- This has an impact on the selection of the spatial \bullet mesh
- **Assume sources isotropic inside each region This may lead to problem when scattering is highly** anisotropic.

Recall BC approximations

- Divide the external boundary S into N_S surfaces of area S_{α}
- Assume flux constant on external surfaces
	- **This has an impact on the selection of the spatial** mesh
- Assume flux isotropic on external surfaces
	- This may lead to problems when flux is highly anisotropic near external boundaries

Collision Probabilities in 3-D 1

Collision probability de finition

$$
\tilde{p}_{ij}^g = V_i p_{ij}^g = \int_{V_i} \int_{V_j} \frac{e^{-\tau^g(R)}}{4\pi R^2} \Theta_i \Theta_j d^3r' d^3r
$$

 3r integral Spherical coordinates for d \bullet

$$
\int_{V_j} d^3r \Theta_j = \int_{4\pi} d^2\Omega \int_{R_{i-\frac{1}{2}}}^{R_{i+\frac{1}{2}}} R^2 dR\Theta_j
$$

Cartesian coordinates for d 3 r^\prime integral

$$
\int_{V_i} d^3r' \Theta_i = \int dx' \int dy' \int dR' \Theta_i
$$

Collision Probabilities in 3-D 2 MANA
POLYTECHNIQUE

General 3–D geometry for collision probability integration

Final form for collision probability integration

$$
\tilde{p}_{ij}^g = \int_{4\pi} \frac{d^2\Omega}{4\pi} \int dx' \int dy' \int_{R_{i-\frac{1}{2}}}^{R_{i+\frac{1}{2}}} dR' \int_{R_{j-\frac{1}{2}}}^{R_{j+\frac{1}{2}}} dR \ e^{-\tau^g(R',R)} \Theta_i \Theta_j
$$
\n
$$
\tau^g = (R_{i+\frac{1}{2}} - R')\Sigma_i^g + \sum_{k=i+1}^{j-1} \Delta R_k \Sigma_k^g + (R - R_{j-\frac{1}{2}})\Sigma_j^g
$$

with ΔR_k $=R_{k+\frac{1}{2}}$ $-R_{k-}$ $\frac{1}{2}$.

Collision Probabilities in 3-D 4

Notation for optical path

After integration over R' and R , one obtains

$$
\tilde{p}_{ij}^g = \frac{1}{4\pi \Sigma_i^g \Sigma_j^g} \int_0^{4\pi} d^2\Omega \int dx' \int dy' \Theta_i \Theta_j
$$
\n
$$
\times \left[1 - \exp\left(-\tau_{i-\frac{1}{2},i+\frac{1}{2}}^g\right)\right] \exp\left(-\tau_{i+\frac{1}{2},j-\frac{1}{2}}^g\right)
$$
\n
$$
\times \left[1 - \exp\left(-\tau_{j-\frac{1}{2},j+\frac{1}{2}}^g\right)\right]
$$

with

$$
\tau_{i\pm\frac{1}{2},j\pm\frac{1}{2}}^g = \Sigma_i^g (R_{i+\frac{1}{2}} - R_{i\pm\frac{1}{2}}) + \tau_{i+\frac{1}{2},j-\frac{1}{2}} + \Sigma_j^g (R_{j\pm\frac{1}{2}} - R_{j-\frac{1}{2}})
$$

Collision Probabilities in 3-D 6

Case where Σ g $\frac{9}{i} = 0$

$$
\tilde{p}_{ij}^{g} = \frac{1}{4\pi \Sigma_{j}^{g}} \int_{0}^{4\pi} d^{2} \Omega \int dx' \int dy' \Theta_{i} \Theta_{j}
$$

$$
\times \Delta R_{i} \exp(-\tau_{i+\frac{1}{2},j-\frac{1}{2}}^{g}) \left[1 - \exp(-\tau_{j-\frac{1}{2},j+\frac{1}{2}}^{g})\right]
$$

Case where Σ g $\frac{g}{i}=\Sigma_j^g=0$

$$
\tilde{p}_{ij}^g = \frac{1}{4\pi} \int_0^{4\pi} d^2\Omega \int dx' \int dy' \Theta_i \Theta_j \Delta R_i \Delta R_j \exp(-\tau_{i+\frac{1}{2},j-\frac{1}{2}}^g)
$$

Collision Probabilities in 3-D 7 ÉCOLE

For \tilde{p}^g_{ii} , one obtains after integration over R' and R

$$
\tilde{p}_{ii}^{g} = \frac{1}{2\pi (\Sigma_{i}^{g})^{2}} \int_{0}^{4\pi} d^{2}\Omega \int dx' \int dy' \Theta_{i} \Theta_{i}
$$
\n
$$
\times \left[\tau_{i-\frac{1}{2},i+\frac{1}{2}}^{g} - \left(1 - \exp(-\tau_{i-\frac{1}{2},i+\frac{1}{2}}^{g}) \right) \right]
$$

For Σ $g\,$ $\frac{g}{i}=0$ this is simplified to

$$
\tilde{p}_{ii}^g = \frac{1}{4\pi} \int_0^{4\pi} d^2\Omega \int dx' \int dy' \Theta_i \Theta_i \left(\Delta R_i\right)^2
$$

Similar relations are obtained for $\tilde{p}^g_{i\ell}$ $_{i\alpha}^g$ and \tilde{p}_{α}^g $\alpha\beta$

3-D Adjuster model in DRAGON

Quadrature and Tracking 2

Angular quadrature

- S_n type EQ_N quadrature with $4N_{\Omega}(N_{\Omega}+2)/8$ angular directions $\vec{\Omega}_{1,i}$, $\vec{\Omega}_{2,i}$, $\vec{\Omega}_{3,i}$ and $\vec{\Omega}_{4,i}$
- Global quadrature weight $W_{\Omega}=2/(N_{\Omega}(N_{\Omega}+2))$
- Tracking in lower half sphere only
- Number of tracking quadrant automatically reduced for symmetric cell
- Select as many angles as possible (Neutrons travel on ^a straight line)

