Generic Environmental Impact Statement in Support of Rulemaking on Radiological Criteria for License Termination of NRC-Licensed Nuclear Facilities

Appendices C-H

Final Report

U.S. Nuclear Regulatory Commission

Office of Nuclear Regulatory Research

AND CLEAR REGULATOR

AVAILABILITY NOTICE

Availability of Reference Materials Cited in NRC Publications

Most documents cited in NRC publications will be available from one of the following sources:

- 1. The NRC Public Document Room, 2120 L Street, NW., Lower Level, Washington, DC 20555-0001
- 2. The Superintendent of Documents, U.S. Government Printing Office, P. O. Box 37082, Washington, DC 20402-9328
- 3. The National Technical Information Service, Springfield, VA 22161-0002

Although the listing that follows represents the majority of documents cited in NRC publications, it is not intended to be exhaustive.

Referenced documents available for inspection and copying for a fee from the NRC Public Document Room include NRC correspondence and internal NRC memoranda; NRC bulletins, circulars, information notices, inspection and investigation notices; licensee event reports; vendor reports and correspondence; Commission papers; and applicant and licensee documents and correspondence.

The following documents in the NUREG series are available for purchase from the Government Printing Office: formal NRC staff and contractor reports, NRC-sponsored conference proceedings, international agreement reports, grantee reports, and NRC booklets and brochures. Also available are regulatory guides, NRC regulations in the Code of Federal Regulations, and Nuclear Regulatory Commission Issuances.

Documents available from the National Technical Information Service include NUREG-series reports and technical reports prepared by other Federal agencies and reports prepared by the Atomic Energy Commission, forerunner agency to the Nuclear Regulatory Commission.

Documents available from public and special technical libraries include all open literature items, such as books, journal articles, and transactions. *Federal Register* notices, Federal and State legislation, and congressional reports can usually be obtained from these libraries.

Documents such as theses, dissertations, foreign reports and translations, and non-NRC conference proceedings are available for purchase from the organization sponsoring the publication cited.

Single copies of NRC draft reports are available free, to the extent of supply, upon written request to the Office of Administration, Distribution and Mail Services Section, U.S. Nuclear Regulatory Commission, Washington DC 20555–0001.

Copies of industry codes and standards used in a substantive manner in the NRC regulatory process are maintained at the NRC Library, Two White Flint North, 11545 Rockville Pike, Rockville, MD 20852–2738, for use by the public. Codes and standards are usually copyrighted and may be purchased from the originating organization or, if they are American National Standards, from the American National Standards Institute, 1430 Broadway, New York, NY 10018–3308.

T

NUREG-1496 Vol. 3

Generic Environmental Impact Statement in Support of Rulemaking on Radiological Criteria for License Termination of NRC-Licensed Nuclear Facilities

Appendices C-H

Final Report

Manuscript Completed: July 1997 Date Published: July 1997

Division of Regulatory Applications Office of Nuclear Regulatory Research U.S. Nuclear Regulatory Commission Washington, DC 20555-0001

ABSTRACT

The action being considered in this Final Generic Environmental Impact Statement (GEIS) is an amendment to the Nuclear Regulatory Commission's (NRC) regulations in 10 CFR Part 20 to include radiological criteria for decommissioning of lands and structures at nuclear facilities. Under the National Environmental Policy Act (NEPA), all Federal agencies must consider the effect of their actions on the environment. To fulfill NRC's responsibilities under NEPA, the Commission is preparing this GEIS which analyzes alternative courses of action and the costs and impacts associated with those alternatives.

In preparing the final GEIS, the following approach was taken: (1) a listing was developed of regulatory alternatives for establishing radiological criteria for decommissioning; (2) for each alternative, a detailed analysis and comparison of incremental impacts, both radiological and nonradiological, to workers, members of the public, and the environment, and costs were performed; and (3) based on the analysis of impacts and costs, conclusions on radiological criteria for decommissioning were provided. Contained in the GEIS are results and conclusions related to achieving, as an objective of decommissioning ALARA, reduction to preexisting background, the radiological criterion for unrestricted use, decommissioning ALARA analysis for soils and structures containing contamination, restricted use and alternative analysis for special site-specific situations and groundwater cleanup. In its analyses, the final GEIS includes consideration of comments made on the draft GEIS (NUREG-1496, August 1994) during the public comment period.

Table of Contents

.

-

.

.

•••

. . .

.

.

Volume 3 - Supporting Appendices

		Page
Abstra	ict	iii
Appen	idix C: Rat	Estimated Costs for Decontamination as a Function of Residual Radiation Dose for Facilities and Soils
C.1	Introd C.1.1 C.1.2 C.1.3 C.1.4	ction C.1-1 GEIS Scope C.1-1 C.1.1.1 Reference Facilities C.1-1 C.1.1.2 Decommissioning/Remediation Alternatives C.1-2 Purpose of This Appendix C.1-2 Analytical Approach C.1-2 Appendix Organization C.1-4
C.2	Summ C.2.1 C.2.2 C.2.3 C.2.4	ry Of Results
C.3	Modif C.3.1	cations to Analyses In Response To Public Comments
	C.3.2	Reference Uranium Fuel Fabrication PlantC.3-4C.3.2.1Summary of Public CommentsC.3-4C.3.2.2Analyses Conducted in Response to Public CommentsC.3-5C.3.2.3Analysis Modifications Made in Response to PublicC.3-6
	C.3.3	Reference Sealed Source Manufacturer
	C.3.4	Reference Rare Metal Extraction FacilityC.3-8C.3.4.1Summary of Public CommentsC.3-8C.3.4.2Analyses Conducted in Response to Public CommentsC.3-8

NUREG-1496

v

.

		4
		C.3.4.3 Analysis Modifications Made in Response to Public
		Comments
C.4	Chara	cterization of Reference Facility Contamination
	C.4.1	Reference Nuclear Power Reactor Station
		C.4.1.1 Description of Building Contamination C.4-1
		C.4.1.2 Description of Soil Contamination C.4-4
	C.4.2	Reference Uranium Fuel Fabrication Plant C.4-6
		C.4.2.1 Description of Building Contamination C.4-6
		C.4.2.2 Description of Soil Contamination C.4-8
	C.4.3	Reference Sealed Source Manufacturer C.4-9
		C.4.3.1 Description of Building Contamination C.4-10
		C.4.3.2 Description of Soil Contamination C.4-10
	C.4.4	Reference Rare Metal Extraction Facility C.4-11
		C.4.4.1 Description of Building Contamination C.4-11
		C.4.4.2 Description of Soil Contamination C.4-11
C.5	Metho	dology for Estimating Contamination Levels
	C.5.1	Cobalt- and Cesium-Contaminated Soil
	C.5.2	Uranium-Contaminated Soil C.5-3
	C.5.3	Thorium-Contaminated Soil C.5-4
C.6	Cost N	Methodology for Remediation of Concrete and Soils
	C.6.1	Concrete Surface Decontamination Cost Calculation Methodology C.6-1
	C.6.2	Concrete Surface Decontamination Technology and Cost
		C.6.2.1 Rates of Floor and Wall Surface Removal
		C.6.2.2 Unit Costs for Removing Contaminated Concrete Surfaces C.6-2
		C.6.2.3 Crack and Wet Spot Removal C.6-3
	C.6.3	Removal of Activated Concrete From the Reactor Bioshield
	C.6.4	Soil Decontamination Cost Methodology C.6-4
	C.6.5	Soil Treatment Technologies C.6-5
		C.6.5.1 Soil Washing - General Description
		C.6.5.2 Other Soil Cleanup Technologies C.6-6
	C.6.6	Cost and Labor Estimating Bases for Soil Remediation/Treatment C.6-7
		C.6.6.1 Excavation
		C.6.6.2 Removal of Contaminated Soil Beneath Concrete Floor
		"Wet Spots"
		C.6.6.3 Soil Washing C.6-7
		C.6.6.4 Packaging C.6-8
		C.6.6.5 Transportation C.6-8
		C.6.6.6 Burial Costs C.6-8
		C.6.6.7 Tailings Pile Stabilization and Capping Costs C.6-8
		C.6.6.8 Occupational Radiation Dose Estimates C.6-9
		•

, **, ,** ,

C.7	Presentation of Analytical ResultsC.7-1C.7.1Analysis BasesC.7-1C.7.2Analytical ResultsC.7-3C.7.3Reference Nuclear Power PlantC.7-4C.7.4Reference Uranium Fuel Fabrication PlantC.7-7C.7.5Reference Sealed Source ManufacturerC.7-9C.7.6Reference Rare Metal Extraction PlantC.7-11		
C.8	Analysis of Groundwater Remediation		
	C.8.1 Groundwater Remediation Reference Cases		
	C.8.1.1 Reference Cases 1		
C.9	References		
Attacl	ment A: Calculated Dose Factors for Three Land-Use Scenarios C.A-1		
Attac	nent B: Dose Rate Spreadsheets for Contaminated Soils C.B-1		
Attac	nent C: Detailed Spreadsheets - Calculated Costs and Other Parameters for Remediation of Contaminated Soil at Nuclear Facilities C.C-1		
Attachment D: Reproduced Appendix C of Draft Generic Environmental Impact Statement (Draft GEIS) C.I.			
Attacl	nent E: Detailed Groundwater Information		
Appendix D: Termination Survey Considerations and Detailed Analysis of Costs of Termination Surveys			
D.1	Introduction		
D.2	Modifications Made in Response to Public Comments		
D.3	Overall Survey Methodology Approach D-1 D.3.1 Bases of Survey Techniques D-1 D.3.2 Dose Conversion Factors D-1 D.3.3 Instrumentation D-1		
D.4	Survey Costs D-2 D.4.1 Labor Cost D-2 D.4.2 Analytical Cost D-2 D.4.3 Special Services D-2		

•

.

:

۰.

े **.** े

.

•

NUREG-1496

.

vii

.

D.5	Detaile	d Survey Analysis for Reference Facilities D-2
	D.5.1	Survey Cost Estimate Introduction and Assumptions D-2
	D.5.2	Power Reactor
		D.5.2.1 Survey Cost Estimate for 100 mrem/y D-4
		D.5.2.2 Survey Cost Estimate for 60 mrem/y D-6
		D.5.2.3 Survey Cost Estimate for 25 mrem/y D-8
		D.5.2.4 Survey Cost Estimate for 15 mrem/y D-10
		D.5.2.5 Survey Cost Estimate for 3 mrem/y D-14
	D.5.3	Sealed Source Manufacturer Facility D-16
		D.5.3.1 Survey Cost Estimate for 100 mrem/y D-16
		D.5.3.2 Survey Cost Estimate for 60 mrem/y D-18
		D.5.3.3 Survey Cost Estimate for 25 mrem/y D-20
		D.5.3.4 Survey Cost Estimate for 15 mrem/y D-22
		D.5.3.5 Survey Cost Estimate for 3 mrem/y D-25
	D.5.4	Uranium Fuel Fabrication Facility D-27
		D.5.4.1 Survey Cost Estimate for 100 mrem/y D-27
		D.5.4.2 Survey Cost Estimate for 60 mrem/y D-29
		D.5.4.3 Survey Cost Estimate for 25 mrem/y D-31
		D.5.4.4 Survey Cost Estimate for 15 mrem/y D-33
		D.5.4.5 Survey Cost Estimate for 3 mrem/y D-36
	D.5.5	Rare Metal Extraction Facility
		D.5.5.1 Survey Cost Estimate for 100 mrem/y D-39
		D.5.5.2 Survey Cost Estimate for 60 mrem/y D-41
•		D.5.5.3 Survey Cost Estimate for 25 mrem/y D-43
		D.5.5.4 Survey Cost Estimate for 15 mrem/y D-45
		D.5.5.5 Survey Cost Estimate for 3 mrem/y D-48
D.6	Results	D-50
D.7	Relativ	e Costs of Conducting Other Radiological Surveys for
	Decom	missioning D-50
D.8	Referer	nces
Appen	dix E:	Summary of Draft GEIS Scoping Process
E.1	Basis f	or Scoping Process E-1
E.2	Scoping	g Activities Conducted E-1
E.3	Scoping	g Comments Received E-1
E.4	Nature	of Scoping Process E-2
E.5	Summa	ry of Conclusions of the Scoping Process E-2

.

.

•

Appendix F: Access Restrictions for Restricted Use of Facilities That Have Had Their Licenses Terminated by NRC		
F.1	Perimeter Fence	
F.2	Paving and Surfacing F-1	
F.3	Landscaping F-2	
F.4	Access Restriction Costs for Reference Facilities F-2	
F.5	References F-4	
Apper	ndix G: Evaluation of the Planned Disposal Capacity for Decommissioning and Normal Operation Waste	
Gl	Introduction and Background G1	
0.1		
G.2	Approach and Method G-1	
0.2	Waste Concretes Profiles and Population	
.0.3	waste Generator Fromes and Population	
G.4	Estimated Quantities of Low-Level Waste Generated	
	G.4.1 Normal Operations Waste G-12	
	G.4.2 Estimated Waste Volumes from	
	Decommissioning of Structures and Lands at	
	Reference Facilities G-12	
	G.4.2.1 Nuclear Power Plants G-15	
	G.4.2.2 Test and Research Reactors G-15	
	G.4.2.3 Fuel Cycle Facilities G-15	
	G.4.2.4 Non-Fuel Cycle Materials Facilities	
	G.4.2.5 Dry Spent Fuel Storage G-15	
	G.4.3 Sites in the Site Decommissioning	
	Management Plan (SDMP) G-19	
G.5	Waste Canacity Projections	
U	G.5.1 Appalachian States Compact	
	G.5.2 Central Interstate Compact G-23	
	G.5.3 Central Midwest Compact G-23	
	G.5.4 Midwest Interstate Compact G-23	
	G.5.5 Northeast Compact G-23	
	G.5.6 Northwest Compact G-25	
	G.5.7 Rocky Mountain Compact G-26	
	G.5.8 Southeast Compact G-26	
	G.5.9 Southwestern Compact G-26	
	G.5.10 New Hampshire G-27	
	G.5.11 Massachusetts G-27	
	G.5.12 Rhode Island G-27	
	G.5.13 New York G-27	

....

. •

••

.

•

: :

. . .

S

:6

	G.5.14 G.5.15 G.5.16 G.5.17	Texas Compact - PendingG-27MichiganG-28District of ColumbiaG-28Puerto RicoG-28
G.6	Onsite	Waste Disposal G-29
G.7	Discus	sion and Summary G-29
G.8	Refere	nces
Appen	dix H:	Summary of Comments on Draft Generic Environmental Impact Statement
H.1	Regula	atory Alternatives and Approach H-1
H.2	Analys H.2.1 H.2.2 H.2.3 H.2.4 H.2.5	sis of Impacts and CostsH-2Reference FacilitiesH-2Human Health Impacts; Dose/Mortality ModelingH-2H.2.2.1 Dose Modeling ApproachH-2H.2.2.2 Use of the Linear Nonthreshold Hypothesis in AnalysisH-3H.2.2.3 Time Period for AnalysisH-4H.2.2.4 Transfer of Risk Nonradiological Impacts and WasteH-4Disposal ImpactsH-4H.2.2.5 Effect of ChemicalsH-5H.2.2.6 RadonH-6Nonhuman ImpactsH-6Impacts on Waste Disposal/CapacityH-7H.2.4.1 Limits on CapacityH-7H.2.4.2 NORM WasteH-7Methods and Costs for DecommissioningH-8H.2.5.1 Inaccuracy in CostsH-8H.2.5.2 Cost of Compliance, Social Costs, and Other CostsH-8
H.3	Result H.3.1	s of Analysis
		Cost-Benefit Analysis Approaches H-9
	H.3.2	Comparison of Costs and Benefits H-10
	H.3.3	Restricted Use
	H.3.4	Need for Groundwater Analysis

.

:

÷

Tables

.

•

. .

· •

•

۰. .

•

:

:

.

•

. .

.

•

6.

н ¹

C.2.1	GEIS Scenario Matrix C.2-8
C.2.1.1	Incremental Costs and Occupational Dose for Decontamination of
· .	the Reference Nuclear Power Plant Bioshield C.2-9
C.2.1.2	Summary of Costs and Occupational Dose for Decontamination of the
	Reference Nuclear Power Plant Floors/Walls
C.2.1.3	Incremental Costs and Occupational Dose for Remediation of Contaminated
	Soil at the Reference Nuclear Power Plant (Unrestricted Land Use,
	Deposition on Soil Surface, with Soil Washing)
C.2.1.4	Incremental Costs and Occupational Dose for Remediation of Contaminated
	Soil at the Reference Nuclear Power Plant (Unrestricted Land Use.
	Deposition on Soil Surface. Direct Disposal of Soil)
C.2.1.5	Incremental Costs and Occupational Dose for Remediation of Contaminated
0.2.1.0	Soil at the Reference Nuclear Power Plant (Restricted Land Use.
	Deposition on Soil Surface, with Soil Washing)
C.2.1.6	Incremental Costs and Occupational Dose for Remediation of Contaminated
	Soil at the Reference Nuclear Power Plant (Restricted Land Use.
	Deposition on Soil Surface. Direct Disposal of Soil)
C.2.1.7	Incremental Costs and Occupational Dose for Remediation of Contaminated
	Soil at the Reference Nuclear Power Plant (Unrestricted Land Use.
	Deposition on Soil Surface, with Soil Washing, 50-Year SAFSTOR)
C.2.1.8	Incremental Costs and Occupational Dose for Remediation of Contaminated
0.2.1.0	Soil at the Reference Nuclear Power Plant (Unrestricted Land Use.
	Deposition on Soil Surface. Direct Disposal of Soil. 50-Year SAFSTOR)C.2-16
C.2.1.9	Incremental Costs and Occupational Dose for Remediation of Contaminated
	Soil at the Reference Nuclear Power Plant (Restricted Land Use.
	Deposition on Soil Surface, with Soil Washing, 50-Year SAFSTOR)
C.2.1.10	Incremental Costs and Occupational Dose for Remediation of Contaminated
	Soil at the Reference Nuclear Power Plant (Restricted Land Use.
	Deposition on Soil Surface. Direct Disposal of Soil. 50-Year SAFSTOR) C.2-18
C.2.1.11	Incremental Costs and Occupational Dose for Remediation of Contaminated
	Soil at the Reference Nuclear Power Plant (Unrestricted Land Use.
· . •	Spill/Leak. With Soil Washing)
C.2.1.12	Incremental Costs and Occupational Dose for Remediation of Contaminated
	Soil at the Reference Nuclear Power Plant (Unrestricted Land Use.
	Spill/Leak, Direct Disposal of Soil) C.2-20
C.2.1.13	Incremental Costs and Occupational Dose for Remediation of Contaminated
	Soil at the Reference Nuclear Power Plant (Restricted Land Use.
	Spill/Leak. With Soil Washing)
C.2.1.14	Incremental Costs and Occupational Dose for Remediation of Contaminated
	Soil at the Reference Nuclear Power Plant (Restricted Land Use.
	Spill/Leak, Direct Disposal of Soil)
· .	when means and a subraw of south a second

NUREG-1496

and the second second second

• . . .

C.2.1.15	Incremental Costs and Occupational Dose for Remediation of Contaminated
	Soil at the Reference Nuclear Power Plant (Unrestricted Land Use,
~ ~	Spill/Leak, with Soil Washing, 50-Year SAFSTOR) C.2-23
C.2.1.16	Incremental Costs and Occupational Dose for Remediation of Contaminated
	Soil at the Reference Nuclear Power Plant (Unrestricted Land Use,
	Spill/Leak, Direct Disposal of Soil, 50-Year SAFSTOR) C.2-24
C.2.1.17	Incremental Costs and Occupational Dose for Remediation of Contaminated
	Soil at the Reference Nuclear Power Plant (Restricted Land Use,
	Spill/Leak, with Soil Washing, 50-Year SAFSTOR) C.2-25
C.2.1.18	Incremental Costs and Occupational Dose for Remediation of Contaminated
	Soil at the Reference Nuclear Power Plant (Restricted Land Use,
	Spill/Leak, Direct Disposal of Soil, 50-Year SAFSTOR) C.2-26
C.2.2.1	Incremental Costs and Occupational Dose for Remediation of Contaminated
	Soil at the Reference Uranium Fuel Fabrication Plant (Unrestricted Land Use,
	Deposition on Soil Surface, with Soil Washing) C.2-27
C.2.2.2	Incremental Costs and Occupational Dose for Remediation of Contaminated
	Soil at the Reference Uranium Fuel Fabrication Plant (Unrestricted Land Use,
	Deposition on Soil Surface, Direct Disposal of Soil)
C.2.2.3	Incremental Costs and Occupational Dose for Remediation of Contaminated
	Soil at the Reference Uranium Fuel Fabrication Plant (Restricted Land Use,
	Deposition on Soil Surface, with Soil Washing) C.2-29
C.2.2.4	Incremental Costs and Occupational Dose for Remediation of Contaminated
	Soil at the Reference Uranium Fuel Fabrication Plant (Restricted Land Use,
	Deposition on Soil Surface, Direct Disposal of Soil)
C.2.2.5	Incremental Costs and Occupational Dose for Remediation of Contaminated
	Soil at the Reference Uranium Fuel Fabrication Plant (Unrestricted Land Use,
	Mixing/Landfilling, with Soil Washing) C.2-31
C.2.2.6	Incremental Costs and Occupational Dose for Remediation of Contaminated
	Soil at the Reference Uranium Fuel Fabrication Plant (Unrestricted Land Use,
	Mixing/Landfilling, Direct Disposal of Soil)
C.2.2.7	Incremental Costs and Occupational Dose for Remediation of Contaminated
	Soil at the Reference Uranium Fuel Fabrication Plant (Restricted Land Use,
	Mixing/Landfilling, with Soil Washing) C.2-33
C.2.2.8	Incremental Costs and Occupational Dose for Remediation of Contaminated
	Soil at the Reference Uranium Fuel Fabrication Plant (Restricted Land Use,
	Mixing/Landfilling, Direct Disposal of Soil)
C.2.3.1	Summary of Costs and Occupational Dose for Decontamination of the
	Reference Sealed Source Manufacturer Floors/Walls
C.2.3.2	Incremental Costs and Occupational Dose for Remediation of Contaminated
	Soil at the Reference Sealed Source Manufacturer Site (Unrestricted Land Use
	Deposition on Soil Surface. With Soil Washing) C 2-36
C.2.3.3	Incremental Costs and Occupational Dose for Remediation of Contaminated
~	Soil at the Reference Sealed Source Manufacturer Site (Unrestricted Land Use
	Deposition on Soil Surface. Direct Deposit of Soil)
	Deposition on bon burnee, Direct Deposit of bonj

xii

C.2.3.4	Incremental Costs and Occupational Dose for Remediation of Contaminated Soil at the Reference Sealed Source Manufacturer Site (Restricted Land Use, Deposition on Soil Surface, With Soil Washing)
C.2.3.5	Incremental Costs and Occupational Dose for Remediation of Contaminated Soil at the Reference Sealed Source Manufacturer Site (Restricted Land Use, Deposition on Soil Surface, Direct Deposit of Soil)
C.2.3.6	Incremental Costs and Occupational Dose for Remediation of Contaminated Soil at the Reference Sealed Source Manufacturer Site (Unrestricted Land Use, Spill/Leak, With Soil Washing)
C.2.3.7	Incremental Costs and Occupational Dose for Remediation of Contaminated Soil at the Reference Sealed Source Manufacturer Site (Unrestricted Land Use, Spill/Leak, Direct Disposal of Soil)
C.2.3.8	Incremental Costs and Occupational Dose for Remediation of Contaminated Soil at the Reference Sealed Source Manufacturer Site (Restricted Land Use, Spill/Leak, With Soil Washing)
C.2.3.9	Incremental Costs and Occupational Dose for Remediation of Contaminated Soil at the Reference Sealed Source Manufacturer Site (Restricted Land Use, Spill/Leak, Direct Disposal of Soil)
C.2.4.1	Incremental Costs and Occupational Dose for Remediation of Contaminated Soil at the Reference Rare Metal Extraction Plant (Unrestricted Land Use, Deposition on Soil Surface, With Soil Washing)
C.2.4.2	Incremental Costs and Occupational Dose for Remediation of Contaminated Soil at the Reference Rare Metal Extraction Plant (Unrestricted Land Use, Deposition on Soil Surface, Direct Disposal of Soil)
C.2.4.3	Incremental Costs and Occupational Dose for Remediation of Contaminated Soil at the Reference Rare Metal Extraction Plant (Restricted Land Use, Deposition on Soil Surface, With Soil Washing)
C.2.4.4	Incremental Costs and Occupational Dose for Remediation of Contaminated Soil at the Reference Rare Metal Extraction Plant (Restricted Land Use, Deposition on Soil Surface, Direct Disposal of Soil)
C.2.4.5	Incremental Costs and Occupational Dose for Remediation of Contaminated Soil at the Reference Rare Metal Extraction Plant (Unrestricted Land Use, Mixing/Landfilling, With Soil Washing)
C.2.4.6	Incremental Costs and Occupational Dose for Remediation of Contaminated Soil at the Reference Rare Metal Extraction Plant (Unrestricted Land Use, Mixing/Landfilling Direct Disposal of Soil)
C.2.4.7	Incremental Costs and Occupational Dose for Remediation of Contaminated Soil at the Reference Rare Metal Extraction Plant (Restricted Land Use, Mixing/Landfilling, With Soil Washing)
C.2.4.8	Incremental Costs and Occupational Dose for Remediation of Contaminated Soil at the Reference Rare Metal Extraction Plant (Restricted Land Use, Mixing/Landfilling, Direct Disposel of Soil)
C.2.5.1	Incremental Costs and Occupational Dose for Remediation of Contaminated Soil at the Reference Uranium Mill (Unrestricted Land Use, Deposition on Soil Surface, With Soil Washing)

. . 😜

C.2.5.2	Incremental Costs and Occupational Dose for Remediation of Contaminated Soil at the Reference Uranium Mill (Unrestricted Land Use,
	Deposition on Soil Surface, Direct Disposal of Soil) C.2-53
C.2.5.3	Incremental Costs and Occupational Dose for Remediation of Contaminated
	Soil at the Reference Uranium Mill (Restricted Land Use,
	Deposition on Soil Surface, With Soil Washing) C.2-54
C.2.5.4	Incremental Costs and Occupational Dose for Remediation of Contaminated
	Soil at the Reference Uranium Mill (Restricted Land Use,
	Deposition on Soil Surface, Direct Disposal of Soil) C.2-55
C.4.1.1	Extent of Surface Radionuclide Contamination in the Reference PWR Nuclear
	Power Station
C.4.1.2	Gamma-Emitting Radionuclide Distributions in Dry Active Waste C.4-4
C.4.1.3	Concentration Ranges of Radionuclides in Contaminated Surface Soils (0-4 cm)
	from Radiation Controlled Areas
C.4.2.1	Distribution of Contaminated Concrete Floor Area in the Reference Uranium
	Fuel Fabrication Facility C.4-7
C.5.1.1	Concentration of ⁶⁰ Co and ¹³⁷ Cs in Soil at Humboldt Bay C.5-7
C.5.1.2	Value for Parameters in the C(x) Model for ⁶⁰ Co and ¹³⁷ Cs C.5-7
C.5.2.1	Estimated Contaminated Soil Volume Ratio at Different Cleanup Levels for
	the Ventron Corporation Plant
C.7.1.1	Total and Contaminated Surface Areas for Structures and Soils at
	Each of the Reference Facilities
C.7.1.2	Ranges of Soil Surface Activities for the Radionuclides of Interest C.7-14
C.7.2.1	GEIS Scenario Matrix C.7-15
C.7.3.1	Calculated Costs and Other Parameters for Decontamination of Reactor
	Bioshield Concrete
C.7.3.2	Calculated Costs and Other Parameters for Decontamination of Reactor
	Wall/Floor Concrete C.7-16
C.7.3.3	Summary of Costs and Occupational Dose for Remediation of Contaminated
	Soil at the Reference Nuclear Power Plant Unrestricted Land Use C.7-17
C.7.3.4	Summary of Costs and Occupational Dose for Remediation of Contaminated
	Soil at the Reference Nuclear Power Plant Restricted Land Use C.7-18
C.7.3.5	Calculated Costs and Other Parameters for Decontamination of Reactor
	Bioshield Concrete (50-Year SAFSTOR) C.7-19
C.7.3.6	Calculated Costs and Other Parameters for Decontamination of Reactor
	Wall/Floor Concrete (50-Year SAFSTOR) C.7-19
C.7.3.7	Summary of Costs and Occupational Dose for Remediation of Contaminated
	Soil at the Reference Nuclear Power Plant Unrestricted Land Use,
	50-Year SAFSTOR
C.7.3.8	Summary of Costs and Occupational Dose for Remediation of Contaminated
	Soil at the Reference Nuclear Power Plant Restricted Land Use.
	50-Year SAFSTOR
C.7.3.9	Summary of Costs and Occupational Dose for Remediation of Contaminated
	Soil at the Reference Nuclear Power Plant Unrestricted Land Use.
	Spill/Leak C.7-22

ĩ

•

.

C.7.3.10	Summary of Costs and Occupational Dose for Remediation of Contaminated Soil at the Reference Nuclear Power Plant Restricted Land Use,
	Spill/Leak C.7-23
C.7.3.11	Summary of Costs and Occupational Dose for Remediation of Contaminated
	Soli at the Reference indicear Power Plant Unrestricted Land Use, Spill/Leak 50-Year SAESTOR
C.7.3.12	Summary of Costs and Occupational Dose for Remediation of Contaminated
0.7.15112	Soil at the Reference Nuclear Power Plant Restricted Land Use.
	Spill/Leak, 50-Year SAFSTOR C.7-25
C.7.4.1	Calculated Costs and Other Parameters for Decontamination of Uranium
	Fuel Fabrication Plant Wall/Floor Concrete
C.7.4.2	Summary of Costs and Occupational Dose for Remediation of Contaminated
	L and Lise
C743	Summary of Costs and Occupational Dose for Remediation of Contaminated
0.7.4.5	Soil at the Reference Uranium Fuel Fabrication Plant Restricted
	Land Use
C.7.4.4	Summary of Costs and Occupational Dose for Remediation of Contaminated
	Soil at the Reference Uranium Fuel Fabrication Plant Unrestricted
0745	Land Use, Mixing/Landfilling C.7-29
C.7.4.5	Summary of Costs and Occupational Dose for Remediation of Contaminated
	Land Use. Mixing/Landfilling
Ċ.7.5.1	Calculated Costs and Other Parameters for Decontamination of Sealed
	Source Manufacturer Facility Wall/Floor Concrete
C.7.5.2	Summary of Costs and Occupational Dose for Remediation of Contaminated
	Soil at the Reference Sealed Source Manufacturer Site Unrestricted
0752	Land Use
0.7.3.3	Soil at the Reference Sealed Source Manufacturer Site Restricted
	Land Use
C.7.5.4	Summary of Costs and Occupational Dose for Remediation of Contaminated
	Soil at the Reference Sealed Source Manufacturer Site Unrestricted
0755	Land Use, Spill/Leak C.7-34
C.7.5.5	Summary of Costs and Occupational Dose for Remediation of Contaminated
	Land Use Spill/Leak C 7-35
C.7.6.1	Calculated Costs and Other Parameters for Decontamination of Rare
	Metal Extraction Plant Wall/Floor Concrete
C.7.6.2	Summary of Costs and Occupational Dose for Remediation of Contaminated
	Soil at the Reference Rare Metal Extraction Plant Unrestricted
0767	Land Use
0.7.0.3	Summary of Costs and Occupational Dose for Remediation of Contaminated Soil at the Reference Rare Metal Extraction Plant Restricted
	Land Use

.•

. .

C.7.6.4	Summary of Costs and Occupational Dose for Remediation of Contaminated Soil at the Reference Rare Metal Extraction Plant Unrestricted
	Land Use, Mixing/Landfilling C.7-39
C.7.6.5	Summary of Costs and Occupational Dose for Remediation of Contaminated
	Soil at the Reference Rare Metal Extraction Plant Restricted
	Land Use, Mixing/Landfilling C.7-40
C.7.7.1	Summary of Costs and Occupational Dose for Remediation of Contaminated
	Soil at the Reference Uranium Mill Unrestricted Land Use
C772	Summary of Costs and Occupational Dose for Remediation of Contaminated
0.1.1.2	Soil at the Reference Uranium Mill Restricted Land Use C 7.42
C 8 1	Soil Removal to Control Prospective Uranium Contamination
0.0.1	Incremental Costs & Impacts from 25 mrem/y Based on Usage
	hy 25 Persons C 8-5
C 8 2	Sr. 00 Remediation by Dumn and Treat Incremental Costs and Impacts
C.0.2	from 25 mrem/y Based on Usage by 25 Persons
C 9 2	Iranium Demediation by Dump and Treat Incremental Costs and Imposts
0.0.5	from 25 mrom/y Dasad on Usaga by 25 Dargons
C 9 A	Demodiction by Destricting Lies & Droyiding Deplacement Water for an
C.0.4	Se 00 and Uranium Site Incremental Costs and Impacts from 25 mrsm/r
	Sr-90 and Oranium Sile, incremental Cosis and impacts from 25 mrem/y
	based on Usage by 25 Persons C.8-8
D11	Douver Decetor D 52
D.1.1	Power Reactor
D.2.1	Sealed Source Fachity
D.3.1	U ruei radrication
D.4.1	Kare Metal Extraction Facility D-73
F.1	Calculated Costs for Site Access Restrictions F-3
a a a	
G.3-1	Nuclear Power Plants in Commercial Operation
G.3-2	Formerly Licensed Commercial Nuclear Power Plants
G.3-3	Location and Types of Research and Test Nuclear Reactors
G.3-4	Research and Test Nuclear Reactors Preparing for or
	Undergoing Decommissioning; Possession Only License G-9
G.3-5	Location of Fuel Fabrication, Uranium Hexafluoride
	Production, and Uranium Enrichment Facilities
G.3-6	Dry Spent Fuel Storage Facilities G-11
G.4-1	Compacts and Non-Member States Low-Level Normal
	Operations Waste Generation Rates G-13
G.4-2	Yearly Activity (Ci) and Waste Volumes (ft ³) of All
	Waste Shipped for Disposal G-14
G.4-3	Estimates of Low-Specific Activity Decommissioning Waste
	Volumes for Nuclear Power Plants G-16
G.4-4	Estimates of Low-Specific Activity Decommissioning Waste
	Volumes for Test and Research Reactors G-17

£

•

G.4-5	Estimates of Low-Specific Activity Decommissioning Waste	
	Volumes for Fuel Cycle Facilities	G-17
G.4-6	Estimates of Low-Specific Activity Decommissioning Waste	
	Volumes for Materials Facilities	G-18
G.4-7	Estimates of Low-Specific Activity Decommissioning Waste	
	Volumes for Dry Spent Fuel Storage Facilities	G-19
G.4-8	Summary Estimates of Low-Specific Activity Decommissioning	
	Waste Volumes From NRC SDMP Sites	G-20
G.4-9	Estimated Waste Volume From Selected SDMP Facilities	G-21
G.5-1	Estimated Low-Level Waste Disposal Capacity by	
	Compacts and Non-Member States	G-24
G.7-1	Total Waste Volume Summary from Decommissioning of	
	Lands and Structures for Reference Facility	
	Categories by Compacts and Non-Member States	G-32
G :7-2	Estimated Low-Level Waste Disposal Capacity by	
	Compacts and Non-Member States	G-33

xvii

4 : -

Figures

Page

Figure C.5.1.1	Calculated Residual ⁶⁰ Co Radiation Dose Rate as a Function of
	Soil Depth Removed (Spill/Leak Model, Unrestricted Land Use) . C.5-9
Figure C.5.1.2	Calculated Residual ⁶⁶ Co Radiation Dose Rate as a Function of
	Soil Depth Removed (Spill/Leak Model, Restricted Land Use) C.5-9
Figure C.5.1.3	Calculated Residual ¹³ 'Cs Radiation Dose Rate as a Function of
	Soil Depth Removed (Spill/Leak Model, Unrestricted Land Use) C.5-10
Figure C.5.1.4	Calculated Residual ¹³⁷ Cs Radiation Dose Rate as a Function of
	Soil Depth Removed (Spill/Leak Model, Restricted Land Use) . C.5-10
Figure C.5.1.5	Calculated Residual Composite ⁶⁰ Co and ¹³⁷ Cs Radiation Dose
-	Rate as a Function of Soil Depth Removed (Spill/Leak Model,
	Unrestricted Land Use) C.5-11
Figure C.5.1.6	Calculated Residual Composite ⁶⁰ Co and ¹³⁷ Cs Radiation Dose
5	Rate as a Function of Soil Depth Removed (Spill/Leak Model,
	Restricted Land Use)
Figure C.5.1.7	Calculated Residual Composite ⁶⁰ Co Radiation Dose Rate as a
	Function of Soil Depth Removed (Spill/Leak Model, Unrestricted
	Land Use, 50-Year SAFSTOR) C.5-12
Figure C.5.1.8	Calculated Residual Composite ⁶⁰ Co Radiation Dose Rate as a
1.8410 0.011.0	Function of Soil Depth Removed (Spill/Leak Model, Restricted
	Land Use, 50-Year SAFSTOR)
Figure C.5.1.9	Calculated Residual Composite ¹³⁷ Cs Radiation Dose Rate as a
riguite citeriti	Function of Soil Depth Removed (Spill/Leak Model, Unrestricted
	Land Use, 50-Year SAFSTOR)
Figure $C = 5 + 10$	Calculated Residual Composite ¹³⁷ Cs Radiation Dose Rate as a
i iguite cibitite	Function of Soil Depth Removed (Spill/Leak Model, Restricted
	Land Use, 50-Year SAFSTOR) C.5-13
Figure $C 5 1 11$	Calculated Residual Composite ⁶⁰ Co and ¹³⁷ Cs Radiation Dose
	Rate as a Function of Soil Denth Removed (Spill/Leak Model
	Unrestricted Land Use 50-Year SAFSTOR)
Figure $C 5 1 12$	Calculated Residual Composite ⁶⁰ Co and ¹³⁷ Cs Radiation Dose
1 iguit 0.5.1.12	Rate as a Function of Soil Denth Removed (Snill/Leak Model
	Restricted I and Use 50-Vear SAFSTOR) C 5-14
Figure C 5 2 1	Calculated Residual Uranium Radiation Dose Rate as a Function
rigule C.J.Z.1	of Soil Depth Removed (Mixing/Landfilling Model Unrestricted
	Land Use)
Elaura C 5 2 2	Colculated Desidual Uranium Dediction Dess Date as a Function
Figure C.S.Z.Z	of Soil Dorth Domesiad (Missing/Londfilling Model, Destricted
	Land Las)
\mathbf{E}_{i}	Land Use
rigure C.3.3.1	Calculated Residual Homenia Radiation Dose Rate as a runction
	or son Depin Removed (Wixing/Landfilling Model, Unrestricted
	Land Use) C.5-16

NUREG-1496

Figure C.5.3.2	Calculated Residual Thorium Radiation Dose Rate as a Function of Soil Depth Removed (Mixing/Landfilling Model, Restricted									
	Land Use) C.5-16									
Figure D.1	Power Reactor D-58									
Figure D.2	Sealed Source Facility D-65									
Figure D.3	U Fuel Fabrication D-72									
Figure D.4	Rare Metal Extraction Facility D-79									

:

APPENDIX C

ESTIMATED COSTS FOR DECONTAMINATION AS A FUNCTION OF RESIDUAL RADIATION DOSE RATE FOR FACILITIES AND SOILS

APPENDIX C

C.1 Introduction

Decommissioning is currently defined in the Commission's regulations as removing a facility safely from service and reducing residual radioactivity to a level that permits release of the property for unrestricted use and termination of license. Criteria and practices are described in several NRC guidance documents which have been used for a number of years. The NRC is in the process of conducting a rulemaking to establish radiological criteria for the decommissioning of NRC-licensed facilities. According to the requirements of NEPA and of the Commission's regulations in 10 CFR Part 51, the planned rulemaking needs to be accompanied by an Environmental Impact Statement (EIS) which analyzes costs and impacts associated with rulemaking alternatives.

C.1.1 GEIS Scope

To fulfill the NRC's responsibilities under NEPA, the Commission is preparing this Generic Environmental Impact Statement (GEIS) to analyze alternative courses of action and the costs and impacts associated with those alternatives. Because of the variety of NRC-licensed facilities eventually requiring decommissioning, the GEIS uses reference facilities in analyzing impacts and costs associated with regulatory alternatives. The reference facilities analyzed in the GEIS are discussed below as are the regulatory alternatives being evaluated.

C.1.1.1 Reference Facilities

The proposed amendment to 10 CFR Part 20 to include radiological criteria for termination of licenses would be applicable to almost all of the facilities and sites that the NRC licenses, including both fuel-cycle facilities and non-fuel-cycle material licensees. Fuel-cycle facilities include, among others, commercial nuclear power plants, nonpower (research and test) reactors, fuel fabrication plants, uranium mill facilities, and independent spent fuel storage facilities. The reference fuel-cycle facilities analyzed in the EIS include a reference commercial nuclear power plant and a reference fuel fabrication plant.

Non-fuel-cycle material licensees include universities, medical institutions, radioactive source manufacturers, and companies that use radioisotopes for industrial purposes. Over 75% of the NRC's materials licensees use either sealed radioactive sources or small amounts of short-lived radioactive materials. Decommissioning of these facilities should be relatively inexpensive and of short duration because there is usually little or no residual radioactive contamination to be cleaned up and disposed. Of the remaining 25% of licensees, a small number (e.g., radioactive source manufacturers, radiopharmaceutical producers, and radioactive ore processors) conduct operations which could produce substantial radioactive contamination during the life of the facilities. The reference non-fuel-cycle material licensees analyzed in the EIS include a sealed source manufacturer and a rare metal extraction plant.

C.1-1

C.1.1.2 Decommissioning/Remediation Alternatives

The costs and impacts of decommissioning NRC-licensed facilities will be heavily dependent upon the residual radioactivity criteria that the licensee must meet to allow release of the facility for other uses. Additionally, these criteria will be dependent upon how the facility will be used after decommissioning is complete and the facility is released for reuse. While the GEIS is evaluating five different regulatory alternatives (Chapter 2 of Volume 1) for establishing radiological criteria for decommissioning, the two alternative land-use scenarios distinguishing the analyses reported in this appendix are as follows:

- Unrestricted Land-Use: No restrictions are placed on the use of the facility after it is released. This scenario assumes that a family takes up residence on the site and farms the land. Analytically what this means is that the residential farm family is exposed to residual radioactivity via all potential pathways (i.e., external, inhalation, soil, drinking water, agriculture (irrigation), and aquatic).
- Restricted Land-Use: Use of the facility after decommissioning is restricted to industrial uses. This scenario assumes that decontaminated buildings are reoccupied by workers and that a farm family would take up residence outside the site boundary. Analytically what this means is that the occupational worker can be exposed to residual radioactivity from the following pathways: external, inhalation, soil, and aquatic.

Each of the reference facilities described previously is evaluated for each of these alternatives. In addition, the reference commercial nuclear power plant is evaluated for each alternative under two scenarios: 1) decommissioning activities commence immediately after reactor shutdown and 2) decommissioning activities begin after a 50-year SAFSTOR period. Other sensitivity analyses are also performed for the various reference facilities.

C.1.2 Purpose of This Appendix

An assessment of the life-cycle costs and impacts (environmental, ecological, and human health effects) of alternatives is required for any EIS. The purpose of this appendix is to describe only the methodology developed for estimating the costs associated with cleaning, removal, and disposal of contaminated concrete and soil for each of the EIS alternatives. The methodologies for estimating costs associated with other decommissioning activities, including radiation surveys before, during, and after decommissioning, are discussed in Appendix D. Also, the methodologies used to estimate the environmental, ecological, and human health effects associated with each of the alternatives are discussed in Appendix B.

C.1.3 Analytical Approach

The major high-cost decommissioning activities include cleaning, removal, and disposal of contaminated concrete and soil (and potentially groundwater). However, the cost of these

activities is very sensitive to regulation-based residual cleanup levels, or residual radioactivity criteria, that must be met. Estimating decommissioning costs for alternate residual radioactivity criteria is difficult because of problems in making a generic evaluation of contamination levels on and within concrete and soil surfaces (including accounting for contamination within cracks in the concrete and hot spots) and because of uncertainties regarding the amount of dose reduction achieved by concrete and soil removal techniques.

The approach taken in this study was to develop generic models for estimating the following:

- the volume of contaminated concrete requiring removal from building interior floors and walls for alternate residual dose levels to the building occupants after completion of decommissioning,
- the volume of contaminated soil requiring excavation for alternative residual dose levels to the residential farmer after completion of decommissioning, and
- the labor requirements, occupational doses, and costs associated with removal/excavation of contaminated concrete/soil and treatment, transportation, and disposal of the resulting waste volume.

The models, originally developed for the GEIS, were based on technical work previously performed by PNNL for the NRC and documented in a series of reports on the technology, safety, and costs of decommissioning fuel-cycle and non-fuel-cycle nuclear facilities (Smith 1978; Konzek 1982a, 1982b, 1995; Murphy 1981; Elder 1980a, 1980b, 1981; Short 1989). Also utilized in the development of the methodology was PNNL technical expertise on residual radionuclide contamination within and around nuclear power plants (Abel 1986; Robertson 1989, 1991). These models are discussed in Appendix C of the draft GEIS (NRC 1994) (for completeness, Appendix C of the draft GEIS is included here as Attachment D).

Subsequently, the NRC received a number of public comments questioning the soil contaminant distribution methodology utilized in the draft GEIS. The essence of these comments was that the draft GEIS methodology, in some instances, significantly underestimates the "real world" volume of contaminated soil requiring remediation during decommissioning of nuclear facilities. In response to these comments, NRC and PNNL staff reviewed data on contamination submitted by the commenters, compared it with available data on radionuclide distributions in contaminated soil including that in the draft GEIS, and verified and/or modified, as appropriate, the analyses of the reference facilities. This final GEIS thus considers additional soil contamination data. In response to these comments and the results of the data review, the analyses of the reference facilities were modified to include "real world" scenarios for the nuclear power plant, uranium fuel fabrication plant, sealed source manufacturer, and rare metal extraction plant. It should be noted that these "real world" scenarios represent extreme contamination cases and not the typical situation but are valuable in providing an upper bound to the problem.

C.1.4 Appendix Organization

The remainder of this appendix is organized as follows:

- Section 2: provides a brief summary of the results of the decommissioning/remediation analyses,
- Section 3: provides a discussion of the public comments received on the draft GEIS, response to those comments, and modifications made to the analyses for the final GEIS,
- Section 4: provides a description of each of the reference facilities being evaluated in the GEIS,
- Section 5: provides a description of the methodology developed to estimate radionuclide contamination levels in contaminated soil at the reference facilities,
- Section 6: provides a description of the methodology developed for estimating the costs of removal/excavation of contaminated concrete/soil, treatment, transportation, and disposal of resulting low-level radioactive waste volumes,
- Section 7: provides the results of the decommissioning analyses,
- Section 8: provides a cursory examination of possible groundwater remediation,
- Section 9: provides a list of references utilized in developing the analytical methodologies.

Attachments A, B, C, and D provide additional information on assumptions and detailed results of the decommissioning analysis, and Attachment E provides detailed groundwater information.

C.2 Summary of Results

The intent of this section of the appendix is to provide a brief summary and overview of the costs, labor requirements, and occupational doses associated with decontaminating contaminated facilities to alternate residual dose criteria. The purpose of these analyses has not been to estimate the total magnitude of each of these figures-of-merit, but to estimate only those portions of each parameter that are sensitive to different residual cleanup levels. Therefore, the results presented here show the incremental/differential remediation costs and occupational doses between alternate residual cleanup levels, not total decommissioning/remediation costs at each residual cleanup level.

Table 2.1 provides a matrix identifying each of the baseline and sensitivity cases evaluated in the GEIS. As the table indicates, both an unrestricted and a restricted land-use scenario, as described in Section 1.1.2, are evaluated for each reference facility. The Baseline decommissioning scenario assumes that D&D begins immediately after shutdown while the 50-Year SAFSTOR scenario assumes that D&D begins 50 years after shutdown. In order to assess the potential benefits/costs associated with minimizing the generation of LLW requiring disposal, both a Soil Wash scenario, that assumes that soil is cleaned via immersion and agitation within an aqueous decontamination solution, and a Direct Disposal scenario, that assumes any excavated contaminated soil is sent directly to disposal without any decontamination, are evaluated for each case.

Each of these scenarios is, in turn, evaluated for different assumed average levels of contamination in the soil. These different levels are labeled H for high, M for medium, and L for low. Depending upon the type of contamination, the medium level assumes an average concentration of contaminant in the soil that is three to six times greater than the concentration assumed for the low contamination level. The high level assumes an average concentration of contaminant in the soil that is two to five times greater than the concentration assumed for the medium contamination level.

Finally, the reference nuclear power reactor site, uranium fuel fabrication plant, sealed source manufacturer, and rare metals extraction plant are each evaluated assuming two different sources of contamination in the soil. Each reference facility is evaluated assuming contamination is deposited upon the surface of the soil, such as via windblown contaminated dust. This analysis assumes that the primary mechanism driving contaminant migration deeper into the soil column is diffusion. The methodology for this analysis was originally developed for the draft GEIS and is discussed in NRC, 1994.

The second scenario for the reference nuclear power reactor site and the sealed source manufacturer assumes that soil contamination was primarily the result of a spill and/or leak of contaminated solution into the soil column that provided a gravitational-driven source of contamination. The second scenario for the reference uranium fuel fabrication plant and rare metals extraction plant assumes that soil contamination is primarily the result of mixing clean soil with contaminated soil and also potentially using this mixture as landfill material on the

C.2-1

site. These "real world" scenarios were developed for the final GEIS based on public comments received on the draft GEIS analyses (see Sections 1.3 and 3). A discussion of the methodology developed for these "real world" scenarios is provided in Section 5.

A summary of the results for each of the identified scenarios follows. For a discussion and presentation of the detailed results, refer to Section 7 and Attachment C.

C.2.1 Reference Nuclear Power Plant

The baseline decommissioning evaluation of the reference nuclear power plant included decontamination of the reactor bioshield concrete and other contaminated concrete surfaces and remediation of soil on the site contaminated by infrequent surface deposition where there is no mechanism other than diffusion downward into the soil column over time. The contaminated soil was evaluated two different ways: 1) the contaminated soil was disposed of directly into a disposal facility and 2) the contaminated soil was first treated with a soil-cleaning technology to remove contaminants followed by disposal of the contaminated soil remaining after cleaning. These cases were evaluated for both the restricted and unrestricted land-use scenarios. Each of these scenarios was also reevaluated assuming the power reactor is not decommissioned until 50 years after shutdown (i.e., 50-Year SAFSTOR). A second set of scenarios was evaluated that assumed that soil was contaminated as a result of leaks and/or spills of contaminated liquids where the contamination is driven into the soil at a faster rate than diffusion and percolates downward into the soil column over time.

A summary of the analyses evaluating the decontamination of the reactor bioshield and other contaminated floors and walls is provided in Tables 2.1.1 and 2.1.2 for the bioshield (via drill and blast) and other concrete surfaces (via scabbling), respectively. Both of these tables show that there is a definite occupational dose advantage to waiting 50 years prior to decommissioning a nuclear power plant (although doses incurred during the long-term surveillance and maintenance period of the plant have not been estimated in these analyses).

The incremental costs of decommissioning the bioshield are not dependent upon when decommissioning occurs. However, there is a significant total decommissioning cost advantage to waiting 50 years before beginning decommissioning (since the bioshield is primarily contaminated with the relatively short-lived activation product Co-60). While this conclusion is not obvious from just looking at the incremental costs reported in Table 2.1.1, it can be reached by comparing the total costs reported in Tables 7.3.1 and 7.3.5 in Section 7.3.

Finally, the cost advantage of waiting 50 years to decommission the bioshield is somewhat offset by the increased costs of waiting 50 years to decontaminate other contaminated walls and surfaces. As Table 2.1.2 indicates, immediate decontamination of the walls and floors to

a residual dose rate of 10.4 mrem/y will cost about \$3 million (assuming a disposal cost of $$350/ft^3$) while waiting 50 years to decontaminate will increase this cost to about \$4 million (residual dose rate of 9.5 mrem/y). These costs increase in this case due to the fact that the contamination in the walls/floors is assumed to include Cs-137 in addition to Co-60 (so a 50-year decay period does not provide the same benefit as if just Co-60 were present), and the longer time period provides an opportunity for deeper penetration of the radionuclides into the concrete.

A summary of the results of remediating the contaminated soil at the reference nuclear power plant, assuming deposition of contamination on the soil surface, is provided in Tables 2.1.3 through 2.1.6 for the immediate D&D scenario and Tables 2.1.7 through 2.1.10 for the 50-Year SAFSTOR scenario. Similar results are provided in Tables 2.1.11 through 2.1.18 for the same scenarios but assuming that soil contamination is the result of a spill and/or leak of contaminated liquids.

The results in each of these tables are provided for three different assumed contamination levels (high, medium, and low) in the soil and for three different soil disposal costs (\$10, \$50, and \$350 per ft³). A general observation of the results presented in these tables is that, depending upon what the regulatory requirement is for radioactive exposure from residual contamination left in the soil, remediation may or may not be required. This is demonstrated in the low contamination case in Table 2.1.3 where soil remediation would not be required unless the residual dose rate were set at a level of 3 mrem/y or lower.

•

Another general observation supported by the results in these tables is that the incremental cost of soil remediation increases with each unit (1 mrem/y) reduction in the required residual dose level. In other words, the cost of reducing the residual contamination in the soil by 1 mrem/y is significantly higher if the reduction is from 10 to 9 mrem/y than it is if the reduction is from 100 to 99 mrem/y. This is due to the general nature of how contaminants are distributed in the soil column where the majority of the contaminant is near the surface of the soil column and which trails off significantly with depth (i.e., significantly more soil volume requires remediation to remove the last one curie of activity than it takes to remove the first one curie of activity).

A comparison of the results of the soil washing scenarios with the corresponding direct disposal of soil scenarios, such as Tables 2.1.3 and 2.1.4, indicates that the higher the disposal cost, the greater the incentive to clean the soil to reduce the volume requiring disposal. At a disposal cost of \$350 per ft³, the results indicate that it is always more cost effective (both total and incremental) to clean the soil to reduce the volume requiring disposal. On the other hand, at a disposal cost of only \$10 per ft³, it is generally more cost effective to ship the excavated soil directly to disposal.

Another conclusion drawn from the results provided in the tables is that remediation requirements are reduced in the restricted land-use scenario when compared to the unrestricted land-use scenario (i.e., the residual dose level at which remediation would be required is lower, as are generally the total and incremental costs of remediation, under a restricted land-use scenario); compare Tables 2.1.3 and 2.1.5 as an example. This is to be expected since there are fewer exposure pathways assumed in the restricted land-use scenarios (i.e., there are restrictions and controls on the use of the land) than are assumed in the unrestricted land-use scenarios.

By delaying decommissioning of the reference nuclear power plant for 50 years (i.e., allowing radionuclide decay and contaminant dispersion in the soil to "naturally" remediate the soil), the total cost of decommissioning can potentially be significantly reduced. As with the restricted and unrestricted land-use comparison discussed above, a 50-year delay in remediation can significantly lower the residual dose level where remediation would even be required (compare Tables 2.1.3 and 2.1.7 as an example). Again, these analyses did not include the costs associated with long-term monitoring and surveillance. However, if the required residual dose level were set sufficiently low (i.e., at 3 mrem/y in Table 2.1.7, high contamination case, as an example), the cost of soil remediation under the 50-Year SAFSTOR scenario would be considerably higher than if the reactor site were immediately decommissioned. This is due to giving the contaminant plume an additional 50 years to migrate deeper into the soil column, thereby requiring greater soil volumes to be remediated.

Finally, the above conclusions are also consistent with the results of the "real world" scenarios provided in Tables 2.1.11 through 2.1.18. The difference in the results in these tables and those for the "baseline" scenarios in Tables 2.1.3 through 2.1.10 is that the incremental and total costs, soil volumes being remediated, and occupational doses to workers are higher across the board in the "real world" scenarios. This is because the "real world" scenarios were developed, in response to public comments on the draft GEIS, to be a bounding representation of the extent of contamination that might be expected to require remediation during decommissioning of a nuclear power plant.

C.2.2 Reference Uranium Fuel Fabrication Plant

The baseline decommissioning evaluation of the reference uranium fuel fabrication plant included decontamination of contaminated concrete surfaces and remediation of soil contaminated by infrequent surface deposition where there is no mechanism other than diffusion downward into the soil column over time on the site. The contaminated soil was evaluated two different ways: 1) the contaminated soil was disposed of directly into a disposal facility and 2) the contaminated soil was first treated with a soil-cleaning technology to remove contaminants followed by disposal of the contaminated soil remaining after cleaning. These cases were evaluated for both the restricted and unrestricted land-use scenarios. Also, the second set of scenarios was evaluated assuming the soil contamination on the site was the result of mixing/landfilling with contaminated soil and/or slag.

Decontamination of the concrete surfaces was determined to require only one layer (0.3175 cm) of concrete be removed due to the very slow diffusion of uranium through concrete. This translates into a total concrete volume requiring disposal of 288 m³, a concrete disposal cost of \$1.89 million, a total occupational dose of 7 person-rem, and a residual dose rate of just 1.4×10^{-10} mrem/y.

A summary of the results of remediating the contaminated soil at the reference uranium fuel fabrication plant is provided in Tables 2.2.1 through 2.2.4 for the windblown deposition of contamination scenarios and Tables 2.2.5 through 2.2.8 for the mixing/landfilling scenarios. The same general trends and conclusions discussed previously for remediation of contaminated soil at the reference nuclear power plant apply to the results for the reference uranium fuel fabrication plant and therefore will not be repeated here. Soil remediation costs and occupational doses incurred during remediation of the soil are shown to be significantly higher across the board for the uranium fuel fabrication plant than for the nuclear power plant due to the much larger volumes of soil requiring remediation at these types of facilities.

C.2.3 Reference Sealed Source Manufacturer

The baseline decommissioning evaluation of the reference sealed source manufacturer, in which the soil is assumed to be contaminated by infrequent surface deposition where there is no mechanism other than diffusion downward into the soil column over time, is the same as that described for the two reference facilities already discussed previously. Specifically, the analyses included scenarios where contaminated soil was both treated via soil washing and direct disposed without treatment and scenarios in which both the restricted and unrestricted land-use scenarios were evaluated. A second set of "real world" scenarios was evaluated that assumed that the soil contamination at the site was the result of a leak and/or spill of contaminated liquids where the contamination is driven into the soil at a faster rate than diffusion. Finally, as with the previous facilities, contaminated concrete on structures was removed in 0.3175 cm layers via scabbling.

The estimated requirements for decontamination of the concrete surfaces of this reference facility are summarized in Table 2.3.1. Minimal concrete removal is assumed to be required at these types of facilities.

A summary of the results of remediating the contaminated soil at the reference sealed source manufacturer is provided in Tables 2.3.2 through 2.3.5 for the "baseline" scenarios and Tables 2.3.6 through 2.3.9 for the leak/spill scenarios. The same general trends and conclusions discussed previously for remediation of contaminated soil at the reference nuclear power plant apply to the results for the reference sealed source manufacturer and therefore will not be repeated here. Soil remediation costs and occupational doses incurred during remediation of the soil are shown to be lower across the board than for either the uranium fuel fabrication plant or the nuclear power plant. These types of facilities are assumed to not have significant volumes of contaminated soil requiring remediation during decommissioning.

C.2-5

C.2.4 Reference Rare Metal Extraction Plant

The scenarios evaluated for the reference rare metal extraction plant are the same as those evaluated for the reference uranium fuel fabrication plant, although the radionuclide contaminants and other specific data used in the analyses were obviously different. Specifically, both soil washing and direct disposal of contaminated soil were evaluated for both the restricted and unrestricted land-use scenarios. Also, each of these scenarios was evaluated for both a "baseline" scenario, where soil is assumed to be contaminated by infrequent surface deposition where there is no mechanism other than diffusion downward into the soil column over time and a "real world" scenario, where soil contamination is assumed to be the result of landfilling with contaminated soil and/or slag.

Decontamination of the concrete surfaces was determined to require just two layers (0.635 cm) of concrete be removed due to the very slow diffusion of thorium through concrete. This translates into a total concrete volume requiring disposal of 176 m³, a concrete disposal cost of \$2.28 million, a total occupational dose of 8.6 person-rem, and a residual dose rate of 0.023 mrem/y.

A major difference between this reference facility and the others is that this site is assumed to have a 7,000-m³ slag pile requiring remediation. The slag pile, therefore, is the major source of contaminated soil requiring remediation at this site. Since the slag cannot be effectively washed, it requires direct disposal.

A summary of the results of remediating the contaminated soil at the reference rare metal extraction plant is provided in Tables 2.4.1 through 2.4.4 for the baseline scenarios and Tables 2.4.5 through 2.4.8 for the mixing/landfilling scenarios. The same general trends and conclusions discussed previously for remediation of contaminated soil at the reference nuclear power plant apply to the results for the reference rare metal extraction plant and therefore will not be repeated here. It should be noted that the total costs of remediating this site include those costs associated with remediating the slag pile (which is significant and is reported in Tables 7.6.2 through 7.6.5 in Section 7.6). However, since the requirements for remediation of the slag pile do not vary by residual dose level or contamination level, and since Tables 2.4.1 through 2.4.8 only report incremental soil volumes, occupational doses, and costs for remediating soil, these tables do not reflect the remediation requirements associated with the slag pile.

Also, the definition of the restricted land-use scenario for this reference site is different than for any of the other reference sites. Restricted land-use for the other reference facilities was based on limitation/controls that affectively eliminated some potential pathways for exposure. While this is also true for the reference rare metal extraction plant, restricted land-use also means the slag pile will not be remediated and disposed of offsite but will be left onsite and used as a disposal facility for other contaminated soil produced during remediation. Therefore, for the restricted land-use scenarios, there is no cost associated with the disposal of the slag pile or contaminated soil. However, costs are estimated for stabilizing the slag

pile in place (although costs associated with long-term monitoring and surveillance are not included). Since there are no disposal costs in the results of the restricted land-use scenarios, the estimated costs for these scenarios are considerably less than for the corresponding unrestricted land-use scenarios.

C.2-7

.

<u>Table C.2.1</u> .	GEIS	Scenario	Matrix
----------------------	------	----------	--------

		Unrestricted Land-Use									Restricted Land-Use													
		Baseline						50-Y	ear s	SAFS	TOR				Bas	eline			50-Year SAFSTOR				۲.	
Reference Facility	Soil Wash		Direct Disposal		Sc	Soil Wash		Direct Disposal		Sc	Direct Soil Wash Disposal			t al	Soil Wash			Direct Disposal		ct sal				
	H	Μ	L	Н	М	L	H	М	L	н	Μ	L	Н	М	L	Н	М	L	н	Μ	L	Н	Μ	L
PWR Power Reactor Site - Deposition on Soil Surface - Spill/Leak	x x	x x	x x	x x	x x	x x	x x	x x	x x	x x	x x	x x	x x	x x	x x	x x	x x	x x	x x	x x	x x	x x	x x	x x
Uranium Fuel Fabrication Plant - Deposition on Soil Surface - Mixing/Landfilling	x x	x x	x x	x x	x x	x x							x x	x x	x x	x x	x x	x x						
Sealed Source Manufacturer - Deposition on Soil Surface - Spill/Leak	x x	x x	x x	x x	x x	x x							x x	x x	x x	x x	x x	x x						
re Metals Extraction Plant Deposition on Soil Surface X X X Mixing/Landfilling X X X		x x	x x	x x							x x	x x	x x	x x	x x	x x								

(

1

e

ı.

· ·	Decommissioning Soon After Shutdown													
i		-			\$5	\$50/ft ³ Disposal Cost \$350/ft ³ D								
					а.		Cost per			Cost per				
Reduction in			Incremental	Cumulative	Incremental	Cumulative	Reduction in	Incremental	Cumulative	Reduction in				
Residual	Incremental	Cumulative	Occupational	Occupational	Concrete	Concrete	Residual Dose	Concrete	Concrete	Residual Dose				
Dose Rate	Concrete	Concrete	Dose	Dose	Disposal Cost	Disposal Cost	Rate	Disposal Cost	Disposal Cost	Rate				
(mrem/yr)	Volume (m ³)	Volume (m ³)	(person-rem)	(person-rem)	(\$ millions)	(\$ millions)	(SK/mrem/yr)	(\$ millions)	(\$ millions)	(\$K/mrem/yr)				
100-60	16	16	6.3	6.3	0.14	0.14	4	0.32	0.32	8				
60-30	22	38	0.1	6.4	0.05	0.19	2	0.28	0.60	9				
30-25	5	43	. 0.0	6.4	0.01	0.20	2	0.07	0.67	14				
25-15	16	60	0.3	6.7	0.04	0.25	4	0.21	0.88	21				
15-10	16	76	0.0	6.7	0.03	0.28	7	0.21	1.09	41				
10-3	41	117	6.7	13.4	0.21	0.49	29	0.64	1.72	91				
3-0.3	87	204	7.4	20.8	0.32	0.80	117	1.24	2.96	458				
0.3-0.03	90	294	7.7	28.4	0.33	1.13	1,204	1.28	4.24	4,726				

<u>Table 2.1.1</u>. Incremental Costs and Occupational Dose for Decontamination of the Reference Nuclear Power Plant Bioshield

۲

.

1.

ŧ

C.2-9

	50-Year SAFSTOR														
					\$5	0/ft ³ Disposal (Cost	\$35	50/ft ³ Disposal	Cost					
		· ·				1	Cost per			Cost per					
Reduction in			Incremental	Cumulative	Incremental	Cumulative	Reduction in	Incremental	Cumulative	Reduction in					
Residual	Incremental	Cumulative	Occupational	Occupational	Concrete	Concrete	Residual Dose	Concrete	Concrete	Residual Dose					
Dose Rate	Concrete	Concrete	Dose	Dose	Disposal Cost	Disposal Cost	Rate	Disposal Cost	Disposal Cost	Rate					
(mrem/yr)	Volume (m ³)	Volume (m ³)	(person-rem)	(person-rem)	(\$ millions)	(\$ millions)	(\$K/mrem/yr)	(\$ millions)	(\$ millions)	(SK/mrem/yr)					
100-60	14	14	0.00	0.00	0.03	0.03	1	0.17	0.17	4					
60-30	22	35	0.00	0.00	0.05	0.08	2	0.28	0.45	9					
30-25	3	38	0.00	0.00	0.01	0.08	1	0.04	0.49	7					
25-15	16	54	0.00	0.00	0.04	0.12	4	0.21	0.70	21					
15-10	11	65	0.01	0.01	0.13	0.25	25	0.24	0.94	48					
10-3	35	101	0.00	0.01	0.08	0.33	11	0.45	1.39	65					
3-0.3	73	174	0.00	0.01	0.27	0.59	100	1.05	2.44	387					
0.3-0.03	79	253	0.01	0.02	0.29	0.88	1,056	1.12	3.56	4,148					

.

÷

		Decommi	ssioning Soon A	fter Shutdown	50-Year SAFSTOR							
Concrete		Concrete Volume		\$50/ft ³ Disposal	\$350/ft ³ <u>Disposal</u>		Concrete Volume		\$50/ft ³ Disposal	\$350/ft ³ Disposal		
Thickness Removed (cm)	Residual Dose Rate (mrem/y)	Requiring Disposal (m ³)	Occupational Dose (person-rem)	Building D&D Cost (\$ millions)	Building D&D Cost (\$ millions)	Residual Dose Rate (mrem/yr)	Requiring Disposal (m ³)	Occupational Dose (person-rem)	Building D&D Cost (\$ millions)	Building D&D Cost (\$ millions)		
0.3175	36,000	90	2.4	0.6	1.5	535	90	0.003	0.6	1.5		
0.6350	4,100	104	3.8	1.0	2.1	376	104	0.005	1.0	2.1		
0.9525	220	116	5.2	1.3	2.6	210	116	0.007	1.3	2.6		
1.2700	10.4	129	6.6	1.7	3.1	94	129	0.009	1.7	3.1		
1.5875	0.28	142	8.0	2.1	3.6	33	142	0.011	2.1	3.6		
1.9050	0.0035	155	9.4	2.4	4.1	9.5	155	0.013	2.4	4.1		
2.2225	<0.003	168	10.8	2.8	4.6	2.2	168	0.015	2.8	4.6		
2.5400	<0.003	181	12.2	3.2	5,1	0.39	181	0.017	3.2	5.1		
2.8575						0.056	194	0.056	3.5	5.6		
3.1750						0.006	207	0.006	3.9	6.1		

6

<u>Table C.2.1.2</u>. Summary of Costs and Occupational Dose for Decontamination of the Reference Nuclear Power Plant Floors/Walls

C.2-10

}					\$10/ft ³ Disposal Cost			\$	50/hª Disposal	Cost	\$350/ft ³ Disposel Cost		
			• • •				Cost per			Cost per			Cost per
Reduction in		- · · ·	Incremental	Cumulativo			Reduction in			Reduction in			Reduction in
Residual	Incremental	Comulative	Occupational	Occupational	ł		Residual Dose			Residual Dose]		Residual Dean
Dose Rate	Soil Volume	Seil Volume	Dose	Dose	Incremental	Cumulative	Rate	Incremental	Cumulative	Rate	Incremental	Cumulation	Rate
(листи/ут)	(m')	(77)	(person-meem)	(person-meem)	Cort (SK)	Cost (SK)	(SK/mrem/yr)	Cort (SK)	Cost (SK)	(SK/mrom/yr)	Cost (STC)	Cost (SK)	(St monther)
High										مثدائي ويربي الشري	1		(Storatery fr)
100-60	10	10	2	2	6.6	7	0.16	14.4	14	0.36	566	47	1.42
60-30	10	20	2	4	6.3	13	0.21	12.6	27	0.42	53.5	110	1.44
30-25	2	22	~ 0	4	1.6	15	0.32	3.2	30	0.65	13.7	174	· · l./8
25-15	6	28	· [5	3.9	18	0.39	7.8	38	0.78	32.8	157	2.13
15-10	. 5	33	. I.	6	3.6	. 22	0.72	8.5	47	1.70	31.8	122	3.28
10-3	28	61	5	11	18.4	40	2.63	38.0	85	5.43	156.6	344	77 20
3-0.3	66	128	12	23	43.6	84	16.14	89.5	174	33.16	370.5	715	137 31
0.3-0.03	33	161	6	29	25.8	110	95.64	44.6	219	165.26	184.6	900	137.21 693.76
Medium													003.75
100-60	18	18	3	3	50.2	50	1.26	59.4	59	1.49	137.2	137	3.43
60-30	15	34	3	6	. 10.2	60	0.34	21.6	81	0.72	87.0	774	3.93
30-71	3	36	. 0	7	1.7	62	0.35	3.4	84	0.69	14.6	230	2.90
25-11	7	43	1	8	4.5	67	0.45	9.0	93	0.90	38.1	777	2.71
.15-10	5	48	1	9	3.3	70	0.65	6.5	100	1.30	27.6	304	3.81
10-3	- 13	61	- 2	. 11	8.5	78	1.22	18.3	118	2.62	73.3	378	J.JZ
3-0.3	61	123	11	. 22	40.3	119	14.94	83.0	201	30.75	343.0	771	10.48
0.3-0.03	44	167	- 8	- 30	29.0	148	107.32	60.4	262	223.71	247.1	068	015 31
Low						•							713.31
100-60	•		•	•	: · ·	•	•	· ·	•	1		-	5 A.
60-30	•	1 •	•	•	· •	÷	-		÷			-	•
30-25	-	-	•	•	-	· •	•	· · •	-			-	• •
25-15	-		-	•		-	-		-			•	-
15-10	•	•	•	•	•	•	-	-	-			-	•
10-3	27	27	5	5	56.0	56	8.00	71.0	71	· 10 14	185.0	1.04	
3-0.3	35	62	6	11	23.0	79	8.52	48.5	119	17 97	104 -	100	20.30
0.3-0.03	1	139	14	25	50.5	130	187.03	104.6	224	387.50	430.1	385 #13	72.91

٩.

ŧ:

Table 2.1.3. Incremental Costs and Occupational Dose for Remediation of Contaminated Soil at the Reference Nuclear Power Plant (Unrestricted Land Use, Deposition on Soil Surface, with Soil Washing)

.

<u>Table 2.1.4</u>. Incremental Costs and Occupational Dose for Remediation of Contaminated Soil at the Reference Nuclear Power Plant (Unrestricted Land Use, Deposition on Soil Surface, Direct Disposal of Soil)

e

٩.

					S1	0/A ³ Disposal	Cost	S	0/A' Disposal	Cost	\$350/ft ³ Disposal Cost			
							Cost per			Cost per			Cost per	
Reduction in			Incremental	Cumulative			Reduction in			Reduction in			Reduction in	
Residual	Incremental	Cumulative	Occupational	Occupational			Residual Dose			Residual Dose			Residual Dose	
Dose Rate	Soil Volume	Soil Volume	Dose	Dose	Incremental	Cumulative	Rate	Incremental	Cumulative	Rate	Incremental	Cumulative	Rate	
(mrem/yr)	(m ¹)	(m³)	(person-mrem)	(person-mean)	Cost (SK)	Cost (\$K)	(SK/mrem/yr)	Cost (\$K)	Cost (\$K)	(SK/mrem/yr)	Cost (SK)	Cost (SK)	(SK/mrem/yr)	
lich														
100-60	10	10	2	2	5.9	6	0.15	23.5	23	0.59	129.0	129	3.23	
60-30	10	20	2	3	5.7	12	0.19	22.7	46	0.76	124.9	254	4.16	
30-25	2	22	0	4	1.4	13	0.29	5.5	52	1.09	31.5	285	6.31	
25-15	6	28	1	5	3.5	16	0.35	13.1	65	1.31	75.8	361	7.58	
15-10	5	33	1	5	3.2	20	0.65	13,5	78	2.70	71.6	433	14.33	
10-3	28	61	5	10	20.6	40	2.94	64.8	143	9.26	361.4	794	51.62	
3-0.3	66	128	11	21	43.1	83	15.96	155.2	298	57.47	857,5	1,652	317.59	
0.3-0.03	33	161	5	26	19.4	103	71.96	78.7	377	291.34	428.6	2,080	1,587.58	
Medium														
100-60	18	18	3	3	14.9	15	0.37	43.4	43	1.08	237.7	238	5.94	
60-30	15	34	3	5	9.1	24	0.30	37.0	80	1.23	200.6	438	6.69	
30-25	3	36	0	6	1.5	26	0.31	5.8	.86	1.17	33.6	472	6.73	
25-15	7	43	1	7	4.0	30	0.40	15.2	101	1.52	87.9	560	8.79	
15-10	5	48	1	8	2.9	32	0.59	12.4	114	2.48	65.1	625	13.02	
10-3	13	61	2	10	7.6	40	1.09	30.2	144	4.31	167.7	793	23.95	
3-0.3	61	123	10	20	40.2	80	14.88	144.2	288	\$3.39	794.0	1,587	294.06	
0.3-0.03	44	167	7	27	30.0	110	111.17	103.2	391	382.06	570.0	2,157	2,111.08	
Low	·····				1						ļ			
100-60	•	-	•	•		-	-	1 .	-	•	1 -	-	-	
60-30	•	-	•	-	i -	-	-	1 -	-	-		•	•	
30-25	•	-	•	•	· ·	-	-	· ·	-	•	l -	-	•	
25-15	-	•	-	-	1 -	-	-	1 .	•	•	· ·	•	•	
15-10	-	•	•	•		•	•		•	- 		•	-	
10-3	27	27	4	4	20.1	20	2.86	04.2	04	9.[7	351.5	352	50.22	
3-0.3	35	62	6	10	20.6	41	7.62	81.7	146	30.26	452.5	804	167.60	
0.3-0.03	77	139	12	23	49.3	90	182.47	1 179.8	526	00.000	993.4	1,798	3,679.40	

.

.

•

•

NUREG-1496

.

C.2-12
1					5	0/Rª Disposel	Cost	\$	10/ft ¹ Disposel	Cost	\$3	0/ft ³ Dispose	I Cost
							Cost per			Cost per			Cost per
Reduction in	·		Incremental	Cumulative			Reduction in	-		Reduction in			Reduction in
Residual	Incremental	Cumulative	Occupational	Occupational			Residual Dose			Residual Dose			Residual Doe
Dose Rate	Soil Volume	Soil Volume	Dose	Dost	Incremental	Cumulative	Rate	Incremental	Cumulative	Rate	Incremental	Constitutive	Rate
(mrem/yr)	(m²)	(m ³)	(person-mem)	(person-mrem)	Cort (SK)	Cort (SK)	(SK/mrem/yr)	Cort (SK)	Cort (SK)	(SK/mrem/yr)	Cort (SK)	Cort (SK)	(SK/mecm/vr)
High												a de la contra de la	
100-60	-	-	•	•	-	•	• .	-	-	•			
60-30	-		•	•	•	-		-	-	•		-	
30-25	-	· -	•	•	l •	-	•	-	-	-	-	-	-
25-15	•		•	-	-	•	•		•	-	· •	-	
15-10	12	12	2	2	46.0	46	9.21	51.1	51	10.21	101.7	102	20.34
10-3	27	- 39	5	7	17.6	64	2.51	36.3	87	5.19	149.6	251	21.37
3-0.3	23	62	4	11	15.2	79	5.63	31.6	119	11.72	129.6	381	48.01
0.3-0.03	18	79	· 3_	14	11.6		43.01	23.1	142	85,73	98.0	479	362.91
Medium										•			
100-60	•	•	•	•	ļ -	-	•	•	-	-		•	•
60-30	•	-	-	-	-	•	-	•	-	+] -	-	-
30-25	•	•	•	•	- 1	•	•	-	•	•	•	-	-
25-15		•	• • •	•	•	. •	•	-	• • •	•	•	•	•
15-10	• '	•	•	- '	-	•	•	-	-		- 1	-	-
10-3	28	28	.5	5	56.4	56	8.05	72.9	73	10.42	190.1	190	27.15
3-0.3	28	56	5	10	18.6	75	6.90	38.4	111	14.24	158.4	348	58.68
0.3-0.03	18	74	3	13	11.6		43.11	23.2	135	85.93	98.2	447	363.77
Low												-	
100-60		•	•	· •	•	-	-	•	-	-]	••	•
60-30	•	•		-	•	-	•	- 1	•	•	•	••	•
30-25	•	•	•	-	· ·	-	•	- 1	-	•	1 -	•	-
25-15	•	. •	•	-	Į -	-	•	- 1	•	•		•	-
15-10	•	• -	. •	•	· ·	•	•	-	•	•	-	•	-
10-3	•	· ·	•			•	•		-	-	-	•	••
3-0.3	17	- 17	. 3	3	49.4	49	18.31	57.8	58	21.43	130.4	130	48.30
0.3-0.03	35	52	0	<u>у</u>	1 22.8		84.28	46.7	105	172.88	193.3	324	716.00

₹×

¢

Table 2.1.5. Incremental Costs and Occupational Dose for Remediation of Contaminated Soil at the Reference Nuclear Power Plant (Restricted Land Use, Deposition on Soil Surface, with Soil Washing)

NUREG-1496

NUREG-1496

<u>Table 2.1.6</u>. Incremental Costs and Occupational Dose for Remediation of Contaminated Soil at the Reference Nuclear Power Plant (Restricted Land Use, Deposition on Soil Surface, Direct Disposal of Soil)

.....

÷

۲

					S	0/ft ³ Disposal	Cost	\$50/ft ³ Disposal Cost		Cost	\$3	0/ft ³ Disposa	Cost
ł							Cost per			Cost per			Cost per
Reduction in			Incremental	Cumulative			Reduction in			Reduction in			Reduction in
Residual	Incremental	Cumulative	Occupational	Occupational			Residual Dose			Residual Dose			Residual Dose
Dose Rate	Soil Volume	Soil Volume	Dose	Dose	Incremental	Cumulative	Rate	Incremental	Cumulative	Rate	Incremental	Cumulative	Rate
(mrem/yr)	(m ³)	(m ¹)	(person-mrem)	(person-mrem)	Cost (\$K)	Cost (SK)	(SK/mrem/yr)	Cost (\$K)	Cost (SK)	(SK/mrem/yr)	Cost (\$K)	Cost (SK)	(SK/mrem/yr)
High													
100-60	-	•	-	-	•	•	•	-	-	-			-
60-30	•	-	-	•	-	•	-	-	-	-	-	-	
30-25	-	•	-	• !	-	•	-	-	-	-		-	- 1
25-15	-	-	-	•	-	•	•	•	-	-	.	-	. 1
15-10	12	12	2	2	11.1	11	2.23	29.2	29	5.84	155.8	156	31.16
10-3	27	39	4	6	15.7	27	2.25	62.0	91	8.86	345.1	501	49.30
3-0.3	23	62	4	10	13.6	40	5.04	54.0	145	20,00	299.0	800	110.75
0.3-0.03	18	79	3	13	14.5	55	53.66	41.9	187	155.07	229.0	1,029	848.05
Medium													
100-60	-	-	-	-	•	•	-	-	•	-		-	.
60-30	-	•	-	- }	•	-	-	-	•	•		-	- 1
30-25	•.	-	-	-	- ,	-	•	-	-	-	- 1	•	.
25-15	•	-	•	-	•	•	-	-	-	•	-	-	- 1
15-10	•	-	-	- /	-	-	-	-	•	•		-	-
10-3	28	28	4	4	20,4	20	2.91	65.3	65	9.33	358.1	358	51.16
3-0.3	28	56	5	9	16.7	37	6.17	66.9	132	24.76	366.9	725	135.88
0.3-0.03	18	74	3	12	14.5	52	53.75	40.6	173	150.51	228.2	953	845.12
Low				1									
100-60	•	-	•	-	•	-	-	-	-	-	i -	•	
60-30	•	-	-	•	-	•	-	•	•	•	.	-	.
30-25	•	-	•	-	-	•	-	-	•	-	-	-	
25-15	•	-	-	-	-	-	-	•	-	•		•	_
15-10	•	-	•	-	-	-	-	-	-	-	-	•	.
10-3	•	-	•	-	•	•	-	•	-	-	-	-	- 1
3-0.3	17	17	3	3	14.2	14	5.25	40.7	41	15.06	222.1	222	82.25
0.3-0.03	35	52	66	8	20.4	35	75.38	80.8	121	299.34	447.4	670	1.657.15

1 i

r					5	10/8ª Dimora	A Cast	\$50/R' Disposal Cost		10-4	1		
1				1		10/10 00 0000000	Cost per		JUIL Dispose	Contener		JO/IL. Disbors	<u>A Cost</u>
- Anation is	-		Incremental	Commistive	1		Reduction in	1		Deduction to			Contper
P	-	Constative	- Competinget	Annational	1		D-itul Dee	1		Requestion in	1		Reduction in /
Kengezi	BICICINICAL		- N	D-m		Committee in the	Kenderi Lore	1.	- • • •	Rendual Dose	1.		Residual Dose
Dose Kate	Soll Volume	2011 V U U U U U			Incremental	Cumurative	Kate	Incrementat	Cumulative	Rate	Incremental	Cumulative	A Rate
(mrenvyr)	<u>(m)</u>	<u>(m)</u>	(person-mrem)	(person-meens)	Cont (SK)	Cont (SK)	(SK/mrcm/yr)	Cost (SK)	Cort (SK)	(SK/meen/yr)	Cost (SK)	Cost (SK)	(SK/mrem/yt)
High					1								
100-60	•	-	•	-	•	-	•	-	•	-	•	-	- '
60-30	-	•	-	-	•	-	•	-	•	-	.	-	- '
30-25	-	-	•	-	-	•		1 -	•	-	1.	-	- '
25-15	•	-	-	•	•	-	•	1 -	-	-		-	- '
15-10	-	-	•	-	-	•	•	- 1	•	•	1.	-	-
10-3	21	21	- 4	4	51.9	52	7.41	62.7	63	8.96	151.0	151	21.57
3-0.3	392	413	70	74	265.9	318	98.48	533.5	596	197.59	2,194.2	2.345	\$12.68
0.3-0.03	75	487	13	87	49.1	367	181.96	100.6	697	372.49	417.2	2,767	1 545.16
Medium	,	-							, <u> </u>		1		
100-60	•	•	-	-		-	•		-	-	1 -	-	-
60-30	•	-	-	•	1 -	-	-	•	•	•	-	-	-
30-25	-	-	•	-	-	-	-	•	-	•	-	-	-
25-15	-	-	•	•	- 1	•	-	•	-	•	-	•	•
15-10	-	-	•	-	•	•	•	-	-	•		•	•
10-3	•	· · · •	•	·· •	1 •	•	-	-	•			•	•
3-0.3	106	106	19	19	108.0	108	39.98	178.5	178	66.09	628.1	628	232.65
0.3-0.03	342	448	61	50	232.9	341	862.57	465.1	644	1,722.46	1.913.1	2.541	7.085.65
Low :					(
100-60	-	•	•	- '	1 •		•	1 •		•		-	•
60-30	-	•	•	• '	1 -	-	•	-	-	•	-	-	-
30-25	•	•	.•	-		•	•	-	-	-		-	-
25-15	•	•	•	-	· ·	-	-	1 -	•	•	-	-	-
1 15-10	•	. •	-	-	1 •	•	•		-	-	1 -	-	-
10-3	-	•	•		-	•	-		-	•		-	-
3-0.3	-	-	-	-	1 -	-	• ·	1 .	•	-	1.	-	-
0.3-0.03	373	373	67	67	291.6	292	1,080.11	541.4	541	2,005.33	2,122.0	2,122	7,859,14

Table 2.1.7.Incremental Costs and Occupational Dose for Remediation of
Contaminated Soil at the Reference Nuclear Power Plant
(Unrestricted Land Use, Deposition on Soil Surface, with Soil Washing, 50-Year SAFSTOR)

Þ

Table 2.1.8.Incremental Costs and Occupational Dose for Remediation of
Contaminated Soil at the Reference Nuclear Power Plant
(Unrestricted Land Use, Deposition on Soil Surface, Direct Disposal of Soil, 50-Year SAFSTOR)

÷

١,

)

					\$	10/ft ³ Disposal	Cost	S	0/ft3 Disposal	Cost	\$35	0/ft' Disposa	1 Cost
1							Cost per			Cost per			Cost per
Reduction in			Incremental	Cumulative			Reduction in			Reduction in			Reduction in
Residual	Incremental	Cumulative	Occupational	Occupational			Residual Dose			Residual Dose			Residual Dose
Dose Rate	Soil Volume	Soil Volume	Dose	Dose	Incremental	Cumulative	Rate	Incremental	Cumulative	Rate	Incremental	Cumulative	Rate
(mrem/yr)	(m ³)	(m ³)	(person-mrem)	(person-mrem)	Cost (SK)	Cost (SK)	(SK/mrem/yr)	Cost (\$K)	Cost (SK)	(\$K/mrem/yr)	Cost (SK)	Cost (SK)	(SK/mrem/vr)
High													
100-60	-	-	-	-	· ·	-	-	-	•	-		-	
60-30	-	•	-	-	-	-	•	-	-	-	-	-	
30-25	•	-	•	-	•	-	-	-	-	-	-	-	
25-15	-	-	-	•	-	-	•	-	-	-	-	-	-
15-10	-	-	-	-		•	-	- 1	-	-	•	-	-
10-3	21	21	3	3	16.4	16	2.34	48.9	49	6.99	269.6	270	38.51
3-0.3	392	413	63	67	251.0	267	92.96	918.0	967	340.00	5,069.9	5,339	1.877.72
0.3-0.03	75	487	12	79	48.0	315	177.94	175.2	1,142	648.88	966.8	6,306	3,580.57
Medium													
100-60	-	•	•	-	· ·	•	-	-	-	-	-	-	-
60-30	-	•	-	-	-	•	-	-	-	-	-	-	-
30-25	•	-	-	-	-	-	•	-	-	-	-	-	-
25 15	-	-	-	-	-	•	•	•	-	-	-	-	-
15-10	-	-	-	-	· ·	-	•	-	•	-	-	-	. •
10-3	-	-	•	-		-	-	•	•	-	-	-	•
3-0.3	106	106	17	17	70.6	71	26.15	248.9	249	92.19	1,373.1	1,373	508.56
0.3-0.03	342	448	55	73	221.5	292	820.27	801.2	1,050	2,967.54	4,421.4	5,795	16,375.53
Low													
100-60	•	•	-	-		-	*		-	-	-	-	-
60-30	-	-	•	-	•	•	-	- 1	-	•	•	•	-
30-25	•	-	•	-	•	•	•	· ·	-	•	-	-	-
25-15	-	-	-	-	•	-	•		-	•	-	-	-
15-10	-	-	-	•	•	-	•	-	-	-	-	-	•
10-3	- ·	-	-	-		- .	•	- 1	-	-	-	•	-
3-0.3	-	•	•	-		-	•		•	-	-	•	-
0.3-0.03	373	373	60	60	244.0	244	903.55	874.6	875	3,239.36	4,826.0	4,826	17,873.90

4

I.

NUREG-1496

					\$	10/ft ³ Dispons	Cort	5	50/ft ³ Disposal	Cort	\$3	50/ft' Disposa	Cort
Reduction in Residual	Incremental	Cumulative	Incremental Occupational	Cumulative Occupations1			Cost per Reduction in Residual Dose			Cost per Reduction in Residual Dose			Cost per Reduction in Residual Dose
Dose Rate	Soil Volume	Soil Volume	Dose	Dore	Incremental	Cumulative	Rate	Incremental	Canalative	Rate	Incremental	Camulative	Rate
(mrem/yr)	(m³)	(m ³)	(person-meen)	(person-meem)	Cort (SK)	Cost (SK)	(SK/menn/yr)	Cost (SK)	Cort (\$K)	(SK/mronv/yr)	Cort (SK)	Cost (SK)	(SK/meen/vr)
High								1					and the second state
100-60	• •	-	-	•		•	•		•	•	- 1	-	
60-30	•	• '	•	-	-	• •	•		• 1	• ·	1 -	•	
30-25	• •	• *	•	•		-	•	•	-	-		-	-
25-15	-	•	•	•	•	٠	-	-	•	-	-	-	•
15-10	• .	•	-	•	•	•	-		•	-	-		· · · •
10-3	•	•	•	-	-	· ·		-	-	-		-	
3-0.3	•	•	•	-	-	-	•	•	-	•	•	•	-
0.3-0.03	44	44	8		66.8	67	247,57	93.9		347.61	278.6	279	1.031.71
Medium													
100-60	-	-	•	•	-	•	•	•	•	-		-	-
60-30	•	• ·	•	•	-	-	•	•	-	•	-	-	-
30-25	•	-	-	-	-	•	-	-	-	-	-	•	•
25-15	•	• `	• '	•	-	、 •	•	-	-	•	-	-	•
15-10		-	-		- -	. •	•	-	-	•	- 1	-	
· 10-3	-	-	-		-	-	•	-	-	-	-	-	-
3-0.3	-	•	•	•	• •	• '	•	· ·	-	-	•	•	-
0.3-0.03	24	24	4	4	53.9	54	199.57	66.7	67	247.05	167.9	168	621.85
Low					1			1.					
100-60	•	•	•	•	•	-	-	-	•	-	-		•
60-30	-	-	•	•	- 1	•	•	•	•	•	-	•	- .
30-25	-	-	•	•	- 1	• *	•	-	•	-	- 1	•	•
25-15	•	-	-	-	•	-	• '	-	• -	•	-	-	•
15-10	-	-	. •	•	- 1	-	•	•	-	•	-	•	-
10-3	-	-	•	• ·	- 1	-	•		-	-	-	•	•
3-0.3	-	-	•	•*	- 1	-	•	· ·	-	•	- 1	•	-
0.3-0.03	•		•	•	•	•	•		-	•	-	-	

Table 2.1.9.Incremental Costs and Occupational Dose for Remediation of
Contaminated Soil at the Reference Nuclear Power Plant
(Restricted Land Use, Deposition on Soil Surface, with Soil Washing, 50-Year SAFSTOR)

Ξ,

ė

Table 2.1.10.Incremental Costs and Occupational Dose for Remediation of
Contaminated Soil at the Reference Nuclear Power Plant
(Restricted Land Use, Deposition on Soil Surface, Direct Disposal of Soil, 50-Year SAFSTOR)

v

ι

١

			A . PA ANALASI		S	10/ft ¹ Disposal	Cost	S	50/R ³ Disposal	Cost	\$3	0/ft ¹ Disposa	1 Cost
							Cost per			Cost per			Cost per
Reduction in			Incremental	Cumulative			Reduction in			Reduction in			Reduction in
Residual	Incremental	Cumulative	Occupational	Occupational			Residual Dose			Residual Dose			Residual Dose
Dose Rate	Soil Volume	Soil Volume	Dose	Dose	Incremental	Cumulative	Rate	Incremental	Cumulative	Rate	Incremental	Cumulative	Rate
(mrem/yr)	(m ³)	(m ¹)	(person-mrem)	(person-mrem)	Cost (\$K)	Cost (\$K)	(\$K/mrem/yr)	Cost (SK)	Cost (SK)	(SK/mrem/yr)	Cost (SK)	Cost (SK)	(SK/mrem/vr)
High											[
100-60	-	-	-	-	-	-	-	•	•	-	· -	-	-
60-30	-	-	•	-	•	-	-	i -	-	-		-	•
30-25	-	-	-	•	-	•	-	-	-	-		•	-
25-15	-	•	-	•	-	-	-	•	-	•	-	-	•
15-10	•	-	•	-	-	-	-	- 1	-	-	-	-	-
10-3	•	-	-	-	-	•	-	- 1	-	-	-	-	-
3-0.3	-	•	-	-	•	-	•	-	-	-	- 1	•	-
0.3-0.03	44	44	7	7	29.7	30	110.13	103,4	103	383.03	565.2	565	2,093.26
Medium													
100-60	-	•	-	-	-	-	-	-	-	-	-	-	-
60-30	•	-	-	-	-	-	•	-	-	• 1	-	-	-
30-25	•	-	-	•	-	-	-	-	-	-	-	-	-
25-15	•	•	-	-	•	•	•	-	•	•	-	•	•
15-10	-	•	•	-	•	•	-	-	-	•	-	-	-
10-3	•	-	-	•	-	-	•	•	-	•	-	-	-
3-0.3	-	-	•	-	•	-	-	- 1	-	-	-	•	-
0.3-0.03	24	24	4	4	18.1	18	67.20	57.0	57	211.13	310.0	310	1,148.12
Low											1		
100-60	•	-	-	-	•	•	•		-	-		•	-
60-30	•	-	-	-	· ·	•	•	•	-	-	-	-	-
30-25	-	•	-	•	•	•	•	- 1	-	•	· ·	٠	-
25-15	•	•	•	•	•	•	•	•	•	•		-	-
15-10	-	•	-	-	-	-	-	· ·	-	-		-	-
10-3	-	•	-	•	-	•	-	· ·	-	•	· ·	-	-
3-0.3	-	•	•	•	•	-	•	- 1	-	•	-	•	-
0.3-0.03	-		•	-	•	•	-	<u> </u>	-		•	•	-

1

٠

NUREG-1496

Reduction in Residua) Incres Dose Rate Soil V (mrem/yt) (m	mental /olume (n ²)	Cumulative Soil Volume (m ³)	Incremental Occupational Dose	Cumulative Occupational			Cost per Reduction in			Cost per			Cost per
Reduction in Residual Increm Dose Rate Soil V (mrem/yr) (m	mental /olume (n ³)	Cumulative Soil Volume (m ³)	Incremental Occupational Does	Cumulative Occupational			Reduction in						
Residua) Incres Dose Rate Soil V (mren/yr) (m	mental /olume (n ³)	Camulative Soil Volume (m ³)	Occupational Does	Occupational						Reduction in			Reduction in
Dose Rate Soil V (mrem/yr) (m	/otume (n ³)	Soil Volume (m ³)	Does	Deen			Residual Dose			Residual Does			Residual Dore
<u>(mrem/yr) (п</u>	n)	(m [*])		1 voint	Incremental	Cumulative	Rate	Incromontal	Cumulative	Rate	Incremental	Cumulative	Rate
A			(person-mrem)	(person-mem)	Cost (SK)	Cost (SK)	(SK/mecm/yr)	Cont (SK)	Cost (SK)	(SK/mrom/yr)	Cost (SK)	Cost (SK)	(SK/mennehar)
High							<u> </u>						(aronaena ji)
100-60	16	16	3	3	10.6	11	0.27	21.1	21	0.53	89.5	80	2.24
60-30	34	50	- 6	9	22.1	33	0.74	45.3	66	1.51	187.5	277	4.75
30-25	10	59	2	11	6.3	39	1.26	13.9	80	2.78	54.5	337	10.20
25-15	26	86	5	15	17.3	56	1.73	35.8	116	3.58	147.3	479	14.73
15-10	21	107	4	19	14.1	70	2.81	28.0	144	5.61	118.7	597	73 74
10-3	71	178	13	32	50.7	121	7.25	96,9	241	13.85	397.5	995	56 79
3-0.3	144	322	26	58	94.7	216	35.06	195.3	436	72.33	805.3	1.800	298.26
0.3-0.03	123	445	22	80	85.3	301	315.81	168,4	605	623.72	691.5	2,492	2.561.15
Modium	,												-,
100-60	16	16	3	3	10.6	11	0.27	21.1	.21	0.53	89.4	89	2.24
60-30	21	37	4	7	14.0	25	0.47	29.2	50	0.97	119.1	209	3.97
30-25	7	45	1	8	4.9	29	0.97	9.7	60	1.93	41.0	250	8 19
25-15	26	70	5	13	16.9	46	1.69	34.9	95	3.49	143.6	393	14.36
15-10	21	91	· · · · · · · · · · · · · · · · · · ·	~ 16	· · · 13.9	60	2.78	29.0		5.80	118.5	512	23.70
10-3	62	153	11	27	40.6	101	5.80	. 83.6	207	11.94	345.3	857	40 33
3-0.3	141	294	25	53	96.9	198	35.89	192.9	400	71.45	791.0	1.648	292 97
0.3-0.03	131	425	23	76	89.9	288	333.04	176.4	577	653.15	729.4	2.377	2.701.63
Low	1.1				1 a. a.			-		· · · ·			
100-60	•	•	•:	•	-	-	-	•	•	-	-		•
60-30	-	•	• -	. •	•	•	•	•	-	-	. .	-	
30-25	• -	•	•	-	.•	•	•	-	-	•	-	•	-
25-15	•		•	-	-	•	-	•	•	•	-	•	
15-10	3	3	0.5	0.5	39.9	40	7.98	38.8	39	7.76	49.8	50	0 07
10-3	29	. 31	. S	6	. 18.9	59	2.70	38.9	78	5.56	160.6	210	22.94
3-0.3	112	143	20	26	73.4	132	27.19	151.6	229	56.16	624.8	835	231 42
0.3-0.03	150	293	27	52	102.7	235	380.28	203.1	432.5	752.22	838.4	1.674	3.105.13

•. •

Table 2.1.11.Incremental Costs and Occupational Dose for Remediation of
Contaminated Soil at the Reference Nuclear Power Plant
(Unrestricted Land Use, Spill/Leak, with Soil Washing)

• •

NUREG-1496

<u>Table 2.1.12</u> .	Incremental Costs and Occupational Dose for Remediation of Contaminated Soil at the Reference Nuclear Power Plant
	(Unrestricted Land Use, Spill/Leak, Direct Disposal of Soil)

r

۱

					\$10/R ³ Disposal Cost Cost per			S	0/R ¹ Disposal	Cost	\$3	50/ft ³ Disposa	I Cost
1				:			Cost per			Cost per			Cost per
Reduction in			Incremental	Cumulative			Reduction in			Reduction in			Reduction in
Residual	Incremental	Cumulative	Occupational	Occupational			Residual Dose			Residual Dose			Residual Dose
Dose Rate	Soil Volume	Soil Volume	Dose	Dosc	Incremental	Cumulative	Rate	Incremental	Cumulative	Rate	Incremental	Cumulative	Rate
(mrem/yr)	(m³)	(m)	(person-mrem)	(person-mrem)	Cost (\$K)	Cost (\$K)	(\$K/mrcm/yr)	Cost (SK)	Cost (\$K)	(\$K/mrem/yr)	Cost (SK)	Cost (SK)	(SK/mrcm/vr)
High													
100-60	16	16	3	3	9.5	9	0.24	38.5	38	0.96	209.4	209	5.23
60-30	34	50	5	8	23.8	33	0.79	78.5	117	2.62	434.1	643	14.47
30-25	10	59	2	10	5.6	39	1.13	21.3	138	4.26	122.8	766	24.55
25-15	26	86	4	14	15.5	54	1.55	62.4	201	6.24	341.1	1.107	34.11
15-10	21	107	3	17	12.6	67	2.52	50.2	251	10.03	276.8	1.384	\$5.35
10-3	71	178	11	29	45.8	113	6.55	165.5	416	23.64	917.0	2,301	131.00
3-0.3	144	322	23	52	92.9	206	34.39	338.2	755	125.27	1,863.3	4,164	690.11
0.3-0.03	123	445	20	72	80.8	286	299.26	288.7	1,043	1,069.26	1,596.5	5,761	5,912.83
Medium													
100-60	16	16	3	3	9.5	9	0.24	37.1	37	0.93	207.9	208	5.20
60-30	21	37	3	6	12.5	22	0.42	49.8	87	1.66	274.8	483	9.16
30-25	7	45	1	7	4.3	26	0.87	17.7	105	3.54	95.9	579	19.18
25-15	26	70	4	11	19.2	45	1.92	\$9.6	164	5.96	331.2	910	33.12
15-10	21	91	3	15	12.4	58	2.48	49.5	214	9.91	. 273.3	1,183	54.65
10-3	62	153	10	25	40.4	98	5.78	145.1	359	20,73	799.4	1,982	114.21
3-0.3	141	294	23	48	91.2	190	33.78	330.6	690	122.46	1,825.9	3,808	676.25
0.3-0.03	131	425	21	69	\$5.0	275	314.67		995	1,132.36	1,688.5	5,497	6,253.54
Low													
100-60	-	-	-	-	-	-	•] -	-	•		-	-
60-30	•	-	•	•	•	-	-	-	•	-		-	- 1
30-25	-	•	•	•	-	•	-	-	-	-		-	
25-15	•	•	-	•	•	•	•	-	-		-	-	
15-10	3	3	0.4	0.4	5.6	6	1.13	7.1	7	1.42	34.6	35	6,93
10-3	29	31	5	5	16.9	23	2.41	66.4	73	9.48	370.5	405	\$2.93
3-0.3	112	143	18	23	73.9	96	27.36	262.5	336	97.24	1,445.5	1,851	535.37
0.3-0.03	150	293	24	47	96.4	193	356.93	350.1	686	1,296.81	1,938.4	3,789	7,179.09

ŧ

t

NUREG-1496

					S S	10/ft' Disposal	Cort	\$50/ft ³ Disposal Cost		Cort	1 63		
							Cost per		Dispose	Cost ner	33	WIL Disposa	Cont
Reduction in			Incremental	Cumulative			Reduction in		· · · · · · · · · · · · · · · · · · ·	Reduction in			Conper
Residual	Incremental	Canalative	Occupational	Occupational			Residual Dose			Residual Dom	1		Reduction in
Dose Rate	Soil Volume	Soil Volume	Doet	Does	Incremental	Cumulative	Rate	Incremental	Completing	Pate	Transmontal	0	Kendusi Dose
(mrem/yr)	(m ²)	(m ¹)	(person-mrem)	(person-nerm)	Cort (SK)	Cort (SK)	(SK/mrem/vr)	Cort (SK)	Cont (SK)	(Clarken (VS)	Cont (SK)	Cumulative	Rate
U.s.	(/	()	<u> </u>	<u></u>			(0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.	Const (orig)	CON(IN)	(JIC) IN CHAVIT	COR(SK)	COR(SK)	(SK/mrem/yr)
			-	-		_							
100-00			0.02	0.03	29.30	38.20	1 777		-	•	•	•	-
00-30	0.2	0.2	0.03	0.03	30.30	30.30	1.2//	33.04	35.64	1.188	36.38	36.38	1.213
30-25	1	1	0.2	0.3	0.67	39.10	0.173	1.72	37.36	0.345	7.30	43.68	1.460
25-15	4		. 1	1	2.3	42.	0.23	4.7	42	0.47	19.8	63	1.98
15-10		01	2	3	7.2	49	1.43	14.3	56	2.86	60.5	124	12.09
10-3	44	60		11	28.8	11	4.12	60.1	116	8.59	245.9	370	35.12
3-0.3	116	176	21	32	/0.3	154	28.32	157.7	274	58.42	650.6	1,020	240.96
0.3-0.03	114	290	20		75.8	233	291,86	154.2	428	571.07	635.6	1,656	2,354.14
Medium								1.					
100-60	•	•	•	-	-	•	•	-	-	-	- 1	•	•
60-30	•	-	•	•	•	-	-	-	•	-	-	-	-
30-25	-	-	•	•	· •	•	-	- 1	-	-	- 1	-	-
25-15	• •	. .	• .	· • ·	1 - .	•	•	- 1	•	. •	-	• • •	-
15-10	3	3	0.5	0.5	39.9	40	7.98	38.9	39	7.77	50.0	50	10.00
10-3	29	32	5	6	19.1	59	2.73	39.5	78	5.64	162.8	213	23.26
3-0.3	109	141	20	25	71.6	131	26.54	148.1	226	54.85	609.8	823	225 87
0.3-0.03	114	255	20	46	79.0	210	292.60	154.6	381	572.55	637.3	1.460	2 360 38
Low													2,00.00
100-60	-	-	-	•	• •	-	- 4	• ·	-	•	l .	. .	· · ·
60-30	•		-	-	-	•	-		-	-	1.		_
30-25	-	•	•	-		-	•	-	-	•	1 .		-
25-15	-		•	•	-	-	•		-				•
15-10		•	-	-	-		-	•	-	-		-	•
10-3	•	." _	-	-	-	• 1	-	-	-			-	-
3-0.3	21	21	4	4	51.8	52	19.20	62.6	63	73 10	150.4	141	
0.3-0.03	101	122	18	22	66.5	118	246.43	137.9	201	510.78	566 7	121	2008.01
												/1/	2,UY8.YI

Table 2.1.13.Incremental Costs and Occupational Dose for Remediation of
Contaminated Soil at the Reference Nuclear Power Plant
(Restricted Land Use, Spill/Leak, with Soil Washing)

.

Table 2.1.14.Incremental Costs and Occupational Dose for Remediation of
Contaminated Soil at the Reference Nuclear Power Plant
(Restricted Land Use, Spill/Leak, Direct Disposal of Soil)

.

١

NUREG-1496

					\$10/ft ³ Disposal Cost Cost per			Cost	\$3	50/ft ¹ Dispose	I Cost		
							Cost per			Cost per			Cost per
Reduction in			locremental	Cumulative			Reduction in			Reduction in	ſ		Reduction in
Residual	Incremental	Cumulative	Occupational	Occupational			Residual Dosc			Residual Dose	1		Residual Dose
Dose Rate	Soil Volume	Soil Volume	Dose	Doss	Incrementai	Cumulative	Rate	Incremental	Cumulative	Rate	Incremental	Cumulative	Rate
(mrem/yr)	(m ¹)	(m ¹)	(person-mrem)	(person-mrem)	Cost (SK)	Cost (SK)	(\$K/mrem/yr)	Cost (SK)	Cost (\$K)	(\$K/mrem/yr)	Cost (SK)	Cost (\$K)	(\$K/mrem/yr)
High											1		
100-60	-	•	•	•	-	-	-	- 1	•	•		-	•
60-30	0.2	0.2	0.03	0.03	4.20	4.20	0.140	1.71	1.71	0.057	3.58	3.58	0.119
30-25	1	1	0.2	0.2	0.77	4.98	0.15	2.92	4.64	0.58	16.86	20.44	3.37
25-15	4	5	1	1	2.1	7	0.21	7.9	13	0.79	45.6	66	4.56
15-10	11	16	2	3	6.4	13	1.28	25.5	38	5.10	141.0	207	28.19
10-3	44	60	7	10	25.8	39	3.68	102.6	141	14.66	\$67.0	774	81.01
3-0.3	116	176	19	29	76.6	116	28.37	272.9	414	101.06	1,505.0	2,279	557.41
0.3-0.03	114	290	18	47	75.0	191	277.84	265,5	679	983.46	1,469.1	3,748	5,441.12
Medium													
100-60	-	-	•	-	- 1	•	•	-	•	-	- 1	-	-
60-30	-	-	•	-	- 1	•	•	<u>ا</u> -	-	-	- 1	-	-
30-25	-	•	•	•	•	•	-	- 1	-	•	-	-	-
25-15	•	-	-	•	- 1	-	•	- 1	-	•	1 -	-	-
15-10	3	3	0.4	0.4	5.6	6	1.13	7.2	7	1.43	35.0	35	7.00
10-3	29	32	5	5	17.1	23	2.45	67.3	74	9.61	375.7	411	53.67
3-0.3	109	141	18	23	68.2	91	25.25	255.2	330	94.53	1,409.6	1,820	522.07
0.3-0.03	114	255	18	41	75.2	166	278.50	267.5	597	990.87	1,474.3	3,295	5,460.45
Low											1		
100-60	-	•	•	•	-	•	•	- 1	-	-	1 -	-	•
60-30	•	-	-	-	-	-	•	-	-	-		-	-
30-25	-	•	•	•	-	-	•	- 1	-	-	· ·	-	-
25-15	•	•	•	-	-	-	•	- 1	•	•		•	
15-10	-	-	-	•	-	-	•	-	-	-		•	-
10-3	-	-	•	•	-	-	-	-	-	-	.	-	-
3-0.3	21	21	3	3	16.3	16	6.04	48.7	49	18.06	268.7	269	99.51
0.3-0.03	101	122	16	20	63.6	80	235.60	238.0	287	881.31	1,309.9	1,579	4,851.61

[\$	10/ft' Dispose	Cost	S	50/ft ³ Disposal	Cost	\$3	0/ft ³ Disposa	Cont
Reduction in Residual	Incremental	Cumulative	Incromental Occupational	Camulative Occupational			Cost per Reduction in Revidual Doso			Cost per Reduction in Residual Dara	-		Cost per Reduction in
Dose Rate	Soil Volume	Soil Volume	Does	Does	Incremental	Cumulative	Rate	Incremental	Camalative	Rate	Decremental	Completion	Pata
(mronvyr)	(m ¹)	(m ³)	(person-mrem)	(person-meena)	Cost (SK)	Cost (SK)	(SK/mrcm/yr)	Cost (SK)	Cost (SK)	(SK/mrem/yr)	Cont (SK)	Cost (SK)	(SX/meem/w)
High							·		ليغير بخدان والمحاط				
100-60	-	•	-	-		-	•	•	•	-		-	-
60-30	•	•	-	•	-	-	•		•	-	í .	-	-
30-25	•			, •		-	-	•	•		l .	_	•
25-15	•	-	•	-	-	-	•	-	• '	-		-	-
15-10	19	19	. 3	3	50.6	51	- 10.13	60.23	60	12.05	140.49	140	28.10
10-3	36	55	6	10	23.8	74	3.39	50.0	110	7.14	203.2	344	20.10
3-0.3	173	228	31	41	117.9	192	43.68	234.8	345	86.98	968.5	1.312	358 69
0.3-0.03	224	453	40	- 81	151.6	344	561.66	304.7	650	1,128.45	1,255.6	2.568	4.650.30
Medium					1					······································			
100-60	-	•	•	•	-	•	•	-	-	-		-	-
60-30	·•	•	•	•	- 1	•	•	•	-	-		-	•
30-25	. •		•		•	•	. •	•	. •	•	· ·	-	
25-15	-	•	•	•	-	'	•	-	-	-	-	•	-
15-10	-	-	•	-	•	-	-	•	•	•		•	
· 10-3	14	14	2	2	47.18	47	6.74	53.35	53	7.62	111.36	111	15.91
3-0.3	98	112	18	20	64.4	112	23.87	133.73	187	49.53	549.02	660	203.34
0.3-0.03	218	329	39	59	147.1	259	544.90	295.66	483	1,095.04	1,217.39	1.878	4.508.85
Low													
100-60	-	÷	-	•	-	-	•	•	•	•	•	-	-
60-30	•	-	•	÷	•	•	-	-	•	-		-	
30-25	•		-	•	•	-	•		-	· · · -	· •	-	
25-15	-	•	-	•	- 1	•	-	} •	•	-	•	-	-
15-10	•	· · •	• •	•	1 -	-	•	- 1	•	-	I -	•	-
10-3	•	-	-	•	I -	-		-	-	-	-	•	-
3-0.3	33	33	- 6	• 6	60.0	60	22.22	80.21	80	29.71	220.79	221	81.77
0.3-0.03	124	157	22	28	81.6	142	302.19	167.92	248	621.92	693.74	915	2,569,41

Table 2.1.15.Incremental Costs and Occupational Dose for Remediation of
Contaminated Soil at the Reference Nuclear Power Plant
(Unrestricted Land Use, Spill/Leak, with Soil Washing, 50-Year SAFSTOR)

÷

.

ţ7

ing. Shiring

<u>Table 2.1.16</u>. Incremental Costs and Occupational Dose for Remediation of Contaminated Soil at the Reference Nuclear Power Plant (Unrestricted Land Use, Spill/Leak, Direct Disposal of Soil, 50-Year SAFSTOR)

e.

ſ					\$10/ft ¹ Disposal Cost			\$50/ft ³ Disposal Cost			\$350/R ² Disposal Cost		
1							Cost per			Cost per			Cost per
Reduction in			Incremental	Cumulative			Reduction in			Reduction in			Reduction in
Residual	Incremental	Cumulative	Occupational	Occupational			Residual Dose			Residual Dose	1		Residual Dose
Dose Rate	Soil Volume	Soil Volume	Does	Dose	Incremental	Cumulative	Rate	Incremental	Cumulative	Rate	Incremental	Cumulative	Rate
(mrcm/yr)	(m ³)	(m ³)	(person-mrem)	(person-mrem)	Cost (SK)	Cost (SK)	(SK/mrem/yt)	Cost (\$K)	Coat (SK)	(SK/mrem/yr)	Cost (\$K)	Cost (\$K)	(\$K/mrem/yt)
High											[
100-60	-	-	•	-	•	•	•	1 -	•	-	- 1	•	•
60-30	-	-	-	-		•	•	{ -	-	•	1 -	-	-
30-25	-	-	-	•	[·	-	•	•	-	-		-	-
25-15	-	•	•	-		•	•	-	•	•		•	-
15-10	19	19	3	3	15.2	15	3.05	44.7	45	8.94	245.4	245	49.07
10-3	36	55	6	9	21.3	36	3.04	85.6	130	12.22	468.4	714	66.92
3-0.3	173	228	28	37	114.1	151	42.27	404.3	535	149.75	2,238.4	2,952	829.03
0.3-0.03	224	453	36	73	144.3	295	534.34	526.1	1,061	1,948.63	2,903.4	5,856	10,753.24
Medium					1]					
100-60	-	-	-	•	· ·	•	-	-	-	•	· ·	-	•
60-30	-	-	-	-	· ·	•	•	1 -	-	•	· ·	-	•
30-25	•	-	-	-] -	•	•	-	•	•	· ·	-	•
25-15	•	-	•	•	· ·	•	•	-	-	•	· ·	•	-
15-10	-	•	•	•		·	-		-			-	-
10-3	14	14	2	2	12.2	12	1.74	33.0	33	4.72	178.1	178	25.44
3-0.3	98	112	16	18	61.7	74	22.87	229.5	263	85.02	1,267.8	1,446	469.54
0.3-0.03	218	329	35	53	140.2	214	519.35	509.5		1,887.10	2,813.8	4,260	10,421.63
Low		· ·			4			i]		
100-60	-	•	-	•	- 1	-	•		•	•	· ·	-	-
60-30	•	•	•	•	· ·	•	-		-	-	· ·	•	-
30-25	-	-	-	•	· ·	•	•	} •	-	•		-	•
25-15	-	•	•	•	· ·	•	•	1 -	-	•	· ·	-	-
15-10	-	•	•	•	1 .	-	-	· ·	-	•	1 .	-	-
10-3	-	-	•	•		-	-		-	•		-	-
3-0.3	33	33	5	5	23.6	24	8.74	79.0	79	29,25	430.4	430	159.42
03.003	124	157	20	25	81.2	105	300.66	290.1	369	1,074.53	1,604.7	2,035	\$,943.24

÷.

NUREG-1496

<u>Table 2.1.17</u> .	Incremental Costs and Occupational Dose for Remediation of
	Contaminated Soil at the Reference Nuclear Power Plant
	(Restricted Land Use, Spill/Leak, with Soil Washing, 50-Year SAFSTOR)

.

C

					5	10/ft ³ Disposal	Cost	S:	50/ft' Disposal	i Cost	\$3	50/0 ³ Dimora	Cast
Reduction in Residual	Incremental	Comulative	Incremental Occupational	Camulative Occupational			Cost per Reduction in Residual Dose		·····	Cost per Reduction in Residual Dose		Wit Dispuss	Cost per Reduction in Residual Dose
Dose Rate	Soil Volume	Soit Volume	Dose	Does	Incremental	Camelative	Rate	Incremental	Cumulative	Rate	Incremental	Cumulative	Rate
(mrom/yr)	(111-)	(11)	(person-mem)	(period-ne cm)	Con (SV)	Con (32)	(SK/mrenvyr)	Cost (SK)	Cort (SK)	<u>(SK/mrem/yr)</u>	Cost (SK)	Cost (SK)	(SK/mrem/yr)
High				/	1 .			-					
100-60	•	•	-	- /	· ·	•	• .	-	-	-	-	•	- 1
60-30	. •	-	•	- /	-	-	1 • A	-	-	•	-	•	
30-25	•	•	•	- '	i •	•	•	- 1	-	-	•	•	
25-15	•	•	-	- 1	· ·	-	•	•	•	• .	-	-	
15-10	•	•	• •	• 1	· ·	•	•	•	-	•	 - '		· •
10-3	•	•	•	•_'		•	•	-	-	•	-	•	•
3-0,3	41	41	7	7	64.87	64.87	24.026	89.92	89.92	33.305	261.92	261.92	97.006
0.3-0.03	142	183	25	33	97.3		361.09	192.8	283	713.97	794.7	1,057	2,943.22
Medium				,				1					
100-60	•			- '	•	-	-	•	-	•	-	-	-
60-30	•	•	•	- /	•	•	•	-	-	•	-	-	- 1
30-25	•	. •	•	•	-	•	•	-	-	. •	-	-	
25-15	•	•	•	•	- 1	-	•	-	•	•	-	•	-
15-10	• •	• •	•	• •	•	· · · · · ·	•	-		-	-	•	· · ·
10-3	-	•	-	-	-	-	•	-	•	-	. - ∙	•	-
3-0.3	•		•	• •		•	•	•	•	•	- 1	-	-
0.3-0.03		87	10	10	973.49	95.49	353.684	153.61	153.61	568.933	522.97	522.97	1,936.916
Low							1	1					i
100-60		•	•	•	1 •	•	-	•	. •	-		-	.
60-30	•	•	•	-	-	-	. •	· ·		•	- 1	-	
30-25	•	•	•	-	•	-	-	•	-	-	1 -	-	
25-15	•	•	٠	• . /	•	•	•	- 1	•	-	-	-	
15-10	•	•	•	• '	i •	•	•	-	•	•		-	- 1
10-3	-	•	•	- '	-	-	•	-	-	-	-	•	
3-0.3	-	•	-	- '	•	•	•	-	-	-	-	-	- 1
0.3-0.03	20	20	4	4	51.06	51.06	189,100	61.07	61.07	226.176	144.04	144.04	533.476

• • •

NUREG-1496

Table 2.1.18Incremental Costs and Occupational Dose for Remediation of
Contaminated Soil at the Reference Nuclear Power Plant
(Restricted Land Use, Spill/Leak, Direct Disposal of Soil, 50-Year SAFSTOR)

•

. .

					\$10/R ³ Disposal Cost			S :	50/ft ³ Disposal	Cost	\$350/ft ³ Disposal Cost		
							Cost per	}		Cost per			Cost per
Reduction in			Incremental	Cumulative			Reduction in			Reduction in	{		Reduction in
Residual	Incremental	Cumulative	Occupational	Occupational			Residual Dose			Residual Dose			Residual Dose
Dose Rate	Sail Volume	Soil Volume	Dose	Dose	Incremental	Cumulative	Rate	Incremental	Cumulative	Rate	Incremental	Cumulative	Rate
(aurem/yr)	(m ¹)	(m ³)	(person-mrem)	(person-mrem)	Cost (\$K)	Cost (\$K)	(\$K/mrem/yr)	Cost (SK)	Cost (SK)	(\$K/mrem/yr)	Coat (SK)	Cost (SK)	(\$K/mrem/vr)
High													
100-60	-	•	-	•	-	•	-	-	•	•		-	-
60-30	•	•	•	-	-	-	•	- 1	-	-	-	•	-
30-25	-	-	-	-	•	-	•	.	-	•	- 1	-	-
25-15	-	•	-	-	-	•	•	-	-	•	-	-	-
15-10	•	-	•	-	-	-	-	- 1	-	-	•	-	
10-3	•	•	•	•	•	•	-		-	-	•	-	•
3-0.3	41	41	7	7	27.97	27.97	10.359	95.43	95.43	35.345	525.41	525.41	194.597
0.3-0.03	142	183	23	30	91.7	120	339.76	332.6	428	1,232.00	1,837.4	2,363	6,805.13
Medium													
100-60	-	-	-	•	•	-	•	- 1	-	•	-	-	-
60-30	•	•	-	-	-	•	•	· ·	-	•	- 1	-	-
30-25	•	•	•	-	-	•	•	· ·	-	•	-	-	•
25-15	•	-	•	•	•	-	•		•	•	-	•	-
15-10	•	•	-	•	•	-	•	1 .	•	-	- 1	•	•
10-3	•	•	•	-	· ·	•	•	· ·	-	-	-	-	-
3-0.3	-	•	•	•		•	•	•	•	•	-	-	-
0.3-0.03	87	87	14	14	59.46	59,46	220.229	205.48	205.48	761.038	1,128.87	1,128.87	4,180.995
Low								1					
100-60	-	•	•	-	-	•	•	· ·	•	•	•	-	•
60-30	-	•	•	•	•	-	•	•	-	•	•	-	•
30-25	•	•	•	-	-	•	•	•	•	-	- 1	-	•
25-15	-	•	•	-	-	-	•	· ·	-	•		-	-
15-10	-	•	-	•	•	-	•		•	•	•	-	•
10-3	•	-	•	-	•	-	-		•	-	•	•	-
3-0.3	•	•	•	•		•	•		•	-	•	-	-
0.3-0.03	20	20	3	3	15.62	15.62	57.834	46.13	46.13	170.850	253.56	253.56	939.099

ι

NUREG-1496

-					\$	10/ft ³ Disposal	Cont	\$	50/ft ³ Disposal	Cost	\$3	50/ft ³ Dispose	1 Cost
						•	Cost per			Cost per			Cost per
Reductir:n in			Incremental	Cumulative			Reduction in	ĺ		Reduction in	1		Reduction in
Residual	Incremental	Cumulative	Occupational	Occupational			Residual Dose		·	Residual Dose			Residual Dose
Dose Rate	Soil Volume	Soil Volume	Dost	Dose	Incremental	Cumulative	Rate	Increments	Cumulative	Rate	Incremental	Camulative	Rate
(mrem/yr)	(m ³)	(m ³)	(person-mircia)	(person-mrem)	Cost (SK)	Cort (SK)	(SK/mrcm/yr)	Cort (SK)	Cost (SK)	(SK/mrem/yr)	Cost (SK)	Cost (SK)	(SK/mrem/yr)
High											1		
100-60	133	133	- 24	24	· 87.2	: 87	2.18	180.5	180	4.51	742.7	743	18.57
60-30	156	289	- 28	- 52	107.0	194	3.57	213.0	393	7.10	875.9	1,619	29.20
30-25	· 37	327	7	58	24.6	219	4.92	50.4	444	10.08	209.1	1,828	41.82
25-15	100	426	18	76	69.7	288	6.97	136.0	580	13.60	558.4	2,386	55.84
15-10	76	502	14	. 90	49.7	338	9.93	102.9	683	20.59	422.9	2,809	84.59
10-3	201	703	36	126	140.5	479	20.08	273.0	956	. 39.01	1,125.9	3,935	160.85
3-0.3	326	1,029	- 58	184	218.2	697	80.80	442.5	1,398	163.91	1,822.1	5,757	674.85
0.3-0.03	289	1,317	52	236	198.0	895	733.48		1,791	1,455.37	1,616.4	7,373	.5,986.67
Medium					•			ł				•	
100-60	541	541	97	97	367.9	368	9.20	735.2	735	18.38	3,026.8	3,027	75.67
60-30	284	824	51	148	194.8	563	6.49	386.4	1,122	12.88	1,588.8	4,616	52.96
30-25	59	883	11	158	38.6	601	7.72	79.5	1,201	15.91	328.2	4,944	65.63
25-15	142	1,025	25	183	97.2	698	9.72	192.2	1,393	19.22	792.1	5,736	79.21
15-10	. 99	1,124	. 18	201	69.2	768	13.85	135.1	1,528	27.02	554.8	6,291	110.97
10-7	251	1,375	- 45	246	169.3	937	24.19	341.2	1,870	48.74	1,405.8	7,696	200.83
3-0.3	382	1,757	68	315	259.5	1,196	96.11	519.4	2,389	192.37	2,138.9	9,835	792.19
0.3-0.03	312	2,069	56	370	213.4	1,410	790.46	424.9	2,814	1,573.84	1,747.5	11,583	6,472.35
Low							: ÷	· .		4 g 4			
100-60	-	•	-	•	· ·	•		1	•	· •	• •	-	•
60-30	•	•	•	•	•	•	•	• •	, : •		•	-	•
30-25	-	•	•	•	•	•	•	-	- -	• •	. •	-	
25-15	840	840	150	150	607.0	607	60.70	1,176.3	1,176	117.63	4,736.6	4,737	473.66
15-10	479	1,320	86	236	327.6	935	65.51	652.2	1,828	130.44	2,684.0	7,421	536.81
10-3	469	1,789	84	320	320.9	1,256	45.84	637.6	2,466	91.08	2,626.3	10,047	375.19
3-0.3	502	2,291	90	410	338.1	1,594	125.23	682.8	3,149	252.87	2,809.0	12,856	1,040.38
0.3-0.03	- 364	2,655	65	475	251.9	1,845	932.78	494.7	3,644	1,832.13	2,038.5	14,895	7.549.95

Table 2.2.1.Incremental Costs and Occupational Dose for Remediation of
Contaminated Soil at the Reference Uranium Fuel Fabrication Plant
(Unrestricted Land Use, Deposition on Soil Surface, with Soil Washing)

()

()

¢

Table 2.2.2.Incremental Costs and Occupational Dose for Remediation of
Contaminated Soil at the Reference Uranium Fuel Fabrication Plant
(Unrestricted Land Use, Deposition on Soil Surface, Direct Disposal of Soil)

٠

					\$10/ft ³ Disposal Cost			\$50/ft ³ Disposal Cost			\$350/R ³ Disposal Cost		
1							Cost per			Cost per			Cost per
Reduction in			Incremental	Cumulative			Reduction in			Reduction in			Reduction in
Residual	Incremental	Cumulative	Occupational	Occupational			Residual Dose]		Residual Dose			Residual Dose
Dose Rate	Soil Volume	Soil Volume	Dose	Dose	Incremental	Cumulative	Rate	Incremental	Cumulative	Rate	Incremental	Cumulative	Rate
(mrem/yt)	(m ³)	(m ³)	(person-mrem)	(person-mrem)	Cost (\$K)	Cost (\$K)	(\$K/mrem/yr)	Cost (\$K)	Cost (\$K)	(SK/mrem/yr)	Cost (SK)	Cost (SK)	(SK/mrem/vr)
High													1.7
100-60	133	133	21	21	86.2	86	2.16	310.5	311	7.76	1.716.0	1.716	42 90
60-30	156	289	25	47	100.2	186	3.34	367.3	678	12.24	2.024.7	3.741	67 49
30-25	37	327	6	53	22.0	208	4.40	87.1	765	17.43	483.8	4.224	96.77
25-15	100	426	16	69	66.8	275	6.68	233.3	998	23.33	1,289.5	5,514	128.95
15-10	76	502	12	81	48.5	324	9,70	177.0	1,175	35.39	976.9	6.491	195.39
10-3	201	703	33	114	130.7	454	18.67	472.1	1,647	67.45	2,604.4	9.095	372.05
3-0.3	326	1,029	53	167	207.9	662	76.99	762.7	2,410	282.47	4,211.6	13,307	1.559.83
0.3-0.03	289	1,317	47	213	186.2	849	689.63	675.6	3,086	2,502.16	3,734.2	17,041	13.830.43
Medium													
100-60	541	541	88	88	350.8	351	8.77	1,265.8	1,266	31.64	6,994.7	6,995	174.87
60-30	284	824	46	134	183.3	534	6.11	665.9	1,932	22.20	3,671.7	10,666	122.39
30-25	59	\$83	10	143	38.6	573	7.72	136.9	2,069	27.38	758.5	11,425	151.70
25-13	142	1,025	23	166	91.5	664	9.15	331.6	2,400	33.16	1,831.5	13,256	183.15
15-10	99	1,124	16	182	62.4	727	12.47	231.9	2,632	46.38	1,281.2	14,538	256.24
10-3	251	1,375	41	223	164.2	891	23.45	588.4	3,220	84.05	3,249.9	17,788	464.28
3-0.3	382	1,757	62	285	245.3	1,136	90.84	895.1	4,115	331.50	4,943.8	22,731	1,831.05
0.3-0.03	312	2,069	51	335	204.1	1,340	755.78	731.5	4,847	2,709.31	4,038.0	26,769	14,955.59
Low													
100-60	-	-	-	-	•	-	-	-	•	•	-	-	•
60-30	-	•	-	•	-	•	-	•	•	-	•	•	•
30-25	•	•	-	•	-	•	•	•	•	•	•	•	•
25-15	840	\$40	136	136	543.3	543	54.33	1,969.1	1,969	196.91	10,870.1	10,870	1,087.01
15-10	479	1,320	78	214	310.7	854	62.14	1,123.0	3,092	224.61	6,202.6	17,073	1,240.52
10-3	469	1,789	76	290	304.7	1,159	43.53	1,099.1	4,191	157.02	6,071.0	23,144	867.28
3-0.3	502	2,291	81	371	323.8	1,483	119.93	1,175.2	5,366	435.26	6,490.9	29,635	2,404.03
0.3-0.03	364	2,655	59	430	234.8	1,717	869,49	854.1	6,221	3,163.19	4,713.6	34,348	17,457.75

i.

.

NUREG-1496

				\$10/ft ³ Disposal Cost				\$50/ft ³ Disponal Cost			WA' Discos	I Cort	
							Cost per			Cost per			Cost per
Reduction in			Incremental	Cumulative			Reduction in			Reduction in	[Reduction in
Residual	Incremental	Cumulative	Occupational	Occupational			Residual Dose			Residual Dose	.		Residual Dose
Dose Rate	Soil Volume	Soil Volume	Does	Dove	Incremental	Cumulative	Rate	Incremental	Cumulative	Rate	Incremental	Cumulative	Rate
(miem/yr)	(m ¹)	(m ³)	(person nerom)	(person-meem)	Cost (SK)	Cost (SK)	(SK/meen/yr)	Cost (SK)	Cost (SK)	(SK/meem/yr)	Cost (SK)	Cort (SK)	(SK/mrem/w)
High											<u>باین شهر می</u>		
100-60	-	-	-	•	-	-	•	-	•	-		-	
60-30	-	•	• '	. .	•	-	•	-	-	-	1.	•	-
30-25	-	• •	` •	•	-	•	-	- · ·		•	-	•	•
25-15	1,056	1,056	189	189	753.1	753	75.31	1,469.8	1,470	146,98	5,944.9	5,945	594.49
15-10	323	1,379	58	247	220.7	974	44.13	439.4	- 1,909	87.88	1,808.7	7,754	361.73
10-3	438	1,817	78	325	300.2	1,274	42.89	595.1	2,504	85.01	2,450.8	10,204	350.11
3-0.3	491	2,308	88	413	335.2	1,609	124.13	667.4	3,172	247.17	2,748.1	12,952	1.017.81
0.3-0.03	363	2,671	65	478	247.1	1,856	915.28	494.8	3,666	1,832.42	2,034.5	14.987	7.535.31
Medium													
100-60	-	-	· •	•	-	•	•		•	•	-	-	-
60-30	•	•	•	•	•	-	-	-	-	-	-	-	-
30-25	-	-	- -	• .	-	-	•	-	-	-		-	•
25-15	-	-	••	•	-	-	-	-	-	-		-	•
15-10	 , •	. . • .	•		-		•	, -		. -	1 -	•	-
10-3	1,056	1,056	189	189	753.1	753	107.58	1,469.8	1,470	209.97	5,944.9	. 5,94 5	849.27
3-0.3	933	1,989	167	356	638.2	1,391	236.36	1,269.3	2,739	470.10	5,223.5	11,168	1,934.61
0.3-0.03	434	2,423	78	434	293.4	1,685	1,086.80	589.7	3,329	2,184.09	2,427.9	13,596	8,992.36
Low											· ·		
100-60	• •	•	•.	•	- `	• •	-	-		-		-	
60-30	•	•	-	-	-	•	-	-	•	-	· ·	•	-
30-25	-	-	-	•	-	-	•	•	-	-	•	-	-
25-15	•		•	•	•	-	•	-	•	•	•	•	-
15-10	-	•	-	•	•,	•	•	-	-	•	•	•	-
10-3	. •	-	• -	•	•	•	•	•	-	•	l •	-	• •
3-0.3	1,379	1,379	247	247	973.7	974	360.65	1,909.1	1,909	707.09	7,753.5	7,754	2,871.68
0.3-0.03	698	2,077	125	372	475.5	1,449	1,760.99	949.4	2,859	3,516.37	3,907.9	11,661	14,473.81

Table 2.2.3.Incremental Costs and Occupational Dose for Remediation of
Contaminated Soil at the Reference Uranium Fuel Fabrication Plant
(Restricted Land Use, Deposition on Soil Surface, with Soil Washing)

1

.

è

•

:

Ð

Table 2.2.4.Incremental Costs and Occupational Dose for Remediation of
Contaminated Soil at the Reference Uranium Fuel Fabrication Plant
(Restricted Land Use, Deposition on Soil Surface, Direct Disposal of Soil)

٠

.

r					S	10/ft ³ Disposal	Cost	2	50/ft ³ Disposal	Cost	63/	(0/0 ⁾ Diagon	
Reduction in Residual	Incremental	Cumulative	Incremental Occupational	Cumulative Occupational			Cost per Reduction in Residual Dose		(0)1. Lup	Cost per Reduction in Residual Dose	<u>رده</u>	IU/IL L/ISPOSA	Cost per Reduction in Residual Dose
Dose Rate	Soil Volume	Soil Volume	Dose	Dose	Incremental	Cumulative	Rate	Incremental	Cumulative	Rate	Incremental	Cumulative	Rate
(mrem/yr)	(m³)	(m ³)	(person-mrem)	(person-mrem)	Cost (SK)	Cost (\$K)	(SK/mrem/yr)	Cost (\$K)	Cost (SK)	(\$K/mrem/yr)	Cost (SK)	Cost (SK)	(SK/mrem/vr)
High										a di seconda se da s			(0.01.00.01.0)
100-60	•	•	-	•	.	-	-	i -	-	-			
60-30	•	-	-	-	- 1	-	•	· ·	-	•	.	-	- /
30-25	-	-	-	-	- 1	•	•	-	-		1.	•	_
25-15	1,056	1,056	171	171	682.6	683	68.26	2,475.0	2,475	247.50	13,662.8	13.663	1.366.28
15-10	323	1,379	52	223	210.5	893	42.11	756.0	3,231	151.20	4,179.2	17.842	835.84
10-3	438	1,817	71	294	282.1	1,175	40.31	1,026.8	4,258	146.68	5,666.0	23,508	809.42
3-0.3	491	2,308	80	374	317.5	1,493	117.59	1,150.0	5,408	425.93	6,351.8	29,860	2.352.54
0.3-0.03	363	2,671	59	433	234.2	1,727	867.42	850.6	6,258	3,150.46	4,700.1	34,560	17,407.69
Medium		·		1	1								
100-60	•	-	-	- '	1 -	-	•	•	-	-		•	-
60-30	-	•	-	- '		•	-	-	-	•	-	-	-
30-25	•	-	-	•	· ·	•	-	-	•	-	-	-	-
25-15	•	-	-	-	- 1	-	-	-	-	-	-	•	-
15-10	•	-	•	- /		-	•	-	-	•	-	-	-
10-3	1,056	1,056	171	171 /	682.6	683	97.51	2,475.0	2,475	353.57	13,662.8	· 13,663	1,951.82
3-0.3	933	1,989	151	322 /	606.2	1,289	224.52	2,184.8	4,660	809.17	12,070.2	25,733	4,470.45
0.3-0.03	434	2,423	70	393	279.7	1,569	1,036.01	1,016.3	5,676	3,764.07	5,611.9	31,345	20,784.73
Low				,	1								
100-60	-	-	-	• '	· ·	-	•	-	-	-	-	-	-
60-30	-	•	•	- '	- 1	•	-	-	•	-	•	-	-
30-25	-	-	-	- '	1 -	-	-	-	-	•		-	-
25-15	-	-	-	- '	- 1	•	-	-	•	-		-	-
15-10	-	•	-	- '	(·	-	-	-	-	•	-	-	•
10-3	•	-	-	- /	-	•	-	- 1	-	-	· ·	•	
3-0.3	1,379	1,379	223	223	893.1	893	330.79	3,231.0	3,231	1,196.65	17,842.0	17,842	6,608.14
0.3-0.03	698	2,077	113	337	451.6	1,345	1,672.61	1,636.5	4,867	6,061.07	9,032.8	26,875	33,454.67

1

NUREG-1496

Reduction in Residual incremental Committive Dows Rote Seit Volmes Seit Volmes Soit Occepational Dows Rote Seit Volmes Soit Volmes Soit Volmes Dows (m ²) (m ³) (m ³) (m ³) (person-memb) Descriptional Cont (SK) Cont (SK) Residual Dows Rote Seit Volmes Soit Volmes Soit Volmes Dows (setter Seit Volmes Soit Volmes Soit Volmes Soit Volmes Normanne) Cont (SK) Cont (SK) Cont (SK) Residual Dows Rote Soit Volmes Soit Volmes Soit Volmes Normanne) Cont (SK) Cont (SK) Cont (SK) Cont (SK) Cont (SK) Rote Volmes Soit Volmes Normanne) Cont (SK) Cont (SK) Cont (SK) Rote Volmes Soit Volmes Normanne) Cont (SK) Rote Volmes Soit Volmes Normanne) Cont (SK) Cont (SK) Cont (SK) Cont				_		\$10/ft' Disposal Cost			\$50/ft ³ Disposal Cost			\$350/ft' Disposal Cost								
Reduction in section: In generative of computation of computatinge computation of computation of computation of comput						1		Cost per			Cost per			Cost per						
Reideal Incremental Conceptional Occeptional Consplicts Reideal Dess	Reduction in	۱ <u>.</u>		Incremental	Cumulative	[Reduction in	1		Reduction in	ł		Reduction in						
Done Rate Soil University Rate Incremental Cumulative Rate Incrementar Cumulative Rate Incrementar Incrementar Increm	Residuel	Incremental	Cumulative	Occupations!	Occupations!	and the second		Residual Doso	1 · ·		Residual Dose	. .		Residual Dose						
(m²) (m²) <th(m²)< th=""> (m²) (m²) <th(< td=""><td>Dose Rate</td><td>Soil Volume</td><td>Soil Volume</td><td>Dess</td><td>Dose</td><td>Increments!</td><td>Completive</td><td>Rate</td><td>Incremental</td><td>Consistive</td><td>Rate</td><td>Incremental</td><td>Cumulative</td><td>Rate</td></th(<></th(m²)<>	Dose Rate	Soil Volume	Soil Volume	Dess	Dose	Increments!	Completive	Rate	Incremental	Consistive	Rate	Incremental	Cumulative	Rate						
High 100-60 996 178 178 178 679.8 680 1,333.6 1,326.6 <th <="" colspan="6" td=""><td>(писти/ут)</td><td><u>(m)</u></td><td>(m)</td><td>(person-matin)</td><td>(person musim)</td><td>Cost (SK)</td><td>Cost (SK)</td><td>(SK/mrcm/yr)</td><td>Cort (SK)</td><td>Cost (SK)</td><td>(SK/mrem/yr)</td><td>Cost (SK)</td><td>Cort (SK)</td><td>(SK/mrem/vr)</td></th>	<td>(писти/ут)</td> <td><u>(m)</u></td> <td>(m)</td> <td>(person-matin)</td> <td>(person musim)</td> <td>Cost (SK)</td> <td>Cost (SK)</td> <td>(SK/mrcm/yr)</td> <td>Cort (SK)</td> <td>Cost (SK)</td> <td>(SK/mrem/yr)</td> <td>Cost (SK)</td> <td>Cort (SK)</td> <td>(SK/mrem/vr)</td>						(писти/ут)	<u>(m)</u>	(m)	(person-matin)	(person musim)	Cost (SK)	Cost (SK)	(SK/mrcm/yr)	Cort (SK)	Cost (SK)	(SK/mrem/yr)	Cost (SK)	Cort (SK)	(SK/mrem/vr)
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	High											Ĭ								
	100-60	996	996	178	178	679.8	680	16.99	1,353.6	1,354	33,84	5,576.0	5,576	139.40						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	60-30	3,492	4,488	625	803	1,811.3	2,491	60.38	4,180.5	5,534	139.35	18,977.4	24,553	632.58						
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	30-25	765	5,253	137	940	423.8	2,915	84.76	943.8	6,478	188.75	4,183.8	28,737	836.75						
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	25-15	1,985	7,238	355	1,296	1,102.9	4,018	110.29	2,450.9	8,929	245.09	10,863.6	39,601	1.086.36						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	15-10	1,864	9,102	334	1,629	1,038.3	5,056	207.67	2,300.6	11,229	460.13	10,200.1	49,801	2.040.02						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	10-3	5,228	14,330	936	2,565	2,904.4	7,960	414.91	6,455.0	17,684	922.14	28,608.1	78,409	4.036.88						
0.3-0.03 9,663 33,484 1,770 5,994 5,370.2 18,610 19,889.56 11,929.4 41,332 44,182.80 52,8778.3 183,230 199,845.61 Modium 25 25 4 4 16.3 16 0.41 33.8 34 0.84 138.7 139 3.47 60-30 1,849 1,874 331 335 1,257.2 1,273 41.91 2,514.0 2,548 83.80 10,351.7 10,490 345.06 30-25 767 2,641 137 473 524.7 1,798 104.94 1,042.0 3,590 208.40 4,291.4 14,792 858.27 25-15 2,147 4,718 314 857 1,461.2 3,299 146.12 2,918.9 6,509 291.89 1,201.84 1,201.84 10-3 5,057 21,215 0,377 5,376.6 12,308 1,991.32 1,944.4 14,770 849.21 27,375.3 63,712 3,910.75 3-0.3 9,664 30,850 1,730 5,528 5,370.8 17,678	3-0,3	9,492	23,821	1,699	4,264	5,279.0	13,240	1,955.20	11,718.5	29,403	4,340.20	51,942.6	130,352	19,238.00						
Medium 100-60 25 25 4 4 16.3 16 0.41 33.8 34 0.84 138.7 139 3.47 60-30 1,849 1,874 331 335 1,257.2 1,273 41.91 2,514.0 2,548 853.80 10,351.7 10,490 345.06 30-25 767 2,641 137 473 524.7 1,798 104.94 1,042.0 3,590 208.40 4,291.4 14,792 858.27 25-15 2,147 4,778 384 857 1,461.2 3,259 146.12 2,918.9 6,509 291.89 12,018.4 26,800 1,201.84 10-3 3,057 11,549 905 2,067 2,514.5 6,931 359.21 5,944.5 14,770 849.21 27,757.3 63,712 3,910.75 3,910.75 3,9667 21,216 1,730 3,778 5,376.6 12,308 1,991.67 11,932.0 38,636 44,192.41 52,895.5 169,499 19,587.2.04 Low <td>0.3-0.03</td> <td>9,663</td> <td>33,484</td> <td>1,730</td> <td>5,994</td> <td>5,370.2</td> <td>18,610</td> <td>19,889.56</td> <td>11,929.4</td> <td>41,332</td> <td>44,182.80</td> <td>52,878.3</td> <td>183,230</td> <td>195,845.61</td>	0.3-0.03	9,663	33,484	1,730	5,994	5,370.2	18,610	19,889.56	11,929.4	41,332	44,182.80	52,878.3	183,230	195,845.61						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Medium					·														
60-30 1,849 1,874 331 333 1,257.2 1,273 41.91 2,514.0 2,548 53.50 10,351.7 10,490 345.66 30-25 767 2,641 137 473 524.7 1,798 104.94 1,042.0 3,590 208.40 4,291.4 14,772 858.27 25-15 2,147 4,778 384 857 1,461.2 3,229 146.12 2,918.9 6,509 208.40 4,291.4 14,772 858.27 15-10 1,704 6,492 305 1,162 1,157.2 4,417 231.45 2,316.4 8,625 463.28 9,336.5 36,337 1,907.31 1,907.31 10,930.3 3,593 10,375.3 63,712 3,910.75 3,01.75 19,91.32 11,934.4 25,704 4,420.16 52,901.5 116,614 19,593.16 11,932.0 38,635 44,192.41 52,815.5 169,499 19,1972.04 Lew - - - - - - - - - - - - - - -	100-60	25	25	4	4	16.3	16	0.41	33.8	. 34	0.84	138.7	139	3.47						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	60-30	1,849	1,874	331	335	1,257.2	1,273	41.91	2,514.0	2,548	83,80	10,351.7	10,490	345.06						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	30-25	767	2,641	137	473	524.7	1,798	104.94	1,042.0	3,590	208.40	4,291.4	14,782	858.27						
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	25-15	2,147	4,788	384	857	1,461.2	3,259	146.12	2,918.9	6,509	291.89	12,018.4	26,800	1,201.84						
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	15-10	1,704	6,492	305	1,102	1,157.2	4,417	231.45	2,316.4	8,825	463.28	9,536.5	36,337	1,907.31						
3-0.3 9,667 21,216 1,730 3,773 5,376.6 12,303 1,991.32 11,934.4 26,704 4,420.16 52,901.5 116,614 19,593.16 0.3-0.03 9,664 30,850 1,730 5,528 5,370.8 17,678 19,891.67 11,932.0 38,636 44,192.41 52,885.5 169,499 195,872.04 Low 100-60 - <td>10-3</td> <td>5,057</td> <td>11,549</td> <td>905</td> <td>2,067</td> <td>2,514.5</td> <td>. 6,931</td> <td>359.21</td> <td>5,944.5</td> <td>14,770</td> <td>849.21</td> <td>27,375.3</td> <td>63,712</td> <td>3,910.75</td>	10-3	5,057	11,549	905	2,067	2,514.5	. 6,931	359.21	5,944.5	14,770	849.21	27,375.3	63,712	3,910.75						
0.3-0.03 9,664 30,850 1,730 5,278 5,370.8 17,678 19,891.67 11,932.0 38,636 44,192.41 52,885.5 169,499 195,872.04 100-60 -<	3-03	9,667	21,216	1,730	3,798	5,376.6	12,308	1,991.32	11,934.4	26,704	4,420,16	52,901.5	116,614	19,593.16						
100-60 - <td>0.3-0.03</td> <td>9,664</td> <td>30,880</td> <td>1,730</td> <td>5,528</td> <td>5,570.8</td> <td>17,678</td> <td>19,891.67</td> <td>11,932.0</td> <td>38,636</td> <td>44,192.41</td> <td>52,885.5</td> <td>169,499</td> <td>195,872.04</td>	0.3-0.03	9,664	30,880	1,730	5,528	5,570.8	17,678	19,891.67	11,932.0	38,636	44,192.41	52,885.5	169,499	195,872.04						
100-60 - <td>JOW .</td> <td>2</td> <td>÷ +</td> <td></td> <td></td> <td></td> <td>~</td> <td></td> <td></td> <td>į – +</td> <td></td> <td>1.1</td> <td></td> <td></td>	JOW .	2	÷ +				~			į – +		1.1								
60-30	100-60	. •	. •	•	•	1 .	-	. •	•	<u>.</u> .•	• .	•	. 🖷	•						
30-25 25-15 38 38 7 7 63.5 63 6.35 87.2 87 8.72 250.2 25	60-30	•.	•	•	-		•	. •	•	. •	•.	• •	•	· * 🖬						
25-15 38 38 7 7 63.5 63 6.35 87.2 87 8.72 250.2 250.2 250 25.02 15-10 22 60 4 11 14.4 78 2.89 30.1 117 6.02 123.2 373 24.63 10-3 3,557 3,618 637 648 2,421.0 2,499 345.86 4,835.5 4,953 690.79 19,909.7 20,283 2,844.24 3-0.3 9,673 13,290 1,731 2,379 5,443.7 7,943 2,016.19 12,005.2 16,958 4,446.36 52,995.5 73,279 19,627.95 0.3-0.03 9,666 22,957 1,730 4,109 5,372.0 13,315 19,896.39 11,934.8 28,893 44,202.91 52,898.4 126,177 195,920.07	30-25	•	•	• -			-	-	· · ·	•	•	} · •	•	-						
15-10 22 60 4 11 14.4 73 2.39 30.1 117 6.02 123.2 373 24.63 10-3 3,557 3,618 637 648 2,421.0 2,499 345.86 4,835.5 4,953 690.79 19,909.7 20,283 2,844.24 3-0.3 9,673 13,290 1,731 2,379 5,443.7 7,943 2,016.19 12,005.2 16,958 4,446.36 52,995.5 73,279 19,627.95 0.3-0.03 9,666 22,957 1,730 4,109 5,372.0 13,315 19,896.39 11,934.8 28,893 44,202.91 52,898.4 126,177 195,920.07	25-15	38	38	1		63.3	03	6.33	87.2	. 87	8.72	250.2	250	25.02						
10-3 3,557 3,618 0.37 648 2,421.0 2,499 343.85 4,835.5 4,953 690.79 19,909.7 20,283 2,844.24 3-0.3 9,673 13,290 1,731 2,379 5,443.7 7,943 2,016.19 12,005.2 16,958 4,446.36 52,995.5 73,279 19,627.95 0.3-0.03 9,666 22,957 1,730 4,109 5,372.0 13,315 19,896.39 11,934.8 28,893 44,202.91 52,898.4 126,177 195,920.07	15-10	22	60	4	11	14.4	78	2.89	30.1	117	6.02	123.2	373	24.63						
3-0.3 9,673 13,290 1,731 2,379 5,443.7 7,943 2,016.19 12,005.2 16,958 4,446.36 52,995.5 73,279 19,627.95 0.3-0.03 9,666 22,957 1,730 4,109 5,372.0 13,315 19,896.39 11,934.8 28,893 44,202.91 52,898.4 126,177 195,920.07	10-3	3,557	3,618	037	048	2,421.0	2,499	343.85	4,835.5	4,953	690.79	19,909.7	20,283	2,844.24						
0.3-0.03 9,666 22,957 1,130 4,109 5,3720 13,315 19,850.39 11,934.8 28,853 44,202.91 52,898.4 126,177 195,920.07	3-0.3	9,673	13,290	1,731	2,379	5,443.7	7,943	2,016.19	12,005.2	16,958	4,446.36	52,995.5	73,279	19,627.95						
	0.3-0.03	9,666	72,957	1,730	4,109	5,372.0	13,315	19,896.39	11,934.8	28,893	44,202.91	52,898.4	126,177	195,920.07						
								•												
	•			•																
									· ·											
								· .				•								

41

Table 2.2.5.Incremental Costs and Occupational Dose for Remediation of
Contaminated Soil at the Reference Uranium Fuel Fabrication Plant
(Unrestricted Land Use, Mixing/Landfilling, with Soil Washing)

and the second second

12

٠.

**

<u>Table 2.2.6</u>. Incremental Costs and Occupational Dose for Remediation of Contaminated Soil at the Reference Uranium Fuel Fabrication Plant (Unrestricted Land Use, Mixing/Landfilling, Direct Disposal of Soil)

1

• •

					\$10/ft ² Disposal Cost			\$50/ft ² Disposal Cost			\$3	50/ft ¹ Disposa	1 Cost
							Cost per		· · · · · · · · · · · · · · · · · · ·	Cost per			Cost per
Reduction in			Incremental	Cumulative			Reduction in			Reduction in	l		Reduction in
Residual	Incremental	Cumulative	Occupational	Occupational			Residual Dose			Residual Dose			Residual Dose
Dose Rate	Soil Volume	Soil Volume	Dose	Dose	Incremental	Cumulative	Rate	Incremental	Cumulative	Rate	Incremental	Cumulative	Rate
(mrem/yr)	(m ¹)	(m)	(person-mrem)	(person-mrem)	Cost (\$K)	Cost (\$K)	(SK/mrem/yt)	Cost (SK)	Cost (\$K)	(\$K/mrem/yr)	Cost (SK)	Cost (SK)	(SK/mrem/yr)
High													
100-60	996	996	161	161	643.4	643	16.09	2,333.3	2,333	58.33	12,889.4	12,889	322.23
60-30	3,492	4,488	566	727	2,254.5	2,898	75.15	8,179.5	10,513	272.65	45,171.9	58,061	1,505.73
30-25	765	5,253	124	851	494,8	3,393	98,95	1,791.9	12,305	358.39	9,891.9	67,953	1,978.38
25-15	1,985	7,238	322	1,173	1,282.4	4,675	128.24	4,649.7	16,954	464.97	25,681.6	93,635	2,568.16
15-10	1,864	9,102	302	1,475	1,202.9	5,878	240.59	4,367.5	21,322	873.50	24,116.1	117,751	4,823.21
10-3	5,228	14,330	847	2,321	3,378.0	9,256	482.57	12,246.4	33,568	1,749.48	67,629.3	185,380	9,661.32
3-0.3	9,492	23,821	1,538	3,859	6,132.0	15,388	2,271.11	22,234.2	55,802	8,234.90	122,794.3	308,174	45,479.39
0.3-0.03	9,663	33,484	1,565	5,424	6,244.9	21,633	23,129.26	22,636.6	78,439	83,839.34	125,009.0	433,183	462,996.38
Medium											1		
100-60	25	25	4	4	14.6	15	0.36	57.7	58	1.44	320.0	320	8.00
60-30	1,849	1,874	300	304	1,198.5	1,213	39.95	4,332.5	4,390	144.42	23,926.7	24,247	797.56
30-25	767	2,641	124	428	492.0	1,705	98.39	1,796.8	6,187	359.37	9,920.2	34,167	1,984.04
25-15	2,147	4,788	348	776	1,390.0	3,095	139.00	5,029.5	11,216	502.95	27,778.3	61,945	2,777.83
15-10	1,704	6,492	276	1,052	1,100.5	4,195	220,09	3,991.6	15,208	798.32	22,041.9	83,987	4,408.38
10-3	5,057	11,549	819	1,871	3,263.4	7,461	465.49	11,846.6	27,055	1,692.37	65,423.6	149,411	9,346.23
3-0.3	9,667	21,216	1,566	3,437	6,247.4	13,708	2,313.86	22,646.1	49,701	8,387.45	125,063.9	274,475	46,319.95
0.3-0.03	9,664	30,880	1,566	5,003	6,241.4	19,950	23,116.41	22,639.0	72,340	83,848.15	125,022.8	399,497	463,047.24
Low											1		
100-60	•	-	-	-	-	-	-	-	•	•	ļ -	-	-
60-30	-	•	•	-	-	•	•	-	-	•		-	-
30-25	•	-	• • •	•	-	-	-		-	-			•
25-15	38	38	0	10	20.7	40	2.07	51.4	91	9.08	498.4	498	49.84
15-10	22	60	4	10	2 301 2	40 3 3 4 1	2.38	8 3 3 7 7	142	10.28	284.1	782	56.81
10-3	3,557	3,618	2/0	080	6 746 4	2,341	220.74	0,332.1	8,473	1,190.38	40,018.2	46,801	6,574.02
3-0.3	9,673	13,290	1,567	2,133	0,440.J	8,287 14 924	2,213.33	22,039.0	31,134	8,392.43	120,135.4	171,936	46,346.44
0.3-0.03	9,666	22,957	1,360	3,719	0,240.9	19,634	23,130.80	22,044.5	23,119	63,601.82	122,023.4	296,989	463,160.72

•

NUREG-1496

					\$	0/R ³ Disposel	Cort	5	0/ft' Disposal	Cost	53	0/ft ³ Dispose	Cort
			•				Cost per			Cost per			Cost per
Reduction in			Increments	Cumulative			Reduction in			Reduction in		-	Reduction in
Residual	Incremental	Cumulative	Occupations1	Occupations1			Residual Dose		•	Residual Dose			Residual Does
Dese Rate	Soil Volume	Soil Volume	Desa	Dose	Incremental	Completive	Rate	Incremental	Constative	Rate	Incremental	Comulativa	Rete
(mrem/yr)	(m [*])	<u>(m</u>)	(person-merm)	(person-meent)	Cost (SK)	Cost (SK)	(SK/mrcm/yr)	Cost (SK)	Cort (SK)	(SK/mem/yr)	Cost (SK)	Cort (SK)	(SK/mrem/vr)
High													- internet of
100-60	-	, •	•	•	-	.•		-	•	-	i .		•
60-30	-	_ •	-	•	•	•	•	-	•	-			
30-25	-	••	•	•	•	•	-		-	•	.		_
25-15	48	48	9	9	70.0	70	7.00	100.1	100	10.01	305.1	305	30 41
15-10	- 15	63	3.		9.7	. 80	1.95	20.7	121	4.14	83.4	389	16 69
10-3	3,983	4,047	713	. 724	2,709.5	2,789	387.08	5,414.1	5,535	773.44	22.294.7	22 683	1184 05
3-0.3	9,672	13,719	1,731	2,456	5,390.0	8,179	1,996.28	11,952,4	17,487	4,426.81	52,940.6	75,624	19 607 64
0.3-0,03	9,666	23,385	1,730	4,186	5,376.1	13,555	19,911.49	11,934.7	29,422	44,202.72	52,898,2	128,522	195 919 19
Medium											•		
100-60	-	•	-	-	.•	•	•	-	•	-	-	•	
60-30	•		-	. •	-	•	•	-	•	-		-	
30-25	-	•	•	•	-	-	-	•	•	-		-	
25-15	-	•	-	•	-	-	•	-	-	-	1 .	-	_
15-10	•	· · • · ·	· ···· · ·	•	•	• •	•	• •	•		· .	•	
10-3	48	. 48	9	9	70.0	70	10.00	100.1	100	14.30	305.1	305	43.58
3-0,3	6,911	6,959	1,237	1,246	4,704,2	4,774	1,742.31	9,395.2	9,495	3,479.71	38,681.7	38,987	14.326.56
0.3-0.03	9,670	16,629	1,731	2,977	5,021.2	9,795	<u>18,596.95</u>	11,584.7	21,080	42,906.26	52,561.8	91,549	194.673.36
Low									4		1		
100-60	•	•	.•	•		•	•	-	•	•		•	-
60-30	•	•	-	.•	•	•	•	-	•	•	-	•	-
30-25	. .	· •	•		•	-	-	-	•	•	-	-	-
25-15	-	-	•	-	•	•	•	-	-	•	-	•	-
15-10	• '	•	•	. • .	· •	•	•	•	•	•	- 1	•	-
10-3	. •	-	•	•		-	•	-	•	•		•	· •
3-0.3	63	63	11	11	79.7	80	29.53	120.8	121	44.76	388.5	389	143.90
0.3-0.03	8,504	8,567	1,522	1,534	5,235.7	5,315	19,391.55	11,007.2	11,128	40,767.25	47,045.7	47,434	174,243.43

41

Table 2.2.7. Incremental Costs and Occupational Dose for Remediation of Contaminated Soil at the Reference Uranium Fuel Fabrication Plant (Restricted Land Use, Mixing/Landfilling, with Soil Washing)

51

Table 2.2.8.	Incremental Costs and Occupational Dose for Remediation of
	Contaminated Soil at the Reference Uranium Fuel Fabrication Plant
	(Restricted Land Use, Mixing/Landfilling, Direct Disposal of Soil)

÷

t

					\$10/ft ¹ Disposal Cost		\$	50/R ³ Disposal	Cost	\$3	0/ft ³ Disposa	Cost	
							Cost per			Cost per			Cost per
Reduction in			Incremental	Cumulative			Reduction in			Reduction in			Reduction in
Residual	Incremental	Cumulative	Occupational	Occupational			Residual Dose			Residual Dose			Residual Dose
Dose Rate	Soil Volume	Soil Volume	Dose	Dose	Incremental	Cumulative	Rate	Incremental	Cumulative	Rate	Incremental	Cumulative	Rate
(mrem/yr)	(m ³)	("m)	(person-mrem)	(person-mem)	Cost (\$K)	Cost (SK)	(SK/mrem/yr)	Cost (\$K)	Cost (SK)	(SK/mrem/yr)	Cost (SK)	Cost (\$K)	(SK/mrem/yr)
High													
100-60	•	•	•	-	-	-	•	-	-	-	ļ .	-	-
60-30	-	•	-	-	- 1	•	•	-	•	-	· ·	-	-
30-25	-	-	•	• ;	•	•	•	-	•	-	•	-	-
25-15	48	48	8	8	32.5	33	3.25	114.0	114	11.40	626.5	626	62.65
15-10	15	63	2	10	8.7	41	1.74	34.2	148	6.84	191.0	817	38.20
10-3	3,983	4,047	645	656	2,576.5	2,618	368.07	9,332.3	9,481	1,333.19	51,533.9	52,351	7,361.98
3-0.3	9,672	13,719	1,567	2,222	6,246.2	8,864	2,313.43	22,657.2	32,138	8,391.55	125,127.8	177,479	46,343.61
0.3-0.03	9,666	23,385	1,566	3,788	6,246.9	15,111	23,136.71	22,644.2	54,782	83,867.46	125,052.8	302,532	463,158.65
Medium											l i		
100-60	-	•	-	•	-	•	•	-	•	-	· ·	-	-
60-30	•	•	-	-	•	•	-	•	-	-	-	•	-
30-25	-	-	-	-	•	-	•	-	-	-	- 1	-	-
25-15	•	-	-	•	-	-	-	-	•	-	- 1	•	•
15-10	•	•	•	•		-	-		-	•	•	-	-
10-3	48	48	8	8	32.5	33	4.65	114.0	114	16.29	626.5	626	89.49
3-0.3	6,911	6,959	1,120	1,127	4,466.4	4,499	1,654.22	16,189.8	16,304	5,996.24	89,406.1	90,033	33,113.35
0.3-0.03	9,670	16,629	1,566	2,694	6,244.7	10,744	23,128.55	22,031.4	38,955	83,893.99	125,094.2	215,127	463,311.75
Low				:				1			1		
100-60	•	-	-	-	-	•	•	•	-	•	1 ·	-	-
60-30	•	-	-	-	-	-	-	- 1	-	•	(·	-	-
30-25	-	-	-	•	-	•	•	-	•	•		-	-
25-15	-		•	-	-	-	•	•	-	-) ·	-	•
15-10	•	•	•	•	-	-	•	· ·	•	•	-	-	-
10-3	•	-	-	•	•	•			•	•		-	-
3-0.3	63	63	10	10	41.3	41	15.28	148.2	148	54.90	817.4	817	302.75
0.3-0.03	8,599	8,663	1,393	1,403	5,557.9	5,599	20,584.66	20,144.8	20,293	74,610.51	111,249.2	112,067	412,034.18

.

