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¢...  Introduction to the CP Method 1

MMMMMMMM

Contents

# The Transport Equation

# The Collision Probability Technique
# Boundary Conditions

# Cross Sections Considerations
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°.. 'The Transport Equation
The transport equation is a neutron balance equation
L(F, E,Q) =0(F E,Q)
® [ represents neutron lost from the system:
L=Q-VO(F, E,Q)+ X(F, E)d(F, E, Q)
#® O represents neutron created in the system
Q, = / dE' Q% (F, E' — E, Q) — Qo7 E', Q)

—

Qr =x(7, E) | dE'd*QuX (7, ENO(F, E', Q)
f f
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°.. 'The Transport Equation

MMMMMMMM

Multigroup transport equation
0V 4+ 29(7) + D7) B 097, G) = QU(7, B) + Q47 D)

Scattering source QJ(7, Q)
Z / Q7 Y — Q) (r, )
h=1

Fission source Q%(7, Q)

G
QR =0 Y vEh(7) / 2D (7 )
h=1
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°.. 'The Transport Equation 3

MMMMMMMM

Transport equation in the absence of external sources is an
eigenvalue problem:
1. k eigenvalue with imposed leakage (D?(7)B? fixed):

# [ indicates how the fission rate should be modified to
make the system critical (reach a non-trivial solution
to the transport equation)

2. Buckling eigenvalue with imposed k:

® DI(7)B?* represent the amount of leakage required to
make the system critical
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°.. 'The Transport Equation

MMMMMMMM

Boundary conditions are required to close the system
# Albedo conditions

6— (75, — 2(Ng - Q) =6(s, ) p+ (Fs, Q)

AN

—>
@,

Q

for void BC
for reflective BC

X®R
N
O}l SQl
N——"
|
_ O
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°.. 'The Transport Equation

MMMMMMMM

® Periodic conditions
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°.. 'The Transport Equation

MMMMMMMM

Integral transport equation (case without leakage)
# Flux at a point 7 due to neutrons created at any point

=/

7 = 7 — R surrounding it

] ) N o
[_ﬁ e RQ)] DI(7— RE. ) —Q9(7 — G, G)

# |Integrate transport equation over R and {2
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°.. 'The Transport Equation

MMMMMMMM

Definitions
o) = [ dP00s(rSh
R —
T9(R) = / »9(7 — R'Q)dR’
O
. 1 ifr=+"+ RO
o, 7' ) = IT 7 T.—I—R
0 otherwise

and &7 (7, Q) is the incoming angular flux on surface S
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°.. 'The Transport Equation

MMMMMMMM

Equation for the outgoing flux ¢, (rs) at S

R
#+(7s) = / Q- Ny) /O e T QI DO (s, 7, D)d R

i / QO N Q- N2) e ) (7, D)0 (7, 5, Q)

where
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°.. 'The Transport Equation 9

MMMMMMMM

CP approximations

# Divide domain into Ny regions of volume V; where the
cross sections sources are independent of 7~ and (2

¥9(r) =27 for e V;
S

QU7 0) =—¢'() =q]  forreV,
T

(the source is assumed isotropic)

# Divide the external boundary S into Ng surfaces of area
S~ and assume angular flux constant on these surfaces

L= 1
(I)g_ (Ts, Q) :E¢g’_
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°... ' The Transport Equation 10

MMMMMMMM

¢’ / e T BQ(F 7, Q) L
7 Jy " |7 — )2
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°... ' The Transport Equation 11

MMMMMMMM

Transport equations in CP form

Ng Ny
B WIS W
a=1 g=1
Ng Ny
Lo =Dttt Dt
B=1 g=1
where
o = [ e
7 vz v
g 1 2,109 =
+a o d“ro (TS)
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°... ' The Transport Equation 12

MMMMMMMM

Four types of probabilities

. e T 3.1 13
pgj zpw / / 1 2 @z’@jd r'd°r

g _Tg (£s) 3 / 2
ﬁgi — pm / / 47TR2 )@ O, d>r' d3r
_Tg RS — — —
A — NS N
o=t = [ [, G @ NNy

X@a@ﬁdQTdQT/
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°... ' The Transport Equation 13

MMMMMMMM

Symmetry relations

Vipy; =Vjpj;
4‘/@]?204 Sapon
Sﬂpaﬁzzsbpﬁa

Conservation properties
Na N
g g g
D Vit Qi) =1
a=1 1=1
N3 N;
Sorhy+ ph =l
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°.... Boundary Conditions 1

MMMMMMMM

Surface flux approximation:

# Incoming angular flux on outer surfaces assumed to be
independent of O

Comments
# QOutgoing angular flux on outer surfaces integrated over

—

()
# Angular flux not used at region interfaces

# Approximation for incoming angular flux exact for
vacuum BC

# Approximation for incoming angular flux leads to large
errors in surface flux when flux is not isotropic
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°.... Boundary Conditions

MMMMMMMM

lllustration of approximate BC

Reflection Translation

specular

isotropic
isotropic
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°.... Boundary Conditions 3

MMMMMMMM

Recommendations to reduce errors due to approximate use
of BC for a fixed direction

# No special treatment for 2 vacuum BC
® Unfold cell once for 1 vacuum and 1 reflection BC

o Multiply unfold cell for 2 reflection or periodic cell, apply
approximate BC on final surfaces and consider results
in cell located far from these surfaces.
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°.... Boundary Conditions

MMMMMMMM

Example of cell unfolding in direction X

6 51 5 6 6 50 5 6
y g)zzg} 4 | 4 g)mQ} y
5 6 5 6 5 6 5 6

333333



°.... Boundary Conditions

MMMMMMMM

Simplifying CP equations using approximate BC
#® Assume

— —

JU =A9JY
# Final transport equation
)

with the complete collision probability matrix P¢,,,:

P{,, = (Pl + PL((AY) ™ — PL) P, )

C, 0V
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°.. Cross Sections Consideration 1

MMMMMMMM

Two types of multigroup cross-section database can be
read by DRAGON

#® Mixture macroscopic cross-section

# Isotope microscopic cross-section that contains itself a
macroscopic cross-section database
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°.. Cross Sections Consideration 2

MMMMMMMM

Minimum cross-section requirements for each mixture m
# The multigroup total cross section X7,

# The isotropic component of the multigroup scattering
cross section ¥ 9 defined as

m,s,0

Y= / d2QPEh9(Q) — Q) Py(Q - Q)
47

m,s,0

# The product of the average neutron emitted per fission
with the multigroup fission cross section vX

® The multigroup fission spectrum 7,
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°.. Cross Sections Consideration 3

MMMMMMMM

The linearly isotropic component of the multigroup
scattering cross section X9

m,s,1

9= / d2Q*El9(Q — Q)P (R - Q)
4

m,s,1

# Required only if B, leakage method is used
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°.. Cross Sections Consideration 4

MMMMMMMM

The transport correction %7,

# The transport calculations are performed using

transport corrected total (£,) and scattering ()., %)
cross sections

29 =x9 — %9

m,tc

e = e §9hyd

m,s,0 — “m,s,0 m,ic

# Takes partially into account the linearly anisotropic
scattering contributions

25/133



°.. Cross Sections Consideration 5

MMMMMMMM

For contribution of multi-neutron production reactions such
as

X4 +n] = X4_; +2n) +

The scattering cross section must be corrected to take into
account this effect

Mg =00+ 209080

m,s,0 = “m,s,0 ,(n,2n)

where E?n 2n) IS the macroscopic cross section associated

with the reaction
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°.. Cross Sections Consideration 6

MMMMMMMM

Macroscopic cross section data base can be created using
# from the input file using the MAC: module

# from a GOXS file using the MAC: module

# from a microscopic library using the LIB: module

o

from the homogenization and condensation module
EDI:

°

from a WIMS-AECL execution using the information
available on TAPE16 (side-step method)

® from a HELIOS execution
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°..  Microscopic libraries 1

MMMMMMMM

Many formats can be processed by DRAGON including
» WIMS-AECL format

» MATXS format

o WIMD-D4 format

In DRAGON resonance self-shielding calculations are pre-

formed using the Stamm’ler method
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¢.. 3—D CP Calculations

MMMMMMMM

Contents

# Collision Probabilities in 3-D

# Numerical Quadrature and Tracking

# Collision Probability Integration

# Neutron Conservation and CP Normalization
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¢.. 3—D CP Calculations

MMMMMMMM

Recall CP approximations
# Divide domain into Ny regions of volume V;

# Assume total cross sections constant inside each
region
#® Assume sources constant inside each region
s This has an impact on the selection of the spatial
mesh
# Assume sources isotropic inside each region

s This may lead to problem when scattering is highly
anisotropic.
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¢.. 3—D CP Calculations 3

MMMMMMMM

Recall BC approximations

# Divide the external boundary S into Ng surfaces of area
Sa
# Assume flux constant on external surfaces
s This has an impact on the selection of the spatial
mesh
#® Assume flux isotropic on external surfaces

s This may lead to problems when flux is highly
anisotropic near external boundaries
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¢.. Collision Probabilities in 3-D

MMMMMMMM

Collision probability definition

. e T A 3.1 13
pgj zpw / / 1 2 @i@jd r'd°r

® Spherical coordinates for d°r integral

/ d*ro; = / d*Q) / " R2dRO,
4 1

® Cartesian coordinates for d*r' integral

/ r'e; = / dz’ / dy/ / dR'©;
Vi

l\DI
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POLYTECHNIQUE
MMMMMMMM

Collision Probabilities in 3-D 3

Final form for collision probability integration

pz] / /d$ /dy/ / " dR €_TQ(R/’R)@Z'@]'
4 1 1

™ =(Rip1 — R)XJ + Z ARE + (B Rjy
k=1+1

l\DI
l\DI

g
)%

with ARy = Ry 1 — Ry 1.
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¢.. Collision Probabilities in 3-D

MMMMMMMM

Notation for optical path
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¢.. Collision Probabilities in 3-D

MMMMMMMM

After integration over R’ and R, one obtains

47
~ 2
o [0 [ a0
P-exp( Py I G

8 [1_6Xp( yglj#)}
27 2

36/133



POLYTECHNIQUE
MMMMMMMM

Collision Probabilities in 3-D

Case where X =0

41
20)
pw 47r29/ d=() /d:z:/dy@@

X AR; exp(— . {1 — exp(—T ;]

2%7 2

Case where ¥j =37 =0

1

p” 4

47
d*Q /daz /dy@@ AR;ARjexp(—T
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¢.. Collision Probabilities in 3-D

MMMMMMMM

For p7., one obtains after integration over R’ and R

- Zg /MdQ o [ 4 [ayee,
« {72—5, Wy (1 —eXp( z—§,z+ ))}

For ©¢ = 0 this is simplified to

A7
Pl = - d*Q /da;/dy@@ AR;)’

. . . . ~( ~(
Similar relations are obtained for p; and Pog
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«.. Quadrature and Tracking

@
POL’YTEC

3-D Adjuster model in DRAGON
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EEEEEEEEEEEEE .. Quadrature and Tracking 2

MMMMMMMM

Angular quadrature

® S, type EQy quadrature with 4Nq(Nq + 2)/8 angular
directions €21 ;, Q24, Q3; and €y

# Global quadrature weight W = 2/(Nq(Nq + 2))

Tracking in lower half sphere only

°

#® Number of tracking quadrant automatically reduced for
symmetric cell

# Select as many angles as possible (Neutrons travel on
a straight line)
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Do Qlladl‘atllre and Tl‘acklng

