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The Transport Equation 1
The transport equation is a neutron balance equation

L(�r,E, �Ω) =Q(�r,E, �Ω)

L represents neutron lost from the system:

L =�Ω · �∇Φ(�r,E, �Ω) + Σ(�r,E)Φ(�r,E, �Ω)

Q represents neutron created in the system

Qs =

∫
dE′d2ΩΣs(�r,E

′ → E, �Ω′ → �Ω)Φ(�r,E′, �Ω′)

Qf =χ(�r,E)

∫
dE′d2ΩνΣf (�r,E′)Φ(�r,E′, �Ω′)
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The Transport Equation 2
Multigroup transport equation

[
�Ω · �∇ + Σg(�r) +Dg(�r)B2

]
Φg(�r, �Ω) = Qg

s(�r,
�Ω) +

1

k
Qg

f (�r, �Ω)

Scattering source Qg
s(�r, �Ω)

Qg
s(�r, �Ω) =

G∑
h=1

∫
d2Ω′Σhg

s (�r, �Ω′ → �Ω)Φh(�r, �Ω′)

Fission source Qg
f (�r, �Ω)

Qg
f (�r) = χg

G∑
h=1

νΣh
f (�r)

∫
d2Ω′Φh(�r, �Ω′)
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The Transport Equation 3
Transport equation in the absence of external sources is an
eigenvalue problem:

1. k eigenvalue with imposed leakage (Dg(�r)B2 fixed):
k indicates how the fission rate should be modified to
make the system critical (reach a non-trivial solution
to the transport equation)

2. Buckling eigenvalue with imposed k:
Dg(�r)B2 represent the amount of leakage required to
make the system critical
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The Transport Equation 4
Boundary conditions are required to close the system

Albedo conditions

φ−(�rS, �Ω − 2( �NS · �Ω)) =β(�rS , �Ω)φ+(�rS , �Ω)

Φ−

Φ+

NS

Ω

S

β(�rS , �Ω) = 0 for void BC
β(�rS , �Ω) = 1 for reflective BC
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The Transport Equation 5
Periodic conditions

φ−(�rS , �Ω) = φ+(�rS′ , �Ω)

Φ−

Φ+

Ω

SS'
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The Transport Equation 6
Integral transport equation (case without leakage)

Flux at a point �r due to neutrons created at any point
�r ′ = �r − R�Ω surrounding it[

− d

dR
+ Σg(�r − R�Ω)

]
Φg(�r −R�Ω, �Ω) =Qg(�r − R�Ω, �Ω)

Integrate transport equation over R and �Ω

φg(�r) =

∫
d2Ω e−τg(RS)(�Ω · �N−)Φg

−(�r ′
S ,
�Ω)Θ(�r, �r ′

S ,
�Ω)

+

∫
d2Ω

∫ R

0
e−τg(R′)Qg(�r ′, �Ω)Θ(�r, �r ′, �Ω)dR′
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The Transport Equation 7
Definitions

φg(�r) =

∫
d2ΩΦg(�r, �Ω)

τ g(R) =

∫ R

O
Σg(�r − R′�Ω)dR′

Θ(�r, �r ′, �Ω) =

{
1 if �r = �r ′ +R′�Ω
0 otherwise

and Φg
−(�r ′

S ,
�Ω) is the incoming angular flux on surface S
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The Transport Equation 8
Equation for the outgoing flux φ+(�rS) at S

φg
+(�rS) =

∫
d2Ω(�Ω · �N+)

∫ R

0
e−τg(R′)Qg(�r ′, �Ω)Θ(�rS, �r

′, �Ω)dR′

+

∫
d2Ω(�Ω · �N+)(�Ω · �N−) e−τg(RS)Φg

−(�r ′
S ,
�Ω)Θ(�rS , �r

′
S ,
�Ω)

where

φg
+(�rS) =

∫
d2Ω Φg

+(�rS , �Ω)(�Ω · �N+)
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The Transport Equation 9
CP approximations

Divide domain into NV regions of volume Vi where the
cross sections sources are independent of �r and �Ω

Σg(�r) =Σg
j for �r ∈ Vj

Qg(�r, �Ω) =
1

4π
qg(�r) = qgj for �r ∈ Vj

(the source is assumed isotropic)

Divide the external boundary S into NS surfaces of area
Sα and assume angular flux constant on these surfaces

Φg
−(�rS, �Ω) =

1

4π
φg

α,−
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The Transport Equation 10

∫
d2Ω

∫ R

0
e−τg(R′)Qg(�r ′, �Ω)Θ(�r, �r ′, �Ω)dR′ =

qgj

∫
Vi

e−τg(R′)Θ(�r, �r ′, �Ω)
d3r

4π|�r − �r ′|2

∫
d2Ω e−τg(RS)Φg

−(�r ′
S ,
�Ω)Θ(�r, �r ′

S ,
�Ω) =

φg
α,−

∫
Sα

e−τg(RS)Θ(�r, �r ′
S ,
�Ω)

d2r

4π|�r − �r ′|2
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The Transport Equation 11
Transport equations in CP form

φg
i =

NS∑
α=1

pg
iαφ

g
−,α +

NV∑
j=1

pg
ijq

g
j

φg
+,α =

NS∑
β=1

pg
αβφ

g
−,β +

NV∑
j=1

pg
αjq

g
j

where

φg
i =

1

Vi

∫
Vi

d3rφg(�r)

φg
+,α =

1

Sα

∫
Sα

d2rφg(�rS)

14/133



The Transport Equation 12
Four types of probabilities

p̃g
ij = Vip

g
ij =

∫
Vi

∫
Vj

e−τg(R)

4πR2
ΘiΘjd

3r′d3r

p̃g
iα = Vip

g
iα =

∫
Vi

∫
Sα

e−τg(RS)

4πR2
S

(�Ω · �N−)ΘiΘαd
3r′d2r

p̃g
αi =

Sα

4
pg
αi =

∫
Sα

∫
Vi

e−τg(R)

4πR2
(�Ω · �N+)ΘαΘid

2r′d3r

p̃g
αβ =

Sα

4
pg
αβ =

∫
Sα

∫
Sβ

e−τg(RS)

4πR2
S

(�Ω · �N−)(�Ω · �N+)

×ΘαΘβd
2rd2r′
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The Transport Equation 13
Symmetry relations

Vip
g
ij =Vjp

g
ji

4Vip
g
iα =Sαp

g
αi

Sαp
g
αβ =Sβp

g
βα

Conservation properties

Nα∑
α=1

pg
iα +

Nj∑
j=1

pg
ijΣ

g
j =1

Nβ∑
β=1

pg
αβ +

Ni∑
i=1

pg
αiΣi =1
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Boundary Conditions 1
Surface flux approximation:

Incoming angular flux on outer surfaces assumed to be
independent of �Ω

Comments

Outgoing angular flux on outer surfaces integrated over
�Ω

Angular flux not used at region interfaces

Approximation for incoming angular flux exact for
vacuum BC

Approximation for incoming angular flux leads to large
errors in surface flux when flux is not isotropic
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Boundary Conditions 2
Illustration of approximate BC

Reflection Translation

sp
ec

ul
ar

is
ot

ro
pi

c

is
ot

ro
pi

c
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Boundary Conditions 3
Recommendations to reduce errors due to approximate use
of BC for a fixed direction

No special treatment for 2 vacuum BC

Unfold cell once for 1 vacuum and 1 reflection BC

Multiply unfold cell for 2 reflection or periodic cell, apply
approximate BC on final surfaces and consider results
in cell located far from these surfaces.
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Boundary Conditions 4
Example of cell unfolding in direction X

12 3

65

4 12 3

65

412 3

65

4 12 3

65

4

12 3

65

4 1 23

6 5

41 23

6 5

4 12 3

65

4
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Boundary Conditions 5
Simplifying CP equations using approximate BC

Assume

�Jg
− =Ag �Jg

+

Final transport equation

�φg =Pg
c,vv�q

g

with the complete collision probability matrix Pg
c,vv:

Pg
c,vv =

(
Pg

vv + Pg
vs((A

g)−1 − Pg
ss)

−1Pg
sv

)
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Cross Sections Consideration 1
Two types of multigroup cross-section database can be
read by DRAGON

Mixture macroscopic cross-section

Isotope microscopic cross-section that contains itself a
macroscopic cross-section database
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Cross Sections Consideration 2
Minimum cross-section requirements for each mixture m

The multigroup total cross section Σg
m

The isotropic component of the multigroup scattering
cross section Σh→g

m,s,0 defined as

Σh→g
m,s,0 =

∫
4π
d2Ω2Σh→g

m,s (�Ω ′ → �Ω)P0(�Ω
′ · �Ω)

The product of the average neutron emitted per fission
with the multigroup fission cross section νΣg

m,f

The multigroup fission spectrum χg
m
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Cross Sections Consideration 3
The linearly isotropic component of the multigroup
scattering cross section Σh→g

m,s,1

Σh→g
m,s,1 =

∫
4π
d2Ω2Σh→g

m,s (�Ω ′ → �Ω)P1(�Ω
′ · �Ω)

Required only if B1 leakage method is used
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Cross Sections Consideration 4
The transport correction Σg

m,tc

The transport calculations are performed using
transport corrected total (Σ̃g

m) and scattering (Σ̃
h→g
m,s,0)

cross sections

Σ̃g
m =Σg

m − Σg
m,tc

Σ̃h→g
m,s,0 =Σh→g

m,s,0 − δghΣg
m,tc

Takes partially into account the linearly anisotropic
scattering contributions
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Cross Sections Consideration 5
For contribution of multi-neutron production reactions such
as

XZ
A + n01 → XZ

A−1 + 2n01 + γ

The scattering cross section must be corrected to take into
account this effect

Σ̃h→g
m,s,0 =Σh→g

m,s,0 + 2δghΣg
m,(n,2n)

where Σg
(n,2n)

is the macroscopic cross section associated

with the reaction
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Cross Sections Consideration 6
Macroscopic cross section data base can be created using

from the input file using the MAC: module

from a GOXS file using the MAC: module

from a microscopic library using the LIB: module

from the homogenization and condensation module
EDI:

from a WIMS-AECL execution using the information
available on TAPE16 (side-step method)

from a HELIOS execution
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Microscopic libraries 1
Many formats can be processed by DRAGON including

WIMS–AECL format

MATXS format

WIMD-D4 format

In DRAGON resonance self-shielding calculations are pre-

formed using the Stamm’ler method
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3–D CP Calculations 1
Contents

Collision Probabilities in 3-D

Numerical Quadrature and Tracking

Collision Probability Integration

Neutron Conservation and CP Normalization
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3–D CP Calculations 2
Recall CP approximations

Divide domain into NV regions of volume Vi

Assume total cross sections constant inside each
region

Assume sources constant inside each region
This has an impact on the selection of the spatial
mesh

Assume sources isotropic inside each region
This may lead to problem when scattering is highly
anisotropic.
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3–D CP Calculations 3
Recall BC approximations

Divide the external boundary S into NS surfaces of area
Sα

Assume flux constant on external surfaces
This has an impact on the selection of the spatial
mesh

Assume flux isotropic on external surfaces
This may lead to problems when flux is highly
anisotropic near external boundaries

31/133



Collision Probabilities in 3-D 1
Collision probability definition

p̃g
ij = Vip

g
ij =

∫
Vi

∫
Vj

e−τg(R)

4πR2
ΘiΘjd

3r′d3r

Spherical coordinates for d3r integral

∫
Vj

d3rΘj =

∫
4π
d2Ω

∫ R
i+1

2

R
i− 1

2

R2dRΘj

Cartesian coordinates for d3r′ integral∫
Vi

d3r′Θi =

∫
dx′

∫
dy′

∫
dR′Θi
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Collision Probabilities in 3-D 2
General 3–D geometry for collision probability integration

X

Y

Z

i

j

x'

y'

r'

r

Ω
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Collision Probabilities in 3-D 3
Final form for collision probability integration

p̃g
ij =

∫
4π

d2Ω

4π

∫
dx′

∫
dy′

∫ R
i+1

2

R
i− 1

2

dR′
∫ R

j+1
2

R
j− 1

2

dR e−τg(R′,R)ΘiΘj

τ g =(Ri+ 1
2
− R′)Σg

i +

j−1∑
k=i+1

∆RkΣ
g
k + (R− Rj− 1

2
)Σg

j

with ∆Rk = Rk+ 1
2
− Rk− 1

2
.
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Collision Probabilities in 3-D 4
Notation for optical path

i

j

R'

R

Ω

Rj-1/2

Ri+1/2
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Collision Probabilities in 3-D 5
After integration over R′ and R, one obtains

p̃g
ij =

1

4πΣg
i Σ

g
j

∫ 4π

0
d2Ω

∫
dx′

∫
dy′ΘiΘj

×
[
1 − exp

(
−τ g

i− 1
2
,i+ 1

2

)]
exp

(
−τ g

i+ 1
2
,j− 1

2

)
×

[
1 − exp

(
−τ g

j− 1
2
,j+ 1

2

)]
with

τ g
i± 1

2
,j± 1

2

=Σg
i (Ri+ 1

2
− Ri± 1

2
) + τi+ 1

2
,j− 1

2
+ Σg

j (Rj± 1
2
− Rj− 1

2
)
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Collision Probabilities in 3-D 6
Case where Σg

i = 0

p̃g
ij =

1

4πΣg
j

∫ 4π

0
d2Ω

∫
dx′

∫
dy′ΘiΘj

×∆Ri exp(−τ g
i+ 1

2
,j− 1

2

)
[
1 − exp(−τ g

j− 1
2
,j+ 1

2

)
]