NUREG-1496

•

Concrete Depth Removed (cm)	Residual Dose Rate (mrem/y)	Concrete Volume Requiring Disposal (m ³)	Building D&D Cost (\$ millions)	Occupational Dose (person-rem)
0.3175	485	2.7	0.048	0.081
0.6350	5 6	3.0	0.061	0.12
0.9525	3.0	3.3	0.075	0.16
1.2700	0.50	3.7	0.089	0.20
1.5875	0.004	4.0	0.103	0.25

<u>Table C.2.3.1</u>. Summary of Costs and Occupational Dose for Decontamination of the Reference Sealed Source Manufacturer Floors/Walls

î,

NUREG-1496

Table 2.3.2.Incremental Costs and Occupational Dose for Remediation of
Contaminated Soil at the Reference Sealed Source Manufacturer Site
(Unrestricted Land Use, Deposition on Soil Surface, with Soil Washing)

r'

					\$10/ft ³ Disposal Cost			\$	0/R ³ Disposal	Cost	\$3	0/ft Disposa	Cost
							Cost per			Cost per			Cost per
Reduction in			Incremental	Cumulative			Reduction in]		Reduction in	1		Reduction in
Residual	Incremental	Cumulative	Occupational	Occupational			Residual Dose	Į		Residual Dose	Į		Residual Dose
Dose Rate	Soil Volume	Soil Volume	Dose	Dose	Incremental	Cumulative	Rate	Incremental	Cumulative	Rate	Incremental	Cumulative	Rate
(mrem/yr)	(m ³)	(m ³)	(person-nurem)	(person-mrem)	Cost (\$K)	Cost (SK)	(SK/mrem/yr)	Cost (SK)	Cost (SK)	(SK/mrem/yr)	Cost (SK)	Cost (SK)	(SK/mrem/vr)
High	<u></u>											يشير وأحديها اللات	
100-60	6	6	1	1	4.2	4	0.10	8.4	8	0.21	35.4	35	0.88
60-30	6	13	1	2	4.1	8	0.14	9.4	18	0.31	35.6	71	1.19
30-25	2	14	0	3	1.0	9	0.21	2.1	20	0.41	8.7	80	1.75
25-15	4	18	1	3	2.5	12	0.25	5.0	25	0.50	21.0	101	2.10
15-10	4	21	1	4	2.3	14	0.46	4.6	29	0.92	19.5	120	3.90
10-3	18	39	3	7	11.8	26	1.68	24.8	54	3.54	100.7	221	14.39
3-0.3	42	82	8	15	27.9	54	10.33	56.9	111	21.08	236.7	458	87.67
0.3-0.03	21	103	4		13.9	68	51.49	29.0	140	107.53	118.6	576	439.37
Medium				_									
100-60	12	12	2	2	45.9	46	1.15	50.8	51	1.27	100.5	101	2.51
60-30	10	22	2	4	6.5	52	0.22	13.0	64	0.43	54.9	155	1.83
30-25	2	23	0	4	1.1	54	0.22	2.2	66	0.44	9.3	165	1.86
25-15	4	28	1	5	2.9	56	0.29] 7.1	73	0.71	25.7	190	2.57
15-10	3	31	1	6	2.1	58	0.42	4.2	77	0.83	17.7	208	3,53
10-3	8	39	1	7	5.5	64	0.78	10.9	88	1.56	46.1	254	6.58
3-0.3	39	78	1	14	25.8	90	9.56	52.8	141	19.55	219.1	473	81.16
0.3-0.03	28	107	3	19	18.5	108	68.68	38.3	179	141.80	157.8	631	584.43
Low											ł		
100-60	•	•	+	•		•	•	1 ·	•	-] -	•	-
60-30	•	•	•	•	-	-	•	Į -	-	-	•	-	•
30-25	•	•	•	•	-	•	•	· ·	•	-	· ·	-	-
25-15	-	•	•	-	-	•	•	<u>-</u> ۱	•	•	- 1	•	-
15-10	•	•	•			•	-		•	•	- 1	•	-
10-3	17	17	3	3	49.6	50	7.09	58.2	58	8.31	131.7	132	18.82
3-0.3	22	40	4	1	14.7	04	2.40	30.7	89	11.36	125.6	257	46.52
0.3-0.03	49	89	y	10	32.3	9/	119.70	67.1	156	248.39	275.4	533	1,019.82

j.

NUREG-1496

					5	10/ft ³ Disposel	Cost	\$50/ft ³ Disposal Cost		Cost	\$3	50/ft ³ Dispose	Cost
							Cort per			Cost per			Cost per
Reduction in			Increments!	Cumulative			Reduction in	l		Reduction in	Į		Reduction in
Residual	Incremental	Canalistive	Occupational	Occupational			Residual Dose			Residual Dose			Residual Dass
Dose Rate	Soil Volume	Soil Volume	Dose	Dose	Incremental	Completive	Rate	Incremental	Cumulative	Rate	Incrementat	Constation	Pete
(mrem/yr)	(m²)	(m ³)	(person-mrem)	(person-streett)	Cort (SK)	Cort (SK)	(SK/mcom/yr)	Cost (SK)	Cost (SK)	(SK/mrem/yr)	Cost (SK)	Cost (SK)	(SK/menulur)
High											í		(oronacia jej
100-60	, 6	. 6	1	1	3.8	, 4	0.09	15.5	15	0.39	83.0	83	2.08
60-30	6	. 13	· 1	2	3.6	7	0.12	13.7	29	0.46	79.1	167	2.00
30-25	2	.14	0	2	0.9	8	0.19	3.5	33	0.70	20.2	182	4.04
25-15	. 4	18	1	3 .	2.2	11	0.22	9.7	42	0.97	49.8	737	4.05
15-10	4	21	1	3	21	13	0.41	7.8	50	1.56	45.0	202	9.70
10-3	. 18	39	· 3	6	10.5	23	1.51	42.4	93	6.06	232.2	509	22 17
3-0.3	42	82	7	13	29.1	52	10.76	98.2	191	36.37	547.7	1 057	202 84
0.3-0.03	21	103	3	17	12.4	65	46.05	49.6	240	183.71	273.6	1 331	1 013 20
Medium													1,013.30
100-60	- 12	12	2	2	11.0	11	0.28	28.7	29	0.72	153.1	153	3 87
60-30	-10	22	2	4	5.8	17	0.19	22.0	51	0.73	126.7	280	4 77
30-25	2	23	. 0	4	1.0	18	. 0.20	5.1	56	1.01	22.9	303	4 57
25-15	- 4	.28	1	4	2.6	20	0.26	9.8	65	0.98	56.3	359	5.63
15-10	3	31	1	5	1.9	22	0.37	7.1	73	1.41	40.8	400	8.16
10-3	8	39	· 1	° 6	4.9	27	0.70	19.8	92	2.82	107.8	507	15 40
3-0.3	39	78	6	13	27.2	54	10.07	92.5	185	34.25	508.3	1.016	188.28
0.3-0.03	28	107	5	17	16.6	71	61.43	65.3	250	241.77	364.1	1,380	1.348.34
Low			1	-	, a ,		•						
100-60	•	•	•	•	• .	-	. •	-	•	•	-	•	•
60-30	•	-	-	-	•	-	-	-	•	•	l - '	• •	•
30-25	-	•	•	•	-	-	-	- 1	•	•	- 1	•	•
25-15	•	-	•	-	-	-	-	-	•	÷	- 1	•	-
15-10	-		-	-	•	-	-	•	•	•	-	-	-
10-3	17	17	3	• 3	14.3	14	2.04	41.2	41	5.89	225.1	225	32.16
- 3-0.3	22	40	4	6	13.2	27	4.88	52.4	94	19.41	289.7	515	107.30
0.3-0.03	. 49	89	8	14	33.0	60	122.25	115.8	209	428.79	. 636.5	1.151	2.357.37

• • •

*

.

•)

٠.

e i

Table 2.3.3. Incremental Costs and Occupational Dose for Remediation of Contaminated Soil at the Reference Sealed Source Manufacturer Site (Unrestricted Land Use, Deposition on Soil Surface, Direct Disposal of Soil)

12

<u>Table 2.3.4</u>. Incremental Costs and Occupational Dose for Remediation of Contaminated Soil at the Reference Sealed Source Manufacturer Site (Restricted Land Use, Deposition on Soil Surface, with Soil Washing)

ţ

.

	· <u></u>				\$10/ft ³ Disposal Cost \$30/ft ³ Disposal Cost		Cost	\$35	0/ft ² Disposa	Cost			
							Cost per			Cost per			Cost per
Reduction in			Incremental	Cumulative	1		Reduction in			Reduction in			Reduction in
Residual	Incremental	Cumulative	Occupational	Occupational	1		Residual Dose			Residual Dose			Residual Dose
Dove Rate	Soil Volume	Soil Volume	Dose	Dose	Incremental	Cumulative	Rate	Incremental	Cumulative	Rate	Incremental	Cumulative	Rate
(mrem/yr)	(m ³)	(m ³)	(person-mrem)	(person-mrem)	Cost (SK)	Cost (SK)	(\$K/mrem/yr)	Cost (SK)	Cost (\$K)	(SK/mrem/yr)	Cost (\$K)	Cost (SK)	(\$K/mrem/yr)
High	<u> </u>				T								
100-60	•	-	•	-	•	-	•	•	•	•	- 1	-	-
60-30	•	-	•	-	-	-	•	-	-	•	- 1	-	•
30-25	-	•	•	-		•	•	-	-	-	· ·	-	•
25-15	-	-	•	•		•	-		-	•		•	•
15-10	8	8	1	1	43.2	43	8.64	45.4	43	9.09	77.8	78	15.57
10-3	17	25	3	4	11.2	54	1.01	22.4	22	3.20	94.9	173	13.56
3-0.3	15	40	3	7	9,7	64	3.00	20.7	89	7.0¥	83.4	256	30.91
0.3-0.03	11	51	2	9	7.4	/2	27.33	14.8	103	34.80	. 02.7	319	232.27
Medium													
100-60	-	-	•	•	•	-	-	· ·	•	-	-	-	-
60-30	•	•	•	-	-	-	•	•	-	-		-	-
30-25	-	-	•	•		•	•	-	-	•		•	-
25-15	-	-	•	•	-	•	-	· ·	•	•		•	-
15-10	-	-	•	• _	-	-			-	• • •		-	-
10-3	18	18	3	و	49.8	50	7.12	38.0	39	6.37	133.3	134	19.08
3-0.3	18	36	3	6	11.9	02	4.41	23.1	84	9.29	101.9	235	37.75
0.3-0.03	11	47	2	8	7.4	09	21.39	14.8		24.99	02.9	298	232.81
Low					l								
100-60	•	•	-	•	· ·	•	•	· ·	•	•	-	-	•
60-30	-	•	•	•	· ·	-	-	· ·	-	-	-	•	•
30-25	-	•	•	•	۰ I	•	-	1 -	-	•	1 .	•	•
25-15	•	-	•	•	·	-	•	-	•	-	· ·	-	•
15-10	•	-	•	•	· ·	•	-		•	•	1 -	•	•
10-3	-	•	•	•		-			•	-		•	
3-0.3	11	11	2	2	45.4	45	18.01	49.8	50	18.43	90.2	96	33.63
0.3-0.03	22	33	4	6	14.6	60	53.94	30.4	80	112.41	1 124.2	220	460.01

· ·

NUREG-1496

					5	10/ft ³ Dispose	Cost	\$	50/ft ³ Disposal	Cost	53	50/ft ³ Dianos	Cort
							Cost per			Cost per	· · · · · · · · · · · · · · · · · · ·		Cost per
Reduction in			Incroments1	Cumulative			Reduction in			Reduction in	1		Robertion in
Residual	Incremental	Camulative	Occupational	Occupational			Residual Dose			Residual Dose	· ·		Residual Dasa
Dose Rate	Soil Volume	Soil Volume	Dose	Dose	Incremental	Camalative	Rate	Incremental	Canalative	Rate	Incremental	Convelation	Pate
(mem/yr)	(m ³)	(m²)	(person-meem)	(person-mrem)	Cost (SK)	Cost (SK)	(SK/msen/yr)	Cost (SK)	Cort (SK)	(SK/mrem/yr)	Cort (SK)	Cost (SK)	(SK/mem/wr)
High							ten 1 Ten Aug. 1						
100-60	•	-	•	-		` _	•	-	-	•		-	_
60-30	•	•	•	•	•	•	-	· •	•	-	I .		-
30-25	•	•		•	-	-	•	-	•	-	-	•	-
25-15	-	-	-	· •	-	-	· • .	-	-		l -	-	-
15-10	8	. 8	. 1.	. 1	8.6	. 9	. 1.72	18.3	18	3.66	99.3	99	19 87
10-3	17	25	3	4	10.1	19	1.44	40.6	59	5.80	221.8	321	31.69
3-0.3	15	40	2	6	8.7	27	3.22	34.2	93	12.66	191.0	512	70 74
0.3-0.03	11	51	2		6.6	34	24.62	26.4	120	97.87	146.2	658	541.37
Medium					[1		
100-60	•	-	-	-	- 1	-	•	-	-	-	•	-	-
60-30	•	-	-	•	•	•	-	-	-	-		•	-
30-25	•	•	-	-	•	•	•	· -	-	-	-	•	-
25-15	•	-	-	-	•	•	•	-	-	• .	•	-	-
15-10	a se esta la la se		-	•	•	•	-	-	• .			-	-
10-3	18	18	- 3	3	14.5	15	2.07	41.9	42	5.99	229.3	229	32.76
3-0.3	18	36	- 3	6	10.7	25	3.95	47.9	85	15.89	234.9	464	87.00
0.3-0.03	11	47	2	8	6.7	32	24.68	26.5	111	98.09	146.5	611	542.64
Low	•.				1		,						
100-60	•	•	•	•	1 -	•	•	-	•	-	- 1	•	•
60-30	•	•	-	•.	- 1	-	-	-	•	•	•	•	•
30-25	•	•	•	•	. •	-	-		•	•	-	-	•
25-15	•	•	•	•	-	•	•	· •	-	-	•	-	. •
15-10	eri int∙a	. •	•	-	· ·	• .	-	-	. •	•	I •	•	•
10-3	•	•	•	•_		•	•		•	•	•	-	•
3-0.3	11	11	2	2	10.5	11	3.91	27.0	27	9.99	143.1	143	52.99
0.3-0.03	22	33	4	5	13.0	24	48.24	51.8	79_	191.97	286.5	430	1,060.97

•

Table 2.3.5. Incremental Costs and Occupational Dose for Remediation of Contaminated Soil at the Reference Sealed Source Manufacturer Site (Restricted Land Use, Deposition on Soil Surface, Direct Disposal of Soil)

NUREG-1496

<u>Table 2.3.6</u> Incremental Costs and Occupational Dose for Remediation of Contaminated Soil at the Reference Sealed Source Manufacturer Site (Unrestricted Land Use, Spill/Leak, with Soil Washing)

•

\$10/ft¹ Disposal Cost \$50/ft³ Disposal Cost \$350/ft³ Disposal Cost Cost per Cost per Cost per Reduction in Reduction in Reduction in Incremental Cumulative Reduction in **Residual Dose** Residual Dose Residual Dose Occupational Incremental Cumulative Occupational Residual Incremental Cumulative Rate Incremental Cumulative Rate Incremental Cumulative Rate Soil Volume Soil Volume Dose Dose Dose Rate Cost (\$K) Cost (\$K) (\$K/mrem/yr) Cost (\$K) Cost (SK) (\$K/mrem/yr) Cost (\$K) Cost (\$K) (\$K/mrem/yr) (person-mrem) (person-mrem) (m³) (m³) (mrcm/yr) High 11 0.27 23.2 23 0.58 94 11.0 93.7 2.34 17 3 3 17 100-60 11 30.3 41 1.01 63.0 86 2.10 258.1 352 8.60 63 8 46 60-30 8.8 50 1.77 17.6 104 3.52 74.6 426 14.91 14 76 2 30-25 13 24.8 75 2.48 50.8 155 5.08 210.9 20 637 21.09 114 7 38 25-15 19.7 95 3.95 42.0 197 8.40 169.2 26 806 33.84 5 30 144 15-10 62.9 158 8.99 121.3 318 42 17.32 \$00.5 1,307 233 16 71.50 89 10-3 73 117.1 275 43.37 233.2 551 86.37 961.5 2,268 356.10 405 31 3-0.3 172 234.5 117.1 392 433.63 785 868.36 962.6 3,231 103 3,565.09 577 31 172 0.3-0.03 viedium 10.5 5.3 5 0.13 11 0.26 44.6 45 1.12 8 1 1 8 100-60 5 12.8 18 0.43 26.9 37 0.90 109.7 154 3.66 3 28 20 60-30 7 6.3 24 1.26 12.6 50 2.52 53.3 208 10.66 2 37 30-25 10 13 23.5 48 2.35 48.1 98 4.81 199.3 407 19.93 73 6 25-15 36 68 42.1 18 19.8 3.96 140 8.42 169.6 576 33.91 103 5 30 15-10 34 63.0 131 9.00 121.4 262 17.35 501.2 1,078 71.59 193 16 10-3 90 233.7 65 248 43.47 495 86.56 963.7 31 117.4 2,041 356.91 365 172 3-0.3 96 365 434.77 235.1 730 870.63 965.2 3,006 117.4 3,574.70 31 172 537 0.3-0.03 wo. 100-60 60-30 . -. . . . 30-25 -. . 25-15 41 8.21 41.1 41 41.0 8.22 59.4 59 1 11.89 1 4 15-10 4 1.88 26.2 67 3.74 110.9 170 13.1 54 15.85 4 4 20 24 10-3 98.7 153 36.57 204.8 272 75.84 841.1 1,011 27 31 311.52 174 150 3-0.3 431.66 232.1 859.52 62 116.5 269 504 956.8 1.968 3,543.54 345 31 0.3-0.03 171

NUREG-1496

					\$	10/ft' Disposel	Cort	\$	50/ft' Disposal	Cost	\$3	0/ft ³ Dispose	Cost
l							Cost per			Cost per			Cost per
Reduction in			Incremental	Cumulative			Reduction in			Reduction in			Reduction in
Peridual	Incremental	Cumulative	Occupational	Occupational			Residual Dosa	1		Residual Dose			Residual Dose
Does Rate	Soil Volume	Soil Volume	Does	Does	Incremental	Cumulativo	Rate	Incremental	Cumulative	Rate	Incrementat	Cumulative	Rate
(mrem/yr)	(^t m)	(m²)	(person-ervem)	(person-nizem)	Cost (SK)	Cort (SK)	(SK/mrom/yr)	Cost (SK)	Cort (SK)	(SK/mrem/yr)	Cost (SK)	Cost (SK)	(SK/mrom/ут)
High							•						
100-60	17	17	3	3	9.8	10	0.24	39.6	40	0.99	216.1	216	5.40
60-30	46	63	7	10	31.2	41	1.04	107.5	147	3.58	595.3	811	19.84
30-25	13	76	2	12	7.9	49	1.58	31.2	178	6.23	173.6	985	34.71
25-15	38	114	6	18	22.2	71	2.22	89.2	268	8.92	489.3	1,474	48.93
15-10	- 30	144	. 5	- 23	21.8	- 93	4.35	70.6	338	14.13	388.7	1,863	77.73
10-3	89	233	14	38	56.7	150	8.10	209,3	. 547	29.90	1,157.4	3,020	165.34
3-0.3	172	405	28	66	113.4	263	41.99	402.9	950	149.20	2,223.6	5,244	823.55
0.3-0.03	172	577	28	93	109.3	372	404.64	402.8	1,353	1,491.70	2,223.0	7,467	8,233.51
Medium													
100-60	8	8	1	1	4.7	5	0.12	19.2	19	0.48	104.4	104	2.61
60-30	20	28	3	4	11.5	16	. 0.38	46.0	65	1.53	252.9	357	8.43
30-25	10	37	2	6	5.7	22	1.13	22.7	88	4.53	124.5	482	24.89
25-15	36	73	6	12	25.1	47	2.51	83.2	171	8.32	461.3	943	46.13
15-10		103	. <u>.</u>		17.7	65	3.54	70.8	242	14.16	389.5	1,333	77.90
10-3	90	193	15	31	56.8	121	8.11	209.6	451	29.94	1,159.0	2,491	165.57
3-0.3	172	365	28	' 59	113.6	235	42.08	403.7	855	149.53	2,228.6	4,720	825.42
0.3-0.03	172	537	28	87	109.5	345	405.66	403.8	1,259	1,495.55	2,229.0	6,949	8,255.72
Low					1:					• •			
100-60	•		•.	-	-	•		•	-	• .	•	-	•
60-30	•	-	•	-	-	•		•,	-	•.	•	•	-
30-25	-	•	•	. •	- 1	•	-	•	•.	-	· ·	•	•
25-15	•	-	-	•	1 •	•	•		•	•		-	-
15-10	- 4	4	1	. 1	6.6	7	1.33	10.9	. 11	2.19	56.8	- 57	11.37
10-3	20	24	3	4	11.8	- 18	1.68	47.1	58	6.72	258.9	316	36.98
3-0.3	150	174	24	- 28	96.5	115	35.75	352.0	410	130.38	1,942.9	2,259	719.60
0.3-0.03	171	345	28		108.8	224	402.88	<u> 399.6</u>	810	1,480.13	2,211.3	4,470	8,190.18

. .

.

÷.

<u>Table 2.3.7</u>. Incremental Costs and Occupational Dose for Remediation of Contaminated Soil at the Reference Sealed Source Manufacturer Site (Unrestricted Land Use, Spill/Leak, Direct Disposal of Soil)

, . ·

.

1.1

•

NUREG-1496

Table 2.3.8.	Incremental Costs and Occupational Dose for Remediation of
	Contaminated Soil at the Reference Sealed Source Manufacturer Site
	(Restricted Land Use, Spill/Leak, with Soil Washing)

					S	10/ft' Disposal	Cost	<u> </u>	50/ft ³ Disposal	Cost	\$3	0/ft' Disposa	I Cost
Į			- •				Cost per			Cost per			Cost per
Reduction in			Incremental	Cumulative			Reduction in			Reduction in			Reduction in
Residual	Incremental	Cumulative	Occupational	Occupational			Residual Dose			Residual Dose			Residual Dosc
Dose Rate	Soil Volume	Soil Volume	Dost	Dose	Incremental	Cumulative	Rate	Incremental	Cumulative	Rate	Incremental	Cumulative	Rate
(mrem/yr)	(m ¹)	(m³)	(person-mrem)	(person-mrem)	Cost (SK)	Cost (SK)	(SK/mrem/yr)	Cost (\$K)	Cost (\$K)	(SK/mrem/yr)	Cost (SK)	Cost (\$K)	(SK/mrem/yr)
High													
100-60	•	-	•	-	1 -	-	-	-	-	•	- 1	-	
60-30	0.3	0.3	0.1	0.1	38.37	38.37	1.279	35.79	35.79	1.193	37.03	37	1.234
30-25	2	2	0.4	0.4	1.44	39.82	0.288	2.87	39	0.575	12.17	49	2.433
25-15	6	8	1	2	3.9	44	0.39	7.8	46	0.78	32.9	82	3.29
15-10	6	14	1	3	3.9	48	0.77	7.7	54	1.54	32.7	115	6.54
10-3	46	60	8	11	30.0	78	4.29	62.4	117	8.92	255.8	371	36.54
3-0.3	170	230	30	41	115.9	194	42.94	230.9	347	85.51	951.7	1,322	352.48
0.3-0.03	171	401	31	72	116.7	310	432.15	232.3	580	860,50	957.9	2,280	3,547.70
Medium					ļ.							-	
100-60	•	-	-	•	•	•	•	-	-	-	1 -	•	•
60-30	-	•	•	-	-	•	•	· ·	-	•	- 1	-	-
30-25	•	•	•	-	1 -	-	•	-	-	-	- 1	-	•
25-15	-	•	-	• .	-	-	•	-	-	-	-	-	-
15-10	4	4	1	1	41.1	41	8.21	41.1	41	8.23	59.7	60	11.94
16-3	20	25	4	4	13.2	54	1.89	26.4	68	3.77	111.8	171	15.96
3-0.3	153	177	27	32	104.4	159	38.67	207.9	275	76.98	854.2	1,026	316.38
0.3-0.03	172	349	31	62	112.9	272	418.09	232.9	508	862.75	960.4	1,986	3,557.22
Low								l .					
100-60	•	-	•	-	•	-	•	1 •	-	-	-	-	-
60-30	•	•	-	-	-	-	-	•	-	-	•	-	-
30-25	-	•	-	-	-	•	-	ļ •	-	-	-	•	•
25-15	-	-	•	-	-	-	•	· ·	•	•	-	-	-
15-10	-	•	•	-	· ·	-	•	· ·	•	•	- 1	-	-
10-3	•	-	•	•	•	•		•	-	-	- 1	-	•
3-0.3	17	17	3	3	49,4	49	18.29	57.7	58	21.37	129.8	130	48.09
0.3-0.03	133	150	24	27	87.5	137	324.19	181.1	239	670.68	745.2	875	2,759.94

NUREG-1496

	والمتر فتتري والمتعاقبين فيرو				\$10/ft ³ Disposel Cost \$50/ft ³ Disposel Cost			Cort	\$35	0/ft ³ Disposal	Cost		
							Cost per			Cost per		ستهيرية وستعانج مستقاه	Cost per
Daduction in			Incremental	Cumulative			Reduction in			Reduction in			Reduction in
Desident in	Incommute!	Consistive	Occupations)	Occupations)			Residual Dose			Residual Doos			Residual Dose
Residue)	Soil Volume	Soil Volume	Does	Dose	Incromental	Cumulative	Rate	Incremental	Cumulative	Rate	Incremental	Cumulative	Rate
(mem/m)	(m ³)	(m ¹)	(person-mercin)	(person-mrem)	Cost (SK)	Cost (SK)	(SK/meenvyr)	Cost (SK)	Cost (SK)	(SK/mcem/yr)	Cost (SK)	Cost (SK)	(SK/mrem/yr)
High		التكريقة واغب أحجبهم وبري									:	· · · · · · · · · · · · · · · · · · ·	
100.60			•	•	-	•	-	· - ·	-	-	•	-	
60-20	0.3	.0.3	0.05	0.05	4.27	4.27	0.142	1.97	1.97	0.066	5.08	5	0.169
20.25	2	2	0.4	0.4	1.29	5.56	0.258	4.87	6.84	0.974	28.10	33	5.620
25-15	6	Ĩ	ť	1	3.5	9	0.35	13.2	20	1.32	76.1	109	7.61
16.10	6		1		3.5	13	0.69	. 14.4	34	2.88	76.8	186	15.37
10.2	46	60	. 7	10	26.8	39	3.83	106.6	141	15.23	589.9	776	84.28
2.02	170	230	28	37	112.3	152	41.61	398.9	540	147.75	2,201.0	2,977	815.19
0 2 0 0 2	171	401	- 28	65	108.9	261	403.32	400.1	940	1,481.79	2,213.9	5,191	8,199.78
0.3-0.03							· · · · · · · · · · · · · · · · · · ·	1					
100.60	•	-	•	· •	i -	-	-		•	•	- 1	-	-
100-00	•	-		•	-	•	-	-	•	-] .	•	
00-30	-	-	-	•		•	•	-	•	•		•	
30-25	-	-	•	-	· -	•	-	. . "	•	•		-	
25-15	· · · ·		1	1	6.7	. 7		11.0	11	2.21	57.4	57	11.49
12-10		25	1	- K 🕹 👗	11.8	19	1.69	47.4	58	6.77	260.8	318	37.25
10-3	20	177	74	29	97.9	116	36.26	357.3	416	132.32	1.973.2	2,291	730.81
3-0.3	123	240	22	56	109.2	226	404.33	402.4	515	1.490.51	2.221.2	4.513	8 276.68
0.3-0.03	1/2	345							· · · · · · · · · · · · · · · · · · ·				
Low		•		· .		•	-	1	-		i .	•	
100-60	-	•		-	1.	•	-	1 .	-		I -	•	
60-30	-	•	-		1 .		-	1.	-	•		•	
30-25	-	· · · ·	•	-		۰_	•	1.		-	I .	-	
25-15	•	•.	•			•	-	.				_	
15-10	-	•	•	•	1	-	•		•	-		-	
10-3	-		· .		1. 141	14	5.23	40 4	40	14.98	220.7	221	81.76
3-0.3	17	17	د ~	. J	84.4	101	320 33	3115	357	1.153 74	1.721 8	1 043	6 376 ±0
0.3-0.03	- 133	150			1 0.3	101				1,100.14	1		0,010.07

. .

 e^{-1}

:

ŧ.

.

3,

<u>Table 2.3.9</u>. Incremental Costs and Occupational Dose for Remediation of Contaminated Soil at the Reference Sealed Source Manufacturer Site (Restricted Land Use, Spill/Leak, Direct Disposal of Soil)

NUREG-1496

<u>Table 2.4.1</u>. Incremental Costs and Occupational Dose for Remediation of Contaminated Soil at the Reference Rare Metal Extraction Plant (Unrestricted Land Use, Deposition on Soil Surface, with Soil Washing)

ľ					\$	10/ft ³ Disposal	Cost	\$5	0/ft ^J Disposal	Cost	\$35	0/A ³ Disposal	Cost
1							Cost per			Cost per	_		Cost per
Reduction in			incrementa)	Cumulative			Reduction in			Reduction in			Reduction in
Residual	Incremental	Cumulative	Occupational	Occupational			Residual Dose			Residual Dose			Residual Dose
Dove Rate	Soil Volume	Soil Volume	Dose	Dose	Incremental	Cumulative	Rate	Incremental	Cumulative	Rate	Incremental	Cumulative	Rate
(mrem/yr)	(m ³)	(m³)	(person-mrem)	(person-surem)	Cost (SK)	Cost (SK)	(\$K/mrcm/yr)	Cost (SK)	Cost (\$K)	(SK/mrem/yr)	Cost (SK)	Cost (SK)	(\$K/mrem/yr)
High								1					
100-60	35	35	6	6	27.2	27	0.68	47.3	47	1.18	196.0	196	4.90
60-30	26	61	5	11	17.3	44	0.58	35.8	83	1.19	147.3	343	4.91
30-25	4	66	1	12	2.9	47	0.58	5.7	89	1.15	24.3	368	4.87
25-15	9	75	2	13	5.8	53	0.58	12.8	102	1.28	50.0	418	5.00
15-10	4	79	1	14	2.9	56	0.58	5.7	107	1.15	24.3	442	4.87
10-3	63	142	11	25	41.4	97	5.92	85.2	193	12.17	352.1	794	50.30
3-0.3	34	176	6	32	22.5	120	8.33	46.2	239	17.09	191.1	985	70.77
0.3-0.03	87	263	16	47	61.5		227.94	119.8	359	443.68	490.0	1,475	1,814.83
Medium					1								
100-60	•	-	-	•		-	-	-	•	-		-	-
60-30	50	50	9	9	71.0	71	2.37	102.2	102	3.41	313.8	314	10.46
30-25	9	59	2	11	5.8	71	1.15	11.5	114	2.30	48.7	362	9.73
25-15	18	76	3	14	11.5	88	1.15	24.5	138	2.43	98.6	461	9.86
15-10	9	85	2	15	5.8	94	1.15	11.5	149	2.30	48.7	510	9.73
10-3	34	119	6	21	22.2	116	3.17	40.9	196	6.70	189.9	700	27.13
3-0.3	68	187	12	34	45.0	161	16.66	92.3	289	34.19	382.2	1,082	141.55
0.3-0.03	80	267	14	48	56.8	218	210.45	109.1	398	403.91	448.8	1,531	1,662.31
Low								1					
100-60	•	•	-	•	-	•	•		-	•	· ·	•	-
60-30	•	•	•	•	(·	-	-	· ·	•	-	· ·	-	•
30-25	•	•	•	•			•		•	-		-	•
25-15	15	15	3	3	43.8	44	4.38	54.9	22	5.49	117.8	118	11.78
15-10	29	44	5	8	23.3	67	4.66	39.6	95	7.93	163.5	281	32.70
10-3	41	85	7	15	26.9	94	3.84	55.0	149	7.85	228.4	510	32.63
3-0.3	84	169	15	30	55.5	150	20.56	115.9	265	42.94	473.7	983	175.44
0.3-0.03	47	216	8	39	34.8	184	128.81	62.5	328	231.38	260.2	1,244	963.65

ι.

.

NUREG-1496

					\$10/ft ² Disposal Cost			\$	0/ft' Disposel	Cost	\$3	50/ft ³ Disnosal	Cost
							Cost per			Cost per			Cost per
Reduction in			Incremental	Cumulative			Reduction in			Reduction in			Reduction in
Residual	Incremental	Cumulative	Occupational	Occupational			Residual Dose			Residual Doos			Residual Dene
Dost Rate	Soil Volume	Soil Volume	Dose	Dore	Incremental	Cumulative	Rate	Incremental	Camulative	Rate	Incromental	Cumulative	Rate
(mrem/yr)	(m ³)	<u>(m)</u>	(person-nerom)	(person-mem)	Cort (SK)	Cost (SK)	(\$K/mrcm/yr)	Cost (SK)	Cost (SK)	(SK/meen/yr)	Cost (SK)	Cost (SK)	(SK/mrem/vr)
High													
100-60	35	35	6	6	20.6	21	0.52	81.9	82	2.05	453.5	454	11.34
60-30	26	61	4	10	15.5	36	0.52	61.1	143	2.04	339.8	793	11.33
30-25	4	66	1	11	6.7	43	1.34	11.1	154	2.21	57.5	851	11.50
25-15	9	75	1	12	5.2	48	0.52	19.5	173	1.95	112.4	963	11.24
15-10	4	79	1	13	2.6	51	0.52	11.1	185	2.21	57.5	1.021	11.50
10-3	63	142	10	23	41.1	92	5.88	147.8	332	21.12	815.1	1.836	116.44
3-0.3	34	176	6	29	20.1	112	`7.45	79.9	412	29.60	442.3	2,278	163.81
0.3-0.03	\$7	263	14	43	55.5		205.48	204.6	617	757.79	1,130.1	3,408	4.185.66
Medium													
100-60	•	•	•	•	-	•	•	-	•	•		-	-
60-30	50	50	8	8	33.5	33	1.12	117.5	118	3.92	646.5	646	21.55
30-25	9	59	1	10	5.2	39	1.03	20.8	136	4.16	113.7	760	22.74
25-15	18	76	3	12	10.3	49	1.03	40.3	179	4.03	226.1	986	22.61
15-10	9	85	1	14	9.3	58	1.85	20.8	199	4.16	113.7	1,100	22.74
10-3	34	119	5	19	19.9	78	2.84	78.9	278	11.28	436.5	1,536	62.36
3-0.3	68	187	11	30	44.3	122	16.42	159.9	438	59.21	884.6	2,421	327.62
0.3-0.03	80	267	13	43	51.3	174	189.84	183.7	627	698.71	1,038.1	3,459	3,844.73
Low													
100-60	•	•	•	•	•	-	•	•	•	•		. •	-
60-30	-	-	•	-	•	•	• '	•	-	•	- 1		-
30-25	-	•	•	•	•	· •		•	•	•	· •	-	-
25-15	15	15	2	2	12.8	13	1.28	35.6	36	3.56	193.0	193	19.30
15-10	29	44	5	7	17.2	30	3.44	67.6	103	13.51	377.3	570	75.45
10-3	41	85	7	14	28.2	58	4.02	96.2	199	13.74	529.8	1,100	75.68
3-0.3	84	169	14	27	53.8	112	19.91	198.1	397	73.36	1,092.5	2,192	404.61
0.3-0.03	47	216	8	35	27.4	139	101.63	108.9	506	403.37	603.2	2,796	2,234.06

٦,

ĸ

Table 2.4.2.Incremental Costs and Occupational Dose for Remediation of
Contaminated Soil at the Reference Rare Metal Extraction Plant
(Unrestricted Land Use, Deposition on Soil Surface, Direct Disposal of Soil)

.

. ,

.

Table 2.4.3.Incremental Costs and Occupational Dose for Remediation of
Contaminated Soil at the Reference Rare Metal Extraction Plant
(Restricted Land Use, Deposition on Soil Surface, with Soil Washing)

					No Offsite Disposal				
						Cost per			
Reduction in			Incremental	Cumulative					
Residual	Incremental	Comulative	Occupational	Occupational		Residual Dose			
Dose Rate	Soil Volume	Soil Volume	Dose	Dosc	Incremental Cumulative		Rate		
(mrem/yr)	(m ³)	(m ³)	(person-mrem)	(person-mrem)	Cost (SK)	Cost (SK)	(SK/mrcm/yr)		
High									
100-60	-	-	-	-	-	•	-		
60-30	-	-	-	-	-	•	-		
30-25	-	-	-	-	-	•	-		
25-15	-	-	-	-	-	-	-		
15-10	-	-	-	-	-	-	-		
10-3	42	42	8	8	56.9	57	8.13		
3-0.3	65	107	12	20	35.6	92	13.18		
0.3-0.03	79	186	14	34	43.1	136	159.52		
Medium									
100-60	-	-	•	-	•	-	-		
60-30	-	-	-	-	-	-	- 1		
30-25	-	-	-	-	-	•	-		
25-15	-	-	-	-	-	-	- 1		
15-10	-	•	•	-	-	-	-		
10-3	-	-	•	-	-	•	- 1		
3-0.3	90	90	17	17	83.4	83	30.89		
0.3-0.03	87	177	16	33	47.4	131	175.45		
Low									
100-60	-	-	-	-	-	-	-		
60-30	-	•	-	-	-	-	- 1		
30-25	-	-	-	-	-	•	-		
25-15	-	-	•	-	-	•	•		
15-10	-	-	-	-	-	-	-		
10-3	-	-	•	-	-	-	-		
3-0.3	62	62	11	11	67.9	68	25.17		
0.3-0.03	74	136	14	25	40.5	108	150.00		

<u>Table 2.4.4</u>. Incremental Costs and Occupational Dose for Remediation of Contaminated Soil at the Reference Rare Metal Extraction Plant (Restricted Land Use, Deposition on Soil Surface, Direct Disposal of Soil)

, · ·

Ł

					No Offsite Disposal				
							Cost per		
Reduction in			Incremental	Cumulative			Reduction in		
Residual	Incremental	Comulative	Occupational	Occupational	!		Residual Dose		
Dose Rate	Soil Volume	Soil Volume	Dose	Dose	Incremental	Cumulative	Rate		
(mrcm/yr)	(m)	(m')	(person-mrem)	(person-mrem)	Cost (SK)	Cost (SK)	(SK/mrcm/yr)		
High									
100-60	•	-	•	•	-	•	•		
60-30	· •	•	•	-	•	•	•		
30-25	-	•	•	• •	-	•	-		
25-15	•	-	-	-	•	•	•		
15-10	•	•	-	•	-	•	-		
10-3	42	42	7	7	12.9	13	1.84		
3-0.3	65	107	11	18	20.1	33	7.45		
0.3-0.03	79	186	13	31	24.3	57	90.15		
Medium									
100-60	•	•	•	•	-	•	-		
60-30	•	•	•	•	•	•	-		
30-25	•	•	•	•	•	•	•		
25-15	•	-	-	-	-	•	· •		
15-10	•	-	•	•	•	•	•		
10-3	-	•	-	•	•	-	•		
3-0.3	90	90	15	15	27.9	28	10.32		
0.3-0.03	87	177	15	50	26.8	55	9 9.15		
Low			-						
100-60	•	•	•	-	•	• .	•		
60-30	•	•	-	•]	•	-	•		
30-25	•	•	-	•	-	•	-		
25-15	•	•	-	- 1	•	-	-		
15-10	-	`•	-	: • I	-	•	•		
10-3	•	•	•	•	•	•	•		
3-0.3	62	62	10	10	19.1	19	7.09		
0.3-0.03	74	136	13	23	22.9	42	84.77		

C.2-47

NUREG-1496

					\$10/ft ³ Disposal Cost \$50/ft ³ Disposal Cost			Cost	\$350/ft ³ Disposal Cost				
Reduction in Residual	Incremental	Cumulative	Incremental Occupational	Cumulative Occupational			Cost per Reduction in Residual Dose			Cost per Reduction in Residual Dose			Cost per Reduction in Residual Dose
Dose Rate	Soil Volume	Soil Volume	Dose	Dose (netson-mrem)	Incremental Cost (SK)	Cumulative Cost (SK)	Rate (SK/meen/w)	Incremental Cost (SK)	Cumulative	Rate	Incremental	Cumulative	Rate
(Referivyr)	(m)	(111)	(parton hadda)	()			(oronadary)))		CON (SK)	(JK/III CHIVYI)	Cost (SK)	Cost (SK)	(\$K/mrem/yr)
100.60	407	407	72	72	272.8	273	6 82	\$473	\$47	13 69	1 22620	2 262	
60.30	545	840	98	170	371.0	644	12.37	7414	1 789	74 71	2,252.9	2,233	30.32
30-35	143	1.091	26	195	98.4	742	19.68	195.9	1 485	30.18	803.6	5,300	101.77
75-15	402	1.493	72	267	272.3	1.015	27.23	545.0	2 030	54.50	2 247 3	9 247	100.73
15-10	319	1.812	57	324	217.8	1.232	43.56	433.7	2,463	86 74	1 784 5	10 141	224.73
10-3	948	2,760	170	494	643.9	1,876	91.98	1.288.8	3.752	184.12	5 306 2	15 448	749.02
3-0.3	1.811	4,570	324	818	1,231.5	3,108	456.12	2,461.6	6.214	911.72	10.134.2	25 582	3 753 40
0.3-0.03	1,812	6,382	324	1,142	819.7	3,928	3,036.02	2,045.4	8,259	7,575.62	9.724.5	35,306	36 016 76
Medium								1			1		
100-60	401	401	72	72	276.3	276	6.91	546.0	546	13.65	2,247.2	2,247	56.18
60-30	546	948	98	170	371.4	648	12.38	742.3	1,288	24.74	3,056.9	5,304	101.90
30-25	144	1,091	26	195	98.5	746	19.70	196.1	1,484	39.21	804.3	6,108	160.87
25-15	402	1,493	72	267	272.5	1,019	27.25	545.3	2,030	54,53	2,248.7	8,357	224.87
15-10	319	1,812	57	324	217.9	1,237	43.58	433.8	2,464	86.77	1,785.3	10,142	357.05
10-3	947	2,759	170	494	643.3	1,880	91.90	1,287.7	3,751	183.96	5,301.5	15,444	757.35
3-0.3	1,812	4,571	324	818	1,232.2	3,112	456.37	2,462.9	6,214	912.20	10,139.7	25,584	3,755.45
0.3-0.03	1,812	6,383	324	1,142	1,236.5	4,349	4,579.68	2,462.1	8,676	9,118.78	10,140.3	35,724	37,556.64
Low			_	_									
100-60	3	3	1	1	36.1	36	0.90	38.2	38	0.95	51.5	51	1.29
60-30	545	548	98	98	370.5	407	12.35	740.4	779	24.68	3,048.8	3,100	101.63
30-25	143	691	26	124	98.3	505	19.66	195.7	974	39.15	802.9	3,903	160.58
25-15	402	1,093	72	196	276.6	782	27.66	545.2	1,520	54.52	2,248.3	6,152	224.83
15-10	319	1,413	57	253	214.2	996	42.84	434.6	1,954	86.93	1,788.6	7,940	357.71
10-3	947	2,360	170	422	647.5	1,643	92.51	1,288.0	3,242	184.00	5,302.6	13,243	757.52
3-0.3	1,812	4,172	324	747	1,232.5	2,876	456.48	2,463.6	5,706	912.43	10,142.3	23,385	3,756.41
0.3-0.03	1,811	5,983	324	1,071	1,231.8	4,108	4,562.12	2,460.8	8,167	9,114.04	10,134.9	33,520	37,536.57

 Table 2.4.5.
 Incremental Costs and Occupational Dose for Remediation of Contaminated Soil at the Reference Rare Metal Extraction Plant (Unrestricted Land Use, Mixing/Landfilling, with Soil Washing)

NUREG-1496
					\$10/A ³ Disposel Cost		\$50/ft ³ Disposel Cost		\$350/ft ³ Disposal Cost				
1					ł		Cost per			Cost per			Cost per
Reduction in		_	Incremental	Canalative	ł		Reduction in			Reduction in	· · · · ·		Reduction in
Residual	Incremental	Conveletive	Occupational	Occupational			Residual Doss	1. A.		Residual Dose	• •		Residual Dose
Dose Rate	Soil Volume	Soil Volume	Dose	Dose	Incremental	Cumulative	Rate	Incremental	Convelative	Rate	Incremental	Camulative	Rate
(mrem/yr)	(m ³)	(m ³)	(person-meeta)	(person-mrem)	Cost (SK)	Cort (SK)	(SK/mecm/yr)	Cost (SK)	Cost (SK)	(SK/meen/yr)	Cost (SK)	Cost (SK)	(SK/mean/w)
High				-				[· · ·				
100-60	402	402	65	65	261.3	261	6.53	942.8	943	23.57	5,206.6	5.207	130.17
60-30	545	948	88	154	349.5	611	11.65	1,277.6	2,220	42.59	7,056.7	12.263	235.22
30-25	143	1,091	23	177	92.5	703	18.51	335.7	2,556	67.14	1,855.0	14.118	371.00
25-15	402	1,493	65	242	260.9	964	26.09	941.1	3,497	94.11	5,196.8	19,315	519.68
15-10	319	1,812	52	294	203.9	1,168	40,78	746.3	4,244	149.27	4,123.5	23,439	824.70
10-3	948	2,760	154	447	615.0	1,783	87.85	2,221.8	6,465	317.41	12,265.3	35,704	1.752.18
3-0.3	1,811	4,570	293	740	1,167.4	2,950	432.35	4,240.6	10,706	1,570.61	23,422.0	59,126	8.674.81
0.3-0.03	1,812	6,382	294	1,034	1,172.4	4,123	4,342.09	4,245.4	14,951	15,723.69	23,443.2	82,569	86.826.54
Medium			· · · ·										
100-60	401	401	65	65	260.7	261	6.52	940.5	941	23.51	5,193.5	5,194	129.84
60-30	546	948	88	154	354.0	615	11.80	1,279.2	2,220	42.64	7,065.6	12,259	235.52
30-25	144	1,091	23	177	92.6	707	18.52	336.0	2,556	67.20	1,856.7	14,116	371.33
25-15	402	1,493	65	242	256.9	964	25.69	941.7	3,497	94.17	5,200.1	19,316	520.01
15-10	319	1,812	52	294	208.1	1,172	41.61	746.6	4,244	149.32	4,125.1	23,441	825.03
10-3	947	2,759	153	447	. 610.4	1,783	87.19	2,218.6	6,463	316.95	12,253.1	35,694	1,750.44
3-0.3	1,812	4,571	293	740	1,172.0	2,955	434.09	4,244.2	10,707	1,571.92	23,436.1	59,130	8,680.03
0.3-0.03	1,812	6,383	294	1,034	1,168.1	4,123	4,326.45	4,244.9	14,952	15,721.97	23,440.5	82,571	86,816.61
Law						-							· · ·
100-60	3	3	1	1	1.8	2	0.05	8.3	8	0.21	41.5	42	1.04
60-30	545	548	85	89	353.2	355	11.77	1,275.9	1,284	42.53	7,046.9	7,088	234.90
30-25	143	691	23	112	92.5	447	18,49	335.4	1,620	67.08	1,853.4	8,942	370.68
25-15	402	1,093	65	177	261.0	708	26.10	941.5	2,561	94.15	5,199.1	34,141	519.91
15-10	319	· 1,413	52	229	204.3	913	40.86	747,9	3,309	149.59	4,132.8	18,274	826.55
10-3	947	2,360	153	382	614.6	1,527	87.80	2,219.1	5,528	317.01	12,255.7	30,529	1,750.82
3-0.3	1,812	4,172	294	676	1,168.2	2,696	432.67	4,245.2	9,773	1,572.30	23,442.1	53,971	8,682.25
0.3-0.03	1,811	5,983	293	969	<u> </u>	3,867	4,339.50	4,241.4	14,015	15,709.04	23,426.6	77,398	86,765.36

•

.

.

•

A.

Table 2.4.6.Incremental Costs and Occupational Dose for Remediation of
Contaminated Soil at the Reference Rare Metal Extraction Plant
(Unrestricted Land Use, Mixing/Landfilling, Direct Disposal of Soil)

' **f**

<u>Table 2.4.7</u>. Incremental Costs and Occupational Dose for Remediation of Contaminated Soil at the Reference Rare Metal Extraction Plant (Restricted Land Use, Mixing/Landfilling, with Soil Washing)

					No Offsite Disposal		osal
							Cost per
Reduction in			Incremental	Cumulative			Reduction in
Residual	Incremental	Cumulative	Occupational	Occupational			Residual Dose
Dose Rate	Soil Volume	Soil Volume	Dose	Dose	Incremental	Cumulative	Rate
(mrem/yr)	(m ³)	(m ³)	(person-meem)	(person-mrem)	Cost (SK)	Cost (SK)	(SK/mren/yr)
High							
100-60	•	-	-	-	-	•	-
60-30	-	-	-	-	-	•	
30-25	-	-	-	-	-	-	-
25-15	117	117	21	21	97.8	9 8	9.78
15-10	319	435	58	80	173.9	272	34.77
10-3	947	1,383	174	254	516.9	789	73.85
3-0.3	1,811	3,194	333	586	988.4	1,777	366.07
0.3-0.03	1,812	5,006	333	919	988.6	2,766	3,661.52
Medium							
100-60	-	-	-	-	-	-	-
60-30	-	-	•	•	-	-	
30-25	-	-	-	-	-	•	-
25-15	•	-	•	-	•	•	-
15-10	•	-	•	-	-	-	•
10-3	837	837	154	154	490.7	491	70.09
3-0.3	1,812	2,649	333	486	988.8	1,479	366.22
0.3-0.03	1,812	4,461	333	819	988.7	2,468	3,661.99
Low							
100-60	•	-	-	•	-	-	•
60-30	-	-	-	-	-	-	-
30-25	-	-	-	-	-	-	-
25-15	-	-	-	-	-	-	-
15-10	-	-	-	-	-	-	-
10-3	-	-	-	-	-	-	-
3-0.3	1,702	1,702	312	312	962.7	963	356.57
0.3-0.03	1,812	3,514	333	645	988.5	1,951	3,661.24

NUREG-1496

C.2-50

Table 2.4.8.Incremental Costs and Occupational Dose for Remediation of
Contaminated Soil at the Reference Rare Metal Extraction Plant
(Restricted Land Use, Mixing/Landfilling, Direct Disposal of Soil)

			······································		No Offsite Disposal		osal
							Cost per
Reduction in			Incremental	Cumulative			Reduction in
Residual	Incremental	Comulative	Occupational	Occupational			Residual Dose
Dose Rate	Soil Volume	Soil Volume	Dose	Dosc	Incremental	Cumulative	Rate
(mrem/yr)	(m)	(m³)	(person-mrem)	(person-mrem)	Cost (SK)	Cost (SK)	(SK/mrem/yr)
High							
100-60	•	•	•	•	-	-	-
60-30	•	•	-	• .	 • 	-	-
30-25	• '	•	-	•	-	-	-
25-15	117	117	20	20	36.0	36	3.60
15-10	319	435	54	73	98.3	134	19.65
10-3	947	1,383	160	233	292.1	426	41.73
3-0.3	1,811	3,194	305	538	558.5	985	206.87
0.3-0.03	1,812	5,006	305	844	558.7	1,544	2,069.15
Modium							
100-60	-	•	-		•	•	
60-30	·•	•	•	•	-	•	
30-25	•	•	-	•	•.	•	•.
25-15	. •	•	-	•	· •	•	-
15-10	•	· •	•	.	•	-	•
10-3	837	\$37	141	141	258.0	258	36.86
3-0.3	1,812	2,649	305	446	558.8	E 17	206.95
0.3-0.03	1,812	4,461	305	752	558.7	1,376	2,069.41
Low							
100-60	•	-	•	•	•	•	
60-30	•		-	-	-	•	.
30-25	-	•	•	-	•	-	•
25-15	-	•	-	•	•	•	-
15-10	• **	-	-		·• ·	•	
10-3		• .	•	· •	•	•	• •
3-0.3	1,702	1,702	-287	287	524.8	525	194.37
0.3-0.03	1,812	3,514	305	592	558.6	1,083	2,068.99

NUREG-1496

. ...

.

<u>Table 2.5.1</u>. Incremental Costs and Occupational Dose for Remediation of Contaminated Soil at the Reference Uranium Mill (Unrestricted Land Use, Deposition on Soil Surface, with Soil Washing)

{					No Offsite Disposal		osal
					· · · · · ·		Cost per
Reduction in			Incremental	Cumulative]		Reduction in
Residual	Incremental	Cumulative	Occupational	Occupational	1		Residual Dose
Dose Rate	Soil Volume	Soil Volume	Dose	Dose	Incremental	Cumulative	Rate
(mrem/yr)	(m ³)	(m ¹)	(person-mrem)	(person-mrem)	Cost (SK)	Cost (SK)	(SK/mrem/yr)
High			······································				
100-60	11,594	11,594	2,075	2,075	4,555	4,555	114
60-30	13,672	25,265	2,447	4,522	5,372	9,927	179
30-25	3,272	28,538	586	5,108	1,286	11,213	257
25-15	8,712	37,250	1,559	6,668	3,423	14,636	342
15-10	6,599	43,849	1,181	7,849	2,593	17,229	519
10-3	17,589	61,437	3,148	10,997	6,911	24,140	987
3-0.3	28,450	89,887	5,092	16,090	11,178	35,318	4,140
0.3-0.03	25,230	115,118	4,516	20,606	9,914	45,232	36,717
Medium							
100-60	47,257	47,257	8,459	8,459	18,568	18,568	464
60-30	24,795	72,053	4,438	12,897	9,743	28,311	325
30-25	5,127	77,180	918	13,815	2,015	30,326	403
25-15	12,372	89,552	2,215	16,030	4,861	35,187	486
15-10	8,656	98,208	1,549	17,579	3,401	38,588	680
10-3	21,955	120,163	3,930	21,509	8,627	47,214	1,232
3-0.3	33,398	153,561	5,978	27,487	13,123	60,337	4,860
0.3-0.03	27,275	180,836	4,882	32,370	10,717	71,054	39,692
Low							1
100-60	•	-	-	-	-	-	-
60-30	•	-	-	-	-	-	•
30-25	-	-	-	-	-	-	-
25-15	73,423	73,423	13,143	13,143	29,399	29,399	2,940
15-10	41,901	115,324	7,500	20,643	16,464	45,863	3,293
10-3	41,012	156,337	7,341	27,984	16,115	61,977	2,302
3-0.3	43,849	200,186	7,849	35,833	17,229	79,206	6,381
0.3-0.03	31,837	232,023	5,699	41,532	12,509	91,716	46,331

Table 2.5.2.Incremental Costs and Occupational Dose for Remediation of
Contaminated Soil at the Reference Uranium Mill
(Unrestricted Land Use, Deposition on Soil Surface, Direct Disposal of Soil)

					No Offsite Disposal		
1					_		Cost per
Reduction in			Incremental	Cumulative		· ·	Reduction in
Residual	Incremental	Cumulative	Occupational	Occupational			Residual Dose
Dose Rate	Soil Volume	Soil Volume	Dose	Dose	Incremental	Cumulative	Rate
(mrem/yr)	(m ¹)	(m ¹)	(person-mrem)	(person-arrent)	Cost (SK)	Cost (SK)	(SK/mrem/yr)
High							
100-60	11,594	11,594	1,878	1,878	2,763	2,763	69
60-30	13,672	25,265	2,215	4,093	3,259	6,022	109
30-25	3,272	28,538	530	4,623	. 780	6,802	156
25-15	8,712	37,250	1,411	6,034	2,077	2,272	208
15-10	6,599	43,849	1,069	7,104	1,573	10,451	315
10-3	17,589	61,437	2,849	9,953	4,192	14,643	599
3-0.3	28,450	89,887	4,609	14.562	6,781	21,424	2,511
0.3-0.03	25,230	115,118	4,087	18,649	6,014	27,438	22,273
Medium							
100-60	47,257	47,257	7,656	7,656	11,264	11,264	282
60-30	24,795	72,053	4,017	11,673	5,910	17,173	197
30-25	5,127	77,180	\$31	12,503	1,222	18,396	244
25-15	12,372	\$9,552	2,004	14,507	2,949	21,344	295
15-10	8,656	98,208	1,402	15,910	2,063	23,407	413
10-3	21,955	120,163	3,557	19,466	5,233	28,640	748
3-0.3	33,398	153,561	5,410	24,877	7,960	36,601	2,948
0.3-0.03	27,275	120,836	4,412	29,295	6,501	43,102	24,077
Low							
100-60	•	•	•	•	•	-	
60-30	-	-	-	-	•	-	•
30-25	-	•	•	•]	-	•	-]
25-15	73,423	73,423	11,895	11,895	17,500	17,500	1,750
15-10	41,9 01	115,324	6,788	18,683	9,987	27,487	1,997
10-3	41,012	156,337	6,644	25,327	9,775	37,262	1,396
3-0.3	43,849	200,1\$6	7,104	32,430	10,451	47,713	3,871
0.3-0.03	31,837	232,023	5,158	37,588	7,588	55,302	28,105

NUREG-1496

<u>Table 2.5.3</u>. Incremental Costs and Occupational Dose for Remediation of Contaminated Soil at the Reference Uranium Mill (Restricted Land Use, Deposition on Soil Surface, with Soil Washing)

					No Offsite Disposal		
							Cost per
Reduction in			Incremental	Cumulative			Reduction in
Residual	Incremental	Cumulative	Occupational	Occupational			Residual Dose
Dose Rate	Soil Volume	Soil Volume	Dose	Dose	Incremental	Cumulative	Rate
(mrem/yr)	(m ³)	(m ³)	(person-mrem)	(person-mrem)	Cost (SK)	Cost (SK)	(SK/mrem/yr)
High							
100-60	-	-	-	•	-	-	-
60-30	-	-	•	-	•	•	- 1
30-25	-	•	-	-	•	-	-
25-15	92,287	92,287	16,519	16,519	36,811	36,811	3,681
15-10	28,238	120,525	5,055	21,574	11,095	47,906	2,219
10-3	38,268	158,794	6,850	28,424	15,036	62,943	2,148
3-0.3	42,910	201,704	7,681	36,105	16,860	79,803	6,244
0.3-0.03	31,754	233,458	5,684	41,789	12,477	92,279	46,210
Medium							
100-60	-	-	-	-	-	•	- 1
60-30	•	-	-	-	-	-	-
30-25	-	•	-	-	-	-	-
25-15	-	-	-	-	-	-	-
15-10	-	-	-	-	-	•	- 1
10-3	92,287	92,287	16,519	16,519	36,811	36,811	5,259
3-0.3	81,545	173,832	14,596	31,116	32,040	68,851	11,867
0.3-0.03	37,909	211,741	6,786	37,902	14,895	83,746	55,167
Low							
100-60	-	-	-	-	-	-	-
60-30	-	-	•	-	-	•	- [
30-25	-	-	•	-	-	-	-
25-15	-	-	-	-	•	-	-
15-10	-	-	-	-	-	-	-
10-3	-	-	-	-	-	-	- 1
3-0.3	120,525	120,525	21,574	21,574	47,906	47,906	17,743
0.3-0.03	61,011	181,537	10,921	32,495	23,973	71,879	88,787

NUREG-1496

C.2-54

Table 2.5.4.Incremental Costs and Occupational Dose for Remediation of
Contaminated Soil at the Reference Uranium Mill
(Restricted Land Use, Deposition on Soil Surface, Direct Disposal of Soil)

					No Offsite Disposal		
1							Cost per
Reduction in			Increments!	Cumulative			Reduction in
Residual	Incremental	Cumulative	Occupational	Occupational			Residual Dose
Dosc Rate	Soil Velume	Soil Volume	Dose	Dose	Incremental	Cumulative	Rate
(mrem/yr)	(m [*])	(m ³)	(person-mrem)	(person-mrem)	Cost (SK)	Cost (SK)	(SK/mrem/yr)
High		· · · · · · ·			-		
100-60	•	•	•	•	-	-	-
60-30	•	-	•	-	-	•	•
30-25	•	•	•	-	•	•	•
25-15	92,287	92,287	14,951	14,951	21,9 %	21,9 96	2,200
15-10	28,238	120,525	4,575	19,525	6,730	28,727	1,346
10-3	38,268	158,794	6,199	25,725	9,121	37,\$48	1,303
3-0.3	42,910	201,704	6,951	32,676	10,227	48,075	3,788
0.3-0.03	31,754	233,458	5,144	37,820	7,568	55,644	28,031
Medium							
100-60	-	•	•	•	•	-	•
60-30	•	•	-	•	•	-	•
30-25	•	•	•	-	-	•	•
25-15	•	•	•	-	-	•	-
15-10	•	•	•	•	•	•	•
10-3	92,287	92,287	14,951	14,951	21,996	21,996	3,142
3-0.3	\$1,545	173,832	13,210	28,161	19,436	41,432	7,198
0.3-0.03	37,909	211,741	6,141	34,302	9,035	50,467	33,464
Low							
100-60	•	•	•	•	-	-	•
60-30	•	-	-	•	-	•	•
30-25	•	•	-	-	•	•	-
25-15	-	-	•.	•	•	-	-
15-10	-	•	•	•	-	-	•
10-3	•	•	-	•	•	•	•
3-0.3	120,525	120,525	19,525	19,525	28,727	28,727	10,640
0.3-0.03	61,011	181,537	9,884	29,409	14,542	43,269	53,859

C.3 Modifications to Analyses in Response to Public Comments

The NRC received a number of public comments questioning the soil contaminant distribution methodology utilized in the draft GEIS. The essence of these comments was that the draft GEIS methodology, in some instances, significantly underestimates the volume of contaminated soil requiring remediation during decommissioning of nuclear facilities. In response to these comments, NRC and PNNL staff reviewed data on contamination submitted by the commenters, compared it with available data on radionuclide distributions in contaminated soil including that in the draft GEIS, and verified and/or modified, as appropriate, the analyses of the reference facilities. This final GEIS thus considers additional soil contamination data. The following sections discuss specific public comments received relative to each of the draft GEIS reference facilities and any modifications to the reference facilities made in response to these comments.

C.3.1 Reference Nuclear Power Plant

C.3.1.1 Summary of Public Comments

Public comments received on the analysis of the reference nuclear power plant suggest that the diffusion, or "surface deposition," model utilized in the draft GEIS for estimating radioactively-contaminated soil volumes is not representative of "real world" situations. Specifically, it is suggested that the "surface deposition" model used for predicting radionuclide distributions in the soil column is too simple to adequately represent "real world" situations. Noted "real world" situations that the "surface deposition" model does not adequately represent were as follows:

radionuclide deposition from airborne effluents released over the life of the plant,

- breaks that occur in underground pipelines that extend between buildings, between outdoor tanks and buildings, or between tanks and discharge points; furthermore, these leaks can occur several feet underground,
- seepage of slightly contaminated routine effluents from drain lines, from tank overflows, and from natural buildup of permitted effluent releases over years of operation, and
- mixing of contaminated and uncontaminated soil that occurs during remediation.

These possible sources of contamination suggest that areal variability can be much more pronounced than the uniformly-spread contamination assumed in the "surface deposition" model, contamination can be much deeper than predicted with the "surface deposition" model, and contaminated soil volumes predicted by the "surface deposition" model are too low compared to "real world" situations. Furthermore, a number of commenters indicated

C.3-1

NUREG-1496 ·

that soil volumes requiring removal can increase exponentially with decreasing dose criteria at levels below about 30 mrem/y.

One commenter acknowledged that the "surface deposition" model used in the draft GEIS may adequately represent situations where contamination results from discrete spills, such as around perimeters of tanks. This same commenter further indicated, however, that the other sources of contamination mentioned above would be more prevalent in the "real world."

Finally, with regard to building contamination, one commenter suggested that the volumes of activated and contaminated equipment and structures requiring D&D increase exponentially with decreasing dose rates below 500 mrem/y. More specifically, two commenters suggested that the costs of decontaminating activated concrete, in particular for some reactor designs where significant volumes of concrete (hundreds of thousands of cubic feet) become slightly activated, were not included in the draft GEIS.

C.3.1.2 Analyses Conducted in Response to Public Comments

The simple diffusion model developed to predict radionuclide distributions in contaminated soil for the draft GEIS was originally chosen over other more complex models because of the scarcity of "real world" data on radionuclide profiles in the soil column at nuclear power reactors from which to develop a generic, or composite, site description for analysis and the desire to develop a generic site that could be representative of the broad class of NRC licensees.

However, in the final GEIS, in order to be responsive to public comments, further PNNL review and analysis of available data (NRC, 1997), including that submitted by commenters, on the extent and depth of radioactive contamination in soil at commercial nuclear power plants was conducted. The major results of this review and analysis are as follows:

- Based on general site data and specific site area information, which generally came from decommissioning plans for commercial nuclear power reactors, the majority of the environs surrounding a power plant have such low concentrations of radionuclides that the dose to an onsite resident would be in the range of a few mrem/y (based on utilizing the dose conversion factors from the draft GEIS or this GEIS. However, there are isolated areas that appear to have higher levels of contamination. These higher levels for Co-60 (10-12 pCi/g) and Cs-137 (9-30 pCi/g) are comparable to the surface contamination levels assumed in the draft GEIS (i.e., 2-60 pCi/g and 1-20 pCi/g, respectively). These isolated areas of higher contamination also have areal extents (225 to 300 m²) that are comparable to that assumed for the reference facility in the draft GEIS (i.e., 185 m²).
- Many commercial nuclear power plants have had documented events that resulted in contaminated soil and requests for onsite burial of this contaminated soil (formerly 10 CFR Part 20.302 burials). Based on an analysis of data available on the contaminated

soil from these events, the majority of the contaminated soil would result in doses in the range of a few mrem/y to the onsite resident (based on utilizing the dose conversion factors reported in Kennedy, 1992). Several of these events resulted in higher contamination levels which are comparable to the surface contamination levels assumed in the draft GEIS (e.g., Co-60 levels between 2 and 25 pCi/g up to a level of 200 pCi/g; Cs-137 levels between 4 and 15 pCi/g up to 80 pCi/g).

- Information on the volume of contaminated soil associated with individual events suggests that there may be instances where contaminated soil volumes are larger than predicted in the draft GEIS.
- Based on previous analyses performed for the NRC (Oak, 1980 and Tichlier, 1995), soil contamination resulting from airborne effluent deposition in general appears to result in contamination levels (< 0.1 mrem/y) that are significantly below proposed release criteria and will not add noticeably to contamination levels resulting from other causes such as spills.</p>

• There is very limited information on the distribution of radionuclide contamination with depth into the soil column or volume. Where data are available on radionuclide concentration with depth into the soil column, they are generally only for a sample taken from a single borehole (based on the limited data available and in Abel, 1986).

With regard to the building contamination model utilized in the draft GEIS, a simple diffusion model combined with "real world" data on measured radionuclide distributions in concrete at commercial nuclear power plants was developed for predicting the spread of radionuclides into concrete walls and floors and the reactor bioshield. In response to public comments received on this methodology, further PNNL review and analysis of available data (NRC, 1997), including that presented by the commenters on the extent and depth of radioactive contamination in concrete at commercial nuclear power plants, were conducted. The major results of the review and analysis are as follows:

÷

- Based upon these new analyses and the analyses originally conducted for the draft GEIS (refer to Appendix C in NRC, 1994), measured radionuclide concentrations (between 10⁻¹ and 10⁵ pCi/cm³ for C-60 and between 10⁻² and 10⁶ pCi/cm³ for Cs-137) in concrete are comparable to the geometric mean (data from 7 nuclear power reactors) radionuclide distribution profiles assumed in the draft GEIS (between 10⁰ and 10⁴ pCi/cm³ for C-60 and between 10⁰ and 10⁴ pCi/cm³ for Cs-137).
- Based on data available in decommissioning plans and previous analyses done for the NRC (Konzek, 1990 and Konzek, 1995, Appendix M), the contaminated concrete volumes removed during D&D assumed in the draft GEIS (900-1,800 m³) are in good agreement with the volumes generated or estimated by the commercial industry (800-1,500 m³). Furthermore, comments received by industry experts on earlier NRC

NUREG-1496

- . .

studies of the reference nuclear power plant indicate general agreement with the extent of radioactive contamination in concrete assumed in the draft GEIS.

• Analysis of recent data from the Trojan Nuclear Plant decommissioning project indicates higher than expected tritium contamination levels in the walls of the reactor containment building (Robertson, 1996). While the tritium levels are 2 to 3 orders of magnitude above background levels, the levels are still well below acceptable residual contamination criteria and therefore do not require aggressive decontamination using surface removal techniques. This is consistent with the assumptions in the draft GEIS regarding the extent of contamination in containment building walls/floors.

C.3.1.3 Analysis Modifications Made in Response to Public Comments

Based on the analysis of available "real world" data made in response to public comments received on the reference nuclear power station D&D analysis methodology in the draft GEIS, the following modifications were made to the analysis methodology for the final GEIS:

- The size of the contaminated soil site requiring remediation was increased from 185 m² (2,000 ft²) in the draft GEIS to 280 m² (3,000 ft²).
- A "real world" radionuclide profile with depth in soil model was developed based on data available on contaminated soil from Robertson (1986) at the Humboldt Bay Unit 3 Nuclear Power Plant. This contamination profile was taken from a soil core that was taken near a condensate storage tank where either a spill or underground leak of radioactive water had occurred.

The analysis methodology for the final GEIS included scenarios that evaluated remediation of a $280-m^2$ (3,000-ft²) contaminated soil site using both the "surface deposition" model from the draft GEIS and the new "spill/leak" model.

C.3.2 Reference Uranium Fuel Fabrication Plant

C.3.2.1 Summary of Public Comments

Public comments received on the analysis of the reference uranium fuel fabrication plant suggest that the diffusion, or "surface deposition," model utilized in the draft GEIS for estimating radioactively-contaminated soil volumes is not representative of "real world" situations. Specifically, comments suggested that

• the "surface deposition" model used for predicting radionuclide distributions in the soil column is too simple to adequately represent "real world" situations,

- that the volumes of contaminated soil estimated using the "surface deposition" model in the draft GEIS are too low and that volumes requiring removal in reality increase rapidly (even geometrically) with decreasing dose criteria; figures, without supporting data, submitted by commenters indicated that the volume of contaminated soil requiring remediation increased by a factor of 3 to 6 when the residual dose criteria are decreased from 100 to 15 mrem/y, and
- that the "surface deposition" model only results in significant levels of surface contamination, which is only representative of situations where contamination has resulted from windblown contaminated dust or spreading of contaminated topsoil; actual experience indicates that depths of contamination are considerably deeper due to a variety of site-specific waste management practices such as onsite burials of radioactive materials, leaks in underground radioactive liquid effluent systems, and mixing of contaminated soil with clean soil from previous site activities such as excavations for new building foundations.

No public comments were received on the building contamination model for the reference uranium fuel fabrication plant.

C.3.2.2 Analyses Conducted in Response to Public Comments

A review of available data on areal extent, depth, and volume of contaminated soil at uranium fuel fabrication plants was originally conducted for the draft GEIS. However, as with the reference nuclear power station discussed above, a simple diffusion model was developed to predict radionuclide distributions in contaminated soil for the draft GEIS rather than a more complex model, because of the scarcity of "real world" data on radionuclide profiles in the soil column at uranium fuel fabrication plants from which to develop a generic, or composite, site description for analysis. In response to public comments received, however, PNNL and NRC staff conducted a further review and analysis of available data (NRC, 1997), including that presented by the commenters, on the extent and depth of radioactive contamination in soil at uranium fuel fabrication plants. The major results of this review and analysis are as follows:

Based on site-specific data for several uranium fuel fabrication plants, which generally came from decommissioning plans for NRC licensees, contaminated soil volumes and the areal extent of contaminated sites requiring remediation can be considerably higher than predicted in the draft GEIS. Specifically, the decommissioning of the Babcock and Wilcox fuel conversion plant in Apollo, Pennsylvania, resulted in 18,800 m³ (665,000 ft³) of contaminated soil having greater than 30 pCi/g of radioactive contamination being disposed of offsite (Carlson, 1994). The total area of contamination was estimated to be about 13,900 m² (150,000 ft²).

C.3-5

- Leakage from liquid effluent systems (i.e., sewers) can substantially increase the depth of contamination into the soil column and the resulting volume of contaminated soil requiring remediation.
- There is very limited information on the distribution of radionuclide contamination with depth into the soil column or volume at uranium fuel fabrication plants. Data available on three DOE Formerly Utilized Sites Remedial Action Program (FUSRAP) uranium facilities indicate that the volume of contaminated soil requiring remediation increases by a factor of 3.4 to 14 when the residual criteria are decreased from 130 to 13 pCi/g (DOE, 1994a).

While no public comments were received specific to the building contamination model used for the reference uranium fuel fabrication plant, PNNL review and analysis of available data (NRC, 1997) were conducted. The results were that there are very few data available on radionuclide contamination levels and are much less sufficiently detailed to allow a comparison with the results of the model used in the draft GEIS.

C.3.2.3 Analysis Modifications Made in Response to Public Comments

Based on the analysis of available "real world" data made in response to public comments received on the reference uranium fuel fabrication plant D&D analysis methodology in the draft GEIS, the following modifications were made to the analysis methodology for the final GEIS:

- The size of the contaminated soil site requiring remediation was increased from 4,650 m^2 (50,000 ft²) in the draft GEIS to 9,300 m² (100,000 ft²).
- A "real world" radionuclide distribution in soil model was developed based on data available on contaminated soil at the Babcock and Wilcox Apollo Plant and the DOE FUSRAP uranium sites. This contamination profile was based on a DOE site where extensive landfilling and site grading occurred resulting in significant mixing of contaminated soil with clean soil.

The analysis methodology for the final GEIS included scenarios that evaluated remediation of a $9,300\text{-m}^2$ (100,000-ft²) contaminated soil site using both the "surface deposition" model from the draft GEIS and the "mixing/landfilling" model developed based on the public comments.

C.3.3 Reference Sealed Source Manufacturer

C.3.3.1 Summary of Public Comments

Only one specific public comment was received on the draft GEIS analysis of the reference sealed source manufacturer, which also used a diffusion, or "surface deposition," model for

estimating radioactively-contaminated soil volumes. This commenter did not specifically question the "surface deposition" or building contamination models but rather made the general note that the selection of the reference facility (i.e., a sealed source manufacturer) does not adequately represent other types of non-fuel-cycle facilities, such as radiochemical and radiopharmaceutical manufacturing facilities. The commenter suggested that the impact of decommissioning on these types of facilities to the level of the proposed standard would be significant, yet was not considered as part of the impact analysis.

C.3.3.2 Analyses Conducted in Response to Public Comments

۰.

An analysis of NRC licensees classified as non-fuel-cycle facilities indicated that of the approximately 1,400 non-fuel-cycle licensees, 295 are sealed source manufacturers, 1,101 are broadly classified as R&D facilities (of which over 800 are academic, medical, and private laboratory-type facilities), and the remaining are rare earth extraction facilities. Generally, academic and medical facilities are issued licenses for the possession and use of radionuclides for teaching, training, and research. Previous NRC analyses of the D&D of these broad R&D types of facilities have not indicated significant soil contamination problems and the contaminated laboratories are generally relatively small, on the same order as the size of the reference sealed source manufacturer assumed in the draft GEIS (Murphy, 1981 and Short, 1989). The draft GEIS results for decontamination of the reference sealed source manufacturer building can easily be scaled to determine comparable results for larger buildings.

A review was made by PNNL and NRC staff of available literature on non-fuel-cycle nuclear facilities to identify available data (NRC, 1997) on areal extent, depth, and volume of contaminated soil at these types of facilities (Murphy, 1981; Short, 1989; NRC, 1993). While there were references to contaminated soil in a couple of instances, a site having contaminated soil was clearly the exception rather than the rule (in general, contaminated soil was indicated areas inside the building). And even in those cases where contaminated soil was indicated to be present, there were no estimates of the areal extent, depth, or volume of contamination in the soil from which to base an analysis upon.

C.3.3.3 Analysis Modification Made in Response to Public Comments

The indication in the public comment that remediation requirements are significantly greater at other types of non-fuel-cycle nuclear facilities than sealed source manufacturers is not substantiated by the data available to NRC and PNNL staff. It therefore appears reasonable to conclude that the reference sealed source manufacturer facility assumed in the draft GEIS be retained as the reference facility.

However, as a sensitivity case, a "spill/leak" model was developed to represent potentially deeper contamination than would result from the "surface deposition" model used in the draft GEIS. The model used to represent this scenario was the same as was developed for the reference nuclear power plant "real world" scenario. The analysis methodology for the final

GEIS therefore included scenarios that evaluated remediation of a 465 m² (5,000 ft²) contaminated soil site using both the "surface deposition" model from the draft GEIS and the "spill/leak" model developed based on public comments.

C.3.4 Reference Rare Metal Extraction Facility

C.3.4.1 Summary of Public Comments

Only one specific public comment was received on the draft GEIS analysis of the reference rare metal extraction facility, which also used a diffusion, or "surface deposition," model for estimating radioactively-contaminated soil volumes. The essence of the comment received was that the volumes of contaminated soil estimated as requiring remediation using the "surface deposition" model are underestimated and, consequently, the calculated soil remediation costs are underestimated. The commenter also suggested that soil volumes requiring remediation would increase appreciably as the residual dose criteria decrease, especially at low dose criteria.

C.3.4.2 Analyses Conducted in Response to Public Comments

A review of available data on areal extent, depth, and volume of contaminated soil at rare metal extraction facilities was originally conducted for the draft GEIS. However, as with the reference nuclear power station and uranium fuel fabrication plant discussed previously, a simple diffusion model was developed to predict radionuclide distributions in contaminated soil for the draft GEIS rather than a more complex model because of the scarcity of "real world" data on radionuclide profiles in the soil column at rare metal extraction facilities from which to develop a generic, or composite, site description for analysis.

Also, as discussed in the draft GEIS, the reference rare metal extraction facility is assumed to have a large 7,000-m³ (250,000-ft³) contaminated slag pile. However, this slag pile was not included in the draft GEIS analyses because the relatively high contamination levels associated with the slag pile (an average activity level of 1,250 pCi/g) meant that there would be no difference in remediation requirements for the alternative residual dose levels being considered in the GEIS (i.e., those less than 100 mrem/y). In other words, the impacts of remediating the slag pile would just subtract out when comparing the differences in remediation costs between two residual dose levels. Since the purpose of the GEIS analyses is to determine the differences in impacts between different residual dose levels and not to estimate the total costs of remediation, remediation of the slag pile was not included in the GEIS analyses (even though it would have added substantially to the total volume of contaminated soil requiring remediation).

In response to public comments received, however, PNNL and NRC staff conducted a further review and analysis of available data (NRC, 1997), including that submitted by commenters, on the extent and depth of radioactive contamination in soil at rare metal extraction facilities. The major results of this review and analysis are as follows:

- Based on site-specific data for several rare metal extraction facilities, which generally came from decommissioning plans for NRC licensees and from NRC, 1993, there are generally large volumes of contaminated slag piles associated with these types of facilities. Much of the contamination data available on these types of sites is for the slag piles, with very little contamination data, or estimates of contaminated volumes and/or areal extent, available on the soil.
- There is very limited information on the distribution of radionuclide contamination with depth into the soil column or volume at rare metal extraction facilities. Limited information on the Molycorp, Inc., rare metal ore processing facility in York, Pennsylvania, indicates that a total of 510 m³ (18,000 ft³) of Th-232-contaminated soil, with concentrations as high as 700 pCi/g, is estimated to require excavation and removal from the site during remediation. Approximately 100 m³ (3,600 ft³) of this volume is contaminated with Th-232 to levels greater than 70 pCi/g (NRC, 1993).
- Information from several of the sites evaluated indicated that thorium does not leach appreciably from the slag into the soil and that soil contamination is generally limited to the upper one to two feet of soil.

While no public comments were received specific to the building contamination model used for the reference rare metal extraction facility, PNNL review and analysis of available data (NRC, 1997) were conducted. The results were that there are very few data available on radionuclide contamination levels and are much less sufficiently detailed to allow a comparison with the results of the model used in the draft GEIS.

C.3.4.3 Analysis Modifications Made in Response to Public Comments

Based on the analysis of available "real world" data made in response to public comments received on the reference rare metal extraction facility D&D analysis methodology in the draft GEIS, the following modifications were made to the analysis methodology for the final GEIS:

- A 7,000-m³ (250,000-ft³) slag pile was included in the soil remediation analyses.
- A "real world" radionuclide distribution in soil model was developed based on data available on contaminated soil at the Molycorp, Inc., rare metal ore processing facility in York, Pennsylvania. This contamination profile was based on a very limited data set that required a number of "best engineering judgement" assumptions before the data could be developed into a model sufficient for analysis. The soil contamination was assumed to be the result of utilizing the slag as landfill, similar to past practices at the Molycorp, Inc., rare metal ore processing facility in Washington, Pennsylvania.

C.3-9

The analysis methodology for the final GEIS included scenarios that evaluated remediation of a $7,000\text{-m}^3$ (250,000-ft³) slag pile and a $9,300\text{-m}^2$ (100,000-ft²) contaminated soil site using both the "surface deposition" model from the draft GEIS and the new "mixing/landfilling" model developed based on public comments.

C.4 Characterization of Reference Facility Contamination

The NRC received a number of public comments questioning the soil contaminant distribution methodology utilized in the draft GEIS (refer to Section 3). The essence of these comments was that the draft GEIS methodology, in some instances, significantly underestimates the volume of contaminated soil requiring remediation during decommissioning of nuclear facilities. In response to these comments, NRC and PNNL staff reviewed information submitted and also conducted a literature search for information documenting the extent and depth of radioactive contamination at both NRC-licensed and DOE nuclear facilities. This literature search identified a number of "real world" situations where, as suggested by public comment, radioactively-contaminated soil volumes were significantly greater than had been estimated by the draft GEIS methodology. These "real world" data were subsequently analyzed and used to form the basis for modified reference facilities.

This chapter provides a brief physical description of the reference facilities being evaluated in the final GEIS. The descriptions include information such as the size of buildings and total site area, the extent and penetration of radioactive contamination on building surfaces from actual radiation surveys when available, and the extent and depth of radioactive contamination in the environment where "real world" data were available.

The descriptions of each of the reference facilities are based upon actual facilities licensed by the NRC or owned and regulated by the DOE. In some cases, insufficient information was available on any one facility to provide an adequate description for evaluation. In these cases, the reference facility description is actually a composite description of multiple facilities. While much of the reference facility descriptions include information originally presented in the draft GEIS (NRC, 1994), it is repeated here for completeness and clarity.

C.4.1 Reference Nuclear Power Reactor Station

The Trojan Nuclear Power Plant, located in Rainier, Oregon, was used as the representative 1095-MWe pressurized water reactor plant that is preparing for decontamination and decommissioning. Conceptual decommissioning of this plant has been reported in previous studies for the NRC (Smith et al., 1978; Konzek et al., 1995).

C.4.1.1 Description of Building Contamination

The extent of surface radionuclide contamination on floors of the various buildings of the reference PWR nuclear power station was estimated by reviewing detailed contamination survey maps supplied by the utility for contaminated areas of the station. The contamination surveys were conducted by taking smears of removable radioactive material from 100 cm² areas of floor surfaces. In a number of locations in the reactor containment building, contaminated walls were also surveyed for removable radioactive contamination. A summary of the contaminated surface areas is given in Table 4.1.1. As shown in the table, all of the

C.4-1

floor surfaces in the reactor containment building (estimated area of about 1900 m²) are assumed to be contaminated at levels which would require scabbling to reduce the contamination levels to acceptable residual concentrations.

Contamination penetrated into concrete below-grade floors in the Sodium Reactor Experiment Facility approximately 1/8 to 3/8 inches on the average and up to the full thickness of walls and floors where cracks and joints existed (Brengle, 1979). Angus et al. (1990) found that ¹³⁷Cs penetrated deeply into areas of surface porosity and cracks. Information on surface contamination of concrete in the Japan Power Demonstration Reactor (Yasunaka et al., 1987) indicated that most of the contamination penetrated less than 2 cm and only 15% penetrated up to 3 cm. In the liquid waste treatment building, the deepest penetration was up to 11 cm in the vicinity of cracks, but elsewhere it was less than 2 cm. Therefore, complete removal of concrete floors is assumed to contain 1500 m of cracks. Because contamination tends to penetrate rapidly into cracks, contaminated crack regions are expected to require complete removal.

The interior walls of certain locations within the reactor containment building also contain significant radionuclide contamination, particularly the upper and lower cavity areas surrounding the pressure vessel. Although summaries of wall contamination are not included in Table C.4.1.1, it is estimated that approximately 400 to 600 m² of wall area from these locations have been contaminated at levels ranging from about 1,000 to 60,000 pCi/100 cm². Other portions of the interior wall surfaces in the containment building may also be contaminated and require some type of decontamination.

Building	Approximate Floor Surface <u>Area, ft²</u>	Estimated % of Floor Area <u>Contaminated</u>	Estimated Area Needing <u>Cleanup, ft²</u>
Reactor Containment	20,400	100	20,400
Auxiliary (6 levels)	43,000	1-5	430 - 2,200
Fuel Building (5 levels)	53,800	1-5	540 - 2,690
Turbine Building	61,300 per level	0	0
Control Building	7,500 per level	0	0

<u>Table C.4.1.1</u>. Extent of Surface Radionuclide Contamination in the Reference PWR Nuclear Power Station^(a)

(a) From Smith et al. 1978.

In addition to the widespread surface contamination of concrete and patchy areas of contamination associated with spills or high radiation areas where maintenance work was conducted, radioactive contamination is produced in-situ by neutron activation of concrete shields. Concrete areas subjected to neutron exposure within the plant are limited primarily to the bioshield and the sump area directly beneath the reactor vessel. Concrete core samples collected directly beneath the pressure vessel show the effects of both surface contamination and subsurface neutron activation of stable elements present in the concrete (Abel et al., 1986). The concentration of radionuclides, such as ⁶⁰Co, decreases rapidly (by approximately four orders of magnitude) with depth from the surface to about 2 cm beneath the surface. This concentration profile is attributed to diffusion of surface contamination. The radioisotopes produced by neutron activation extend much deeper (even feet) in nuclear reactors (Abel et al., 1986; Irving, 1980). The concentration may peak at depths where the neutron energy spectrum coincides with peaks in the capture cross section for the parent isotope. The subsurface contamination produced by neutron activation is too deep to be removed by surface scabbling and must be removed by procedures for concrete demolition.

The auxiliary and fuel buildings also have some areas of floor contamination but not nearly to the extent of that observed in the reactor containment building. It has been estimated, based on survey reports (Smith et al., 1978), that about 1 to 5% of the floor area (representing about 430 to 2,200 ft²) in the auxiliary building has radioactive contamination levels in the range of 500 to 3,600 pCi/100 cm². The fuel handling building also has a small amount of floor contamination, estimated at approximately 540 to 2,690 ft², with contamination levels ranging from about 500 to 2,300 pCi/100 cm².

The other buildings, including the turbine building, the control building, radwaste handling warehouse, and the condenser building, generally do not have any measurable radioactive contamination on any surfaces.

Within the common variabilities of contamination levels in nuclear power plants, the analysis for a PWR reasonably estimates the contaminants and contamination levels for a BWR. Within these variabilities and considering the information shown in Table 4.1.2, the radioactive contamination in the various types of reactors appears to be similar. The primary difference is in the areas and volumes of the structures. Dry active waste (DAW) is a mixture of radioactively contaminated items typically generated at nuclear power stations (e.g., trash, protective clothing, gloves, equipment, tape, plastic sheeting and bags, etc.), and the radioactive material associated with DAW would be expected to be reasonably representative of that found on surface contaminated concrete. These measurements were made on over 100 DAW samples during a recent study conducted by Battelle for the Electric Power Research Institute to determine the industry-wide variability in the radionuclide composition of very low-level wastes generated at nuclear power stations (Robertson, et al. 1989).

C.4.1.2 Description of Soil Contamination

Available information on radionuclide contamination in soils at nuclear power plant sites indicates that this contamination is generally located in small patches of very low concentrations, that these patches are generally located within the security fences, and that they are generally at known spill sites. These locations were generally close to condensate or borated water storage tanks, effluent sampling points, or equipment maintenance and/or cleaning areas. Small areas of contaminated soils at most plants would require remedial action, such as excavation and disposal as low-level waste. Contaminated soil volumes are relatively low, generally in the tens of cubic meters (Abel et al., 1986). Additional volumes of contaminated soil might occur during decontamination and/or dismantling, as additional spills occur or covered areas (e.g., underneath spent fuel storage pools) are found to be contaminated.

Abel, et al. (1986) reported concentration ranges of a number of radionuclides measured in surface soils (to a depth of 4 cm) at six different nuclear power reactor plants. These reported radionuclide concentration ranges are reproduced in Table 4.1.3. Cobalt-60 was the largest contributor to radiation dose from radionuclides in soils at these plants. The highest levels of radionuclides found in "hot spots" (soil samples and holding pond sediments) consisted of ⁶⁰Co (up to 377 pCi/g) and ¹³⁷Cs (up to 91 pCi/g) (Abel et al., 1986).

Radionuclide	All PWR Stations ^(a)	All BWR Stations®	All Stations Combined ^(c)
⁶⁰ Co	$49 \pm 34^{(d)}$	78 ± 2.6	61 ± 30
¹³⁷ Cs	27 ± 22	11 ± 2.2	20 ± 18
¹³⁴ Cs	8.6 ± 7.3	2.5 ± 1.2	6.1 ± 6.3
⁵⁸ Co	9.8 ± 9.8	0.59 ± 0.43	6.7 ± 9.0
⁵⁴ Mn	0.7 ± 0.5	6.4 ± 3.6	3.0 ± 3.6
¹⁰⁶ Ru	2.4 ± 2.1	1.8 ± 0.4	2.1 ± 1.4
¹²⁵ Sb	0.6 ± 0.3	0.69 ± 0.47	0.6 ± 0.4
⁹⁵ Nb	2.4 ± 3.2	0.2 ± 0.09	1.8 ± 2.8
⁹⁵ Zr	0.7 ± 0.5	-	0.7 ± 0.5
^{110m} Ag	0.3 + 0.5	0.12	0.3 ± 0.4

Table C.4.1.2. Gamma-Emitting Radionuclide Distributions in Dry Active Waste (Robertson et al. 1989, 1991)

Average % Composition of γ -Emitting Radionuclides

(a) Includes 6 stations and 60 samples.

(b) Includes 4 stations and 42 samples.

(c) Includes 10 stations and 102 samples.

(d) \pm values are the standard deviation (1 σ).

Radionuclide	Pathfinder ^(*)	Humboldt Bay ⁽⁹⁾	Dresden ^(s)	Monticello ⁽⁴⁾	Turkey Point ^(e)	Rancho Seco ⁽⁰⁾
⁵⁴ Mn	<0.005-0.06	0.45-5.5	0.02-0.23	<0.004-<0.02	0.03-0.34	<0.003-0.27
4 ⁿ Co	<0.01-1.7	26-377	1.3-161	0.006-0.45	4.0-45	0.012-11
¹⁰⁶ Ru	<0.1-0.36	<0.02-<0.05	<0.07-0.2	<0.07	<0.1-0.2	<0.03-<0.09
¹²⁵ Sb	< 0.02	<0.4-4.9	<0.03-<1	<0.03	<0.6-22	<0.006-0.75
¹³⁴ Cs	<0.04-<0.01	1.5-6.1	<0.01-6.3	<0.004-0.16	0.28-5.5	0.01-0.95
¹³⁷ Cs	0.15-2.9	25-91	0.49-260	0.068-2.1	1.7-11	0.05-4.9
144Ce	<0.03-0.18	<0.3-1.3	<0.04-1.5	0.083-0.17	<0.05-0.27	< 0.02
234Pu	3-41 x 10 ⁻³	8.2-170 x 10 ⁻³	N.M.*	N.M.	N.M.	N.M.
239-340pu	6-42 x 10-4	9.5-230 x 10 ⁻³	N.M.	N.M.	N.M.	N.M.

<u>Table 4.1.3</u>. Concentration Ranges of Radionuclides in Contaminated Surface Soils (0-4 cm) from Radiation Controlled Areas (pCi/g) (Abel et al. 1986)

(a) Fourteen soil samples

(b) Five soil samples

(c) Four soil samples; highest observed contamination was at a depth of 15-30 cm.

(d) Four soil samples

(c) Six soil samples

(f) Seven soil samples

(g) N.M. represents Not Measured

C.4-5

C.4.2 Reference Uranium Fuel Fabrication Plant

The reference uranium fuel fabrication plant is based upon General Electric Company's Facility located in Wilmington, North Carolina, which processes an average of 1,000 MTU/y. Conceptual decommissioning of this plant has been reported in a previous study for the NRC (Elder and Blahnik, 1980a). Buildings or site areas associated with the reference uranium fuel fabrication plant include:

• Processing buildings, which are typically two-story windowless structures of concrete and steel. Interior walls, typically of concrete block, divide the buildings into discrete operations areas that house each of the production steps.

=

- Onsite waste ponds containing calcium fluoride; calcium fluoride is a waste product that is produced by treating the fluoride wastes with Ca(OH)₂. The calcium fluoride is stored in waste ponds on the site.
- A total site area of 4.7×10^6 ft².

The reference facility is licensed by the NRC, is a major fabricator of nuclear fuel for commercial nuclear power plants, and is considered to have characteristics similar to other existing commercial uranium fabrication plants. Contamination of equipment and floors results during normal operations and, on at least one occasion, from a spill that caused uranium to penetrate through cracks in the concrete floor into soil beneath the fuel processing building.

The feed to the plant is slightly enriched uranium in the chemical form of UF_6 . The plant uses two chemical processes for converting the UF_6 to UO_2 . The primary method is a chemical process that reacts UF_6 with ammonia to form ammonium diuranate (ADU) precipitate and reduces and calcines the ADU to dry UO_2 powder. The second method involves direct conversion of the UF_6 to U_3O_8 to UO_2 powder in a reduction calciner. The UO_2 powder from each process is subsequently milled and pressed into pellets that are sintered and ground to size. The pellets are loaded into rods and sealed. The rods are assembled into fuel bundles ready for use in light water reactors.

Liquid waste streams containing uranium are kept separate to facilitate uranium recovery operations. They are classified as nitrate wastes, fluoride wastes, and radwastes. Uranium-bearing nitrate sludge is sent to an offsite contractor for uranium recovery. Calcium fluoride solids entrap uranium residuals in the waste from the UF₆ to UO₂ conversion process. CaF₂ solids are stored onsite for eventual reprocessing to recover the uranium residuals.

C.4.2.1 Description of Building Contamination

The reference fuel fabrication plant consists of five potentially contaminated buildings (Elder and Blahnik, 1980b). There are an average of two floors per building with a total floor

space of approximately 235,000 ft² (about 22,000 m²). Contamination incidents, as well as releases during normal operations, are assumed to have affected 50% of the surface of the process areas. The principal contaminant is uranium, and its concentration at the exposed surface after removal of the covering and after surface washing is 1 g U/m² (33 pCi/g of concrete). Therefore, approximately 11,000 m² are assumed to be contaminated to a level of 1 g U/m² (33 pCi/g of concrete) and require decontamination by surface removal.

Floor tiles cover 100% of the process area floors. Replacement of the floor tiles and linoleum coverings removes significant contamination. However, recontamination during operation requires floor tiles to be replaced annually for ALARA considerations. The tiles are also removed during normal decommissioning operations. Because of contaminant penetration through seams between tiles, it is assumed in Table 4.2.1 that 50% of the concrete floor has become contaminated¹. The chemical area has a sealed concrete floor. It is assumed that 50% of the concrete floor surface under the seal is contaminated. Offices and change rooms have tiled or painted floors (Elder and Blahnik 1980a); it is assumed that the concrete surfaces below these surface coverings are not contaminated.

<u>Table C.4.2.1</u> .	Distribution of	Contaminated	Concrete Fl	oor Area in the
Re	eference Uraniu	m Fuel Fabric	ation Facility	/ ^(a)

Location	Estimated Surface Area, <u>ft²</u>	Estimated Area Contaminated, %	Contamination Level,
Fuel Manufacturing Building	208,000	50	73
Chemical Metallurgical Laboratory	8,300	40	73
Uranium Scrap Recovery Room	3,700	90	73
UO ₂ Powder Warehouse	8,700	. 30	73
Contaminated Waste Incinerator	2,400	100	73
Fluoride and Nitrate Waste Treatment Plant	2,500	100	73 [°]
Boiler Steam House	1,100	0	0
Total	234,700	50	-

(a) (Elder and Blahnik 1980b)

Note: this assumption deviates from that made by Elder and Blahnik (1980) in that they assumed the concrete was not contaminated. Penetration and spread of contamination through seams between tiles is assumed in Table 4.2.1 to result in approximately 50% of the concrete floor becoming contaminated.

Elder and Blahnik (1980a) estimated the surface concentration of uranium on horizontal surfaces to be approximately 1 g U/m² (33 pCi U/g of concrete)¹. Approximately 700 samples were taken from the main building block and brick walls at the Babcock and Wilcox plant located in Apollo, Pennsylvania. The majority of the wall contamination was <30 pCi U/g with some selective areas containing up to 2,000 pCi U/g (Haase et al. 1992). The characterization of surface contamination was complicated by the heterogeneous nature of the contamination and, in some areas, the number of overlying pours of concrete that were made to cover contaminated floor areas.

Measurements at the DOE Fernald facility have shown some floor regions with extreme uranium contamination approaching 10,000,000 dpm/100 cm² with an average maximum of 2,220,000 dpm/100 cm² (DOE 1992). These high levels are believed to be an upper bound.

The three uranium fuel fabrication facilities provide information on three levels of contamination: an estimated 33 pCi U/g for Wilmington, up to 2,000 pCi U/g measured for Apollo, and a maximum beta-gamma of nearly 16,000 pCi U/g for Fernald. These data were converted to dpm/100 cm² and resulted in values of 18,000 dpm/100 cm² (low); 1,100,000 dpm/100 cm² (medium); and 10,000,000 dpm/100 cm² (high). Based on the above discussion, the level of surface contamination after surface washing assumed for the reference uranium fuel fabrication facility is 18,000 dpm/100 cm².

Considerable documentation was reviewed (Elder and Blahnik, 1980a, 1980b; Babcock and Wilcox, 1992a, 1992b; Haase et al., 1992; and DOE, 1992) to locate information on the depth of penetration of uranium into concrete for use in the analyses. However, no experimental data were found.

C.4.2.2 Description of Soil Contamination

Although the General Electric Wilmington Plant is the reference nuclear fuel fabrication facility, more information on the condition of the soils at this type of facility was found for the Babcock and Wilcox Apollo plant. Also, considerable information on soil contamination was available for the Ventron Corporation plant located in Beverly, Massachusetts, which is a DOE Formerly Utilized Site Remedial Action Program (FUSRAP) site (DOE, 1994a).

The Babcock and Wilcox Apollo plant is a former nuclear fuel manufacturing site currently undergoing decontamination (Babcock and Wilcox, 1992a, 1992b). The fuel manufacturing operations were performed in one part of the facility, owned by Babcock and Wilcox, and located on the east side of the site in approximately one acre of roofed two-story buildings. Other parts of the complex included a parking lot (2.5 acres) and an "offsite area" (3 acres) which included a metals-processing complex, laundry, railroad spur, and equipment storage building.

 $1 \text{ g U/m}^2 = 0.7 \times 10^6 \text{ pCi/m}^2 \times 0.472 \text{ pCi/g per pCi/cm}^2 \times 10^{-4} \text{ m}^2/\text{cm}^2 = 33 \text{ pCi/g}$

Principal NRC-licensed manufacturing operations at the Apollo site included the manufacture of low- and high-enriched uranium oxide fuels for commercial nuclear power plants and for nuclear-powered naval ships. Nuclear fuel manufacturing commenced in the main building in 1957 and was terminated in 1983. The manufacturing process was the chemical conversion of uranium hexafluoride to uranium oxide powder. All operations were terminated in 1984.

Site soil has been estimated to be potentially contaminated above 30 pCi U/g, at depths ranging from near-surface to >25 feet. Uranium contamination concentrations of 24 - 300 pCi U/g were found beneath part of Building 3 and the east end of Building 4, at depths from 6 - 96 inches. The riverbank soils are also being characterized; three samples taken from near the plant exceeded 30 pCi U/g. All materials known to be contaminated in excess of 2,000 pCi/g were removed from the site prior to December 31, 1991. The median concentration of uranium in the soils is less than 200 pCi/g (NRC, 1993). A surface area of approximately 150,000 ft² is estimated to be contaminated to varying degrees with uranium. A total of 665,000 ft³ of soil contaminated to greater than 30 pCi/g have been excavated and disposed of offsite at the Envirocare disposal facility (Carlson, 1994).

The Ventron Corporation plant formerly performed uranium work in three buildings for the Atomic Energy Commission (AEC) and requires remediation of thorium-contaminated soils and buildings. Preliminary information provided by the DOE on the estimated ratio of volumes of contaminated soil for different cleanup criteria is as follows (DOE, 1994a):

Cleanup Criteria (pCi/g)	Contaminated Soil Volume Ratio (relative to 130 pCi/g)	
130	1	
80	1.23	
39	1.6	
30	2.27	
20	2.76	
13	3.38	
4	4.5	

C.4.3 Reference Sealed Source Manufacturer

The sealed source manufacturing process is a hand operation that is carried out in buildings which contain a number of small laboratories, each of which is devoted to a specific process and/or isotope. The reference sealed source manufacturer is a laboratory which processes ¹³⁷Cs and ⁶⁰Co. Contaminated facilities associated with the reference sealed source manufacturer include:

• hot cells, fume hoods, workbenches, sinks

- laboratory floor and wall areas
- building areas used for storage of waste drums.

The situation for radiochemical and radiopharmaceutical manufacturers would be very similar to that of the sealed source manufacturer and is not examined further in this report.

Advanced Medical Systems, Inc. (AMS) is used as the reference sealed source manufacturer. It is a licensed non-fuel-cycle plant in Cleveland, Ohio, that manufactures ¹³⁷Cs and ⁶⁰Co capsule sources for use in medical teletherapy devices and radiography machines (NRC, 1993).

The AMS operations occupy about one quarter of an 8,000-ft² (ground floor) warehouse building. The remainder of the building is unused. The facility occupies portions of three floors in the warehouse. The first floor consists of an office area, an isotope shop area, a hot cell, a shielded work room, and a storage area. The second floor area houses a mechanical equipment room and an exhaust ventilation equipment room. A liquid waste handling room and the former liquid waste holdup tank room and dry waste storage area are located in the basement. Waste is stored in a locked room with roped areas on the south side of the warehouse area. The floor surface areas are estimated to be 6,000 ft² (assuming three floors). The indoor surface area of the walls (estimated at 10 ft high) is estimated to be 4,600 ft².

C.4.3.1 Description of Building Contamination

A 1985 survey by Oak Ridge Associated Universities (ORAU) found surface contamination in a hot cell, the ventilation system, the dry waste storage area, the liquid waste area, and the holding tank and its piping. No offsite contamination was found. However, some detectable activity (attributed to stack effluent releases) was found in sediments, soil, and vegetation in the southern portion of the AMS property. The ORAU survey showed contamination up to 1.51×10^6 dpm/100 cm² in the hot cell access port in the isotope shop area, an area normally expected to be highly contaminated. A water sample from the liquid waste room floor contained 1.75×10^5 pCi ⁶⁰Co/L. Sediment from the loading dock drain showed low but detectable levels of activity.

C.4.3.2 Description of Soil Contamination

The site area of the reference facility is estimated to be 40,000 ft². The contaminated area is estimated to be 5,000 ft², based on assumed stack effluent releases. Advanced Medical Systems, Inc., manufactures ⁶⁰Co and ¹³⁷Cs sources for medical use. A small amount of detectable activity has been found in site soil and was assumed to be due to stack effluent releases. Apart from this, the major route to soil contamination would be via liquid waste spills on building floors running off through floor-wall seams in the concrete. However,

NUREG-1496

Т

apart from some activity in sanitary sludges, there is no evidence of contamination outside the buildings from this source (NRC, 1993).

C.4.4 Reference Rare Metal Extraction Facility

Rare metal extraction facilities refine raw ore materials for the recovery of rare metals such as tantalum and niobium. The raw ores processed by these facilities can contain appreciable quantities of uranium and thorium that can then end up in waste tailings produced during the refining process.

The reference rare metal ore processor is the Molycorp, Inc., facility located in Washington, Pennsylvania. This plant occupies a 17-acre $(740,000-ft^2)$ site and was used to produce a ferro-columbium alloy from a Brazilian ore from 1964 to 1970 (Martin, 1985). The ore contained licensable concentrations of thorium (1-1.5%), consequently a byproduct of the operation was a thorium-bearing slag. Contaminated facilities and areas associated with the reference rare metal extraction facility include:

- Buildings in which slag is processed and the rare metals are extracted. Significant building contamination from these operations is not expected.
- Settling ponds containing the tailings from the metal extraction process, including essentially all of the thorium and uranium present in the original raw ore. The pond is assumed to be unlined at the reference rare metal ore processor, although it may be lined at newer facilities.
- A 7,000-m³ slag pile containing solid wastes from the extraction process.

C.4.4.1 Description of Building Contamination

The site contains a number of buildings, eight holding ponds, and a large slag pile. Building 34 has up to 90 dpm/100 cm² fixed alpha contamination, up to 8,680 dpm/100 cm² fixed beta contamination, and direct radiation levels up to 169 μ R/hr. The source of direct radiation is suspected to be below the floor. The total area of floors is estimated to be 150,000 ft²; 40% of this surface is estimated to be contaminated with thorium. The surface area of the walls is estimated to be 180,000 ft², of which 10% is estimated to be contaminated with thorium.

C.4.4.2 Description of Soil Contamination

Thorium-bearing slag and contaminated soil was previously collected and segregated in 1972. Some of this material was removed offsite at the time while the remainder was placed in a clay-capped pile on the property. Some of the slag was used as fill over portions of the site. The large slag pile is located on the southern part of the property and has an average activity level of 1,250 pCi/g (NRC, 1993). The slag pile is in a stabilized configuration in that it is covered with vegetation.

C.4-11

Thorium contaminant concentrations in the soil, throughout the site, range between 10 and 2,650 pCi/g and average 100-200 pCi/g. The area of contaminated soil is estimated to be 100,000 ft² based on the extensive handling and storing of ore and slag at the site. It is estimated that there is 1.1×10^5 kg of thorium onsite in the form of contaminated soils and slags.

While more detailed information on soil contamination at this facility is not available, another Molycorp, Inc., rare metal ore processing facility located in York, Pennsylvania, does have some specific information on thorium contamination in the soil. During remediation of this site, it is anticipated that a total of 18,000 ft³ of soil contaminated primarily with thorium-232 will be excavated and removed offsite. Of this volume, approximately 3,600 ft³ will contain up to 70 pCi/g of contamination. In addition, prior to soil excavation and removal activities in 1987, the site had soil with contamination levels up to 700 pCi/g of Th-232 (NRC, 1993).

NUREG-1496

I

C.4-12

C.5 Methodology for Estimating Contamination Levels

Evaluating the costs and impacts associated with remediating contaminated buildings and soils to different residual cleanup levels requires information on the level, extent, and depth of contaminants within the concrete structures requiring decontamination and in the soil column, respectively. Baseline models were developed for the draft GEIS (NRC, 1994) to provide the required contamination profiles needed for estimating the volume of contaminated soil requiring excavation and/or treatment for alternative residual dose levels. These baseline models were described in the draft GEIS and are not repeated here.

Public comments received on the draft GEIS expressed concern that the calculated contamination profiles considerably underestimated the depth of contamination penetration into the soil column as compared to "real world" data. This difference is to be expected given that the model used in the draft GEIS to calculate the radionuclide contamination profiles in the soil is a simple diffusion model most appropriately representative of contamination deposition on the surface of the soil from a thin blowing contaminated dust or a thin spreading of contaminated material. The "real world" data, on the other hand, reflect extreme conditions of spills and leaks of contaminated aqueous solutions and/or mixing and burial of contaminated material in soil that result in deeper zones of contamination than are predicted by the diffusion model where contaminant transport is assumed to be via diffusion only.

In response to these comments, contaminant distribution models for 60 Co, 137 Cs, uranium, and thorium were developed to represent available "real world" data. The models developed to represent these scenarios are discussed below. No new models were developed to estimate contaminant distributions in concrete for the final GEIS based on the discussion in Section C.3.1.2.

C.5.1 Cobalt- and Cesium-Contaminated Soil

Data available on the extent of radionuclide contamination in soil around nuclear power plants are sparse and generally not readily available. However, the NRC did conduct a study in the early 1980s in which a comprehensive sampling program was conducted at several operating and shutdown nuclear power plants for the purpose of assessing residual radionuclide compositions, distributions, and quantities (Abel, 1986). Data obtained from sampling and analyses conducted for this study were used to develop a "real world" model of soil contamination at nuclear power plants.

While considerable data were obtained on the levels of contamination in soil around the nuclear power plants investigated, very limited data on soil profiles were developed. Of that limited information, core samples taken near a condensate storage tank at the Humboldt Bay Nuclear Unit provided sufficient data to derive a concentration profile as a function of depth into the soil column representative of soil behavior at the facilities studied. These data are provided in Table 5.1.1 for Co-60 and Cs-137, the primary long-lived radionuclides of

C.5-1

interest. As that table shows, the concentrations (pCi/g) of ⁶⁰Co and ¹³⁷Cs generally decrease with soil depth until a depth of 30 to 38 cm, at which point the concentrations begin to increase with depth. These increases are presumably caused by local conditions at this particular site or possibly by faulty sampling procedures. To do any kind of reasonable modeling, an assumption had to be made regarding the behavior of the concentration profile at depths beneath the available data. Three possibilities were identified:

- The concentration rises as indicated by the data until a depth around 44 cm (the limit of the data) is reached. The concentration then remains at this level until some unknown depth, at which point the concentration drops at some unknown rate.
- The concentration rises as indicated by the data until about 44 cm and then drops effectively to zero for depths greater than 44 cm.
- The rise in concentration below the 30 to 38 cm interval is peculiar to this soil. In the general case, for a "typical" soil, the concentration should fall monotonically with depth.

There are other possibilities, of course, but it was decided that the third option would be used in this study. In the development of the "real world" model, it was assumed that the upper 36 cm of the concentration data is representative of a "typical" soil and that beyond 36 cm the data would be extrapolated.

Upon examination of the general shape of the data in Table C.5.1.1, it was found that the decreasing portion of the concentration curves for 60 Co and 137 Cs could be fit rather well to a function, C(x), having units of pCi/g, consisting of the sum of two decaying exponentials, i.e.,

$$C(x) = A_1 e^{-\lambda_1 x} + A_2 e^{-\lambda_2 x},$$

where C(x) is the ⁶⁰Co or ¹³⁷Cs concentration (in pCi/g of soil) at a depth of x centimeters below the surface, and A_1 , λ_1 , A_2 , and λ_2 are constants determined by a least squares curvefitting procedure. The value for the constants derived from the least squares analysis is provided in Table C.5.1.2 for both ⁶⁰Co and ¹³⁷Cs.

Ξ

The C(x) functions for ⁶⁰Co and ¹³⁷Cs are assumed to represent the soil concentration distribution profiles at the time of reactor shutdown. Since exposure is primarily via beta/gamma radiation, the contact dose to individuals from this contamination is due to more than just the contamination in the layer of surface soil to which they are in contact. In order to compensate for this, it is conservatively assumed that all of the inventory of contaminant remaining in the soil column is evenly distributed in the top 15 cm of soil and that the dose rate from each layer of soil removed is from 1/15th of the total inventory. The residual dose rate after removal of x cm of soil is therefore calculated by integrating C(x) over all x and

NUREG-1496

L

C.5-2

dividing by 15 to obtain an average adjusted concentration in the soil, and then multiplying by the appropriate dose conversion factor (refer to Attachment A) as follows:

$$D(x) = \frac{dcf}{15} \left(\frac{A_1}{\lambda_1} e^{-\lambda_1 x} + \frac{A_2}{\lambda_2} e^{-\lambda_2 x} \right),$$

where D(x) is the residual dose rate (in mrem/y) after x centimeters of soil have been removed, and *dcf* is the dose conversion factor (in mrem/y per pCi/g) for either ⁶⁰Co or ¹³⁷Cs.

The model developed for the above data is assumed to be representative of a site having a high surface contamination level since the data from the Humboldt Bay Nuclear Unit was at the high end of the data obtained from all of the nuclear power plants evaluated in the study referred to above (compare to data in Table C.4.1.3). Medium and low surface contamination level models were developed by assuming the same scaling relationships as were assumed for the baseline, or diffusion model, scenarios (i.e., contaminant concentrations in the medium case are assumed to be ½ and ¼ those in the high case for ⁶⁰Co and ¹³⁷Cs, respectively, and in the low case are assumed to be 1/30th and 1/20th that of the high case for ⁶⁰Co and ¹³⁷Cs, respectively). The model results for the unrestricted and restricted land-use scenarios are shown in Figures C.5.1.1 and C.5.1.2, respectively, for ⁶⁰Co and in Figures C.5.1.3 and C.5.1.4, respectively, for ¹³⁷Cs.

A composite case is presented for the same scenarios in Figures C.5.1.5 and C.5.1.6. The composite case is just the summation of the results for ⁶⁰Co and ¹³⁷Cs and are the results actually used in the analyses conducted for this study.

Figures C.5.1.7 through C.5.1.12 present the same results as discussed above for the scenarios where decommissioning is delayed for 50 years (i.e., SAFSTOR). In these cases, the results from the models above were input into the diffusion model, which is discussed in NRC, 1994. The diffusion model was used to simulate the 50-year SAFSTOR period by assuming that existing contamination migrated deeper into the soil column via diffusion only.

The calculated data underlying Figures C.5.1.1 through C.5.1.12 are provided in Attachment B.

C.5.2 Uranium-Contaminated Soil

The "real world" model for uranium-contaminated soil was developed from data available on the extent of soil contamination at the former Ventron Corporation plant located in Beverly, Massachusetts (refer to Section C.3.2). The volume of soil that would be expected to be excavated at this site for different residual cleanup levels is provided in Table 5.2.1 (DOE, 1994a). These data were extrapolated to the reference uranium fuel fabrication plant by normalizing to contaminated soil volume data available on the Babcock & Wilcox Apollo fuel

C.5-3

fabrication plant. During remediation of this site, a total of 665,000 ft³ of soil contaminated to greater than 30 pCi/g was excavated and disposed (Kingsley, 1994).

The total estimated soil volume requiring remediation was then calculated for each of the cleanup criteria shown in Table C.5.2.1. These volumes were converted to an estimated depth of contamination penetration into the soil column by assuming that the contamination was uniformly spread throughout an approximate contaminated surface area at the Apollo plant estimated at 200,000 ft². The residual dose rate corresponding to each of these soil depths was then determined by converting the cleanup criteria (pCi/g) in Table C.5.2.1 to dose rate (mrem/y) using the appropriate Dose Conversion Factor for uranium (refer to Attachment A).

A model to estimate residual dose rate as a function of the depth of contaminated soil remediated was developed by curve-fitting an exponential function to the above data, which is as follows:

> $D(x) = 232.5 \ e^{(-0.02217x)}$ (unrestricted land-use), and $D(x) = 8.694 \ e^{(-0.02217x)}$ (restricted land-use),

where D(x) is the residual dose rate (in mrem/y) and x is the soil depth remediated (in cm). The model results are shown in Figures C.5.2.1 and C.5.2.2 for the unrestricted and restricted land-use scenarios, respectively.

The models developed for the above data are assumed to be representative of a site having a high surface contamination level since data available on the Apollo plant suggest that the median concentration of uranium throughout the entire contaminated soil volume is less than 200 pCi/g (NRC, 1993). Medium and low surface contamination level models were developed by assuming the same scaling relationships as were assumed for the baseline, or diffusion model, scenarios (i.e., contaminant concentrations in the medium case are assumed to be 1/5th those in the high case, and in the low case are assumed to be 3/100th that of the high case). The calculated data underlying Figures C.5.2.1 and C.5.2.2 are provided in Attachment B. For purposes of soil removal calculations in Attachment C (and in particular for Tables C.25 and C.26), the depth of soil removal necessary to attain the lower alternative dose criteria (30-0.03 mrem/y) was based on Attachment B. The depth of soil removal necessary to achieve the higher alternative dose criteria (100 and 60 mrem/y) was based on the data available rather than a calculated curve fit because they were a better representation.

4

2

C.5.3 Thorium-Contaminated Soil

Limited information was available relating to soil contamination profiles in terms of thorium concentrations as a function of depth of soil for rare metal extraction plants. Based on the very limited data available, however, the following broad conclusions can be made:

NUREG-1496

I

- the majority of the "large" contaminated volumes reported for these types of facilities are associated with thorium-contaminated slag piles or ponds and not contaminated soil,
- thorium-contaminated slag was not generally used for landfilling at these types of facilities (only one of 12 sites evaluated indicated that this had been done), and
- many of the sites evaluated reported that thorium does not leach appreciably from the slag into the soil and that soil contamination is generally limited to the upper 1 to 2 feet of soil.

Given the very limited data available, a somewhat crude "real world" model was developed based on data available on the Molycorp, Inc., rare metal ore processing facility located in York, Pennsylvania (refer to Section 3.4). Information on this site suggests that, during remediation, an estimated total of 18,000 ft³ of soil contaminated primarily with thorium-232 will be excavated and removed offsite. Approximately 3,600 ft³ of this volume contain up to 70 pCi/g of contamination. In addition, prior to soil excavation and removal activities in 1987, the site had soil with contamination levels up to 700 pCi/g of Th-232 (NRC, 1993).

By assuming that 700 pCi/g is the maximum concentration of Th-232 at the soil surface, that 18,000 ft³ of contaminated soil correspond to a residual dose level of less than background, and that the contamination is spread uniformly over a surface area of 25,000 ft², Th-232 concentration, as a function of depth into the soil column, is derived. The residual dose rate corresponding to each of the calculated soil depths was then determined by converting the cleanup criteria (pCi/g) to dose rate (mrem/y) using the appropriate Dose Conversion Factor for thorium (refer to Attachment A).

A model to estimate residual dose rate as a function of the depth of contaminated soil remediated was developed by curve-fitting an exponential function to the above data, which is as follows:

$D(x) = 200.8 \ e^{(-0.1182x)}$	(unrestricted land-use),	and
$D(x) = 8.701 \ e^{(-0.1182x)}$	(restricted land-use),	

where D(x) is the residual dose rate (in mrem/y) and x is the soil depth remediated (in cm). The model results are shown in Figures 5.3.1 and 5.3.2 for the unrestricted and restricted land-use scenarios, respectively.

The models developed for the above data are assumed to be representative of a site having a medium level of surface contamination since the peak thorium concentration of 700 pCi/g that this model is based on is considerably less than peak concentration levels identified for other similar sites (i.e., 2,650 pCi/g for the Molycorp-Washington site). High and low surface contamination level models were developed by assuming the same scaling relationships as were assumed for the baseline, or diffusion model, scenarios (i.e., contaminant concentrations in the high case are assumed to be twice those in the medium

C.5-5

case, and in the low case are assumed to be 3/10th that of the medium case). The calculated data underlying Figures C.5.3.1 and C.5.3.2 are provided in Attachment B.

NUREG-1496

:

C.5-6

;

:

Core Sample Number	Depth into Soil (cm)	⁶⁰ Co Concentration (pCi/g)	¹³⁷ Cs Concentration (pCi/g)
1	0-2	306	88.9
	2-6	67.8	21.4
	6 - 10	15	4.88
	10 - 14	7.91	2.71
	14 - 18	8.3	2.36
	18 - 22	2.98	1.24
	22 - 26	0.109	<0.03
	26 - 30	2.31	0.526
	30 - 34	1.92	0.304
	34 - 38	2.16	0.238
	38 - 42	4.71	0.48
	42 - 46	8.55	0.742
	46 - 50	16.8	0.97
2	0 - 4	26	37.7
	4 - 8	34.7	50.6
	8 - 12	16.1	16.3
	12 - 18	4.3	5.32
	18 - 24	2.03	2.83
	24 - 28	0.75	1.25
	28 - 32	0.351	0.66
	32 - 36	3.33	0.32

•

•

•

. .

Table C.5.1.1. Concentration of ⁶⁰Co and ¹³⁷Cs in Soil at Humboldt Bay

<u>Table C.5.1.2</u>. Value for Parameters in the C(x) Model for ⁶⁰Co and ¹³⁷Cs

Parameter	⁶⁰ Co	¹³⁷ Cs
A ₁	506.5	141.9
λι	0.5534	0.5317
A ₂	15.74	5.95
λ ₂	0.06217	0.07623

C.5-7
Cleanup Criteria	Contaminated Soil Volume Ratio (relative to 130 pCi/g)
130	1
80	1.23
39	1.6
30	2.27
20	2.76
13	3 38
4	4.5

<u>Table C.5.2.1</u>. Estimated Contaminated Soil Volume Ratio at Different Cleanup Levels for the Ventron Corporation Plant

£

3

NUREG-1496

1

C.5-8

Figure C.5.1.1. Calculated Residual ⁶⁰Co Radiation Dose Rate as a Function of Soil Depth Removed (Spill/Leak Model, Unrestricted Land Use)

Calculated Residual ⁶⁰Co Radiation Dose Rate as a Function of Soil Depth Removed (Spill/Leak Model, Restricted Land Use)

C.5-9

Calculated Residual ¹³⁷Cs Radiation Dose Rate as a Function of Soil Depth Removed (Spill/Leak Model, Restricted Land Use)

NUREG-1496

C.5-10

Figure C.5.1.5. Calculated Residual Composite ⁶⁰Co and ¹³⁷Cs Radiation Dose Rate as a Function of Soil Depth Removed (Spill/Leak Model, Unrestricted Land Use)

Figure C.5.1.6.

Calculated Residual Composite ⁶⁰Co and ¹³⁷Cs Radiation Dose Rate as a Function of Soil Depth Removed (Spill/Leak Model, Restricted Land Use)

C.5-11

Figure C.5.1.8.

Calculated Residual ⁶⁰Co Radiation Dose Rate as a Function of Soil Depth Removed (Spill/Leak Model, Restricted Land Use, 50-Year SAFSTOR) 2

NUREG-1496

I.

C.5-12

Figure C.5.1.9. Calculated Residual ¹³⁷Cs Radiation Dose Rate as a Function of Soil Depth Removed (Spill/Leak Model, Unrestricted Land Use, 50-Year SAFSTOR)

Figure C.5.1.10.

Calculated Residual ¹³⁷Cs Radiation Dose Rate as a Function of Soil Depth Removed (Spill/Leak Model, Restricted Land Use, 50-Year SAFSTOR)

C.5-13

Calculated Residual Composite ⁶⁰Co and ¹³⁷Cs Radiation Dose Rate as a Function of Soil Depth Removed (Spill/Leak Model, Unrestricted Land Use, 50-Year SAFSTOR)

Figure C.5.1.12.

Calculated Residual Composite ⁶⁰Co and ¹³⁷Cs Radiation Dose Rate as a Function of Soil Depth Removed (Spill/Leak Model, Restricted Land Use, 50-Year SAFSTOR)

Figure C.5.2.1.

•

Calculated Residual Uranium Radiation Dose Rate as a Function of Soil Depth Removed (Mixing/Landfilling Model, Unrestricted Land Use)

Figure C.5.2.2.

Calculated Residual Uranium Radiation Dose Rate as a Function of Soil Depth Removed (Mixing/Landfilling Model, Restricted Land Use)

C.5-15

Figure C.5.3.1. Calculated Residual Thorium Radiation Dose Rate as a Function of Soil Depth Removed (Mixing/Landfilling Model, Unrestricted Land Use)

Fig. C.5.3.2. Calculated Residual Thorium Radiation Dose Rate as a Function of Soil Depth Removed (Mixing/Landfilling Model, Restricted Land Use)

NUREG-1496

ı

فمورد

C.5-16

C.6 Cost Methodology for Remediation of Concrete and Soils

The methods of calculating costs for removal and disposition of contaminated concrete and soils from decommissioned nuclear facilities are described in this chapter. The methodology for costing the removal and disposal of contaminated concrete surfaces is described first, followed by the methodology for costing removal and disposal of contaminated soils.

C.6.1 Concrete Surface Decontamination Cost Calculation Methodology

The approach used to calculate the costs of removal and disposition of contaminated concrete from facility surfaces is as follows:

- The area of contaminated surface is defined (facility-specific).
- The length of perimeter crack is defined (nominally the perimeter of the structure).
- The area of the "wet spots" is defined (nominally 2% of the ground floor area).
- The volume of concrete to be removed is determined, based on the dose calculations described in Section 6.2.3 of this report.
- The unit cost factors for removal of contaminated concrete from surfaces, cracks, and wet spots are defined. The removal cost for each of the contaminant situations (floors, walls, cracks, and wet spots) is calculated as the product of the area x the appropriate unit cost factor.
- The resulting volumes of removed material are expanded by a rubble expansion factor of 1.56 (Westinghouse Hanford Co., 1989), and the contaminated rubble is drummed. The cost of drums is calculated by the product of the number of drums x the unit cost of a drum.
- The cost of transport is calculated assuming a one-way shipment of 500 miles from the waste generator to the disposal site, for a legal-weight truck shipment, by dividing the number of drums of rubble generated by the number of drums per truck shipment x the cost per shipment.
- The cost of disposal is calculated assuming very low activity waste disposed at a licensed LLW disposal site: the number of cubic feet of waste x the appropriate disposal charge rate per cubic foot.
- The duration of the concrete removal period is based upon the number of person-hours required to remove the material, assuming two crews/shift and

two shifts/day, and specified removal rates (floors or walls) in square feet per crew-hour. On each shift, one crew works on floors and one crew works on walls. The total (floor or wall) area treated is divided by the appropriate removal rate in square feet per crew-hour to determine the number of crewhours required to remove the material; i.e., the duration of the removal period. The overhead labor costs are determined by the size and makeup of the overhead staff and their salaries and the length of the removal period.

• The total cost for contaminated concrete removal is the sum of the costs for removal of surface layers on floors and walls, and the cost for removal of cracks and wet spots, plus the costs for packaging, transport, and disposal of the packaged material, plus the cost of project overhead staff during the removal period. As each successive layer of concrete is removed from floors and walls, these removal costs increase, together with packaging, transport and disposal costs. The cost elements for the cracks and wet spots are independent of the number of layers of floor and wall removed.

C.6.2 Concrete Surface Decontamination Technology and Cost

Decontamination of concrete surfaces of floors and walls is postulated to be accomplished using commercial equipment presently available. The equipment postulated to be used in these analyses is a pneumatically operated surface removal system (scabbler) manufactured by Pentex, Inc. (The MooseTM and associated smaller units). This device can chip away approximately 0.125 in. of surface depth per pass and has a skirted scabbling unit with a vacuum system which collects the dust and chips from the operation and deposits the waste material into a waste drum. Filters on the vacuum system discharge removed suspended dust particles from the air to prevent recontamination of the cleaned surfaces. Successive passes are required to remove deeper layers of contaminated concrete.

C.6.2.1 Rates of Floor and Wall Surface Removal

The removal rates for the scabbler devices are functions of the depth to be removed. Because the depth of cut for the scabbler is adjustable, different depths can be removed with a single pass. However, the deeper the cut, the slower the rate of removal in terms of surface area. For these analyses, a depth per cut of 0.125 in. is postulated, somewhere near optimum for maximizing the effectiveness of the equipment, which results in a removal rate of about 115 ft^2 per hour for a single pass of the equipment. The smaller units utilized for the edges of floors and for walls have a removal rate of about 30 ft^2 per hour for a single pass.

3

C.6.2.2 Unit Costs for Removing Contaminated Concrete Surfaces

The cost per square foot of surface removed is calculated based on the postulated crew makeup and size. For this type of operation, a crew consisting of 3 laborers, 0.25 of a

NUREG-1496

Т

health physics technician, and 0.25 of a crew-leader was postulated, which resulted in a cost per square foot, removed to a depth of 0.125 in., of \$2.20 for the floors and \$8.61 for the walls.

To compute the cost of removal and disposition of each layer of contaminated concrete in a facility, the estimated contaminated area of floors and walls is multiplied by the appropriate unit cost factors, and the results summed. Added to these removal costs are the costs of packaging (cost per drum), transport (legal-weight truck one-way for 500 miles), and disposal at a licensed LLW facility (disposal charge rates are based on the rates at the U.S. Ecology site at Richland, Washington [\$50/ft³] and at the Chem-Nuclear site at Barnwell, South Carolina [\$350/ft³]). The cost of the project overhead staff during the removal period is computed based on the duration of the removal period and added to the other costs of the effort.

C.6.2.3 Crack and Wet Spot Removal

Decontamination of cracks in the floor that contain contamination is accomplished by removal of the concrete surrounding the crack, using ordinary pneumatic hammers and vacuum systems for dust and particle collection. The cost of this operation is computed in a manner similar to the floor removal operations, using a unit cost factor for crack cleanout and the linear length of crack requiring removal. A crew is defined, labor rates are assigned, the rate of crack length removal is estimated, and the cost per linear foot of crack is calculated. This unit cost factor is multiplied by the number of linear feet of crack requiring removal to obtain the removal cost. The costs of packaging, transport, and disposal are calculated and added.

Decontamination of a crack is postulated to require removal of approximately 1 in. of concrete on either side of the crack, to an average depth of 6 in., resulting in a waste volume generated of about 0.13 ft^3 of contaminated rubble per linear foot of crack, including the 1.56 volume expansion for rubblizing. The removal rate is assumed to be 20 linear feet of crack per operating crew-hour, with a resulting cost per linear foot of crack of about \$7.40, including equipment costs. The length of crack for each facility was postulated to be equal to the perimeter of the structure, derived from the building footprint surface area, assuming a square structure:

perimeter = 4 x (number of floors) x (footprint area)^{1/2}.

For the analyses presented in this report, a single story structure is assumed for all facilities.

For "wet spots"; i.e., areas that had been exposed to liquid contaminants for extended periods of time, the penetration of contaminants is considerably deeper than for dry contaminants, as discussed in Chapter 4 of the draft GEIS (NRC, 1994). Therefore, the entire thickness of a concrete floor is postulated to be removed for the area of the "wet spot" (2% of the area of the ground floor), using equipment similar to that described for crack

C.6-3

removal. For these analyses, the floor thicknesses removed were assumed to be 6 in. thick. It is also postulated that the contamination will extend downward into the soil beneath the "wet spot" thereby requiring corresponding soil removal.

The removal rates, crew sizes, and costs for removal of the "wet spot" areas of concrete were obtained from Means (1993).

C.6.3 Removal of Activated Concrete From the Reactor Bioshield

Removal of the activated concrete from the reactor bioshield is accomplished using a drilling and blasting technology. Vertical holes are bored into the shield concrete at selected distances from the shield inner surface. Explosives are inserted into the holes and detonated, breaking up the inner segments of the shield. This operation is repeated as necessary to remove the required amount of the shield to reduce the surface radiation dose rate inside the shield cavity to acceptable levels.

Calculations of the activation of materials in the concrete biological shield that surrounds the reactor pressure vessel were reported in NUREG/CR-0130 (Smith et al., 1978) for the reference PWR (Trojan), for an assumed operating lifetime of 30 effective full-power years (i.e., 75% operating efficiency). These calculations did not include any ¹⁵²Eu because no information was available about the likely concentration of ¹⁵²Eu in the natural materials of the Trojan bioshield. However, measurements made at the Elk River Reactor decommissioning suggested that the Ci/m³ attributable to ¹⁵²Eu was about the same as the Ci/m³ associated with ⁶⁰Co. Thus, the total bioshield activity is postulated to be approximately twice the calculated activity of ⁶⁰Co, due to the anticipated ¹⁵²Eu activity.

Examination of the original calculations of activations in the bioshield suggests that at about 7 years following reactor shutdown, the residual activity levels in the bioshield will be such that removing 3.49 ft from the inner surface of the shield would result in a surface radiation dose rate of about 100 mrem/y; 3.92 ft removed for 25 mrem/y; 4.60 ft removed for 3 mrem/y; and 5.36 ft removed for 0.3 mrem/y. The costs associated with removal and disposal of that activated material were calculated using the unit cost factor algorithm for activated bioshield concrete removal presented in Section C.2.17 of Appendix C in NUREG/CR-5884, (Konzek et al., 1995) and the cost estimating computer program (CECP). The duration of the decontamination effort was calculated to be controlled by the shield removal initially, but after one pass of the floor-removal equipment, the floor removal duration controlled the duration of the effort, for the purpose of calculating project overhead costs to be added to the direct labor costs.

2

C.6.4 Soil Decontamination Cost Methodology

The costs for removal and disposition of contaminated soils are calculated in a somewhat similar manner. The area of contaminated soil is defined. The unit cost factors for soil removal, treatment (if any), packaging, transport, and disposition are defined. The depth of

contaminant penetration into the soil is defined. Then, the total cost for contaminated soil removal is the sum of the individual cost elements, which are calculated using the appropriate unit cost factors. The cost calculation is based upon removing all of the soil to the depth necessary to achieve each of the alternate residual radiation dose rates. In addition, the soil volume removed from beneath 2% of the ground floor surface of each facility is added to the volume of exterior soil removed, for purposes of calculating the total removal, packaging, transport, and disposal cost for soils.

Subsequently, choices are made between treating the contaminated soil prior to disposition, or transporting the untreated contaminated soil to a regulated disposal facility for very low activity materials. In the treatment scenario, the cleaned soil is retained onsite for backfill, with the more contaminated residues removed by the treatment process being packaged and transported to an LLW disposal facility.

At the reference rare metal extraction facility, an alternate method of disposal of contaminated soils was also analyzed whereby the contaminated soil is not disposed of at an offsite disposal facility but is placed in a nearby or onsite tailings pile and then finally capped according to existing regulatory criteria. Appropriate costs of stabilization and capping the tailings pile are also included. The capped tailings pile site would necessarily be considered a form of restricted land use and would likely require continual monitoring. The costs associated with this required monitoring are not estimated since they are not fixed in a restricted land-use scenario.

In any actual situation, selection of one alternative over another would most likely be governed by the total cost for each choice.

Information on additional methods for restricting access to facilities is contained in Appendix F.

C.6.5 Soil Treatment Technologies

The various forms of soil washing represent the only commercially-demonstrated soilcleaning techniques for radioactively-contaminated soils. Innovative techniques being developed (at present in the pilot plant or demonstration stage) include electrokinetics and magnetic separation. These latter two techniques offer some potential for cost-reduction but are likely to be applied as a polishing step after soil classification and washing rather than as stand-alone soil cleaning methods. In addition, biosorption/bioleaching technology, currently being used for metals extraction from ores in the mining industry (particularly uranium and copper) may be applied to contaminated soil cleanup, but it is currently a developing technology.

C.6-5

C.6.5.1 Soil Washing - General Description

Contaminated soil is removed from the site, classified to remove large particles and rocks, and washed by immersion with agitation in an aqueous solution. Chemical additives may be present in the wash solution to dissolve contaminants bound to soil particles. Several additives are available to facilitate the solution process depending on soil and contaminant type (Dennis et al., 1992; SEG, 1992; and Gerber et al., 1991). After washing, the soil is separated according to particle size. Since most of the contaminants bind to the fine soil particles (<250 micrometers) which account for between 10-40% of the total soil mass, the bulk of the soil can be returned to the original location. The remaining slurry of contaminated fines may have to be treated further to prepare for disposal (e.g., by drying and placing in drums). Removal rates of contaminants are enhanced by high liquid to soil ratios. Depending on the soil type and type of washing solution, this method may be effective in the removal of radionuclides. This is a relatively new technology for soil remediation, although it has been used in the mining industry for many years. The process has been commercially demonstrated in Europe and the U.S., mostly for organiccontaminated soils, although some data are available on its application to radiologically contaminated soil remediation.

C.6.5.2 Other Soil Cleanup Technologies

A DOE program is underway to evaluate innovative soil treatment technologies, including field testing at the Nevada Test Site (NTS), at the NTS Treatability Test Facility (operated by Reynold's Electrical & Engineering Co.). The soil treatment technologies under examination currently are restricted to plutonium removal but are likely to be equally effective for thorium and uranium (but not cesium or strontium), and include:

- Advanced Process Technologies, Salt Lake City, UT: Air-sparged hydrocyclone for removal of plutonium
- AWC/Lockheed, Las Vegas, NV: Mineral jig combination and shaker table
- Nuclear Remediation Technologies, San Diego, CA: Paramagnetic separation of plutonium from soil using Eriez Magnetics equipment
- Paramagnetics, Inc., Plant City, FL: Pretreatment washing, followed by Kolm Separator paramagnetic separation

2

• Scientific Ecology Group, Pittsburgh, PA: Multigravity separator; and highgradient magnetic separator.

Site cleanup is expected to begin in 1996, using the selected successful technologies (Nuclear Waste News, 1993).

ı

C.6.6 Cost and Labor Estimating Bases for Soil Remediation/Treatment

The information developed for cost and labor is based on unit cost and labor data presented in this section. Categories for which basic unit factors were developed include: soil excavation, both inside and outside the facility, soil washing, packaging, transportation, and disposal. Estimates were developed using a spreadsheet that calculates the cost and labor requirements as a function of volume removed for each site.

A soil washing option was considered for each site analyzed. The soil washing process would separate the contaminated soil from the clean soil in order to reduce the volume of soil that would be disposed of at a burial facility. In order to evaluate the cost effectiveness of soil washing, two scenarios were considered for each facility: one with soil washing and the other without soil washing.

C.6.6.1 Excavation

The unit cost and labor estimates for excavation of soil, or tailings pile, were obtained from Short (1989). This analysis assumed that the soil was excavated and removed from an area contaminated with radioactive residue resulting from facility operations. Radiological surveys are performed before, during, and after the excavation activities. Where appropriate, clean overburden was removed, contaminated soil excavated, and the clean overburden replaced. The unit cost of excavation was assumed to be \$235/m³ while labor requirements were assumed to be 1.62 person-hours/m³.

C.6.6.2 Removal of Contaminated Soil Beneath Concrete Floor "Wet Spots"

A unit cost and labor factor was developed for removal of soil from beneath the 2% of the facility ground floor area that was considered a "wet spot." The same unit cost and labor factor for removal was used as for the exterior excavation activities.

C.6.6.3 Soil Washing

Soil washing is a water-based process for mechanically scrubbing and leaching waste constituents from a contaminated soil for recovery and treatment. It is an ex-situ toxicity reduction technology. The process removes contaminants from soils in one of two ways: by dissolving or suspending them in the wash solution, or by concentrating the contaminants into a smaller volume of soil through simple particle size separation techniques.

The cost of soil washing contaminated soil that was removed was obtained from the ENVEST Environmental Cost Engineering Model (ENVEST 1991) developed by the United States Air Force Environmental Restoration Program. The soil volume generated at each site was used as the cost estimating basis for the ENVEST model. It was assumed that a

C.6-7

conservative efficiency of the soil washing process was 60%. Hence, 40% of the soil processed would be packaged and transported to a low-level radioactive waste burial facility. Soil washing unit costs were assumed to range from about $150/m^3$ for large volume projects to about $300/m^3$ for small volume projects. The unit labor factor for soil washing was assumed to be 0.17 person-hours/m³ of soil processed.

¥

2

2

2

C.6.6.4 Packaging

The cost for packaging containers was obtained from Konzek (1995). It was assumed that the material for disposal at an LLW disposal site would be packaged using B-25 metal containers and transported by truck. Packaging for soils being transported by gondola railcar would be limited to car covers. Packaging costs are assumed to be \$100/gondola car and \$220/m³ for B-25 metal containers.

C.6.6.5 Transportation

Two alternatives were evaluated for transport of radioactive materials from the facility to an approved disposal site. One alternative was the use of gondola railcars for transport. Generalized cost information for the rail shipments was obtained from several operating railroads and assumed to be \$4,000/gondola car in these analyses. The other alternative was assumed to be accomplished by truck. A rate schedule from the Tri-State Motor Transit Company for truck shipment of radioactive material was used to estimate the transportation cost. The distance from the facility to the disposal site was assumed to be 500 miles. In addition, it was assumed that each truck could carry up to four containers. Truck transportation costs were assumed to be \$1,325/truck load.

C.6.6.6 Burial Costs

For this study, it was assumed that the contaminated waste generated at the sites would be shipped for disposal to a burial site; i.e., Envirocare, located in Utah, U.S. Ecology, Inc., located at Richland, Washington, or Chem-Nuclear, located at Barnwell, South Carolina. Disposal rates for Envirocare are estimated to be $10/ft^3$ and are $50/ft^3$ at U.S. Ecology, and $3350/ft^3$ at Chem-Nuclear (see Section 6.2.2), which provide a fairly wide range of burial costs. The low activity, low concentration soils were assumed to be shipped to. Envirocare in Utah, while the higher activity soils were assumed to be shipped to either U.S. Ecology at Richland or Chem-Nuclear at Barnwell.

C.6.6.7 Tailings Pile Stabilization and Capping Costs

As an alternative to disposing of slightly contaminated material at an offsite disposal facility, the option of disposing in a prepared tailings pile site either onsite or at a nearby location is postulated. The stabilization and capping costs were obtained from the ENVEST Environmental Cost Engineering Model (ENVEST, 1991) developed by the United States Air Force Environmental Restoration Program. Unit costs of \$105/m² were assumed for a tailing

NUREG-1496

Т

pile of 1.5 meters depth. Area of the tailings pile and the resulting multi-layered cap was calculated as a function of the respective contaminated soil volumes to be placed in the pile.

C.6.6.8 Occupational Radiation Dose Estimates

•

The occupational radiation dose estimates were derived from Short (1989) and Murphy (1981). Occupational radiation dose estimates are made by multiplying the person-hours required to decommission a site by an average radiation dose rate. The actual worker dose rate experienced during site decommissioning depends on several factors, including the type of radioactive contamination on the site, the location and concentration of contamination, the site parameters, and the work procedures and work schedules. Actual worker dose rates are expected to be site- and worker-specific.

Some information exists on dose rates at typical contaminated sites. For example, data from an operating low-level waste burial ground indicate an average dose rate at the site of about 1 mrem per 24-hour day (0.042 mrem/hr). Exposure records of 23 workers engaged in the removal of a contaminated industrial waste line showed that over a 3-month period, only four dosimeters recorded doses in excess of 10 millirem. The maximum total exposure for one worker for 1 month was 30 millirem. All of these dose rates refer to direct exposure and do not include contributions from inhalation of radioactive particles.

The inhalation of airborne radioactivity may make a significant contribution to occupational exposure for some site decommissioning operations, depending on the nature of the site and the decommissioning option. The inhalation dose would not normally be significant for site stabilization or for waste removal operations at sites where soil contamination is minimal. This dose could be significant during the removal of a tailings pile because of the dust problem. For site decommissioning operations, worker use of face masks or other respiratory equipment, the use of water sprays or foams to reduce dust concentrations, and possible use of portable enclosures to confine fugitive dust, would limit the occupational dose from inhalation of airborne radioactivity.

For this study, an average worker dose rate of 0.1 mrem/hr is assumed for site decommissioning operations. This value is believed to be reasonably conservative, based on available information about real sites. Decommissioning workers at potentially dusty sites are assumed to wear protective respiratory equipment to maintain occupational dose rates at or below this level.

C.7 Presentation of Analytical Results

The costs, labor requirements, and occupational dose associated with decontaminating previously contaminated facilities to alternate residual dose criteria are presented in this chapter. The models, methodologies, and assumptions discussed in Chapters 4 through 7 are the bases for these results. It needs to be emphasized that the purpose of these analyses was to provide a framework for differentiating the costs and impacts of decontaminating and decommissioning facilities to alternative residual cleanup levels, not to provide a comprehensive life-cycle estimate of these costs and impacts. These analyses therefore generally only assess those impacts that are a function of the alternative residual dose criteria and not those that are considered to be fixed across all residual dose levels being evaluated. An example of costs not evaluated includes the costs and labor requirements associated with the removal and disposal of contaminated equipment; e.g., steam generator (such analyses have been previously done in NRC, 1988). The costs associated with final status or termination surveys are presented in Appendix D of this report.

C.7.1 Analysis Bases

The analytical results provided in this chapter include analyses for the following alternative uses for the reference sites and structures after decommissioning and license termination:

- (1) Industrial use of the site, including occupational use of the structures, which assumes occupation of the decontaminated buildings by workers during a normal work shift and potential renovation of the buildings for eventual occupation (i.e., walls/ceilings/floors are moved, replaced, etc.).
- 2) Residential use of the site, including use of groundwater for drinking, irrigation, and livestock. Occupation of the structures is also assumed.

The bases for these scenarios are taken from Kennedy and Strenge (1992). Important initial conditions and other analytical bases assumed in the scenario evaluations for decontamination of structures and remediation of soils and groundwater follow.

Facilities

Decontamination requirements of structures to allow for later reoccupation are estimated using the methodology presented in Chapter 4 of Appendix C of the draft GEIS (NRC, 1994) (see Appendix D). This methodology provides a tool for estimating the concentration of radionuclides at different depths in concrete walls/floors resulting from past facility operations, assuming a surface contamination level. Calculated radionuclide concentrations as a function of depth into the concrete are converted to dose rates using the Dose Conversion Factors provided in Attachment A. The depth of concrete requiring removal is then determined for the alternative residual dose rates being evaluated in the GEIS, which are 100, 60, 30, 25, 15, 10, 3, 0.3, and 0.03 mrem/y. The same level of decontamination of

C.7-1

structures is required in both the unrestricted and restricted land-use scenarios since reoccupation of structures after decontamination is assumed in both.

In general, other major assumptions are as follows (variations from these major assumptions for individual scenarios are discussed in the next section):

2

4

2

- All in-process materials and products, major pieces of equipment, fixtures, floor coverings, and contaminated utilities such as drain lines and HVAC have been removed for disposal.
- Preliminary washdown of the site structures has been performed.
- The majority of contaminated concrete surface areas are scabbled to depths corresponding to the residual dose rate being evaluated, with the removed material being packaged, transported, and disposed (layers of concrete are assumed to be removed in 0.125-inch increments).
- The total thickness of contaminated concrete adjacent to contaminated cracks is removed, packaged, transported, and disposed.
- The total thickness of contaminated concrete in areas exposed to "wet spots" is removed, packaged, transported, and disposed.

Soils

Remediation requirements for soils for both the restricted and unrestricted land-use scenarios are estimated using the methodologies presented in Chapter 5 and in NRC, 1994. These methodologies provide tools for estimating the concentration of radionuclides at different depths in the soil column resulting from past facility operations, assuming a surface contamination level. Calculated radionuclide concentrations as a function of depth into the soil column are converted to dose rates using the Dose Conversion Factors provided in Attachment A. The depth of soil requiring remediation is then determined for the alternative residual dose rates being evaluated in the GEIS, which are 100, 60, 30, 25, 15, 10, 3, 0.3, and 0.03 mrem/y. The depth of soil contamination requiring remediation is different for the unrestricted and restricted land-use scenarios since assumptions on the type of receptors, nearness of the receptors to the source of contamination, and possible pathways of receptor exposure differ between each of these scenarios.

In general, other major assumptions are as follows (variations from these major assumptions for individual scenarios are discussed in the next section):

• Soils beneath buildings are contaminated in localized areas where the concrete has been exposed to "wet spots." These localized areas of contaminated soil are remediated by first removing the corresponding areas of contaminated concrete floor

NUREG-1496

Т

(the structure is not assumed to be demolished). The contaminated soil is then removed and either 1) packaged and disposed as low-level waste (LLW) or 2) treated via soil washing, with only the residual contaminated soil packaged and disposed as LLW and the clean soil returned to the site.

Other "open-air" contaminated soils on the site are handled similarly in that it is removed and either 1) packaged and disposed as low-level waste (LLW) or 2) treated via soil washing, with only the residual contaminated soil packaged and disposed as LLW and the clean soil returned to the site.

In either location, the contaminated soil is removed to the depth corresponding to the residual dose rate being evaluated. This depth is determined using the diffusion models described in NRC, 1994 for the "baseline" scenarios. The "real world" scenarios utilize the new models described in Section C.5 to determine the thickness of soil requiring remediation. In both the "baseline" and "real world" scenarios, the depth of contamination in soils beneath buildings is estimated using the diffusion models, which were believed to be a better representation of contaminant migration beneath buildings.

For the "baseline" scenarios, contaminated soil in either location is the result of contaminant deposition on the surface of the soil followed by migration via diffusion down through the soil column. For the "real world" scenarios, the analyses assume that contaminant distribution in the soil column is the result of either significant mixing/landfilling utilizing contaminated soil/slag or spills/leaks of contaminated aqueous solutions.

A summary of the contaminated and total concrete and soil surface areas assumed for each of the reference facilities is provided in Table C.7.1.1. This table also shows the postulated maximum radioactivity on the concrete surface of structures for each reference facility prior to initiation of concrete removal activities. Table C.7.1.2 shows the range of postulated activities on the surface of contaminated soil sites for each of the radionuclides of interest. Lastly, the unit cost and dose factors, and values for other parameters, used in these analyses are summarized in Section C.6.

C.7.2 Analytical Results

T

The estimated costs of decontaminating contaminated concrete surfaces and remediating contaminated soils are presented in the following sections for each of the reference facilities. The indicated costs include that for direct labor, packaging, transport, and disposal of all of the material removed to reach the contaminant concentration level associated with the residual dose rate being evaluated. Also included in the costs are the project overhead staff costs incurred during the period of removal operations. The scenarios (both "baseline" and "real world" cases) evaluated for this study are identified in Table C.7.2.1; the results for each are discussed in Sections C.7.3 through C.7.7.

C.7.3 Reference Nuclear Power Plant

The cost, labor requirement, and occupational exposure resulting from decontamination of the reactor bioshield and other walls/floors of structures at the reference nuclear power plant for alternative residual dose levels are provided in Tables C.7.3.1 and C.7.3.2, respectively. These results are subdivided into two categories - the reactor bioshield and other concrete surfaces - because different technologies are required to decontaminate each. Removal of activated concrete from the reactor bioshield is via drilling and blasting technology because of the large depths of contaminated concrete requiring removal. The results in Table C.7.3.1 for decontamination of the reactor bioshield are shown for each of the different depths of concrete removal required to achieve the alternative residual dose rates being evaluated.

Radionuclide contamination in other concrete floors/walls is not nearly as deep as in the reactor bioshield and so is decontaminated using a pneumatically-operated concrete scabbler. Since the scabbler removes approximately 1/8-inch of concrete with each pass, the results shown in Table C.7.3.2 for other concrete surfaces are in 1/8-inch increments. However, the table also provides the calculated residual dose rate for each increment such that the depth of concrete requiring removal can be determined for each of the residual dose levels being evaluated. These are 0.5 inches for 100, 60, 30, 25, and 15 mrem/y, 0.625 inches for 10, 3, and 0.3 mrem/y, and 0.75 inches for 0.03 mrem/y.

The analysis results for remediation of contaminated soil at the reference nuclear power plant are provided in Tables C.7.3.3 and C.7.3.4 for the unrestricted and restricted land-use scenarios, respectively. Conclusions from these results include:

Unrestricted Land-Use Scenario

- As is to be expected, soil washing becomes increasingly more cost effective as soil disposal costs increase. In fact, soil washing is not worth the additional cost if the soil disposal costs are as low as \$10 per cubic foot, but well worth the cost if soil disposal costs are as high as \$350 per cubic foot (total costs are reduced by over 50% when compared with the direct disposal scenario).
- Soil remediation is required for the low surface contamination level case only for residual dose levels of less than 10 mrem/y.
- Since soil washing is a low labor-requirement operation, including soil washing in the soil remediation technology mix contributes little to the total occupational dose incurred during remediation operations.

Restricted Land-Use Scenario

• Total soil remediation costs are, as expected, significantly less than for the corresponding unrestricted land-use scenario.

NUREG-1496

Т

- The general trends in costs and occupational dose are the same as described previously for the unrestricted land-use scenario.
- For all three surface contamination levels (high, medium, and low), soil remediation is not required at all for certain residual dose levels. In fact, no soil remediation is required for any of the cases unless the required residual dose level is 10 mrem/y or less.

Sensitivity Analyses

Ŧ

Two types of sensitivity analyses were performed on the reference nuclear power plant: 1) SAFSTOR for a period of 50 years prior to D&D and 2) soil contamination resulting from spills/leaks of contaminated aqueous solutions. The results of these analyses are discussed below.

50-Year SAFSTOR Period

The cost, labor requirement, and occupational exposure resulting from decontamination of the reactor bioshield and other walls/floors of structures at the reference nuclear power plant for different residual dose levels are provided in Tables C.7.3.5 and C.7.3.6, respectively. These analyses used the same diffusion model as was used in the previously described "baseline" scenarios, and which are described in NRC, 1994, to determine contaminant distribution in the concrete. However, in these scenarios, the model was run to simulate an additional 50 years of radionuclide migration and decay.

The required depth of concrete removal from the bioshield at any of the residual dose levels is significantly less than that for the scenario where the reference nuclear power plant is decommissioned soon after shutdown. This is due to the assumption that contamination in the bioshield is primarily from the activation product Co-60, which has a half-life of only 5.2 years. Cost savings are between 35 and 60% between the upper and lower residual dose levels, respectively (although the additional costs associated with monitoring and surveillance during the 50-year SAFSTOR period are not included in these estimates). The results are similar for decontamination of other concrete floors/walls.

The analysis results for remediation of contaminated soil at the reference nuclear power plant after a 50-year SAFSTOR period are provided in Tables C.7.3.7 and C.7.3.8 for the unrestricted and restricted land-use scenarios, respectively. Again, these analyses used the same diffusion model as was used in the "baseline" scenarios discussed previously, and which are described in NRC, 1994, to determine contaminant distribution in the soil column. However, in these scenarios, the model was run to simulate an additional 50 years of radionuclide migration and decay. Noteworthy conclusions from these results include:

• The general trends in costs and occupational dose are the same for these scenarios as described previously for those scenarios where decommissioning is initiated soon after

shutdown. The costs associated with monitoring and surveillance during the 50-year SAFSTOR are not included in these analyses however.

- Because of the 50-year period allowing the radionuclide contaminants to decay, soil remediation is only required in those scenarios where the residual dose rate is reduced to less than 10 mrem/y for the unrestricted land-use scenarios or less than 0.3 mrem/y for the restricted land-use scenarios).
- However, the residual radionuclide contamination after 50 years has also had an additional 50 years to percolate deeper into the soil column. Because of this effect, soil remediation that is required at the low residual dose levels for these scenarios, in general, costs significantly more than remediation to similar levels did for those scenarios where decommissioning was initiated soon after shutdown (significantly greater soil volumes require remediation). This effect is more pronounced in the unrestricted land-use scenarios than in the restricted land-use scenarios due to the much higher Dose Conversion Factors associated with the unrestricted land-use scenario. Because of the relatively low Dose Conversion Factors used for the restricted land-use scenarios, very little soil volume requires remediation in any of the scenarios evaluated (whether D&D begins soon after shutdown or after a 50-year SAFSTOR).

Soil Contamination Resulting from Spills/Leaks of Contaminated Aqueous Solutions

These scenarios assume that soil contamination at the reference nuclear power plant site is due to leaks and/or spills of contaminated aqueous solutions resulting in much deeper zones of contamination than are assumed in the "baseline" scenarios. The analysis results for remediation of contaminated soil at the reference nuclear power plant are provided in Tables C.7.3.9 and C.7.3.10 for the unrestricted and restricted land-use scenarios, respectively. Tables C.7.3.11 and C.7.3.12 provide the same results for scenarios that assume a 50-year SAFSTOR period prior to remediation of the soil. For the 50-year SAFSTOR scenarios, the "real world" contaminant distribution profiles were input into the diffusion model, and 50 years of additional migration via diffusion was simulated. Conclusions from these results include:

- The soil remediation costs and occupational exposure are considerably greater than for the previously evaluated scenarios that assume only deposition of contamination on the surface of the soil followed by migration via diffusion (up to 50% and higher for residual dose rates less than 25 mrem/y). This is a direct result of the significantly greater depths and, correspondingly, volumes of soil requiring remediation in these scenarios.
- The general trends in costs and occupational dose are the same for these scenarios as described previously for the scenarios where contamination is assumed to be deposited on the surface of the soil.

Soil remediation is not likely to be required in restricted land-use cases or if decommissioning is delayed for 50 years (i.e., the results for these scenarios indicate that, in the worst case, remediation would only be required for the residual dose rates of 15 mrem/y or lower).

C.7.4 Reference Uranium Fuel Fabrication Plant

The cost, labor requirement, and occupational exposure resulting from decontamination of the walls/floors of structures at the reference uranium fuel fabrication plant for different residual dose levels are provided in Table C.7.4.1. Radionuclide contamination in the concrete floors/walls is decontaminated using a pneumatically-operated concrete scabbler. Since the scabbler removes approximately 1/8-inch of concrete with each pass, the results shown in Table C.7.4.1 for concrete surfaces is in 1/8-inch increments. However, the table also provides the calculated residual dose rate for each increment such that the depth of concrete requiring removal can be determined for each of the residual dose levels being evaluated. Since the residual dose level after just one pass of the scabbler (1/8-inch) is 1.4×10^{-10} , only 1/8-inch of concrete requires removal to achieve any of the alternative residual dose levels being evaluated in the GEIS (i.e., 100, 60, 30, 25, 15, 10, 3, 0.3, and 0.03 mrem/y).

The analysis results for remediation of contaminated soil at the reference uranium fuel fabrication plant are provided in Tables C.7.4.2 and C.7.4.3 for the unrestricted and restricted land-use scenarios, respectively. These scenarios assume that uranium is deposited on the surface of the soil during operation of the facility, which then migrates down through the soil column over time via diffusion. Noteworthy conclusions from these results include:

Unrestricted Land-Use Scenario

î

- As is to be expected, soil washing becomes increasingly more cost effective as soil disposal costs increase. In fact, soil washing is not worth the additional cost if the soil disposal costs are as low as \$10 per cubic foot, but well worth the cost if soil disposal costs are as high as \$350 per cubic foot (total costs are reduced by over 50% when compared with the direct disposal scenario).
- No soil remediation is required for the low surface contamination level except for residual dose levels of 15 mrem/y or less.
- Since soil washing is a low labor-requirement operation, including soil washing in the soil remediation technology mix contributes little to the total occupational dose incurred during remediation operations.
- Total costs for remediation of the contaminated soil at this site is significantly greater than that for the reference nuclear power plant due to the much larger volumes of soil requiring remediation.