MMMMMMMM

Cartesian surface quadrature




EEEEEEEEEEEEE .. Quadrature and Tracking 4

MMMMMMMM

Cartesian quadrature

# I|dentify the radius i, of the smallest sphere including
the geometry

® Select a tracking density p, and define the line spacing

2h,

6= Ny = (2¢/pph+) + 1
p

# |Integration line [,,,, passes through

ufn:<2m_1)5 U%Z(Qn—1>5
2 2

» Integration weight W, = §°
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EEEEEEEEEEEEE .. Quadrature and Tracking S

MMMMMMMM

Comments on Cartesian surface quadrature

# In Dragon 3 different planes are selected for each given
spatial direction

# Select tracking density as dense as possible

s Each region must be touched by a maximum number
of lines
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EEEEEEEEEEEEE .. Quadrature and Tracking

DRAGON tracking example

/////\§

-
N
N




EEEEEEEEEEEEE .. Quadrature and Tracking 7

MMMMMMMM

DRAGON tracking of a line [,, ,,
1. Follow the tracking line as it travels through the cell
2. ldentify each region i and surface s uniquely

3. ldentify final region number I associated with set of
regions : (a flux region)

4. ldentify final surface number S associated with sets of
surfaces s

5. ldentify external surfaces and regions ¢ crossed by line

6. Compute distance i},m,n the neutron travels in each
region

7. Store information on temporary tracking file
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°«.. Quadrature and Tracking 3

MMMMMMMM

Case of symmetric cells (mirror reflection on one side of the

cell)
# Unfold the cell according to symmetry
Q
//?
i=3 i4 6 i=9| =10
i=1 i=2 i=6 i=7
I=1 1=2

# Regions in unfolded cells are originally assigned new
region numbers
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EEEEEEEEEEEEE .. Quadrature and Tracking 9

MMMMMMMM

Angle selection for symmetric cells

o For symmetry with respect to a (y, z) plane, track only in
quadrants corresponding to directions Q; ; and Qs ;

o For symmetry with respect to a (z, x) plane, track only in
quadrants corresponding to directions ) ; and Qs ;

o For symmetry with respect to a (z,y) plane, track only in
all quadrants
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EEEEEEEEEEEEE .. Quadrature and Tracking 10

MMMMMMMM

Post treatment of tracking file

# Assign to all spatial region i its final flux region number
combining track segments as required

# For each direction, normalize tracks using

where
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EEEEEEEEEEEEE .. Quadrature and Tracking 11

MMMMMMMM

Comments on storage requirements for tracking
# Maximum number of line segments tracks d;

dy < 6N (Nq(Ng +2))pph*
® ForN = 1000, hy = 50, p, = 20 t/lcm? and Nq = 8
dy < 20 x 10°

tracks segments.
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EEEEEEEEEEEEE .. Quadrature and Tracking 12

OOOOOOO

ACR control rod model in DRAGON
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Quadrature and Tracking 13

3-D cluster analysis not currently allowed in DRAGON
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°... CP Integration

MMMMMMMM

For each energy group
# Read a line from tracking file

# Scan this line and add contribution to p?.

1

1
2 ~ 2 ~
5 (58) Dy =5 (30) Py
D W (7 = )
n me

where W,, = WqW, /3 and

/i‘;]’n’m — (1 — exp {—Tgn,mD

=9, Withm €

1,M,M
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¢... CP Integration 2

MMMMMMMM

» Scan this line a second time and add contributions to 57

Y ngm —y9 ng?,]

_I_ZW S‘S:’%znm nm—l—lm 1'Ii]nm

metrm’ey

using

/
m

g _ 9
/{n,m,m’ T H €Xp { 7 N) l}

l=m
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°... CP Integration 3

MMMMMMMM

Finish CP calculations
# Only the contributions with m < m’ has been considered
» Symmetrize pj; using

g =g | =g
Pi; = Pj; + Dj;
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¢... CP Normalization

MMMMMMMM

Compute errors on CP conservation rules

N, N;
(87 S 1

RY =¥0V; =y 5, — ) Suivi},
a=1 1=1

N;
Rg_sﬁ Sag 29‘/,9
B_Z_ZZPaB_Z i Vilig

a=1 1=1
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¢... CP Normalization

MMMMMMMM

Diagonal Normalization

g
D, 1% (23)2%
4R?,

g — 9
pD — paa T
, Ol S,

o May result in non-physical negative probabilities
o Cannot be applied to problems involving voided zones
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¢... CP Normalization 3

MMMMMMMM

HELIOS Type Normalization
p?—[,ij :(wzg T wg)pfj pg{,aa — (w(g)c + w%)pga

# Apply conservation laws to above relation
# Solve resulting system for w9 using an iterative process

# Does not lead to negative probabilities and works for
void regions

# Default option in DRAGON
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¢... CP Normalization

MMMMMMMM

Comments on storage requirements for CP matrices
» Number of elements per groups is N*

o Memory space required for execution is about 5N?

# Total disk space required for storage of G group CP is
GN*?
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3-D DRAGON Examples

MMMMMMMM

Contents:

» Geometry.

# Collision Probability Integration and Tracking.
#® Region Merging.
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Do 3—D DRAGON Examples

MMMMMMMM

3—-D Geometry restrictions in DRAGON:

® Cartesian mesh in each direction must extend to the
whole geometry.

Cluster option not permitted.

A single cylinder per cell.

Cylinders cannot intersect other than axially.
Cylinders must extend to the whole geometry.

© o o o 0

Cylinders are by default centered in the cell.
They can be displaced using the OFFCENTER option.

e

Mixtures are specified radially, then in x, y and =.