Cartesian surface quadrature

Quadrature and Tracking 4

Cartesian quadrature

- Identify the radius h_{\pm} of the smallest sphere including the geometry
- Select a tracking density ρ_p and define the line spacing δ

$$
\delta = \frac{2h_+}{N_p} \qquad N_p = (2\sqrt{\rho_p}h_+) + 1
$$

Integration line l_{mn} passes through

$$
u_m^x = \left(\frac{2m-1}{2}\right)\delta \qquad u_n^y = \left(\frac{2n-1}{2}\right)\delta
$$

Integration weight $W_p=\delta$ 2

Comments on Cartesian surface quadrature

In Dragon 3 different planes are selected for each given spatial direction

- Select tracking density as dense as possible
	- **Each region must be touched by a maximum number** of lines

DRAGON tracking example

DRAGON tracking of a line $\mathit{l}_{m,n}$

- 1. Follow the tracking line as it travels through the cell
- 2. Identify each region i and surface s uniquely
- 3. Identify final region number I associated with set of regions i (a flux region)
- 4. Identify final surface number S associated with sets of surfaces s
- 5. Identify external surfaces and regions i crossed by line
- 6. Compute distance $l_{i,m,n}$ the neutron travels in each ˜region
- 7. Store information on temporary tracking file

Quadrature and Tracking 8 ÉCOLE

Case of symmetric cells (mirror re flection on one side of the cell)

C Unfold the cell according to symmetry

Regions in unfolded cells are originally assigned new region numbers

Quadrature and Tracking 9

Angle selection for symmetric cells

- For symmetry with respect to a (y,z) plane, track only in quadrants corresponding to directions $\vec{\Omega}_{1,i}$ and $\vec{\Omega}_{3,i}$
- For symmetry with respect to a (z,x) plane, track only in quadrants corresponding to directions $\vec{\Omega}_{1,i}$ and $\vec{\Omega}_{2,i}$
- For symmetry with respect to a (x,y) plane, track only in all quadrants

Post treatment of tracking file

- Assign to all spatial region i its final flux region number \bullet combining track segments as required
- **For each direction, normalize tracks using**

$$
l_{i,m,n} = \left(\frac{V_i}{\tilde{V}_i}\right) \tilde{l}_{i,m,n}
$$

where

$$
\tilde{V}_i = \frac{W_p}{3} \sum_{m=1}^{N_p} \sum_{n=1}^{N_p} \tilde{l}_{i,m,n}
$$

Quadrature and Tracking ÉCOLE
TECHNIQUE

Comments on storage requirements for tracking Maximum number of line segments tracks d_t \bullet

$$
d_t < 6N(N_\Omega(N_\Omega+2))\rho_p h_+^2
$$

• For
$$
N = 1000
$$
, $h_+ = 50$, $\rho_p = 20$ t/cm² and $N_{\Omega} = 8$
 $d_t < 20 \times 10^9$

tracks segments.

ACR control rod model in DRAGON

3-D cluster analysis not currently allowed in DRAGON

For each energy group

- Read ^a line from tracking file \bullet
- Scan this line and add contribution to \tilde{p}^g_i $ii \$

$$
\frac{1}{2}(\Sigma_i^g)^2 \tilde{p}_{ii}^g = \frac{1}{2}(\Sigma_i^g)^2 \tilde{p}_{ii}^g
$$

$$
+ \sum_n W_n \sum_{m \in i} \left(\tau_{i,n,m}^g - \kappa_{i,n,m}^g\right)
$$

where W_n $= W_\Omega W_p/3$ and

$$
\kappa_{i,n,m}^g = \left(1 - \exp\left[-\tau_{i,n,m}^g\right]\right)
$$

$$
\tau_{i,n,m}^g = \Sigma_i^g l_{i,n,m} \qquad \text{with } m \in i
$$

Scan this line a second time and add contributions to \tilde{p}^g_i ij

$$
\Sigma_i^g \Sigma_j^g \tilde{p}_{ij}^g = \Sigma_i^g \Sigma_j^g \tilde{p}_{ij}^g
$$

+
$$
\sum_n W_n \sum_{m \in i} \sum_{m' \in j} \kappa_{i,n,m}^g \kappa_{n,m+1,m'-1}^g \kappa_{j,n,m'}^g
$$

using

$$
\kappa_{n,m,m'}^g = \prod_{l=m}^{m'} \exp\left[-\tau_{i,n,l}^g\right]
$$

Finish CP calculations

- Only the contributions with $m < m'$ has been considered
- Symmetrize p $_{ij}^g$ using

$$
\tilde{p}_{ij}^g=\tilde{p}_{ij}^g+\tilde{p}_{ji}^g
$$

Compute errors on CP conservation rules

$$
R_j^g = \Sigma_j^g V_j - \sum_{\alpha=1}^{N_\alpha} \frac{S_\alpha}{4} \Sigma_i^g p_{\alpha j}^g - \sum_{i=1}^{N_i} \Sigma_j^g \Sigma_i^g V_i p_{ij}^g
$$

$$
R_\beta^g = \frac{S_\beta}{4} - \sum_{\alpha=1}^{N_\alpha} \frac{S_\alpha}{4} p_{\alpha \beta}^g - \sum_{i=1}^{N_i} \Sigma_i^g V_i p_{i \beta}^g
$$

Diagonal Normalization

$$
p_{D,ii}^g = p_{ii}^g - \frac{R_i^g}{(\Sigma_i^g)^2 V_i}
$$

$$
p_{D,\alpha\alpha}^g = p_{\alpha\alpha}^g - \frac{4R_\alpha^g}{S_\alpha}
$$

- May result in non-physical negative probabilities
- Cannot be applied to problems involving voided zones

HELIOS Type Normalization

$$
p^g_{H,ij} = (w^g_i + w^g_j)p^g_{ij} \qquad p^g_{H,\alpha\alpha} = (w^g_\alpha + w^g_\beta)p^g_{\alpha\alpha}
$$