Restricted Land-Use Scenario

- Total soil remediation costs are, as expected, less than for the corresponding unrestricted land-use scenario.
- The general trends in costs and occupational dose are the same as described previously for the unrestricted land-use scenario.
- For all three surface contamination levels (high, medium, and low), soil remediation is not necessary at all for certain residual dose levels. In fact, no soil remediation is required for residual dose levels of 15 mrem/y or less.

Sensitivity Analyses

Due to uncertainties of contaminant behavior in the "real world," an additional set of scenarios was evaluated that assumed that significant soil contamination at the reference uranium fuel fabrication plant was due to mixing/landfilling of uranium-contaminated soil throughout the site. The analysis of these scenarios utilized the "real world" model discussed in Section C.5.2 for estimating the depth of contamination in the soil throughout the site. However, the depth of contamination in soil underneath buildings continued to be estimated using the "baseline" diffusion model since it is assumed that this soil is only contaminated as a result of leakages through floors of buildings and not from mixing/landfilling (i.e., the soil is assumed to have been clean when the building was constructed).

The analysis results for remediation of contaminated soil at the reference uranium fuel fabrication plant are provided in Tables C.7.4.4 and C.7.4.5 for the unrestricted and restricted land-use scenarios, respectively. Conclusions from these results include:

- The soil remediation costs and occupational exposure are significantly greater than for the previously evaluated scenarios that assume only deposition of contamination on the surface of the soil followed by migration via diffusion. This is a direct result of the significantly greater depths and, correspondingly, volumes of soil requiring remediation in these scenarios.
- The general trends in costs and occupational dose are the same for these scenarios as described previously for the scenarios where contamination is assumed to be deposited on the surface of the soil.
- Soil remediation is not likely to be required, or at most minimally required, if future uses of the site are restricted (i.e., the results for these scenarios indicate that, in the worst case, remediation would only be necessary for residual dose rates of 15 mrem/y or lower).

NUREG-1496

C.7-8

C.7.5 Reference Sealed Source Manufacturer

The cost, labor requirement, and occupational exposure resulting from decontamination of the walls/floors of structures at the reference sealed source manufacturer for different residual dose levels are provided in Table C.7.5.1. Radionuclide contamination in the concrete floors/walls is decontaminated using a pneumatically-operated concrete scabbler. Since the scabbler removes approximately 1/8-inch of concrete with each pass, the results shown in Table C.7.5.1 for concrete surfaces is in 1/8-inch increments. However, the table also provides the calculated residual dose rate for each increment such that the depth of concrete requiring removal can be determined for each of the alternative residual dose levels being evaluated. These are 0.25 inches for 100 and 60 mrem/y, 0.375 inches for 30, 25, and 15 mrem/y, 0.5 inches for 3 and 0.3 mrem/y, and 0.625 inches for 0.03 mrem/y.

The analysis results for remediation of contaminated soil at the reference sealed source manufacturer are provided in Tables C.7.5.2 and C.7.5.3 for the unrestricted and restricted land-use scenarios, respectively. These scenarios assume that radionuclide contamination is deposited on the surface of the soil during operation of the facility, which then migrates down through the soil column via diffusion over time. Noteworthy conclusions from these results are much the same as identified in previous sections and include:

Unrestricted Land-Use Scenario

3

- As is to be expected, soil washing becomes increasingly more cost effective as soil disposal costs increase. In fact, soil washing is not worth the additional cost if the soil disposal costs are as low as \$10 per cubic foot, but well worth the cost if soil disposal costs are as high as \$350 per cubic foot (total costs are reduced by over 50% when compared with the direct disposal scenario). At a disposal cost of \$50 per cubic foot, the differences in remediation costs between the soil washing and direct disposal scenarios are essentially a wash.
- Soil remediation is not required for the low surface contamination level except for residual dose levels of 3 mrem/y or less.
- Since soil washing is a low labor-requirement operation, approximately 10% of the total labor required, including soil washing in the soil remediation technology mix contributes little to the total occupational dose incurred during remediation operations.
- Soil remediation costs are quite low when compared to the other reference sites. These types of manufacturing facilities, in general, are not expected to have significant soil remediation requirements during decommissioning because of the generally small quantities of radioisotopes handled and the well controlled nature with which they are handled.

C.7-9

Restricted Land-Use Scenario

- Total soil remediation costs are, as expected, considerably less than for the corresponding unrestricted land-use scenario.
- The general trends in costs and occupational dose are the same as described previously for the unrestricted land-use scenario.
- For all three surface contamination levels (high, medium, and low), soil remediation is not required at all for certain residual dose levels. In fact, soil remediation is not required for any of the cases except for residual dose levels of 10 mrem/y or less.

Sensitivity Analyses

Neither PNNL nor NRC staff were able to identify any actual real world situations where sealed source manufacturing sites had any soil contamination. However, a set of sensitivity cases was evaluated in which the "real world" spill/leak model for ⁶⁰Co and ¹³⁷Cs discussed in Section C.5.1 was used to represent the possibility of sites having deeper contamination than estimated by the "baseline" diffusion model. The spill/leak model developed from data available on soil contamination for the reference reactor (see Section C.5.1) was used in these analyses due to the lack of any specific data on sealed source manufacturing sites and because the postulated source of contamination was assumed to be similar (i.e., spills/leaks of aqueous solutions containing radioisotopes such as ⁶⁰Co and ¹³⁷Cs).

The analysis results for remediation of contaminated soil at the reference sealed source manufacturer are provided in Tables C.7.5.4 and C.7.5.5 for the unrestricted and restricted land-use scenarios, respectively. Conclusions from these results include:

- The soil remediation costs and occupational exposure are considerably greater than for the previously evaluated scenarios that assume only deposition of contamination on the surface of the soil followed by migration via diffusion (up to 150% and higher for residual dose rates less than 25 mrem/y). This is a direct result of the significantly greater depths and, correspondingly, volumes of soil requiring remediation in these scenarios.
- The general trends in costs and occupational dose are the same for these scenarios as described previously for the scenarios where contamination is assumed to be deposited on the surface of the soil.
- Soil remediation is not likely to be required in restricted land-use cases (i.e., the results for these scenarios indicate that, in the worst case, remediation would only be necessary for residual dose rates of 15 mrem/y or lower).

NUREG-1496

ı

C.7-10

C.7.6 Reference Rare Metal Extraction Plant

The cost, labor requirement, and occupational exposure resulting from decontamination of the walls/floors of structures at the reference rare metal extraction plant for different residual dose levels are provided in Table C.7.6.1. Radionuclide contamination in the concrete floors/walls is decontaminated using a pneumatically-operated concrete scabbler. Since the scabbler removes approximately 1/8-inch of concrete with each pass, the results shown in Table C.7.6.1 for concrete surfaces is in 1/8-inch increments. However, the table also provides the calculated residual dose rate for each increment such that the depth of concrete requiring removal can be determined for each of the residual dose levels being evaluated. Since the residual dose level after just two passes of the scabbler (1/4-inch) is 0.023 mrem/y, only 1/4-inch of concrete requires removal to achieve any of the residual dose levels being evaluated in the GEIS (i.e., 100, 60, 30, 25, 15, 10, 3, 0.3, and 0.03 mrem/y).

The analysis results for remediation of contaminated soil at the reference rare metal extraction plant are provided in Tables C.7.6.2 and C.7.6.3 for the unrestricted and restricted land-use scenarios, respectively. These scenarios assume that thorium is deposited on the surface of the soil during operation of the facility, which then migrates down through the soil column via diffusion over time. Conclusions from these results include:

Unrestricted Land-Use Scenario

r

- Total soil volume (excluding the slag pile) requiring remediation is relatively small in these scenarios due to the very slow diffusion rate of thorium through the soil column (total depth of penetration of the thorium into the soil was less than 3 cm at a residual dose level of 0.03 mrem/y).
- While the results do show that soil washing becomes increasingly more cost effective as soil disposal costs increase, the net benefit of doing so is small due to the very small volume of soil that actually requires treatment. In fact, the soil washing and direct disposal scenarios are essentially a wash in terms of total costs when disposal costs are in the range of \$10 to \$50 per cubic foot. However, if disposal costs are as high as \$350 per cubic foot, there is a cost advantage to including soil washing in the remediation solution.
- Furthermore, because the 7,000-m³ slag pile is such a significant proportion of the total soil volume requiring remediation, and since this slag cannot be effectively washed to reduce the end volume requiring disposal, any benefit obtained from washing the little volume of soil available for treatment is masked by the cost of disposing of the very large volume associated with the slag pile.
- Soil remediation is not required for the low surface contamination level except for residual dose levels of 15 mrem/y or less, although remediation of the slag pile is still required.

C.7-11

• Since soil washing is a low labor-requirement operation, less than 10% of the total labor requirement, including soil washing in the soil remediation technology mix contributes little to the total occupational dose incurred during remediation operations.

Restricted Land-Use Scenario

• The restricted land-use scenario for the reference rare metal extraction plant was evaluated differently than for the other reference facilities. It is assumed in this scenario that contaminated soil is excavated and disposed of on the slag pile and that the slag pile as a whole is stabilized in place. Therefore, there are no costs associated with offsite disposal of the soil and slag pile. Only costs for excavation of the contaminated soil and stabilization of the slag pile are considered, consequently the total costs for this scenario are significantly less than for the unrestricted land-use scenarios. 2

- The total costs of the soil washing scenario are greater than for the direct disposal scenario because there is little cost associated with disposal of the contaminated soil on the slag pile. The only additional cost is associated with stabilization of the slag/contaminated soil pile after remediation is completed, which is a small incremental cost relative to the unit cost of disposal at an offsite disposal facility. However, the costs associated with long-term monitoring and surveillance of the site have not been accounted for in this analysis (although the incremental cost of these activities would be significantly less than the costs incurred from disposal at an offsite disposal facility).
- Soil remediation is not likely to be required in restricted land-use cases (i.e., the results for these scenarios indicate that, in the worst case, remediation would only be necessary for residual dose rates of 3 mrem/y or lower). However, stabilization of the slag pile is always required.

Sensitivity Analyses

Based on the uncertainties of slag/soil contamination behavior in the "real world," an additional set of scenarios was evaluated that assumed that significant soil contamination at the reference rare metal extraction plant was due to mixing/landfilling of thorium-contaminated slag/soil throughout the site. The analysis of these scenarios utilized the "real world" model developed in Section C.5.3 for estimating the depth of contamination in the soil throughout the site. However, the depth of contamination in soil underneath buildings continued to be estimated using the "baseline" diffusion model since it is assumed that this soil is only contaminated as a result of leakages through building floors and not from mixing/landfilling (i.e., the soil is assumed to have been clean when the building was constructed).

The analysis results for remediation of contaminated soil at the reference rare metal extraction plant are provided in Tables C.7.6.4 and C.7.6.5 for the unrestricted and restricted land-use scenarios, respectively. Principal conclusions from these results include:

- The soil remediation costs and occupational exposure are considerably greater than for the previously evaluated scenarios that assume only deposition of contamination on the surface of the soil followed by migration via diffusion. This is a direct result of the greater depths and, correspondingly, greater volumes of soil requiring remediation in these scenarios.
 - The general trends in costs and occupational dose are the same for these scenarios as described previously for the scenarios where contamination is assumed to be deposited on the surface of the soil.
- Soil remediation is not likely to be required in restricted land-use cases (i.e., the results for these scenarios indicate that, in the worst case, remediation would only be necessary for residual dose rates of 15 mrem/y or lower). However, the slag pile requires remediation at all residual dose levels.

C.7-13

. . .

	Radionuclide	Sur	face Areas	of Structu	ires	Burfood	Arres of Poil
	Walls/Floors of	f	t ²	% Cont	aminated	Surface	(ft^2)
Reference Facility	(dpm/100 cm ²)	Floor	Wall	Floor	Wall	Total Site	Contaminated
Nuclear Power Plant	7.5 x 10 ⁶ ⁶⁰ Co 2.4 x 10 ⁶ ¹³⁷ Cs	250,000	300,000	10	2	50 x 10 ⁶	3,000
Uranium Fuel Fabrication Plant	18,000 U	240,000	240,000	50	5	4.7 x 10 ⁶	100,000
Sealed Source Manufacturer	102,000 ⁶⁰ Co 33,300 ¹³⁷ Cs	6,000	4,600	10	5	40,000	5,000
Rare Metals Extraction Plant	18,000 Th	150,000	180,000	40	10	740,000	100,000

<u>Table C.7.1.1</u>. Total and Contaminated Surface Areas for Structures and Soils at Each of the Reference Facilities^(a)

(a) The estimated surface areas are based on limited information and, in many cases, represent an engineering judgement estimate based on the total footprint of the structures and the types of operations. The estimates are believed to be conservatively large (i.e., probably overestimate actual surface areas).

Table C.7.1.2. Ranges of Soil Surface Activities for the Radionuclides of Interest

Radionuclide	Contamination Level	Surface Concentration (pCi/g)			
Co-60	High	60			
	Medium	30			
	Low	2			
Sr-90	High	9.00x10 ⁻³			
	Medium	2.25x10 ⁻³			
	Low	4.50x10 ⁻⁴			
Cs-137	High	20			
	Medium	5			
	Low	1			
Thorium	High	200			
	Medium	100			
	Low	30			
Uranium	High	1,000			
	Medium	200			
	Low	30			

NUREG-1496

Т

C.7-14

Table C.7.2.1. GEIS Scenario Matrix

				. (Unres	trict	ed La	and-U	lse	· <u>···</u>					۰.	F	Restr	icted	Land-	Use				
•••••			Ba	seline				50-Y	'ear S	SAFS	TOR	Ł			Bas	eline			5	0-Y(ear S	AFS	TOF	٤.
Reference Facility	So	il W	'ash	l D	Direc ispos	t al	So	oil Wa	ash	l D	Direc ispos	st sal	Sc	oil Wa	ash	l D	Direc ispos	:t sal	Soi	l Wa	ısh	1 • D	Direc Dispo:	rt sal
· · ·	H	М	L	H	M	L	H	М	L	н	М	L	н	М	L	н	М	L	Н	М	L	H	м	L
PWR Power Reactor Site - Deposition on Soil Surface - Spill/Leak	x x	x x	X X	x x	x x	x x	x x	x x	x x	x x	x x	x x	x x	x x	x x	x x	x x	x x	X X	x x	x x	x x	x x	x x
Uranium Fuel Fabrication Plant - Deposition on Soil Surface - Mixing/Landfilling	x x	x x	x x	x x	x x	x x							x x	x x	x x	x x	x x	x x	-					
Sealed Source Manufacturer - Deposition on Soil Surface - Spill/Leak	x x	x x	x x	x x	x x	x x		7					x x	x x	x x	x x	x x	x x						
Rare Metals Extraction Plant - Deposition on Soil Surface - Mixing/Landfilling	x x	x x	x x	x x	x x	X X				-			x x	x x	x x	x x	X X	x x						

C.7-15

)

	Concrete	Volume of Concrete	Number of	Concret Costs (\$	e Disposal S millions)	Concrete Decontame	Total	
Dose Rate (mrem/y)	Removed (inches)	Disposal (ft ³)	Transportation Shipments	(\$50/ft³)	(\$350/ft³)	ination Labor (person-hours)	Dose (person-rem)	
100	3.49	11,136	29	1.115	4.456	2,679	24.80	
60	3.65	11,712	31	1.258	4.772	3,351	31.08	
30	3.87	12,480	33	1.308	5.052	3,365	31.22	
25	3.92	12,672	33	1.319	5.121	3,365	31.22	
15	4.08	13,248	35	1.361	5.335	3,394	31.49	
10	4.22	13,824	36	1.395	5.542	3,394	31.49	
3	4.60	15,264	40	1.600	6.179	4,108	38.19	
0.3	5.36	18,336	48	1.916	7.416	4,894	45.57	
0.03	6.10	21,504	56	2.241	8.692	5,708	53.23	

<u>Table C.7.3.1</u>. Calculated Costs and Other Parameters for Decontamination of Reactor Bioshield Concrete

<u>Table C.7.3.2</u>. Calculated Costs and Other Parameters for Decontamination of Reactor Wall/Floor Concrete

Concrete		Volume of Concrete	Number of	Concret Costs (1	e Disposal 5 millions)	Concrete	Total
Removed (inches)	Dose Rate (mrem/y)	Disposal (ft ³)	Transportation Shipments	(\$50/ft³)	(\$350/ft³)	ination Labor (person-hours)	Dose (person-rem)
0.125	36,000	3,173	9	0.592	1.544	4,130	2.38
0.250	4,100	3,663	10	0.958	2.048	6,572	3.79
0.375	220	4,093	11	1.324	2.552	9,013	5.19
0.500	10.4	4,554	12	1.690	3.056	11,454	6.60
0.625	0.282	· 5,013	14	2.057	3.561	13,895	8.00
0.750	0.0035	5,473	15	2.423	4.065	16,337	9.41
0.875	<0.003	5,934	16	2.789	4.569	18,778	10.82
1.000	<0.003	6,394	17	3.155	5.074	21,219	12.22

NUREG-1496

ı

.

C.7-16

ţ

			Re	ference Nuc Unrestrict	dear Power ted Land U	r Plant Ise					
Residual	Soil		With Soil	Washing			Direct Disposal				
Dose	Volume		Total	Remediation (Cost (SK)		Total	Remediation (lest (SK)		
Rate	Remediated	Dose [D	isposal Cost (S	<i>n</i> c)	Dose [Di	isposal Cost (S	117)		
(mrem/yr)	(m ²)	(person-mrem)	10	50	350	(person-mrem)	10	\$0	350		
High						1					
100	24	4	54	67	170	4	18	58	315		
60	34	6	61	82	227	6	24	81	444		
30	44		67	94	280	7	30	104	\$69		
25	46	Ł	69	97	294	8	31	110	601		
15	52	9	73	105	327	8	35	123	676		
10	58	10	76	114	359	9	38	136	748		
3	86	15	95	152	515	14	59	201	1,109		
0.3	152	27	138	241	286	25	102	356	1,967		
0.03	185	33	164	286	1.070	30	121	435	2,396		
Medium											
100	0	0	0	0	0	0	0	0	0		
60	18	3	50	59	137	3	15	43	238		
30	34	6	60	81	224	S	24	80	438		
25	36	7	62	8 4	239	6	26	86	472		
15	- 43	3	67	93	277	1 7	30	101	\$ 60		
10	48	9	70	100	304	1	32	114	625		
3	61	11	78	118	378	10	40	144	793		
0.3	123	22	119	201	721	20	80	288	1,587		
0.03	167	30	148	262	968	27	110	391	2,157		
.ow	ļ	_	_		-			_	•		
100	0	0	0	0	0	0	0	0	0		
60	0	0	0	0	0	0	0	U O	0		
30	0	0	0	0	0	o o	0	U O	Ū		
25	0	0	U	0	0		U	0	U		
15	0	0	0	U O	0		U	U	v		
10	0	0	0	C .	0		U M	U	.U 202		
3	27	5	56	71	156		20	04 144	332		
0.3	62	н	79	119	383	10	4L 60	140	1 709		
0.03	139	25	130	324	813		<u> </u>	340	1,190		

4

.

2.1

<u>Table C.7.3.3</u> Summary of Costs and Occupational Dose for Remediation of Contaminated Soil at the Reference Nuclear Power Plant Unrestricted Land Use

			Re	ference Nuc Restricte	dear Power d Land Us	r Plant e				
Residual	Soil		With Soil	Washing		T	Direct [Nisposal		
Dose	Volume		Total	Remediation C	Cost (SX)		Total	Remediation (Cost (SIO	
Rate	Remediated	Dose	D	isposal Cost (S	(a)	Dose	D	sposal Cost (S	10	
(mrem/yr)	(m ³)	(person-mrem)	10	50	350	(person-mrem)	10	50	350	
ligh										
100	0	0	0	0	0	0	0	0	n	
60	0	0	0	Ō	Ō	Ō	Ō	õ	ŏ	
30	0	0	0	Ō	Ō	Ö	Ō	õ	ŏ	
25	0	0	0	0	Ō	Ō	ō	õ	ŏ	
15	0	0	0	0	Ō	0	ō	õ	õ	
10	12	2	46	51	102	2	ů	29	156	
3	39	7	64	87	251	6	27	91	501	
0.3	62	11	79	119	381	10	40	145	800	
0.03	79	14	-90	142	479	13	55	187	1.029	
ledium						1				
100	0	0	0	0	0	0	0	0	0	
60	0	0	0	0	0	0	0	Ō	Ō	
30	0	0	0	0	0	0	0	Ō	0	
25	0	0	0	0	O	0	0	0	0	
15	0 [0	0	0	0	0	0	0	0	
10	0	0	0	0	0	0	0	0	0	
3	28	5	56	73	190	4	20	65	358	
0.3	56	10	75	Ш	348	9	37	132	725	
0.03	74	13	87	135	447	12	52	173	953	
0₩										
100	0	0	0	0	0	0	0	0	0	
60	0	0	0	0	0	0	0	0	0	
30	0	O	0	0	0	0	0	0	0	
25	0	0	0	0	0	0	0	0	0	
15	0	0	0	0	0	0	0	0	0	
10	0	0	0	0	0	0	0	0	0	
3	0	0	0	0	0	0	0	0	0	
0.3	17	3	49	58	130	3	14	41	222	
0.03	52	9	72	105	324	1 2	35	121	670	

Table C.7.3.4Summary of Costs and Occupational Dose for Remediation of
Contaminated Soil at the Reference Nuclear Power Plant
Restricted Land Use

\$

-
	Concrete	Volume of Concrete	Number of	Concret Costs (1	e Disposal 5 millions)	Concrete Decontam-	Total	
Dose Rate (mrem/y)	Removed (inches)	Disposal (ft ³)	Transportation Shipments	(\$50/ft³)	(\$350/ft³)	ination Labor (person-hours)	Dose (person-rem)	
100	1.36	3,936	11	0.453	1.634	1,321	0.02	
60	1.52	4,416	12	0.483	1.808	1,321 ·	0.02	
30	1.74	5,184	14	0.530	2.085	1,321	0.02	
25	1.79	5,280	14	0.536	2.120	1,321	0.02	
15	1.95	5,856	16	0.573	2.329	1,321	0.02	
10	2.09	6,240	17	0.699	2.571	1,965	0.03	
3	2.47	7,488	20	0.778	3.025	1,979	0.03	
0.3	3.22	10,080	27	1.047	4.071	2,651	0.03	
O.03	3.97	12,864	.34	1.332	5.191	3,365	0.04	

7

Table C.7.3.5. Calculated Costs and Other Parameters for Decontamination of Reactor Bioshield Concrete (50-Year SAFSTOR)

<u>Table C.7.3.6</u>. Calculated Costs and Other Parameters for Decontamination of Reactor Wall/Floor Concrete (50-Year SAFSTOR)

Concrete	Concrete Depth		Number of	Concret Costs (S	e Disposal 5 millions)	Concrete Decontam-	Total
Removed (inches)	Dose Rate (mrem/y)	Disposal (ft ³)	Transportation Shipments	(\$50/ft³)	(\$350/ft³)	ination Labor (person-hours)	Dose (person-rem)
0.125	535	3,173	9	0.592	1.544	4,130	0.003
0.250	376	3,663	10	0.958	2.048	6,572	0.005
0.375	210	4,093	11	1.324	2.552	9,013	0.007
0.500	93.8	4,554	12	1.690	3.056	11,454	0.009
0.625	33.4	5,013	14	2.057	3.561	13,895	0.011
0.750	9.51	5,473	15	2.423	4.065	16,337	0.013
0.875	2.15	5,934	16	2.789	4.569	18,778	0.015
1.000	0.389	6,394	17	3.155	5.074	21,219	0.017
1.125	0.056	6,854	18	3.522	5.578	23,660	0.056
1.250	0.006	7,314	19	3.888	6.082	26,102	0.006

Table 7.3.7.Summary of Costs and Occupational Dose for Remediation of
Contaminated Soil at the Reference Nuclear Power Plant
Unrestricted Land Use, 50-Year SAFSTOR

	•	· •	Re	ference Nuc	lear Power	Plant				
			Unrestric	ted Land U	se - 50-Yea	r SAFSTOR				
Residual	Soil		With Soil	Washing			Direct Disposal			
Dose	Volume		Total]	Remediation C	Cost (SK)		Total Remediation Cost (\$K)			
Rate	Remediated	Dase	D	sposal Cost (S	v(a')	Dose	D	sposal Cost (S.	/a)	
(mrem/yr)	(m ³)	(person-mrem)	10	50	350	(person-mrem)	10	50	350	
HIzh		·								
100	0	0	0	0	0	0	0	0	0	
60	0	0	0	0	0	0	0	0	0	
30	0	0	0	0	0	0	0	0	0	
25	0	0	0	0	0	0	0	0	0	
15	0	0	0	0	0	0	0	0	0	
10	0	0	0	0	0	- 0	0	0	0	
3	21	4	52	63	151	3	16	49	270	
0.3	413	74	318	596	2,345	67	267	967	5,339	
0.03	487	87	367	697	2,762	79	315	1,142	6,306	
Medium										
100	0	0	0	0	0	0	0	0	0	
60	0	0	0	0	0	0	0	0	0	
30	0	0	0	0	0	0	0	0	0	
25	0	0	0	0	0	0	0	0	0	
15	0	0	0	0	0	0	0	0	0	
10	0	0	0	0	0	0	0	0	0	
3	0	0	0	0	0	0	0	0	0	
0.3	106	19	108	178	628	17	71	249	1,373	
0.03	448	80	341	644	2,541	73	292	1,050	5,795	
Low			_		-				_	
100	0	0	0	0	0	0	0	0	0	
60	0	0	0	0	0	0	0	0	0	
30	0	0	0	0	0	0	0	0	0	
25	0	0	0	0	0	0	0	0	0	
15	0	0	0	0	0	0	0	0	0	
10	0	0	0	0	0	0	0	0	0	
3	0	0	0	0	0	0	0	0	0	
0.3	0	0	0	0	0	0	0	0	0	
0.03	373	67	292	541	2,122	60	<u>Z44</u>	875	4,826	

2

.

NUREG-1496

Т

Table 7.3.8.Summary of Costs and Occupational Dose for Remediation of
Contaminated Soil at the Reference Nuclear Power Plant
Restricted Land Use, 50-Year SAFSTOR

÷

.

.

. .

ذ. •

Reference Nuclear Power Plant Restricted Land Use - 50-Year SAFSTOR											
Residual	Soll		With Soil	Washing		Direct Disposal					
Dose	Volume	Dere Diment Cost (3A)				Iotal Kemediation Cost (SK)			ost (SK)		
Rate	Remediated	Dose	Di	sposal Cost (5	/tt')	Lose	<u></u>	sposal Cost (5)	nr)		
(mrem/yr)	(m)	(person-mrem)	IU	50	<u></u>] (person-mrem) [10	50	350		
High	-		-	-	-		-		-		
100	0	0	U	U	U .	0	U	0	0		
00	U	0	U C		, v	0	U .	U	0		
JU 20	0		· U .	U .	, v		10 10	0	0		
23 18	0		0	0	Ň		0	0	0		
10	0		0	Ű	Ŭ		.0	0	0		
10	0		0	0	Ň		0	<u>v</u>			
63	0		ň	Ő	ň		ő	0	0		
0.0	44		67	6 4	279		30	103	444		
Medium						1			303		
100	0	0	0	0	0	0	0	0	0		
60	Ō	ō	ō	Ō	0	0	0	Ō	ō		
30	0	ō	Ō	Ó	. 0	0	• 0	Ċ.	o		
25	0	0	0	0	0	0	0	0	0		
15	0	0.	0	O	0	0	0	0	0		
10	0 -	0	0	C	0	0	0	0	. 0		
3	0	0	0	0	0	0 /	0	Q İ	0		
0.3	0	0	0	Ó	0	0	. 0	C	G		
0.03	24	4	54	67	168	4	18	57	310		
Low .				•							
100	0	0	0	0	0	0	0	0	0		
60	0	0	0	0	0	0	0	0	0		
30	0	0	0	0	0	0	0	0	0		
25	0	0	0	0	0	0.	0	0	0		
15	0	0	0	0	0		0	0	.0		
10	0	0	- 0	0	0	0	0	0	0		
3	0	0 -	.0	0	O .		0	Ū	0		
0.3	0	0	0	U A	0		U	U O	0		
0.03	V	<u> </u>	U	0	<u> </u>	U	U	<u>v</u>			

NUREG-1496

Table 7.3.9.Summary of Costs and Occupational Dose for Remediation of
Contaminated Soil at the Reference Nuclear Power Plant
Unrestricted Land Use, Spill/Leak

	Reference Nuclear Power Plant											
			Unre	stricted La	nd Use - Sp	ill/Leak						
ļ		r										
Residual	Soil	······	With Soil	Washing		Direct Disposal						
Dose	Volume		Total]	Remediation C	Cost (SK)	Tuni Renewittion Cost (SK)			ost (SK)			
Rate	Remediated	Dose	D	sposal Cost (\$	/87)	Dose	D	sposal Cost (\$	/ <u>({k})</u>			
(mrem/yr)	<u>(m')</u>	(person-mrem)	10	50	350	(person-mrem)	- 10	50	350			
High												
100	28	5	56	73	190	4	20	65	357			
60	44	8	67	94	279	7	30	104	566			
30	77	14	89	139	467	13	54	182	1,000			
25	87	16	95	153	521	14	59	203	1,123			
15	113	20	113	189	668	18	75	266	1,464			
10	135	- 24	127	217	787	22	87	316	1,741			
3	205	37	177	314	1,185	33	133	481	2,658			
°. 0.3	349	63	272	509	1,990	57	225	820	4,521			
0.03	473	85	357	678	2,681		307	1,105	6,118			
Medium												
100	5	1	42	42	64	1	7	13	66			
60	21	4	52	63	153	3	17	50	274			
30	42	8	66	92	272	7	29	100	549			
25	50	9	71	102	313	8	33	117	645			
. 15	75	14	88	137	457	12	53	177	976			
10	97	17	102	166	575	16	65	226	1,249			
3	158	28	142	250	920	26	105	371	2,049			
0.3	299	54	239	442	1,711	49	197	702	3,875			
0.03	430	11	329	619	2,441	70	282	1,008	5,563			
Low												
100	0	0	0	0	0	0	0	0	0			
60	0	0	0	0	0	0	0	0	0			
30	0	0	0	0	0	0	0	0	0			
25	0	0	0	0	0	0	0	0	0			
15	0	0	0	0	0	0	0	0	0			
10	3	0	40	39	50	0	6	7	35			
3	31	6	59	78	210	5	23	73	405			
0.3	143	26	132	229	835	23	96	336	1,851			
0.03	293	52	235	432	1,674	47	193	686	3,789			

NUREG-1496

Т

C.7-22

2

Table 7.3.10.Summary of Costs and Occupational Dose for Remediation of
Contaminated Soil at the Reference Nuclear Power Plant
Restricted Land Use, Spill/Leak

•

.

· · ·

.

	Reference Nuclear Power Plant Restricted Land Use - Spill/Leak												
Residual	Soil		With Soll	Washing			Direct Disposal						
Dose	Volume		Total Remediation Cost (312)				Total I	Remediation C	Cost (SK)				
Rate	Remediated	Dose	Di	sposal Cost (S	/12)	Dose [Di	sposal Cest (\$	/ftr)				
(mrem/yr)	(m ³)	(person-mrem)	10	50	350	(person-mrem)	10	50	350				
High						1							
100	C	0	0	0	0	0	0	0	0				
60	C	0	C	0	0	0	0	0	0				
30	0	0	38	36	36	0	4	2	4				
25	1	0	39	37	44	0	5 S	5	20				
15	5	· 1	42	42	63	1	7	13	66				
10	16	3	49	5 6	124	3	13	38	207				
3	60	11	77	116	370	10	39	141	774				
0.3	176	32	154	274	1,020	29	116	414	2,279				
0.03	290	52	233	428	1,656	47	191	679	3,748				
Medium				-									
100	0	0	0	0	0	0	0	0	0				
60	0	0	0	0	0	0	0	0	0				
30	0	0	0	C	0	0	G	0	0				
25	0	0	0	0	0	0	0	0	0				
15	0.	0	0	0	0	0	0	O	0				
10	3	0	40	39	50	0	6	7	35				
3	32	6	59	78	213	5	23	74	411				
0.3	141	25	131	226	823	23	91	330	1,820				
0.03	255	46	210	381	1,460	41	166	\$97	3,295				
Lew						1							
100	0	0	0	0	0	0	0	0	0.				
60	0	0	0	G	0	0	0	C	0				
30	0	0	0	0	. O	0	0	Û	0				
25	0	· 0	0	0	0	0	0	0	0				
15	0	0	0	0	0	0	0 .	0	0				
10	0	0	0	0	0	0	0	0	0				
3	0	0	0	0	0	0	0	0	0				
0.3	21	4	52	63	151	3	16	49	269				
0.03	122	22	118	201	717	20	80	287	1,579				

NUREG-1496

.

Table 7.3.11.Summary of Costs and Occupational Dose for Remediation of
Contaminated Soil at the Reference Nuclear Power Plant
Unrestricted Land Use, Spill/Leak, 50-Year SAFSTOR

	Reference Nuclear Power Plant										
		Unre	stricted La	nd Use - Sp	ill/Leak - 5	0-Year SAFST	OR				
Residual	Soit		With Soil	Washing		Direct Disposal					
Dose	Volume		Total Rememation Lost (SR)				Total I	Remediation C	ost (SK)		
Rate	Remediated	Dose	Di	sposal Cost (\$	/12)	Dose	Di	sposal Cost (S.	(11)		
(mrem/yr)	(m ³)	(person-mrem)	10	50	350	(person-mrem)	10	50	350		
High									-		
100	0	0	0	0	0	0	0	Ð	ð		
60	0	0	0	0	0	0	0	0	0		
30	0	0	0	0	0	0	0	0	0		
25	0	0	0	0	0	0	0	0	D		
15	0	0	0	0	0	0	0	0	0		
10	19	3	51	. 60	140	3	15	45	245		
3	55	10	74	110	344	9	36	130	714		
0.3	228	41	192	345	1,312	37	151	535	2,952		
0.03	453	81	344	650	2,568	73	295	1.061	5,856		
Medium											
100	0	. 0	0	0	0	0	0	0	0		
60	0	0	0	0	0	0	0	0	0		
30	0	0	0	0	0	0	0	0	0		
25	0	0	0	0	0	0	0	0	0		
-15	0	0	0	0	0	0	0	0	0		
10	0	0	0	0	0	0	0	0	0		
3	14	2	47	53	111	2	12	33	178		
0.3	112	20	112	187	660	18	74	263	1,446		
0.03	329	59	259	483	1,878	53	214	772	4,260		
Low ·											
100	0	0	0	0	0	0	0	0	0		
60	0	0	0	0	0	0	0	0	0		
J 30	0	0	0	0	0	0	0	0	0		
25	0	0	0	0	0	0	0	0	0		
15	0	D	0	D	0	0	0	0	0		
10	0	0	0	0	0	0	0	0	0		
3	0	0	0	0	0	0	0	0	0		
0.3	33	- 6	60	80	221	5	24	79	. 430		
0.03	1.57	28	142	248	915	25	105	369	2,035		

2

NUREG-1496

Table 7.3.12.Summary of Costs and Occupational Dose for Remediation of
Contaminated Soil at the Reference Nuclear Power Plant
Restricted Land Use, Spill/Leak, 50-Year SAFSTOR

\$

		Rest	Re ricted Lar	ference Nuc id Use - Spil	lear Power 11/Leak - 50	Plant)-Year SAFSTO	R			
Residual	Soll	J	With Soil	Washing	<u></u>	Direct Disposal				
Dose	Volume	1 1 1	Tetal I	Remediation C	lest (SK)		Tetal F	cemediation (Cost (SK)	
Rate	Remediated	Dose	Di	sposal Cost (S	/᠒ᡃ)	Dase	Di	sposal Cost (S	// 11	
(mrem/yr)	(m ³)	(person-mrem)	10	50	350	(person-mrem)	10	50	350	
High		· · ·			· ·	1				
100	0	0	0	0	0	0	· O ·	0	0	
60	0	C	0	0	0	C	0	0	0	
30	0	0	0	0	0	0	0	0	o	
25	0	0	0	0	0	0	0	0	0	
15	0	0	0	0	0	0	0	0	0	
10	0	0	0	0	0	0	0	0	0	
3	0	0	0	0	0	C	0	0	0	
0.3	41	7	65	90	262	7	28	95	525	
0.03	183	33	162	283	1.057	30	120	428	2,363	
Medium					• •					
100	0	0	0	0	0	0	Ò	0	0	
60	0	0	0	0	0	0 -	0	0	0	
30	0	0.	0	0	0	0	0	0	0	
25	0	0	0	0	0	0	0	0	Θ	
15	0	0	0	0	0	0	0	.0	0	
_ 10	0	0	0	0	0	0	0	0	0	
3	0	0	0	0	0.	0	0	0	0	
0.3	0	0	0	0	0	0	0	0	0	
0.03		16	95	154	523	14	59	205	1,129	
Low		_				1		·		
100	0	0	0	0	0	0	0	0	0	
60	0	0	0	0	0	0	0	0	0	
30	0	0	0	0	0	0	0	0	0	
25	0	0	C	0	O	0	0	C	O	
15	0	0	0	0	0	0	0	0	0	
10	0	0	0	0	0	0	0	0	0	
3	0	0	0	0	0	0	0	0	0	
0.3	0	0	0	0	0	0	0	0	0	
0.03	20	4	51	61	144	3	16	46	254	

Concrete Depth		Volume of Concrete Requiring	Number of Concrete Transportation Shipments	Concret Costs (S	e Disposal millions)	Concrete Decontam- ination Labor (person-hours)	Total Occupational Dose (person-rem)
Removed (inches)	Dose Rate (mrem/yr)	Disposal (ft ³)		(\$50/ft ³)	(\$350/ft³)		
0.125	1.40x10 ⁻¹⁰	10,185	27	1.889	4.944	12,090	6.96

<u>Table 7.4.1</u>. Calculated Costs and Other Parameters for Decontamination of Uranium Fuel Fabrication Plant Wall/Floor Concrete

NUREG-1496

Т

.

C.7-26

i

<u>Table 7.4.2</u>. Summary of Costs and Occupational Dose for Remediation of Contaminated Soil at the Reference Uranium Fuel Fabrication Plant Unrestricted Land Use

₽.

..

•.•

÷., 1

· -

	Reference Uranium Fuel Fabrication Plant Unrestricted Land Use											
Residual	Sofi	```	With Soil	Washing	···		Direct D	isnocal				
Dose	Valume		Tetal S	Remediation C	ast (SK)	Tatal Remediation Cost (SIC)						
Rate	Remediated	Dose	Di	sposal Cost (S	/ຄ.)	Dose	Di	sposal Cost (S	/@`)			
(mrem/yr)	(m ³)	(person-mrem)	10	50	350	(person-mrem)	10	50	350			
High						1		<u>. '</u>				
100	1,789	320	1,256	2,466	10,047	290	1,159	4,191	23,144			
60	1,922	344	1,343	2,647	10,790	311	1,245	4,502	24,860			
30	2,078	372	1,450	2,860	11,666	337	1,345	4,869	26,884			
25	2,115	379	1,474	2,910	11,875	343	1,367	4,956	27,368			
15	2,215	397	1,544	3,046	12,433	359	1,434	5,190	28,658			
10	2,291	410	1,594	3,149	12,856	371	1,483	5,366	29,635			
3	2,492	446	1,734	3,422	13,982	404	1,613	5,839	32,239			
0.3	2,817	\$04	1,952	3,864	15,804	456	1,821	6,601	36,450			
0.03	3,106	556	2,150	4,257	17,420	503	2,007	7,277	40,185			
Medium												
100	8 40	150	607	1,176	4,737	136	543	1,969	10,870			
60	1,381	247	975	1,911	7,763	224	894	3,235	17,865			
30	1,665	298	1,170	2,298	9,352	270	1.077	3,901	21,536			
25	1,723	308	1,208	2,377	9,680	279	1,116	4,038	22,295			
15	1,865	334	1,305	2,570	10,472	302	1,208	4,369	24,126			
10	1,964	352	1,375	2,705	11,027	318	1,270	4,601	25,408			
3	2,215	397	1,544	3,046	12,433	359	1,434	5,190	28,658			
0.3	2,597	465	1,803	3,565	14,572	421	1,679	6,085	33,601			
0.03	2,909	521	2.017	3,990	16,320	471	1,883	6,816	37,639			
Low												
100	0	0	0	0	0	0	0	0	0			
60	0	0	0	0	0	0	0	0	0			
30	0	0	0	0	0	0	0	C	0			
25	0	0	0	0	0	0	0	0	0			
15	840	150	607	1,176	4,737	136	543	1,969	10,870			
10	1,320	236	935	1,828	7,421	214	854	3,092	17,073			
3	1,789	320	1,256	2,466	10,047	290	1.159	4,191	23,144			
0.3	2,291	410	1,594	3,149	12,856	371	1,483	5,366	29,635			
0.03	2,655	475	1,845	3,644	14,895	430	1,717	6,221	34,348			

<u>Table 7.4.3</u>. Summary of Costs and Occupational Dose for Remediation of Contaminated Soil at the Reference Uranium Fuel Fabrication Plant Restricted Land Use

2

i

	Reference Uranium Fuel Fabrication Plant											
				Restricte	d Land Use	8						
								·····				
Residual	Soil		With Soil	Washing		Direct Disposal						
Dase	Volume		Total Remediati			1 L	Total Remediation Cost (SK)					
Rate	Remediated	Dose	<u> </u>	Disposal Cost (\$/ft ³)		Dose	Di	sposal Cost (S	vn)			
(mrem/yr)	(m ²)	(person-mrem)	10	50	350	(person-mrem)	10	50	350			
High												
100	0	0	0	0	0	0	0	0	0			
60	0	Ð	0	0	0	0	0	0	0			
30	0	0	0	0	0	0	0	0	0			
25	0	0	0	0	0	0	0	0	0			
15	1.056	189	753	1,470	5,945	171	683	2,475	13,663			
10	1,379	247	974	1,909	7,754	223	893	3,231	17,842			
3	1,817	325	1,274	2,504	10,204	294	-1,175	4,258	23,508			
0.3	2,308	413	1,609	3,172	12,952	374	1,493	5,408	29,860			
0.03	2,671	478	1,856	3,666	14,987	433	1,727	6,258	34,560			
Medium												
100	0	0	0	0	0	0	0	0	0			
60	0	0	0	0	0	0	0	0	0			
30	0	0	0	0	0	0	0	0	0			
25	0	0	0	0	0	0	0	0.	0			
15	0	0	0	0	0	0	0	0	0			
10	0	0	0	0	0	0	0	0	0			
3	1,056	189	753	1,470	5,945	171	683	2,475	13,663			
0.3	1,989	356	1,391	2,739	11,168	322	1,289	4,660	25,733			
0.03	2,423	434	1,685	3,329	13,596	393	1,569	5,676	31,345			
Low												
100	0	0	0	0	0	0	0	0	0			
60	0	0	0	0	O	0	0	0	0			
30	0	0	0	0	0	0	0	0	0			
25	0	0	0	0	0	0	0	0	0			
15	0	0	0	0	0	0	0	0	0			
10	0	0	0	0	0	0	0	0	0			
3	0	0	0	0	0	0	0	0	0			
0.3	1,379	247	974	1,909	7,754	223	893	3,231	17,842			
0.03	2,077	372	1,449	2,859	11,661	337	1,345	4,867	26,875			

NUREG-1496

ı

Table 7.4.4.Summary of Costs and Occupational Dose for Remediation of
Contaminated Soil at the Reference Uranium Fuel Fabrication Plant
Unrestricted Land Use, Mixing/Landfilling

	Reference Uranium Fuel Fabrication Plant Unrestricted Land Use - Mixing/Landfilling											
Residual	Soil	1	With Soll	Washing			Direct D	isposal				
Dose	Volume		Total I	Remediation C	ost (\$K)		Total I	Lemediation C	lest (SK)			
Rate	Remediated	Dose	ose Disposal Cost (\$/ft ²)] Dose [Di	Disposal Cost (\$/ft)				
(mrem/yr)	(m ³)	(person-mrem)	10	50	350	(person-mrem)	10	50	350			
High						1						
100	4,188	750	2,886	5,728	23,477	678	2,709	9,812	54,182			
60	5,185	928	3,566	7,082	29,053	840	3,353	12,145	67,072			
30	8,676	1,353	5,378	11,262	48,030	1,406	5,607	20,325	112,244			
25	9,441	1,690	5,801	12,206	52,214	1,529	6,102	22,117	122,136			
15	11,426	2,045	6,904	14,657	63,077	· 1,851	7,384	26,767	147,817			
10	13,290	2,379	7,943	16,958	73,277	- 2,153	8,587	31,134	171,933			
3	18,518	3,315	10,847	23,413	101,886	3,000	11,965	43,380	239,563			
0.3	28,009	5,014	16,126	35,131	153,828	4,538	18,097	65,615	362,357			
0.03	37,672	6,743	21,496	47,061	206,706	6,103	24,342	88,251	487,366			
Medium					•							
100	. 38	7	63	87	250	6	27	91	498			
60	63	11 🔅	80	121	389	10	41	148	818			
30	1,913	342	1,337	2,635	10,741	310	1,240	4,481	24,745			
25	2,680	. 480	1,862	3,677	15,032	434	1,732	6,278	34,665			
15	4,827	864	3,323	6,596	27,050	782	3,122	11,307	62,444			
10	6,531	1,169	4,480	8,912	36,587	1,058	4,222	15,299	84,486			
3	11,588	2,074	6,994	14,857	63,962	1,877	7,488	27,145	149,909			
0.3	21,255	3,805	12,371	26,791	116,864	3,443	13,735	49,792	274,973			
0.03	30,919	\$,534	17,742	38,723	169,749	5,009	19,976	72,431	399,996			
Low												
100	C	. 0	0	• 0	0	0	0	0	C			
60	0	0	C	0	0	0	0	0	0			
30	0	0	0	0	0	0	0	0	0			
25	0	0	0	0	0	0	0	0	0			
15	38	7	63	87	250	· 6	27	91	498			
10	60	11	78	117	373	: 10	40	142	782			
3	3,618	648	2,499	4,953	20,283	586	2,341	8,475	46,801			
0.3	13,290	2,379	7,943	16,958	73,279	2,153	8,587	31,134	171,936			
0.03	22,957	4,109	13,315	28,893	126,177	3.719	14,834	53,779	2 96, 9 89			

<u>Table 7.4.5</u>. Summary of Costs and Occupational Dose for Remediation of Contaminated Soil at the Reference Uranium Fuel Fabrication Plant Restricted Land Use, Mixing/Landfilling

2

i

Reference Uranium Fuel Fabrication Plant									
ł			Restrict	ed Land Us	e - Mixing/	Landfilling			:
						1			
Residual	Soil		With Soil	Washing			Direct D	isposal	
Dose	Volume		Total Remediation Cost (3K)			4 _ k	Total I	Remediation (lost (SEQ
Rate	Remediated	Dase	D	sposal Cost (\$	/@)	Dose	D	sposal Cost (\$	/ድን
(mrem/yr)	(111)	(person-mrem)	10	50	350	(person-mrem)	10	50	350
HILL						•			
100	0	0	0	0	0	0	0	0	0
60	0	0	0	0	0	0	0	0	0
30	0	0	0	0	0	0	0	0	0
, 25	0	0	0	0	0	0	0	0	0
L5	48	9	70	100	305	8	33	114	626
10	63	11	80	121	389	10	41	148	817
3	4,047	724	2,789	5,535	22,683	656	2,618	9,481	52,351
0.3	13,719	2,456	8,179	17,487	75,624	2,222	8,864	32,138	177,479
0.03	23,385	4,186	13,555	29,422	128,522	3.788	15,111	54,782	302,532
Medium				•					
100	0	0	0	0	0	0	0	0	0
60	0	0	0	0	0	e e	0	0	0
30	0	0	0	0	0	0	0	0	0
25	0	0	0	0	0	0	0	0	0
15	0	0	0	0	0	0	0	0	0
10	0	0	0	0	0	0	0	0	0
3	48	9	70	100	305	8	33	114	626
0.3	6,959	1,246	4,774	9,495	38,987	1,127	4,499	16,304	90,033
0.03	16,629	2,977	9,795	21,080	91,549	2,694	10,744	38,955	215,127
Low									
100	0	0	0	0	0	0	0	0	0
60	0	0	0	0	0	0	0	0	0
30	0	0	0	0	0	0	0	0	0
25	0	0	0	0	0	0	0	0	0
15	0	0	0	0	0	0	0	0	0
10	0	0	0	0	0	0	0	0	0
3	0	0	0	0	0	0	0	0	0
0.3	63	11	80	121	389	10	41	148	817
0.03	8,567	1,534	5,315	11,128	47,434	1,403	5,599	20,293	112,067

NUREG-1496

.

· .

Concrete		Volume of Concrete	Number of	Concret Costs (S	e Disposal § millions)	Concrete Decontam-	Total
Removed (inches)	Dose Rate (mrem/yr)	Disposal (ft ³)	Transportation Shipments	(\$50/ft³)	(\$350/ft³)	ination Labor (person-hours)	Dose (person-rem)
0.125	485	96	1	0.019	0.048	141	0.081
[•] 0.250	55.9	107	1	0.029	0.061	212	0.122
0.375	3.01	118	1	0.040	0.075	284	0.164
0.500	0.143	129	1	0.050	0.089	356	0.204
0.625	0.004	140	1	0.061	0.103	428	0.247

<u>Table 7.5.1</u>. Calculated Costs and Other Parameters for Decontamination of Sealed Source Manufacturer Facility Wall/Floor Concrete

Reference Sealed Source Manufacturer Site Unrestricted Land Use									
Residual	Soil	<u> </u>	With Soil	Washing		Direct Disposal			
Dose	Volume		Total Remediation Cost (\$K)			Total Remediation Cost (SK)			
Rate	Remediated	Dose	D	sposal Cost (\$/	(ג)	Dose	· Di	sposal Cost (\$	/a)
(mrem/yr)	(m ³)	(person-mrem)	10	50	.350	(person-mrem)	10	50	350
High									
100	16	3	48	56	122	3.	13	37	202
60	22	4	53	64	157	4	17	53	285
30	28	5	57	74	193	5	21	66	364
25	30	· 5	58	76	201	5	22	70	384
15	33	6	60	81	222	5	24	80	434
10	37	7	62	85	242	6	26	87	479
3	55	10	74	110	343	9	36	130	711
0.3	97	17	102	167	579	15	65	228	1,259
0.03	118	21	116	196	698	-19	78	278	1,532
Medium									
100	0	0	0	0	0	0	0	0	0
60	12	2	46	51	101	2	11	29	153
30	22	4	52	64	155	4	17	51	280
25	23	4	54	66	165	4	18	56	303
15	28	5	56	73	190	4	20	65	359
10	31	6	58	77	208	5	22	73	400
3	39	7	64	88	254	6	27	92	507
0.3	78	14	90	141	473	13	54	185	1,016
0.03	107	19	108	179	631	17	71	250	1,380
Low	•								
100	0	0	0	0	0	0	0	0	0
60	0	0	0	0	0	0	0	0	0
30	0	0	0	0	0	0	0	0	0
25	0	0	0	0	0	0	0	0	0
15	0	0	0	0	0	0	0	0	0
10	0	0	0	0	0	0	0	0	0
3	17	3	50	58	132	3	14	41	225
0.3	40	7	64	89	257	6	27	94	515
0.03	80	16	97	156	533	1 14	60	209	1.151

<u>Table 7.5.2</u>. Summary of Costs and Occupational Dose for Remediation of Contaminated Soil at the Reference Sealed Source Manufacturer Site Unrestricted Land Use

2

•

NUREG-1496

Т

Table 7.5.3.Summary of Costs and Occupational Dose for Remediation of
Contaminated Soil at the Reference Sealed Source Manufacturer Site
Restricted Land Use

	Reference Sealed Source Manufacturer Site Restricted Land Use									
Residual	Soil		With Soil	Washing	······		Direct D	isposal		
Dose	Volume		Total Remediation Cost (SK)			Tetal Remediation Cost (SK)				
Rate	Remediated	Dose	D	isposal Cost (S.	ia)	Dose	Disposal Cost (5/ft ²)			
(mrem/yr)	(m ⁵)	(person-mrem)	- 10	50	350	(person-mrem)	10	50	350	
High										
100	0	0	0	0	0	0	0	0	0	
60	0	0 5	0	0	0	0	Q	0	0	
30	0.	0	0	0	- C	0	. 0	0	0	
25	0	0	C	0	0	0	0	0	0	
15	0	0	0	0	0	0	0	0	0	
10	8	1	43	45	78	1 1	- 9	- 18	99	
3	25	4	54	68	173	4	-19	59	321	
0.3	40	7	64	89	256	6	27	93	512	
0.03	51	9	72	103	319	8	34	120	658	
Medium										
100	0	C	0	0	0	0	0	0	0	
60	0	0 -	0	0	0	0	0	0	0	
30	0	0	0	0	0 '	0	0	0	0	
25	0	0	0	0	0	0	0	C	0	
15	0	0	0.	0	0	0	0	0	0	
10	G	Q	0	0	Q ·	0	· 0	. O .	0	
3	18	3	50	59	134	3	15	42	229	
0.3	36	6	62	84	235	6	25	85	464	
0.03	47	8	69	<u>99</u>	298	8	32	111	611	
Low			· · ·							
100	0	0	0	0	0	0	0	0	0	
60	0	0	0	0	0	0	0	0	.0	
30	0	0	0	0	0	0	0	0	0	
25	· 0	0	0	0	0	0	0	0	0	
15	0	0	0	0	0	o o	0	0	o l	
10	0.	0	0	0	0		0	C	0	
3	0	a	0	0	O O		0	0	0	
0.3	11	2	45	50	96		11	27	143	
0.03	33	6	60	K O	720	<u> 5</u>	24	79	430	

NUREG-1496

Table 7.5.4.Summary of Costs and Occupational Dose for Remediation of
Contaminated Soil at the Reference Sealed Source Manufacturer Site
Unrestricted Land Use, Spill/Leak

2

.

1

	Reference Sealed Source Manufacturer Site									
			Unre	stricted La	nd Use - Spi	ill/Leak				
Residual	Soil		With Soil	Washing			Direct D	isposal		
Dose	Volume		Total I	Remediation C	lost (\$K)		Ttimi I	Lucinita C	ust (SK)	
Rate	Remediated	Dase	Dose Disposal Cost (\$/(?)			Dose	Di	sposal Cost (S.	(a *)	
(mrem/yr)	(m ³)	(person-mrem)	10	50	350	(person-mrem)	10	50	350	
Bigh										
100	21	4	52	63	152	3	16	49	271	
60	38	7	63	86	245	6	26	89	487	
30	84	15	93	149	504	14	57	196	1,083	
25	97	17	102	167	578	16	65	228	1,256	
15	135	24	127	217	789	22	88	317	1,746	
10	165	30	147	259	958	27	109	387	2,134	
3	254	46	210	381	1,459	41	166	597	3,292	
0.3	426	76	327	614	2,420	69	279	1,000	5,515	
0.03	598	107	444	848	3,383	97	389	1,402	7,738	
Medium										
100	8	2	44	4 6	82	1	9	20	110	
60	16	3	49	57	127	3	14	39	214	
30	36	6	62	84	237	6	25	85	467	
25	46	8	68	97	290	7	31	108	591	
15	81	15	92	145	489	13	56	191	1,053	
10	111	20	111	187	659	18	74	262	1,442	
3	201	36	174	308	1,160	33	131	472	2,601	
0.3	373	67	292	542	2,124	60	244	875	4,830	
0.03	546	98	409	777	3,089	88	354	1,279	7,059	
Low	_]				
100	0	0	0	0	0	0	0	0	0	
60	0	0	0	0	0	0	0	0	0	
30	0	0	0	0	0	0	0	0	0	
25	0	0	0	0	0	0	0	0	0	
15	0	0	0	0	0	0	0	0	0	
10	4	1	41	41	59	1	7	11	57	
3	24	4	54	67	170	4	18	58	316 ·	
0.3	174	31	153	272	1,011	28	115	410	2,259	
0.03	345	62	269	504	1,968	56	224	\$10	4,470	

NUREG-1496

Т

<u>Table 7.5.5</u>. Summary of Costs and Occupational Dose for Remediation of Contaminated Soil at the Reference Sealed Source Manufacturer Site Restricted Land Use, Spill/Leak

. .,*

•

	Reference Sealed Source Manufacturer Site Restricted Land Use - Spill/Leak									
Residual	Soil		With Soil	Washing			Direct D	isposal		
Dose	Volume		Total Remediation Cost (SK)		j i	utal Remediation Cost (SK)				
Rate	Remediated	Dose	Di	sposal Cost (S	/(t²)	Dose	Di	sposal Cost (S	/(12)	
(mrem/yr)	(m ³)	(person-mrem)	10	50	350	(person-mrem)	10	50	350	
High		· · ·	· · · · · · · · · · · · · · · · · · ·			1				
100	0	. 0	. 0	0	0	0	0.	0	0	
60	0	0	0	0	0	0	0	0	0	
30	0	C	38	36	37	0	4	2	5	
25	2	0	40	39	49	0	6	7	33	
15	8	2	44	45	82	1	9	20	109	
10	14	3	48	54	115	2	13	34	186	
3	60	11	78	117	371	10	39	141	776	
0.3	230	41	194	347	1,322	37	152	540	2,977	
0.03	401	72	310	580	2,280	65	261	940	5,191	
Međium										
100	0	0	0	0	C	0	0	0	0	
60	0	0	0	0	C	0	0	0	0	
30	0	0	0	0	0	0	0	0	0	
25	0	0	0	0	0	0	0	0	0	
15	0	0	C	0	0	0	0	0	0	
10	4	1	41	41	60	1 1	7	11	57	
3	25	4	54	68	171	4	19	58	318	
0.3	177	32	159	275	1,026	29	116	416	2,291	
0.03	349	62	272	508	1,986	56	226	<u> </u>	4,513	
Low		-								
100	0	0	0	0	0	0	0	0	0	
60	0	0	0	0	0	0	0	0	0	
30	0	0	0	0	0	0	0	0	0	
25	0	0	0	0	0	0	0	0	0	
15	0	0	0	0	0	0	0	0	C	
10	0	0	0	0	0	0	0	0	0	
3	0	0	0	0	0	0	0	0	0	
0.3	17	3	49	58	130	3	14	40	221	
0.03	150	27	137	239	875	24	101	352	1,943	

Concrete		Volume of Concrete	Number of	Concret Costs (\$	e Disposal s millions)	Concrete	Total
Removed (inches)	Dose Rate (mrem/yr)	Disposal (ft ³)	Transportation Shipments	(<u>\$</u> \$¶/₦³)	(\$350/ft³)	Decontam- ination Labor (person-hours)	Dose (person-rem)
0.125	3,600	5,054	14	1.281	2.797	8,304	4.78
0.250	0.023	6,232	17	2.277	4.146	14,971	8.62

3

i

<u>Table 7.6.1</u>. Calculated Costs and Other Parameters for Decontamination of Rare Metal Extraction Plant Wall/Floor Concrete

NUREG-1496

I.

	Reference Rare Metal Extraction Plant Unrestricted Land Use									
Residual	Soil	1.	With Soll	Washing		1	Direct I	lisposal		
Dose	Volume	i	··· 1 Duni I	Remediation C	est (\$K)		Total Remediation Cost (SK)			
Rate	Remediated	Dose	Di	isposal Cost (S	112)	Dose	Disposal Cost (\$/ft ²)			
(mrem/yr)	(m)	(person-mrem)	10	50	350	(person-mrem)	10	50	350	
High		I				1				
100	7,015	1,137	4,567	16,453	90,677	1,136	4,536	16,434	90,752	
60	7,050	1,143	4,594	16,501	90,873	1,142	4,556	16,516	91,205	
30	7,076	1,148	4,611	16,536	91,020	1,146	4,572	16,577	91,545	
25	7,081	1,148 -	4,614	16,542	91,044	1,147	4,579	16,588	91,603	
15	7,089	1,150	4,620	16,555	91,094	1,148	4,584	16,607	91,715	
10	7,094	1,151	4,623	16,561	91,119	1,149	4,586	16,619	91:772	
3	7,157	1,162	4,664	16,646	91,471	1,159	4,627	16,766	92,588	
0.3	7,191	1,168 .	4,687	16,692	91,662	1,165	4,648	16,846	93,030	
0.03	7,278	1,184	4,748	16,812	92,152	1,179	4,703	17,051	94,160	
Medium										
100	7,000	1,134	4,523	16,398	90,559	1,134	4,523	16,398	90,559	
60	7,000	1,134	4,523	16,398	90,559	1,134	4,523	16,398	90,559	
30	7,050	1,143	4,594	16,501	90,873	1,142	4,556	16,516	91,205	
25	7,059	1,145	4,600	16,512	90,921	1,144	4,562	16,537	91,319	
15	7,076	1,148	4,611	16,536	91,020	1,146	4,572	16,577	91,545	
⁻ 10	7,085	1,149	4,617	16,548	91,069	1,148	4,581	16,598	91,659	
3	7,119	1,155	4,639	16,595	91,258	1,153	4,601	16,677	92,095	
0.3	7,187	1,168	4,684	16,687	91,641	1,164	4,645	16,837	92,9 80	
0.03	7,267	1,182	4,741	16,796	92,089	1,177	4,697	17,025	94,018	
Low						·				
100	7,000	1,134	4,523	16,398	90,559	1,134	4,523	16,398	90,559	
60	7,000	1,134	4,523	16,398	90,559	1,134	4,523	16,398	90,559	
30	7,000	1,134	4,523	16,398	90,559	1,134	4,523	16,398	90,559	
25	7,000	1,134	4,523	16,398	90,559	1,134	4,523	16,398	90,559	
15	7,015	1,137	4,567	16,453	90,677	1,136	4,536	16,434	90,752	
10	7,044	L,142	4,590	16,493	90,840	1,141	4,553	16,502	91,129	
3	7,085	1,149	4,617	16,548	91,069	1,148	4,581	16,598	91,659	
0.3	7,169	1,164	4,673	16,664	91,542	1,161	4,635	16,796	92,751	
0.03	7,216	1,173	4,707	16,726	91,802	1,169	4,662	16,905	93,354	

Table 7.6.2.Summary of Costs and Occupational Dose for Remediation of
Contaminated Soil at the Reference Rare Metal Extraction Plant
Unrestricted Land Use

:

•

	<u> </u>		Reference Rare Metal Extrac	tion Plant						
	Restricted Land Use									
Residual	Soil	I	With Soil Washing		Direct Disposal					
Dose	Volume	1			······································					
Rate	Remediated	Dose	Total Remediation Cost (SK)	Dose	Total Remediation Cost (SK)					
(mrem/yr)	(m ¹)	(person-mrem)	Ne Offsite Disposal	(person-mrem)	Ne Offsite Disposal					
High	<u></u>	[1						
100	7,000	23	490	23	490					
60	7,000	23	490	23	490					
30	7,000	23	490	23	490					
25	7,000	23	490	23	490					
15	7,000	23	490	23	490					
10	7,000	23	490	23	490					
3	7,017	31	547	30	503					
0.3	7,043	43	582	41	523					
0.03	7,074	57	626	54	547					
Medium										
100	7,000	23	490	23	490					
50	7,000	23	490	23	490					
30	7,000	23	490	23	490					
25	7,000	23	490	23	490					
15	7,000	23	490	23	490					
10	7,000	23	490	23	490					
3	7,000	23	490	23	490					
0.3	7,036	39	573	38	518					
0.03	7,071	55	621	53	545					
Low										
100	7,000	23	490	23	490					
60	7,000	23	490	23	490					
30	7,000	23	490	23	490					
25	7,000	23	490	23	490					
15	7,000	23	490	23	490					
10	7,000	23	490	23	490					
3	7,000	23	490	23	490					
0.3	7,025	34	558	33	509					
0.03	7.055	48	598	46	532					

2

•

<u>Table 7.6.3</u>. Summary of Costs and Occupational Dose for Remediation of Contaminated Soil at the Reference Rare Metal Extraction Plant Restricted Land Use

NUREG-1496

I

.

.

.

Table 7.6.4.Summary of Costs and Occupational Dose for Remediation of
Contaminated Soil at the Reference Rare Metal Extraction Plant
Unrestricted Land Use, Mixing/Landfilling

.

.

5

Reference Rare Metal Extraction Plant Unrestricted Land Use - Mixing/Landfilling									
Residual	Soil		With Soil	Washing	-		Direct I	Disposal	
li Dase	Volume		Total]	Total Remediation Cost (SK)			Total Remediation Cost (\$K)		
Rate	Remediated	Dose	D	isposal Cest (S	/n ⁻)	Dose [Disposal Cost (\$/ft ³)		
(mrem/yr)	(m ³)	(person-mrem)	10	50	350	(person-mrem)	10	50	350
High									
100	8,093	1,330	5,304	17,918	96,710	1,311	5,231	18,959	104,700
60	8,495	1,402	5,577	18,465	98,963	1,376	5,493	19,902	109,906
30	9,041	1,499	5,948	19,207	102,016	1,465	5,842	21,180	116,963
25	9,184	1,525	6,047	19,403	102,820	1,488	5,935	21,516	118,818
15	9,586	1,597	6,319	19,948	105,067	1,553	6,196	22,457	124,015
10	9,905	1,654	6,537	20,381	106,852	1,605	6,399	23,203	128,138
3	10,853	1,824	7,181	21,670	112,158	1,758	7,014	25,425	140,404
0.3	12,663	2,148	8,412	24,132	122,292	2,051	8,182	29,665	163,826
0.03	14,475	2,472	9,232	26,177	132,017	2,345	9,354	33,911	187,269
Medium			•						
1 0 0	7,548	1,232	4,930	17,177	93,659	1,223	4,878	17,683	97,647
60	7,949	1,304	5,206	17,723	95,906	1,288	5,139	18,623	102,841
30	8,495	1,402	5,577	18,465	98,963	1,376	5,493	19,902	109,906
25	8,639	1,427	5,676	18,661	99,768	1,400	5,585	20,238	111,763
15	9,041	1,499	5,948	19,207	102,016	1,465	5,842	21,180	116,963
10	9,360	1,556	6,166	19,641	103,802	1,516	6,050	21,927	121,088
3	10,307	1,726	6,809	20,928	109,103	1,670	6,661	24,145	133,341
0.3	12,119	2,050	8,042	23,391	119,243	1,963	7,833	28,389	156,777
0.03	13,930	2,375	9,278	25,853	129,383	- 2,257	9,001	32,634	180,218
Low									
100	7,000	1,134	4,523	16,398	90,559	1,134	4,523	16,398	90,559
60	7,003	1,135	4,559	16,437	90,610	1,135	4,525	16,407	90,600
30	7,548	1,232	4,930	17,177	93,659	1,223	4,878	17,683	97,647
25	7,691	1,258	5,028	17,373	94,462	1,246	4,970	18,018	99,501
15	8,093	1,330	5,304	17,918	96,710	1,311	5,231	18,959	104,700
10	8,413	1,387	5,519	18,353	98,499	1,363	5,436	19,707	108,833
3	9,360	1,556	6,166	19,641	103,802	1,516	6,050	21,927	121,088
0.3	11,172	1,881	7,399	22,104	113,944	1,810	7,218	26,172	144,530
0.03	12,983	2,205	8,630	24,565	124,079	2,103	8,390	30,413	167,957

<u>Table 7.6.5.</u> Summary of Costs and Occupational Dose for Remediation of Contaminated Soil at the Reference Rare Metal Extraction Plant Restricted Land Use, Mixing/Landfilling

	Reference Rare Metal Extraction Plant									
a.			Restricted Land Use - Mixing/I	Landfilling						
Residual	Soil		With Soil Washing		Direct Disposal					
Dose	Volume	[]]		1 1						
Rate	Remediated	Dose	Total Remediation Cost (\$K)	Dose	Total Remediation Cost (\$K)					
(mrem/yr)	<u>(m)</u>	(person-mrem)	No Offsite Disposal	(person-mrem)	No Offsite Disposal					
High					-					
100	7,000	23	490	23	490					
60	7,000	23	490	23	490					
30	7,000	23	490	23	490					
25	7,000	23	490	23	490					
15	7,047	44	588	43	526					
10	7,174	103	762	96	624					
3	7,553	277	1,279	256	916					
0.3	8,278	609	2,267	561	1,475					
0.03	9,002	942	3,256	867	2,034					
Medium										
100	7,000	23	490	23	490					
60	7,000	23	490	23	490					
30	7,000	23	490	23	490					
25	7,000	23	490	23	490 ·					
15	7,000	23	490	23	490					
10	7,000	23	490	23	490					
3	7,335	177	981	164	748					
0.3	8,060	509	1,969	469	1,307					
0.03	8,784	842	2,958	775	1,866					
Low										
100	7,000	23	490	23	490					
60	7,000	23	490	23	490					
30	7,000	23	490	23	490					
25	7,000	23	490	23	490					
15	7,000	23	490	23	490					
10	7,000	23	490	23	490					
3	7,000	23	490	23	490					
0.3	7,681	335	1,453	310	1,015					
0.03	8,405	668	2,441	615	1,573					

NUREG-1496

I

C.7-40

4

<u>Table 7.7.1</u>. Summary of Costs and Occupational Dose for Remediation of Contaminated Soil at the Reference Uranium Mill Unrestricted Land Use

Reference Uranium Mill								
			Timestelated I and I	7 <u>1</u> 11				
			Unrestricted Land C	726				
Residual	Soil	1	With Soll Washing		Direct Disposal			
Dose	Velume							
Rate	Remediated	Dose	Total Remediation Cost (SK)	Dose	Total Remediation Cost (SK)			
(mrem/yr)	(m `)	(person-mrem)	No Offsite Disposal	(person-mrem)	No Offsite Disposal			
High		1						
100	156,337	27,984	61,977	25,327	37,262			
60	167,931	30,060	66,533	27,205	40.026			
30	181,602	32,507	71,904	29,420	43,284			
25	184,874	33,093	73,190	29,950	44,064			
15	193,587	34,652	76,613	31,361	46,141			
10	200,186	35,833	79,206	32,430	47,713			
3	217,774	38,982	86,117	35,279	51,906			
0.3	246,224	44,074	97,296	39,888	58,686			
0.03	271,454	48,590	107,209	43,976	64,700			
Medium								
100	73,423	13,143	29,399	11,895	17,500			
60	120,681	21,602	47,967	19,550	28,764			
30	145,476	26,040	57,710	23,567	34,674			
25	150,603	26,958	59,725	24,398	35,896			
15	162,976	29,173	64,586	26,402	38,845			
10	171,631	30,722	67,987	27,804	40,908			
3	193,587	34,652	76,613	31,361	46,141			
0.3	226,985	40,630	89,736	36,772	\$4,101			
0.03	254,260	45,512	100,453	41,190	60,602			
Low								
100	0	0	0	0	0			
60	0	0	0	0	0			
30	0	0	0	0	C			
25	0	0	0	0	0			
15	73,423	13,143	29,399	11,895	17,500			
10	115,324	20,643	45,863	18,683	27,487			
3	156,337	27,984	61,977	25,327	37,262			
0.3	200,186	35,833	79,206	32,430	47,713			
0.03	232,023	41,532	91,716	37,588	\$5,302			

Table 7.7.2.Summary of Costs and Occupational Dose for Remediation of
Contaminated Soil at the Reference Uranium Mill
Restricted Land Use

Reference Uranium Mill						
Restricted Land Use						
Residual	Soil	With Soil Washing		Direct Disposal		
Dose	Volume					
Rate	Remediated	Dose	Total Remediation Cost (SK)	Dose	Total Remediation Cost (SK)	
(mrem/yr)	<u>(m')</u>	(person-mrem)	No Offsite Disposal	(person-mrem)	Ne Offsite Disposal	
High						
100	0	0	0-	0	0	
60	0	0	0	0	0	
30	0	0	0	0	0	
25	0	0	0	0	0	
15	92,287	16,519	36,811	14,951	21,996	
10	120,525	21,574	47,906	19,525	28,727	
3	158,794	28,424	62,943	25,725	37,848	
0.3	201,704	36,105	79,803	32,676	48,075	
0.03	233,458	41,789	92,279	37.820	55,644	
Medium						
100	0	0	0	0	0	
60	0	0	0	0	0	
30	0	0	0	0	0	
25	0	0	. 0	0	0	
15	0	0	0	0	0 .	
10	0	0	0	0	0	
3	92,287	16,519	36,811	14,951	21,996	
0.3	173,832	31,116	68,851	28,161	41,432	
0.03	211,741	37,902	83,746	34,302	50,467	
Low						
100	0	0	0	0	0	
60	0	0	0	0	0	
30	0	0	0	0	0	
25	0	0	0	0	0	
15	0	0	0	0	0	
10	0	0	0	0	0	
3	0	0	0	0	0	
0.3	120,525	21,574	47,906	19,525	28,727	
0.03	181,537	32,495	71,879	29,409	43,269	

۵

.

1

NUREG-1496

Т

C.8 Analysis of Groundwater Remediation

In Section 6.2 of Volume 1, it was concluded that, for unrestricted use, the cost-benefit ratio for soil removal which would result in a dose of 25 mrem/y or less is generally unreasonably high when compared to the range used in NRC's decisionmaking guidance of NUREG/BR-0058 and NUREG-1530 (see Section 6.1 of Volume 1). It was also concluded that sitespecific situations can be a factor that permits doses to be reduced below 25 mrem/y using ALARA considerations. Such site-specific considerations are especially necessary when dealing with groundwater contamination. This section considers potential groundwater contamination situations for NRC licensees (i.e., unlikely, possible, and likely (see Attachment E to Appendix C for a list of groundwater contamination indicators)), and corresponding Reference Cases 1, 2, and 3 are developed specifically for these potential groundwater contamination scenarios. For each of the reference cases, examples of sitespecific situations are considered and analysis performed to estimate cost-benefit ratio increments in reducing doses from 25 mrem/y to levels approaching background (only analysis of remediation of groundwater to levels at or below 25 mrem/y is considered in this section based on the results of Section 6.2 of Volume 1). The analysis includes cost-benefit consideration of impacts for the dose levels associated with maximum contaminate levels in the National Primary Drinking Water regulations in 40 CFR 141. The analysis presented below illustrates potential ALARA considerations at levels below 25 mrem/y.

C.8.1 Groundwater Remediation Reference Cases

NRC facilities have been divided into the following possible reference cases based on their likelihood for significant soil/groundwater contamination (see Attachment E to Appendix C for more complete description and discussion):

- 1. <u>Licensees with little contamination and therefore very low potential for</u> <u>soil/groundwater contamination</u> - certain sealed source manufacturers, short-lived radionuclide users, and other small licensees with little contamination (e.g., small research reactors)
- 2. <u>Licensees with low to medium indicators for soil/groundwater contamination</u> research reactors, certain sealed source manufacturers and broad R&D facilities, some power reactors, etc.
- 3. <u>Licensees with medium to high indicators for soil/groundwater contamination</u> SDMP sites, large uranium/thorium facilities, some power reactors

Based on a broad review of licensees, there are about 6000 NRC licensees in Reference Case 1 and about 500-700 NRC licensees in Reference Cases 2 and 3.

The following is an analysis of Reference Cases 1 - 3.

C.8-1

C.8.1.1 Reference Case 1

Because it is unlikely that these facilities will have any soil contamination or groundwater contamination, a screening analysis is likely to be sufficient to demonstrate that these facilities meet a 25 mrem/y all-pathways TEDE standard and do not have a significant dose contribution from the drinking water pathway.

Therefore, implementation of ALARA levels below the dose standards is likely to involve minimal effort.

C.8.1.2 Reference Cases 2 and 3

While, generally, Reference Case 3 has a higher potential for groundwater contamination than Reference Case 2, they are discussed together in this section because some of the same steps in considering further remediation would be similar.

Because there is generally some soil contamination at Reference Case 2 sites, but not anticipated current groundwater contamination, specific efforts at characterization of groundwater are not necessarily done routinely as part of normal operations or decommissioning. Reference Case 3 sites have medium/high indicators for subsurface soil and groundwater contamination, and therefore would generally have to do groundwater characterization, either as part of their operations or as part of a decommissioning effort.

In situations where lower contamination levels are present, a screening analysis would generally be done to demonstrate compliance with an all-pathways TEDE dose. In the absence of any evidence of existing groundwater contamination (see Attachment E to Appendix C), this would be an analysis of prospective future contamination. If screening shows doses from the site are less than a 25 mrem/y all-pathways TEDE and doses are low or nonexistent from the drinking water pathway based on groundwater sources, further ALARA considerations would likely not result in the need for additional remediation to reduce doses from the drinking water pathway. If screening shows the site dose is less than a 25-mrem/y all-pathways TEDE but the dose from the drinking water pathway based on groundwater sources makes up a large fraction of the all-pathways dose, a licensee may perform more detailed site-specific evaluation or additional site characterization. Most sites would be able to show that doses from the groundwater pathway are quite low without the need for such site characterizations. If these additional analyses show the doses through the drinking water pathway are low or nonexistent, no remediation would likely be needed.

In those cases where contamination is more extensive, groundwater characterization may be done. If such characterization shows that groundwater contamination does not exist, licensees would still have to do prospective modeling of future groundwater contamination based on the soil contamination present at their site. If this evaluation shows that the site dose is less than a 25-mrem/y all-pathways TEDE but that the dose through the drinking water pathway makes up a large fraction of that dose, the licensee could consider remediation

NUREG-1496

I

C.8-2

of the site to further reduce the dose to ALARA levels. Possible remediations in such cases where there is prospective contamination of the groundwater include soil removal, restricting future water use while supplying replacement water, or source stabilization.

This evaluation of prospective contamination would consider radionuclides in the soil such as Co-60, Cs-137, Sr-90, H-3, thorium, and uranium. Because uranium is the most likely radionuclide to move through soil to groundwater at a fast enough pace or have a long enough half-life to cause significant groundwater contamination, the scenario described below considers uranium contamination. Similar analyses could be considered for Co-60, Cs-137, Sr-90, H-3, or thorium.

As noted above, a licensee would consider all the site-specific factors involved as part of an ALARA analysis before undertaking remediations. For example, Tables 4.5.3 and 4.5.4 of the "Draft EIS Decommissioning of the Shieldalloy Metallurgical Corporation, Cambridge, Ohio, Facility," NUREG-1543, July 1996, describe site-specific considerations related to estimating doses from drinking water pathways. For the purposes of this generic analysis, it is conservatively assumed that uranium contamination in soil moves such that groundwater contamination will occur over time and the resulting drinking water dose is 50% of the TEDE based on the models of NUREG/CR-5512 (NRC 1992), and that this dose occurs both onsite and offsite. While an ALARA analysis will be highly dependent on site-specific factors that affect both the transport of contaminants to the aquifer and the available remediation options, there are two principal remediation methods that could be used if necessary: removal of soil and restricting site use. Soil could be removed from onsite to prevent further migration of uranium to groundwater resulting in costs of soil removal. The cost benefit analysis for soil removal could be approximated by that in Table C.8.1 and would likely not be cost effective unless the population served by the groundwater resource was large enough. Alternatively, there could be restrictions placed onsite and/or offsite. This alternative is discussed further below.

Another potential situation is that the characterization of groundwater may show that there is existing groundwater contamination and that the dose through drinking water pathway is less than a 25 mrem/y all-pathways TEDE but that the dose through the groundwater pathway makes up a large fraction of that dose. For these cases, licensees might need to remediate their site depending on results of an ALARA analysis. Possible remediations include pump and treat or restricting water use while providing replacement water. A review of current licensees in Attachment E of Appendix C ("Groundwater Contamination Detected at NRC Licensed Facilities") indicates that some sites have existing groundwater contaminated with Sr-90, H-3, Tc-99, alpha emitting nuclides, or uranium. Such contamination generally takes place because of a specific release event rather than a slow release from contaminated soil. Three potential scenarios are considered based on a review of the licensees in Attachment E to Appendix C for certain materials facilities (Sr-90, Tc-99, alpha emitting nuclides), reactors (H-3), and uranium facilities and include:

- 1. A composite case of a materials facility with Sr-90 groundwater contamination such that the dose through the drinking water pathway is 20 mrem/y.
- 2. A composite case of a reactor with H-3 groundwater contamination at or slightly in excess of 20,000 pCi/L.

2

3. A composite case of a uranium facility with uranium groundwater contamination.

An ALARA analysis of these cases would be highly dependent on site-specific factors that affect both the transport of contaminants to the aquifer and the available remediation options, and a variety of outcomes is possible. The following are potential outcomes based on a generic analysis of the composite cases:

- a. The drinking water dose from groundwater is assumed conservatively to occur both onsite and offsite.
- b. In general, remediation of a site to reduce doses to below 25 mrem/y to meet ALARA levels could be accomplished in the following manner:
 - 1) The groundwater below the site could be remediated by pump and treat operations to reduce the nuclide concentration levels. The incremental costs for pump and treat are in Column 2 of Tables C.8.2 and C.8.3 for Sr-90 and uranium contamination, respectively. Costs and impacts are not analyzed for H-3 contamination because groundwater below the site cannot be treated by pump and treat operations to remove H-3. The benefits of reduced exposure to the contaminated plume are estimated based on assuming 25 persons would take their drinking water from the contaminated plume. The cost-benefit analysis of such a situation is shown in Column 4 of Tables C.8.2 and C.8.3 and would not be cost-effective. This analysis is illustrative and demonstrates that for site-specific situations where larger populations may exist, a cost-benefit analysis should be done to indicate whether remediation is cost-effective.
 - 2) There could be restrictions placed on the onsite and/or offsite use of the water which would be applicable to the Sr-90, H-3, or uranium contamination cases. For onsite restrictions, it is assumed there would not be costs for replacement water because the site could be zoned for industrial use. For offsite restrictions, it is assumed that replacement water supplies would have to be provided; the cost benefit analysis for replacement water assumes that 25 persons would take their drinking water from the contaminated plume. It is not assumed that the land would be purchased as the costs of this are too indeterminate and uncertain for a generic analysis. The costs of replacement water for 25 persons are shown in Table C.8.4, Column 2, and the cost benefit analysis is shown in Column 4.

NUREG-1496

5

ą

Soil Removal to Control Prospective Uranium Contamination Incremental Costs and Impacts from 25 mrem/y Based on Usage by 25 Persons (Incremental Cost-benefit Results in \$M/estimated mortality averted)

Dose Reduction (mrem/y)	Soil removal cost at \$10/ft ³ burial charge (\$M)	Soil removal cost at \$50/ft ³ burial charge (\$M)	Incremental Estimated Mortality	Cost/benefit for \$10/ft ³ burial charge	Cost/benefit for \$50/ft ³
25-15	7.8	27	0.12	12	38
15-3	13	44	0.15	45	130
3-background	>20	>70	0.15	110	440

Strontium-90 Remediation by Pump and Treat Incremental Costs and Impacts from 25 mrem/y Based on Usage by 25 Persons (Incremental Cost-benefit Results in \$M/estimated mortality averted)

2

L

Dose Reduction (mrem/y)	Incremental cost (\$M)	Incremental estimated mortality	Incremental cost /benefit
25-15	1.7	0.0055	309
15-3	5.4	0.0116	466
3-background	32	0.0139	2300

Т

C.8-6

Uranium Remediation by Pump and Treat Incremental Costs and Impacts from 25 mrem/y Based on Usage by 25 Persons (Incremental Cost-benefit Results in \$M/estimated mortality averted)

Dose Reduction (mrem/y)	Incremental cost (\$M)	Incremental estimated mortality	Incremental cost /benefit
25-15	17	0.13	131
15-3	124	0.26	477
3-background	306	0.31	987

Remediation by Restricting Use & Providing Replacement Water for a Strontium-90 and Uranium Site Incremental Costs and Impacts from 25 mrem/y Based on Usage by 25 Persons (Incremental Cost-benefit Results in \$M/estimated mortality averted)

Dose Reduction (mrem/y)	Incremental cost (\$M)	Incremental estimated mortality	Incremental cost/benefit
Sr-90 site: 25 mrem/y - background	3.3	0.0139	250
Uranium site: 25 mrem/y - background	11	0.31	36

NUREG-1496

I

C.8-8

1

C.9 References

÷.

Abel, K. H., D. E. Robertson, C. W. Thomas, E. A. Lepel, J. C. Evans, W. V. Thomas, L. C. Carrick, and M. W. Leale. 1986. <u>Residual Radionuclide Contamination Within and</u> <u>Around Commercial Nuclear Power Plants</u>. NUREG/CR-4289, U.S. Nuclear Regulatory Commission, Washington, D.C.

Angus, M. J., S. R. Hunter, and J. Ketchen. 1990. "Classification of Contaminated and Neutron-Activated Concretes from Nuclear Facilities Prior to their Decontamination or Decommissioning," pp. 229 to 234, <u>Waste Management '90 Vol. 2- High Level Waste and</u> <u>Low Level Waste Technology</u>. American Nuclear Society, LaGrange Park, Illinois.

Babcock and Wilcox. 1992a. "Technical Progress Report, Apollo, Pennsylvania Nuclear Fuel Facility D&D Project. Quarterly Progress Report for the Period 1/1/92 - 3/31/92," <u>DOE/EW/40017-T2</u>, June 8, 1992.

Babcock and Wilcox. 1992b. "Technical Progress Report, Apollo, Pennsylvania Nuclear Fuel Facility D&D Project. Quarterly Progress Report for the Period 4/1/92 - 6/30/92," <u>DOE/EW/40017-T3</u>, August 25, 1992.

Brengle, R. G. 1979. "The Decontamination of Concrete," in proceedings of an American Nuclear Society Topical Meeting <u>Decontamination and Decommissioning of Nuclear</u> <u>Facilities</u>, M. M. Osterhout, Editor, pp. 451-455, Sun Valley, Idaho, September 16-20, 1979, Plenum Press, New York, New York.

Dennis, R., D. Dworkin, and W. Lowe. 1992. <u>Evaluation of Commercially Available Soil</u> <u>Washing Processes for Site Remediation</u>, HMC, May/June 1992, pp 47-57.

DOE. 1990. <u>Final Remedial Investigation/Feasibility Study--Environmental Assessment for</u> the Monticello, Utah, Uranium Mill Tailings Site, Volume 1 Remedial Investigation, DOE/EA-0424, U.S. Department of Energy Surplus Facilities Management Program by UNC Geotech, Grand Junction, Colorado, January 1990.

DOE. 1992. <u>Remedial Investigation and Feasibility Study: Operable Unit 3 Work Plant</u> <u>Addendum, Revision 2, Draft Final</u>, Volume 1 of 2, Sections 1-8, Appendices A, B, and C, Fernald Environmental Management Project, U.S. Department of Energy Fernald Field Office, Fernald, Ohio.

DOE. 1994a. Letter from Andrew Wallo, U.S. Department of Energy, to Dr. Anthony B. Wolbarst, U.S. Environmental Protection Agency, February 24, 1994.

C.9-1

DOE. 1994b. Monticello Mill Tailings Site Environmental Report for Calendar Year 1993, DOE/ID/12584-171, U.S. Department of Energy Grand Junction Project Office, Grand Junction, CO, May 1994.

Elder, H. K. 1981. <u>Technology, Safety and Costs of Decommissioning a Reference</u> <u>Uranium Hexafluoride Conversion Plant</u>, NUREG/CR-1757, U.S. Nuclear Regulatory Commission, Washington, D.C.

Elder, H. K. and D. E. Blahnik. 1980a. <u>Technology. Safety and Costs of Decommissioning</u> <u>a Reference Uranium Fuel Fabrication Plant</u>, NUREG/CR-1266, Vol. 1 Main Report, U.S. Nuclear Regulatory Commission, Washington, D.C.

Elder, H. K. and D. E. Blahnik. 1980b. <u>Technology. Safety and Costs of Decommissioning</u> <u>a Reference Uranium Fuel Fabrication Plant</u>, NUREG/CR-1266, Vol. 2 Appendices, U.S. Nuclear Regulatory Commission, Washington, D.C.

ENVEST. 1991. <u>RACER Remedial Action Cost Engineering and Requirements System-</u> <u>ENVEST Environmental Cost Engineering</u>. United States Air Force Environmental Restoration Program. Tyndall AFB, Florida.

EPA. 1990. "Superfund Record of Decision: Monticello Mill Tailings (DOE), UT", <u>EPA/ROD/R08-90/034</u>, August, 1990.

Gerber, M., H. Freeman, E. Baker, and W. Riemath. 1991. <u>Soil Washing: A Preliminary</u> <u>Assessment of its Applicability to Hanford</u>, PNL-7787, Battelle Pacific Northwest Laboratory for the U.S. Department of Energy.

Haase, A. E., R. S. Kingsley, L. P. Williams, and R. V. Carlson. 1992. "Decommissioning of B&W's Fuel Conversion Plant." pp. 717-721, <u>Waste Management '92</u> <u>Vol. 1- Technology and Programs for Radioactive Waste Management and Environmental</u> <u>Restoration</u>, American Nuclear Society, LaGrange Park, Illinois.

Irving, B. A. 1980. "Three Mile Island Concrete Decontamination Experience." Proceedings of a Concrete Decontamination Workshop, Seattle, Washington, May 28-29, 1980. pp. 169-178. CONF-800542, PNL-SA-8855, Pacific Northwest Laboratory, Richland, Washington.

Kennedy, W. E., Jr. and D. L. Strenge. 1992. <u>Residual Radioactive Contamination From</u> <u>Decommissioning</u>, NUREG/CR-5512, Vol. 1, U.S. Nuclear Regulatory Commission, Washington, D.C.

Kingsley, R.S., "Apollo Decommissioning Project, Decommissioning an LEU/HEU Fuel Fabrication Complex," Presentation to National Academy of Sciences, National Research Council, June 15-16, 1994.

NUREG-1496

ı.

C.9-2

Konzek, G. J., J. D. Ludwick, W. E. Kennedy, and R. I. Smith. 1982a. <u>Technology</u>. <u>Safety and Costs of Decommissioning Reference Nuclear Research and Test Reactors. Main</u> <u>Report</u>, NUREG/CR-1756, Vol. 1, U.S. Nuclear Regulatory Washington, DC.

Konzek, G. J., J. D. Ludwick, W. E. Kennedy, and R. I. Smith. 1982b. <u>Technology</u>. <u>Safety and Costs of Decommissioning Reference Nuclear Research and Test Reactors</u>. <u>Appendices</u>, NUREG/CR-1756, Vol. 2, U.S. Nuclear Regulatory Washington, DC.

Konzek, G.J. and R. I. Smith. 1990. <u>Technology. Safety. and Costs of Decommissioning a</u> <u>Reference Boiling Water Reactor Power Station - Comparison of Two Decommissioning Cost</u> <u>Estimates Developed for the Same Commercial Nuclear Reactor Power Station</u>. NUREG/CR-0672, Addendum 4. U.S. Nuclear Regulatory Commission, Washington, D.C.

Konzek, G. J., R. I. Smith, M. C. Bierschbach, and P. N. McDuffie. 1995. <u>Revised</u> <u>Analyses of Decommissioning for the Reference Pressurized Water Reactor Power Station</u>, NUREG/CR-5884, Vol. 1, U.S. Nuclear Regulatory Commission, Washington, DC.

Martin, K. L. 1985. "Radiological Survey of Molybdenum Corporation of America, Washington, Pennsylvania," <u>Preliminary Report for U.S. NRC Region I Office</u>, Oak Ridge Associated Universities.

Means. 1993. Means Building Construction Cost Data. Kingston, Massachusetts.

5

Murphy, E. S. 1981. <u>Technology, Safety and Costs of Decommissioning Reference Non-Fuel-Cycle Nuclear Facilities</u>, NUREG/CR-1754, U.S. Nuclear Regulatory Commission, Washington, D.C.

NRC. 1980a. <u>Final Generic Environmental Impact Statement on Uranium Milling</u>, NUREG-0706 Volume I, U.S. Nuclear Regulatory Commission, Washington, D.C.

NRC. 1980b. <u>Final Generic Environmental Impact Statement on Uranium Milling</u>, NUREG-0706, Volume III, U.S. Nuclear Regulatory Commission, Washington, D.C.

NRC. 1992. <u>Residual Radioactive Contamination From Decommissioning, Technical Basis</u> for Translating Contamination Levels to Annual Total Effective Dose Equivalent, Final Report, NUREG/CR-5512, Vol.1. Battelle Memorial Institute, Pacific Northwest Laboratory.

NRC. 1993. <u>Site Decommissioning Management Plan</u>, NUREG-1444, U.S. Nuclear Regulatory Commission, Washington, D.C.

NRC. 1994. <u>Generic Environmental Impact Statement in Support of Rulemaking on</u> <u>Radiological Criteria for Decommissioning of NRC-Licensed Nuclear Facilities</u>. NUREG-1496, Volume 2, Draft GEIS Report for Comment, U.S. Nuclear Regulatory Commission, Washington, D.C.

NRC. 1997. Memorandum from Carl Feldman, U.S. Nuclear Regulatory Commission, to File, Information Given to PNNL by NRC in Support of PNNL Modeling for FGEIS, March 1997. Placed in NRC Public Document Room under the proposed rule Federal Register Citation reference 59 FR 43228; August 22, 1994.

Nuclear Waste News, March 25, 1993; p. 117

Oak, H.D., et.al. 1980. <u>Technology, Safety, and Costs of Decommissioning a Reference</u> <u>Boiling Water Reactor Power Station</u>. NUREG/CR-0672, Vol. 2 Appendices. U.S. Nuclear Regulatory Commission, Washington, D.C.

Robertson, D. E., et al. 1989. <u>Below Regulatory Concern Owners Group: Radionuclides</u> <u>Characterization of Potential BRC Waste Types from Nuclear Power Stations</u>. EPRI NP-5677, Project B101-15 Final Report March 1989 by Pacific Northwest Laboratory, Electric Power Research Institute, Palo Alto, California.

Robertson, D. E., C. W. Thomas, N. L. Wynhoff, and D. C. Hetzer. 1991. <u>Radionuclide</u> <u>Characterization of Reactor Decommissioning Wastes and Spent Fuel Assembly Hardware</u>, NUREG/CR-5343, U.S. Nuclear Regulatory Commission, Washington, D.C.

Robertson, D.E. 1996. "Evaluation of the Residual Radionuclide Source Term at the Trojan Nuclear Power Plant at the Start of Decommissioning (1994)." Letter from Steven M. Short (Pacific Northwest National Laboratory) to Dr. Carl Feldman (U.S. Nuclear Regulatory Commission).

SEG. 1992. <u>Scientific Ecology Group Qualifications for Soil Washing Services</u>, Scientific Ecology Group, Pittsburgh, Pennsylvania.

Short, S. M. 1989. <u>Technology, Safety and Costs of Decommissioning Reference Non-Fuel-Cycle Nuclear Facilities</u>, NUREG/CR-1754, Addendum 1, U.S. Nuclear Regulatory Commission, Washington, D.C.

Smith, R. I., G. J. Konzek, and W. E. Kennedy, Jr. 1978. <u>Technology. Safety and Costs</u> of <u>Decommissioning a Reference Pressurized Water Reactor Power Station</u>, NUREG/CR-0130, Vol. 1 & 2, U.S. Nuclear Regulatory Washington, DC.

Tichlier, J., K. Lucadmao, and K. Doty. 1995. <u>Radioactive Materials Released from</u> <u>Nuclear Power Plants</u>. NUREG/CR-2907. U.S. Nuclear Regulatory Commission, Washington, D.C.

Westinghouse Hanford Company. 1989. <u>Shippingport Station Decommissioning Project -</u> <u>Contaminated Concrete Removal Topical Report</u>, DOE/SSDP-0047, Westinghouse Hanford Company, Richland, Washington.

NUREG-1496

C.9-4
Yasunaka, H., M. Shibamoto, T. Sukegawa, T. Yamate, and M. Tanaka. 1987. "Microwave Decontaminator for Concrete Surface Decontamination in JPDR," CONF-871018, <u>Decommissioning</u>, Vol. 2, pp. IV.109-IV.116, G.A. Tarcza, Editor, Proceedings of the 1987 International Symposium, Pittsburgh, PA.

ATTACHMENT A

.

CALCULATED DOSE FACTORS FOR THREE LAND-USE SCENARIOS

C.A-1

÷

i

د ۲ و د د در بر ۲ و د د د در بر

.. .

CALCULATED DOSE CONVERSION FACTORS

Table A-1 Building Occupancy Scenario

Radionuclide	Dose Conversion Factor (mrem/y) per (dpm/100 cm ³)	Year Analyzed	Controlling Pathway
"Co	2.89E-3	1	external (-91%)
**Sr	1.51E-3	1	ingestion (~84%)
^{DT} Cs	1.11E-3	1	external (~59%)
232 / h	2.63E-2	1	inhalation (²²³ Th ~67%, ²²⁸ Th ~14%)
U nat	1.61E-2	1	inhalation (²³ U ~69%), ingestion (²³ U ~14%, ²³ U ~12%)

Table A-2 Unrestricted Land Use Scenario

Radionuclide	Dose Conversion Factor (mrem/y) per (pCi/gm)
%Co	5.0562
^{so} Sr	1.3183
¹³ Cs	1.4027
223Th	1.754
U nat	0.76453

Table A-3 Restricted Land Use Scenario

Radionuclide	Dose Conversion Factor (mrem/y) per (pCi/gm)
"Co	0.368
*Sr	0.0015
¹³ Cs	0.0869
233LP	0.076
U nat	0.0254

NUREG-1496

. .

. . .

ATTACHMENT B

DOSE RATE SPREADSHEETS FOR CONTAMINATED SOILS

. .

ATTACHMENT B

DOSE RATE SPREADSHEETS FOR CONTAMINATED SOILS

This attachment provides the underlying data from which the dose rates versus depth of contamination in soil figures in Section 5 were generated. Section 5 provides a description of the "real world" models used to generate the tables in this attachment. Tables B.1 and B.2 provide spreadsheets, for the unrestricted and restricted land-use scenarios, respectively, showing dose rate (and contaminant concentration) versus depth into the soil column for the "real world" ⁶⁰Co and ¹³⁷Cs models discussed in Section 5.1. The profiles in these tables represent the scenario in which the reference facility is assumed to be decommissioned soon after permanent shutdown. Tables B.3 and B.4 represent the same set of scenarios with the exception that the reference facility is assumed to be decommissioned after a 50-year SAFSTOR period.

The "real world" model for predicting the distribution of uranium in soil is provided in Table B.5 for both the unrestricted and restricted land-use scenarios. This distribution is based on the "real world" model for uranium discussed in Section 5.2. Correspondingly, Table B.6 provides the spreadsheet for the distribution of thorium contamination in the soil column for both the unrestricted and restricted land-use scenarios. The "real world" model for thorium from which this model was generated is discussed in Section 5.3.

×	Concentration, pCi/g				lose Rate, m	rem/y	Cs-137 Dose Rate, mrem/y		
			I cm	Surface Con	tamination Lev	el, pCi/g	Surface Con	Itamination Lev	rel, pCi/g
Soil Depth		1. S.	Layers	2	30	60	1	5	20
(cm)	<u>Co-60</u>	Cr-137	Removed	Lax	Med	High	Low	Med	High
1	5.222+02	1.48E+07	0	1.31E+01	1.97E+02	3.94E+02	1.61E+00	\$.07E+00	3.23E+01
2	3.06E+02	8.892+01	1	8.59E+00	1.298+02	2.58E+02	1.07E+00	5.36E+00	2.14E+01
3 -	1.81E+02	5.41E+01	2	5.91E+00	8.87E+01	1.77E+02	7.45E-01	3.72E+00	1.49E+01
4	1.09E+02	3.35E+01	3	4.32E+00	6.48E+01	1.30E+02	5.44E-01	2.72E+00	1.09E+01
5	6.77E+01	2.132+01	4	3.34E+00	5.02E+01	1.00E+02	4.18E-01	2.09E+00	8.36E+00
6 2	4.34E+01	1.402+01	S	2.73E+00	4.10E+01	8.192+01	3.37E-01	1.688+00	6.74E+00
7	2.92E+01	9.61E+00	6	2.33E+00	3.50E+01	6.99E+01	2.82E-01	1.41E+00	5.65E+00
8	2.07E+01	6.92E+00	. 7	2.05E+00	3.08E+01	6.16E+01	2.44E-01	1.22E+00	4.89E+00
9	1.56E+01	5.25E+00	8	1.85E+00	2.78E+01	5.56E+01	2.16E-01	1.08E+00	4.32E+00
10	1.252+01	4.18E+00	9	1.70E+00	2.54E+01	5.09E+01	1.94E-01	9.71E-01	3.88E+00
11	1.05E+01	3.47E+00	10	1.57E+00	2.35E+01	4.71E+01	1.76E-01	8.82E-01	3.53E+00
12	9.10E+00	2.938+00	11	1.46E+00	2.19E+01	4.38E+01	1.61E-01	8.07E-01	3.23E+00
13	8.1312+00	2.62E+00	12	1.36E+00	2.04E+01	4.0972+01	1.48E-01	7.42E-01	2.97E+00
14	7.40E+00	2.35E+00	13	1.235+00	1.91E+01	3.838+01	1.372-01	6.84E-01	2.73E+00
15	6.81E+00	2.13E+00	14	1.202+00	1.795+01	3.59E+01	1.26E-01	6.31E-01	2.53E+00
16	6.32E+00	1.95E+00	15	1.12E+00	1.682+01	3.37E+01	1.17E-01	5.84E-01	2.348+00
17	5.892+00	1.79E+00	16	1.052+00	1.58E+01	3.16E+01	1.08E-01	5.40E-01	2.16E+00
18	5.51E+00	1.65E+00	17	9.89E-01	1.48E+01	2.97E+01	1.00E-01	5.00E-01	2.00E+0L
19	5.17E+00	1.52E+00	18	9.30E-01	1.392+01	2.79E+01	9.27E-02	4.63E-01	1.858+00
20	4.85E+00	1.408+00	19	8,73E-01	1.316+01	2.62E+01	8.5812-02	4.29E-01	1.72E+00
21	4.55E+00	1.3012+00	20	8.21E-01	1.2312+01	2.46E+01	7.95E-02	3.98E-01	1.596100
22	4.27E+00	1.202+00	21	7.71E-01	1.16E+01	2.31E+01	7.376-02	3.68E-01	· 1.47E+00
23	4.0112+00	1.112+00	22	7.25E-01	1.092+01	2.17E+01	6.83E-02	3.41E-01	1.37E+00
24	3.77E+00	1.03E+00	23	6.81E-01	1.022+01	2.04E+01	6.32E-02	3.16E-01	1.26E+00
25	3.54E+00	9.55E-01	24.	6.40E-01	9.60E+00	1.92E+01	5.86E-02	2.93E-01	1.17E+00
26	3.33E+00	8.85E-01	25	6.01E-01	9.02E+00	1.802+01	5.43E-02	2.72E-01	1.09E+00
27	3.13E+00	8.20E-01	26	5.65E-01	8.48E+00	1.70E+01	5.03E-02	2.52E-01	1.01E+00
28	2.94E+00	7.60E-01	27	5.31E-01	7.97E+00	1.598+01	4.66E-02	2.33E-01	9.32E-01
29	2.76E+00	7.04E-01	28	4.99E-01	7.49E+00	1.50E+01	4.32E-02	2.16E-01	8.64E-01
10	2.592+00	6.57E-01	29	4,69E-01	7.04E+00	1.41E+01	4.00E-02	2.00E-01	8.00E-01
- 21	2.44E+00	6.05E-01	30	4.41E-01	6.61E+00	1.32E+61	3.71E-02	1.85E-01	7.42E-01
33	2 29E+00	5.60E-01	31	4.14E-01	6.21E+00	1.24E+01	3.44E-02	1.72E-01	6.87E-01
36	2145+00	5.19E-01	32	3.89É-01	5.84E+00	1.17E+01	3.18E-02	1.59E-01	6.37E-01
33	2.172+00	4.818-01	33	3.66E-01	5.492+00	1.10E+01	2.95E-02	1.47E-01	5.9017.01
34	1002100	4 468-01	34	3.44E-01	5.16E+00	1.03E+01	2.73E-02	1.37E-01	5.478.01
35	1.7013100	A 138-01	35	3.23E-01	4.84E+00	9.69E+00	2.53E-02	1.27E-01	5 075-01
36	1.775+00	1 927-01	36	3.03E-01	4.55E+00	9.108+00	2.35E-02	1.17E-01	4 6017 01
37	1.032.100	3.8315~1 3.660_At	37	2.858-01	4.288+00	8.55E+00	2.175.07	1 0917-01	4 362 61
38	1'281:400	3.370-01	1 38	2.61E-01	4.02E+00	8.042+00	2.826.02	1018-01	4.332:-01
39	1,4812+00	3.298-01	19	2.52E-01	3.782+00	7.55R+00	t #76.07	0 148 65	1.U3E-01
40	1.39E+00	3.04E-01	<i>\$7</i>		311412100	8.88 f3 f VV	1.9/C-UZ	7.3415-02	3.73E-01

Table B.1. Calculated Residual Radiation Dose Rates as a Function of Soil Depth Removed, (Unrestricted Land Use, Real World Model for Cobalt-60 and Cesium-137)

£.

•

C.B-3

					ose Rate, m	rem/y	Cs-137 Dose Rate, mrem/y		
	Concentrali	on DCi/R	1 ôm	Surface Con	tamination Lev	el, pCi/g	Surface Contamination Level pCi/a		
Soil Depth			Layers	2	30	60	1	5	20
(cm)	Co-60	C1-137	Removed	Low	Med	High	Low	Med	High
41	1.31E+00	2.82E-01	40	2.37E-01	3.55E+00	7.10E+00	1.73E-02	8.65E-02	3.462-01
42	1.238+00	2.61E-01	41	2.72E-01	3.34E+00	6.67E+00	1.60E-02	8.02E-02	3.211-01
43	1.16E+00	2.42E-01	42	2.09E-01	3.13E+00	6.27E+00	1.498-02	7.43E-02	2.976-01
44	1.09E+00	2.24E-01	43	1.96E-01	2.95E+00	5.89E+00	1.38E-02	6.88E-02	2.75E-01
45	1.028+00	2.08E-01	44	1.85E-01	2.77E+00	5.54E+00	1.28E-02	6.38E-02	2.55E-01
46	9.59E-01	1.93E-01	45	1.73E-01	2.60E+00	5.20E+00	1.18E-02	5.91E-02	2.36E-01
47	9.02E-01	1.798-01	46	1.63E-01	2.44E+00	4.89E+00	1.10E-02	5.48E-02	2.19E-01
48	8.47E-01	1.65E-01	47	1.53E-01	2.30E+00	4.59E+00	1.01E-02	5.07E-02	2.03E-01
49	7.96E-01	1.53E-01	48	1.44E-01	2.16E+00	4.328+00	9.40E-03	4.70E-02	1.88E-01
50	7.48E-01	1.42E-01	49	1.35E-01	2.03E+00	4.66E+00	8.71E-03	4.36E-02	1.74E-01
51	7.03E-01	1.32E-01	50	1.27E-01	1.91E+00	3.81E+00	8.07E-03	4.04E-02	1.61E-01
52	6.61E-01	1.22E-01	51	1.19E-01	1.79E+00	3.58E+00	7.48E-03	3.74E-02	1.50E-01
53	6.21E-01	1.13E-01	52	1.12E-01	1.68E+00	3.37E+00	6.93E-03	3.47E-02	1.39E-01
54	5.83E-01	1.05E-01	53	1.05E-01	1.58E+00	3.16E+00	6.42E-03	3.21E-02	1.28E-01
55	5.48E-01	9.70E-02	54	9.91E-02	1.49E+00	2.97E+00	5.95E-03	2.98E-02	1.19E-01
56	5.15E-01	8.99E-02	55	9.31E-02	1.40E+00	2.79E+00	5.52E-03	2.76E-02	1.10E-01
57	4.84E-01	8.33E-02	56	8.75E-02	1.31E+00	2.63E+00	5.11E-03	2.56E-02	1.02E-01
58	4.55E-01	7.72E-02	57	8.22E-02	1.23E+00	2.47E+00	4.73E-03	2.37E-02	9.47E-02
59	4.28E-01	7.158-02	58	7.73E-02	1.16E+00	2.32E+00	4.39E-03	2.198-02	8.77E-02
60	4.02E-01	6.63E-02	59	7.26E-02	1.09E+00	2.18E+00	4.06E-03	2.03E-02	8.13E-02
61	3.78E-01	6.148-02	60	6.82E-02	1.02E+00	2.05E+00	3.77 <u>8</u> -03	1.88E-02	7.53E-02
62	3.55E-01	5.69E-02	61	6.41E-02	9.62E-01	1.92E+00	3.49E-03	1.74E-02	6.98E-02
63	3.33E-01	5.27E-02	62	6.03E-02	9.04E-01	1.81E+00	3.23E-03	1.62E-02	6.47E-02
64	3.13E-01	4.89E-02	63	5.66E-02	8.50E-01	1.70E+00	3.00K-03	1.50E-02	5.99E-02
65	2.94E-01	4.53E-02	64	5.32E-02	7.98E-01	1.60E+00	2.78E-03	1.39E-02	5.55E-02
66	2.77E-01	4.19E-02	65	5.00E-02	7.50E-01	1.SOE+00	2.57E-03	1.29E-02	5.15E-02
67	2.60E-01	3.89E-02	66	4.70E-02	7.05E-01	1.4LE+00	2.38E-03	1.19E-02	4.77E-02
68	2.44E-01	3.60E-02	67	4.42E-02	6.63E-01	1.33E+00	2.21E-03	1.10E-02	4.42E-02
69	2.30E-01	3.34E-02	68	4.15E-02	6.23E-01	1.25E+00	2.05E-03	1.02E-02	4.09E-02
70	2.16E-01	3.09E-02	69	3.90E-02	5.85E-01	1.17E+00	1.90E-03	9.48E-03	3.79E-02
71	2.03E-01	2.878-02	70	3.66E-02	5.50E-01	1.10E+00	1.76E-03	8.79E-03	3.51E-02
72	1.91E-01	2.66E-02	71	3.44E-02	5.17E-01	1.032+00	1.63E-03	8.14E-03	3.26E-02
71	1.79E-01	2.46E-02	72	3.24E-02	4.85E-01	9.71E-01	1.51E-03	7.55E-03	3.02E-02
74	1.68E-0)	2.288-02	73	3.04E-02	4.56E-01	9.12E-01	1.40E-03	6.99E-03	2.80E-02
74	1.52E-01	2.11E-02	74	2.86E-02	4.29E-01	8.57E-01	1.30E-03	6.48E-03	2.59E-02
75	1.492.01	1.96E-02	. 75	2.69E-02	4.03E-01	8.06E-01	1.20E-03	6.00E-03	2.40E-02
70	1.408-01	1.81E-02	76	2.52E-02	3.79E-01	7.57E-01	1.11E-03	5.56E-03	2.22E-02
70	1 316.01	1.68E-02	77	2.37E-02	3.56E-01	7.11E-01	1.03E-03	5.15E-03	2.06E-02
75	1 238.01	1.56E-02	78	2.23E-02	3.34E-01	6.69E-01	9.55E-04	4.78E-03	1.91E-02
19	1 145 01	1 44E-02	79	2.09E-02	3.14E-01	6.28E-01	8.85E-04	4.43E-03	1.7784
80	1100-01	1.4.400.40						·····	

¥

Table B.1. Calculated Residual Radiation Dose Rates as a Function of Soil Depth Removed, (Unrestricted Land Use, Real World Model for Cobalt-60 and Cesium-137) (continued)

.

3.

•

	· •			Co-60 D	ose Rate, m	rem/y	Cs-137 Dose Rate, mrem/y			
	Concentrati	on, pCi/g	1 cm	Surface Con	amination Lev	cl, pCi/g	Surface Contamination Level, pCi/a			
Soil Depth			Leyers	2	30	60	1	5	20	
(cm)	<u>Co-60</u>	<u>Cr-137</u>	Removed	Low	Med	High	Low	Med	High -	
. 81	1.09E-01	1.342-02	03	1.97E-02	2.95E-01	5.90E-01	8.20E-04	4.10E-03	1.64E-02	
82	1.02E-01	1.24E-02	81	1.852-02	2.771-01	5.55E-01	7.60E-04	3.80E-03	1.526-02	
83	9.62E-02	1.15E-02	82	1.74E-02	2.61E-01	5.21E-01	7.04E-04	3.52E-03	1.41E-02	
84	9.04E-02	1.06E-02	· 83	1.63E-02	2.45E-01	4.90E-01	6.53E-04	3.26E-03	1.31E-02	
85	8.49E-02	9.85E-03	. 84	1.53E-02	2.308-01	4.60E-01	6.05E-04	3.02E-03	1.21E-02	
86	7.98E-02	9.13E-03	85	1.448-02	2.16E-01	4.33E-01	5.602-04	2.80E-03	1.12E-02	
87	7.50E-02	8.46E-03	86	1.36E-02	2.03E-01	4.07E-01	5.19E-04	2.60E-03	1.04E-02	
88	7.05E-02	7.84E-03	87	1.27E-02	1.91E-01	3.82E-01	4.81E-04	2.40E-03	9.62E-03	
89,	6.62E-02	7.26E-03	88	1.20E-02	1.80E-01	3.59E-01	4.46E-04	2.23E-03	8.91E-()	
90	6.22E-02	6.73E-03	89	1.17E-02	1.698-01	3.37E-01	4.138-04	2.06E-03	8.26B-4	
91	5.85E-02	6.24E-03	90	1.068-02	1.59E-01	3.17E-01	3.83E-04	1.91E-03	7.65E-L J	
92	5.50E-02	5.78E-03	91	9.93E-03	1.49E-01	2.97E-01	3.55E-04	1.77E-03	7.09E-03	
93	5.16E-02	5.36E-03	92	9.33E-03	1.40E-01	2.80E-01	3.28E-04	1.64E-03	6.57E-03	
· 14	4.85E-02	4.96E-03	93	8.77E-03	1.32E-01	2.63E-01	3.04E-04	1.52E-03	6.09E-03	
95	4.568-02	4.60E-03	94	8.248-33	1.24E-01	2.47E-01	2.82E-04	1.41E-03	5.6412-03	
96	4.292-02	4.26E-03	93	7.74E-03	1.16E-01	2.378-01	2.61E-04	1.31E-03	5.23E-03	
97	4.03E-02	3.95E-03	90	7.288-03	1.098-01	2.188-01	2.4ZE-04	1.21E-03	4.84E-03	
- 98	3.78E-02	3,66E-03	97	0.892-03	1.032-01	2.058-01	2.24E-04	1.12E-03	4.498-03	
9 9	3.56E-02	3.398-03		6 642 63	9.04E-02	1.9312-01	2.0815-04	1.04E-03	4.1cE-03	
· 100	3.34E-02	3.14E-03	77	6,040,03	9.000.02	1.612-01	1.938-04	9.63E-04	3.85E-03	
101	3.14E-02	2.91E-03	100	\$.07 <u>5</u> -03	8.015-02	1.702-01	1.795-04	8.9312-04	3.57E-03	
102	2.95E-02	2,70E-03	101	5.017.01	7 \$27.03	1.000-01	1.072-04	8.276-04	3.31E-03	
103	2.77E-02	2,508-03	102	4715.03	7.068.07	1.305-01	1.7312-04	7.66E-04	3.07E-03	
104	2.61E-02	2.376-03	103	4 412.01	6 64R-07	1.712,-03	1.420-04	7.108-04	2.84E-03	
105	2.45E-02	2.15E-03	105	4 168.03	6748.07	1.336-01	1.375-04	6.38E-04	2.6312-03	
106	2.30E-02	1.998-03	105	1 017-01	5 268.07	1.172.01	1.220-04	0.1015-04	2.44E-03	
107	2.16E-02	1.848-03	100	3.678.03	5 516.02	1 102.01	1.135-04	3.038-04	2.26E-03	
108	2.03E-02	1.716-03	107	3 #5F-03	5 18F-07	1048-01	0.702.04	5.2312-04	2.095-03	
109	1.91E-02	1,225-03	100	3.24E-03	4.868-02	9718.07	9.002.05	4.6311-04	1.94E-03	
110	1.79E-02	1.478-03	110	3.05E-03	4.57E-02	9147.07	8.776-03	4.492-04	1.80E-03	
111	1.692-02	1.305-03	111	2.66E-03	4.308-02	8 598.02	0.330-03 7 772.AL	9.10E-04	1.67E-03	
112	1.58E-02	1.208-03	117	2 698-03	4.04E-02	8 075.07	7.1213-03 7 148-04	3.8013-04	1.54E-03	
113	1.49E-0Z	1.176-03	113	2.53E-03	3.79E-02	7.597.02	6.67E.05	3.385-04	1.438-03	
114	1.408-02	1.026-02	114	2.388-03	3.56E-02	7 175-02	6145-05	3.316-04	1.3JE-03	
115	1.31E-02	1.0012-03	117	2.238-03	3 355-02	6 7012.02	0.14E-03	3.0712-04	1.23E-03	
116	1.24E-02	9.282-04	112	2.105.03	3.156.07	6 305-02	J.076-03 5 770 At	4.07Ľ·V4	1.14E-03	
117	1.16E-02	8.592-04	11U	1 6772.01	2 04E 13	5 070 A7	· J.272-U3	2.092-04	1.05E-03	
118	1.09E-02	7.96E-04	517	1,27,5-03	2.701-02	5.710-04 5 5612.03	4.692.04 ·	2.4412-04	9.77E-04	
119	1.03E-02	7.38E-04	114	1.020-03	2.700-02 7.61E.07	5.300-04	4.JJE-U)	2.268-04	9.05E-04	
120	9.64E-03	6.84E-04	117	1./16-03	2.012-02	J.2215402	4.17E-03	2.10E-04	8.3912-04	

Table B.1.	Calculated Residual Radiation Dose Rates as a Function of Soil Depth Removed,
	(Unrestricted Land Use, Real World Model for Cobalt-60 and Cesium-137) (continued)

۰.

. •

ŧ

₩'/

*

C.B-5

•

.

NUREG-1496

•

				Co-60 Dose Rate, mrem/y		Cs-137 Dose Rate, mrcm/y			
	Concentrati	on, pCi/g	i cm	Surface Con	amination Le	vel, pCi/g	Surface Con	amination Le	vel, pCi/g
Soil Depth			Layers	2	30	60	1	5	20
(cm)	<u>Co-60</u>	<u>C1-137</u>	Removed	Low	Med	High	Low	Med	High
1	5.22E+02	1.48E+02	0	9.56E-01	1.43E+01	2.87E+01	9.99E-02	5.00E-01	2.00E+00
2	3.06E+02	8.89E+01	1	6.25E-01	9.37E+00	1.87E+01	6.64E-02	3.32E-01	1.33E+00
3	1.81E+02	5.41E+01	2	4.30E-01	6.46E+00	1.29E+01	4.61E-02	2.31E-01	9.22E-01
4	1.09E+02	3.35E+01	3	3.14E-01	4.71E+00	9.43E+00	3.37E-02	1.68E-01	6.73E-01
5	6.77E+01	2.13E+01	4	2.43E-01	3.65E+00	7.30E+00	2.59E-02	1.29E-01	5.18E-01
6	4.34E+01	1.40E+01	5	1.99E-01	2.98E+00	5.96E+00	2.09E-02	1.04E-01	4.17E-01
7	2.92E+01	9.61E+00	6	1.70E-01	2.54E+00	5.09E+00	1.75E-02	8.75E-02	3.50E-01
8	2.07E+01	6.92E+00	7	1.50E-01	2.24E+00	4.49E+00	1.51E-02	7.57E-02	3.03E-01
9	1.56E+01	5.25E+00	8	1.35E-01	2.02E+00	4.05E+00	1 14E-02	6.69E-02	2.6 SE-01
10	1.25E+01	4.18E+00	9	1.23E-01	1.85E+00	3.70E+00	1.20E-02	6.02E-02	2.41E-01
11	1.05E+01	3.47E+00	10	1.14E-01	1.71E+00	3.42E+00	1.09E-02	5.46E-02	2.19E-01
12	9.10E+00	2.98E+00	11	1.06E-01	1.59E+00	3.19E+00	1.00E-02	5.00E-02	2.00E-01
13	8.13E+00	2.62E+00	12	9.92E-02	1.49E+00	2.98E+00	9.19E-03	4.60E-02	1.84E-01
14	7.40E+00	2.35E+00	13	9.28E-02	1.39E+00	2.79E+00	8.47E-03	4.23E-02	1.69E-01
15	6.81E+00	2.13E+00	14	8.70E-02	1.31E+00	2.61E+00	7.82E-03	3.91E-02	1.56E-01
16	6.32E :00	1.95E+00	15	8.17E-02	1.22E+00	2.45E+00	7.23E-03	3.62E-02	1.45E-01
17	5.89E+00	1.79E+00	16	7.67E-02	1.15E+00	2.30E+00	6.69E-03	3.35E-02	1.34F-01
18	5.51E+00	1.65E+00	17	7.20E-02	1.08E+00	2.16E+00	6.20E-03	3.10E-02	1.24E 01
19	5.17E+00	1.52E+00	18	6.77E-02	1.01E+00	2.03E+00	5.74E-03	2.87E-02	1.15E-01
20	4.85E+00	1.40E+00	19	6.36E-02	9.53E-01	1.91E+00	5.32E-03	2.66E-02	1.06E-01
21	4.55E+00	1.30E+00	20	5.97E-02	8.96E-01	1.79E+00	4.93E-03	2.46E-02	9.85E-02
22	4.27E+00	1.20E+00	21	5.61E-02	8.42E-01	1.68E+00	4.56E-03	2.28E-02	9.13E-02
23	4.01E+00	1.11E+00	22	5.27E-02	7.91E-01	1.58E+00	4.23E-03	2.11E-02	8.46E-02
24	3.77E+00	1.03E+00	23	4.96E-02	7.43E-01	1.49E+00	3.92E-03	1.96E-02	7.83E-02
25	3.54E+00	9.55E-01	24	4.66E-02	6.98E-01	1.40E+00	3.63E-03	1.82E-02	7.262-02
26	3.33E+00	8.85E-01	25	4.38E-02	6.56E-01	1.31E+00	3.36E-03	1.68E-02	6.73E-02
27	3.13E+00	8.20E-01	26	4.11E-02	6.17E-01	1.23E+00	3.12E-03	1.56E-02	6.23E-02
28	2.94E+00	7.60E-01	27	3.86E-02	5.80E-01	1.16E+00	2.89E-03	1.44E-02	5.77E-02
29	2.76E+00	7.04E-01	28	3.63E-02	5.45E-01	1.09E+00	2.68E-03	1.34E-02	5.35E-02
30	2.59E+00	6.52E-01	29	3.41E-02	5.12E-01	1.02E+00	2.48E-03	1.24E-02	4.962-02
31	2.44E+00	6.05E-01	30	3.21E-02	4.81E-01	9.62E-01	2.30E-03	1.15E-02	4.59E-02
12	2.29E+00	5.60E-01	31	3.01E-02	4.52E-01	9.04E-01	2.13E-03	1.06E-02	4.26E-02
12	2 15E+00	5.19E-01	32	2.83E-02	4.25E-01	8.49E-01	1.97E-03	9.86E-03	3.94E-02
33	2 02E+00	4.81E-01	33	2.66E-02	3.99E-01	7.98E-01	1.83E-03	9.14E-03	3.65E-02
34	1 90 5+00	4.46E-01	34	2.50E-02	3.75E-01	7.50E-01	1.69E-03	8.47E-03	3.39E-02
33	1 705+00	4.13E-01	- 35	2.35E-02	3.52E-01	7.05E-01	1.57E-03	7.84E-03	3.14E.02
6L	1.135100	1 812.01	36	2.21E-02	3.31E-01	6.62E-01	1.45E-03	7.27E-03	2.915.02
37	I.UBETUV	1 55E.01	37	2.08E-02	3.11E-01	6.23E-01	1.35E-03	6.74E-01	2 695.02
38	1.345700	1 20E.A1	38	1.95E-02	2.93E-01	5.85E-01	1.25E-03	6.241.01	2 502.02
39	1.442100	3.476-VI	39	1.83E-02	2.75E-01	5.50E-01	1 166-03	5724.03	4.50E-02
40	1.398400	J.V9E-VI					1,101-03	J. 10E-UJ	4.31K-UZ

<u>Table B.2.</u> Calculated Residual Radiation Dose Rates as a Function of Soil Depth Removed, (Restricted Land Use, Real World Model for Cobalt-60 and Cesium-137)

..

4.1

4

· .

•

۰.

•

r

¥

.

					Co-60 Dose Rate, mrem/y			Cs-137 Dose Rate, mrem/y			
	Concentrati	on, pCi/g	1 cm	Surface Con	tamination Lev	vel, pCi/g	Surface Contamination Level, pCi/g				
Soil Depth			Layers	4	30	60	1	5	20		
(CTN)	<u>Co-60</u>	Q-127	Kemoved	LOW LOW	Meg	加約	Low	Med	lligh		
-41	1.31E+00	2.8215-01	40	1.725-02	2.58E-01	5.178-01	1.07E-03	5.36E-03	2.14E-02		
42	1.23E+00	2.012-01	41	1.072-07	2.431-01	4.858-01	9.93E-04	4.97E-03	1.99E-02		
43	1.16E+00	2.47E-01	42	1.525-02	2.286-01	4.565-01	9.20E-04	4.60E-03	1.84E-02		
44	1.09E+00	2.24E-01	43	1.436-02	2.145-01	4.29E-01	8.52E-04	4.26E-03	1.70E-02		
45	1.02E+00	2.07E-01	44	1.348-02	2.012-01	4.038-01	7.90E-04	3.95E-03	1.58E-02		
46	9.59E-01	1.938-01	43	1.266-02	1.598-01	3.79E-01	7.32E-04	3.66E-03	1.46E-02		
- 47	9.02E-01	1.79E-01	40	1.192-02	1.785-01	3.56E-01	6.78E-04	3.39E-03	1.36E-02		
48	8.47E-01	1.656-01	47	1.112-04	1.072-01	3.345-01	6.29E-04	3.14E-03	1.26E-02		
49	7.966-01	1.538-01	75	1.03 <u>6</u> -02	1.375-01	J.142-01	5.82E-04	2.91E-03	1.16E-02		
50	7.48E-01	1.476-01	47	9.610-03	1.465-01	2.730-01	3.40E-04	2.70E-03	1.08E-02		
51	7.03E-01	1.375-01	50	7.23E-03	1.396-01	2.77 <u>C-01</u>	3.00E-04	2.50E-03	1.00E-02		
52	6.61E-01	1.226-01	51	9 172.01	1,305-01	3.010-01	4.03K-04	2.32E-03	9.27E-03		
53	6.71E-01	1.132-01	52 (1	7 676-03	1155-01	3 302 01	9.292-04	2.15E-03	8.59E-03		
54	5.838-01		55	7718-03	1028-01	3.30E-01	3.985-04	1.99E-03	7.95E-1 3		
55	3.48E-01	9,705-02	57 57	6798.03	1 002 01	2.10C-01	3.072-04	1.846-03	7.372-03		
56	5.158-01	8.995-02	55	6.785-0J	0 552.07	2.030-01	3.422-04	1.71E-03	6.83E-03		
57	4,84E-03	8.336-01	50 67	(00E.03	7.33 <u>1</u> -02	1.716-01	3.175-04	1.58E-03	6.33E-13		
58	4.55E-01	7.722-92	57 49	5.576-03	8.44E.M	1.602-01	2.935-04	1.47E-03	5.87EJ3		
59	4.28E-01	7.150-02		5 79E M	7035.03	1.072-01	2.721-04	1.36E-03	5.44E-03		
60	4.07E-01	0.032-02	57	J.200-0J	7.730-04	1.395-01	2.528-04	1.26E-03	5.04E-03		
61	3.78E-01	0.142-02		A 678.03	7.475-04	1.470-01	2.33E-04	. I.17E-03	4.67E-03		
62	3.55E-01	2.092-02	49	4 102.01	A 592.03	1.100-01	2.10E-04	1.08E-03	4.32E-03		
63	3.33E-01	3.276/02	02 67	4 192 A1	6 192 M	1.326-01	2.00E-04	1.002-03	4.01E-03		
64	3.13E-01	4.898-02	63	7.126-03	6 812 02	1.415-01	1.80104	9.28E-04	3.71E-03		
65	2.94E-01	4.538-02	64	3.010-03	5.010-02	1.100-0	1.722-04	8.60E-04	3.448-03		
66	2.77E-01	4.19E-02	63	3.040-03	5.100-01	1.092-01	1.598-04	7.97E-04	3.19E-03		
67	2.60E-01	3,892-02	00	3.426-03	5.13E-UZ	1.036-01	1.48E-04	7.38E-04	2.95E-03		
68	2.44E-01	3.60 E-02	67	3.21E-03	4.825-02	9.646-02	1.37E-04	6.84E-04	2.74E-03		
69	2.30E-01	3.34E-02	68	3.02E-03	4.732-02	9.06E-02	1.27E-04	6.34E-04	2.54E-03		
70	2.16E-01	3.09E-02	69	2.84E-03	4.261-02	8.52E-02	1.17E-04	5.87E-04	2.35E-03		
71	2.03E-01	2.87E-02	70	2.67E-03	4.002-02	8.00E-02	1.09E-04	5.44E-04	2.18E-03		
72	1.91E-01	2.66E-02	71	2.51E-03	3.768-02	7.52E-02	1.01E-04	5.04E-04	2.02E-03		
73	1.79E-01	2.46E-02	72	2.35E-03	3.53E-02	7.06E-02	9.35E-05	4.67E-04	1.87E-03		
74	1.68E-01	2.28E-02	73	2.21E-03	3.32E-02	6.64E-02	8.66E-05	4.33E-04	1.73E-03		
75	1.58E-01	2.11E-02	74	2.08E-03	3.12E-02	6.24E-02	8.03E-05	4.01E-04	1.61E-03		
76	1.49E-01	1.96E-02	75	1.95E-03	2.93E-02	5.86E-02	7.44E-05	3.72E-04	1.49E-03		
77	1.40E-01	1.81E-02	76	1.84E-03	2.75E-02	5.51E-02	6.89E-05	3.44E-04	1.38E-03		
78	1.31E-01	1.68E-02	77	1.73E-03	2.59E-02	5.18E-02	6.38E-05	3.19E-04	1.28E-03		
79	1.23E-01	1.56E-02	78	1.62E-03	2.43E-02	4.87E-02	5.92E-05	2.96E-04	1.18E-03		
80	1.16E-01	1.44E-02	79	1.52E-03	2.29E-02	.4.57E-02	5.48E-05	2.74E-04	1.10E-03		

<u>Table B.2.</u> Calculated Residual Radiation Dose Rates as a Function of Soil Depth Removed, (Restricted Land Use, Real World Model for Cobalt-60 and Cesium-137) (continued)

				<u> </u>	ose Rate, m	rem/y	Cs-137 Dose Rate, mrem/y		
	Concentrat	ion, pCi/g	i cm	Surface Con	tamination Lev	vel, pCi/g	Surface Con	tamination Lev	vel. pCi/g
Soil Depth			Layers	2	30	60	1	5	20
(cm)	<u>Co-60</u>	<u>Ci-137</u>	. <u>Removed</u>	Low	Med	<u>High</u>	Low	Med	High
81	1.09E-01	1.34E-02	80	1.43E-03	2.15E-02	4.30E-02	5.08E-05	2.54E-04	1.02E-03
82	1.02E-01	1.24E-02	81	1.35E-03	2.02E-02	4.04E-02	4.71E-05	2.35E-04	9.41E-04
83	9.62E-02	1.15E-02	82	1.26E-03	1.90E-02	3.79E-02	4.36E-05	2.18E-04	8.72E-04
84	9.04E-02	1.06E-02	83	1.19E-03	1.78E-02	3.57E-02	4.04E-05	2.02E-04	8.08E-04
85	8.49E-02	9.85E-03	84	1.12E-03	1.68E-02	3.35E-02	3.74E-05	1.87E-04	7.49E-04
86	7.98E-02	9.13E-03	85	1.05E-03	1.57E-02	3.15E-02	3.47E-05	1.73E-04	6.94E-04
87	7.50E-02	8.46E-03	86	9.86E-04	1.48E-02	2.96E-02	3.22E-05	1.61E-04	6.43E-04
22	7.05E-02	7.84E-03	87	9.27E-04	1.39E-02	2.78E-02	2.98E-05	1.49E-04	5.96E-04
89	6.62E-02	7.26E-03	88	8.71E-04	1.31E-02	2.61E-02	2.76E-05	1.38E-04	5.52E-04
90	6.22E-02	6.73E-03	89	8.19E-04	1.23E-02	2.46E-02	2.56E-05	1.28E-04	5.12E-04
91	5.85E-02	6.24E-03	90	7.69E-04	1.15E-02	2.31E-02	2.37E-05	1.18E-04	4.74E-04
92	5.50E-02	5.78E-03	91	7.23E-04	1.08E-02	2.17E-02	2.20E-05	1.10E-04	4.39E-04
93	5.16E-02	5.36E-03	92	6.79E-04	1.02E-02	2.04E-02	2.03E-05	1.02E-04	4.07E-04
94	4.85E-02	4.96E-03	93	6.38E-04	9.57E-03	1.91E-02	1.89E-05	9.43E-05	3.771-04
95	4.56E-02	4.60E-03	94	6.00E-04	9.00E-03	1.80E-02	1.75E-05	8.74E-05	3.491 64
96	4.29E-02	4.26E-03	95	5.64E-04	8.45E-03	1.69E-02	1.62E-05	8.09E-05	3.24E-04
97	4.03E-02	3.95E-03	96	5.30E-04	7.94E-03	1.59E-02	1.50E-05	7.50E-05	3.00E-04
98	3.78E-02	3.66E-03	97	4.98E-04	7.47E-03	1.49E-02	1.39E-05	6.95E-05	2.78E-04
99	3.56E-02	3.39E-03	98	4.68E-04	7.02E ' 1	1.40E-02	1.29E-05	6.44E-05	2.58E-04
100	3.34E-02	3.14E-03	99	4.40E-04	6,59E-01	1.32E-02	1.19E-05	5.97E-05	2.39E-04
101	1.14E-02	2.91E-03	100	4.13E-04	6.19E-02	1.24E-02	1.11E-05	5.53E-05	2.21E-04
102	2.958-02	2.70E-03	101	3.88E-04	5.82E-03	1.16E-02	1.02E-05	5.12E-05	2.05E-04
103	2.77E-02	2.50E-03	102	3.65E-04	5.47E-03	1.09E-02	9.49E-06	4.75E-05	1.90E-04
104	2.61E-02	2.32E-03	103	3.43E-04	5.14E-03	1.03E-02	8.80E-06	4.40E-05	1.76E-04
105	2.45E-02	2.15E-03	104	3.22E-04	4.83E-03	9.66E-03	8.15E-Q6	4.08E-05	1.63E-04
106	2.30E-02	1.99E-03	105	3.03E-04	4.54E-03	9.08E-U3	7.55E-06	3.78E-05	1.51E-04
107	2.16E-02	1.84E-03	106	2.84E-04	4.27E-03	8.53E-03	7.00E-06	3.50E-05	1.40E-04
101	2.03E-02	1.71E-03	107	2.67E-04	4.01E-03	8.02E-03	6.49E-06	3.24E-05	1.30E-04
109	1.91E-02	1.58E-03	108	2.51E-04	3.77E-03	7.54E-03	6.01E-06	3.00E-05	1.20E-04
110.	1.79E-02	1.47E-03	109	2.36E-04	3.54E-03	7.08E-03	5.57E-06	2.78E-05	1.11E-04
111	1.69E-02	1.36E-03	110	2.22E-04	3.33E-03	6.65E-03	5.16E-06	2.58E-05	1.03E-04
112	1.58E-02	1.26E-03	111	2.08E-04	3.13E-03	6.25E-03	4.78E-06	2.39E-05	9.56E-05
113	1.498-02	1.17E-03	112	1.96E-04	2.94E-03	5.88E-03	4.43E-06	2.22E-05	8.86E-05
114	1 40E-02	1.08E-03	113	1.84E-04	2.76E-03	5.52E-03	4.11E-06	2.05E-05	8.21E-05
114	1.31E-02	1.00E-03	114	1.73E-04	2.59E-03	5.19E-03	3.80E-06	1.90E-05	7.61E-05
116	1.24E-02	9.28E-04	115	1.63E-04	2.44E-03	4.88E-03	3.52E-06	1.76E-05	7.05E-05
110	1 168-03	8.59E-04	· 116	1.53E-04	2.29E-03	4.58E-03	3.27E-06	1.63E-05	6.531.05
117	1 005.07	7.96E-04	117	1.44E-04	2.15E-03	4.31E-03	3.03E-06	1.51E-05	6051.05
110	1.035.07	7.38E-04	118	1.35E-04	2.02E-03	4.05E-03	2.80E-06	1.40E-05	5.618-05
119	1.036-04	6 84F-04	119	1.27E-04	1.90E-03	3.80E-03	2.60E-06	1 30E-05	5 2012-05
120	7.045-03	A'0.47.4.4		-	_				1.40E-03

٩.

€,

<u>Table B.2</u>. Calculated Residual Radiation Dose Rates as a Function of Soil Depth Removed, (Restricted Land Use, Real World Model for Cobalt-60 and Cesium-137) (continued)

¥

x

			<u> </u>	Dose Rate, m	rem/y	Cs-137 Dose Rate, mrem/y				
	Concentration, pCi/g		1 cm	Surface Contamination Level, pCi/g			Surface Contamination Level, pCi/e			
Soil Depth			Layers	2	30	60	1	5	20	
(cm)	<u>Co-60</u>	<u>C+-137</u>	Removed	Low	Med	lligh	Low	Med	Hish	
1	6.57E-05	6.02E+00	0	2.07E-02	3.11E-01	6.22E-01	6.29E-01	3.15E+00	1.26E+01	
2	6.45E-04	1.60E+01	1	2.07E-02	3.11E-01	6.22E-01	6.01E-01	3.01E+00	1.20E+01	
3	3.17E-03	2.23E+01	2	2.07E-02	3.11E-01	6.21E-01 :	5.26E-01	2.63E+00	1.05E+01	
4	1.05E-02	2.21E+01	3	2.07E-02	3.10E-01	6.20E-01	4.22E-01	2.11E+00	8.445+00	
5	2.60E-02	1.79E+01	4	2.06E-02	3.08E-01	6.17E-01	3.18E-01	1.59E+00	6 378+00	
6	5.18E-02	1.29E+01	5	2.03E-02	3.04E-01	6.08E-01	2.35E-01	1.17E+00	4 695+00	
7	8.67E-02	8.68E+00	6	1.97E-02	2.95E-01	5.91E-01	1.74E-01	8.72E-01	3 495400	
8	1.25E-01	5.75E+00	7	1.87E-02	2.81E-01	5.61E-01	1.34E-01	6.69E-01	2 685+00	
9	1.59E-01	3.87E+00	8	1.73E-02	2.60E-01	5.19E-01	1.07E-01	5.35E-01	2 145+00	
10	1.82E-01	2.69E+00	9 .	1.55E-02	2.33E-01	4.66E-01	8.89E-02	4.44E-01	1 788+00	
11	1.88E-01	1.96E+00	10	1.35E-02	2.02E-01	4.04E-01	7.63E-02	3.82E-01	1.53E+00	
12	1.80E-01	1.50E+00	11	1.14E-02	1.70E-01	3.41E-01	6.71E-02	3.36E-01	1.34E+00	
13	1.60E-01	1.21E+00	12	9.34E-03	1.40E-01	2.80E-01	6.01E-02	3.01E-01	1.20E+00	
14	1.34E-01	1.01E+00	13	7.54E-03	1.13E-01	2.26E-01	5.45E-02	2.72E-01	L.09E+00	
15	1.06E-01	8,72E-01	14 -	6.04E-03	9.06E-02	1.81E-01	4.97E-02	2.49E-01	9.94E-01	
16	8.09E-02	7.71E-01	15	4.85E-03	7.27E-02	1.45E-01	4.56E-02	2.28E-01	9.13E-01	
17	6.00E-02	6.92E-01	16	3.94E-03	5.91E-02	1.18E-01	4.20E-02	2.10E-01	8 416-01	
18	4.38E-02	6.28E-01	17	3.27E-03	4.90E-02	9.80E-02	3.88E-02	1.94E-01	7 765-01	
19	3.21E-02	5.75E-01	18	2.77E-03	4.16E-02	8.32E-02	3.59E-02	1.79E-01	7.176-01	
20	2.39E-02	5.28E-01	19	2.41E-03	3.62E-02	7.24E-02	3.32E-02	1.66E-01	6.63F-01	
21	1,83E-02	4.87E-01	20	2.15E-03	3.22E-02	6.44E-02	3.07E-02	1.53E-01	6.14F-01	
22	1.45E-02	4.49E-01	21	1.94E-03	2.91E-02	5.82E-02	2.84E-02	1.42E-01	5.68F-01	
23	1.20E-02	4.16E-01	22	1.78E-03	2.67E-02	5.33E-02	2.63E-02	1.3212-01	5.26E-01	
24	1.03E-02	3.85E-01	23	1.64E-03	2.46E-02	4.93E-02	2.44E-02	1.22E-01	4.88E-01	
25	9.09E-03	3.56E-01	24	1.53E-03	2.29E-02	4.58E-02	2.26E-02	1.13E-01	4.52E-01	
26	8.19E-03	3.30E-01	25	1.42E-03	2.14E-02	4.27E-02	2.09E-02	1.05E-01	4.18E-01	
27	7.50E-03	3.05E-01	26	1.33E-03	2.00E-02	4.00E-02	1.94E-02	9.69E-02	3.88E-01	
28	6.93E-03	2.83E-01	27	1.25E-03	1.87E-02	3.74E-02	1.79E-02	8.97E-02	3.59E-01	
29	6.44E-03	2.62E-01	28	1.17E-03	1.75E-02	3.51E-02	1.66E-02	8.31E-02	3.336-01	
10	6.01E-03	2.43E-01	29	1.10E-03	1.65E-02	3.29E-02	1.54E-02	7.70E-02	3 08F-01	
21	5.63E-03	2.25E-01	30	1.03E-03	1.54E-02	3.09E-02	1.43E-02	7.13E-02	2 856-01	
39	5 27E-03	2.08E-01	31	9.67E-04	1.45E-02	2.90E-02	1.32E-02	6.61E-02	2.652-01	
32	4 95E-03	1.93E-01	32	9.07E-04	1.36E-02	2.72E-02	1.22E-02	6.12E-02	2456-01	
33	4 65E-03	1.79E-01	33	8.52E-04	1.28E-02	2.56E-02	1.13E-02	5.67E-02	2.456-01	
37	4.36E-03	1.66E-01	34	7.99E-04	1.20E-02	2.40E-02	1.05E-02	5.25E-02	2.105.01	
35	4 10E-03	1.54E-01	35	7.50E-04	1.13E-02	2.25E-02	9.72E-03	4.86E-02	1946-01	
JU 77	1 85E-03	1.42E-01	36	7.04E-04	1.06E-02	2.11E-02	9.00E-03	4.50E-02	1 805.01	
)/ ne	3 678-03	1.32E-01	37	6.61E-04	9.92E-03	1.98E-02	8.34E-03	4.17E-02	1.675.01	
8L	3.016-01	1.22E-01	38	6.20E-04	9.31E-03	1.86E-02	7.72E-03	3.86E-02	1.548-01	
39	1 105-03	1 136.01	39	5.82E-04	8.74E-03	1.75E-02	7.15E-03	3.58E-02	1 415.01	
40	3.405-03	*******							10-26-01	

<u>Table B.3</u>. Calculated Residual Radiation Dose Rates as a Function of Soil Depth Removed, (Unrestricted Land Use, Real World Model for Cobalt-60 and Cesium-137, 50-Year SAFSTOR)

C.B-9

	Concentration, pCi/g			Co-60 E	ose Rate, m	rem/y	Cs-137 I	Dose Rale, m	urem/y
			Concentration, pCi/g 1 cm		Surface Contamination Level, pCi/g			Surface Contamination Level pCi/g	
Soil Depth			Layers	2	30	60	1	5	20
(cm)	Co-60	<u>Cs-137</u>	Removed	Low	Med	fligh	Low	Med	High
41	3.00E-03	1.05E-01	40	5.46E-04	8.20E-03	1.64E-02	6.62E-03	3.31E-02	1.328-01
42	2.82E-03	9.73E-02	41	5.13E-04	7.69E-03	1.54E-02	6.13E-03	3.06E-02	L23E-01
43	2.65E-03	9.01E-02	42	4.81E-04	7.21E-03	1.44E-02	5.67E-03	2.84E-02	1.13E-01
44	2.49E-03	8.35E-02	43	4.51E-04	6.77E-03	1.35E-02	5.25E-03	2.63E-02	1.05E-01
45	2.34E-03	7.74E-02	44	4.23E-04	6.35E-03	1.27E-02	4.86E-03	2.43E-02	9.72E-02
46	2.20E-03	7.17E-02	45	3.97E-04	5.95E-03	1.19E-02	4.50E-03	2.25E-02	9.00E-02
47	2.07E-03	6.64E-02	46	3.72E-04	5.58E-03	1.12E-02	4.16E-03	2.08E-02	8.33E-02
48,	1.94E-03	6.16E-02	47	3.49E-04	5.23E-03	1.05E-02	3.85E-03	1.93E-02	7.71E-02
49	1.83E-03	5.70E-02	48	3.27E-04	4.90E-03	9.81E-03	3.57E-03	1.78E-02	7.13E-02
50	1.72E-03	5.29E-02	49	3.06E-04	4.60E-03	9.19E-03	3.30E-03	1.65E-02	6.60E-02
51	1.61E-03	4.90E-02	50	2.87E-04	4.31E-03	8.61E-03	3.05E-03	1.53E-02	6.10E-02
52	1.52E-03	4.54E-02	51	2.69E-04	4.04E-03	8.07E-03	2.82E-03	1.41E-02	5.64E-02
53	1.42E-03	4.21E-02	52	2.52E-04	3.78E-03	7.56E-03	2.61E-03	1.31E-02	5.22E-02
54	1.34E-03	3.90E-02	53	2.36E-04	3.54E-03	7.08E-03	2.41E-03	1.21E-02	4.83E-02
55	1.26E-03	3.61E-02	54	2.21E-04	3.31E-03	6.63E-03	2.23E-03	1.12E-02	4.46E-02
56	1.18E-03	3.35E-02	55	2.07E-04	3.10E-03	6.21E-03	2.06E-03	1.03E-02	4.12E-02
57	1.11E-03	3.10E-02	56	1.94E-04	2.90E-03	5.81E-03	1.91E-03	9.53E-03	3.81 E-02
58	1.04E-03	2.87E-02	57	1.81E-04	2.72E-03	5.43E-03	1.76E-03	8.81E-03	3.52E-02
59	9.81E-04	2.66E-02	58	1.69E-04	2.54E-03	5.08E-03	1.63E-03	8.13E-03	3.25E-02
60	9.21E-04	2.47E-02	59	1.58E-04	2.38E-03	4.75E-03	1.50E-03	7.51E-03	3.00E-02
61	8.66E-04	2.29E-02	60	1.48E-04	2.22E-03	4.44E-03	1.39E-03	6.94E-03	2.77E-02
62	8.14E-04	2.12E-02	61	1.38E-04	2.07E-03	4.15E-03	1.28E-03	6.40E-03	2.56E-02
63	7.65E-04	1.96E-02	62	1.29E-04	1.94E-03	3.87E-03	1.18E-03	5.91E-03	2.361-02
64	7.19E-04	1.82E-02	63	1.21E-04	1.81E-03	3.62F 03	1.09E-03	5.45E-03	2 186-02
65	6.75E-04	1.68E-02	64	I.12E-04	1.69E-03	3.37E-03	1.00E-03	5.02E-03	2016-02
66	6 35E-04	1.562-02	65	1.05E-04	1.57E-03	3.15E-03	9.26E-04	4.63E-03	1.85E-02
67	1.96E-04	1.45E-02	66	9.77E-05	1.47E-03	2.93E-03	8.53E-04	4.26E-03	1.71E-02
68	5.60E-04	1.34E-02	67	9.10E-05	1.37E-03	2.73E-03	7.85E-04	3.93E-03	1.57E-02
69	5.27E-04	1.242-02	68	8.47E-05	1.27E-03	2,54E-03	7.22E-04	3.61E-03	1.44E-02
70	4.95E-04	1.15E-02	69	7.88E-05	1.18E-03	2.36E-03	6.64E-04	3.32E-03	1.336-02
70	4 65E-04	1.07E-02	70	7.33E-05	1.10E-03	2.20E-03	6.11E-04	3.05E-03	1.22E-02
71	4 37E-04	9.88E-03	71	6.80E-05	1.02E-03	2.04E-03	5.61E-04	2.80E-03	1.12E-02
74	4.116.04	9 16E-03	72	6.31E-05	9.47E-04	1.89E-03	5.14E-04	2.57E-03	1035.02
73	3 868.04	8 48F-03	73	5.85E-05	8.78E-04	1.76E-03	4.71E-04	2.36E-03	9 435.01
/4	1 612.04	7 865-03	74	5.42E-05	8.13E-04	1.63E-03	4.32E-04	2 16E-03	8645.02
75	3.032-04	7 285.01	75	5.01E-05	7.52E-04	1.50E-03	3.95E-04	1 98E-01	7 0AP A1
76	J.412-04	2 742.01	76	4.63E-05	6.94E-04	1.39E-03	3.615.04	1 805.03	7.201.03
77	3.400-04	4.155-03 6.755-03	17	4.27E-05	6.40E-04	1.28E-03	3.291.04	1655.02	1.446-UJ 4 506 03
78	3.012-04	U.235-03 (705.03	78	3.93E-05	5.90E-04	1.18E-03	3.00F.04	1 505-03	4.335-03
79	7.83E-04	J./76-UJ 4 196 03	79	3.61E-05	5.42E-04	L08E-03	2725.04	1.306-03	0.0012-03
80	2.66E-04	2.215-03	••	2.V. 2 VJ	21100-07	+	4.736-04	1.3/6.03	J.46E-03

Table B.3. Calculated Residual Radiation Dose Rates as a Function of Soil Depth Removed, (Unrestricted Land Use, Real World Model for Cobalt-60 and Cesium-137, 50-Year SAFSTOR) (continued)

.

.

NUREG-1496

¥

-

41

						lose Rate, m	rem/y	Cs-137 Dose Rate, mrem/y		
	Concentratio's, pCl/g		t cm	Surface Contamination Level, pCl/gSurface Contamine		amination Lev	nation Level, pCi/e			
Soil Depth			Layers	2	30	60	1 .	5	20	
(cm)	Co-60	<u>C=137</u>	Removed	Low	Med	Hieh	Low	Med	High	
81	2.50E-04	4.98E-03	80	3.31E-05	4.97E-04	9.94E-04	2.48E-04	1.24E-03	4 96F.03	
82	2.35E-04	4.61E-03	81	3.03E-05	4.55E-04	9.10E-04	2.25E-04	1.12E-03	4 495.01	
83 0	2.21E-04	4.27E-03	82	2.77E-05	4.15E-04	8.31E-04	2.03E-04	1.02E-03	4 666-03	
84	2.07E-04	3.96E-03	83	2.52E-05	3.78E-04	7.56E-04	1.83E-04	9.16E-04	166F-03	
85	1.95E-04	3.67E-03	84 (2.29E-05	3.43E-04	6.86E-04	1.65E-04	8.23E-04	3.29F-03	
86	1.83E-04	3.40E-03	85	2.07E-05	3.10E-04	6.21E-04	1.48E-04	7.38E-04	2955-03	
87	1.72E-04	3.15E-03	86	1.86E-05	2.79E-04	5.59E-04	1.32E-04	6.58E-04	2635.07	
88	1.62E-04	2.92E-03	87	1.67E-05	2.51E-04	5.01E-04	1.17E-04	5.85E-04	2 34F.03	
89	1.52E-04	2.70E-03	86	1.49E-05	2.23E-04	4.47E-04	1.03E-04	5.16E-04	2 075.03	
90	1.43E-04	2.518-03	89	1.32E-05	1.98E-04	3.95E-04	9.06E-05	4.53E-04	1.816.03	
91	1.34E-04	2.32E-03	90	1.16E-05	1.74E-04	3.47E-04	7.89E-05	3.95E-04	1.586.03	
92	1.26E-04	2.15E-03	91	1.01E-05	1.51E-04	3.02E-04	6.81E-05	3.40E-04	1365-03	
93	1.18E-04	1.99E-03	92	8.65E-06	1.30E-04	2.60E-04	5.80E-05	2.90E-04	1.165-03	
94	1.11E-04	1.85E-03	93	7.32E-06	1.10E-04	2.20E-04	4.87E-05	2.43E-04	9.738.04	
95	1.05E-04	1.71E-03	94	6.07E-06	9.11E-05	1.82E-04	4.00E-05	2.00E-04	8.00E-04	
96	9.83E-05	1.59E-03	95	4.89E-06	7.34E-05	1.47E-04	3.20E-05	1.60E-04	6.40E-04	
97	9.24E-05	1.47E-03	96	3.79E-06	5.69E-05	1.14E-04	2.46E-05	1.23E-04	4 92 1.04	
98	8.68E-05	1.36E-03	97	2.75E-06	4.13E-05	8.26E-05	1.77E-05	8.87E-05	3 555-04	
99	8.16E-05	1.26E-03	98	1.78E-06	2.67E-05	5.33E-05	1.14E-05	5.68E-05	2 278.04	
100	7.66E-05	1.17E-03	99	8.61E-07	1.29E-05	2.58E-05	5.47E-06	2.73E-05	1.09E-04	

<u>Table B.3</u>. Calculated Residual Radiation Dose Rates as a Function of Soil Depth Removed, (Unrestricted Land Use, Real World Model for Cobalt-60 and Cesium-137, 50-Year SAFSTOR) (continued)

41

¢

				<u> </u>)ose Rate, m	rem/y	Cs-137 I	Dose Rate, n	urem/v
	Concentrati	ion, pCi/g	l cm	l cm Surface Contamination Le			Surface Con	tamination I e	vel nCi/a
Soil Depth			Layers	2	30	60	0 1 S 20		
(cm)	Co-60	Cs-137	Removed	Low	Med	High	Low	Med	4U List
	6.57E-05	6.02E+00	0.	1.51E-03	2.26E-02	4.52E-02	3.905.02	1055.01	7 30B 41
. ,	6.45E-04	1.60E+01	1	1.51E-03	2.26E-02	4.52E-02	3.728-07	1.256-01	7.796-01
-	3.17E-03	2.23E+01	2.	1.51E-03	2.26E-02	4.52E-02	3.265-02	1.635.01	7.44E-UI
Å	1.05E-02	2.21E+01	3	1.51E-03	2.26E-02	4.52E-02	2615.02	1315 01	0.328-01
4	2.60E-02	1.79E+01	4	1.50E-03	2.24E-02	4.49E-02	1.978-02	1.316-01	3.232-01
6	5.18E-02	1.29E+01	5	1.48E-03	2.21E-02	4.43E-02	1.45E-02	7 278-02	3.936-01
7	8.67E-02	4.68E+00	6	1.43E-03	2.15E-02	4.30E-02	1.08E-02	5 40F-02	2.716-01
2	1.25E-01	:.75E+00	7	1.36E-03	2.04E-02	4.09E-02	8.29E-03	4.15E-02	1665-01
9	1.59E-01	1.87E+00	8	1.26E-03	1.89E-02	3.78E-02	6.63E-03	3.31E-02	1 335.01
10	1.82E-01	3.69E+00	9	1.13E-03	1.69E-02	3.39E-02	5.50E-03	2.75E-02	1 10F-01
ii	1.88E-01	96E+00	10	9.81E-04	1.47E-02	2.94E-02	4.73E-03	2.36E-02	9456-01
12	1.80E-01	1.50E+00	11	8.27E-04	1.24E-02	2.48E-02	4.16E-03	2.08E-02	8 375-02
13	1.60E-01	1.21E+00	12	6.80E-04	1.02E-02	2.04E-02	3.72E-03	1.86E-02	7 445-07
14	1.34E-01	1.01E+00	13	5.49E-04	8.23E-03	1.65E-02	3.37E-03	1.69E-02	6748-02
15	1.06E-01	8.72E-01	14	4.40E-04	6.59E-03	1.32E-02	3.08E-03	1.54E-02	6 6 6 6 6 7 02
16	8.09E-02	7.71E-01	15	3.53E-04	5.29E-03	1.06E-02	2.83E-03	1.41E-02	5 65F-02
17	6.00E-02	6.92E-01	16	2.87E-04	4.30E-03	8.60E-03	2.60E-03	1.30E-02	5218-02
18	4.38E-02	6.28E-01	17	2.38E-04	3,57E-03	7.13E-03	2.40E-03	1.20E-02	4816-02
19	3.21E-02	5.75E-01	18	2.02E-04	3.03E-03	6.05E-03	2.22E-03	1.11E-02	4.44F-07
20	2.39E-02	5.28E-01	19	1.76E-04	2.63E-03	5.27E-03	2.05E-03	1.03E-02	4.11E-02
21	1.83E-02	4.87E-01	20	1.56E-04	2.34E-03	4.68E-03	1.90E-03	9.51E-03	3.80F-02
22	1.45E-02	4.49E-01	21	1.41E-04	2.12E-03	4.24E-03	1.76E-03	8.80E-03	3.52E-02
23	1.20E-02	4.16E-01	22	1.29E-04	1.94E-03	3.88E-03	1.63E-03	8.15E-03	3.26E-02
24	1.03E-02	3.85E-01	23	1.19E-04	1.79E-03	3.58E-03	1.51E-03	7.55E-03	3.02E-02
25	9.09E-03	3.56E-01	24	1.11E-04	1.67E-03	3.33E-03	1.40E-03	6.99E-03	2.80E-02
26	8.19E-03	3,30E-01 ·	25	1.04E-04	1.55E-03	3.11E-03	1.30E-03	6.48E-03	2.59E-02
27	7.50E-03	3.05E-01	26	9.69E-05	1.45E-03	2.91E-03	1.20E-03	6.00E-03	2.40E-02
28	6.93E-03	2.83E-01	27	9.08E-05	1.36E-03	2.72E-03	1.11E-03	5.56E-03	2.22E-02
29	6.44E-03	2.62E-01	28	8.51E-05	1.28E-03	2.55E-03	1.03E-03	5.15E-03	2.06E-02
30	6.01E-03	2.43E-01	29	7.99E-05	1.20E-03	2.40E-03	9.54E-04	4.77E-03	1.91E-02
31	5.63E-03	2.25E-01	30	7.50E-05	1.12E-03	2.25E-03	8.84E-04	4.42E-03	1.77E-02
32	5.27E-03	2.08E-01	31	7.03E-05	1.06E-03	2.11E-03	8.19E-04	4.09E-03	1.64E-02
33	4.95E-03	1.93E-01	32	6.60E-05	9.91E-04	1.98E-03	7.58E-04	3.79E-03	1.52E-02
34	4.65E-03	1.79E-01	33	6.20E-05	9.30E-04	1.86E-03	7.02E-04	3.51E-03	1.40E-02
35	4.36E-03	1.66E-01	34	5.82E-05	8.73E-04	1.75E-03	6.50E-04	3.25E-03	1.30E-02
36	4.10E-03	1.54E-01	35	5.46E-05	8.19E-04	1.64E-03	6.02E-04	3.01E-03	1.20E-02
17	3.85E-03	1.42E-01	36	5.13E-05	7.69E-04	1.54E-03	5.58E-04	2.79E-01	1.128.02
30	3.62E-03	1.32E-01	37	4.81E-05	7.22E-04	1.44E-03	5.16E-04	2.58E-01	1011 62
Je 20	3.40F-03	1.22E-01	38	4.52E-05	6.77E-04	1.35E-03	4.78E-04	2.39E-03	9.561 112
37 AA	3.20E.03	1.13E-01	39	4.24E-05	6.36E-04	1.27E-03	4.43E-04	2.21E-03	8 861 . 1
-10									

<u>Table B.4</u>. Calculated Residual Radiation Dose Rates as a Function of Soil Depth Removed, (Restricted Land Use, Real World Model for Cobalt-60 and Cesium-137, 50-Year SAFSTOR)

NUREG-1496

.

¥

•

4.'

۴.