Case where Σg
i = Σg

j = 0

p̃g
ij =

1

4π

∫ 4π

0
d2Ω

∫
dx′

∫
dy′ΘiΘj∆Ri∆Rj exp(−τ g

i+ 1
2
,j− 1

2

)
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Collision Probabilities in 3-D 7
For p̃g

ii, one obtains after integration over R
′ and R

p̃g
ii =

1

2π
(
Σg

i

)2

∫ 4π

0
d2Ω

∫
dx′

∫
dy′ΘiΘi

×
[
τ g
i− 1

2
,i+ 1

2

−
(
1 − exp(−τ g

i− 1
2
,i+ 1

2

)
)]

For Σg
i = 0 this is simplified to

p̃g
ii =

1

4π

∫ 4π

0
d2Ω

∫
dx′

∫
dy′ΘiΘi (∆Ri)

2

Similar relations are obtained for p̃g
iα and p̃

g
αβ
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Quadrature and Tracking 1
3-D Adjuster model in DRAGON

z
y

x
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Quadrature and Tracking 2
Angular quadrature

Sn type EQN quadrature with 4NΩ(NΩ + 2)/8 angular
directions �Ω1,i, �Ω2,i, �Ω3,i and �Ω4,i

Global quadrature weight WΩ = 2/(NΩ(NΩ + 2))

Tracking in lower half sphere only

Number of tracking quadrant automatically reduced for
symmetric cell

Select as many angles as possible (Neutrons travel on
a straight line)
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Quadrature and Tracking 3
Cartesian surface quadrature

y'
x'

Ω
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Quadrature and Tracking 4
Cartesian quadrature

Identify the radius h+ of the smallest sphere including
the geometry

Select a tracking density ρp and define the line spacing δ

δ =
2h+

Np
Np = (2

√
ρph+) + 1

Integration line lmn passes through

ux
m =

(
2m− 1

2

)
δ uy

n =

(
2n− 1

2

)
δ

Integration weight Wp = δ2
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Quadrature and Tracking 5
Comments on Cartesian surface quadrature

In Dragon 3 different planes are selected for each given
spatial direction

x

y
z

in x-y plane

in x-z plane

in y-z plane

Select tracking density as dense as possible
Each region must be touched by a maximum number
of lines
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Quadrature and Tracking 6
DRAGON tracking example

l i

l j
l k

(3
)

l k
(2

)

l k
(1

)
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Quadrature and Tracking 7
DRAGON tracking of a line lm,n

1. Follow the tracking line as it travels through the cell

2. Identify each region i and surface s uniquely

3. Identify final region number I associated with set of
regions i (a flux region)

4. Identify final surface number S associated with sets of
surfaces s

5. Identify external surfaces and regions i crossed by line

6. Compute distance l̃i,m,n the neutron travels in each
region

7. Store information on temporary tracking file
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Quadrature and Tracking 8
Case of symmetric cells (mirror reflection on one side of the
cell)

Unfold the cell according to symmetry

I=1

I=2

Ω

I=2

I=2

i=1 i=2

i=3 i=4 i=5

i=6 i=7

i=8 i=9 i=10

Regions in unfolded cells are originally assigned new
region numbers
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Quadrature and Tracking 9
Angle selection for symmetric cells

For symmetry with respect to a (y, z) plane, track only in
quadrants corresponding to directions �Ω1,i and �Ω3,i

For symmetry with respect to a (z, x) plane, track only in
quadrants corresponding to directions �Ω1,i and �Ω2,i

For symmetry with respect to a (x, y) plane, track only in
all quadrants
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Quadrature and Tracking 10
Post treatment of tracking file

Assign to all spatial region i its final flux region number
combining track segments as required

For each direction, normalize tracks using

li,m,n =

(
Vi

Ṽi

)
l̃i,m,n

where

Ṽi =
Wp

3

Np∑
m=1

Np∑
n=1

l̃i,m,n
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Quadrature and Tracking 11
Comments on storage requirements for tracking

Maximum number of line segments tracks dt

dt < 6N(NΩ(NΩ + 2))ρph
2
+

ForN = 1000, h+ = 50, ρp = 20 t/cm2 and NΩ = 8

dt < 20 × 109

tracks segments.
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Quadrature and Tracking 12
ACR control rod model in DRAGON
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Quadrature and Tracking 13
3-D cluster analysis not currently allowed in DRAGON
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CP Integration 1
For each energy group

Read a line from tracking file

Scan this line and add contribution to p̃g
ii

1

2
(Σg

i )
2p̃g

ii =
1

2
(Σg

i )
2p̃g

ii

+
∑
n

Wn

∑
m∈i

(
τ g
i,n,m − κg

i,n,m

)

where Wn = WΩWp/3 and

κg
i,n,m =

(
1 − exp

[
−τ g

i,n,m

])
τ g
i,n,m = Σg

i li,n,m with m ∈ i
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CP Integration 2
Scan this line a second time and add contributions to p̃g

ij

Σg
i Σ

g
j p̃

g
ij =Σg

i Σ
g
j p̃

g
ij

+
∑
n

Wn

∑
m∈i

∑
m′∈j

κg
i,n,mκ

g
n,m+1,m′−1κ

g
j,n,m′

using

κg
n,m,m′ =

m′∏
l=m

exp
[
−τ g

i,n,l

]
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CP Integration 3
Finish CP calculations

Only the contributions with m < m′ has been considered

Symmetrize pg
ij using

p̃g
ij = p̃g

ij + p̃g
ji
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CP Normalization 1
Compute errors on CP conservation rules

Rg
j = Σg

jVj −
Nα∑
α=1

Sα

4
Σg

i p
g
αj −

Ni∑
i=1

Σg
jΣ

g
i Vip

g
ij

Rg
β =

Sβ

4
−

Nα∑
α=1

Sα

4
pg
αβ −

Ni∑
i=1

Σg
i Vip

g
iβ
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CP Normalization 2
Diagonal Normalization

pg
D,ii = pg

ii −
Rg

i

(Σg
i )

2Vi

pg
D,αα = pg

αα − 4Rg
α

Sα

May result in non-physical negative probabilities

Cannot be applied to problems involving voided zones
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CP Normalization 3
HELIOS Type Normalization

pg
H,ij =(wg

i + wg
j )p

g
ij pg

H,αα = (wg
α + wg

β)pg
αα

Apply conservation laws to above relation

Solve resulting system for wg using an iterative process

Does not lead to negative probabilities and works for
void regions

Default option in DRAGON
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CP Normalization 4
Comments on storage requirements for CP matrices

Number of elements per groups is N 2

Memory space required for execution is about 5N 2

Total disk space required for storage of G group CP is
GN2
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3–D DRAGON Examples 1
Contents:

Geometry.