- Apply conservation laws to above relation
- Solve resulting system for w^g using an iterative process
- Does not lead to negative probabilities and works for void regions
- Default option in DRAGON

Comments on storage requirements for CP matrices

- Number of elements per groups is N 2
- Memory space required for execution is about $5N$ 2
- Total disk space required for storage of G group CP is GN^2

Contents:

- Geometry.
- Collision Probability Integration and Tracking. \bullet
- Region Merging. \bullet

3–D DRAGON Examples 2

3–D Geometry restrictions in DRAGON:

- Cartesian mesh in each direction must extend to thewhole geometry.
- **Cluster option not permitted.**
- A single cylinder per cell.
- Cylinders cannot intersect other than axially.
- Cylinders must extend to the whole geometry.
- Cylinders are by default centered in the cell. They can be displaced using the OFFCENTER option.
- Mixtures are specified radially, then in $x,\,y$ and $z.$
- Mixtures are speci fied even in location that do not exists.

A Simple 3–D Cell:

Mixture speci fication for simple 3–D cell:

```
TMPGEO := GEO: :: CAR3D 1 1 1CELL FC1B
X- REFL X+ REFL Y- REFL Y+ REFL Z- REFL Z+ REFL::: FC1B := GEO: CARCELZ 2321
    MESHX <<<MXLP>> <<MXL>> <<MXL>>> <<<<<<br/>MXLD>>> <<<<br/>MXYD>>
    MESHY <<MYLP>> <<CALLCN>> <<PYLP>>MESHZ 0.0 49.5OFFCENTER <<FC1XD>> <<FC1YD>>RADIUS 0.0 <<RF2>> <<RCT>>
    MIX 1 2 311 12 1321 22 2331 32 3341 42 4351 52 53 ;
```
;

Note: mixtures 1, 2, 31 and 32 not used.

CANDU adjuster rod simulation:

- 5 region annular fuel (including PT and CT).
- 6 region annular adjuster rod.

Coarse mesh geometry de finition for CANDU adjuster:

3–D DRAGON Examples 7 ÉCOLE **OLYTECHNIQUE**

DRAGON geometry for CANDU adjuster rod:

```
TMPGEO := GEO: :: CAR3D 2 1 1CELL FC1B AD1T
X- REFL X+ SYME Y- REFL Y+ SYME Z- REFL Z+ SYME::: FC1B := GEO: CARCELZ 5113
    MESHX 0.0000 21.5750 MESHY 0.0000 28.5750MESHZ 0.0000 17.7650 31.7650 49.5300OFFCENTER 3.5 0.0RADIUS 0.0 0.7222 2.1603 3.6007 5.1689 6.5875MIX 1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6 ;
 ::: AD1T := GEO: CARCELY 6113
    MESHX 21.5750 35.5750 MESHY 0.0000 28.5750MESHZ 0.0000 17.7650 31.7650 49.5300RADIUS 0.0 0.5770 3.6781 3.8100 4.4450 4.7520 6.3776MIX 7 8 9 10 11 12 1 7 8 9 10 11 12 17 8 9 10 11 12 1 7 8 9 10 11 12 1 ;
```
;

Coarse mesh CANDU adjuster rod after unfolding:

Fine mesh CANDU adjuster rod after unfolding:

3–D DRAGON Examples 10 ÉCOLE

DRAGON geometry for CANDU adjuster rod:

```
TMPGEO := GEO: :: CAR3D 2 1 1CELL FC1B AD1T
X- REFL X+ SYME Y- REFL Y+ SYME Z- REFL Z+ SYME::: FC1B := GEO: CARCELZ 5113
    MESHX 0.0000 21.5750 SPLITX 3 MESHY 0.0000 28.5750 SPLITY 3MESHZ 0.0000 17.7650 31.7650 49.5300OFFCENTER 3.5 0.0RADIUS 0.0 0.7222 2.1603 3.6007 5.1689 6.5875MIX 1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6 ;
 ::: AD1T := GEO: CARCELY 6113
    MESHX 21.5750 35.5750 SPLITX 2 MESHY 0.0000 28.5750 SPLITY 3MESHZ 0.0000 17.7650 31.7650 49.5300 SPLITZ 2RADIUS 0.0 0.5770 3.6781 3.8100 4.4450 4.7520 6.3776MIX 7 8 9 10 11 12 1 7 8 9 10 11 12 17 8 9 10 11 12 1 7 8 9 10 11 12 1 ;
```
;

Exact boundary conditions:

- VOID: applied at the explicit boundary of the cell or assembly.
- SYME: applied at the center of the cells closest to the explicit assembly boundary speci fied.
- DIAG: applied at the center of the cells closest to the explicit assembly boundary speci fied.
- SSYM: applied at the explicit boundary of the cell or assembly.

Approximate boundary conditions:

- REFL: applied at the explicit boundary of the cell or assembly. Exact specular option not available in 3–D.
- TRAN: applied at the explicit boundary of the cell or assembly. Exact specular option not available in 3–D.
- ALBE: applied at the explicit boundary of the cell or assembly. Exact specular option not available.

Region identi fication for single cell:

- radially outward in ^a cell.
- from lower to upper x location in a cell.
- from lower to upper y location in a cell.
- from lower to upper z location in a cell.

Region identi fication for assembly of cells:

- Inside each cell as above.
- from lower to upper x cell location in the assembly.
- from lower to upper y cell location in the assembly.
- from lower to upper z cell location in the assembly.

Region identi fication for cells and assemblies:

Front

one cell three cells assembly

Region identi fication for one cell problem:

--

--

Region identi fication for three cells assembly:

--

Quadrature selection:

- As many angles as possible: \rightarrow neutron travels on a straight line.
- **•** Tracking density must be as dense as possible: \rightarrow to touch as often as possible each region and surface.
- For CANDU reactivity devices TRAK TISO ⁸ ²⁵: \rightarrow 10 angles per quadrant.

 $\rightarrow 3 \times 25$ tracks per cm 2 .

Integration lines are renormalized using ratio of approximate to exact volumes.