•

S	oil Depth (cm)	Concentrati	on, pCi/g	1 cm				ì.		
S	oil Depth (cm)		centration, pCi/g 1 cm		Surface Contamination Level, pCi/g			Surface Contamination Level -Ci-		
	(cm)			Layers	2	30	60	1	5	20
		<u>Co-60</u>	<u>CI-137</u>	Removed	Low	Med	High	Low	Med	Hich
	41	3.00E-03	1.05E-01	40	3.98E-05	5.96E-04	1.19E-03	4.10E-04	2.05E-03	8.20E-03
	42	2.82E-03	9.73E-02	41	3.73E-05	5.60E-04	1.12E-03	3.79E-04	1.90E-03	7 195-03
	43	2.65E-03	9.01E-02	42	3.50E-05	5.25E-04	1.05E-03	3.51E-04	1.76E-03	7038.03
	44	2.49E-03	8.35E-02	43	3.28E-05	4.93E-04	9.85E-04	3.25E-04	1.63E-03	6 SIF.03
	45	2.34E-03	7.74E-02	44	3.08E-05	4.62E-04	9.23E-04	3.01E-04	1.51E-03	6028.03
	46	2.20E-03	7.17E-02	45	2.89E-05	4.33E-04	8.66E-04	2.79E-04	1.39E-03	\$ \$7F.03
	47	2.07E-03	6.64E-02	46	2.71E-05	4.06E-04	8.12E-04	2.58E-04	1.29E-03	5.16F-03
	48	1.94E-03	6.16E-02	47	2.54E-05	3.81E-04	7.62E-04	2.39E-04	1.19E-03	4 776.03
	49	1.83E-03	5.70E-02	48	2.38E-05	3.57E-04	7.14E-04	2.21E-04	1.10E-03	4 47F 03
	50	1.72E-03	5.29E-02	49	2.23E-05	3.35E-04	6.69E-04	2.04E-04	1.02E-03	4 09F 13
	51	1.61E-03	4.90E-02	50	2.09E-05	3.13E-04	6.27E-04	1.89E-04	9.45E-04	3.78E 1.
	52	1.52E-03	4.54E-02	51	1.96E-05	2.94E-04	5.87E-04	1.75E-04	8.74E-04	3 50E-03
0	53	1.42E-03	4.21E-02	52	1.83E-05	2.75E-04	5.50E-04	1.62E-04	8.08E-04	3 23 5-03
	54	1.34E-03	3.90E-02	53	1.72E-05	2.58E-04	5.15E-04	1.50E-04	7.48E-04	2.99E-03
Ψ	55	1.26E-03	3.61E-02	54	1.61E-J5	2.41E-04	4.82E-04	1.38E-04	6.91E-04	2 76F.03
13	56	1.18E-03	3.35E-02	55	1.51E-05	2.26E-04	4.52E-04	1.28E-04	6.39E-04	2 56F-03
	57	1.11E-03	3.10E-02	56	1.41E-05	2.11E-04	4.23E-04	1.18E-04	5.90E-04	2.36E-03
	58	1.04E-03.	2.87E-02	57	1.32E-05	1.98E-04	3.95E-04	1.09E-04	5.45E-04	2.18E-03
	59	9.81E-04	2.66E-02	58	1.23E-05	1.85E-04	3.70E-04	1.01E-04	5.04E-04	2.02E-03
	.60	9.21E-04	2.47E-02	59	1.15E-05	1.73E-04	3.46E-04	9.31E-05	4.65E-04	1.86E-03
	61	8.66E-04	2.29E-02	60	1.08E-05	1.62E-04	3.23E-04	8.59E-05	4.308-04	1.725-03
	62	8.14E-04	2.12E-02	61	1.01E-05	1.51E-04	3.02E-04	7.93E-05	3.97E-04	1 596.03
	63	7.65E-04	1.96E-02	62	9.40E-06	1.41E-04	2.82E-04	7.32E-05	3.66E-04	1 468-03
	64	7.19E-04	1.82E-02	63	8,77E-06	1.32E-04	2.63E-04	6.75E-05	3.37E-04	1356.01
	65	6.75E-04	1.68E-02	64	8.18E-06	1.23E-04	2.46E-04	6.22E-05	3.11E-04	1.322-03
	66	6.35E-04	1.56E-02	65	7.63E-06	1.14E-04	2.29E-04	5.73E-05	2.87E-04	1156.03
	67	5.96E-04	1.45E-02	66	7.11E-06	1.07E-04	2.13E-04	5.28E-05	2.64E-04	1.06E.03
	68	5.60E-04	1.34E-02	67	6.63E-06	9.94E-05	1.99E-04	4.86E-05	2.43E-04	9.72E-04
	69	5.27E-04	1.24E-02	68	6.17E-06	9.25E-05	1.85E-04	4.47E-05	2.24E-04	895E-04
	70	4.95E-04	1.15E-02	69	5.74E-06	8.60E-05	1.72E-04	4.12E-05	2.06E-04	8 23F-04
<u> </u>	71	4.65E-04	1.07E-02	70	5.33E-06	8.00E-05	1.60E-04	3.78E-05	1.89E-04	7568-04
Z	72	4.37E-04	9.88E-03	71	4.95E-06	7.43E-05	1.49E-04	3.47E-05	1.74E-04	6945.04
SH -	73	4.11E-04	9.16E-03	72	4.59E-06	6.89E-05	1.38E-04	3.19E-05	1.59E-04	6 375.04
ff	74	3.86E-04	8.48E-03	73	4.26E-06	6.39E-05	1.28E-04	2.92E-05	1.46E-04	5 84E.04
ନ	75	3.61E-04	7.86E-03	74	3.94E-06	5.91E-05	1.18E-04	2.68E-05	1.34E-04	5.34E-04 5.35E.04
<u></u>	76	3.41E-04	7.28E-03	75	3.65E-06	5.47E-05	1.09E-04	2.45E-05	1.22E-04	4 895.04
4 5	17	3.20E-04	6.75E-03	76	3.37E-06	5.05E-05	1.01E-04	2.24E-05	1.12E-04	4.475.04
ð.	79	3 01E-04	6.25E-03	17	3.10E-06	4.66E-05	9,31E-05	2.04E-05	1.02E-04	41.95.04
	70 70	2.83E-04	5.79E-03	78	2.86E-06	4.29E-05	8.58E-05	1.86E-05	9.30E-05	3.728.04
	/7 90	2.66E-04	5.378-03	79	2.63E-06	3.94E-05	7.88E-05	1.69E-05	8.46E-05	3 385 04

Calculated Residual Radiation Dose Rates as a Function of Soil Depth Removed, (Restricted Land Use, Real World Model for Cobalt-60 and Cesium-137, 50-Year SAFSTOR) (continued) Table B.4.

_

•

C.B-13

				<u> </u>	lose Rate, m	rem/y	<u>Cs-137 I</u>	Dose Raie, n	uem/y
	Concentrati	ion, pCi/g	1 cm	Surface Contamination Level, pCi/g			[Surface Contamination Level, pCi/g		
Soil Depih			Layers	2	30	60	1	5	20
(cm)	<u>Co-60</u>	<u>C1-137</u>	Removed	Low	Med	High	Low	Med	High
81	2.50E-04	4.98E-03	80	2.41E-06	3.62E-05	7.23E-05	1.54E-05	7.68E-05	3.07E-04
82	2.35E-04	4.61E-03	81	2.21E-06	3.31E-05	6.62E-05	1.39E-05	6.96E-05	2.78E-04
83	2.21E-04	4.27E-03	82	2.01E-06	3.02E-05	6.04E-05	1.26E-05	6.29E-05	2.52E-04
84	2.07E-04	3.96E-03	83	1.83E-06	2.75E-05	5.50E-05	1.13E-05	5.67E-05	2.27E-04
85	1.95E-04	3.67E-03	84	1.66E-06	2.50E-05	4.99E-05	1.02E-05	5.10E-05	2.04E-04
86	1.83E-04	3.40E-03	85	1.51E-06	2.26E-05	4.52E-05	9.14E-06	4.57E-05	1.83E-04
87	1.72E-04	3.15E-03	86	1.36E-06	2.03E-05	4.07E-05	8.15E-06	4.08E-05	1.63E-04
22	1.62E-04	2.92E-03	87	1.22E-06	1.82E-05	3.65E-05	7.24E-06	3.62E-05	1.15E-04
89	1.52E-04	2.70E-03	88	1.08E-06	1.62E-05	3.25E-05	6.40E-06	3.20E-05	1.28E-04
90	1.43E-04	2.51E-03	89	9.59E-07	1.44E-05	2.88E-05	5.61E-06	2.81E-05	1.12E-04
91	1.34E-04	2.32E-03	90	8.42E-07	1.26E-05	2.53E-05	4.89E-06	2.44E-05	9.77E-05
92	1.26E-04	2.15E-03	91	7.33E-07	1.10E-05	2.20E-05	4.22E-06	2.11E-05	8.43E-05
01	1.18E-04	1.99E-03	92	6.30E-07	9.44E-06	1.89E-05	3.59E-06	1.80E-05	7.18E-05
G4	1.11E-04	1.85E-03	93	5.33E-07	7.99E-06	1.60E-05	3.01E-06	1.51E-05	6.03E-05
95	1.05E-04	1.71E-03	94	4.42E-07	6.63E-06	1.33E-05	2.48E-06	1.24E-05	4.96E-05
96	9.83E-05	1.59E-03	95	3.56E-07	5.34E-06	1.07E-05	1.98E-06	9.92E-06	3.97E-05
97	9.24E-05	1.47E-03	96	2.76E-07	4.14E-06	8.28E-06	1.52E-06	7.62E-06	3.05%-05
08	8.68E-05	1.368-03	97	2.00E-07	3.00E-06	6.01 E-06	1.10E-06	5.49E-06	2.201-05
0 0	8.16E-05	1.262-03	98	1.29E-07	1.94E-06	3.88E-06	7.04E-07	3.52E-06	1.416-05
100	7.66E-05	1.17E-03	99	6.27E-08	9.40E-07	1.88E-06	3.39E-07	1.69E-06	6.77E-06

×

<u>Table B.4</u>. Calculated Residual Radiation Dose Rates as a Function of Soil Depth Removed, (Restricted Land Use, Real World Model for Cobalt-60 and Cesium-137, 50-Year SAFSTOR) (continued)

۲

-

.

NUREG-1496

			Natural Uranium Dose Rate, mrem/y						
6			ī	Inrestricted		F			
	Octomation of it	l cm	Surface Cor	Surface Contamination Level, pCi/g			Surface Contamination Level, pCi/g		
4-11 Dec	Concentration, poer	Leyers	30	200	1,000	30	200	1,000	
2011 104	Net 11	Removed	Low	Med	High	Levy	Med	Lligh	
(GML)	1.04E-01	Q .	6.97E+00	4.65E+01	2.32E+02	2.32E-01	1.54E+00	7.72E+00	
3	2 97E-01	l	6.82E+00	4.55E+01	2.27E+02	2.27E-01	1.51E+00	7.55E+00	
1	2.91E-01	2	6,67E+00	4.45E+01	2.22E+02	2.228-01	1.48E+00	7.39E+00	
	2.85E-01	3	6.53E+00	4.35E+01	2.18E+02	2.17E-01	1.458+00	7.23E+00	
	2.78E-01	4,	6.38E+00	4.265+01	2.138+02	2,128-01	1.416+00	7.0712+00	
, K	2.72E-01	5	6.24E+00	4.102+01	2.081.402	2.071-01	1.3511+00	6.91E+00	
7	2.66E-01	6	6.11E+00	4.07[[+0]	2.048402	2.032-01	1.332.00	0.70E+00	
*	2.608-01	7	5.972400	3,986,401	1.996402	1.700-01	1.325700	0.011,100	
ģ	2.55E-01	8	5.847.400	3.676,701	1.736702	1.002.01	1.275400	6.472700	
10	2.49E-01	9	5.71ETUU	3.876+01 3.736+01	1.505+02	1.868-01	1 245+00	6.335400	
11	2.44E-01	10	3,397,700	3.736401	1.805102	1 828-01	1.218400	6.1512+00	
12	2.38E-01		\$ 145-00	3.542+01	1 788+07	1.785-01	1 188+00	5 0717+00	
13	2.33E-01	12	\$ 2312+00	3 496+01	1.748+02	1.74E-01	1 166400	5 798+00	
14	2.288-01	13	5 11F+00	3.418+01	1.70E+02	1.70E-01	1.13E+00	5.66E+00	
15	2.23E-01	14	5.008+00	3.338+01	1.672+02	1.66E-01	L11E+00	5.54E+00	
16	2.18E-01	13	4 898+00	3.26E+01	1.63E+02	1.63E-01	1.08E+00	1.42E+00	
17	2.13E-01	10	4.782+00	3.19E+01	1.59E+02	1.59E-01	1.06E+00	5.30E+00	
18	2.09E-01	1.0	4.68E+00	3.12E+01	1.56E+02	1.55E-01	1.04E+00	5.18E+00	
19	2.04E-01	(0 10	4.58E+00	3.05E+01	1.53E+02	1.52E-01	1.01E+00	5.07E+00	
20	2.00E-01	20	4.488+00	2.98E+01	1.495+02	1.49E-01	9.92E-01	4.96E+00	
21	1.95E-01	20	4.38E+00	2.92E+01	1.46E+02	1.45E-01	9.70E-01	4.85E+00	
22	1.91E-01	21	4.28E+00	2.866+01	1.43E+02	1.42E-01	9.49E-01	4.74E+00	
23	1.87E-01	22	4.198+00	2.79E+01	1.40E+02	1.39E-01	9.28E-01	4.6412+00	
24	1.83E-01	23	4.10E+00	2.73E+01	1.37E+02	1.36E-01	9.07E-01	4.54E+00	
25	1.798-01	24	4.01E+00	2.67E+01	1.34E+02	1.33E-01	8.88E-01	4.44E+00	
26	1.75E-01	25	3.92B+00	2.61E+01	1.31E+02	1.30E-01	8.68.2-01	4.34E+00	
27	1.71E-01	20	3.83E+00	2.56E+01	1.28E+02	1.27E-01	8.49E-01	4.25E+00	
28	1.67E-01	28	3.75E+00	2.50E+01	1.25E+02	1.25E-01	8.30E-01	4.15E+00	
29	1.63E-01	20	3.67E+00	2.44E+01	1.22E+02	1.22E-01	8.12E-01	4.06E+00	
30	1.60E-01	27	3.59E+00	2.39E+01	1.20E+02	1.19E-01	7.94E-01	3.97E+00	
31	1.56E-01	30	3.51E+00	2.34E+01	1.17E+02	1.17E-01	7.77E-01	3.89E+00	
32	1.53E-01	17	3.43E+00	2.29E+01	1.14E+02	1.14E-01	7.60E-01	3.80E+00	
33	1.50E-01	31	3.36E+00	2.24E+01	1.12E+02	1.11E-01	7.43E-01	3.72E+00	
34	1.46E-01	33	3.28E+00	2.198+01	1.09E+02	1.09E-01	7.27E-01	3.64E+00	
35	1.43E-01		3,21E+00	2.14E+01	1.07E+02	1.07E-01	7.11E-01	3.56E+00	
36	1.40E-01	33	3.142+00	2.0912+01	1.05E+02	1.04E-01	6.95E-01	3.48E100	
5 37	1.37E-01	- JO PC	3.07E+00	2.05E+01	1.02E+02	1.02E-01	6.80E-01	3.402+00	
38	1.34E-01	3/ 32	3.00E+00	2.00E+01	1.00E+02-	9,98E-02	6.65E-01	3.33E+00	
39	1.318-01	30	2.94E+00	1.96E+01	9,79E+01	9.76E-02	6.51E-01	3.25E100	
40	1.28E-01	33							

Table B.5. Calculated Residual Radiation Dose Rates as a Function of Soil Depth Removed, (Unrestricted and Restricted Land Use, Real World Model for Uranium)

ĸ

•

C.B-15

•

.

			Natural Uranium Dose Rate, mrem/y					
			U	Inrestricted			Restricted	
	Concentration, pCi/g	1 cm	Surface Con	tamination Lev	/el, pCi/g	Surface Con	lamination Lev	vel, pCi/g
Soil Depth	Convenient Para	Layers	30	200	-1,000	30	200	1,000
(cm)	Nol. U	Removed	Low	Mcd	High	Low	Med	High
41	1.25E-01	40	2.87E+00	1.92E+01	9.58E+01	9.55E-02	6.36E-01	3.18E+00
42	1.23E-01	41	2.81E+00	1.87E+01	9.37E+01	9.34E-02	6.23E-01	3.11E+00
41	1.20E-01	42	2.75E+00	1.83E+01	9.16E+01	9.13E-02	6.09E-01	3.04E+00
45	1.17E-01	43	2.69E+00	1.79E+01	8.96E+01	8.93E-02	5.96E-01	2.98E+00
44	1 (46.0)	44	2.63E+00	1.75E+01	8.77E+01	8.74E-02	5.82E-01	2.91E+00
43	1 125-01	45	2.57E+00	1.71E+01	8.57E+01	8.55E-02	5.70E-01	2.85E+00
40	1.102-01	46	2.52E+00	1.68E+01	8.39E+01	8.36E-02	5.57E-01	2.79E+00
47	1.102-01	47	2.46E+00	1.64E+01	8.20E+01	8.17E-02	5.45E-01	2.72E+00
40	1.072-01	48	2.41E+00	1.60E+01	8.02E+01	8.00E-02	5.33E-01	2.67E+00
49	1.03E-01	49	2.35E+00	1.57E+01	7.85E+01	7.82E-02	5.21E-01	2.61E+00
\$1	1.005-01	50	2.30E+00	1.53E+01	7.67E+01	7.65E-02	5.10E-01	2.55E+00
\$7 \$7	9 872-02	51	2.25E+00	1.50E+01	7.51E+01	7.48E-02	4.99E-01	2.49E+00
43	9 60 5-02	52	2.20E+00	1.47E+01	7.34E+01	7.32E-02	4.88E-01	2.44E+00
33	0 308-07	53	2.15E+00	1.44E+01	7.18E+01	7.16E-02	4.77E-01	2.39E+00
34	9.192-02	54	2.11E+00	1.40E+01	7.02E+01	7.00E-02	4.67E-01	2.33E+00
33	P.172-02	55	2.06E+00	1.37E+01	6.87E+01	6.85E-02	4.56E-01	2.28E+00
20	9.795-VA 9.707.07	56	2.02E+00	1.34E+01	6.72E+01	6.70E-02	4.46E-01	2.23E+00
57	9.1785-94 9.4017-07	57	1.97E+00	1.31E+01	6.57E+01	6.55E-02	4.37E-01	2.18E+00
38	8.370-02 8.418.07	58	1.93E+00	1.29E+01	5.43E+01	6.41E-02	4.27E-01	2.14E+00
39	8 222.02	59	1.892+00	1.262+01	(29E+01	6.27E-02	4.18E-01	2.09E+00
00	9.220-02 8.042-02	60	1.84E+00	1.23E+01	6.15E+01	6.13E-02	4.09E-01	2.042+00
01	9.078-76 9.078-76	61	1.80E+00	1.20E+01	6.C:E/01	5.99E-02	4.001-01	2.00E+00
62	7.012-02	62	1.76E+00	1.18E+01	5.88E+01	5.86E-02	3.91E-01	1.95E+00
63	7.675-02	63	1.73E+00	1.15E+01	5.75E+01	5.73E-02	3.82E-01	1.91E+00
64	7.328-92	64	1.69E+00	1.138+01	5.63E+01	5.61E-02	3.74E-01	1.878+00
65	7.302-02	65	1.65E+00	1.10E+01	5.50E+01	5.49E-02	3.66E-01	1.838+00
66	7.202-02	66	1.61E+00	1.08E+01	5.38E+01	5.36E-02	3.58E-01	1.79E+00
67	7.042-02	67	1.58E+00	1.05E+01	5.26E+C1	5.25E-02	3.50E-01	1.75E+00
68	6.892-02	68	1.54E+00	1.03E+01	5.15E+01	5.13E-02	3.428-01	1718+00
69	6.73E-02	69	1.51E+00	1.01E+01	5.04E+01	5.02E-02	3.35E-01	1.67E+00
70	6.59E-02	70	1.48E+00	9.858+00	4.93E+01	4.918.02	3 276-01	1 648+00
71	6.44E-02	71	1.45E+00	9.64E+00	4.82E+01	4.80E-02	3 208-01	1.602400
72	6.30E-02	72	1.41E+00	9.42E+00	4.71E+01	4.708-02	3 136-01	1.576+00
73	6.16E-02	71	1.386+00	9.228+00	4.61E+01	4 598-02	3.066-01	1 538+00
74	6.03E-02	74	1.35E+00	9.02E+00	4.51E+01	4.49E.02	3.002-01	1.556100
75	5.90E-02	74	1 325+00	8 825+00	4416+01	4 308-02	2 016.01	1.302,700
76	5.77E-02	76	1 202+00	8632+00	4.31E+01	4 108.02	7 878-01	1.400-100
77	5.64E-02	70 21	1 225100	9 446400	4.228+01	4 305-02	2.0/15-VI 7 8AC AI	1.4367400
78	5.52E-02	77	1 242400	9.4461VV	A 13F401	7.200-02	2.0VE-VI	1.900100
79	5.40E-02	/* 70	1.246700	0.435TVV	4.131.101	4.000 00	2.746-VI	1.3/2100
	4 4 5 17 6 1	17	1.416,700	6.V/C.TVV	1011 ED.F	9.0412-02	2.04Ľ•VI	1.342.100

<u>Table B.5.</u> Calculated Residual Radiation Dose Rates as a Function of Soil Depth Removed, (Unrestricted and Restricted Land Use, Real World Model for Uranium) (continued)

. ·

. .

Ж.

1.34E+00

4

. ..

•

. . . .

5.28E-02

-

¥

			Natural Uranium Dose Rate, mrem/y						
		,	U	nrestricted		F	lestricted		
	Commutation of ile	1 cm	Surface Cont	emination Lev	el, pCi/g	Surface Contamination Level, pCi		ei, pCi/g	
0.11 D11	Concentration, por	Layers	30	200	1,000	30	200	1,000	
2011 Debru	Net U	Removed	Low	Med	Hish	Low	Med	High	
		80	1.18E+00	7.89E+00	3.95E+01	3.93E-02	2.62E-01	1.31E+00	
	5.05E-02	81	1.16E+00	7.72E+00	3.86E+01	3.85E-02	2.56E-01	1.28E+00	
91	4.94E-02	82	1.13E+00	7.55E+00	3.78E+01	3.76E-02	2.51E-01	1.25E+00	
84	4.83E-02	83	1.11E+00	7.39E+00	3.698+01	3.68E-02	2.45E-01	1.23E+00	
94 94	4.728-02	84	1.08E+00	7.22E+00	3.61E+01	3.60E-02	2.40E-01	1.20E+00	
**	4 678-02	85	1.06E+00	7.07E+00	3.53E+01	3.52E-02	2.35E-01	1.17E+00	
27	4.528-02	86	1.04E+00	6.91E+00	3.45E+01	3.44E-02	2.302-01	1.15E+00	
**	4.422-02	87	1.01E+00	6.76E+00	3.362+01	3.372-02	2.258-01	1.12E+00	
20	4.32E-02	88	9.97E-01	6.6112+00	3.311(+01	3.298-02	2.20E-01	1.1012400	
00	4.23E-02	89	9.70E-01	6.47E+00	3.232+01	3.2212-02	2.158-01	1.075+00	
ot	4.14E-02	90	9.498-01	6.32E+00	3.102+01	3.158-02	2.10E-01	1.05E+00	
67	4.048-02	91	9.288-01	6.19E+00	3.092.401	3.052-02	2.05E-01	1.03E+00	
74 01	3.96E-02	92	9.07E-01	6.03E+00	3.02E+01	J.01E-02	2.01E-01	1.00E+00	
7J 04	3.87E-02	93	8.88E-01	5.92E+00	2,968+01	2.95E-02	1.97E-01	9.83E-01	
01	3.712-02	94	8.68E-01	5,7913+00	2.895+01	2.881-02	1.97E-01	9.61E-01	
95	3.708-02	95	8.49E-01	3.66E+0U	2.832401	2.82E-02	1.888-01	9.40E-01	
90 07	3.62E-02	96	8.30E-01	3.342400	2,772+01	2.7015-02	1.848-01	9.20E-01	
97	3.542-02	97	8,12E-0I	5.41E+00	2.712+01	2.708-02	1.808-01	8.998-01	
50	3.46E-02	98	7.948-01	5.3015+00	2.032+01	2.0412-02	1.768-01	8.80E-01	
100	3.392-02	99	7.77E-01	2.18E+00	2.392+01	2.38102	1.728-01	8.60E-01	
101	3.318-02	100	7.602-01	3.07E+00	2 338+01	2.3215-02	1.651(-01	8.4215-01	
101	3 748-02	101	7.43E-01	4,96E+00	2.486+01	2.47E-02	1.658-01	8.23E-01	
102	1 178-02	102	7.27E-01	4.85E+00	2.42E+01	2.42E-02	1.61E-01	8.05E-01	
103	1 105-02	103	7,11E-01	4.74E+00	2.37E+01	2.36E-02	1.57E-01	7.87E-01	
104	3.02.02	104	6.95E-01	4.64E+00	2.32E+01	2.31E-02	1.54E-01	7.70E-01	
103	2 075-02	105	6.80E-01	4.54E+00	2.27E+01	2.26E-02	1.51E-01	7.53E-01	
100	2.972-02	106	6.65E-01	4.448+00	2.22E+01	2.21E-02	1.47E-01	7.37E-01	
107	2.50E-0-	107	6.51E-01	4.34E+00	2.17E+01	2.16E-02	1.44E-01	7.21E-01	
108	2.0412-0- 2.77F_07	108	6.36E-01	4.24E+00	2.12E+01	2.11E-02	1.41E-01	7.05E-01	
109	2.77.200	109	6.23E-01	4.15E+00	2.07E+01	2.07E-02	1.38E-01	6.89E-01	
110	2.716~~~	110.	6.09E-01	4.06E+00	2.03E+01	2.02E-02	1.35E-01	6.74E-01	
111	2.0315-04	111	5.96E-01	3.97E+00	1.98E+01	1.98E-02	1.32E-01	6.60E-01	
112	2.002-02	112	5.82E-01	3.88E+00	1.94E+01	1.94E-02	1.29E-01	6.45E-01	
113	2.345-02	113	5.70E-01	3.80E+00	1.90E+01	1.89E-02	1.26E-01	6.31E-01	
114	2.485-02	114	5.57E-01	3.71E+00	1.86E+01	1.85E-02	1.23E-01	6.17E-01	
115	2.4JE-04	115	5.45E-01	3.63E+00	1.82E+01	1.81E-02	1.21E-01	6.04E-01	
116	2.382-02	- 116	5.33E-01	3.55E+00	1.78E+01	1.77E-02	1.18E-01	5.90E-01	
117	Z.J2E-UZ	117	5.21E-01	3.48E+00	1.74E+01	1.73E-02	1.15E-01	5.77E-01	
118	2.278-02	118	5.10E-01	3.40E+00	1.70E+01	1.69E-02	1.13E-01	5.65E-01	
119	2.726-02	119	4.99E-01	3.33E+00	1.66E+01	1.66E-02	1.10E-01	5.52E-01	
120	2.17E-02								

Table B.5. Calculated Residual Radiation Dose Rates as a Function of Soil Depth Removed, (Unrestricted and Restricted Land Use, Real World Model for Uranium) (continued)

			Thorium Dose Rate, mrem/y							
			U	Intestricted		Restricted				
	Concentration, pCi/g	1 cm	Surface Contamination Level, pCi/g			Surface Contamination Level of 1/-				
Soil Deoth		Layers	30	100	200	30 100 200				
(cm)	Nat. U	Removed	Low	Med	High	Low	Med	High		
	1.14E+02	Û	6.02E+01	2.01E+02	4.02E+02	2.61E+00	8.70E+00	1.74E+01		
2	1.02E+02	1	5.35E+01	1.78E+02	3.57E+02	2.32E+00	7.73E+00	1.55E+01		
3	9.04E+01	2	4.76E+01	1.59E+02	3.17E+02	2.06E+00	6.87E+00	1.37E+01		
4	5.03E+01	3	4.23E+01	1.41E+02	2.82E+02	1.83E+00	6.10E+00	1.22E+01		
5	7.13E+01	4	3.75E+01	1.25E+02	2.50E+02	1.63E+00	5.42E+00	1.08E+01		
6	6.34E+01	5	3.34E+01	1.11E+02	2.22E+02	1.458+00	4.82E+00	9.64E+00		
7	5.638+01	6	2.96E+01	9.888401	1.98E+02	1.28E+00	4.28E+00	8.56E+00		
8	5.00E+01	7	2.63E+01	8.78E+01	1.76E+02	1.148+00	3.80E+00	7.61E+00		
9	4.45E+01	8	2.34E+01	7.80E+01	1.56E+02	1.012+00	3.38E+00	6.76E+00		
10	3.95E+01	9	2.08E+01	6.938+01	1.398+02	9.01E-01	3.00E+00	6.01E+00		
11	3.51E+01	10	1.626401	0.101.401	1.236+02	8.00E-01	2.67E+00	5.34E+00		
12	3.128+01	11	1.042701	3.476401	1.096+02	7.11E-01	2.37E+00	4.74E+00		
13	2.77E+01	12	1.402+01	4.866+01	9.726+01	6.32E-01	2.11E+00	4.21E+00		
14	2.46E+01	13	1.308701	4.345TVI	8.042701	5.61E-01	1.87E+00	3.74E+00		
15	2.19E+01	14	1.136701	3.8467VI	7.675.401	4.9915-01	1.662+00	3.33E+00		
16	1.94E+01	13	0.002400	3.416701	0.8267VI	4.43E-01	1.482+00	2.95E+00		
17	1.738+01	10	9.076700 9.0717400	3.036701	0.005TV1	3.946-01	1.312+00	2.63E+00		
18	1.53E+01	17	7 178+00	2.075701	J.JEGTVL 4 TVRADI	3.306-01	1.178+00	2.332100		
19	1.36E+01	18	6 335400	2.376701	4.766708	J.11E-01	1.0412100	2.07E+00		
20	1.21E+01	19	5.572,700 5.652,00	4.1267VI	9.2367VI	2.768-01	9.21E-01	1.842+00		
21	1.086+01	20	5.005700	1 692401	3.7867VL	2.426-41	8.1845-01	1.648+00		
22	9.562+00	21	3.038700	1.000.001	3.336741	2.168-01	7.276-01	1.458+00		
23	\$.SOE+00		3.976700	1.476741	2.300101	1.944-01	6.46 <u>E</u> -01	1.291:+00		
24	7.55E+00	43 24	3.576700	1.326701	2.936791	1.726-01	5.74E-01	1.15E+00		
25	6.718+00	29	3.336100	1.105741	2.335.101	1.338-01	2.10B-01	1.028+00		
26	5.968+00	23	2 20210	0 202+00	1 8622401	1.305-01	4.538-01	9.06E-01		
27	\$.30E+00	20	2.192,100	8 255400	1.605701	1.216-91	4.02E-01	8.95E-01		
28	4.712+00	27	2 2012400	7 332400	1.176401	0.612.02	3.362-91	7.136-01		
29	4.18E+00	24	1 012400	6 578+00	1 102401	9.336-02	3.182-UI	6.35E-01		
30	3.71E+00	29	1 742400	5 792400	1 162401	0.47 <u>E-02</u> 7 6317 03	2.828-01	5.65E-01		
31	3.302+00	30	1.745100	5 14PA00	1.105701	1.345-02	2.51E-VI	5.02E-01		
32	2.93E+00	IL	1.345700	3.146700 A 672400	I.VJETVI	0.092-02	2.23E-01	4.46E-01		
33	2.61E+00	32	1.376700	4.376700	7.14ETW	3.948-02	1.98E-01	3.96E-01		
34	2.31E+00	33	1.226700	4,005,700	8.12ETOU	3.288-02	1.76E-01	3.52E-01		
35	2.06E+00	34	I.USETUU	J.DIETVU	1.228.100	4.696-02	1.56E-01	3.13E-01		
36	1.832+00	35	7.928-01	J.ZIETUU	0.41H+GU	4.17E-02	1.39E-01	2.78E-01		
37	1.62E+00	36	5.348-UI	2.332100	3.70E100	3.708-02	1.23E-01	2.47E-01		
38	1.44E+00	37	7.598-01	2.336100	3.066400	3.29E-02	1.10E-01	2.19E-01		
39	1.28B+00	38	0.73E-VI	2.238400	4.30E100	2.92E-02	9.74E-02	1.95E-01		
40	1.14E+00	39	J.YYE-01	2.005100	4.005100	2.60E-02	¥.66E-02	1.73E-01		

٢

٠

Calculated Residual Radiation Dose Rates as a Function of Soil Depth Removed, (Unrestricted and Restricted Land Use, Real World Model for Thorium) <u>Table B.6</u>.

.

н

· · ·			Thorium D			ose Rate, mrem/y			
			U	nrestricted		F	Restricted		
	an	1 cm	Surface Cont	Contamination Level, pCi/g		t Surface Cont	Amination Lov	el, pCi/g	
- 11 D 14	Concentration, pcv 8	Levers	30	100	200	30	100	200	
Soil Depu	Nu. 11	Removed	Low	Med	High	Low	Med	High	
(cm)		40	5.328-01	1:77E+00	2.55E+00	2.31E-02	7.69E-02	1.54E-01	
- 41		41	4.73E-01	1.58E+00	, 3.15E+00	2.05E-02	6.83E-02	1.37E-01	
1 42	8,970-01	42	4.20E-01	1.40E+00	2.806+00	1.828-02	6.07E-02	1.21E-01	
. 43	7.975-01	43	3.748-01	1.25E+00	2.49E+00	1.62E-02	5.39E-02	1.08E-01	
1.44	7,108-01	44	3.32E-01	1.11E+00	2.21E+00	1.44E-02	4.798-02	9.59E-02	
45	0.312-01	45	2.95E-01	9.83E-01	1.97E+00	1.28E-02	4.26E-02	8.52E-02	
46	- 3.0UE-UI	46	2.62E-01	8.73E-01	1.75E+00	1.14E-02	3.78E-02	7.57E-02	
° 47	· 4.988-01	47	2.33E-01	7.76E-01	1.55E+00	1.01E-02	3.36E-02	6.72E-02	
48	2.025.01	× 45	2.07E-01	6.89E-01	1.38E+00	8.96E-03	2.99E-02	5.97E-02	
49	3,936-01	49	1.84E-01	6.13E-01	1.23E+00	7.96E-03	2.65E-02	5.31E-02	
50	3,470-01 2 108 01	50	1.63E-01	5.44E-01	1.09E+00	7.07E-03	2.36E-02	4.72E-02	
51	3.102-01	- St	1.458-01	4.84E-01	9.67E-01	6.29E-03	2.10E-02	4.19E-02	
52	2.700-01	52	1.29E-01	4.30E-01	8.59E-01	5.59E-03	1.86E-02	3.72E-02	
33	2.188-01	53	1.15E-01	3.82E-01	7.64E-01	4.96E-03	1.65E-02	3.31E-02	
J9 44	1 938-01	54	1.02E-01	3.398-01	6.78E-01	4.41E-03	1,47E-02	2.94E-02	
- 33	1 728-01	- 55	9.04E-02	3.01E-01	6.03E-01	3,92E-03	1.318-02	2.61E-02	
j0 47	1 538-01	56	8.03E-02	2.688-01	5.36E-01	3.48E-03	1.16E-02	2.328-02	
37	1.368-01	57	7.14E-02	2.38E-01	4.768-01	3.098-03	1.03E-02	2.06E-02	
30	1 218-01	58	6.34E-02	2.11E-01	4.23E-01	2.75E-03	9.1612-03	1.83E-02	
37	1.078-01	59	5.63E-02	1.88E-01	3.76E-01	2.448-03	8.14E-03	1.63E-02	
- 60	6 418-02	60	5.01E-02	1.672-01	3.34E-01	2.17E-03	7.23E-03	1.45E-02	
. 01	9 ASR-02	61	4.45E-02	1.4875-01	2.97E-01	1.93E-03	6.42E-03	1.2812-02	
02	2 41F-02	62	3.958-02	1.32E-01	2.63E-01	1.71E-03	5.71E-03	1.14E-02	
03	6 67R.87	63	3.51E-02	1.17E-01	2.34E-01	1.52E-03	5.0712-03	1.01E-02	
01	5.01E-02	64	3.128-02	1.04E-01	2.08E-01	1.35E-03	4.51E-03	9.01E-03	
03	\$ 272.02	65	2.77E-02	9.24E-02	1.85E-01	1.20E-03	4.00E-03	8.01E-03	
00	3,210-02 A 298 A7	66	2.468-02	8.21E-02	1.64E-01	1.07E-03	3.56E-03	7.12E-03	
67	4.000-76	67	2.198-02	7.30E-02	1.46E-01	9.48E-04	3.16E-03	6.32E-03	
68	4.105-04	68	1.94E-02	6.48E-02	1.30E-01	8,43E-04	2.81E-03	5.62E-03	
69	3.702-02	69	1.73E-02	5.76E-02	1.15E-01	7.49E-04	2.50E-03	4.99E-03	
70	3.785-02	70	1.54E-02	5.12E-02	1.02E-01	6.65E-04	2.22E-03	4.43E-03	
71	2,928-02	71	1.36E-02	4.55E-02	9.09E-02	5,91E-04	1.97E-03	3.94E-03	
72	2,59E-02	72	1.21E-02	4.04E-02	8.08E-02	5.25E-04	1.75E-03	3.50E-03	
73	2.30E-02	73	1.08E-02	3.59E-02	7.18E-02	4.67E-04	1.56E-03	3.11E-0.1	
74	2.05E-02	74	9.57E-03	3.19E-02	6.38E-02	4.15E-04	1.38E-03	2.76E-03	
75	1.828-02	75	8.50E-03	2.83E-02	5.67E-02	3.68E-04	1.23E-03	2.46E-03	
76	1.628-02	76	7.55E-03	2.52E-02	5.04E-02	3.27E-04	1.09E-03	2.18E-03	
77	1.446-02	77	6.71E-03	2.24E-02	4.47E-02	2.91E-04	9.69E-04	1.94E-03	
78	1.288-02	78	5.96E-03	1.99E-02	3.97E-02	2.58E-04	8.61E-04	1.72E-03	
79	1,13E-02	79	5.30E-03	1.77E-02	3.53E-02	2.30E-04	7.65E-04	1.53E-03	
80	1.01E-02		******					1	

<u>Table B.6.</u> Calculated Residual Radiation Dose Rates as a Function of Soil Depth Removed, (Unrestricted and Restricted Land Use, Real World Model for Thorium) (continued)

•

¢

.

C.B-19

			Thorium Dose Rale, mrem/y							
			Uı	restricted		iF	lestricted			
	Concentration #Ci/#	1 cm	Surface Cont	amination Leve	el, pCi/g	Surface Cont	amination Lev	el, pCi/g		
Soil Depth	Content	Layers	30	100	200	30	100	200		
2011 toology	Nal. II	Removed	Low	Med	High	Low	Med	High		
- (610)	8.95E-03	80	4.71E-03	1.57E-02	3.14E-02	2.04E-04	6.802-04	1.3612-03		
83	7.95E-03	81	4.18E-03	1.39E-02	2.79E-02	1.81E-04	6.U4E-04	1.21E-03		
81	7.06E-03	82	3.72E-03	1.24E-02	2.48E-02	1.618-04	3.37E-04	1.07E-03		
84	6.27E-03	83	3.30E-03	1.106-02	2.208-02	1.438-04	4.7712-04	9.348-04		
25	5.57E-03	84	2.93E-03	9.782-03	1.902-02	1.278-04	4.246-04	8.476-04		
86	4.95E-03	85	2.61E-03	8.694-03	1.742-02	1.138-04	3.768-04	7.532-04		
27	4.40E-03	86	2.328-03	7.728-03	1.348-02	1.002-04	3.348-04	6.076-04		
89	3.91E-03	87	2.068-03	0.802-03	1.3/6-92	8.722-03	2.9/6-04	J.946-04		
80	3.47E-03	88	1.83E-03	6.09H-03	1.222-92	7.948-03	2.048-04	3.266-04		
60	1.09E-03	89	1.628-03	3.412-03	1.048-92	/.U4E-U3	2.338-94	4.072-04		
9 0	2.74E-03	90	1.44E-03	4.812-03	9.022-03	0.232-43	2.082-04	4.178-04		
91 07	2.44E-03	91	1.28E-03	4.27E-03	\$.33E-03	2.206-02	1.438-04	3.70E-04		
72	2 17F-03	92	1.14E-03	3.802-03	7.60K-03	4.94E-03	1.036-04	3.29E-04		
7 3	1925-03	93	1.01E-03	3.37E-03	6.75E-03	4.39E-03	1.46E-04	2.92E-04		
74 05	1.71E-03	94	8.99 <u>E</u> -04	3.00E-03	6.0012-03	3.90E-05	1.308-04	2.60E-04		
9J 66	1 528-03	95	7.99E-04	2.66E-03	3.33E-03	3.402-43	1.132-04	2.31E-04		
07	1.35E-03	96	7.10E-04	2.378-03	4.732-03	3.086-03	1.032-04	2.058-04		
02	1.202-03	97	6.31E-04	2.102-03	4.21E-03	2.738-03	A.116-02	1.826-04		
7•	1 072-03	98	5.61E-04	1.8712-03	3.74E-U3	2.43E-03	8.106-03	1.62E-04		
37	9 47E-04	99	4,988-04	1.662-03	3.32E-03	2.16E-05	7.198-05	1.448-04		
100	8416-04	100	4.43E-04	1.48E-03	2.95E-03	1.926-05	6.398-05	1.28E-04		
101	7 476-04	101	3.93E-04	1.31E-03	7.62E-03	1.70E-05	3.68E-05	1.14E-04		
102	40.542 A	102	3.49E-04	1.16E-03	2.33E-03	1.51E-05	5.03E-05	1.01E-04		
103	6 DAE-04	103	3.10E-04	1.03E-03	2.07E-03	1.35E-05	4.48E-05	8.97E-05		
104	4 34C-04	104	2.76E-04	9.19 8 -04	1.84E-03	1.20E-05	3.98E-05	7.97E-05		
105	2.242-0-4 A CCD.MA	105	2.45E-04	8.17E-04	1.63E-03	1.06E-05	3.54E-05	7.08E-05		
106	4,505-04	106	2.182-04	7.26E-04	1.45E-03	9.43E-06	3.14E-05	6.29E-05		
107	4,146*V* * Kot2 //4	107	1.93E-04	6.45B-04	1.29E-03	8.38E-06	2.79E-05	5.59E-05		
108	3.945-44	108	1.72E-04	5.73E-04	1.15E-03	7.45E-06	2.48E-05	4.97E-05		
109	3.675-44	109	1.53E-04	5.09E-04	1.02E-03	6.62E-06	2.21E-05	4.41E-05		
110	2,508-04	110	1.36E-04	4.52 <u>E</u> -04	9.05E-04	5.88E-06	1.96E-05	3.92E-05		
111	2,382-04	111	1.21E-04	4.02E-04	8.04 <u>E-04</u>	5.22E-06	1.74E-05	3.48E-05		
112	2.296-04	112	1.07E-04	3.57E-04	7.14E-04	4.64E-06	1.55E-05	3.09E-05		
113	2.042-04	113	9.52E-05	3.17E-04	6.35E-04	4.12E-06	1.376-05	2.75E-05		
114	1.818-04	114	8.46E-05	2.82E-04	5.64E-04	3.66E-06	1.226-05	2.44E-05		
115	1.618-04	115	7.51E-05	2.50E-04	5.01E-04	3.26E-06	1.09E-05	2.17E-05		
116	1,432-04	116	6.68E-05	2.23E-04	4.45E-04	2.89E-06	9.64E-06	1.93E-05		
117	1.278-04	117	5.93E-05	1.98E-04	3.95E-04	2.578-06	8.57E-06	1.71E-05		
118	1.13E-04	118	5.27E-05	1.76E-04	3.51E-04	2.28E-06	7.61E-06	1.52E-05		
119	1.00E-04	119	4.68E-05	1.56E-04	3.12E-04	2.03E-06	6.76E-06	1.35E-05		
120	8.90E-03	••-								

<u>Table B.6.</u> Calculated Residual Radiation Dose Rates as a Function of Soil Depth Removed, (Unrestricted and Restricted Land Use, Real World Model for Thorium) (continued)

NUREG-1496

.

ŧ.

•

*

ATTACHMENT C

DETAILED SPREADSHEETS

CALCULATED COSTS AND OTHER PARAMETERS FOR REMEDIATION OF CONTAMINATED SOIL AT NUCLEAR FACILITIES

. . .

:*:

• ..

..

C.C-1

ATTACHMENT C

DETAILED SPREADSHEETS

CALCULATED COSTS AND OTHER PARAMETERS FOR REMEDIATION OF CONTAMINATED SOIL AT NUCLEAR FACILITIES

This attachment provides the detailed results for the analyses summarized in Sections 2 and 7. A separate table, or spreadsheet, is provided for each scenario analyzed. For completeness of basic information, detailed results are provided for the alternative residual dose levels evaluated (i.e., 100, 60, 30, 25, 15, 10, 3, 0.3, and 0.03 mrem/y), including estimates for 1) the volume of soil requiring remediation, 2) the costs associated with excavating, treating, packaging, transporting, and disposing of the excavated soil, 3) the number of labor hours required to excavate and treat the soil, and 4) the total occupational dose incurred during excavation and treatment of the soil. Each table reports these results for the assumed high, medium, and low surface contamination levels.

Table C.1 provides an index to the results for each scenario presented in this attachment. Identified in the table is the table, or spreadsheet, number, the reference facility evaluated, the contaminant distribution profile (i.e., "baseline" or "real world"), the time of decommissioning (i.e., soon after shutdown or after a 50-year SAFSTOR period), the land-use assumed (i.e., restricted or unrestricted), and the soil treatment train (i.e., direct disposal of the soil or washing of the soil to remove contaminants prior to its disposal).

NUREG-1496

Т

Table C.1. Index to Spreadsheets

Reference Facility	Table Number	Contaminant Distribution Model	Time of Decommissioning	Land-Use	Contaminated Soil Disposition
Nuclear Power Plant	C.1.1	"Baseline" or Diffusion	Soon After Shutdown	Unrestricted	Washed Prior to Disposal
Nuclear Power Plant	C.1.2	"Baseline" or Diffusion	Soon After Shutdown	Unrestricted	Direct Disposal
Nuclear Power Plant	C.1.3	"Baseline" or Diffusion	Soon After Shutdown	Restricted	Washed Prior to Disposal
Nuclear Power Plant	C.1.4	"Baseline" or Diffusion	Soon After Shutdown	Restricted	Direct Disposal
Nuclear Power Plant	C.1.5	"Baseline" or Diffusion	SAFSTOR	Unrestricted	Washed Prior to Disposal
Nuclear Power Plant	C.1.6	"Baseline" or Diffusion	SAFSTOR	Unrestricted	Direct Disposal
Nuclear Power Plant	C.1.7	"Baseline" or Diffusion	SAFSTOR	Restricted	Washed Prior to Disposal
Nuclear Power Plant	C.1.8	"Baseline" or Diffusion	SAFSTOR	Restricted	Direct Disposal
Nuclear Power Plant	C.1.9	"Real World" or Spill/Leak	Soon After Shutdown	Unrestricted	Washed Prior to Disposal
Nuclear Power Plant	C.1.10	"Real World" or Spill/Leak	Soon After Shutdown	Unrestricted	Direct Disposal
Nuclear Power Plant	C.1.11	"Real World" or Spill/Leak	Soon After Shutdown	Restricted	Washed Prior to Disposal
Nuclear Power Plant	C.1.12	"Real World" or Spill/Leak	Soon After Shutdown	Restricted	Direct Disposal
Nuclear Power Piant	C.1.13	"Real World" or Spill/Leak	SAFSTOR	Unrestricted	Washed Prior to Disposal
Nuclear Power Plant	C.1.14	"Real World" or Spill/Leak	SAFSTOR	Unrestricted	Direct Disposal
Nuclear Power Plant	C.1.15	"Real World" or Spill/Leak	SAFSTOR	Restricted	Washed Prior to Disposal
Nuclear Power Plant	C.1.16	"Real World" or Spill/Leak	SAFSTOR	Restricted	Direct Disposal
Uranium Fuel Fabrication Plant	C.2.1	"Baseline" or Diffusion	Soon After Shutdown	Unrestricted	Washed Prior to Disposal
Uranium Fuel Fabrication Plant	C.2.2	"Baseline" or Diffusion	Soon After Shutdown	Unrestricted	Direct Disposal
Uranium Fuel Fabrication Plant	C.2.3	"Baseline" or Diffusion	Soon After Shutdown	Restricted	Washed Prior to Disposal
Uranium Fuel Fabrication Plant	C.2.4	"Baseline" or Diffusion	Soon After Shutdown	Restricted	Direct Disposal

۰.

C.C-3

Reference Facility	Table Number	Contaminant Distribution Model	Time of Decommissioning	Land-Use	Contaminated Soil Disposition
Uranium Fuel Fabrication Plant	C.2.5	"Real World" or Mixing/Landfilling	Soon After Shutdown	Unrestricted	Washed Prior to Disposal
Uranium Fuel Fabrication Plant	C.2.6	"Real World" or Mixing/Landfilling	Soon After Shutdown	Unrestricted	Direct Disposal
Uranium Fuel Fabrication Plant	C.2.7	"Real World" or Mixing/Landfilling	Soon After Shutdown	Restricted	Washed Prior to Disposal
Uranium Fuel Fabrication Plant	C.2.8	"Real World" or Mixing/Landfilling	Soon After Shutdown	Restricted	Direct Disposal
Sealed Source Manufacturer	C.3.1	"Baseline" or Diffusion	Soon After Shutdown	Unrestricted	Washed Prior to Disposal
Sealed Source Manufacturer	C.3.2	"Baseline" or Diffusion	Soon After Shutdown	Unrestricted	Direct Disposal
Scaled Source Manufacturer	C.3.3	"Baseline" or Diffusion	Soon After Shutdown	Restricted	Washed Prior to Disposal
Sealed Source Manufacturer	C.3.4	"Baseline" or Diffusion	Soon After Shutdown	Restricted	Direct Disposal
Sealed Source Manufacturer	C.3.5	"Real World" or Spill/Leak	Soon After Shutdown	Unrestricted	Washed Prior to Disposal
Sealed Source Manufacturer	C.3.6	"Real World" or Spill/Leak	Soon After Shutdown	Unrestricted	Direct Disposal
Sealed Source Manufacturer	C.3.7	"Real World" or Spill/Leak	Soon After Shutdown	Restricted	Washed Prior to Disposal
Sealed Source Manufacturer	C.3.8	"Real World" or Spill/Leak	Soon After Shutdown	Restricted	Direct Disposal
Rare Metal Extraction Plant	C.4.1	"Baseline" or Diffusion	Soon After Shutdown	Unrestricted	Washed Prior to Disposal
Rare Metal Extraction Plant	C.4.2	"Baseline" or Diffusion	Soon After Shutdown	Unrestricted	Direct Disposal
Rare Metal Extraction Plant	C.4.3	"Baseline" or Diffusion	Soon After Shutdown	Restricted	Washed Prior to Disposal
Rare Metal Extraction Plant	C.4.4	"Baseline" or Diffusion	Soon After Shutdown	Restricted	Direct Disposal
Rare Metal Extraction Plant	C.4.5	"Real World" or Spill/Leak	Soon After Shutdown	Unrestricted	Washed Prior to Disposal
Rare Metal Extraction Plant	C.4.6	"Real World" or Spill/Leak	Soon After Shutdown	Unrestricted	Direct Disposal
Rare Metal Extraction Plant	C.4.7	"Real World" or Spill/Leak	Soon After Shutdown	Restricted	Washed Prior to Disposal

Table C.1. Index to Spreadsheets

NUREG-1496

I

.

C.C-4

ï

÷

Reference Facility	Table Number	Contaminant Distribution Model	Time of Decommissioning	Land-Use	Contaminated Soil Disposition	
Rare Metal Extraction Plant	C.4.8	"Real World" or Spill/Leak	Soon After Shutdown	Restricted	Direct Disposal	
Uranium Mill	C.5.1	"Baseline" or Diffusion	Soon After Shutdown	Unrestricted	Washed Prior to Disposal	
Uranium Mill	C.5.2	"Baseline" or Diffusion	Soon After Shutdown	Unrestricted	Direct Disposal	
Uranium Mill	Mill C.5.3 "Baseline" or Diffusion		Soon After Shutdown	Restricted	Washed Prior to Disposal	
Uranium Mill	C.5.4	"Baseline" or Diffusion	Soon After Shutdown	Restricted	Direct Disposal	

З

Table C.1. Index to Spreadsheets

	Contamin-	Site		Below	Below	Total Call	dies Catt
Residual Dose	ated Site	Soil	Site Soil	Building	Building Soil	Volume	que son
Rate	Soil Area	Depth	Volume	Soil Depth	Volume	Removed	Costs
m/em/y/	11-2	cm	m.3	cm	3	m*3	
HIGH							
100	3,000	3.3	9	3.3	15	24	5,707
60	3,000	4.6	13	4.6	21	34	8,049
30	3,000	5.9	16	5.9	27	44	10,315
25	3,000	6.2	17	6.2	29	46	10.893
15	3,000	7.0	20	7.0	33	52	12,283
10	3,000	7.8	22	7.8	36	58	13,573
3	3,000	11.6	32	11.5	54	66	20,151
0.3	3,000	20.5	57	20.5	95	162	35,729
0.03	3,000	24.9	69	24.9	116	185	43,492
MEDIUM							
100	3,000	0.0	0	0.0	0	0	0
60	3,000	2.5	7	2.5	11	18	4,310
30	3,000	4.5	13	4.5	21	34	7,940
25	3,000	4.9	14	4.9	_23	36	8,557
15	3,000	5.8	16	5.8	27	43	10,169
10	3,000	6.5	18	6.5	30	48	11,339
3	3,000	8.2	23	8.2	38	61	14,389
0.3	3,000	16.5	46	16.5	77	123	28,803
0.03	3,000	22.4	62	22.4	104	167	39,158
LOW							
100	3,000	0.0	0	0.0	0	0	0
60	3,000	0.0	0	0.0	0	0	0
30	3,000	0.0	0	0.0	0	0	0
25	3,000	0.0	0	0.0	0	0	0
15	3,000	0.0	0	0.0	0	0	0
10	3,000	0.0	0	0.0	0	0	0
3	3,000	3,6	10	3.6	17	27	6,374
0.3	3,000	8.4	23	8.4	39	62	14.599
0.03	3,000	18.7	52	18.7	87	139	32,646
Unit Rates and		Dillusion		Diffusion	2% of building		\$236/m*3
Notes		model soil		model soil	floor area		
		biorug		below	1200,000 (1°2)		
				buildings			

Table C.1.1. Calculated Costs and Other Parameters for Remediation of Contaminated Soil at the Reference Nuclear Power Plant (Unrestricted Land Use, With Soil Washing)

٠

NUREG-1496

አ

k -

. • •

G)

ę.

	· · · · · · · · · · · · · · · · · · ·	·7	·	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	Soil	Soil		1			The second s
	1	1 1	1	Solt	Soft	Trensport	Transport	Sall	Soll	1	1	
	Totel Soll	1	Soll	Packaging /	Packaging	Loads,	Lords,	Trensport	Transport	Soff	Soit	Soll Disponet
Residual Dose	Volume	Totel Soll	Weshing	Costs,	Costs, B-25	Gondola	- Truck -	Costs,	Costs,	Disposel Costs	Disposal Costs	Costs @
Rate	Removed	Weight	Costs	Gondola Car	Boxes	Care	Loade	<u>Hell</u>	Truck	@ #10/n-3	@ #50/11-3	\$350/n°3
mrem/yr	3	MT	└── ──┘	h	<u> </u> /	Core .	# Trucks	·····			•	
HIGH		 	I	<u> </u>	<u> </u>	<u></u>						
100	24		40,914	100	2,137			4,000	1,325	3,431	17,153	120,072
60	34	42	43,717	100	3,014		2	4,000	2,650	4,838	24,190	169,333
30	. 44	53	46,430	100	3,863		2	4,000	2,650	6,200	31,001	217.007
25	46	58	47,122	100	4,079		2	4,000	2,650	6,548	32,739	229,173
15	52	64	48,786	<u>· 100 /</u>	4,600		2	4,000	2,650	7,383	36,917	258,419
10	58	70	50,330	100	5,083	1	3	4,000	3,975	8,159	40,793	285,550
3	86	104	58,204	100	7,546	1	4	4,000	5,300	12,113	60.563	423,938
0.3	152	185	76,852	100	13,379	1 1	6	4,000	7,950	21,477	107.384	751,686
0.03	185	226	86,145	200	16,287	2 .	7	8,000	9,275	26,143	130,716	915.012
MEDIUM			'	·'	······································							
100	0	0	0	0 '	0	0	0		0	0	0	0
60	18	22	39,241	100	1,614	<u> </u>	1.	4,000	1,325	2,591	12,953	90,670
30	34	41	43,587	100	2,973	<u> </u>	2	4,000	2,650	4,773	23,864	167.045
25	36	44	44,325	100	3,204	<u> 1</u>	2	4,000	2,650	5,143	25.717	180.021
15	43	53	46,255	100	3,808	<u> 1</u>	·· 2	4,000	2,650	6,113	30,563	213.944
10	48	59	47,655	100	4,246	<u> </u>	2	4,000	2,650	6,816	34.078	238,547
3	61	75	51,307	100	5,388		3	4,000	3,975	8,649	43.246	302 724
0.3	123	149	68,560	100	10,786		5	4,000	6,625	17,313	86,566	605 965
0.03	167	203	80,956	100	14,663	1	7	4,000 -	9,275	23,538	117.689	823 822
IOW		, I		<u> </u>	'	<u> </u> '				·		
100	0	0	0	0	0	0	0	0	0	0	0	0
60	0	. 0	0	0	0	0	0	0	0	0	0	0
30	0	0	.0	0	<u> </u>	0	0		0	0	0	· 0
25	0	0	0	0	<u> </u>	0	0	0	0	. 0	0	0
- 15	0	0	0	<u> </u>	0	0	0	0	0	0	0	0
10	0	0	0	<u>0.</u>	0	0/	0	0	· 0	0	0	0
3	27	33	41,712	100	2,387	1		4,000	1,325	3,831	19,156	134,093
0.3	62	76	51,558	100	5,467	1	3	4,000	3,975	8,775	43,877	307 142
0.03	139	169	73,162	100	12,225	1	6	4,000	7,850	19,624	98,119	686,830
Link Rates and		76 Hes/11*3	From RACER	\$100 per	\$220/m*3	25 tone of	7,296	\$4,000 per	\$1,326 per truck	Costs for bulk	Cests for in-	Pessible costs for
Notes			Medel	gendels cer Tor		tailear	befoes and	gendele relicer	bed	disposal at LARW	Compact disposal at	future in-compact
110:00	1		1	and cever			k load, or	l I	1	\$10/ft*3: (all	existing LLW	disposal facilities for
•	· ·		· ·				29,184 84	(!		transport only	\$60/It*3; truck	LLVV, \$360/11"3;
. I	1 · ·					1.1.1	beenties		1		transport only.	ander a sumbar 1 ansà-
	(1	1	1		1 /		1	í	1 1	1 ,

Table C.1.1. Calculated Costs and Other Parameters for Remediation of Contaminated Soil at the Reference Nuclear Power Plant (Unrestricted Land Use, With Soil Washing)

C.C-7

NUREG-1496

Page 2 of 3

Table C.1.1.

۹.

L.

Calculated Costs and Other Parameters for Remediation of Contaminated Soil at the Reference Nuclear Power Plant (Unrestricted Land Use, With Soil Washing)

	Total Soli	Total Soli	Remediation	Costs				Total
Bestdual Doza	Voluene	@ #10/#*3	@ \$50/11*3	@ \$350/(1*3	Soil Washing	Soll Excevation	Total Soil	Occupational
Rete	Disposed	Disposal Costs	Disposal Costs	Disposal Costa	Labor	Lebor	Remediation Labor	Dosa
nvenvyr	m*3	ŧ	•	\$	man-hr	man-hr	men-hr	person-mem
HIGH								
100	10	54,152	67,237	170,155	4	39	43	4
60	14	60,704	81,620	226,763	6	55	61	6
30	18	67,045	94,258	280,264	7	71	79	8
	19	68,663	97,483	293,918	8	76	83	8
15	21	72.553	105,236	326,738	9	85	94	9
10	23	76,161	113,753	358,510	10	94	103	10
3	34	94,587	151,763	515,138	15	139	153	15
0.3	61	138,158	241,294	885,598	26	246	272	27
0.03	74	163,980	285,914	1,070,211	31	300	331	33
MEDIUM								
100	0	0	0	0	0	0	0	0
.60	7	50,242	59,443	137,160	3	30	33	3
30	14	60,400	81,014	224,195	6	55	60	6
	15	62,125	84,453	238,757	6	59	65	7
15	17	66,637	\$3,446	276,827	7	70	77	8
10	19	68,809	89,968	304,437	8	78	86	9
3	24	78,445	118,305	377,783	10	99	110	11
0.3	49	118,777	201,341	720,739	21	199	219	22
0.03	67	147,752	261,741	967,874	28	270	298	30
LOW								
100	0	0	0	0	0	0	0	0
60	°.	0	<u> </u>	0	0	0	0	0
30	0	0	0	0	0	0	0	0
25	0	0	0	0	0	0	0	0
15	0	0	0	0	0	. 0	0	0
10	0	0	<u> </u>	0	0	0.	0	0
3	11	55,017	70,954	185,891	5	44	49	5
0.3	25	79,033	119,476	382,741	11	101	111	11
0.03	58	129,532	224,102	812,813	24	225	249	25
Unit Retas and	Disposal				0.17 menter per	1.62 man-hr per		0.1 mean per man-
Notes	valume is 40%			1	M-2	, m.1		he labor
	of total soil	ł (1	ł	l	l		
1	yel, is seleased							
			l	l	ļ	l	l i	
1	1		<u> </u>		I	L	L	

NUREG-1496

Page 3 of 3

•

Ц

Table C.1.2.

Calculated Costs and Other Parameters for Remediation of Contaminated Soil at the Reference Nuclear Power Plant (Unrestricted Land Use, Without Soil Washing)

	_				1		
	N 19				i.		
	Contemin-	Site		Belaw-	Below-	Totel Soll	Site Soil
Residual Dosa	ated Site	Soll	Site Soll	Building	Building Soli	Votume	Excevetion
- Reto	Soll Ares	Depth	Volume	Soll Depth	Voturne	Removed	Costs
mem/yr	ft*2	cm	m*3	CM	m*3	m*3	
HIGH					•		
100	3,000	3,3	9	3.3	15	24	5,707
60	3,000	4.6	13	4.6	21	34	8,049
30	3,000	5,9	18	5,9	27	44	10,315
25	3,000	6.2	17	6.2	29	46	10,893
15	3,000	7.0	20	7.0	33	52	12,283
10	3,000	7.8	22	7.8	36	58	13,573
3	3,000	11.5	32	11.5	54	86	20,151
0.3	3,000	20,5	57	20.5	95	152	35,729
0.03	3,000	24,9	69	24.9	116	185	43,492
MEDIUM							· · ·
100	3,000	0,0	0	0.0	. 0	0	0
60	3,000	2.5	7	2.5	11	18	4,310
30	3,000	4.5	13	4.5	21	34	7,940
25	3,000	4.9	14	4.9	23	36	8,557
15	3,000	5.8	16	5,8	27	43	10,169
10	3,000	6,5	18	6,5	30	48	11,339
3	3,000	8.2	23	8.2	- 38	61	14,389
0,3	3,000	16.5	48	16.5	77	123	28,803
0.03	3,000	22.4	62	22.4	104	167	39,158
LOW							
100	3,000	0,0	0	0.0	• 0	0	0
60	3,000	0,0	0	0.0	0	0	0
30	3,000	0.0	0	0.0	0	0	0
25	3,000	0.0	0	0.0	0	0	0
15	3,000	0.0	0 ·	0.0	0	0	0
10	3,000	0.0	0	0.0	0	0	0
3	3,000	3.6	10	3.6	17	27	6,374
0.3	3,000	8.4	23	8,4	39	62	14,599
0.03	3,000	18.7	52	18.7	87	139	32,646
Unit Rates and		Diffusion		Diffusion	2% of building		\$235/m*3
Notes		Hee lebern		model solt	floor area		
1		biauue		provine Lead	1200,000 h*91		
				buildings			·
]	1						
i	I	L	L	I	1		

C.C-9

NUREG-1496

Pege 1 of 3

Table C.1.2.

м,

ł,

Calculated Costs and Other Parameters for Remediation of Contaminated Soil at the Reference Nuclear Power Plant (Unrestricted Land Use, Without Soil Washing)

. .

.

						Soil	Soil					
				Soil	Soll	Transport	Transport	Soil	Soil			
	Total Soli		Soll	Packaging	Packaging	Loads,	Loade,	Transport	Transport	Soil	Soll	Salt Disposal
Residual Dose	Volume	Total Soil	Washing	Costs,	Costs, B-26	Gondola	Truck	Costs,	Costs,	Disposal Costs	Disposal Costs	Costs @
Rate	Removed	Weight	Costs	Gondeia Car	Boxes	Cars	Loade	Rail	Truck	@ #10/ft*3	@ \$50/11-3	\$350/h*3
mrem/yr	m*3	MT		•	•	I CALL	# Trucks		•			•
HIGH												
100	24	30	0	100	5,343	1	3	4,000	3,975	8,577	42,883	300,179
60	34	42	0	100	7,535	1	4	4,000	5,300	12,095	60,476	423,332
30	. 44	53	0	100	9,658	1	5	4,000	6,625	15,500	77,502	542.517
25	46	58	0	100	10,198	1	5	4,000	6,625	16,370	81,848	572,934
15	52	64	0	100	11,499	1	5	4,000	6,625	18,459	92.293	646.048
10	58	70	0	100	12,706	1	6	4,000	7,950	20,396	101,982	713.874
3	86	104	0	200	18,864	2	8	8,000	10,600	30,281	151,407	1.059.846
0.3	152	185	0	300	33,449	3	14	12,000	18,550	53,692	268,459	1.879.215
0.03	185	228	0	300	40,716	3	18	12,000	23,850	65,358	326,790	2.287.530
MEDIUM	· · ·											
100	0	0	0	0	0	0	0	0	0	0	0	0
60	18	22	0	100	4,035	1	2	4,000	2,650	6,476	32,382	226,676
30	34	41	0	100	7,433		4	4,000	5,300	11,932	59,659	417.612
25	36	44	0	100	8,011	1	4	4,000	5,300	12,859	64,293	450 052
15	43	53	0	100	9,520	1	4	4,000	5,300	15,282	76,409	534,860
10	48	59	O'	100	10,615	1	5	4,000	6,625	17,039	85,195	596 367
3	61	75	0	100	13,471	1	6	4,000	7,950	21,623	108,116	756 809
0.3	123	149	0	200	26,964	2	12	8,000	15,900	43,283	218.416	1 514 914
0.03	167	203	0	300	36,659	3	16	12,000	21,200	58,844	294.222	2 059 555
1.014				1								
100	0	0	0	0	0	0	0	0	0	0	0	
	0	0	0	0	0	0	0	0	0	0		
		0	0	0	0	0	0	0	0	0		
		0	0	0	0	0	0	0	0	0	0	
15		0	0	0	0	0	0	0	0	0	0	
10	-	0	0	0	0	0	0	0	0	0	0	
	27	33	Ō	100	5,967	1	3	4,000	3,975	9.578	47 890	335 222
	82	76	Ō	100	13,667	1	6	4,000	7,950	21,939	109 693	767 954
0.3	139	169	Ō	200	30,563	2	13	8,000	17,225	49.059	245,296	1 717 076
Unit Dates and		76 lb4/ft*3	From	\$100 per	\$220/m^3	96 tone of	7,298	\$4,000 per	\$1,326 per truck	Cests for built	Costs for in-	Possible costs for
Unit Kates and			RACER	gendels car for		aoit per	lbs/bex and	gondels relicer	lead	disposal at LARW	compact disposal at	luture in-compact
NOIGS			Medel	plastic liner		(alicaf	+ DOX66/WUC			disposal facility,	existing LLW	dispessi facilities for
			ľ				29,184 lbs			¥ 10/11 3; fail	disposal facility,	LLW, \$350/11"3;
				1			beeliloe			a makari dist	VOUNL J; Wuck	TIUCK transport only.
				I			L	l				

۰.

:

45

¥

					1			
1. A 1.	Totel Soll	Totel Soll	Remediation	Costs				Totel
Residual Dose	Volume	@ #10//11*3	@ (50/ft*3	@ #360/m-3	Soll Weshing	Solf Excevetion	Totel Soli	Occupations
Rete	Disposed	Disposal Costs	Disposal Costs	Disposal Costs	Labor	Labor	Remediation Labor	Dase
mrenv/yr	<u>m*3</u>		¥ :		men-hr	men-hr	men-tvr	nerm-norreq
HIGH		· · · · · · · · · · · · · · · · · · ·						
100	24	18,384	57,908	315,204	· 0	39	39	4
60	34	24,244	81,360	444,216	0	55	55	6
30	44	29,915	104,099	569,113	0	71	71	7
25	46	31,363	109,564	600,649	0	75	75	8
15	52	34,842	122,700	676,456	0	85	85	8
10	58	38,069	• 136,211	748,103	0	94	94	9
3	86	58,632	201,022	1,109,461	0	139	139	14
0.3	152	101,721	356,187	1,966,943	0	246	246	25
0.03	185	121,150	434 349	2,395,589	0	300	300	30
MEDIUM			•					
100	0	0	•	0	0	0	0	0
60	18	14,886	43.377	237,670	0	30	30	3
30	34	23,972	80,332	438,286	0	55	55	
25	36	25,515	86,160	471,919	0	59	59	<u>8</u>
	43	29,551	101,398	559,849	0	70	70	
10	48	32,478	113,774	624,946	0	78	78	
	81	40,112	143,925	792,619	0	99	99	
	123	80.286	288.083	1.586.581	0	199	100	
0.0	187	110 302	391,239	2.156.572	.0	270	135	20
0.03	107							2/
LOW			0		0			
100			0	0	0			0
			0	0	0	0		0
30	0						0	0
25	0						0	0
15	0	0				0	0	0
10	0	0	64 000	351 540			0	0
3	27	20,052	64,208	351,549		44	44	4
0.3	62	40,638	145,910	804,070	0	101	101	10
0.03	139	89,906	320,/31	1,131,003	0	225	225	23
Unit Rates and Notes					0,17 menter per m*3	1.52 mentr per m*3		0.1 mrøm pør m he lebør
•								

-

.1

Table C.1.2. Calculated Costs and Other Parameters for Remediation of Contaminated Soil at the Reference Nuclear Power Plant (Unrestricted Land Use, Without Soil Washing)

• • •

ŧ.

• .

C.C-11

NUREG-1496

Page 3 of 3

Table C.1.3.

Calculated Costs and Other Parameters for Remediation of Contaminated Soil at the Reference Nuclear Power Plant (Restricted Land Use, With Soil Washing)

	Contamin	Site		Balow	Balawa	Total Soli	John C-N
Residual Dose	ated Site	8-14	Site Soil	Building	Building Soll	Volume	Freevetion
Rate	Soll Area	D. pth	Volume	Soll Depth	Volume	Removed	Costa
mremiyr	ít*2	¢m	m*3	cna	m*3	m,3	•
HIGH							
100	3,000	0,0	0	0.0	0	0	0
60	3,000	0.0	0	0.0	0	0	0
30	3,000	0.0	0	0.0	0	0	0
25	3,000	0.0	0	0.0	0	0	0
15	3,000	0.0	0	0.0	0	0	0
10	3,000	1.6	4	1.6	7	12	2,808
3	3,000	5.2	15	5.2	24	39	9,089
0.3	3,000	8.3	23	8.3	39	62	14,523
0.03	3,000	10.7	30	10.7	50	79	18,673
MEDIUM							
100	3,000	0,0	0	0.0	0	0	0
60	3,000	0.0	0	0.0	0	0	0
30	3,000	0.0	0	0.0	0	0	0
25	3,000	0.0	0	0.0	0	0	0
15	3,000	0.0	0	0.0	0	0	0
10	3,000	0.0	0	0.0	0	0	0
3	3,000	3.7	10	3.7	17	28	6,494
0.3	3,000	7.5	21	_ 7.5	35	56	13,149
0.03	3,000	9.9	28	9.9	48	74	17,309
LOW							
100	3,000	0.0	0	0.0	0	0	0
60	3,000	0.0	0	0.0	0	0	0
30	3,000	0.0	0	0.0	0	0	0
25	3,000	0.0	0	0.0	0	0	0
15	3,000	0.0	0	0.0	0	0	0
10	3,000	0,0	0	0.0	0	0	0
3	3,000	0.0	0	0.0	0	0	0
0.3	3,000	2.3	8	2.3	11	17	4,024
0.03	3,000	7.0	19	7.0	32	52	12,158
Unit Rates and		Difusion		Diffusion	2% of building		\$236/m*3
Notes		model een		medet seit	1250 000		
l				balow	ft*2]		
1				buildings	_		
Ŧ	1			I			

Page 1 of 3

1

.

65

٩,

						Soil	Soil					
				Soll	Soll	Transport	Transport	Sell	Soll		· · · ·	
	Total Soll		Solt	Packaging	Peckaging	Loads,	Loads,	Trensport	Trensport	Soli	808	Solt Disposed
Desidual Date	Volume	Total Soll	Washing	Costs,	Costs, B-25	Gondola	Truck	Costs,	Coets,	Disposal Costa	Disposal Costs	Coste B
Rete	Removed	Weight	Costs	Bondola Car	Boxes	Cara	Loads	Reff	Truck	@ #10/m*3	@ #50/11-3	\$350/#*3
meen/vt	m*3	MT	•	•	•	/ cere	# Trucks		•			
HIGH												
100	0	0	0	0	0	0	0	0	0	0	0	0
60	0	0	0	0	0	0	0	0	0	0	0	0
	0	0		0	0	0	0	0	0	0	0	0
		0	0	0	0	0	0	0	0	0	0	0
	0	0	0	0	0		0	0	0.	0	0	
	12	15	37.444	100	1,052	1	-1	4,000	1,325	1.688	8.440	59.083
	39	47	44,962	100	3,403	1 -	2	4,000	2,650	5,463	27.316	191 209
	B2	75	51,467	100	5,438	1	3	4,000	3,975	8,730	43.649	305 545
0.03	79	97	56,435	100	6,993	1	3	4,000	3,975	11,225	56,123	392,860
AFDHIM									• •			
100	0	0	0	0	0	0	0	0	0	0	. 0	0
60	0	0	0	0	0	0	0	0	0	0	0	0
30	0	0	0		0	0	0	0	· 0	0	0	0
25	0	0	0	0	0	0	0	. 0	0	0	0	0
15	0	0	0	0	0	0	0	0	0	0	0	0
10	0	0	- 0	0	0	0 .	0	0	·· 0	0	. 0	0
3	28	34	41,856	100	2,432	1	2	1,000	2,650	3,903	19,517	136.621
0.3	56	68	49,822	100	4,924	. 1		4 000	- 3,975	7,904	39,518	276.629
0.03	74	90	54,802	100	6,482	1 . 1 .	3	4,000	3,975	10,404	52,021	364,150
IOW					· · · · ·	<u> </u>						
100	0	2	0	10	0	0	0	0	0	<u> </u>	0	0
60	0	2	0	0	0	0	0	0		0	0	0
30	0	5	.0	0	0	0	0	0	0	0	0	0
25	0	2	0	0	0	0	0	0	0,	0	0	0
15	0	0	0	0	0	0	0	0	0	0	0	0
10	0	0	0	0	0	0	0	0	0	0	0	0
3	0	0	0	0	0	0	0	0	0	0	0	0
0.3	17	21	38,899	100	1,507	1	1	4,000	1,325	2,419	12,093	84,654
0.03	52	63	48,633	100	4,552		2	4,000	2,650	7,307	36,534	255,738
Light Rates and	1	76 10s/f1*3	From RACER	\$100 per	\$220/m*3	B5 tone of	7,296	\$4,000 per	\$1,326 per truck	Corts for bull	Coets for In-	Possible costs for
		[Model	gendels car fer	· ·	rollear	4 boyes/true	Annous Inice.	1993	disposal facility	Compact disposal at	future in-compact
Moraz	1			and cover			h load, or			\$10/11°3; 14	ditpotal facility	GISPOSA Tecilities for
		ł	1.		1		29,104 lbs			transport ordy	\$50/11" 3; truck	Wuck Wansport aniv.
				1		1	sol/losd				transport only.	
I	l I	1	1	1	1	1	L	·				

Table C.1.3. Calculated Costs and Other Parameters for Remediation of Contaminated Soil at the Reference Nuclear Power Plant (Restricted Land Use, With Soil Washing)

C.C-13

NUREG-1496

Page 2 of 3
Table C.1.3.

м

ø.

Calculated Costs and Other Parameters for Remediation of Contaminated Soil at the Reference Nucleur Power Plant (Restricted Land Use, With Soil Washing)

1	1				1			
	Total Soli	Total Soit	Remediation	Course		l ,		
Residual Dose	Volume	@ \$10/H*3	@ \$50/11*3	@ 1350/1113		Soll Examination		Total
Rate	Disposed	Disposal Costs	Disposal Costs	Disposal Costs	Labor	Labor	Bemediation Later	Occupational
throm/yr	m*3	8		\$	man-hr	man-hr	man-br	Dote
HIGH]			heteost-timetiit
100	0	0	0	0	0	0	0	
60	0	0	0	0	0	0	0	
30	0	0	0	0	0	0	0	0
25	0	0	0	0	0	0	0	0
15	0	0	0	0	0	0	0	
10	5	48,041	51,070	101,713	2	19	21	2
3	15	63,614	87,419	251,313	7	63	69	7
0.3	25	78,820	119,053	380,949	11	100	111	11
0.03	.32	90,433	142,199	478,936	14	129	142	14
MEDIUM								
100	. 0	0	0	0	0	0	0	0
60	0	0	0	0	0	0	0	
30	0	0	0	0	0	0	0	
25	0	0	0	0	0	0	0	
15	0	0	0	0	0	0	0	· 0
10	0	0	0	0	0	0	0	
3	11	56,353	72,949	190,053	5	45	49	U
0.3	22	74,974	111,388	348,499	10	91	100	
0.03	29	86,615	134,589	448,717	13	119	132	10
LOW								
100	0	0	0	0	0	0		
60	0	0	0	0	.0	0		- 0
30	0	. 0	0	0	0	0		
- 25	0	0	0	0	0	0	0	
15	0	0	Ō	0	0	0	0	
10	0	0	0	0	0	0		
3	0	0	0	0	0	0	0	
0.3	7	49,442	57,848	130,408	3	28	31	
0.03	21	72,198	104,625	323,729	9	84	93	
Unit Rates and	Disposal			ويستغلي بمسيرة فابتت بتستناه	0.17 menter per	1.62 menter per		0.1 mine our area
Notes	volume le 40%	•			m°3	m*J		hr labor
110.00	of total soil				1			
	ver, ; remaining		Į		[
	~			Page 7 of 7			•5	***

NUREG-1496

Page 3 of 3

٩,

· · · · ·

Table C.1.4. Calculated Costs and Other Parameters for Remediation of Contaminated Soil at the Reference Nuclear Power Plant (Restricted Land Use, Without Soil Washing)

۰. ,

٩.

Residual Dose Rete	Contamin- ated Site Solf Area	Site Soil Depth	Site Soli Volume	Below- Building Soll Depth	Bolow- Duilding Soli Volume	Totel Soll Volume Removed	Site Soll Excevetion Coste
mem/yr	<u></u> ft*2	<u>ćm</u>	m*3	CM	m*3	m*3	
HIGH							
100	3,000	0.0	0	0.0	0	0	0
60	3,000	0.0	0	0.0	0	0	0
30	3,000	0.0	0	0.0	0	0	0
25	3,000	0.0	0	.0.0	- <u>0</u>	0	0
15	3,000	0.0	0	.0.0	0	0	0
10	3,000	1.6	4	1.6	7	12	2,808
3	3,000	5.2	15	5.2	24	39	9,089
0.3	3,000	8.3	23	8,3	39	62	14,523
0.03	3,000	10.7	30	10.7	50	79	18,673
MEDIUM				_			
100	3,000	0.0	0	0.0	0	0	0
60	3,000	0.0	0	0.0	0	0	0
30	3,000	0.0	0	0,0	0	0	0
25	3,000	0.0	0	0.0	0	. 0	0
15	3,000	0.0	0	0.0	0	0	0
10	3,000	0.0	0	0.0_	0	0	0
3	3,000	3.7	10	3.7	17	28	6.494
0.3	3,000	7.5	21	7.5	35	56	13.149
0.03	3,000	9,9	28	9.9	46	74	17.309
I OW	- The second			· · · · ·	1		
100	3.000	0.0	. 0 .	0.0	0	0	0
60	3.000	0.0	0	0.0	0	0	0
30	3,000	0.0	0	0.0	0	0	0
	3.000	0.0	0	0.0	0	0	0
15	3.000	0.0	0	0.0	0	0	0
10	3,000	0.0	0	0.0	0	0	0
	3,000	0.0	0	0.0	0	0	
	3 000	2.3	8	2.3	<u> </u>	17	4.024
0.3	3.000	7.0	19	7.0	32	52	12 156
Unit Rates and Notes	0,000	Difusion model soll profile	-	Diffusion model coll profile used below buildinge	2 % et building floer area (260,000 ft*2)		\$236/m*3
			<u> </u>	l			

.

NUREG-1496

Page 1 of 3

						Soil	Soil					
				Soli	Soll	Transport	Transport	Soil	Solt			
	Total Soll		Soil	Peckaging	Packaging	Loads,	Loads,	Transport	Transport	Soli	Sail	Call Discout
Residual Dose	Volume	Total Soil	Washing	Costs,	Coste, 8-25	Gondola	Truck	Costs,	Costs.	Disposal Costs	Disposal Costa	SON UISPOSA
Rate	Removed	Weight	Costs	Gondola Car	Boxes	Cars	Loads	flait	Truck	@ \$10/(1*3	@ 150/ft*3	1350/ILT3
memlyr	m*3	MT	•		•	I cate	# Trucks	\$	•	\$		\$
HIGH												
100	0	0	0	0	0	0	0	0	0	0	0	0
60	0	0	0	0	0	0	0	0	0	0	0	0
30	0	0	0	0	0	0	0	0	0	0	0	
25	. 0	0	0	0	0	0	0	0	0	0	0	<u>0</u>
15	0	0	0	0	0	0	0	0	0	0	0	
10	12	15	0	100	2,629	1	2	4,000	2,650	4,220	21,101	147 709
3	39	47	0	100	8,508	1	4	4,000	5,300	13,658	68,289	478 023
0.3	62	76	0	100	13,596	1	6	4,000	7,950	21,825	109.123	763,863
0.03	79	97	0	200	17,482	2	8	8,000	10,600	28,061	140,307	982.149
MEDIUM												
100	0	0	0	0	0	0	0	0	0	0	0	0
60	0	0	0	0	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	0	0	0	0	0	0
25	0	0	0	0	0	0	0	0	0	0	0	0
15	0	0	0	0	0	0	0	0	0	0	0	0
10	0	0	0	0	0	0	0	0	0	0	0	0
3	28	34	0	100	6,079	1	3	4,000	3,975	9,759	48,793	341 553
0.3	56	68	0	100	12,309	1	6	4,000	7,950	19,759	98,796	691,573
0.03	74	90	0	200	16,204	2	7	8,000	9,275	26,011	130,054	910.375
LOW												
100	0	0	0	<u>' 0</u>	0	0	0	0	0	0	0	0
60	0	0	0	0	0	0	0	0	0	0	0	0
30	0	0	0	0	0	0	0	0	0	0	0	0
25	0	0	0	0	0	0	0	0	0	0	0	0
15	0	0	0	0	0	0	0	0	0	0	0	0
10	0	0	0	0	0	0	0	0	0	0	0	0
3	0	0	0	<u> </u>	0	0	0	0	0	0	0	0
0.3	17	21	0	100	3,767	1	2	4,000	2,650	6,047	30,233	211,634
0.03	52	63	0	100	11,380	1	5	4,000	6,625	18,267	91,335	639,345
Unit Rates and Notes		78 Hoo/ft* 3	From RACER Model	\$ 100 per gendels car fer plessic timer and caver	\$220/m`3	96 tens of soil per reilcor	7,298 ibe/bex end 4 bexes/truc k load, er 29,194 ibe seii/leed	\$4,000 per gendete relicer	61,326 per wuck lood	Costs for buik disposal at LARW disposal facility, \$10/ft^3; roit transport only	Costs for in- compact disposes at existing LLW disposal facility, 650/11*3; truck transport only.	Pessible costs for future in-compact disposal facilities for LLW, 635071:*3; truck transport only.

•

•

• .

Table C.1.4. Calculated Costs and Other Parameters for Remediation of Contaminated Soil at the Reference Nuclear Power Plant (Restricted Land Use, Without Soil Washing)

NUREG-1496

*6

\$1

¥

s,

		1					1		
		Total Soll	Totel Soli	Remediation	Costs				Tead
Residual Do		Volume	@ #10/11*3	@ \$50/ft*3	@ #350/11-3	Soll Westing	Soll Excavation	Total Solt	10141
Rate		Disposed	Disposel Costs	Disposel Costs	Disposal Costs	Labor	Labor	Remediation Labor	Dore
mom/yr		m*3		•	1	men-hr	man-hr	men-hr	Derson-Intern
HIGH									
	100	0	0	0			0	0	0
	60	0	0 .	0	0	0	0	0	0
	30	0	0	0	0	0	0	0	0
	25	0	0	0	0	0	0	0	0
	15	0	0	0	0	0	0	0	0
	10	12	11,129	29,189	155,796	0	19	19	2
	3	39	26,846	91,185	500,921	0	63	63	6
	0.3	62	40,448	145,193	799,932	0	100	100	10
0	0.03	79	54,935	187,062	1,028,904	0	129	129	13
MEDIUM									
	100	0		0	0	0	. 0	0	0
	80	0	0	0	0	C.	0	0	0
	30	0	0	0	0	0	0	0	0
	25	0	0	0	0	0	0	0	0
	15	0	0	0	0	0	0	0	0
	10	0	0	0	0	0	0	0	0
	3	28	20,353	65,341	358,101	0	45	45	4
	0.3	56	37,008	132,204	724,981	0	91	91	9
	0.03	74	51,520	172,841	953,163		- 119	119	12
IOW						•			
LUTT	100	0	0	0	0	0	0	0	0
	60	0	0	• 0	0	0	0	0	0
`	30	0	0	0	0	0	0	0	0
	25	0	0	0	0	0	0	0	0
	15	0	0	0	0	0	0	0	0
	10	0	0	0	0	0	0	0	0
		0	0	0	0	0	0	0	
		17	14,170	40,674	222,075	0	28	28	
	0.03	52	34,523	121,496	669,506	0	84	84	8
Alais Batas						0.17 menter per	1.62 menter per		0.1 (West per sa)
Unit Ketes						m*3	m*3		hr tabor
[V0162			· •.			1 · · · ·			
						1			
1	-							1	
[•				I	1	1	ł

¥)

Table C.1.4. Calculated Costs and Other Parameters for Remediation of Contaminated Soil at the Reference Nuclear Power Plant (Restricted Land Use, Without Soil Washing)

7

C.C-17

NUREG-1496

Page 3 of 3

Table C.1.5.

۷

Calculated Costs and Other Parameters for Remediation of Contaminated Soil at the Reference Nuclear Power Plant (Unrestricted Land Use, With Soil Washing, 50-Year SAFSTOR)

	Contamin	Site		Below-	Below-	Total Soil	SHe Soll
Residual Dose	ated Site	Soil	Site Soil	Building	Building Soll	Volume	Excevation *
Rate	Soil Area	Depth	Volume	Soil Depth	Volume	Removed	Costs
mem/yr	ít"2	cm	m*3	CM	m*3	m*3	•
HIGH							
100	3,000	0,0	0	0.0	0	0	0
60	3,000	0.0	0	0.0	0	0	0
30	3,000	0.0	0	0.0	0	0	0
25	3,000	0.0	0	0.0	0	0	0
15	3,000	0.0	0	0.0	0	0	0
10	3,000	0.0	0	0.0	0	0	0
3	3,000	2.8	8	2.8	13	21	4,895
0.3	3,000	55.5	155	55.5	258	413	96,990
0.03	3,000	65.6	183	65.6	305	487	114,548
MEDIUM							
100	3,000	0.0	0	0.0	0	0	0
60	3,000	0.0	0	0.0	0	0	0
	3,000	0.0	0	0.0	0	0	0
25	3,000	0.0	0	0.0	0	0	0
15	3,000	0.0	0	0:0	0	0	0
10	3,000	0.0	0	0.0	0	0	0
. 3	3,000	0.0	0	0.0	0	0	0
0.3	3,000	14.3	40	14.3	66 ·	106	24,937
0.03	3,000	60.3	188	60.3	280	448	105,238
LOW							
100	3,000	0.0	0	0.0	0	0	0
-60	3,000	0.0	0	0.0	0	0	0
30	3,000	0.0	0	0.0	0	0	0
25	3,000	0.0	0	0.0	0	_ 0	0
15	3,000	0.0	0	0.0	0	0	0
10	3,000	0.0	0	0.0	0	0	<u> </u>
3	3,000	0.0	0	0.0	0	0	0
0.3	3.000	0.0	0	0,0	0	0	0
0.03	3,000	50.2	140	50.2	233	373	87,647
Unit Rates and		medal sel		noisumuu Maalsiaam	tion men		\$236/m*3
Notes		prolile		proläe wood	1250,000		
				below	(1°2)		
				buildings			
L					La		

۹,

						Soil	Soil					
				Soft	Sell	Treneport	Transport	508	Soll			· ·
	Total Solt		Soll	Peckeeine	Peckecing	Londs.	Loads.	Transnort	Trenenort	- Coll		1
Realdwet Dose	Volume	Total Soll	Washing	Costs,	Costs, B-25	Gondola	Truck	Costs.	Costs.	Disposel Costs	Discost Cross	Soll Disposel
Rate	Removed	Weight	Costs	Gondola Car	Boxes	Cers	Lords	Rell	Truck	@ \$10/h*3	M esoure	Costs @
and the second s	m*3	MT	\$	+		/ cere	/ Trucks		•		e ison a	\$350/n-3
100	0	0	0	0	0	0	0	0	0	0		·
60		0	0	0	0	0	0	0	0	0		<u> </u>
20		0	. 0	0	0	0	0	0	0	0		0
30		- 0	0	0	0	0	-0	0	0	0		0
			0	0	0	0	0	0	0	<u> </u>		0
10			0	0	0	0	0	0	0	0	0	0
		- 25	39.942	100	1,833	1	1	4.000	1 325	2 042	0	0
	412	<u> </u>	150 183	300	36 320	3	18	12 000	21 200	£0.201	14,712	102,982
0.3	413	503	171 201	300	42 895		18	12,000	27,200	58,301	291,503	2,040,519
0.03	48/	004	1/1/201			~		12,000		08,855	344,273	2,409,912
MEDIUM								-				
100			0	0					0	0	0	0
80	0									0	0	0
30			. 0				-		0	0	0	<u> </u>
										0	.0	0
15					<u> </u>			0		0	0	0
10	0	0	0		<u> </u>				0	0	0	0
3	0	0	0		0.000				0	<u> </u>	0	0
0.3	108	129	63,933	100	9,338		4	4,000	5,300	14,990	74,948	524,634
0.03	448	546	160,055	300	39,408	3	<u> </u>	12,000	22,525	63,258	316,292	2,214,041
LOW			·		<u> </u>							
100	0	0	0		0	0	0	0	0	0	0	0
60	0	0		<u> </u>		0	0	0	0	0	0	0
30	0	0		<u> </u>	0	0	0	0	0	0	0	0
25	0	0	0	0	<u> </u>	0	0	0	0	0	· 0	0
15	0	0	0	0	0	0	0	0	0	0	0	0
10	0	0	0	0	0	0	0	0	0	0	0	0
3	0	0	0	0	0	0	0	0	0	0	0	0
0.3	0	0	0	0	0	0	0	0	0	0	0	0
0.03	373	454	138,999	300	32,821	3	14	12,000	18,550	52,684	263,422	1.843.952
Unit Rates and		78 Ibe/It'3	From RACER	\$100 per	\$220/m*3	#5 terms of	7,206	\$4,000 per	\$1,325 per truck	Coots for bulk	Costs for in-	Possible cests for
Notes			Medel	gendets car for	1	ralless	A bayestme	Repairs traigs.	leed	disposal of LARW	compact dispasal at	future in-compact
110100	Į		Ι.	and sever			k lood, or		· ·	s 10/h * 9	existing LLW	disposal facilities for
	(1.		1	{	29,184 be			trensport enty	# \$50/tt * 3: wash	LLW, \$350/1-3;
1	l	l	`			·	per/lies				transport only.	unce transport only.
1	I	ł	I	l	ł	<u> .</u>	1			ł		1

Table C.1.5. Calculated Costs and Other Parameters for Remediation of Contaminated Soil at the Reference Nuclear Power Plant (Unrestricted Land Use, With Soil Washing, 50-Year SAFSTOR)

C.C-19

NUREG-1496

	· · · · · · · · · · · · · · · · · · ·	(,				1	1	-
,	1	1 '					1	
ł . '	Total Soll	Total Soll	Remediation	Costs		1	1	Total
Residual Dose	Volume /	@ 010/R*3	@ \$5-7/11-3	@ \$350/ft-3	Soil Washing	Soll Excevation	Total Soll	Occupational
Rate	Disposed	Disposal Costs	Dispos - I Costs	Disposal Costs	Labor	Labor	Renediction Labor	Dose
mrem/yr	1 <u>m-a</u>	↓ '	'		man-hr	man-hr	man-hr	person-mrem
HIGH	.[/	I′	 '	<u> </u>	· '		'	
100	<u> </u>	<u> </u>	······································	0	l'	0	<u> </u>	0
607		<u> </u>	<u> </u>	······································	ļ'	0	<u> </u>	0
	<u> </u> /	<u> </u>	0'	ļ'	<u> </u>	0	<u> </u>	0
25		l/	0. /	<u> </u>	<u> </u>	0	0	0
15/		<u> </u>	<u> </u>	0	<u> </u>	0	0	0
10/	<u> </u>	<u> </u>	<u> </u>	0'	<u> </u>	0	0	0
3'	<u> </u>	51,879	62,706	150,976	4'	34	37	4
0.3	165	317,774	596,196	2,345,211	70	669	739	74
0.03	195	368,904	696,767	2,762,406	83 /	790	873	87
MEDIUM	[]	L	↓ ′	 '		<u>.['</u>		1
100	['	<u> </u>	'	0	'	0	0	0
60	<u> </u>	<u> </u>	0 .	0	<u> </u>	0	0	0 -
30	0/	<u>0</u>	<u> </u>	'	<u> </u>	0	0	0 -
25	0	<u> </u>	o′	<u> </u>	0	0	0	0
15	0	<u> </u>	<u> </u>	0	0	0	0	
10'	0	0	0	0	0	0	0	1
3	0	0	0	0	0	0	,,	1
0.3	42	107,959	178,456	628,142	18	172	190	1
0.03	179	340,852	643,519	2,541,268	76	725	802	
IOW	{	······································	······································	,,	[
100	1-0-1	0	0	0	0	0	0	1
60	1-0-1	0	0	0	0	0	t	1
30	1-0-1	, <u> </u>	0	0	0		t	1
26	1-0-1	i	0	1 0	<u> </u>		f	1
15	1		0	0		i	<u>├────────────────────────</u>	I
10	. 	······································	l	0		+	f	1
······································	1	1	0	1	<u> </u>	1	<u>↓</u> ′	0
·	f					f'	├ '	0
0.3	149	201 830	541.439	2 121 989				1
0,03	143 J	231,030		<u> </u>		1 4 4 2 2 2 2 4 2 2 2 2 2 2 2 2 2 2 2 2	800	67
Unit Rates and Notes	volume is 40% of total soil			!	m*3	1.94 marrs (94) m*3	!	0.1 mrsm per man hr faber
1	vol.; remaining vol. is released				!			
	1 7	1 '	1 '	t '	Į '	(· '	· · · · · · · · · · · · · · · · · · ·	1

Table C.1.5. Calculated Costs and Other Parameters for Remediation of Contaminated Soil at the Reference Nuclear Power Plant (Unrestricted Land Use, With Soil Washing, 50-Year SAFSTOR)

NUREG-1496

×

1,

41

₩.

Construction of the local division of the lo		_					
·							
	Contemin	Site		Below-	Belaw-	Total Soll	Site Sell
Residual Dose	ated 5fte	Sofi	Site . Soll	Duilding	Building Soll	Volume	Excavation
	Son Area		Volume	Son Depth	Volume	Removed	Costa
(MOLL		GM	mo	cm	ma	<u>m 3</u>	
100	3,000	0.0	0	0.0		0	0
	3,000	0.0		0.0		0	0
	3,000		0	0.0	0	-0	0
	3,000	0,0	0	0.0	0	0	0
16	3,000	0.0	0	0.0	0	0	0
10	3,000	0,0		0.0	0	0	0
3	3,000	2.8	8	2.8	13	21	4,895
0.3	3,000	55,5	155	55.5	258	413	96,990
0.03	3,000	05.0	183	65.6	305	_487	114,548
MEDIUM							
100	3,000	0.0	0	0.0		0	0
60	3,000	0.0	0	0.0	0	0	0
	3,000	- 20		0.0	0		0
25	3,000	0.0	0	0.0	0	0	0
15	3,000	0.0	0	0.0	0	0	0
10	3,000	0.0	0	0.0	0	0	0
3	3,000	0.0	0	0.0	0	0	0
0.3	3,000	14.3	40	14,3	. 66	106	24,937
0,03	3,000	60,3	168	60.3	280	448	105,238
LOW							
100	3,000.	0.0	0	0.0	0	0	0
60	3,000	0.0	0	0.0	0	0	0
30	3,000	0,0	0	0.0	0	0	0
25	3,000	0,0	0	0.0	0	0	0
15	3,000	0.0	0	0.0	0	0	0
10	3,000	0.0	0	0.0	0	0	0
3	3,000	0,0	0	0.0	0	0	0
0.3	3.000	0.0	0	.0.0	0	0	0
0.03	3,000	50.2	140	50.2	233	373	87.647
Unit Rates and		Diffuelon		Diffusion	2% of building		\$236/m*3
Notes	· · · ·	medel sell		model sell	floor area		
110100		profile		prettle sood	1260,000		
				buildinge	n 2)		
Í							

Table C.1.6. Calculated Costs and Other Parameters for Remediation of Contaminated Soil at the Reference Nuclear Power Plant (Unrestricted Land Use, Without Soil Washing, 50-Year SAFSTOR)

Page 1 of 3

C.C-21

NUREG-1496

Table C.1.6. Calculated Costs and Other Parameters for Remediation of Contaminated Soil at the Reference Nuclear Power Plant (Unrestricted Land Use, Without Soil Washing, 50-Year SAFSTOR)

Residual Dose Rate Total Soil Volume Removed Total Soil Volume Weight Soil Total Soil Volume Weight Soil Packaging Coste, Gondola Car Transport Boxes Transport Coste, Boxes Soil Transport Coste, Coste, Boxes Soil Transport Coste, Coste, Rail Soil Transport Coste, Rail Soil Disposal Coste Rail Soil Transport Rail Soil Disposal Coste Rail Soil Transport Rail Soil Transport Rail Soil Transport Rail Soil Transport Rail Soil Transport Rail Soil Transport Rail Soil Transport Rail Rail Soil Transport Rail Soil	Residual Dose Rate memiyr	Total Spil	1	1 1	Soli	Solf	Transad	T	0.8	C _1			
Residual Dose Rate Total Soil Volume Removed Soil Volume Weight Soil Coate, Coate, Gondola Car Packaging Coate, Boxes Packaging Coate, Boxes Decks, Coate, Coate, Coate, Coate, Coate, Coate, Coate, Coate, Coate, Rait Transport Coate, Truck Soil Disposal Coate @ #10/ft*3 Soil @ #60/ft*3 Soil Coate, @ #10/ft*3 Soil @ #60/ft*3 Soil @ #6	Residual Dose Rate mrem/yr	Total Soli				69UH	E ITANADATU		300	301		1	
Residual Dose Rate Total Soil Washing Weight Coste Coste Coste Baxes Coste Coste Coste Baxes Coste Gondols Coste Caste Coste Baxes Coste Coste Dispessi Coste Baxes Dispessi Coste Baxes Soil Dispessi Coste Baxes Coste, Reil Truck Dispessi Coste Baxes Dispesi Baxes Dispessi Coste Baxes	Residual Dose Rate muem/yr			Solt	Packaging	Packaging	Loada.	Londe.	Transport	Trensport	S-II	C -1	.
Headdua Jois Volume Costs Gondola Car Baxes Cars Loads Reil Truck @ #10/ft*3 @ #50/ft*3 #350/ft* msem/yr m*3 MT 6 6 6 6 cars 6 Trucks 6 7 7 7 7 7 45 28.00 59.625 172,137 860,683 6,024,75 0.03 487 59.4 0 700 107,237 7 45 28,000 59,625 172,137 860,683 6,024,755	Restant Dose Rete muem/yr	Volume Total !		Washing	Costs.	Costs. B-25	Gondola	Truck	Coate.	Coata	Disposal Casta	Sou Discout Court	Soil Disposal
Hais Heinores Heinores Horizontal Heinores Heinores Heinores Heinores Heinores High	muemiyr	Removed Weig		Costa	Gondola Car	Boxes	Cars	Loads	Reil	Tauck	@ \$10/6*3		Coste @
High Image: Non-state	timmered A.	m'3 MT	mamint		•	•	l'care	# Trucks	•		¢ 110/11: 0		\$350/it-3
High 0			1										
100 0		0 0	100	0	0	0	0	0	0	0	0		
60 0	100			- Č	0	0	0	0		0	0		0
30 0	60					0	0	0				0	0
25 0						0	0		0	0		0	0
15 0	25		25		0	0		-			0	0	0
10 0 <th0< th=""> 0 <th0< th=""> <th0< th=""></th0<></th0<></th0<>	15		15		0	0						0	0
3 21 25 0 100 4,582 1 2 4,000 2,650 7,356 36,779 257,454 0.3 413 503 0 600 90,799 6 38 24,000 50,350 145,751 728,757 5,101,25 0.03 487 594 0 700 107,237 7 45 28,000 59,625 172,137 860,683 6,024,76	10	0 0	10		100	4 500			4.000	0	0	0	00
0.3 413 503 0 600 90,799 6 38 24,000 50,350 145,751 728,757 5,101,25 0.03 487 594 0 700 107,237 7 45 28,000 59,625 172,137 860,683 6,024,76	3	21 25	3		100	4,582		- <u>-</u>	4,000	2,650	7,356	36,779	257,454
0.03 487 594 0 700 107,237 7 45 28,000 59,625 172,137 860,683 6,024,76	0.3	413 503	0.3 4	0	600	90,799		38	24,000	50,350	145,751	<u>728,757</u>	5,101,296
	0.03	487 594	0.03 4	0.	700	107,237	· 7	45	28,000	59,625	172,137	860,683	6,024,780
	MEDIUM		IUM										
	100	0 0	100	0	0	0	0	0	0	0	0`	0	. 0
	60	0 0	60	0	0	0	0	0	0	0	0	0	0
	30	0 0	30	0	0	0	0		0	0	0	0	0
	25	0 0	25	0	0	<u> </u>	0	0	0	0	0	0	0
	19	0 0	15	0	0	0	0	0	0	0	0;	0	0
	10	0 0	10	0	0	0	0	0	0	0	01	0	0
	3	0 0	3	0	0	0	0	0	0	0	0.	0	
0 3 106 129 0 200 23,345 2 10 8,000 13,250 37,474 187,369 1 311 50	0.3	106 129	03	0	200	23,345	2	10	8,000	13,250	37,474	187.369	1 311 585
	0.03	448 546	0.03	0 .	700	98,521	7	42	28,000	55,650	158,146	790,729	5 535 101
	0.00												
	LUW	0 0	100	0	0	0	0	0	0	0	0	0	
				0	0	0	0	0	0	0	0	0	
		0 0		0	0	0	0	0	0	0	0	0	0
				0	0	0	0	0	0	0	0	0	
	25	0 0	<u>40</u>	0	0	0	0	0	0	0	0	0	
	15			Ō	0	0	0	0	0	0	0	0	0
				0	0	0	0	0	0	0	0	0	0
	3			- O	0	0	0	0	0	0	0		
	0.3	272 454	0.3	0	600	82.052	6	35	24,000	46,375	131.711	658 554	4 600 000
0.03 575 78 100 per \$100 per \$220/m'3 \$6 tone of 7,268 \$4,000 per \$1,326 per truck Costs for bulk	0.03	78 104	0.03	Frem	\$100 per	\$220/m*3	96 tone of	7,298	\$4,000 per	\$1,325 per truck	Costs for buik	Costs for In-	Possible case for
Unit Rates and , RACER gendels car for soll per ibe/bex and gendels raiter load disposal at LARW compact disposal at future in-comp	Unit Rates and		t Rates and	RACER	gandals car for		soil per	lite/text and	gondale tailcar	loşd	dispesal at LARW	compact disposal at	future in-compact
Notas Model plastis liner reilear 4 besse/true diaposal facility, existing LLW disposal facility	Notes		Notes	Medel	plastic liner		telicer	4 boxss/truc			disposal facility,	existing LLW	disposal facilities for
and cover R tead, or \$10/IL^3; rail dispesal facility, LLW, \$350/IL 28.184 lbs	l			1	and cover			29.184 lbs			VIO/IL"3; rail	disposal facility,	LLW, \$350/11"3;
solition and traceport only source and traceport only			1					soi/lead			a a abhail Bibh	transport and	truck transport only.
	1						L						

....

φ.,

X,

1 1		1 1			1	1		
]	
	Total Soll			Cotts				Totel
Residual Dass	Volume		O tours	@ 1350/n-3	Soll Weshing	Soll Excevetion	Total Soli	Occupational
Rate	Disposed		Composer Corrs	1	manhr	Labor	Internediation Labor	Dose
mem/yr	mo						anali-lin	beteon-mem
HIGH				0	<u> </u>			
100	0							0
60	0		0	0		0	0	0
30	0	0				0	0	0
25	0	0	0	0	0	0	0	0
15	0	. 0	0	0	0	0	0	0
10	0	0	0	0	0	0	0	0
3	21	18,351	48,907		- 0	34	34	3
0.3	413	267,341	966,896	5,339,436	0	669	669	67
0.03	487	316,385	1,142,093	6,306,190	<u> </u>	790	790	79
MEDIUM			· .					
100	0	0	0		0	0	0	0
60	0	. 0	0	0	0	0	0	0
30	0	0	0	0	. 0	0	0	0
25	0	. 0		0	0	0	0	0
15	0	0	00	. 0 .	0	0	0	0
10	0	0	0	0		0	0	0
3	0	0	. <u>. 0 .</u>	0		· 0 · ···	0	0
0.3	105	70,811	248,902	1,373,118		172	172	17
0.03	448	292,084	1,050,137	5,794,510	<u> </u>	725	725	73
I OW								
100	0	0	0	0.	<u> </u>	0	0	0
60	0	0	0	0	0	0	0	0
30	0	0	0	0	0	0	0	0
25	1	0	0	0	0	0	0	0
15	0	0	0	. 0	0	0	0	0
10		0	0	0	0	0	0	0
10		0	0	0	0	0	0	0
3		0	0	0	0	0	0	0
0.3	373	243,958	874,629	4,825,954	0	604	604	60
0.03					0.17 menter per	1.62 menter per		0.1 mem per mar
Unit Hates and					m.3	m*3	1	tr leber
Notes	l							
1					1			
	1		i i			ļ		
				l	<u></u>	l		

Table C.1.6. Calculated Costs and Other Parameters for Remediation of Contaminated Soil at the Reference Nuclear Power Plant (Unrestricted Land Use, Without Soil Washing, 50-Year SAFSTOR)

NUREG-1496

Page 3 of 3

NUREG-1496

•

Residual Dose Rate	Contamin- ated Site Soll Area	Site Soil Depth	Site Soli Valuine	Below- Building Soil Depth	Below- Building Soli Volume	Total Soil Volume Removed	Site Si Excevel Cost
mrom/yr		GIII		CIR	3	m 3	
HIGH	2 000	00	-	~~~~	<u>-</u>		
100	3,000	0.0	0	0.0		0	
60	3,000	0.0	0	0.0	0		
	3,000	0.0	0	0.0	0		
	3,000	0.0	0	0.0		0	0
15	3,000	0.0	<u> </u>	0.0	0		0
0	3,000	0,0	0	0.0	0	0	0
3	3,000	0.0	<u> </u>	0.0	0	0	0
0.3	3,000	0.0	<u> </u>	0.0	0	0	0
0.03	3,000	5.9	10	5.9	2/	44	10,24
MEDIUM							
100	3,000	0,0	0	0.0	<u> </u>	0	0
60	3,000	0.0	<u> </u>	0.0	0	0	0
30	3,000	0.0	0	0.0	0	0	0
25	3,000	- 0.0	0	0.0	0	0	0
15	3,000	0.0	U	0.0	0	0	0
10	3,000	0.0	0	0.0	0	0	0
3	3,000	0.0	0	0.0	0	0	0
0.3		0.0	0	0.0	0	0	0
0.03	3,000	3.2	9	3.2	15	24	5,612
LOW							
100	3,000	0.0	0	0.0	0	0	0
60	3,000	0.0	0	0.0	0	0	0
30	3,000	0.0	0	0.0	0	0	0
25	3,000	0.0	0	0.0	0	0	0
15	3,000	0.0	0	0.0	0	0	0
10	3,000	0.0	0	0.0	0	0	0
3	3,000	0.0	0	0.0	0	0	0
0.3	3,000	0.0	0	0.0	0	0	
0.03	3,000	0.0	0	0.0	0	0	
Unit Rates and Notes		Diffusion model soil profile		Diffusion model seil profile used below buildings	2% of building ficor area (260,000 ft*2)		\$235/m*

Table C.1.7. Calculated Costs and Other Parameters for Remediation of Contaminated Suil at the Reference Nuclear Power Plant (Restricted Land Use, With Soil Washing, 50-Year SAFSTOR)

Page 1 of 3

*

¥

цí,

46

.

						Soil	504					
Residuel Dose Rete	Totel Soil Volume Removed	To' st Soll Weight	Soil Westring Costs	Soli Packaging Costa, Gondola Car	Solf Peckeging Costs, B-25 Boxes	Transport Loads, Gondola Cara	Transport Loads, Truck Loads	Soll Transport Coate, Rall	Soll Transport Costs, Truck	Soij Disposal Costa @ \$10/m^3	Soli Disposal Costs	Soli Disposal Costs @
mrem/yr	m*3	MT		•	ŧ	F cars	# Trucks				<u>e 150/11 3</u>	*350/It-3
HIGH											·	
100	0	0	0	0	0	0	0	0		0	0	
60	0	0	. 0	. 0	0	0	0	0	0	0	0	0
30	0	· 0 ·	0	0	0	0	0	0	0	0	0	0
25	0	0	0	0	0	0	0	0	0	0	0	
15	0	0	0	0	0	0	0	0	0	0	0	
10	0	0	.0	0	0	0	0	0	0		0	0
3	0	0	0	0	0	0	0	0	0	0	0	0
0.3	0	0	0	0	0	0	0	0	0	0	0	
0.03	44	53	46,343	100	3,836	1	2	4,000	2,650	6,157	30.784	215.490
MEDIUM												213,489
100	0	0	0	0	0	0	0	0	0	0	0	0
60	0	0	0	0	0	0	0	0	0	0	0	
30	0	0	0	0	0	0	0	0	0	0	0	
25	0	0	0	0	0	0	0	0.	0	0	0	0
15	0	0	0	0	0	0	0	0	0	0	0	0
10	- 0	0	0	0	0	0	0	0	0	0	0	
3	0	0	0	: O	0	0	<u> </u>	0 .	0	.0	0	0
0.3	0	0	0	0	0	0	0	<u> </u>	0	0	- 0	0
0.03	24	29	40,800	100	2,101	1	1	4,000	1,325	3,373	16,866	118.061
LOW						:						
100	0	0	0	0	0	0	.0	0	0	0	0	0
60	0 ·	0	0	0	0	0	0	0	0	0	0	0
30	0	0	0	0	0	0	0	0	0	0	0	0
25	0	0	0	0	0	0	0	0	0	0	0	0
15	0	0	0	0	0	0	0	0	0	0	0	0
10	0	0	0	0	0	0	0	0	0	0	0	
	0	0	0	0.	0	0	0	0	0	0	0	0
0.3		0	0	0	0	0	0	0	0	0	0	
0.3	ō	ō	0	0	0	0	0	0	0	0	0	
Unit Rates and Notes		78 lbe//1*3	From RACER Model	\$ 100 per gendola car for plexit: Anar and cover	\$220/m^3	96 tens of soil por rolicor	7,298 Ibe/box and 4 boxce/true k load, or 29,184 Be soll/load	\$4,000 per gondels salicar	\$1,326 per truck load	Costs for bulk disposal at LARW disposal facility, \$ 10/11" 3; cail transport only	Coste for in- compact disposel at existing LLW disposel facility, \$50/It*3; truck transport only.	Possible costs for future in compact disposal facilities for LLW, \$360/11*3; truck transport only.

Table C.1.7. Calculated Costs and Other Parameters for Remèdiation of Contaminated Soil at the Reference Nuclear Power Plant (Restricted Land IJse, With Soil Washing, 50-Year SAFSTOR)

NUREG-1496

NUREG-1496

-84

*

	- Internet and the second seco	Contraction of the second s			ويتواج المتحد المتحد المتحد المتحد المتحد			
	Total Soli	Total Soll	Remediation	Costs		1		Total
Residual Dose	Volume	@ #10/#*3	@ \$50/ft*3	. @ \$350/it*3	Soil Weshing	Solf Excevation	Total Soil	Occupational
Rate	Disposed	Disposal Costs	Disposal Costs	Disposal Costs	Labor	Labor	Remediation Labor	Doss
mem/yr	m*3		•	*	man-hr	man-hr	man-hr	menm-ñösteg
HIGH	•							
100	0	0	0	0	0	0	0	0
60	0	0	0	0	<u>•0</u>	0	0	0
30	0	0	0	0	0	0	0	0
25	0	0	0	0	0	0	0	0
15	0	0	0	0	0	0	0	0
10	0	0	0	0	0	0	0	0
3	0	0	0	0	0	0	0	0
0.3	0	0	0	0	0	0	0	0
0.03	17	66,843	93,856	278,561	7	71	78	8
MEDIUM								
100	0	0	0	0	0	0	0	0
60	0	0	0	0	<u> </u>	0	0	0
30	0	0	0	0	0	0	0	0
25	0	0	0	0	0	0	0	0
15	0	0	0	0	0	0	0	0
10	0	0	0	0	0	0	0	0
3	0	0	0	0	0	0	0	0
0.3	0	0	0	0	0	0	0	0
0.03	10	53,885	66,704	167,899	4	39	43	4
IOW								
100	0	0	0	0	0	0	0	0
60	0	0	0	0	0	0	0	0
30	0	0	0	0	0	0	0	0
25	0	0	0	0	0	0	0	0
15	0	0	0	0	0	0	0	0
10	0	0	0	0	0	0	0	0
3	0	0 .	0	0	0	0	0	0
0.3	0	0	0	0	0	0	0	0
0.03	0	0	0	0	0	0	0	0
Unit Rates and	Dispesal				0.17 man-hr per	1.62 men-hr per		0.1 mrem per men-
Notes	velume is 40%							EN ISPOR
	val.: camaining					1		
	vel, la released			l	l	l .	1	•
ł					1		1 .	ł
1	I I			L	I	L	I	1

<u>Table C.1.7</u>. Calculated Costs and Other Parameters for Remediation of Contaminated Soil at the Reference Nuclear Power Plant (Restricted Land Use, With Soil Washing, 50-Year SAFSTOR)

Page 3 of 3

展

1,0

•

			1 · · ·				
	Contemin-	Site		Belaw-	Below-	Totel Soli	Site Soll
Residual Dose	ated Site	Soit	Site Soll	Building	Building Soli	Volume	Excevetion
Rete	Soll Area	Depth	Volume	Soll Depth	Volume	Removed	Costs
nvem/yr	ft-2	cm	m'3	cm	m*3	m*3	
HIGH		L					
100	3,000	0.0	0	0.0	0	0	· 0
60	3,000	0.0	0	0.0	0	0	0
. 30	3,000	0.0	0	0.0	0	0	0
25	3,000	0.0	0	0.0	0	0	0
15	3,000	0.0	0	0.0	0	0	0
10	3,000	0.0	0	0.0	0	0	0
3	3,000	0.0	0	0.0	0	0	0
0.3	3,000	0.0	0	0.0	0	0	0
0.03	3,000	5.9	16	5.9	27	44	10,243
MEDIUM							
100	3,000	0.0	0	0.0	0	0	0
50	3,000	0.0	0	0.0	0	0	0
30	3,000	0.0	0	0.0	C	0	0
25	3,000	0.0	0	0.0	0	0	0
15	3,000	0.0	0	0.0	0	0	0
10	3,000	0.0	0	0.0	0-	0	0
3	3,000	0.0	0.	0.0	0	0	0
0.3	3,000	. 0.0	0	0.0		0	0
0.03	3,000	3.2	9	3.2	15	24	5.612
LOW					[
100	3,000	0.0	0	0.0	0	0	0
60	3,000	0.0	0	0.0	0	0	0
30	3,000	0.0	0	0.0	. 0	0	0
25	3,000	0.0	0	0.0	0	0	0
15	3,000	0.0	0	0.0	. 0	0	0
10	3,000	0.0	0	0.0	0	0	0
3	3,000	0.0	0.	0.0	0	0	0
0.3	3,000	0.0	0.	0.0	0	0	0
0.03	3,000	0.0	0.	0.0	0	0	Ō
Unit Rates and		Diffusion		Diffuelon	2% of building		\$236/m*3
Notes		model soll		fice lebern	- fleor area		1
		provae	i i	below	h*2)		
				buildinge			1
'				{	[
1	1		[I			

Table C.1.8. Calculated Costs and Other Parameters for Remediation of Contaminated Soil at the Reference Nuclear Power Plant (Restricted Land Use, Without Soil Washing, 50-Year SAFSTOR)

NUREG-1496

C.C-27

Page 1 of 3

,

<u>Tabl</u>

4*

84

e C.1.8.	Calculated Costs and Other Parameters for Remediation of Contaminated Soil at the Reference Nuclear Power Plant
	(Restricted Land Use, Without Soil Washing, 50-Year SAFSTOR)

•

· •

	1		1	—	}	Soil	Soil					i
			1	Soil	Soli	Transport	Transport	Soil	Soil		1	
	Total Soli		Soll	Packaging	Packaging	Loads,	Loads,	Transport	Transport	Soil	Soil	Sall Disposal
Residual Dose	Volume	Total Soll	Washing	Costs,	Coste, B-25	Gondola	Truck	Costs,	Costs,	Disposal Costs	Disposal Costs	Costs @
Rate	Removed	Weight	Costa	Gondoia Car	Boxes	Cara	Loads	Reil	Truck	@ #10/#*3	@ \$50/11"3	\$350/11.3
mrem/yr	m*3	MT	•	•	8	# CAIS	# Trucke	•	•	\$	······································	•
шан									· · · · · · · · · · · · · · · · · · ·			
100	0	0	0	0	0	0	0	0	0	0	0	
					0	0	0	0	0	0		
					0	0	0	Ö	0	0		
				1- <u>0</u>	0	ō	0	0	0			
25					0	i i	0	0	0			
15	<u>0</u>				0	0						<u> </u>
10	<u> </u>						0	0			<u> </u>	<u> </u>
3	<u> </u>	<u> </u>		1	ŏ						<u> </u>	· <u> </u>
0.3	0	0	<u> </u>	1	983 0	1	5	4 000	8.625	15 202	70.000	0
0.03	44	53				!	<u>-</u>			10,392	18,360	538,723
MEDIUM		'	I'	I'								l
100	0		<u> </u>	<u> </u>	h			<u>ö</u>			<u> </u>	0
60	<u> </u>	0	L	↓′	├ÿ ────┤			<u>ö</u> '		<u> </u>	0	0
30	0	0		'	<u> </u>		 		<u> </u>	<u> </u>	0	0
25	0	0	<u> </u>	<u> </u>				<u> </u>	0	0	0	0
15	0	0	0	<u> </u>				<u>U</u>	0	0	0	0
10	0	0	0	<u> </u>	0			0	0	0	<u> </u>	0
3	0	0	0	<u> </u>	0	0		<u> </u>	0	0	0	0
0.3	0	0	0	0	0	0	0	0	0	0	0	0
0.03	24	29	0	100	5,253	1	3	4,000	3,975	8,433	42,165	295,152
100	0	0	0	0	0	0	0	0	0	0	0	0
		0	0	0	0	0	0	0	0	0	0	0
			0	0	0	0	0	0	0	0	0	0
		0	ō	0	0	0	0	0	0	0	0	0
40			0	0	0	0	0	0	0	0	0	
10					0	0	0	0	0	0	<u> </u>	
10			1 č		0	0	0	0	0	0		
3	0		t-č-	+		l o	0	0	0	0		·
0,3	<u> </u>	<u> </u>	1 ~ ~ ~	tŏ	t	ō	0	Ö	i	0		l
0.03	0	0	- Ciarte	A100 per	1 \$220/m*3	95 tens of	7,296	\$4,000 per	\$1.326 per truck	Costs for bulk	Conta las las	Bassible cente for
Unit Rates and	ļ	76 IDWIL J	RACER	gandele car for	/	aoil per	liba/box and	gandels railcar	lead	disposal at LARW	compact disposal at	future incompact
Notes		ļ	Model	plastic liner		railcar	4 boxes/truc	1 '		disposal facility,	existing LLW	disposal facilities for
				and cover			k load, er	 '		\$10/41°3; roit	disposal facility,	LLW, \$350/11'3;
					1		20,104 los			transport entry	\$60/11" 3; wuck	truck transport only.
	1							l '			transport and).	· ·
		1	1		<u></u>		j	L				1

u,

						1		
	Total Soll	Totel Solt	Remediation	Costs				Totel
Residual Dose	Volume	@ #10/11*3	@ 150/11-3	@ +350/11*3	Soll Washing	Soll Excevetion	Total Soll	Occupational
Reto	Disposed	Disposal Costs	Disposel Costs	Disposal Costa	Lebor	Labor	Remediation Labor	Dose
mem/yr	m*3	•	\$ -	\$	men-hr	men-hr	man-hr	person-mem
HIGH								
100	0		0	0	0	. 0	0	0
60	0	0	0	0	0	0	0	0
30	0	0	0	0	0	0	0	0
25	0	0	0	0	0	· 0	0	0
15	0	0	0	0	0	0	0	0
10	0	0	0	0	0	0	0	0
3	0	0	0	0	0	0	0	0
0.3	0	0	0	_0	0	0	0	0
0.03	44	29,735	102,417	565,179	0	71	71	7
MEDIUM								
100	0	0	<u> </u>	0	0	0	0	0
60	0	0	0	0		0	0	0
30	0	0	0	0	0	0	0	0
25	0	0	0	0	0	0	0	0
15	0	0	0	0	0	0	0	0
10	0	0	2	0	0	0	0	0
3	0	0	0	0	0	0	0	0
0.3	0	0	0	0	0	<u> </u>	0	0
0.03	24	18,145	57,005	309,992	0	39	39	4
LOW.				<u> </u>			•	
100	0	0	0	0	0	0	0	0
60	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	0	0
30		0	0	0	0	0	0	0
		0	0	0	0	0	0	0
10	0	0	0	0	0	0	0	0
		0	0	0	0 '	0	0	0
		0	0	0	0	0	0	0
0.3		0	0	0	0	0	0	0
0.03			and the second se		0.17 maryly per	1.62 mentily per		0.1 mrem per mai
Unit Rates and			· ·		. m*3	m*3	· · ·	hr labor
Notes			1	1		1	ł	
			1 ¹ ·				1 ·	
			1	· ·		ł		
ł	'							

Table C.1.8. Calculated Costs and Other Parameters for Remediation of Contaminated Soil at the Reference Nuclear Power Plant (Restricted Land Use, Without Soil Washing, 50-Year SAFSTOR)

NUREG-1496

Page 3 of 3

	Contamin-	Site		Below	Below-	Totel Soil	Site Soil
Residual Dose	ated Site	Soil	Site Soil	Building	Building Soil	Volume	Excevation
fiate	Soil Area	Depth	Volume	Soil Depth	Volume	Removed	Costs
memiyr	((*2	ĊM	m*3	ćm	m*3	m°3	
HIGH							
100	3,000	4.4	12	3.3	15	28	6,471
60	3,000	8.0	22	4.6	21	44	10,281
30	3,000	17.9	50	5.9	27	77	18,149
25	3,000	20.8	68	6.2	29	87	20,400
15	3,000	28.9	80	7.0	33	113	26,582
10	3,000	35.3	98	7.8	36	135	31,609.
3	3,000	64.5	152	11.5	64	205	48,279
0.3	3,000	91.3	254	20.5	95	349	82,107
0.03	3,000	128.2	357	24.9	116	473	111,116
MEDIUM							
100	3,000	1.8	5	0.0	0	5	1,191
60	3,000	3.5	10	2.5	11	21	4,980
30	3,000	7.6	21	4.5	21	42	9,969
25	3,000	9.7	27	4.9	23	50	11,704
15	3,000	17.4	48	5.8	27	75	17.729
10	3.000	23.8	66	6.5	30	97	22.691
3	3.000	43.1	120	8.2	38	158	37,205
0.3	3.000	80.0	223	16.5	77	299	70.372
0.03	3.000	116.9	326	22.4	104	430	101.043
100	3.000	0.0	0	0.0	0	0	0
60	3.000	0.0	0	0.0	0	0	0
30	3.000	0.0	0	0.0	0		0
25	3.000	0.0	Ő	0.0	0	0	0
15	3.000	0.0	0	0.0	0	0	0
10	3.000	0.9	3	0.0	0	3	611
	3.000	6.1	14	3.6	17	31	7.356
	3,000	37.4	104	8.4	39	143	33.596
0.03	3.000	73.9	206	18.7	87	293	68.826
Units Datas and		Humboldt		Diffusion	2% of building		\$2354m'3
Unit Hates and		Bay soll		model soli	ficor area		
NOI88		profile		proliie used	(250,000		
				below	ft°2)		
				annande			

. •

Table C.1.9. Calculated Costs and Other Parameters for Remédiation of Contaminated Soil at the Reference Nuclear Power Plant (Unrestricted Land Use, With Soil Washing, Real World Soil Profile)

• • •

٩*

×.

'n,

And in case of the local division of the loc				,		504	Soil			1. A.		
				Soli	Soil	Transport	Transport	Soil	Soil			
	Total Soll		Sofi	Packaging	Packeging	Loads,	Loads,	Transport	Transport	Soll	Soil	Soit Disposal
Residual Dose	Volume	Total Soil	Weshing	Costs,	Costs, 8-25	Gondola	Truck	Costs,	Costs,	Disposal Costs	Disposal Costs	Costs @
Rete	Removed	Weight	Costs	Gondola Car	Boxes	Cars	Loads	Reit	Truck	@ \$10/ft 3	@ #50/11-3	. \$350/ft*3
mrem/yt	m°3	MT	•		\$	/ cars	# Trucks		8 .	\$	\$	
HIGH												,
100	28	. 34	41,828	100	2,423	1	2	4,000	2,650	3,889	19,447	136,130
60	44	53	46,366	100	3,843	1	2	4,000	2,650	6,168	30.840	215 882
20	77	. 94	55,807	100	6,796	, t	3	4,000	3,975	10,909	54.546	381 823
	97	106	58,502	100	7,639	1	4	4,000	5,300	12.263	61,313	A29 199
23		128	65,902	100	9,954	- 1	5	4,000	6.625	15.978	79 892	550 247
10	113	184	71,920	100	11.837	1	5	4,000	6.625	19,000	95,002	
10	130	250	91 A74	200	18.079	2	8	8.000	10,600	29.020	145 101	1.015.708
3	205	426	132 368	200	30,747	2	13	8,000	17.225	49.354	248 772	1,019,708
0.3	349	#20 #78	167.092	300	41.609	3	18	12.000	23,850	66.791	333 057	1,727,400
0.03	4/3	- 870	107,004									2,337,090
MEDIUM			25 509	100	446	1	1	4.000	1.325	718	2 570	
100	<u> </u>		40.042	100	1 865	1	1	4 000	1 325	2 002	3,579	25,056
60	21.	26	40,043	100	2 733	1		4,000	2 850	2,993	14,900	104,763
30	42	52	40,010	100	A 33			4,000	2,000	2,993	29,963	209,741
25	50	61	48,093	100	<u> </u>			4,000	2,000	7,035	35,177	246,236
15	75	92	55,305	100	0,033			4,000	3,570	10,657	53,284	372,986
10	97	118	61,245	100	0,497			4,000	0,300	13,640	68,198	477,388
3	158	193	78,619	100	13,932			4,000	7,950	22,364	111,820	782,741
0.3	299	365	118,320	200	26,352		12	8,000	15,900	42,300	211,502	1,480,513
0.03	430	524	155,034	300	37,837	3	16	2,000	21,200	60,737	303,683	2,125,782
IOW				ļ	ļ	<u>-</u>	· · · · ·					
100	0	0	0	0	0	0	0	0	0	0	0	0
60	0	· 0	0	0	0	0	0	0	0	0	0	0
30	0	0	0	0	0	0	0	0	0	0	0	0
25		0	• 0	0	0	0	0	0	0	0	0	0
15	0	0	0	0	0	0	0	0	0	0	0	0
10		3	34,814	100	229	1	1	<u>4,00C</u>	1,325	367	1,836	12.853
10		38	42.888	100	2,755	1	2	4,000	2,650	4,422	22,109	154.765
	142	174	74.299	100	12,581	1	6	4,000	7,950	20,195	100,973	706.814
0,3	143	357	116,469	200	25,773	2	11	8,000	14,575	41,371	206,855	1.447.982
0.03	293	76 lb4/lt 3	From RACER	\$100 per	\$220/m*3	95 tons of	7,296	\$4,000 per	\$1,325 per truck	Costs for bulk	Costs for in-	Possible costs for
Unit Rates and			Model	gondola cer foi	1	soll per	f berook and	gondola ralicar	ford	disposet at LARW	compect disposal at	future in-compact
Notes				plastic liner	1	Tançar	k load. er	ł	ł	ALONI'S' (existing LLW	disposal facilities for
		1		Hund Contel		ł	29,184 105			transport only	\$50/11' 3: Intert	LLW, #350//1*3;
				1	1	1	beol/floa	1		} ,,	transport only.	work wansport only.
1	1	1	1					l		1		

Table C.1.9. Calculated Costs and Other Parameters for Remediation of Contaminated Soil at the Reference Nuclear Power Plant (Unrestricted Land Use, With Soil Washing, Real World Soil Profile)

C.C-31

NUREG-1496

		Total Soll	Remediation	Costs				*
	TOTAL SOU	@ \$10//#*3	@ \$50/ft*3	@ \$350/#*3	Soil Washing	Soil Excavation	Total Sol	
Residual Dose	Oleosed	Discosal Costs	Disposal Costs	Disposal Costs	Labor	Labor	Remediation Labor	Doce
Hate	m'3	\$			wi-nam	man-hr	man-br	Derson-mrem
avenvyr								
HIGH .		56.288	72.819	189,502	6	45	49	
100		66,895	93,960	279,001	7	71	78	
		88,965	139.274	466,561	13	125	138	14
	- 26	95.265	153,164	521,030	15	141	155	16
	A5	112,563	188,956	668,311	19	183	202	20
		128.629	216,991	786,994	23	218	241	24
	82	177.373	313,933	1,184,540	35	333	368	37
	140	272.030	509,219	1,989,853	59	568	625	63
0.3	180	367,299	677.623	2,681,363	80	766	846	85
0.03								
MEDIUM		41.516	42,050	63,526	1	8	9	·
	<u>a</u>	52,116	63.179	162,976	4	34	38	4
		66.078	92,332	272,110	7	69	76	8
		70.932	10:.008	313,066	8	81	89	9
		87.790	136,931	456,633	13	122	135	14
		101,676	165,931	575,121	16	166	173	17
		142,288	249,526	920,448	27	256	283	28
	120	239,192	442,446	1,711,457	51	485	536	54
0.3	172	329 114	618,798	2,440,896	73	697	770	77
0.03				1				
LOW		0	0	0	0	0	0	0
100	<u>ö</u>		0	0	0	0	0	0
60			0	0	0	0	0	
			1 <u> </u>	0	0	Ō	Ō	0
25				0	0	Ō	0	
15		20 892	38.815	49,831	0	4	5	0
10		59,092	77.768	210,414	5	51	56	6
3	13	132 190	229.399	835,240	24	232	256	26
0.3	0/	234 866	432,497	1,673,625	60	474	524	<u> </u>
0.03	11/	204,000	1	T	0.17 men-tir per	1.62 man-by par		0.1 mem per mar
Unit Rates and	Utoposar unahuma is 40%				m-3	m*3		ter labor
Notes	of total soll						İ	1
	vol.; remaining	l	1					
	vol. is released			4				

Table C.1.9. Calculated Costs and Other Parameters for Remédiation of Contaminated Soil at the Reference Nuclear Power Plant (Unrestricted Land Use, With Soil Washing, Real World Soil Profile)

.

C.C-32

NUREG-1496

Page 3 of 3

....

à

4

A1

	Contamin-	Site		Below-	Below-	Total Soll	Site Soil
Residual Dose	ated Site	Soil	Site Soll	Building	Building Soil	Volume	Excevation
Ruta	Soit Area	Depth	Volume	Soll Depth	Volume	Removed	Costs
memlyr	ft*2	ĊM	m*3	CTR :	m*3	m*3	
HIGH							
100	3,000	4.4	12	3.3	15	28	6,471
60	3,000	8.0	22	4.6	21	44	10,261
30	3,000	17.9	50	5.9	27	77	18,149
25	3,000	20.8	58	6.2	29	87	20,400
15	3,000	28.9	80	7.0	33	113	26,582
10	3.000	35.3	98	7.8	36	135	31,609
3	3,000	54.5	152	11.5	54	205	48,279
0.3	3,000	91.3	254	20,5	95	349	82,107
0.03	3,000	128.2	357	24.9	116	473	111,116
MEDIUM							
100	3,000	1,8	5	0.0	0	5	1,191
60	3,000	3.5	10	2.5	11	21	4,980
30	3,000	7.6	21	4.5	21	42	9,969
25	3,000	9.7	27	4.9	23	50	11,704
15	3,000	17.4	48	5.8	27	75	17,729
10	3,000	23.8	66	6.5	30	97	22,691
3	3,000	43.1	120	8.2	38	158	37,205
0.3	3,000	80.0	223	- 18.5	. 77	299	70,372
0.03	3,000	116.9	326	22.4	104	430	101,043
LOW							
100	3,000	0.0	0	0.0	0	<u> </u>	0
60	3,000	0.0	0	0.0	0	0	0
30	3,000	0.0	0	0.0		0	0
25	3,000	0.0	0	0.0	<u>0</u>	0	0
15	3,000	0.0	0	0.0		0	0
10	3,000	0,9	3	0.0	0	3	611
3	3,000	5.1	14	3.6	17	31	7,356
0.3	3,000	37.4	104	8.4	39	143	33,696
0.03	3,000	73.9	206	18.7	87	293	68,826
Unit Rates and		Humboldt	l	Diffusion	2% of building	1	#235/m*3
Notes		erofile		profile used	(250,000	1	
	1			below	ft*2)		
Į			{	buildings		1	ł
11					ł		l
1	1	1	1		1	<u> </u>	1

<u>Table C.1.10</u>. Calculated Costs and Other Parameters for Remediation of Contaminated Soil at the Reference Nuclear Power Plant (Unrestricted Land Use, Without Soil Washing, Real World Soil Profile)

C.C-33

Page 1 of 3

Residuel Dose Retarduel Dose Retarduel Volume Soil Volume Weight Soil Costs, B-26 Gondola Truck Soil Costs, B-26 Gondol Truck Soil Costs, B-26 Gondol Truck Soil Costs, B-26 Gondol Truck Soil Costs, B-26 Gondol Truck Soil Costs, B-26 Gondol Truck Soil Costs, B-26 Gondol Truck Soil Costs		······		· · · · · · · · · · · · · · · · · · ·	T	1	Soil	Soil		T ************			
Trait Seal Trait Seal Fest Seal Fest Seal Fest Seal Seal		i			Soil	Soil	Transport	Transport	Soil	Soil			
Notest Volume Trust Sall Washing Costs, Costs, Costs, Costs, Sall Costs, Reid		Total Soil	, J	Soil	Packaging	Packaging	Loads,	Loads,	Trensport	Transport	Soil	Soil	Soil Disposal
Nature Preduct Conta Gendela Carl Base Carl Leads Rai Tuck Ø ± 000112 Ø ± 000112 mennyr m13 MT 4 1 4 6 5 7 6 5 7 6 5 7 1 5 7 1 5 7 100 53,97.04 4 6,616 340,327,632 353,3271 340,326 340,327,632 353,3271 340,327,632 353,3271 340,327,632 353,3271 340,327,632 353,3271 340,327,632 353,3271 34,320,32763 344,2	Residual Dose	Volume	Total Soil	Washing	Costs,	Costs, B-26	Gondoia	Truck	Costs,	Costs,	Disposal Costs	Disposal Costs	Coste Q
mrem/y mr 32 MT 4 4 6 6 4 1 <th< td=""><td></td><td>Ramoved</td><td>Weight</td><td>Costs</td><td>Gondola Car</td><td>Boxes</td><td>Curs</td><td>Loads</td><td>Rail</td><td>Truck</td><td>@ \$10//11-3</td><td>@ \$50/11-3</td><td>\$350/013</td></th<>		Ramoved	Weight	Costs	Gondola Car	Boxes	Curs	Loads	Rail	Truck	@ \$10//11-3	@ \$50/11-3	\$350/013
Instrum Image <		m.3	MT			•	# CMS	# Trucks	8	\$	8		\$
High 100 28 34 0 100 6,058 1 3 4,000 3,976 9,724 48,618 340,326 60 44 63 0 100 9,606 1 6 4,000 0,625 15,420 77,101 539,704 30 77 94 0 200 16,980 2 8 6,000 10,600 30,656 153,282 1,072,972 16 113 138 0 200 24,885 2 11 8,000 14,575 39,944 199,731 139,817 10 135 164 0 200 24,885 5 33 20,000 25,175 72,561 302,753 2,539,271 0.3 349 426 0 500 76,869 5 33 20,000 68,300 166,976 334,891 6,844,240 MEDIUM 00 6 0 100 1,116 1 4,4000 5,300 </td <td></td> <td></td> <td></td> <td></td> <td>· · · · · · · · · · · · · · · · · · ·</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>					· · · · · · · · · · · · · · · · · · ·								
100 28 29 0 100 9,608 1 5 4,000 6,926 15,420 77,101 533,704 30 77 94 0 200 16,890 2 6 6,000 10,660 27,213 136,385 964,558 26 87 106 0 200 24,685 2 11 8,000 14,675 39,946 199,731 1,398,117 10 135 164 0 200 24,685 2 11 8,000 14,675 39,946 199,731 1,398,117 10 135 164 0 200 25,175 72,651 362,763 2,539,271 0.33 349 426 0 500 76,866 5 33 20,000 49,725 123,386 616,931 4,318,515 0.03 449 426 0 1000 4,662 1 2 4,000 6,934 37,415 761,907 54,982	HIUN	- 20	34	0	100	6,058	1	3	4.000	3.975	9.724	48 618	340 328
B0 44 03 0 120	100	- 20	67		100	9.606	1	5	4.000	6.625	15.420	77 101	520 704
30 // 30 // 30 // 30 20 30<	00		04		200	16.990	2	8	8.000	10.600	27.273	128 285	054 560
25 87 100 0 200 24.025 1 20.000 14.678 20.020 1.074.272 16 113 138 0 200 29.591 2 13 8,000 14,678 39.943 199.731 1,989,117 10 136 164 0 200 29.591 2 13 8,000 17,226 47,600 227,501 1,662,810 3 206 250 0 500 76,866 5 33 20,000 43,726 123,386 616,921 4,318,615 0.03 473 576 0 700 104,023 7 44 28,000 58,300 166,978 834,891 5,644,120 MEDIUM	30		100		200	19.098	2	8	8.000	10,600	30 658	152 292	904,000
15 113 138 0 200 21/21 200 12/21 200/21 130/21 1,300/11/ 10 136 164 0 200 29,601 1 3 8,000 17,225 47,600 122,760 1662,510 3 206 260 0 300 45,197 3 19 12,000 25,176 72,601 1362,753 2,539,211 0.3 349 426 0 500 76,666 5 33 20,000 43,725 12,326 616,978 824,891 6,614,240 0.00 5 6 0 100 1,116 1 4,000 1,325 1,790 8,949 62,641 100 6 6 0 100 1,957 1 5 4,000 5,600 7,483 37,415 761,907 52,641 30 42 62 0 100 1,957 2 7 8,000 11,926 17,4907	20	- 8/	100		200	24,885	2	11	8.000	14.575	39 948	100,202	1,0/2,9/2
10 135 164 0 2002 12,102 2 10 12,000 26,175 72,651 362,753 25,832,271 0.3 349 426 0 600 76,666 5 33 20,000 43,725 123,386 616,931 4,318,615 0.03 473 576 0 700 104,023 7 44 28,000 58,300 166,978 834,891 5,644,240 MEDIUM 6 0 100 4,662 1 2 4,000 1,325 1,790 6,949 62,641 100 6 6 0 100 9,333 1 4 4,000 5,300 14,981 74,907 524,352 25 60 61 0 100 10,957 1 5 4,000 5,266 17,588 97,941 615,590 15 75 92 0 200 12,643 2 9 6,000 11,925 34,09	15	113	138		200	29.591	2	13	8,000	17 225	47 500	227 501	1,398,117
3 206 260 302 302 12,000 42,175 12,201 302,175 12,393,61 0.03 447 676 0 700 104,023 7 44 28,000 68,320 166,978 834,891 6,644,240 0.03 473 676 0 100 1,116 1 1 4,000 1,225 1,790 8,949 62,641 0.03 42 62 0 100 4,662 1 2 4,000 2,660 7,483 37,415 781,907 30 42 62 0 100 9,333 1 4 4,000 6,265 17,688 87,441 615,590 25 60 61 0 100 10,957 1 5 4,000 6,265 17,588 87,441 615,590 16 97 118 0 200 21,243 2 9 8,000 11,925 34,999 11,934,700 13,3	10	135	104		200	45 197	3	19	12 000	26 176	72 551	237,001	1,662,510
0.3 349 428 0 0000 7000 00000 723/200 733/200 723/200 733/200 733/200 732/200 732/200 732/200 73/200 73/200 73/200 73/200 73/200 73/200 73/200 73/200 73/200 73/200 73/200 73/200 73/200	3	205	260	<u> </u>	500	76 866		- 33	20 000	43 725	122 200	302,783	2,539,271
0.03 473 676 0 700 100,220 7 20,000 30,000 100,270 6,34,891 5,844,240 MEDIUM 0 6 6 0 100 4,662 1 2 4,000 2,860 7,483 37,415 -261,907 30 42 52 0 100 9,333 1 4 4,000 2,860 7,483 37,415 -261,907 30 42 52 0 100 9,333 1 4 4,000 6,626 17,588 87,941 615,590 15 75 92 0 200 21,243 2 9 8,000 9,276 26,842 133,209 932,466 10 97 118 0 200 21,243 2 9 8,000 11,925 34,099 179,4661 1,956,854 0.3 289 365 0 500 65,880 5 28 20,000 151,842	0.3	349	426			104 023		44	28,000	59 300	123,300	610,931	4,318,515
MEDIUM 6 0 100 1,115 1 1 4,000 1,225 1,790 8,949 62,641 60 21 26 0 100 4,662 1 2 4,000 2,650 7,483 37,415 761,907 30 42 62 0 100 9,333 1 4 4,000 6,300 14,981 74,907 524,352 25 60 61 0 100 10,957 2 7 8,000 9,275 28,642 133,209 932,466 15,590 10 97 118 0 200 21,243 2 9 8,000 11,925 34,099 170,498 1,193,470 3 168 193 0 3000 34,831 3 15 12,000 19,975 65,910 279,651 1,956,654 1,956,654 1,956,654 1,956,654 1,956,654 1,956,654 1,956,654 1,956,654 1,956,656,457 3,701,28	0.03	473	576	<u> </u>	····				20,000	00,000	100,370	834,891	5,844,240
100 6 6 0 100 1,400 1,220 1,213,200 1,221 1,220 1,220 1,220 1,220 1,220 1,220 1,220 1,220 1,220 1,220 1,220 1,232 1,232,200 1,232,400 <th< td=""><td>MEDIUM</td><td></td><td></td><td><u> </u></td><td>100</td><td>1 116</td><td> </td><td></td><td>4 000</td><td>1 225</td><td>1 700</td><td></td><td></td></th<>	MEDIUM			<u> </u>	100	1 116			4 000	1 225	1 700		
60 21 26 0 100 9,323 1 4 4,000 5,300 1,483 74,907 524,352 30 42 62 0 100 10,957 1 5 4,000 6,625 17,568 87,907 524,352 30 42 62 0 100 10,957 1 5 4,000 6,625 17,568 87,941 615,590 30 42 9 8,000 9,276 26,642 133,209 932,468 10 97 118 0 200 21,243 15 12,000 19,876 56,910 279,551 1,965,684 0.3 299 365 0 500 65,880 5 28 20,000 37,100 105,751 628,755 3,701,283 19,465 0.03 430 524 0 700 94,693 7 40 28,000 53,000 151,842 759,208 5,314,4455	100	6	6	<u> </u>	1.00				4,000	1,320	7.400	8,949	62,641
30 42 52 0 100 9,333 1 4 4,000 6,926 17,688 97,941 615,820 25 60 61 0 100,857 1 5 4,000 6,826 17,688 87,941 615,826 16 75 92 0 200 21,243 2 9 8,000 9,275 34,099 170,496 1,193,470 3 158 193 0 300 34,831 3 15 12,000 19,875 55,910 279,551 1,956,654 0.3 299 365 0 500 65,800 5 28 20,000 37,100 105,751 528,755 3,701,283 0.03 430 524 0 700 94,693 7 40 28,000 63,000 151,842 759,208 5,314,455 10W	60		26	<u> </u>	100	4,002			4,000	6 200	1,403	37,415	261,907
25 60 61 0 100 10,957 1 0 4,000 6,525 17,588 87,941 615,590 15 75 92 0 200 18,697 2 7 8,000 9,276 26,642 133,209 932,466 10 97 118 0 200 21,243 2 9 8,000 19,976 56,990 17,0496 1,193,470 3 168 193 0 300 34,031 3 15 12,000 19,876 56,910 279,551 1,956,6854 0.3 299 365 0 500 65,880 5 28 20,000 37,100 105,751 528,755 3,701,283 0.03 430 524 0 700 94,693 7 40 28,000 53,000 151,842 759,208 5,314,455 LOW 0 <td>30</td> <td>42</td> <td>62</td> <td>0</td> <td>100</td> <td>8,333</td> <td></td> <td></td> <td>4,000</td> <td>0,300</td> <td>14,981</td> <td>74,907</td> <td>524,352</td>	30	42	62	0	100	8,333			4,000	0,300	14,981	74,907	524,352
15 75 92 0 200 16,97 2 7 8,000 9,276 26,642 133,209 932,466 10 97 118 0 200 21,243 2 9 8,000 11,926 34,099 170,496 1,193,470 3 158 193 0 300 34,831 3 15 12,000 19,975 55,910 279,551 1,1956,854 0.3 289 365 0 500 65,880 5 28 20,000 37,100 106,751 528,755 3,701,283 0.03 430 524 0 700 94,593 7 40 28,000 53,000 151,842 759,208 5,314,455 10W	25	50	61	0	100	10,957			4,000	6,625	17,688	87,941	615,590
10 97 118 0 200 21,243 2 9 6,000 11,925 34,099 170,496 1,193,470 3 158 193 0 300 34,831 3 15 12,000 19,875 55,910 279,551 1,956,854 0.3 299 365 0 500 65,860 5 28 20,000 37,100 106,751 528,755 3,701,283 0.03 430 524 0 700 94,693 7 40 28,000 53,000 151,842 759,208 5,314,455 10W	15	75	92	0	200	10,597	2		8,000	9,275	26,642	133,209	932,466
3 168 193 0 300 34,831 3 15 12,000 19,875 55,910 279,651 1,956,854 0.3 299 365 0 500 65,880 5 28 20,000 37,100 106,761 528,755 3,701,283 0.03 430 524 0 700 94,593 7 40 28,000 53,000 115,842 759,208 5,314,455 LOW -	10	97	118	0	200	21,243		9	8,000	11,925	34,099	170,496	1,193,470
0.3 299 365 0 500 65,880 5 28 20,000 37,100 106,751 528,755 3,701,283 0.03 430 524 0 700 94,693 7 40 28,000 53,000 151,842 759,208 5,314,455 LOW	3	158	193	<u> </u>	300	34,831	3	15	12,000	19,875	55,910	279,651	1,956,854
0.03 430 524 0 700 94,593 7 40 28,000 53,000 151,842 759,208 5,314,455 LOW 0	0.3	299	365	0	500	65,880	5	28	20,000	37,100	105,751	528,755	3,701,283
LOW Image: constraint of the second sec	0.03	430	524	0	700	94,593	7	40	28,000	53,000	151,842	759,208	5,314,455
100 0	i ow						L						
100 0	100		0	0	0	0	0	0	0	0	0	0	0
00 0			0	0	0	0	0	0	0	0	0	0	0
30 0 30 0				0	0	0	0	0	0	0	0	0	
25 0				to	0	0	0	0	0	0	0	0	
15 0 0 10 572 1 1 4,000 1,325 918 -4,590 32,132 3 31 38 0 100 6,887 1 3 4,000 3,975 11,055 55,273 386,912 0.3 143 174 0 300 31,452 3 14 12,000 18,550 50,487 252,434 1,767,035 0.03 293 357 0 500 64,432 5 27 20,000 35,776 103,427 517,136 3,619,955 0.03 293 357 0 6100 per 95 tons of soll per sol				1- <u>ō</u>	0	0	0	0	0	0	0	0	
10 3 3 3 0 100 6,887 1 3 4,000 3,975 11,055 55,273 386,912 3 31 38 0 300 31,452 3 14 12,000 18,550 50,487 252,434 1,767,035 0.3 143 174 0 300 31,452 5 27 20,000 35,775 103,427 517,136 3,619,955 0.03 293 357 0 500 64,432 5 27 20,000 35,775 103,427 517,136 3,619,955 Unit Rates and Notes 7,186 90 dole car for plactic liner plactic liner and cover 95 tons of soil per railes of soil per railes and cover 95 tons of soil per railes of soil per railes and cover 91,955 11,055 50,73 36,919,955 Unit Rates and Notes 7,186 920/m*3 95 tons of soil per railes of plactic liner calcer 40,000 per railes for bulk disposal facility, disposal facility, disposal facility, disposal facility, disposal facility, disposal facility, disposal facility, disposal facility, disposal facility, disposal facility, disposal facil	10			t	100	572	1	1	4,000	1,325	918	.4.590	32 122
3 31 38 5 100 31,452 3 14 12,000 18,550 50,487 252,434 1,767,035 0.3 143 174 0 300 31,452 3 14 12,000 18,550 50,487 252,434 1,767,035 0.03 293 357 0 500 64,432 5 27 20,000 35,775 103,427 517,136 3,619,955 0.03 293 357 0 6100 per 95 tons of soll per soll p	10	3	- 30	<u> </u>	100	6,887	1	3	4,000	3,975	11.055	55 273	298 012
0.3 143 174 0 000 61,722 5 27 20,000 35,775 103,427 517,136 3,619,955 0.03 293 357 0 600 64,432 5 27 20,000 35,775 103,427 517,136 3,619,955 Unit Rates and Notes 7,186/1*3 Fram 6100 per gendole cer for plastic liner and cover 95 tons of soll per eard cover 7,296 64,000 per gondole relicer 61,325 per truck disposal actifity, toad Costs for lin- disposal actifity, enstored lactifity, toats per only Possible costs for tuture in compact disposal facility, toutre transport only. Possible costs for tuture in compact disposal facility, toutre transport only.	3	31	- 30	<u>├</u>	1 300	31,452	3	14	12.000	18.550	50 487	252 434	1 707 025
O.03 293 357 Control of the solid Unit Rates and Notes 7 / Ibs/Ii*3 From RACER biodel 6100 per gondole cer for plastic liner and cover 95 tons of solid per plastic liner and cover 95 tons of solid per railcar 7,296 44,000 per gondole railcer 1,325 per truck bis/box and 4 boxea/truck k load, or 29,184 fbs Costs for bulk disposal at LARW disposal facility, 450/It*3; truck Costs for in- truct disposal facility, 450/It*3; truck Possible costs for truck ransport only.	0.3	143	- 1/4-	<u>⊢ – – – – – – – – – – – – – – – – – – –</u>	500	64.432	5	27	20,000	35,775	103.427	517 138	1,107,035
Unit Rates and Notes view of the state of th	0.03	293	35/		6100 per	\$220/m*3	95 tons of	7,296	\$4,000 per	\$1,325 per truck	Costs for built	Costs for in:	3,013,300
Notes / Model plastic liner and cover / and cover / LLW, #3cover / Biodel /	Unit Rates and		7,5 1054/11 -5	RACER	pondola car for	1	soll per	los/box and	gondola railcar	load	disposal at LARW	compact disposal at	future in costs tor
and cover k load, or 29,184 lbs soil/load b 10/ft*3; rail disposal facility, LLW, #350/ft*3; truck transport only. truck transport only.	Notes	i 1		· Model	plastic liner		railcar	4 boxes/truc			disposal facility,	existing LLW	disposal facilities for
solitioed transport only \$50/(t^3; truck transport only.		i 1		1	and cover			k load, or			\$10/lt*3; rail	disposal facility,	LLW, #350/11"3;
						1		23,194 los soilãoad			transport only	\$50/It*3; truck	truck transport only.
1 1 1 1 1 1 1 1 1 1 1 1			(ļ	1		{					transport only.	

. **K**.

*

Table C.1.10.	Calculated Costs and O	ther Parameters for	Remediation of	Contaminated Soil	at the Reference Nucle	ar Power Plant
(Unrestricted Land Use,	Without Soll Washin	ig, Real World S	oll Profile)		

•

•

¥'

fi,

C.C-34

		··· •						
	Total Call	Total Coll	Remediation	Costa]			
Dealth at Data	Volume	@ 110/11-3	@ \$50/11-3	@ #350/#*3	SoB Washing	Soll Excavation	Total C. D	Total
Hesicual Dose Rate	Disposed	Disposal Costs	Disposel Costs	Disposel Costs	Labor	Lebor	RemerCation Labor	Occupational
memive	m*3		\$		men-hr	men-hr	man-by	Uosa
HIGH								person-meem
100	28	20,294	65,121	356,829	. 0.	45	45	
60	44	29,781	103,593	566,197	0	71	71	
30	77	53,622	182,105	1,000,297	0	125	125	12
25	87	59,257	203,380	1,123,070	0	141	141	14
15	113	74,728	265,774	1,464,160	0	183	183	19
10	135	87,309	315,927	1,740,935	0	218	218	22
3	205	133,129	481,404	2,657,922	0	333	333	
0.3	349	225,993	819,629	4,521,214	0	566	566	<u> </u>
0.03	473	308,794	1,108,330	6,117,679	0	766	766	
MEDIUM								
100	5	7,081	12,580	66,272	0	8	8	1
60	21	16,563	49,707	274,198	0	34	34	3
30	42	29,051	99,510	648,954	0	69	69	7
25	50	33,392	117,228	644,876	0	81	81	8
15	75	52,571	176,810	976,067	0	122	122	12
10	97	64,990	226,355	1,249,329	0	156	156	16
3	158	105,415	371,461	2,048,764	0	256	256	26
0.3	299	196,623	702,107	3,874,635	0	485	485	49
0.03	430	281,584	1,007,844	5,563,091	0	697	697	70
LOW								
100	0	0	0	0	0	0	0	0
60	0	0	0	0	0	0	0	0
30	0	0	0	0	0	0	0	0
25	0	0	0	0	0	0	0	0
15	0	0	0	0	0	0	0	0
10	3	5,629	7,098	34,640	0	4	4	0
3	31	22,511	73,491	405,130	0	51	51	5
0.3	143	96,383	336,032	1,850,633	0	232	232	23
0.03	293	192,753	686,169	3,788,988	0	474	474	47
Unit Rates and Notes					0.17 man-tr per m*3	1.62 man-hr per m*3		0.1 mrem per mai hr labor
								1

Table C.1.10. Calculated Costs and Other Parameters for Remediation of Contaminated Soil at the Reference Nuclear Power Plant (Unrestricted Land Use, Without Soil Washing, Real World Soil Profile)

Page 3 of 3

Residual Dose Rate mram/yr	Contamin- ated Site Soil Area (t*2	Site Soil Depth cm	Site Soil Volume m°3	Below- Building Soil Depth cm	Below- Building Soil Volume m*3	Total Soil Volume Removed m°3	Site Soil Excavation Costs
HIGH	التنابع التواجعين وعفاد						
100	3,000	0.0	. 0	0.0	0	0	0
60	3,000	0.0	0	0.0	0	0	0
30	3,000	0.1	0	0.0	0	0	41
25	3,000	0.5	1	0.0	0	1	350
16	3,000	1.8	5	0.0	0	5	1,188
10	3,000	3.0	8	1.6	7	16	3,748
3	3,000	12.8	36	6.2	24	60	14,050
0.3	3,000	49.3	137	8.3	39	176	41,381
0.03	3,000	86.1	240	10.7	50	290	68,078
MEDIUM							
100	3,000	0.0	0	0.0	0	0	0
60	3,000	0.0	0	0.0	0	. 0	0
30	3,000	0.0	0	0.0	0	0	0
	3,000	0.0	0	0.0	0	0	0
15	3.000	0.0	0	0.0	0	0	0
10	3.000	0.9	3	0.0	0	3	617
3	3,000	5.2	14	3.7	17	32	7.458
0.3	3.000	37.9	108	7.5	35	141	33.063
0.03	3.000	74.8	209	9.9	46	265	59,832
		· · · · ·					
100	3.000	0.0	0	0.0	0	0	0
60	3.000	0.0	0	0.0	0	0	0
	3,000	0.0	0	0.0	0	0	0
	3.000	0.0	0	0.0	0	0	0 .
15	3.000	0.0	0	0.0	0	0	0
10	3,000	0.0	0	0.0	0	0	0
3	3.000	0.0	0	0.0	0	0	0.
03	3,000	3.6	10	2.3	11	21	4,878
0.03	3,000	32.2	90	7.0	32	122	28,657
Unit Rates and Notes		Humboldt Bay soil proliis		Diffusion model soli protile used below buildings	2% of building floor area (260,000 ft*2)		4236 <i>i</i> m*3

 Table C.1.11. Calculated Costs and Other Parameters for Remediation of Contaminated Soll at the Reference Nuclear Power Plant (Restricted Land Use, With Soll Washing, Real World Soll Profile)

 Residual Dase
 Contamin- Site Soil Site Soil Below- Building Building Sail Volume

. •.

.

.

43

· . .