°

Mixtures are specified even in location that do not
exists.
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°.. 3=D DRAGON Examples

MMMMMMMM

A Simple 3-D Cell:

el




9. 3= DRAGON Examples

MONTREAL

Mixture specification for simple 3—D cell:

TMPGEO := GEO: t: CAR3ID 1 1 1
CELL FC1B
X- REFL X+ REFL Y- REFL Y+ REFL Z- REFL Z+ REFL

FC1B := GEO: CARCELZ 2 3 2 1

MESHX <<MXLP>> <<MXL>> <<C1l4CN>> <<MXYD>>
MESHY <<MYLP>> <<CALLCN>> <<PYLP>>

MESHZ 0.0 49.5

OFFCENTER <<FC1lXD>> <<FC1lYD>>
RADIUS 0.0 <<RF2>> <<RCT>>
MIX 1 2 3

11 12 13

21 22 23

31 32 33

41 42 43

51 52 53 ;

.
4

Note: mixtures 1, 2, 31 and 32 not used.
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3-D DRAGON Examples

MMMMMMMM

CANDU adjuster rod simulation:
# 5 region annular fuel (including PT and CT).
# 06 region annular adjuster rod.
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MMMMMMMM

Coarse mesh geometry definition for CANDU adjuster:




9. 3= DRAGON Examples

MONTREAL

DRAGON geometry for CANDU adjuster rod:

TMPGEO t= GEO: :: CAR3D 2 11

CELL FC1B ADI1T

X- REFL X+ SYME Y- REFL Y+ SYME Z- REFL Z+ SYME
FC1B := GEO: CARCELZ 5 1 1 3
MESHX 0.0000 21.5750 MESHY 0.0000 28.5750
MESHZ 0.0000 17.7650 31.7650 49.5300
OFFCENTER 3.5 0.0
RADIUS 0.0 0.7222 2.1603 3.6007 5.1689 6.5875
MIX 123456 123456 123456 12345°%6 ;
ADIT := GEO: CARCELY 6 1 1 3
MESHX 21.5750 35.5750 MESHY 0.0000 28.5750
MESHZ 0.0000 17.7650 31.7650 49.5300
RADIUS 0.0 0.5770 3.6781 3.8100 4.4450 4.7520 6.3776
MIX 7 8 9 10 11 121 7 8 9 10 11 12 1

7 8 9 10 11 121 7 8 9 10 11 12 1 ;
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°«.. 3-D DRAGON Examples

MMMMMMMM

Coarse mesh CANDU adjuster rod after unfolding:
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°«.. 3-D DRAGON Examples

MMMMMMMM

Fine mesh CANDU adjuster rod after unfolding:

‘, ‘fflri' "'ln P
IIEL;{.'%,': i !_I/
” 7 ”’II/ Iﬁ,

llV. // ll/ l/ ///"’
fi’“’

lllilv'n\

67/133



9. 3= DRAGON Examples 10

MONTREAL

DRAGON geometry for CANDU adjuster rod:

TMPGEO t= GEO: :: CAR3D 2 11

CELL FC1B ADI1T

X- REFL X+ SYME Y- REFL Y+ SYME Z- REFL Z+ SYME
FC1B := GEO: CARCELZ 5 1 1 3
MESHX 0.0000 21.5750 SPLITX 3 MESHY 0.0000 28.5750 SPLITY 3
MESHZ 0.0000 17.7650 31.7650 49.5300
OFFCENTER 3.5 0.0
RADIUS 0.0 0.7222 2.1603 3.6007 5.1689 6.5875
MIX 123456 123456 123456 12345°%6 ;
ADIT := GEO: CARCELY 6 1 1 3
MESHX 21.5750 35.5750 SPLITX 2 MESHY 0.0000 28.5750 SPLITY 3
MESHZ 0.0000 17.7650 31.7650 49.5300 SPLITZ 2
RADIUS 0.0 0.5770 3.6781 3.8100 4.4450 4.7520 6.3776
MIX 7 8 9 10 11 121 7 8 9 10 11 12 1

7 8 9 10 11 121 7 8 9 10 11 12 1 ;
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Do 3—D DRAGON Examples 11

MMMMMMMM

Exact boundary conditions:

#® VOID: applied at the explicit boundary of the cell or
assembly.

#® SYME: applied at the center of the cells closest to the
explicit assembly boundary specified.

#® DIAG: applied at the center of the cells closest to the
explicit assembly boundary specified.

#® SSYM: applied at the explicit boundary of the cell or
assembly.
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Do 3—D DRAGON Examples 12

MMMMMMMM

Approximate boundary conditions:

#® REFL: applied at the explicit boundary of the cell or
assembly. Exact specular option not available in 3—D.

# TRAN: applied at the explicit boundary of the cell or
assembly. Exact specular option not available in 3—D.

# ALBE: applied at the explicit boundary of the cell or
assembly. Exact specular option not available.
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Do 3—D DRAGON Examples

MMMMMMMM

Region identification for single cell:

9
9
o
9

radia
from
from
from

ly outward in a cell.

ower to upper y location in a cell.

ower to upper x location in a cell.

ower to upper z location in a cell.