Collision Probability Integration and Tracking.

Region Merging.
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3–D DRAGON Examples 2
3–D Geometry restrictions in DRAGON:

Cartesian mesh in each direction must extend to the
whole geometry.

Cluster option not permitted.

A single cylinder per cell.

Cylinders cannot intersect other than axially.

Cylinders must extend to the whole geometry.

Cylinders are by default centered in the cell.
They can be displaced using the OFFCENTER option.

Mixtures are specified radially, then in x, y and z.

Mixtures are specified even in location that do not
exists.
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3–D DRAGON Examples 3
A Simple 3–D Cell:

   3

  33

  11   12   13

  41   42   43

  21   22   23

  51   52   53

61/133



3–D DRAGON Examples 4
Mixture specification for simple 3–D cell:
TMPGEO := GEO: :: CAR3D 1 1 1

CELL FC1B

X- REFL X+ REFL Y- REFL Y+ REFL Z- REFL Z+ REFL

::: FC1B := GEO: CARCELZ 2 3 2 1

MESHX <<MXLP>> <<MXL>> <<C14CN>> <<MXYD>>

MESHY <<MYLP>> <<CALLCN>> <<PYLP>>

MESHZ 0.0 49.5

OFFCENTER <<FC1XD>> <<FC1YD>>

RADIUS 0.0 <<RF2>> <<RCT>>

MIX 1 2 3

11 12 13

21 22 23

31 32 33

41 42 43

51 52 53 ;

;

Note: mixtures 1, 2, 31 and 32 not used.
62/133



3–D DRAGON Examples 5
CANDU adjuster rod simulation:

5 region annular fuel (including PT and CT).

6 region annular adjuster rod.
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3–D DRAGON Examples 6
Coarse mesh geometry definition for CANDU adjuster:
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3–D DRAGON Examples 7
DRAGON geometry for CANDU adjuster rod:
TMPGEO := GEO: :: CAR3D 2 1 1

CELL FC1B AD1T

X- REFL X+ SYME Y- REFL Y+ SYME Z- REFL Z+ SYME

::: FC1B := GEO: CARCELZ 5 1 1 3

MESHX 0.0000 21.5750 MESHY 0.0000 28.5750

MESHZ 0.0000 17.7650 31.7650 49.5300

OFFCENTER 3.5 0.0

RADIUS 0.0 0.7222 2.1603 3.6007 5.1689 6.5875

MIX 1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6 ;

::: AD1T := GEO: CARCELY 6 1 1 3

MESHX 21.5750 35.5750 MESHY 0.0000 28.5750

MESHZ 0.0000 17.7650 31.7650 49.5300

RADIUS 0.0 0.5770 3.6781 3.8100 4.4450 4.7520 6.3776

MIX 7 8 9 10 11 12 1 7 8 9 10 11 12 1

7 8 9 10 11 12 1 7 8 9 10 11 12 1 ;

;
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3–D DRAGON Examples 8
Coarse mesh CANDU adjuster rod after unfolding:
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3–D DRAGON Examples 9
Fine mesh CANDU adjuster rod after unfolding:
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3–D DRAGON Examples 10
DRAGON geometry for CANDU adjuster rod:
TMPGEO := GEO: :: CAR3D 2 1 1

CELL FC1B AD1T

X- REFL X+ SYME Y- REFL Y+ SYME Z- REFL Z+ SYME

::: FC1B := GEO: CARCELZ 5 1 1 3

MESHX 0.0000 21.5750 SPLITX 3 MESHY 0.0000 28.5750 SPLITY 3

MESHZ 0.0000 17.7650 31.7650 49.5300

OFFCENTER 3.5 0.0

RADIUS 0.0 0.7222 2.1603 3.6007 5.1689 6.5875

MIX 1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6 ;

::: AD1T := GEO: CARCELY 6 1 1 3

MESHX 21.5750 35.5750 SPLITX 2 MESHY 0.0000 28.5750 SPLITY 3

MESHZ 0.0000 17.7650 31.7650 49.5300 SPLITZ 2

RADIUS 0.0 0.5770 3.6781 3.8100 4.4450 4.7520 6.3776

MIX 7 8 9 10 11 12 1 7 8 9 10 11 12 1

7 8 9 10 11 12 1 7 8 9 10 11 12 1 ;

;
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3–D DRAGON Examples 11
Exact boundary conditions:

VOID: applied at the explicit boundary of the cell or
assembly.

SYME: applied at the center of the cells closest to the
explicit assembly boundary specified.

DIAG: applied at the center of the cells closest to the
explicit assembly boundary specified.

SSYM: applied at the explicit boundary of the cell or
assembly.
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3–D DRAGON Examples 12
Approximate boundary conditions:

REFL: applied at the explicit boundary of the cell or
assembly. Exact specular option not available in 3–D.

TRAN: applied at the explicit boundary of the cell or
assembly. Exact specular option not available in 3–D.

ALBE: applied at the explicit boundary of the cell or
assembly. Exact specular option not available.
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3–D DRAGON Examples 13
Region identification for single cell:

radially outward in a cell.

from lower to upper x location in a cell.

from lower to upper y location in a cell.

from lower to upper z location in a cell.