Page 1 of 3

μĹ

A

						Soil	Soil			1	1	
			1	Sofi	Soll	Trensport	Trensport	Soll	Soll		1	
	Total Soll		Soll	Packaoino	Packaging	Loads.	Loads.	Transport	Transport			
Residual Date	Vokeme	Total Soll	Weshing	Costs,	Costs, B-25	Gondola	Truck	Costs.	Coste	Disposal Course	Soil	Soll Disposel
Rate	Ramoved	Weight	Costs	Gondola Car	Boxes	Cars	Lords	Rell	Truck	@ 110//2	Cisposal Costs	Costs @
mamin	m'3	MT				# cers	/ Trucks			4	@ +60/11-3	#350/ft*3
LUCH				1								
HIGH		0	0		0	0	0				<u> </u>	
100					<u> </u>	0	0				0	0
60			24 122	100	15			4 000	1 225	0	0	0
	0	0	34,132	100	131			4,000	1,320	25	124	868
25		2	34,502	100	131			4,000	1,325	211	1,053	7,373
15	5	6	35,504	100	440			4,000	1,325	714	3,569	24,984
10	16	19	38,569	100	1,404		<u> </u>	4,000	1,325	2,253	11,266	78,860
3	60	73	<u> </u>	100	5,261	1	3	4,000	3,975	8,445	42,226	295,582
0.3	176	215	83,617	100	15,496	1	7	4,000	9,275	24,874	124,370	870,590
0.03	290	353 .	115,574	200	<u>25,493</u>	. 2	11	8,000	14,575	40,922	204,608	1.432 258
MEDIUM								·				- 17-102,200
100	0	0	<u> </u>	0	·	0	0	. 0	0	0	. 0	·
60	0	0 `	0	0	UU	0	0	0	0	0	0	
30	0	0	0	. 0	<u> </u>	0	0	0	0	0:.	0	
25	0	0	0	0	0	0	0	0	0	0	0	
15	0	0	0	0	0	. 0	0	0	0	0		
10		3	34.822	100	231	1	. 1	4,000	1.325	371	1 958	
		39	43.010	100	2,793	1	2	4,000	2,650	4 483	22 414	12,990
	141	171	73.661	100	12.381	1	6	4.000	7,950	10.974	22,414	156,897
0.3		210	105 703	200	22,405	2	10	8,000	13 250	25 005	99,372	695,602
0.03	200		100,700								179,824	1,258,769
LOW					0	0	0					
100	0	<u> </u>			0	0	- ô				0	0
60		0				0	0				0	0
30	0	0			<u> </u>	0			0	0	0	0
25	0	0	<u> </u>		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~				0	0		0
15	0	0	0		č				<u> </u>	0	0	0
10	0	0	0	0	<u>_</u>			<u>_</u>	0	0	0	0
3	0	0	0	0	0	-0		0	0	0	0	0
0.3	21	25	39,922	100	1,827			4,000	1,325	2,932	14,662	102,631
0.03	122	149	68,385	100	10,731	1	0	4,000	6,625	17,225	86,127	602,889
Unit Rates and		76 lbs/lt 3	From RACER	\$100 per	#220/m*3	ap four of	7,296	₹4,000 per	#1,325 per truck	Costs for bulk	Costs for in-	Possible costs for
Notes			More	ponocia cer for		relicer	4 boxes/truc	Rounded texcel	1010	disposal at LARW	compact disposal at	future in-compact
110100	1			and cover			k load, or			\$10/11 3: rail	disposal facilies	disposal facilities for
				ļ			29,184 lbs			transport only	\$50/It' 3; truck	LLW, #350/11'3;
			1				soll/laad				transport only.	
1	t		1	1		لا						

Table C.1.11. Calculated Costs and Other Parameters for Remediation of Contaminated Soil at the Reference Nuclear Power Plant (Restricted Land Use, With Soil Washing, Real World Soil Profile)

C.C-37

NUREG-1496

and the second se							The second second second second second second second second second second second second second second second s	
1								
	, Total Soli	Total Soit	Remediation	Costs]	Total
Residual Dose	Volume	@ \$10/H*3	@ \$Lu/11"3	@ \$350/ft*3	Soil Washing	Soil Excavation	Total Soll	Occupational
Rate	Disposed	Disposal Costs	Disposul Costs	Disposal Costs	Labor	Labor	Remediation Labor	Dose
mrem/yr	3				man-hr	man-hr	man-hr	person-mem
HIGH								
100	0	0	0	0	0	0	· 0	0
60	0	0	0	0	0	0		0
30	0	38,298	35,638	36,382	0	0	0	0
25	1	39,163	37,362	43,682	0	2	3	0
15	2	41,605	42,030	63,445	1	8	9	1
10	6	48,671	<u> </u>	123,907	3	26	29	
3	24	77,495	116,412	369,768	10	97	107	11
0.3	70	153,972	274,139	1,020,359		285	315	32
0.03	116	232,774	428,329	1,655,976	49	469	<u>519</u>	52
AEDIUM								
100	0	0	0	0	0	0	0	0
60	0	0	0	0	0	0	0	0
30	0	0	0	0	0	0	0	0
25	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	0	0
10	1	39,910	38,851	49,985	0	4	5	0
3	13	59,050	78,324	212,807	5	<u>51</u>	57	6
0.3	56	130,698	226,427	822,657	24	228	252	25
0.03	102	209,700	381,015	1,459,959	43	412	456	46
0.00								
100	0	10	0	0	· 0	0	0	0
60	0	0	0	0	0	. 0	0	0
	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	0	0
15	ŏ	0	0	0	0	0	0.	0
10	0	0	0	0	0	0	0	0
	0	Ö	0	0	0	0	0	0
03	8	51,832	62,613	150,582	4	34	37	4
0.03	49	118,367	200,625	717,287	21	198	218	22
Linit Dates and	Disposal				0.17 man-hr par	1.62 man-hr par		0.1 mrem per man
Unit Hales and Notes	volume is 40% of total soit vol.; remaining vol. is released				m*3	C'm		hr labor

Table C.1.11. Calculated Costs and Other Parameters for Remediation of Contaminated Soil at the Reference Nuclear Power Plant (Restricted Land Use, With Soil Washing, Real World Soil Profile)

Page 3 of 3

15.

4

NUREG-1496

8+

øş.

• • •

	Contemin	Site		Relow.	Below	Total Solt	Site Sell
Residual Dose	ated Site	Soft	Site Soll	Building	Building Soll	Volume	Excevation
Rata	Soit Area	Pepth	Volume	Solt Depth	Volume	Removed	Costs
membye	ħ*2	· CTA	m*3	cm	m*3	m*3	
нісн							
100	3,000	0.0	0	0.0	0	0	0
60	3,000	0.0	0	0.0	0	0	0
30	3,000	0.1	0	0.0	0	0	41
25	3,000	0.5	1 -	0.0	0	. 1	350
15	3,000	1.8	5	0.0	0	5	1,188
10	3,000	3.0	8	1.6	7	16	3,748
3	3,000	12.8	36	5.2	24	60	14,050
0.3	3,000	49.3	137	8.3	39	176	41,381
0.03	3,000	86.1	240	10.7	50	290	68,078
MEDIUM							
100	3,000	0.0	0	0.0	0	0	0
60	3,000	0.0	0	0.0	0	0	0
30	3,000	0.0	0	0.0	0	0	0
25	3,000	0.0	0	0.0	0	0	0
15	3,000	0,0	0	0.0	0	0	0
10	3,000	0.9	3	0.0	0	3	617
3	3,000	5.2	14	3.7	1	32	7,458
0.3	3,000	37.9	. 106		35	141	33,063
0.03	3,000	74.8	209	9.9	48	255	59,832
LOW							
100	3,000	0.0	0	0.0	0	0	0
60	3,000	0.0	0.	0.0	.0	0	0
30	3,000	0.0	0	0.0	0	0	0
25	3,000	0.0	0	0.0	0	0	0
15	3,000	0.0	0	0.0	0	0	· 0 ·
10	3,000	0.0	0	0.0	0	0	· 0
3	3,000	0.0	0	0.0	0	0	0
0.3	3,000	3.6	10	2.3	1 11	21	4,878
0.03	3,000	32.2	90	7.0	32	122	28,657
Linit Rates and		Humboldt		Dillusion	2% of building		\$235/m*3
Notee	, ·	Bay soll	1	ifos lebom	floor area		
110100		prome		prome used	(250,000		l
1		ł		buildings	1	- 1 K	1. K. 1
A State of the second		1	Į			ļ	
1.		1	(1	1	1	· ·

Table C.1.12. Calculated Costs and Other Parameters for Remediation of Contaminated Soil at the Reference Nuclear Power Plant (Restricted Land Use, Without Soil Washing, Real World Soil Profile)

C.C-39

NUREG-1496

Page 1 of 3

						Soil	Sol					
				Soit	Soil	Transport	Transport	Soil	Soil			
	Total Soil		Soil	Packaging	Packaging	Loads,	Loads,	Transport	Transport	Soil	Soil	Sall Discost
Residual Docă	Volume	Total Soil	Washing	Costs,	Costs, B-25	Gondola	Truck	Costs,	Costs.	Disposal Costs	Disposal Costs	Soli Disposal
Rate	Removed	Weight	Costa	Gondola Car	Boxes	Cars	Loads	Reil	Truck	@ #10//1:*3	@ \$50//(*3	\$350/H*3
mem/vr	m*3	MT		\$	•	# cars	# Trucks	\$	\$			
HIGH												
100	- 0	0	0	0	0	0	0	0	0	0	0	
		0	0	0	0	0	0	0	0	0	0	
	<u> </u>	0	0	100	39	1	1	4,000	1,325	62	310	2171
		2	0	100	328	1	1	4,000	1,325	527	2 633	19 432
	<u>_</u>	6	0	100	1,112	1	1	4,000	1,325	1.785	8 923	62 460
10	10	19	0	100	3,509	1	2	4,000	2,650	5.633	28 164	197 151
	60	73	0	100	13,153	1	6	4,000	7,950	21,113	105.565	738 955
	178	215	0	300	38,740	3	17	12,000	22,525	62,185	310,925	2 178 478
0.3	200	353	0	600	63,733	5	27	20,000	35,775	102.304	511.520	3 580 639
0.03												
MEDIUM		0	0	0	0	0	0.	0	0	0	0	
100		0	0	0	0	0	0	0	0	0	0	
		0	Ō	0	0	0	0	0	0	0	0	
30		0	ō	0	Ú Ú	0	0	0	0	0	0	
20		0	0	0	0	0	0	0	0	0	0	
10		2	0	100	678	1	1	4,000	1,325	928	4 639	32 474
10			1 0	100	6,982	1	3	4,000	3.975	11.207	56.035	202 244
3	32	171	1 0	200	30,953	2	13	8.000	17.225	49.686	248 429	1 720 005
0.3		210	0	400	56.013	4	24	16.000	31,800	89,912	449 560	2 146 022
0.03	200	310										3,140,922
LOW			0	0	0	0	0	0	0	0		
100					0	0	0	0	0	0		
60				0	0	0	0	0	0	0		
	<u> </u>				0	0	0	0	0	0		<u>_</u>
25				1-0-	0	0	0	0	0	0		<u> </u>
15					0	0	0	0	0	0		<u>v</u>
10	0	0			1	ō	o l	0	0	0	<u> </u>	<u>0</u>
3	0	0	<u>├</u>	100	4 567	1	2	4.000	2 850	7 321	26.654	
0.3		25		200	26.827	2	12	8.000	15,900	43.083	216 217	250,576
0.03	122	149	- Ecom	A100 pm	\$220/m*3	95 tons of	7,295	\$4,000 per	\$1,325 per suck	Costs for bullt	Costs for in	Possible could for
Unit Rates and		/ 0 /06/10 3	RACER	gandols car for		soil per	lbs/box and	gondola railcar	load	disposal at LARW	compact disposal at	futwe in compact
Notes	1		Model	plastic liner	1	railcar	4 boxes/truc			disposal facility,	existing LLW	disposal facilities for
ł	l	l		and cover	Į.	1	1 1040, Of			#10/It* 3; call	disposal facility,	LLW, \$350/11"3;
1							soll/cad			transport only	\$50/It'3; truck	truck transport only.
	1										weisport only.	
1	1	• •		A COLUMN TWO IS NOT							the second second second second second second second second second second second second second second second s	

Table C.1.12. Calculated Costs and Other Parameters for Remediation of Contaminated Soil at the Reference Nuclear Power Plant (Restricted Land Use, Without Soil Washing, Real World Soil Profile)

Page 2 of 3

4

sia.

• .

• • •

.

ŧ۶

4

	Total Soil	Total Soll	Remediation	Costs				Total
Residual Dose	Volume	@ \$10/ft*3	@ \$50/11*3	@ \$350/11"3	Soil Weshing	Soll Excevation	Total Soil	Occupational
Rete	Disposed	Disposal Costs	Disposal Costs	Disposal Costs	Labor	Labor	Remediation Labor	Dose
mem/yr	m*3	•	•	\$	man-hr	man-hr	men-hr	person-mrem
HIGH								
100	0	0	0	0	0	0	0	0
60	0	0	0	0	0	0	0	0
30	0	4,203	1,715	3,576	0	0	0	0
25	1	4,977	4,637	20,437	0	2.	2	0
15	6	7,072	12,547	66,085	0	8	8	1
10	18	13,481	38,072	207,058	0	26	26	3
3	60	39,263	140,717	774,107	0	97	97	10
0.3	176	115,866	413,571	2,279,121	0	285	285	29
0.03	290	190,882	679,106	3,748,225	0	469	469	47
MEDHIM					·			
100	0	0	0	0	0	0.	0	0
60	0	0	0	0	0	. 0	0	0
30	0	0	0	0	0	0	0	
	0	0	0	0	0	0	0	<u> </u>
15	0	0	0	0	0	0	0	
10	3	5,645	7,160	34,994	0	4	4	
3	32	22,765	74,449	410,658	0	51	51	5
0.3	141	90,949	329,671	1,820,246	0	- 228	228	23
0.03	255	166,144	597,205	3,294,566	0	- 412	412	41
1014			· · · ·					
100	0	0	0	0	0	0	0	0
60	0	0	0	0	0	0	0	
		0	0	0	0	0	0	
25	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	0	<u> </u>
10	. 0	0	0.	0	0	0	0	<u>0</u>
		0	0	0	0	0	0	
	21	16,309	48,749	268,671	0	34	34	3
0.03	122	79,920	286,701	1,678,606	0	198	198	20
Link Rates and					0.17 man-hr per	1.62 man-br per		0.1 mem per mai
Notes	1			ł	m.3	m*3		hr labor
110105	{			1 · ·	· · ·			1
				[
	'				1			
	I		L	<u>L</u>	<u> </u>	L	L	

Table C.1.12. Calculated Costs and Other Parameters for Remediation of Contaminated Soil at the Reference Nuclear Power Plant (Restricted Land Use, Without Soil Washing, Real World Soil Profile)

Page 3 of 3

Table C.1.13. Calculated Costs and Other Parameters for Remediation of Contaminated Soil at the Reference Nuclear Power Plant (Unrestricted Land Use, With Soil Washing, Real World Data, 50-Year SAFSTOR)

.

الكالوبين وتنابعه فالتكوي فيتحدي		_	والاست واستخلاف		The second second second second second second second second second second second second second second second s	pute stances	
					ł	_	
	Contamin	Site		Balow-	Balow-	Total Soil	Site Soil
Residual Dose	ated Site	Soll	Site · Soll	Building	Building Soil	Volume	Excavation
fiate	Soil Area	Depth	Volume	Soil Depth	Volume	Removed	Costa
mamlyr	ft*2	cm	m*3	CM	m*3	m*3	\$
HIGH							
100	3,000	0.0	0	0.0	0	0	0
60	3,000	0.0	0	0.0	0	0	0
30	3,000	0.0	0	0.0	0	0	0
25	3,000	0.0	0	0.0	0	0	0
15	3,000	0.0	0	0,0	0	0	0
10	3,000	2.5	7	2.5	12	19	4,451
3	3,000	7,4	21	7.4	34	55	12,943
0.3	3,000	30.7	86	30.7	143	228	53,626
0.03	3,000	60.9	170	60.9	283	453	106,357
MEDIUM		•					
100	3,000	0.0	0	0.0	0	0	0
60	3,000	0.0	0	0.0	0	0	0
30	3,000	0.0	0	0.0	0	0	0
25	3,000	0.0	0	0.0	0	0	0
15	3,000	0.0	0	0.0	0	0	0
10	3,000	0.0	0	0.0	0	0	0
3	3,000	1.8	5	1.8	9	14	3,217
0.3	3,000	15.0	42	15.0	70	112	26,246
0.03	3,000	44.3	123	44.3	206	329	77,360
LOW							
100	3,000	0.0	0	0.0	0	0	0
60	3,000	0.0	0	0.0	0	0	0
30	3,000	0.0	0	0.0	0	0	0
25	3,000	0.0	0	0.0	0	0	0
15	3,000	0.0	0	0.0	0	0	0
10	3,000	0.0	0	0.0	0	0	0
3	3,000	0.0	0	0.0	0	0	0
0.3	3,000	4.5	12	4.5	_21	33	7,796
0.03	3,000	21.2	59	21.2	98	157	36,955
Unit Rates and		Diffusion		Diffusion	2% of building		\$235/m * 3
Notes	ļ	model soil		model soil	filoof area		
	1	provee		below	1280,000		
	1			buildings	l		
1		1					
1							

NUREG-1496

•

• • • •

*4

47

Page 1 of 3

Á

ď.

	1					Soil	Soil					
	1	1990 - 1940 - 1940 - 1940 - 1940 - 1940 - 1940 - 1940 - 1940 - 1940 - 1940 - 1940 - 1940 - 1940 - 1940 - 1940 -		Solt	Soil	Transport	Trensport	Soll	Soff			1
	Total Soll	· .	Soft	Packaging	Packaging	Loads,	Loads,	Transport	Transport	Soil	. Salt	
Residual Dose	Volume	Total Soll	Washing	Costs,	Costs, B-25	Gondola	Truck	Costs,	Costs,	Disposal Costs	Disposal Costa	JOH Disposat
Rate	Removed	Weight	Costs	Gondola Car	Boxes	Cars	Lords	Rail	Truck	@ \$10//1-3	@ \$50/11-3	1350//···
TY/mem	m*3	MT	•	•	• <u> </u>	/ cars	# Trucks	•	•			<u></u>
HIGH				·	· · · · · · · · · · · · · · · · · · ·							
100	0	0	. 0	0	0	0	0	0	0	0	0	
60	0	0	0	0	0	0	0	0	0	0	<u> </u>	
30	0	0	0	0	<u> </u>	0	0	0	0	0	0	
25	0	0	0	0	0.	0	0	0	0	0	0	
15	0	0	0	0	0	0	0	0	0	0	0	
10	19	23	39,410	100	1,667	1	1	4,000	1,325	2.675	13 377	02.641
3	- 55	67	49,576	100	4,847	1	3	4,000	3,975	7,780	38 901	272 208
0.3	228	278	98,274	200	20,081	2	9	8,000	11,925	32,234	161,171	1 129 107
0.03	453	£ 51	161,395	300	39,827	3	17	12,000	22,525	63,931	319,654	2 227 570
MEDIUM												2,237,079
100	0	0	0	0	<u> </u>	0	0	0	0	0	0	
60	0	ō	0	0	0.	0	0	0	0	0	0	
30	0	0	0	0	0	0	0	0	0	0	<u>_</u>	
25	0	0	0	0	0	0	0	0	0	0	0	
15	0	0	0	0	0	0	0	0	0	0	0	
10	0	0	0	0	0	0	0	0	0	0	0	
3	14	17	37,933	100	1,205	1	1	4,000	1,325	1,934	9,668	67 670
0.3	112	136	65,500	100	9,628	1	5	4,000	6,625	15,776	78.882	662 177
0.03	329	401	126,685	200	28,969	2	13	8,000	17,225	46,501	232.504	1 627 527
IOW				l								
100	0	0	0	0	0	0	0	0	0	0	0	
60	0	0	0	0	0	0	0	0	0	0	0	······
30	0	0	0	0	0	0	0	0	0	0	0	
25	0	0	0	0	0	0	0	0	0	0	0	
15	0	0	0	0	0	0	0	Q	0	0	0	
10		0	0	0	0	0	0	0	0	0		V
	0	0	· 0	0	0	0	0	0	0	0		0
	- 33	40	43,414	100	2,919	1	2	4,000	2,650	4.686	23 420	164.010
0.03	157	192	78,319	100	13,838	1	6	4,000	7,950	22,213	111.067	777 460
U.U.		76 ibs/it* 3	From RACER	\$100 per	#220/m*3	95 tons of	7,296	\$4,000 per	\$1,325 per truck	Costs for bulk	Costs for in-	Possible could for
	[Model	gondole cer for	· ·	soll per	Ibe/box and	gondola raticar	lood	disposal at LARW	compact disposal at	future in-conteact
10192	1	· .		prestic miler		Laucai	t load, or			disposal facility,	existing LLW	disposal facilities for
	1			ALL CALL	1	ł	29,184 lbs			VIU/IL-3; (9)	disposal facility,	LLW, #350/11-3;
					1	ļ	sol/losd			to accelerate or all	Wessour only	truck transport only.
1	1	ł	ł	l		l			l .			

Table C.1.13. Calculated Costs and Other Parameters for Remediation of Contaminated Soil at the Reference Nuclear Power Plant (Unrestricted Land Use, With Soil Washing, Real World Data, 50-Year SAFSTOR)

C.C-43

NUREG-1496

					ł	Į	l i	
	Total Soil	Tatal Soil	Remediation	Costs]			Total
Residual Dose	Voiume	@ #10//1*3	@ \$50/11"3	@ \$350/11*3	Soil Washing	Soil Excevation	Total Soil	Occupational
fiate	Disposed	Disposal Costs	Disposal Costs	Disposal Costs	Labor	Labor	Remediation Labor	Dose
mem/yr	m*3	•		6	man-hr	man-hr	men-hv	person-mrem
HIGH						•		
100	· 0	0	0	0	0	0	0	0
60	0	0	0	0	0	0	0	0
30	: 0	0	0	0	0	0	0	0
25	0	0	0	0	0	0	0	0
15	0	0	. 0	0	0	0	0	0
10	8	50,637	60,230	140,494	3	31	34	3
3	. 22	74,400	110,242	343,647	9	89	99	10
0.3	91	192,334	345,077	1,312,103	39	370	408	41
0.03	181	343,983	649,758	2,567,683	77	733	810	81
MEDIUM								
100	0	0	0	<u>ی</u>	0	0	0	0
60	0	0	0	0	0	0	0	0
30	0	0	0	0	0	0	0	
	0	0	0	0	0	0	0	
15	0	0	0	0	0	0	0	
10	0	0	0	0	0	0	0	0
		47.184	53,348	111,359	2	22	25	
	45	111.623	187,082	660,377	19	181	200	20
· 0.03	132	258,745	482,742	1,877,766	56	533	589	<u> </u>
0.00								
			0	0	0	0	0	
100			0	0	0	<u> </u>		
80		0	0	0	0	0		
			0	0	0	0	0	
		0	0	0	0	0 .	0	
10		0	0	. 0	0	0	0	
		0	0	0	0	0	0	
3		50 008	80.210	220.791	6	54	50	
0.3	- 13	141 587	248,129	914,531	27	265	281	
0.03	Disease	141,007			0.17 man-hy per	1.62 man-hr par		20
Unit Rates and	volume la 40%				m*3	m*3		hr labor '
Notes	of the tail spail							
	vol.; remaining							
	vol. is released		•					
]						

Table C.1.13. Calculated Costs and Other Parameters for Remediation of Contaminated Soil at the Reference Nuclear Power Plant (Unrestricted Land Use, With Soil Washing, Real World Data, 50-Year SAFSTOR)

C.C-44

NUREG-1496

.

4

•

√**x** 41

:

		· ·					
	Contamin-	Site	- ·	fielow.	Retown	Totel Soll	
Residual Dose	sted Site	Soit	Site Solt	Building	Building Soll	Volume	Freevetion
Rete	Soll Area	Depth	Volume	Soil Depth	Volume	Removed	Costs
mrem/yr	ft*2	CM	m*3	CM	m*3	· m*3	
HIGH		•			94 (A)	1	
100	3,000	0.0	0	0.0	0	0	0
60	3,000	0.0	0	0.0	0	0	0
30	3,000	0.0	0	0.0	0	0	0
25	3,000	0.0	0	0.0	- 0	0	0
15	3,000	0.0	0	0.0	0	0	0
10	3,000	2.5	7	2.5	12	19	4,451
3	3,000	7.4	21	- 7.4	34	55	12,943
0.3	3,000	30.7	86	30.7	143	228	53,626
0.03	3,000	6).9	170	60.9	283	453	106,357
MEDIUM							
100	3,000	<u>_ :.o</u>	0	0.0	0	0	0
60	3,000	<u>J.O</u>	0	0.0	0	0	0
30	3,000	<u> </u>	0	0.0	0	0	. 0
25	3,000	0.0	0	0.0	0	0	0
15	3,000	0.0	0	0.0	0	0	0
10	3,000	J.0	0	0.0	0	0	0
3	3,000	1.8	5	1.8	9	14	3,217
0.3	3,000	15.0	42	15.0	70	112	26,246
0.03	3,000	44.3	123	44.3	206	329	77,360
LOW							
100	3,000	0.0	0	0.0	0	0	0
60	3,000	0.0	0	0.0	0	0	0 ·
30	3,000	0.0	0	0.0	0	0	0
25	3,000	0.0	. 0	0.0	0	0	0
15	3,000	U.O	0	0.0	0	0	0
10	3,000	0.0	0	0.0	0	0	0
3	3,000	0.0	0	0.0	0	0	0
0.3	3,000	4.5	12	4.5	21	33	7.796
0.03	3,000	21.2	59	21.2	98	157	36,955
Unit Rates and		Diffusion		Diffusion	2% of building		\$235/m*3
Notes	· .	model soll	•	model soll	floor area		
		, protine		briow briow	1250,000		•
				buildings			
•	1						
	1						

æ

Table C.1.14. Calculated Costs and Other Parameters for Remediation of Contaminated Soil at the Reference Nuclear Power Plant (Unrestricted Land Use, Without Soil Washing, Real World Data, 50-Year SAFSTOR)

Page 1 of 3

C.C-45

NUREG-1496

Table C.1.14.	Calculated Costs	and Other Parameters	for Remediation of	Contaminated Soll at the	Reference Nuclear Power Plant
(Unres	tricted Land Use,	Without Soil Washing,	Real World Data,	50-Year SAFSTOR)	

•.

· · · ·

.

						Soil	Soil					
				Soil	Soil	Transport	Transport	Soil	Şoil .			
	Total Soli		Soil	Packaging	Packaging	Loads,	Loads,	Transport	Transport	Soil	Soil	Soil Disposal
Residuat Dose	Volume	Total Soil	Washing	Costs,	Costs, 8-25	Gondola	Truck	Costs,	Costs,	Disposal Costs	Disposal Costs	Costs @
Rate	Removed	Weight	Costs	Gondola Car	BONAS	Cars	Loads	Rali	Truck	@ #10/ft*3	@ \$50/11-3	\$350/(1.3
mrem/yr	m*3	MT	\$	•	\$	# cars	# Trucks	•	•	\$	\$	•
HIGH												
100	0	0 .	0	0	0	0	0	0	0	0	0	0
60	0	0	0	0	0	0	0	0	0	0	0	0
30	0	0	0	0	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	0	0	0	0	0	0
16	0	0	0	0	0	0	0	0	0	0	0	0
10	19	23	0	100	4,167	1	2	4,000	2,650	6,689	33,443	234,102
3	55	67	0	100	12,117	1	6	4,000	7,950	19,450	97,252	680,765
0.3	228	278	0	400	50,203	4	21	16,000	27,825	80,585	402,927	2,820,492
0.03	453	561	0	700	99,568	7	42	28,000	55,650	159,827	799,135	5,593,946
MEDIUM												
100	0	0	0	0	0	0	0	0	0	0	0	0
60	0	0	0	0	0	0	0	0	0	0	0	0
30	0	0	0	0	0	0	0	0	0	Ō	0	0
	0	0	0	0	0	0	0	0	0	0	0	0
15	0	0	0	0	0	0	0	0	0	0	0	0
10	0	0	0	0	0	0	0	0	0	0	0	
	14	17	0	100	3,012	1	2	4,000	2,650	4,834	24,171	169,198
03	112	136	0	200	24,571	2	11	8,000	14,676	39,441	197,206	1.380 443
0.03	329	401	0	600	72,422	5	31	20,000	41,075	116,252	581,260	4.068.818
0.00								······································				
100	0	0	0	0	0	0	0	0	0	0	0	0
		0	0	0	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	0	0	0	0	0	0
15	0	0	0	0	0	0	0	0	0	0	0	0
10		0	0	0	0	0		0	0	0	0	0
		0	0	0	0	0		0	0	0	0	0
	- 22	40	0	100	7,298	1	4	4,000	5,300	11,715	58,576	410.030
0.03	157	192	0	300	34,596	3	15	12,000	19,875	55,534	277,668	1,943,673
Unix Reten and		78 lbs/11" 3	From	\$100 per	\$220/m*3	95 tons of	7,296	\$4,000 per	\$1,325 per truck	Costs for bulk	Costs for in-	Possible costs for
Unit Rates and			RACER	gondola car for		son per railcar	A boxestere	ganaole (elicer	bed	disposal at LARW	compact disposal at	future in-compact
NOTES			Model	and cover]		k load, or			\$10/it*3: 23	Also and trailing	disposal facilities for
(I			Į		5		29,184 lbs	1		Wansport only	\$50/11' 3: truch	LLW, #350/11-3;
				1			soliAced				transport only.	
		ł	ł	l								

4

24

نع

4

	Total Soll	Totel Soli	Remodistion	Costs		` ı		•
Basidual Dage	Volume	@ \$10/11-3	@ \$50/11-3	@ \$350/11-3	Soil Washing	Soil Excavation	Total Solt	
Rete Rete	Discosed	Disposel Costs	Dispos-I Costs	Disposal Costs	- Lebor	Labor	Remediation Labor	Occupational
member	m^3	•	\$	+	men-hr	men-hr	men-br	001500-004000
		-						personning
100	0	0	0	0	0	0	0	
60		0	0	0	0	0	0	
		0	0	0	0	0	<u> </u>	
		0	0	0	0	0	<u> </u>	
20		0	0	0	0	0	<u> </u>	
10	10	15.240	44.711	245,369	0	31	31	
10	55	36 494	130.263	713.776	0	89	80	3
	228	150 611	534,581	2.952.145	i i i i i i i i i i i i i i i i i i i	370	370	9
0.3	453	294 884	1.060.710	5.855.521	0	733	722	
0.03	403	234,004			·			73
MEDIUM			0	0	0			
100			0	0	· 0			0
60				0	<u> </u>			<u> </u>
30				0	0	0	<u>_</u>	0
20			0	<u> </u>	1 õ	0		0
10		0	0	0	0			
10		12 151	33.050	178.076		22	22	
3		73 897	262,598	1.445.835		181	101	<u> </u>
0.3		914 112	772.116	4.259.675		633	822	18
0.03	323							03
LOW			0	0	0			
100		0		0	<u> </u>	<u> </u>		
60		0	. 0	0	0			
30		0	0	0	<u> </u>	0		0
20			0	0	l õ	0	0	
. 15		0	0	0	0	0	0	
10		0	0	0	0		0	
3		22 811	78 970	430.424		64	<u> </u>	
0.3	33	104 788	365.093	2.035.098	<u>0</u>	255	255	<u> </u>
0.03	10/	104,700			0.17 mm-lv per	1.62 man-hr ner	200	20
Unit Rates and	. .				m*3	m'3		by labor
Notes							ł	
	1 ·	1 · · · · · · · · · · · · · · · · · · ·	1 A	1	· ·) ' ,	
				1				
	1							

Table C.1.14. Calculated Costs and Other Parameters for Remediation of Contaminated Soil at the Reference Nuclear Power Plant (Unrestricted Land Use, Without Soil Washing, Real World Data, 50-Year SAFSTOR)

C.C-47

NUREG-1496

Page 3 of 3

NUREG-1496

10.5

٩.

•

• .

Table C.1.15. Calculated Costs and Other Parameters for Remediation of Contaminated Soil at the Reference Nuclear Power Plant (Restricted Land Use, With Soil Washing, Real World Data, 50-Year SAFSTOR)

. •

84

	Contamin-	Site		Below-	Below-	Total Soil	Site Soll
Residual Dose	ated Site	Soil	Site Soil	Building	Building Soil	Volume	Excavation
Rate	Soil Area	Depth	Volume	Soil Depth	Volume	Removed	Costs
m/sm/yr	((*2	C(T)	m*3	CM	m*3	m-3	
HIGH							
100	3,000	0.0	0	0.0	0	0	0
<u>60</u>	3,000	0.0	0	0.0	0	0	0
30	3,000	0.0	0	0.0	0	0	0
25	3,000	0.0	0	0.0	0	0	0
15	3,000	0.0	0	0.0	0	0	0
10	3,000	0.0	0	0.0	0	0	0
3	3,000	0.0	0	0.0	0	0	0
0,3	3,000	5.5	15	5.6	25	41	9,538
0.03	3,000	24.6	68	24.6	114	183	42,915
MEDIUM							
100	3,000	0,0	0	0.0	0	0	0
60	3,000	0.0	0	0.0	0	0	0
30	3,000	0,0	0	0.0	0	0	0
25	3,000	10	0	0.0	0	0	0
16	3,000	0.0	0	0.0	0	0	0
10	3,000	0.0	0	0.0	0	0	0
3	3,000	0.0	0	0.0	0	0	0
0.3	3,000	0.0	0	0.0	0	0	0
0.03	3,000	11.7	33	11.7	54	87	20,482
LOW							
100	3,000	0.0	0	0.0	0	0	0.
60	3,000	0.0	0	0.0	0	0	0
30	3,000	0.0	0	0.0	0	0	0
25	3,000	0.0	0	0.0	0	0	0
15	3,000	0.0	0	0.0	0	0	0
10	3,000	0.0	0	0.0	0	0	0
3	3.000	0.0	0	0.0	0	0	0
0.3	3.000	0,0	0	0.0	0	0	0
0.03	3,000	2.6	7	2.6	12	20	4,601
Linit Rates and		Diffusion		Diffusion	2% of building		\$235/m*3
Notes]	model soli		model soil	floor area		
110188	[broige		profile used	1250,000		
	Į			buildings			
		1					
		L	L		I		

Page 1 of 3

						501	Soll		1			
	х.			Seit	Soft ···	Trensport	Transport	Seil	Soff			
	Total Soll		Solt -	Packaging	Packaging	Losds,	Loads,	Trensport	Trensnort	508	6-8	6
Desidual Data	Volume	Total Soil	Washing	Costs,	Costs, B-25	Gondola	Truck	Costs.	Costs.	Disposal Costs	Disease Com	abri Disposel
Rete	Removed	Weight	Costs	Gondota Car	Boxes	Cars	Loads	Refl	Truck	@ \$10/1:3	@ #50//+**	Costs @
member	m*3	MT		\$	•	/ cara	# Trucks	\$			\$	+300/IT 3
IN CIT					-							
HIGH		0	0	0	0	0	0	0	0			
100				Ő	0	0	0					
60					<u> </u>	<u> </u>				0	0	0
	0			0	0			0			0	0
25		0									0	<u> </u>
15	0			0	0			0			0	0
10		0								0.	0	0
3	0	0			2 6 7 2					0	0	0
0.3	41	-49	45,499	100	3,572			4,000	2,650	5,733	28,665	200,658
0.03	183	223	85,454	200	18,070	. 2		8,000	9,275	25,796	128,982	902,872
MEDIUM			·									
100	0	0	0	0	0	0	0	0	0	0	0	0
60	0	0	0	0	0	0	0	0	0	0	0	0
30	0	0	0	· 0	0	0	0	0	<u> </u>	0	0	0
25	0	0	0	0	0	0	0	0	0	0	0	0
15	0	. 0	0	0	0	0	0	0	0	0	0	0
10	0		0	0	0	0	0	0	0	0	0	0
3	0	0	. 0	0	0	0	0		0	0	0	0
0.3	. 0	0	0	0	0		0	0	0	0	0	0
0.03	87	106	58,601	100	7,670	1	4	4,000	5,300	12,312	61,559	430.915
IOW					L		· ·		·			
100	0	0	0	0	0	0	0	0	0	0	0	0
60	0	0	0	0	0	0	0	0	0	0	0	· 0
30	0	0	0	0	0	0	0	0	0	0	0	0
25	0	0	0	0	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	0	0	0	0	0	
10		0	0	0	0	0	0	0	0	0	0	
		0	0	0	0	0	0	Ō	0	0	0	
			0	0	0	0	0	0	0	0	0	
0.3	20	24	39,590	100	1,723	1	1	4,000	1,325	2.766	13.828	96 700
0.03		76 lbs//t 3	From RACER	\$100 per	\$220/m*3	95 tons of	7,296	\$4,000 per	41,325 per truck	Costs for bulk	Costs for in-	Possible seals for
Unit Rates and	l		Model	gondóla car for		aoli per	ibs/box and	gondots relicer	foed '	disposal at LARW	compact disposat at	future in-compace
Notes	1	Į	1	plastic that		ralicar	4 boxes/truc			disposal facility,	existing LLW	disposal facilities for
		1		and cover	1		26 184 Pm		1	\$10/12°3; rall	disposal facility,	LLW, \$350/11"3;
	1				1		soll/load]	Transport only	\$50/11"3; truck	truck transport only.
1									1		wansport only.	

Table C.1.15. Calculated Costs and Other Parameters for Remediation of Contaminated Soil at the Reference Nuclear Power Plant (Restricted Land Use, With Soil Washing, Real World Data, 50-Year SAFSTOR)

.

NUREG-1496
Total Soll Remediation Costs **Total Soil** Total @ \$10/ft*3 @ \$50/ft*3 @ \$350/ft*3 Soil Weshing Soil Excavation Volume **Total Soil** Occupational **Residual Dose** Disposal Costs **Disposal Costs Disposal Costs** Labor Labor Remediation Labor Disposed Dose Rate \$ \$ man-hr man-hr m*3 man-hr person-mem tv/mewn HIGH õ Ō Ō Ô Õ ō Õ Ö 89,924 261,917 64,870 0.3 282,696 1,066,587 162,368 0.03 MEDIUM Ō Ó Ō Õ 0.3 153,612 522,967 95,496 0.03 LOW Õ Õ õ Ó Õ 0 . 0.3 61,068 144,038 51,057 0.03 0.17 man-hr per 1.62 man-hr per Disposal 0.1 mrem per man-Unit Rates and m*3 m*3 volume la 40% hr labor Notes of total soil vol.; remaining vol. is released

Table C.1.15. Calculated Costs and Other Parameters for Remediation of Contaminated Soil at the Reference Nuclear Power Plant NUREG-1496 (Restricted Land Use, With Soil Washing, Real World Data, 50-Year SAFSTOR)

1)

Page 3 of 3

÷9.

-

	·						
	Contemin-	Site		8elaw-	Belaw-	Total Soll	Ske Soll
Residuel Dose	ated Site	Soft	She Soll	Building	Duilding Soit	Volume	Excavation
fiste · ·	Soil Area	Depth	Volume	Soll Depth	Votume	Removed	Costa
enrem/yr	ft*2	cm	m*3	CIN	m-3	m*3	
HIGH	·				<u>`</u>		
100	3,000	0.0	0	0.0	0	0	0
60	3,000	0.0	0	0.0	0	0	0
30	3,000	0.0	0	0.0	0	0	0
25	3,000	0.0	0	0.0	0	0	0
15	3,000	0.0	0	0.0	0	0	0
10	3,000	0.0	0	0.0	0	0	0
3	3,000	0.0	0	0.0	0	0	0
0.3	3,000	5.5	15	5.6	25	41	9,538
0.03	3,000	24.6	68	24.6	114	183	42,915
MEDIUM		· · · · · · · · · · · · · · · · · · ·					
100	3,000	0.0	0	0.0.	0	0	0
60	3,000	0.0	0	0.0	0.	0	0
30	3,000	0.0	0	0.0	0	0	0
25	3,000	0.0	0	0.0	0	0	0
15	3,000	0.0	0	0.0	0	. 0	0
10	3,000	0.0	0	0.0	0	0	Ö
3	3,000	0.0	÷0	0.0	0	0	0
0.3	3,000	0.0	0	0.0	0	0	0
0.03	3,000	11.7	33	11.7	54	87	20,482
IOW							
100	3,000	0.0	0	0.0	0	0	0
60	3.000	0.0	0	0.0	0	0	0
30	3,000	0.0	0	0.0	0	0	0
28	3,000	0.0	0	0.0	0	0	0
15	3,000	0.0	Ō	0.0	0	0	0
	3,000	0.0	0	0.0	0	0	0
	3,000	0.0	Ō	0.0	0	0	0
	3,000	0.0	0	0.0	Ō	ō	0
0.3	3,000	2.6	1- 7	2.6	12	20	4,601
0.03	0,000	Diffusion		Diltusion	2% of building		\$235/m*3
Notes		model soll profile		model soll profile used	floor area (250,000		
			• * *	below buildings	f(* 2)	• •	
l í							

Table C.1.16. Calculated Costs and Other Parameters for Remediation of Contaminated Soil at the Reference Nuclear Power Plant (Restricted Land Use, Without Soil Washing, Real World Data, 50-Year SAFSTOR)

NUREG-1496

.

C.C-51

Page 1 of 3

						Soil	Soll				······	
1				Soil	Soil	Transport	Transport	Soil	Soll			
	Total Soil		Soil	Packaging	Packaging	Loads,	Loads,	Transport	Transport	Soil	Soil	Sell Dispersel
Residual Dose	Volume	Total Soil	Washing	Costs,	Costs, 8-25	Gondola	Truck	Costs,	Costs,	Disposal Costs	Disnosal Costs	Sun Disposal
Rate	Removed	Weight	Costs	Gondola Car	Boxes	Cars	Loads	Rail -	Truck	@ \$10/11-3	@ \$50/11:3	\$350/012
nvemiyr	m*3	MT	\$	\$	6	# cars	# Trucks	\$		\$		4300/11 3
HIGH												
100	0	0	0	0	0	0	0	0	0	0	0	
60	0	0	0	0	0	0	0	0	0	0	0	0
30	0	0	0	0	0	0	0	0	0	0	0	
25	0	0	0	0	0	0	0	0	0	0	0	
15	0	0	0	0	0	0	0	0	0	0	0	0
10	0	0	0	0	0	0	0	0	0	0	0	0
3	0	0	0	0	0	0	0	0	0	0	0	0
0.3	41	49	0	100	8,929		4	4,000	5,300	14,333	71,664	501,646
0.03	183	223	0	300	40,176	3	17	12,000	22,525	64,491	322,454	2.257.181
MEDIUM			<u> </u>	 								
100	0	0	0	0	0	0	0	0	0	0	0	0
60	0	0	0	0	0	0	0	0	0	0	0	0
30	0	0	0	<u> </u>	0	0	0	0	0	0	0	0
25	0	0	0	0	0	0	0	0	0	0	. 0	0
15	0	0	0	0	0	<u> </u>	0	0	0	0	0	0
10	0	0	0	0	0	0	0	0		0	0	0
3	0	0	0	0	0	0	0	0	0	0	0	0
0.3	0	0	0	0	0	0	0	0	0	0	0	0
0.03	87	106	0	200	19,176	2	9	8,000	11,925	30,780	153,898	1,077,286
LOW			<u> </u>	<u> </u>]			
100	0	0	0	0	0	0	0	0	0	0	0	0
60	0	0	0	0	0	0	0	0	0	0	0	0
30	0	0	0	0	0	0	0	0	0	0	0	0
25	0	0	0	0	0	0	0	0	0	0	0	0
15	0	0	0	0	0		0	0	0	0	0	0
10	0	0	0	0	0			0	0	0	0	0
3	0	0	0	0	0			0	0	00	<u> </u>	0
0.3	0	0	0	100	4 207			4 000	0	0	· 0	0
0.03	20	24	0	1 100	4,307	95 1004 01	7 206	4,000	2,050	6,914	34,571	241,998
Unit Rates and		76 lbs//(*3	PIOR	i nondola car for	*******	soll per	ibs/box and	condola ralicar	VI,325 Per truck	Costs for bulk	Cosis for in-	Possible costs for
Notes			Model	plastic liner		ralicar	4 boxes/truc			disposal facility	existing (1)	future in-compact
1		1		and cover			k load, or			\$ 10/It* 3; rail	disposal facility.	LLW. 4350/412
1		{	1	1			29,184 lbs			transport only	\$50/ft* 3; truck	truck transport only
1		ł		1			soil/load				transport only.	
1	1	1	1	1		I						

Table C.1.16. Calculated Costs and Other Parameters for Remediation of Contaminated Soll at the Reference Nuclear Power Plant (Restricted Land Use, Without Soll Washing, Real World Data, 50-Year SAFSTOR)

æt.

11

Page 2 of 3

¥

62-

		and the second second	· .		1 · · · · · · · · · · · · · · · · · · ·			
	Teast Call	Total Call	Remediation	Casta	! .			
Devidual Date	Total Son		B 150/11*3	@ 1350/#** 3	Soil Weshing	Call Engineering		Total
Resource Reso	Discosed	Disposal Costs	Disposal Costs	Discosel Costs	Labor	ave Exceveron	Remediation Labor	Occupation
member	m'3		•	•	man-hr	men-hr	man-hr	Dose
HIGH				·				parametrial
100	0	0	0	0	0	0	0	
60	0	0	0	0	0	0	0	
30	0	0	0	0	O	0	0	
25	0	0	0	. 0	0	0	0	
15	0	0	0	0	0	0	0	
10	0	0	0	0 ·	0	0	0	
3	0	0	0	0	0	0	0	0
0.3	41	27,970	95,430	525,412	0	66	66	7 -
0.03	183	119,706	428,)71	2,362,797	0	296	296	30
MEDIUM				·				
100	0	0	<u> </u>	0	0.	0	0	0
60	0	0	e	0	0	0	0	0
30	0	0		0	0	0	0	0
25	0	0	<u>U</u>	0	0	<u> </u>	0	0
15	0	0	0	0	0	. 0 .	. 0	0
10	0	0	<u> </u>	0	. 0	0	0	0
3	0	0	<u> </u>	• 0	0	0	0	0
0.3	0	O	0	- 0		0	<u> </u>	0
0.03	87	59,462	205,480	1,128,869	0	141	141	14
LOW						· · · · · · · · · · · · · · · · · · ·		
100	0	. 0	0	0	0	0	0	0
60	0	0	0	0	0	0	0	0
30	0	<u> </u>	0	0	0	0	0	0
25	0	0	0	0	0	0	0	0
15	0	0	<u>v</u>	0	0	0.	0	0
10	0	0	00	0	0	0	0	0
3	0	0	0	0	0	0	0	0
0.3	0	0	0	0	0	0	0	0
0.03	20	16,615	46,130	253,557	0	32	32	3
Unit Rates and Notes	-		. x		0.17 men ty per m*3	1.62 mən-hr pər , m*3		0.1 mrem per hr lebor

.

Table C.1.16. Calculated Costs and Other Parameters for Remediation of Contaminated Soil at the Reference Nuclear Power Plant (Restricted Land Use, Without Soil Washing, Real World Data, 50-Year SAFSTOR)

• ·

Page 3 of 3

	Contamin-	Site		Below-	Below-	Total Soil	Site Soil
Residual Dose	ated Site Soll	Soil	Site Soil	Building	Building Soil	Voiume	Excevation
Rate	Area	Uepth	Volume	Soil Depth	Volume	Removed	Costs
miem/yt	ít^2	CIM	m*3	cm	m*3	m*3	•
HIGH .							
100	100,000	18.4	1,707	18.4	82	1,789	420,394
60	100,000	19.7	1,834	<u> 19.7</u>	88	1,922	451,570
30	100,000	21.3	1,983	21.3	95	2,078	488,333
25	100,000	21.7	2,019	21.7	97	2,115	497,132
15	100,000	22.8	2,114	22.8	101	2,215	520,560
10	100,000	23.5	2,186	23.5	105	2,291	538,305
3	100,000	25.6	2,378	25.6	114	2,492	585,601
0.3	100,000	28.9	2,688	28.9	129	2,817	662,103
0.03	100,000	31.9	2,964	31.9	142	3,106	729,948
MEDIUM							
100	100,000	8.8	802	8.6	38	840	197,438
· 60	100,000	14.2	1,318	14.2	63	1,381	324,514
30	100,000	_1 <u>7.1</u>	1,588	17.1	76	1,665	391,190
25	100,000	17.7	1,644	17.7	79	1,723	404,977
15	100,000	19.2	1,779	19.2	85	1,865	438,248
10	100,000	20.2	1,874	20.2	90	1,964	461,522
3	100,000	22.8	2,114	22.8	101	2,215	520,560
0.3	100,000	26.7	2,478	26.7	119	2,597	610,368
0,03	100,000	29.9	2,778	29.9	133	2,909	683,711
LOW							
100	100,000	0.0	0	0.0	0	0	0
60	100,000	<u>0.0</u>	0	0.0	0	0	0
	100,000	0.0	0	0.0	0	0	0
25	100,000	0.0	0	0.0	0	0	0
15	100,000	8,6	802	8,6	38	840	197,438
10	100,000	13.6	1,259	13.6	60	1,320	310,110
3	100,000	18.4	1,707	18.4	82	1,789	420,394
0.3	100,000	23.5	2,186	23.5	105	2,291	538,305
0.03	100,000	27.3	2,533	27.3	122	2,655	623,915
Unit Rates and Notes		Dittusion model soil profile		Diffusion model soil profile used below buildings	2% el building licer eres (240,000 lt2)		\$236/m*3

Table C.2.1. Calculated Costs and Other Parameters for Remediation of Contaminated Soil at the Reference Uranium Fuel Fabrication Plant (Unrestricted Land Use, With Soil Washing)

•

. .

: ..

·· · ·

٨.

...

Page 1 of 3

w

Å,

						. 504	Soil					
				Soll	Soll	Trensport	Treneport	Soil	Sol			
	Total Soll		· · · · ·	Packaging	Paokaging	Loads,	Loads,	Transport	Transport	Soll	Solf	Soll Disposal
Residual	Volume	Total Soll	Soll Washing	Costs,	Costs, B-25	Gondola	Truck	Costs,	Costs,	Disposal Costs	Disposal Costs	Costs @
Dose Rete	Removed	Weight	Costs	Gondola Car	<u> </u>	Care	Loads	<u>Field</u>	Truck	@ \$10/#*3	@ 150/11-3	#350/11*3
mrem/yr	m 3	MT				. / Cars	/ Irucks					
HIGH									ļ			
100	1,789	2,180	537,310	1,100	157,424		66	44,000	87,450	252,698	1,263,490	8,844,427
60	1,922	2,341	574,628	1,100	169,099		71	44,000	94,075	271,438	1,357,189	9,500,320
30	2,078	2,532	618,635	1,200	182,865	12	77	48,000	102,025	293,536	1,467,680	10,273,758
25	2,115	2,578	629,168	1,200	186,160	12	78	48,000	103,350	298,825	1,494,126	10,458,884
15	2,215	2,699	657,212	1,300	194,933	13	82	52,000	108,650	312,907	1,564,536	10.951.755
10	2,291	2,791	678,453	1,300	201,578	13	85	52,000	112,625	323,574	1,617,868	11.325.079
3	2,492	3,036	735,069	1,500	219,289	15	92	60,000	121,900	352,004	1,760,018	12.320 124
0.3	2,817	3,433	825,644	1,600	247,936	16	104	64,000	137,800	397,988	1,989,942	13.929.597
0.03	3,106	3,785	907,857	1,800	273,342	18	115	72,000	152,375	438,770	2,193,851	15,356,959
MEDIUM												
100	840	1,024	270,423	500	73,934	5	31	20,000	41,075	118,679	593.397	4.153 776
60	1,381	1,683	422,538	800	121,520	. 8	. 51	37,000	67,575	195,065	975,324	6.827 268
30	1,665	2,028	502,351	1,000	146 188	10	62	40,000	82,150	235,143	1.175.716	8 230 015
25	1.723	2,100	518,855	1,000	151,651	10	64	40,000	84,800	243,431	1.217.154	8 520 079
15	1.865	2,272	558,679	1,100	164,109	11	69	44,000	91,425	263,429	1.317.144	9 220,010
10	1.964	2,393	586,541	1,200	172,825	12	73	48,000	96,725	277,420	1.387.099	9 709 602
3	2,215	2.699	657,212	1,300	194,933	13	. 82	52,000	108,650	312,907	1,587,035	3,709,092
	2 597	3.165	764,716	1,500	228,563	. 15	96 .	r0,000	127.200	366,891	1 924 455	10,951,755
0.3	2 909	3 545	852.510	1,700	256,028	17	108	63.000	143,100	410 978	1,034,400	12,841,182
0.03							1			410,578	2,054,888	14,384,213
	<u> </u>	0	0	0	0	0	0	0	0			
100		0	0	- o	0	0	0	0	0			0
			0	0	0	0	0	0	0		<u> </u>	0
30					0	0	0	<u> </u>			0	0
25	0	0	370 422	E 00	72 934	5	31	20,000	41.075		0	0
15	840	1,021	270,423	000	116 198		40	20,000	41,075	118,679	<u> </u>	4,153,778
10	1,320	1,609	405,290	800	110,120		43	32,000	01,925	186,407	932,033	6,524,230
3	1,789	2,187	537,310	1,100	157,424		00	44,000	87,450	252,698	1,263,490	8,844,427
0.3	2,291	2,791	678,453	1,300	201,578	13	85	52,000	112,625	323,574	1,617,868	11,325,079
0.03	2,655	3,235	780,932	1,600	233,636	16	98	64,000	129,850	375,034	1,875,171	13,126,194
Unit Retes		78 lbe/"t" 3	From RACER	\$100 per	\$220/m 3	Pb tens of	7,290	\$4,000 per	\$1,326 per truck	Costs for bulk	Costs for in-	Possible costs for
and Notes			Medel	plastic liner		railcar	4 boxes/true	Gertrade tendet	Deci	disposal at LARW	compact disposal at	future in-compact
	, i		· ·	and cover	1 .		k lead, or			\$10/It*3; rait		disposal facilities for
1				1.	· · ·		29,184 Au			transport only	\$50/11" 3; truck	truck transport and
	1						beet/hos				transport only.	
1	i i	1		1		L	L					

Table C.2.1. Calculated Costs and Other Parameters for Remediation of Contaminated Soil at the Reference Uranium Fuel Fabrication Plant (Unrestricted Land Use, With Soil Washing)

NUREG-1496

Page 2 of 3

	Total Soll	Total Soll	Remediation	Costs				Total
Residual Dose	Volume	@ \$10/11*3	@ \$60/11*3	@ 1350//11*3	Soil Washing	Soll Excavation	Total Soli	Occupational
Rate	Disposed	Disposal Costs	Disposal Costs	Disposal Costs	Labor	Labor	Remediation Labor	Dose
miem/yr	m*3	8	•		man-lur	man-hr	man-hr	person-mrem
HIGH						·		
100	716	1,255,501	2,466,067	10,047,004	304	<u>2,898</u>	3,202	320
60	769	1,342,736	2,646,560	10,789,692	327	3,113	3,440	344
	831	1,449,704	2,859,538	11,665,617	353	3,368	3,720	372
	846	1,474,328	2,909,937	11,874,695	360	3,427	3,787	379
15	886	1,543,979	3,045,891	12,433,110	377	3,589	3,965	397
10	916	1,593,631	3,148,829	12,858,040	389	3,711	4,100	410
3	997	1,734,173	3,421,876	13,981,982	424	4,037	4,461	446
0.3	1,127	1,952,335	3,864,425	15,804,080	479	4,564	5,043	504
0.03	1.242	2,150,376	4,257,374	17,420,482	<u>E28</u>	5,032	5,560	556
MEDIUM								
100	336	607,040	1,176,266	4,736,645	143	1,361	1,504	150
60	552	974,917	1,911,472	7,763,416	235	2,237	2,472	247
30	666	1,169,684	2,297,895	9,352,194	283	2,697	2,980	298
	689	1,208,263	2,3,7,437	9,680,361	293	2,792	3,085	308
15	746	1,305,454	2,569,604	10,472,470	317	3,021	3,338	334
10	786	1,374,683	2,704,712	11,027,305	334	3,182	3,515	352
	886	1,543,979	3,045,891	12,433,110	377	3,589	3,965	397
0.3	1.039	1,803,475	3,585,301	14,572,028	442	4,208	4,649	465
0.03	1.164	2,016,899	3,990,238	16,319,563	495	4,713	5,208	521
1.014								
100	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	0	0
	i 0	0	0	0	0	0	0	0
15	336	607,040	1,176,266	4,736,645	143	1,361	1,504	150
10	528	934,613	1,828,490	7,420,688	224	2,138	2,362	236
	716	1.255.501	2,466,067	10,047,004	304	2,898	3,202	320
	918	1,593,631	3,148,829	12,856,040	389	3,711	4,100	410
0.03	1.082	1,845,481	3,643,504	14,894,528	451	4,301	4,752	475
U.U.	Dispesal				0.17 marter par	1.62 manter per		0.1 mem per men
Unit Kates and	volume la 40%	1			- m°3	m.3		fr labor
Notes	of total soil			1	I		l	Į.
1	Vol.; remaining		1				1	
	Ani' 10 Jan gang	l I			1		1	l

Table C.2.1. Calculated Costs and Other Parameters for Remediation of Contaminated Soit at the Reference Uranium Fuel Fabrication Plant (Unrestricted Land Use, With Soil Washing)

· : .: .

. . . .

Page 3 of 3

21

.

Ð

	Contamin-	Site		Below-	Below	Total Sol	Sta Sall
Residuel Dose	ated Site	Soll	Site Soil	Building	Building Soll	Volume	Excevation
Reta	Soll Area	Depth	Volume	Solt Depth	Voluma	Removed	Costs
monlys	ħ*2	cm	m*3	cm	m*3	m*3	•
HIGH							
100	100,000	18.4	1,707	18:4	82	1,789	420,394
80	100,000	19.7	1,834	19.7	88	1,922	451,570
	100,000	21.3	1,983	21.3	95	2,078	488,333
25	100,000	21.7	2,019	21.7	97	2,115	497,132
15	100,000	22.8	2,114	22.8	101	2,215	520,560
10	100,000	23.5	2,186	23.5	105	2,291	538,305
3	100,000	25.6	2,378	25.6	114	2,492	585,601
0.3	100,000	28.9	2,688	28.9	129	2,817	662,103
0.03	100,000	31.9	2,964	31.9	142	3,106	729,948
MEDIUM							
100	100,000	8.6	802	8.6	38	840	197,438
60	100,000	14:2	1,318	14.2	63	1,381	324,514
30	100,000	17.1	1,588	17.1	76	1,665	391,190
25	100,000	17.7	1,644	17.7	79	1,723	404,977
15	100,000	19.2	1,779	19.2	85	1,865	438,246
10	100,000	20.2	1,874	20.2	90	1,964	461,522
	100,000	22.8	2,114	22.8	101	2,215	520,560
0.3	100,000	26.7	2,478	26.7	119	2,597	610,368
0.03	100,000	29.9	2,776	29.9	133	2,909	683,711
LOW							
100	100,000	0.0	0	0.0	0		0
60	100,000	0.0	0	0.0	<u> </u>	<u> </u>	0
30	100,000	0.0	0	0.0	<u> </u>	0	0
25	100,000	0.0	0	0.0	0	0	0
15	100,000	8.8	802	8.6	38	840	197,438
10	100,000	13.6	1,259	13.6	50	1,320	310,110
3	100,000	18.4	1,707	18.4	82	1,789	420,394
0,3	100,000	23.5	2,186	23.5	105	2,291	538,305
0.03	100,000	27.3	2,533	27.3	122	2,655	623,915
Unit Retes and		Diffusion		Diffusion	2% of building	1	\$235/m*3
Notes ·		mean soll]	profile used	(240,000 (12)		1
	1 ·		ł	below		ļ	
				buildings		1	
11	1		l		1	1	{
1	1	I	1	1	1	L	1

Table C.2.2. Calculated Costs and Other Parameters for Remediation of Contaminated Soil at the Reference Uranium Fuel Fabrication Plant (Unrestricted Land Use, Without Soil Washing)

NUREG-1496

Page 1 of 3

·			التواقي ومناهيه بنيابي	T T		Soil	Soil					· · · · · ·
4				Soll	Soil	Transport	Transport	Soll	Soil			
	Total Soil			Packaging	Packaging	Loads,	Loads,	Transport	Transport	Soll	Soil	Soll Disposet
Residual	Volume	Total Soil	Soil Weshing	Costs,	Costs, B-26	Gondola	Truck	Costs,	Costs,	Disposal Costs	Disposal Costs	Costa @
Dose Rate	Removed	Weight	Costs	Gondola Car	Boxes	Cars	Loads	Rail	Truck	@ \$10//11-3	@ \$60/11-3	\$360/ft*3
mrem/yr	m*3	MT	8	•	•	I Cole .	/ Trucks	3	•	+	•	
HIGH					[<u></u>				
100	1,789	2,180	0	2,600	393,560	26	165	104,000	218,625	631,745	3,158,724	22,111,067
60	1,922	2,341	0	2,800	422,748	28	177	112,000	234,525	678,594	3,392,971	23,750,800
30	2,078	2,532	0	3,000	457,163	30	192	120,000	254,400	733,840	3,669,199	25,684,396
25	2.115	2,578	0	3,000	465,401	30	195	120,000	258,375	747,063	3,735,318	26,147,209
15	2.215	2,695	0	3,200	487,332	32	204	128,000	270,300	782,268	3,911,341	27.379.389
10	2.291	2,791	0	3,300	503,945	33	211	132,000	279,575	808,934	4,044,671	28.312.699
	2.492	3,03ť	0	3,600	548,222	36	230	144,000	304,750	880,009	4,400,044	30,800,309
0.3	2.817	3,433	0	4,000	619,841	40	260	160,000	344,500	994,971	4,974,856	34,823,993
0.03	3,106	3,785	0	4,400	683,356	44	286	176,000	378,950	1,098,926	5,484,628	38,392,398
MEDIUM												
100	840	1,024	0	1,200	184,835	12	78	48,000	103,350	296,698	1,483,491	10.384.440
60	1.381	1,683	0	2,000	303,801	20	127	80,000	168,275	487,662	2,438,310	17.068.171
30	1.665	2.028	0	2,400	366,220	24	154	96,000	204,050	587,858	2,939,291	20.575.039
	1 723	2,100	0	2,500	379,127	25	159	100,000	210,675	608,577	3.042.885	21 300 195
15	1 865	2.272	0	2,700	410,273	27	172	108,000	227,900	658,572	3,292,861	23.050.025
10	1 964	2,393	0	2,800	432,063	28	181	112,000	239,825	693.549	3 467 747	24 274 220
	2 215	2 699	0	3,200	487,332	32	204	128,000	270.300	782.268	3 911 341	27 270 200
	2,210	3 165	0	3,700	571,408	37	239	148,000	316,675	917.227	4 586 136	22,373,365
0.3	2,557	3 545	0	4.200	640.070	42	268	168,000	355,100	1.027.444	5 137 210	32,102,954
0.03	2,303	3,340									0,107,213	35,900,532
LOW			0	0	0	0	0	0	0	0		
100				0	0	0	0	0	0	0		
60					0	0	Ō	0	0	0		0
	0			0		- o	0	0	0	0		0
25	0			1 200	184 835	12	78	48.000	103 350	296.600	1 402 401	0
15	840	1,024		1 900	290 318	19	122	78.000	181 850	466.010	1,483,491	10,384,440
10	1,320	1,608		1,000	202,510	26	145	104 000	1 10 805	621 740	2,330,082	16,310,575
3	1,789	2,180	ļ	2,000	503.045	22	100	122,000	210,023	031,745	3,158,724	22,111,067
0.3	2,291	2,791	<u>-</u>	3,300	503,845	20	211	152,000	218,010	808,934	4,044,671	28,312,699
0.03	2,655	3,235	0	3,800	304,031	95 1000 14	7 344	152,000	324,025	337,585	4,687,926	32,815,484
Unit Rates		76 lbs/11*3	Frem NACEN	andola car for	\$220m 3		tos/bex and	gondela sallear	load	disposal at LABIA	Costs for in-	Possible costs for
and Notes				plaatie liner	1	tailcar	4 hexes/truc			disposal facility.	existing LLW	disponal facilities for
				and cover	1	1	k load, or			\$ 10//L* 3; sail	disposal facility,	LLW, \$360/(1*3:
				1	1]	29,194 lbs			transport only	\$60/11" 3; wuck	truck transport only.
				1		1	beenvice				Wansport only.	

Table C.2.2. Calculated Costs and Other Parameters for Remediation of Contaminated Soil at the Reference Uranium Fuel Fabrication Plant (Unrestricted Land Use, Without Soil Washing) .

iب

4-

NUREG-1496

• • •

٦.

۰.

C.C-58

				· · · · · · · · · · · · · · · · · · ·				
	Totel Soll	Totel Soll	Remodiation	Costs				
Residuel Dose	Volume	@ #10/h*3	@ \$50/11*3	@ #350/h*3	Soll Weshing	Soll Excavation	Total Call	Totel
Aste	Disposed	Disposal Costs	Disposel Coste	Disposal Costs	Labor	Labor	Remediation Labor	Occupations
mrem/yr	m*3	\$		•	men-hr	men-hr	man-hr	0050
HIGH								person-men
100	1,789	1,158,739	4,191,303	23,143,646	0	2.898	2 999	
60	1,922	1,244,964	4,501,813	24,859,641	0	3.113	3 113	290
30	2,078	1,345,173	4,869,095	26,884,292	0	3,366	3 366	311
25	2,115	1,367,196	4,956;224 -	27,368,117	0	3,427	3 427	337
15	2,215	1,434,028	5,189,533	28,657,581	0	3,589	3 589	343
10	2,291	1,482,539	5,366,495	29,634,523	0	3.711	3 711	359
3	2,492	1,613,210	5,838,617	32,238,882	0	4.037	4.037	
0.3	2,817	1,821,074	6,601,300	36,450,436	0	4,564	4,037	404
0.03	3,105	2,007,274	7,276,882	40,184,652	0	5.032	5 033	455
MEDIUM								503
100	840	543,336	1,969,114	10,870,063	0	1.361	1 361	120
60	1,381	894,176	3,234,900	17,864,760	0	2.237	2 237	136
30	1,665	1,077,448	3,900,751	21,536,499	0	2,697	2 697	
25	1,723	1,116,054	4,037,664	22,294,975	0	2,792	2,007	270
15	1,865	1,207,518	4,369,280	24,128,444	0	3.021	3,021	2/9
10	1,964	1,269,871	4,601,157	25,407,639	0	3,182	3 192	
3	2.215	1,434,028	5,189,533	28,657,581	0	3,589	3 599	
0.3	2.597	1.679.295	6,084,588	33,601,405	0	4 208	5,005	359
0.03	2,909	1.883.355	6,816,101	37.639.413	0	4 712	4,208	421
0.00						4,713	4,/13	471
100			0	0				
100			0			0	0	0
00			0		0	0	0	0
30							0	0
20		EA2 228	1 969 114	10 970 043		0	0	0
15	840	543,330	2 002 150	17,670,063		1,361	1,361	136
10	1,320	1 150 720	4 101 202	17,072,001	<u> </u>	2,138	2,138	214
3	1,789	1,108,/39		23,143,040	<u> </u>	2,898	2,898	290
0.3	2,291	1,482,039		29,034,023		3,711	3,711	371
0.03	2,055	1,717,300	0,220,007	39,398,110	0	4,301	4,301	430
Unit Rates and Notes			•		0.17 min-hr pur m*3	1.52 mentr per m*3		0.1 mean per mi lv lebor
<u>.</u>	÷			•				

Table C.2.2. Calculated Costs and Other Parameters for Remediation of Contaminated Soil at the Reference Uranium Fuel Fabrication Plant (Unrestricted Land Use, Without Soil Washing)

Page 3 of 3

Table C.2.3. Calculated Costs and Other Parameters for Remediation of Contaminated Soil at the Reference Uranium Fuel Fabrication Plant (Restricted Land Use, With Soil Washing)

.

Provide Statements and statements							
Residuel Dose Rate	Contamin- ated Site Spil Area	Site Soil Depth	Site Sail Volume	Below- Building Soil Depth	Below- Building Soli Volume	Total Soil Volume Removed	Site Soil Excevellon Costs
		- G A		<u>cm</u>	- 14 3	ma	
	100.000	00	•				
	100,000	0.0		0.0		<u>0</u>	0
	100,000	0.0	0	0,0	0	0	0
	100,000	0.0		0.0		0	0
	100,000	10.0	1 000	10.0		0	0
10	100,000	14.2	1,000	10.8	48	1,058	248,163
10	100,000	19.2	1,310	19.2	03	1,3/9	324,098
	100,000	10.7	1,/34	18.7	83	1,817	427,001
0.3	100,000	23./	2,202	23./	106	2,308	542,387
0.03	100,000	27.4	2,049	21.4	122	2,6/1	627,774
MEDIUM 100	100 000	0.0	0				
60	100,000	0.0		0.0			
	100,000		0	0.0			0
	100,000	0.0	0	0,0			0
	100,000	0.0		0.0			0
15	100,000	0.0	0	0.0	0	0	0
	100,000	10.0	1 000	10.0		0	0
	100,000	10.8	1,008	10.8	48	1,056	248,163
0.3	100,000	20.4	1,898	20.4	91	1,989	467,439
0.03	100,000	- 24.3	2,312	24.9		2,423	569,376
LOW	100.000						
100	100,000	0.0	0	0.0	0	0	0
60	100,000	0.0		0,0 .		0	0
30	100,000	0.0		0.0		0	0
25	100,000	0.0	0	0.0		<u>0</u>	0
15	100,000	0.0		0.0		<u> </u>	<u> </u>
	100,000	-0.0		0.0	<u>v</u>		0
3	100,000	0.0	0	0.0	0	0	0
0.3	100,000	21.2	1,316	14.2	63	1,379	324,096
0.03	100,000	Diffunien	1,002	ZI.J Diffusier	20 40 100	2,077	488,158
Unit Hates and		model soil		medel seil	liege area		+∠J9/m J
Notes		prolite		prolite unad bolow buildings	(240,000 112)		

NUREG-1496

5

2.

Page 1 of 3

.

4.

						Soil	Soil	1	T			
				Soft	Solt	Transport	Transport	Soll	Soli		1 · · · ·	
	Totel Soil			Peckeging	Packaging	Loads,	Loads,	Trensport	Transport	Soll	l	
Residuel Dose	Volume	Totel Soll	Soll Washing	Coste,	Costs, 8-25	Gondola	Truck	Costs,	Costs.	Disposal Costa	Soll	Soil Disposal
Rate	Removed	Weight	Costs	Gondota Car	Boxee	Ċers	Loads	Rell	Truck	@ \$10/#*3		Costs (
mrem/yr	m*3	MT	· •	\$.	\$	I CHIS	/ Trucks	•			5	E-11/0664
HIGH												
100	0	0	0	0	0	0	0	0	0	0		
60	0	0	0	0	0	0	0	0	0	0		
30	0	0	0	0	0	0	0	0	0	0		
		0	0	0	0	0	0	0	0	0		
15	1.056	1,287	331,143	600	92,929	6	39	24,000	51.675	149,171	745.052	0
10	1 379	1.680	422,038	800	121,364	8	51	32,000	67.575	194,814	974 069	5,220,968
	1.817	2.214	545,219	1,100	159,898	11	67	44,000	88.775	256,670	1 292 245	6,818,476
03	2 308	2.812	683,339	1,400	203,106	-14	85	56,000	112.625	326 027	1 820 127	8,983,436
0.03	2.671	3,255	785,551	1,600	235,081	16	99	64,000	131,175	377.353	1 896 747	11,410,961
AEDILIAA		<u>مر من التحم</u>									_1,000,707	13,207,372
100	0	0	0	0	0	• 0	0	0	0	0	0	
60	· 0	0	0	· 0	0	0	0	0	0	0		
	0	0	0	0	0	· 0 ·	0	0	0	0		0
			0	0	0	0	0	0	0	0		
		0	0	0	0	0	0	0	0	0		0
	0	0	0	0	0	0	0	0	0			
	1.056	1 287	331,143	600	92,929	6	39	24,000	51.675	149 171	745 050	0
	1,030	2 4 2 4	593,624	1,200	175,041	. 12	74	48.000	98.050	280 977	745,853	5,220,968
0.3	1,505	2,952	715.647	1,400	213,213	14	90	56,000	119.250	342 251	1,404,883	9,834,181
0.03	2,923	210.02								072,201	1,711,255	11,978,784
		0	0	0	0	0	0	0	0	0		
100	0	0		0	0	0.	0	0	0	0		0'
60	0		0	0	0	0	0	0	0	0		0
			0	0	0	0	0	0	0	0		0
25			0	0	0	0	0	0	0	0		0
15				0	0	0.	0	0	<u> </u>			0
10	0		0	0	0	0	0	0	0	0	0	0
3	0	1 890	422.038	800	121.364	8	51	32,000	67 575	104.014	0	0
0.3	1,379	1,080	618.425	1,200	182,799	12	77	48,000	102.025	293.431	3/4,068	6,818,476
0.03	2,077	7.001 7.001	Frem RACER	\$100 pm	\$220/m*3	\$5 tons of	7,298	\$4,000 per	\$1,326 per truck	Costs for built	1,407,103	10,270,070
Unit Rates		12.29.10	Model	gondole cer for		soil per	for and	gondols railcar	lead	disposal at LARW	compect disposal as	Foesible coets for
and Notes		+		plantic liner		railcar	4 bexes/truc			disposal facility,	existing LLW	disposal facilities for
				and cover			× 1080, 61			\$10/ft" 3; reil	disposal lacility.	LLW, \$350/11'3:
	,						eoil/eed			transport only	\$50/11" 3; truck	truck transport only.
]	· ·						1		Temport only.	

Table C.2.3. Calculated Costs and Other Parameters for Remediation of Contaminated Soil at the Reference Uranium Fuel Fabrication Plant (Restricted Land Use, With Soil Washing)

Page 2 of 3

			i					
	Total Soli	Total Soll	Remediation	Costa				Total
Barkhusi Dosa	Volume	@ \$10/11-3	@ v50/lt*3	@ \$360/11*3	Soil Washing	Soil Excavation	Total Soli	Occupational
Rala	Disposed	Disposal Costs	Disposal Costs	Disposal Costs	Labor	Labor	Remediation Labor	Dose
TD/ADD/VI	m*3		•	\$	man-hr	man-hr	man-hr	Defs00-Inviern
HIGH					· ·			
100	0	0	. 0	0	0	0	0	0
60		0	0	0	0	0	0	
		0	0	0	0	0	0	
		0	0	0	0	0	0	0
	422	753.077	1.469.764	5.944.879	180	1.711	1,890	199
10	552	973,748	1,909,141	7.753.549	234	2.234	2,469	247
10	727	1,273,990	2.504.242	10.204.329	309	2.944	3,252	125
3		1 609 154	3.171.595	12,952,419	392	3.739	4,131	412
0.3	1 049	1.856.278	3.666.349	14,986,953	454	4.328	4,782	413
0.03		1,000,000						
MEDIUM	0	0	0	0	0	0	0	
100		0	0	0	0	0	0	<u> </u>
		0	0	0	0	0	0	
30		0	0	0	0	0	0	
25		0	0	0	0	0	0	
10		0	0	0	0	0	0	
	422	753.077	1.469.764	5,944,879	180	1.711	1.890	199
3	798	1.391.240	2.739.037	11,168,335	338	3.222	3.560	356
0.3	0.69	1.684.675	3.328.742	13,596,271	412	3.925	4.337	434
0.03								
LOW			0	0	0	0	0	
100		0	0	0	0	0	0	
60	<u>_</u>		0	0	<u> </u>	0		
		0	0	0	0	0		
25		0	0	0	0	0		
15		0		0	0	0		
10			0	0	0			<u>-</u>
3	0	010 740	1 909 141	7 762 649	224	2 224	2 480	
0.3	552	9/3/48	2 959 561	11 661 479	353	2,234	2,469	247
0.03	831	1,999,214	2,000,001	11,001,478	0.17 meety	3,303	3,/18	372
Unit Rates and	Dispesal				m'3	m°3	l	0.1 miam per man
Notes	versione in 40%							
	vel.; remaining							1
	vol. is released				!		1	1
1								1

Table C.2.3. Calculated Costs and Other Parameters for Remediation of Contaminated Soil at the Reference Uranium Fuel Fabrication Plant (Restricted Land Use, With Soil Washing)

. . .

.

· · ·

Page 3 of 3

.

4

8.

¥

t-

Table C.2.4. Calculated Costs and Other Parameters for Remediation of Contaminated Soil at the Reference Uranium Fuel Fabrication Plant (Restricted Land Use, Without Soil Washing)

		· ·	· .				
	Contamin-	Ste		Below-	Below-	Totel Soll	Site Soll
Residuel Dase	ated Site	Soft	Site Soft	Building	Building Soll	Votume	Excavation
Rete	Soll Area	Jepth	Volume	Soll Depth	Volume	Removed	Costs
- mom/yr	ft*2	cm.	m*3	cm	m*3	m*3	
HIGH							
100	100,000	0.0	0	0.0	0	0	0
60	100,000	0.0	0	0.0	. 0	0	0
30	100,000	0.0	0	0.0	0	0	0
25	100,000	0.0	0	0,0	0	0	0
15	100,000	10.8	1,008	10,8	48	1,056	248,163
10	100,000	14.2	1,318	14.2	63	1,379	324,096
3	100,000	18.7	1,734	18.7	83	1,817	427,001
0.3	100,000	23.7	2,202	23.7	106	2,308	542,387
0.03	100,000	27.4	2,549	27.4	122	2,671	627,774
MEDIUM							
100	100,000	0.0	0 ·	0.0	0	0	0
60	100,000	0.0	0	0.0	0	0	0
30	100,000	<u> </u>	0	0.0	0	0	0
25	100,000	0.0	0	0.0	0	0	0
- 15	100,000	0.0	0	0,0	0	0	0
10	100,000	0.0	. 0	0,0	0	0	0
3	100,000	10.8	1,008	10.8	48	1,056	248,163
0.3	100,000	20.4	1,898	20.4	91	1,989	467,439
0,03	100,000	24.9	2,312	24.9	111	2,423	569,376
LOW							
100	100,000	0,0	0	0.0	0	0	0
60	100,000	0.0	0	0.0	0	0	0
30	100,000	0.0	0	0.0	0	0	0
25	100,000	0.0	0	0.0	0	0	0
15	100.000	0.0	0	0.0	0	0	0
10	100,000	0.0	0	0.0	0	0	· 0
	100.000	0.0	0	0.0	0	0	0
0.3	100.000	14.2	1.316	14.2	63	1.379	324.096
0.03	100,000	21.3	1,982	21.3	95	2,077	488,158
Linit Rates and		Diffueion		Diffuelon	2% of building		\$235/m 3
Mater		medel soll		model soit	floor area		
HOIQA		pretile		profile used	(240,000 ft2)		
				building=			-
· ·							
1							0

<u>0</u>
ဂု
හ

NUREG-1496

Page 1 of 3

Table C.2.4.	Calculated Costs and Otl	her Parameters for Remediation of (Contaminated Soil at the Reference Uraniun	a Fuel Fabrication Plant
	(Restricted Land Use, Wi	thout Soil Washing)		

.

	·		1	1		Soil	I Soil	r				
ł	i	l		Soll	Soli	Transport	Transport	Soli	: Soli	1		
1	Total Sol			Peckeging	Packaging	Loads,	Loads,	Transport	Transport	Soll		G-1 01
Residual Dose	Votume	Total Soil	Soll Weehing	Costs,	Coste, B-25	Gondole	Truck	Costs,	Costs,	Disposal Costs	Disposal Costs	Conto @
Bate	Removed	Weight	Costs	Gondola Car	Boxes	Care	Loade	Rah	Truck	@ \$10/11-3	@ \$50/ft*3	\$360/#*3
mrem/yr	m*3	MT	•	•	1	t cuis	# Trucks	\$		\$		1
HIGH												
100	0	0	0	0	0	0	0	0	0	0	0	
60	0	0	0	0	0.	0	0	0	0	0	0	0
30	0	0	0	0	0	0	0	0	0	0	0	
25	0	0	0	0	0	0	0	0	0	0	0	
15	1.056	1.287	0	1,500	232,323	15	98	60,000	129,850	372.926	1.864.631	12 052 420
10	1 379	1.680	0	2,000	303,409	20	127	80,000	168,275	487.034	2,435 170	17.048.101
	1 817	2.214	0	2,600	399,746	26	168	104,000	222,600	641.674	3 208 370	22 459 500
0.3	2.308	2.812	0	3,300	507,766	33	213	132,000	282,225	815,069	4.075.343	28 527 404
0.03	2.671	3.255	0	3,800	587,703	38	246	152,000	325,950	943,384	4.716.919	33 010 430
ALEON IM												03,018,430
100	0	0	0	0	0	0	0	0	0	0	0	
	0	0	0	0	0	0	0	· 0	0	0	0	
		0	0	0	0	0	0	0	0	0	0	
	0	0	0	0	0	0	0	0	0	0	0	0
15		0	o	0	0	0	0	0	0	0		
10		0	0	0	0	0	0	0	0	0	0	<u> </u>
10	1.056	1 297	0	1.500	232.323	15	98	60.000	129,850	372 928	1 004 021	0
	1,050	2 424	0	2,900	437,602	29	183	116.000	242.475	702 441	1,004,031	13,052,420
0.3	1,303	2 962	0	3,500	533,033	35	223	140.000	295.475	855 627	<u> </u>	24,585,452
0.03	2,423	2,352					[4,270,137	29,946,961
LOW			0	0	0	0	0	0	0		<u> </u>	
100		0	0	0	0	0	0	0	0	0		0
60		0			0	0	0				0	0
30	0	0			0	0	0				0	0
25	0	0		0	0					0	0	0
15		0			0						0	0
10	0	0		- 0			0				0	0
3		0		2 000	203 409	20	127	90,000	160 275	407.004	0	0
0.3	1,379	1,680		2,000	468 999	30	192	120,000	254 400	487,034	2,435,170	17,048,191
0.03	2,077	2,531	Eine BACER	\$100 per	\$220/m*3	95 tons of	7.294	\$4.000 pm	\$1.326 par Inut	733,870	3,667,882	25,675,178
Unit Rates		76 Ibe/IL'3	Model	gondole car for		teq fiee	lbs/bex and	gondola railcar	lead	disposal at LARW	Costs for in-	Possible costs for
and Notes				plastic liner		teilcar	4 bexes/true		i	disposal facility,	existing LLW	discosal facilities for
				and cover			A load, or			\$10/ft*3; rail	disposal facility,	LLW, \$360/(1"3:
		1	1				29,184 ibe			transport only	\$50/It"3; truck	truck transport only.
											Wanaport enly.	
1	1	•		L	Law to the second second second second second second second second second second second second second second s	·	the second second second second second second second second second second second second second second second s		· · · · · · · · · · · · · · · · · · ·			

¥.

£4

.

٠

ę.

			-		· · · ·			
	W	Total Sol	Demodiation	Conta	1			
Oraldual Daga	10141 2011	@ \$10/#1-3	0 150/h*3	@ 1150/#*1		Call Exercision	·	Total
Heridum Liota	Dispoted	Disposal Costs	Disposal Costa	Disposal Costs	Labor	t abor	Total Soll Remodiation total	Occupational
intern/vt	m*3	•	\$	\$	· men-ler	men-hr	men-hr	Dose
LICH							1101711	berson-miem
100	0	0	. 0	0	0	0		
80		0	0	0	0	0		0
		0	0	0	0	0		
		0	0	0	0	0		
15	1.056	682,590	2.474.968	13.662.757	0	1 711	1 711	
10	1 379	893,130	3.230.951	17.841.971	0	2.234	2 224	
	1 817	1,175,275	4.257.717	23.507.936	0	2 944	2,207	223
	2 308	1.492.755	5.407.721	29.859.782	0	3,739	2,044	294
0.03	2 671	1.726.958	6,258,346	34,559,857	0	4.328	4 128	3/4
MEDIUM							4,520	433
100	0	0	0	0	0	0	0	
60	0	0	0	0	:0	0	0	
30	0	. 0	0	0	0	0	0	
25	0	0	0	0	0	0	0	
15	0	0	0	0	0	0	0	
10	0	0	0	0	. 0	0	0	
3	1.056	682,590	2,474,968	13,662,757	0	1.711	1.711	171
0.3	1,989	1,288,780	4,659,724	25,732,968	0	3,222	3.222	322
0.03	2.423	1,568,504	5,675,022	31,344,846	· 0 · ·	3,925	3.925	393
IOW								
100	0	0	0	0	0	0	0	
60	0	0	0	. 0	· 0	0	0	
30	0	0	0	0	0	0	0	0
25	0	0	0	0	0	0	0	0
15	0	0	0	0	0	0	0	0
10	0	0	0	0	0	0	0	0
3	0	0	0	0	0	0	0	
0.3	1.379	893,130	3,230,951	17,841,971	0	2,234	2.234	222
0.03	2,077	1,344,734	4,867,439	26,874,732	0	3,365	3,365	337
Linit Rates and		-			0,17 menter per	1.62 menter per		0.1 mrem per mar
Notes					- ⁻ 3	m*3		hr lebor
110103	· ·					1.		
-		· ·	•		1 · · ·			ĺ
					1			1
	ł		L	I	I	L		1

Table C.2.4. Calculated Costs and Other Parameters for Remediation of Contaminated Soil at the Reference Uranium Fuel Fabrication Plant (Restricted Land Use, Without Soil Washing)

.

Page 3 of 3

	Contamin-	Site		Below-	Relowe	Total Soll	i cha can
Residual Dose	atad Site	Soll	Site Soil	Building	Building Soli	Volume	Freewolles
Rate	Soil Area	Depth	Volume	Soil Depth	Voiume	Removed	Costs
twem/yr	ft*2	ćm	m*3	cm	/m*3	m*3	•
HIGH							
100	100,000	44.2	4,106	18.4	82	4,188	984.207
60	100,000	54.9	5,096	19.7	88	5,185	1,218,359
30	100,000	92.4	8,581	21.3	95	8,676	2,038,911
25	100,000	100.6	9,344	21.7	97	9,441	2,218,582
15	100,000	121.9	11,325	22.8	101	11,428	2.685.102
10	100,000	141.9	13,185	23.5	105	13,290	3,123,158
3	100,000	198,1	18,403	25.6	114	18,518	4.351.642
0.3	100,000	300.1	27,880	28.9	129	28,009	6,582,230
0.03	100,000	404.0	37,530	31.9	142	37,672	8,853,017
MEDIUM							
100	100,000	0.0	0	8.6	38	38	9,043
60	100,000	0.0	0	14.2	63 [.]	63	14,883
30	100,000	19.8	1,837	17.1	76	1,913	449,495
25	100,000	28.0	2,601	17.7	79	2,680	629.684
15	100,000	51.0	4,741	19,2	85	4,827	1.134.290
10	100,000	69.3	6,441	20.2	90	6,531	1.534.674
3	100,000	123.6	11,486	22.8	101	11.588	2.723.100
0.3	100,000	227.5	21,138	26.7	119	21.255	4,994,893
0.03	100,000	331.4	30,786	29.9	133	30,919	7.265.932
LOW							
100	100,000	0.0	0	0.0	0	0	0
60	100,000	0.0	0	0.0	0	0	0
30	100,000	0.0	0	0.0	0	0	0
25	100,000	0.0	0	0.0	0	· 0	0
15	100,000	0.0	0	8,6	38	38	9.043
10	100.000	0.0	0	13.6	60	60	14.204
3	100.000	38.1	3,536	18.4	82	3.618	850.129
0.3	100,000	141.9	13,185	23.5	105	13,290	3,123,209
0.03	100,000	245.8	22,835	27.3	122	22,957	5,394,810
Unit Rates and Notes		Ventren adjusted soil profile		Diffusion modal aoil profile used below buildinge	2% of building floor area (240,000 (12)		\$235/m*3

Table C.2.5. Calculated Costs and Other Parameters for Remediation of Contaminated Soil at the Reference Uranium Fuel Fabrication Plant

.

(Unrestricted Land Use, With Soll Washing, Mixing/Landfilling)

FAB-WIUV.XLS 11/23/98

....

NUREG-1496

•

v

11

Page 1 of 3

4

¥.

						Sol	Soil					
1 24	•	1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 -		- Soli	- Soll	Trensport	Transport	Soli	Sell			
1 1	Total Soll			Peckaging	Packaging	Loeds,	Loads,	Transport	Transport `	Soll	508	Rell Diseased
Residual	_Volume	Totel Soll	Soll Washing	Costs,	Costs, 8-25	Gondola	Truck	Costs,	Costs,	Disposal Costs	Disposal Costs	Costo D
Dose Rate	Removed	Weight	Costs	Gondola Car	Boxes	Cers	Loads	<u>Reil</u>	Truck	@ #10/m*3	@ #50/h*3	\$350/#*3
mrem/yr	m*3	MT	•	· · · · · ·	•	/ cars	/ Trucks		•			· •
HIGH	· .											
100	4,188	5,103	1,212,215	2,400	368,554	24	165	96,000	205,375	591,605	2.958.024	20 708 185
60	5,185	6,317	1,492,503	3,000	456,236	30	191	120,000	253,075	732,353	3.661.764	25 632 340
30	8,676	10,572	1,908,044	5,000	763,507	50	320	200,000	424,000	1,225,585	6.127.926	42 895 481
25	9,441	11,504	2,027,759	5,400	830,788	54	348	216,000	461,100	1,333,585	6.667.924	48 878 ABB
15	11.426	13,922	2,338,602	6,500	1,005,485	65	421	260,000	557,825	1,614.009	8.070.046	56 490 324
10	13.290	16,194	2,630,480	7,600	1,169,523	78	489	304,000	847,925	1,877,324	9,386,619	65 706 330
3	18.518	22,564	3,449,020	10,500	1,629,551	105	682	420,000	903,650	2,615,762	13.078.812	91 551 697
0.3	28.009	34,129	4,935,264	15,900	2,464,835	159	1,031	636,000	1,366,075	3,956,564	19.782.821	138 479 748
0.03	37.672	45,904	6,448,292	21,300	3,315,172	213	1,386	852,000	1,836,450	5,321,530	26.607.648	186 253 533
MEDIUM						· · ·						100,200,000
100	38	47	44,907	100	3,386	- 1	2	4,000	2,650	5,436	27.178	190 249
60	63	77	51,874	100	5,566	1	3	4,000	3,975	8,934	44.671	312 699
30	1,913	2,331	572,145	1,100	168,322	11	71	44,000	94,075	270,190	1.350.952	9 456 686
25	2,680	3,265	787,838	1,600	235,797	18	99	64,000	131,175	378,502	1.892.509	13 247 563
15	4,827	5,881	1,391,870	2,800	424,755	28	178	112,000	235,850	681,819	3,409,096	23,863,672
10	6,531	7,957	1,871,145	3,700	574,687		241	148,000	319,325	922,490	4,612,448	32.287.134
3	11,588	14,119	2,363,920	6,600	1,019,714	66	427	264,000	565,775	1,636,850	8,184,248	57.289.737
0.3	21,255	25,899	3,877,619	12,100	1,870,428	121	782	484,000	1,036,150	3,002,420	15,012,098	105.084 687
0.03	30,919	37,674	5,390,816	17,500	2,720,860	175	1,138	700,000	1,507,850	4,367,536	21,837,682	152,863,771
IOW												
100	0	0	0	0	0	0	0	0	0	0	0	0
60	0	0	0	0	0	<u> </u>	0	0	0	0	0	0
30	0	0	0	0	0	0	0	<u> </u>	0	0	0	0
25	0	0	0	0	0	0	0	0	0	0	0	0
15	38	47	44,907	100	3,386	1	2	4,000	2,650	5,436	27,178	190,249
10	60	74	51,085	100	5,319	1	3	4,000	3,975	8,538	42,689	298.820 ·
3	-3.618	4,408	1,051,718	2,100	318,346		134	84,000	177,550	511,011	2,555,053	17.885.373
0.3	13,290	16,194	2,630,514	7,600	1,169,542	76	489	304,000	647,925	1,877,354	9,386,772	65.707.401
0.03	22,957	27,972	4,144,084	13,000	2,020,184	130	845	520,000	1,119,625	3,242,809	16,214,044	113,498,307
Unit Rates		78 lbs/lt*3	Frem RACER	\$100 per	\$220/m*3	To tens of	7,296 Belben and	\$4,000 per	\$1,326 per truck	Ceets for bulk	Costs for in-	Possible costs for
and Notes			Medel	alestic liver		reilcar	4 berestruc	सुन्तन्त्रभाष रक्तिटका	, 500 L	disposed facility	the leaders backwood	future in-compact
	· · · · ·			and cover	<i></i>	1 · ·	k load, or		}	\$10/11"3; rail		disposed facilities for
							29,184 lbe		s .	transport only	\$50/11"3; truck	truck transport and
1				· ·			907/1945				transport only.	

Table C.2.5. Calculated Costs and Other Parameters for Remediation of Contaminated Soil at the Reference Uranium Fuel Fabrication Plant FAB-WIUV.XLS (Unrestricted Land Use, With Soil Washing, Mixing/Landfilling)

11/23/96

C.C-67

NUREG-1496

Page 2 of 3

Fable C.2.5.	Calculated Costs and	Other Parameters for	Remediation of	Contaminated Soil	at the Reference Uranium	Fuel Fabrication Plant
(Unrestricted Land Use	, With Soil Washing, N	/lixing/Landfilli	ng)		

٩.

8+

FAB-WIUV.XLS 11/23/96

- -

	1	1		1				And in case of the local division of the loc
						1		}
1	Total Soil	Total Soll	Remediation	Costs	_		1	Total
Residual Dose	Volume	(@ \$10/#°3	@ \$60/11*3	@ \$350/11*3	Soil Washing	Soil Excevation	Total Soil	Occupational
Rate	Disposed	Disposal Costs	Disposal Costs	Disposal Costs	Labor	Labor	Remediation Labor	Dose
mrom/yr	m*3				wi-nam	man-hr	nian-hr	person-mrem
HIGH								
100	1,675	2,886,427	5,728,375	23,476,516	712	6,785	7,497	750
60	2,074	3,566,215	7,081,937	29,052,522	881	8,399	9,280	928
30	3,470	6,377,641	11,262,388	48,029,943	1,475	14,055	15,530	1,553
25	<u>3,776</u>	5,801,326	12,208,152	52,213,695	1,605	15,294	16,899	1,690
15	4,570	6,904,214	14,657,061	63,077,339	1,942	18,510	20,452	2,045
10	5,316	7,942,581	16,957,704	73,277,416	2,259	21,530	23,789	2,379
3	7,407	10,848,924	23,412,675	101,885,549	3,148	29,999	33,147	3,315
0.3	11,204	16,125,957	35,131,224	153,828,149	4,762	45,375	50,137	5,01.
0.03	15,069	21,496,138	47,060,579	206,706,464	6,404	61,029	67,434	6,74.
MEDIUM				N				
100	15	63,486	87,165	250,236		62	69	7
60	<u>25</u> ·	79,772	120,950	388,978	11	102	113	11
30	765	1,336,930	2,634,988	10,740,702	325	3,099	3,424	342
25	1,072	1,861,624	3,677,002	15,032,058	456	4,341	4,796	480
15	1,931	3,322,779	6,595,861	27,050,437	821	7,819	8,640	864
10	2,612	4,480,009	8,912,279	36,586,965	1,110	10,579	11,690	1,169
3	4,635	6,994,470	14,856,758	63,962,246	1,970	18,772	20,742	2,074
0.3	8,502	12,371,032	26,791,188	116,863,777	3,613	34,433	38,046	3,805
0.03	12,368	17,741,784	38,723,139	169,749,229	5,256	50,089	55,345	5,534
LOW		•					• • •	
100	0	0	0	0	0	0	0	0
60	· 0	0	0	0	0	0	0	0
30	0	0	0	0	0	0	0	0
25	0	0	0	0	0	0	0	0
15	15	63,486	87,165	250,236	7	62	69	7
10	24	77,926	117,270	373,402	10	98	108	11
3	1,447	2,498,958	4,952,798	20,283,116	615	5,860	6,475	648
0.3	5,316	7,942,677	16,957,961	73,278,591	2,259	21,530	23,790	2.379
0.03	9,183	13,314,703	28,892,747	126,177,010	3,903	37,190	41,092	4,109
Linit Rates and	Disposel				0.17 manter par	1.02 man-ty per		0.1 mem per man
Notes	volume le 40%		·		m'3	m*3``		hr labór
	t of total boil							
	vol. is released							
	1							t l

Page 3 of 3

4

3

1							
	Contamin-	Site		Below-	Below-	Total Soli	Site Solt
Basidual Dasa	ated She	Soll	Site Soll	Building	Building Soli	Volume	Excevetion
Rate	Soll Ares	Depth	Volume	Soll Depth	Volume	Removed	Coste
mem/yr	ft*2	om	m*3	CM)	m*3	m*3	•
HIGH					· · · · ·		· · · · · · · · · · · · · · · · · · ·
100	100.000	44.2	4,106	18.4	82	4,188	984,207
60	100.000	54.9	5,096	19.7	88	5,185	1,218,359
30	100.000	92.4	8,581	21.3	95	8,676	2,038,911
	100.000	100.6	9,344	21.7	97	9,441	2,218,582
15	100.000	121.9	11,325	22.8	101	11,426	2,685,102
10	100.000	141.9	13,185	23.5	105	13,290	3,123,158
3	100,000	198.1	18,403	25.6	114	18,518	4,351,642
0.3	100,000	300.1	27,880	28.9	129	28,009	6,582,230
0.03	100.000	404.0	37,530	31.9	142	37,672	8,853,017
MEDILIM							
100	100.000	0.0	0	8,6	38	38	9,043
60	100,000	0.0	0	14.2	63	63	14,863
30	100,000	19.8	1,837	17.1	76	1,913	449,495
25	100,000	28.0	2,601	17.7	79	2,580	629,684
15	100,000	51.0	4,741	19.2	85	4,827	1,134,290
10	100,000	69.3	6,441	20.2	90	6,531	1,534,674
3	100,000	123.6	11,486	22.8	101	11,588	2,723,100
0.3	100,000	227.5	21,136	26.7	119	21,255	4,994,893
0.03	100.000	331.4	30,786	29.9	133	30,919	7,265,932
1 OW							
100	100.000	0.0	0	0.0	0	0	0
60	100.000	0.0	0	0.0	0	0	0
30	100.000	0.0	0	0,0	0	0	0
	100.000	0.0	0	0,0	0	0	0
19	100.000	0.0	0	8.6	38	38	9,043
1	100.000	0.0	0	13.6	60	60	14,204
	100.000	39.1	3,536	18,4	82	3,618	850,129
	100.000	141.9	13,185	23.5	105	13,290	3,123,209
0.0	100.000	245.8	22,835	27.3	122	22,957	5,394,810
Utalia Datasa gan		Ventron		Ditfusion	2% of building		\$236/m*3
UMI NETER BIN	'l ·	adjusted		medel seil	for area		
1401ê#		soil profile	'	helow	1240,000 12	1	
			1 · ·	buildings			
1.1	1.					[
	1	1	1	1			1

. .

Table C.2.6. Calculated Costs and Other Parameters for Remediation of Contaminated Soil at the Reference Uranium Fuel Fabrication Plant (Unrestricted Land Use, Without Soil Washing, Mixing/Landfilling)

C.C-69

.

NUREG-1496

Page 1 of 3

<u>Table C.2.6</u> .	Calculated Costs and Other Parameters for Remed	iation of Contaminated Soil at the Reference Uranium Fuel Fabrication Plant
(Un	restricted Land Use, Without Soil Washing, Mixing	Landfilling)

						Soil	Sol		T			_
1				Soil	Soil	Transport	Transport	Soli	Soil	[
	Total Soil			Packaging	Packaging	Loads,	Loads,	Transport	Transport	Soli	Ball	Rall Discout
Residual	Volume	Total Soil	Soil Washing	Costs,	Costs, B-25	Gondola	Truck	Costs,	Costs,	Disposal Costa	Disposal Costs	Sou Dupora
Dose Rate	Removed	Weight	Costs	Gondola Car	Bixes	Cars	Loads	Flaii	Truck	@ \$10/#*3	@ \$50/11.3	4350/612
miem/yr	m*3	MT			•	Ø DATE	# Trucks	\$				1000/11 5
HIGH												
100	4,188	5,103	0	6,000	921,385	60	386	240,000	511,450	1.479.012	7.395.059	51 785 412
60	5.185	6,317	0	7,400	1,140,591	74	477	298,000	632,025	1.830.882	9 154 410	84,000,071
30	8.678	10,572	0	12,300	1,908,768	123	798	492,000	1,057,350	3,063,983	16.319.815	107 239 702
25	9,441	11,504	0	13,400	2,076,970	134	869	536,000	1,151,425	3,333,962	16,669,809	118 899 664
15	11.426	13,922	0	16,200	2,513,713	162	1,051	648,000	1,392,575	4.035.023	20,175 116	141 225 011
10	13.290	16,194	0	18,800	2,923,808	188	1,223	752,000	1,620,475	4,693,309	23,468,548	164 265 024
3	18.518	22.564	0	26,200	4,073,877	262	1,704	1,048,000	2,257,800	6.539,406	32 697 031	229 970 210
0.3	28.009	34,129	0	39,600	6,162,087	396	2,576	1,584,000	3,413,200	9.891.410	49 457 052	246 100 205
0.03	37 672	45,904	0	53,300	8,287,931	533	3,465	2,132,000	4,591,125	13.303.824	88 519 110	465 622 020
MEDILINA												400,003,832
100	38	47	0	100	8,466	1	4	4,000	5.300	13,589	67.948	475 000
60	63	77	0	100	· 13,915	1	6	4,000	7,950	22.336	111 879	4/5,023
20	1 913	2.331	0	2.800	420,804	28	176	112,000	233,200	675 478	2 277 201	781,748
30	2 690	3 26.5	0	3.800	589,492	38	247	152,000	327.275	946 254	4 721 270	23,641,665
	4 997	5.861	0	6,900	1.061.888	69	444	276.000	588.300	1 704 549	9 522 7/2	33,118,907
13	9,027	7 95 7	0	9,300	1,436.717	93	601	372,000	796.325	7 306 224	11 521 110	59,659,180
	0,001	14 1 19	0	16.400	2.549.285	164	1.066	656.000	1,412,450	4 002 124	11,531,119	80,717,836
3	11,580	14,119		30 100	4 676 070	. 301	1 955	1 204 000	2 590 276	7,032,124	20,460,620	143,224,343
0.3	21,255	25,673	0	43 700	6 802 149	437	2 844	1 748 000	3 789 200	7,500,049	37,530,245	262,711,717
0.03	30,919	37,074			0,002,140		2,044	1,740,000	3,700,300	10,918,841	54,594,204	382,159,429
LOW							0					
100	0									0	0	0
60		0			0				0	0	0	0
30	0	0		<u> </u>					0	0	0	0
25	0	0		0	0 488				0	0	0	0
15	38	47	0	100	8,400			4,000	5,300	13,589	67,946	475,623
10	60	74	0	100	13,297		0	4,000	7,950	21,344	106,721	747,049
3	3,618	4,408	0	5,200	/95,865	52	333	208,000	441,225	1,277,527	6,387,633	44,713,431
0.3	13,290	16,194	0	18,800	2,923,855	188	1,223	752,000	1,620,475	4,693,388	23,466,929	164,268,504
0.03	22,957	27,972	0	32,500	5,050,460	325	2,112	1,300,000	2,798,400	8,107,022	40,535,109	283,745,766
Unit Rates		70 ibs/it*3	From RACER	\$100 per	\$220/m`J	40 1006 ôf 80il 54	7,296 Ibs/bes and	54,000 per	F1,326 per truck	Costs for buik	Costs for in-	Possible cests for
and Notes			Ant deside	pisetis lines		reilcar	4 boxes/truc		~~~~	dispesal facility	compect disposal at	future in compact
			*	and cover			k load, or			\$ 10/11" 3; reil	dispesal facility.	LIW \$350/1*2
							29,184 lbs			transport only	660/11" 3; truck	truck transport only.
				l			soillese				transport only,	
				1	1 1							

¢

\$1

4.

.

		1 1						
	Total Sol	Total Soll	Remediation	Costs	· · ·		• •	Tank
Residual Dose	Volume	@ #10/ft-3	@ \$50/h*3	@ \$350/11-3	Soll Washing	Soll Excevation	Total Soll	16701 Occupational
Bate	Disposed	Disposal Costs	Disposul Costa	Disposal Costs	Labor	Labor	Remediation Labor	Does
mrem/yr	m*3	•	+	•	men-hr	man-hr	men-hr	perten-mem
HIGH		·						
100	4,188	2,709,219	9,812,101	54,182,456	0	6,785	6,785	678
60	5,185	3,352,641	12,145,385	67,071,846	0	8,399	8,399	840
30	8,676	5,607,174	20,324,844	112,243,731	0.	14,055	14,055	1.406
25	3,441	6,101,944	22,116,786	122,135,641	0	15,294	15,294	1.529
15	1,426	7,384,325	26,786,506	147,817,201	0	18,510	18,510	1.851
10	13,290	8,587,267	31,133,987	171,933,265	0	21,530	21,530	2.153
3	18,518	11,965,248	43,380,350	239,562,537	0	29,999	29,999	3.000
0.3	28,009	18,097,240	65,614,569	362,356,882	0	45,375	45,375	4,538
0.03	37,672	24,342,140	88,251,191	487,365,904	0	61,029	61,029	6,103
MEDIUM								
100	38	26,732	90,755	498,432	0	62	62	6
60	63	41,299	148,406	818,476	0	102	102	10
30	1,913	1,239,771	4,48 ,879	24,745,164	0	3,099	3,099	310
25	2,680	1,731,739	6,27/,723	34,665,358	0	4,341	4,341	434
15	4,827	3,121,738	11,307,218	62,443,658	0	7,819	7,819	782
10	6,531	4,222,198	15,298,835	84,485,552	0	10,579	10,579	1.058
3	11,588	7,487,624	27,145,456	149,909,178	0	18,772	18,772	1.877
0.3	21,255	13,735,042	49,791,584	274,973,056	0	34,433	34,433	3,443
0.03	30,919	19,976,473	72,430,585	399,995,810	0	50,089	50,089	5,009
IOW								
100	0	0	. 0	0	0	0	0	0
60	0	0	0	0	0	0	0	0
30	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	0	0
15	38	26,732	90,755	498,432	0	62	62	6
10	60	39,648	142,172	782,500	0	98	98	10
3	3,618	2,340,855	8,474,852	48,800,650	0	5,860	5,860	586
0.3	13,290	8,587,395	31,134,408	171,936,043	0	21,530	21,530	2,153
0.03	22,957	14,834,332	53,778,780	296,989,437	0	37,190	37,190	3,719
Unit Retes and					0.17 menter per	1.62 menter per		0.1 mem per man
Notes					_ m 3	m_î		by labor
1				• •				
	· ·				1		1	
				I	1			

Table C.2.6. Calculated Costs and Other Parameters for Remediation of Contaminated Soil at the Reference Uranium Fuel Fabrication Plant (Unrestricted Land Use, Without Soil Washing, Mixing/Landfilling)

• • •

Page 3 of 3

	Contemin	Sh-		Batan	Baterra	T	6 14 6 11
Redduct Date	contemm*	SAU SAU	Cha Call	Building	DeiGw-	Jolai Soli	Site Soil
Residual Doce	Soll Area	Denth	Volume	Soll Death	Volume	Permetted	Excevation
	ft*2	em	m°3	Crie	m*3	m*3	
100	100 000	0.0	0	0.0	0	0	
60	100,000	-0.0	0	0.0			
	100,000	0.0		0.0			
	100,000	0.0	0	0.0	0		0
15	100,000	0.0		10.8	48	48	11 366
10	100,000	0.0	0	14.2	63	63	14 844
	100,000	42.7	3.963	18.7	83	4 047	950 944
03	100,000	148.5	13.613	23.7	108	13,719	3 223 909
0.03	100.000	250.4	23.263	27.4	122	23.385	5 495 499
							_0,400,400
100	100.000	0.0	0	0.0	0	0	0
60	100.000	0.0	0	0.0	0	0	0
30	100.000	0.0	0	0.0	0	0	0
25	100.000	0.0	0	0.0	0	0	0
15	100.000	0.0	0	0,0	0	0	0
10	100.000	0.0	0	0,0	0	0	0
3	100.000	0.0	0	10.8	48	48	11.366
0.3	100.000	73.9	6.868	20.4	91	6,959	1.635.421
0.03	100.000	177.8	16,518	24.9	111	18.629	3.907.770
I OW							
100	100.000	0.0	0	0.0	0	0	0
60	100.000	0.0	0	0.0	0	0	0
30	100.000	0.0	0	0.0	0	0	0
	100,000	0.0	0	0.0	0	0	0
15	100.000	0.0	0	0.0	0	0	0
10	100,000	0.0	0	0.0	0	0	0
3	100,000	0.0	0	0.0	0	0	0
0.3	100,000	0.0	0	14.2	63	63	14.844
0.03	100,000	92.2	8,567	21.3		8,587	2.013.330
Linit Rates and		Veniren		Qillusion	2% of building		\$236/m*3
Notes		adjuntad sail profilo		model seit profile used below buildings	floor ares (240,000 (12)		

Z <u>Table C.2.7</u>. Calculated Costs and Other Parameters for Remediation of Contaminated Soil at the Reference Uranium Fuel Fabrication Plant (Restricted Land Use, With Soil Washing, Mixing/Landfilling)

· •

4.

.

C.C-72

NUREG-1496

47

1.

•

-

				i i		Soil	Soil					Provide state of the local division of the l
				Soll	Soft	Transport	Trensport	Soll	Sofi			
	Total Soft	í		Packaging	Packaging	Loede,	Lorde,	Transport	Transport }	Soft	Salt	Call Diseased
Residual Dose	Votume	Total Soll	Soll Weehing	Costs,	Costs, B-26	Gondela	Truck	Coete,	Costs,	Disposel Costs	Disposal Costa	Costs G
Rete	Removed	Weight	Coete	Gondola Car	Boxes	Cers	Loeds	Pell	Truck	@ #10/m-3	@ #50/11*3	#350/11-3
TY/menm	<u>m*3</u>	MT				7 cere	/ Trucks	·	• · · ·			
HIGH				I			ļ	·	·			
100	0	0	0	0	0	0	0	0	0	. 0	0	
60	0	0	.0	0	0	0	0	0	0	0	0	
30	0	0	0	_ : O	0	0	0	0	0	0	0	
25	0	0	0	0	0	0	0	0	0	0	0	
15	48	59	47,688	100	4,256	1	2	4,000	2,850	6,832	34,161	229.120
10	63	77	51,851	100	5,559	1 .	3	4,000	3,975	8,923	44.614	312 207
3	4,047	4,931	1,172,397	2,300	356,098	23	149	92,000	197,425	571,610	2.858.051	20 006 250
0.3	13,719	16,716	2,697,610	7,800	1,207,251	78	505	312,000	669,125	1,937,884	9,689,422	67 925 954
0.03	23,385	28,495	4,211,173	13,300	2,057,889	133	861	532,000	1,140,825	3,303,333	16.516.663	15 616 844
MEDIUM				_								10,010,044
100	0	0	0	0	0	0	0	0	0	0	0	
60	0	0	0	0	0	0	0	0	0	0	0	
30	0	0	0	0	0	0	0	<u>· 0</u>	0	0	0	
25	0	0	0	0	• 0 • •	0	0	0	σ	0	0	
15	0	0	0	0	0	0	0	0	···· 0	0	0	
10	0	0	0	0	0	0	0	0	0	0	0	
3	48	59	47,688	100	4,256	1	2	4,000	2,650	6.832	34,161	120 100
0.3	6,959	8,480	1,991,743	4,000	612,413	40	257	160,000	340,525	983,048	4.915 241	235,128
0.03	16,629	20,262	3,153,268	9,400	1,463,335	- 94	612	376,000	810,900	2,348,952	11.744 781	92 212 207
IOW								Tana San				
100	0	0	0	0	0	51 Q 4	0	0	0	0	0	
60	0	0	0	0		0	0	0	0	0	. 0	
	0	0	0	0	0	0	0	0	0	0	0	
25	0	0	0	0	0	0	0	. 0	0	0		
15	0	0	0	0	0	0	.0	0	0	0	0	
	0	0	0	0	0	0	· 0	0	0	0	0	
	0	0	0	0	. 0	0	0	0	0	0		0
	81	77	51.851	100	5,559	1	3	4,000	3,975	8 923	44.814	0
0.3	9 567	10.439	1.891,000	4,900	753,928	49	316	196,000	418,700	1,210,208	<u>94,014</u> 6.051.042	312,297
0.03	0,007	76 lbs/ft*3	From RACER	\$100 per	\$220/m*3	95 tens of	7,290	\$4,000 per	\$1,326 per truck	Costs for bulk	Cente In In	42,307,294
Unit Katos			Medel	gendele cer fer		aoil par	Ibs/box end	gendels relicer	last	disposed at LARW	compact disposal at	future incompact
and Notes		1		plastic Fror	·	t pilcor	4 bexes/truc			disposed facility,	existing LLW	disposed facilities for
				and cover			29.184 14			₹10/11-3; seit	disposal facility,	LLW, \$360/11*3;
		1					sol/losd			· · · · · · · · · · · · · · · · · · ·	tourt 3; buck	truck transport only.
		}									manafort ora).	

Table C.2.7. Calculated Costs and Other Parameters for Remediation of Contaminated Soil at the Reference Uranium Fuel Fabrication Plant (Restricted Land Use, With Soil Washing, Mixing/Landfilling)

C.C-73

NUREG-1496

Page 2 of 3

					1			
	Total Soli	Total Soll	Remediation	Costs		1 1		Total
Residual Dose	Voiume	Ø #10/#*3	@ \$50/ft*3	@ \$350/11*3	Soil Washing	Soil Excevetion	Total Soil	Occupational
Rate	Disposed	Disposal Costs	Disposal Costs	Disposal Costs	Labor	Labor	Remediation Labor	Dose
memlyr	m*3	\$	•		men-hr	man-br	tnari-hr	mevil-moated
HIGH			·					
100	0	0	0	0	0	0	0	. 0
60	0	0	0	0	0	0	0	0
30	0	0	0	0	0	0	0	0
25	0	0	0	0	0	0	0	0
15	19	69,987	100,122	305,089	8	78	87	9
10	25	79,718	120,843	388,526	11	102	113	11
3	1,619	2,789,251	5,534,915	22,683,222	688	6,555	7,243	724
0.3	5,488	8,179,202	17,487,316	75,623,848	2,332	22,224	24,557	2.456
0.03	9,354	13,555,305	29,4: 2,050	128,522,030	3,975	37,884	41,859	4.186
MEDIUM								
100	0	0	<u>່</u>	0	0	0	0	0
60	0	0	0	0	0	0	0	0
30	0	0	<u>。</u>	0	0	0	0	0
25	0	0	0	0	0	0	0	0
15	0	0	0	0	0	0	0	0
10	0	0	<u> </u>	. 0	0	0	0	0
3	19	69,987	100,122	305,089	8	78	87	9
0.3	2,784	4,774,212	9,495,343	38,986,792	1,183	11,274	12.457	1.246
0.03	6,652	9,795,390	21,080,034	91,548,600	2,827	26,939	29.766	2 977
IOW								
100	0	0	0	0	0	0	0	0
60	0	0	0	0	0	0	0	
30	0	0	0	0	0	0	0	
25	0	0	n	0	0	0	0	0
15	0	0	0	0	0	0	0	0
10	0	0	0	0	0	0	0	0
3	0	0	0	0	0	0	0	0
0.3	25	79,718	120,843	388,526	11	102	113	11
0.03	3,427	5,315,438	11,128,000	47,434,252	1,456	13,879	15,336	1.534
Unit Rates and Notes	Disposal volume is 40 % of total soil vol.; remaining vol. is released				0.17 man-tr_ par m*3	1.82 mentir per m*3		0.1 mean per man by labor

Table C.2.7. Calculated Costs and Other Parameters for Remediation of Contaminated Soil at the Reference Uranium Fuel Fabrication Plant (Restricted Land Use, With Soil Washing, Mixing/Landfilling)

.

۰.,

.

€/

.

. . .

•

\$1

1.

C.C-74

NUREG-1496

. .

Table C.2.8. Calculated Costs and Other Parameters for Remediation of Contaminated Soil at the Reference Uraniun	1 Fuel Fabrication Plant
(Restricted Land Use, Without Soil Washing, Mixing/Landfilling)	

.

•

.

•

.

.

÷

. ...

t

а. 19 ар Ар

. . .

.

1				 		-		
		Í.	1	ĺ	i ·	1		1 .
		Contemin-	Site		Relows	Below	Tatal Call	John on
	Residual Dose	ated Site	5.08	Ska Soll	Building	Building Sol	Volume	Site Son
	Rete	Solt Area	Dupth	Votume	Soll Depth	Volume	Removed	Costa
	mrem/yr	ħ*2	cm	m*3	cm	m*3	m*3	
	HIGH							
· · · · · · · · · · · · · · · · · · ·	100	100,000	0.0	0	0.0	0	0	0
	60	100.000	0.0	0	0.0	0	0	<u> </u>
	30	100.000	0.0	0	0.0	0	0	
	25	100,000	0.0	0	0.0	ő	0	
	15	100,000	0.0	0	10.8	48		11 200
	10	100,000	0.0	0	14.2	83	90 83	11,300
• .	3	100,000	42.7	3 963	18.7		03	14,844
		100,000	148 5	13 613	23.7	108	4,047	950,944
4	0.0	100,000	250.4	23 263	23.7 27 A	100	13,719	3,223,908
	ALCOIT INA	100,000	200.4	20,200	2/.7		20,305	0,495,499
	100	100 000	00	0	0.0			
		100,000	0.0	<u> </u>				0
· •		100,000	0.0				0.	0
		100,000			- 0.0	<u> </u>		0
	25	100,000			0.0		0	0
	15	100,000	0.0	0	0.0	0	0	0
	10	100,000	0.0	0	0.0	0	0	0
		100,000	0.0	0	10.8	48	48	11,366
	0.3	100,000	.73.9	6,868	20.4	91	6,959	1,635,421
	0.03	100,000	177.8	16,518	24.9	111	16,629	3,907,770
	LOW							
	100	100,000	0.0	0	0.0	0	0	0.
···· .	60	100,000	0.0	0	0.0	0	0	0
	30	100,000	0.0	0	0.0	0	0	0
· .	25	100,000	0.0	0	0,0	0	0	0
·· ·	15	100,000	0.0	0	0.0	0	0	0
	10	100,000	0.0	0	0.0	0	Ó	0
	3	100,000	0.0	. 0	0.0	0	0	0
	0.3	100,000	0.0	0	14.2	63	63	14.844
	0.03	100,000	92.2	8,567	21.3	95	8,663	2.035.688
	Unit Rates and	;	Ventron		Ditfuelen	2% of building		\$236/m*3
	Notes	. F	edjusted		nedel soli	fleor area		-
and the second second second second second second second second second second second second second second second		÷ .	aqui brouge		protite uned	(240,000 (12)		
•		·			buildings			
						·		
		·			l	L l		

C.C-75

• .

NUREG-1496

- - -

• •

Page 1 of 3

						Soil	Soil					
				Soli	Soli	Transport	Transport	Soil	Soll			
1	Total Soil		!	Packaging	Peckaging	Loads,	Loads,	Transport	Transport j	Soil	Soil	Soil Disposal
Residual Dose	Volume	Total Soll	Soli Washing	Costs,	Costs, B-25	Gondole	Truck	Costs,	Costs, '	Disposal Costs	Disposal Costs	Costs @
Rate	Removed	Weight	Costs	Gondola Car	Coxee	Care	Loads_	Rail	Truck	@ \$10/h*3	@ \$50/ft*3	1350/11-3
mram/yr	m*3	MT	•			I CAIS	# Trucks	•		\$	•	\$
HIGH												
100	0	0	0	0	0	0	0	0	0	0	0	0
60	0	0	0	0	0	0	0	0	0	0	0	0
30	0	0	0	0	0	0	0	0	0	0	0	0
25	0	0	0	0	0	0	0	0	0	0	0	0
15	48	59	0	100	10,641		5	4,000	6,625	17,081	85,403	597,821
10	63	77	0	100	13,897	1	6	4,000	7,950	22,307	111,535	780,742
3	4.047	4,931	0	5,800	890,245	58	373	232,000	494,225	1,429,026	7,145,128	50,015,896
0.3	13,719	16,716	0	19,400	3,018,127	194	1,282	776,000	1,672,150	4,844,711	24,223,555	169,564,885
0.03	23,385	28,495	0	33,100	5,144,722	331	2,151	1,324,000	2,850,075	8,258,332	41,291,658	289,041,609
MEDIUM												
100	0	0	0	0	0	0	0	0	0	0	0	0
60	0	0	0	0	<u> </u>	0	<u> </u>	0	0	0	0	0
30	0	0	0	0	<u> </u>	0	0	<u> </u>	0	0	0	0
25	0	0	0	0	<u> </u>	0	0	0	0	0	0	0
15	0	0	0	0	0	0	0		0	0	0	0
10	0	0	0	0	0			0	0	·0	0	0
3	48	59	0	100	10,641		5	4,000	6,625	17,081	85,403	597,821
0.3	6,959	8,480	0	9,900	1,531,033	99	641	396,000	849,325	2,457,621	12,288,103	86,016,724
0.03	16,629	20,262	0	23,500	3,658,338	235	1,530	140,000	2,027,250	5,872,381	29,361,903	205,533,318
LOW .												
100	0	0	0	0	0	0	<u> </u>	<u> </u>	<u> </u>	<u> </u>	0	0
60	0	0	0	0	0		<u> </u>	<u> </u>	<u> </u>	0	0	0
30	0	0	0	0	0				<u> </u>	0	0	0
25	0	0	0	0	0	0	<u> </u>	<u> </u>	<u> </u>	0	0	0
15	0	0	<u>`0</u>	0	0	0		<u> </u>	<u> </u>	0	0	0
· · · ·	0	0	0	0	<u> </u>	0			<u> </u>	0	0	0
3	0	0	0	0	0	0		U	<u> </u>	0	0	0
0.3	63	77	0	100	13,897	1	5	4,000	7,950	22,307	111,535	780,742
0.03	8,663	10,555	0	12,300	1,905,751	123	/5/	492,000	1,000,020	3,009,120	15,295,600	107,069,197
Unit Rates		76 lbs/lt 3	From RACER	\$100 per	\$220/m ⁻³	No tens of	V,280	oondola sailear	a 1,520 per stuck	discontal at 1 ARM	Costs for in-	Possible costs for
unit Notes			Model	gendere cer ter		railcar	4 boxes/www			disposal facility,	existing LLW	discount facilities for
and Nores			•	and cover	1	1	k load, er			\$10/It*3; rail	disposal facility,	LLW, \$360/11"3;
				1	1	}	29,184 166			It an apport only	\$60/11°3; truck	truck transport only.
				1		ł	soullesd	1	1		trenuport enly.	

Table C.2.8. Calculated Costs and Other Parameters for Remediation of Contaminated Soil at the Reference Uranium Fuel Fabrication Plant (Restricted Land Use, Without Soil Washing, Mixing/Landfilling)

. . .

٩,

•

NUREG-1496

\$

C.C-76

						1	,	
	Total Sofi	Total Solt	Remediation	Costs	1			Taast
Residual Dose	Volume	@ #10/ft*3	@ \$50//1*3	@ #350/11-3	Soll Weshing	Soil Excevation	Total Soll	Occupations
Rate	Disposed	Disposal Costs	Disposal Costs	Disposel Costs	Labor	Labor	Remediation Labor	Dice
mom/yr	m*3	•	*	\$	men-ivr	man-hr	man-hr	person-mem
HIGH			:					
100	0	0	0	0	0	0	0	
60	0	0	0	0	0		0	
30	0	0	0	0	0	- 0	0	
25	0	0	· 0	0	0	. 0	0	
15	48	32,547	114,035	626,453	0	78	78	8
10	63	41,251	148,225	817,432	.0	: 102	102	10
3	4.047	2,617,769	9,480,542	52,351,310	0	6,555	6.555	858
0.3	13.719	8,864,019	32,137,740	177,479,070	. 0	22,224	22.224	2 222
0.03	23.385	15,110,931	54,781,955	302,531,905	0	37,884	37.884	3 780
MEDIUM			<u>.</u>					- 0,700
100	0	0	0	0	0	0	0	0
60	0	0	0	0	0	0	0	
30	0	0	0	0	0	0	0	0
25	0	0	0	0	. 0	0	0	0
15	0	0.	0	0	0	0	0	
10	0	0	0	0	0	0	0 .	0
3	48	32,547	114,035	626,453	0	78	78	8
0.3	6,959	4,498,942	16,303,883	90,032,503	0	11,274	11.274	1,127
0.03	16,629	10,743,650	38,955,260	215,126,676	0	26,939	26,939	2.694
IOW		1						21004
100	0	0	0	0	0	0	0	0
60	0	0	0	0	0	0	0	0
30	0	0	0	0	0	0	0	0
25	0	0	0	0	. 0	0	0	0
15	0	0	0	0	0	0.	0	0
10	0	0	0	0	0	0	0	0
3	Ō	0	0	0	0	0	0	0
0.3	63	41,251	148,225	817,432	0	102	102	· 10
0.03	8,663	5,599,108	20,293,064	112,066,662	0	14,033	14,033	1,403
Unit Rates and Notes					0.17 mente per m*3	1.62 miniter per m°3		0.1 mrem per ma tv tebor
		1			I			

Table C.2.8. Calculated Costs and Other Parameters for Remediation of Contaminated Soil at the Reference Uranium Fuel Fabrication Plant (Restricted Land Use, Without Soil Washing, Mixing/Landfilling)

۲

÷....

.

· •

ť

Page 3 of 3

Table C.3.1. Calculated Costs and Other Parameters for Remediation of Contaminated Soil at the Reference Sealed Source Manufacturer Site (Unrestricted Land Use, With Soil Washing)

. .

÷

•

	Contamin-	Site		Below-	Below-	لأمك أماما	Site Soil
Residual Dose	ated Site	Soil	Site Soli	Building	Building Soli	Voiume	Excevation
Rote	Soil Area	Depth	Volume	Soll Depth	Volume	Removed	Costs
sntem/yt	ft*2	C(m)	m*3	cm	m*3	m*3	\$
HIGH							
100	5,000	3.3	15	3.3	0	16	3,653
60	5,000	4.8	21	4.6	1	22	5,151
30	5,000	5,9	27	5,9	1	28	8,601
25	5,000	8.2	29	6.2	1	30	6,972
15	5,000	7.0	33	7.0	1	33	7,861
10	5,000	7.8	36	7.8	1	37	8,687
3	5,000	11.5	54	11,5	1	55	12,896
0.3	5,000	20.5	95	20.5	2	97	22,867
0.03	5,000	24.9	116	24.9	3	118	27,835
MEDIUM							
100	5,000	0.0	0	0.0	0	0	0
60	5,000	2.5	<u>11 ·</u>	2,5	0	12	2,758
30	5,000	4.5	21	4.5	1	22	5,082
25	5,000	4.9	23	4.9	1	23	5,478
15	5,000	5.8	27	5.8	1	28	8,508
10	5,000	6.5	30	6,5	1	31	7,257
3	5,000	8.2	38	8.2	1	39	9,209
0.3	5,000	16,5	. 77	18.5	2	78	18,434
0.03	5,000	22.4	104	22,4	2	107	25,061
LOW							
100	5,000	0.0	0	0.0	0	0	0
60	5,000	0.0	0	0.0	0	0	0
30	5,000	0.0	0	0.0	0	0	0
25	5,000	0.0	0	0.0	0	0	0
15	5,000	0.0	0	0.0	0	0	0
10	5.000	0.0	0	0.0	0	0	0
	5.000	3.6	17	3.6	0	17	4.079
0.3	5.000	8.4	39	8.4	1	40	9.343
0.03	5.000	18.7	87	18.7	2	89	20,894
Linit Rates and		Diffuelen		Diffusion	2% of building	·····	\$236/m*3
Notas		lies lebers)	medel sell	tions area		
	1	prolite		profile used	18,000 h ~ 2)		
1	[ŀ		buildings			
ł	Į	l	ł				
1	I		l	L	L		

NUREG-1496

۹.

£,

.

Page 1 of 3

•

۴.

			1	1	1	2011	504	ŧ				the second secon
				Soft	-Solt	Trensport	Transport	Sofi	Soll			
	Total Soll		Soll	Packaging	Packaging	Loads,	Losds,	Transport	Transport	Sol	Sol	6-11 D1
Residual Lose	Volume	Total Soll	Washing	Costs,	Costs, B-25	Gondola	Truck	Costs,	Costs,	Disposel Costs	Disposel Costa	Costo A
Reto	Removed	Weight	Costs	Gondola Car	Boxes	Care	Loads	ftell	Truck	@ #10/#*3	@ #50/#1-3	1350/0-3
mrem/yr	m*3	MT	a a \$			l cers	/ Trucks	\$	· •	\$	+	1050/11-0
HIGH				1.5								
100	16	19	38,455	100	1,368	1	1.1.1.1	4,000	1,325	2,196	10 978	78.048
60	22	27	40,249	100	1,929	1	. 1	4,000	1,325	3,096	15.482	109 373
30	28	34	41,985	100	2,472	1	2	4,000	2,650	3.968	19.841	120 004
25	30	36	42,428	100	2,611	. 1.	2	4,000	2,850	4,191	20,953	148 871
15	33	41	43,493	100	2,944	1	2	4,000	2,650	4.725	23.627	140,071
10	37	45	44,481	100	3,253		2	4,000	2,650	5.221	26,107	100,388
	55	67	49,520	100	4,829	1.	3	4,000	3,975	7.752	38 760	102,752
0.3	97	119	61,455	100	8,563	1	4	4,000	5,300	13.745	68 726	491.020
0.03	118	144	67,402	100	10,423	1	. 5	4,000	6,625	16.732	83 658	481,079
MEDIUM												200,008
100	0	0	0	0	0	0	0	0	0	0	0	
	· 12	14	37,384	100	1,033	1	1.	4,000	1,325	1.658	8 290	E0 000
30	22	28	40,165	100	1,903	- 1	1	4,000	1,325	3.055	15 272	58,029
25	23	28	40,638	100	2,051	1	. 1	4,000	1.325	3.292	18 459	100,909
15	28	34	41,873	100	2,437	1	2	4.000	2,650	3,912	19 561	115,213
10	31	38	42,789	100	2,717	• 1	2	4,000	2.650	4.382	21 810	130,924
	39	48	45,108	100	3,448	1	2	4,000	2.650	5.536	27,010	152,670
0.3	78	96	56,148	100	6,903	1	3	4,000	3,975	11.081	55 403	193,743
0.03	107	130	64,082	100	9,385	1	.4	4,000	5,300	15.064	75 221	387,818
0.03						ļ					75,521	527,248
100		0	0	0	0	0		. 0	0	0		
100			0	0	0	0.	0	0	0	0		0
00		0	0	0	0	0	0	0	0	0		0
30		0	0	o	0	0	0	0	0	0		0
25		0	0	0	0	0	0	0	0	0		0
16			0	ō	0	0	0	0	0		0	0
10		21	38 965	100	1.528	1	1	4.000	1.325	2 452	10 000	0.
3		40	45 267	100	3,499	1.	2	4,000	2 650	ERIA	12,260	85,820
0.3	40	100	59 093	100	7.824	1	4	4.000	5.300	12 559	28,082	196,571
0.03	83	74 lbe/lt*1	Frem RACER	\$100 per	\$220/m*3	96 tone of	7,298	\$4,000 per	\$1,326 per truck	Costs for hult	02,790	439,571
Unit Rates and			Model	gendels cer for		· soil per	the net of	gendele relicer	leel	disposal at LARW	Compact disposal as	Possible costs for
Notes			l .	plastic liner]	rollcor	4 bener/true	-		disposal facility,	evisting LLW	disposal facilities for
	ĺ		, ·	and cover	1		t tead, er			\$ 10/ft* 3; reil	disposed facility,	LLW, \$350/1"3:
	l	1			l	1	ieiMeed			transport only	\$50//t*3; truck	truck transport only.
		ŀ									wanapart anly,	I
	•	1.		Association and an a								4

Table C.3.1. Calculated Costs and Other Parameters for Remediation of Contaminated Soil at the Reference Sealed Source Manufacturer Site (Unrestricted Land Use, With Soil Washing)

C.C-79

NUREG-1496

Page 2 of 3

Residual Dose Rate	Total Soil Volume Disposed m^3	Total Suil Ø \$10/It*3 Disposal Costa	Remediation @ \$50/it*3 Disposal Costs	Costs @ \$350/it*3 Disposal Costs	Soil Washing Labor	Soil Excevation	Tatal Soil Remediation Labor	Total Occupational Dose
INCU INCU					1000718	man-nr	man-br	person-intem
100		48 403	55 778	121 848		95	l	
		52 598	64 138	167.027		20	28	3
		58 854	73 649	197,027		30		44
		57 690	75 613	201 321		46	60	5
	12	60 179	80 575	212 336	<u>s</u>	48	53	5
10	15	62 489	85 177	241 822	8	54	60	6
		74 269	100 981	342 541			68	7
3		102 167	186.010	570 262		89	98	10
0.3		1102,107	105,910	607.000	- 1/	158	174	17
0.03	4/	110,009	130,844	097,093	20	192	212	21
MEDIUM								
100		45 000	50 700	100 520		0	0	0
60			62 74P	166 204	2	19	21	2
	9	52,401	65 949	184 703		35	39	4
25		58 394	73 029	104,703	4	38	42	4
15		50,334 50 A90	73,023	190,383		45	50	5
10	12	82.051	99 /01	200,003		50	55	6
3	10	03,301	140 982	472 270		63	70	7
0.3		89,703	170 140	4/3,2/8	13	127	140	14
0.03	43	108,307	1/3,140	031,073		173	<u> </u>	19
LOW								
100	0		· · · · · · · · · · · · · · · · · · ·			0	0	0
60	0				0	0	0	0
	0					0	0.	0
25						0	0	0
15	0					0	0	0
	<u>y</u>	40 507	58 157	131 717	ÿ			0
3		45,00/	89.941	267 220		28	31	3
0.3		96 64A	155,907	532 A92	1=	144	71	7
0,03 Unit Rates and Notes	: 30 E speed volume 1: 40% of total soil vol.; r imalring vol. is , released	20,040			0.17 mantr par m*3	1.02 mantr par m*3	159	16 0.1 mram par man- tv labor

Table C.3.1. Calculated Costs and Other Parameters for Remediation of Contaminated Soil at the Reference Sealed Source Manufacturer Site (Unrestricted Land Use, With Soil Washing)

.

٠.

....

Page 3 of 3

¢

1

NUREG-1496

٩+

Đ.

•

.

			•				
	Contamin-	Site		Below-	Delaw-	Totel Soll	Site Soll
Residuel Dose	ated She	Soff	Site Soll	- Building	Building Soll	Volume	Excevation
Rate	Soll Area	Depth	Volume	Soll Depth	Votume	Removed	Costa
mrem/yr	- ft*2	CM	_m*3	cm	m*3	m*3	₽
HIGH							
100	5,000	3.3	· 15	3.3		16	3,653
60	5,000	4.6	21	4.6	1	22	5,151
30	5,000	5.9	27	5,9		28	6,601
25	5,000	6.2	29	6.2	1	30	6,972
15	5,000	7.0	33	. 7,0	1	33	7,861
10	5,000	7.8	- 36	7.8	<u> </u>	37	8,687
3	5,000	11.5	54	11.5	1	55	12.896
0.3	5,000	20.5	95	20.5	2	97	22,867
0,03	5,000	24.9	116	24,9	• 3	118	27,835
MEDIUM							
100	5,000	0.0	0	0.0	0	0	0
80	5,000	2,5	11	2.5	0	12	2,758
30	5,000	4.5	21	4.5	1	22	5.082
25	5,000	4.9	23	4,9	1	23	5.476
15	5,000	5.8	27	5,8	1	28	6,508
10	5,000	6,5	30	6,5	1	31	7.257
3	5,000	8,2	38	8,2	1	39	9,209
0,3	5,000	16.5	77	16.5	2	78	18,434
0.03	5,000	22.4	104	22.4	2	107	25.061
LOW							
100	5,000	0.0	0	0.0	0	0	0
60	5,000	0.0	0	0.0	0	0	0
30	5,000	0.0	0	0.0	0	0	0
25	5.000	0.0	0	0.0	0	0	
15	5.000	0.0	0	0.0	0	0	
10	5.000	0.0	0	0.0	0	0	0
3	5.000	3.6	17	3.6	0	17	4 079
	5.000	8.4	39	8.4	1	40	9 343
0.03	5,000	18.7	87	18.7	2	89	20.894
Unit Rates and Notes		Diffusion model coll profile		Diffusion madul solt profile used below buildings	2% of building Reer area (8,000 ft*2)		\$235/m*3

Table C.3.2. Calculated Costs and Other Parameters for Remediation of Contaminated Soil at the Reference Sealed Source Manufacturer Site (Unrestricted Land Use, Without Soil Washing)

Page 1 of 3

NUREG-1496

C.C-81

						Soil	Soil					
				Soil	Soll	Trensport	Transport	Soll	Soil			
	Total Soll		Soli	Peckeging	Packaging	Loads,	Loads,	Transport	Transport }	Soil	Soll	Soll Disposal
Residual Dose	Volume	Total Soli	Washing	Costs,	Costs, B-26	Gondola	Truck	Coste,	Costs,	Disposal Costs	Disposal Costs	Coste @
Rate	Removed	Weight	Costs	Gondola Car	Boxes	Cars	Loads	Reil	Truck	@ \$10//11*3	@ 450/11*3	\$350/It*3
mrem/yr	m°3	MT	•	•		# cáis	# Trucks	•			*	
HIGH												<u> </u>
100	16	19	0	100	3,419	1	2	4,000	2,650	5,489	27,445	192,115
60	22	27	0	100	4,822	1	3	4,000	3,975	7,741	38,705	270,933
30	28	34	0	100	6,180	1	3	4,000	3,975	9,920	49,602	347,211
25	30	36	0	100	6,527	1	3	4,000	3,975	10,476	52,382	366,677
15	33	41	0	100	7,359	1	4	4,000	5,300	11,813	59,067	413,471
10	37	45	0	100	8,132	1	4	4,000	5,300	13,054	65,268	456,879
3	55	67	0	100	12,073		6	4,000	7,950	19,380	96,900	678,301
0.3	97	119	0	200	21,407	2	9	8,000	11,925	34,363	171,814	1,202,697
0.03	118	144	0	200	26, 158	2	11	8,000	14,575	41,829	209,146	1,464,019
MEDILIM												· · · ·
100	0	0	0	0	····	0	0	0	0	0	0	0
60	12	14	0	100 ·	2,582	1	2	4,000	2,650	4,145	20,725	145,072
30	22	26	0	100	<u>4, '57</u>	1	2	4,000	2,650	7,636	38,182	267,272
25	23	28	0	100	5,127	1	3	4,000	3,975	8,230	41,148	288,033
15	28	34	0	100	6,093	1	3	4,000	3,975	9,780	48,902	342,311
10	31	38	0	100	6,794	1	3	4,000	3,975	10,905	54,525	381,675
	39	48	0	100	8,621	1	4	4,000	5,300	13,839	69,194	484,358
0.3	78	96	0	200	17,257	2	8	8,000	10,600	27,701	138,506	969,545
0.03	107	130	0	200	23,461	2	10	8,000	13,250	37,660	188,302	1,318,115
0.00												
100	0	0	0	0	0	0	0	0	0	0	0	0
60	0	0	0	0	0	0	0	0	0	0	0	σ
30	0	0	0	0	<u> </u>	0	0	0	0	0	0	0
25	0	0	0	0	^^	0	0	0	0	0	0	0
15	0	0	0	0	0	0	0	0	0	0	0	0
10	0	0	0	0	0	0	0	· 0	0	0.	0	0
	17	21	0	100	3,819	1	2	4,000	2,650	6,130	30,650	214,549
0.3	40	48	0	100	8,747	1	4	4,000	5,300	14,041	70,204	491,427
0.3	89	108	0	200	19,560	2	9	8,000	11,925	31,398	156,990	1,098,928
0.03		78 lbs/lt*3	From RACER	\$100 pm	\$220/m*J	96 tons ef	7,290	\$4,000 per	\$1,326 per truck	Costs for bulk	Costs for in-	Possible costs for
Unit Hates and	1)	Medel	gendels car for		soll per	A horestend	gondels relicer	léed	disposal at LARW	compact disposal at	future in-compact
Notes.		l		plastic liner	1	I ENCOY	k load, or	I		\$10/1*3:	diagonal facility	disposal facilities for
			1		1		29,194 As	l		Iransport only	\$50/11"3; truck	truck transport only
	ł	1	l			l	beenlies	l	Į		transport only.	

Table C.3.2. Calculated Costs and Other Parameters for Remediation of Contaminated Soil at the Reference Sealed Source Manufacturer Site (Unrestricted Land Use, Without Soil Washing)

. :

6+

Page 2 of 3

۲

7

	.		B 444			1	· ·	
	Totel Soll	Totel Soll	Remediation	Corts				Tatal
Reviduel Dose	Volume	Discord Costs	Diene, el Cente	Depend Costs	Son Washing	Soll Excevation	Total Soll	Occupation
Plate	Lisbored	Dispose Costs	Cisporal Costa	Unposel Costs	Libor	Labor	Remediation Labor	Dose
memyr	M					manen	man-hr	person-mrer
HIGH		12 949	37 187	201 027				
100	10	13,242	57,107.	201,037		25	25	3
		10,552	66 350	207,001		30	36	4
30	28	20,022	80 PER	303,307		40	48	5
25	30	21,048	70 500	422 662		48	48	5
15		23,775	79,000	433,552	0	<u> </u>	54	5
10		25,840	87,387	4/8,998		60	60	6
3	: 55	30,370	929.012	1 150 008		89	89	9
0.3		77.004	220,013	1,200,000		158	158	16
0.03		//,004	2/7,014	1,032,400		192	192	19
MEDIUM			0	0				
100	0	11 002	29 715	153.063			0	<u> </u>
50	12	10.010	50 671	279 761		19	19	2
	22	17.006	50,071	202 811		35	35	44
25	23	17,808	01,720	350 607		38	38	4
15	28	20,389	73 550	200,007	· · · · · · · · · · · · · · · · · · ·	40 -	45	4
10	31	22,202	72,000	507.400		50	50	5
3		27,148	92,324	007,488	0	63	63	6
0.3	78	54,335	184,/9/	1,010,830	0	127	127	<u> </u>
0.03	107	70,922	250,075	1,3/9,888	0	173	173	<u>· 17</u>
LOW						·		
100	0	! 0	0	0	0	0	0	0
60	0	0	0	0	0	0	0	0
30	0.	0	0	0	0	0	0	0
25	0	0	0	0	0	0	0	0
15	<u>0</u> .	0	0	0	0	0	0	0
10	0	• 0	0	0	0	0	0	U
3	17	14,309	41,198	225,097	0	28	28	3
0.3	40	27,484	93,594	514,817	0	64	64	6
0.03	89	60,492	209,369	1,151,307	0	144	144	14
Unit Rates and					0.17 menter per	1.62 menter per		0.1 mrem per n
Notes					m_2	m_3		hr lebor
11214-		1						
1	ł	1	1	1	1	1		í i

Table C.3.2. Cniculated Costs and Other Parameters for Remediation of Contaminated Soil at the Reference Sealed Source Manufacturer Site (Unrestricted Land Use, Without Soil Washing)

Page 3 of 3

Table C.3.3. Calculated Costs and Other Parameters for Remediation of Contaminated Soil at the Reference Sealed Source Manufacturer Site (Restricted Land Use, With Soll Washing)

•

	Contamin-	Site		Below-	Below-	Total Soli	i Site Soil
Residual Dose	ated Site	Soil	Site Soil	Building	Building Solt	Volume	Excavation
Rate	Soil Area	Depth	Volume	Soil Depth	Volume	Removed	Costs
mrein/yr	ít"2	cm	m*3	cm	m*3	6° m	
HIGH							
100	5,000	0.0	0	0.0	0	0	0
<u> 60</u>	5,000	0.0	0	0.0	0	0	0
30	5,000	0.0	0	0.0	0	0	0
25	5,000	0.0	0	0.0	0	0	0
15	5,000	0.0	0	0.0	0	0	0
10	5,000	1.6	7	1.6	0	8	1,797
3	5,000	5.2	24	5.2	1	25	5,817
0.3	5,000	8.3	39	8.3	1	40	9,295
0.03	5,000	10.7	50	10.7	1	51	11,951
MEDIUM							
100	5,000	0.0	0	0.0	0	0	. 0
60	5,000	0.0	0	0.0	0	0	0
	5,000	0.0	0	0.0	0	0	0
25	5,000	0.0	0	0.0	0	0	0
15	5,000	0.0	0	0.0	<u> </u>	0	0
10	5,000	0.0	0	0.0	0	0	0.
3	5,000	3.7	17	3.7	0	18	4,156
0,3	5,000	7.5	· 35	7.5	1	36	8,415
0.03	5,000	9.9	48	9.9	1	47	11,078
LOW							
100	5,000	0.0	0	0.0	0	0	0
60	5,000	0.0	0	0.0	0	0	0
30	5,000	0,0	0	0.0	0	0	0
25	5,000	0,0	0	0.0	0	0	0
15	5,000	0.0	0	0.0	0	0	0
10	5,000	0.0	0	0.0	0	0	0
3	5,000	0.0	0	0.0	0	0	0
0.3	5,000	2.3	11	2.3	0	11	2,575
0.03	5,000	7.0	32	7.0	1	33	7,780
Unit Rates and		Dillusion		Diffusion	2% of building		\$236/m*3
Notes		model son profile		model soli	16.000 ft ⁻ 21		
				below			
				buildings			

٤.

• •

Page 1 of 3

Ŷ

¢

:

[Soil	Soil					
				Sofi	507	Transport	Trensport	Soli	Soll			
	Total Soll	1. A. 1. A. 1.	Sofi	Packaging	· Packaging ·	Loads,	Lords,	Transport	Treneport	Soll	S-8	P-0 01
Residual Dose	Volume	Total Solt	Washing	Costs,	Costs, 8-25	Gondola	Truck	Costs,	Costs,	Disposel Costs	Disposal Coase	Sen Unipetar
Rete	Removed	Weight	Costs	Gondols Car	Boxes	Care	Lords	fie A	Truck	@ #10/h*3	@ 150/11*3	1250/h*2
mrem/yr	m*3	MT	\$.		\$	/ cars	# Trucks			\$		<u>+300/11_3</u>
HIGH												
100	0		0		0	0	0	0	0			
60	0	0	0	0	0	0	0	0	0	0		0
30	0	0	0	0	0	0	0	0	0	0		
	0	0	0	. 0	0	0	. 0	0	0	0		
15		0	0	0	0	0	0.	0	0	0		0
10		9	36.234	100	673	1	1	4.000	1.325	1 080	5.400	0
10		30	41.045	100	2.178	1	1	4.000	1 325	1,080	5,402	37,813
	25	49	45 209	100	3,481	1	2	4,000	2 650	5,930	17,482	122,374
0.3	40	40	48 398	100	4 475	1		4 000	2,050	3,58/	27,936	195,549
0.03	<u> </u>								2,000	.7,104	35,919	251,430
MEDIUM			0	0	0	0	0	0				
100			0	0	0	0	0	0	0		0	0
60			0		0	0	0	0	0		0	0
30	· 0	0									0	0
25	0	0			0				0	0	0	<u> </u>
15		0			0		·		0	0	0	0
10	<u> </u>	0	0					<u> </u>	0	0	0	0
3	18	- 22	39,057	100	1,000		· · ·	4,000	1,325	2,498	12,491	87,437
0.3	36	44	44,158	100	3,151		2	4,000	2,650	5,058	25,292	177,043
0.03	47	- 57	47,343	100	4,148	1		4,000	2,650	6,659	33,294	233,056
LOW							<u> </u>					
100	0	0	0	0	0	0	0	0	0	0	0	0
60	0	0	0	0	0	0	0	0	0	0	0	0
:0	0	0	0	0	0	0	0	0	0	0	0	0
25	0	0	0	Ö	<u>0</u> .	0	0	0	0	0	0	0
15	0	0	0	0	0	0	0	0	0	0	0	
10		0	0	0	0	0	0	0	0	0	0	
	0	0	0	0	0	0	0	0	0	0	0	0
	11	13	37.165	100	964	1	1	4,000	1.325	1.548	7 740	
0.03	33	40	43,395	100	2,913	1	2	4,000	2,650	4.676	23 382 -	182 876
0,03		78 Ibe/11*3	Frem RACER	\$100 per	\$220/m*3	\$6 torm of	7,296	\$4,000 per	\$1,325 per truck	Costs for bulk	Costs In In	103,072 Retaible
Unit Hates and	1		Model	gandale car for		soll per	the/bex and	gondole salicar	beel	disposal at LARW	compact disperal at	future incompany
Notes	1	1		plastic liner	· ·	tellcar	4 bezes/truc			disposal facility,	existing LLW	disposal facilities for
		ļ		arus cover	1		28 1040, 47			\$10/11° 3; roll	disposal facility,	LLW, \$360/11-3;
· ·	ł			l	1		seitfead			wanupart enly	\$50/h* 3; truck	truck transport only,
	ļ			I		<u> </u>					wensport enty.	

Table C.3.3. Calculated Costs and Other Parameters for Remediation of Contaminated Soil at the Reference Sealed Source Manufacturer Site (Restricted Land Lse, With Soil Washing)

...

C.C-85

NUREG-1496

Page 2 of 3
4=

۴.

÷

	Total Soil	Total Soll	Remediation	Costs				Total
Residual Dose	Volume	@ #10//11*3	@ \$50/11*3	@ \$360/11*3	Soll Weshing	Soil Excevation	Total Soil	Occupational
Rate	Disposed	Disposal Costs	Disposal Costs	Disposal Costs	Labor	Labor	Remediation Labor	Dose
mem/yr	m*3	•	•	•	man-nr	man-hr	man-hr	person-mrem
HIGH								
100	0	0	0	0		0	0	0
60	0	0.	0	0	0	0	0	0
30	0	0	0	0	<u> </u>	0	0	0
25	0	0	0	0	0	0	0	0
15	0	0	0	0	0	0	0,	0
10	3	43,212	45,431	77,843	1	12	14	1
3	10	54,458	67,847	172;739	4	40	44	4
0.3	18	84,191	88,570	256,183	7	64	71	7
0.03	20	71,623	103,383	318,895	9	82	91	9
MEDIUM								
100	0	0	0	0	0	0	0	0
60	0	0	0	· 0	0	0	0	0
30	0	0	0.	0	0	0	0	0
25	0	0	0	0	0	0	0	0
15	0	0	<u>0</u> .	0	0	0	. 0	0
10	0	0	0	0	0	0	0	0
3	7	49,812	58,586	133,532	3	29	32	3
0.3	14	61,729	83,664	235,415	6	58	64	6
0.03	19	69,179	98,512	298,275	8	76	84	8
LOW								
100	0	0	0	0	0	0	0	0
60	0	0	0	0	<u>0</u> _	0	0	0
30	0	0	0	0	0	0 ·	0	0
25	0	0	0	0	0	0	0	0
15	0	0	0	0	0	0	0	0
10	0	0	0	0	0	0	0	0
3	0	0	0	0	0	0	0	0
0.3	4	45,388	49,769	96,208	2	18	20	2
0.03	13	59,951	80,120	220,410	6	54	59	6
Unit Rates and	Disposal valume				0.17 man-te per	1.82 man-hr per		0.1 mem per man-
Notes	ie 40% of total				m"3	w.1		hr labor
	eoil vol.; remaining vol. is							
	released							
	•				1			1

Table C.3.3. Calculated Costs and Other Parameters for Remediation of Contaminated Soil at the Reference Sealed Source Manufacturer Site (Restricted Land Use, With Soil Washing)

•

· .

.

Page 3 of 3

.

£

Table C.3.4. Calculated Costs and Other Parameters for Remediation of Contaminated Soil at the Reference Sealed Source Manufacturer Site (Restricted Land Use, Without Soil Washing)

Contemin-	Site		Balow-	Below-	Total Soll	Site Soll
ated Site	Soll	Site Soll	Building	Building Soll	Volume	Excevation
Solt Aree	Depth	Volume	Soll Depth	Volume	Removed	Costs
ft"2	cm	m*3	cm	m*3	m*3	
			· · ·			
5,000	0,0	Ο ε	0.0	0	0	0
5,000	0,0	0	·0.0	0	0	0
5,000	0.0	0	0.0	0	0	0
5,000	0,0	0	0.0	0	0	0
5,000	0,0	0	0,0	0	0	0
5,000	1.6	7	1.6	0	8	1,797
5,000	5.2	24	5.2	1	25	5,817
5,000	8.3	39	8.3	1	40	9,295
5,000	10.7	50	10.7	1	51	11,951
			•			
5,000	0.0	0	0.0	0	0	0
5,000	0.0	0	0.0	0	0	0
5,000	0.0	0	0.0	0	0	0
5,000	0.0	0	0.0	Ò	0	0
5,000	0.0	· 0	0.0	0	0	0
5,000	0.0	0	0.0	0	0	0
5,000	3.7.	- 17	3.7	0	18	4,156
5,000	7,5	35	7.5	1 .	36	8,415
5,000	9,9	46	9,9	1	47	11.078
5,000	0.0	0	0.0	0	0	0
5,000	0,0	0	0.0	0	0	0
5,000	0.0	0	0.0	0	0	0
5,000	0,0	0	0.0	0	0	0
5.000	0.0	0	0.0	0	0	0
5.000	0.0	0	0.0	0	0	0
5.000	0.0	0	0.0	0	0	0
5.000	2.3	11	2.3	0	11	2.575
5.000	7.0	32	7.0	1	33	7.780
	Diffuelor, model soll profile		Diffusion swedet soll profile used below buildings	2% et building fleer area (6,000 (t*2)		\$235/m*3
	Contemin- ated Site Soll Area ft 2 5,000	Contemin- eted Site Site Soll Area Dapth ft*2 cm 5,000 0,0 5,000 0,0 5,000 0,0 5,000 0,0 5,000 0,0 5,000 0,0 5,000 0,0 5,000 0,0 5,000 1.6 5,000 5.2 5,000 8.3 5,000 0.0 5,000 0.0 5,000 0.0 5,000 0.0 5,000 0.0 5,000 0.0 5,000 3,7 5,000 3,7 5,000 3,8 5,000 0,0 5,000 0,0 5,000 0,0 5,000 0,0 5,000 0,0 5,000 0,0 5,000 0,0 5,000 0,0 5,000 2,3 5,000	Contemin- eted Site Site Site Solf Solf Area Depth Volume ft*2 cm m*3 5,000 0,0 0 5,000 0,0 0 5,000 0,0 0 5,000 0,0 0 5,000 0,0 0 5,000 0,0 0 5,000 0,0 0 5,000 1.6 7 5,000 8.3 39 5,000 10.7 50 5,000 0.0 0 5,000 0.0 0 5,000 0.0 0 5,000 0.0 0 5,000 0.0 0 5,000 0.0 0 5,000 7.5 35 5,000 0.0 0 5,000 0.0 0 5,000 0.0 0 5,000 0.0 0 5,000	Contemin- eted Site Site Site Soll Site Soll Below- Building Soll Aree Depth Valume Soll Depth ft"2 cm m"3 cm 5,000 0.0 0 0.0 5,000 0.0 0 0.0 5,000 0.0 0 0.0 5,000 0.0 0 0.0 5,000 0.0 0 0.0 5,000 0.0 0 0.0 5,000 1.6 7 1.6 5,000 8.3 39 8.3 5,000 8.3 39 8.3 5,000 0.0 0 0.0 5,000 0.0 0 0.0 5,000 0.0 0 0.0 5,000 0.0 0 0.0 5,000 0.0 0 0.0 5,000 0.0 0 0.0 5,000 0.0 0	Contemin- sted Site Site Soll Site Soll Below- Building Below- Building Below- Building Below- Building ft"2 cm m"3 cm m"3 5,000 0,0 0 0,0 0 5,000 0,0 0 0,0 0 5,000 0,0 0 0,0 0 5,000 0,0 0 0,0 0 5,000 0,0 0 0,0 0 5,000 1.6 7 1.6 0 5,000 5.2 24 5.2 1 5,000 10.7 50 10.7 1 5,000 0.0 0 0 0 0 5,000 0.0 0 0.0 0 0 5,000 0.0 0 0.0 0 0 5,000 0.0 0 0.0 0 0 5,000 0.0 0 0.0 <t< td=""><td>Contemin- ated Site Site Soil Site Soil Below- Building Below- Building Below- Building Total Soil 5,000 0.0 0 0 0 0 0 5,000 0.0 0 0.0 0 0 0 5,000 0.0 0 0.0 0 0 0 5,000 0.0 0 0.0 0 0 0 5,000 0.0 0 0.0 0 0 0 5,000 0.0 0 0.0 0 0 0 5,000 1.6 7 1.6 0 8 5,000 1.6. 7 1.6 0 0 5,000 10.7 1 51 1 51 5,000 0.0 0 0.0 0 0 0 5,000 0.0 0 0.0 0 0 0 5,000 0.0 0</td></t<>	Contemin- ated Site Site Soil Site Soil Below- Building Below- Building Below- Building Total Soil 5,000 0.0 0 0 0 0 0 5,000 0.0 0 0.0 0 0 0 5,000 0.0 0 0.0 0 0 0 5,000 0.0 0 0.0 0 0 0 5,000 0.0 0 0.0 0 0 0 5,000 0.0 0 0.0 0 0 0 5,000 1.6 7 1.6 0 8 5,000 1.6. 7 1.6 0 0 5,000 10.7 1 51 1 51 5,000 0.0 0 0.0 0 0 0 5,000 0.0 0 0.0 0 0 0 5,000 0.0 0

C.C-87

NUREG-1496

Page 1 of 3

Table C.3.4. Calculated Costs and Other Parameters for Remediation of Contaminated Soil at the Reference Sealed Source Manufacturer Site (Restricted Land Use, Without Soil Washing)

e +

t;

						Sail	Soil					
				Soii	Soil	Transport	Transport	Soil	Soil			
	Total Soil		Şoil	Packaging	Packaging	Loads,	Londs,	Transport	Transport }	Soil	Soil	Soil Disposel
Qualidual Dose	Volume	Total Soil	Washing	Costs,	Coste, B-25	Gondola	Truck	Costs,	Costs,	Disposal Costs	Disposal Costs	Coate @
Rate	Removed	Weight	Costs	Gondola Car	Boxes	Cars	Loads	Rail	Truck	@ #10//11-3	@ 150/ft-3	\$350/fr*3
mrem/yr	m*3	MT	•	•	•	/ CARE	# Trucks	•	•	\$		
HIGH												
100	0	0	0	0	0	0		0	0	0	0	0
60	0	0	0	0	0	0		0	0	0	0	0
30	0	0	0	0	0	0	0	0	0	0	0	0
25	0	0	0	0	0	0		0	0	0	0	0
15	0	0	0	0	0	0	0	0	0	0	0	0
10	8	9	0	100	1,683	1		4,000	1,325	2,701	13,505	94,534
3	25	30	0	100	5,445	1		4,000	3,975	8,741	43,705	305,935
0.3	40	48	0	100	8,702		4	4,000	5,300	13,968	69,839	488,872
0.03	51	62	0	100	11,188	1	5	4,000	6,625	17,959	89,797	628,576
MEDIUM												
100	0	0	0	0	0	0		0	0	0	0	0
60	0	0	0	• 0	0		0	0	0	0	0	0
30	0	0	0	0	0	0	0	<u> </u>	0	0	0	00
25	0	0	0	0	0	0	0	0	0	·0	0	0
15	0	0	0	0	0	0	0	0	0	0	0	00
10	0	0	0	0	0	0		0	0	0	0	0
3	18	22	0	100	3,891	1	2	4,000	2,650	6,246	31,228	218,594
0.3	36	44	0	100	7,978	· 1	4	4,000	5,300	12,646	63,230	442,607
0.03	47	57	0	100	10,371	1		4,000	6,625	16,847	83,234	582,640
LOW .												
100	0	0	0	0	<u> </u>	0	0	0	0	0	0	0
60	0	0	0	0	0	0	0	0	0	0	0	0
30	0	0	0	0	0	0		0	0	0	0	0
25	0	0	0	0	0	0		0	0	0	0	0
15	0	0	0	0	0	0	0	0	0	0	0	0
10	0	0	0	0	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	0	0	0	0	0	0
03	11	13	0	100	2,411	1	2	4,000	2,650	3,870	19,349	135,446
0.03	33	40	0	100	7,283	1	4	4,000	5,300	11,691	58,454	409,181
Linis Rates and		76 lbs/lt*3	From RACER	\$100 pm	\$220/m*3	96 tons of	7,208	\$4,000 per	\$1,325 per truck	Cests for bulk	Costs for in-	Possible costs for
]		Model	Gendele cer for		son per	4 boxes/use	Anugais tance.	beel	disposal at LARW	compact disposal at	future in-compect
NDIGS			·	and cover			k load, er			\$ 10/61 3; sail	disposal facility	LLW, \$350/h* 2-
1	•			1		4	28,184 lbs			transport only	\$50/11"]; truck	truck transport only.
	1			1		ł	beofilioa				transport only.	
1	1	1		L		L	<u> </u>	L			L	

1

-

		• •			1			
Residual Dase	Totel Soll Volume	Totel Soll @ #10/ft*3	Remediation @ 150/1t*3	 @ #350/ft*3	Soll Weshing	Soll Excevetion	Totel Soll	Totel Occupational
Reta	Disposed	Disposal Costs	Disposel Costs	Disposel Costs	Labor	Lebor	Remediation Labor	Dote
mrem/yr	<u>m'3</u>	•	•	4 • • • •	man-hr	men-hr	men-hr	person-mrem
HIGH		······						
100	0	· · · · · ·	0	0	0	0	0	0
60	0	0	• • 0	0	0	0	0	0
30	0	0	0	0	0	0	0	0
25	0	· 0	0	0	0	0	0	0
15	0	0	. 0	0	0	0	0	0
10	8	8,598		99,339	0	12	12	1
3	25	18,658	58,942	321,172	0	40	40	4
0.3	40	27,363	93,135	512,169	0	64	64	6
0.03	51	34,010	119,561	658,340	0	82	82	8 -
MEDIUM				· · · · · · · · · · · · · · · · · · ·		· · · ·		
100	0	0	0	0	0	0	0	0
60	0	0	0	0	0	0	0	0
30	0	0	0	0	0	0	0	
25	0	0	0	0	0	0	0	
15	0	0	0	0	0	0	0	0
10	0.	0	0	0	0	0	0	
3	18	14,502	41,925	229,291	0	29	29	
0.3	36	25,161	84,823	464,200	0	58	58	
0.03	47	31,824	111,307	610,713	0	76	76	0
IOW		·						
100	0	0	0	0	0	0		
60	0	0	0	0	0	0	0	0
30	0	0	0	0	0	0		
25	0	0	0	0	0	0	0	0
15	0	0	0	0	0	0		0
10	0	0	0	0	0	0	0	0
	0	0	0	0	.0	0	0	
	11	10.545	26.985	143.082	0	18	10	
0.3	33	23.571	78,817	429,544	0	54	<u> </u>	2
Unit Rates and			· · ·		0.17 men-ty per m*3	1.62 manter per m*3		5 0.1 mrem per man- tv lebor
	•							

Table C.3.4.	Calculated Costs and Other Parameters for	Remediation of	Contaminated Soil at	the Reference Sealed Source Manufacturar Site
	(Restricted Land Use, Without Soil Washing)		and a set of the state of the set of the

٦,

•

.