Region identification for assembly of cells:

9

o
9
9

Inside each cell as above.

from
from
from

ower to upper x cell location in t
ower to upper y cell location in t

ne assemb
ne assemb

ower to upper z cell location in t

ne assemb

13
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Region identification for cells and assemblies:

Back

Back
6 9 10 2 10 18
B @
1 4 5 1 7 17
Front Front
16 19 20 4 16 20
(o ()
Nel ¥
11 14 15 3 14 19

eeeee i three cells assembly
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9. 3= DRAGON Examples

MONTREAL

Region identification for one cell problem:

PLANE - 2

16
ABSENT
ABSENT

11
ABSENT
ABSENT

20
ABSENT
ABSENT

15
ABSENT
ABSENT

PLANE - 1

ABSENT
ABSENT

ABSENT
ABSENT

10
ABSENT
ABSENT

ABSENT
ABSENT

15
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9. 3= DRAGON Examples

MONTREAL

Region identification for three cells assembly:

( 1) 4 1) 16 1) 20
ABSENT 1) 15 ABSENT

ABSENT 1) 14 ABSENT

PLANE - 2 2 e
( 1) 3 1) 13 1) 19

ABSENT 1) 12 ABSENT

ABSENT 1) 11 ABSENT

( 1) 2 1) 10 1) 18

ABSENT 1) 9 ABSENT

ABSENT 1) ABSENT

PIANE -1 = e
( 1) 1 1) 1) 17

ABSENT 1) ABSENT

ABSENT 1) ABSENT

16
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Do 3—D DRAGON Examples 17

MMMMMMMM

Quadrature selection:

9

As many angles as possible:
— neutron travels on a straight line.

Tracking density must be as dense as possible:

— to touch as often as possible each region and
surface.

For CANDU reactivity devices TRAK TISO 8 25:
— 10 angles per quadrant.

— 3 x 25 tracks per cm?.

Integration lines are renormalized using ratio of
approximate to exact volumes.
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POLYTECHNIQUE
MMMMMMMM

3—-D DRAGON Examples

Comments on storage requirements:
# Size of tracking file linear in N:

dy o ph%rN

for hy = 50 cm, p = 20 t/cm? and N = 1000 regions:
— dy = 600 MDb.

# Size of CP matrix quadratic in V:
d, o< N°G

for G = 89 groups and N = 1000 regions:
— d, = 356 MDb.

#® Use XSM FILE for asmpiJ data structure.

13

76/133



°.. Region Merging 1

MMMMMMMM

Example of storage requirements for a simple 3—D problem.
» Total volume 1 liter (V = 103 cm3).

# Central fissile region is red (V = 27 cm?).

® Strong absorber is green (I = 1 cm?).

p=0

T
\

p=1
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°.. Region Merging 2

MMMMMMMM

# Region with strong absorber:
s Try to avoid using approximate boundary conditions.
s Fine mesh discretization is required.

# Region with fission:
s Try to avoid using approximate boundary conditions.
s Medium to fine mesh discretization is required.

# For moderator region
s Fine to coarse mesh discretization is required.
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Region Merging

Uniform mesh for simple 3—D problem:

Note: + — y and = — z planes are identical.
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°.. Region Merging <

MMMMMMMM

Non-uniform meshes in DRAGON:

® N =19 x 16 x 16 = 4864 regions, d, = 100 Mb/groups for
uniform mesh.

#® N = 1500 regions, d, = 9 Mb/groups for non-uniform
mesh.
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Do Reglon Merglng

MONTREAL

Using the MRG: module:

TMPVZ TMPTRZ := MRG: TMPVOL TMPTRK
REGI 1 1 2 3 4 5 6
9 10 11 12 13 14 15

1 1 2 18 19 20 21

24 25 26 27 28 29 30

31 31 32 33 34 35 36

39 40 41 42 43 44 45

31 31 32 48 49 50 51

54 55 56 57 58 59 60

61 62 63 64 65 66 67

70 71 72 73 74 75 76

7
16
22
16
37
46
52
46
68
77

8
17
23
17
38
47
53
47
69
78

17

17

47

47

78
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... Region Merging

MMMMMMMM

Region numbering for first (out of 16) z-plane:

Color by region for 304 regions Color by region for 216 regions
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Do SOlVing the CP EquatiOnS

MMMMMMMM

Contents

#® The Power lteration

#® The Multigroup Iteration
# Leakage Models
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Do SOlVing the CP Equations

MMMMMMMM

The multigroup transport equation has the form

—

I
0 :PC,UU(QS + EQf)
Gs :Esg
qf ZXVEfCE

® ¢isa N x G dimensional vector

® P.,, is the multigroup CP matrix
s Diagonal in energy, full in space.

® xvX, is a matrix for neutron production by fission and
35 IS the scattering matrix
s Diagonal in space, full in energy
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Do SOlVing the CP Equations 3

MMMMMMMM

We can decompose the scattering matrix as

23 :Ed,s - Eu,s + Ew,s

with
® ¥, ; the up-scattering matrix (lower triangular in energy)

® 3>, . the down-scattering matrix (upper triangular in
energy)

® ¥, s the within-group scattering matrix (diagonal in
energy)
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Do SOlVing the CP Equations 4

MMMMMMMM

Defining W the scattering modified CP matrix
W = (I — Pc,vvzw,s)_ch,vv

the transport equation now becomes

—

= - 1
Qb — W(Ed,sgb - Eu,sgb + EQf)

Assuming
® g¢/kisfixedand X, =0

The above equation can be solved directly from group g = 1
tog=G
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Do SOlVing the CP Equations 5

MMMMMMMM

The general equation can be solve using two iteration
processes

#® The Power iteration
illustrated by solving the transport problem with 3, ; =0

# The multigroup iteration
illustrated by solving the transport problem with ¢;/k

fixed
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POLYTECHNIQUE
MMMMMMMM

The Power Iteration

® Assume X, ;=0
o Write an iterative group by broup solution to the

transport problem as

G(1) =W (Sa,0(0) + (ZX_ 1)v2f5(l - 1))
G N G
b) =303 Vid w6
g=1 1=1 h=1

with ¢(0) a known arbitrary flux distribution and

ZZfoZVEhZ

g=1 1=1
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¢.. The Power Iteration 1

MMMMMMMM

The iteration process is repeated until

E() —k(l—1) < e
o) _ol-1)| _ _|o()
ORI a0

are both satisfied

# The parameters ¢; and ¢ can be defined independently
in DRAGON
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°.. 'The Multigroup Iteration 1

