Workshop on DRAGON Practise

W. Shen

Reactor Core Physics Branch AECL

US NRC Workshop on ACR Physics Codes AECL, Sheridan Park April 21, 2004

Canada

Outlines

- DRAGON Overview
 - DRAGON Advanced Features
 - DRAGON Major Modules
 - DRAGON Data Structure
 - DRAGON Documents
- DRAGON Input:
 - General Rules
 - Sample DRAGON Inputs and Outputs
- DRAGON Execution:
 - Side-Step Method
 - Managing a DRAGON Execution with the Side-Step Method
- DRAGON Interface
 - Interface with WIMS-AECL
 - Interface with RFSP-IST

• Part 1: DRAGON Overview

Lattice-Physics Codes

- WIMS-AECL
- WIMS9
- APOLLO2
- CASMO-4
- PHONEIX-P
- HELIOS
- PARAGON
- DRAGON

DRAGON Advanced Features (cont.)

- Industry standard Toolset (IST) Code for CANDU supercell calculation
 - Funding: EPM, HQ, NSERC, AECL, and COG
 - Developed at Ecoly Polytechnique de Montreal
 - version 3-03Bb (IST version)
- General 2D and 3D geometry flexibility
 - LWR, CANDU, VVER, Research reactors, etc.
- Various algorithms for the solution of the neutrontransport equation
 - J \pm technique
 - IC technique
 - CP technique
 - MOC technique

Â

DRAGON Advanced Features (cont.)

- Self-shielding
- Leakage treatment
- Fuel Depletion
- Perturbation and restart capability
- Modular design
 - Information transferred from one module to the other via the data structures
 - Can be interfaced easily with other production codes
- Coupled with reactor core physics code DONJON

Â

DRAGON Advanced Features (cont.)

Libraries

- WIMS-AECL libraries
 - Direct access format only (NDAS format not supported)
 - Winfrith 69-group library
 - ENDF/B-V based 89-group library
 - ENDF/B-VI based 89-group library
- WIMS-D4 libraries
 - Sequential binary format
 - WIMSKAL 69-group library
 - ANL ENDF/B-VI based 69-group and 192-group libraries
- MATXS libraries
 - Sequential binary format
 - ENDF/B-V based 69-group library in NJOY-89 MATXS format
 - ENDF/B-V based 70-group library in NJOY-91 MATXS format
- APOLLO libraries

DRAGON Major Modules

- The library modules
 - MAC: Generate or modify a DRAGON *MACROLIB* which contains the group ordered macroscopic XS for a series of mixture
 - LIB: Generate or modify a DRAGON *MACROLIB* that can read a number of different types of microscopic XS libraries
- The geometry module
 - GEO: Generate or modify a geometry
- The tracking modules
 - EXCELT: CP technique
 - SYBILT: IC technique
 - JPMT: J± technique

DRAGON Major Modules (cont.)

- The self-shielding module
 - SHI: Perform self-shielding calculations
- The assembly modules
 - ASM: Use the tracking information to generate a multigroup response or CP matrix
 - EXCELL: Combine the EXCELT: and ASM: modules, avoiding the generation of an intermediate binary tracking files
- The flux module
 - FLU:

Solve the linear system of multigroup response or CP matrix equations for the flux

DRAGON Major Modules (cont.)

- The burnup module
 - EVO: Perform in-core or out-of-core depletion calculation
- The editing module
 - EDI: Compute the reaction rates, average and condensed XS and to store this info on a file for future use
- Other modules
 - CPO: Database reconstruction module
 - INFO: Utility module
 - PSP: Graph module

DRAGON Data Structure

- MACROLIB
 - Transfer group ordered macroscopic XS between DRAGON modules
 - Can be a stand-alone structure or included into a larger structure, such as a MICROLIB structure
 - Created by the MAC:, LIB: and EDI: modules
 - Can be modified by the SHI: and EVO: modules
 - Required for the execution of the ASM: and FLU: modules
- MICROLIB
 - Transfer microscopic and macroscopic XS between DRAGON modules
 - Always include a MACROLIB structure
 - Can be a stand-alone structure or included into a larger structure, such as an EDIT structure
 - Created by the LIB: and EDI: modules
 - Can be modified by the MAC:, SHI: and EVO: modules

DRAGON Data Structure (cont.)