Region identification for assembly of cells:

Inside each cell as above.

from lower to upper x cell location in the assembly.

from lower to upper y cell location in the assembly.

from lower to upper z cell location in the assembly.
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3–D DRAGON Examples 14
Region identification for cells and assemblies:

Back

2
3

1 4 5

8
7

6 9 10

Front

12
13

11 14 15

18
17

16 19 20

Back

5
6

1 7 17

9
8

2 10 18

Front

11
12

3 14 19

15
14

4 16 20

one cell three cells assembly
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3–D DRAGON Examples 15
Region identification for one cell problem:

------------------------------------------

( 1) 16 ( 1) 19 ( 1) 20

ABSENT ( 1) 18 ABSENT

ABSENT ( 1) 17 ABSENT

PLANE - 2 ------------------------------------------

( 1) 11 ( 1) 14 ( 1) 15

ABSENT ( 1) 13 ABSENT

ABSENT ( 1) 12 ABSENT

------------------------------------------

( 1) 6 ( 1) 9 ( 1) 10

ABSENT ( 1) 8 ABSENT

ABSENT ( 1) 7 ABSENT

PLANE - 1 ------------------------------------------

( 1) 1 ( 1) 4 ( 1) 5

ABSENT ( 1) 3 ABSENT

ABSENT ( 1) 2 ABSENT

------------------------------------------
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3–D DRAGON Examples 16
Region identification for three cells assembly:

------------------------------------------

( 1) 4 ( 1) 16 ( 1) 20

ABSENT ( 1) 15 ABSENT

ABSENT ( 1) 14 ABSENT

PLANE - 2 ------------------------------------------

( 1) 3 ( 1) 13 ( 1) 19

ABSENT ( 1) 12 ABSENT

ABSENT ( 1) 11 ABSENT

------------------------------------------

( 1) 2 ( 1) 10 ( 1) 18

ABSENT ( 1) 9 ABSENT

ABSENT ( 1) 8 ABSENT

PLANE - 1 ------------------------------------------

( 1) 1 ( 1) 7 ( 1) 17

ABSENT ( 1) 6 ABSENT

ABSENT ( 1) 5 ABSENT

------------------------------------------
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3–D DRAGON Examples 17
Quadrature selection:

As many angles as possible:
→ neutron travels on a straight line.

Tracking density must be as dense as possible:
→ to touch as often as possible each region and
surface.

For CANDU reactivity devices TRAK TISO 8 25:
→ 10 angles per quadrant.
→ 3 × 25 tracks per cm2.

Integration lines are renormalized using ratio of
approximate to exact volumes.
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3–D DRAGON Examples 18
Comments on storage requirements:

Size of tracking file linear in N :

dt ∝ ρh2
+N

for h+ = 50 cm, ρ = 20 t/cm2 and N = 1000 regions:
→ dt = 600 Mb.

Size of CP matrix quadratic in N :

da ∝ N2G

for G = 89 groups and N = 1000 regions:
→ da = 356 Mb.

Use XSM_FILE for ASMPIJ data structure.
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Region Merging 1
Example of storage requirements for a simple 3–D problem.

Total volume 1 liter (V = 103 cm3).

Central fissile region is red (V = 27 cm3).

Strong absorber is green (V = 1 cm3).

β=1

β=0
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Region Merging 2
Region with strong absorber:
Try to avoid using approximate boundary conditions.
Fine mesh discretization is required.

Region with fission:
Try to avoid using approximate boundary conditions.
Medium to fine mesh discretization is required.

For moderator region
Fine to coarse mesh discretization is required.
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Region Merging 3
Uniform mesh for simple 3–D problem:

Note: x− y and x− z planes are identical.
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Region Merging 4
Non-uniform meshes in DRAGON:

N = 19 × 16 × 16 = 4864 regions, da = 100 Mb/groups for
uniform mesh.

N ≈ 1500 regions, da = 9 Mb/groups for non-uniform
mesh.
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Region Merging 5
Using the MRG: module:
TMPV2 TMPTR2 := MRG: TMPVOL TMPTRK ::

REGI 1 1 2 3 4 5 6 7 8

9 10 11 12 13 14 15 16 17 17

1 1 2 18 19 20 21 22 23

24 25 26 27 28 29 30 16 17 17

31 31 32 33 34 35 36 37 38

39 40 41 42 43 44 45 46 47 47

31 31 32 48 49 50 51 52 53

54 55 56 57 58 59 60 46 47 47

61 62 63 64 65 66 67 68 69

70 71 72 73 74 75 76 77 78 78

...

;
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Region Merging 6
Region numbering for first (out of 16) z-plane:

Color by region for 304 regions Color by region for 216 regions
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Solving the CP Equations 1
Contents

The Power Iteration

The Multigroup Iteration

Leakage Models
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Solving the CP Equations 2
The multigroup transport equation has the form

�φ =Pc,vv(�qs +
1

k
�qf )

�qs =Σs
�φ

�qf =χνΣf
�φ

�φ is a N ×G dimensional vector

Pc,vv is the multigroup CP matrix
Diagonal in energy, full in space.

χνΣf is a matrix for neutron production by fission and
Σs is the scattering matrix
Diagonal in space, full in energy
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Solving the CP Equations 3
We can decompose the scattering matrix as

Σs =Σd,s + Σu,s + Σw,s

with

Σu,s the up-scattering matrix (lower triangular in energy)

Σd,s the down-scattering matrix (upper triangular in
energy)

Σw,s the within-group scattering matrix (diagonal in
energy)
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Solving the CP Equations 4
Defining W the scattering modified CP matrix

W = (I − Pc,vvΣw,s)
−1Pc,vv

the transport equation now becomes

�φ = W(Σd,s
�φ+ Σu,s

�φ+
1

k
�qf )

Assuming

�qf/k is fixed and Σw,s = 0

The above equation can be solved directly from group g = 1

to g = G
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Solving the CP Equations 5
The general equation can be solve using two iteration
processes

The Power iteration
illustrated by solving the transport problem with Σw,s = 0

The multigroup iteration
illustrated by solving the transport problem with �qf/k
fixed
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The Power Iteration 1
Assume Σu,s = 0

Write an iterative group by broup solution to the
transport problem as

�φ(l) =W(Σd,s
�φ(l) +

χ

k(l − 1)
νΣf

�φ(l − 1))

k(l) =
G∑

g=1

N∑
i=1

Viχ
g
i

G∑
h=1

νΣh
f,iφ

h
i (l)

with �φ(0) a known arbitrary flux distribution and

k(0) =

G∑
g=1

N∑
i=1

Viχ
g
i

G∑
h=1

νΣh
f,iφ

h
i (0)
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The Power Iteration 1
The iteration process is repeated until

k(l) − k(l − 1) < ε1∣∣∣∣∣
�φ(l)

k(l)
−
�φ(l − 1)

k(l − 1)

∣∣∣∣∣ < ε2

∣∣∣∣∣
�φ(l)

k(l)

∣∣∣∣∣
are both satisfied

The parameters ε1 and ε2 can be defined independently
in DRAGON
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The Multigroup Iteration 1
Assume �qf/k = �q is fixed

Solve group-by-group this fixed source problem using a
Gauss-Seidel strategy

�φ(l) = W
(
Σd,s

�φ(l) + Σu,s
�φ(l − 1) + �q

)
Iterate until ∣∣∣∣∣

�φg(l) − �φg(l − 1)

�φg(l)