Page 3 of 3

		01		Datasa	Dalaura	Tatal Call	
	Contamin-	SRe	Cia Call	. Selow-	Below- Building Call	Volume	Sile Sou
Residual Dose	aled Sile	Denth	Volume	Soil Depth	Volume	Removed	Coste
Hale	208 AI03	C C C C C C C C C C C C C C C C C C C	m°3	cm	m*3	m*3	4
IIV GET V							
HIGH	5 000	<u> </u>	21	33	0	21	4 926
100	5,000	P.0	27	4.8	1	38	8 830
00	5,000	17.0	93	5.0		84	19 659
30	5,000	20.9	0.5	8.2		07	22 817
25	5,000	20.0	124	7.0		125	21,017
15	5,000	20.9	154	7.0		195	20 747
10	5,000	30.3	104	1.0		264	50,747
3	5,000	04.0	203	11.0		204	
0.3	6,000	91.3	424	20.5	<u></u>	420	100,163
0,03	5,000	1 '8.2	090	24.9	3	298	140,840
MEDIUM							1.005
100	5,000	1.8	8	0.0	<u> </u>		1,985
60	5,000	$-\frac{3.5}{7.6}$	16	2.5		16	3,875
30	6,000	7.6	38	4.6		30	8,484
25	6,000	9./	45	4.9		40	10,722
16	5,000	17.4	81	5.8		81	19,108
10	6,000	23.8	111	6.5	1		26,178
3	5,000	43.1	200	8.2	<u> </u>	201	47,236
0.3	5,000	80.0	371	16.5	2	373	87,716
0.03	5,000	116.9	643	22.4	2	<u>546</u>	128,203
LOW							
100	5,000	0.0	0	0.0	0	0	0
60	5,000	0.0	0	0.0	0	0	0
30	5,000	0.0	0	0.0	0	0	0
25	5,000	0.0	0	0.0	0	0	0
15	5,000	0.0	0	0.0	0	0	0
10	5,000	0,9	4	0.0	0	4	1,018
3	5,000	5.1	24	3.6	0	24	5,717
0.3	5,000	37.4	174	8.4	1	174	41,006
0.03	5,000	73.9	343	18.7	2	345	81,192
Unit Rates and		Humboldt		Oillusion	2% of building		\$236kn*3
Notas		Bay sol)		model soll			
		biome	1	below below	10,000 11 45		
	i	1		buildings			
1							

Table C.3.5. Calculated Costs and Other Parameters for Remediation of Contaminated Soil at the Reference Sealed Source Manufacturer Site (Unrestricted Land Use, With Soll Washing, Real World Data) Residual Dose Residual Dose Residual Dose Residual Dose Residual Dose Residual Dose

•

.

Page 1 of 3

ſ

24

1-

*

-

÷

			1	1	1 · · ·	Soil	Soil					
		•		Soll	Solt	Trensport	Transport	Soil	Soil		1 ·	1
	Total Soil	· · · · ·	Sofi	Packaging	Packaging	Loads,	Loads,	Transport	Incornent	Soll	C-1	
Residual Dose	Volume	Total Soil	Washing	Costs,	Costs, B-25	Gondola	Truck	Costa.	Costs.	Disposal Coase	Son	Soll Disposal
Rate	Removed	Weight	Costs	Gondola Car	Boxes	Cars	Loeds	Rell	Truck	@ \$10/6-3	Disposer Costs	Costs @
mietn/vit	m*3	NiT				/ cars	# Trucks	+		4	C +BUM 3	#350/11-3
Incl.												
HIGH		28	39 97A	100	1.844	. 1	1	4 000	1 225	2.000		
100		40	44 883	100	3 310			4,000	1,320	2,960	14,802	103,611
60	38	40	57.814	100	7 261		<u> </u>	4,000	2,050	<u>-0,313</u>	26,565	185,955
	84	102	87,014	100	0.544			4,000	0,300	11,817	<u> </u>	413,578
25	97	118	01,395	100	0,044		4	4,000	6,300	13,715	68,576	480,030
15	135	164	72,020	100	11,000		- 0	4,000	6,625	19,051	95,253	666,768
10	165	201	80,404	100	14,010			4,000	9,275	23,291	116,454	815,175
3	254	310	105,837	200	22,384		10	8,000	13,250	35,932	179,658	1,257,604
0.3	426	519	153,982	300	37,508	3	16	12,000	21,200	60,208	301,040	2,107,279
0.03	598	729	202,315	400	52,628	4	23	16,000	30,475	84,479	422,393	2.956.748
MEDIUM			<u> </u>	<u> </u>					-			
100	8	10	36,459	100	743	1	1	4,000	1,325	1,193	5,966	41 750
60	16	20	38,721	<u> </u>	1,451	1	1	4,000	1,325	2,329	11.645	<u> </u>
30	36	44	44,214	100	3,169	1	2	4,000	2,650	5,088	25.438	179 069
25	46	56	46,917	100	4,015	1	2	4,000	2,650	6,445	32 225	225 572
15	81	99	56,955	100	7,155	1	3	4,000	3,975	11,486	57 428	401.005
10	111	136	65,418	100	9,803	1	5	4,000	6,625	15.735	78 677	
3	201	245	90,626	200	17,688	2	8	8,000	10.600	28.394	141 969	000,739
03	373	455	139,081	300	32,847	3	14	12,000	18,550	52 728	762 620	993,773
0.0	6AR	665	187.546	400	48,008	4	21	16.000	27.825	77 062	203,020	1,845,397
0.03												2,697,179
LOW			0	0	0	0	0	0				
100			0	<u> </u>	0	0	0				0	0.
60						0	<u> </u>	<u> </u>				0
	0.				<u> </u>	- o					0	0
25					<u> </u>					0	0	0
15	0		0	100	201		·····	4 000	1 000	0	0	0
10	4	6	35,301	100	301			4,000	1,325	612	3,060	21,421
3	24	30	40,928	100	2,141			4,000	1,325	3,436	17,182	120,272
0.3	174	213	83,168	100	10,300			4,000	9,275	24,648	123,242	862,691
0.03	345	421	131,2/3	200	30,404	4 95 mm of	13	8,000	17,225	48,805	244,023	1,708,158
Unit Rates and		76 ibs/it*3	From RACER	e 100 per	• 4 4 U/m 3		7,290	andola talleer	#1,325 per truck	Costs for bulk	Costs for In-	Possible costs for
Notes	1			plastic finer		ralicar	4 boxes/truc		~~~	disposal facility	compact disposal at	future in-compact
	ł	1		and cover	1. A. A.		k load, or		$\alpha = 1$	\$10/11*3; rail	disposal facility	orsposal facilities for
		1		1			29,184 lbs			transport only	\$50/11" 3; truck	tuck transport entry
					1		sol/load				transport only.	umaport diny,
1	1	1	1		1	·	1					

Table C.3.5. Calculated Costs and Other Parameters for Remediation of Contaminated Soil at the Reference Sealed Source Manufacturer Site (Unrestricted Land Use, With Soil Washing, Real World Data) 1

NUREG-1496

Page 2 of 3

					1			
					1			ł
	Total Soli	Total Soil	Remediation	Costs	-			Total
Residual Dose	Volume	@ #10/it*3	@ \$50/11-3	@ \$350/ft*3	Soil Washing	Soil Excevation	Total Soil	Occupational
Rate	Disposed	Disposal Costs	Disposal Costs	Disposel Costs	Labor	Labor	Remediation Labor	Dose
menvyr	m'3		8	8	man-hr	man-hr	man-hr	person-mrem
HIGH								
100	8	<u> </u>	62,873	151,682	4	34	38	4
60	15	62,915	86,026	245,416	6	61	67	7
30	33	93,189	149,016	603,612	14	136	150	15
25	39	102,027	166,632	578,086	17	167	174	17
15	54	126,863	217,458	788,974	23	218	241	24
10	66	146,602	259,449	958,171	28	267	295	30
3	102	209,545	380,706	1,458,652	43	412	455	48
0.3	170	326,653	613,893	2,420,132	72	690	763	76
0.03	239	443,733	848,350	3,382,706	102	969	1,070	107
MEDIUM								
100	3	43,737	<u>46,478</u>	82,272	1	14	15	2
60	7	49,024	57,016	126,888	3	27	30	
30	14	61,866	8 936	236,586	6	58	64	<u> </u>
25	18	68,184	98,528	289,876	8	74	82	·
15	33	91,648	144,621	489,187	14	132	146	16
10	45	111,431	186,701	658,762	19	180	199	20
3	80	174,455	308,118	1,159,923	34	326	360	20
0.3	149	291,822	541,822	2,123,591	63	605	888	
0.03	218	409,210	776,892	3,088,760	93	884	977	- 0/
1014			·····					
100	0	0	0	0	0	0		
	0	. 0	0	0	0	0	·	0
30	0	0	0	0	0	<u> </u>		0
25	0	0	0	0	0	0		0
15	0	0	0	0	0	0		0
10		41.032	41.086	69.447	1	7	9	0
0	10	54 179	67.290	170.381	i	30		
	70	152 021	272 046	1 011 495	30	202		4
0.3	120	260 469	504.118	1 968 262		203		31
0.03	130	200,400		1,000,202	0.17 marcher	1.62 min his and	018	62
Unit Rates and	ACK of Lotal				m*3	an 3		0.1 mrem per man
Notes	soil vel.;							nr fébor
	remaining vol. is							
	s selessed							

Table C.3.5. Calculated Costs and Other Parameters for Remediation of Contaminated Soil at the Reference Sealed Source Manufacturer Site (Unrestricted Land Use, With Soil Washing, Real World Data)

NUREG-1496

.

\$4

•

Page 3 of 3

1

¥

4 			l				
	Contemin-	Site	- · · · ·	Below-	Batow-	Totel Soll	Site Soli
Residual Dose	ated Site	Sof	Site Soil	Building	Building Soil	Volume	- Excevation
- HITE	Soft Area	Depth	Voluma	Soil Depth	Volume	Removed	Costs
		GM		CIR	<u> </u>	m'3	
HIUH 100	6 000						
100	5,000	4.4		3.3	<u>0</u> .	21	4,925
60	5,000	8,0		4.6	1	38	8,839
	5,000	17.9	83	5.9		. 84	19,658
25	5,000	20.8	96	6.2	1	97	22,817
15	6,000	28.9	134	7.0		135	31,693
10	5,000	35.3	164	7.8	1	165	38,747
3	5,000	54.5	253	11.5	1	254	59,777
0,3	5,000	91.3	424		2	426	100,163
0.03	_5,000	128,2	<u> </u>	24.9	3	598	140,540
MEDIUM							
100	5,000	1.8	8	0.0	0	8	1,985
· 60	5,000	3.5	18	2.5	0	16	3,875
30	5,000	7.6	36	4.5	1	36	8,464
25	5,000	<u> </u>	45	4.9	1	46	10,722
15	5,000	17.4	81	5.8	1	81	19,108
10	5,000	23.8	111	6.5		111	26,178
3	5,000	43.1	200	8.2	1	201	47,236
0.3	5,000	80.0	371	16.5	2 ·	373	87,716
0.03	5,000	116.9	543	22.4	2	546	128,203
LOW							
100	5,000	0.0	0	0.0	0	0	0
60	5,000	0.0	0	0.0	0	0	0
30	5,000	0.0	0	0,0	0	0	0
25	5,000	0.0	0	0.0	0	0	
15	5,000	0.0	0	0.0	0	0	0
10	5,000	0.9	4	0.0	0	4	1 018
3	6.000	5.1	24	3.6	0	24	6 717
0.3	5.000	37.4	174	8.4	1	174	41.008
0.03	6.000	73.9	343	18.7	2	345	81 102
Linit Rates and		Humboldt		Diffusion	2% of building		1225 - 22
Notes		Bay soli		model soll	floor area		At Shu 9
110100		profile	· .	profile used	(6,000 ft*2)		
			· .	below			
				ອບສວສາຫຼຸເຮ			
·							

Table C.3.6. Calculated Costs and Other Parameters for Remediation of Contaminated Soil at the Reference Sealed Source Manufacturer Site (Unrestricted Land Use, Without Soil Washing, Real World Data)

C.C-93

NUREG-1496

Page 1 of 3

٠,

and the second se						Soil	Soil					
				Soli	Soil	Transport	Transport	Soil	Soil			
	Total Soil		Soil	Packaging	Packaging	Loads,	Loads,	Transport	Transport	Soll	Soil	Soil Disposal
Residual Dose	Volume	Total Soll	Washing	Costs,	Costs, B-25	Gondola	Truck	Costs,	Costs,	Disposal Costs	Disposal Costs	Costs @
Rate	Removed	Weight	Costs	Gondola Cer	Boxes	Cars	Loads	Flail	Truck	@ \$10//tt-3	@ \$60/11*3	\$350/11 3
riveriver.	m*3	MT	1	\$	•	# Cols	# Trucks	*			\$	
HIGH												
100	21	26	0	100	4,610	1	2	4,000	2,650	7,401	37,004	259,026
	38	46	0	100	8,275	1	4	4,000	5,300	13,282	66,412	464,886
	- 94	102	0	200	18,403	2	8	8,000	10,600	29,541	147,707	1.033.946
	07	118	0	200	21,360	2	9	8,000	11,925	34,288	171,439	1.200.074
	125	164	0	200	29,670	2	13	8,000	17,225	47,626	238,131	1.666.919
10	165	201	0	300	36,274	3	16	12,000	21,200	58,227	291,134	2.037.939
	264	310	0	400	55,981	4	24	16,000	31,800	89,829	449,144	3.144.010
	428	519	0	700	93,770	7	40	28,000	53,000	150,520	752,600	5.268.198
0.3	609	729	0	900	131,570	9	56	36,000	74,200	211,198	1.055.981	7.391.870
0.03												
MEDIUM	8	10	0	100	1,858	1	1	4,000	1,325	2,983	14,914	104.401
	16	20	0	100	3,627	1	2	4,000	2,650	6,823	29,113	203.791
	28	44	0	100	7,924	1	4	4,000	5,300	12,719	63,596	445 171
			Ō	100	10,038	1	5	4,000	6,625	16,112	80,561	F83 930
20	40	<u> </u>	0	200	17,888	2	8	8.000	10,600	28.714	143.669	1 004 006
15		116	0	200	24,507	2	11	8.000	14,676	39 338	198 692	1 276 946
10		215		300	44.221	3	19	12.000	25,175	70 984	254 910	7,370,040
3	201	4.5		600	82.117	. 6	35	24.000	48.375	131 814	650 071	2,404,432
0.3	3/3	400		800	120.019	8	51	32,000	67.675	192 656	982 279	4,013,494
0.03		0 35	-							102,000	303,270	0,742,948
LOW					0	0	0	0	<u> </u>	0		
100		<u> </u>			0	0	0				0	<u> </u>
60	<u> </u>	0				0	0			<u>`</u>		0
30	0	0					0	<u> </u>			0	0
25	0	0						<u> </u>	. 0			0
15	0	0	<u>`0</u>	100	052		1	4 000	1 325	1.620		0
10	4	5	0	100	803			4,000	1,320	1,530	7,650	53,553
3	24	30	0	100	0,302	<u> </u>		4,000	3,970	8,591	42,954	300,681
0.3	174	213	0	300	38,380	5	- 12	70,000	42 400	122 011	308,104	2,156,728
0.03	345	421	0	600	4220/010	96 tops of	7 244	20,000	41 325 out touch	Casta for but	610,056	4,270,395
Unit Rates and		76 105/11*3	From RACER	e tou per		soil per	ibs/box and	gondola railcar	load	disposal at LARW	Costs for m-	Possible costs for
Notes				plastic liner		railcar	4 boxes/truc	÷		disposal facility,	existing LLW	disposal facilities for
				and cover			k load, or			\$10/ft* 3; rail	disposal facility,	LLW, \$350/11"3;
1	1			{		!	29,164 106 solitoed			Vansport only	450/It*3; truck	truck transport only.
		1		1							transport only.	

Table C.3.6.	Calculated Costs and	Other Parameters for 1	Remediation of C	Contaminated Soll at	the Reference Sealed	Source Manufacturer Site
ບາ	prestricted Land Use,	Without Soil Washing,	Real World Dat	a)		

Page 2 of 3

٢

ť

NUREG-1496

. •

C.C-94

6 -

84

.

Residual Dose Reta mrem/yr	Total Sofi Valume Disposed m*3	Disposal Costs	fiemediation Ø #50/ft*3 Disposel Costs #	Costs @ #350/ft*3 Disposel Costs #	Soll Washing Labor man-hr	Soll Excevation Labor man-hr	Total Soil <u>Remediation Labor</u> man-hr	Total Occupational Dose person-mrem
HIGH								
100	21	16,425	49,189	271,212	0	34	34	3
60	38	26,221	88,826	487,300	0	61	61	6
30	84	57,400	196,368	1,082,608	0	136	136	14
25	97	65,305	227,541	1,256,176	0	157	157	16
15	135	87,519	316,719	1,745,507	0	218	218	22
10	. 165	109,274	387,355	2,134,159	0	267	267	27
3	. 254	166,005	596,682	3,291,547	0	412	412	41
0.3	. 426	279,383	999,533	5,515,132	0	690	690	69
0.03	598	388,637	1,402,291	7,738,180	0	969	969	97
MEDIUM								· · · · · · · · · · · · · · · · · · ·
100	8	9,068	20,083	109,569	. 0	14	14	1
60	16	13,797	39,265	213,943	0	27	27	3
	36	25,283	85,284	466,859	0	58	58	6
25	46	30,934	107,946	591,314	0	74	74	7
15	81	56,022	191,165	1,052,582	.0	132	132	13
10	111	73,716	261,952	1,442,108	0	180	180	18
3	201	130,520	471,651	2,601,064	0	326	326	33
	373	244,130	875,278	4,829,701	. 0	605	605	60
	546	353,658	1,279,075	7,058,744	0	884	884	88
0.05				•				00
100		0	0	0	0	0	0	
00		0	· 0	0	0	0	0	<u>0</u>
	0	0	0	. 0	0	0	0	
		0	0	0	0	0	0	<u>0</u>
15	0	0	0	0	0	0	.0	
10	4	6,648	10,947	56,849	0	7	7	1
3	24	18,408	57,998	315,725	0	39	39	4
	174	114.926	410,023	2,258,647	0	283	283	28
0.3	345	223,704	809,658	4,469,997	0	560	560	56
Unit Retes and Notes					0.17 man-ter per m*3	1.62 men-tr per m*3		0.1 mram per m hr laogr

Table C.3.6. Calculated Costs and Other Parameters for Remediation of Contaminated Soil at the Reference Scaled Source Manufacturer Site (Unrestricted Land Use, Without Soil Washing, Real World Data)

;

Page 3 of 3

	Contamin-	Site		Below-	Below-	Total Soil	Site Soil
Residual Dose	ated Site	Soil	Site Soil	Building	Building Soil	Voiume	Excevation
Rate	Soil Area	Depth	Volume	Soil Depth	Voiume	Removed	Costs
nvem/y/	11-2	cm	m-3	cm		m-3	
HIGH							
100	5,000	0.0	0	0.0	0	0	0
60	5,000	0.0	0	0.0	0	0	0
30	5,000	0.1	0	0.0	0	0	69
25	5;000	0.5	2	0.0	0	2	<u> </u>
15	5,000	1.8	8	0.0	0	8	1,979
10	5,000	3.0	14	1.6	0	14	3,384
3	5,000	1,2.8	<u>59</u>	5.2	1	60	14,085
0.3	5,000	49.3	229	8.3		230	64,058
0.03	5,000	86.1	400	10.7	1	401	94,292
MEDIUM							
100	5,000	0.0	0 .	0.0	0	0	0
60	5,000	0.0	0	0.0	0	0	0
30	5,000	0.0	0	0.0	0	0	0
25	6,000	0.0	0	0.0	0	0	0
15	5,000	0,0	0	0.0	0	0	0
10	5,000	0.9	4	0.0	0	4	1,029
3	5,000	5.2	24	3.7	0	25	5,762
0.3	5,000	37.9	176	7.5	1	177	41,608
0.03	5,000	74.8	348	9.9	1	349	81,949
LOW .							
100	5,000	0.0	0	0.0	0	0	0
60	6,000	0.0	0	0.0	0	0	0
30	5,000	0.0	0	0.0	0	0	0
26	5,000	0.0	0	0.0	0	0	0
15	6,000	0.0	0	0.0	0	0	0
10	5,000	0.0	0	0.0	0	0	0
	6.000	0.0	0	0.0	Ō	Ō	0
	6 000	3.6	17	2.3	ō	17	3 990
0.3	5,000	32.2	149	7.0	1	150	35.281
Unit Rates and		Humboidt		Diffusion	2% of building		\$235/m*3
Notes		Bay soli profile		model soil prolite used below buildings	floor area {6,000 ((* 2)		

Table C.3.7. Calculated Costs and Other Parameters for Remediation of Contaminated Soil at the Reference Sealed Source Manufacturer Site (Restricted Land Use, With Soil Washing, Real World Data)

.

٤.

la.

C.C-96

Page 1 of 3

۲.

			1	:		Soil	Soil					
	1			Soil Soil	Soll	Transport	Transport	Soil	Sol	· ·		
	Totel Soil		Soll	Packaging	Packaging	Loads,	Loads,	Transport	Transport	Soll		
Residual Dose	Volume	Total Soil	Washing	Costs,	Costs, 8-25	Gondola	Truck	Costs,	Costs.	Disnosal Costa	Son	Soil Disposal
Rete	Removed	Weight	Costs	Gondols Car	Boxes	Cers	Loads	Ratt	Truck	@ \$10//+-2	Costs	Costs @
tylment	m*3	MT			\$	/ cars	# Trucks					#350/ft*3
HIGH												
100	0 .	0	0	0	0	0	0	0	0			
60	0	0	0	0	0	0.	0	0	0			0
30	0	0	34,165	100	26	1.	1 .	4.000	1.325	41		0
25	2	3	34,782	100	219	1	1	4.000	1.325	361	207	1,447
15	8	10	36,452	100	741	1	1	4.000	1.325	1 100	1,758	12,289
10	14	- 17	38,109	100	1,260	1	1	4.000	1.325	2 022	0,949	41,640
3	60	73	50,943	100	5,274	1	3	4.000	3.975	8 487	10,111	70,775
0.3	230	280	98,792	200	20,243	2	9	8.000	11.925	32 494	42,333	296,328
0.03	401	489	146,954	300	35,309	3	15	12,000	19 875	58,494	162,470	1,137,291
			· ·						10,075	50,079	283,394	1,983,757
100	0	0	0	0	0	0	0	0	0			
60	0	Ō	0	0	0	0	0	0	0		0	0
30	0	0	0	0	0	0	0	0	0		·	0
25	0	0	. 0	0	0	0	0	0			0	0
15	0	0	0	0	0	0	0	0			0	00
10	A	5	35,314	100	385	1	1	4.000	1 325	610	0	0
	25	30	40.980	100	2.158	• 1	1	4,000	1 325	2 484	3,093	21,649
	177	216	83.887	200	15.580	2	7	B 000	0.275	3,404	17,319	121,231
0.3	240	A25	132.179	200	30,687	2	13	8,000	17 225	25,009	125,047	875,330
0.03		420	1041110					0,000	17,220	49,260	246,298	1,724,087
LOW			0	0	0	0						
		0	0	0	0	0				0	0	0
60			0		0				0	0	<u> </u>	0
30					0	0				0	0	0
25					ŏ	ŏ		0	0	0	0	0
15						<u> </u>	<u> </u>			0	0	0
10	<u> </u>					~				0	0	0
3	0		30 070	100	1 408			4 000	0	0	0	0
0.3	17	21	30,070	100	13 212			4,000	1,325	2,404	12,020	84,140
0.03	150	103	10,310	4100.00	\$220/m ⁺ 3	95 1005 of	7 296	4,000	7,950	21,207	106,037	742,257
Unit Rates and		10 101111 3	Model	gondots cer for	AFANN A	solt per	ibs/box and	oondols tellear	toad	Costs for bulk	Costs for In-	Possible costs for
Notes				plastic liner		raticar	4 boxes/truc	-		discosal fability	compact disposal at	future in-compact
				and cover			k load, or			\$10//t*3; rail	disposal facility	disposal facilities for
{				1			29,184 lbs]]	transport only	#50/11" 3; truck	tuck transport onthe
			1						1		transport out /.	warmport disy.
•		•		3					1 1			

Table C.3.7. Calculated Costs and Other Parameters for Remediation of Contaminated Soil at the Reference Sealed Source Manufacturer Site (Restricted Land Use, With Soil Washing, Real World Data)

NUREG-1496

Page 2 of 3

فيستعمل فالمكان استعمادهم	The second second second second second second second second second second second second second second second s				The second second second second second second second second second second second second second second second s			
	Total Soil	Total Soil	Remediation	Costs				Total
Residual Dase	Volume	@ \$10//(*3	@ \$50/11*3	@ \$350/11"3	Soil Washing	Soil Excevation	Total Soil	Occupationat
Rate	Disposed	Disposal Costs	Disposal Costs	Disposal Costs	Labor	Labor	Remediation Labor	Dose
nvem/yr	m*3	\$	\$		man-hr	man-hr	man-hr	person-mrem
HIGH								
100	0	0	0	0	0	0	0	0
60	0	0	0	0	0	0	0	0
30	0	38,375	35,791	37,031	0	0	1	0
25	1	39,817	38,665	49,198	0	4	4	0
16	3	43,721	46,446	82,137	1	14	15	2
10	6	47,596	54,169	114,833	2	23	26	3
3	24	77,594	116,610	370,606	10	97	107	1:
0.3	92	193,543	347 488	1,322,308	39	373	412	41
0.03	160	310,224	<u>579 824</u>	2,280,187	68	650	718	72
MEDIUM								
100	0	0		0	0	0	0	0
60	0	0	<u> </u>	0	0	0	0	0
30	0	0	<u> </u>	0	0	0	0	0
25	0	0	0	0	0	0	0	0
15	0	· 0	00	0	0	0	0.	0
10	2	41,062	41,148	59,703	1	7	8	1
3	10	54,306	67,544	171,457	4	40	44	4
0.3	71	158,702	275,395	1,025,679	30	287	317	32
0.03	139	271,588	508,339	1,986,128	59	565	624	62
IOW								·····
100	0	0	0	0	0	0	0	
60	0	0	0	0	0	0	0	
30	0	0	0	0	0	0	0	0
	0.	0	· ^	0	0	0	0	
15	0	0	0.	0	0	0	0	0
10	0	0	0	0	0	0	0	
	0	0	0	0	0	0	0	
		49.373	67.712	129,832	3	28	30	
0.3	60	136,904	238,795	875,015	26	243	269	
0.03	Discoul volume				0.17 men-hr per	1.62 man hr ow		21 D.1 m/am and and
Unit Hales and	is 40% of total				m*3	m*3		hr labor
Notes	solt vol.;				1			
1	remaining vol. 14				l (
l	18486944							
I						· ·		

Table C.3.7. Calculated Costs and Other Parameters for Remediation of Contaminated Soil at the Reference Sealed Source Manufacturer Site (Restricted Land Use, With Soil Washing, Real World Data)

41

80

Page 3 of 3

¥

•

Table C.3.8. Calculated Costs and Other Parameters for Remediation of C	Contaminated Soil at the Re	ference Sealed Source Manufacturer Si	te
(Restricted Land Use, Without Soil Washing, Real World Data)		

. .

ι.

۰.

Residuet Dose Rete	Contemin- ated Site Solt Aree	Site Site Di pth	Site Soli Volume	Belaw- Duilding Soil Depth	Belaw- Building Soll Voluma	Totel Soil Volume Removed	jSite Soff Excevetion Costs
mien/yr	<u>n-5</u>	cm	m 3	¢m	. m ⁻ 3	m*3	•
HIGH			_	L			
100	5,000	0,0	0	0.0	0	0	0
60	5,000	0.0	0	0.0	0	0	0
30	5,000	0.1	0	0.0	0	0	69
25	5,000	0.5	2	0.0	0	2	584
15	6,000	1.8	8	0.0	0	8	1,979
10	5,000	3.0	14	1.6	0	14	3,364
3	5,000	12.8	59	5.2	1	60	14,085
0.3	5,000 -	49.3	229	8.3	1	230	54,058
0.03	5,000	86.1	400	10.7	1	401	94,292
MEDIUM							
100	5,000	0.0	0	0.0	0	0	0
60	5,000	0.0	0	0.0	0	0	0
30	5,000	0.0	0	0.0	0	0	0
25	5,000	_ 0.0_	0	0.0	0	0	0
15	5,000	0.0	0	0.0	0	0	0
10	5,000	0.9	4	0.0	0	4	1,029
3	5,000	5.2	24	3.7	0	25	5,762
0.3	5,000	37.9	176	7.5	1. m t - 1	177	41,606
0.03	5,000	74.8	348	9,9	1	349	81,949
LOW				4.4			
100	5,000	0.0	0	0.0	0	0	0
60	6,000	0.0	· 0	0.0	0	0	0
30	5,000	0.0	0	0.0	0	0	0
25	5,000	0.0	0	0,0	0	0	0
15	5,000	0.0	0	0.0	0	0	0
10	5,000	0.0	0	0.0	0	0	
3	5,000	0.0	0	0.0	0	0	0
0.3	5,000	3.6	17	· 2.3	0	17	3 999
0.03	5,000	32.2	149	7.0	· 1	150	35,281
Unit Rates and Notes	-	Humboldt Bay sofi profile		Diffusion model soil profile used below buildings	2% of building floor area (6,000 ft*2)		4235/m*3
1				L	1		

C.C-99

、 .

...

NUREG-1496

Page 1 of 3

NUREG-1496

. .

85

1.0

				Soft	Soit	Transport	Transport	Soil	Soil			
	Total Soil		Soil	Packaging	Packaging	Loads,	Loads,	Transport	Transport j	Soil	Soit	Soil Disposal
Residual Dose	Volume	Total Soil	Washing	Costs,	Costs, 8-25	Gondola	Truck	Costs,	Costs,	Disposal Costs	Disposal Costs	Coste Q
Rate	Removed	Weight	Costs	Gondola Car	BOAJS	Cars	Loads	Rail	Truck	@ #10//(*3	@ \$50/11*3	\$350/ft*3
mrem/yr	m•3	MT	\$		•	# CAIS	# Trucks	•	\$	\$	8	•
HIGH												
100	0	0	0	0	0	· 0	0	0	0	0	0	0
60	0	0	0	0	0	0	0	0	0	. 0	0	0
30	0	0	0	100	64	1		4,000	1,325	103	517	3.618
25	2	3	0	100	547	1	1	4,000	1,325	8.78	4,389	30,722
15	8	10	0	100	1,853	1	1	4,000	1,325	2,974	14,872	104,101
10	14	17	0	100	3,149	1	2	4,000	2,650	5,055	25,277	176,937
3	60	73	0	100	13,186	1	6	4,000	7,950	21,166	105,832	740.821
0.3	230	280	0	400	50,607	4	22	16,000	29,150	81,235	406,175	2.843.227
0.03	401	489	0	600	88,273	6	37	24,000	49,025	141,697	708,485	4,959,392
MEDIUM						. <u> </u>						
100	0	0	0	0	0	0	0	0	0	0	0	0
60	0	0	0	0		0	0	0	0	0	0	0
30	0	0	0	0	<u> </u>	0	0	0	0	0	0	0
25	0	0	0	0	<u> </u>	0	0	0	0	0	0	0
15	0	0	0	0	0	0	0	0	0	0	0	0
10	4	· 5	0	100	963	1	1	4,000	1,325	1,546	7,732	54.123
3	25	30	0	100	5,395	1	3	4,000	3,975	8,659	43,297	303.079
0.3	177	216	· 0	300	38,951	• 3	17	12,000	22,525	62,524	312,618	2,188,326
0.03	349	425	0	500	76,719	5	33	20,000	43,725	123,149	615,746	4 310 218
LOW												
100	0	0	0	0	0	0	0	0	0	0	0	
60	0	0	0	0	0	0	0	0	0	0	0	0
30	0	0	0	0	· 0 ·	0	0	0	0	0	0	0
	0	0	0	0		0	0	0	0	0	0	0
15	0	0	0	0	0	0	0	0	0	0	0	0
10	0	0	0	0	0	0	0	0	0	0	0	0
3	0	0	0	0	0	0	0	0	0	0	0	0
03	17	21	0	100	3,744	1	2	4,000	2,650	6,010	30,050	210.350
0.03	150	183	0	300	33,029	3	14	12,000	18,550	53,018	265,092	1,855,642
Linit Rates and		76 Baltt 3	From RACER	\$100 per	\$220/m*3	95 tons of	7,296	\$4,000 per	01,325 per truck	Costs for buik	Costs for in-	Possible costs for
Notae			Model	gonoota car for		son per tailcar	4 boxes/true	yonqole failcar	ioad	disposal at LARW	compact disposal at	future in-compact
110108			´	and cover	1		k load, or			شرع: 3: \$10/11 at 10/11	discosal Jacitics	disposal facilities for
		1	ļ				29,184 lbs			transport only	150/11 3; truck	HUCK #405001 0014
		}		1]		beoNioa				transport only.	and a support dray.
		1	1				L					

<u>Table C.3.8</u>. Calculated Costs and Other Parameters for Remediation of Contaminated Soil at the Reference Sealed Source Manufacturer Site (Restricted Land Use, Without Soil Washing, Real World Data)

C.C-100

*

s

							1	·····
					-			1
	Total Soll	Totel Soil	Remediation	Costs				Total
Residual Dose	Volume	@ #10/ft*3	@ \$50/ft*3	@ \$350/11-3	Soll Washing	Soil Excevetion	Totel Soll	Occupational
Rete	Dispased	Disposel Costs	Disposal Costs	Disposel Costs	Lebor	Labor	Remediation Labor	Dose
menvyr	m*3	•	• · · · · ·	*	man-hr	man-hr	man-hr	person-mrem
HIGH			-					
100	0	0	0	0	0	0	0	0
60	0	0	0	0	0	0	0.	0
30	0	4,272	1,975	5,076	0	0	0	0
25	2	6,562	6,845	33,178	0	4	4	0
15	8	9,054	20,029	109,258	0	14	14	1
10	14	12,619	34,440	186,100	. 0	23	23	2
3	60	39,351	141,053	776,042	0	97	97	10
0.3	230	161,693	539,990	2,977,042	0	373	373	37
0.03	401	260,589	940,075	5,190,982	С	850	650	65
MEDIUM								
100	0	0	0	0	0	0	0	0
60	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	0	0
25	0	0	Ŀ	0	0	0	0	0
15	0	0	0	0	0	0	0	<u> </u>
10	4	6,675	11,049	67,441	0	7	7	1
	25	18,522	58,429	318,211	0	40	40	4
	177	116,430	415,700	2,291,408	0	287	287	29
0.03	349	225,599	818,138	4,512,611	0	565	565	56
0.00						· · ·		
100		0	0	0	0	0	0	0
		0	0	0	0	0	0	0
	0	0	0	0	0	0	0	
		0	0	0	0	0	0	0
	0	0	0	0	0	0	0	0
		0	0	0	0	0	0	0
		0	0	0	0	.0	0	
	17	14.109	40,443	220,743	0	28	28	3
	150	100.599	351,952	1,942,502	0	243	243	24 -
0.03				[0,17 man-tir per	1.62 man-hr per		0.1 mrem per man
Unit Hates and					m*3	m*3		Iv labor
- Notes			and the second sec					
			1					1
	1							1
l	1						1	

Table C.3.8. Calculated Costs and Other Parameters for Remediation of Contaminated Soil at the Reference Sealed Source Manufacturer Site (Restricted Land Use, Without Soil Washing, Real World Data)

NUREG-1496

Page 3 of 3

Table C.4.1. Calculated Costs and Other Parameters for Remediation of Contaminated Soil at the Reference Rare Metal Extraction Plant (Unrestricted Land Use, With Soil Washing)

•

	Centernin-			Below-	Below-			Site Soit
	aled Site	Site Soll	Site Soli	Building Soil	Building Soil	Sieg Pile	Volume	Excevellon
Residual Dose Rate	Soll Area	Depth	Volume	Depth	Volume	Volume	Removed	Costs
miem/yt	ít*2	cm	m*3	om	m*3	m*3	m*3	•
HIGH								
100	100,000	0.18	14	0.18	0	7,000	7,015	1,648,490
60	100,000	0.52	- 48	0.52	1	7,000	7,050	1.650.733
30	100,000	0.80	74	0.80	2	7,000	7,078	1,682,916
26	100,000	0.84	78	0.84	2	7,000	7,081	1,683,948
15	100,000	0.93	87	0.93	3	7,000	7,089	1,668,007
10	100,000	0.98	91	0.98	3	7,000	7,094	1,687,037
3	100,000	1.64	152	1.64	5	7,000	7,157	1.681.839
0.3	100,000	2.00	185	2.00	8	7,000	7,191	1,689,976
0.03	100,000	2.91	270	2.91	8	7,000	7,278	1.710.408
MEDIUM								
100	100,000	0	0	0	0	7,000	7,000	1,845,000
60	100,000	0	0	0	0	7,000	7,000	1,845,000
30	100,000	0,52	48	0.52	1	7,000	7,050	1,858,733
25	100,000	0.61	57	0.61	2	7,000	7,059	1,658,794
15	100,000	0.80	74	0.80	2	7,000	7,078	1,682,916
10	100,000	0.89	83	0.89	2	7,000	7,085	1.664,977
3	100,000	1.24	115	1.24	3	7,000	7,119	1.672.908
0.3	100,000	1.98	192	1.96	5	7,000	7.197	1.688.983
0.03	100,000	2.79	260	2.79	8	7,000	7.267	1.707.825
LOW								
100	100,000	0	0	0	U	7,000	7.000	1.645.000
60	100,000	0	0	0	0	7.000	7.000	1.645.000
30	100,000	0	0	0	0	7,000	7.000	1.845.000
25	100,000	0	0	0	0	7.000	7.000	1,645,000
15	100,000	0.18	14	0.16	0	7.000	7.015	1 848 490
10	100.000	0.46	43	0.48	1	7.000	7 044	1 855 350
	100.000	0.89	83	0,89	2	7.000	7.045	1 884 077
	100.000	1.77	184	1.77	5	7.000	7 160	1 884 010
· 0.03	100.000	2.28	210	2.28	8	7000	7.218	1 895 779
Linit Rates and		Diffuelen		Diffuelon	2% of building		77210	\$235/m*3
Notes		model soll		medel seil	fingr area			
		profile		prolite used	(150,000			
				buildings	11 21			
Page 1 of 3								

7

٤,

Table C.4.1. Calculated Costs and Other Parameters for Remediation of Contaminated Soil at the Reference Rare Metal Extraction Plant (Unrestricted Land Use, With Soil Washing)

.

							Soll	Soil		1	1	1	
					Soll	Soil	Trensport	Transport	Soil	Soil			
	Totel Soll		Volume of	- '	Packaging	Packaging	· Loads,	Loeds,	Transport	tregenerT	Soll	Soft	Soil Disposel
Residuel	Volumie	Totel Soll	Seil	Soil Washing	Costs,	Costs, B-25	Gendola	Truck	Costs,	Costs,	Disposal Costs	Disposal Costs	Costs @
Dove Rete	Removed	. Weight	Washed	Costs	Gondole Cer	Doxee	Care	Loads	Rell	Truck	@ #10/11-3	@ #50/11-3	\$350/h*3
mrem/yt	m°3	MT	m-3				S Dets	/ Trucks					•
HIGH									<u>. :</u>				
100	7,015	8,548	15	38,200	9,900	1,541,307	99	645	.395,000	854,625	2,474,113	12,370,563	86,593,943
60	7,050	8,590	. 50	48,127	10,000	1,544,394	100 .	646	400,000	855,950	2,479,008	12,395,339	86,767,372
30	7,076	8,622	78	55,528	10,000	1,546,709	100	647	400,000	857,275	2,482,784	12,413,920	86,897,443
25	7,081	8,628	81	58,782	10,000	1,547,095	100	647	400,000	857,275	2,483,403	12,417,017	80,919,122
15	7,089	8,638	89	59,229	10,000	1,547,866	100	648	400,000	858,600	2,484,642	12,423,211	.86.962.479
10	7,094	8,644	94	60,462	10,000	1,548,252	100	648	400,000	858,600	2,485,282	12,428,308	86.984.158
3	7,157	8,720	157	78,180	10,000	1,553,795	100	650	400,000	801,250	2,494,159	12,470,793	87.295.550
0.3	7,191	8,762	191	87,801	10,000	1,550,805	100	651	400,000	862,575	2,498,990	12,494,950	67.464.648
0.03	7,278	8,869	278	112,376	10,100	1,564,492	101	655	404,000	807,875	2,511,330	12,556,651	87,896,560
MEDIUM						· · · · · · · · · · · · · · · · · · ·							
100	7.000	8,529	0	0	9,900	1,540,000	99	644	396,000	853,300	2,472,015	12,300.075	86.520.525
00	7.000	8,529	0	0	9,900	1,540,000	99	044	396,000	853,300	2,472,015	12.300.075	80.520.525
30	7.050	8,590	50	48,127	10,000	1,544,394	100	646	400,000	855,950	2,479,068	12.395.339	86,767 372
25	7.059	8,601	59	50,594	10,000	1,545,105	100	646	400,000	855,950	2,480,307	12,401,533	86 810 779
15	7.076	8.822	76	55,528	10,000	1,546,709	100	647	400,000	857,275	2,482,784	12,413,920	86 897 443
10	7.085	8.633	85	57,995	10,000	1,547,481	100	647	400,000	857,275	2,484,023	12,420,114	86 940 801
	7 119	8.674	119	67,489	10,000	1,550,451	100	- 649	400,000	859,925	2,488,790	12.443.952	87 107 663
	7 187	8.757	187	86,732	10,000	1,550,470	100	651	400,000	862,575	2,498,453	12,492,266	87 445 850
0.0	7 287	8 855	267	109.280	10,100	1,563,526	101	654	404,000	866.550	2,509,779	12 548 894	97 842 257
0.03	- 1,201	-0,000										12,040,004	07,042,257
LOW	7 000	9 520	0	0	9.900	1.540,000	99	844	395.000	853.300	2.472.015	12 380 075	08 520 525
100	7,000	0,520		0	9,900	1.540.000	. 99	644	396.000	853,300	2 472 015	12,300,075	00,520,525
60	7,000	0,020		0	9,900	1.540.000	99	644	395.000	853 300	2 472 015	12,300,075	00,520,525
	7,000	8,529		<u> </u>	9,000	1 540 000	99	844	395 000	853 300	2,472,015	12,300,075	00,520,525
25	7,000	8,529	45	20.000	0,000	1 541 307	00	845	305,000	954 425	2,472,018	12,300,075	86,520,525
15	7,015	8,548	10	30,200	10,000	1 543 970	100	848	400,000	055 050	2,474,113	12,370,563	86,593,943
10	7,044	8,583	44	40,403	10,000	1 647 491	100	647	400,000	050,800	2,470,242	12,391,210	86,738,467
3	7,085	8,633	85	21,992	10,000	1,547,401	100	851	400,000	007,270	2,484,023	12,420,114	86.940,801
0.3	7,169	8,736	169	81,743	10,000	1,004,010	101	662	404 000	863 000	2,495,948	12,479,740	87,358,179
0.03	7,210	8,793	210	94,807	10,100	1,000,010	101	7.286	404,000	003,800	2,502,538	12,512,692	87,588,845
Unit Rates		76 lbs/ft*3	Only self	LINU UVCELI MOGA	gondele ser fer	ABEA4M A	soll per	the foox and	gendels sellcer	loed	dispesal at LARW	Cotts for in-	Possible costs for
end Notes		1	pentem. ska		plessia liner		rollast	4 bozes/true			disposal facility,	At existing LLW	disposal facilities for
	1		is weshed,		and cover		1	k lead, or			0 10//t * 32 sall	disposal facility,	LLW, 1350/11'3:
			and not the	1	1			29,184 fbe		1	transport only	\$50/1t '3; truck	truck transport only.
1		1	7,000 m 3			i Pen	<u> 2 of 3</u>			ł		transport only.	

£

C.C-103

NUREG-1496

	Tetal Soli	Total Soil	Bemediation	Costa				_
	Volume	Ø 110///:*3	Ø \$50//(*3	@ \$350/(1*3	1	Sall Freewallow	Total Call	Total
Residual Dose Rele	Disposed	Disposal Costs	Disposal Costs	Disposal Costs	Soll Washing Labor	Labor	Remediation Labor	Occupational
mrem/yr	m*3		•	8	man-hr	man-hr	man-hr	Dalter-miam
HIGH								
100	7,008	4,568,762	16,453,245	90,676,624	3	11.364	11.367	1 122
60	7.020	4,593,928	18,600,543	90,872,576	8	11.421	11,429	1 142
	7,030	4,611,228	10,530,348	91,019,871	13	11,484	11.478	1 149
25	7,032	4,614,111	10,542,095	91,044,199	14	11,471	11.484	1 149
15	7,038	4,619,878	16,554,913	91,094,181	15	11,485	11.500	1 150
10	7,038	4,622,761	18,560,660	91,118,510	16	11,492	11.508	1,151
3	7,083	4,684,177	16,645,858	91,470,613	27	11,594	11,621	1,182
0.3	7,078	4,688,687	16,692,006	91,661,704	32	11,649	11,682	1,168
0.03	7,111	4,748,212	18,811,800	92,151,708	47	11,791	11,838	1,184
MEDIUM			4					
100	7,000	4,522,915	10,398,375	90,558,825	0	11,340	11,340	1.134
60	7,000	4,522,915	16,398,375	90,558,825	0	11,340	11,340	1,134
30	7,020	4,593,928	16,500,543	90,872,578	8	11,421	11,429	1,143
25	7,023	4,599,695	16,512,037	90,921,233	10	11,435	11,445	1,145
15	7,030	4,611,228	16,536,348	91,019,871	13	11,464	11,476	1,148
10	7,034	4,616,995	10,547,842	91,068,528	14	11,478	11,492	1,149
3	7,048	4,639,188	16,594,725	91,258,438	20	11,532	11,553	1,165
0.3	7,075	4,684,169	18,687,028	91,640,619	32	11,643	11,875	1,168
0.03	7,107	4,740,989	16,798,080	92,089,444	45	11,773	11,819	1,182
LOW								
100	7,000	4,522,915	16,398,375	90,558,825	0	11,340	11,340	1.134
60	7,000	4,522,915	16,398,375	90,558,825	. 0	11,340	11,340	1.134
30	7,000	4,522,915	16,398,375	90,559,825	0	11,340	11,340	1,134
25	7,000	4,522,915	16,398,375	90,558,825	0	11,340	11,340	1.134
15	7,008	4,588,782	16,453,245	90,676,624	3	11,384	11,387	1.137
10	7,018	4,590,084	16,492,881	90,840,138	7	11,411	11,419	1.142
3	7,034	4,610,995	16,547,842	91,068,528	14	11,478	11,492	1,149
0.3	7,088	4,672,508	16,663,783	91,542,222	29	11,614	11,643	1,164
0.03	7,088	4,707,285	10,728,254	91,802,408	37	11,690	11,727	1,173
Unit Rates and	Disposal vol. is				0.17 mon-hr per	1.62 mon-br per		0.1 min per man-h
Notes	total Goil vol.			1	w.3	E'm		lebor
	weahed sail;	l i		1				1
1	remaining vel.							1
	le selected		1	Page 3 of 3				1

Table C.4.1. Calculated Costs and Other Parameters for Remediation of Contaminated Soil at the Reference Rare Metal Extraction Plant (Unrestricted Land Use, With Soil Washing) Total Soil Total Soil Bamediation Costs 0 Total Soil 0 \$10/it*3 0 \$50/it*3 Soil Excession

•

. . ..

8.1

K7

*

1

		1	:					
	Contemin.	Sta		Relow	Below			
Residual Dose	ated Site	Soft	Site Soll	Building	Building Soll	Sies Pile	10(11 50)	5118 50/1
Rate	Soll Area	Depth	Volume	Soll Depth	Volume	Volume	Removed	
mrem/yr	ft-2	om	m*3	cm	m*3	m*3	m*3	
HIGH								
100	100,000	0,16	14	0.16	0	7.000	7.015	1.848.490
60	100,000	0.52	48	0,52	1	7.000	7.050	1.656 733
30	100,000	0.80	74	0,80	2	7.000	7.078	1.662.916
25	100,000	0,84	78	0.84	2	7,000	7.081	1.663.946
15	100,000	0,93	87	0.93	3	7,000	7.089	1.666.007
10	100,000	0,98	91	0.98	3.	7.000	7.094	1 667 037
3	100,000	1.64	152	1.64	5	7.000	7.157	1,681,839
0.3	100,000	2.00	185	2.00	6	7,000	7.191	1.689.876
0.03	100,000	2.91	270	2.91	8	7,000	7.278	1,710,406
MEDIUM								
100	100,000	0	0	0	0	7,000	7.000	1.645.000
60	100,000	0	0	0	0	7,000	7.000	1.645.000
30	100,000	0.52	48	0.52	1	7,000	7.050	1.656.733
25	100,000	0.61	57	0.61	2	7,000	7.059	1.658.794
15	100,000	0.80	74	0.80	2	7,000	7.076	1,662,916
10	100,000	0.89	83 ·	0.89	2	7,000	7.085	1.664.977
3	100,000	1.24	115	1.24	3	7,000	7,119	1.672.908
0.3	100,000	1.96	182	1.98	5	7.000	7.187	1.688 983
0.03	100,000	2.79	250	2.79	8	7,000	7.267	1,707,825
LOW	1							
100	100,000	0	0	0	0	7,000	7.000	1.645.000
60	100,000	0	0	0	0	7,000	7.000	1.645.000
30	100,000	0	0	0	0	7,000	7.000	1.645.000
25	100.000	0	0	0	0	7.000	7.000	1.645.000
15	100,000	0.16	14	0.16	0	7.000	7.015	1.648.490
10	100.000	0.46	43	0.46	1	7.000	7.044	1.655.359
3	100,000	0,89	83	0.89	2	7.000	7.085	1.664.977
0.3	100.000	1.77	164	1.77	5	7.000	7.169	1 884 815
0.03	100,000	2.26	210	2,26	6	7000	7.216	1.695.779
Unit Retes and		Ditturien		Dittution	2% of building			\$235/m*3
Notes		medel coll		model eoli	fleor area			- · · · -
		prorise		prefile used	(150,000			
	· .	below		buildings				
		buildings					ŕ	
			f	1				

Table C.4.2. Calculated Costs and Other Parameters for Remediation of Contaminated Soil at the Reference Rare Metal Extraction Plant (Unrestricted Land Use, Without Soil Washing)

...

NUREG-1496

Constraints and the second seco

Page 1 of 3

<u>Table C.4.2</u> .	Calculated Costs and Other Parameters for Remediation	of Contaminated Soil at the Reference Rare Metal Extraction Plant
	(Unrestricted Land Use, Without Soil Washing)	

.

8r

			1) Soil	501					
				Soll	Soli	Transport	Transport	Soil	Soll			1
	Total Soil		Soll	Packaging	Packaging	Loade,	Loads,	Transport	Treneport	Sall	Soil	Soil Disnosat
Residuel Dose	Volume	Total Soli	Washing	Costs,	Costs. B-25	Gondole	Truck	Costs,	Coste,	Disposal Costs	Disposal Costs	Costs @
Flate	Removed	Weight	Costs	Gondola Car	Boxes	Cars	Loads	Rail	Truck	@ \$10//12*3	@ \$50/11-3	\$350/It*3
mrem/yr	m*3	MT	•	• · · ·		I Care	# Trucks		•		\$	
HIGH												
100	7,015	8,548	0	10,000	1,643,267	100	646	400,000	855,950	2,477,259	12,386,296	86.704.070
60	7,050	8,590	0	10,000	1,550,984	100	649	400,000	859,925	2,489,647	12.448.235	87.137.642
30	7,078	8,622	0	10,000	1,556,772	100	651	400,000	862,575	2,498,938	12,494,689	87.462.821
25	7,081	8,629	0	10,100	1,557,737	101	652	404,000	863,900	2,500,488	12.502.431	87 517 017
15	7,089	8,63,8	0	10,100	1,559,666	101	652	404,000	863,900	2,503,583	12.517.916	87 625 410
10	7,094	8,64.4	0	10,100	1,560,631	101	653	404,000	865,225	2,505,132	12.525.658	87 679 607
3	7,157	8,7:0	0	10,200	1,574,487	102	659	408,000	873,175	2,527,374	12.636.870	88 458 097
0.3	7,191	8,7E2	0	10,200	1,582,012	102	682	408,000	877,150	2,539,452	12.697.262	89,880,832
0.03	7,278	8,889	0	10,300	1,601,2?1	103	670	412,000	887,750	2,570,303	12.851.516	89 960 612
MEDIUM								-				
100	7,000	8,529	0	9,900	<u>1,540,C 'O</u>	99	644	396,000	853,300	2,472,015	12,360,075	86.520 525
60	7,000	8,529	0	9,900	1,540,090	99	644	396,000	853,300	2,472,015	12.360.075	86,520,525
30	7,050	8,590	0	10,000	1,550,914	100	649	400,000	859,925	2,489,647	12,448,235	87,137,642
25	7,059	8,601	0	10,000	1,552,9:4	100	650	400,000	861,250	2,492,744	12,463,719	87 246 035
15	7,076	8,622	0	10,000	1,556,772	100	651	400,000	862,575	2,498,938	12,494,689	87.462.821
10	7,085	8,633	0	10,100	1,558,701	101	652	404,000	863,900	2,502,035	12,510,173	87.571 214
3	7,119	8,674	0	10,100	1,566,127	101	655	404,000	867,875	2,513,953	12,569,767	87 988 370
0.3	7,187	8,757	0	10,200	1,581,176	102	661	408,000	875,825	2,538,110	12.690.551	88 833 860
0.03	7,267	8,855	0	10,300	1,598,815	103	669	412,000	886,425	2,566,424	12,832,122	89 824 855
LOW			 				L					
100	7,000	8,529	0	9,900	1,540,000	99	644	396,000	853,300	2,472,015	12,360,075	86.520.525
60	7,000	8,529	0	9,900	1,540,000	99	644	396,000	853,300	2,472,015	12,360,075	86.520.525
30	7,000	8,529	0	9,900	1,540,000	99	644	396,000	853,300	2,472,015	12.360.075	86 520 525
25	7,000	8,529	0	9,900	1,540,000	99	644	396,000	853,300	2,472,015	12,360.075	86 520 525
15	7,015	8,548	0	10,000	1,543,267	100	646	400,000	855,950	2,477,259	12,386,296	86,704,070
. 10	7.044	8,583	0	10,000	1,549,698	100	648	400,000	858,600	2,487,582	12.437.911	87 085 380
3	7,085	8,633	0	10,100	1,558,701	101	652	404,000	863,900	2,502,035	12,510,173	87.571.214
0.3	7,169	8,736	0	10,200	1,577,274	102	660	408,000	874,500	2,531,847	12,659,237	88.614.659
0.03	7,216	8,793	0	10,200	1,587,538	102	664	408,000	879,800	2,548,324	12,741,618	89,191.326
Unit Rates		76 Ibs/It*3	From	\$100 per	\$220/m*3	96 tons of	7,290	\$4,000 per	\$1,326 per wuck	Costs for bulk	Costs for in-	Possible costs for
and Notes			HACER	gendole car lor		toilast	A house had	Bourgole Limicel	ietd	disposal at LARW	compact disposal at	future in-compact
		1	Model	And cause		10060	k land, or			anpoed facility,	existing LLW	disposal facilities for
l		l				1	29,184 lbs		1	Managert ante	disposal facility,	LLW, \$360/11"3; truck
1							beel/iee				NACEDONI ANT	trensport only.
1		l	1	5			1					

·· .

Page 2 of 3

x

۴.

	9 - E			4				
					1		the second second	ļ
	Total Soll	Total Soll	<u>Remediation</u>	Costs			ł	Total
	Yolume	@ \$10/h*3	@ 16:/h*3	@ 1350/h*3	Soll Weehing	Soll Excevation	Tetal Soll	Occupational
Residuel Dass Rate	[isposed	Disposal Costs	Disposa, Costa	Disposel Costs	Labor	Labor	Remediation Labor	Dose
mon/yr	<u>m'3</u>	\$	•	, †	man-hr	men-hr	man-hr	person-mrem
HIGH					I			
100	<u>_7,015</u>	4,535,749	16,434,002	90,751,777	0	11,364	11,364	1,136
60	7,050	4,556,380	16,515,877	91,205,284	0	11,421	11,421	1,142
30	7,076	4,571,853	16,576,952	91,545,084	0	11,464	11,464	1.146
25	7,081	4,578,532	16,588,014	91,602,600		11,471	11,471	1.147
15	7,089	4,583,690	16,607,489	91,714,983	0	11,485	11.485	1.148
10	7,094	4,586,289	16,618,551	91,772,500	0	11,492	11.492	1.149
3	7,157	4,627,412	16,766,370	92,587,588	0	11,594	11.594	1,159
0.3	7,191	4,647,528	16,846,299	93,029,870	0	11,549	11.649	1 185
0.03	7,278	4,703,009	17,050,903	94,159,998	0	11,791	11.791	1,179
MEDIUM		· · · ·						
100	7,000	4,522,915	16,398,375	90,558,825	0	11,340	11,340	1.134
60	7,000	4,522,915	16,398,375	90,558,825	0	11,340	11.340	1.134
30	7,050	4,556,380	16,515,877	91,205,284	. 0	11,421	11,421	1.142
25	7,059	4,561,538	16,535,677	91,318,993	0	11,435	11,435	1.144
15	7,078	4,571,853	16,576,952	91,545,084	0	11,464	11.464	1.146
10	7,085	4,581,111	16,597,751	91,658,792	0	11,478	11.478	1.148
3	7,119	4,600,961	16,676,677	92,095,280	0	11,532	11.532	1 153
0.3	7,187	4,645,293	16,836,535	92,979,844	0	11,643	11.643	1 164
0.03	7,287	4,696,549	17,025,186	94,017,920	0	11,773	11.773	1 177
LOW								
100	7,000	4,522,915	16,398,375	90,558,825	0	11.340	11.340	1 124
60	7,000	4,522,915	16,398,375	90,558,825	0	11.340	11.340	1 124
30	7.000	4,522,915	16,398,375	90,558,825	0 0	11.340	11.340	1 124
25	7.000	4,522,915	16,398,375	90,558,825	0	11,340	11.340	1 124
15	7.015	4,535,749	16,434,002	90,751,777	0	11.364	11.364	1 128
10	7.044	4.552.942	16,501,569	91,129,037	0	11.411	11,411	1,130
3	7.085	4.581.111	16.597.751	91,658,792	0	11.478	11,478	1 140
	7 169	4.634.863	16,795,826	92.751.248	0	11.614	11 614	1,140
0.3	7,216	4.662.303	16,904,738	93,354,444	ō	11.690	11 690	1,101
ti-it Bates and					0,17 man-ty per	1.02 mente ser	11,000	1,109
UNIT Nates and					m*3	m*3		he tabor
Notez		}						
•	•				I			· · · ·
				L				

Table C.4.2. Calculated Costs and Other Parameters for Remediation of Contaminated Soil at the Reference Rare Metal Extraction Plant (Unrestricted Land Use, Without Soil Washing)

·. [·] .

Page 3 of 3

Table C.4.3	3. Calculated Costs and Other Parameters for Remediation of Contaminated Soil at the Reference Rare Metal Extraction Plant
	(Restricted Land Use, With Soil Washing)

. • .

۹.

6)

and the second se	No. of Concession, Name	<u> </u>	a de la companya de l	and the second se		and the second division of the second divisio	
Residual Dose Rate	Contamin- ated Site Soil Area ft*2	Site Sulf Depth	Site Soll Volume	Below- Building Soil Depth	Belaw- Building Sail Volume ra 3	Totsi Soli Volume <u>Removed</u> m*3	Site Sall Excevation Caste
UICH							
	100.000	000		0.00		0	0
100	100,000	0.00		0.00	ŏ		0
	100.000	0.00		0.00	0	ō	0
	100.000	0.00	0	0.00	Ō	ō	0
	100.000	0.00	ō	0.00	ō	0	0
10	100.000	0.00		0.00	ō	0	0
	100.000	0.44	41	0.44	1	42	9,830
0.3	100,000	1.12	104	1.12	3	107	25,158
0.03	100,000	1.94	181	1.94	5	186	43,708
MEDIUM							
100	100,000	Ò.00	0	0.00	0	0	0
60	100,000	0 00	0	0.00	0	0	0
30	100,000	0.00	0	0.00	0	0	0
25	100,000	0.00	0	0.00	<u> </u>	0	0
15	100,000	0.00	0	0.00		0	-0
10	100,000	0.00	0	0.00		0	0
3	100,000	0.00	0	0.00	0	0	0
0.3	100,000	0.94	88	0.94	3	90	21,245
0,03	100,000	1.85	172	1.85	L	177	41,647
LOW							
100	100,000	0.00	. 0	0.00	0	0	0
60	100,000	0.00	0	0.00	0	0	0
30	100,000	0.00	0	0.00	0	0	0
26	100.000	0.00	0	0.00	0	0	0
16	100.000	0.00	0	0.00	0	0	0
10	100.000	0.00	0	0.00	0	0	0
	100.000	0.00	0	0.00	0	0	0
	100.000	0.65	60	0.65	2	62	14.586
0.03	100.000	1.42	132	1.42	4	136	32.029
Unit Rates and Notes		Diflusion model soit prafile		Difusion model solt profile used below buildinge	2% of building floor area (160,000 ft*2)	Excludes the 2000 m*3 slag pile, wtich becomes the capped tailings plie	\$236/m*3
•	L	1	1 0	1.10	1	•	1

5

11

•

..

the second second second second second second second second second second second second second second second s									
Residuel Dose Rete mrom/vr	Totsi Soli Volume Removed m*3	Totel Soll Weight MT	Volume of Soil Washed m*3	Soll Washing Costs	Soft Trans- port Loads, Reil Gondoles Off-Site	Soll Trensport Loeds, Truck Off Site	Soll Transport Custe, Rell Off-Site) Soll Transport Costs, Truck On-site	On-Site Soli Stebilization a Capping Costs
HIGH	·····								
100	· · · · · · · · · · · · · · · · · · ·	N	0	0					
	0		0	0			<u> </u>	0	490,000
30		0	0	0	0		<u> </u>	0	490,000
25	0	0	0	0		t-0-			490,000
15	0	0	0	0	0				490,000
10	0	0	0	0	0	0	0		490,000
3	42	51	42	45.849	0			50	490,000
0.3	107	130	107	64,198	0	0	<u>_</u>	147	491,171
0.03	186	227	186	86,403	0	0	0	249	492,998
AEDIUM									455,208
100	0	0.	0	0	0	0			400.000
60	0	. 0	0	<u> </u>	0				490,000
30	0	-0	Ö	0	ō				490,000
25	0	0	0	0	0	0			490,000
15	0	0	0	0	0				490,000
10	0	0	0	0	0	0			490,000
3	0	0	0	0	0				490,000
0.3	90	110	90	59,513	0	0	0	121	490,000
0.03	177	216	177	83,935	0			297	492,931
0.00					<u>-</u>	†———	<u>`</u>		494,962
100			0	0					
100									490,000
	<u>, 0</u>	0		0			0	0	490,000
	0	0	0	0	0		0	0	490,000
25	0	0	0	0	0	0	0	0	490,000
15	0	0	0	0	0		0	0	490,000
10		0	0	0	0	0	0	0.	490,000
3	0	0 ·	0	0	0	0	0	. 0	490,000
0.3	62	76	62	51,542	0	0	0	83	491,738
0.03	136	166	136	72,422	0	0	0	182	493,816
Unit Rates and Notes	-	76 ibs/ft*3 soll.	Only soil from contam, site is washed, and not the 7,000 m ⁻³ sing pile	From RACER Model	Not used for Rora Motals Facility	Not used for Place Metels Facility	\$4,000 per gendols rollcar, Not used for Roro Motols Facility	Ront for 25-ton [20 yd" 3] dump trucks O \$550,80/d. Driver costs \$239/d. Truck	Stabilization & capping costs for oneite tailings pik 1.5 m deep () \$105/m^22 (fACER Model)
				Pees 2				naura 320 yd*3 par dey.	
and the second sec									

Table C.4.3. Calculated Costs and Other Parameters for Remediation of Contaminated Soil at the Reference Rare Metal Extraction Plant (Restricted Land Use, With Soil Washing)

۰,

3.1

Table C.4.3. Culculated Costs and Other Parameters for Remediation of Contaminated Soli at the Reference Rare Metal Extraction Plant (Restricted Land Use, With Soli Washing)

						}			
I I		0.1							
1 I	Total Un-Site	SOR Conta	SON Disposal Costa	Soli Dирозан	Total Soll	Collins	Soil Excavation &	Total Soil	Total
	Disposal	Disposal Costs		4360/#*3	Kemediauon	Sou washing	Stabilization	Remediation	Occupational
Residual Dose Hate	Volume			4300/11 3	Costs	Lavor	Labor	Labor	Dose
menvyr					·		personna	person-nr	person-mrem
Нібн					400.000	<u> </u>			
100	7,000		<u>v</u>	<u> </u>	490,000		229	229	23
60	7,000	<u>v</u>	<u> </u>	<u> </u>	490,000		229	229	23
	7,000		<u>v</u>	<u> </u>	490,000	<u> </u>	229	229	23
25	7,000	0		<u> </u>	490,000		229	229	23
15	7,000	0	0	<u> </u>	490,000	<u> </u>	229	229	23
10	7,000	0	0	0	490,000	<u> </u>	229	229	23
3	7,017	0	0	0	548,906	7	299	306	31
0.3	7,043	0	0	0	582,497	18	407	425	43
0.03	7,074	0	0	0	625,567	32	539	570	57
MEDIUM									
100	7,000	0	<u> </u>	0	490,000	0	229	229	23
60	7,000	<u> </u>	0	0	490,000	0	229	229	23
30	7,000	0	0	0	490,000	0	229	229	23
25	7,000	0	0	0	490,000	0	229	229	23
15	7, 300	0	0	0	490,000	0	229	229	23
10	7,300	0	0	0	490,000	0	229	229	23
3	7.000	0	0	0	490,000	0	229	229	23
0.3	7,038	. 0	0	<u>.0</u>	573,410	15	379	395	39
0.03	7.071	0	0	0	620,782	30	524	554	55
i ow							1	[
100	7.000	0	0	0	490,000	0	229	229	22
60	7.000	0	0	0	490,000	0	229	229	
	7 000	0	0	0	490,000	0	229	229	- 23
	7.000	0	0	0	490,000	F	229	229	
	7,000		0	ō	490.000	1-0-	220		23
10	7,000				490 000		220		23
10	7,000	·		<u>`</u>	490,000		223	229	23
3	7,000	<u> </u>			490,000		229	229	23
0.3	7,025	0	<u> </u>	<u> </u>	557,849		332	343	34
0.03	7,055	0	0	U	598,449	23	456	479	48
Unit Rates and	Remainder et	Costs for bulk	Cools for in-	Pessible coole sur	4	0.17 percenter	1.02 person-hr/m*3		0.1 mrem per
Notes	centern, seil (40%)	dispessi al L'Anve	anisting LLW	disposal facilities			nersen-hr / truck land		person-he labae
	Alter Warrings	± 10//1* 3. Not used	disposal facility,	for LLW,			(20 yd*3) fer		1
	the size pile inte	for Hare Motale	\$50/11"3. Not mad	\$360/4*3. Hot	1		transport to on-site		ł
	An ensite capped	Facility	for Rere Motels	used for Rara	ł		build, 0.6 paraonty /	<u>I</u>	l .
	tailings pile.		Fectily	Metais Pacinty		l . '	truck lead for stabil.		l i i i i i i i i i i i i i i i i i i i
	1		· · · · · · · · · · · · · · · · · · ·	,,, /	1.00			f I	ł

•li

N,

#}

(،

and the second second second second second second second second second second second second second second second							
	Contrato	e h-					
	Contemin-	2116	640 C.H	Bellow-	Betow-	Total Soll	Site Soil
Residual Does Rate	Rolf Area	Depth	Volume	Soll Death	Cunang Salt Values	· Votume	Excevetion
member	ft*2	em	m°3	cm	m°3	Timmoved	LOTTE
HIGH				4773			
100	100.000	0.00	0	0.00	0	0	
60	100.000	0.00	0	0.00	0	<u> </u>	
30	100.000	0.00	0	0.00	0	0	0
25	100.000	0.00	0	0.00	0	0	
15	100.000	0.00	0	0.00	0	0	0
10	100.000	0.00	0	0.00	0	0	0
3	100,000	0.44	41	0.44	1	42	9,830
0,3	100,000	1.12	104	1.12	3	107	25.158
0.03	100,000	1.94	181	1.94	5	186	43.708
MEDIUM							
100	100,000	0.00	0	0.00	C	0	0
60	100,000	0.00	0	0.00	0	0 .	0
30	100,000	0.00	0	0.00	0	0	0
25	100,000	0.00	0	0.00	0	0	0
15	100,000	0.00	0	0.00	0	0	0
10	100,000	0.00		0.00	0	0	0
3	100,000	0.00	0	- 0.00	0	0	0
0,3	100,000	0.94	· 88	0.94	3	90	21,245
0.03	100,000	1.85	172	1.85	5	177	41,647
LOW							
100	100,000	0.00	0	0.00	0	0	0
60	100,000	0.00	0	0.00	0	0	0
30	100,000	0.00	0	0.00	0	0	0
25	100,000	0.00	0	0.00	, 0	0	0
15	100,000	0.00	0	0.00	0	0	0
10	100,000	0.00	0	0.00	0	0	0
3	100,000	0.00	0	0.00	0	0	0
0.3	100,000	0.65	60	0.65	2	62	14,586
0.03	100,000	1.42	132	1.42	4.	136	32,029
Unit Rates and		Diffusion		Diffusion	2% 61	Exclusion the	\$235/m*3
Notes		moret sette		merei seli	Building floor	7000 m ⁻ 3	
i 4				below	(150,000	which	
*				buildings	ft*2)	becomes the	
)			ļ	copped tailings	
						pile	
1				,		1	

2

Table C.4.4. Calculated Costs and Other Parameters for Remediation of Contaminated Soil at the Reference Rare Metal Extraction Plant (Restricted Land Use, Without Soil Washing)

.

;

Pege 1 of 3

Table C.4.4. Calculated Costs and Other Parameters for Remediation of Contaminated Soil at the Reference Rare Metal Extraction Plant (Restricted Land Use, Without Soil Washing)

· · · · · · · · · · · · · · · · · · ·		1	1					
Peridual Dage Bate	Total Soli Volume	Total Soil Weight	Soil Washing	Soil Trans- port Loads, Rail Gondoles	Soil Transport Loade, Truck Off	Soil Transport Costs, Rail	Soll Thansport Casts, Truck	On-Site Soll Stabilization &
Matig Jai Cost mary	m°3	AT		dirane .	- Dite	Ulf-Sile	On-Sile	Capping Costs
			├─── `	Care	1 TIOGAS			
100	<u> </u>						<u> </u>	
60			<u> </u>				<u> </u>	490,000
30	0							480,000
	0	ō	0					490,000
15	Ō		0	0			0	490,000
10	0	1	ō	ō				490,000
3	42	61	. 0	0	0		140	490,000
0.3	107	130	ō	Ö	ō	0	359	482,820
0.03	186	227	0	Ō	ō	- i	622	437,434 E02 010
MEDIUM						├─── ──		503,013
100	0	0	0	0	0	0	0	490 000
60	0	0	0	0_	0	0	t. 0	490,000
30	0	0	0	0	0	ō	0	490,000
25	0	0	0	0	.0	Ō	0	490.000
15	0	0	0	0	0	0	0	490,000
10	0	0	0	0	0	0	0	490.000
3	0	0	0	0	Ō	0	0	490.000
0.3	90	110	0	0	0	0	302	496.328
0.03	177	216	0	0	Ō	0	593	602.405
LOW								f
100	0	0	0	0	0	0	0	490,000
60	0	0	0	0	0	0	0	490 000
30	0	0	0	0	0	0	0	490.000
25	0	0	0	0	0	0.	ō	490.000
15	0	0	0	0	0	0	0	490.000
10	0	0	0	0	Ō	0	0	490.000
3	0	0	0	0	0	0	0	490.000
0.3	62	76	0	0	0	. 0	208	494.345
0.03	136	166	0	• 0 .	0	0	458	499.540
Unit Rates and		78 lbs/it*3 soil.	From RACER	Het used for	Not used for	\$4,000 per	Rent for 26-ton	Stabilization 4
Notes	1	1	Model	Rare Métale	Rere Metale	Gendola salicar.	(20 yd*3) dump	capping coate for
1 · /	1	1	1 ¹	. acuat	. ocmr#	Rate Metals	ALEO BOID Driver	onsite tailings
			/	1		Facility	caste \$238/d.	dee G
5 /	1	1	· ·		1	i !	Truck have 320	\$105/m*2
	!	5			1	i !	yd*3 per dey. 🛛	RACER Model
5	1	1		· · · · · · · · · · · · · · · · · · ·		('	1	

C.C-112

4

.

8

	,					1			
	Total On							2 - T	
	Site	500	Soll	Solt Diences		1	e se		1
	Disposel	Disposel Costs	Disposel Costs	Costs @	Total Solt	Soll Washing	Stabilization &	Total Sell	Total
Residual Dosa Rate	Votume	@ #10/h*3	@ +50/m-3	\$350/ft-3	Remediation Costs	Labor	Labor	nointinement	Occupational
mrem/yr	m*3	•		•		person-hr	person-hr	Citoor br	Dose
HIGH								percentin	percon-intem
100	7,000	0	0	0	490,000	0	229	229	
60	7,000	0	0	0	490,000	0	229	220	23
30	7,000	0	0	0.	490,000	0	229	220	23
25	7.000	0	0	0	490,000 ·	0	229	225	23
15	7.000	0	0	0	490,000	0	229	229	23
10	7.000	0	0	0	490.000	0	220	223	23
3	7.042	0	0	0	· 502.897 · A	. 0	299	229	23
0.3	7.107	0	0 .	0	523.010	0	409	299	30
0.03	7.186	0	0	0	547.350	0		409	· !
MEDIUM			<u></u>				072	542	54
100	7.000	0	0	0	490.000	0	229		
60	7.000	0	· 0	0	490,000	0	229	229	23
30	7.000	0	0	0	490.000	0	220	228	23
	7.000	0	0	0	490,000	0 -	220	229	23
15	7 000	0	0	0	490,000	<u> </u>	220	229	23
10	7,000	0	0	0	490,000	0	225	229	23
	7,000	<u> </u>	0	0	490,000		223	229	23
	7,000				517 975		229	229	23
0.3	7 177		0	<u> </u>	544 645	0	381	381	38
0,03		<u>`</u>					528	528	53
LOW	7 000				400.000				
100	7,000				490,000		229	229	23
60	7,000			0	490,000	0	229	229	23
	7,000	0		0	490,000	0	229	229	23
25	7,000	0	0	0	490,000	0	229	229	23
15	7,000	0	0	0	490,000	0	229	229	23
10	7,000	0	0	0	490,000	0	229	229	23
3	7,000	0	0	0	490,000	0	229	229	23
. 0,3	7,062	0	0	0	509,138	0	333	333	33
0.03	7,136	0	0	0	532,025	0	459	459	46
Unit Rates and	Contam, soil is	Costs for bulk	Costs for in-	Pessible costs for		0.17 person-ty per	1.62 person tv/m 3		0.1 mem per
Notes	betebilioenes	diseased facility.	at existing LLW	disperal (acilities		m-3	Ter excevation, 0.8	-	person-ty labor
	pile inte ati	\$10/ht*3. Net used	disposal facility,	for LLW,			(20 wf \$1 far	(I	
 the second	oneite capped	for Rora Motata	\$50/11"3. Not	\$350/11"3. Not			transport to en-eite		
	teilinge pile.	Facility	used for Rece	used for Rarg			buriet, 0.5 parson ty		1
	1	1 · · ·	Meter Pecifity	MATER FOCKILY			/ truck load for stabil.	,	1

Table C.4.4. Calculated Costs and Other Parameters for Remediation of Contaminated Soil at the Reference Rare Metal Extraction Plant (Restricted Land Use, Without Soil Washing)

Page 3 of 3

Table C.4.5. Calculated Costs and Other Parameters for Remediation of Contaminated Soil at the Reference Rare Metals Extraction Plant (Unrestricted Land Use, With Soil Washing, Mixing/Landfilling)

.

B1

.

	Contamin-			Balow-	Below-		Total Roll	Site Coll
	sted Site	Sile Soil	Site Soil	Building Soit	Building Soil	Slag Pile	Volume	Excavation
Residual Dose Rate	Soil Area	Depth	Volume	Depth	Volume	Volume	Removed	Costs
memlyr	ft*2	cm	m*3 -	cm	m*3	m*3	m*3	
HIGH								
100	100,000	11.76	1,093	0.18	.0	7,000	8,093	1,901,859
60	100,000	16.08	1,494	0.52	1	7,000	8,495	1,998,438
30	100,000	21.95	2,039	0.80	2	7,000	9,041	2,124,628
26	100,000	23.49	2,182	0.84	2	7,000	9,184	2,158,329
16	100,000	27.81	2,583	0.93	3	7,000	9,586	2,252,728
10	100,000	31.24	2,902	0.98	3	7,000	9,905	2,327,639
3	100,000	41.42	3,848	1.64	5	7,000	10,853	2,550,419
0.3	100,000	60.9(·	5,658	2.00	6	7,000	12,683	2,975,893
0.03	100,000	80. }	7,467	2.91	8	7,000	14,475	3,401,731
MEDIUM								
100	100,000	6.9C	548	0	0	7,000	7,548	1,773,747
60	100,000	10.2?	949	0	0	7,000	7,949	1,868,086
30	100,000	.16.09	1,494	0.52	1	7,000	8,495	1,996,438
26	100,000	17.62	1,637	0.61	2	7,000	8,639	2.030,169
15	100,000	21.85	2,039	0.80	2	7,000	9,041	2,124,628
10	100,000	25.38	2,357	0.89	2	7,000	9,360	2,199,569
3	100,000	35.56	3,304	1.24	3	7,000	10,307	2,422,149
0.3	100,000	55.04	5,113	1.96	5	7,000	12,119	2,847,867
0.03	100,000	74.52	6,923	2.79	8	7,000	13,930	3,273,648
LOW								
100	100,000	0	0	. 0	0	7,000	7,000	1,645,000
60	100,000	0.03	3	0	0	7,000	7,003	1.645.737
30	100,000	5.90	548	0	0	7,000	7,548	1.773.747
26	100,000	7.44	691	0	0	7,000	7,691	1,807,418
16	100,000	11.76	1,093	0.16	0.	7,000	8,093	1,901,859
10	100,000	15.19	1,411	0.46	1	7.000	8,413	1.976.940
3	100,000	25.38	2,367	0.89	2	7,000	9,360	2,199,569
0.3	100,000	44.85	4,167	1.77	5	7,000	11,172	2,625,387
0.03	100,000	64.33	5,976	2.26	6	7000	12,983	3,050.946
Unit Rates and		Molycorp		Diffusion	2% of building			\$2,35/m*3
Notes		toll profüt		model soit profile used	ticor area (150,000			
				buildings	4 <i>4</i>			

NUREG-1496

Page 1 of 3

4.)

.

Table C.4.5. Calculated Costs and Other Parameters for Remediation of Contaminated Soil at the Reference Rare Metals Extraction Plant (Unrestricted Land Use, With Soil Washing, Mixing/Landfilling)

·							Soil	Soil				· · · · · · · · · · · · · · · · · · ·	
			-	· .	Soft	Sofi	Transport	Transport	Soit	Soil			
	Total Soll		Volume of	•	Packaging	Packaging	Lords,	Loods,	Transport	Transport	· Soit	Sofi	Soit Disposet
Residual	Volume	Totel Soil	Soil	Soll Weshing	Costs,	Costs, B-25	Gondola	Truck	Costs,	Costs,	Disposal Costs	Disposel Costs	Costs @
Dose Rete	Removed	Weight	Weshed	Costs	Gondola Car	Boxes	Cara	Loads	Refl	Truck	@ #10//1-3	@ #50/11:3	\$350/11°3
memlyr	m*3	MT					/ cers	/ Trucks		•	•	• · ·	•
HIGH								1. 					
100	8,093	9,861	1,093	341,552	10,600	1,636,185	106	684	424,000	906,300	2,626,412	13,132,061	91,924,430
60	8,495	10,352	1,495	454,787	10,800	1,671,602	108	699	432,000	926,175	2,683,264	13,418,318	93,914,224
30	9,041	11,018	2,041	608,215	11,100	1,719,605	111	719	444,000	952,675	2,760,318	13,801,592	96,611,141
25	9,184	11,191	2,184	648,555	11,200	·1,732,225	112	725	448,000	960,625	2,780,578	13,902,880	97,320,158
15	9,586	11,681	2,586	761,555	11,400	1,767,575	114	739 .	456,000	979,175	2,837,319	14,186,595	99,306,164
10	9,905	12,069	2,905	851,227	11,600	1,795,627	116	751	464,000	995,075	2,882,348	14,411,739	100.882.174
3	10,853	13,224	3,853	1,117,903	12,100	1,879,051	121	786	484,000	1,041,450	3,016,260	15,081,302	105.569.115
0.3	12,663	15,430	5,863	1,627,211	13,100	2,038,377	131	853	524,000	1,130,225	3,272,012	18,360,060	114.520.418
0.03	14,475	17,638	7,475	1,720,027	14,200	2,197,840	142	919	568,000	1,217,675	3,527,982	17,639,911	123,479,377
MEDIUM													
100	7,548	9,197	548	188,198	10,200	1,588,212	102	664	408,000	879,800	2,549,405	12,747,(23	89,229,164
60	7.949	9,686	949	301,125	10,500	1,623,639	105	679	420,000	899,675	2,606,112	13,030,558	91,213,907
30	8,495	10,352	1,495	454,787	10,800	1,671,602	108	699	432,000	926,175	2,683,264	13.416.318	93,914,224
25	8.639	10.527	1,639	495,144	10,900	1,684,233	109	705	436,000	934,125	2,703,539	13.517.696	94 623 873
15	9.041	11.016	2,041	608,215	11,100	1,719,605	111	719	444,000	952,675	2,760,318	13.801.592	96 611 141
10	9 360	11.405	2,360	697,922	11,300	1,747,668	113	731	452,000	968,575	2,805,365	14.026.826	98 187 783
	10 307	12,659	3,307	964,359	11,800	1,831,017	118	766	472,000	1,014,950	2.939.158	14 695 788	102 870 514
	12 119	14.766	5.119	1,473,947	12,800	1,990,432	128	833	512,000	1,103,725	3,195,050	15 975 249	111 929 742
	12,110	16 974	6.930	1.983.632	13,900	2,149,876	139	899	556,000	1,191,175	3,450,990	17 254 052	120 784 667
0.03	13,530	10,074										11,204,882	_120,/04,00/
LOW		9 5 2 0	0	0	9.900	1.540.000	99	644	395.000	853.300	2 472 015	12 280 075	
100	7,000	0,525	3	34.965	9.900	1.540.278	99	644	398.000	853,300	2 472 458	12,300,075	00,520,525
60	7,003	0,000	548	188,198	10,200	1.588.212	102	664	408.000	879,800	2 549 405	12,302,291	00,030,035
30	7,048	9,197	601	228 503	10,300	1.600.820	103	670	412.000	887 750	2 580 844	12,747,023	89,229,164
25	7,691	9,372	0.002	241 552	10,600	1 636 185	106	884	424 000	006 200	2,003,044	12,048,221	89,937,549
15	8,093	9,861	1,053	341,002	10,000	1 884 201	107	ROR	428,000	022,200	2,020,412	13,132,061	91,924,430
10	8,413	10,251	1,413	431,427	11,200	1 747 689	112	721	428,000	922,200	2,0/1,543	13,357,717	93,504,019
3	9,360	11,405	2,360	697,922	11,300	1,747,008	110	709	482,000	900,075	2,805,385	14,026,826	98,187,783
0.3	11,172	13,613	4,172	1,207,642	12,300	2 084 402	123	730 RRA	402,000 632,000	1,057,350	3,061,323	15,306,617	107,146,318
0.03	12,983	15,819	5,983	1,/1/,052	1100 00	4220/m 3	95 100s of	7.296	\$4.000 pm	1,144,000	3,317,128	18,585,631	116,099,415
Unit Retes		76 104/11 3	from tost	Linus toorer in maga	gondola car lor		req lice	fbe/bez and	gendeta railcar	load	disposal at LARW	Costs for in-	Possible costs for
and Notes		· ·	contem. elte		plastic liner	i .	reilcar	4 boxes/inuc			disposal facility,	at existing LLW	disposal facilities for
			is washed,		and cover			20 184 M-			\$10//t*3; rail	disposal facility,	LLW, \$350/11'3;
	1		and not the	1		-	1	soil/lood			manaport only	\$50/11" 7; truck	truck transport only.
			7,000 m° J		<u> </u>	<u> </u>		soil/lood	l			transport only	nock transport drift.

.

C.C-115

NUREG-1496

						1		
	Total Soil	Total Soil	Hemediation	Costs		1		Total
	Volume	@ #10/IC 3	Q VOU/IC 3		Call Machine Labor	Soil Excavation	Total Soil	Occupational
Residual Dose Hate				· ·	Son Wasning Labor	Lapor	Remediation Labor	Dose
mremvyr					Timetii	man-m	INAN-Nr	person-mem
HIGH	7 497	5 304 422	17 017 058	98 710 327	198	13 111		
100	7,937	5,304,423	19 465 200	00.063.208	254	13,111	13,298	1,330
60	7,590	5.040.281	10,908,300	102 018 284	204	13,703	14,017	1,402
	7,810	0,940,201	10 402 816	102,010,204	34/	14,040	14,993	1,499
25	7,874	0,040,001	10,402,019	102,813,034	3/1	14,879	15,250	1,525
15	8,034	8,319,002	19,947,028	105,067,197	440	15,529	15,969	1,597
10	8,162	6,536,813	20,381,306	106,851,741	494	16,046	16,540	1,654
3	8,541	7,180,682	21,670,124	112,157,937	655	17,582		1,824
0.3	9,265	8,412,216	24,131,766	122,292,124	963	20,615	21,477	2,148
0.03	9,990	9,231,940	26,177,184	132,016,650	1,271	23,450	24,721	2,472
MEDIUM			47 470 000					
100	7,219	4,929,550	17,176,980	93,659,120	93	12,228	12,321	1,: 32
60	7,380	5,205,823	17,: 12,983	95,908,331	161	12,878	13,039	1,304
	7,598	6,677,288	18,465,300	98,963,208	254	13,763	14,017	1,402
25	7,656	6,675,752	18,661,367	99,767,544	279	13,995	14,274	1,427
15	7,816	5,948,261	19,206,715	102,016,264		14,646	14,993	1,499
10	7,944	6,168,156	19,640,561	103,801,518	401	15,163	15,564	1,556
3	8,323	6,809,465	20,928,263	109,102,989	<u> </u>	16,697	17,260	1,726
- 0.3	9,047	8,041,654	23,391,210	119,242,704	870	19,632	20,502	2,050
0.03	9,772	9,278,168	25,853,281	129,382,995	1,178	22,587	23,745	2,375
LOW								
100	7,000	4,522,915	16,398,375	90,558,825	<u> </u>	11,340	11,340	1,134
60	7,001	4,559,060	16,436,569	90,610,314	1	11,345	11,346	1,135
30	7,219 .	4,929,550	17,176,980	93,659,120	93	12,228	12,321	1.232
25	7,278	5,027,868	17,372,713	94,462,041	117	12,460	12,577	1.258
15	7.437	5,304,423	17,917,958	96,710,327	186	13,111	13,298	1.330
10	7.565	5,518,610	18,352,585	98,498,887	240	13,628	13,868	1.387
3	7.944	8,168,156	19,640,561	103,801,518	401	15,163	15.564	1.556
03	8,669	7.398.652	22,104,119	113,943,820	709	18.098	18.808	1 881
0.03	9,393	8,630,424	24,564,911	124,078,695	1,017	21,032	22.049	2,205
Linit Rates and	Disposal vol. is				0.17 man-hr per	1.62 man-hr per		0.1 mrem per man-hr
Notas	total soil vol.				m*3	m*3		labor
140109	minus 60% of							
	waanad soll; completing yol							
	is released							

Table C.4.5. Calculated Costs and Other Parameters for Remediation of Contaminated Soil at the Reference Rare Metals Extraction Plant (Unrestricted Land Use, With Soil Washing, Mixing/Landfilling)

. Ba

Þ

Page 3 of 3

1

.

· .								
	Contamin-	Sha	1.1	Below	Balaus			
Residual Dose	ated Site	Solt	Site Solf	Building	Building Soll	Sien Pile	Volume	Site Soll
Rate	Soll Area	Depth	Volume	Soll Depth	Volume	Vulume	Removed	Caste
mrem/yr	ft*2	cm	m*3	cm	m*3	m*3	m*3	
HIGH								
100	100,000	11.76	1,093	0,16	0	7,000	8.093	1,901,859
60	100,000	16.08	1,494	0,52	1	7,000	8,495	1.996.438
30	100,000	21.95	2,039	0.80	2	7,000	9,041	2.124.628
25	100,000	23,49	2,182	0.84	2	7,000	9,184	2,158,329
15	100,000	27,81	2,583	0,93	3	7,000	9,586	2.252.728
10	100,000	31,24	2,902	0,98	3	7,000	9,905	2.327.639
3	100,000	41.42	3,848	1,64	5	7,000	10,853	2.550.419
0.3	100,000	60,90	5,658	2.00	6	7,000	12,663	2.975,893
0.03	100,000	80,38	7,467	2,91	8	7,000	14,475	3,401,731
MEDIUM								
100	100,000	5.90	548	0	0	7,000	7,548	1,773,747
60	100,000	· 10.22	949	0	0	7,000	7,949	1,868,086
30	100,000	16,08	1,494	0.52	1	7,000	8,495	1,996,438
25	100,000	17.62	1,637	0.61	2	7,000	8,639	2,030,169
15	100,000	21.95	2,039	0.80	2	7,000	9,041	2,124,628
10	100,000	25.38	2,357	0.89	2	7,000	9,360	2,199,569
3	100,000	35.56	3,304	1.24	3	7,000	10,307	2,422,149
0.3	100,000	55.04	5,113	1.96	5	7,000	12,119	2.847.857
0,03	100,000	74.52	6,923	2.79	. 8	7,000	13,930	3.273.646
LOW								
100	100,000	. 0	0	0	0	7,000	7,000	1,645,000
60	100,000	0.03	3	0	0	7,000	7,003	1.645.737
30	100,000	5,90	548	0	0	7,000	7,548	1.773.747
25	100,000	7.44	691	0	0	7,000	7,691	1,807,418
15	100,000	11.78	1,093	0,16	0	7,000	8,093	1,901,859
10	100,000	15.19	1,411	0.46	1	7,000	8,413	1,976,940
3	100,000	25.38	2,357	0.89	2	7,000	9,360	2,199,569
0.3	100,000	44.85	4,167	1.77	5	7,000	11,172	2.625.387
0.03	100,000	64.33	5,976	2.26	6	7000	12,983	3,050,946
Unit Rates and Notes		Molycorp solt profile		Diffusion model solt profile used below buildings	2 % of building floor area (180,000 ft ⁺ 2)			\$236/m*3
					1 1			

Table C.4.6. Calculated Costs and Other Parameters for Remediation of Contaminated Soil at the Reference Rare Metals Extraction Plant (Unrestricted Land Use, Without Soil Washing, Mixing/Landfilling)

. .

÷

Page 1 of 3

7
7
H
ff
ິດ
Ľ
4
Q
5

						Soil	Soil				1	
				Soll	Soil	Transport	Transport	Soil	Soil		1	
	Total Soll		Soll	Packaging	Packaging	Loads,	Loads,	Transport	Transport	Soil	Soil	Soli Disoosal
Residual Dose	Volume	Total Soil	Washing	Costs,	Costs, B-25	Gondola	Truck	Costs,	Costs,	Disposal Costs	Disposal Costs	Costs @
Rate	Removed	Weight	Coste	Gondola Cer	Boxes	Cars	Losds	Rail	Truck	@ #10//11*3	@ +60/11-3	\$350/ft*3
mrem/yr		MT	+	•	8	Core	# Trucke		•	•	•	
HIGH												
100	8,093	9,861	0	11,500	1,780,464	115	745	460,000	987,125	2,858,008	14,290,041	100.030.288
60	8,495	10,352	0	12,100	1,869,006	121	782	484,000	1,036,150	3,000,136	15,000,682	105.004.774
30	9,041	11,016	0	12,800	1,989,013	128	832	512,000	1,102,400	3,192,773	15,963,867	111.747.066
25	9,184	11,191	0	13,000	2,020,563	130	845	520,000	1,119,625	3,243,417	16,217,087	113,519,608
15	9,586	11,681	0	13,600	2,108,937	136	882	544,000	1,168,650	3,385,275	16,926,375	118,484,622
10	9,905	12,069	0	14,000	2,179,066	140	911	560,000	1,207,075	3,497,847	17,489,235	122.424.648
3	10,853	13,224	0	.15,400	2,387,626	154	999	616,000	1,323,675	3,832,629	19,163,143	134,142,000
0.3	12,663	15,430	0	17,900	2,785,942	179	1,165	716,000	1,543,625	4,472,007	22,360,037	156.520.259
0.03	14,475	17,638	0	20,500	3,184,599	205	1,332	820,000	1,764,900	5,111,933	25,559,665	178,917 654
MEDIUM												
100	7,548	9,197	0	10,700	1,660,529	107	695	428,000	920,875	2,665,489	13,327,446	93.292.122
60	7,949	9,686	0	11,300	1,748,847	113	732	452,000	969,900	2,807,257	14,036,283	98,253,979
30	8,495	10,352	0	12,100	1,869,006	121	782	484,000	1,036,150	3,000,136	15,000,682	105.004 774
25	8,639	10,527	0	12,300	1,900,584	123	795	492,000	1,053,375	3,050,826	15,254,128	106.778.894
15	9,041	11,016	0	12,800	1,989,013	128	832	512,000	1,102,400	3,192,773	15,963,867	111 747 066
10	9,360	11,405	0	13,300	2,059,171	133	861	532,000	1,140,825	3,305,391	16,526,953	115 688 670
3	10,307	12,559	0	14,600	2,267,544	146	948	584,000	1,256,100	3,639,871	18,199,357	127 395 498
0.3	12,119	14,766	0	17,200	2,666,079	172	1,115	688,000	1,477,375	4,279,602	21.398.010	149 786 070
0.03	13,930	16,974	0	19,700	3,064,690	197	1,282	788,000	1,698,650	4,919,454	24.597.269	172 180 890
LOW												1/2,100,800
100	7.000	8.529	0	9,900	1,540,000	99	644	396,000	#53,300	2.472.015	12 360 075	88 520 525
60	7.003	8.533	0	9,900	1,540,690	99	645	396,000	854.625	2.473.123	12 365 614	96 550 201
30	7.548	9,197	0	10,700	1,660,529	107	695	428,000	920,875	2.665.489	13 327 448	97 292 122
	7.691	9.372	0	10,900	1,692,051	109	708	436,000	938,100	2.716.088	13 580 441	95 062 005
16	8 093	9,861	0	11,500	1,780,464	115	745	460,000	987.125	2.858.008	14 290 041	100,030,085
10	8 413	10.251	Ō	11,900	1,850,752	119	774	476,000	1.025.550	2.970.838	14 854 190	102,030,288
	9 160	11 405	0	13,300	2.059,171	133	861	532,000	1,140,825	3 305 391	16 526 052	115 000 075
	3,300	13 613	0	15,800	2.457.809	158	1.028	632.000	1.362.100	3 946 296	10,920,893	115,688,670
0.3	12 993	15,819	ō	18,400	2,856.205	184	1,194	736.000	1.582.050	4.584 793	22 922 064	150,407,775
0.03	12,000	76 lbs/lt*3	From	\$100 pm	\$220/m*3	86 tons of	7,296	\$4,000 per	\$1,325 per truck	Costs for bulk	Costs for in-	100,467,750
Unit Kates			RACER	gondole car for		soil per	lbs/box and	gondola railcar	load	disposal at LARW	compact disposal at	future incompact
and Notes			Model	plaatic liner		railcar	4 boxes/truc		[disposal facility,	existing LLW	disposal facilities for
				and cover		ļ	29.184 lba		(\$10/11°3; rail	disposal facility,	LLW, \$360/11" 3; truck
			[1		1	becklice			a sumbout out A	Heceport only	transport only.
				<u> </u>	l							

Table C.4.6. Calculated Costs and Other Parameters for Remediation of Contaminated Soil at the Reference Rare Metals Extraction Plant (Unrestricted Land Use, Without Soil Washing, Mixing/Landfilling)

.

• • •

1

- 11

64

·

ń.

4

i					1	1		
	Totel Soll	Total Solt	Remediation	Costs	[
	Volume	@ \$10/h*3	@ #50/ft*3	@ #350/h*3	Soll Washing	Soll Exceverion	Tatal Call	Totel
Residual Dose Rate	Disposed	Disposal Costs	Disposal Costs	Disposal Costs	Labor	Labor	Remediation Labor	Occupational
mrem/yr	m*3	•	•	1	man-hr	men-hr	men-hr	0010
HIGH .								Persona manuf
100	8,093	5,231,367	18,959,489	104,699,736	0	13,111	13.111	1 311
60	8,495	5,492,674	19,902,275	109,906,367	_ · · O	13,763	13.763	1 378
30	9,041	5,842,201	21,179,908	116,963,107	0	14,646	14.646	1 465
25	9,184	5,934,746	21,515,604	118,818,125	0	14,879	14.879	1 488
15	9,586	6,195,603	22,456,689	124,014,936	0	15,529	15.529	1 553
10	9,905	6,399,486	23,203,016	128,138,428	0	16,046	16.046	1,005
3	10,853	7,014,448	25,424,863	140,403,720	0	17.582	17.582	1 759
0.3	12,663	8,181,800	29,665,497	163,825,719	0	20,515	20.515	2 051
0.03	14,475	9,354,164	33,910,895	187,268,884	0	23,450	23,450	2 3 45
MEDIUM								2,040
100	7,548	4,877,936	17,682,597	97,647,273	0	12,228	12.228	1 222
60	7,949	5,138,643	18,823,115	102,840,812	0	12,878	12.878	1 288
30	8,495	5,492,674	19,902,275	109,906,367	0	13,763	13.763	1 376
25	8,639	5,585,294	20,238,255	111,763,022	0	13,995	13,995	1,070
15	9,041	5,842,201	21,179,908	116,963,107	0	14,646	14.646	1 465
10	9,360	6,050,260	21,926,518	121,088,235	0	15,163	15,163	1,405
3	10,307	6,660,620	24,148,149	133,341,291	0	16,697	16.697	1.870
0.3	12,119	7,832,659	28,389,321	156,777,381	0	19,632	19.632	1 962
0.03	13,930	9,000,799	32,634,254	180,217,865	0	22,567	22.567	2 257
LOW			•					2,207
100	7,000	4,522,915	16,398,375	90,558,825	· 0	11.340	11 340	1 1 2 4
60	7,003 .	4,524,760	16,408,667	90,600,354	0	11.345	11 345	1 1 25
30	7,548	4,877,936	17,682,597	97,647,273	0	12.228	12 228	1,130
25	7,691	4,970,406	18,018,010	99,500,655	0	12,460	12,460	1 248
15	8,093	5,231,367	18,959,489	104,699,736	0	13.111	13,111	1,240
10	8,413	5,435,676	19,707,422	108,832,502	0	13.628	13 628	1,311
3	9,360	6,050,260	21,928,518	121,088,235	0	15,163	15 162	1,303
0.3	11,172	7.218.473	26.171.725	144,530,303	0	18 098	18,000	1,510
0.03	12.983	8,390,139	30,413,165	167,956,950	Ō	21.032	21 032	1,810
Linit Rates and					0.17 menty per	1.62 menty per		2,193
Notes	;		and the second		m*3	m*3		tv laber
IAAIGB					Į			
	l s tra				ł			· ·
	1 .]		:				
	1 '				1 :			

Table C.4.6. Calculated Costs and Other Parameters for Remediation of Contaminated Soil at the Reference Rare Metals Extraction Plant (Unrestricted Land Use, Without Soil Washing, Mixing/Landfilling)

• •

14

C.C-119

NUREG-1496

Page 3 of 3

Table C.4.7. Calculated Costs and Other Parameters for Remediation of Contaminated Soil at the Reference Rare Metal Extraction Plant (Restricted Land Use, With Soil Washing, Mixing/Landfilling)

بو

41

	Contomio	She -	_	Retain	Balance	Tablesh	
Residual Dase	ated Site Soll	Soil	Site Soll	Building	Building	Volume	bite Soll
Rete	Area	Depth	Volume	Soll Depth	Soll Volume	Removed	Excevelion
men/yr	ft*2	<u>C</u> (m)	m*3	cm	m*3	m*3	
HIGH							
100	100,000	0.00	0	0.00	0	0	0
60	100,000	0.00	0	0.00	0	0	0
30	100,000	0.00	0	0.00	0	0	0
25	100,000	0.00	0	0.00	0	0	0
15	100,000	1.26	117	0.00	0	117	27.422
10	100,000	4.69	435	0.00	0	435	102,303
3	100,000	14.87	1,381	0.44	1	1,383	324.938
0.3	100,000	34,35	3,191	1.12	3.	3,194	750,625
0.03	100,000	53.83	5,001	1.94	5	5,006	1.176.405
MEDIUM							
100	100,000	0,00	0	0.00	0	0	0
60	100,000	0.00	· 0	0.00	0	0	0
30	100,000	0.00	0	0.00	0	0	0
25	100,000	0.00	0	0.00	0	0	0
15	100,000	0.00	0	0.00	0	0	0
10	100,000	0.00	0	0.00	0	0	0
3	100,000	9.01	837	0.00	0	837	196,642
0,3	100,000	28.49	2,646	0.94	3	2,649	622,501
0.03	100,000	47.96	4,458	1.85	5	4,461	1,048,335
LOW							
100	100,000	0.00	0	0,00	0	0	0
60	100,000	0,00	0	0.00	0	0	0
30	100,000	0.00	0	0.00	0	0	0
25	100,000	0.00	0	0.00	0	0	0
15	100.000	0.00	0	0.00	0	0	0
10	100.000	0.00	0	0.00	0	0	0
3	100.000	0.00	0	0.00	0	0	0
0.3	100,000	18.30	1.700	0.65	2	1,702	399 969
0.03	100,000	37.78	3.510	1.42	4	3.514	825 708
Unit Datas and		Melycara		Diltuden	2% of	Excludes the	\$236/m ³
	1	sail profile		lice lebers	building floor	7000 m*3	••••••
, Motes	1	\		pretile used	1150.000	siag pão,	
1				buildings	f(*2)	becomes the	
	1		1	{	1	capped tailings	
1	1		1			pila	
		<u> </u>	l	Lea			L

٩

.

NUREG-1496

HIGH 100 60 30 25 15 10 3 0 3	0 0 0 117 435 1,383 3,194 5,005	0 0 0 142 530 1,685 3,892	0 0 0 117 435	0 0 0 0 66,908	0 0 0	0	0	0	490,000
100 60 30 25 15 10 3	0 0 0 117 435 1,383 3,194 5,005	0 0 0 142 530 1,685 3,892	0 0 0 117 435	0 0 0 0 66,908	0 0 0	0	0	0	490,000
60 30 25 15 10 3	0 0 117 435 1,383 3,194 5,006	0 0 142 530 1,685 3,892	0 0 117 435	0 0 0 66,908	0	0	0	0	
30 25 15 10 3	0 117 435 1,383 3,194 5,005	0 0 142 530 1,685 3,892	0 0 117 435	0 0 66,908	0				490,000
25 15 10 3	0 117 435 1,383 3,194 5,006	0 142 530 1,685 3,892	0 117 435	0 66,908		U	0	0	490,000
15 10 3 0.3	117 435 1,383 3,194 5,005	142 530 1,685 3,892	<u>117</u> 435 1 383	66,908	0	0	0	0	490,000
<u> </u>	435 1,383 3,194 5,005	530 1,685 3,892	435		0	0	0	156	493,267
3	1,383 3,194 5,006	1,685 3,892	1 2 2 2 3	166,543	0	0	Ò	583	502,189
0.31	3,194 5,005	3,892		423,046	0	0	0	1,851	528,716
	5,006		3,194	932,608	0	<u> </u>	0	4,275	579,436
0.03		6,100	5,006	1,442,283	0		0	6,700	630,167
MEDIUM									
100	0	0	0	0	0	0	0	0	490,000
60	0	0	0	0	0	0	0	0	490,000
30	0	0	0	0	0	0	0	0	490,000
25	0	0	0	0	0	0	0	0	490,000
15	0	0	0	0	0	0	0	0	490,000
10	0	0	0	0	0	0	0	0	490,000
3	837	1,020	837	269,470	0	0		1,120	513,430
0.3	2,649	3,228	2,649	779,239	0	0	0	3,545	564,170
0.03	4,461	5,436	4,461	1,288,978	0		0	5,970	614,908
LOW									
100	0	0	0	0	0	0	0	0	490,000
60	0	0	0	0	0	0	0	0	490,000
30	0	0	0	0	0	0	0	0	490,000
25	. 0	0	0	0	0	0	0	0	490,000
16	0	0	0	0	0	0	0	0	490.000
10	0	0	0	0	0	0	0	0	490.000
	0	0	0	0	0	0	0	0	490.000
0.1	1.702	2.074	1,702	512.847	0	0	0	2.278	537 655
0.03	3.514	4,281	3,514	1,022,483	0	0	0	4,702	588.382
Linit Rates and		78 /be//1*3	Only soil from	From RACER	Not used for	Not used for	\$4,000 per	Rent for 26-ten	Stebilization &
		, lioe	contern, site	Model	flore Motols	Rara Metala	gondole railcar,	120 yd * 31 dump	capping costs for
MOTAR -	· ·		is v school, and not the 7,000 m ² 3		Facility	Feclity	Not used for Rare Metals Facility	trucka O 1520.00/d. Dri ver costa	ensite tellinge pile 1.6 m deep (P \$106/m^22
			eleg pila					6738/d. Truck have 320 yd 3	RACER Model)

Table C.4.7. Calculated Costs and Other Parameters for Remediation of Contaminated Soil at the Reference Rare Metal Extraction Plant (Restricted Land Use, With Soil Washing, Mixing/Landfilling)
. ÷ .

NUREG-1496 Table C.4.7. Calculated Costs and Other Parameters for Remediation of Contaminated Soil at the Reference Rare Metal Extraction Plant (Restricted Land Use, With Soil Washing, Mixing/Landfilling)

	Total On-Site	Soil	Soit	Soll Disposal	Total Soil		Soll Exclusion &	Total Soli	Total
	Disposal	Disposal Costs	Disposal Coste	Costs @	Remediation	Soll Washing	Stabilization	Remediation	Occupational
Residual Dose Rate	Voiume	@ #10//#*3	@ \$50/#*3	\$350/ft*3	Coste	Labor	Labor	Labor	Dose
mrem/yr	m*3			\$	•	person-hr	person-hr	person-hr	merm-nerren
HIGH									
100	7,000	0	0	0	490,000	0	229	229	23
60	7,000	0	0	0	490,000	0	229	229	23
30	7,000	0	0	0	490,000	0	229	229	23
25	7,000	0	0	0	490,000	0	229	229	23
15	7,047	0	0	0	587,754	20	423	443	44
10	7,174	0	0	0.	761,618	74	954	1,028	103
3	7,553	0	0	0	1,278,551	235	2,532	2,767	277
0.3	8,278	0	0	0	2,266,944	543	5,550	6,093	609
0.03	9,02	0	0	0	3,255,555	851	8,568	9,419	942
MEDIUM									
100	7,000	0	0	0	490,000	0	229	229	23
60	7,000	0	0	· 0	490,000	0	229	229	23
30	7,300	0	0	0	490,000	0	229	229	23
25	7, 100	0	0	0	490,000	0	229	229	23
15	7,000	0	<u> </u>	0	490,000	0	229	229	23
10	7,000	0	0	0	490,000	0	229	229	23
3	7,335	0	0	0	980,662	142	1,623	1,765	177
0,3	8,060	0	0	0	1,969,455	450	4,641	5,092	509
0.03	8,784	. 0	0	0	2,958,192	758	7,660	8,418	842
IOW							•		
100	7.000	0	0	0	490,000	0	229	229	23
80	7.000	0	0	0	490,000	0	229	229	23
	7 000	0	0	0	490,000	0	229	229	23
	7,000	0	0	0	490,000	0	229	229	22
	7,000	0	0	0	490,000	0	229	229	23
15	7,000		0	0	490,000	0	229	220	23
10	7,000		<u> </u>		490.000	0	229	229	23
3	7,000				1 452 727	280	2.064	2 252	23
0.3	7,681	0		<u> </u>	2 441 974	597	8 082	3,303	335
0.03	8,405	U	Casta for los	Possible costs for	4,771,6/7	0.17	1.62 0002	0,0/9	668
Unit Rates and	Remainder ef	Goais far bill	compact disposal	Auture in-compact		per m*3	fer excevation, 0.5		U.I mrem per
Notes	alse washing to	disposal facility,	at existing LLW	disposal facilities			person to / louck load		Provenil 1000
l i	consolidated with	\$10/12" 3. Hot used	disposal facility,	fer LLW,			120 yd * 3) for		
	the eleg pile inte	for Rare Motole	is Bue Met uned	#360/IL"3. Hol uned for Reve			woroport to en-site		
ļ	an enelle Cépped	redmin.	Facility	Metale Facility		!	truck load for stabil.		
						[
L	I						· · · · · · · · · · · · · · · · · · ·		

ø.,

d.

C.C-122

						T	
	0			-			1
-	Contemin-	Site		Below-	Below-	Total Soll	Site Soll
Baskfuel Does Bate	Sol Ame	Death	Veture	Building Soll Dooth	Cuilding Coll Volume	Volume	Excevetion
member	h^2	cm	m°3		1001 VORIME	nemoved	Costs
HIGH						<u>m_a</u>	
100	100.000	0.00	0	0.00			
60	100,000	0.00	0	0.00	0		0
30	100.000	0.00	0	0.00	0	0	
	100.000	0.00	0	0.00	0	0	0
15	100.000	1.26	117	0.00	0	117	27 422
10	.100.000	4.69	435	0.00	0	435	102 202
3	100.000	14.87	1.381	0.44	1	1.383	374 939
0.3	100,000	34.35	3,191	1.12	3	3,194	750 625
0.03	100,000	53.83	-5,001	1.94	5	5.006	1.176.40
MEDIUM							
100	100,000	0.00	0	0.00	0	0	0
60	100,000	0.00	. 0	0.00	0	0	0
30	100,000	0.00	0	0.00	0	0	0
25	100,000	00.0	0	0.00	0	0	0
15	100,000	0.00	. 0	0.00	0	0	0
10	100,000	0.00	0	0.00	0	0	0
	100,000	9.01	837 -	0.00	0	837	196.642
0.3	100,000	28,49	2,646	0,94	3	2,649	622.501
0,03	100,000	47.96	4,456	1.85	5	4,461	1.048.33
LOW							
100	100,000	0.00	0	0.00	0	0	0
60	100,000	0.00	0	0.00	0	0	
30	100,000	0.00	0	0.00	0	0	0
25	100,000	0.00	0	0.00	0	0	0
15	100,000	0.00	-0	0.00	Ō	0	0
10	100,000	0.00	0	0.00	0	0	0
3	100,000	0.00	0	0.00	0	0	0
0.3	100,000	18,30	1,700	0.65	2	1.702	399.958
0.03	100,000	37.78	3,510	1,42	4	3,514	825,706
Unit Rates and		Motycorp		Diffueion	2% 01	Excludes the	\$236/m*3
Notes		eoil profile		medel soil	building floor	7000 m*3	
				belew	(160.000	which	
]		buildings	ft* 2}	becomes the	
*						copped tailings	
						pila	
1		L., ' I					

Table C.4.8. Calculated Costs and Other Parameters for Remediation of Contaminated Soil at the Reference Rare Metal Extraction Plant (Restricted Land Use, Without Soil Washing, Mixing/Landfilling)

· . .

~)

. .

.

Page 1 of 3

NUREG-1496

C.C-124

۸.

4

			I	Soll Trans-	Soll			
				port Loads,	Transport	Soli	1	
	Total Soll	ļ	Soil	Rail	Losds,	Transport	Soil Transport	On-Site Sol
	Volume	Total Soil	Washing	Gondolas	Truck Off	Costs, Rail	Costs, Truck	Stabilization
<u>Residua. Dass Rate</u>	Removed	Weight	Costs	Off-Sile	Site	Oll-Sile	On-Site	Capping Cos
nor sm/yr	<u></u>	MT	•	# C&/s	# Trucks		1	
HIGH								
100	0	0	0	0	0	0	0	490.000
60	0	0	0	0	0	0	0	490,000
30	0	0	0	0	0	0	0	490,000
25	0	0	0	0	0	0	0	490.000
15	117	142	0	0	0	0	390	498,168
10	435	530_	0	0	0	0	1,457	520.473
3	1,383	1,685	0	0	0	0	4,626	586.790
0,3	3,194	3,892	0	0	0	0	10,687	713.590
0.03	5,008	6,100	0	0	0	0	16.749	840,419
MEDIUM								
100	0	0	0	0	0	0	0	490.000
60	0	0	0	0	0	0	0	490,000
30	0	0	0	0	0	0	0	490,000
25	0	0	0	0	0	0	0	490,000
15	0	0	0	0	0	0		490,000
10	0	0	0	0				490,000
3	837	1.020	0	0	<u> </u>	0	2 800	549 574
0.3	2.649	3,228	0	0	0	0	8 863	675 426
0.03	4.461	5,436	Ō	0	0	0	14 925	802 270
0111						·	14,010	002,270
100		0	<u> </u>	0				400.000
100								490,000
						<u> </u>		490,000
30							0	490,000
25		0					0	490,000
		<u> </u>			<u> </u>	<u> </u>	0	490,000
10	0				<u> </u>		0	490,000
3	0	0	0			<u> </u>	0	490,000
0,3	1,702	2,074		0		0	5,694	609,136
0.03	3,514	4,281	Even BACKR	Alastandara		0	11,758	735,955
Unit Rates and		/* 166/10 3 300.	Medel	Rate Matale	Rare Metals	condela railcar.	fient for 25-lon	Stabilization &
Notes				Facility	Facility	Not used for	trucks @	ensite tailings
						flare Matale	\$680.80/d. Driver	pile 1.6 m
						Facility	coote \$230/d.	deep 🖗
		1			1 1		Truck haula 320	\$105/m*2
1								PARTY WOOD

Table C.4.8. Calculated Costs and Other Parameters for Remediation of Contaminated Soil at the Reference Rare Metal Extraction Plant (Restricted Land Use, Without Soil Washing, Mixing/Landfilling)

.

٠

Page 2 of 3

4

et.

Totel On- Sita Dieposel Volume	Solt Disposal Casts @ \$10/h*3	Soii Disposel Costs @ \$50/ft^3	Soll Disposal Casta @ \$350/ft*3	Totel Soll Remediation Costa	Soll Weshing '.sbor	Soll Excevetion & Stebilization Labor	Totel Soll Remediation Lebor	Total Occupational
m*3	•	•	8		person-hr	person-hr	person-hr	Derson-over
7,000	0	0	0	490,000	0	229	229	22
7,000	0	0	0	490,000	0	229	229	
7,000	0	0	0	490,000	0	229	229	22
7,000	0	0	0	490,000	0	229	229	23
7,117	0	0	0	525,981	0	426	426	42
7,435	0	0	0	624,233	0	963	963	98
8,383	0	0	0	916,355	0	2,559	2.559	254
10,194	0	0	0	1,474,902	0	5,612	5.612	581
12,006	0	0	0	2,033,572	0	8,666	8.666	947
7,000	0	0	0	490,000	0	229	229	
7,000	0	0	0	490,000	0	229	229	23
7,000	0	0	0	490,000	0	229	229	23
7,000	0	0	<u> </u>	490,000	0	229	229	
7,000	0	0	0	490,000	0	229	229	
7,000	0	0	0	490,000	0	229	229	- 23
7,837	0	0	0	748,016	0	1,639	1.639	164
9,649	0	0	0	1,306,789	0	4,693	4.693	480
11,461	0	0	0	1,865,531	0	7.747	7.747	775
7,000	0	0	0	490,000	0	229	229	
7,000	0	0	0	490,000	0	229	229	
7,000	0	0	0	490,000	0	229	229	
7,000	0	0	0	490,000	0	229	229	
7,000 .	0	0	0	490,000	0	229	229	23
7,000	0	0	0	490,000	0	229	229	
7,000	0	0	0	490,000	0	229	229	23
8,702	0	0	0	1,014,789	0	3.097	3.097	23
10,514	0	0	0	1,573,417	0	6,151	6,151	<u></u>
Centern, solt is censelidated with the slog pile into an onsite capped tailinge pile.	Casts for buil, disposal at LARW disposal facility, \$10/11~3. Not used for Rara Matsis Facility	Costo for In- compoct diopood et axiating LLW diopood facility, §60/It "3. Not used for Rare Motaly Facility	Pessible coots fur future in compact disposal tecilities for LLW, \$350/h^3. Not used for Rore Motols Facility		0.17 percentir per m*3	1.42 person-tr/m *3 for excavation, 0.5 person-tr / truck load (20 yd *3) for transport to en-site burid, 0.5 person-tr fruck for en-site		0.1 mrem per persente labor
	Totel On- Site Dieposel Volume m [*] 3 7,000 7,000 7,000 7,000 7,117 7,435 8,383 10,194 12,006 7,000 7,0	Totel On- Site Soft Disposel Disposel Casts Volume @ #10/ft*3 m*3 # 7,000 0 7,000 0 7,000 0 7,000 0 7,000 0 7,000 0 7,000 0 7,000 0 7,000 0 7,117 0 7,435 0 8,383 0 10,194 0 12,006 0 7,000 0 7,000 0 7,000 0 7,000 0 7,000 0 7,000 0 7,000 0 7,000 0 7,000 0 7,000 0 7,000 0 7,000 0 7,000 0 7,000 0 7,000 0	Totel On- Sha Soil Soil Soil Disposal Costs Volume @ #10/ft'3 @ #60/ft'3 @ #60/ft'3 m'3 4 4 7,000 0 0 7,000 0 0 7,000 0 0 7,000 0 0 7,000 0 0 7,000 0 0 7,000 0 0 7,000 0 0 7,117 0 0 7,435 0 0 8,383 0 0 12,006 0 0 7,000 0 0 7,000 0 0 7,000 0 0 7,000 0 0 7,000 0 0 7,000 0 0 7,000 0 0 7,000 0 0 7,000 0 0	Total On- Site Soil Soil Disposal Coats Soil Disposal Coats Coats @ #350/ft *3 m*3 # <td< td=""><td>Totel On- Site Soil Soil Soil Disposel Costs Corts @ 9350/ft"3 Totel Soil m*3 0<td>Totel On- Site Soil Soil Soil Disposel Soil Disposel Soil Totel Soil Soil Weshing (sbor Volume @ 410/n*3 @ 450/n*3 # 350/n*3 Remediation Coate Soil Weshing (sbor m*3 0 0 1 6 1 6 9 7,000 0 0 0 490,000 0 7 7,000 0 0 0 490,000 0 7 7,000 0 0 0 490,000 0 7 7,000 0 0 0 490,000 0 7 7,000 0 0 0 225,981 0 7 7,435 0 0 0 2,033,572 0 0 12,006 0 0 0 490,000 0 7 7,000 0 0 0 490,000 0 7 0 0 1,308,789 0 0</td><td>Total On- Site Soil Exbor m*3 0 1 0 1 0 1 0 1 Soil Soil Exbor Soil Exbor 7,000 0 0 0 4 9 3 3 3 0 0 0 229 7 7 0 0 0 229 7 7 0 0 0 242 233 0 9 93 3 3 3 3 3 3 3 3 3 3</td><td>Total On- Site Soil Soil Soil Soil Soil Soil Cort & Soil Soil Soil Soil Total Soil Soil Exclovation & Soil Weaking Total Soil Total S</td></td></td<>	Totel On- Site Soil Soil Soil Disposel Costs Corts @ 9350/ft"3 Totel Soil m*3 0 <td>Totel On- Site Soil Soil Soil Disposel Soil Disposel Soil Totel Soil Soil Weshing (sbor Volume @ 410/n*3 @ 450/n*3 # 350/n*3 Remediation Coate Soil Weshing (sbor m*3 0 0 1 6 1 6 9 7,000 0 0 0 490,000 0 7 7,000 0 0 0 490,000 0 7 7,000 0 0 0 490,000 0 7 7,000 0 0 0 490,000 0 7 7,000 0 0 0 225,981 0 7 7,435 0 0 0 2,033,572 0 0 12,006 0 0 0 490,000 0 7 7,000 0 0 0 490,000 0 7 0 0 1,308,789 0 0</td> <td>Total On- Site Soil Exbor m*3 0 1 0 1 0 1 0 1 Soil Soil Exbor Soil Exbor 7,000 0 0 0 4 9 3 3 3 0 0 0 229 7 7 0 0 0 229 7 7 0 0 0 242 233 0 9 93 3 3 3 3 3 3 3 3 3 3</td> <td>Total On- Site Soil Soil Soil Soil Soil Soil Cort & Soil Soil Soil Soil Total Soil Soil Exclovation & Soil Weaking Total Soil Total S</td>	Totel On- Site Soil Soil Soil Disposel Soil Disposel Soil Totel Soil Soil Weshing (sbor Volume @ 410/n*3 @ 450/n*3 # 350/n*3 Remediation Coate Soil Weshing (sbor m*3 0 0 1 6 1 6 9 7,000 0 0 0 490,000 0 7 7,000 0 0 0 490,000 0 7 7,000 0 0 0 490,000 0 7 7,000 0 0 0 490,000 0 7 7,000 0 0 0 225,981 0 7 7,435 0 0 0 2,033,572 0 0 12,006 0 0 0 490,000 0 7 7,000 0 0 0 490,000 0 7 0 0 1,308,789 0 0	Total On- Site Soil Exbor m*3 0 1 0 1 0 1 0 1 Soil Soil Exbor Soil Exbor 7,000 0 0 0 4 9 3 3 3 0 0 0 229 7 7 0 0 0 229 7 7 0 0 0 242 233 0 9 93 3 3 3 3 3 3 3 3 3 3	Total On- Site Soil Soil Soil Soil Soil Soil Cort & Soil Soil Soil Soil Total Soil Soil Exclovation & Soil Weaking Total Soil Total S

Table C.4.8. Calculated Costs and Other Parameters for Remediation of Contaminated Soil at the Reference Rare Metal Extraction Plant (Restricted Land Use, Without Soil Washing, Mixing/Landfilling)

Páge 3 of 3

ATTACHMENT D

REPRODUCED APPENDIX C OF DRAFT GEIS

the second second

.\$

ATTACHMENT D

REPRODUCED APPENDIX C OF DRAFT GEIS

In several places in this final GEIS, reference is made to analysis and results from Appendix C of the draft GEIS. To assist the user of this report and to provide completeness, Appendix C of the draft GEIS is reproduced here as Attachment D. The section numbering system indicating that this was Appendix C has been retained.

NUREG-1496

J

. . .

C.D-2

÷.

REPRODUCED APPENDIX C OF DRAFT GEIS

C.1 INTRODUCTION

2

Decommissioning is currently defined in the Commission's regulations as removing a facility safely from service and reducing residual radioactivity to a level that permits release of the property for unrestricted use and termination of license. Criteria and practices are described in several NRC guidance documents which have been used for a number of years. The NRC is conducting a rulemaking to establish radiological criteria for the decommissioning of NRC-licensed facilities. The facilities that would be covered by such a rulemaking include nuclear power plants, non-power reactors, fuel fabrication plants, uranium hexafluoride production plants, uranium mills, independent spent fuel installations, and non-fuel-cycle facilities.

According to the requirements of NEPA and of the Commission's regulations in 10 CFR 51, the planned rulemaking needs to be accompanied by an environmental impact statement (EIS) which analyzes costs and impacts associated with rulemaking alternatives.

In preparing the EIS, one of the principal decommissioning activities expected to be sensitive to residual radioactivity criteria is the cost of cleaning, removal, and disposal of contaminated concrete and soil. Assessment of the differential in decommissioning costs related to alternate residual radioactivity criteria is difficult because of problems in making a generic evaluation of contamination levels on and within concrete and soil surfaces, including concrete cracks and hot spots, and because of questions regarding the amount of radioactive dose reduction achieved by concrete and soil removal techniques.

The proposed amendment to 10 CFR Part 20 to include radiological criteria for termination of licenses would be applicable to almost all of the facilities and sites that the NRC licenses. The nuclear facilities that will require decommissioning and would be affected by this action includes the following facilities involved in the nuclear fuel cycle:

- nuclear power plants
- non-power (research and test) reactors
- fuel fabrication plants
- uranium hexafluoride production plants
- uranium mill facilities
- independent spent fuel storage installations,
- non-fuel-cycle nuclear material facilities.

The materials licensees include universities, medical institutions, radioactive source manufacturers, and companies that use radioisotopes for industrial purposes. Over 75% of the NRC's materials licensees use either sealed radioactive sources or small amounts of short-lived radioactive materials. Decommissioning of these facilities should be relatively easy because there is usually little or no residual radioactive contamination to be cleaned up and disposed of.

C.D-3

Of the remaining 25%, a small number (e.g., radioactive source manufacturers, radiopharmaceutical producers, and radioactive ore processors) conduct operations which could produce substantial radioactive contamination in portions of their facilities.

The amended Part 20 would not apply to the disposition of uranium mill tailings, low-level waste disposal facilities, or high-level waste repositories because these have already been addressed in separate regulatory actions.

This Appendix provides supportable technical models for estimating facility concrete contaminant penetration and soil contaminant penetration, realistic technical methods for facility and soil decontamination during decommissioning, and a generic analysis of the differentials in decommissioning costs associated with decontaminating the facility and its site to alternate residual contamination levels.

NUREG-1496

Т

C.2 STUDY APPROACH

The approach taken to develop the needed information on facility and soils characterization, how and where the facility and soils decontamination technique information was obtained, how the scenarios were defined for subsequent analysis of estimated costs and surface dose rates associated with various levels of cleanup, and the cumulative annual radiation doses associated with those surface dose rates are discussed in this chapter.

Technical expertise in the area of concrete, other building materials, and soil contamination levels as well as decontamination and removal and cost analysis were used in developing a technical basis for preparation of the GEIS. A supportable technical model, based on experience and information gained in other projects, was developed for use in generic analysis of concrete, other building materials, and soil contamination and decontamination, for use in assessing the costs involved in reaching alternate residual radioactivity criteria. The information developed can then be used in generic input and analyses for alternative residual dose criteria.

Specifically, technical bases and models describing contamination levels on and within concrete and other building materials are provided, with supporting references from the technical literature.

C.2.1 Nuclear Reactors

The model developed for nuclear reactors incorporates the following information:

- A description of radionuclide surface and volumetric contamination levels in various areas of the facility;
- The extent, profile, and variability of the physical distribution of radionuclide contamination into the concrete and other building materials;
- The extent, profile, and variability of the activated concrete in the reactor building;
- Contamination levels in cracks and corners, and in other potential contamination hot spots in concrete and other building materials, including a description of frequency and dimensions of these hot spots and variability of hot spot contamination;
- Contamination levels in soils at the site associated with contaminant spills, described similarly as above.

The model for contamination at reactors is based on previous and current technical work done by PNL in its series of reports prepared for the NRC on technology, safety, and costs of decommissioning (Smith et al. 1978)(Konzek et al. 1982a, 1982b, 1993), and on previous and current reports prepared by PNL describing residual radionuclide contamination within

C.D-5

and around nuclear power plants (Abel et al. 1986; Robertson et al. 1989). Where appropriate, existing literature was reviewed to determine if the conclusions of the previous PNL reports remain valid.

C.2.2 Fuel Cycle and Non-Fuel Cycle Facilities

Facilities in these categories include fuel fabrication plants, uranium hexafluoride plants, uranium mills, sealed source manufacturers, broad R&D facilities, ISFSIs, and rare metal extraction processors.

Information presented on these facilities includes:

- A description of radionuclide surface and volumetric contamination levels in various areas of the facility;
- The extent, profile, and variability of the physical distribution of radionuclide contamination into the concrete and other building materials;
- Contamination levels in cracks and corners, and in other potential contamination hot spots in concrete and other building materials, including a description of frequency and dimensions of these hot spots and variability of hot spot contamination;
- Contamination levels in soils at the site were described similarly as above, with specific attention to special contamination features and their variability.

The model for contamination at fuel cycle and non-fuel cycle facilities was developed using technical bases similar to those noted in Section 2.1 above (Elder and Blahnik 1980a, 1980b; Elder 1981; and Murphy 1981). The amount of recent and relevant technical data for these facilities was more limited than that which exists for reactors. However, a generic model was developed based on extrapolating information developed for reactors, or based on other PNL data on uranium facilities and non-fuel cycle facilities, or by obtaining available information on these other facilities from other sources such as DOE or NRC.

C.2.3 Decontamination Methods and Costs

Realistic descriptive summaries are provided, including cost and decontamination effectiveness, of cleanup and removal techniques anticipated to be used in decommissioning the nuclear facilities listed in Sections 2.1 and 2.2.

Likely practical methods of concrete decontamination/removal for use in a large-scale industrial process like decommissioning of a facility are described. For example, this Appendix addresses whether it is practical or likely that a licensee would remove layers of concrete during a decommissioning to achieve alternate contamination criteria and how this would be accomplished.

NUREG-1496

L

C.D-6

For decontamination of soil, practical soil cleanup and removal methods likely to be used in the decommissioning of nuclear facilities are described.

This analysis was based on the information sources indicated above, on information which has been obtained from recent decommissioning experience at Shippingport, etc., and on recent technical information obtained regarding decontamination methods.

Based on the results of the analyses described in Sections 2.1 and 2.2, generic analyses of concrete, other building material, and soil cleanup procedures and associated costs to reach alternate residual contamination levels for decommissioning for the facilities are provided. The analyses in the report assume that the contaminated equipment has been removed and the nondestructive decontamination has been completed. For building areas requiring destructive decontamination of concrete and other building materials, the following information is presented:

- The estimated contamination levels in those areas;
- The extent of contamination removal by realistic removal techniques (including stepwise removal and the need for removal of hot spots and contamination in cracks) to reach alternate contamination levels;
- The costs associated with these removal techniques, including waste disposal costs.

Analyses have resulted in estimates of the amounts of concrete and other building materials which are necessary to be cleaned or removed in order to meet alternate residual radioactivity contamination levels. The analyses are quantitative in nature to the extent feasible, quantifying the amount of contamination removed and the amount of contamination remaining, and the associated costs required to achieve that contamination level.

For land areas, the following information is presented:

- The method of cleanup or removal that would be used in various site areas having contamination;
- The estimated contamination levels in those areas;
- The extent of contamination reduction by soil cleanup or removal, if necessary, to reach alternate contamination levels;
- The costs associated with such removal.

C.D-7

C.3 RESULTS OF THE ANALYSES

Based on the models of radionuclide surface contamination and penetration profiles and the costs of remedial actions, an assessment was made of decommissioning costs for reference nuclear facilities. Models were developed for use in calculating contaminant penetration profiles and associated residual radiation dose rates as successive amounts of the contaminated material are removed. Based on the depths of materials removed, decommissioning costs were calculated as a function of residual radioactivity and associated annual radiation dose criteria. The results of these analyses are summarized in Chapter 7, with additional details given in Attachments A and B.

NUREG-1496

ı

C.4 CHARACTERIZATION OF REFERENCE FACILITY BUILDING CONTAMINATION

This chapter includes information on the types and concentrations of radionuclides and the quantities of surface areas contaminated for each of several reference facility types. Actual concentration profiles for penetration of radionuclides into concrete surfaces are provided, where possible. Theoretical concentration profiles are developed for ¹³⁷Cs, ⁶⁰Co, uranium, and thorium, using diffusivity coefficients where actual data are not available. Sections 4.1 - 4.7 present information on the areal extent and level of contamination on building surfaces for reference facilities. Section 4.8 presents summary information on surface contamination levels and information on contamination profiles with depth below the surface. Similar information for soils is presented in Chapter 5.

C.4.1 Reference Nuclear Power Reactor Station

A representative 1095-MWe pressurized water reactor plant that is preparing for D&D is the reference plant for this analysis. Conceptual decommissioning of this plant has been reported previously (Smith et al. 1978, Konzek et al. 1993).

Extent of Surface Contamination in Nuclear Plants

.

The extent of surface radionuclide contamination on floors of the various buildings of the reference PWR nuclear power station was estimated by reviewing detailed contamination survey maps supplied by the utility for contaminated areas of the station. The contamination surveys were conducted by taking smears of removable radioactive material from 100 cm² areas of floor surfaces. In a number of locations in the reactor containment building, contaminated walls were also surveyed for removable radioactive contamination. A summary of the contaminated surface areas is given in Table 4.1.1. As shown in the table, all of the floor surfaces in the reactor containment building (estimated area of about 1900 m²) are assumed to be contaminated at levels which would require scabbling to reduce the contamination levels to acceptable residual concentrations.

Contamination penetrated into concrete below-grade floors in the Sodium Reactor Experiment Facility approximately 1/8 to 3/8 inches on the average and up to the full thickness of walls and floors where cracks and joints existed (Brengle 1979). Angus et al. (1990) found that ¹³⁷Cs penetrated deeply into areas of surface porosity and cracks. Information on surface contamination of concrete in the Japan Power Demonstration Reactor (Yasunaka et al. 1987) indicated that most of the contamination penetrated less than 2 cm and only 15% penetrated up to 3 cm. In the liquid waste treatment building, the deepest penetration was up to 11 cm in the vicinity of cracks, but elsewhere it was less than 2 cm. Therefore, complete removal of concrete floors is assumed to contain 1500 m of cracks. Because contamination tends to penetrate rapidly into cracks, contaminated crack regions are expected to require complete removal.

C.D-9

The interior walls of certain locations within the reactor containment building also contain significant radionuclide contamination, particularly the upper and lower cavity areas surrounding the pressure vessel. Although summaries of wall contamination are not included in Table 4.1.1, it is estimated that approximately 400 to 600 m² of wall area from these locations have been contaminated at levels ranging from about 1000 to 60,000 pCi/100 cm². Other portions of the interior wall surfaces in the containment building may also be contaminated and require some type of decontamination.

Building	Approximate Floor Surface _ <u>Area, ft²</u>	Estimated % of Floor Area <u>Contaminated</u>	Estimated Needing <u>Cleanup, ft²</u>
Reactor Containment	20,400	100	20,400
Auxiliary (6 levels)	43,000	1-5	430 - 2,200
Fuel Building (5 levels)	53,800	1-5	540 - 2,690
Turbin e Building	61,300 per level	0	0
Control Building	7,500 per level	0	0

TABLE 4.1.1. Extent of Surface Radionuclide Contamination in the ReferencePWR Nuclear Power Station^(a)

(a) From Smith et al. 1978.

In addition to the widespread surface contamination of concrete and patchy areas of contamination associated with spills or high radiation areas where maintenance work was conducted, radioactive contamination is produced in-situ by neutron activation of concrete shields. Concrete areas subjected to neutron exposure within the plant are limited primarily to the bioshield and the sump area directly beneath the reactor vessel. Concrete core samples collected directly beneath the pressure vessel show the effects of both surface contamination and subsurface neutron activation of stable elements present in the concrete (Abel et al. 1986). The concentration of radionuclides, such as ⁶⁰Co, decreases rapidly (by approximately four orders of magnitude) with depth from the surface to about 2 cm beneath the surface. This concentration profile is attributed to diffusion of surface contamination. The radioisotopes produced by neutron activation extend much deeper (even feet) in nuclear reactors (Abel et al. 1986; Irving 1980). The concentration may peak at depths where the neutron energy spectrum coincides with peaks in the capture cross section for the parent isotope. The subsurface contamination produced by neutron activation is too deep to be removed by surface scabbling, and must be removed by procedures for concrete demolition.

NUREG-1496

н

The auxiliary and fuel buildings also have some areas of floor contamination, but not nearly to the extent of that observed in the reactor containment building. It has been estimated, based on survey reports (Smith et al. 1978), that about 1 to 5% of the floor area (representing about 430 to 2,200 ft²) in the auxiliary building has radioactive contamination levels in the range of 500 to 3600 pCi/100 cm². The fuel handling building also has a small amount of floor contamination, estimated at approximately 540 to 2,690 ft², with contamination levels ranging from about 500 to 2300 pCi/100 cm².

The other buildings, including the turbine building, the control building, radwaste handling warehouse, and the condenser building, generally do not have any measurable radioactive contamination on any surfaces.

Within the common variabilities of contamination levels in nuclear power plants, the analysis for a PWR reasonably estimates the contaminants and contamination levels for a BWR. Within these variabilities and considering the information shown in Table 4.1.2, the radioactive contamination in the various types of reactors appears to be similar. The primary difference is in the areas and volumes of the structures. Dry active waste (DAW) is a mixture of radioactively contaminated items typically generated at nuclear power stations, (e.g., trash, protective clothing, gloves, equipment, tape, plastic sheeting and bags, etc.) and the radioactive material associated with DAW would be expected to be reasonably representative of that found on surface contaminated concrete. These measurements were made on over 100 DAW samples during a recent study conducted by Battelle, Pacific Northwest Laboratories for the Electric Power Research Institute to determine the industrywide variability in the radionuclide composition of very low-level wastes generated at nuclear power stations (Robertson et al. 1989).

Section 4.8 provides a summary assessment of the level of surface and shallow subsurface building contamination. Based on the information in that section and data obtained on contamination at power reactors, the level of surface contamination assumed for the reference power reactor is the high contamination level in Table 4.8.1. The shallow subsurface contamination depth profile is described in Section 4.8.3. The information on the building surface contamination levels and areal extents are summarized in Table 7.1.1.

C.4.2 Radionuclide Source Term for Nonpower Reactors - Test and Research Reactors

Nonpower reactors generally are divided into two classes: research reactors and test reactors. A test reactor is defined in 10 CFR 50.2 as a nuclear reactor licensed for operation at a thermal power level in excess of 10 MW or a thermal power level in excess of 1 MW if the reactor contains a circulating loop through the core to conduct fuel experiments, or a liquid fuel loading, or an experimental facility in the core in excess of 16 in² in cross section. A research reactor is defined in 10 CFR 170.3(h) as a nuclear reactor licensed for operation at a thermal power level of 10 MW or less and which is not a testing facility.

C.D-11

Radionuclide	All PWR Stations(a)	All BWR Stations ^(b)	All Stations Combined ^(c)
⁶⁰ Co	49 ± 34 ^(d)	78 ± 2.6	61 ± 30
¹³⁷ Cs	27 ± 22	11 ± 2.2	20 ± 18
¹³⁴ Cs	8.6 ± 7.3	2.5 ± 1.2	6.1 ± 6.3
^{sa} Co	9.8 ± 9.8	0.59 ± 0.43	6.7 ± 9.0
⁵⁴ Mn	0.7 ± 0.5	6.4 ± 3.6	3.0 ± 3.6
¹⁰⁶ Ru	2.4 ± 2.1	1.8 ± 0.4	2.1 ± 1.4
¹²³ Sb	0.6 ± 0.3	0.69 ± 0.47	0.6 ± 0.4
⁹⁵ Nb	2.4 ± 3.2	0.2 ± 0.09	1.8 ± 2.8
⁹⁵ Zr	0.7 ± 0.5	-	0.7 ± 0.5
^{110m} Ag	0.3 ± 0.5	0.12	0.3 ± 0.4

TABLE 4.1.2. Gamma-Emitting Radionuclide Distributions in Dry Active Waste (Robertson et al. 1989, 1991)

Average % Composition of ~-Emitting Radionuclides

(a) Includes 6 stations and 60 samples.

(b) Includes 4 stations and 42 samples.

(c) Includes 10 stations and 102 samples.

(d) \pm values are the standard deviation (1 σ).

C.4.2.1 Description of Reference Facility Structures and Lands

The reference test reactor is the Plum Brook Reactor at Sandusky, Ohio (Konzek et al. 1982a, b). It is a 60 MWt test reactor formerly operated by the National Aeronautics and Space Administration and is located on a site approximately 50×10^6 ft². It is a light water-moderated and cooled plant, used in testing materials for specific applications. The testing system of the Plum Brook reactor is made up principally of the test reactor vessel (containing the nuclear core and experimental beam tubes) and the reactor water recirculation system. Major structures comprising the reference test reactor include:

- reactor building (housing the test reactor)
- hot laboratory building with seven hot cells
- a primary pump house
- an office and laboratory building (housing radiochemistry laboratories)

NUREG-1496

Т

- a fan house (ventilation systems and waste ion exchanger and filters)
- a hot retention area (holding waste tanks)
- a cold retention area and an emergency retention basin
- a waste handling building.

The reference research reactor for this analysis is the Oregon State University 1 MWt TRIGA reactor. This reference facility is described by Konzek et al. (1982a, b) and Chapter 7 of NRC (1988). It is located on a site of approximately 150,000 ft². It is an open-pool nuclear training and research facility. It is made up of a reactor tank and a core structure and a TRIGA type control system. Major structures comprising the reference research reactor that are likely to be contaminated include a reactor building (housing the TRIGA reactor and support area), a cooling tower, an annex (housing a hot laboratory area and hot cell), a heat exchanger building (housing a water purification system, water pumping systems, and air compressor systems), and a pump house.

C.4.2.2 Contamination Data

Information on the extent and nature of contamination in the structures, and in surrounding onsite lands for the reference research and test reactors, is taken from Konzek et al. (1982a, b) and Abel et al. (1986). The locations and sizes of the contaminated areas are summarized in Tables 4.2.1 and 4.2.2. The crack lengths, assumed to approximate the perimeter of the reference test reactor and the reference research reactor, are estimated to be 2,900 and 1,300 ft, respectively. Section 4.8 provides a summary assessment of the level of surface and shallow subsurface building contamination. Based on that information and on data obtained on contamination at research and test reactors, the levels of surface contamination assumed for the reference test and research reactors are the high contamination level and the medium contamination levels, respectively, from Table 4.8.1. The shallow subsurface contamination depth profile is described in Section 4.8.3. The information on the building surface contamination levels and areal extents is summarized in Table 7.1.1.

C.4.3 Reference Uranium Fuel Fabrication Plant

The reference uranium fuel fabrication plant processes an average of 1000 MT/y. Buildings or site areas associated with the reference uranium fuel fabrication plant include:

• Processing buildings, which are typically two-story windowless structures of concrete and steel. Interior walls, typically of concrete block, divide the buildings into discrete operations areas that house each of the production steps.

C.D-13

- On-site waste ponds containing calcium fluoride; calcium fluoride is a waste product that is produced by treating the fluoride wastes with Ca(OH)₂. The calcium fluoride is stored in waste ponds on the site.
- A site area of 4.7×10^6 ft².

 TABLE 4.2.1. Distribution of Contaminated Concrete Surface Areas within the Reference Test Reactor^(a,b)

4

Location	Estimated Surface Area, ft ²
Reactor Building and Containment Vessel	61,000
Hot Laboratory Building	24,000
Fan House	750
Waste Handling Building	4,230
Primary Pump House	2,500
Hot Retention Area	450
Cold Retention Area	13,470
Office and Laboratory Building and Sumps	1,100
Total	107,500

(a) (Konzek et al. 1982a, b)

(b) Estimates of percent of surface area contaminated given in Konzek 1982 are considered to be too high for an operating plant. An average value of 10% is used in Table 7.1.1 based on operating data from power reactors.

C.4.3.1 Description of Reference Facility

The General Electric Company's Wilmington facility has previously been evaluated as a reference plant for conceptual decommissioning activities (Elder and Blahnik 1980a). It is licensed, a major fabricator of commercial nuclear fuel, and considered to have characteristics similar to other existing commercial uranium fabrication plants. Contamination of equipment and floors results during normal operations and, on at least one occasion, from a spill that caused uranium to penetrate through cracks in the concrete floor into soil beneath the fuel processing building.

Т

The feed to the plant is slightly enriched uranium in the chemical form of UF_6 . The plant uses two chemical processes for converting the UF_6 to UO_2 . The primary method is a chemical process that reacts UF_6 with ammonia to form ammonium diuranate (ADU) precipitate and reduces and calcines the ADU to dry UO_2 powder. The second method involves direct conversion of the UF_6 to U_3O_8 to UO_2 powder in a reduction calciner. The UO_2 powder from each process is subsequently milled and pressed into pellets that are sintered and ground to size. The pellets are loaded into rods and sealed. The rods are assembled into fuel bundles ready for use in light water reactors.

Location	Estimated Surface Area, ft ²	Estimated Area Contaminated,
Reactor Building		
Surfaces	1050	100
Reactor Top	100	20
Fuel Storage Pits	5	100
Annex		·
Hot Cell	145	100
Hot Lab	430	10
Hot Lab Sump	160	100
HX Building		
Floor	580	10
Sump	160	100
Pump House		
Concrete Floor	645	10
Sump	160	100
Waste Storage Room		· · ·
Concrete Floor	410	10
Sump	160	100
Radiation Center Building	30,000	4
		· · ·
Total	35,005	10

TABLE 4.2.2. Distribution of Contaminated Concrete Surface Areas within the Reference Research Reactor^(a)

(a) (Konzek et al. 1982a, b)

Ŧ

Liquid waste streams containing uranium are kept separate to facilitate uranium recovery operations. They are classified as nitrate wastes, fluoride wastes, and radwastes. Uranium-bearing nitrate sludge is sent to an offsite contractor for uranium recovery. Calcium fluoride solids entrap uranium residuals in the waste from the UF₆ to UO₂ conversion process. CaF₂ solids are stored onsite for eventual reprocessing to recover the uranium residuals.

C.D-15

C.4.3.2 Contamination Data

The reference fuel fabrication plant consists of five potentially contaminated buildings (Elder and Blahnik 1980b, p. A-18). There are an average of two floors per building with a total floor space of approximately 235,000 ft² (about 22,000 m²). Contamination incidents, as well as releases during normal operations, are assumed to have affected 50% of the surface of the process areas. The principal contaminant is uranium, and its concentration at the exposed surface after removal of the covering and after surface washing is 1 g U/m² (33 pCi/g of concrete). Therefore, approximately 11,000 m² are assumed to be contaminated to a level of 1 g U/m² (33 pCi/g of concrete) and require decontamination by surface removal.

Floor tiles cover 100% of the process area floors. Replacement of the floor tiles and linoleum coverings removes significant contamination. However, recontamination during operation requires floor tiles to be replaced annually for ALARA considerations. The tiles are also removed during normal decommissioning operations. Because of contaminant penetration through seams between tiles, it is assumed in Table 4.3.1 that 50% of the concrete floor has become contaminated¹. The chemical area has a sealed concrete floor. It is assumed that 50% of the concrete floor surface under the seal is contaminated. Offices and change rooms have tiled or painted floors (Elder and Blahnik 1980a, p. 7-17); it is assumed that the concrete surfaces below these surface coverings are not contaminated

Location	Estimated Surface Area, <u>_ft²</u>	Estimated Area Contaminated, %	Contamination Level, <u>pCi/cm³</u>
Fuel Manufacturing Building	208,000	50	· 73
Chemical Metallurgical Laboratory	8,300	40	73
Uranium Scrap Recovery Room	3,700	90	73
UO ₂ Powder Warehouse	8,700	30	73
Contaminated Waste Incinerator	2,400	100	73
Fluoride and Nitrate Waste Treatment Plant	2,500	100	73
Boiler Steam House	1,100	0	0
Total	234,700	50	-

TABLE 4.3.1.	Distribution of Contaminated Concrete Floor Area in the Reference
	Uranium Fuel Fabrication Facility ^(a)

(a) (Elder and Blahnik 1980b, p. A-18)

Note: this assumption deviates from that made by Elder and Blahnik (1980) in that they assumed the concrete was not contaminated. Penetration and spread of contamination through seams between tiles is assumed in Table 4.3.1 to result in approximately 50% of the concrete floor becoming contaminated.

For an assumed average wall height of 10 ft, the total interior wall surface area is approximately 236,700 ft² (22,000 m²). Most of this wall area is cleaned by washing during normal decommissioning operations. The estimated remaining distribution of contamination for walls is indicated in Table 7.1.1.

The crack length in the concrete floors is taken to be equal to the sum of the building perimeter, i.e., approximately 3,000 ft. Uranium from contamination incidents has penetrated through the concrete in regions of cracks, crevices, porosity, and unsealed joints. The contamination in cracks is assumed to have penetrated through the complete 6-in. thickness of the floor.

Elder and Blahnik (1980a) estimated the surface concentration of uranium on horizontal surfaces to be approximately 1 g U/m² (33 pCi U/g of concrete)². Approximately 700 samples were taken from the main building block and brick walls at the Babcock and Wilcox Apollo plant in Pennsylvania. The majority of the wall contamination was <30 pCi U/g with some selective areas containing up to 2,000 pCi U/g (Haase, et al. 1992). The characterization of surface contamination was complicated by the heterogeneous nature of the contamination and, in some areas, the number of overlying pours of concrete that were made to cover contaminated floor areas.

Measurements at the DOE Fernald facility have shown some floor regions with extreme uranium contamination approaching 10,000,000 dpm/100 cm² with an average maximum of 2,220,000 dpm/100 cm² (DOE 1992). These high levels are believed to be an upper bound and are used only in calculation of the penetration profiles in Section 4.8.

The three uranium fuel fabrication facilities provide information on three levels of contamination: an estimated 33 pCi U/g from Wilmington, up to 2,000 pCi U/g measured for Apollo, and a maximum beta-gamma of nearly 16,000 pCi U/g for Fernald. These data were converted to dpm/100 cm² and resulted in values of 18,000 dpm/100 cm² (low); 1,100,000 dpm/100 cm² (medium); and 10,000,000 dpm/100 cm² (high). Based on the above discussion, the level of surface contamination after surface washing assumed for the reference uranium fuel fabrication facility is 18,000 dpm/100 cm². The information on the building surface contamination levels and areal extents are summarized in Table 7.1.1

C.4.3.3 Reference Depth Contamination Data

Documentation was reviewed (Elder and Blahnik 1980a, b; Babcock and Wilcox 1992a, b; Haase et al. 1992; DOE 1992) for the penetration of uranium into concrete; however, no experimental data were found. Two methods of theoretical calculations provide independent methods for calculating penetration profiles. These two methods involve: 1) the use of the diffusivity for uranium in concrete; and 2) data for the distribution coefficients from leaching

² 1 g U/m² = 0.7 x 10⁶ pCi/m² x 0.472 pCi/g per pCi/cm² x 10⁻⁴ m²/cm² = 33 pCi/g

C.D-17

studies with uranium and concrete and cement. The relative values for the distribution coefficients for uranium were compared to cesium for which there are also data for diffusivity in concrete as well as penetration profiles. These relationships permit the development of a cohesive presentation of penetration profiles for uranium. Section 4.8.5 contains information regarding an assessment of the depth profile for uranium.

C.4.4 Uranium Hexafluoride Plant

The reference uranium hexafluoride facility processes 10,000 MT/y of natural uranium. The Kerr McGee plant was used as the reference facility (Elder 1981).

C.4.4.1 Description of Reference Uranium Hexafluoride Facility

Buildings or site areas associated with the reference uranium hexafluoride plant include:

- the total buildings, including the warehouse and storage areas, contain approximately 120,000 ft² of floor area. The floor area of the main processing areas in two buildings is approximately 84,000 ft². Some of the main processing rooms are described in Table 4.4.1 to provide an estimate of the average radionuclide surface concentration. The buildings are of normal industrial construction with heavy concrete floors to support equipment. The wall surface area is estimated to be 130,000 ft².
- a series of on-site retention ponds for storage of process raffinates and sanitary wastes
- lagoon areas for neutralized liquid effluents
- a burial area for disposal of defunct equipment
- a site area of 200 x 10^6 ft².

C.4.4.2 Surface Contamination Data

The extent of contamination in these structures, and in surrounding on-site lands, is taken from Elder (1981). The reference uranium hexafluoride plant includes at least twelve separate rooms, several in the main building and several in small adjacent buildings, in which various steps related to the process were carried out. The primary contamination in the plant is assumed to be in these process rooms, which are listed in Table 4.4.1. The contamination estimated to be on the process equipment after decontamination is then used as the basis for estimating the amount of contamination remaining in the room after removal of the equipment. For these estimates, the following assumptions are made:

• The amount of contamination on the floor and walls is 15% of the amount listed for the equipment itself, as a worst case.

- This contamination is distributed as follows: one-half on the floor and the other half distributed over the walls, i.e., one-eighth of the total on each wall, which are assumed to be about 33 ft high.
- The length of the perimeter represents a crack length of 1,300 ft contaminated with uranium and must be removed.

Based on the quantities of uranium on the floor and wall surfaces, the level of surface contamination after surface washing assumed for the reference uranium hexafluoride plant is the medium contamination level indicated, i.e., 1×10^6 dpm/100 cm². The information on the building contamination surface contamination levels and areal extents are summarized in Table 7.1.1.

C.4.4.3 Depth Contamination Data

The primary contaminant for the uranium hexafluoride conversion plant is uranium. There were no experimental data for the depth of uranium penetration into concrete. See Section 4.8.5. for further development of the distribution of uranium contamination in concrete.

Room/Building	Contamination on Equipment, Kg U	Contamination in Room, g U	Floor Area, ft2	Area of Opposite Walls, ft ²	Contamination on Floor, 	Contamination on Opposite Walls, g U/m ²
Sampling Station	110	17,000	1,830	1,080/1,830	1,650	700/430
Solvent Extraction	550	83,000	4,090	2,040/2,150	3,600	1,800/1,700
Concentration Area	855	128,000	1,400	1,080/1,400	16,200	5,280/4,060
Denitration Area	555	83,000	1,400	1,080/1,400	10,500	3,430/2,640
Reduction Area	200	30,000	2,900	1,610/1,940	1850	825/690
Hydrofluorination Area	1050	158,000	2,800	1,400/2,150	10,000	5,000/3,270
Fluorination Area	1300	195,000	2,900	1,610,1,940	11,900	5,380/4,460
UF ₄ Slurry Processing	~900	135,000	540	775/750	44,600	7,720/7,950
Incinerator	~900	135,000	1,610	1,080/1,610	14,900	5,580/3,730
Dissolution of Ore Concentration	~500	75,000	2,150	1.080/2,150	6,200	3,100/1,550
Fluorine Generation Area	~ 500	75,000	16,140	2,690/6,460	825	1,250/530
Laboratory	_~50	<u> </u>	<u>1.610</u>	1,610/1,940	890	320/200
Total	7470	1,122,000	39,400	•	•	•

TABLE 4.4.1.	Distribution of	Uranium in	the F	Reference Uraniu	m
	Hevafluoride	Plant ^(a)		· · · .	

(a) Elder 1981.

C.4.5 Reference Non-Fuel-Cycle Plants

Non-fuel-cycle facilities are those facilities which handle byproduct, source, and/or special nuclear materials but are not involved in the production of nuclear power.

Non-fuel-cycle facilities make up a wide variety of different facilities with widely varying levels of contamination. For the purposes of developing reference facilities for analysis, the wide variety of facilities are broken down into the following general types:

- material manufacturers, including (1) radioactive sealed source manufacturers, and (2) radiochemical and radiopharmaceutical manufacturers
- broad research and development program facilities including academic and medical institutions, and companies using, distributing, or handling radioisotopes for industrial purposes, etc.
- ore processors
- licensees who use either sealed radioactive sources or small amounts of short-lived radioactive materials, including sealed gauges, well loggers, sealed radiographer sources, sealed irradiator sources, sealed special nuclear material sources, and leak-test sources.

These latter types of facilities are not examined in the analyses presented in this report because, unless there has been an unusual occurrence, the sealed sources can be removed with no remaining contamination. In the event of an unusual occurrence that leads to contamination, the common practice is to immediately remove the contamination and restore the facility to normal conditions for unrestricted use. Reference facilities are analyzed for each of the above categories, as described in the following subsections.

C.4.5.1 Reference Sealed Source Manufacturer

The sealed source manufacturing process is a hand operation that is carried out in buildings which contain a number of small laboratories, each of which is devoted to a specific process and/or isotope. The reference sealed source manufacturer is a laboratory which processes ¹³⁷Cs and ⁶⁰Co. Contaminated facilities associated with the reference sealed source manufacturer include:

- hot cells, fume hoods, workbenches, sinks
- laboratory floor and wall areas
- building areas used for storage of waste drums.

NUREG-1496

C.D-20

The situation for radiochemical and radiopharmaceutical manufacturers would be very similar to that of the sealed source manufacturer, and is not examined further in this report.

Advanced Medical Systems, Inc. (AMS) is used as the reference sealed source manufacturer. It is a licensed non-fuel-cycle plant in Cleveland, Ohio, that manufactures cobalt-60 and cesium-137 capsule sources for use in medical teletherapy devices and radiography machines (NRC 1993).

The AMS operations occupy about one quarter of an 8,000-ft² (ground floor) warehouse building. The remainder of the building is unused. The facility occupies portions of three floors in the warehouse. The first floor consists of an office area, an isotope shop area, a hot cell, a shielded work room, and a storage area. The second floor area houses a mechanical equipment room and an exhaust ventilation equipment room. A liquid waste handling room and the former liquid waste holdup tank room and dry waste storage area are located in the basement. Waste is stored in a locked room with roped areas on the south side of the warehouse area.

The floor surface areas are estimated to be $6,000 \text{ ft}^2$ (assuming three floors). The indoor surface area of the walls (estimated at 10-ft high) is estimated to be $4,600 \text{ ft}^2$. The perimeter crack length is estimated to be approximately 300 ft.

A 1985 survey by Oak Ridge Associated Universities (ORAU) found surface contamination in a hot cell, the ventilation system, the dry waste storage area, the liquid waste area, and the holding tank and its piping. No offsite contamination was found. However, some detectable activity (attributed to stack effluent releases) was found in sediments, soil, and vegetation in the southern portion of the AMS property. The ORAU survey showed contamination up to 1.51×10^6 dpm/100 cm² in the hot cell access port in the isotope shop area, an area normally expected to be highly contaminated. A water sample from the liquid waste room floor contained 1.75×10^5 pCi ⁶⁰Co/L. Sediment from the loading dock drain showed low, but detectable levels of activity.

About one-tenth of the concrete surface area is assumed to be contaminated with ⁶⁰Co, which was the principal contaminant measured by ORAU. Section 4.8 provides a summary assessment of the level of surface and shallow subsurface building contamination. Based on the information in that section and the data obtained on contamination at the non-fuel-cycle facilities, the level of surface contamination after surface washing assumed for the reference sealed source manufacturer is the medium contamination level in Table 4.8.1. The shallow subsurface contamination depth profile is described in Section 4.8.3. The information on the building surface contamination levels and areal extents are summarized in Table 7.1.1.

C.4.5.2 Reference Rare Metal Extraction Facility

•

The reference rare metal ore processor is a plant that refines raw ore materials for the recovery of rare metals such as tantalum and niobium. The raw ores can contain appreciable quantities of uranium and thorium, which are waste tailings of the refining process.

C.D-21

Contaminated facilities and areas associated with the reference rare metal ore processor include:

- Buildings in which slag is processed and the rare metals are extracted. Significant building contamination is not expected.
- Settling ponds on-site containing the tailings from the metal extraction process, and containing essentially all of the thorium and uranium. The pond is assumed to be unlined at the reference rare metal ore processor, although it may be lined at newer facilities.
- A site area of 7.4 x 10^5 ft²
- Slag Pile containing solid wastes from the extraction process.