• GEOMETRY

- Transfer THE GEOMETRY between DRAGON modules
- Can be a stand-alone structure or included into a larger structure, such as another GEOMTRY structure
- Created by the GEO: module
- Required for the execution of the tracking modules
- TRACKING
 - Transfer the general tracking information between DRAGON modules
 - A stand-alone structure
 - Created by the tracking modules
 - Required for the execution of the ASM: module

DRAGON Data Structure (cont.)

- ASMPIJ
 - Transfer the multigroup response and CP matrices between DRAGON modules
 - A stand-alone structure
 - Created by the ASM: module
 - Required for the execution of the FLU: module
- FLUXUNK
 - Transfer the flux between DRAGON modules
 - A stand-alone structure
 - Created by the FLU: module
 - Required for the execution of the EDI: and EVO: modules

DRAGON Data Structure (cont.)

- EDITION
 - Store condensed and merged microscopic and macroscopic XS
 - A stand-alone structure but can contain MACROLIB and MICROLIB substructure
 - Created by the EDI: module
 - Required for the execution of the CPO: module
- BURNUP
 - Store burnup information
 - A stand-alone structure
 - Created by the EVO: module
 - Required for the execution of the CPO: module
- CPO
 - Store core-analysis related microscopic and macroscopic XS
 - A stand-alone structure but can contain MACROLIB and MICROLIB substructure
 - Created by the CPO: module

DRAGON Documents

- IGE-174, "A User's Guide for DRAGON" by G. Marleau, A. Herbet, and R. Roy
- IGE-236, "DRAGON Theory Manual, Part 1" by G. Marleau
- IGE-163, IGE-163, "The CLE-2000 Tool-Box" by R. Roy
- IGE-232, "A Description of the DRAGON Data Structures" by a. Herbet, G. Marleau and R. Roy
- IGE-233, "The EXCELL Geometry Numbering Scheme in DRAGON" by G. Marleau
- RC-2621, "Procedures for Reactivity-Device Calculations Using WIMS-AECL and DRAGON" by R.S. Davis

• Part 2: DRAGON Input

DRAGON Input: General Rules

- Input file formats
 - 72 columns, free format instruction ends by ;
 - Comments * or !
 - Module and objects declarations
 - Sequence of calls to modules

list of output objects) := GEO: (list of input objects) ::
(data input);

- END: ; statement
- Reference: IGE-163, "The CLE-2000 Tool-Box"

DRAGON Input: General Rules (cont.)

- Data structure formats
 - LINKED_LIST
 - XSM_FILE
 - SEQ_BINARY
 - SEQ_ASCII

- DIR_ACCESS

memory access

- direct-access file
- sequential binary file (tracking information mainly)
- sequential ASCII file (backup purpose, platform independent format)
- XS library file

DRAGON Input: General Rules (cont.)

- Working with variables
 - Variable types
 - INTEGER (signed) numbers
 - REAL (signed) decimal number with E or .
 - DOUBLE (signed) decimal number with D or .
 - STRING 72 character long, enclosed in ""
 - LOGICAL
 - Variable names are case sensitive

DRAGON Input: General Rules (cont.)

- Working with variables
 - Assign or Evaluate variables

REAL	<pre>(variable names) := (value or expressions) ;</pre>
EVALUATE	<pre>(variable names) := (value or expressions) ;</pre>
ЕСНО	(variable names) ;

- Variable in data input deck
 - << . >> access the content of a variable *send*
 - >> . << put a value into a variable *recover*

Â

DRAGON input: General Rules (cont.)

- Working with variables
 - Operations on variables
 - RPN (Reversed Polish Notation) for the calculator

(value) (value) (operator)

- Arithmetic operations + * / ** Ex. *delta* := *b* 2 ** *a c* * 4. *-
- Unary operations COS SQRT ABS NOT LN Ex. delta := delta SQRT
- Relational operations > < = <> <= + -Ex. *condition := a b <=*
- Operations on STRING variables + -

DRAGON Input: Library

- Input cross sections
 - Macroscopic library
 - MAC: data input
 - EDI: DRAGON calculation
 - T16MAC: Post-process WIMS-AECL TAPE16
 - Lib: microscopic library (object input in ASM:, EXCELL:, EDI:)
 - Microscopic library
 - Library such as WIMS-AECL ENDF/B-VI...
 - Object input in LIB:, SHI:, EVO:, and EDI