Comments on storage requirements:

Size of tracking file linear in N :

$$
d_t \propto \rho h_+^2 N
$$

for $h_+=50$ cm, $\rho=20$ t/cm 2 and $N=1000$ regions: $\rightarrow d_t = 600$ Mb.

Size of CP matrix quadratic in N :

$$
d_a \propto N^2 G
$$

for $G=89$ groups and $N=1000$ regions: $\rightarrow d_a = 356$ Mb.

Use XSM_FILE for ASMPIJ data structure.

Example of storage requirements for ^a simple 3–D problem.

- Total volume 1 liter ($V=10^3~{\sf cm}^3$).
- Central fissile region is red ($V=27~{\rm cm}^3$).
- Strong absorber is green ($V=1~{\rm cm}^3$).

Region Merging 2 [≠]
® ÉCOLE
⁄**TECHNIQUE**

- Region with strong absorber:
	- Try to avoid using approximate boundary conditions.
	- **Fine mesh discretization is required.**
- Region with fission:
	- **Try to avoid using approximate boundary conditions.**
	- Medium to fine mesh discretization is required.
- **C** For moderator region
	- **Fine to coarse mesh discretization is required.**

Uniform mesh for simple 3–D problem:

Note: $x-y$ and $x-z$ planes are identical.

Non-uniform meshes in DRAGON:

- $N=19\times 16\times 16=4864$ regions, $d_a=100$ Mb/groups for uniform mesh.
- $N\approx 1500$ regions, $d_a=9$ Mb/groups for non-uniform \bullet mesh.

Using the MRG: module:

...

Region numbering for first (out of 16) z -plane:

Solving the CP Equations 1 $\left(\begin{matrix} \bigcirc \\ \bigcirc \end{matrix}\right)$ ϵ cole

Contents

- **C** The Power Iteration
- **C** The Multigroup Iteration
- Leakage Models \bullet

Solving the CP Equations 2 *》*
☞ ÉCOLE
<mark>YTECHNIOUE</mark>

The multigroup transport equation has the form

$$
\vec{\phi} = \mathbf{P}_{c, vv} (\vec{q}_s + \frac{1}{k} \vec{q}_f)
$$

$$
\vec{q}_s = \Sigma_s \vec{\phi}
$$

$$
\vec{q}_f = \chi \nu \Sigma_f \vec{\phi}
$$

- $\vec{\phi}$ is a $N \times G$ dimensional vector
- \bullet $\mathbf{P}_{c,vv}$ is the multigroup CP matrix
	- **Diagonal in energy, full in space.**
- $\chi\nu\boldsymbol{\Sigma}_f$ is a matrix for neutron production by fission and Σ_s is the scattering matrix
	- **Diagonal in space, full in energy**

$$
\boldsymbol{\Sigma}_{s}=\!\boldsymbol{\Sigma}_{d,s}+\boldsymbol{\Sigma}_{u,s}+\boldsymbol{\Sigma}_{w,s}
$$

with

- $\sum_{u,s}$ the up-scattering matrix (lower triangular in energy)
- $\sum_{d,s}$ the down-scattering matrix (upper triangular in energy)
- Σ_{w,s} the within-group scattering matrix (diagonal in energy)

De fining **W** the scattering modi fied CP matrix

$$
\mathbf{W} = (\mathbf{I}-\mathbf{P}_{c,vv}\mathbf{\Sigma}_{w,s})^{-1}\mathbf{P}_{c,vv}
$$

the transport equation now becomes

$$
\vec{\phi} = \mathbf{W}(\Sigma_{d,s}\vec{\phi} + \Sigma_{u,s}\vec{\phi} + \frac{1}{k}\vec{q}_f)
$$

Assuming

•
$$
\vec{q}_f/k
$$
 is fixed and $\Sigma_{w,s} = 0$

The above equation can be solved directly from group $g=1$ to $g=G$

Solving the CP Equations 5

The general equation can be solve using two iteration processes

- **C** The Power iteration illustrated by solving the transport problem with $\mathbf{\Sigma}_{w,s}=0$
- **C** The multigroup iteration illustrated by solving the transport problem with \vec{q}_f/k fixed

The Power Iteration 1 ,
⊕ÉCOLE
'TECHNIQUE

- $\mathsf{Assume}\ \mathbf{\Sigma}_{u,s}=0$
- Write an iterative group by broup solution to the transport problem as

$$
\vec{\phi}(l) = \mathbf{W}(\Sigma_{d,s}\vec{\phi}(l) + \frac{\chi}{k(l-1)}\nu\Sigma_f\vec{\phi}(l-1))
$$

$$
k(l) = \sum_{g=1}^G \sum_{i=1}^N V_i \chi_i^g \sum_{h=1}^G \nu \Sigma_{f,i}^h \phi_i^h(l)
$$

with $\vec{\phi}(0)$ a known arbitrary flux distribution and

$$
k(0) = \sum_{g=1}^{G} \sum_{i=1}^{N} V_i \chi_i^g \sum_{h=1}^{G} \nu \Sigma_{f,i}^h \phi_i^h(0)
$$

The Power Iteration 1

 $\overline{}$ $\overline{}$ $\overline{}$ $\overline{}$ $\overline{}$

The iteration process is repeated until

$$
k(l) - k(l-1) < \epsilon_1
$$
\n
$$
\left| \frac{\vec{\phi}(l)}{k(l)} - \frac{\vec{\phi}(l-1)}{k(l-1)} \right| < \epsilon_2 \left| \frac{\vec{\phi}(l)}{k(l)} \right|
$$

are both satisfied

The parameters ϵ_1 and ϵ_2 can be defined independently in DRAGON

The Multigroup Iteration 1 LOZ
POLYTECHNIQUE
POLYTECHNIQUE

 $\overline{}$ $\overline{}$ $\overline{}$ $\overline{}$ $\overline{}$

• Assume
$$
\vec{q}_f/k = \vec{q}
$$
 is fixed

Solve group-by-group this fixed source problem using ^a \bullet Gauss-Seidel strategy

$$
\vec{\phi}(l) = \mathbf{W}\left(\mathbf{\Sigma}_{d,s}\vec{\phi}(l) + \mathbf{\Sigma}_{u,s}\vec{\phi}(l-1) + \vec{q}\right)
$$