The reference rare metal extraction facility is the Molybdenum Corporation of America facility (NRC 1993), which occupies a 17 acre (740,000 ft²) site, and produced a ferro-columbium alloy from a Brazilian ore from 1964 to 1970 (Martin 1985). The ore contained licensable concentrations of thorium (1-1.5%), and so the operation produced thorium-bearing slag and contaminated soil. The material was collected and segregated in 1972, and some of it was removed off-site. The remainder was placed in a clay-capped pile on the property.

The site contains a number of buildings, eight holding ponds and a large slag pile. Building 34 has up to 90 dpm/100 cm² fixed alpha contamination, up to 8680 dpm/100 cm² fixed beta contamination, and direct radiation levels up to 169 μ R/h. The source of the direct radiation level is suspected to be below the floor. The total area of floors is estimated from Figure 7 in Martin (1985) to be 150,000 ft²; 40% of this surface is estimated to be contaminated with thorium. The surface area of the walls is estimated to be 180,000 ft² and 10% is estimated to be contaminated with thorium. Thorium contamination levels and extent for the reference facility are given in Table 7.1.1.

C.4.5.3 Reference Broad Research and Development Facility

Research and development facilities using radioactive materials cover a broad range of activities including the use of laboratories or health treatment facilities that use radioisotopes. Both short-lived (³H) and long-lived isotopes (¹⁴C) may be used. The reference facility includes rooms for synthesis of labeled compounds and for preparing radioactive samples, a laboratory, a counting room, and a storage room. Only long-lived nuclides are included in this analysis. Contaminated facilities associated with the reference broad research and development facility include:

4

- glove boxes, fume hoods, sinks, workbenches;
- laboratory floor and wall areas;
- a storage area.

A generic single building facility is used in the analyses for a reference broad R&D facility, because such facilities vary widely in size. However, for an R&D facility comprised of several buildings, the waste volumes, costs, etc. can be reasonably approximated by multiplying the results for a single building by the number of buildings in the facility.

The floor area of the facility is estimated to be approximately 6,000 ft². Approximately 10% of this area is estimated to be contaminated with ¹³⁷Cs and ⁶⁰Co. The crack length is estimated to be approximately 320 ft. The wall area is estimated to be approximately 4,600 ft². Approximately 5% of this area is estimated to be contaminated. Section 4.8 provides a summary assessment of the level of surface and shallow subsurface building contamination. Based on the information in that section and the data obtained on contamination at the non-fuel cycle facilities, the level of surface contamination after surface washing assumed for the reference broad R&D facility is the medium contamination level in Table 4.8.1. The shallow subsurface contamination depth profile is described in Section 4.8.3. The information on the building surface contamination levels and areal extents are summarized in Table 7.1.1.

C.4.6 Reference Uranium Mills

Milling of uranium ores involves the following basic steps: 1) ore handling and preparation, which may include blending, crushing, grinding, and pretreatment; 2) chemical processing and concentration, and 3) product recovery, in which the product is recovered by chemical precipitation and dried and packaged for shipment.

Conventional uranium mills licensed by the NRC, and currently or previously operating, ranged from a capacity of about 500 MT/day to 6000 MT/day with most in the range of 1000 to 2500 MT/day. Uranium tailings represent the bulk of the wastes generated during the milling process. When discharged from the mill, the tailings material is pumped to an impoundment (tailings pond). Tailings pond areas ranged from 50 acres to 300 acres with most in the range of 100 to 250 acres (NRC 1980, Vol. III, Table T.1).

The Monticello mill site is used as the reference uranium mill site as it provides an example of a contaminated site undergoing cleanup. Originally owned by the Vanadium Corporation of America, the site was used as a vanadium mill from 1942-1943, and a vanadium/uranium mill from 1943-1944 (EPA 1990). In 1948 the site was purchased by the Atomic Energy Commission and used for uranium milling from 1949-1960, when it was closed permanently. Numerous milling operations were used during the site's history, including raw ore carbonate leach, low-temperature roast/hot carbonate leach, salt roast/hot carbonate leach, acid leach resin-in-pulp with raw ore carbonate leach, and carbonate pressure leach resin-in-pulp processes. Tailings piles were regraded, stabilized, and vegetated by the AEC from 1961-1964. In 1972, additional radiation surveys conducted for the AEC indicated uncovered residual surface contamination in soil, which was removed and dumped on top of the previously covered tailings piles. The Monticello millsite (78 acres) was included as a part of DOE's Surplus Facilities Management Program in 1980, and contaminated vicinity properties (240 acres) designated as a separate remedial action project in 1983.

Based on photographs of a model mill shown in NRC (1980 Vol. I), the area of the floors (assumed to be concrete) and walls are estimated to be 100,000 and 130,000 ft², respectively. The perimeter crack length is estimated to be 2,000 ft. Based on the apparent nature of the operations they are assumed to be contaminated over 100% of the surfaces. The contamination level is assumed to be the medium level from Section 4.8.1.

With regard to the tailings impoundment, a general license is issued under 10 CFR 40.28 for the custody and long-term care of the tailings to comply with standards for uranium mill tailings sites reclaimed under the Uranium Mill Tailings Radiation Control Act of 1978. The licensee for the tailings impoundment will be the DOE, other Federal agencies, or States. Hence, long-term management of the tailings impoundment is outside the scope of this report and is not discussed further.

C.4.7 Reference Dry Independent Spent Fuel Storage Installation

The large majority of ISFSIs in the U.S. use some form of dry storage. The reference ISFSI is a dry ISFSI with capacity of 811 MT of fuel.

Potentially contaminated facilities and areas associated with the reference dry ISFSI vary with the type of design, but the only dry ISFSIs now licensed are collocated at reactor sites. The reference dry ISFSI is collocated at the Virginia Power Company's Surry Reactor Plant (McKay et al. 1989). The fully implemented ISFSI facility will consist of three reinforced open air concrete pads on which the vertical sealed metal casks are placed. The concrete pads are 70 m by 10 m by approximately 1 m thick. The total surface area of the three pads is about 23,000 ft². Each pad is designed to accommodate 28 casks. There are no hot cells; the fuel is loaded into sealed casks and/or canisters at the reactor fuel handling facility. The casks arrive free of contamination at the storage site.

Although the dry storage ISFSI cask is designed and sealed to prevent release of radionuclides and contamination is not expected, it is assumed that 10% of the concrete surface becomes contaminated. The basis for this estimate is release of undetected contamination carried on the external surfaces of the storage cask to the storage pad. The dry storage casks will be removed prior to site decommissioning.

Section 4.8 provides a summary assessment of the level of surface and shallow subsurface building contamination. Based on the information in that section and the data obtained on contamination at ISFSIs, the level of surface contamination after surface washing assumed for the reference broad R&D facility is the low contamination level in Table 4.8.1. The shallow subsurface contamination depth profile is described in Section 4.8.3. The information on the building surface contamination levels and areal extents are summarized in Table 7.1.1.

4

NUREG-1496

L

C.4.8 Contaminant Surface Levels and Penetration Profiles

5

An important part of the analyses is the definition of the radionuclide surface contamination and the concentration profiles of contaminants that have penetrated the surfaces. Surface contaminant and concentration profiles were based on actual data, when available, and on theoretical estimates based on calculated diffusivity coefficients for the various radionuclide species of interest in these analyses when actual data were not available.

C.4.8.1 Empirically Measured Radionuclide Source Term and Depth Distribution in Concrete

Radionuclide contamination of concrete surfaces at nuclear power stations is of two types: 1) surface and shallow subsurface contamination resulting from both spills/leakage of radioactive materials and/or deposition of radioactive aerosols, and 2) contamination produced *in situ* by neutron activation of concrete located near the pressure vessel by the small flux of neutrons escaping from the vessel. Contamination produced by neutron activation is discussed in Sections 4.1 and 6.3. The following sections address surface and shallow subsurface contaminated surfaces, and depth of penetration of the radionuclides in the concrete. Since this assessment will ultimately lead to an estimation of the amount of concrete that must be removed to comply with alternative dose criteria associated with residual levels of contamination, only those gamma-emitting radionuclides of significant abundance have been considered. Although typical residual radionuclide compositions from nuclear power plants do contain significant amounts of several pure beta or low-energy photon emitters (e.g., ⁵⁵Fe, ⁶³Ni), their contribution to the total gamma dose rate would be trivial.

C.4.8.2 Radionuclide Source Term for Surface Concrete Contamination

Approximately 100 concrete cores from seven nuclear power stations were collected and analyzed for radionuclide constituents during an earlier investigation (Abel et al. 1986). This data base has been reassessed to provide a range and geometric mean of the radioactivity levels observed in contaminated concrete from many different areas within a nuclear power plant, as shown in Table 4.8.1. These core samples were collected approximately 20 years after the plant operations were begun. Therefore, the value of 20 years was used for time dependent calculations. These radioactivity levels would be lower after a longer time period because of radionuclide decay. The ⁶⁰Co and ¹³⁷Cs concentrations found in the surface concrete (pCi/cm³) for all the concrete cores obtained during the earlier study are shown in Figures 4.8.1 and 4.8.2 respectively. The three numbers labeled on the graph are the geometric means of each group from Table 4.8.1. Concrete cores were from areas affected by both wet and dry contaminants. These figures show the surface concentration on the vertical axis versus percentile ranking. The relatively straight line semi-log percentile plots indicate the data are log-normally distributed and can therefore be best represented by a geometric mean.

C.D-25

Three radioactivity concentration ranges were selected for conveniently describing the quantities of the most abundant gamma-emitting radionuclides (⁶⁰Co and ¹³⁷Cs) observed in the concrete:

- Low contamination = $<100 \text{ pCi/cm}^3$
- Moderate contamination = 100 to 10,000 pCi/cm³
- High contamination = $>10,000 \text{ pCi/cm}^3$.

The log-normal distributions demonstrated in Figures 4.8.1 and 4.8.2 provide the justification for selecting the geometric mean to represent the contamination level for each of the three groupings. For definition of the three levels of contaminated core samples, contamination was defined as low when both ⁶⁰Co and ¹³⁷Cs were below 100 pCi/cm³, as moderate when either ⁶⁰Co or ¹³⁷Cs were above 100 pCi/cm³ and both were below 10,000 pCi/cm³, and as high when either ⁶⁰Co or ¹³⁷Cs exceeded 10,000 pCi/cm³. Therefore, the geometric mean for cesium identified by the arrow in the high range in Figure 4.8.2 is located near the medium to high boundary and was influenced by samples that were highly contaminated with ⁶⁰Co while the same samples contained less than 10,000 pCi/cm³ ¹³⁷Cs at the surface.

	<u>Geometric Mean Concentration, (a) pCi/cm³</u>		
<u>Radionuclide</u>	Low <u>Contamination</u>	Moderate Contamination	High <u>Contamination</u>
⁶⁰ Co	4.4	460	34,000
¹³⁷ Cs	1.4	150	11,000
¹³⁴ Cs	0.45	46	3400
⁵⁸ Co	0.49	50	3700
⁵⁴ Mn	0.22	23	1700
¹⁰⁶ Ru/Rh	0.15	16	1200
⁹⁵ Zr/Nb	0.18	19	1400
¹²⁵ Sb	0.04	4.5	330
^{110m} Ag	0.22	2.3	170

TABLE 4.8.1.	Radionuclide Contamination Calculated for Surface-Contaminated Concrete from
	Seven Nuclear Power Stations

(a) 1 pCi/cm³ is equivalent to 222 dpm/100 cm².

ı

FIGURE 4.8.1. Concentrations of ⁶⁰Co in pCi/cm³ Measured on Surface Concrete from Seven Nuclear Power Stations

FIGURE 4.8.2. Concentrations of ¹³⁷Cs in pCi/cm³ Measured on Surface Concrete from Seven Nuclear Power Stations

C.D-27

In general, the gamma-emitting radionuclide composition at commercial nuclear power stations is reasonably uniform throughout the nuclear power industry. Table 4.1.2, shown previously, lists the average percent composition of gamma-emitting radionuclides in dry active waste (a good analog for contaminated concrete surfaces) for six PWR stations and four BWR stations, and the average percent composition for all ten stations combined. Dry active waste (DAW) is a mixture of radioactively contaminated items typically generated at nuclear power stations, (e.g., trash, protective clothing, gloves, equipment, tape, plastic sheeting and bags, etc.) and the radioactive material associated with DAW would be expected to be reasonably representative of that found on surface contaminated concrete. These measurements were made on over 100 DAW samples during a recent study conducted by Battelle, Pacific Northwest Laboratories for the Electric Power Research Institute to determine the industry-wide variability in the radionuclide composition of very low-level wastes generated at nuclear power stations (Robertson et al. 1989).

⁶⁰Co plus ¹³⁷Ce comprise 81% of the total gamma-emitting radionuclides for the average composition of DAW for all stations. The geometric mean concentrations for these two nuclides were then divided by 0.81 to obtain the geometric mean concentrations for the total of all of the significant gamma-emitting radionuclides measured. The total geometric mean values were then broken down into the individual isotopic geometric means for each gamma-emitting radionuclide in surface-contaminated concrete using the average percentage composition for all stations given in Table 4.8.1. The individual isotopic geometric mean values, given in Table 4.8.1, represent the source term for gamma-emitting radionuclide concentrations for the three levels of contamination (low, moderate, and high) observed on 'the concrete surfaces. A similar analysis for uranium-contaminated facilities was given in Section 4.3.2

Sections 4.1, 4.2, 4.5, and 4.7 use the information in Table 4.8.1 for the level of building surface contamination for the different reference facilities. The level of contamination assumed depends on the type of facility.

C.4.8.3 Depth Distribution of Radionuclides in Concrete

Estimation of the concentration of radionuclide contamination with concrete depth is necessary to estimate the amount of contaminated concrete which must be removed to attain an acceptable surface gamma dose rate following decommissioning. This assessment is difficult because of the many factors which affect the penetration rates of radionuclides in concrete (e.g., the use and integrity of protective coatings on the concrete, the degree and frequency of wetting of the concrete surfaces, the existence of cracks in the concrete, the mineralogy of the concrete, etc.). However, a conservative estimate of the depth of penetration of the radionuclides has been made which will allow for reasonable estimates of the costs for concrete remediation during decommissioning. This estimate was made in the manner described below. Analyses considering both empirical and theoretical assessments are discussed in the sections below.

NUREG-1496

C.D-28

C.4.8.4 Use of Empirical Data

First, the depth distributions of ⁶⁰Co and ¹³⁷Cs (the two most abundant gamma-emitting radionuclides in contaminated concrete) in a number of concrete cores from retired nuclear power stations measured in an earlier study (Abel et al. 1986) were examined to select the most conservative (fastest) penetration rates. Several cores collected from the sump floor of the reactor containment building of the Indian Point Unit 1 nuclear power station were selected because the surface of this concrete was bare (not painted) and wet, and represented the most favorable conditions for penetration into the concrete. This reactor, a 285 MWe PWR, had operated from 1962 until 1974, and the concrete cores were collected in 1982, some 8 years after reactor operations ceased.

Concrete core IP-15 from the condensate and condensate return area was selected as the core representing the most rapid penetration of ⁶⁰Co and ¹³⁷Cs into the concrete, and the depth distribution of these radionuclides to 3 cm into the concrete is presented in Figure 4.8.3. As shown in the figure, the ¹³⁷Cs concentration decreased by over four orders of magnitude in the first 1 cm of concrete and much less thereafter. The ¹³⁷Cs observed below a depth of 1 cm may possibly be due to cross-contamination of the lower sections resulting from the coring and sectioning operations. The ⁶⁰Co concentrations decreased only two orders of magnitude over the first 1 cm of concrete and appeared to penetrate much deeper into the concrete. This indicates that the ⁶⁰Co penetrates into the concrete at a faster rate compared to the ¹³⁷Cs, under wetted surface conditions.

C.D-29

The depth distribution of ⁶⁰Co in concrete core IP-15 was then fit with a logarithmic equation using a curve-fitting software program. This plot and fitted curve describing the depth distribution of 60 Co in mm is shown in Figure 4.8.4. This equation can then be applied to the geometric mean surface radionuclide concentrations for the three levels of concrete contamination given in Table 4.8.1, and the depth distributions of the radionuclides can be calculated. However, this source term model predicts higher levels of activity than the diffusion models because of the influence of high activity tails in some of these samples at depths beyond 2 cm. These high activity tails were associated with samples taken from areas frequently exposed to aqueous contaminants and are not representative of samples from most of the facility areas (approximately 90 to 95%) where the surfaces are normally dry and contaminants are dry (wet spills are wiped up or evaporate quickly) and the radionuclide penetration is shallow. The diffusion of radionuclides into concrete surfaces that have been extensively exposed to water is faster because diffusion takes place by a different mechanism through pores that are saturated with water than through pores that are dry. Radionuclides in samples of dry concrete were distributed much closer to the surface than for samples taken from wet areas. The evaluation of the samples taken from dry regions which are typical for most of the reactor facilities are treated in Section 4.8.5.

FIGURE 4.8.4. Comparison of Depth Distribution of ⁶⁰Co in Indian Point Unit 1 Concrete Core IP-15 with Exponential Curve Fit

NUREG-1496

C.D-30

The concrete core samples taken at nuclear power stations during an earlier study were generally taken in areas of known or suspected contamination. Many of the cores were taken in areas where spills occurred occasionally to frequently. It would appear that penetration has occurred in many of the cores which exceeds the depth predicted from diffusion theory. There are several possible explanations for the observed versus predicted concentration profiles.

First, there exists the possibility that the lower segments of cores could have been crosscontaminated during the sample preparation process. The core sectioning was accomplished using a lapidary saw with recycling water for blade coolant. This coolant could possibly have introduced contamination onto the surface of the lower section of the core during the cutting process. This does not appear to be the most likely explanation, since not all cores appear to have been affected. Additionally, core segments were well rinsed with distilled water after segmentation.

To verify that the radionuclide concentration tails were not originally contained in the concrete prior to contamination, it is noted that core samples of concrete taken from Pathfinder that had been coated with epoxy, clear sealer, and gray paint prior to becoming contaminated were below the limits of detectibility for both ¹³⁷Cs and ⁶⁰Co below a depth of 1 cm (Abel et al. 1986). For these samples, most of the contamination was removed with the coating and little contamination remained to contaminate the concrete core samples.

The most plausible explanation appears to be that those cores where deeper penetration of radioisotopes has occurred were frequently in locations that were wet to damp such as around drains, sumps, and pits. In such cases, deeper penetration than expected from diffusion of dry contaminants has been reported by Angus et al. (1990). Additional credibility is added to this hypothesis by the fact that more cores at Indian Point Unit 1 appear to have deeper penetration. This facility had a history of spills and leaks. Finally, one core taken at Dresden Unit 1 over a chemical spill which occurred during the Dow Chemical decontamination of the coolant system showed very enhanced penetration for both ⁶⁰Co and ¹³⁷Cs. This core definitely illustrates that chemical parameters can influence and enhance radionuclide migration into the concrete.

Angus et al. (1990) reported that ¹³⁷Cs in an aqueous solution continuously in contact with concrete penetrates deeper than from a dry surface contaminant. Soluble ¹³⁷Cs in contact with an unprotected concrete surface migrates through the water-filled pore network and contaminates the concrete to a depth dependent on the rate of liquid diffusion and the extent to which that isotope is sorbed in the concrete. The pore network of dry concrete is dried out close to the surface; the aqueous transport mechanisms required for transport of the activity into the concrete are therefore limited. This effect is illustrated in Figure 4.8.5 as the 1 x 10⁵ pCi/g (0.1 μ Ci/g) cesium-137 tail that extends to a depth of at least 15 cm. The lower-level concentration tails shown in Figure 4.8.5 are attributed to effects of exposure of the concrete to wet contamination and cross contamination of samples. A minor contribution to these tails may be attributable to neutron-induced fission of uranium

C.D-31

that occurs naturally in concrete at levels of approximately 2 ppm³ in concrete core samples removed from areas located near reactor cores.

C.4.8.5 Calculation of Concrete Radionuclide Penetration by Diffusion

The penetration of diffusing radioisotopes into a semi-infinite medium of concrete was calculated using the solution given in Crank (1956 Equation 2.7), for linear flow from a planar source deposited initially at the surface of a semi-infinite cylinder (single contamination event). The solution is shown as Equation 1. Other solutions are available in cases where the planar source varies with time (multiple contamination events). If the value of the diffusivity for the isotope is assumed to be constant and the concrete is free of significant porosity or cracks, then the concentration penetrated at the end of a specific exposure period is

$$C(x,t) = [C(x,0)/(\pi Dt)^{0.5}]exp(-x^2/4Dt)$$
[1]

where

C(x,t) = concentration of the isotope at distance "x" beneath the surface

at time t

C(x,0) = concentration of the isotope deposited initially x = distance beneath the surface D = diffusivity t = exposure period.

The surface concentration at time t is

$$C(0,t) = C(x,0)/(\pi Dt)^{0.5} \exp(-x^2/4Dt)$$

$$= C(x,0)/(\pi Dt)^{0.5}$$
[2]

If C(x,0) is unknown, then $C(x,0)/(\pi Dt)^{0.5}$ can be replaced with C(0,t) which is the more commonly available surface concentration after exposure period t.

[3]

Then

$$C(x,t) = C(0,t)exp(-x^2/4Dt)$$

Diffusivity for ¹³⁷Cs

The value selected for this diffusivity for ¹³⁷Cs is:

D = 1 to 10 x 10⁻¹¹ cm²/s (Muurinen, Penttilae, and Rantanen 1986)

Abel, K. H. 1993. Personal Communication, Pacific Northwest Laboratory, Richland, Washington.

NUREG-1496

ı
The concentration of ¹³⁷Cs from diffusion predicted for this range of values for the diffusivity according to Equation 3 is shown in Figure 4.8.5. Also included in Figure 4.8.5 are some data from analyses of slabs taken from concrete cores from floors contaminated with ¹³⁷Cs. Because the plants had operated for approximately 20 years, 20 years was used for the time parameter in Equation 3 and is also noted on Figures 4.8.5 through 4.8.14. The tails are attributed to effects of aqueous contamination that penetrated deeper than found for dry contamination. Some samples are shown in Figure 4.8.6 to be free of detectable contamination.

FIGURE 4.8.5. Comparison of Predicted Range of ¹⁵⁷Cs Penetration into Concrete with Experimental Core Analyses

These samples were generally not exposed to aqueous contaminants. The high concentrations in the tail for the data by Angus et al. (1990) are attributed to the effect of constant exposure of the concrete to the radioisotope in the aqueous form and the longer 30 y exposure. The calculations are not applicable to constant exposure of the concrete to an aqueous solution of the radionuclides.

A comparison of the penetration predicted by diffusion calculations with the activity for samples taken from dry areas lies below the diffusion curve and near the detection limit, as shown in Figure 4.8.6. The vertical lines correspond to 0.125-in. increments of concrete surface removed during decontamination by the $MOOSE^{TM}$ remotely operated floor scabbler as described by Konzek et al. (1993) and illustrated in Kaiser Engineers Hanford Company (1993).

C.D-33

The profile corresponding to the maximum value of the diffusivity provided the most conservative agreement with the data and is considered to be applicable to migration of dry contaminants. Therefore the maximum diffusivity will be used for further evaluations of ¹³⁷Cs concentrations in concrete.

FIGURE 4.8.6. Comparison of Predicted Maximum ¹³⁷Cs Penetration into Concrete with Experimental Core Analyses

Serne⁴ indicated that the values for diffusivity of ¹³⁷Cs (approximately 5 to 10 x 10^{-9} cm²/s) for grout and cement from Matsuzuru and Ito (1977) and by Dayal, Arora, and Morcos (1983) may be higher than that found for concrete because 1) the high salt content of the grout samples may reduce the potential for chemical reaction of ¹³⁷Cs with the base grout consistency and thereby increase the mobility of the ¹³⁷Cs and 2) the aggregate and other constituents in concrete that are not present in the cement grout compounds may chemically react with ¹³⁷Cs and retard its mobility. Because the range of values reported by Muurinen, Penttilae, and Rantanen (1986), are preferred for concrete and provide the best consistency with the penetration profiles for surface contaminated concrete, as presented in Figure 4.8.6, they are used in this analysis.

NUREG-1496

ı

⁴ Personal Communication by R. J. Serne to E. R. Gilbert, June 1993, Pacific Northwest Laboratory, Richland, Washington.

Diffusivity for ⁶⁰Co

The maximum value of diffusivity for ⁶⁰Co in concrete given by Serne et al. (1987) is:

 $D = \langle 5 x 10^{-11} cm^2 \rangle$ (Serne et al. 1987)

Based on the order of magnitude range of values for the distribution coefficient given by Allard et al. (1984) and the inverse relationship between distribution coefficient and diffusivity, the minimum value for the diffusivity for ⁶⁰Co in concrete is given as:

 $D = >5 \times 10^{-12} \text{ cm}^2/\text{s}$

The concentration of ⁶⁰Co from diffusion predicted for this range of values for the diffusivity according to Equation 3 is shown in Figure 4.8.7. Also included in Figure 4.8.7 are some data from analyses of slabs taken from concrete cores from floors contaminated with ⁶⁰Co. The tails are attributed to concrete slab samples taken from wet areas in the plants. Samples with penetration tails considerably above the detection limit were taken from wet areas or were slightly neutron activated. The vertical lines correspond to 0.125-in. increments of concrete surface that would be removed during decontamination using the MOOSETM remotely operated floor scabbler as described by Konzek et al. (1993) and illustrated in Kaiser Engineers Hanford Company (1993).

The profile corresponding to the maximum value of the diffusivity provides the most conservative agreement with the data for dry contamination and is shown in Figure 4.8.8. Samples near the diffusion curve and the detection limit were taken from dry areas. Some ⁶⁰Co data were slightly above the diffusion curve; however, for these cases the concentration was expressed as less than the specified value. Therefore, the maximum diffusivity will be used for further evaluations of ⁶⁰Co concentrations in concrete from dry contaminants.

Diffusivity for Uranium

The maximum value of diffusivity for uranium in concrete given by Serne et al. (1989) is:

 $D = \langle 1 x 10^{-12} cm^2 \rangle$ (Serne et al. 1989)

Based on the order of magnitude range of values for the distribution coefficient given by Allard et al. (1984) and the inverse relationship between distribution coefficient and diffusivity, the minimum value for the diffusivity for uranium in concrete is given as:

$$D = >1 \times 10^{-13} \text{ cm}^2/\text{s}$$

• C.D-35

FIGURE 4.8.7. Comparison of Predicted Range of ⁶⁰Co Penetration into Concrete with Experimental Core Analyses

FIGURE 4.8.8. Comparison of Predicted Maximum ⁶⁰Co Penetration into Concrete with Experimental Core Analyses

NUREG-1496

Т

:

The concentration profile for uranium from diffusion predicted for this range of values for the diffusivity according to Equation 3 is shown in Figure 4.8.9.

The vertical lines correspond to 0.125-in. increments of concrete surface that would be removed during decontamination using the MOOSETM remotely operated floor scabbler as described by Konzek et al. (1993) and illustrated in Kaiser Engineers Hanford Company (1993). Tails in the concentration profiles are shown in Figure 4.8.9. This tail in the concentration profile for uranium in concrete is predicted because of the natural occurrence of uranium in concrete. Typical levels are approximately 2 to 3 ppm⁵. The profile corresponding to the maximum value of the diffusivity provides the most conservative predictions for dry contaminant. Therefore, the maximum diffusivity will be used for further evaluations of uranium concentrations in concrete from diffusion of dry surface contaminant. Uranium from wet contaminants would be expected to penetrate much deeper, similar to the cases for ¹³⁷Cs and ⁶⁰Co, shown in Figures 4.8.5 and 4.8.7.

Diffusivity for Thorium

The maximum value of diffusivity for thorium in concrete is based on estimates by Serne and Wood (1990) that are based on thorium solubility in cement (Ewart et al. 1992):

$$D = \langle 1 x 10^{-11} cm^2 / s.$$

A value of 1×10^{12} cm²/s is considered more reasonable. Both values are plotted in Figure 4.8.10, but for conservatism the value of 1×10^{11} cm²/s is used in this analysis.

Summary of Values Used in Analyses for Radionuclide Diffusivities

Diffusivity for ¹³⁷ Cs	D = 1 to 10 x 10 ⁻¹¹ cm ² /s (Muurinen, Penttilae, and Rantanen 1986)
Diffusivity for ⁶⁰ Co	$D = 5 \times 10^{-11} \text{ cm}^2/\text{s}$ (Serne et al. 1987)
Diffusivity for Uranium	$D = <1 \times 10^{-12} \text{ cm}^2/\text{s}$ (Serne et al. 1989)
Diffusivity for Thorium	$D = <1 \times 10^{-11} \text{ cm}^2/\text{s}$ (Serne and Wood 1990)

⁵ Uranium occurs naturally in concrete at a concentration of approximately 2.7 μg U/g (2.7 μg U/g x 0.7 pCi/μg U = 1.9 pCi U/g; 1.9 pCi U/g + 7.06 x 10⁵ pCi/g U = 2.69 ppm).

FIGURE 4.8.9. Predicted Range of Uranium Penetration into Concrete

FIGURE 4.8.10. Predicted Range of Thorium Penetration into Concrete

NUREG-1496

L

Materials Other than Concrete

Concrete is the major construction material in volume and surface area. Materials other than concrete, including concrete block, may be absorbent, unless coated with a sealer. The effectiveness of the seal depends on the paint quality. Because there are lower volumes of these materials and most of the contamination can be removed by washing, they are generally washed, surveyed, and disposed according to the residual level of radioactivity.

C.4.8.6 Dose Calculation Methodology

The methodology employed in this study to calculate the radiation dose rates at the surface of contaminated concrete as successive layers of that concrete are removed is described in this section.

The contaminant profile data of Abel et al. (1986) was obtained by counting each 1 cm layer of a core of contaminated concrete and plotting the measured value (pCi/cm³) at the depth of the midplane of the layer. This approach gives an inherently incorrect depth distribution, because the contaminant concentration is dropping rapidly with increasing depth, such that the depth-averaged average contaminant concentration is actually located closer to the surface of the layer than to the midplane, with the actual location being dependent upon the slope of the contaminant concentration curve.

The value of the contaminant concentration (C_0) at the surface of the concrete is calculated, using the measured data of Abel (C_{ij}) and the equation for diffusion of contaminants into solid materials, Equation 3 of Section 4.8.5 with some redefinition of terms:

$$C_{ii} = C_0 \exp(-X_{ii}^2/4D_it)$$
 (4)

where X_{ij} is the depth beneath the original surface at which the concentration of the jth radionuclide is to be calculated, D_j is the diffusivity of concrete for the jth radionuclide, and t is the time that the diffusion process has proceeded (assumed to be 20 years in these analyses).

By integrating this equation over successive 1 cm layers, the depth-averaged contaminant concentrations are calculated for each successive layer, L_i , of concrete beneath the original. surface. The location of that average value is determined on the curve originally defined when the measured data were plotted at the mid-plane of each layer, thus defining the actual positions where those average values should exist. Using the locations of the average values of the contaminants for the first 1-cm layer, given in Table 4.8.2, the values of C_0 for the diffusion equation are determined by evaluating the equation at the appropriate depth and solving for C_0 .

C.D-39

1-cm Layer Number	Calculated Depth, cm								
		¹³⁷ Cs	<u>Uranium</u>	<u>Thorium</u>					
1	0.3846	0.4538	0.1154	0.22					
2	0.1692	0.2462	-	-					
3	0.1000	0.1538	-						
4	0.0769	0.1385	-	-					
5	0.0769	0.1154	-	-					
6	0.0769	0.1154	-	-					
7	-	0.0846	-	-					

TABLE 4.8.2. Depth Beneath the Upper Surface at Which the Average Value Exists

These values of C_0 are then used in the diffusion equation to calculate the values of the contaminant concentrations at the surface of the exposed concrete as each successive 0.125 in. (0.3175 cm) layer of concrete is removed by the scabbling process. These average concentrations are converted into annual radiation dose rates at the surfaces of the successive layers using the conversion for pCi/cm³ to dpm/100 cm²:

 $1 \text{ pCi/cm}^3 = 222 \text{ dpm}/100 \text{ cm}^2$

and the concentration-to-dose conversion factors (see Appendix A) developed using the methodology presented in NUREG/CR-5512 (Kennedy and Strenge 1992) for the building occupancy scenario,

 $F_i [mrem/yr]/[dpm/100 cm^2]$

the appropriate factor for the jth radionuclide. Thus, the resulting dose rate is:

$$DR{X_{ij}} = C{X_{ij}}{pCi/cm^3} \times 222 \ [dpm/100 \ cm^2)/(pCi/cm^3)]$$
(5)
 x F_i [(mrem/yr)/(dpm/100 \ cm^2)]

where the argument of the variables DR and C is the depth of the average concentration location for the jth radionuclide beneath the surface of layer L_{i+1} . The resulting values of residual annual radiation dose rate as a function of depth of concrete removed are given in Table 4.8.3, and illustrated in Figures 4.8.11, 4.8.12, 4.8.13 and 4.8.14.

For locations that are contaminated by more than one radioisotope, the total surface radiation dose rate is the sum of the individual dose rates calculated by the methodology given above.

NUREG-1496

L

FIGURE 4.8.11. Dose as a Function of Surface Layers Removed from Concrete Contaminated with High, Moderate, and Low ¹³⁷Cs Contamination Levels

FIGURE 4.8.12. Dose as a Function of Surface Layers Removed from Concrete Contaminated with High, Moderate, and Low ⁴⁰Co Contamination Levels

FIGURE 4.8.13. Dose as a Function of Surface Layers Removed from Concrete Contaminated with High, Moderate, and Low Uranium Contamination Levels

FIGURE 4.8.14. Dose as a Function of Surface Layers Removed from Concrete Contaminated with High, Moderate, and Low Thorium Contamination Levels

NUREG-1496

Т

Depth to	Surface Dose Rate, mrem/y											
New Surface.	··· ·	#Co		· · · · · · · · · · · · · · · · · · ·	¹³⁷ Cs							
in./em	Low	Moderate	High	Low	Moderate	High						
0.125/ 0.3175	4.09	428	31,700	0.519	56.2	4,060						
0.250/ 0.635	0.0372	39.0	2,890	0.156	16.9	1,220						
0.375/ 0.9525	0.00685	0.717	53.1	0.0212	2.3	166						
0.500/ 1.27	2.55 x 10 ⁻⁵	0.00267	0.198	0.00129	0.140	10.1						
0.625/ 1.5875	1.92 x 10 ⁴	2.01 x 104	1.49 x 104	3.55 x 10 ⁻⁵	3.85 x 10 ³	0.278						
0.750/ 1.905	2.92 x 10 ¹²	3.05 x 10 ¹²	2.26 x 10 ⁴	4.38 x 10 ⁷	4.74 x 10 ³	3.43 x 10 ³						
0.875/ 2.223	8.97 x 10 ¹⁷	9.40 x 10 ¹⁵	6.96 x 10 ¹³	2.43 x 10*	2.63 x 10 ⁷	1.90 x 10 ³						
1.000/ 2.54	5.59 x 10 ⁻²²	5.85 x 10 ²⁰	4.33 x 10 ¹⁸	6.06 x 10 ¹²	6.56 x 10 ¹⁰	4.75 x 10 ⁴						
		Uranium			Thorium	·						
0.125/ 0.3175	7.55 x 10 ⁻¹⁴	4.6 x 10 ⁻¹²	4.2 x 10"	59.3	3,620	32,900						
0.250/ 0.635	-	-	-	0.000369	0.0225	0.205						

TABLE 4.8.3. Calculated Surface Radiation Dose Rates as Functions of the Number of Surface Layers Removed

: · ·

, **:**

•

.

.

:

•. :

NUREG-1496

.

,

• • •

C.5 CHARACTERIZATION OF REFERENCE FACILITY SOIL CONTAMINATION

Soil contamination information from several facilities that have significant levels of soil contamination is contained in this chapter. Facilities other than those selected as the reference for building contamination are described as the reference facility for soil contamination if the data were more relevant. For example, the General Electric uranium fuel fabrication plant was described as the reference facility for characterization of building contamination is the Babcock and Wilcox nuclear fuel manufacturing plant in Apollo, Pennsylvania.

2

١**X**

The following information related to contaminant penetration into soils was derived from Ames and Rai (1978), unless otherwise referenced.

C.5.1 Parameters Affecting Radionuclide Penetration Into Soil

Unlike concrete, soil is a widely variable medium and the penetration of individual radionuclides through this medium is highly individual and complex. Prediction of contamination profiles in soils from a knowledge of the surface source term and penetration time is not possible without considerable additional information on soil composition (clay, sand, humus), particle size distribution, pH, ion-exchange capacity, etc., and cumulative rainfall on the surface. In addition, most sites are not placed on top of a homogeneous soil, but on top of several layers, which may contain varying amounts of sand, gravel, clay, rocks (all of varying thicknesses). Other factors must be considered for each site, such as the gradient of the contaminated area, the amount of runoff, whether cracks or channels may arise in the soil, depth of groundwater, and so on. Models exist for calculation of profiles given all of this data, as described below, but model developers consistently caution of problems regarding results from non-expert use of the models. The science of profile calculation using surface source data and computer models is in its infancy and currently the only reliable way of determining radionuclide profiles in soil is to measure them. Given this caveat, once site soil and other parameters have been completely characterized, contamination profiles can be calculated. The following subsections provide information on soil variability and its effect on radionuclide mobility useful to understanding the problems in making these calculations.

C.5.1.1 Soil Cation Exchange Capacity

There is considerable variability in the cation exchange capacity of various soil components, as shown in Table 5.1.1. Cation exchange capacity varies with particle size and pH, among other factors.

TABLE 5.1.1. Cation Exchange Capacities of Soil Components^(a)

<u>Mineral</u>	Cation Exchange Capacity, meg/100 g
Kaolinite	3-15
Smectites	36-100
Vermiculite	100-150
Zeolites	100-300
Organic matter in soils (humus)	130-350
Feldspar	<1
Quartz	<1
(a) Ames and Rai 1978	

C.5.1.2 Diffusion

The transport of matter in the absence of bulk flow is known as diffusion. A surface spill will move downwards through the soil, but there may also be some movement laterally and radially outward away from the spill point by the diffusion process. Under most conditions, to a first approximation, this is a relatively small correction to the model and may be neglected. Most models assume a cylindrical downwards flow of contaminant and will tend to slightly overestimate concentrations and underestimate contaminant soil volumes. The aqueous diffusion coefficient in a binary electrolyte (contaminant salt in solution) is given by the equation:

 $D_0 = (2u_1u_2RT)/(u_1 + u_2)F$

where u_1 and u_2 are the mobilities of the cation and anion, respectively, RT is the gas constant times temperature in Kelvin, and F is a Faraday. The dimensions of D_0 are in cm²/sec. Factors tending to reduce the diffusion rate are combined into a "retardation factor" (R_d), given by:

$R_d = 1 + (p/e)K_d$

where p is the soil bulk density, e is the pore fraction (volume occupied by the solution phase), and K_d is the equilibrium distribution coefficient (mL/g). K_d is itself a complex parameter which is affected by a number of soil variables and must be determined experimentally for each site.

C.5.1.3 Hydraulic conductivity

In migration of radionuclides, hydraulic conductivity is of primary importance. Hydraulic conduction is the ratio of the flux density (volume of water flowing through a cross-sectional area per unit time) to the hydraulic gradient (head drop per unit distance in the flow direction). If the soil water does not move, then radionuclide contaminants only

C.D-45

move by diffusion, which is a relatively slow process. In spill sites which are exposed to the weather, rainfall (and hydraulic conduction) are likely to be the primary causes of radionuclide movement in soil; in areas where spills have leaked through and under concrete, diffusion may be the primary cause of movement in the absence of significant water flow.

C.5.1.4 Saturated and Unsaturated Soils

Unsaturated soils contain varying amounts of air-filled pores which reduce the conductive cross-sectional area relative to saturated soils where all of the pores are filled with water. As a result of this change in area available for the passage of water, the transition from saturated to unsaturated flow may result in a steep drop in hydraulic conductivity of several orders of magnitude. Contaminated sites in desert climates with sandy soil will tend to have unsaturated flow conditions, while sites in wet climates with clay soil will tend to have saturated conditions. Where conditions periodically change from one to the other condition, calculation of ionic movement becomes complicated.

3

C.5.2 Individual Radionuclide Adsorption on soils

Different radionuclides move through soils at different rates, which are controlled by a number of parameters. The behavior of the radionuclides of interest in this analysis is discussed below.

C.5.2.1 Cesium

Trace cesium concentrations in soil (at 1% of soil capacity or lower) tend to be completely absorbed and difficult to displace, possibly due to the presence in the soil of small amounts of minerals with high selectivity for cesium. K_d values for various U.S. soil types and locations are reproduced in Table 5.2.1, below, and illustrate the considerable range of values as a function of location and soil particle size.

TABLE 5.2.1. Cesium Distribution Coefficients in Various Soil Types^(a)

Soil Medium	Cesium K _d , mL/g	Particle Size
Alluvium, Central NV	121-3165	500 - 4000 μm
Desert Alluvium,	70-2640	500 - 4000 μm
Hot Creek Valley, NV	-	-
Tuff, Rainier Mesa NV	1020	>400 µm
Tuff, Rainier Mesa, NV	12,100-17,800	100 - 200 mesh
Carbonate, Yucca Flats, NV	13.5	>4000 µm
Granodiorite, Climax	8-9	100 - 200 mesh
Stock, NV	1030-1810	0.5 - 1.0 mm
Alluvium, INEL, ID	285-360	(Lab. soil)
	450-950	(Field soil)
Granite, Central NV	34.3	>4000 µm
Basalt, NTS, NV	792-9520	32 - 80 mesh
Shaley Siltstone, NM	309	>4000 µm
Sandstone, NM	102	>4000 µm

(a) Table 3.19, p. 3-40, Ames and Rai (1978).

C.5.2.2 Cobalt

The major soil contaminant observed at nuclear power plant sites is 60 Co. Cobalt chemistry in soil is a highly complex function of soil pH and the oxidation-reduction environment. Cobalt can be present in soil as Co-II and Co-III oxidation states and as solution complexes with hydroxide, chloride, sulfate, and nitrate, as well as insoluble phosphate and carbonate. Cobalt is relatively easily complexed with natural organics and is adsorbed by ferric oxide and illite. In one reported case (Ames and Rai 1978, p. 3-74), leakage of 60 Co from the Nuclear Fuel Services plant in western New York State comprised <0.1% of the beta activity in surface drainage, but was all migrating as a complexed, soluble species. In a study of Hanford trench wastes (Ames and Rai, 1978, p. 3-74), complexed cobalt passed freely through the soil column to the groundwater at a depth of 68 m in a period of 12 years.

C.5.2.3 Strontium

Strontium in solution exists as Sr-II, is exchangeable on soils, and is mobilized mostly by calcium ions. Low pH and a high calcium content in soils results in high mobility of 90 Sr. Secondary minerals such as clays and zeolites absorb strontium more strongly and selectively than primary minerals such as quartz, feldspars, and pyroxenes. Table 5.2.2 shows selected K_d data for strontium on various soil types:

<u>Material</u>	Strontium K., mL/g	Particle Size
Alluvium, Central NV	48 - 2454	500 - 4000 μm
Sandstone, fine	1.26 - 1.88	4000 - <62 μm
Shaley siltstone (carbonaceous)	8.32 - 9.56	4000 - <62 μm
Shaley limestone, NM	8.32	>4000 µm
Sandstone, NM	1.37	>4000 µm
Alluvium, INEL, ID	7.2 - 10.5	(Lab. soil)
	40	(Field soil)
Tuff, Rainier Mesa, NV	260	>400 µm
Tuff, NTS, NV	4000	
Limestone, Yucca Flats, NV	0.19	>4000 µm
Granodiorite, Climax	4 - 9	100 - 200 mesh
stock	11 - 23	0.5 - 1.0 mm
Granite, Central NV	1.7	>4000 µm
Basalt, Buckboard Mesa, NV	16 - 135	32 - 80 mesh

TABLE 5.2.2. Strontium Distribution Coefficients in Various Soil Types^(a)

(a) Ames and Rai 1978, p. 3-174/5.

C.5.2.4 Thorium

Thorium contamination in soils may occur from metal ore tailings piles. Thorium is strongly adsorbed by clay particles and tends to precipitate as thorium hydroxide and hydrated thorium oxide in soils. Low pH and high humic acid content in soils tends to cause more rapid migration of thorium. Typical measured K_d values ranged from 40 - 130 mL/g (medium sand), 310 - 470 (fine sand), and 2700 - 10,000 (silt-clay), respectively (Ames and Rai 1978, p. 3-215).

C.5.2.5 Uranium

Uranium is of primary importance in decommissioning and disposal of contaminated soils, and is present in soils mostly as U-IV and U-VI, depending on soil pH and the oxidation-reduction environment. Uranium retention by oxidizing (low humus) alkaline soils is poor because the uranium is present mostly in anionic form. Uranium is solubilized and highly mobile in carbonate-containing waters. Uranyl ion can be adsorbed by clay and humic substances, especially at low pH. Typical K_d values obtained for uranium in various soil types are shown in Table 5.2.3.

TABLE 5.2.3.	Uranium	Distribution	Coefficients in	Various Soil	Types ^(a)
--------------	---------	--------------	------------------------	---------------------	----------------------

Material	K _a , mL/g		
River sediment (clay, CaCO ₃)	39		
River peat (humic)	33		
Sediment (clay, CaCO ₃)	16		
Altered schist (clay)	270		
Quartz	0		
Calcite	7		
Illite	139		

(a) Ames and Rai 1978, p. 3-235

C.5.3 Issues Relating to Soil Radionuclide Profile Determination

Transport of radionuclides in soil is based on the concept of solution flow driven by downward movement of water, opposed by various physical and chemical processes which retard the radionuclide movement, summarized in a "retardation factor". Adsorption processes are known to increase travel times for some radionuclides by $10^3 - 10^6$ times relative to groundwater. The net effect is captured in the distribution coefficient for the particular radionuclide and soil conditions. Furthermore, some adsorption processes are essentially irreversible and permanently remove radionuclides from the groundwater (Serne, 1992). Use of the distribution coefficient approach to calculation of specific radionuclide movement is universal in soil transport models.

•

C.5.3.1 Distribution Ratios

Each of the conceptual adsorption models relies on the experimental determination of distribution ratios (ratio of radionuclide on solid:radionuclide in solution). Because these ratios are themselves dependent on a large number of variables, the more complete the experimental determination of these variables, the better the accuracy of the profile calculation. However, more complete experimental determination of variables costs more in time, effort, and expense.

C.5.3.2 Constancy of Retardation Factor (R.)

Transport model calculations depend on the constant value for retardation of each radionuclide. The retardation factor is itself dependent on other variables and requires a complete knowledge of the soil profile. For example, if several types of soil underlie a contaminant spill location, the retardation factors will be different in each layer (topsoil, silt, sand, gravel, for example).

C.5.3.3 Unexplained Variability of R_d

Unexplained variability of retardation factors may be due to solubility-controlled retardation reactions (precipitation), which are highly dependent on radionuclide concentration at a specific depth and hence on the initial concentration of the radionuclide at the surface, since these are equilibrium-controlled reactions. That is, the amount of radionuclide absorbed is dependent on the initial mass present.

C.5.4 Calculation of Radionuclide Contaminant Profiles in Soils

Models and computer codes for calculation of radionuclide contaminant profiles in soils from initial surface loadings, elapsed time, and soil, climate, and geographic parameters are at an early stage of development and are evolving rapidly. The approach taken in this analysis is based upon that described in NUREG-5512 (Kennedy and Strenge 1992), although for the purposes of estimating residual radionuclide concentrations in soils, the simple model has been modified and expanded to give a more realistic result. The following description explains the basic NUREG-5512 model assumptions and the modifications made to it. The major difference is the thickness of the initial contaminated soil layer (1 cm instead of 1 m) and the number of consecutive layers (100 instead of 1) into which the 1 m near-surface soil column is divided.

In the reference scenario, the contaminant of interest was deposited at the top of the soil column (the vadose zone) at time zero and has penetrated the soil for a known period of time. A contaminant plume has spread within the vadose zone but has not yet reached the groundwater table. Lateral diffusion is assumed to be zero (a simplification discussed previously) and the profile is assumed to be within a vertical cylinder of contaminated soil. The required outputs of the model are the amounts of the contaminant that have reached specific depths.

Assumptions for the Simplified Diffusion Analysis

- One-dimensional transport (down)
- Darcy water flux density (through the entire vadose zone) is constant in time

3

3

- the chemistry is described by linear sorption coefficients, K_ds
- only aqueous solute transport is considered
- single radionuclide at a time, not the entire decay chain
- assume a homogeneous vadose zone (only one layer)
- numerical solution to the differential equations preferred.

Input Parameters Required

For using the code for calculating radionuclide concentration profiles, the following numerical input data are required (values used in parenthesis):

- number of years (20)
- number of steps per year (120)
- number of layers desired (100)
- number of layers for which initial concentration is given (1)
- initial concentration of radionuclide (1.0 pCi/cm³ in first box)
- contamination rate (pCi/yr)(1.0 or 0.0)
- integration time step, days (365/120)
- total soil thickness, m (1)
- infiltration rate, m/yr (0.18)
- saturation ratio, dimensionless (1.0)
- total porosity, dimensionless (0.3)
- bulk density, g/cm^3 (1.625)
- sorption, mL/g (various)
- radionuclide half-life, years (various).

For simplicity, a given inventory of a given radionuclide is postulated to be present in the initial surface layer of soil, arbitrarily set at 1 cm thick. The dispersion of that inventory downward into the soil over time is calculated using a modification of the computer code initially developed by C.G. Cole of PNL in support of the methodology presented in NUREG/CR-5512. This code calculates the dispersion of the initial inventory as a function of time and annual rainfall, taking into account the specific K_d value of the radionuclide for this soil, and the soil porosity. In the calculations performed for these porosities the number of successive layers of soil was arbitrarily set to be 100, the period of infiltration of the contaminant was set at 20 years, and the annual rainfall was assumed to be 0.18 m/yr. The K_d values for each radionuclide were taken from the set presented in NUREG/CR-5512, the soil density was set at 1.625 g/cm³, and the soil porosity was set to be 0.3 for all layers of soil (i.e., the soil was assumed to be homogeneous over the total depth). An initial deposition of 1 pCi/cm³ of the radionuclide in question was assumed to be deposited into the initial 1 cm soil layer at time zero.

NUREG-1496

ı

By selecting the soil layer thickness to be 1 cm, the inventory in each layer can be expressed as a concentration in pCi/cm³, as can the calculated inventory in each layer at the end of the 20-year infiltration period. Dividing the soil concentration in pCi/cm³ by the soil density in g/cm³ gave the concentration in each layer in terms of pCi/g of soil, the same units which are needed for use with the dose factors developed for the residential scenario in NUREG/CR-5512.

Because the dose factors are designed to be applied to the average concentration of contaminant remaining in the soil, it was necessary to calculate the average concentration of contaminant as each successive layer was removed, starting at the surface. The procedure used is described in the next section.

C.5.5 Methodology for Calculating Soil Residual Dose Rates

The differential equation for the diffusion of material through a solid medium is solved and evaluated for an assumed initial deposition of 1 pCi/cm³ in the first 1-cm thickness of soil, using the parameters described above, for each radionuclide of interest. The basic procedure for determining the radiation dose rate from radionuclides remaining in the soil at the end of the 20-year period is described below.

The concentration profile for each radionuclide (j) is calculated, using the method described above. The average concentration in each 1 cm thick layer of soil is calculated, and includes the effects of radioactive decay over the 20-year period.

The average concentration over the uppermost 5 cm of soil is calculated, using the layer by layer concentrations calculated above.

$$C_{A5} = \sum_{i=1}^{5} (C_i)/5$$

The concentration profile is normalized by dividing each layer value by C_{A5} , to obtain a profile wherein the average value over the top 5 cm is 1 pCi/cm³, i.e.,

$$CN_i = C_i/C_{AS}$$
, and $\sum_{i=1}^{S} CN_i = 1$

The total normalized inventory over the 100-cm depth of soil is simply the sum over all layers, of the normalized concentration in each layer, i.e.,

$$I_{total} = \sum_{i=1}^{100} CN_i$$

This normalized inventory represents the inventory that, when distributed according to the concentration profile, would result in an average value of unity for the concentration over the top 5 cm.

The inventory remaining after some of the surface layers have been removed is given by:

$$I_{\text{remaining}} = I_{\text{total}} - \sum_{i=1}^{i} CN_i$$

where n is the number of layers removed. This residual inventory is postulated to reside in the 15-cm layer lying directly beneath the new surface, following soil removal, to be compatible with the model with which the dose factors for post-remediation use of the soil were calculated, i. e., NUREG/CR-5512. The average concentration in that 15-cm layer is given by: л

ĩ

13

$$CNA_i = I_{remaining}/15 = (1/15) \left(\sum_{i=1}^{100} CN_i - \sum_{i=1}^{n} CN_i \right)$$

Each time some additional soil is removed, the remaining inventory is presumed to again reside in the next 15-cm layer beneath the surface.

The remaining inventory values are calculated for removal of each cm of soil. Each value is multiplied by the dose factor for the residential scenario, as calculated using the NUREG/CR-5512 model. The resulting table of values as a function of depth reflect the underlying concentration profile that was normalized to have an average concentration of unity over the top 5 cm. Each value in the table can now be multiplied by a measured average concentration over the top 5 cm of soil, to obtain a table of residual dose rate values in mrem/yr as a function of depth of soil removed.

Residual Dose Rate(j) = Dose Factor(j) x (CNA_i)_j x Average measured [mrem/yr] [mrem/yr]/[pCi/g] concentration, top 5 cm [pCi/g]

where the subscript (j) refers to the j^{th} radionuclide.

For uranium contamination, there is little or no data available relating to the top 5 cm of soil. Available data generally indicate that up to 200 pCi/g is present, without specifying where in the soil column this value was measured. Thus, it seems appropriate to assume that the quoted values are the maximum values found in the soil column, which would be in the vicinity of the peak of the concentration distribution curve. To facilitate using these kinds of data in the analyses, it is necessary to normalize the concentration distribution to have the value of unity over the 5-cm region centered on the peak of the distribution, nominally about 15 cm beneath the soil surface.

Т

$$C_{P5} = \sum_{i=13}^{17} (C_i)/5$$

The new normalized concentration profile for uranium is given by:

$$CN_i = C_i/C_{P5}$$
, and $\sum_{i=13}^{17} CN_i = 1$

The rest of the analysis is identical with the original analysis for the other radionuclides, using the modified CN_i .

Results

Some typical output results of the calculations for several radionuclides commonly encountered in soils at nuclear facilities are presented in Figures 5.5.1 through 5.5.6 as a function of several different surface contamination levels. Section 5.7 provides a discussion of the bases for the surface contamination levels used for the reference facilities. The calculated data underlying the figures are given in Table 5.5.1.

FIGURE 5.5.1. Calculated Residual ⁶⁰Co Radiation Dose Rates as a Function of Soil Depth Removed, with the Surface Contamination Level as a Parameter

C.D-53

FIGURE 5.5.2. Calculated Residual ⁹⁰Sr Radiation Dose Rates as a Function of Soil Depth Removed, with the Surface Contamination Level as a Parameter

3

FIGURE 5.5.3. Calculated Residual ¹³⁷Cs Radiation Dose Rates as a Function of Soil Depth Removed, with the Surface Contamination Level as a Parameter

NUREG-1496

ı

FIGURE 5.5.4. Calculated Residual ²²⁸Th Radiation Dose Rates as a Function of Soil Depth Removed, with the Surface Contamination Level as a Parameter

FIGURE 5.5.5. Calculated Residual ²³⁵U Radiation Dose Rates as a Function of Soil Depth Removed, with the Surface Contamination Level as a Parameter

C.D-55

_

ġ.

à

FIGURE 5.5.6. Calculated Composite ⁶⁰Co, ⁹⁰Sr, and ¹³⁷Cs Residual Radiation Dose Rates as a Function of Soil Depth Removed, with the Surface Contamination Level as a Parameter

NUREG-1496

ı.

TABLE 5.5.1. Calculated Residual Radiation Dose Rates as Functions of Soil Depth Removed, with Surface Contamination Level as a Parameter

	-	-					•	Co-60 Dose in mrem/y				Sr-90 Dose in mrem/y			/y
							pCi/g->	2	30	60		pCl/g→>	4.50E-04	2.25E-03	9.00E-03
	D	ose in mrem	/y per pCi/g												
Layers					L	ayers (mr	em/y			Laye	rs (mre	m/y			
Removed	Co-60	<u>Sr-90</u>	<u>Cs-137</u>	Th-228	<u>U-235</u>	Removed p	er pCi/g) L	07	Med	High Re	moved pe	r pCi/g) L		Med	<u>High</u>
0	2.44E+00	3.87E+02	4.68E-01	5.85E+00	2.26E+02	0	2.44E+00	4.88E+00	7.33E+01	1.47E+02	0	3.87E+02	1.74E-01	8.71E-01	3.48E+00
1	2.38E+00	3.87E+02	2.62E-01	3.92E-01	2.26E+02	: 1	2.38E+00	4.76E+00	7,14E+01	1.43E+02	1	3.87E+02	1.74E-01	8.71E-01	3.48E+00
2	2.16E+00	3.87E+02	9.29E-02	1.34E-02	2.26E+02	2	2.16E+00	4.31E+00	6.47E+01	1.29E+02	2	3.87E+02	1.74E-01	8.71E-01	3.48E+00
3	1.74E+00	3.87E+02	2.36E-02	3.07E-04	2.26E+02	3	1.74E+00	3.48E+00	5.22E+01	1.04E+02	3	3.87E+02	1.74E-01	8.71E-01	3.48E+00
4	1.23E+00	3.87E+02	4.62E-03	5.29E-06	2.25E+02	4	1.23E+00	2.46E+00	3.68E+01	7.37E+01	4	3.87E+02	1.74E-01	8.71E-01	3.48E+00
5	7.57E-01	3.87E+02	7.34E-04	7.29E-08	2.25E+02	5	7.57E-01	1.51E+00	2.27E+01	4.54E+01	5	3.87E+02	1.74E-01	8.70E-01	3.48E+00
6	4.09E-01	3.86E+02	9.81E-05	8.38E-10	2.25E+02	6	4.09E-01	8.19E-01	1.23E+01	2.46E+01	6	3.86E+02	1.74E-01	8.68E-01	3.47E+00
7	1.96E-01	3.83E+02	1.13E-05	8.26E-12	2.23E+02	7	1.96E-01	3.92E-01	5.89E+00	1.18E+01	7	3.83E+02	1.73E-01	8.63E-01	3.45E+00
8	8.41E-02	3.78E+02	1.14E-06	7.12E-14	2.20E+02	: 8	8.41E-02	1.68E-01	2.52E+00	5.05E+00	8	3.78E+02	1.70E-01	8.52E-01	3.41E+00
9	3.25E-02	3.69E+02	1.03E-07	5.45E-16	2.15E+02	9	3.25E-02	6.50E-02	9.75E-01	1.95E+00	9.	3.69E+02	1.66E-01	8.31E-01	3.33E+00
10	1.14E-02	3.55E+02	8.32E-09	3.76E-18	2.07E+02	: 10	1.14E-02	2.29E-02	3.43E-01	6.86E-01	10	3.55E+02	1.60E-01	7.98E-01	3.19E+00
11	3.68E-03	3.33E+02	6.14E-10	2.35E-20	1.94E + 02	11	3.68E-03	7.37E-03	1.11E-01	2.21E-01	11	3.33E+02	1.50E-01	7.50E-01	3.00E+00
12	1.09E-03	3.05E+02	4.15E-11	1.35E-22	1.78E+02	12	1.09E-03	2.19E-03	3.28E-02	6.56E-02	12	3.05E+02	1.37E-01	6.86E-01	2.74E+00
13	3.01E-04	2.70E+02	2.60E-12	7.16E-25	1.57E+02	13	3.01E-04	6.02E-04	9.04E-03	1.81E-02	13	2.70E+02	1.22E-01	6.08E-01	2.43E+00
14	7.73E-05	2.31E+02	1.51E-13	3.52E-27	1.35E+02	14	7.73E-05	1.55E-04	2.32E-03	4.64E-03	14	2.31E+02	1.04E-01	5.20E-01	2.08E+00
15	1.85E-05	1.91E+02	8.16E-15	1.61E-29	1.11E+02	15	1.85E-05	3.71E-05	5.56E-04	1.11E-03	15	1.91E+02	8.58E-02	4.29E-01	1.72E+00
16	4.18E-06	1.51E+02	4.15E-16	6.94E-32	8.79E+01	16	4.18E-06	8.36E-06	1.25E-04	2.51E-04	16	1.51E+02	6.80E-02	3.40E-01	1.36E+00
17	8.89E-07	1.15E+02	1.98E-17	2.81E-34	6.69E+01	17	8.89E-07	1.78E-06	2.67E-05	5.33E-05	17	1.15E+02	5.17E-02	2.59E-01	1.03E+00
18	1.79E-07	8.40E+01	8.95E-19	1.07E-36	4.89E+01	18	1.79E-07	3.57E-07	5.36E-06	1.07E-05	18	8.40E+01	3.78E-02	1.89E-01	7.56E-01
19	3.40E-08	5.90E+01	3.82E-20	3.87E-39	3.43E+01	19	3.40E-08	6.81E-08	1.02E-06	2.04E-06	19	5.90E+01	2.65E-02	1.33E-01	5.31E-01
20	6 17E-09	3 97E+01	1 55E-21	1.22E-41	2.31E+0	20	6.17E-09	1.23E-08	1.85E-07	3.70E-07	20	3.97E+01	1.79E-02	8.94E-02	3.58E-01
21	1 06E-09	2 57E+01	6 01E-23	0.00E+00	1.508+01	21	1.06E-09	2.13E-09	3.19E-08	6.39E-08	21	2.57E+01	1.16E-02	5.79E-02	2.32E-01
22	1.76E-10	1 605+01	2 22E-24	0.00E+00	9 32E+0	22	1.76E-10	3.51E-10	5.27E-09	1.05E-08	22	1.60E+01	7.22E-03	3.61E-02	1.44E-01
22	2 77E-11	0.61F+0	7 875-26	0.002+00	5 59E+00	1 23	2 77E-11	5.54E-11	8.31E-10	1.66E-09	23	9.61E+00	4.33E-03	2.16E-02	8.65E-02
23	A 1017-12	5 558+00	2 64F-27	0.005+00	3 238+00	74	4 19E-12	8.38E-12	1.26E-10	2.51E-10	24	5.55E+00	2 50E-03	1.25E-02	5.00E-02
24	6 092 12	3.008+00	8 5817-20	0.000 + 00	1 2015 - 00) 25	6 08F-13	1 228-12	1 83E-11	3 65E-11	25	-3 09E+00	1 39E-03	6 06E-03	2 788-02
25	9 4012-13	1 668 + 00	2 688-30	0.002+00	9 66F-01	26	8 50E-14	1 70E-13	2 55E-12	5.10E-12	26	1.66E+00	7 488-04	3 74E-03	1 50E-02
20	1 142 14	9 642 01	2.001-30	0.000 +00	< 07E_01	20	1 148.14	2 28R-14	3 A3E-13	6 85E-13	27	8 64F-01	3 80F.M	1 04F-03	7 778.03
27	1.145-14	A 24E 01	2 2212-22	0.005+00	2 528-01	27	1 498-15	2.2015-14 2.06E-15	A AAE-14	8 805-14	28	A 34E.01	1 05F.04	0 76E-04	3 0015-03
20	1,405-13	4.346-VI	2.JJE-JJ	0.005+00	1 225-01	20	1.9015-15	2.7019-15 2.71E-16	5 56E-15	1 112.14	20	4.040-01 2 11E-01	0.498-05	A 748.04	1.005.03
29	1.036-10	2.11C-01	0.475-33	0.005+00	5 768 00	27	1.0JE-10 2.24E 17	J./12-10	5.306-15 6 72E-16	1 255-15	27	0 07E-07	4 465.05	2 22E-04	8 03E-M
30	2.240-17	9.920-02	1,/35-30	0.005+00	3.705-02	21	2.242217	5 7512 19	7 992 17	1.556-15	21	4 53E 00	1.40D-05	1 005 04	A 07E-04
31	2.03E-18	4.53E-02	4.200-20	0.005+00	2.036-04	31	2.036-10	5.23E-10	9 0412 19	1.302-10	27	1.002.02	0.018.06	A \$112.05	1.0012-04
32	2.985-19	2.005-02	1.105-39	0.005+00	1.10E-02	34	2.900-19	J.900-19	0.745-10	1./95-1/	22	2.00E-02	9.01E-00	4.316-03	1.0VE-04
33	3.285-20	8.01E-03	2.825-41	0.0000+00	5.00E-03	33	3.205-20	0.33E-20	7.03E-19	1.9/E-10 2 10E 10	22	3.01C-03	3.07E-00	1.946-0J	2 245 05
34	3.498-21	3.001-03	3.835-43	0.000+00	2.092-03		3.49E-21	0.996-21	1.036-19	2.106-19	34	3.000-03	1.022-00	8.09E-00	3.246-03
35	3.02E-22	1.408-03	0.008+00	0.008+00	8.4/E-04	35	3.021-22	7.248-22	1.09E-20	2.17E-20	33	1.4015-03	0.5/E-0/	3,280-00	1.31E-05
36	3.65E-23	5.77E-04	0.00E+00	0.00E+00	3.34E-04	36	3.65E-23	7.296-23	1.098-21	2.19E-21	30	5.7/E-04	2.605-07	1.30E-06	5.198-06
37	3.57E-24	2.22E-04	0.00E+00	0.00E+00	1.29E-04	37	3.57E-24	7.15E-24	1.07E-22	2.14E-22	37	2.22E-04	9.98E-08	4.99E-07	2.00E-06
38	3.41E-25	8.31E-05	0.00E+00	0.00E+00	4.82E-05	38	3.41E-25	6.81E-25	1.02E-23	2.04E-23	38	8,31E-05	3.74E-08	1.87E-07	7.48E-07
39	3.17E-26	3.04E-05	0.00E+00	0.00E + 00	1.76E-05	39	3.17E-26	0.33E-26	9.50E-25	1.90E-24	39	3.04E-05	1.37E-08	6.83E-08	2.73E-07
40	2.87E-27	1.08E-05	0.00E+00	0.00E+00	6.27E-06	40	2.87E-27	5.73E-27	8.60E-26	1.72E-25	40	1.08E-05	4.87E-09	2.44E-08	9.74E-08
41	2.53E-28	3.76E-06	0.00E+00	0.00E+00	2.18E-06	41	2.53E-28	5.06E-28	7.59E-27	1.52E-26	41	3.76E-06	1.69E-09	8.47E-09	3.39E-08
42	2.18E-29	1.28E-06	0.00E+00	0.00E+00	7.40E-07	42	2.18E-29	4.36E-29	6.54E-28	1.31E-27	42	1.28E-06	5.75E-10	2.88E-09	1.15E-08
43	1.84E-30	4.24E-07	0.00E+00	0.00E+00	2.46E-07	43	1.84E-30	3.67E-30	5.51E-29	1.10E-28	43	4.24E-07	1.91E-10	9.54E-10	3.82E-09
44	1.51E-31	1.37E-07	0.00E+00	0.00E+00	7.96E-08	44	1.51E-31	3.02E-31	4.53E-30	9.05E-30	44	1.37E-07	6.19E-11	3.09E-10	1.24E-09
45	1.21E-32	4.36E-08	0.00E+00	0.00E+00	2.52E-08	45	1.21E-32	2.43E-32	3.64E-31	7.28E-31	45	4.36E-08	1.96E-11	9.81E-11	3.92E-10

C.D-57

		Cs-137 D	ose in mrem	/v			ТЬ-228 І)ose in mrei	n/y			U-235 De	ose in mrem	/y
	pCi/g->	1	5	20		pCi/g>	30	100	200		pCi/g>	30	200	1000
Lavana	(τ.		m /w			Tos		./			
Demove	d par p(i/g)	Low	Mad	High	lyers (mre	wy rnCi/a) Iaw		Med	High R	emoved per	nCi/o) I	AW	Med	High
<u>ixemove</u>	4 68F-01	4 68F-01	2 34E+00	0 37E±00		5 85F+00	1 765+02	5 85E+02	$\frac{117E+03}{117E+03}$		5 23E-01	1 57E+01	$\frac{105E+02}{105E+02}$	5 23E+02
1	7.62F-01	2.62E-01	1 31E+00	5 24E+00	ĭ	3.925-01	1 17E+01	3 92E+01	7.83E+01	ĭ	5.23E-01	1.57E+01	1.05E+02	5.23E+02
;	9 29E-02	9 29E-02	4 65E-01	1 86E+00	;	1 34E-02	4 02E-01	1.34E+00	2.68E+00	2	5.23E-01	1.57E+01	1.05E+02	5.23E+02
2	2 36E-02	2 36E-02	1 18E-01	4 71E_01	3	3 07E-04	9.21E-03	3 07E-02	6 14E-02	วั	5.23E-01	1.57E+01	1.05E+02	5.23E+02
4	4.62E-03	4.62E-03	2.31E-02	9.23E-02	Ă	5.29E-06	1.59E-04	5.29E-04	1.06E-03	Ă	5.23E-01	1.57E+01	1.05E+02	5.23E+02
5	7 34E-04	7 34E-04	3 67E-03	1.47E-02	ŝ	7.29E-08	2.19E-06	7.29E-06	1.46E-05	5	5.22E-01	1.57E+01	1.04E+02	5.22E+02
6	9.81E-05	9.81E-05	4.90E-04	1.96E-03	6	8.38E-10	2.51E-08	8.38E-08	1.68E-07	6	5.21E-01	1.56E+01	1.04E+02	5.21E+02
ž	1.13E-05	1.13E-05	5.64E-05	2.26E-04	7	8.26E-12	2.48E-10	8.26E-10	1.65E-09	7	5.18E-01	1.55E+01	1.04E+02	5.18E+02
Ŕ.	1.14E-06	1.14E-06	5.70E-06	2.28E-05	8	7.12E-14	2.14E-12	7.12E-12	1.42E-11	ġ	5.11E-01	1.53E+01	1.02B+02	5.11E+02
ğ	1.03E-07	1.03E-07	5.13E-07	2.05E-06	ğ	5.45E-16	1.64E-14	5.45E-14	1.09E-13	9	4.99E-01	1.50E+01	9.98E+01	4.99E+02
10	8.32E-09	8.32E-09	4.16E-08	1.66E-07	10	3.76E-18	1.13E-16	3.76E-16	7.52E-16	10	4.79E-01	1.44E+01	9.58E+01	4.79E+02
ii	6.14E-10	6.14E-10	3.07E-09	1.23E-08	ii	2.35E-20	7.06E-19	2.35E-18	4.71E-18	11	4.50E-01	1.35E+01	9.00E+01	4.50E+02
12	4.15E-11	4.15E-11	2.08E-10	8.31E-10	12	1.35E-22	4.05E-21	1.35E-20	2.70E-20	12	4.12E-01	1.23E+01	8.23E+01	4.12E+02
13	2.60E-12	2.60E-12	1.30E-11	5.19E-11	13	7.16E-25	2.15E-23	7.16E-23	1.43E-22	13	3.65E-01	1.09E+01	7.30E+01	3.65E+02
14	1.51E-13	1.51E-13	7.53E-13	3.01E-12	14	3.52E-27	1.06E-25	3.52E-25	7.04E-25	14	3.12E-01	9.36E+00	6.24E+01	3.12E+02
15	8.16E-15	8.16E-15	4.08E-14	1.63E-13	15	1.61E-29	4.84E-28	1.61E-27	3.23E-27	15	2.57E-01	7.72E+00	5.14E+01	2.57E+02
16	4.15E-16	4.15E-16	2.07E-15	8.29E-15	16	6.94E-32	2.08E-30	6.94E-30	1.39E-29	16	2.04E-01	6.11E+00	4.08E+01	2.04E+02
17	1.98E-17	1.98E-17	9.91E-17	3.96E-16	17	2.81E-34	8.42E-33	2.81E-32	5.61E-32	17	1.55E-01	4.65E+00	3.10E+01	1.55E+02
18	8.95E-19	8.95E-19	4.47E-18	1.79E-17	18	1.07E-36	3.21E-35	1.07E-34	2.14E-34	18	1.13E-01	3.40E+00	2.27E+01	1.13E+02
19	3.82E-20	3.82E-20	1.91E-19	7.65E-19	19	3.87E-39	1.16E-37	3.87E-37	7.75E-37	19	7.95E-02	2.39E+00	1.59E+01	7.95E+01
20	1.55E-21	1.55E-21	7.77E-21	3.11E-20	20	1.22E-41	3.65E-40	1.22E-39	2.43E-39	20	5.36E-02	1.61E+00	1.07E+01	5.36E+01
21	6.01E-23	6.01E-23	3.00E-22	1.20E-21	21	0.00E+00	0.00E+00	0.00E+00	0.00E+00	21	3.47E-02	1.04E+00	6.94E+00	3.47E+01
22	2.22E-24	2.22E-24	1.11E-23	4.43E-23	22	0.00E+00	0.00E+00	0.00E+00	0.00E+00	22	2.16E-02	6.48E-01	4.32E+00	2.16E+01
23	7.82E-26	7.82E-26	3.91E-25	1.56E-24	23	0.00E+00	0.00E+00	0.00E+00	0.00E+00	23	1.30E-02	3.89E-01	2.59E+00	1.30E+01
24	2.64E-27	2.64E-27	1.32E-26	5.29E-26	24	0.00E+00	0.00E+00	0.00E+00	0.00E+00	24	7.48E-03	2.25E-01	1.50E+00	7.48E+00
25	8.58E-29	8.58E-29	4.29E-28	1.72E-27	25	0.00E+00	0.00E+00	0.00E+00	0.00E+00	25	4.17E-03	1.25E-01	8.34E-01	4.17E+00
26	2.68E-30	2.68E-30	1.34E-29	5.35E-29	26	0.00E+00	0.00E+00	0.00E+00	0.00E+00	26	2.24E-03	6.72E-02	4.48E-01	2.24E+00
27	8.03E-32	8.03E-32	4.02E-31	1.61E-30	27	0.00E+00	0.00E+00	0.00E+00	0.00E+00	27	1.16E-03	3.49E-02	2.33E-01	1.16E+00
28	2.33E-33	2.33E-33	1.16E-32	4.65E-32	28	0.00E+00	0.00E+00	0.00E+00	0.00E+00	28	5.84E-04	1.75E-02	1.17E-01	5.84E-01
29	6.49E-35	6.49E-35	3.25E-34	1.30E-33	29	0.00E+00	0.00E+00	0.00E+00	0.00E + 00	29	2.84E-04	8.51E-03	5.67E-02	2.84E-01
30	1.75E-36	1.75E-36	8.76E-36	3.51E-35	30	0.00E+00	0.00E+00	0.00E+00	0.00E+00	30	1.33E-04	4.01E-03	2.67E-02	1.33E-01
31	4.58E-38	4.58E-38	2.29E-37	9.15E-37	31	0.00E+00	0.00E+00	0.00E+00	0.00E+00	31	6.09E-05	1.83E-03	1.22E-02	6.09E-02
32	1.16E-39	1.16E-39	5.79E-39	2.31E-38	32	0.00E+00	0.00E+00	0.00E+00	0.00E + 00	32	2.70E-05	8.09E-04	5.39E-03	2.70E-02
33	2.82E-41	2.82E-41	1.41E-40	5.64E-40	33	0.00E+00	0.00E+00	0.00E+00	0.00E + 00	33	1.16E-05	3.47E-04	2.32E-03	1.16E-02
34	5.83E-43	5.83E-43	2.92E-42	1.17E-41	34	0.00E+00	0.00E+00	0.00E+00	0.00E + 00	34	4.84E-06	1.45E-04	9.67E-04	4.84E-03
35	0.00E + 00	0.00E + 00	0.00E+00	0.00E+00	35	0.00E+00	0.00E+00	0.00E+00	0.00E+00	35	1.96E-06	5.89E-05	3.93E-04	1.96E-03
36	0.00E+00	0.00E + 00	0.00E+00	0.00E+00	36	0.00E+00	0.00E+00	0.00E+00	0.00E + 00	36	7.75E-07	2.33E-05	1.55E-04	7.75E-04
37	0.00E + 00	0.00E + 00	0.00E+00	0.00E + 00	37	0.00E+00	0.00E + 00	0.00E+00	0.00E+00	37	2.98E-07	8.95E-06	5.96E-05	2.98E-04
38	0.00E+00	0.00E+00	0.00E+00	0.00E+00	38	0.00E+00	0.00E+00	0.00E+00	0.00E+00	38	1.12E-07	3.35E-06	2.23E-05	1.12E-04
39	0.00E+00	U.UUE+00	0.00E+00	U.UUE+00	39	0.00E+00	U.UUE+00	U.UUE+00	0.00E+00	39	4.08E-08	1.22E-06	8.16E-06	4.08E-05
40	0.005+00	0.005+00	U.00E+00	0.005+00	40	0.00E+00	0.00E+00	U.00E+00	U.00E+00	40	1.452-08	4.36E-07	2.91E-06	1.43E-05
41	U.00E+00	0.005+00	U.UUE+00	U.UUE+00	41	0.008+00	U.UUE+00	U.UUE+00	U.UUE+00	41	3.036-09	1.52E-07	1.011-06	3.03E-06
42	0.005+00	U.UUE+00	0.008+00	0.005+00	42	U.UUE+00	0.005+00	U.UUE+00	0.002+00	42	1./25-09	5.138-08	5.45E-U/	1./25-06
45	U.UUE+00	0.002+00	0.005+00	U.UUE+00	43	0.002+00	0.005+00	0.005+00	0.002+00	43	3.09E-10	1./12-08	1.145-07	3.09E-07
44					44	0.005+00			0.002+00	44	1.03E-10	J.J4E-09	3.07E-08	1.03E-U/
43	U.UUE+UU	V.VUĽ+UU	U.UUL+UU	v.UUL+UU	43	V.UUE+00	V.WE+W	U.UUL+UU	v.w.c+w	40	7.025-11	1./05-09	1.1/12-00	J.03E-08

۴.

4

•

TABLE 5.5.1. Calculated Residual Radiation Dose Rates as Functions of Soil Depth Removed, with Surface Contamination Level as a Parameter (continued)

NUREG-1496

C.D-58

8+

¥.,

C.5.6 Reference Facility Soil Contamination

Soil contamination information from 10 reference facilities is contained in this section. Also contained in this section are the surface areas of contaminated soil at the reference facilities, which are summarized in Table 7.1.1. Volumes of contaminated soil are calculated as a function of thickness removed and are summarized in Tables 7.2.2 and 7.2.3. Facilities other than those selected as the reference for building contamination may be described as the reference facility for soil contamination if the data were more relevant. For example, the General Electric uranium fuel fabrication plant was described as the reference facility for characterization of building contamination, but the reference facility selected for characterization of soil contamination is the Babcock and Wilcox nuclear fuel manufacturing plant in Apollo, Pennsylvania.

The data on the level of soil contamination presented in the following sections is limited and also shows considerable variability. Such contamination would be expected to vary for specific sites. Therefore, three sets of reference soil contamination levels have been developed for each of the reference facilities, called "high," "medium," and "low," to provide some bounding of the situation and to provide a range of the possible contamination levels that may be present. The soil surfaces are assumed to be contaminated at these nominal contamination levels, for purposes of these analyses.

C.5.6.1 Reference Power Reactor

A reference facility based on the Trojan Reactor Plant has been described in Section 4.1. The concentration ranges of radionuclides in contaminated surface soils (to a depth of 4 cm) has also been reported by Abel et. al. (1986, Table 4.7, p. 27) for six other reactor plants and are reproduced in Table 5.6.1. Cobalt-60 was the largest contributor to radiation dose from radionuclides in soils at those plants.

Geographic Profile

Radionuclide concentrations in soils at nuclear power plant sites were located in small patches of very low concentrations located within the security fences and were mostly at known spill sites. These locations were generally close to condensate or borated water storage tanks, effluent sampling points, or equipment maintenance and/or cleaning areas. Small areas of contaminated soils at most plants would require remedial action, such as excavation and disposal as low-level waste. Volumes are relatively low - tens of cubic meters (Abel et al. 1986) Additional volumes of contaminated soil might occur during decontamination and/or dismantling, as additional spills occur or covered areas (e.g., underneath spent fuel storage pools) are found to be contaminated. The highest levels of radionuclides found in "hot spots" (soil samples and holding pond sediments) consisted of 60 Co (up to 377 pCi/g) and 137 Cs (up to 91 pCi/g) (Abel et al. 1986).

C.D-59

Radionuclide	Pathfinder ^(a)	Humboldt Bay(b)	Dresden ^(c)	Monticello ^(d)	Turkey Point ^(e)	Rancho Seco ⁽⁰⁾
⁵⁴ Mn	< 0.005-0.06	0.45-5.5	0.02-0.23	<0.004-<0.02	0.03-0.34	<0.003-0.27
[∞] Co	<0.01-1.7	26-377	1.3-161	0.006-0.45	4.0-45	0.012-11
¹⁰⁶ Ru	<0.1-0.36	<0.02-<0.05	<0.07-0.2	<0.07	<0.1-0.2	<0.03-<0.09
¹²⁵ Sb	< 0.02	<0.4-4.9	<0.03-<1	<0.03	<0.6-22	<0.006-0.75
¹³⁴ Cs	<0.04-<0.01	1.5-6.1	<0.01-6.3	<0.004-0.16	0.28-5.5	0.01-0.95
¹³⁷ Cs	0.15-2.9	25-91	0.49-260	0.068-2.1	1.7-11	0.05-4.9
¹⁴⁴ Ce	<0.03-0.18	<0.3-1.3	<0.04-1.5	0.083-0.17	<0.05-0.27	<0.02
²³⁸ Pu	3-41 x 10 ⁻⁵	8.2-170 x 10 ⁻³	N.M. ⁴	N.M.	N.M.	N.M.
239-240Pu	6-42 x 10 ⁻⁴	9.5-230 x 10 ⁻³	N.M.	N.M.	N.M.	N.M.

۴.

đ

 TABLE 5.6.1.
 Concentration Ranges of Radionuclides in Contaminated Surface Soils (0-4 cm) from Radiation Controlled Areas (pCi/g) (Abel et al. 1986, Table 4.7, p. 27)

(a) Fourteen soil samples

•

(b) Five soil samples

(c) Four soil samples; highest observed contamination was at a depth of 15-30 cm.

.

(d) Four soil samples

(e) Six soil samples

(f) Seven soil samples

(g) N.M. represents Not Measured

K,

Reference Scenario - Nuclear Power Plant

For the reference nuclear power plant decommissioning scenario, it is estimated that approximately 2000 ft³ of soil contaminated with ⁶⁰Co and ¹³⁷Cs may be identified from (a) known and recorded spills, (b) spills of solutions and sludges during surface cleaning and decommissioning operations, and (c) spills into soil which are discovered during the post-decommissioning, pre-release radiological survey. The high, medium, and low values are given in Table 5.5.1 and Figures 5.5.1 - 5.5.3 for ⁶⁰Co, ¹³⁷Cs, and ⁹⁰Sr and are used in estimating surface soil contamination at the reference power reactor. Since this soil will be of relatively low activity and contain no alpha-emitting radionuclides above release limits, it can be treated as low-level waste, placed in drums, and transported to a LLW repository.

C.5.6.2 Reference Test Reactor and Research Reactor

The site area of the reference Plum Brook test reactor is estimated at 50 x 10^6 ft². There are approximately 3,400 linear feet of asphalt-lined drainage ditches at the reference test reactor facility (Konzek et al. 1982b). Before concrete pipes were laid on the asphalt lining, it is assumed that there was potential leakage of contaminated water into the soil beneath the asphalt. If the ditches were approximately 1.5 ft wide, the area of the contaminated soil is estimated to be approximately 5,000 ft². Radioactivity released to the soil from the retention basins is assumed to be negligible.

The site area of the reference Oregon State University (OSU) TRIGA research reactor is estimated to be 150,000 ft². No specific data on contaminated soil areas were found for the OSU reactor site. Therefore, the area of contaminated soil is estimated to be 500 ft², scaled from the contaminated area estimated for the test reactor, reflecting the reduced scale of operations at a research reactor.

The high, medium, and low values for surface contamination are given in Table 5.5.1 and Figures 5.5.1, 5.5.2, and 5.5.3, for ⁶⁰Co, ³⁷Cs, and ⁹⁰Sr, and are used to estimate the surface soil contamination at the reference test and research reactors.

C.5.6.3 Reference Nuclear Fuel Fabrication Facility

Although the General Electric Wilmington Plant is the reference nuclear fuel fabrication facility, more information on the condition of the soils at the site were found for the Apollo plant. Therefore, soils at the Apollo plant are described in this section.

The plant is a former nuclear fuel manufacturing site in Apollo, PA, which is currently undergoing decontamination (Babcock and Wilcox 1992a, 1992b). The fuel manufacturing operations were performed in one part of the facility, owned by Babcock and Wilcox, and located on the east side of the site in approximately one acre of roofed two-story buildings. Other parts of the complex included a parking lot (2.5 acre) and an "off-site area" (3 acres) which included a metals-processing complex, laundry, railroad spur, and equipment storage building.

C.D-61

Principal NRC-licensed manufacturing operations at the Apollo site included the manufacture of low- and high-enriched uranium oxide fuels for commercial nuclear power plants and for nuclear-powered naval ships. Nuclear fuel manufacturing commenced in the main building in 1957 and was terminated in 1983. The manufacturing process was the chemical conversion of uranium hexafluoride to uranium oxide powder. All operations were terminated in 1984.

Contamination Information

Site soil has been estimated to be potentially contaminated above 30 pCi U/g, at depths ranging from near-surface to >25 feet. Uranium contamination concentrations of 24 - 300 pCi U/g were found beneath part of Building 3 and the east end of Building 4, at depths from 6 -96 inches. The riverbank soils are also being characterized; three samples taken from near the plant exceeded 30 pCi U/g. A surface area of approximately 50,000 ft² is estimated to be contaminated to varying degrees with uranium. Based on the available information, high, medium, and low levels of surface contamination are estimated. The values for uranium contamination at the surface for the reference uranium fuel fabrication facility are given in Table 5.5.1 and Figure 5.5.5.

C.5.6.4 Reference Uranium Hexafluoride Plant

The uranium hexafluoride gaseous diffusion plant Portsmouth, Ohio, was selected as a reference plant for the contaminated soils portion of this report because it provides some information on the extent of contamination. The Portsmouth Gaseous Diffusion Plant is located on a government-owned reservation 126 km from Columbus, Ohio and 32 km north of Portsmouth, OH, next to the Scioto River and at an elevation of 650 - 700 feet above sea level. The plant is operated for the U.S. Department of Energy (DOE) by Martin Marietta Energy Systems, Ltd., and provides enriched uranium fuel to the nuclear power industry from isotope separation via gaseous diffusion.

Radioactive contamination in the soil at this site is currently being investigated as part of a comprehensive RCRA (Resource Conservation and Recovery Act) Facility Investigation (RFI). The site has been divided into four quadrants. [Complete data are currently available for only one of these - Quadrant I (Geraghty and Miller, Inc., 1990a, 1990b), but a general site overview has been included in these references].

Based on the available information, the high, medium, and low levels of surface contamination given in Table 5.5.1 and Figure 5.5.5 are used in estimating surface soil contamination at the reference uranium hexafluoride plant. The estimated site area is 200 x 10^6 ft². The contaminated area is estimated to be 100,000 ft².

C.5.6.5 Reference Non-Fuel-Cycle Plants

The reference non-fuel-cycle plants evaluated for soils contamination are a sealed source manufacturing facility, a generic broad research and development facility, and a rare metal extraction facility.

NUREG-1496

I

C.5.6.5.1 Reference Sealed Source Manufacturing Facility

The reference sealed source manufacturer is the Advanced Medical Systems facility. The site area is estimated to be 40,000 ft². The contaminated area is estimated to be 5,000 ft², based on assumed stack effluent releases. Advanced Medical Systems, Inc. manufactures ⁶⁰Co and ¹³⁷Cs sources for medical use. A small amount of detectable activity has been found in site soil, and was assumed to be due to stack effluent releases. Apart from this, the major route to soil contamination would be via liquid waste spills on building floors running off through floor-wall seams in the concrete (NRC 1993).

For purposes of estimating soil contamination, the high, medium, and low values given in Table 5.5.1 and figures 5.5.1 and 5.5.3 for ⁶⁰Co and ¹³⁷Cs are used in estimating surface soil contamination at the reference sealed source manufacturer. It is likely that the low value is appropriate in most situations for these facilities.

C.5.6.5.2 Rare Metal Extraction Facility

The reference rare metal extraction facility is the Molybdenum Corporation of America facility in Washington, PA, which occupies a 17 acre (740,000 ft²) site, and produced a ferrocolumbium alloy from a Brazilian ore from 1964 to 1970. The ore contained licensable concentrations of thorium (1-1.5% by weight), and so the operation produced thoriumbearing slag and contaminated soil. Some of the slag was used as fill over portions of the site, which includes a number of buildings, eight holding ponds, and a large (7,000 m³) slag pile with an average activity of 1,250 pCi/g on the southern part of the property (NRC 1993, p. A-65). Average concentrations over most of the site ranged between 100-200 pCi/g. Therefore, 200 pCi/g was used for the high value in Figure 5.5.4. The area of contaminated soil is estimated to be 100,000 ft² based on extensive handling and storing of ore and slag at the site. It is estimated that there is 1.1×10^5 kg of thorium on-site in the form of contaminated soils and slags.

C.5.6.5.3 Broad Research and Development Facility

The reference broad R&D facility is a generic, single-building facility on a 40,000 ft² site. Licensed nuclear fuels R&D was performed on the site. A site-wide radiological survey indicated contamination in several areas of soil, with subsurface cesium contamination from 20-48 pCi/g at two locations, and with contaminated septic tank sludge and contaminated soil under a downspout. Sediment samples from the site contained ¹³⁷Cs (up to 9.9 pCi/g) (NRC 1993). Although radioactivity levels in soil were generally quite low, contamination in "hot spots" appeared to be quite widespread; therefore, the area of contaminated soil is assumed to be 5000 ft².

The high, medium, and low values given in Table 5.5.1 and Figure 5.5.3 for ¹³⁷Cs are used in estimating surface soil contamination at the reference broad R&D facility.

C.D-63

C.5.6.6 Reference Conventional Uranium Mill

The scope of this document is limited to the uranium mill buildings and the immediate lands surrounding the mill buildings, and specifically the residual radioactivity criteria for contamination which may be present in those buildings or lands. With regard to the tailings impoundment, a general license is issued under 10 CFR 40.28 for the custody and long-term care of the tailings to comply with standards for uranium mill tailings sites closed under the Uranium Mill Tailings Radiation Control Act of 1978. The licensee for the tailings impoundment will be the DOE, other Federal agency, or State. Therefore, long-term management of the tailings impoundment is outside the scope of this document and is not discussed further.

Apart from the tailings piles, contaminated soil is assumed to be present in the former mill area and on the vicinity properties, which is believed to have originated from storage of ore in open piles, roaster stack emissions, tailings pond overflow, and erosion of tailings piles by wind and water. The average contamination (given as 226 Ra activity, which is a characteristic measurement for these sites) is 20 pCi/g of soil for the former millsite, with possible contamination of the subsurface to a depth of up to 6.5 ft.

The NRC (Sections 8.5 and 9.5 and Appendix K of NUREG-0706) has analyzed the decommissioning of the model mill. Concrete floors, foundations, and sumps from the mill buildings would be broken up, removed, and buried in the tailings impoundment. Contaminated soil beneath foundations of the mill building would be excavated and also taken to the tailings impoundment. Contaminated areas outside the mill buildings, such as ore pads and collection ponds, would be excavated and the soil removed to the tailings impoundment. All excavated areas would be backfilled, graded, and revegetated. It was estimated, based on the areas of the leaching and countercurrent decontamination tanks, that 35,000 ft² of concrete and underlying soil would be removed to a depth of six feet and placed into the tailings pile. It was also estimated that the ore pad and other more highly contaminated areas have an area of 20 acres and would be sent to the tailings piles and that for other mill site areas, 300 acres of soil with a removal depth of 6 inches would be sent to the tailings pile. Estimates were based on residual contamination criteria existing or proposed at the time of publication of NUREG-0706 (Table 9-14 of NUREG-0706). Costs and impacts associated with decommissioning of the model mill are included in Sections 8.5 and 9.5 and Appendix K of NUREG-0706.

2

-2

Based on Appendix K, and on recent NRC experience regarding the conduct of decommissioning operations by the currently licensed uranium mills, decommissioning of the reference conventional mill is assumed as follows. For the reference conventional uranium mill, the mill structure (including concrete floors and foundations) would be demolished, removed, and buried in the tailings impoundment, contaminated earth beneath removed foundations and contaminated areas outside the buildings, such as ore pads and collection ponds and other areas in the vicinity of the mill structure, would be excavated and the soil removed to the tailings impoundment. Foundations and portions of the mill buildings may be

NUREG-1496

ı

disposed in place and covered with soil and erosion protection layers as part of the tailings reclamation plan. As indicated above, the tailings impoundment would remain under general license by the DOE. For the reference conventional uranium mill, because of the proximity of the mill building area to the tailings impoundment, the area at the mill building and its vicinity would become part of the DOE-licensed area under the general license for long-term care of the tailings pile and would not be released for unrestricted use. Therefore, decommissioning of the reference conventional uranium mill facility would not be impacted by the alternatives under consideration in this report.

Uncertainty Analysis of Decommissioning Analysis of Reference Conventional Uranium Mill

Decommissioning of a conventional mill in which the owner made a decision to release all or part of the mill area for unrestricted use would be evaluated on a case-by-case basis. As noted above, it has been estimated (Appendix K of NUREG-0706) that 35,000 square feet of concrete and underlying soil would be removed to a depth of six feet and placed into the tailings pile. It was also estimated that the ore pad has an area of 20 acres and an excavation depth of 3 feet ($100,000 \text{ yd}^3$), and that for other mill site areas, 300 acres of soil with a removal depth of 6 in. are sent to the tailings pile. If a reference case is postulated for a complete or partial release of a site based on the volumes estimated, the quantities of contaminated material estimated for removal and disposal is less than that for a uranium fuel fabrication plant or uranium hexafluoride plant analyzed in Sections 4.3 and 4.4 of this report. Hence the evaluation of alternatives and release criteria estimated for those facilities could be applicable to the reference uranium mill case where there is release of some or all of the site for unrestricted use.

C.5.6.7 Reference Independent Spent Fuel Storage Installation

The reference dry ISFSI collocated at the Surry Reactor Plant has a site area of of 500,000 ft². The area of contaminated soil is postulated to be 500 ft². The high, medium, and low values given in Table 5.5.1 and Figures 5.5.1-5.5.3 for ⁶⁰Co, ¹³⁷Cs, and ⁹⁰Sr are used in estimating surface soil contamination at the reference ISFSI. It is likely that the low value is appropriate in most situations for these facilities.

C.6. COST METHODOLOGY FOR DECONTAMINATION OF CONCRETE AND SOILS

The methods of calculating costs for removal and disposition of contaminated concrete and soils from decommissioned nuclear facilities are described in this chapter. The methodology for costing the removal and disposal of contaminated concrete surfaces is described first, followed by the methodology for costing removal and disposal of contaminated soils.

C.6.1 Concrete Surface Decontamination Cost Calculation Methodology

The approach used to calculate the costs of removal and disposition of contaminated concrete from facility surfaces is as follows:

- The area of contaminated surface is defined.
- The length of perimeter crack is defined.
- The area of the "wet spots" is defined.
- The volume of concrete to be removed is determined, based on the dose calculations described in Sections 4.8.6 and 6.2.3 of this report.
- The unit cost factors for removal of contaminated concrete from surfaces, cracks, and wet spots are defined. The removal cost for each of the contaminant situations (floors, walls, cracks, and wet spots) is calculated as the product of the area x the appropriate unit cost factor.
- The resulting volumes of removed material are expanded by a rubble expansion factor of 1.56 (Westinghouse Hanford Co. 1989) and the contaminated rubble is drummed. The cost of drums is calculated by the product of the number of drums x the unit cost of a drum.
- The cost of transport is calculated assuming a one-way shipment of 500 miles from the waste generator to the disposal site, for a legal-weight truck · shipment, by dividing the number of drums of rubble generated by the number of drums per truck shipment x the cost per shipment.

2

1

• The cost of disposal is calculated assuming very low activity waste disposed at a licensed LLW disposal site: the number of cubic feet of waste x the appropriate disposal charge rate per cubic foot.

ı

The duration of the concrete removal period is based upon the number of person-hours required to remove the material, assuming two crews/shift and two shifts/day, and specified removal rates (floors or walls) in square feet per crew-hour. On each shift, one crew works on floors and one crew works on walls. The total (floor or wall) area treated is divided by the appropriate removal rate in square feet per crew-hour to determine the number of crewhours required to remove the material, i.e., the duration of the removal period. The overhead labor costs are determined by the size and makeup of the overhead staff and their salaries, and the length of the removal period.

The total cost for contaminated concrete removal is the sum of the costs for removal of surface layers on floors and walls, and the cost for removal of cracks and wet spots, plus the costs for packaging, transport, and disposal of the packaged material, plus the cost of project overhead staff during the removal period. As each successive layer of concrete is removed from floors and walls, these removal costs increase, together with packaging, transport and disposal costs. The cost elements for the cracks and wet spots are independent of the number of layers of floor and wall removed.

C.6.2. Concrete Surface Decontamination Technology and Cost

Decontamination of concrete surfaces of floors and walls is postulated to be accomplished using commercial equipment presently available. The equipment postulated to be used in these analyses is a pneumatically operated surface removal system (scabbler) manufactured by Pentex, Inc. (The MooseTM and associated smaller units). This device can chip away approximately 0.125 in. of surface depth per pass, and has a skirted scabbling unit with a vacuum system which collects the dust and chips from the operation and deposits the waste material into a waste drum. Filters on the vacuum system discharge remove suspended dust particles from the air to prevent recontamination of the cleaned surfaces. Successive passes are required to remove deeper layers of contaminated concrete.

C.6.2.1 Rates of Floor and Wall Surface Removal

The removal rates for the scabbler devices are functions of the depth to be removed. Because the depth of cut for the scabbler is adjustable, different depths can be removed with a single pass. However, the deeper the cut, the slower the rate of removal in terms of surface area. For these analyses, a depth per cut of 0.125 in. is postulated, somewhere near optimum for maximizing the effectiveness of the equipment, which results in a removal rate of about 115 ft² per hour for a single pass of the equipment. The smaller units utilized for the edges of floors and for walls have a removal rate of about 30 ft² per hour for a single pass.

C.6.2.2 Unit Costs for Removing Contaminated Concrete Surfaces

The cost per square foot of surface removed is calculated based on the postulated crew makeup and size. For this type of operation, a crew consisting of 3 laborers, 0.25 of a health physics technician, and 0.25 of a crew-leader was postulated, which resulted in a cost per square foot removed to a depth of 0.125 in. of \$2.20 for the floors and \$8.61 for the walls.

To compute the cost of removal and disposition of each layer of contaminated concrete in a facility, the estimated contaminated area of floors and walls is multiplied by the appropriate unit cost factors, and the results summed. Added to these removal costs are the costs of packaging (cost per drum), transport (legal-weight truck one-way for 500 miles), and disposal at a licensed LLW facility (disposal charge rates are based on an average of the rates at the U.S. Ecology site at Hanford and the within Compact and outside of Compact rates at the Chem-Nuclear site at Barnwell, about \$148/ft³). The cost of the project overhead staff during the removal period is computed based on the duration of the removal period and added to the other costs of the effort.

C.6.2.3 Crack and Wet Spot Removal

Decontamination of cracks in the floor that contain contamination is accomplished by removal of the concrete surrounding the crack, using ordinary pneumatic hammers and vacuum systems for dust and particle collection. The cost of this operation is computed in a manner similar to the floor removal operations, using a unit cost factor for crack cleanout and the linear length of crack requiring removal. A crew is defined, labor rates are assigned, the rate of crack length removal is estimated, and the cost per linear foot of crack is calculated. This unit cost factor is multiplied by the number of linear feet of crack requiring removal to obtain the removal cost. The costs of packaging, transport, and disposal are calculated and added.

Decontamination of a crack is postulated to require removal of approximately 1 in. of concrete on either side of the crack, to an average depth of 6 in., resulting in a waste volume generated of about 0.13 ft^3 of contaminated rubble per linear foot of crack, including the 1.56 volume expansion for rubblizing. The removal rate is assumed to be 20 linear feet of crack per operating crew-hour, with a resulting cost per linear foot of crack of about \$7.40, including equipment costs. The length of crack for each facility was postulated to be equal to the perimeter of the structure, derived from the building footprint surface area, assuming a square structure:

2

perimeter = 4 x (number of floors) x (footprint area)⁴.

For the analyses presented in this report, a single story structure is assumed for all facilities.

NUREG-1496
For "wet spots", i.e., areas that had been exposed to liquid contaminants for extended periods of time, the penetration of contaminants is considerably deeper than for dry contaminants, as discussed in Chapter 4. Therefore, the entire thickness of a concrete floor is postulated to be removed for the area of the "wet spot", using equipment similar to that described for crack removal. For these analyses, the floor thicknesses removed were assumed to be 6 in. thick. It is also postulated that the contamination will extend downward into the soil beneath the "wet spot" such that, on the average, about 5 ft. of soil must be removed. The costs of removing and disposing of the "wet spot" concrete and the associated soil are summarized and included with the soils removal and disposal costs in Tables 7.2.3 and 7.2.4 of Chapter 7.

The removal rates, crew sizes, and costs for removal of the "wet spot" areas of concrete were obtained from Means (1993).

The results of the calculations for the cost of removal, packaging, transport, and disposal are summarized in Chapter 7 in Table 7.2.1 for the volumes of contaminated concrete removed from cracks, and in Tables 7.2.2 and 7.2.3 for the "wet spots".

C.6.3

Removal of Activated Concrete From the Reactor Bioshield

Removal of the activated concrete from the reactor bioshield is accomplished using a drilling and blasting technology. Vertical holes are bored into the shield concrete at selected distances from the shield inner surface. Explosives are inserted into the holes and detonated, breaking up the inner segments of the shield. This operation is repeated as necessary to remove the required amount of the shield, to reduce the surface radiation dose rate inside the shield cavity to acceptable levels.

Calculations of the activation of materials in the concrete biological shield that surrounds the reactor pressure vessel were reported in NUREG/CR-0130 (Smith et al. 1978) for the reference PWR (Trojan), for an assumed operating lifetime of 30 effective full-power years (i.e., 75% operating efficiency). These calculations did not include any ¹⁵²Eu because no information was available about the likely concentration of ¹⁵²Eu in the natural materials of the Trojan bioshield. However, measurements made at the Elk River Reactor decommissioning suggested that the Ci/m³ attributable to ¹⁵²Eu was about the same as the Ci/m³ associated with ⁶⁰Co. Thus, the total bioshield activity is postulated to be approximately twice the calculated activity of ⁶⁰Co, due to the anticipated ¹⁵²Eu activity.

Examination of the original calculations of activations in the bioshield suggests that at about 7 years following reactor shutdown, the residual activity levels in the bioshield will be such that removing 3.97 ft from the inner surface of the shield would result in a surface radiation dose rate of about 10 mrem/yr; 4.78 ft removed for 1 mrem/yr; and 5.57 ft removed for 0.1 mrem/yr. The costs associated with removal and disposal of that activated material were calculated using the unit cost factor algorithm for activated bioshield concrete removal

C.D-69

presented in Section C.2.15 of Appendix C in NUREG/CR-5884, (Konzek et al. 1993) and the cost estimating computer program (CECP). The length of the decontamination effort was calculated to be controlled by the shield removal initially, but after one pass of the floorremoval equipment, the floor removal duration controlled the duration of the effort, for the purpose of calculating project overhead costs to be added to the direct labor costs.

C.6.4. Soil Decontamination Cost Methodology

The costs for removal and disposition of contaminated soils are calculated in a somewhat similar manner. The area of contaminated soil is defined. The unit cost factors for soil removal, treatment (if any), packaging, transport, and disposition are defined. The depth of contaminant penetration into the soil is defined. Then, the total cost for contaminated soil removal is the sum of the individual cost elements, which are calculated using the appropriate unit cost factors. The cost calculation is based upon removing all of the soil to the depth necessary to achieve each of the alternate residual radiation dose rates. Subsequently, choices are made between treating the contaminated soil prior to disposition, or transporting the untreated contaminated soil to a regulated disposal facility for very low activity materials. In the treatment scenario, the cleaned soil is retained on-site for backfill, with the more contaminated residues removed by the treatment process being packaged and transported to a LLW disposal facility. In any actual situation, selection of one path over another would most likely be governed by the total cost for each choice.

C.6.5 Soil Treatment Technologies

The various forms of soil washing represent the only commercially-demonstrated soilcleaning techniques for radioactively-contaminated soils. Innovative techniques being developed (at present in the pilot plant or demonstration stage) include electrokinetics, and magnetic separation. These latter two techniques offer some potential for cost-reduction, but are likely to be applied as a polishing step after soil classification and washing rather than as stand-alone soil cleaning methods. In addition, biosorption/bioleaching technology, currently being used for metals extraction from ores in the mining industry (particularly uranium and copper) may be applied to contaminated soil cleanup, but it is currently a developing technology.

C.6.5.1 Soil Washing - General Description

Contaminated soil is removed from the site, classified to remove large particles and rocks, and washed by immersion with agitation in an aqueous solution. Chemical additives may be present in the wash solution to dissolve contaminants bound to soil particles. Several additives are available to facilitate the solution process depending on soil and contaminant type (Dennis et al. 1992, SEG 1992, and Gerber et al. 1991). After washing, the soil is separated according to particle size. Since most of the contaminants bind to the fine soil particles (<250 micrometers) which account for between 10-40% of the total soil mass, the bulk of the soil can be returned to the original location. The remaining slurry of

NUREG-1496

contaminated fines may have to be treated further to prepare for disposal (e.g., by drying and placing in drums). Removal rates of contaminants are enhanced by high liquid to soil ratios. Depending on the soil type and type of washing solution, this method may be effective in the removal of radionuclides. This is a relatively new technology for soil remediation, although it has been used in the mining industry for many years. The process has been commercially demonstrated in Europe and the U.S., mostly for organiccontaminated soils, although some data are available on its application to radiologically contaminated soil remediation.

C.6.5.2 Other Soil Cleanup Technologies

A DOE program is under way to evaluate innovative soil treatment technologies, including field testing at the Nevada Test Site (NTS), at the NTS Treatability Test Facility (operated by Reynold's Electrical & Engineering Co.). The soil treatment technologies under examination currently are restricted to plutonium removal, but are likely to be equally effective for thorium and uranium (but not cesium or strontium), and include:

Advanced Process Technologies, Salt Lake City, UT: Air-sparged hydrocyclone for removal of plutonium

AWC/Lockheed, Las Vegas, NV: Mineral jig combination and shaker table

Nuclear Remediation Technologies, San Diego, CA: Paramagnetic separation of plutonium from soil using Eriez Magnetics equipment

٠

·· ...

•

Paramagnetics, Inc., Plant City, FL: Pretreatment washing, followed by Kolm Separator paramagnetic separation

Scientific Ecology Group, Pittsburgh, PA: Multigravity separator; and high-gradient magnetic separator.

Site cleanup is expected to begin in 1996, using the selected successful technologies (Nuclear Waste News, 1993).

C.6.6Cost and Labor Estimating Bases for Soil Remediation/Treatment

The information developed for cost and labor is based on unit cost and labor data presented in this section. Categories for which basic unit factors were developed include: excavation, demolition of foundations, soil washing, packaging, transportation, and disposal. Estimates were developed using a spreadsheet that calculates the cost and labor requirements as a

C.D-71

function of volume removed for each site.

A soil washing option was considered for each site analyzed. The soil washing process would separate the contaminated soil from the clean soil in order to reduce the volume of soil that would be disposed of at a burial facility. In order to evaluate the cost effectiveness of soil washing, two scenarios were considered for each facility, one with soil washing and the other without soil washing.

C.6.6.1 Excavation

The unit cost and labor estimates for excavation of soil were obtained from Short (1988). The unit factors were then escalated to 1992 dollars. This analysis assumed that the soil was excavated and removed from an area contaminated with radioactive residue resulting from facility operations. Radiological surveys are performed by a work crew consisting of a foreman and three health physics technicians from the site owner's organization. The contractor's work crew for removal and handling of contaminated soil includes a foreman, two equipment operators, and two laborers. This crew is assisted by a health physics technician. Backfilling and grading of the site is accomplished by a work crew that includes a foreman, two equipment operators, and a laborer.

C.6.6.2 Removal of Concrete Floor and Underlying Soil

A unit cost and labor factor was developed for removal of portions of the facility floor area and about 5 ft. of soil beneath the removed portion of the floor. The unit cost and labor factor was based on the previous excavation cost, the cost for demolition of concrete footings and foundations, and placement of the demolished material into packages for transport to a disposal facility. The cost and labor factors for demolition of concrete foundations were obtained from Means (1993). It was assumed that the foundations contained reinforced steel and were demolished using pneumatic equipment, a backhoe, and crawler. The rubble was then loaded onto trucks. It was assumed that the concrete had been decontaminated, but a 15% work difficultly factor was applied to ensure that proper personnel protective equipment (similar to asbestos removal) was used during demolition.

C.6.6.3 Soil Washing

Soil washing is a water-based process for mechanically scrubbing and leaching waste constituents from a contaminated soil for recovery and treatment. It is an ex-situ toxicity reduction technology. The process removes contaminants from soils in one of two ways: by dissolving or suspending them in the wash solution, or by concentrating the contaminants into a smaller volume of soil through simple particle size separation techniques.

1

The cost of soil washing contaminated soil that was removed was obtained from the ENVEST Environmental Cost Engineering Model (ENVEST 1991) developed by the United States Air Force Environmental Restoration Program. The soil volume generated at each site

NUREG-1496

I.

was used as the cost estimating basis for the ENVEST model. It was assumed that a conservative efficiency of the soil washing process was 60%. Hence, 40% of the soil processed would be packaged and transported to a low-level radioactive waste burial facility.

C.6.6.4 Packaging

٠,

The cost for packaging containers was obtained from Konzek (1993). It was assumed that the material would be packaged for shallow-land burial using B-25 metal containers.

C.6.6.5 Transportation

Transport of radioactive materials from the facility to an approved disposal site was assumed to be accomplished by truck. A rate schedule from the Tri-State Motor Transit Company for truck shipment of radioactive material was used to estimate the transportation cost. The distance from the facility to the disposal site was assumed to be 500 miles. In addition, it was assumed that each truck could carry up to four containers.

C.6.6.6 Burial Costs

For this study, it was assumed that the waste generated at the sites would be shipped for disposal to a burial site, i.e., U.S. Ecology, Inc. located in Richland, Washington, or Chem Nuclear located in Barnwell, South Carolina. These sites were chosen due to the availability of cost information. Due to the uncertainty of the final disposition of the waste, an average of the U.S. Ecology (US Ecology) disposal rates and the Chem Nuclear (Chem Nuclear) disposal for both in-the-Southeast Compact and out-of-the-South Compact was used, about \$148/ft³.

The Vitro Chemical Plant located in Utah has accepted large quantities (2.16 million cubic meters) of radium-contaminated soil for shallow land burial. However, no current data could be obtained for the cost of disposal at this facility.

C.6.6.7 Occupational Radiation Dose Estimates

The occupational radiation dose estimates were obtained from Short (1988). Occupational radiation dose estimates are made by multiplying the person-hours required to decommission a site by an average radiation dose rate. The actual worker dose rate experienced during site decommissioning depends on several factors, including the type of radioactive contamination on the site, the location and concentration of contamination, the site parameters, and the work procedures and work schedules. Actual worker dose rates are expected to be site- and worker-specific.

Some information exists on dose rates at typical contaminated sites. For example, data from an operating low-level waste burial ground indicate an average dose rate at the site of about 1 mrem per 24-hour day (0.042 mrem/hr). Exposure records of 23 workers engaged in the removal of a contaminated industrial waste line showed that over a 3-month period, only four

C.D-73

dosimeters recorded doses in excess of 10 millirem. The maximum total exposure for one worker for 1 month was 30 millirem. Background values of gamma radiation at the inactive uranium mill tailings site at Tuba City, Arizona, have been measured at 0.01 mR/hr. All of these dose rates refer to direct exposure and do not include contributions from inhalation of radioactive particles.

The inhalation of airborne radioactivity may make a significant contribution to occupational exposure for some site decommissioning operations, depending on the nature of the site and the decommissioning option. The inhalation dose would not normally be significant for site stabilization or for waste removal operations at sites where soil contamination is minimal. This dose could be significant during the removal of a tailings pile because of the dust problem. For site decommissioning operations, worker use of face masks or other respiratory equipment or the use of water sprays to reduce dust concentrations would limit the occupational dose from inhalation of airborne radioactivity.

For this study, an average worker dose rate of 0.1 mrem/hr is assumed for site decommissioning operations. This value is believed to be reasonably conservative, based on available information about real sites. Decommissioning workers at potentially dusty sites are assumed to wear protective respiratory equipment to maintain occupational dose rates at or below this level.

The results of calculations of the costs of treating contaminated soils are summarized in Tables 7.2.2 and 7.2.3 of Chapter 7. The detailed spreadsheets for these calculations are presented in Appendix B of this report.

Т

C.7 ANALYSES RESULTS

The costs of decontaminating previously contaminated facilities and their surrounding sites to meet alternate residual radiation criteria at those facilities are presented in this chapter. For concrete decontamination, the cost for satisfying a pre-determined residual allowable level was not calculated, because the concrete surface removal process tends to be a series of removals of discrete thicknesses. Instead, the postulated decontamination process removed a defined thickness of the contaminated material surface, and the resulting cost (which included removal, packaging, transport, and disposal) and the resulting residual radiation dose rate at the new surface were calculated. For soils decontamination, it was possible to define the depth of removal required to achieve the desired residual radiation dose rate level, and the removal process was generally accomplished with a single removal operation, down to the desired depth. The cost for soils decontamination included removal, treatment (if appropriate), packaging, transport, and disposal. The volumes of waste requiring disposal, total labor hours, the occupational radiation doses to workers, and the number of shipments between the site and the LLW disposal facility were also calculated for each residual radiation dose rate level considered.

The methodologies for calculating the residual radiation dose rates at the various depths of surface removal are presented in Chapters 4 and 5. The methodologies for calculating the costs of concrete surface removal and of soil surface removal are presented in Chapter 6. The results of these calculations are summarized in this chapter.

The following potential situations regarding the post-decommissioning and post-license termination use of the site are evaluated:

- (1) Occupational use of the facility in which the facility buildings are occupied by a worker during a normal 8-hour shift.
- (2) Renovation of the facility in which workers occupy the facility buildings during a normal work day, for the purpose of moving/removing walls, ceilings, etc.
- (3) Residential use of the site in which persons live on the site and obtain drinking water from the site.

The bases for these scenarios are taken from Kennedy and Strenge (1992). The first two situations are evaluated in the same manner, i.e., using the methodology presented in Section 4.8.6 for radiation dose rate calculation, where the residual concentrations of contaminants are transformed into surface contamination levels, and the dose rates are calculated from those surface contamination levels using the surface contamination conversion factors contained in Appendix A.

The third situation listed above (residential and drinking water) is evaluated using the methodology developed in Sections 5.4 and 5.5 for estimating the residual radiation dose

C.D-75

rates as a function of the depth of soil removal, for the contaminants of interest, i.e., ⁶⁰Co, ⁹⁰Sr, ¹³⁷Cs, uranium, and thorium. Based on the postulated initial contamination levels and the calculated contaminant penetration profiles, the residual radiation dose rates following removal of successive layers of soil were calculated, and the depths of removal necessary to achieve the selected residual dose rates were determined from the data. The cost of removing, possibly treating, packaging, transport, and disposal of the removed soil was calculated for each removal depth selected. Two estimates were developed for soils removal, one with treatment of the soil by washing, and one without treatment of the soil.

3

ۍ

z

The initial conditions and the analysis bases for decontamination of floors and walls for facilities and of soils on the surrounding sites are as follows:

Facilities

- All in-process materials and products, major pieces of equipment, fixtures, floor coverings, and contaminated utilities such as drain lines and HVAC have been removed for disposal.
- Preliminary washdown of the facilities has been completed
- The neutron-activated concrete in the reactor bioshields is removed to depths corresponding to the alternate residual dose rates, i.e., 100, 10, 3, 1, 0.1, and 0.01 mrem/yr.
- The total thickness of concrete adjacent to contaminated cracks is removed.
- The total thickness of concrete in areas exposed to wet contaminants is removed.
- The surface of concrete areas exposed to dry contaminants are scabbled to depths corresponding to the alternate residual dose rates.

<u>Soils</u>

- Localized contaminated soil beneath structures is removed by removing local sections of the floor, without demolition of the structures. The removed concrete is disposed as LLW, the removed soils are either packaged and disposed as LLW, or treated, with the residual contaminated soils packaged and disposed as LLW, and the cleaned soil restored to the site.
- Other contaminated soils on the site are handled in the same manner as those contaminated soils removed from beneath the floor, i.e., contaminated soil external to structures is either removed and disposed as LLW, or treated, with the cleaned soils restored to the site, and residual contaminated soil disposed as LLW.

NUREG-1496

C.7.1 Analysis Bases

A summary of the total and contaminated surface areas of the reference structures and soils for the reference sites is presented in Table 7.1.1, together with the postulated maximum surface activity levels at those facilities and sites prior to surface removal efforts.

	Structures	S	ructures Surf	face Areas			
Reference	Radionuclide Activity ²⁰ , dpm/100 cm ²		h ³	9 Contan	6 ninated	Soil Suri	lace Area, fl ²
Facility		Floor	Wall	Floor	Wall	Total Site	Contaminated ⁽²⁾
Power Reactor	7.5 x 10 ⁴ ⁶⁰ Co 2.4 x 10 ⁶ ¹³⁷ Cs	250,000	300,000	10	2	50 x 10 ⁶	2,000
Test Reactor	7.5 x 10 ⁶ ⁶⁰ Co 2.4 x 10 ⁶ ¹⁰⁷ Cs	100,000	120,000	10	2	50 x 10 ⁶	5,000
Research Reactor	102,000 ⁴⁰ Co 33,300 ¹³⁷ Cs	35,000	40,000	10	2	150,000	500
Uranium Fuel Fab	18,000 U	240,000	240,000	50	5	4.7 x 10 ⁶	50,000
Hexafluoride	1.1 x 10° U	120,000	130,000	50	45	200 x 10 ⁶	100,000
Sealed Source Manufacturer	102,000 ⁶⁰ Co 33,300 ¹⁰⁷ Cs	6,000	4,600	10	5	40,000	5,000
Rare Metal Extraction	18,000 Th	150,000	180,000	40	10	740,000	100,000
Broad R&D Facility (Generic)	102,000 ⁶⁰ Co 33,300 ¹³⁷ Cs	6,000	4,600	10	5	40,000	5,000
Uranium Mill	1.1 x 10° U	100,000	130,000	100	100	1.4 x 10 ⁷	8.8 x 10 ⁵
Dry ISFSI	980 ⁶⁰ Co 310 ¹³⁷ Cs	23,000	0	10	-	500,000	500

TABLE 7.1.1.	Total and Contaminated	Surface	Areas for	Structures	and Soil	s at
Re	ference Sites ⁽¹⁾					

(1)

The estimated surface areas listed above are based on very limited information, and in many cases represent an engineering judgment estimate based on the size of the building structural facilities and types of operations. The estimates are believed to be conservatively large, i.e., probably overestimate the actual areas involved.

(2)

Radionuclide activity shown is for building surfaces. Radionuclide activity for soil surfaces is based on Figures 5.5.1 - 5.5.5.

C.D-77

C.7.2 Analyses Results

The estimated costs of removing the layers of contaminated concrete surface and cracks (and activated concrete, for the power reactor) from the reference facilities are presented in this chapter. The indicated costs include the direct labor, packaging, transport, and disposal costs for all of the material removed to reach the indicated depth, and the project overhead staff costs during the period of removal operations.

Facility Decontamination

The residual surface radiation dose rates from the contaminated (not activated) floors and walls as functions of the depth of surface removed are given in Table 7.2.1 for the reference facilities considered in this analysis. The required depth of removal and the costs to decontaminate those surfaces to alternate dose criteria can be inferred from the results given in Table 7.2.1.

12

The removal of the activated concrete from the bioshield in the reactor analysis creates a separate set of values, independent of the normal contaminated surface removal analyses. As noted in Section 6.3, removal of activated concrete from the bioshield is accomplished using a drilling and blasting technology. Vertical holes are bored into the shield concrete and explosives are inserted into the holes and detonated, breaking up the inner segments of the shield. In actual situations, there would likely be a tendency to attempt to accomplish the removal in one step because of the difficulty and tedious nature of the drilling and blasting efforts. Also, because of the nature of the blasting operation it is difficult to be precise regarding the amount of depth removed. Therefore, a relatively simple analysis is performed with regard to the depths of shield removed and residual criteria, resulting in residual radiation dose rates at the inner surfaces of the bioshield of 100, 10, 3, 1, 0.1, and 0.01 mrem/yr, for the removal of 3.49 ft, 4.22 ft, 4.60 ft, 4.95 ft, 5.68 ft, and 6.5 ft, respectively. These results are also presented in Table 7.2.1. The lower values are intended to demonstrate general behavior as criteria approximating a removal of all radioactivity attributable to licensed operations and return to background are investigated.

Additional information in Table 7.2.1 includes the volume of LLW generated for each removal depth, the occupational radiation dose accumulated by the workers in performing the removal operations, the labor hours required to accomplish the removal effort, and the number of shipments of LLW from the site to the LLW disposal facility.

Soils Decontamination

The costs of decontaminating the soil surfaces at each site are summarized in Tables 7.2.2 and 7.2.3, for the alternatives of 1) soil treatment (washing), and 2) no soil treatment. The costs of removing the thickness of contaminated concrete floor that was in a wet environment, and the soil beneath the "wet spot", are also included. Using the methodology presented in Section 5.5, the depths of soil removal required to achieve residual radiation dose rates of 100, 60, 30, 15, 10, 3, 0.3 and 0.03 mrem/yr were determined for each of the reference facilities, for the low, medium, and high contamination levels discussed in Chapter 5. The costs for removal, treatment (if applicable), packaging, transport, and disposal are

calculated for the volumes of LLW resulting from these operations to achieve the alternate residual radiation dose rates. Also presented in Tables 7.2.2 and 7.2.3 are LLW disposal volumes, the number of truck shipments from the reference site to the LLW disposal facility, the labor hours required to accomplish the effort, and the occupational radiation dose to workers performing the tasks.

The resultant total cost for decontaminating a facility and site to a residual radiation dose rate level of less than some prescribed value is estimated by summing the appropriate value from Table 7.2.1 for a given facility, and Table 7.2.2 or Table 7.2.3 for the associated soil for that facility.

Facility Type	Parameter	Value of	Parameter	r to Remo	<u>ve Concre</u>	<u>te to the I</u>	Depth Indi	cated	
Reactor Bioshie	<u>eld</u> (depth, ft)	<u>3.49</u>	<u>4.22</u>	<u>4.60</u>	<u>4.95</u>	<u>5.68</u>	<u>6.50</u>		
	Cost (1993 \$M) ^(a)	1.922	2.391	2.661	2.895	3.415	4.027		
	Volume (ft ³)	1.1E+04	1.4E+04	1.5E+04	1.7E+04	1.9E+04	2.3E+04		
	Shipments	29	36	40	44	52	61		
	Person-rem	20.979	21.315	21.541	21.773	22.298	22.811		
	Labor Hours	2.7E+03	3.4E+03	4.1E+03	4.2E+03	5.0E+03	5.8E+03		
	mrem/yr	100	10	3	1	0.1	0.01		
Surface Remov	al (depth, in.)	<u>0.125</u>	<u>0.250</u>	<u>0.375</u>	<u>0.500</u>	<u>0.625</u>	<u>0.750</u>	<u>0.875</u>	<u>1.000</u>
Reactor Surface	e Removal								
	Cost (1993 \$M) ^(a)	0.421	0.766	1.110	1.455	1.799	2.144	2.488	2.833
	Volume (ft ³) ^(b)	764	1,268	1,772	2,276	2,780	3,284	3,788	4,292
	Shipments	2	4	5	6	8	9	10	11
	Person-rem	1.670	3.140	4.610	6.080	7.550	9.020	10.490	11.960
	Labor Hours	2,553	4,758	6,963	9,168	11,373	13,578	15,783	17,988
	mrem/yr	3.6E+04	4.1E+03	2.2E+02	10.29	0.278	0.0034	<0.003	<0.003
Test Reactor									
	Cost (1993 \$M) ^(a)	0.388	0.726	1.065	1.404	1.743	2.082	2.421	2.760
	Volume (ft ³) ^(b)	522	880	1,238	1,595	1,953	2,311	2,668	3,026
	Shipments Shipments	2	3	4	5	5	6	7	8
	Person-rem	1.866	3.606	5.346	7.086	8.826	10.566	12.306	14.046
	Labor Hours	2,830	5,440	8,050	10,660	13,270	15,880	18,490	21,100
	mrem/yr	3.6E+04	4.1E+03	2.2E+02	10.29	0.278	0.0034	< 0.003	< 0.003

Table 7.2.1 Calculated Costs for Decontamination of Nuclear Facilities by Removing Different Depths of Concrete Surfaces

43

.

۲

• •

;

.

¥

Table 7.2.1 Calculated Costs for Decontamination of Nuclear Facilities by Removing Different Depths of Concrete Surfaces (continued)

2

. .

۰. ۰

a)

.

•

. ₩3.

Facility Type	Parameter	Value of	Value of Parameter to Remove Concrete to the Depth Indicated									
Surface Remova	l (depth, in.)	<u>0.125</u>	<u>0.250</u>	<u>0.375</u>	<u>0.500</u>	<u>0.625</u>	<u>0.750</u>	<u>0.875</u>	<u>1.000</u>			
Sealed Source M	fanufacturer											
	Cost (1993 \$M) (a)	0.022	0.032	0.042	0.052	0.062	0.072	0.082	0.092			
	Volume (ft ³) ^(b)	54	67	81	94	108	121	135	148			
	Shipments	1	1	1	1	1	1	1	1			
	Person-rem	0.077	0.122	0.168	0.213	0.259	0.305	0.350	0.396			
	Labor Hours	122	191	259	328	396	464	533	601			
	mrem/yr	4.8E+02	55.9	3.017	0.143	0.0037	< 0.0037	< 0.0037	< 0.0037			
		•										
Rare Metal Proc	æssor		w									
	Cost (1993 \$M) (a)	0.962	1.864	2.766	3.668	4.570	5.472	6.374	7.276			
	Volume (ft ³) ^(b)	1.470	2.738	4.006	5.275	6.543	7.811	9.079	10.348			
	Shipments	4	7	11	14	17	20	24	27			
··· · · ·	Person-rem	4.115	8.075	12.035	15.995	19.955	23.915	27.875	31.835			
	Labor Hours	6,210	12,150	18,090	24,030	29,970	35,910	41.850	47,790			
•	mrem/yr	4.6E-12	<4.6E-12	<4.6E-12	<4.6E-12	<4.6E-12	<4.6E-12	<4.6E-12	<4.6E-12			
Research and D	evelopment Facility (Generic)			. *			· · ·				
	Cost (1993 \$M) (a)	0.022	0.032	0.042	0.052	0.062	0.072	0.082	0.092			
	Volume (ft ³) ^(b)	54	67	81	94	108	121	135	148			
	Shipments	1	1	1	1	1	1	1	1			
	Person-rem	0.077	0.122	0.168	0.213	0.259	0.305	0.350	0.396			
	Labor Hours	122	191	259	328	396	464	533	601			
	mrem/yr	4.8E+02	55.9	3.017	0.143	0.0037	<0.0037	< 0.0037	< 0.0037			

•

· `..

Facility Type	Parameter	Value of	Paramet	er to Rem	ove Conc	rete to the	Depth Ind	icated	
Surface Remov	val (depth, in.)	<u>0.125</u>	<u>0.250</u>	<u>0.375</u>	0.500	0.625	<u>0.750</u>	<u>0.875</u>	<u>1.000</u>
Research React									
	Cost (1993 \$M) (a)	0.076	0.124	0.171	0.218	0.266	0.313	0.360	0.408
	Volume (ft ³) ^(b)	167	237	307	377	447	517	587	657
	Shipments	1	1	1	1	2	2	2	2
	Person-rem	0.276	0.477	0.678	0.879	1.080	1.281	1.482	1.683
	Labor Hours	432	733	1,035	1,336	1,638	1,939	2,241	2,542
	mrem/yr	4.8E+02	55.9	3.017	0.143	0.0037	< 0.0037	<0.0037	< 0.0037
<u>Uranium Fuel 1</u>	Fabrication Plant Cost (1993 \$M) ^(a) Volume (ft ³) ^(b) Shipments Person-rem Labor Hours mrem/yr	1.377 2,401 7 5.236 7,901 4.2E-11	(đ) 			 	 	 	
UF, Conversion	1 Plant		(
	Cost (1993 \$M) (a)	1.804	(d)					t aa	
	Volume (ft ³) ^(b)	2,107				***			
	Shipments	6							
	Person-rem	8.959							
	Labor Hours	13,471							
	mrem/vr	4.2E-11	***						

Table 7.2.1. Calculated Costs for Decontamination of Nuclear Facilities by Removing Different Depths of Concrete Surfaces (continued)

.

٢

4

.

41

٦

	Facility Type	Parameter	Value of Parameter to Remove Concrete to the Depth Indicated								
	Surface Remova	al (depth, in.)	0.125	0.250	0.375	0,500	0.625	0.750	0.875	<u>1.000</u>	
	Uranium Mill ^(c)					•					
		Cost (1993 \$M) (a)	6.404	(đ)							
		Volume (ft ³)	^(e)				. 				
		Shipments	0								
		Person-rem	29.072								
		Labor Hours	5.0E+04		•••• `						
		mrem/yr	(1)			••••			 · · ·	••••	
	Dry ISFSI Facili	itv				· .					
0		Cost (1993 \$M) (*)	0.020	0.040	0.060	0.081	0.101	0.121	0.141	0.161	
5		Volume (ft ³) ^{(b)(g)}	37	75	112	150	187	224	262	299	
<u>~</u>	ы 5	Shipments	1	1	1.	1	1	1	1	1	
ω		Person-rem	0.069	0.138	0.207	0.276	0.345	0.414	0.483	0.552	
		Labor Hours	104	207	311	414	518	621	725	828	
	. •	mrem/yr	4.609	0.193	0.022	0.001	<0.001	<0.001	<0.001	<0.001	

Table 7.2.1. Calculated Costs for Decontamination of Nuclear Facilities by Removing Different Depths of Concrete Surfaces (continued)

(a) All disposal costs are based on disposal charge rates, which are an average for the U.S. Ecology site at Richland, Washington and the Chem-Nuclear site at Barnwell, South Carolina.

(b) Wet Spot concrete volumes and costs included with soils decontamination in Tables 7.2.2 and 7.2.3.

(c) All Uranium Mill concrete removed and placed into tailings pile on-site.

.

(d) --- indicates that for the uranium facilities, a single removal action was sufficient.

(c) No volumes for shipment off-site.

(f) No residual dose rate calculated, since all of the material was removed.

(g) No cracks are assumed to be present in the ISFSI pads.

NUREG-1496

II											
FACILITY	 		Manufacturer of Sealed Sou	Irces							
Contaminated Soil Area, ft ²		5000									
Facility Area, ft ²	 	- <u></u>	6000	T							
Residual Conc. in Soil, mrem/yr	Soil Depth Removed	Disposal Volume	Total Soil Decon Cost	Labor Requirements	Occupationa Dose						
	cin	m ³	\$	man-hrs	person-mren						
HIGH											
100	3.00	14	\$92,838	73	7						
60	4.30	16	\$108,636	84	8						
	5.50	19	\$123,1 10	94	9						
15	7.00	21	\$139,954	106	11						
10	7.30	22	\$144,922	109	11						
3	8.60	24	\$160,720	120	12						
0.3	11.00	29	\$191,095	140	14						
0.03	12.70	32	\$211,684	154	15						
MEDIUM											
60	2.50	13	\$85,498	69	7						
30	4.50	17	\$110,981	86	9						
15	6.00	20	\$127,825	98	10						
10	6.40	20	\$134,016	101	10						
3	7.70	23	\$149,814	112	11						
0.3	10.20	27	\$181,411	133	13						
0.03	12.00	31	\$203,224	148	15						

...

۵

Q1

₹.

٤

FACILITY	· • · · · · · · · · · · · · · · · · · ·		Power Rea	ctor		Test Reactor				
Contaminated Soil	Area, ft ²		2000				5000	<u> </u>		
Facility Area, ft2	an an an an an an an an an an an an an a		250000				100000	}		
Residual Conc.	Soil Depth	Cost	Disposal Vol	Labor	Dose	Cost	Disposal Vol	Labor	Dose	
In Son, intervyi		<u> </u>	m'	man-hr	person-mrem	<u> </u>	m ³	man-hr	person-mrem	
HIGH		· · · · · · · · ·		·	· · ·					
100	3.00	2,279,032	352	2019	202	943,318	145	829	83	
60	4.5	2,286,769	353	2024	202	961,461	148	841	84	
30	6.2	2,295,730	354	2030	203	983,375	151	855	86	
15	7	2,299,323	355	2032	203	992,559	153	862		
. 10	7.8	2,303,916	355	2035	203	1,002,742	154	868		
3	11.5	2,321,535	358	2047	205	1,047,489	161	899	90	
0.3	20.4	2,364,510	365	2077	208	1,157,977	178	973	97	
0.03	24.9	2,388,048	368	2092	209	1,212,507	_186	1011	101	
MEDIUM				· _						
100	· 0	2,264,557	349	2009	201	907,031	140	804	80	
60	2.5	2,276,786	351	2017	202	937,203	144	824	82	
	4.5	2,286,769	353	2024	202	960,660	148	841	84	
<u> </u>	6	2,294,832	354	2029	203	978,930	151	853	85	
10	···· 6.4	2,296,628	354	2030	203	985,621	152	857	86	
3	8.2	2,305,713	356	2036	204	1,007,233	155	872	87	
0.3	16.4	2,344,544	362	2064	206	1,108,136	170	940	94	
_0.03	22.3	2,374,044	366	2083	208	1,181,012	-181	989	99	
LOW										
100,60,30,10	0	2,264,557	349	2009	201	907,031	140	804	80	
3	3.6	2,281,727	352	2021	202	950,555	146	834	83	
0.3_	8.3	, 2,306,162	356	2037	_204	1,008,756	155	873	87	
0.03	18.6	2.354.426	363	2071	207	1.134.840	174	958		

 TABLE 7.2.2 Summary of Cost and Other Parameters for Remediation Activities With Soil Washing for Sites Contaminated with Co, Sr, and Cs

FACILITY			Resear	ch Reactor		Generic R & D Facility			
Contaminated Soil	Area, ft ²			500			5	000	
Facility Area, ft ²			3	5000			6	000	
Residual Conc. in Soil, mrem/yr	Soil Depth	Cost	Disposal Vol	Labor	Dose	Cost	Disposal Vol	Labor	Dose
	cm	s	m ³	man-hrs	person-mrem	s	m ³	man-hrs	person-mrem
НІСН		······							
100	3.00	321,509	49	2844	288	110,768	14	73	7
60	4.5	323,393	50	2855	288	128,941	17	86	9
	6.2	325,402	50	2866	299	149,551	20	1000	10
15	7	326,301	50	2877	299	158,654	21	1066	11
10	7.8	327,299	50	2888	299	169,037	23	1133	11
3_	11.5	331,854	51	2911	299	215,139	30	1444	14
0.3	20.4		53	2988	300	324,202	46	2188	22
0.03	24.9	348,000	54	3022	300	380,047	55	2555	26
MEDIUM	4			_					
100	0	317,940	49	2811	288	73,026	8	48	5
60	2.5	320,948	49	2833	288	103,448	13	69	7
	4.5	323,393	50	2855	288	128,941	17	86	9
15	6	325,078	50	2866	299	145,925	20	98	10
10	6.4	325,627	50	2877	299	151,796	20	1011	10
3	8.2	327,748	50	2888	299	173,909	24	1166	12
0.3	16.4	337,356	52	2955	299	274,541	39	1855	18
0.03	22.3	344,881	53	3000	300	347,247	50	2344	23
LOW									
100,60,30,10	0	317,940	49	2811	288	73,096	8	48	5
3	3.6	322,183	50	2844	288	118,075	15	78	8
0.3	8.3	327,860	50	2888	299	175,031	24	1177	12
0.03	18.6	339,926	52	2977	300	302,470	43	2033	20

 TABLE 7.2.2 Summary of Cost and Other Parameters for Remediation Activities With Soil Washing for Sites

 Contaminated with Co, Sr, and Cs

•

.

41

٩.

 \sim

*****1-

FACILITY		DRY ISFSI						
Contaminated Soil Area, ft ²			500					
Facility Area. ft ²			23000	·				
Residual Conc. in Soil, mrem/yr	Soil Depth	Cost	Disposal Vol	Labor	Dose			
	cm	\$	m ³	man-hrs	person-mrem			
HIGH		· · · · · · · · · · · · · · · · · · ·		1				
100_	3.00	213,192		187777	19999			
60	4.5	214,976	33	189999	19999			
	6.2	216,985	33	190000	19999			
15_	7	217,983	33	191111	19999			
<u>`10</u>	7.8	218,982	34	191111	19999			
<u> </u>	11.5	223,336	34	194444	19999			
		234,130		202222	20000			
0.03	24.9	239,683	37	_206666	21111			
MEDIUM				1				
100		209,623		185555	18888			
60_	2.5	212,530	33	187777	19999			
	4.5	214,976	33	189999	19999			
15_	6	216,761	33	190000	19999			
10_	6.4	217,310	33	190000	19999			
3	8.2	219,431	34	192222	19999			
0.3	16.4	229,439	35	198888	20000			
0.03	22.3	236,564		203333	20000			
LOW		<u></u>						
100,60,30,10		209,623		185555				
3	3.6	213,866	33	188888	19999			
0.3	8.3	219.543	34	192222				
0.03	18.6	232_009		200000	20000			

 TABLE 7.2.2 Summary of Cost and Other Parameters for Remediation Activities With Soil Washing for

 Sites Contaminated with Co, Sr, and Cs

1,

(4) ²

Ø5

- 1

:

Ì

4

RACII ITY			Rare Metale F	straction		Rom	Metals Extractio	n Tailinge L	Nile(a)
Contaminated Soil Area	fi²		100000)		Rai	6003	5	
Facility Area, ft ²			150000)			0		
Residual Conc. in soil,	Soil Depth	Cost	Disposal Vol	Labor	Dose	Cost	Disposal Vol	Labor	Dose
mrem/yr	cm	\$	m ³	man-hrs	person-mrem	s	m	man-hrs	person-mrem
HIGH									
100	0.80	1,558,020	239	1338	134	13,911	0	72	7
60	1.1	1,630,018	251	1388	139	17,843	0	99	10
30	1.2	1,654,676	254	1405	140	19,154	0	108	11
15	1.4	1,700,917	262	1438	144	21,775	0	126	13
10	1.5	1,728,375	265	1455	145	23,086	0	136	14
3	2	1,850,990	284	1538	154	29,639	0	181	18
0.3	2.6	1,998,387	306	1638	164	37,503	0	235	23
0.03	3.1	2,121,002	325	1721	172	44,056	0	280	28
LOW									
100	0.2	1,411,622	217	1239	124	6,047	0	18	2
60	0.4	1,461,363	225	1272	127	8,669	0	36	4
30	0.6	1,516,404	232	1305	131	11,290	0	54	5
15	1.1	1,633,218	251	1388	139	17,843	0	99	10
10	1.1	1,633,218	251	1388	139	17,843	0	99	10
3	1.3	1,691,134	258	1422	142	20,464	0	117	12
0.3	2	1,860,990	284	1538	154	29,639	0	181	18
0.03	2.6	1 873 387	306	1638	164	37 503	0	235	23

 TABLE 7.2.2 Summary of Costs and Other Parameters for Remediation Activities With Soil Washing of Soil Sites

 Contaminated with Thorium

•

(a) Costs are for consolidation of contamination into the tailings pile and capping the pile only

Ł

A

. .

NUREG-1496

C.D-88

<u>4</u>

.

2:

. :

PACILITY			Uranium Fuel Fat	rication Faci	lity	Uranium Mill			
Contaminated Soil Area, f	¥		500	00			8800	00	
Facility Area, ft ²			2400	00	:		1000	00	
Residual Conc. in Soil,	Soil Depth	Cost	Disposal Vol	Labor	Dose	Cost	Disposal Vol	Labor	Dose
mrem/yr	cm	\$	m ³	man-hr	person-mrem	\$	m	man-hr	person-mrem
HIGH				· .					
100	18.40	4,435,576	677	3458	346	39,876,409	6128	27729	2773
60	18.7	4,473,588	683	3483	348	40,514,573	6227	28168	2817
	21.2	4,780,287	729	3691	369	45,819,817	7044	31827	3183
15	23	4,986,383	763	3841	384	49,534,452	7633	34461	3446
10	23.3	5,038,070	768	3866	387	50,289,616	7731	34900	3490
3	25.5	5,309,082	809	4049	405	54,950,695	8450	38119	3812
0.3	29	5,739,721	874	4340	434	62,372,036	9595	43241	4324
0.03	32	6,107,890	930	4589	459	68,725,328	10576	47631	4763
MEDIUM	MEDIUM								
100	10	3,403,768	521	2760	276	22,117,861	3382	15437	1544
60	14.3	3,932,564	601	3118	312	31,207,740	4788	21730	2173
30	17.2	4,289,504	655	3359	336	37,335,427	5736	25973	2597
15	19	4,494,275	689	3508	351	41,099,062	6325	28607	2861 ~~
10	20.2	4,657,672	711	3608	361	43,708,719	6717	30363	3036
3	22.8	4,976,600	759	3824	382	49,225,567	7567	34168	3417
0.3	26.6	5,445,251	830	4140	414	57,268,072	8810	39729	3973
0.03	29.8	5,837,878	889	4406	441	64,048,249	9856	44412	4441
LOW									
100,60,30	0	2,174,322	336	1929	193	749,887	111	804	80
15	7	3,095,599	466	2511	251	15,774,569	2401	11047	1105
10	13.8	3,871,094	592	3076	308	30,140,691	4624	20998	2100
3	18.4	4,435,576	677	3458	346	39,876,409	6128	27729	2773
0.3	23.4	5,050,299	770	3874	387	50,481,896	7763	35046	3505
0,03	27.2	5.517.625	841	4190	419	58,544,726	9006	40607	4061

TABLE 7.2.2 Summary of Costs and Other Parameters for Remediation Activities With Soil Washing for Sites Contaminated With Uranium

C.D-89

NUREG-1496

:

FACILITY	_	Uranium Hexafluoride Facility				
Contaminated Soil Area, ft ²	Contaminated Soil Area, ft ²					
Facility Area, ft ²			120000			
Residual Conc. in Soil, mrem/yr	Soil Depth	Cost	Disposal Vol	Labor	Dose	
·····	cm	s	m³	man-hr	person-mrem	
HIGH						
100	18.40	5,611,009	827	4024	402	
60	18.7	5,684,708	838	4074	407	
	21.2	6,299,431	· 931	4490	449	
15	23	6,723,299	997	4789	479	
10	23.3	7,087,672	1009	4839	484	
3	25.5	7,357,022	1090	5205	520	
0.3	29	8,216,974	1220	5787	579	
0.03	32	8,958,312	1332	6286	629	
MEDIUM						
100	10	3,546,068	514	2627	263	
60	14.3	4,603,659	674	3342	334	
	17.2	5,316,539	782	3825	382	
15	19	5,735,407	849	4124	412	
10	20.2	6,053,877	893	4323	432	
3	22.8	6,693,058	990	4756	476	
0.3	26.6	7,628,034	1131	5388	539	
0.03	29.8	8,413,288	1250	5920	592	
LOW					<u>.</u>	
100,60,30	0	1,088,001	143	964	96	
15	7	2.771.731	403	2128	213	
10	13.8	4.481.045	656	3259	326 ~	
3	18.4	5.611.009	827	4024	402	
0.3	23.4	6.831.455	1012	4856	486	
0.03	27.1	7 774 107		6407		

•

•

.

٠

٠

• •

*

1

TABLE 7.2.3.	Summary of Cost and Other Parameters for Remediation Activities W	Vithout Soil Washing
	for Sites Contaminated with Co and Cs	

FACILITY	Manufacturer of Sealed Sources							
Contaminated Soil Area, ft ²	5000							
Facility Area, ft ²	6000							
	Soil Depth	Disposal Volume	Total Soil Remediation Cost	Labor Requirement s	Occupat ional Dose			
Residual Conc. in Soil, mrem/yr	cm	m ³	\$	man-hrs	person- mrem			
HIGH	·		:					
(mrem/yr)								
<u>100</u>	3.00	32	\$188,723	68	7			
60	4.30	38	\$223,089	78	8			
	5.50	44	\$256,136	87	9			
15	7.00	51	\$295,788	98	10			
10	7.30	52	\$303,719	100	10			
3	8.60	58	\$339,409	110	11			
0.3	11.00	70	\$404,178	128	13			
0.03	12.70	77	\$449,118	141	14			
MEDIUM								
100	0.00	18	\$108,093	45	5			
60	2.50	30	\$175,506	64	6			
30	4.50	39	\$228,376	79	8			
15	6.00	46	\$269,353	91	9			
10	6.40	48	\$279,927	94	9			
3	7.70	54	\$314,293	103	10			
0.3	10.20	66	\$381,705	122	12			
0.03	12.00	74	\$430,613	136	14			
LOW								
100,60,30,10	0	18	\$108,093	45	5			
3	3.6	35	\$204,584	72	7			
0.3	7.3	52	\$303,719	100	10			
0.03	9.7	63	\$368,488	118	12			

NUREG-1496

FACILITY			Power R	eactor			Test F	leactor		
Contaminated Soil Area, ft ²	Contaminated Soil Area, ft ²		2000				5000			
Facility Area, ft ²			250000				100000			
Residual Conc. in soil,	Soil Depth	Cost	Disposal Vol	Labor	Dose	Cost	Disposal Vol	Labor	Dose	
mrenvyr	cm	<u>s</u>	m ²	man-hrs	person-mrem	s	m ³	man-hrs	_person-mrem	
HIGH										
100	3.00	4,486,266	773	1900	190	1,862,926	321	779	78	
60	4.5	4,503,452	776	1904	190	1,903,903	328	790	79	
30	6,2	4,521,428	779	1909	191	1,948,843	336	803	80	
15	7	4,529,887	781	1912	191	1,969,991	340	809	81	
10	7.8	4,538,347	782	1914	191	1,992,464	343	815	81	
3	11.5	4,578,795	789	1925	193	2,091,599	360	843	84	
0.3	20.4	4,674,229	805	1952	195	2,330,846	402	910	91	
0.03	24.9	4,721,812	814	1965	197	2,452,453	423	· 944	94	
MEDIUM			•••••							
100	0	4,454,544	768	1891	189	854,031	140	756	76	
	2.5	4,480,979	772	1898	190	1.849.708	319	775	. 78	
	4.5	4,503,452	776	1904	190	1,903,903	328	790	79	
	6	4.519.313	779	1909	191	1.943.556	335	801	80	
10	6.4	4.523.543	779	1910	191	1.954.130	337	804	80	
3	8.2	4,542,576	783	1915	192	2,003,038	345	818	82	
0.3	16.4	4,630,608	798	1940	194	2,223,780	383	880	88	
0.03	22.3	4,694,320	809	1958	196	2,382,397	411	924	92	
LOW								• <u> </u>		
100,60,30,10	0	4.454.544	768	1891	189	854.031	140	756	76	
3	3.6	4,492,611	774	1901	190	1.878,787	324	783	78	
0.3	8.3	4,543,634	783	1915	192	2,005,682	346	819	82	
0.03	18.6	4.653.871	802	1947	195	2 281 938	393	896	90	

TABLE 7.2.3. Summary of Costs and Other Parameters for Remediation Activities Without Soil Washing for Sites Contaminated with Co, Sr, and Cs

.

NUREG-1496

C.D-92

4.

d,

\$,

L.

FACILITY		Research Reactor					
Contaminated Soil A	500						
Facility Area, ft ²	35000						
Residual Conc. in soil, mrem/yr	Soil Depth	Cost	Disposal Vol	Labor	Dose		
	cm	\$	···· m ³	man-hrs	person- mrem		
HIGH							
100	3.00	633,224	109	267	27		
60	4.5	637.189	110	268	27		
30	6.2	641.683		269	27		
15	7 ···	643.798	111	270	27		
	7.8	645.912	111	271	27		
		655.693	113	273	27		
0.3	20.4	679.220	117	280	28		
0.03	.24.9	691,116	119	283	28		
MEDIUM							
100	0	623.968	107	265	26		
60	2.5	630.577	109	267	27		
	4.5	637.189	110	268	27		
15	6	641.154	110	269	27		
10	6.4	642.211	. 110	269	27		
· 3	8.2	646.970	111	271	27		
0.3	16.4	668.646	115	277	28		
0.03	22.3	684.243	118	281	28		
LOW		a	·				
100.60.30.100	0	623,968	107	265	26		
3	3.6	634.810	109	267	27		
0.3	8.3	647.234		271	27		
0.03	18.6	674.462	116	279	28		

 TABLE 7.2.3.
 Summary of Costs and Other Parameters for Remediation Activities Without Soil

 Washing for Sites Contaminated with Co, Sr, and Cs

.

¥

•••

NUREG-1496

.

j

TABLE 7.2.3. Summary of Costs and Other Parameters for Remediation Activities Without Soil Washing for Sites Contaminated with Co, Sr, and Cs

FACILITY	,	G	eneric R 8	k D Facility	DRY ISFSI				
Contaminat Area, ft ²	ed Soil		50	00	500				
Facility Are	<u>a, ft²</u>		400	00		23000			
Residual Conc. in	Soil Depth	Cost	Dispos al Vol	Labor	Dose	Cost	Disposal Vol	Labor	Dose
soil, mrem/yr	cm	- \$	m³	man-hrs	person -mrem	\$	m³	man-hrs	person -mrem
HIGH									
100	3.00	188.723	32	68	.7	419.0	72	176	18
60	4.5	228.376	39	79	8	423.0	73	177	
30	6.2	274.640	47	92	9	427.5	73	179	
15	7	295.788	51	98	10	429.6	74	179	18
. 10	7.8	318.261	55	104	10	431.7	74	180	18
3	11.5	417,396	72	132	13	441.5	76	183	18
0.3	20.4	656,643	113	199	20	465.0	80	189	19
0.03	_24.9	776.926	134	233	23	478.2	82	193	19
MEDIU									
100	0	108.093	18	45	5	411.1	71	174	17
60	2.5	175.506	30	64	6	417.7	72	176	18
30	4.5	228.376	39	79	8	423.0	73	177	18
15	6	269.353	46	91	9	427.0	73	_178	18
· 10	6.4	279.927	48	_94	9	428.0	74	179	18
3	8.2	328,835	57	_107	11	432.8	74	180	18
0.3		548.253	95	169	17	454.4	78	186	19
0.03	22.3	706,869	122	213	21	470.0	81	_191	19
LOW									
100.60.3		108.093	18	_45	5	411.1	71	174	17
3	3.6	204.584	35	72	7	420.6	72	177	18
0.3	8.3	331.479	57	108	11	433.0	74	180	18
0.03		607.735	105	185		460.3	79	_188	<u>` 19</u>

÷

:

NUREG-1496

ī.

· .

••• : ,

.

• •

.

FACILITY	ΓY Rare Metals Extraction Rare Metals Extraction Taili Pile(a)					ailings			
Contamina Area, ft ²	ted Soil		1000	00	- · · ·	6003	35		
Facility Ar	ea, ft²		1500	00			0		
Residual Conc in	Soil Depth	Cost	Disposal Vol	Labor	Dose	Cost	Disposal Vol	Labor	Dose
Soil, mrem/yr	cm	S	m ³	man-hrs	person -mrem	\$. m³	man- hrs	person -mrem
HIGH			:		:		3		
100	0.80	3,103,51	535	1255	125	13,911	0	72	7
60	1.1	3,264,77	563	1300	130	17,843	0	99	10
30	1.2	3,318,97	572	1315	131	19,154	0	108	11
15	1.4	3,426,03	591	1345	135	21,775	0	126	13
10	1.5	3,480,23	600	1360	136	23,086	0	136	14
3	2	3,748,55	646	1435	144	29,639	0	181	18
0.3	2.6	4,071,07	702	1526	. 153	37,503	0	235	23
0.03	3.1	4,340,72	749	1601	160	44,056	0	280	28
LOW		-					• •	•	
100	0.2	2,780,99	479	1164	116	6,047	0	18	2
60	0.4	2,888,05	498	1195	119	8,669	0	36	4
30	0.6	2,995,12	516	1225	122	11,290	0	54	5
15	1.1	3,264,77	563	1300	130	17,843	0	99	10
10	1.1	3,264,77	563	1300	130	17,843	0	99	10
3	1.3	3,371,84	581	1330	133	20,464	0	117	12
0.3	2	3,748,55	646	1435	144	29,639	0	181	. 18
0 03	26	4 071 07	702	1526	153	37 503	0	235	23

TABLE 7.2.3. Summary of Costs and Other Parameters for Remediation Activities Without Soil Washing for Sites Contaminated with Thorium

(a) Costs are for consolidation of contamination into the tailings pile and capping the pile only

. . . .

C.D-95

. .

FACILITY	?	Uranium Fuel Fabrication Facility				Uranium Mill			
Contaminat Area, ft ²	ed Soil		5000	0			8800	000	
Facility Are	ea, ft ²		2400	00			1000)00	
Residual Conc. in soil,	Soil Dept h	Cost	Dispos al Vol	Labor	Dose	Cost	Dispos al Vol	Labor	Dose
mrem/yr	cm	\$	m ³	man-hr s	perso n- mre m	\$	m³	man-hr s	person -mrem
HIGH									
100	18.40	9.224.27	1592	3199	320	3.614.74	0	25125	2512
60	18.7	9.304.90	1605		322	3.672.38	0	25522	2552_
	21.2	9.976.37	1722		341	4.152.67	0	28833	
15_	23	10.460.1	1805	_3546	355	4.498.48	0	31217	3122
10	_23.3	10.540.7	1819	3568	357	4.556.12	0	31614	3161
3	25.5	11.132.9	1921		373	4,978,77	0	34528	3453
0.3	29	12.074.0	2084	3997	_400_	5.651.18	0	39163	3916
0.03	32	12.880.3	2223	4223	.422	6,227.54	0	43136	_ 4314
MEDIU									
100	10	6.965.30	1201	2567	_257	2,000,96	0	14000	
60	14.3	8.121.88	1401	2891	.289	2,827,06	0	19695	1969
	17.2	8.900.42	1536	3109	311	3.384.20	0	23536	2354
15	19	9.385.53	1619	3245	324	3.730.01	0	25919	2592
10	20.2	9.708.05	1675	3335	333	3,960,55	0	27509	2751
3	22.8	10.407.2	1796	3531	353	4.460.06	0	30952	3095
0.3	26.6	11.429.0	1972	3817		5,190,10	0	35985	3598
0.03	_29.8_	12,288,2	2121	4057	406	5,804,88	0	40223	4022
LOW					<u> </u>				
100.60.30	0	4.276.74	737	1815		79,790	0	756	76
15	7	6.159.00	1062	2342	234	1.424.61	0	10027	1003
10	_13.8_	7.987.05	1378	2853	285	2.731.00		19033	1903
3	18.4	9.224.27	1592	3199	320	3.614.74	0	25125	_2512_
0.3	_23.4	10,568,5	1824	3576	358	4.575.33	0	31747	3175
0.03	27.2	11 500 3	2000	3862	386	5 305 37	0	26770	2679

ž

;

TABLE 7.2.3. Summary of Costs and Other Parameters for Remediation Activities Without Soil Washing for Sites Contaminated Uranium

NUREG-1496

Т

. .

.

TABLE 7.2.3. Summary of Costs and Other Parameters for Remediation Activities Without Soil Washing for Sites Contaminated with Uranium

FACILITY	Uranium Hexafluoride Facility							
Contaminated Soil Area,	ft²	100000						
Facility Area, ft ²		120000						
Residual Conc. in soil, mrem/yr	Soil Depth	Cost	Disposal Vol.	Labor	Dose			
	cm	\$	m ³	man-hrs	person-mrem			
HIGH								
100	18.40	12.032.935	2078	3677	368			
60	18.7	12,194,195	2106	3722	372			
	21.2	14.507.359	2505	4369	437			
	23	13.538.472	2338	4098	410			
10_	23.3	14.668.619	2533	4414	441			
3	25.5	15,851,636	2737	4745	475			
0.3	29	17,733,889	3063	5272	527			
0.03	32	19.346.492	3341	5723	572			
MEDIUM								
	10	7.516.323	1297	2412	241			
60	14.3	9.828.161	1697		306			
	17.2	11,387,894	1966	3496	350			
15		12,355,455	2134	3767	377			
10	20.2	13.001.821	2245	3948	395			
3	22.8	14,398,969	2487	4339	434			
0.3	26.6	16,442,482	2840	4911	491			
0.03	29.8	18,163,475	3137	5392	539			
LOW	•							
100.60.30	0	2.139.214	368	907				
15_	7	2.139.214	368	907	91			
10	13.8	9.559.836	1650	2984	298			
3	18.4	12,032,935	2078	3677	368			
0.3	23.4	14.721.489	2542	4429	443			
0.03	27.2	16,765,003	2895	5001	500			

i I

NUREG-1496

C.D-97

C.8 REFERENCES

Abel, K. H., D. E. Robertson, C. W. Thomas, E. A. Lepel, J. C. Evans, W. V. Thomas, L. C. Carrick, and M. W. Leale. 1986. <u>Residual Radionuclide Contamination Within and Around Commercial Nuclear Power Plants</u>. NUREG/CR-4289, U.S. Nuclear Regulatory Commission, Washington, D.C.

Allard, B., L. Eliasson, S. Hoglund, and K. Andersson. 1984. "Sorption of Cs, I, and Actinides in Concrete Systems," SKB Technical Report 84-15, Sweden.

Ames, L.L. and D. Rai, 1978. "Radionuclide Interactions With Soil and Rock Media. Vol. 1. Processes Influencing Radionuclide Mobility and Retention; Element Chemistry and Geochemistry; Conclusions and Evaluation," <u>EPA 520/6-78-007a</u>. Pacific Northwest Laboratories, Richland, WA.

Angus, M. J., S. R. Hunter, and J. Ketchen. 1990. "Classification of Contaminated and Neutron-Activated Concretes from Nuclear Facilities Prior to their Decontamination or Decommissioning," pp. 229 to 234, <u>Waste Management '90 Vol. 2- High Level Waste and Low</u> Level Waste Technology. American Nuclear Society, LaGrange Park, Illinois.

Babcock and Wilcox. 1992a. "Technical Progress Report, Apollo, Pennsylvania Nuclear Fuel Facility D&D Project. Quarterly Progress Report for the Period 1/1/92 - 3/31/92," <u>DOE/EW/40017-T2</u>, June 8, 1992.

Babcock and Wilcox. 1992b. "Technical Progress Report, Apollo, Pennsylvania Nuclear Fuel Facility D&D Project. Quarterly Progress Report for the Period 4/1/92 - 6/30/92," <u>DOE/EW/40017-T3</u>, August 25, 1992.

Brengle, R. G. 1979. "The Decontamination of Concrete," in proceedings of an American Nuclear Society Topical Meeting <u>Decontamination and Decommissioning of Nuclear Facilities</u>, M. M. Osterhout, Editor, pp. 451-455, Sun Valley, Idaho, September 16-20, 1979, Plenum Press, New York, New York.

Crank, J. 1956. <u>The Mathematics of Diffusion</u>, Equation 2.7, p. 11, Oxford at the Clarendon Press, United Kingdom.

Dayal, R., H. Arora, N. Morcos. 1983. <u>Estimation of Cesium-137 Release from</u> <u>Waste/Cement Composites using Data from Small-Scale Specimens</u>, NUREG/CR-3382, U.S. Nuclear Regulatory Commission, Washington D.C.

Dennis, R., Dworkin, D., and Lowe, W. 1992. <u>Evaluation of Commercially Available Soil</u> <u>Washing Processes for Site Remediation</u>, HMC, May/June 1992, pp 47-57.

DOE. 1992. Remedial Investigation and Feasibility Study: Operable Unit 3 Work Plant

NUREG-1496

J

<u>Addendum, Revision 2. Draft Final</u>, Volume 1 of 2, Sections 1-8, Appendices A, B, and C, Fernald Environmental Management Project, U.S. Department of Energy Fernald Field Office, Fernald, Ohio.

Elder, H. K. 1981. <u>Technology</u>, <u>Safety and Costs of Decommissioning a Reference Uranium</u> <u>Hexafluoride Conversion Plant</u>, NUREG/CR-1757, U.S. Nuclear Regulatory Commission, Washington, D.C.