∣∣∣∣∣ < ε3
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The Multigroup Iteration 2
Multigroup rebalancing technique

Neutron conservation states that for a converged
solution φg

i (l)

N∑
i=1

Σg
i Viφ

g
i (l) =

N∑
i=1

Rg
i Viq

g
i (l)

+
N∑

i=1

Rg
i Vi

⎛
⎝ g∑

h=1

Σh→g
s φh

i (l) +
G∑

h=g+1

Σh→g
s φh

i (l)

⎞
⎠

with Rg
i = 1 − ∑N

i=1 Σg
jp

g
c,ij
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The Multigroup Iteration 3
The multigroup problem we effectively solve yields

N∑
i=1

Σg
i Viφ

g
i (l) =

N∑
i=1

Rg
i Viq

g
i (l)

+

N∑
i=1

Rg
i Vi

⎛
⎝ g∑

h=1

Σh→g
s φh

i (l) +

G∑
h=g+1

Σh→g
s φh

i (l − 1)

⎞
⎠

92/133



The Multigroup Iteration 4
To restore conservation at each iteration

Use φ̃g
i = αgφg

i and assume φ̃
g
i satisfies conservation

relations, then αg must satisfy

G∑
h=1

Mh→gαh = qg

Mh→g =
N∑

i=1

Rg
i Vi

(
Σh

i δgh − Σh→g
s

)
φh

i

qg =
N∑

i=1

Rg
i Viq

g
i

Solve for αg(k) and rebalance flux
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The Multigroup Iteration 5
Add relaxation parameter to the Gauss–Seidel iteration
scheme

For appromimate solution �Γ(l)

�Γ(l) = W
(
Σd,s

�Γ(l) + Σu,s
�Γ(l − 1) + �q

)
Define an improved flux distribution for the next iteration
using

�φ(l) =�Γ(l) + ω(l)�∆(l)

�∆(l) =�Γ(l) − �φ(l − 1)

and ω(l) will be computed using a variational procedure
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The Multigroup Iteration 6

Select ω(l) in such a way that �φ(l) minimizes the tranport
functional

F [�φ] =
1

2
�φTZTZ�φ− �φTZTW�q

Z =[I − W
(
Σd,s + Σu,s

)
]

This yield

ω(l) = − [�∆ − W�S1(l)]
T [�Γ − W�S2(l)]

[�∆ − W�S1(l)]T [�∆ − W�S1(l)]

�S1(l) =(Σd,s + Σu,s)�∆(l)

�S2(l) =(�q + Σd,s
�Γ(l) + Σu,s

�Γ(l))
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Leakage Models 1
In 3–D, the transport equation can be solved in DRAGON
using the B0 and B1 leakage models

Both of these models are based on the following
factorization of the flux

Φg(�r, �Ω) ≈Ψg(�r, �Ω) exp(i �B · �r)

Transport equation with leakage

�Ω · �∇Ψg(�r, �Ω) + [Σg(�r) + i �B · �Ω]Ψg(�r, �Ω) =

Qg
s(�r,

�Ω) +
1

keff

Qg
f (�r)

In general we will assume that keff =1
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Leakage Models 2
For an infinite homogeneous media the scalar flux and
vector current are related to each other according to

�ΩΨg(�Ω) = �Jg(�Ω) = −iDg �BΨg(�Ω)

with Dg is an homogeneous diffusion coefficient

Apply to heterogeneous systems

�Ω · �∇Ψg(�r, �Ω) + [Σg(�r) +DgB2]Ψg(�r, �Ω) = Qg
s(�r, �Ω) +Qg

f (�r)

Find the homogeneous diffusion coefficient compatible
with this heterogeneous problem
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Leakage Models 3

Assume an heterogeneous solution is known for B2 = 0

Use this solution to define an equivalent infinite
homogeneous problem

ΣgΨg(�Ω) + i �B · �Jg(�Ω) = Qg
s(
�Ω) +Qg

f

where the cross sections and sources are homogenized
using the heterogeneous flux

Solve the homogeneous problem for Dg and B

Insert in heterogeneous transport equation and obtain
an improved solution.

Repeat until the iterative procedure is converged
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Leakage Models 4
Solving the homogeneous problem (B1 model)

Use a 2 terms expansion for the scattering cross
section in Legendre polynomials

Σh→g
s (�Ω′ → �Ω) =Σh→g

s,0 + 3Σh→g
s,1

�Ω · �Ω ′

Define

ψg =

∫
d2ΩΨg(�Ω)

�jg =

∫
d2Ω�Ω ′Ψg(�Ω)
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Leakage Models 5
Insert into the homogeneous transport equation, and
integrate to obtain

ψg =αg
∑
h

(Σh→g
s,0 + χgνΣh

f )ψh + 3βg
∑
h

Σh→g
s,1

�B ·�jh
iB2

�jg =βg
∑

h

[
(Σh→g

s,0 + χgνΣh
f )
�Bψh

iB2
+ 3ΣgΣh→g

s,1

�jh

B2

]

αg =
1

B
arctan

(
B

Σg

)
βg =1 − Σgαg

Solve for B, ψg and �jg and compute Dg = i �B ·�jg/B2ψg
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Leakage Models 6
The B0 homogeneous problem

Assume Σh→g
s,1 = 0 and obtain

ψg =αg
∑

h

(Σh→g
s,0 + χgνΣh

f )ψh

�jg =βg
�B

iB2

∑
h

(Σh→g
s,0 + χgνΣh

f )ψh

The homogeneous diffusion coefficient is then given by

Dg =
βg

αg
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Condensation and Homogenization 1
Contents

Condensation Technique

Full Cell Homogenization

Partial Cell Homogenization and SPH Factors

Microscopic Cross Section Homogenization
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Condensation and Homogenization 2
Condensation and homogenization techniques in DRAGON
are based on the following assumptions

Reaction rates are physically meaningfull and should be
preserved by the condensation/homogenization
procedure

Ri =
∑

g

Viφ
g
i Σ

g
i = ViφiΣi

Rg =
∑

i

Viφ
g
i Σ

g
i = V φgΣg

The eigenvalue is physically meaningfull and should be
preserved by the condensation/homogenization
procedure
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Condensation Technique 1
Condensed transport equation (macrogroup K that
includes g ∈ GK)

�Ω · �∇
∑

g∈GK

Φg(�r, �Ω) +
∑

g∈GK

Σg(�r)Φg(�r, �Ω) =

∑
g∈GK

[Qg
s(�r,

�Ω) +
1

k
Qg

f (�r)]

Few group version of the same equation is

�Ω · �∇ΦK(�r, �Ω) + ΣK(�r)ΦK(�r, �Ω) = [QK
s (�r, �Ω) +

1

k
QK

f (�r, �Ω)]