Iterate until

$$
\left| \frac{\vec{\phi}^g(l) - \vec{\phi}^g(l-1)}{\vec{\phi}^g(l)} \right| < \epsilon_3
$$

The Multigroup Iteration 2 O
Se ÉCOLE
POLYTECHNIQUE

Multigroup rebalancing technique

Neutron conservation states that for ^a converged solution ϕ_i^g $_{i}^{g}(l)$

$$
\sum_{i=1}^{N} \sum_{i=1}^{g} V_i \phi_i^g(l) = \sum_{i=1}^{N} R_i^g V_i q_i^g(l)
$$

+
$$
\sum_{i=1}^{N} R_i^g V_i \left(\sum_{h=1}^{g} \sum_{s}^{h \to g} \phi_i^h(l) + \sum_{h=g+1}^{G} \sum_{s}^{h \to g} \phi_i^h(l) \right)
$$

with R g $\frac{9}{i} = 1$ $-\sum_{i=1}^N$ Σ g $\H{j}{p}$ g c, ij

The Multigroup Iteration 3 $\circled{(*)}$ $\circled{})$ \circled

• The multigroup problem we effectively solve yields

$$
\sum_{i=1}^{N} \sum_{i=1}^{g} V_i \phi_i^g(l) = \sum_{i=1}^{N} R_i^g V_i q_i^g(l)
$$

+
$$
\sum_{i=1}^{N} R_i^g V_i \left(\sum_{h=1}^{g} \sum_{s=1}^{h \to g} \phi_i^h(l) + \sum_{h=g+1}^{G} \sum_{s=1}^{h \to g} \phi_i^h(l-1) \right)
$$

The Multigroup Iteration 4 (<mark>⑥</mark>)
POLYTECHNIQUE
POLYTECHNIQUE

To restore conservation at each iteration

Use $\tilde{\phi}_i^g$ $\frac{g}{i}=\alpha^g\phi^g_i$ $\begin{array}{c} g \end{array}$ and assume $\tilde{\phi}_i^g$ $\frac{g}{i}$ satisfies conservation relations, then α^g must satisfy

$$
\sum_{h=1}^{G} M^{h \to g} \alpha^h = q^g
$$
\n
$$
M^{h \to g} = \sum_{i=1}^{N} R_i^g V_i \left(\sum_{i=1}^{h} \delta_{gh} - \sum_{s=1}^{h \to g} \right) \phi_i^h
$$
\n
$$
q^g = \sum_{i=1}^{N} R_i^g V_i q_i^g
$$

Solve for $\alpha^g(k)$ and rebalance flux

The Multigroup Iteration 5 ÉCOLE

For appromimate solution $\vec{\Gamma}$ $\Gamma(l)$

$$
\vec{\Gamma}(l) = \mathbf{W}\left(\boldsymbol{\Sigma}_{d,s}\vec{\Gamma}(l)+\boldsymbol{\Sigma}_{u,s}\vec{\Gamma}(l-1)+\vec{q}\right)
$$

De fine an improved flux distribution for the next iteration using

$$
\vec{\phi}(l) = \vec{\Gamma}(l) + \omega(l)\vec{\Delta}(l)
$$

$$
\vec{\Delta}(l) = \vec{\Gamma}(l) - \vec{\phi}(l-1)
$$

and $\omega(l)$ will be computed using a variational procedure

The Multigroup Iteration 6 $\bigotimes_{\epsilon \in \text{COLE}}$
POLYTECHNIQUE

Select $\omega(l)$ in such a way that $\vec{\phi}(l)$ minimizes the tranport functional

$$
\mathcal{F}[\vec{\phi}] = \frac{1}{2} \vec{\phi}^T \mathbf{Z}^T \mathbf{Z} \vec{\phi} - \vec{\phi}^T \mathbf{Z}^T \mathbf{W} \vec{q}
$$

$$
\mathbf{Z} = [\mathbf{I} - \mathbf{W} \left(\mathbf{\Sigma}_{d,s} + \mathbf{\Sigma}_{u,s} \right)]
$$

This yield

$$
\omega(l) = -\frac{[\vec{\Delta} - \mathbf{W}\vec{S}_1(l)]^T [\vec{\Gamma} - \mathbf{W}\vec{S}_2(l)]}{[\vec{\Delta} - \mathbf{W}\vec{S}_1(l)]^T [\vec{\Delta} - \mathbf{W}\vec{S}_1(l)]}
$$

$$
\vec{S}_1(l) = (\mathbf{\Sigma}_{d,s} + \mathbf{\Sigma}_{u,s})\vec{\Delta}(l)
$$

$$
\vec{S}_2(l) = (\vec{q} + \mathbf{\Sigma}_{d,s}\vec{\Gamma}(l) + \mathbf{\Sigma}_{u,s}\vec{\Gamma}(l))
$$

Leakage Models 1 $\bigotimes_{k=0}^{\infty}$ école
Polytechnique
MONTRÉAI

In 3–D, the transport equation can be solved in DRAGON using the B_0 and B_1 leakage models

■ Both of these models are based on the following factorization of the flux

$$
\Phi^g(\vec{r}, \vec{\Omega}) \approx \Psi^g(\vec{r}, \vec{\Omega}) \exp(i\vec{B} \cdot \vec{r})
$$