MMMMMMMM

® Assume qr/k = q'is fixed

# Solve group-by-group this fixed source problem using a
Gauss-Seidel strategy

—

3(1) = W (Sa,0(0) + Busdll = 1) +4)

& |terate until

S < €3
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°.. 'The Multigroup Iteration

MMMMMMMM

Multigroup rebalancing technique

# Neutron conservation states that for a converged
solution ¢? (1)

N N

> Sl (1) = RIVig! (1)

1=1 1=1
N g

+ Y RIVi [ mh e () + Z 2I960(1)
i=1 h=1 h=g+1

with R =1 - S, X075
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°.. 'The Multigroup Iteration

MMMMMMMM

# The multigroup problem we effectively solve yields

N N
> SWiel(l) = RIVig (1)
1=1 1=1

+ZR9 (Zzhﬁ% ) + Z »h—9 gl zn)

h=1 h=g+1
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°.. 'The Multigroup Iteration

MMMMMMMM

To restore conservation at each iteration

® Use ¢/ = a9¢7 and assume ¢/ satisfies conservation
relations, then o9 must satisfy

G
> MMl =¢f
h=1

N
M9 = 37 RV (S — £47) of
1=1
N

0! =) RiVidf
1=1

® Solve for o9(k) and rebalance flux
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°.. 'The Multigroup Iteration )

MMMMMMMM

Add relaxation parameter to the Gauss—Seidel iteration
scheme

» For appromimate solution T'({)
Bl =W (zd,sf(l) + Sy L= 1) + (I)

# Define an improved flux distribution for the next iteration
using

5(1) =T(1) + w(DAQ)
R() =F(1) — 61— 1)

and w(l) will be computed using a variational procedure
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MMMMMMMM

°.. 'The Multigroup Iteration

Select w({) in such a way that ¢(I) minimizes the tranport

functional
1 S ~
Flo) =0T 2720 — 6T ZTW7
Z=1-W (Zgs+3u5)]
This yield
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°... Leakage Models

MMMMMMMM

In 3—D, the transport equation can be solved in DRAGON
using the By and B, leakage models

# Both of these models are based on the following
factorization of the flux

—

I (7, Q) ~0I(7, Q) exp(iB - 7)

o Transport equation with leakage

# In general we will assume that keﬁ=1
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°... Leakage Models 2

MMMMMMMM

# For an infinite homogeneous media the scalar flux and
vector current are related to each other according to

QUI(Q) =J9(Q) = —iDIBWI(Q)

with DY is an homogeneous diffusion coefficient
® Apply to heterogeneous systems

# Find the homogeneous diffusion coefficient compatible
with this heterogeneous problem
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°.. Leakage Models 3

MMMMMMMM

e

Assume an heterogeneous solution is known for B2 = 0

# Use this solution to define an equivalent infinite
homogeneous problem

$IWI(Q) +iB - Q) = QU + QY
where the cross sections and sources are homogenized
using the heterogeneous flux

# Solve the homogeneous problem for D9 and B

# Insert in heterogeneous transport equation and obtain
an improved solution.

o Repeat until the iterative procedure is converged
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°... Leakage Models

MMMMMMMM

Solving the homogeneous problem (B; model)

# Use a 2 terms expansion for the scattering cross
section in Legendre polynomials

ST — Q) =X + 3807960 - 4

® Define
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POLYTECHNIQUE
MMMMMMMM

Leakage Models

# Insert into the homogeneous transport equation, and

integrate to obtain

g __ g h—>g h g h—>gB ]
V7 =« g + x VZ w + 30 g 2 52
_ 5 ]
e h— h Bw h—gq J
]9 :/89 E (Z g —+ gVZf) ZBQ —+ 32928,1 gﬁ

g1 arctan B
od =— —
B >.9

39 =1 — 2909
Solve for B, 49 and j9 and compute D9 = i - j9/B2y9
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°... Leakage Models

MMMMMMMM

The By homogeneous problem

h—>g

® Assume ¥X_,” = 0 and obtain

wg —a9 Z(ZZLHQ 4 ngzg)wh
_ he hy, .k
5 —692 = Z I+ XIS
The homogeneous diffusion coefficient is then given by
69

Dg -
o9
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MMMMMMMM

¢.... Condensation and Homogenization 1

Contents

# Condensation Technique

o Full Cell Homogenization

o Partial Cell Homogenization and SPH Factors
# Microscopic Cross Section Homogenization
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POLYTECHNIQUE
MMMMMMMM

Condensation and Homogenization 2

Condensation and homogenization techniques in DRAGON
are based on the following assumptions

# Reaction rates are physically meaningfull and should be
preserved by the condensation/nomogenization
procedure

R; = Z Vig)2! = Vigi %,
g
RY =Y Vi¢!S! = VgIss
# The eigenvalue is physically meaningfull and should be

preserved by the condensation/homogenization
procedure
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¢... Condensation Technique

MMMMMMMM

Condensed transport equation (macrogroup K that
includes ¢ € Gk)

Q-V Y IF D)+ Y SI(F)PI(F,Q

geGg geGg

It should reproduce condensed multigroup results
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¢... Condensation Technique 2

MMMMMMMM

The condensation procedure that satisfies our requirements

r= ¢

gEGK

5t oK Z 0K

Z geGk

SR =LY s

Z heGr geGk

-3«

gEGK

VZK,?; = Z VZh, gbg

Z geGk
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¢... Condensation Technique 3

MMMMMMMM

Multiplying CP transport equation by ¥¢V; and summing
over all regions i yields

1
2; SIVigl = Z VilQL; + Q%]

The equivalent transport equation in a homogeneous
infinite cell is

A A A 1 A
BV = VIQL; + Q%]

The homogenized and homogeneous transport equations
are identical if one selects a flux-volume homogenization

technique
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¢... Condensation Technique

MMMMMMMM

Flux-volume homogenization technique

A 1

6 = 3 vio!