DRAGON Input: Geometry

- Geometry Card
 - TUBE, TUBEX, TUBEY, TUBEZ
 - CAR1D, CAR2D, CAR3D
 - CARCEL, CARCELX, CARCELY, CARCELZ
 - HEX, HEXZ
 - HEXCEL, HEXCELZ
- Mesh subdivision
 - SPLITX, SPLITY, SPLITZ
 - SPLITR
- Boundary Conditions
 - VOID: no incoming flux
 - SYME: cell-center reflective
 - REFL: cell-edge reflective
 - TRAN: isotropic or specular periodic cell
 - ALBE, DIAG

DRAGON Input: Geometry (cont.)

- Region identification for single cell:
 - Radically outward in a cell
 - From lower to upper *x* location in a cell
 - From lower to upper *y* location in a cell
 - From lower to upper *z* location in a cell
- Region identification for assembly of cells:
 - Inside each cell as above
 - From lower to upper *x* cell location in the assembly
 - From lower to upper *y* cell location in the assembly
 - From lower to upper *z* cell location in the assembly
- PSP: Generate PostScript representation of 2D geometry

DRAGON Input: CP Integration and Tracking

- For SYME and DIAG BC, the tracking takes place over the unfolded geometry
- As many tracking angles as possible
- Tracking density must be as fine as possible
- Each region must be crossed at least once
- Sample 3D tracking input card:
 - TRAK TISO 8 25.0
 - 8*(8+2)/2=40 angles per half sphere
 - Density of the Integration lines is 25 per cm^2
- Verify volume and surface integration errors. EXCELL: useful print levels *EDIT n*
 - n=0 no printing
 - n=1 echo of data input and geometric information (default)
 - n=2 tracking error on volumes and surfaces
 - n=5 surface and region numbering and description, cell by cell and then global by plane in 3D

DRAGON Input: Flux Solution

- Types of flux calculation to be performed
 - TYPE N: No flux calculation
 - TYPE S: Fixed source problem
 - TYPE K: Critical K_{eff} calculation
 - TYPE B: Critical buckling calculation
- Leakage models
 - Leakage coefficient calculation
 - P0: Using a P_0 model
 - P1: Using a P_1 model
 - B0: Using a B_0 model (default)
 - B1: Using a B_1 model
 - Buckling contribution
 - PNL: Homogeneous (dafault)
 - HETE:Heterogeneous

DRAGON Input: Editing

- Energy group condensation
 - Ex: COND 0.625 or COND 65 89
 - Standard 2-group condensation
- Homogenization
 - Complete homogenization: merge all regions completely
 - Ex: MERG COMP
 - By MIXTURES: merge regions containing the mixture numbers
 - Ex: *MERG MIX* 1 1 1 1 0 1 1 1 1 1
 - Compute a new paste with everything except mixture number 5
 - By REGIONS: merge regions to form a macro-region
 - Ex: *MERG REGI 1 1 1 1 2 2 2 2 2 3 3 3 3 4 4 4 4 4 5 5 5 0 0 0 0*
 - Compute 5 new macro-regions

DRAGON Input: Editing (cont.)

- Isotropic Information
 - Isotope processing from homogenized regions and results in condensed and homogenized microscopic XS
 - Ex: *MICR ALL* all isotopes in macro-regions
 - Ex: MICR (niso) (namiso) isotope names are specified
- Printing Information
 - EDI: useful print levels *EDIT n*
 - n=0 no printing
 - n=1 homogenization and condensation results of the flux (default)
 - n=2 reaction rates
 - n=5 reaction rates and condensed and/or homogenized XS

DRAGON Input: Editing (cont.)