Transport equation with leakage

$$
\vec{\Omega} \cdot \vec{\nabla} \Psi^g(\vec{r}, \vec{\Omega}) + [\Sigma^g(\vec{r}) + i \vec{B} \cdot \vec{\Omega}] \Psi^g(\vec{r}, \vec{\Omega}) =
$$

$$
Q_s^g(\vec{r}, \vec{\Omega}) + \frac{1}{k_{\text{eff}}} Q_f^g(\vec{r})
$$

In general we will assume that k_{eff} =1

For an in finite homogeneous media the scalar flux and vector current are related to each other according to

$$
\vec{\Omega}\Psi^g(\vec{\Omega}) = \vec{J}^g(\vec{\Omega}) = -iD^g\vec{B}\Psi^g(\vec{\Omega})
$$

with D^g is an homogeneous diffusion coefficient

Apply to heterogeneous systems

 $\vec{\Omega} \cdot \vec{\nabla}\Psi$ $^{g}(\vec{r}%)^{g}(\vec{r})$ $(\vec r, \vec \Omega) + [\Sigma^g(\vec r) + D]$ $^{g}B^{2}]\Psi^{g}(\vec{r})$ $(\vec{r},\vec{\Omega})=Q_s^g$ $\frac{g}{s}(\vec{r})$ $(\vec{r},\vec{\Omega})+Q^g_{~f}$ $\frac{g}{f}(\vec{r})$

Find the homogeneous diffusion coef ficient compatible with this heterogeneous problem

Leakage Models 3 [≠]
® ÉCOLE
⁄**TECHNIQUE**

- Assume an heterogeneous solution is known for B $^2=0$
- Use this solution to de fine an equivalent in finite homogeneous problem

$$
\Sigma^g \Psi^g(\vec{\Omega}) + i \vec{B} \cdot \vec{J}^g(\vec{\Omega}) = Q_s^g(\vec{\Omega}) + Q_f^g
$$

where the cross sections and sources are homogenized using the heterogeneous flux

- Solve the homogeneous problem for D^g and B
- Insert in heterogeneous transport equation and obtain an improved solution.
- Repeat until the iterative procedure is converged

Solving the homogeneous problem $(B_{1}% ,B_{2})\equiv\mathcal{A}(B_{1})$ model)

Use ^a 2 terms expansion for the scattering cross section in Legendre polynomials

$$
\Sigma_s^{h\rightarrow g}(\vec{\Omega}' \rightarrow \vec{\Omega}) = \Sigma_{s,0}^{h\rightarrow g} + 3\Sigma_{s,1}^{h\rightarrow g}\vec{\Omega}\cdot\vec{\Omega}'
$$

Define

$$
\psi^g = \int d^2\Omega \Psi^g(\vec{\Omega})
$$

$$
\vec{j}^g = \int d^2\Omega \vec{\Omega}' \Psi^g(\vec{\Omega})
$$

-
- Insert into the homogeneous transport equation, and \bullet integrate to obtain

$$
\psi^g = \alpha^g \sum_h (\Sigma_{s,0}^{h \to g} + \chi^g \nu \Sigma_f^h) \psi^h + 3\beta^g \sum_h \Sigma_{s,1}^{h \to g} \frac{\vec{B} \cdot \vec{j}^h}{iB^2}
$$

$$
\vec{j}^g = \beta^g \sum_h \left[(\Sigma_{s,0}^{h \to g} + \chi^g \nu \Sigma_f^h) \frac{\vec{B} \psi^h}{iB^2} + 3\Sigma^g \Sigma_{s,1}^{h \to g} \frac{\vec{j}^h}{B^2} \right]
$$

$$
\alpha^g = \frac{1}{B} \arctan\left(\frac{B}{\Sigma^g}\right)
$$

$$
\beta^g = 1 - \Sigma^g \alpha^g
$$

Solve for B , ψ^g and \vec{j}^g and compute $D^g=i\vec{B}\cdot\vec{j}^g/B^2$ ψ^g

The $B_{\rm 0}$ homogeneous problem

Assume Σ $h{\rightarrow}g$ $\mathcal{S}_{s,1}^{n \rightarrow g} = 0$ and obtain

$$
\psi^g = \alpha^g \sum_h (\Sigma_{s,0}^{h \to g} + \chi^g \nu \Sigma_f^h) \psi^h
$$

$$
\vec{j}^g = \beta^g \frac{\vec{B}}{iB^2} \sum_h (\Sigma_{s,0}^{h \to g} + \chi^g \nu \Sigma_f^h) \psi^h
$$

The homogeneous diffusion coef ficient is then given by

$$
D^g=\!\frac{\beta^g}{\alpha^g}
$$

Condensation and Homogenization 1

Contents

- **Condensation Technique**
- Full Cell Homogenization \bullet
- Partial Cell Homogenization and SPH Factors
- Microscopic Cross Section Homogenization

Condensation and Homogenization 2

Condensation and homogenization techniques in DRAGON are based on the following assumptions

Reaction rates are physically meaningfull and should be \bullet preserved by the condensation/homogenization procedure

$$
R_i = \sum_g V_i \phi_i^g \Sigma_i^g = V_i \phi_i \Sigma_i
$$

$$
R^g = \sum_i V_i \phi_i^g \Sigma_i^g = V \phi^g \Sigma^g
$$

The eigenvalue is physically meaningfull and should be preserved by the condensation/homogenization procedure

Condensation Technique

Condensed transport equation (macrogroup K that includes $g\in G_K$)

$$
\vec{\Omega} \cdot \vec{\nabla} \sum_{g \in G_K} \Phi^g(\vec{r}, \vec{\Omega}) + \sum_{g \in G_K} \Sigma^g(\vec{r}) \Phi^g(\vec{r}, \vec{\Omega}) =
$$

$$
\sum_{g \in G_K} [Q_s^g(\vec{r}, \vec{\Omega}) + \frac{1}{k} Q_f^g(\vec{r})]
$$

Few group version of the same equation is

$$
\vec{\Omega} \cdot \vec{\nabla} \Phi^K(\vec{r}, \vec{\Omega}) + \Sigma^K(\vec{r}) \Phi^K(\vec{r}, \vec{\Omega}) = [Q^K_s(\vec{r}, \vec{\Omega}) + \frac{1}{k} Q^K_f(\vec{r}, \vec{\Omega})]
$$