A 1

39 7 E Vixd !
h— 1 h—g h
2l g:V&% g VZZS’Z- O;
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¢... Condensation Technique

MMMMMMMM

Flux-volume homogenization fails if
# The cell is finite (a cell with leakage) and

ZP% ¥ #1

# Partial cell homogenization cell is considered
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... Partial Cell Homogenization 1

MMMMMMMM

The heterogeneous N region transport equation
homogenized over M regions takes the form

VSl = 303 Y s QY + QY

1€M; eMr J jeMy

The M region heterogeneous transport equation takes the
from

VIXA] ijlzg ng+ Q ]

where PY,(39) indicates that the CP are computed using ho-

mogenized cross sections
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... Partial Cell Homogenization

MMMMMMMM

We need

> Visie! = Viniel

€M

and

ZpJIA ng+ Q gl =

> P (E9)[Q5,; + %Qg,z']

eMy; J jeMy

to be simultaneously true



... Partial Cell Homogenization 3

MMMMMMMM

The flux-volume homogenization method is not longer
adequate because

® There is no simple relation between 5% ,(39) and p?;(£9)

The alternative here is to use a non-linear process
» Consider a flux-volume homogenization for ¢7 and 7

» Redefine the homogeneous flux ¢¢ and cross sections
»:9 as follows

A 1 A
g _ g g gwg
o7 = M‘? oy 27 = UXT
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... Partial Cell Homogenization 4

MMMMMMMM

» Determine the SPH factors ;] numerically in such a

way that
ZpJI > QgJJF Q jl =
g g g 1 g
S: S: S: qu;(z )[Qs,z‘ T EQ ,@']
weMrp J jeM;
IS true

# The definition of the SPH factors automatically ensures

> Visde! = Vinied = Visied
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... Microscopic Cross Section

MMMMMMMM

The macroscopic cross section associated with a material
IS simply the sum over all isotopes of the isotopic
macroscopic cross section X; namely

g __ g
$=> %7,
I
where
Z%i :NLZ’U?

with Ny ;, the concentration of isotope I in region ¢

o The homogenization and condensation procedure
described above remain valid for £ .
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... Microscopic Cross Section 2

MMMMMMMM

Since the final concentration of isotope I in the cell is given
by:

%ZNI,M

we can define the equivalent homogenized microscopic
cross section as:

;(_va¢K S‘ S‘ thaggbg

1€Mr geGk

where the microscopic cross sections now become
dependent on the spatial position
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¢.... Managing a DRAGON Execution 1

MMMMMMMM

Contents

Input file formats.

Data structure formats.

Working with variables.

Conditional execution and loops.
Working with procedures.

Flow chart in DRAGON input decks

© o o o o 0
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¢.... Managing a DRAGON Execution 2

MMMMMMMM

Input file format

#® 72 columns, free format instruction ends by ;
# Comments * or !

# MODULE and objects declarations

#® Sequence of calls to modules

(list of output objects) := GEO: (list of input objects) ::
(data input) ;

e

END: _,; statement
& QUIT "LIST" . endcompilation
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¢... Managing a DRAGON Execution 3

MMMMMMMM

Data structure formats.

#® LINKED LIST Memory access

XSM FILE Direct-access file

SEQ BINARY Tracking information mainly
SEQ ASCII Machine independent format
DIR ACCESS XS library file

e o o o
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°.... Managing a DRAGON Execution

MMMMMMMM

Variable types.

>

e o o 0o

INTEGER (signed) Numbers

REAL (signed) Decimal numbers with E or .
DOUBLE (signed) Decimal numbers with D and .
STRING 72 character long, enclosedin ™"
LOGICAL = $True LOr $False L

Variable names are case sensitive.
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¢... Managing a DRAGON Execution 5

MMMMMMMM

Assign or Evaluate variables

/ REAL (variable names) =  (value) ; \
EVALUATE (variable names) = (value) ;
ECHO (variable names)

N Y,

Variable in data input deck.
#® << . >>access the content of a variable send
# >> . << putavalue into a variable recover
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¢.... Managing a DRAGON Execution 6

MMMMMMMM

Operations on variables.

#® Reverse Polish Notation
(value) (operator) (value) < (value) (value) (operator)

# Arithmetic operations + - */ **
EX: delta := b 2 ** 4, a c * * -

o Unary operations COS SQRT ABS NOT LN
EX: delta := delta SQRT

o Relational operations <> << <= + -
EX: condition := a b <=

°

Operations on STRING variables + -
#® NO mixed mode operations
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¢... Managing a DRAGON Execution 7

MMMMMMMM

IF/THEN/ELSE statement
4 )
IF (condition) THEN (statements)

WHILE and REPEAT statement
r A
WHILE (condition) DO REPEAT

(modif condition) (modif condition)

(statements) (statements)

ENDWHILE ; UNTIL (condition) ;
- J
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¢... Managing a DRAGON Execution 8

MONTREAL

Working with procedures

Called Part: Procedure File

procedure name.c2m

Calling Part: Main File

PROCEDURE (procedure name)

~e

(output objects) := (procedure name) (input objects) PARAMETER  (outputobjects) (inputobjects)

:: LINKED LIST (objectname)
SEQ ASCII (object name)

e wo

(data input) (same data input list)

<< >> send $o>>.<< recover
>> . << recover ti< >> send
7 END: :
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¢... Managing a DRAGON Execution

MMMMMMMM

Flow chart in DRAGON input decks

GEO: GEOMETRY data structure

|

EXCELT:

VOLTRK data structure
MACROLIB data structure

FLXUNK data structure

|

EDI:
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¢.... Managing a DRAGON Execution 10