It should reproduce condensed multigroup results
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Condensation Technique 2
The condensation procedure that satisfies our requirements

φK
i =

∑
g∈GK

φg
i

ΣK
i =

1

φK
i

∑
g∈GK

Σg
iφ

g
i

ΣL→K
s,i =

1

φL
i

∑
h∈GL

∑
g∈GK

Σh→g
s,i φh

i

χK
i =

∑
g∈GK

χg
i

νΣK
f,i =

1

φK
i

∑
g∈GK

νΣh
f,iφ

g
i
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Condensation Technique 3
Multiplying CP transport equation by Σg

i Vi and summing
over all regions i yields

∑
i

Σg
i Viφ

g
i =

∑
i

Vi[Q
g
s,i +

1

k
Qg

f,i]

The equivalent transport equation in a homogeneous
infinite cell is

Σ̂gV φ̂g = V [Q̂g
s,i +

1

k
Q̂g

f,i]

The homogenized and homogeneous transport equations

are identical if one selects a flux-volume homogenization

technique
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Condensation Technique 4
Flux-volume homogenization technique

φ̂g =
1

V

∑
i

Viφ
g
i

Σ̂g =
1

V φ̂g

∑
i

ViΣ
g
iφ

g
i

Σ̂h→g
s =

1

V φ̂h

∑
i

ViΣ
h→g
s,i φh

i

ν̂Σ̂g
f =

1

V φ̂g

∑
i

ViνΣ
g
f,iφ

g
i

χ̂g =
1

V
∑

h ν̂Σ̂
g
f φ̂

g

∑
i

χg
i Vi

∑
h

νΣg
f,iφ

h
i
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Condensation Technique 5
Flux-volume homogenization fails if

The cell is finite (a cell with leakage) and

Nj∑
j=1

pg
ijΣ

g
j �=1

Partial cell homogenization cell is considered
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Partial Cell Homogenization 1
The heterogeneous N region transport equation
homogenized overM regions takes the form

∑
i∈MI

ViΣ
g
iφ

g
i =

∑
i∈MI

∑
J

∑
j∈MJ

pg
ji(Σ

g)[Qg
s,i +

1

k
Qg

f,i]

The M region heterogeneous transport equation takes the
from

VIΣ̂
g
I φ̂

g
I =

∑
J

p̂g
JI(Σ̂

g)[Qg
s,J +

1

k
Qg

f,J ]

where P̂ g
JI(Σ̂

g) indicates that the CP are computed using ho-

mogenized cross sections
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Partial Cell Homogenization 2
We need ∑

i∈MI

ViΣ
g
i φ

g
i = VIΣ

g
Iφ

g
I

and ∑
J

p̂g
JI(Σ̂

g)[Qg
s,J +

1

k
Qg

f,J ] =

∑
i∈MI

∑
J

∑
j∈MJ

pg
ji(Σ

g)[Qg
s,i +

1

k
Qg

f,i]

to be simultaneously true
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Partial Cell Homogenization 3
The flux-volume homogenization method is not longer
adequate because

There is no simple relation between p̂g
JI(Σ̂

g) and pg
ji(Σ

g)

The alternative here is to use a non-linear process

Consider a flux-volume homogenization for φg
I and Σg

I

Redefine the homogeneous flux φ̂g
I and cross sections

Σ̂g
I as follows

φ̂g
I =

1

µg
I

φg
I Σ̂g

I = µg
IΣ

g
I
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Partial Cell Homogenization 4
Determine the SPH factors µg

I numerically in such a
way that

∑
J

p̂g
JI(Σ̂

g)[Qg
s,J +

1

k
Qg

f,J ] =

∑
i∈MI

∑
J

∑
j∈MJ

pg
ji(Σ

g)[Qg
s,i +

1

k
Qg

f,i]

is true

The definition of the SPH factors automatically ensures∑
i∈MI

ViΣ
g
iφ

g
i = VIΣ

g
Iφ

g
I = VIΣ̃

g
I φ̃

g
I
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Microscopic Cross Section 1
The macroscopic cross section associated with a material
is simply the sum over all isotopes of the isotopic
macroscopic cross section ΣI namely

Σg
i =

∑
I

Σg
I,i

where

Σg
I,i =NI,iσ

g
I

with NI,i, the concentration of isotope I in region i

The homogenization and condensation procedure
described above remain valid for Σg

I,i
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Microscopic Cross Section 2
Since the final concentration of isotope I in the cell is given
by:

NI =
1

V

∑
i

NI,iVi

we can define the equivalent homogenized microscopic
cross section as:

σ̂K
I =

µK
I

NIV φK

∑
i∈MI

∑
g∈GK

NI,iViσ
g
Iφ

g
i

where the microscopic cross sections now become
dependent on the spatial position
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Managing a DRAGON Execution 1
Contents

Input file formats.

Data structure formats.

Working with variables.

Conditional execution and loops.

Working with procedures.

Flow chart in DRAGON input decks
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Managing a DRAGON Execution 2
Input file format

72 columns, free format instruction ends by ;

Comments * or !

MODULE and objects declarations

Sequence of calls to modules

;(data input)

(list of output objects) := GEO: ::(list of input objects)

END: ; statement

QUIT "LIST" . end compilation
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Managing a DRAGON Execution 3
Data structure formats.

LINKED_LIST Memory access

XSM_FILE Direct-access file

SEQ_BINARY Tracking information mainly

SEQ_ASCII Machine independent format

DIR_ACCESS XS library file
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Managing a DRAGON Execution 4
Variable types.

INTEGER (signed) Numbers

REAL (signed) Decimal numbers with E or .

DOUBLE (signed) Decimal numbers with D and .

STRING 72 character long, enclosed in " "

LOGICAL = $True_L or $False_L

Variable names are case sensitive.
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Managing a DRAGON Execution 5
Assign or Evaluate variables

;EVALUATE (variable names) (value):=

(variable names)REAL (value):= ;

ECHO (variable names) ;

Variable in data input deck.

<< . >> access the content of a variable send

>> . << put a value into a variable recover
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Managing a DRAGON Execution 6
Operations on variables.