It should reproduce condensed multigroup results

Condensation Technique 2 WAY
POLYTECHNIQUE
POLYTECHNIQUE

The condensation procedure that satis fies our requirements

$$
\phi_i^K = \sum_{g \in G_K} \phi_i^g
$$

\n
$$
\Sigma_i^K = \frac{1}{\phi_i^K} \sum_{g \in G_K} \Sigma_i^g \phi_i^g
$$

\n
$$
\Sigma_{s,i}^{L \to K} = \frac{1}{\phi_i^L} \sum_{h \in G_L} \sum_{g \in G_K} \Sigma_{s,i}^{h \to g} \phi_i^h
$$

\n
$$
\chi_i^K = \sum_{g \in G_K} \chi_i^g
$$

\n
$$
\nu \Sigma_{f,i}^K = \frac{1}{\phi_i^K} \sum_{g \in G_K} \nu \Sigma_{f,i}^h \phi_i^g
$$

Condensation Technique 3

Multiplying CP transport equation by Σ g $\frac{g}{i}V_i$ and summing over all regions i yields

$$
\sum_{i} \Sigma_i^g V_i \phi_i^g = \sum_{i} V_i [Q_{s,i}^g + \frac{1}{k} Q_{f,i}^g]
$$

The equivalent transport equation in ^a homogeneous infinite cell is

$$
\hat{\Sigma}^g V \hat{\phi}^g = V [\hat{Q}_{s,i}^g + \frac{1}{k} \hat{Q}_{f,i}^g]
$$

The homogenized and homogeneous transport equations are identical if one selects a flux-volume homogenization technique

Condensation Technique O
Se école
POLYTECHNIQUE

Flux-volume homogenization technique

Flux-volume homogenization fails if

The cell is finite (a cell with leakage) and

$$
\sum_{j=1}^{N_j} p_{ij}^g \Sigma_j^g \neq 1
$$

Partial cell homogenization cell is considered \bullet
Partial Cell Homogenization 1

The heterogeneous N region transport equation homogenized over M regions takes the form

$$
\sum_{i \in M_I} V_i \Sigma_i^g \phi_i^g = \sum_{i \in M_I} \sum_{J} \sum_{j \in M_J} p_{ji}^g (\Sigma^g) [Q_{s,i}^g + \frac{1}{k} Q_{f,i}^g]
$$

The M region heterogeneous transport equation takes the from

$$
V_I \hat{\Sigma}_I^g \hat{\phi}_I^g = \sum_J \hat{p}_{JI}^g (\hat{\Sigma}^g) [Q_{s,J}^g + \frac{1}{k} Q_{f,J}^g]
$$

where \hat{P}^{g}_{τ} $\hat{L}_{JI}^{g}(\hat{\Sigma}^{g})$ indicates that the CP are computed using homogenized cross sections

Partial Cell Homogenization 2 $\left(\begin{matrix} \bigcirc \\ \bigcirc \\ \bigcirc \end{matrix}\right)$ ϵ cole

We need

$$
\sum_{i \in M_I} V_i \Sigma_i^g \phi_i^g = V_I \Sigma_I^g \phi_I^g
$$

and

$$
\sum_{J} \hat{p}_{JI}^{g} (\hat{\Sigma}^{g}) [Q_{s,J}^{g} + \frac{1}{k} Q_{f,J}^{g}] =
$$

$$
\sum_{i \in M_{I}} \sum_{J} \sum_{j \in M_{J}} p_{ji}^{g} (\Sigma^{g}) [Q_{s,i}^{g} + \frac{1}{k} Q_{f,i}^{g}]
$$

to be simultaneously true

Partial Cell Homogenization 3 。
ÉCOLE

The flux-volume homogenization method is not longer adequate because

- There is no simple relation between \hat{p}_{J}^{g} $g_{JI}(\hat{\Sigma}^g)$ and p $\frac{g}{ji}(\Sigma^g)$ The alternative here is to use ^a non-linear process
	- Consider a flux-volume homogenization for ϕ^g_I g_I and Σ g I
	- Redefine the homogeneous flux $\hat{\phi}^g_I$ $_I^g$ and cross sections $\hat{\Sigma}^g$ $_J^g$ as follows

$$
\hat{\phi}_I^g = \frac{1}{\mu_I^g} \phi_I^g \qquad \hat{\Sigma}_I^g = \mu_I^g \Sigma_I^g
$$

Partial Cell Homogenization 4 ÉCOLE

Determine the SPH factors μ g $_J^g$ numerically in such a way that

$$
\sum_{J} \hat{p}_{JI}^{g} (\hat{\Sigma}^{g}) [Q_{s,J}^{g} + \frac{1}{k} Q_{f,J}^{g}] =
$$

$$
\sum_{i \in M_{I}} \sum_{J} \sum_{j \in M_{J}} p_{ji}^{g} (\Sigma^{g}) [Q_{s,i}^{g} + \frac{1}{k} Q_{f,i}^{g}]
$$

is true

The de finition of the SPH factors automatically ensures

$$
\sum_{i \in M_I} V_i \Sigma_i^g \phi_i^g = V_I \Sigma_I^g \phi_I^g = V_I \tilde{\Sigma}_I^g \tilde{\phi}_I^g
$$

Microscopic Cross Section 1

The macroscopic cross section associated with ^a material is simply the sum over all isotopes of the isotopic macroscopic cross section Σ_I namely

$$
\Sigma_i^g=\sum_I\Sigma_{I,i}^g
$$

where

$$
\Sigma_{I,i}^g = N_{I,i} \sigma_I^g
$$

with $N_{I,i}$, the concentration of isotope I in region i

C The homogenization and condensation procedure described above remain valid for Σ g I, i

Microscopic Cross Section 2 ÉCOLE

Since the final concentration of isotope I in the cell is given by:

$$
N_I = \frac{1}{V} \sum_i N_{I,i} V_i
$$

we can de fine the equivalent homogenized microscopic cross section as:

$$
\hat{\sigma}_I^K = \frac{\mu_I^K}{N_I V \phi^K} \sum_{i \in M_I} \sum_{g \in G_K} N_{I,i} V_i \sigma_I^g \phi_i^g
$$

where the microscopic cross sections now become dependent on the spatial position

Managing ^a DRAGON Execution 1 ÉCOLE

Contents

- Input file formats.
- Data structure formats.
- Working with variables.
- Conditional execution and loops.
- Working with procedures.
- **C** Flow chart in DRAGON input decks

Managing ^a DRAGON Execution 2

Input file format

- 72 columns, free format instruction ends by ;
- Comments * or !
- MODULE and objects declarations
- **Sequence of calls to modules**

```
(list of output objects) := GEO: (list of input objects) ::
```

```
(data input)
```
- END: ; statement
- QUIT_"LIST" _. end compilation

Managing ^a DRAGON Execution 3 ÉCOLE

Data structure formats.