MMMMMMMM

Input cross sections

#® Macroscopic library
s MAC: data input
s EDI: DRAGON calculations
s MODULE: other transport codes, WIMS TAPE16 ...
s LIB: microscopic library
— object input in ASM: or FLU: and EDI:
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¢... Managing a DRAGON Execution 11

MMMMMMMM

Tracking validation
o Set relatively low line densities and angle number
o Verify volume and surface integration errors

#® EXCELT: Useful print levels EDIT iprint :
s iprint=0  no printing
s iprint = 1 (default) geometric information and echo of
data input
s iprint=2  tracking error on volumes and surfaces

s iprint=5  surface and region numbering and
description, cell by cell and then global by plane in
3D
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¢.... Managing a DRAGON Execution 12

MONTREAL

kS,

* Use

* Procedures

Perform 3-D reactivity device analysis

* DevGeo -> generate 3-D geometry
* DevEva -> solve 3-D transport problem
* Input files

* MACRO -> macrolib for reactivity devices
*  Qutput files :
* Results -> Edition results

kS,

PROCEDURE DevGeo DevMac ;

MODULE EDI: DELETE: BACKUP: END: ;
SEQ ASCIT MACRO Results ;
LINKED LIST Volumes Macrolib Edition Fluxes PIJ ;
SEQ BINARY Tracks ;
Macrolib := MACRO :

STRING DevType := "ADJ1" ;

STRING DevLocation :
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ECOLE
POLYTECHNIQUE
MONTREAL

Managing a DRAGON Execution 13

EVALUATE DevLocation := "IN" :
Volumes Tracks := DevGeo :: <<DevType>> <<DevLocation>> ;
PIJ := ASM: Macrolib Volumes Tracks ;
Fluxes := FLU: PIJ Macrolib Volumes :: TYPE B Bl PNL ;
Edition := EDI: Fluxes Macrolib Volumes $
COND 0.626 MERGE COMP SAVE ;
PIJ Volumes Tracks Fluxes := DELETE: PIJ Volumes Tracks Fluxes ;
EVALUATE DevLocation := "OUT" ;
Volumes Tracks := DevGeo :: <<DevType>> <<DevLocation>> ;
PIJ := ASM: Macrolib Volumes Tracks ;
Fluxes := FLU: PIJ Macrolib Volumes :: TYPE B Bl PNL ;
Edition := EDI: Edition Fluxes Macrolib Volumes :: SAVE ;
PIJ Volumes Tracks Fluxes := DELETE: PIJ Volumes Tracks Fluxes ;
Results := Edition :
Edition Macrolib := DELETE: Edition Macrolib ;
END: ;

QUIT "LIST" .
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¢.... Managing a DRAGON Execution 14

MONTREAL

kS,

* Input and output structures and variables

*  Volumes : output LINKED LIST containing geometry analysis
* Tracks : output sequential binary file containing

* integration lines

* Device : string variable for yype of devices

* "ADJn" -> for adjuster rods (Type n = 1,6)

* DevLocation : string variable for device Location

* "IN" -> Device and guide tube in

* "OUT" -> Device out and guide tube in

K

PARAMETER Volumes Tracks

::: LINKED LIST Volumes ;

::: SEQ BINARY Tracks A
STRING Device ;
INTEGER DevLocation :

«+ >>Device<< >>DevLocation<< ;
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¢.... Managing a DRAGON Execution 15

MONTREAL

MODULE GEO: EXCELT: DELETE: ;
LINKED LIST GEOMETRY ;
REAL RA1 RA2 RA3 RA4 RA5 RA6 RAM ;

IF Device "ADJ1" = THEN

EVALUATE RAl RA2 RA3 RA4 RAS5 RAG6 =
0.577 3.678 3.810 4.445 4.752 6.378 ;
ELSEIF Device "ADJ2" = THEN
EVALUATE RAl RA2 RA3 RA4 RAS5 RAG6 :=
0.649 3.723 3.810 4.445 4.752 6.378 ;
ENDIF ;
INTEGER NbReg NbAngles := 48 8 ;
REAL TrkDens := 25.0 ;
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¢.... Managing a DRAGON Execution 16

MONTREAL

INTEGER MM MA1 MA2 MA3 MA4 MA5 MA6 ;
IF DevLocation "IN" = THEN
EVALUATE MM MA1 MA2 MA3 MA4 MA5 MA6
11 12 13 14 15 16 17 ;

ELSE
EVALUATE MM MAl MA2 MA3 MA4 MA5 MAG6
11 11 11 11 11 11 17

ENDIF ;
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MONTREAL

¢.... Managing a DRAGON Execution 17

GEOMETRY := GEO: c: CAR3D 2 1 2
CELL FC1B MD1B FC1T ADI1T
X- REFL X+ SYME Y- REFL Y+ SYME Z- REFL Z+ SYME

t:: FC1B := GEO: CARCELZ 5 3 4 1
e 3
::: MD1IB := GEO: CAR3D 2 41
ces 3
t:: FCIT := GEO: CARCELZ 5 3 4 2
e 3
¢:: ADIT := GEO: CARCELY 6 2 4 2
ces 3
Volumes Tracks := EXCELT: GEOMETRY ::

MAXR <<NbReg>> TRAK TISO <<NbAngles>> <<TrkDens>> ;
GEOMETRY := DELETE: GEOMETRY ;
QUIT "LIST" .

131/133



¢.. Conclusions 1

MMMMMMMM

Some comments and warning on the CP method
# The sources are assumed constant inside each region

s Select an adequate spatial discretization
This may lead to a large number of region (CP is

proportionnal to N?)
Some regions may be very small causing problem

with tracking
# Select a problem that is not too heterogeneous
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o.. Conclusions 2

MMMMMMMM

# The angular flux on each external surface are assumed
constant and isotropic

s Try to get rid of external surfaces with re-entrant
angular flux

s Select a model where the region of interest is far
from the external surfaces
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