Saving Information

- SAVE
 - Name='REF-CASE'+number (I4)
- SAVE ON (name)
 - Name =(name)+number (I4)
- SAVE ON (number)
 - Name='REF-CASE'+number (I4)
- Note: number is computed as one more than the previously stored directory in EDITION data structure
- Generation of the CPO File for core analysis
 - CPO: Module
 - Single set of XS (no depletion)
 - Ex: COMPO := CPO: EDITION :: STEP 'REF_CASE 1' NAME 'REF_CASE 1'
 - Depletion calculation, multiple sets of XS (depletion calculation)
 - Ex: COMPO := CPO: EDITION BURNUP :: BURNUP 'REF_CASE' NAME COMPO

Sample DRAGON Inputs and Outputs

- Test cases
 - TCW601: 1D Mosteller benchmark problem
 - TCW606: CANDU-6 supercell model
- Sample case for the ACR device
 - Geometry: geo
 - Cross section: lib
 - Flux calculation: cal_ref, cal_in, cal_out
 - Homogenization: total

DRAGON Model for TCW601

Legend Color by Region

1 2 3 4

DRAGON Model for TCW606 (2D Cell)

Legend Color by Region

8 9 10 11

A

DRAGON Model for TCW606 (3D Supercell)

な

• Part 3: DRAGON Execution

DRAGON Methods

- DRAGON represents both the fuel channel and the reactivity device as sets of concentric annuli or rectangle in 3-D, hence it requires homogenized multigroup macroscopic XS to represent the materials in the fuel channels and in the reactivity devices.
- Two methods identified
 - All-DRAGON method:
 - Side-step method:

- DRAGON performs both 2-D lattice-cell and 3-D supercell calculations
- DRAGON performs 3-D supercell calculations while the 2-D lattice-cell calculations are performed with WIMS-AECL

DRAGON Side-Step Method: Advantages

- Qualified method for reactivity-device calculations
- No extra effort is required to prepare the corresponding libraries with the same physical information in a format that DRAGON can read
- No extra effort is required to set up the 2-D lattice-cell calculations with DRAGON, which duplicates the work that has been done with WIMS-AECL. In addition, DRAGON and WIMS-AECL 2-D lattice-cell results are not necessarily identical
- Since the incremental XS are to be added to the device-free lattice-cell cross sections calculated with WIMS-AECL, it is more consistent that the multi-group macroscopic XS representing the materials in the fuel channels and in the reactivity devices are produced by homogenization from WIMS-AECL 2-D lattice-cell calculations.

DRAGON Side-Step Method: Models

Side-Step Method	WIMS 2D	DRAGON 3D
	Lattice Cell	Supercell
Library	89 Group ACR Library	
Geometry	2D Cluster	3D (2LP x 1LP x 1BL)
Self-Shielding	CP Technique	
Transport	CP Technique (89 groups)	
calculation		
Flux Solution	No leakage	

DRAGON Side-Step Method: Procedures

- WIMS-AECL 2-D fuel-cell transport calculations in 89 groups
- Homogenization of the fuel-cladding-coolant region and production of the corresponding 89-group macroscopic XS
- WIMS-AECL 2-D device-cell transport calculations in 89 groups
- Homogenization of the reactivity devices, if necessary, and production of the corresponding 89-group macroscopic XS
- DRAGON 3-D supercell transport calculations, with and without the reactivity devices, in 89 group groups
- Calculation of 2-energy-group incremental cross sections using the difference between the 3-D results with and without the device

Managing a DRAGON Execution with the Side-Step Method

- Generate 89-group macroscopic XS for the fuel-claddingcoolant region on PC
 - Run WIMS-AECL input "Acr_fuel" on PC and produce the TAPE16 file "temp1.t16" for the sequential T16MAC run
 - Run T16MAC input "t16_fuel" on PC and produce an ASCII file "fuel89g" for the sequential DRAGON run
- Generate 89-group macroscopic XS for the reactivity devices on PC
 - Run WIMS-AECL input "Acr_dev" on PC and produce the TAPE16 file "temp1.t16" for the sequential T16MAC run
 - Run T16MAC input "t16_fuel" on PC and produce an ASCII file "dev89g" for the sequential DRAGON run

Managing a DRAGON Execution with the Side-Step Method (cont.)

- Copy the ASCII files "fuel89g" and "dev89g" from PC to HP Unix account
- Run DRAGON on HP and produce the DRAGON CPO file
- Post-processing the DRAGON CPO file with "READ_CPO" utility on HP and generate 2-group incremental XS for use in RFSP

• Part 4: DRAGON Interface

Interface with WIMS-AECL

Interface with WIMS-AECL (cont.)

Interface with WIMS-AECL (cont.)

Materials Defined in theWIMS-AECL Model

The Cross-Section of the ACR SOR Unit

3-D Supercell Geometry with DRAGON

Interface with RFSP-IST

Interface with RFSP-IST (cont.)