- **C** LINKED LIST Memory access
- \bullet XSM FILE Direct-access file
- SEQ BINARY Tracking information mainly
- SEQ_ASCII Machine independent format
- DIR_ACCESS XS library file

Managing ^a DRAGON Execution 4

Variable types.

- INTEGER (signed) Numbers
- REAL $\mathbf{L} \qquad$ (signed) Decimal numbers with E or .
- <code>DOUBLE (signed)</code> Decimal numbers with D and .
- STRING 72 character long, enclosed in " "
- $LOGICAL = 5True$ LOGICAL $=$ 5. $T = 1$

Variable names are case sensitive.

Assign or Evaluate variables

Variable in data input deck.

- << . >> access the content of a variable send
- >> . << put a value into a variable $\qquad \qquad \text{recover}$

Managing ^a DRAGON Execution 6 *,*
☞ ÉCOLE
<mark>rTECHNIQUE</mark>

Operations on variables.

- **C** Reverse Polish Notation (value) (operator) (value) ⇔ (value) (value) (operator)
- Arithmetic operations $+ -$ * / ** Ex : delta := b 2 ** 4. a c * * -
- **C** Unary operations COS SQRT ABS NOT LN Ex : delta := delta SQRT
- Relational operations $\langle \rangle \langle \rangle \langle = + -$ Ex : condition := ^a b <=
- Operations on STRING variables ⁺ -
- NO mixed mode operations

IF/THEN/ELSE statement

WHILE and REPEAT statement

Working with procedures

Managing ^a DRAGON Execution 9 ÉCOLE **POLYTECHNIQUE**

Flow chart in DRAGON input decks

Managing ^a DRAGON Execution 10 ÉCOLE

Input cross sections

- **C** Macroscopic library
	- MAC: data input
	- EDI: DRAGON calculations
	- MODULE: other transport codes, WIMS TAPE16 ... \bullet
	- LIB: microscopic library
	- \Rightarrow object input in ASM: or FLU: and EDI:

Managing ^a DRAGON Execution 11 。
€COLE

Tracking validation

- Set relatively low line densities and angle number
	- Verify volume and surface integration errors
- EXCELT: Useful print levels EDIT *iprint* :
	- *iprint* = 0 no printing
	- *iprint* ⁼ 1 (default) geometric information and echo of data input
	- *iprint* = 2 tracking error on volumes and surfaces
	- *iprint* ⁼ 5 surface and region numbering and description, cell by cell and then global by plane in 3D

Managing ^a DRAGON Execution 12 O
POLYTECHNIQUE
MONTRÉAL MONTRÉAL

Managing ^a DRAGON Execution 13

```
EVALUATE DevLocation := "IN" ;
Volumes Tracks := DevGeo :: <<DevType>> <<DevLocation>> ;
PIJ := ASM: Macrolib Volumes Tracks ;
Fluxes := FLU: PIJ Macrolib Volumes :: TYPE B B1 PNL ;
Edition := EDI: Fluxes Macrolib Volumes ::
 COND 0.626 MERGE COMP SAVE
PIJ Volumes Tracks Fluxes := DELETE: PIJ Volumes Tracks Fluxes ;
EVALUATE DevLocation := "OUT" ;
Volumes Tracks := DevGeo :: <<DevType>> <<DevLocation>> ;
PIJ := ASM: Macrolib Volumes Tracks ;
Fluxes := FLU: PIJ Macrolib Volumes :: TYPE B B1 PNL ;
Edition := EDI: Edition Fluxes Macrolib Volumes :: SAVE ;
PIJ Volumes Tracks Fluxes := DELETE: PIJ Volumes Tracks Fluxes ;
Results := Edition
Edition Macrolib := DELETE: Edition Macrolib ;
END: ;
QUIT "LIST" .
```
Managing ^a DRAGON Execution 14 O

ECOLE
 POLYTECHNIQUE

Managing ^a DRAGON Execution 15 O

ECOLE
 POLYTECHNIQUE

Managing ^a DRAGON Execution 16 O
POLYTECHNIQUE
MONTRÉAL

Managing ^a DRAGON Execution 17 ÉCOLE

```
GEOMETRY := GEO: : CAR3D 2 1 2
 CELL FC1B MD1B FC1T AD1TX- REFL X+ SYME Y- REFL Y+ SYME Z- REFL Z+ SYME::: FC1B := GEO: CARCELZ 5341
  ... ;
  ::: MD1B := GEO: CAR3D 2 4 1
  ... ;
  ::: FC1T := GEO: CARCELZ 5342
  ... ;
  ::: AD1T := GEO: CARCELY 6242
  ... ;
;
Volumes Tracks := EXCELT: GEOMETRY ::MAXR <<NbReq>> TRAK TISO <<NbAngles>> <<TrkDens>> ;
GEOMETRY := DELETE: GEOMETRY ;
QUIT "LIST" .
```


Some comments and warning on the CP method

- **C** The sources are assumed constant inside each region
	- Select an adequate spatial discretization This may lead to ^a large number of region (CP is proportionnal to N 2) Some regions may be very small causing problem with tracking
- Select ^a problem that is not too heterogeneous

C **onclusions**

- The angular flux on each external surface are assumed constant and isotropic
	- **Try to get rid of external surfaces with re-entrant** angular flux
	- Select a model where the region of interest is far from the external surfaces