Reverse Polish Notation
(value) (operator) (value)⇔ (value) (value) (operator)

Arithmetic operations + - * / **
Ex : delta := b 2 ** 4. a c * * -

Unary operations COS SQRT ABS NOT LN
Ex : delta := delta SQRT

Relational operations < > <> <= + -
Ex : condition := a b <=

Operations on STRING variables + -

NO mixed mode operations
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Managing a DRAGON Execution 7
IF/THEN/ELSE statement

;ENDIF

(statements)(condition)IF THEN

ELSE

(statements)(condition)ELSEIF THEN

(statements)

WHILE and REPEAT statement

;ENDWHILE

(statements)

(condition)WHILE DO

;UNTIL

(statements)

(condition)

REPEAT

(modif condition)(modif condition)
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Managing a DRAGON Execution 8
Working with procedures

;

(data input)

(output objects) := ::(input objects)

Calling Part: Main File Called Part: Procedure File
procedure name.c2m

PROCEDURE (procedure name)

(procedure name)

;

PARAMETER (output objects)

;

(input objects) ::
:::LINKED_LIST

SEQ_ASCII

(object name)

(object name) ;

;

(same data input list)

recover

send

<< .>> send

>>.<< recover

>>.<<:: ;

<< .>>:: ;

END:  ;
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Managing a DRAGON Execution 9
Flow chart in DRAGON input decks

GEO: GEOMETRY data structure

EXCELT:

ASM:

MACROLIB data structure

tracking file

FLU:

CP data structure

FLXUNK data structure

EDI:

VOLTRK data structure
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Managing a DRAGON Execution 10
Input cross sections

Macroscopic library
MAC: data input
EDI: DRAGON calculations
MODULE: other transport codes, WIMS TAPE16 ...
LIB: microscopic library

⇒ object input in ASM: or FLU: and EDI:
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Managing a DRAGON Execution 11
Tracking validation

Set relatively low line densities and angle number

Verify volume and surface integration errors

EXCELT: Useful print levels EDIT iprint :
iprint = 0 no printing
iprint = 1 (default) geometric information and echo of
data input
iprint = 2 tracking error on volumes and surfaces
iprint = 5 surface and region numbering and
description, cell by cell and then global by plane in
3D
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Managing a DRAGON Execution 12
*----

* Use : Perform 3-D reactivity device analysis

* Procedures :

* DevGeo -> generate 3-D geometry

* DevEva -> solve 3-D transport problem

* Input files :

* MACRO -> macrolib for reactivity devices

* Output files :

* Results -> Edition results

*----

PROCEDURE DevGeo DevMac ;

MODULE EDI: DELETE: BACKUP: END: ;

SEQ_ASCII MACRO Results ;

LINKED_LIST Volumes Macrolib Edition Fluxes PIJ ;

SEQ_BINARY Tracks ;

Macrolib := MACRO ;

STRING DevType := "ADJ1" ;

STRING DevLocation ;
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Managing a DRAGON Execution 13
EVALUATE DevLocation := "IN" ;

Volumes Tracks := DevGeo :: <<DevType>> <<DevLocation>> ;

PIJ := ASM: Macrolib Volumes Tracks ;

Fluxes := FLU: PIJ Macrolib Volumes :: TYPE B B1 PNL ;

Edition := EDI: Fluxes Macrolib Volumes ::

COND 0.626 MERGE COMP SAVE ;

PIJ Volumes Tracks Fluxes := DELETE: PIJ Volumes Tracks Fluxes ;

EVALUATE DevLocation := "OUT" ;

Volumes Tracks := DevGeo :: <<DevType>> <<DevLocation>> ;

PIJ := ASM: Macrolib Volumes Tracks ;

Fluxes := FLU: PIJ Macrolib Volumes :: TYPE B B1 PNL ;

Edition := EDI: Edition Fluxes Macrolib Volumes :: SAVE ;

PIJ Volumes Tracks Fluxes := DELETE: PIJ Volumes Tracks Fluxes ;

Results := Edition ;

Edition Macrolib := DELETE: Edition Macrolib ;

END: ;

QUIT "LIST" .

127/133



Managing a DRAGON Execution 14
*----

* Input and output structures and variables

* Volumes : output LINKED_LIST containing geometry analysis

* Tracks : output sequential binary file containing

* integration lines

* Device : string variable for yype of devices

* "ADJn" -> for adjuster rods (Type n = 1,6)

* DevLocation : string variable for device Location

* "IN" -> Device and guide tube in

* "OUT" -> Device out and guide tube in

*----

PARAMETER Volumes Tracks ::

::: LINKED_LIST Volumes ;

::: SEQ_BINARY Tracks ; ;

STRING Device ;

INTEGER DevLocation ;

:: >>Device<< >>DevLocation<< ;
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MODULE GEO: EXCELT: DELETE: ;

LINKED_LIST GEOMETRY ;

REAL RA1 RA2 RA3 RA4 RA5 RA6 RAM ;

IF Device "ADJ1" = THEN

EVALUATE RA1 RA2 RA3 RA4 RA5 RA6 :=

0.577 3.678 3.810 4.445 4.752 6.378 ;

ELSEIF Device "ADJ2" = THEN

EVALUATE RA1 RA2 RA3 RA4 RA5 RA6 :=

0.649 3.723 3.810 4.445 4.752 6.378 ;

ENDIF ;

INTEGER NbReg NbAngles := 48 8 ;

REAL TrkDens := 25.0 ;

129/133



Managing a DRAGON Execution 16
INTEGER MM MA1 MA2 MA3 MA4 MA5 MA6 ;

IF DevLocation "IN" = THEN

EVALUATE MM MA1 MA2 MA3 MA4 MA5 MA6 :=

11 12 13 14 15 16 17 ;

ELSE

EVALUATE MM MA1 MA2 MA3 MA4 MA5 MA6 :=

11 11 11 11 11 11 17 ;

ENDIF ;
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GEOMETRY := GEO: :: CAR3D 2 1 2

CELL FC1B MD1B FC1T AD1T

X- REFL X+ SYME Y- REFL Y+ SYME Z- REFL Z+ SYME

::: FC1B := GEO: CARCELZ 5 3 4 1

... ;

::: MD1B := GEO: CAR3D 2 4 1

... ;

::: FC1T := GEO: CARCELZ 5 3 4 2

... ;

::: AD1T := GEO: CARCELY 6 2 4 2

... ;

;

Volumes Tracks := EXCELT: GEOMETRY ::

MAXR <<NbReg>> TRAK TISO <<NbAngles>> <<TrkDens>> ;

GEOMETRY := DELETE: GEOMETRY ;

QUIT "LIST" .
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Conclusions 1
Some comments and warning on the CP method

The sources are assumed constant inside each region

Select an adequate spatial discretization
This may lead to a large number of region (CP is
proportionnal to N2)
Some regions may be very small causing problem
with tracking

Select a problem that is not too heterogeneous
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Conclusions 2
The angular flux on each external surface are assumed
constant and isotropic
Try to get rid of external surfaces with re-entrant
angular flux
Select a model where the region of interest is far
from the external surfaces
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