Elder, H. K. and D. E. Blahnik. 1980a. <u>Technology, Safety and Costs of Decommissioning</u> <u>a Reference Uranium Fuel Fabrication Plant</u>, NUREG/CR-1266, Vol. 1 Main Report, U.S. Nuclear Regulatory Commission, Washington, D.C.

Elder, H. K. and D. E. Blahnik. 1980b. <u>Technology, Safety and Costs of Decommissioning</u> <u>a Reference Uranium Fuel Fabrication Plant</u>, NUREG/CR-1266, Vol. 2 Appendices, U.S. Nuclear Regulatory Commission, Washington, D.C.

ENVEST. 1991. <u>RACER Remedial Action Cost Engineering and Requirements System-ENVEST</u> <u>Environmental Cost Engineering</u>. United States Air Force Environmental Restoration Program. Tyndall AFB, Florida.

EPA, 1990. "Superfund Record of Decision: Monticello Mill Tailings (DOE), UT", <u>EPA/ROD/R08-90/034</u>, August, 1990.

Ewart, F. T., J. L. Smith-Briggs, H. P. Thomason, and S. J. Williams. 1992. "The Solubility of Actinides in a Cementitious Near-Field Environment," <u>Waste Management</u>, 12:241-252.

Geraghty and Miller, Inc., 1990a. "Portsmouth Gaseous Diffusion Plant. Quadrant I. RCRA Facility Investigation Work Plan," <u>POEF/ER/Sub-88/4502/1, Revision 1</u>, Geraghty and Miller Environmental Services, Dublin, OH, September 1990.

Geraghty and Miller, Inc., 1990b. "Portsmouth Gaseous Diffusion Plant. Quadrant I. Description of Current Condition," <u>POEF/ER/Sub-88/4502/3, Revision 1</u>, Geraghty and Miller Environmental Services, Dublin, OH, September 1990.

Gerber, M., Freeman, H., Baker, E., and Riemath, W. 1991. <u>Soil Washing: A Preliminary</u> <u>Assessment of its Applicability to Hanford</u>, PNL-7787, Battelle Pacific Northwest Laboratory for the U.S. Department of Energy.

Haase, A. E., R. S. Kingsley, L. P. Williams, and R. V. Carlson. 1992. "Decommissioning of B&W's Fuel Conversion Plant." pp. 717-721, <u>Waste Management '92 Vol. 1- Technology and Programs for Radioactive Waste Management and Environmental Restoration</u>, American Nuclear Society, LaGrange Park, Illinois.

C.D-99

Irving, B. A. 1980. "Three Mile Island Concrete Decontamination Experience." Proceedings of a Concrete Decontamination Workshop, Seattle, Washington, May 28-29, 1980. pp. 169-178. CONF-800542, PNL-SA-8855, Pacific Northwest Laboratory, Richland, Washington.

Kaiser Engineers Hanford Company. May 1993. <u>D&D Technologies, The Decommissioning</u> and Decontamination Briefing, Vol. 1, Issue 1, S. T. Spence, Editor, Kaiser Engineers Hanford Company, Richland, Washington.

Kennedy, W. E. Jr., D. L. Strenge. 1992. <u>Residual Radioactive Contamination From</u> <u>Decommissioning</u>, NUREG/CR-5512, Vol. 1, U.S. Nuclear Regulatory Commission, Washington, D.C.

Konzek, G. J., J. D. Ludwick, W. E. Kennedy, and R. I. Smith. 1982a. <u>Technology, Safety and Costs of Decommissioning Reference Nuclear Research and Test</u> <u>Reactors, Main Report, NUREG/CR-1756</u>, Vol. 1, U.S. Nuclear Regulatory Washington, DC.

Konzek, G. J., J. D. Ludwick, W. E. Kennedy, and R. I. Smith. 1982b. Technology, Safety and Costs of Decommissioning Reference Nuclear Research and Test Reactors, Appendices, NUREG/CR-1756, Vol. 2, U.S. Nuclear Regulatory Washington, DC.

Konzek. G. J., R. I. Smith, M. C. Bierschbach, and P. N. McDuffie. 1993. <u>Revised Analyses</u> of Decommissioning for the Reference Pressurized Water Reactor Power Station, NUREG/CR-5884, Vol. 1, U.S. Nuclear Regulatory Commission, Washington, DC.

Martin, K. L., 1985. "Radiological Survey of Molybdenum Corporation of America, Washington, Pennsylvania," <u>Preliminary Report for U.S. NRC Region I Office</u>, Oak Ridge Associated Universities.

Matsuzuru, H., and A. Ito. 1977. Immobilization of Cesium-137 in Cement Waste Composites by Addition of Mineral Zeolites, <u>Health Physics</u>, <u>34</u>, pp. 643-648.

McKay, H. S., B. H. Wakeman, J. M. Pickworth, S. D. Routh, and W. C. Hopkins. 1989. <u>An Independent Spent-Fuel Storage Installation at Surry Station: Design and Operation</u>, EPRI Report NP-6032, Electric Power Research Institute, Palo Alto, California.

Means. 1993. Means Building Construction Cost Data. Kingston, Massachusetts.

Murphy, E. S. 1981. <u>Technology, Safety and Costs of Decommissioning Reference Non-Fuel-Cycle Nuclear Facilities</u>, NUREG/CR-1754, U.S. Nuclear Regulatory Commission, Washington, D.C.

Muurinen, A., H. P. Penttilae, H. P., and J. Rantanen. 1986. <u>Diffusivity of Cesium</u>, <u>Strontium, Carbon, and Nickel in Concrete and Mixtures of Sodium Bentonite and Crushed</u> <u>Rock</u>, DE87750404XSP, Helsinki, Finland.

NUREG-1496

ı

NRC. 1980. <u>Final Generic Environmental Impact Statement on Uranium Milling</u>, NUREG-0706 Volume I, U.S. Nuclear Regulatory Commission, Washington, D.C.

NRC. 1980. <u>Final Generic Environmental Impact Statement on Uranium Milling</u>, NUREG-0706 Volume III, U.S. Nuclear Regulatory Commission, Washington, D.C.

NRC. 1993. <u>Site Decommissioning Management Plan</u>, NUREG-1444, U.S. Nuclear Regulatory Commission, Washington, D.C.

Nuclear Waste News, March 25, 1993; p. 117

Robertson, D. E., et al. 1989. <u>Below Regulatory Concern Owners Group: Radionuclides</u> <u>Characterization of Potential BRC Waste Types from Nuclear Power Stations</u>. EPRI NP-5677, Project B101-15 Final Report March 1989 by Pacific Northwest Laboratory, Electric Power Research Institute, Palo Alto, California.

Robertson, D. E. C. W. Thomas, N. L. Wynhoff, and D. C. Hetzer. 1991. <u>Radionuclide</u> <u>Characterization of Reactor Decommissioning Wastes and Spent Fuel Assembly Hardware</u>, NUREG/CR-5343, U.S. Nuclear Regulatory Commission, Washington, D.C.

SEG. 1992. <u>Scientific Ecology Group Qualifications for Soil Washing Services</u>, Scientific Ecology Group, Pittsburgh, Pennsylvania.

Serne, R. J. et al. 1987. <u>Laboratory Leach Tests of Phosphate/Sulfate Waste Grout and Leachate Adsorption Tests using Hanford Sediment</u>, PNL-6019, Pacific Northwest Laboratory, Richland, Washington.

Serne, R. J. et al. 1989. <u>Leach Tests on Grouts Made with Actual and Trace Metal-Spiked</u> <u>Synthetic Phosphate/Sulfate Waste</u>, PNL-7121, Pacific Northwest Laboratory, Richland, Washington.

Serne, R. J. and M. I Wood. 1990. <u>Hanford Waste-Form Release and Sediment Interaction</u>, PNL-7297, Pacific Northwest Laboratory, Richland, Washington.

Serne, R. J., 1992. "Current Adsorption Models and Open Issues Pertaining to Performance Assessment," in <u>Proceedings, DOE/Yucca Mountain Site Characterization Project Radionuclide</u> <u>Adsorption Workshop, LA-12325C</u>, Los Alamos National Laboratory, Los Alamos, NM, Sept. 11-12, 1990.

Short, S. M. 1989. <u>Technology, Safety and Costs of Decommissioning Reference Non-Fuel-Cycle Nuclear Facilities</u>, NUREG/CR-1754, Addendum 1, U.S. Nuclear Regulatory Commission, Washington, D.C.

Smith, R. I., G. J. Konzek, and W. E. Kennedy, Jr. 1978. <u>Technology, Safety and Costs of Decommissioning a Reference Pressurized Water Reactor Power Station</u>, NUREG/CR-0130, Vol. 1 & 2, U.S. Nuclear Regulatory Washington, DC.

Westinghouse Hanford Company. 1989. <u>Shippingport Station Decommissioning Project</u> - <u>Contaminated Concrete Removal Topical Report</u>, DOE/SSDP-0047, Westinghouse Hanford Company, Richland, Washington.

Yasunaka, H., M. Shibamoto, T. Sukegawa, T. Yamate, and M. Tanaka. 1987. "Microwave Decontaminator for Concrete Surface Decontamination in JPDR," CONF-871018, <u>Decommissioning</u>, Vol. 2, pp. IV.109-IV.116, G.A. Tarcza, Editor, Proceedings of the 1987 International Symposium, Pittsburgh, PA.

NUREG-1496

ī

C.D-102

x

SUBATTACHMENT A TO ATTACHMENT D

CALCULATED DOSE FACTORS

FOR

THREE SCENARIOS

C.D.A-1

Building Occupancy Scenario

. .

•

.

Radionuc	lide	mrem/y per dpm/100 cm ²	Year Analyzed	Controlling Pathway
°°Co		2.89E-3	1	external (~91%)
⁹⁰ Sr		1.51E-3	1	ingestion (~84%)
¹³⁷ Cs		1.11E-3	1	external (~59%)
²³² Th		2.63E-2	1	inhalation (²³² Th ~67%, ²²⁸ Th ~14%)
U nat		9.07E-3	1	inhalation (²³⁸ U ~ 69%), ingestion (²³⁴ U ~ 14%, ²³⁸ U ~ 12%)
Nuclide	lni (dj	tial Inventory om/100 cm**2)	Peak Year	Total Dose (mrem/yr per dpm/100 cm**2)
Co-60	1.0	DOE+00	1	2.89E-03
Sr-90	1.0	DOE+00	1	1.41E-03
Y-90	0.0	DOE+00		<u>1.02E-04</u>
				1.51E-03
Cs-137	1.0	DOE+00	1	4.49E-04
Ba-137m	0.0	DOE+00		<u>6.57E-04</u>
				1.11E-03
Th-232	1.0	DOE+00	1	2.02E-01
Ra-228	1.0	00E+00		1.35E-02
Ac-228	1.0	D0E+00		1.17E-03
Th-228	1.0	D0E+00		4.05E-02
Ra-224	1.0	D0E+00		3.65E-03
Rn-220	1.0	DOE+00		4.57E-07
Po-216	1.0	DOE+00		1.99E-08
Pb-212	1.0	00E+00		5.99E-04
Bi-212	1;0	90E+00		2.26E-04
Po-212	6.4	41E-01		0.00E+00
TI-208	3.	59E-01		12292203
				2:63E-01
U-238	4.	39E-01	1	7.38E-03
Th-234	0.0	DOE+00	-	6:05E=05
Pa-234m	0.0	00E+00		8.10E-06

1

á

NUREG-1496

ı
Pa-234	0.00E+00	1.916-06
U-234	4.89E-01	1.26E-03
Th-230	0.00E+00	8.845-08
Ra-226	0.00E+00	410512
Rn-222	0.00E+00	1445-16
Po-218	0.00E+00	3 245-18
Pb-214	0.00E+00	9.075-14
Bi-214	0.00E+00	5176-13
Po-214	0.00E + 00	2 97E-17
Pb-210	0.00E + 00	1155-13
Bi-210	0.00E + 00	1 175-16
Po-210	0.00E + 00	1:065-14
U-235	2.25E-02	3 57F-04
Th-231	0.00E + 00	7735-07
Pa-231	0.00E+00	5.51E-08
Ac-227	0.00E+00	2.10E-09
Fr-223	0.00E+00	498F-15
Th-227	0.00E + 00	4.36E-12
Ra-223	0.00E+00	1 195-11
Rn-219	0.00E+00	1 135-13
Po-215	0.00E+00	3:595-16
Pb-211	0.00E+00	1145-13
Bi-211	0.00E+00	9.40E-14
Po-211	0.00E+00	4.37E-17
TI-207	0.00E+00	7706-15
		9/07E-03
		tarta standiliziona di anti alla si all

Building Renovation Scenario

. ..

:

•

- 4

Radionuclide	mrem/y per p Ct /g	Year Analyzed	Controlling Pathway
[∞] Co	7.72E-1	1	external (~100%)
^{\$0} Sr	2.16E-3	1	external (~61%)
¹³⁷ Cs	1.75E-1	1	external (~100%)
²³² Th	9.19E-1	1	external (²⁰⁸ Ti ~41%, ²²⁸ Ac ~32%), inhalation (²³² Th ~11%)

C.D.A-3

.

U nat	8.21E-3	1	inhalation (²³⁸ U ~ 42%), external (²³⁴ mPa ~ 17%, ²³⁵ U ~ 11%)

Nuclide	Initial Inventory (pCi/g)	Peak Year	Total Dose (mrem/yr per pCi/g)
Co-60	1.00E+00	1	7.72E-01
Sr-90	1.00E+00	1	8.23E-04
Y-90	0.00E+00		<u>1.33E-0</u> 3
			2.16E-03
Cs-137	1.00E+00	1	2.93E-04
Ba-137m	0.00E+00		<u>1.75E-0</u> 1
			1.75E-01
Th-232	1.00E+00	1	1.12E-01
Ra-228	1.00E+00		7.46E-03
Ac-228	1.00E+00		2.98E-01
Th-228	1.00E+00		2.29E-02
Ra-224	1.00E+00		4.85E-03
Rn-220	1.00E+00		1.19E-04
Po-216	1.00E+00		5.27E-06
Pb-212	1.00E+00		3.94E-02
Bi-212	1.00E+00		5.80E-02
Po-212	6.41E-01		0.00E+00
TI-208	3.59E-01		<u>3.76E-0</u> 1
			9.19E-01
U-238	4.89E-01	1	4.105-03
Th-234	0.00E+00		4.63E204
Pa-234m	0.00E+00		1.425-03
Pa-234	0.00E+00		3,645-04
U-234	4.89E-01		7.08E-04
Th-230	0.00E+00		1-21E-08
Ra-226	0.00E+00		1572513
Rn-222	0.00E+00		2:00E:15
Po-218	0.00E+00		4.60E-17
Pb-214	0.00E+00		1017E312
Bi-214	0.00E+00		7464E12
Po-214	0.00E+00		4)20E=18
Pb-210	0.00E+00		8-16E-16
Bi-210	0.00E+00		5.29E-18
Po-210	0.00E + 00		159E37

NUREG-1496

C.D.A-4

U-235	2.25E-02	1.11E-03
Th-231	0.00E+00	4367E-05
Pa-231	0.00E+00	7/93E-09
Ac-227	0.00E+00	6:85E-11
Fr-223	0.00E+00	2.20514
Th-227	0.00E+00	2.05E-12
Ra-223	0.00E+00	1.46E-12
Rn-219	0.00E+00	6*53E-13
Po-215	0.00E+00	2:11E+15
Pb-211	0.00E+00	6117E-13
Bi-211	0.00E+00	5.40E-13
Po-211	0.00E+00	2,675-16
TI-207	0.00E+00	4.01E-14
		8.21E-03

Drinking Water Scenario

.

.

Radionuclide	Max. TEDE mrem/y per pCi	Peak Year	Max. HOCDE mrem/y per pCi	Max. Organ
^{€0} Co	1.134E-11	9	2.103E-11	LLI wall
¹³⁷ Cs	6.554E-12	42	7.282E-12	adrenais
90Sr	3.095E-09	22	3.133E-08	b surface
²³² Th	2.570E-09	9639	4.540E-08	b surface
U nat	5.504E-09	47	7.918E-08	b surface

Nuclide	Initial Inventory (pCi)	Peak Year	Maximum TEDE (mrem/yr)	• • •
Co-60	1.00E+00	9	1.13E-11	
Sr-90	1.00E+00	22	3.10E-09	۴.
Cs-137	1.00E+00	42	6.55E-12	
Th-232	1.00E+00	9639	2.57E-09	<u></u>
U-238	4.89E-01	47	2:675-09	
U-235	2.25E-02	48	5-67E-12	
U-234	4.89E-01	47	2.83E-09	
			5.50E-09	

" • 2 .

:

.

Residential Scenario

Pathway	Primary Nuclide	mienny per pCi/g parent	Secondary Nuclide	mrem/y per pCi/g parent	Total Dose mrem/y per pCi/g parent
External	⁸⁰ Co	4.98058E+00	N/A	N/A	4.98058E+00
Inhalation	°⁰Co	1.37355E-04	N/A	N/A	1.37355E-04
Agricultural	∞Co	7.50995E-02	N/A	N/A	7.50995E-02
Soil	^{so} Co	4.61020E-04	N/A	N/A	4.61020E-04
Water	∞Co	1.34145E-05	N/A	N/A	1.34145E-05
Aquatic	∞Co	4.84789E-05	N/A	N/A	4.84789E-05
					5.05634E+00

Pathway	Primary Nuclide	mrem/y per pCi/g parent	Secondary Nuclide	mrem/y per pCi/g parent	Total Dose mrem/y per pCi/g parent
External	90Y	8.53182E-03	⁹⁰ Sr	2.68957E-04	8.80078E-03
Inhalation	∞Sr	8.56971E-04	³⁰ Y	5.49233E-06	8.62463E-04
Agricultural	⁹⁰ Sr	1.21685E+00	90Y	8.73595E-02	1.30421E+00
Soil	⁹⁰ Sr	2.57067E-03	θόλ	1.92277E-04	2.76295E-03
Water	⁹⁰ Sr	1.04310E-03	⁹⁰ Y	7.54898E-05	1.11859E-03
Aquatic	⁹⁰ Sr	6.53608E-04	90Y	2.38990E-05	6.77507E-04
					1.31843E+00

NUREG-1496

÷

C.D.A-6

á

Pathway	Primary Nuclide	mrem/y per pCi/g parent	Secondary Nuclide	mrem/y per pCi/g parent	Total Dose mrem/y per pCi/g parent-
External	^{137m} Ba	1.17358E+00	¹³⁷ Cs	2.84997E-04	1.17386E+00
Inhalation	. ¹³⁷ Cc	- ?-10787E-05	137тВа	0.00000E-00	2.10787E-05
Agricultural	¹³⁷ Cs	2.28090E-01	¹³⁷ mBa	0.00000E-00	2.28090E-01
Soil	¹³⁷ Cs	9.01794E-04	^{137m} Ba	0.00000E-00	9.01794E-04
Water	¹³⁷ Cs	1.46349E-06	^{137m} Ba	0.00000E-00	1.46349E-06
Aquatic	¹³⁷ Cs	2.93688E-05	137mBa	0.00000E-00	2.93688E-05
					1.40290E # 00
			1) <u></u>		

Pathway	Primary Nuclide	mrem/y per pCi/g initial conc.	Secondary Nuclide	mrem/y per pCi/g initial conc.	Total Dose mrem/y per initial conc.
External	²⁰⁸ Ti	2.54625E+00	228AC	2.01751E+00	5.24482E+00
Inhalation	²³² Th	1.09367E+00	228Th	2.27869E-01	1.32716E+00
Agricultural	²³² Th	5.88653E+00	228 Ra	3.24762E+00	1.08998E+01
Soil	²³² Th	4.98676E-02	²²⁸ Ra	2.62176E-02	9.08882E-02
Water	228Ra	9.23157E-06	228Th	1.09247E-06	1.19082E-05
Aquatic	228Ra	8.32257E-06	²²⁸ Th	1.39534E-06	1.13579E-05
					1.75627E+01

•

NUREG-1496

Unat- Pathway	Primary Nuclide	mrem/y per pCi/g initial conc.	Secondary Nuclide	mrem/y per pCi/g initial conc.	Total Dose mrem/y per initial conc.
External	234mPa	2.29389E-03	²³⁵ U	9.46140E-04	4.61744E-03
Inhalation	²³⁸ U	5.91468E-03	235U	2.82353E-04	6.26693E-03
Agricultural	234U	4.96760E-02	238U	4.46176E-02	9.93776E-02
Soil	234U	3.87516E-04	238U	3.48056E-04	7.76070E-04
Water	²³⁴ U	2.01181E-01	238U	1.80695E-01	3.99691E-01
Aquatic	234U	1.27402E-01	238U	1.14429E-01	2.59017E-01
L					7.69746E-01

NUREG-1496

· · · ·

. . . .

C.D.A-8

SUBATTACHMENT B TO ATTACHMENT D

SPREADSHEET RESULTS

FOR

SOIL CLEANUP

NUREG-1496

C.D.B-1

and the second sec										
	Contaminated Area	Soil Depth	Soil Vol.	Soil Excavation Costs	Floor Area Removed	Floor Demo & Excavation	Total Soil Volume	Total Total Concrete	Waste Packaging Cost	Transport Requis
Units				\$235/m^3		\$411/m ²			\$220/m ³	
Rates	ft ²	cm	m	s	m ²	S	m³	m ³	m,	# trucks
HIGH								_		
100	5000	3.00	14	3,275	11	4,582	31	2	7,118	3
60	5000	4.3	20	4,694	11	4,582	37	2	8,447	3
30	5000	5.5	26	6,004	11	4,582	42	2	9,673	4
15	5000	7	33	7,641	11	4,582	49	2	11,206	4
- 10	5000	7.3	34	7,968	11	4,582	51	2	11,512	4
3	5000	8.6	40	9,388	11	4,582	57	2	12,841	5
0.3	5000	11	51	12,007	<u> </u>	4,582	68	2	15,294	6
0.03	5000	12.7	59	13,863	<u> </u>	4,582	76	2	17,031	6
MEDIUM										
100	5000	0	0	0		4,582	17	2	4,053	2
60	5000	2.5	12	2,729	11	4,582	28	2	6,607	3
30	5000	4.5	21	4,912	11	4,582	38	2	8,651	3
15	5000	6	28	6,549	11	4,582	45	2	10,184	4
10	5000	6.4	30	6,986	11	4,582	46	2	10,593	4
3	5000	7.7	36	8,405	11	4,582	52	2	11,921	4
0.3	5000	10.2	47	11,134	11	4,582	64	2	14,476	5
0.03	5000	12	56	13,099	11	4,582	72	2	16,315	6
LOW				······						
100,60,30,10	5000	0	0	0	11	4,582	17	2	4,053	2
3	5000	3.6	17	3,930	11	4,582	33	2	7,731	3
0.3	5000	7.3	34	7,968	11	4,582	51	2	11,512	4
0.03	5000	9.7	45	10.588	L_11	4 582	62	2	13 965	5

¥.

<u>TABLE B.1.</u> Detail of Costs and Other Parameters for Remediation of a Sealed Source Manufacturer Soil Site, Without Soil Washing

.

....

۰.

4

	Transport Cost	Disposal Volume	Disposal Chai	ges		Average Disposal Cost	TOTAL COSTS	Soil Excavation Labor	Floor Demo Labor	TOTAL LABOR	Occup. Dose
Rates	\$1325/ truck		Northwest Compact	Southeast Compact	Out-of-SE Compact			1.62 manhr/m³	4.07 manhr/m²		0.1 mrem/hr
	\$		<u> </u>	S	- 5	<u> </u>	· · S	man-hr	man-hr	man-hr	Per-mrem
HIGH											
100	3,975	32	46,736	153,593	308,991	169,773	188,723	23	45	68	7
60	3,975		55,259	182,258	366,657	201,391	223,089	32	45	78	8
30	5,300	44	63,127	208,717	419,888	230,577	256,136	41	45	87	9
15	5,300	<u> </u>	72,961	241,792	486,425	267,059	295,788	53	45	98	10
10	5,300			248,407	499,733	274,356	303,719	_55	45	100	10
3	6,625	58	83,452	277,071	557,399	305,974	339,409	65	45	110	11
0.3	7,950		. 99,187	329,991	663,860	364,346	404,178	83	45	128	13
0.03	7,950	77	110,333	367,475	739,269	405,692	449,118	96	45	141	14
MEDIUM			·		<u></u>	.	·		·····		
100	2,650	. 18	27,066	87,444	175,915	96,809	108,093	0	45	45	5
60	3,975	30	43,457	142,568	286,812	157,612	175,506	. 19	45	64	6
30	3,975		56,570	186,667	375,529	206,256	228,376	34	45	79	8
15	5,300	46	66,405	219,742	442,067	242,738	269,353	45.	45	91	9
10	5,300	48	69,027	228,562	459,810	252,467	279,927	48	45	94	
3	5,300	54	77,551	257,227	517,476	284,085	314,293	58	45	103	10
0.3	6,625	66	93,942	312,351	628,373	344,889	381,705	77	45	122	12
0.03	7,950	74	105,743	352,040	708,218	388,667	430,613	90	45	136	14
LOW							<u></u>				
100,60,30,10	2,650	18	27,066	87,444	175,915	96,809	108,093	0	45	45	5
3	3,975	35	50,669	166,823	335,606	184,366	204,584	27	45	72	7
0.3_	5,300	52	74,928	248,407	499,733	274,356	303,719	- 55	45	100	10
0.03	6,625	63	90,664	301,326	606,194	332,728	368,488	73	45	118	12

.

٠

<u>TABLE B.1.</u> Detail of Costs and Other Parameters for Remediation of a Sealed Source Manufacturer Soil Site, Without Soil Washing (continued)

C.D.B-3

	Contaminated Area	Soil Depth	Soil Volume	Soil Excavation Cost	Floor Area Removed	Floor Demo & Excavation	Total Soil Volume	Total Concrete Volume	Waste Packaging Cost	Transport Reqds
Rates				\$235/m²		\$411/m²			\$220/m ³	
Uaits:	ft²	cm	m	\$	m²	\$	m,	m	S	# trucks
HIGH						,				
100	5000	3.00	14	3,275	11	4,582	31	2	7,118	3
60	5000	4.5	21	4,912	11	4,582	38	2	8,651	3
30	5000	6.2_	29	6,768		4,582	46	2	10,388	4
15	5000	7	33	7,641	11	4,582	49	2	_11,206	4
10	5000	7.8	36	8,514	11	4,582	53	2	12,023	5
3	5000	11.5	53	12,553	11	4,582	70	2	15,804	6
0.3	5000	20.4	95	22,268	<u> </u>	4,582	111	2	24,899	9
0.03	5000	24.9	116	27,180	11	4,582	132	2	29,498	10
MEDIUM										
100	5000	0	0	0	11	4,582	17	2	4,053	2
60	\$000	2.5	12	2,729	11	4,582	28	2	6,607	3 ·
30	5000	4.5	21	4,912	11	4,582	38	2	8,651	3
15	5000	6	28	6,549	_11	4,582	45	2	10,184	4
10	5000	6.4	30	6,986	11	4,582	46	2	10,593	4
3	5000	8.2	38	8,951	<u> </u>	4,582	55	2	12,432	5
0.3	5000	16.4	76	17,902	11	4,582	93	2	20,812	7
0.03	5000	22.3	104	24,342	11	4,582	120	2	26,841	9
LOW								1		
100,60,30,1	5000	0	0	0	11	4,582	17	2	4,053	2
3	5000	3.6	17_	3,930	11	4,582	33	2	7,731	3
0.3	5000	8.3	39	9,060	11	4,582	55	2	12,534	5
0.03	\$000	18.6	86	20 303	11	4 582	103	2	23.060	8

· · ·

4

Ł

÷

• •

TABLE B.2. Detail of Costs and Other Parameters for Remediation of a Generic R&D Facility Soil Site, Without Soil Washing

.

NUREG-1496

•

e.

	Transport Cost	Disposal Volume		Disposal Charge	5	Average Disposal Cost	TOTAL COSTS	Excavation Labor	Floor Demo Labor	TOTA L LABO R	Occup. Dose
Rates	\$1325/ truck		Northwest Compact	Southeast Compact	Out-of-SE Compact			1.62 manhr/m ³	4.07 manhr/m²		0.1 mrem/hr
Units:	\$	m	S	S	· S	S		man-hr	man-hr	man-hr	person- mrem
HIGH			· · · · · · · · · · · · · · · · · · ·								
100	3,975	32	46,736	153,593	308,991	169,773	188,723	23	45	68	7
60	3,975	39	56,570	186,667	375,529	206,256	228,376	34	45	79	8
30	5,300	47	67,716	224,152	450,939	247,602	274,640	47	45	. 92	9
15	5,300	51	72,961	241,792	486,425	267,059	295,788	53	45	98	10
10	6,625	55	78,206	_259,431	521,912	286,517	318,261	59	45	104	10
3	7,950	72	102,465	341,015	686,039	376,507	417,396	87	45	132	13
0.3	11,925	113	160,817	537,258	1,080,830	592,969	656,643	154	45	199	20
0.03	13,250	134	190,321	636,481	1,280,444	702,416	776,926	187	45	233	23
MEDIUM		, 	· ·								
100	2,650	18	27,066	87,444	175,915	96,809	108,093	0	45	45	5
60	3,975	30	43,457	142,568	286,812	157,612	175,506	19	45	64	6
30	3,975	39	56,570	186,667	375,529	206,256	228,376	34	45	79	
15	5,300	46	66,405	219,742	442,067	242,738	269,353	45	45	91	9
10_	5,300	48	69,027	228,562	459,810	252,467	279,927	48	45	94	9
3	6,625	57	80,829	268,251	. 539,656	296,245	328,835	62	45	107	11
0.3	9,275	95	134,592	449,059	903,396	495,682	548,253	123	45	169	17
0.03	11,925	122	173,275	579,152	1,165,112	639,179	706,869	168	45	213	21
LOW							· · · · · · · · · · · · · · · · · · ·	·			
100,60,30,1	2,650	18	27,066	87,444	175,915	96,809	108,093	0	4:	45	5
3	3,975	35 .	50,669	166,823	335,606	184,366	204,584	27	4;	72	7
0.3	6,625	57 *	81,485	270,456	544,092	298,678	331,479	62	44	108	11
0.03	10.600	105	149.016	497.568	1.000.985	549.190	607.735	140	45	185	19

.

C.D.B-5

	Contaminated Area	Soil Depth	Soil Volume	Soil Excavation Cost	Floor Area Removed	Floor Demo & Excavation	Total Soil Volume	Total Concrete Volume	Waste Packaging Cost	Transport Reqds
Rates				\$235/m ³		\$411/m ²			\$220/m ³	
Units	ſt²	cm_	m ³	\$	m²	S	m ³	m^	<u>s</u>	# of Trucks
нісн										
100	500	3.00	1	327	43	17,564	65	7	15,842	6
60	500	4.5	2	491	43	17,564	66	7	15,995	6
30	500	6.2	3	677	43	17,564	67	7	16,169	66
15	500	7	3	764	43	17,564	67	7	16,250	6
10	500	7.8	4	851	43	17,564	68	7	16,332	6
3	500	11.5	5	1,255	43	17,564	69	7	16,710	6
0.3	500	20.4	9	2,227	43	17,564	74	7	17,620	66
0.03	500	24.9	12	2,718	43	17,564	76	7	18,080	7
MEDIUM										
100	500	0	0	0	43	17,564	64	7	15,535	6
60	500	2.5	1	273	43	17,564	65	7	15,790	66
30	500	4.5	2	491	43	17,564	66	7	15,995	6
15	500	6	3	655	43	17,564	67	7	16,148	66
10	500	6.4	3	699	43	17,564	67	7	15,189	6
3	500	8.2	4	895	43	17,564	68	7	1 ,373	6
0.3	500	16.4	8	1,790	43	17,564	72	7	1*,211	6
0.03	500	22.3	10	2,434	43	17,564	74	7	1,814	6
LOW										
100 60 30 10	500	0	0	0	43	17,564	64	7	15,535	6
100,00,00,10	500	3.6	2	393	43	_17,564	66	7	15,903	6
03	500	1 8.3	4	906	43	17,564	68	7	16,383	6
0.03	500	18.6	9	2,030	43	17,564	73	7	17,436	6

.

ċ

<u>TABLE B.3.</u> Detail of Costs and Other Parameters for Remediation of a Dry ISFSI Soil Site, Without Soil Washing

NUREG-1496

1

¥

	Transport Cost	Disposal Volume	Disposal Charg	ges		Average Disposal Cost	TOTAL COST	Excavation Labor	Floor Demo Labor	TOTAL LABOR	Occup. Dose
Rates	\$1325/m ³	-,	Northwest Compact	Southeast Compact	Out-of-SE Compact	· -··		1.62 manhr/m ³	4.07 manhr/m ²		0.1 mrem/hr
Units	<u> s </u>		<u> s </u>	<u>s</u>	<u> </u>	<u></u>	s	man-hr	man-hr	man-br	_mrem
HIGH		<u> </u>			.						
100	7,950	72	102,703	341,816	687,650	377,390	419,073	2	174	176	18
60	7,950	73	103,687	345,124	694,304	381,038	423,038	3	174	177	18
30	7,950	73	104,801	348,872	701,845	385,173	427,532	5	174	179	18
15	7,950	74	105,326	350,636	705,394	387,119	429,647	5	174	179	18
10	7,950	74	105,850	352,400	708,942	389,064	431,761	6	174	180	18
3	7,950	76	108,276	360,558	725,355	398,063	441,542	9	174	183	18
0.3	7,950	80	114,112	380,183	764,834	419,709	465,070	15	174	189	19
0.03	9.275	82	117,062	390,105	784,795	430,654	478,290	19	170	193	19
MEDIUM		1									
100	7,950	71	100,736	335,201	674,343	370,093	411,142	0	17.	174	17
60	7,950	72	102,375	340,714	685,432	376,174	417,751	2	17.	176	18
30	7,950	73	103,687	345,124	694,304	381,038	423,038	3	17.	177	18
15	7,950	73	104,670	348,431	700,958	384,686	427,003	5	174	178	18
10	7,950	74	104,933	349,313	702,732	385,659	428,061	5	174	179	18
3	7.950	74	106,113	353,282	710,717	390,037	432,819	6	174	180	18
0.3	7.950	78	111,489	371,363	747,091	409,981	454,496	12	174	186	19
0.03	7.950	81	115,357	384,372	773,262	424,331	470,092	17	174	191	19
LOW			· · ·			-					
100 60 30 10	7.950	71	100,736	335,201	674,343	370,093	411,142	0	174	174	17
3	7.950	72	103,097	343,139	690,312	378,849	420,659	3	174	177	18
0.3	7.950	74	106,178	353,503	711,160	390,280	433,083	6	174	180	18
0.03	7.950	79 [*]	. 112.931	376.214	756,850	415.332	460.311	14	174	188	. 19

.

TABLE B.3. Detail of Costs and Other Parameters for Remediation of a Dry ISFSI Soil Site, Without Soil Washing (continued)

C.D.B-7

٠

NUREG-1496

•

	Contaminated Area	Soil Depth	Soil Volume	Soil Excavation Cost	Floor Area Removed	Floor Demo & Excavation	Total Soil Volume	Total Concrete Volume	Waste Packaging Cost	Transport Reqds
Rates:				\$235/m²		\$411/m ²			\$220/m ³	
Linits	ft ²	cm	rn (s	m²	s	m³	m³	<u>s</u>	# trucks
нісн										
100	5000	3.00	14	3,275	186	76,364	293	28	70,609	24
60	5000	4.5	21	4,912	186	76,364	. 300	28	72,142	25
30	5000	6.2	29	6,768	186	76,364	307	28	73,879	25
15	5000	7	33	7,641	186	76,364	311	28	74,097	25
10	5000	7.8	36	8,514	186	76,364	315	28	75,: 14	26
3	5000	11.5	53	12,553	186	76,364	332	28	79,:.95	24
0.3	5000	20.4	95	22,268	186	76,364	373	28	88,.*90	30
0.03	5000	24.9	116	27,180	186	76,364	394	28	92,989	32
MEDIUM						**************************************				
100	5000	0	0	0	186	76,364	279	28	30,755	11
60	5000	2.5	12	2,729	186	76,364	290	28	70,098	24
30	5000	4.5	21	4,912	186	76,364	300	28	72,142	25
15	5000	6	28	6,549	186	76,364	307	28	73,675	25
10	5000	6.4	30	6,986	186	76,364	308	28	74,084	25
3	5000	8.2	38	8,951	186	76,364	317	28	75,923	26
0.3	5000	16.4	76	17,902	186	76,364	355	28	84,303	29
0.03	5000	22.3	104	24,342	186	76,364	382	28	90,332	31
LOW							· · · · · · · · · · · · · · · · · · ·	·····	·	
100,60.30.	5000	0	· 0	0	186	76,364	279	28	30,755	11
3	5000	3.6	17	3,930	186	76,364	295	28	71,222	24
0.3	5000	8.3	39	9,060	186	76,364	317	· 28	76,025	26
0.03	5000	18.6	86	20,303	186	76,364	365	28	86,551	29

..

٠

TABLE B.4. Details of Costs and Other Parameters for Remediation of Test Reactor Soli Site, Without Soil Washing

•

....

	-	Transport Costs	Disposal Volume	Disposal Char	ges	· · · · · · · · · · · · · · · · · · ·	Average Disposal Cost	TOTAL COSTS	Excavation Labor	Floor Demo Labor	TOTAL LABOR	Occup. Dose
Rates:		\$1325/m³		Northwest Compact	Southeast Compact	Out-of-SE Compact			1.62 manhr/m ⁹	4.07 manhı/m²		0.1 mrem/h r
Units		\$	m	S	\$	\$	\$.	S S	man-hr	mai -hr	man-hr	person- mrem
HIGH	-							•	·			
	100	31,800	. 321	454,088	1,523,546	3,065,000	1,680,878	1,862,92	23	756	779	78
	60	33,125	328	463,923	1,556,621	3,131,538	1,717,360	1,903,90	34	756	790	79
· · · · · · · · · · · · · · · · · · ·	30	33,125	336	475,069	1,594,105	3,206,948	1,758,707	1,948,84	47.	756	803	80
	15	33,125	340	480,314	1,611,745	3,242,434	1,778,164	1,969,99	53	756	809	81
	10_	34,450	343	485,559	1,629,385	3,277,921	1,797,622	1,992,46	59	756	815	81
	3	35,775	360	509,818	1,710,968	3,442,048	1,887,611	2,091,59	87	756	843	- 84
	0.3	39,750	402	568,170	1,907,211	3,836,839	2,104,073	2,330,84	154	756	910	91
	0.03	42,400	423	597,674	2,006,434	4,036,453	2,213,520	2,452,45	187	756	944	94
MEDIUM						· ·				r = 1		· · ·
	100	14,575	140	198,387	663,608	1,335,016	732,337	854,031	0	756	756	76
	60	- 31,800	319	450,810	1,512,521	3,042,821	1,668,717	1,849,70	19	756		····· 78• ···
	30	33,125	328	463,923	1,556,621	3,131,538	1,717,360	1,903,90	34	756	790	
	15	33,125	335	473,757	1,589,695	3,198,076	1,753,843	1,943,55	45	756	801	80
	10	33,125	337	476,380	1,598,515	3,215,819	1,763,571	1,954,13	48	756	804	80
	3	34,450	345	488,182	1,638,204	3,295,665	1,807,350	2,003,03	62	756	818	82
	0.3	38,425	383	541,944	1,819,012	3,659,405	2,006,787	2,223,78	123	756	880	88
	0.03	41,075	411	580,627	1,949,105	3,921,121	2,150,284	2,382,39	168	756	924	92
LOW				a		-	r	۰. · ·			r	
100.60.30	.10.10	14,575	140	198,387	663,608	1,335,016	732,337	854,031	0	756	756	76
	3	31,800	324	458,022	1,536,776	3,091,615	1,695,471	1,878,78	27	756	783	78
	0.3	34,450	346	488,837	1,640,409	3,300,101	1,809,782	2,005,68	62	756	819	82
	0.03	38,425	393	556,368	1,867,521	3,756,994	2,060,295	2,281,93	140	756	896	90

....

TABLE B.4. Details of Costs and Other Parameters for Remediation of a Research Reactor Soil Site, Without Soil Washing (continued)

C.D.B-9

	and the second second second second second second second second second second second second second second secon	T TOTAL CONTRACTOR		1						
	Contaminated Area	Soil Depth	Şoil Volume	Soil Excavation Cost	Floor Area Removed	Floor Demo & Excavation	Total Soil Volume	Total Concrete Volume	Wast, Pack ging Cost	Transport Reqds
Rates:				\$235/m ³		\$411/m²			\$220/m³	
Units:	m³	cm	m ³	s	m²	s	m ³	m	s	# trucks
HIGH										
100	500	3.00	1	327	65	26,727	99	10	23,947	9
60	500	4.5	2	491	65	26,727	100	_10	24,100	9
	500	6.2	3	677	65	26,727	100	10	24,274	9
15	500	7	3	764	65	26,727	101	10	24,356	9
10	500	7.8	4	851	65	26,727	101	_10	24,437	9
. 3	500	11.5	5	1,255	65	26,727	103	10	24,815	9
0.3	500	20.4	9	2,227	65	26,727	107	10	25,725	9
0.03	500	24.9	12	2,718	65	26,727	109	10	26,185	9
MEDIUM										
100	500	0	0	0	. 65	26,727	98	10	23,640	8
60	500	2.5	1	273	65	26,727	99	10	23,896	8
30	500	4.5	2	491	65	26,727	_100	_10	24,100	9
15	500	6	3	655	65	26,727	100	10	24,253	9
10	500	6.4	3	699	_65	26,727	101	10	24,294	9
3	500	8.2	4	895	65	26,727	101	10	24,478	9
0.3	500	16.4	8	1,790	65	26,727	_105	10	25,316	9
0.03	500	22.3	10	2,434	65	26,727	108	10	25,919	9
LOW										
100.60.30.10	500	0	0	0	65	26,727	98	10	23,640	8
3	500	3.6	2	393	65	26,727	99	10	24,008	9
0.3	500	8.3	4	906	65	26,727	101	_10	24,488	9
0.03	500	18.6	9	2,030	65	26,727	106	10	25,541	9

<u>TABLE B.5.</u> Detail of Costs and Other Parameters for Remediation of a Research Reactor Soil Site, Without Soil Washing

-

.

n,

ł

• • •

.

•

	Transport Cost	Disposal Volume	Disposal Charg	ges		Average Disposal Cost	TOTAL COSTS	Excavation Labor	Floor Demo Labor	TOTAL LABOR	Occup. Dose
Rates:	\$1325/m ³	÷ 7	Northwest Compact	Southeast Compact	Out-of-SE Compact			1.62 manhr/m ³	4.07 manhr/m ²		0.1 mrem/hr
Units:	S	rn,	\$	\$	\$	Š	\$	man-hr	man-br	man-hr	person- mrem
HIGH			· · · · · · · · · · · · · · · · · · ·			·					
100	11,925	109	154,706	516,704	1,039,481	570,297	633,224	2	265	267	27
60	11,925	110	155,689	520,011	1,046,135	573,945	637,189		· 265	268	27
30	11,925	110	156,804	523,760	1,053,676	578,080	641,683	5	265	269	· 27
- 15	11,925	<u></u>	157,328	525,524	1,057,225	580,026	643,798		265	270	27
10	11,925	111	157,853	527,288	1,060,773	581,971	645,912	6	265	271	27
3	11,925	113	160,279	535,446	1,077,186	590,970	655,693	9 .	265	273	27
0.3	11,925	117	166,114	555,070	1,116,665	612,616	679,220	15	265	280	28
0.03	11,925	119	169,064	564,993	1,136,626	623,561	691,116	19	265	283	_ 28
MEDIUM											
100	10,600	107	152,739	510,089	1,026,174	563,000	623,968	0.	265	265	_26
60	10,600	109	154,378	515,601	1,037,263	569,081	630,577	2 2	265	267	27
30	11,925	110	155,689	520,011	1,046,135	573,945	637,189	3	265	268	27
15	11,925	110	156,673	523,319	1,052,789	577,593	641,154	5	265	269	27
10	11,925	110	156,935	524,201	1,054,563	578,566	642,211	5	265	269	27
- 3	11,925	111	158,115	528,170	1,062,548	582,944	646,970	6	265	271	27
0.3	11,925	115	163,491	546,250	1,098,922	602,888	668,646	12	265	277	28
0.03	11,925	118	167,360	559,260	1,125,093	617,238	684,243	17	265	281	28
LOW								· · · · · · · · · · · · · · · · · · ·			
100.60.30.10	10,600	107	152,739	510,089	1,026,174	563,000	623,968	0	265	265	26
3	11,925	109	155,099	518,027	1,042,143	571,756	634,810	3	265	267	27
0.3	11,925	111 ,	158,181	528,390	1,062,991	583,187	647,234	6	265	271	_27
0.03	11,925	116	164,934	551,101	1,108,680	608,239	674,462	14	265 .	279	_28

<u>TABLE B.5.</u> Detail of Costs and Other Parameters for Remediation of a Research Reactor Soil Site, Without Soil Washing (continued)

C.D.B-11

	Contaminated Area	Soil Depth	Soil Volume	Soil Excavation Cost	Floor Area Removed	Floor Demo & Excavation	Total Soil Volume	Total Concrete Volume	Waste Packaging Cost	Transport Regds.
Rates:				\$235/m ²		\$411/m²			\$220/m²	
Units:	ft ²	cm	m³	s	m²	\$	m ³	m,	s	# trucks
HIGH										
100	2000	3.00	6	1,310	465	190,910	702	71	170,085	57
60	2000	4.5	8	1,965	465	190,910	705	71	170,698	58
30	2000	6.2	12	2,707	465	190,910	708	71	171,393	58
15	2000	7	13	3,056	465	190,910	710	71	171,720	58
10	2000	7.8	14	3,406	465	190,910	711	71	172,047	58
3	2000	11.5	21	5,021	465	190,910	718	71	173,559	59
0.3	2000	20.4	38	8,907	465	190,910	735	71	177,197	60
0.03	2000	24.9	46	10,872	465	190,910	743	71	179,037	60
MEDIUM									· · · · · · · · · · · · · · · · · · ·	
100	2000	0	0	0	465	190,910	_697	71	168,859	57
60	2000	2.5	5	1,092	465	190,910	701	71	169,881	57
30	2000	4.5	8	1,965	465	190,910	705	71	170,698	58
15	2000	6	11	2,620	465	190,910	708	71	171,311	58
10	2000	6.4	12	2,794	465	190,910	709	71	171,475	58
3	2000	8.2	15	3,580	465	190,910	. 712	71	172,211	58
0.3	2000	16.4	30	7,161	465	190,910	727	71	175,562	59
0.03	2000	22.3	41	9,737	465	190,910	738	71	177,974	60
LOW									` <u> </u>	
100,60,30,10	2000	0	0	0	465	. 190,910	697	71	168,859	57
3	2000	3.6	7	1,572	465	190,910	703	71	170,330	57
0.3	2000	8.3	15	3,624	465	190,910	712	71	172,251	58
0.03	2000	18.6	35	8,121	465	190,910	731	71	176,462	59

۴.,

÷

<u>TABLE D.</u> Without Soil Washing	<u>TABLE B.6</u> .	Detail of Costs and Other Parameters for Remediation of a Power Reactor Soil Site, Without Soil Washing
---	--------------------	--

NUREG-1496

•

•

¢

۴,

C.D.B-12

:

	Transport Cost	Disposal Volume	Disposal Chan	ges		Average Disposal Cost	TOTAL COSTS	Excavation Labor	Floor Demo Labor	TOTAL LABOR	Occup. Dose
Rates:	\$1325/ truck		Northwest Compact	Southeast Compact	Out-or-SE Compact			1.62 manhr/m ³	4.07 manhr/m²		0.1 mrem/hr
Units:	\$	m ³	\$	e a \$ a	\$	S 1, 3	S	man-hr	man-hr	man-hr	person- mrem
HIGH			· ·	••••••••••••••••••••••••••••••••••••••		· · · · · · · · · · · · · · · · · · ·	· · ·				
100	75,525	773	1,092,317	3,669,952	7,383,041	4,048,437	4,486,266	9	1891	1900	190
60_	76,850	776	1,096,251	3,683,182	7,409,656	4,063,030	4,503,452	14	1891	1904	190
30	76,850	779	1,100,710	3,698,176	7,439,820	4,079,568	4,521,428	19	1891	1909	191
15	76,850	781	1,102,808	3,705,231	7,454,015	4,087,351	4,529,887	21	1891	1912	191
10_	76,850	782	1,104,906	3,712,287	7,468,210	4,095,134	4,538,347	23	1891	1914	191
3	78,175	789	1,114,609	3,744,921	7,533,860	4,131,130	4,578,795	35	1891	1925	193
0.3	79,500	805	1,137,950	3,823,418	7,691,777	4,217,715	4,674,229	61	1891	1952	195
0.03	79,500	814	1,149,752	3,863,107	7,771,622	4,261,494	4,721,812	- 75	1891	1965	197
MEDIUM			4	· · ·			·····				
100	75,525	768	1,084,450	3,643,492	7,329,811	4,019,251	4,454,544	0	1891	1891	189
60	75,525	772_	1,091,006	3,665,542	7,374,170	4,043,573	4,480,979	8	1891	. 1898	190
30	76,850	776	1,096,251	3,683,182	7,409,656	4,063,030	4,503,452	14	1891	1904	190
15_	76,850	779	1,100,185	3,696,412	7,436,272	4,077,623	4,519,313	18	1891	1909	191
10	76,850	779	1,101,234	3,699,940	7,443,369	4,081,514	4,523,543	19	1891	1910	<u>191</u>
3	76,850	783	1,105,955	3,715,815	7,475,307	4,099,026	4,542,576	25	1891	1915	192
0.3	78,175	<u> </u>	1,127,460	3,788,138	7,620,803	4,178,800	4,630,608	49	1891	1940	194
0.03	79,500	809	1,142,933	3,840,176	7,725,489	4,236,199	4,694,320	67	1891	1958	196
LOW											.
100,60,30,10	75,525	768	1,084,450	3,643,492	7,329,811	4,019,251	4,454,544	0	1891	1891	189
3	75,525	774	1,093,891	3,675,244	7,393,687	4,054,274	4,492,611	11	1891	1901	190
0.3	76,850	783	1,106,217	3,716,697	7,477,081	4,099,999	4,543,634	25	1891	1915	192
0.03	78,175	802	1,133,230	3,807,542	7,659,839	4,200,203	4,653,871	56	1891	1947	195

TABLE B.6. Detail of Costs and Other Parameters for Remediation of a Power Reactor Soil Site, Without Soil Washing (continued)

۰.

7

.

C.D.B-13

[_
	Contaminated Area	Soil Depth	Soil Volume	Sou Excavation Cost	Fioor Area Removed	Excavation	Volume"	Total Concrete Volume	Waste Packaging Cost	Transport Reqds
Rates:				\$235/m ³		\$411/m²			\$220/m³	
Units:	ft ²	cm	m,	s		s	m	m³	s	# trucks
HIGH										
100	100000	0.80	74	17,465	279	114,546	492	42	117,666	40
60	100000	1.1	102	24,015	279	114,546	520	42	123,797	42
30	100000	1.2	111	26,198	279	114,546	530	42	125,841	43
15	100000	1.4	130	30,564	279	114,546	548	42	129,928	- 44
10	100000	1.5	139	32,747	279	114,546	557	42	131,972	45
3	100000	2	186	43,663	279	114,546	604	42	142,191	48
0.3	100000	2.6	242	56,762	279	114,546	660	42	154,454	52
0.03	100000	3.1	288	67,678	279	114,546	706	42	164,673	56
LOW										
100	100000	0.2	19	4,366	279	114,546	437	42	105,403	36
60	100000	0.4	37	8,733	279	114,546	455	42	_109,490	37
30	100000	0.6	56	13,099	279	114,546	474	42	113,578	38
15	100000	1.1	102	24,015	279	114,546	520	42	123,797	42
10	100000	1.1	102	24,015	279	114,546	520	42	123,797	42
3	100000	1.3	121	28,381	279	114,546	539	42	127,885	43
03	100000	2	186	43,663	279	114,546	604	42	142,191	48
0.03	100000	2.6	242	56,762	279	114,546	660	42	154,454	52

••••

•

;

۰.

\$

• .

٠ • .

etall of Costs and Other Parameters for Remediation of a Rare Metals Extraction Soil Site. Without Soil Washing
,

Ŀ

.

NUREG-1496

4

s,

C.D.B-14

	Transport Cost	Disposal Volume	Disposal Cha	rges		Average Disposal Cost	TOTAL COSTS	Excavation Labor	Floor Demo Labor	TOTAL LABOR	Occup. Dose
Rates:	\$1325/ truck		Northwest Compact	Southeast Compact	Out-of-SE Compact			1.62 manhr/m ³	4.07 manhr/m²		0.1 mrem/hr
Units:	S	°m3	\$	\$	\$	\$	s	man-hr	man-hr	man-hr	person- mrem
HIGH					· · · · · ·				·····		
100	53,000	535	755,999	2,538,891	5,107,624	2,800,8	3,103,514	120	1134	1255	- 125
60	55,650	563	795,337	2,671,189	5,373,775	2,946,7	3,264,774	166	1134	1300	130
30	56,975	572	808,450	2,715,288	5,462,492	2,995,4	3,318,970	181	1134	1315	131
15	58,300	591	834,676	2,803,487	5,639,927	3,092,6	3,426,035	211	1134	1345	135
10	59,625	600	847,789	2,847,586	5,728,644	3,141,3	3,480,230	226	1134	1360	136
- 3	63,600	646	913,353	3,068,083	6,172,230	3,384,5	3,748,555	301	1134	1435	144
0.3	68,900	702	992,030	3,332,680	6,704,532	3,676,4	4,071,076	391	1134	1526	153
0.03	74,200	749	1,057,595	3,553,177	7,148,118	3,919,6	4,340,726	467	1134	1601	160
LOW									1	_	
100	47,700	479	677,322	2,274,294	4,575,321	2,508,9	2,780,994	30	1134	1164	116
60	49,025	498	703,547	2,362,493	4,752,755	2,606,2	2,888,059	60	1134	1195	119
30	50,350	516	729,773	2,450,692	4,930,189	2,703,5	2,995,124	90	1134	1225	122
15	55,650	563	795,337	2,671,189	5,373,775	2,946,7	3,264,774	166	1134	1300	130
10	55,650	563	795,337	2,671,189	5,373,775	2,946,7	3,264,774	166	1134	1300	130
3	56,975	581	821,563	2,759,388	5,551,210	3,044,0	3,371,840	196	1134	1330	133
0.3	63.600	646	913,353	3,068,083	6,172,230	3,384,5	3,748,555	301	1134	1435	144
0.03	68,900	702	992,030	3,332,680	6,704,532	3,676,4	4,071,076	391	1134	1526	153

•...•

.

4

Detail of Costs and Other Parameters for Remediation of a Rare Metals Extraction Soil Site, Without Soil Washing (continued) TABLE B.7.

.

.

C.D.B-15

•

	Transport Costs	Disposal Volume	Disposal Char	ges		Average Disposal Cost	TOTAL COST	Excavatio n Labor	Floor Demo Labor	Soil Washing Labor	TOTAL LABOR	Occup. Dose
Rates:	2 wk rental		Northwest Compact	Southeast Compact	Out-of-SE Compact			1.62 manhr/m ³	4.07 manhr/m²	0.17 manhr/m ³		0.1 mrem/hr
Units:	\$	m ³	3 S	S	\$	\$	14 S 44	man-hr	man-hr	man-hr	man-hr	person- mrem
HIGH												- -
100	3,426	0	0	0	0	0	13,911	72	0	0	72	7
60	3,426	0	0	0	0	0	17,843	99	0	0	99	10
30	3,426	0	0	0	0	0	19,154	108	0	0	108	11
15	3,426	0	0	0	0	0	21,775	126	0	0	126	13
10	3,426	0	0	0	0	0	23,086	136	0	0	136	14
3	3,426	0	0	0	0	0	29,639	181	<u>`</u> 0	0	181	18
0.3	3,426	0	0	0	0	0	37,503	235	0	0	235	23
0.03	3,426	0	0	0	0	0	44,056	280	0	0	280	28
LOW					· · · · · ·		· • • • • •					• ····
100	3,426	0	0	0	0	0	6,047	18	0	0	18	2
60	3,426	0	0	0	0	0	8,669	36	0	0	36	4
30	3,426	0	0	0	0	0	11,290	54	0	0	54	5
15	3,426	0	0	0	0	0	_17,843	99	0	0	99	10
10	3,426	0	0	0	0	0	17,843	99	0	0	99	10
3	3,426	0	0	0	0	0	20,464	117	0	0	117	12
0.3	3,426	0	0	0	0.	0	29,639	181	0	0	181	18
0.03	3.426	0	0	0	0	0	37,503	235	<u> </u>	0	235	23

TABLE B.8. Details of Cost and Other Parameters for Remediation of a Rare Metals Extraction Tailings Pile, Without Soil Washing (continued)

C.D.B-17

۰.

NUREG-1496

.

	Contaminated Area	Soil Depth	Soil Volume	Soil Excavation Cost	Floor Area Removed	Floor Demo & Excavation	Total Soil Volume	Total Concrete Volume	Waste Packaging Cost	Transport Regds
Rates:				\$235/m ³		\$411/m ²			\$220/m ³	
Units:	ft ¹	cm	m	s	m²	<u>s</u>	m ¹	¹	s	# trucks
нісн										
100	50000	18.40	855	200,850	446	183,273	1524	68	350,134	118
60	50000	18.7	869	204,125	446	183,273	1537	68	353,200	119
30	50000	21.2	985	231,414	446	183,273	1654	68	378,747	127
15	50000	23	1068	251,062	446	183,273	1737	68	397,141	133
10	50000	23.3	1082	254,337	446	183,273	1751	68	400,207	134
3	50000	25.5	1184	278,352	446	183,273	1853	68	422,689	142
0.3	50000	29	1347	316,557	446	183,273	2016	68	458,455	154
0.03	50000	32	1486	349,304	446	183,273	2155	68	489,112	164
MEDIUM						••••••••••••••••••••••••••••••••••••••				
100	50000	10	465	109,158	446	183,273	1133	68	264,294	89
60	50000	14.3	664	156,095	446	183,273	1333	68	308,236	· 104
30	50000	17.2	799	187,751	446	183,273	1468	68	337,871	113
15	50000	19	883	207,399	446	183,273	1551	68	356,265	120
10	50000	20.2	938	220,498	446	183,273	1607	68	368,528	124
	50000	22.8	1059	248,879	446	183,273	1728	68	395,098	133
0.3	50000	26.6	1236	290,359	446	183,273	1904	68	433,930	146
0.03	50000	29.8	1384	325,289	446	183,273	2053	68	466,631	156
1.0%										
100 60 30	50000	0	0	0	446	183,273	669	68	1 ,2,104	55
100,00,30	\$0000	7	325	76,410	446	183,273	994	68	2\$3,637	79
	\$0000	13.8	641	150,637	446	183,273	1310	68	3 3,127	102
10	\$0000	184	855	200.850	446	183,273	1524	68	350,134	. 118
		23.4	1087	255,429	446	183,273	1756	68	401,229	135
0.3	50000	27.7	1263	296.908	446	183,273	1932	68	440.061	148

4

: .

TABLE B.9.Detail of Costs and Other Parameters for Remediation of a Uranium Fuel Fabrication Facility
Soil Site, Without Soil Washing

-

4

NUREG-1496

	Transport Cost	Disposal Volume	Disposal Cha	irges		Average Disposal Cost	TOTAL COSTS	Excavation Labor	Floor Demo Labor	TOTAL LABOR	Occup. Dose
Rates:	\$1325/ truck		Northwest Compact	Southeast Compact	Out-of-SE Compact			1.62 manhr/m ²	4.07 manhr/m ²		0.1 mrem/hr
Units:	S		<u>s</u>	s	<u>s</u>	<u> </u>	s	man-hr	man-hr	man-hr	person-mrem
HIGH			· · · · · ·			*-		·			
100	156,350	1592	2,247,498	7,554,89	15,198,59	8,333,664	9,224,271	1385	1815	3199	320
60	157,675	1605	2,267,167	7,621,04	15,331,67	8,406,628	9,304,901	1407	1815	3222	322
30	168,275	1722	2,431,078	8,172,28	16,440,63	9,014,668	9,976,377	: 1595	1815	3410	341
15	176,225	1805	2,549,093	8,569,18	17,239,09	9,452,456	10,460,15	1731	1815	3546	355
10	177,550	1819	2,568,763	8,635,33	17,372,16	9,525,421	10,540,78	1753	1815	3568	357
3	188,150	1921	2,713,004	9,120,42	18,348,05	10,060,495	11,132,95	1919	1815	3734	373
0.3	204,050	2084	2,942,479	9,892,16	19,900,60	10,911,750	12,074,08	2182	1815	3997	400
0.03	217,300	2223	3,139,172	10,553,6	21,231,36	11,641,397	12,880,38	2408	1815	4223	422
MEDIUM				· · · · · · · · · · · · · · · · · · ·	· ·						1
100	117,925	1201	1,696,757	5,702,72	11,472,47	6,290,652	6,965,302	752	1815	2567	257
60	137,800	1401	1,978,684	6,650,86	13,379,89	7,336,479	8,121,884	1076	1815	2891	· 289
30	149,725	1536	2,168,820	7,290,30	14,666,29	8,041,805	8,900,425	1294	1815	3109	311
15	159,000	1619	2,286,836	7,687,19	15,464,74	8,479,593	9,385,531	1430	1815	3245	324
10	164,300	1675	2,365,513	7,951,79	15,997,05	8,771,452	9,708,051	1520	1815	3335	333
3	176.225	1796	2,535,981	8,525,08	17,150,37	9,403,813	10,407,28	1716	1815	: 3531	353
0.3	193,450	1972	2,785,125	9,362,97	18,836,00	10,328,032	11,429,04	2002	1815	3817	382
0.03	206,700	2121	2,994,931	10,068,5	20,255,47	11,106,323	12,288,21	2242	1815	4057	406
LOW				•							
100.60.30	72.875	737	1,041,114	3,497,75	7,036,619	3,858,495	4,276,748	0	1815	1815	181
15	104.675	1062	1,500,064	5,041,23	10,141,71	5,561,005	6,159,001	527	1815	2342	234
10	135,150	1378	1,945,902	6,540,61	13,158,10	7,214,872	7,987,059	1038	1815	2853	285
2	156 350	1592	. 2.247,498	7,554,89	15,198,59	8,333,664	9,224,271	1385	1815	3199	320
	178 875	1824	2.575.319	8,657,38	17,416,52	9,549,742	10,568,54	1761	1815	3576	358
0.0	196,100	2000	2.824.464	9.495.27	19.102.15	10.473.962	11.590.30	2047	1815	3862	386

<u>TABLE B.9.</u> Detail of Costs and Other Parameters for Remediation of a Uranium Fuel Fabrication Facility Soil Site, Without Soil Washing (continued)

	Contaminated Area	Soil Depth	Soil Volume	Soil Excavation Cost	Floor Area Removed	Floor Demo & Excavation	Total Soil Volume	Total Concrete Volume	Waste Packaging Cost	Transport Reqds
Rates:			L	\$235/m ³		\$411/m²			\$220/m	
Units:	ft²	cm	۲m	\$	m²	\$	ر س	m	S	# trucks
HIGH										
100	880000	18.40	15042	. 3,534,956	186	76,364	15321	28	0	0
60	880000	18.70	15288	3,592,592	186	76,364	15566	28	0	0
30	880000	21.20	17331	4,072,885	186	76,364	17610	28	0	0
15	880000	23.00	18803	4,418,696	186	76,364	19082	28	0	0
10	880000	23.30	19048	4,476,331	186	76,364	19327	28	0	0
3	880000	25.50	20847	4,898,989	186	76,364	21125	28	0	0
0.3	880000	29.00	23708	5,571,399	186	76,364	23987	28	0	0
0.03	880000	32.00	26161	6,147,750	186	76,364	26439	28	.0	0
MEDILIM										
100	880000	10.00	8175	1,921,172	186	76,364	. 8454	28	0	0
60	880000	14.30	11691	2,747,276	186	76,364	11969	28	:0	0
30	880000	17.20	14061	3,304,416	186	76,364	14340	28	' ว	0
	880000	19.00	15533	3,650,227	186	76,364	15812	28	0	0
10	880000	20.20	16514	3,880,767	186	76,364	16793	28	0	0
3	880000	22.80	18639	4,380,272	186	76,364	18918	28	0	0
	880000	26.60	21746	5,110,318	186	76,364	22025	28	0	0
0.03	880000	29.80	24362	5,725,093	186	76,364	24641	28	0	0
1.04										
100 60 30	880000	0.00	0	0	186	76,364	279	28	0	0
100,00,00	880000	7.00	5723	1,344,820	186	76,364	6001	28	0	0
10	880000/	13.80	11282	2,651,217	186	76,364	11560	28	0	0
10	880000	18.40	15042	3,534,956	186	76,364	15321	28	0	0
3	880000	23.40	19130	4,495,542	186	76,364	19409	28	0	0
0.03	880000	27.20	22237	5.225.588		76.364	22515	28	0	0

•

1. j. 1. 1.

٠

¥

• • •

<u>TABLE B.10</u>. Details of Costs and Other Parameters for Remediation of a Uranium Mill Soil Site, Without Soil Washing

۹.

4

	Transport Cost	Disposal Volume	Disposal Charg	ges		Average Disposal Costs	TOTAL COSTS	Excavation Labor	Floor Demo Labor	TOTAL LABOR	Occup. Dose
Rates:	\$1325/ truck		Northwest Compact	Southeast Compact	Out-of-SE Compact			1.62 manhr/m ³	4.07 manhr/m²		0.1 mrem/hr
Units:	S	m	s s	S	s	\$	s	man-hr	man-hr	man-hr	person
HIGH	• •										
100	3,426	0	0	0	0	0	3,614,746	24369	756	25125	2512
60	3,426	0 -	···· · 0 .	0	0	0	3,672,381	24766	756	25522	2552
30	3,426	O	- 0	0	<u> </u>	0	4,152,674	_ 28077	756	28833	2883
15	3,426	0	0	<u> </u>	0	0	4,498,485	30461	756	-31217	3122
10	3,426	0	0	0	0	<u> </u>	4,556,121	30858	756	31614	3161
3	3,426	0	0	0	0	<u> </u>	4,978,778	33772	756	34528	3453
0.3	3,426	0	0	0	0	o	5,651,189	38407	756	39163	3916
0.03	3,426	0	0	0	0	0	6,227,540	42380	<u>756</u>	43136	4314
MEDIU	. • .					- -					
100	3,426	0	0	0	0	0	2,000,962	13244	756	14000	1400
60	3,426		0	0	0	0	2,827,066	18939	756	19695	1969
30	3,426			0	0	<u> </u>	3,384,206	22779	756	23536	2354
15	3,426	0	0	0	0	0	3,730,017	25163	756	25919	2592
- 10	3,426	0	. 0	0	0	0	3,960,557	26753	756	27509	2751
3	3.426	0	0	0	0	0	4,460,062	30196	756	30952	3095
03	3.426	0	0	0	<u> </u>	0	5,190,107	35229	756	35985	3598
0.03	3.426	0	0	0	0	0	5,804,882	39467	756	40223	4022
LOW		•		, 							
100.60	3.426	0	0	0	0	0	79,790	0	756	756	76
14	3 426	0	0	0	0	0	1,424,610	9271	756	10027	1003
10	3 426		0	0	0		2,731,007	18276	756	19033	1903
	3 476	0	0	0	0	0	3,614,746	24369	756	25125	2512
	2 476	0	0	0	0	0	4,575,332	30991	756	31747	3175
0.3	2 476		0	0	0	0	5.305.378	36023	756	36779	3678

<u>TABLE B.10</u>. Details of Costs and Other Parameters for Remediation of a Uranium Mill Soil Site, Without Soil Washing (continued)

C.D.B-21

	Contaminated Area	Soil Depth	Soil Volume	Soil Excavation Cost	Floor Area Removed	Floor Demo & Excavation	Total Soil Volume	Total Concrete Volume	Waste Packaging Cost	Transport Reqds
Rates:				\$235/m ³		\$411/m ²			\$220/m ³	
Units:	ft²	cm	m ³	S	m²	\$	m³	m³	\$	# trucks
HIGH								· · · · · · · · · · · · · · · · · · ·		
100	100000	18.40	1709	401,700	223	91,637	2044	34	457, 11	153
60	100000	18.7	1737	408,249	223	91,637	2072	34	463, :43	155
30	100000	23	2137	502,125	223	91,637	2471	34	551, 26	185
15	100000	21.2	1969	462,828	223	91,637	2304	34	514,338	172
10	100000	23.3	2165	508,674	223	91,637	2499	. 34	557,258	187
. 3	100000	25.5	2369	556,703	_223	91,637	2703	34	602,221	202
0.3	100000	29	2694	633,114	223	91,637	3029	34	673,754	226
0.03	100000	32	2973	698,608	223	91,637	3307	34	735,068	246
MEDIUM										
100	100000	10	929	218,315	223	91,637	1263	34	285,432	96
60	100000	14.3	1328	312,190	223	91,637	1663	34	373,316	125
30	100000	17.2	1598	375,502	223	91,637	1932	34	432,586	145
15	100000	19	1765	414,799	223	91,637	2100	34	469,374	157
10	100000	20.2	1877	• 440,996	223	91,637	2211	34	493,900	166
3	100000	22.8	2118	497,758	223	91,637	2453	34	547,039	183
0.3	100000	26.6	<u>2471</u>	580,718	223	91,637	2806	34	624,703	209
0.03	100000	29.8	2768	650,579	223	91,637	3103	34	690,105	231
LOW										
100,60,30	100000	0	0	0	223	91,637	334	34	81,052	28
15	100000	0	0	0	223	91,637	334	34	81,052	28
10	100000	13.8	1282	301,275	223	91,637	1616	34	363,097	122
3	100000	18.4	1709	401,700	223	91,637	2044	34	457,111	153
0.3	100000	23.4	2174	510,857	223	91,637	2508	34	559,301	187
0.03	100000	27.2	2527	593.817	223	91.637	2861	34	636.966	213

<u>TABLE B.11</u>. Detail of Costs and Other Parameters for Remediation of a Uranium Hexafluoride Soil Site, Without Soil Washing

·

• •

.

¥.

۰.

. .

•

NUREG-1496

•

-

A.,

.

•

	Transport Costs	Disposal Volume	Disposal Char	ges		Average Disposal Cost	TOTAL COSTS	Excavation Labor	Floor De no Labor	TOTAL	Occup. Dose
Rates:	\$1325/ truck		Northwest Compact	Southeast Compact	Out-of-SE Compact			1.62 manhr/m ³	4.07; manhr/,n ²		0.1 mrem/ hr
Units:	\$	m ³	\$	<u>s</u>	5	<u>s</u>	S	man-hr	man-hr	man-hr	person-
HIGH					, 	· · ·	··· ·		*		
100	202,725	2078	2,933,856	9,863,166	19,842,265	10,879,762	12,032,93	2769	907	3677	368
60	205,375	2106	2,973,195	9,995,464	20,108,416	11,025,692	12,194,19	2814	907	3722	372
30	245,125	2505	3,537,048	11,891,738	23,923,254	13,117,347	14,507,35	3461	907	4369	437
15	227,900	2338	3,301,016	11,097,949	22,326,345	12,241,770	13,538,47	3191	907	4098	410
10	247,775	2533	3,576,386	12,024,036	24,189,405	13,263,276	14,668,61	3507	907	4414	441
3	267,650	2737	3,864,869	12,994,223	26,141,183	14,333,425	15,851,63	3838	907	4745	475
0.3	299,450	3063	4,323,820	14,537,702	29,246,283	16,035,935	17,733,88	4364	907	5272	527
0.03	325,950	3341	4,717,205	15,860,684	31,907,797	17,495,229	19,346,49	4816	907	5723	572
MEDIUM						· · · · · · · · · · · · · · · · · · ·				······	
100	127,200	1297	1,832,376	6,158,816	12,390,024	6,793,739	7,516,323	1505	907	2412	241
	165,625	1697	2,396,229	8,055,090	16,204,862	8,885,394	9,828,161	2152	907	3060	306
	192,125	1966	2,776,502	9,333,97 <u>3</u>	18,777,659	10,296,045	11,387,89	2589	907	3496	350
15	208,025	2134	3,012,533	10,127,762	20,374,568	11,171,621	12,355,45	2859	907	3767	- 377
10	219,950	2245	3,169,888	10,656,955	21,439,174	11,755,339	13,001,82	3040	907	3948	395
3	242,475	2487	3,510,822	11,803,539	23,745,820	13,020,060	14,398,96	3431	907	4339	434
0.3	276,925	2840	4,009,111	13,479,316	27,117,071	14,868,500	16,442,48	4003	907	4911	491
0.03	306,075	3137	4,428,723	14,890,497	29,956,020	16,425,080	18,163,47	4485	907	5392	539
LOW			**		···	·					
100.60.30	37,100	368	521,090	1,748,876	3,518,309	1,929,425	2,139,214	0	907	907	91
15	37,100	368	521,090	1,748,876	3,518,309	1,929,425	2,139,214	0	907	907	91
10	161,650	1650	2,330,665	7,834,593	15,761,276	8,642,178	9,559,836	2077	907	2984	298
3	202,725	2078	2,933,856	9,863,166	19,842,265	10,879,762	12,032,93	27 69	907	3677	368
0.3	247,775	2542	· 3,589,499	12,068,136	24,278,122	13,311,919	14,721,48	3522	907	4429	443
0.03	282.225	2895	4.087.788	13.743.913	27.649.374	15,160,358	16.765.00	4094	907		500

÷,

4

• • • •

TABLE B.11. Detail of Costs and Other Parameters for Remediation of a Uranium Hexafluoride Soil Site, Without Soil Washing (continued)

.

C.D.B-23

	Contaminated Area	Soil Depth	Soil Vol.	Soil Excavation Cost	Floor Area Removed	Floor Demo. & Excavation	Total Soil Vol.	Total Concrete Vol.	Soil Washing Cost	Waste Packaging Cost	Transport
Rates				\$235/m³		\$411/m ²				\$220/m ³	
Units	ft²	cm	m	\$	m² ́	m²	m	m,	\$	m	# trucks
HIGH								,			
100	5000	3.00	14	3,275	11	4,582	31	2	5,800	3,072	2
60	5000	4.3	20	4,694	11	4,582	37	2	7,000	3,603	2
30	5000	5.5	26	6,004	11	4,582	42	2	8,000	4,093	2
15	5000	.7	33	7,641	11	4,582	49	2	8,000	4,707	2
10	5000	7.3	34	7,968	11	4,582	51	2	9,600	4,829	2
3	5000	8.6	40	9,388	11	4,582	57	2	10,800	5,361	2
0.3	5000	11	51	12,007	11	4,582	68	2	12,900	6,342	3
0.03	5000	12.7	59	13,863	11	4,582	76	2	14,400	7,037	3
MEDIUM											
100	5000	0	0	0	11	4,582	17	2	5,400	1,845	1
60	5000	2.5	12	2,729	11	4,582	28	2	5,400	2,867	1
30	5000	4.5	21	4,912	11	4,582	38	2	7,100	3,685	2
15	5000	6	28	6,549	11	4,582	45	2	7,100	4,298	2
10	5000	6.4	30	6,986	11	4,582	46	2	8,800	4,461	2
3	5000	7.7	36	8,405	11	4,582	52	2	10,000	4,993	2
0.3	5000	10.2	47	11,134	11	4,582	64	2	12,200	6,015	3
C.03	5000	12	56	13,099	11	4,582	⁷⁷ 72	2	13,800	6,750	3
LOW											
100.60.30	5000	0	0	0	11	4,582	17	2	5,400	1,845	1
3	5000	3.6	17	3,930	11	4,582	33	2.	6,300	3,317	2
03	5000	7.3 ·	34	7,968	11	4,582	51	2	9,600	4,829	2
0.02	5000	97	45	10.588		4 582	62	2	11,800	5,810	

s

TABLE B.12. Detail of Costs and Other Parameters for Remediation of a Sealed Source Manufacturer Soil Site, With Soil Washing

. . •

NUREG-1496

à

4.

	Transport Cost	Disposal Volume	Disposal Charges			Average Disposal Cost	TOTAL COSTS	Soil Excavation Labor	Floor Demo Labor	Soil Washing Labor	TOTAL LABOR	Occup. Dose	
Rates	\$1325/ truck		Northwest Compact	Southeast Compact	Out-of-SE Compact			1.62 manhr/m ³	4.07 manhr/m²	0.17 manhr/ m³		0.1 mrem/hr	
Units	·· \$	m	S	\$	\$	s	S	man-hr	man-hr	man-hr	man-hr	Person- mrem	
HIGH	GH												
100	2,650	14	20,772	66,276	133,331	73,460	92,838	23	45	5	73	7	
60	2,650	16	24,181	77,742	156,398	86,107	108,636	32	45	6	84	8	
30	2,650	19	27,328	88,326	177,690	97,781	123,110	41	45	7	94	9	
15	2,650	21	31,262	101,556	204,305	112,374	139,954	53	45	8	106	11	
10	2,650	22	32,049	104,202	209,628	115,293	144,922	55	45	9	109	11	
3	2,650	24	35,458	115,667	232,694	127,940	160,720	65	45	10	120	12	
0.3	3,975	29	41,753	136,835	275,279	151,289	191,095	83	45	12	140	14	
0.03	3,975	32	46,211	151,829	305,443	167,827_	_211,684	96	45	13	154	15	
MEDI			· · · ·		· · · · · · · · · · · · · · · · · · ·						, 		
100	1.325	. 8	12,904	39,816	80,101	44,274	57,426			3	48	5	
60	1.325	13	19,461	61,866	124,460	68,595	85,498	19	45	5	69	7	
30	2,650	17	24,706	79,506	159,946	88,053	110,981	34	45	6	86	9	
15	2.650	20	28,640	92,736	186,562	102,646	127,825	45	45	8	98	10	
10	2.650	20	29,689	96,264	193,659	106,537	134,016	48	45	8	101	10	
1	2 650	23	33,098	107,730	216,725	119,184	149,814	58	45	9	112	11	
03	3 975	27	39,655	129,779	261,084	143,506	181,411	77	45	11	133	13	
	3 975	31	44,375	145,655	293,022	161,017	203,224	90	45	12	148	15	
1.01	5,515	<u> </u>											
100 60	1 325	8	12.904	39,816	80,101	44,274	57,426	. 0	45	3	48	5	
100,00,	2 650	15	22,346	71,568	143,977	79,297	100,075	27	45	6	78	8	
	2,030	22	32.049	104.202	209,628	115,293	144,922	55	45	9	109	11	
0.3	2 650	26	38,343	125.369	252.212	138.642	174.072	73	45	1	129	13	

TABLE B.12. Detail of Costs and Other Parameters for Remediation of a Sealed Source Manufacturer Soil Site, With Soil Washing (continued)

. 🗰

C.D.B-25

	Contaminated Area	Soil Depth	Soil Volume	Soil Excavation Cost	Floor Area Removed	Floor Demo & Excavation	Total Soil Volume	Total Concrete Volume	Soil Washing Cost	Waste Packaging Cost	Transport
Rates				\$235/m³		\$411/m ²				\$220/m³	
Units	ft ²	cm	m	s	m²	\$	m ³	m ³	\$	\$	# trucks
нісн											
100	5000	3.00	14	3,275	11	4,582	31	2	23,730	3,072	2
60	5000	4.5	21	4,912	11	4,582	38	2	25,060	3,685	2
30	5000	6.2	29	6,768	11	4,582	46	2	26,580	4,380	2
15	5000	7	33	7,641	11	4,582	49	2	26,700	4,707	2
10	5000	7.8	36	8,514	11	4,582	53	2	28,100	5,034	2
3	5000	11.5	53	12,553	11	4,582	70	2	31,330	6,546	3
0.3	5000	20.4	95	22,268	11	4,582	-111	2	39,130	10,184	. 4
0.03	5000	24.9	116	27,180	. 11	4,582	132	2	43,120	12,023	5
MEDIUM											
100	5000	0	0	0	11	4,582	17	2	21,000	1,845	1
60	5000	2.5	12	2,729	11	4,582	28	2	23,350	2,867	1
30	5000	4.5	21	4,912	11	4,582	38	2	25,060	3,685	2
15	5000	6	28	6,549	11	4,582	45	2	25,200	4,298	2
10	5000	6.4	30	6,986	11	4,582	46	2	26,580	4,461	2
3	5000	8.2	38	8,951	11	4,582	55	2	28,480	5,197	2
0.3	5000	16.4	76	17,902	11	4,582	93	2	35,710	8,549	3
0.03	5000	22.3	104	24,342	11	4,582	120	2	40,840	10,961	4
LOW											
100.60.30,10	. 5000	0	0	0	11	4,582	17	2	21,070	1,845	1
3	5000	3.6	17	3,930	11	4,582	33	2	24,300	3,317	2
0.3	5000	8.3	39	9,060	11	4,582	55	2 .	28,480	5,238	2
0.03	5000	18.6	86	20,303	11	4,582	103	2	37,610	9,448	4

A.,

.

TABLE B.13. Detail of Costs and Other Parameters for Remediation of a Generic R&D Facility Soil Site, With Soil Washing

.

:

NUREG-1496

₫.

di.

	Transport Cost	Disposal Volume	Disposal Cha	rges		Average Disposal Cost	TOTAL COSTS	Excavation Labor	Floor Demo Labor	Soil Washing Labor	TOTAL LABOR	Occup. Dose		
Rates	\$1325/ truck		Northwest Compact	Southeast Compact	Out-of-SE Compact			1.62 manhr/m³	4.07 manhr/ m ²	0.17 manhr/m ³		0.1 mrem/hr		
Units		m	\$	\$	\$	\$	\$	man-hr	man-hr	man-hr	man-hr	person-		
HIGH														
100	2,650	14	20,772	66,276	133,331	73,460	110,768	23	45	5	73	7		
60	2,650	17	24,706	79,506	159,946	88,053	128,941	34	45	6	86	9		
30	2,650	20	29,164	94,500	190,110	104,591	149,551	47	45	8	100	10		
15	2,650	21	31,262	101,556	204,305	112,374	158,654	53	45	8	106	11		
10	2,650	23	33,360	108,612	218,500	120,157	169,037	59	45	9	113	11		
3	3,975	30	43,064	141,245	284,150	156,153	215,139	87	45	12	144	14		
0.3	- 5,300	46	66,405	219,742	442,067	242,738	324,202	154	45	19	218	22		
0.03	6,625	55	78,206	259,431	521,912	286,517	380,047	187	45	23	255	26		
MEDIU								r	····			*		
100	1,325	8	12,904	39,816	80,101	44,274	73,026	0	45	3	48	5		
60	1,325	13	19,461	61,866	124,460	68,595	103,448	19	45	5	. 69 .	7.		
30	2,650	17	24,706	79,506	159,946	88,053	128,941	34	45	6	86	9.		
- 15	2,650	20	28,640	92,736	186,562	102,646	145,925	45	45	8	98	10		
10	2,650	20	29,689	96,264	193,659	106,537	151,796	48	45	8	101	10		
3	2,650	24	34,409	112,139	225,597	124,049	173,909	62	45	9	116	12		
0.3	3,975	39	55,915	184,462	371,093	203,823	274,541	123	45	16	185	18		
0.03	5,300	50	71,388	236,500	475,779	261,222	347,247	168	45	20	234	23		
LOW		· .				•								
100.60.	1,325	8	12,904	39,816	80,101	44,274	73,096	0	45	3	48	5		
3	2,650	15	22,346	71,568	143,977	79,297	118,075	27	45	6	78	8		
0.3	2,650	24	\$4,672	113,021	227,371	125,022	175,031	62	45	9	117	12		
0.03	\$ 300	43	61.684	203,866	410,129	225,226	302_470_	140	_45	18	203	20		

 TABLE B.13.
 Detail of Costs and Other Parameters for Remediation of a Generic R&D Facility Soil Site,

 With Soil Washing (continued)

·. ·

•

• •

C.D.B-27

						and the second second second second second second second second second second second second second second second				·····	and the second se
	Contaminated Area	Soil Depth	Soil Volume	Soil Excavation Cost	Floor Area Removed	Floor Demo & Excavation	Total Soil Volume	Total Concrete Volume	Soil Washing Cost	Waste Packaging Cost	Transport Reqds
Rates:				\$235/m ³		\$411/m ²				\$220/m ³	
Units:	ft ²	cm	m³	5	m²	S	^ر س	r, m	\$		# trucks
нісн											
100	500	3.00	1	327	43	17,564	65	7	12,500	7,196	3
60	500	4.5	2	491	43	17,564	66	7	12,600	7,258	3
30	500	6.2	3	677	43	17,564	67	7	12,700	7,327	3
15	500	7	3	764	43	17,564	67	7	12,800	7,360	3
10	500	7.8	4	851	43	17,564	68	7	12,900	7,393	3
3	500	11.5	5	1,255	43	17,564	69	7	13,100	7,544	3
0.3	500	20.4	9	2,227	43	17,564	74	7	13,900	7,908	3
0.03	500	24.9	12	2,718	43	17,564	76	7	14,400	8,091	3
MEDIUM						······					
100	500	0	0	0	43	17,564	64	7	12,300	7,074	3
60	500	2.5	1	273	43	. 17,564	65	7	12,400	7,176	3
30	500	4.5	2	491	43	17,564	66	7	12,600	_7,258	3
15	500	6	3	655	43	17,564	67	7	12,700	7;319	3
10	500	6.4	3	699	43	17,564	67	7	12,800	7,335	3
3	500	8.2	4	895	43	17,564	68	7	12,900	7,409	3
0.3	500	16.4	8	1,790	43	17,564	72	7	13,700	7,744	3
0.03	500	22.3	10	2,434	43	17,564	74	7	14,200	7,985	3
LOW											
100 60 30	500	0	0	0	43	17,564	64	7	12,300	7,074	3
3	500	3.6	2	393	43	17,564	66	7	12,500	7,221	3
0.3	500	8.3	4	906	43	17,564	68	7	12,900	7,413	3
0.03	500	18.6	9	2,030	43	17,564	73	7	13,800	7,834	3

<u>TABLE B.14</u>. Details of Costs and Other Parameters for Remediation of a Dry ISFSI Soil Site, With Soil Washing

. * *

.

•

· . .

٨.

.

, **·**

C.D.B-28

.

4

٨

	Transport Cost	Disposal Volume	Disposal Charges			Average Disposal Cost	TOTAL COSTS	Excavation Labor	Floor Demo Labor	Soit Washing Labor	TOTAL LABOR	Occup. Dose	
Rates:	\$1325/truck		Northwest Compact	Southeast Compact	Out-or-SE Compact			1.62 manhr/m³	4.07 manhr/ m²	0.17 manhr/m ³		0.1 mrem/hr	
Units:	\$	۲, m	. S	\$	\$	\$	S	man-hr	man-hr	man-hr	man-hr	Person- mrem	
нісн													
100	3,975	33	47,236	155,276	312,377	171,629	213,192	2	174	<u>. n</u>	187	19	
60	3,975	33	47,629	156,599	315,038	173,089	214,976	3	174	. 11	189	- 19	
30	3,975	33	48,075	158,098	318,055	174,743	216,985	5	174	11	190	19	
15	3,975 -	33	48,285	158,804	319,474	175,521	217,983	5	174	11	191	19	
· 10	3,975	34	48,495	159,509	320,893	176,299	218,982	66	174	12	191	19	
3	3,975	34	49,465	162,773	327,459	179,899	223,336	9	174	12	194	19	
0.3	3,975	- 36 _	51,799	170,622	343,250	188,557	234,130	15	174	13	202	20	
0.03	3,975	- 37	52,979	174,591	351,235	192,935	239,683	19		13	. 206	21	
MEDIUM													
100	3,975	- 32 -	46,449	152,630	307,054	168,711	209,623	0	174 :	11	185	. 18 .	
60	3,975	- 33	47,105	154,835	311,489	171,143	212,530	2	174	<u> </u>	187	19	
- 30	3,975	33	47,629	156,599	315,038	173,089	214,976	3	174	<u> </u>	189	19	
15	3,975	33	48,023	157,922	317,700	174,548	216,761	5	174	11		19	
10	3.975	33	48,128	158,275	318,409	174,937	217,310	. 5	· 174	11			
3	3.975	34	48,600	159,862	321,603	176,688	219,431	.6	174	12	192	19	
0.3	3,975	35 .	50,750	167,094	336,153	184,666	229,439	12	174	12	198	20	
0.03	3.975	36	52,297	172,298	346,621	190,406	236,564	17	174	13	203	20	
LOW													
100 60 30	3 975	32	46,449	152,630	307,054	168,711	209,623	0	174	- 11	185	18	
200,00,00	3,975	33	47,393	155,805	313,441	172,213	213,866	3	174	11	188	19	
03	3 975	34	48,626	159,950	321,781	176,786	219,543	6	174	12	192	19	
0.03	3,975	36	51,327	169,035	340,056	186,806	232,009	14	174	12	200	20	

TABLE B.14. Details of Costs and Other Parameters for Remediation of a Dry ISFSI Soil Site, With Soil Washing (continued)

C.D.B-29

	Contaminated Area	Soil Depth	Soil Volume	Soil Excavation Cost	Floor Area Removed	Floor Demo & Excavation	Total Soil Volume	Total Concrete Volume	Soil Washing Cost	Waste Packaging Cost	Transport Reqds
Rates:				\$235/m²		\$411/m ²				\$220/m²	
Units:	ft²	cm	m)	s	m²	m²	^د m	^د m	\$	s	# trucks
HIGH						·					
100	5000	3.00	14	3,275	186	76,364	293	28	55,600	31,981	11
60	5000	4.5	21	4,912	186	76,364	300	28	56,900	32,595	11
30	5000	6.2	29	6,768	186	76,364	307	28	58,400	33,289	12
15	5000	7	33	7,641	186	76,364	311	28	58,600	33,616	12
10	5000	7.8	36	8,514	186	76,364	315	28	59,800	33,943	12
3	5000	11.5	53	12,553	186	76,364	332	28	63,000	35,456	12
0.3	5000	20.4	95	22,268	186	76,364	373	28	70,900	39,094	14
0.03	5000	24.9	116	27,180	186	76,364	394	28	74,900	40,933	14
MEDIUM						······					
100	5000	0	0	0	186	76,364	279	28	53,000	30,755	11
60	5000	2.5	12	2,729	186	76,364	290	28	55,100	31,777	11
30	5000	4.5	21	4,912	186	76,364	300	28	56,099	32,595	11
15	5000	6	28	6,549	186	76,364	307	28	56,200	33,208	12
10	5000	6.4	30	6,986	186	76,364	308	28	58,400	33,371	12
3	5000	8.2	38	8,951	186	76,364	317	28	59,800	34,107	12
0.3	5000	16.4	76	17,902	186	76,364	355	28	_67,300	37,459	13
0.03	5000	22.3	104	24,342	186	76,364	382	28	72,600	39,870	14
LOW						······		·····	<u>_</u>		
100.60.30,10	5000	0	0	0	186	76,364	279	28	53,000	30,755	11
3	5000	3.6	17	3,930	186	76,364	295	28	56,100	32,227	11
0.3	5000	8.3 ·	39	9,060	186	76,364	317	28	60,200	34,148	12
0.03	5000	18.6	86	20,303	186	76,364	365	28	69,300	38,358	13

*

۰.

<u>TABLE B.15</u>. Detail of Costs and Other Parameters for Remediation of a Test Reactor Soil Site, With Soil Washing

. . . .

≪,

*

•

.

NUREG-1496

C.D.B-30

÷

	Transport Cost	Disposal Volume	Disposal Ch	Disposal Charges			TOTAL COSTS	Excavation Labor	Floor Demo Labor	Soil Washing Labor	TOTAL LABOR	Occup. Dose	
Rates:	\$1325/ truck		Northwest Compact	Southeast Compact	Out-or-SE Compact			1.62 manhr/m ³	4.07 manhr/m ²	0.17 manhr/m ³	r ana T	0.1 mrem/hr	
Units:	\$	m³	S	S	S	s	S	man-hr	man-hr	man-hr	man-hr	person- mrem	
HIGH													
100	14,575	145	206,255	690,067	1,388,246	761,523	943,318	23	756	50	829	83	
60	14,575	148	210,189	703,297	1,414,861	776,116	961,461	. 34	756	51	841	84	
30	15,900	151	214,647	718,291	1,445,025	792,654	983,375	47	756	52	855	86	
15	15,900	153	216,745		1,459,220	800,437	992,559	53	756	53	862	86	
10	15,900	154	218,843	732,403	1,473,414	808,220	1,002,7	- 59	756	54	868	87	
3	15,900	161	228,547	765,036	1,539,065	844,216	1,047,4	87	756	56	899	90	
0.3	18,550	178 -	251,888	843,533	1,696,982	930,801	1,157,9	· . 154	756	63	973	97	
0.03	18,550	186	263,689	883,223	1,776,827	974,580	1,212,5	187	756	67	1011	101	
MEDIUM													
100	14,575	140	198,387	663,608	1,335,016	732,337	907,031	<u> </u>	756	47	804	80	
60	14,575	144	204,944	685,657	1,379,374	756,658	937,203	19	756	49	824	82	
30	14.575	148	210,189	703,297	1,414,861	776,116	960,660	34	756	51	841	84	
15	15.900	151	214,123	716,527	1,441,476	790,709	978,930	: 45	756	52	853	85	
10	15,900	152	215,172	720,055	1,448,574	794,600	985,621	48	756	52	857	86	
3	15.900	155	219,892	735,931	1,480,512	812,112	1,007,2	62		54	872	87	
0.3	17.225	170	241,398	808,254	1,626,008	891,886	1,108,1	- 123	756	60	940	94	
0.03	18,550	181	256,871	860,291	1,730,694	949,285	1,181,0	168	756	65	989	99	
LOW			•				\$	•					
100.60.30.	14.575	140	198,387	663,608	1,335,016	732,337	907,031	0	756	47	804	80	
3	14,575	146	207,829	695,359	1,398,892	767,360	950,555	27	756	50	834	83	
0.3	15.900	· 155	220,155	736,813	1,482,286	813,085	1,008,7	62	756	54	873	87	
0.03	17,225	174	247,167	827,658	1,665,043	913,289	1,134,8	140	756	62	95 8	96	

TABLE B.15. Detail of Costs and Other Parameters for Remediation of a Test Reactor Soil Site, With Soil Washing (continued)
		Contaminated Area	Soil Depth	Soil Volume	Soil Excavation Cost	Floor Area Removed	Floor Demo & Excavation	Total Soil Volume	Total Concrete Volume	Soil Washing Cost	Waste Packaging Cost	Transport Regds
Rates:					\$235/m ³		\$411/m ³				\$220/m ³	
Units:		ft ³	cm	m3	S	m²	\$	ru,	a,	S	\$	# trucks
нісн												
	100	500	3.00	1	327	65	26,727	99	10	18,800	10,887	4
	60	500	4.5	2	491	65	26,727	100	10	19,000	10,948	4
	30	500	6.2	3	677	65	26,727	100	10	19,100	11,018	4
	15	500	7	3	764	65	26,727	101	10	19,100	11,050	4
	10	500	7.8	4	851	65	26,727	101	10	19,200	11,083	4
	3	500	11.5	5	1,255	65	26,727	103	10	19,600	11,234	4
	0.3	500	20.4	9	2,227	65	26,727	107	10	20,400	11,598	4
	0.03	500	24.9	12	2,718	65	26,727	109	10	20,700	11,782	4
MEDIUM												
	100	500	0	0	0	65	26,727	98	10		10,764	4
	60	500	2.5	1	273	65	26,727	99	10	18,800	10,866	4
	30	500	4.5	2	491	65	26,727	100	10	19,000	10, 9 48	4
	15	500	6	3	655	65	26,727	100	10	19,000	11,010	4
	10	500	6.4	3	699	65	26,727	101	10	19,100	11,026	4
	3	500	8.2	4	895	65	26,727	101	10	19,200	11,099	4
	0.3	500	16.4	8	1,790	65	26,727	105	10	19,600	11,435	4
	0.03	500	22.3	10	2,434	65	26,727	108	10	20,500	11,676	4
LOW			_				·····					
100.60.	30,10	500	0	0	0	65	26,727	98	10	18,600	10,764	4
	3	500	3.6	2	. 393	65	26,727	99	10	18,800	10,911	4
	0.3	500	8.3'	4	906	65	26,727	101	10	19,200	11,104	4
	0.02	500	18.6	9	2,030	65	26,727	106	10	19,700	11,525	4

*

<u>TABLE B.16</u>. Detail of Costs and Other Parameters for Remediation of a Research Reactor Soil Site, With Soil Washing

a,

.

.

	Transport Cost	Disposal Volume	Disposal Cha	irgés		Average Disposal Cost	TOTAL COSTS	Excavation Labor	Floor Demo Labor	Soil Washing Labor	TOTAL LABOR	Occup, Dose
Rates:	\$1325/ truck		Northwest Compact	Southeast Compact	Out-of-SE Compact			1.62 manht/m³	4.07 manhr/m ²	0.17 manhr/m³		0.1 mrem/hr
Units:	S	יייי (שר ^{ייי}	\$	S	1965 \$ 2009	5	\$	· man-hr	man-hr	man-br	man-hr	person- mrem
нідн							•					
100	5,300	. 49	70,915	234,909	472,579	259,467	321,509	2	265	17	284	28
60	5,300	50	71,308	236,232	475,240	260,927	323,393	3	265	17	285	28
30	5,300	50	71,754	237,731	478,256	262,580	325,402	5	265	17	286	29
15	5,300	50	71,964	238,437	479,676	263,359	326,301	5	265		287	29
10	5,300	50	72,173	239,142	481,095	264,137	327,299	6	265	17	288	29
3	5,300	51	73,144	242,406	487,660	267,737	331,854	9	265	17	291	29
0.3	5,300	53	75,478	250,255	503,452	276,395	342,647	15	265		298	30
0.03	- 5.300	54	76,658	254,224	511,437	280,773	348,000	19	265		302	
MEDIU					· ·		.			, ,		<u></u>
100	5.300		70,128	232,263	467,255	256,549	317,940	0	265	17	281	28
60	5,300	49	70,783	234,468	471,691	258,981	320,948	2	265	17	283	28
30	5,300	50	71,308	236,232	475,240	260,927	323,393	3	265	17	285	28
15	5,300	50	71,701	237,555	477,902	262,386	325,078	- 5	265	17	286	29
10	5,300	50	71,806	237,907	478,611	262,775	325,627	5	265	17	287	29
3	5,300	50	72,278	239,495	481,805	264,526	327,748	6	265	17	288	29
03	5.300	· 52	74,429	246,727	496,355	272,504	337,356	12	265	18	295	29
0.03	5,300	53	75,976	251,931	506,823	278,244	344,881	17	265	18	300	30
1.0W		· ·			1	· · · · · · · · · · · · · · · · · · ·		• •				
100.60.3	5,300	49	70,128	232,263	467,255	256,549	317,940	0	265	17	281	28
2 2	5,300	50	71,072	235,438	473,643	260,051	322,183	3	265	17	284	28
01	5 300	50	· 72,305	239,583	481,983	264,623	327,860	6	265	17	288	29
0.03	5,300	52	75,006	248,668	500,258	274,644	339,926	14	265	18	297	30

 TABLE B.16.
 Detail of Costs and Other Parameters for Remediation of a Research Reactor Soil Site,

 With Soil Washing (continued)

 \sim

	And and the owner of the owner, where th			the second second second second second second second second second second second second second second second s			the second second second second second second second second second second second second second second second s			the second second second second second second second second second second second second second second second s	
	Contaminated Area	Soil Depth	Soil Votume	Soil Excavation Cost	Floor Area Removed	Floor Demo & Excavation	Total Soil Volume	Total Concrete Volume	Soil Washing Cost	Waste Packaging Cost	Transport Regds
Rates:				\$235/m²		\$411/m ²				\$220/m²	
Units:	ft²	cm	m	s	m²	S	rm,	щ	s	s	# trucks
нісн		1									h
100	2000	3.00	6	1,310	465	190,910	702	71	133,000	77,378	26
60	2000	4.5	8	1,965	465	190,910	705	71	134,000	77,624	26
30	2000	6.2	12	2,707	465	190,910	708	71	134,000	77,901	27
15	2000	7	13	3,056	465	190,910	710	71	134,000	73,032	27
10	2000	7.8	14	3,406	465	190,910	711	71	135,000	73,163	27
3	2000	11.5	21	5,021	465	190,910	718	71	136,000	73,768	27
0.3	2000	20.4	38	8,907	465	190,910	735	71	139,000	80,223	27
0.03	2000	24.9	46	10,872	465	190,910	743	71	141,000	80,959	28
MEDIU											
100	2000	0	0	0	465	<u>190,910</u>	_697	71	132,000	76,888	26
60	2000	2.5	5	1,092	465	190,910	70;	71	133,000	77,297	26
30	2000	4.5	8	1,965	465	190,910	705	71	134,000	77,624	26
15	2000	6	11	2,620	465	190,910	708	71	134,000	77,869	27
10	2000	6.4	12	2,794	465	190,910	709	71	134,000	77,934	27
	2000	8.2	15	3,580	465	190,910	712	71	135,000	78,228	27
0.3	2000	16.4	30	7,161	465	190,910	727	71	137,000	79,569	27
0.03	2000	22.3	41	9,737	465	190,910	738	71	140,000	80,534	27
LOW											
100.60.3	2000	0	0	0	465	190,910	697	71	132,000	76,888	26
3	2000	3.6	7	1,572	465	190,910	703	71	133,000	77,476	26
0.3	2000	8.3	15	3,624	465	190,910	712	71	135,000	78,245	27
0.03	2000	18.6	35	8,121	465	190,910	731	71	137,000	79,929	27

.

*

•

• .

•••

TABLE B.17. Details of Costs and Other Parameters for Remediation of a Power Reactor Soil Site, With Soil Washing

.

a.

6.

....

	Transport Cost	Disposal Volume	Disposal Cha	rges		Average Disposal Cost	TOTAL COSTS	Excavation Labor	Floor Demo Labor	Soil Washing Labor	TOTAL LABOR	Occup. Dose
Rates:	\$1325/ truck		Northwest Compact	Southeast Compact	Out-of-SE Compact			1.62 manhr/m³	4.07 manhr/m ²	0.17 manhi m ³		0.1 mrem/hr
Units:		m ³	\$	S	. \$.	\$	S . <u>-</u> .	man-hr	man-hr	man-1f	man-hr	person- mrem
HIGH			•				· · ·					
100	34,450	352	497,518	1,669,603	3,358,831	1,841,984	2,279,032	9	1891	119	2019	202
60	34,450	353	499,091	1,674,895	3,369,477	1,847,821	2,286,769	24	1891	120	2024	202
. 30	35,775	354	500,875	1,680,893	3,381,543	1,854,437	2,295,730	19	1891	120	2030	203
15	35,775	355	501,714	1,683,715	3,387,221	1,857,550	2,299,323	21	1891	121	2032	203
10	35,775	355	502,553	1,686,537	3,392,899	1,860,663	2,303,916	23	1891	121	2035	203
3	35,775	358	506,435	1,699,591	3,419,159	1,875,062	2,321,535	35	1891	122	2047	205
0.3	35,775	365	515,771	1,730,990	3,482,326	1,909,695	2,364,510	61	1891	125	2077	208
0.03	37,100	368	520,492	1,746,865	3,514,264	1,927,207	2,388,048	75	1891	126	2092	209
MEDII							·	· .				
100	34,450	349	494,371	1,659,019	3,337,539	1,830,310	2,264,557	0	1891	118	2009	201
60	34,450	351	496,993	1,667,839	3,355,283	1,840,038	2,276,786	8	1891	119	2017	202
30	34,450	353	499,091	1,674,895	3,369,477	1,847,821	2,286,769	14	1891	120	2024	202
15	35.775	354	500,665	1,680,187	3,380,123	1,853,659_	2,294,832	18	1891	120	2029	203
10	35.775	354	501,085	1,681,598	3,382,962	1,855,215	2,296,628	19	1891	120	2030	203
3	35,775	356	502,973	1,687,949	3,395,738	1,862,220	2,305,713	25	1891	121	2036	204
0.3	35.775	362	511,575	1,716,878	3,453,936.	1,894,130	2,344,544	49	1891	124	2064	206
0.03	35.775	366	517,764	1,737,693	3,495,811	1,917,089	2,374,044	67	1891	125	2083	208
LOW												
100.60	34,450	349	494,371	1,659,019	3,337,539	1,830,310	2,264,557	0	1891	118	2009	201
3	34,450	352	498,147	1,671,720	3,363,090	1,844,319	2,281,727	11	1891	120	2021	202
0.3	35,775	356	503,078	1,688,301	3,396,447	1,862,609	2,306,162	25	1891	121	2037	204
0.03	35.775	363	513,883	1,724,639	3,469,550	1,902,691	2,354,426	56	1891	124	2071	207

TABLE B.17. Details of Costs and Other Parameters for Remediation of a Power Reactor Soil Site, With Soil Washing (continued)

•

•

NUREG-1496

		And the second se	a sea de la contrata de la contrata					the second second second second second second second second second second second second second second second s			· · · · · · · · · · · · · · · · · · ·	
	_	Contaminated Area	Soil Depth	Soil Volume	Soil Excavation Cost	Floor Area Removed	Floor Demo & Excavation	Total Soil Volume	Total Concrete Volume	Soil Washing Cost	¹ Waste ≌ackaging Cost	Transport Reqds
Rates:					\$235/m ³		\$411/m ²				\$220/m³	
Units:		ft ²	cm		\$	m²	s	m ³	m,	S	\$	# trucks
HIGH										·····		
	100	100000	0.80	74	17,465	279	114,546	492	.42	95,500	52,673	18
[60	100000	1.1	102	24,015	279	114,546	520	42	98,800	55,125	19
	30	100000	1.2	111	26,198	279	114,546	530	42	101,000	55,943	19
	15	100000	1.4	130	30,564	279	114,546	548	42	101,000	<u>57,578</u>	20
	10	100000	1.5	139	32,747	279	114,546	557	42	106,000	58,395	20
	3	100000	2	186	43,663	279	114,546	604	42	115,000	62,483	21
	0.3	100000	2.6	242	56,762	279	114,546	660	42	125,000	67,388	23
	0.03	100000	3.1	288	67,678	279	114,546	706	42	134,000	71,476	24
1.0W								.	•			
	100	100000	0.2	19	4,366	279	114,546	437	42	82,900	47,768	16
	60	100000	0.4	37	8,733	279	114,546	455	42	86,500	49,403	17
	30	100000	0.6	56	13,099	279	114,546	474	42	90,000	51,038	18
	15	100000	1.1	102	24,015	279	114,546	520	42	90,000	55,125	19
	10	100000	1.1	102	24,015	279	114,546	520	42	98,800	55,125	19
	3	100000	1.3	121	28,381	279	114,546	539	42	102,000	56,760	19
	0.3	100000	2	186	43,663	279	114,546	604	42	115,000	62,483	21
	0.03	100000	2.6	242	56,762	279	114.546	660	42	125,000	67,388	23

.

4

æ

<u>TABLE B.18.</u> Detail of costs and Other Parameters for Remediation of a Rare Metals Extraction Soil Site, With Soil Washing

.

6.

15

	Transport Cost	Disposal Volume	Disposal Cha	rges	· · · ·	Average Disposal Cost	TOTAL COSTS	Excavation Labor	Floor Demo Labor	Soil Washing Labor	TOTAL LABOR	Occup. Dose
Rates:	\$1325/ truck		Northwest Compact	Southeast Compact	Out-of-SE Compact			1.62 manhr/m³	4.07 manhr/ m ²	0.17 manhr/m ³		0.1 mrem/h
Units:	S	m	\$	S	5	\$	S	man-hr	man-hr	man-hr	man-hr	person- mrem
HIGH			· ·									
100	23,850	239	339,010	1,136,530	2,286,418	1,253,986	1,558,020	120	1134	84	1338	134
60	25,175	251	354,745	1,189,449	2,392,879	1,312,358	1,630,018	- 166 .	1134	88	1388	139
30	25,175	254	359,990	1,207,089	2,428,366	1,331,815	1,654,676	181	1134	90	1405	140
15	26,500	262	370,481	1,242,368	2,499,340	1,370,729	1,700,917	211	1134	93	1438	144
10	26,500	265	375,726	1,260,008	2,534,826	1,390,187	1,728,375	226	1134	95	1455	145
3	27,825	284	401,951	1,348,207	2,712,261	1,487,473	1,850,990	301	1134	103	1538	154
0.3	30,475	306	433,422	1,454,045	2,925,182	1,604,217	1,998,387	391	1134	112	1638	164
0.03	31,800	325	459,648	1,542,244	3,102,616	1,701,503	2,121,002	467	1134	120	1721	172
LOW						·	· · · · · · · · · · · · · · · · · · ·				···	
100	21,200	217	307,539	1,030,691	2,073,497	1,137,242	1,411,622 -	30	1134	74	1239	124
60	22,525	225	318,029	1,065,971	2,144,471	1,176,157	1,461,363	60	1134	77	1272	127
30	23,850	232	328,519	1,101,250	2,215,445	1,215,071	1,516,404_	90	1134	81	1305	131
15	25,175	251	354,745	1,189,449	2,392,879	1,312,358	1,633,218	166	1134	88	1388	139
10	25,175	251	354,745	1,189,449	2,392,879	1,312,358	1,633,218	166	1134	88	1388	139
3	25,175	258	365,235	1,224,728	2,463,853	1,351,272	1,691,134	196	1134	92	1422	142
0.3	27,825	284	401,951	1,348,207	2,712,261	1,487,473	1,860,990	301	1134	103	1538	154
0.03	30.475	306	433,422	1.454.045	2.925,182	1.604.217	1.873.387	391	_1134	112		164

TABLE B.18. Detail of costs and Other Parameters for Remediation of a Rare Metals Extraction Soil Site, With Soil Washing (continued)

C.D.B-37

BLE B.19	2. Details of W	Cost and ith Soil V	Other Pa Vashing	rameters for	Remediatio	on of a Uraniı	ım Fuel F	abrication :	Soll Site,		
	Contaminated Area	Soil Depth	Soil Volume	Soil Excavation Cost	Floor Area Removed	Floor Demo & Excavation	Total Soil Volume	Total Concrete Volume	Soil Washing Cost	Waste Packaging Cost	Transport Reqds
Rates:				\$235/m²		\$411/m²				\$220/m ³	
Units:	ſt²	сш	ໜ່	S	m ²	\$	ر س	m,	S	S	# trucks
HIGH									- <u>1</u>		
100	50000	18.40	855	200,850	446	183,273	1524	68	289,000	149,024	50 SO
60	50000	18.7	869	204,125	446	183,273	1537	68	292,000	150,250	<u></u> 51
30	50000	21.2	985	231,414	446		1654	68	314,000	160,469	54
15	50000	23	1068	251,062	446	183,273	1737	68	314,000	167,827	57
10	50000	23.3	1082	254,337	446	183,273	1751	68	332,000	169,053	57
3	50000	25.5	1184	278,352	446	183,273	1853	68	352,000	178,046	60
				1							

<u>TA</u>] ٢

€.

43

							•				
3	50000	25.5	1184	278,352	446	183,273	1853	68	352,000	178,046	60
0.3	50000	29	1347	316,557	446	183,273	2016	68	383,000		65
0.03	50000	32	1486	349,304	446	183,273	2155	68	409,000	204,615	69
MEDILIM									-	. •	
100	50000	10	465	109,158	446	183,273	1133	68.	215,000	114,688	39
60	50000	14.3	664	156,095	446	183,273	1333	68	253,000	132,265	45
30	50000	17.2	799	187,751	446	183,273	1468	68	279,000	144,119	49
	50000	19	883	207,399	446	183,273	1551	68	279,000	151,477	51
10	50000	20.2	938	220,498	446	183,273	1607	68	305,000	156,382	53
	\$0000	22.8	1059	248,879	446	183,273	1728	68	328,000	167,010	56
	\$0000	26.6	1236	290.359	446	183,273	1904	68	362,000	182,542	62
0.02	\$0000	29.8	1384	325,289	446	183,273	2053	68	390,000	195.623	66
0.03	30000										
100	60000		0	0	446	183,273	669	68	127,000	73,812	25
100,60,30	50000		325	76 410	446	183.273	994	68	249,000	102.425	35
15	5000		641	150 637	446	183.273	1310	68	249.000	130.221	44
10	50000	13.8	041	100,057	446	183 273	1524	68	289.000	149 024	50
3	50000	18.4		200,830	446	193 272	1756	68	333,000	169 462	57
0.3	50000	23.4	1087	255,429	440	103,273	1022	60	367,000	194 006	
0.03	50000	27.2	1263	296.908	1 440	103,273	1932	60	1_20/.000	109,777	02

s

	Transport Cost	Disposal Volume	Disposal Cha	irges	•	Average Disposal Cost	TOTAL COSTS	Excavation Labor	Floor Demo Labor	Soil Washing Labor	TOTAL LABOR	Occup. Dose
Rates:	\$1325/		Northwest	Southeast	Out-of-SE			1.62	4.07	0.17	÷	0.1
Units:	\$	رس س	\$	\$	\$	\$	\$	man-hr	man-hr	man-hr	man-hr	person-
HIGH												
100	66,250	677	957,192	3,215,516	6,468,829	3,547,179	4,435,576	1385	1815	259	3458	346
60	67,575	683	965,060	3,241,976	6,522,059	3,576,365	4,473,588	1407	1815	261	3483	348
30	71,550	729	1,030,624	3,462,473	6,965,645	3,819,581	4,780,287	1595	1815	281	3691	369
15	75,525	763	1,077,830	3,621,231	7,285,027	3,994,696	4,986,383	1731	1815	295	3841	384
10	75,525	768	1,085,698	3,647,691	7,338,257	4,023,882	5,038,070	1753	1815	298	3866	387
3	79,500	809	1,143,395	3,841,728	7,728,612	4,237,912	5,309,082	1919	1815	315	4049	405
0.3	86,125	874	1,235,185	4,150,424	8,349,632	4,578,414	5,739,721	2182	1815	343	4340	434
0.03	91,425	930	1,313,862	4,415,020	8,881,935	4,870,272	6,107,890	2408	1815	366	4589	459
MED				· · · · · · · · · · · · · · · · · · ·	· · · ·		••			·		
100_	51,675	521	736,896	2,474,647	4,978,381	2,729,974	3,403,768	752	1815	193	2760	276
60_	59,625	601	849,666	2,853,901	5,741,348	3,148,305	3,932,564	1076	1815	227	3118	312
30	64,925	655	925,721	3,109,678	6,255,908	3,430,436	4,289,504	1294	1815	250	3359	336
15	67,575	689	972,927	3,268,436	6,575,289	3,605,551	4,494,275	1430	1815	264	3508	351
10	70,225	711	1,004,398	3,374,274	6,788,211	3,722,294	4,657,672	1520	1815	273	3608	361
3	74,200	759	1,072,585	3,603,591	7,249,540	3,975,239	4,976,600	1716	1815	294		382
0.3	82,150	830	1,172,243	3,938,747	7,923,790	4,344,927	5,445,251	2002	1815	324	4140	414
0.03	87,450	889	1,256,165	4,220,983	8,491,580	4,656,243	5,837,878	2242	1815	349	4405	441
LOW				· · · ·	· · · ·		·- ·		· ·			
100.6	33,125	336	474,639	1,592,659	3,204,038	1,757,112	2,174,322	. 0	1815	114	1929	193
15	46,375	466	658,219	2,210,050	4,446,078	2,438,116	3,095,599	527	1815	169	2511	251
10	58,300	592	836,554	2,809,802	5,652,631	3,099,662	3,871,094	1038	1815	223	3076	308
	66,250	677	957,192	3,215,516	6,468,829	3,547,179	4,435,576	1385	1815	259	3458	346
0.2	75.525	770	1,088.321	3,656,510	7,356,000	4,033,610	5,050,299	1761	1815	298	3874	387
0.03	82 150	841	1.187.978	3.991.666	8.030.251	4.403.298	5.517.625	2047	1815	328	4190	419

 TABLE B.19.
 Details of Cost and Other Parameters for Remediation of a Uranium Fuel Fabrication Soil Site,

 With Soil Washing (continued)

C.D.B-39

	Contaminated Area	Soil Depth	Soil Volume	Soil Excavation Cost	Floor Area Removed	Floor Demo & Excavation	Total Soil Volume	Total Concrete Volume	Soil Washing Cost	Waste Packaging Cost	Transport Regds
Rates:				\$235/m ³		\$411/m ²				\$220/m ³	
Units:	ft²	çm	m	\$	m²	S	m,	^{m3}	s	S	# trucks
нідн					·						
100	880000	18.40	15042	3,534,956	186	76,364	15321	28	2,230,000	1,348,254	451
60	880000	18.70	15288	3,592,592	186	76,364	15566	28	2,266,000	1,369,837	458
30	880000	21.20	17331	4,072,885	186	76,364	17610	28	2,551,000	1,549,691	518
15	880000	23.00	18803	4,418,696	186	76,364	19082	28	2,650,000	1,679,186	562
10	880000	23.30	19048	4,476,331	186	76,364	19327	28	2,803,000	1,700,769	569
3	880000	25.50	20847	4,898,989	186	76,364	21125	28	3,046,000	1,859,040	622
0.3	880000	29.00	23708	5,571,399	186	76,364	23987	28	3,439,000	2,110,837	706
0.03	880000	32.00	26161	6,147,750	186	76,364	26439	28	3,768,000	2,326,662	778
MED											·
100	880000	10.00	8175	1,921,172	186	76,364	8454	28	1,340,000	743,943	249
60	880000	14.30	11691	2,747,276	186	76,364	11969	28	1,794,000	1,053,293	353
30	880000	17.20	14061	3,304,416	186	76,364	14340	28	2,099,000	1,261,924	422
15	880000	19.00	15533	3,650,227	186	76,364	15812	28	2,247,000	1,391,419	466
10	880000	20.20	16514	3,880,767	186	76,364	16793	28	2,448,000	1,477,749	494
3	880000	22.80	18639	4,380,272	186	76,364	18918	28	2,743,000	1,664,798	557
· 03	880000	26.60	21746	5,110,318	186	76,364	22025	28	3,155,000	1,938,176	648
0.03	- 880000	29.80	24362	5,725,093	186	76,364	24641	28	3,509,000	2,168,390	725
10%											
100.6	880000	0.00	0	0	186	76,364	279	28	53,000	24,526	9
14	880000	7.00	5723	1,344,820	186	76,364	6001	28	1,021,000	528,118	177
10	880000	13.80	11282	2,651,217	186	76,364	11560	28	1,731,000	1,017,322	341
- 10	880000	18.40	15042	3,534,956	186	76,364	15321	28	2,230,000	1,348,254	451
	880000	23.40	19130	4,495;542	186	76,364	19409	28	2,795,000	1,707,963	571
0.01	880000	27,20	22237	5.225.588	186	76.364	22515	28	3.226.000	1.981.341	663

•..

٨

Ħ

.

.

TABLE B.20. Detail of Costs and Other Parameters for Remediation of Uranium Mill Soil Site, With Soil Washing

•

-

45

o

. . .

	Transport Costs	Disposal Volume	Disposal Cha	irges		Average Disposal Cost	TOTAL COSTS	Excavation Labor	Floor Demo Labor	Soil Washing Labor	TOTAL LABOR	Occup. Dose
Rates:	\$1325/		Northwest	Southeast	Out-or-SE	. .		1.62	4.07	0.17		0.1
Units:	\$	m ³	\$	S	5	5	\$	man-hr	man-hr	man-hr	man-hr	person-
нісн												
100	597,575	6128	8,651,358	29,091,491	58,524,930	32,089,260	39,876,409	24369	756	2605	27729	2773
60	606,850	6227	8,789,830	29,557,181	59,461,783	32,602,931	40,514,573	24766	756	2646	28168	2817
30	686,350	7044	9,943,761	33,437,928	67,268,892	36,883,527	45,819,817	28077	756	2994	31827	3183
15	744,650	7633	10,774,59	36,232,066	72,890,011	39,965,556	49,534,452	30461	756	3244	34461	3446
10	753,925	7731	10,913,06	36,697,756	73,826,864	40,479,228	50,289,616	30858	756	3286	34900	3490
3	824,150	8450	11,928,52	40,112,813	80,697,120	44,246,152	54,950,695	33772	756	3591	38119	3812
0.3	935,450	9595	13,544,02	45,545,859	91,627,073	_50,238,987	62,372,036	38407	756	4078	43241	4324
0.03	1,030,850	10576	14,928,74	50,202,755	100,995,604	55,375,702	68,725,328	42380	756	4495	47631	4763
MED	l.				· · · ·	· •						
100	329,925	3382	4,774,147	16,052,181	32,293,043	17,706,457	22,117,861	13244	756	1437	15437	1544
60	467,725	4788	6,758,910	22,727,066	45,721,271	25,069,082	31,207,740	18939	756	2035	21730	2173
30	559,150	5736	8,097,471	27,228,733	54,777,517	30,034,574	37,335,427	22779	756	2438	25973	2597
15	617,450	6325	8,928,301	30,022,871	60,398,636	33,116,603	41,099,062	25163	756	2688	28607	2861
10	654,550	6717	9,482,189	31,885,629	64,146,048	35,171,289	43,708,719	26753	756	2855	30363	3036
3	738,025	7567	10,682,27	35,921,606	72,265,442	39,623,109	49,225,567	30196	756	3216	34168	3417
0.3	858,600	8810	12,436,25	41,820,342	84,132,248	46,129,615	57,268,072	35229	756	3744	39729	3973
0.03	960,625	9856	13,913,28	46,787,698	94,125,348	51,608,778	64,048,249	39467	756	4189	44412	4441
LOW						· · · · · · · · · · · · · · · · · · ·					······	·
100,60,	11,925	111	158,419	529,193	1,064,606	584,073	749,887	0	756	47	804	80
15	234,525	2401	3,389,429	11,395,285	22,924,512	12,569,742	15,774,569	9271	756	1020	11047	1105
10	451,825	4624	6,528,123	21,950,917	44,159,849	24,212,963	30,140,691	18276	756	1965	20998	2100
3	597,575	6128	8,651,358	29,091,491	58,524,930	32,089,260	39,876,409	24369	756	2605	27729	2773
0.3	756,575	7763	10,959,22	36,852,985	74,139,148	40,650,452	50,481,896	30991	756	3299	35046	3505
0.03	878.475	9006	12.713.19	42.751.721	86.005.954	47.156.958	58.544.726	36023	756	3828	40607	4061

TABLE B.20. Detail of Costs and Other Parameters for Remediation of a Uranium Mill Soil Site, With Soil Washing (continued)

4

C.D.B-41

	Contaminated	Soil	Soil	Soil	Floor	Floor Demo	Total	Total	Soil	Waste	Transport
Rates:				\$235/m ³		\$411/m ²				\$220/m²	
Units:	ft²	cm	m ³	S	m ¹	s	m ³	m ³	s	\$	# trucks
нісн								-			
100	100000	18.40	1709	401,700	223	91,637	2044	34	388,000	187,330	63
60	100000	18.7	1737	408,249	223	91,637	2072	34	393,000	189,782	64
30	100000	21.2	1969	462,828	223	91,637	2304	34	437,000	210,220	71
15_	100000	23	2137	502,125	223	91,637	2471	34	450,000	224,936	76
10	100000	23.3	2165	508,674	223	91,637	2499	34	747,000	227,388	76
3	100000	25.5	2369	556,703	223	91,637	2703	34	513,000	245,374	83
0.3	100000	29	2694	633,114	223	91,637	3029	34	575,000	273,987	92
0.03_	100000	32	2973	698,608	223	91,637	3307	34	632,000	298,513	100
MEDIUM					·	·····	· ········	1	······	·	
100_	100000	10	929	218,315	223	91,637	1263	34	240,000	118,658	40
60	100000	14.3	1328	312,190	223	91,637	1663	34	316,000	153,811	52
30	100000	17.2	1598	375,502	223	91,637	1932	34	367,000	177,520	60
15	100000	19	1765	414,799	223	91,637	2100	34	375,000	192,235	65
10	100000	20.2	1877	440,996	223	91,637	2211	34	420,000	202,045	68
3	100000	22.8	2118	497,758	223	91,637	2453	34	466,000	223,301	75
0.3	100000	26.6	2471	580,718	223	91,637	2806	34	533,000	254,366	86
0.03	100000	29.8	2768	650,579	223	91,637	3103	34	589,000	280,527	94
LOW							r	r			
100,60,30	100000	0	0	0	223	91,637	334	34	63,500	36,906	13
15	100000	7	650	152,821	223	91,637	985	34	150,000	94,133	32
10	100000	13.8	1282	301,275	223	91,637	1616	34	307,000	149,724	51
3	100000	18.4	1709	401,700	223	91,637	2044	34	388,000	187,330	63
0.3	100000	23.4	2174	510,857	223	91,637	2508	34	467,000	228,206	77
0.03	100000	27.2	2527	593.817	223	91.637	2861	34	543.000	259.272	87

<u>TABLE B.21</u>. Detail of Costs and Other Parameters for Remediation of Uranium Hexafluoride Facility Soil Site, With Soil Washing

•

C.D.B-42

4

¥2

4 -

ħ

	Transport	Disposal	Disposal Chan	jes		Average	TOTAL	Excavation	Floor	Soil	TOTAL	Оссир.
Rates:	\$1325/		Northwest	Southeast	Out-of-SE	: 		1.62	4.07	0.17	-	0.1
Units:	\$	m,	s	S	S	S	S	man-hr	man-br	man-hr	man-hr	person
HIGH												
100	83.475	827	1,202,958	4,042,045	8,131,601	4,458,868	5,611,009	2769	907	347	4024	402
60	84,800	838	1,218,694	4,094,964	8,238,062	4,517,240	5,684,708	2814	907	352	4074	407
30	94.075	931	1,349,823	4,535,958	9,125,233	5,003,671	6,299,431	3191	907	· 392	4490	449
15	100.700	997	1,444,235	4,853,474	9,763,997	5,353,902	6,723,299	3461	907	420	4789	479
10	100.700	· 1009	1,459,971	4,906,393	9,870,457	5,412,274	7,087,672	3507	907	425	4839	484
	109.975	1090	1,575,364	5,294,468	10,651,168	5,840,333	7,357,022	3838	907	460	5205	520
03	121.900	1220	1,758,944	5,911,860	11,893,208	6,521,337	8,216,974	4364	907	515	5787	579
0.03	132,500	1332	1,916,298	6,441,052	12,957,814	7,105,055	8,958,312	4816	907	562	6286	629
MED										r		
100	53,000	514	762,366	2,560,305	5,150,705	2,824,459	3,546,068	1505	907	215	2627	263
60	68,900	674	987,908	3,318,815	6,676,640	3,661,121	4,603,659	2152	907	283	3342	334
30	79,500	782	1,140,017	3,830,368	7,705,759	4,225,381	5,316,539	2589	907	328	3825	382
15	86.125	849	1,234,429	4,147,884	8,344,522	4,575,612	5,735,407	2859	907	357	4124	412
10	90,100	893	1,297,371	4,359,561	8,770,365	4,809,099	6,053,877	3040	907	376	4323	432
3	99,375	990	1,433,745	4,818,194	9,693,023	5,314,987	6,693,058	3431	907	417	4756	476
0.3	113,950	1131	1,633,060	5,488,505	11,041,524	6,054,363	7,628,034	4003	907	477	5388	539
0.03	124,550	1250	1,800,905	6,052,978	12,177,103	6,676,995	8,413,288	4485	907	527	5920	592
LOW								1	r			
100,60	17,225	143	237,852	796,329	1,602,019	878,733	1,088,001	0	907	57	964	96
15	42,400	403	605,012	2,031,112	4,086,099	2,240,741	2,771,731	1053	907	167	2128	213
10	67,575	656	961,682	3,230,616	6,499,206	3,563,834	4,481,045	2077	907	275	3259	326
3	83,475	827	1,202,958	4,042,045	8,131,601	4,458,868	5,611,009	2769	907	347	4024	402
0.3	102,025	1012	1,465,216	4,924,033	9,905,944	5,431,731	6,831,455	3522	907	426	4856	486
0.03	115,275	1154	1.664.531	5.594.344	11.254,445	6.171.107	7.774.107	4094	907	486	5487	549

• . •

TABLE B.21. Detail of Costs and Other Parameters for Remediation of Uranium Hexafluoride Facility Soil Site, With Soil Washing (continued)

· · .

C.D.B-43

.

•

NUREG-1496

:

ATTACHMENT E

DETAILED GROUNDWATER INFORMATION

NUREG-1496

C.E-1

. .

ATTACHMENT E

DETAILED GROUNDWATER INFORMATION

Cost Analysis of Remediating Existing Groundwater Contamination at NRC Licensed Sites

Introduction

The cost analysis was undertaken to estimate the total cost of reducing existing groundwater contamination, at NRC licensed sites, to various dose objectives. The dose objectives evaluated were: 1) 25 mrem/y total effective dose equivalent (TEDE), 2) 15 mrem/y TEDE, 3) 3 mrem/y TEDE, and background.

The goal of this cost analysis is to determine the costs associated with reducing the concentration of radionuclides in groundwater, at a composite NRC-licensed site, to concentrations that result in a dose of 25, 15, and 3 mrem/y TEDE to an individual who drinks 2 liters of groundwater per day. The composite site contamination concentration (and other generic site variables) was based on an analysis of contaminated groundwater at NRC-licensed sites with existing groundwater contamination. The analysis also evaluated the differential cost of further reducing the concentration of radionuclides in groundwater at the composite NRC-licensed sites to background concentrations.

NRC-licensed sites with existing groundwater contamination (Table C.E.2) can be divided into two types; 1) sites where the groundwater is contaminated primarily with uranium, and 2) sites where the groundwater is contaminated primarily with man-made beta particle radioactivity (at NRC-licensed sites these are H-3, Sr-90, or Tc-99).

The analysis evaluates the costs of reducing the existing concentration of radionuclides in groundwater at the composite NRC-licensed sites to the TEDE dose objectives and the total cost of providing replacement water. The physical aspects of the composite sites evaluated were derived from a review of data from NRC-licensed sites known to have groundwater contamination (Table C.E.2).

2

The analysis looked at the technical aspects of remediating the existing contamination, using available technology, and estimating the total cost to reduce the contamination to each identified level.

NUREG-1496

L

Assumptions Used

The groundwater dose pathway is the only significant exposure pathway operating at each site. The groundwater contamination plume remains within a controlled area for the duration of regulatory concern, and no offsite individual is affected by the plume.

Dose Reduction (mrem/y)	Initial Plume Size ¹ (ft)	Initial Ave. Conc. (pCi/l)	Final Ave. Conc. (pCi/l)	Years	$\frac{\text{Generic Assumptions}}{K_{d} = 20}$
25 to 15	75x150	2625	2000	1	Hydraulic Cond. = 100 ft/day
25 to 3	same	2625	500	12	Porosity = 0.35
25 to back- ground ²	same	2625	8	68	

Assumptions for composite Sr-90 site.

¹Area of plume that is at the initial average concentration or greater ²MCL of 8 pCi/l

Assumptions for composite uranium site.

Dose Reduction (mrem/y)	Initial Plume Size ¹ (ft)	Initial Ave. Conc. (pCi/l)	Final Ave. Conc. (pCi/l)	Years	$\frac{\text{Generic Assumptions}}{K_{d} = 15}$
25 to 15	500x1000	1333	800	26	Hydraulic Cond. = 100 ft/day
25 to 3	same	1333	200	148	Porosity = 0.35
25 to back- ground ²	same	1333	30	459	

¹Area of plume that is at the initial average concentration or greater ²Proposed MCL of 30 pCi/l

The values used in the tables in Chapter 6.4 and in Chapter 8 of Appendix C for the cases in going from 15-3 mrem/y were obtained by interpolation of the results presented in the tables above.

Cost Estimate Modeling

The cost estimates were done using the Cost of Remedial Action (CORA) model version 3.0 (EPA). This code calculates the capital and first year operations and maintenance (O&M) costs for various remedial actions that could be taken at a contaminated site.

Explanation of Cost Categories

Capital Costs

One time costs for site development, technology design, and construction costs of building a pump and treat remediation system. Value obtained from applying EPA's CORA model to a composite NRC-licensed Sr-90 or uranium site.

<u>O&M Costs</u>

First year technology operation and maintenance costs for a pump and treat remediation system. Value obtained from applying EPA's CORA model to a composite NRC-licensed Sr-90 or uranium site. Value multiplied by number of years required to meet remediation goal in the groundwater. Out-year estimates were not discounted.

The remedial actions considered here were pump and treat of contaminated groundwater and supplying water. The cost modules considered for the pump and treat remedial action were:

٠

- 1) Removal (aggressive pumping)
- 2) Treatment (ion exchange)
- 3) Disposal of wastes
- 4) Effluent release from the system
- 5) Groundwater monitoring
- 6) Site health & safety
- 7) Site administration

Additional costs were incurred from:

- 1) Start-up (capital)
- 2) Insurance (capital and O&M)
- 3) Permitting (capital and O&M)
- 4) Construction services (capital)
- 5) Contingencies (capital and O&M)

NUREG-1496

L

The costs to supply water were based on a scenario of 25 people living above the contaminated groundwater plume therefore having to install a 100-ft deep well outside the plume and distributing the water to 6 households. Capital costs included costs to install the system and operate and maintain it for 1000 years for uranium case. For Sr-90, operation is for 286 years.

For background information, a list of indicators for potential subsurface soil groundwater contamination used by the NRC as part of their groundwater contamination considerations is included in Table C.E.1.

NUREG-1496

Table C.E.1

List of Indicators for Potential Subsurface Soil Groundwater Contamination

Based on the experience gained from operational and decommissioning NRC-licensed facilities, the following is a list of potential indicators for groundwater contamination at decommissioning facilities:

<u>High Potential</u> - If a site has a history of or currently has:

- Unlined lagoons, pits, canals, or surface-drainage ways that received radioactively contaminated liquid effluent.
- Lined lagoons, pits, canals, or surface drainage ways that received radioactively contaminated liquid effluent, where the lining has leaked, ruptured, or where overflow has occurred.
- Septic systems, dry wells, or injection wells that received radioactively contaminated liquid effluent.
- Storage tanks, waste tanks, and/or piping (above or below ground) that held or transported radioactively contaminated fluids and are known to have leaked.
- Liquid or wet radioactive waste buried onsite (i.e., burial under 10 CFR 20.302 or 20.304 (or the current 10 CFR 20.2002)).
- An accident or spill onsite where radioactive material was released exterior to a building.
- Wet bulk waste (e.g., sludge or tailings) stored exterior to buildings or used as backfill.

.

• Containerized-liquid waste, stored exterior to buildings, that has leaked.

Medium Potential - If a site has a history of or currently has:

- Surface water or atmospheric discharge of radioactive effluents.
- Radioactive contamination detected on the roof of a building.
- Radioactive contamination detected in the floor cracks or sump of a building.

NUREG-1496

ı

Table C.E.1 (continued)

- An accident or spill onsite, where liquid radioactive material was released to the interior of a building.
- The presence of greater than 10-year-old underground storage tank or underground piping that held radioactively contaminated fluids, not known to have leaked, but never tested.
- A history of incineration of radioactive waste exterior to buildings onsite.
- Dry bulk waste (i.e., sludge or tailings) stored exterior to buildings or used as backfill.
- Solid containerized waste, stored exterior to buildings, that has leaked.

Low Potential - If a site has a history of or currently has:

- Less than 10-year-old underground storage tanks or underground piping that has held radioactively contaminated fluids and is known not to have leaked.
- Dry bulk waste stored inside of the buildings.
- A sealed-source-only license.

The potential for groundwater contamination at any of these sites is conditioned by certain site characteristics such as depth to groundwater, amount of yearly precipitation and hydraulic conductivity, and by certain source characteristics such as half-life, solubility, and distribution coefficient.

NUREG-1496

Table C.E.2

Groundwater Contamination at NRC Licensed Facilities

Examples of reported^{*} radionuclide concentrations in groundwater at NRC-licensed facilities, not including uranium milling and mining sites

SD	MP Sites
Safety Light	696 Bq (18,800 pCi)/l strontium-90 6770 Bq (183,000 pCi)/l tritium
Westinghouse - Waltz Mill	9 Bq (250 pCi)/1 strontium-90
UNC - Wood River Junction	0.28 Bq (7.5 pCi)/1 strontium-90
RMI	22,000 Bq (600,000 pCi)/l technetium-99 12,000 μ g/l enriched uranium
Sequoyah Fuels	20,300 μ g/l natural uranium
Fansteel	48 Bq (1300 pCi)/l gross beta 930 Bq (25,000 pCi)/l natural uranium
Cimmarron	83 Bq (2250 pCi)/l enriched uranium
Nuclear Metals	100 μ g/l depleted uranium
Engelhard	48 Bq (1300 pCi)/l gross alpha
Whittaker	43 Bq (1160 pCi)/l gross beta 2.8 Bq (76 pCi)/l gross alpha
B&W - Apollo	4.7 Bq (126 pCi)/l gross beta 1.7 Bq (47 pCi)/l gross alpha
Other 1	Material Sites
Cintichem	0.9 Bq (24 pCi)/l strontium-90
NFS - Erwin	37 Bq (10,000 pCi)/l enriched uranium
GE - Wilmington	3.7 Bq (1000 pCi)/l enriched uranium
ABB/CE - Hematite	11 Bq (300 pCi)/l gross beta
Siemens	2.5 Bq (68 pCi)/l gross beta3.2 Bq (87 pCi)/l gross alpha

2

NUREG-1496

.

•

۰.

C.E-8

• • •

	Table C.E.2 (continued)
	Reactor Sites
TMI-2	18,500 Bq (500,000 pCi)/l tritium
Big Rock Point	1500 Bq (40,000 pCi)/l tritium
Dresden-1	850 Bq (23,000 pCi)/l tritium
Yankee-Rowe	300 Bq (8000 pCi)/l tritium
Humboldt Bay	96 Bq (2600 pCi)/l tritium
D.C. Cook	63 Bq (1700 pCi)/l tritium

Data were reported in units used here.

APPENDIX D

TERMINATION SURVEY CONSIDERATIONS AND DETAILED ANALYSIS OF COSTS OF TERMINATION SURVEYS

APPENDIX D

D.1 Introduction

Survey cost estimates were developed for four reference facilities. The specific information regarding each facility was obtained from the Pacific Northwest National Laboratory (PNNL), previous Environmental Survey and Site Assessment Program (ESSAP) survey reports, or the corresponding NUREG documents describing each facility. For each facility, the "affected" areas, as defined in NUREG/CR-5849 (NRC, 1992A), were estimated based on reference facility descriptions. It should be noted that for the purpose of survey planning, the areas considered as affected were larger than the area actually decontaminated.

D.2 Modifications Made in Response to Public Comments

A number of public comments, noted in Appendix H, were received on survey methods and costs. The estimates of survey costs at various alternative residual dose levels for the four facilities are presented in the following section based on survey methods described below.

D.3 Overall Survey Methodology Approach

D.3.1 Bases of Survey Techniques

The costs of radiological surveys for license termination are based on survey techniques which a licensee would use in the decommissioning of its facility. Methodologies for conducting surveys are based on the approaches recommended in the Multi-Agency Radiological Site Survey Manual (MARSSIM) (MARS, 1996) developed jointly by the NRC, EPA, DOE, and DOD and published for public comment in December 1996. These methodologies are based on the analyses contained in NUREGs-1505, 1506, and 1507 (NRC, 1995a, b, c). Based on this survey methodology, cost estimates for carrying out the surveys are estimated based on appropriate instrumentation and labor costs.

D.3.2 Dose Conversion Factors

Dose conversion factors are used in the determination of costs by converting the concentration of the principal contaminant radionuclide to a dose that corresponds to the alternative residual dose levels being considered. Dose conversion factors for Co-60, Cs-137, Th-232, and natural uranium for several exposure scenarios (as described in NUREG/CR-5512 (NRC, 1992b) are contained in Appendix C.

D.3.3 Instrumentation

The instruments considered for performing the final survey were standard commercially available instruments currently used by ESSAP. These instruments include large area gas proportional detectors, GM detectors, ZnS and NaI scintillation detectors coupled with ratemeter-scalers.

D.4 Survey Costs

D.4.1 Labor Cost

The labor costs for the decommissioning activities, including the overhead costs, were provided to the Oak Ridge Institute for Science and Education (ORISE) by the NRC. These hourly rates were \$22.99, \$36.82, \$70.99, and \$105.99 for secretarial support, health physics technician, supervisor, and project management, respectively. In estimating man-hours necessary to complete the survey, time was also allowed for daily instrument check-outs, QA activities, etc., based on ESSAP field survey experience. In estimating total man-hours, project management and clerical times were also considered in the planning and report preparation phases of activities.

D.4.2 Analytical Cost

In order to represent average costs of commercially available radiochemistry analyses, cost tables from sources other than ESSAP were also considered. These included the Eberline and the International Technology (IT) Corporation. Additional information was obtained from M. H. Chew and Associates, Inc., which is compiling similar types of information for the Department of Energy.

D.4.3 Special Services

The only item applicable to these cost estimates is the cost of land survey. The cost of such contracts was estimated based on similar subcontracts by ESSAP and by contacting a local engineering/land surveying firm.

D.5 Detailed Survey Analysis for Reference Facilities

D.5.1 Survey Cost Estimate Introduction and Assumptions

To facilitate survey design and assure that the number of survey data points for a specific site is relatively uniformly distributed among areas of similar contamination potential, the reference site is divided into survey units which have a common history or other characteristics, or are naturally distinguishable from other portions of the site.

\$

The limitation on survey unit size for Class 1 and Class 2 areas ensures that each area is assigned an adequate number of data points. Because the number of data points—determined by the nonparametric statistical tests—is independent of the survey unit size, the survey coverage in an area is determined by dividing the fixed number of data points obtained from the statistical tests by the survey unit area.

Survey units are limited in size, based on classification and site-specific conditions. One important factor in assigning survey units is the relative homogeneity of the surveyed area. The suggested maximum areas for survey units, used for this cost estimate exercise, are

provided below. It should be stressed that these survey unit sizes may be altered based on site conditions with reasonable justification.

Typical Maximum Survey Unit Sizes

Area	Typical Maximum
Class 1	
Structures	200 m ² floor area
Land areas	$10,000 \text{ m}^2$
Class 2	
Structures	200 to 1,000 m^2
Land areas	$10,000 \text{ m}^2$
Class 3	
Structures	no limit
Land areas	no limit

The indoor and outdoor scan coverages for each of the survey unit classifications are 100% for Class 1, 50 to 100% for Class 2, and 10% for Class 3. For this cost estimate, it is assumed that 75% of Class 2 areas are scanned.

The number of samples for Class 1 areas is determined either by nonparametric statistics or based on the hot spot potential. The number of samples for Class 2 and Class 3 areas are determined solely by nonparametric statistics. A reference area is needed for all radionuclides that are present in background and for radionuclides that are assessed using gross measurement techniques—such as surface activity measurements using a gas proportional detector.

Survey costs are estimated for alternative residual dose levels of 100, 60, 25, 15, and 3 mrem/y. These cost estimates are derived from methodology presented in MARSSIM (MARS, 1996) and NUREGs-1505, 1506, and 1507 (NRC, 1995a, b, c). An explanation of the methodology and parameters for each of the alternative residual dose criteria for the reference facilities are presented in the following sections.

In developing survey cost estimates for alternative residual dose levels of 100, 60, 25, 15, and 3 mrem/y, the only parameters that change at these dose levels are the DCGL and standard deviation. The classification and number of survey units remain the same for the alternate residual dose levels, therefore the scan coverage will remain the same for each dose level. The number of samples required at each dose level will likely change due to the change in the DCGL relative to the scan MDC—the area factor will also get larger as the DCGL is decreased, resulting in more samples to satisfy the potential for small areas of elevated activity. Similarly, the area factor will also get smaller as the DCGL is increased, resulting in fewer samples necessary to satisfy the potential for small areas of elevated activity.

The following discussion of cost estimates made for each of the alternative residual dose levels is somewhat repetitive for the various levels, but it is done so that the survey methods and costs can be understood as each dose level is considered.

D.5.2 Power Reactor

Although the power reactor may be contaminated with many different fission and activation product radionuclides, the two contaminants that deliver greater than 95% of the dose are Co-60 and Cs-137. Based on Appendix C, these radionuclides are assumed to be present at a ratio of Co-60 to Cs-137 of approximately 3-to-1.

D.5.2.1 Survey Cost Estimate for 100 mrem/y

Surface Activity and Soil Concentration Dose Conversion Guideline Levels (DCGLs)

For the Appendix C concentration ratio for Co-60 to Cs-137, the gross activity DCGL for surface activity is 40,900 dpm/100 cm² total beta. Compliance with the surface activity DCGL will be demonstrated by measuring the total beta surface activity. Using the same assumptions, the combined DCGL for Co-60 is 18.3 pCi/g. Compliance with the soil DCGL will be demonstrated based on the Co-60 concentration as measured by gamma spectrometry.

Surface Activity and Soil Concentration Backgrounds and Standard Deviations (σ 's)

Surface Activity

The expected background for beta surface activity measurements is $2,000 \pm 600 \text{ dpm}/100 \text{ cm}^2$ (1 σ).

Class I Stanuary deviation is 17,000 uphi/100 ch	lass 1	Standard deviation is 17,000 dpm/10) cm²
--	--------	-------------------------------------	-------

Class 2 Standard deviation is 10,000 dpm/100 cm²

Class 3 Standard deviation is 600 dpm/100 cm²

Soil Concentrations

Co-60 is not expected to be present in background.

- Class 1 Standard deviation is 7.3 pCi/g
- Class 2 Standard deviation is 7 pCi/g
- Class 3 Standard deviation is 0.2 pCi/g

Indoor Areas

Reference Area

It is assumed that all measurements are performed on concrete in a reference area. The number of measurements equals 6 (from nonparametric statistics).

Instrumentation for Surface Activity Measurements and Scans

Surface activity measurements will be performed with a gas proportional detector; the MDC for 1 minute measurements is $425 \text{ dpm}/100 \text{ cm}^2$.

The surfaces will be scanned with both a floor monitor (573 cm²) and a 126 cm² gas proportional detector. The scan MDC for the floor monitor is 3600 dpm/100 cm² and 2000 dpm/100 cm² for the gas proportional detector. Gamma scans will also be performed over approximately 60% of the floor areas in the power reactor facility.

<u>Number of Surface Activity Measurement: Indoor Areas and Exterior Paved Areas and</u> <u>Structures (based on nonparametric stats or driven by hot spot potential)</u>

Because the scan MDCs are sufficiently below the DCGL, the number of samples in Class 1 areas will be determined by nonparametric statistics.

The number of surface activity measurements per survey unit based on nonparametric statistics—considering both the Wilcoxon Rank Sum and Quantile tests—is 6250. It is assumed that an additional 2302 (includes 550 measurements from exterior surfaces) measurements are collected based on scan results for a total of 8552 direct surface activity measurements. The number of measurements based on scans will be assumed based on 1 additional measurement per 10 m² of scanned area in Class 1, 1 additional measurement per 50 m² of scanned area in Class 3 areas.

Outdoor Areas

It should be recognized that the outdoor areas include both soil areas and exterior building surfaces and paved areas. It is general practice for surface activity measurements to be performed on outdoor surfaces such as exterior structures and paved areas.

Reference Areas

It is assumed that all background soil samples, if necessary, are collected from an offsite reference area. Because Co-60 measurements will be used to demonstrate compliance with criteria for outdoor areas, a reference area is not needed.

For exterior paved areas, it is assumed that all measurements are performed on asphalt in a reference area. The number of measurements equals 6 (from nonparametric statistics).

Instrumentation for Surface Scans

Soil surfaces will be scanned with a NaI scintillation detector. The scan MDC for Co-60 is approximately 5 pCi/g.

D-5

Exterior paved surfaces and building surfaces will be scanned with both a floor monitor (573 cm^2) and a 126-cm² gas proportional detector. The scan MDC for the floor monitor is 3600 dpm/100 cm² and 2000 dpm/100 cm² for the gas proportional detector. Gamma scans will also be performed over approximately 40% of the exterior paved areas.

Number of Soil Samples

Because the NaI scan MDC is less than the DCGL (5 vs. 18.3 pCi/g), the number of samples in Class 1 areas will not be driven by the potential for small areas of elevated activity.

The number of soil samples per survey unit based on nonparametric statistics—considering both the Wilcoxon Rank Sum and Quantile tests—is 270. It is assumed that an additional 117 samples are collected based on scan results for a total of 387 soil samples. The number of samples based on scans will be assumed based on 1 additional sample per 50 m² of scanned area in Class 1, 1 additional sample per 200 m² of scanned area in Class 2 areas, and 1 additional sample per 400 m² of scanned area in Class 3 areas.

D.5.2.2 Survey Cost Estimate for 60 mrem/y

Surface Activity and Soil Concentration Dose Conversion Guideline Levels (DCGLs)

For the concentration ratio from Appendix C for Co-60 to Cs-137, the gross activity DCGL for surface activity is 24,500 dpm/100 cm² total beta. Compliance with the surface activity DCGL will be demonstrated by measuring the total beta's surface activity. Under the same assumptions, the combined DCGL for Co-60 is 11 pCi/g. Compliance with the soil DCGL will be demonstrated based on the Co-60 concentration as measured by gamma spectrometry.

Surface Activity and Soil Concentration Backgrounds and Standard Deviations (σ 's)

Surface Activity

The expected background for beta surface activity measurements is $2,000 \pm 600 \text{ dpm}/100 \text{ cm}^2$ (1 σ).

- Class 1 Standard deviation is 10,400 dpm/100 cm²
- Class 2 Standard deviation is 7500 dpm/100 cm²
- Class 3 Standard deviation is 600 dpm/100 cm²

Soil Concentrations

Co-60 is not expected to be present in background.

- Class 1 Standard deviation is 4.4 pCi/g
- Class 2 Standard deviation is 4 pCi/g
- Class 3 Standard deviation is 0.2 pCi/g

NUREG-1496

D-6

Indoor Areas

Reference Area

It is assumed that all measurements are performed on concrete in a reference area. The number of measurements equals 6 (from nonparametric statistics).

Instrumentation for Surface Activity Measurements and Scans

Surface activity measurements will be performed with a gas proportional detector; the MDC for 1 minute measurements is $425 \text{ dpm}/100 \text{ cm}^2$.

The surfaces will be scanned with both a floor monitor (573 cm^2) and a 126-cm² gas proportional detector. The scan MDC for the floor monitor is 3600 dpm/100 cm² and 2000 dpm/100 cm² for the gas proportional detector. Gamma scans will also be performed over approximately 60% of the floor areas in the power reactor facility.

Number of Surface Activity Measurement: Indoor Areas and Exterior Paved Areas and Structures

(based on nonparametric stats or driven by hot spot potential)

Because the scan MDCs are sufficiently below the DCGL, the number of samples in Class 1 areas will be determined by nonparametric statistics.

The number of surface activity measurements per survey unit based on nonparametric statistics—considering both the Wilcoxon Rank Sum and Quantile tests—is 6484. It is assumed that an additional 2302 (includes 550 measurements from exterior surfaces) measurements are collected based on scan results for a total of 8786 direct surface activity measurements. The number of measurements based on scans will be assumed based on 1 additional measurement per 10 m² of scanned area in Class 1, 1 additional measurement per 50 m² of scanned area in Class 3 areas.

Outdoor Areas

It should be recognized that the outdoor areas include both soil areas and exterior building surfaces and paved areas. It is general practice for surface activity measurements to be performed on outdoor surfaces such as exterior structures and paved areas.

Reference Areas

It is assumed that all background soil samples, if necessary, are collected from an offsite reference area. Because Co-60 measurements will be used to demonstrate compliance with criteria for outdoor areas, a reference area is not needed.

For exterior paved areas, it is assumed that all measurements are performed on asphalt in a reference area. The number of measurements equals 6 (from nonparametric statistics).

Instrumentation for Surface Scans

Soil surfaces will be scanned with a NaI scintillation detector. The scan MDC for Co-60 is approximately 5 pCi/g.

Exterior paved surfaces and building surfaces will be scanned with both a floor monitor (573 cm^2) and a 126-cm² gas proportional detector. The scan MDC for the floor monitor is 3600 dpm/100 cm² and 2000 dpm/100 cm² for the gas proportional detector. Gamma scans will also be performed over approximately 40% of the exterior paved areas.

Number of Soil Samples

Because the NaI scan MDC is less than the DCGL (5 vs. 11 pCi/g), the number of samples in Class 1 areas will not be driven by the potential for small areas of elevated activity.

The number of soil samples per survey unit based on nonparametric statistics—considering both the Wilcoxon Rank Sum and Quantile tests—is 270. It is assumed that an additional 117 samples are collected based on scan results for a total of 387 soil samples. The number of samples based on scans will be assumed based on 1 additional sample per 50 m² of scanned area in Class 1, 1 additional sample per 200 m² of scanned area in Class 2 areas, and 1 additional sample per 400 m² of scanned area in Class 3 areas.

D.5.2.3 Survey Cost Estimate for 25 mrem/y

Surface Activity and Soil Concentration Dose Conversion Guideline Levels (DCGLs)

For the Appendix C concentration ratio for Co-60 to Cs-137, the gross activity DCGL for surface activity is 10,200 dpm/100 cm² total beta. Compliance with the surface activity DCGL will be demonstrated by measuring the total beta surface activity. Under the same assumptions, the combined DCGL for Co-60 is 4.6 pCi/g. Compliance with the soil DCGL will be demonstrated based on the Co-60 concentration as measured by gamma spectrometry.

Surface Activity and Soil Concentration Backgrounds and Standard Deviations (σ 's)

Surface Activity

The expected background for beta surface activity measurements is $2,000 \pm 600 \text{ dpm}/100 \text{ cm}^2$ (1 σ).

- Class 1 Standard deviation is 6720 dpm/100 cm²
- Class 2 Standard deviation is 5400 dpm/100 cm²
- Class 3 Standard deviation is 600 dpm/100 cm²

Soil Concentrations

Co-60 is not expected to be present in background.

Class 1Standard deviation is 2.3 pCi/gClass 2Standard deviation is 2 pCi/gClass 3Standard deviation is 0.2 pCi/g

Indoor Areas

Reference Area

It is assumed that all measurements are performed on concrete in a reference area. The number of measurements equals 10 (from nonparametric statistics).

Instrumentation for Surface Activity Measurements and Scans

Surface activity measurements will be performed with a gas proportional detector; the MDC for 1 minute measurements is $425 \text{ dpm}/100 \text{ cm}^2$.

The surfaces will be scanned with both a floor monitor (573 cm^2) and a 126-cm² gas proportional detector. The scan MDC for the floor monitor is 3600 dpm/100 cm² and 2000 dpm/100 cm² for the gas proportional detector. Gamma scans will also be performed over approximately 60% of the floor areas in the power reactor facility.

Number of Surface Activity Measurement: Indoor Areas and Exterior Paved Areas and Structures

(based on nonparametric stats or driven by hot spot potential)

Because the scan MDCs are sufficiently below the DCGL, the number of samples in Class 1 areas will be determined by nonparametric statistics.

The number of surface activity measurements per survey unit based on nonparametric statistics—considering both the Wilcoxon Rank Sum and Quantile tests—is 9355. It is assumed that an additional 2302 (includes 550 measurements from exterior surfaces) measurements are collected based on scan results for a total of 11,657 direct surface activity measurements. The number of measurements based on scans will be assumed based on 1 additional measurement per 10 m² of scanned area in Class 1, 1 additional measurement per 50 m² of scanned area in Class 2 and Class 3 areas.

Outdoor Areas

It should be recognized that the outdoor areas include both soil areas and exterior building surfaces and paved areas. It is general practice for surface activity measurements to be performed on outdoor surfaces such as exterior structures and paved areas.

Reference Areas

It is assumed that all background soil samples, if necessary, are collected from an off-site reference area. Because Co-60 measurements will be used to demonstrate compliance with criteria for outdoor areas, a reference area is not needed.

For exterior paved areas, it is assumed that all measurements are performed on asphalt in a reference area. The number of measurements equals 10 (from nonparametric statistics).

Instrumentation for Surface Scans

Soil surfaces will be scanned with a NaI scintillation detector. The scan MDC for Co-60 is approximately 5 pCi/g.

Exterior paved surfaces and building surfaces will be scanned with both a floor monitor (573 cm^2) and a 126 cm² gas proportional detector. The scan MDC for the floor monitor is 3600 dpm/100 cm² and 2000 dpm/100 cm² for the gas proportional detector. Gamma scans will also be performed over approximately 40% of the exterior paved areas.

Number of Soil Samples

Because the NaI scan MDC is just above the DCGL (5 vs. 4.6 pCi/g), the number of samples in Class 1 areas may be determined based on the potential for small areas of elevated activity. The area factor is 1.1 and corresponds to an area of approximately 300 m^2 . When this acceptable elevated area is divided into the survey unit area (2000 m^2), the number of samples based on hot spot potential is 7. It is very unlikely that the number of samples necessary to satisfy the hot spot potential is going to be the driver because the nonparametric statistics should require more than 7 samples per survey unit.

The number of soil samples per survey unit based on nonparametric statistics—considering both the Wilcoxon Rank Sum and Quantile tests—is 270 (252 in Class 2 and 3 areas). It is assumed that an additional 117 samples are collected based on scan results for a total of 387 soil samples. The number of samples based on scans will be assumed based on 1 additional sample per 50 m² of scanned area in Class 1, 1 additional sample per 200 m² of scanned area in Class 2 areas, and 1 additional sample per 400 m² of scanned area in Class 3 areas.

t

D.5.2.4 Survey Cost Estimate for 15 mrem/y

Surface Activity and Soil Concentration Dose Conversion Guideline Levels (DCGLs)

The DCGL for Co-60 is 5170 dpm/100 cm² and for Cs-137 is 13,600 dpm/100 cm². For the concentration ratio from Appendix C for Co-60 to Cs-137, the gross activity DCGL for surface activity is 6,130 dpm/100 cm² total beta. Compliance with the surface activity DCGL will be demonstrated by measuring the total beta surface activity. The soil concentration DCGL is 3.0 pCi/g for Co-60 and 10.7 pCi/g for Cs-137. For the

concentration ratio from Appendix C, the combined DCGL for Co-60 is 2.75 pCi/g. Compliance with the soil DCGL will be demonstrated based on the Co-60 concentration as measured by gamma spectrometry.

Surface Activity and Soil Concentration Backgrounds and Standard Deviations (σ 's)

The estimated standard deviations for surface activity and soil concentrations in survey units are determined for each area classification. In large part, the estimated standard deviations were based on results of past survey experience. A general guide for Class 1 areas, it was assumed that the ratio of the standard deviation (σ) to the DCGL (Δ) increased as the DCGL was lowered from 100 to 3 mrem/y. For example, for DCGLs at 100 and 60 mrem/y, σ/Δ is 40%; for DCGL at 25 mrem/y, σ/Δ is 50%; for DCGL at 15 mrem/y, σ/Δ is 60%; and for DCGL at 3 mrem/y, σ/Δ is 70%. The standard deviations for Class 2 areas were estimated to be approximately 50 to 95% of the Class 1 standard deviations. The standard deviations for Class 3 areas are assumed to be equal to the standard deviation of background—where the contaminant is not present in background and nuclide-specific measurements are performed, the standard deviation of background, and therefore the standard deviation of the Class 3 area, is assumed to be near zero.

Surface Activity

The expected background for beta surface activity measurements is $2,000 \pm 600 \text{ dpm}/100 \text{ cm}^2$ (1 σ).

Class 1	Standard deviation is 3700 dpm/100 cm ²
Class 2	Standard deviation is 3000 dpm/100 cm ²
Class 3	Standard deviation is 600 dpm/100 cm ²

Soil Concentrations

Co-60 is not expected to be present in background.

Class	1	Standard	deviation	is	1.7	pCi/g
Class	2	Standard	deviation	is	1.3	pCi/g
Class	3	Standard	deviation	is	0.2	DCi/g

Indoor Areas

Survey Unit Classification

Reference Area

It is assumed that all measurements are performed on concrete in a reference area. The number of measurements equals 9 (from nonparametric statistics).

Class 1 areas include the floor and lower walls in the Containment, Auxiliary, Fuel, Turbine, RadWaste, and Other Buildings. A total of 77 survey units, measuring 70 to 279 m^2 , for a total surface area of 8488 m^2 will be scanned.

Class 2 areas include the floor and lower walls in the Containment, Auxiliary, Fuel, Turbine, RadWaste, Control and Other Buildings. A total of 223 survey units, measuring 133 to 501 m², for a total surface area of 38,790 m² will be scanned.

Class 3 areas include the upper walls and ceilings in the Containment, Auxiliary, Fuel, Turbine, RadWaste, Control and Other Buildings. A total of 35 survey units, measuring 260 to 5729 m^2 , for a total surface area of 6,000 m^2 will be scanned.

Instrumentation for Surface Activity Measurements and Scans

Surface activity measurements will be performed with a gas proportional detector; the MDC for 1 minute measurements is $425 \text{ dpm}/100 \text{ cm}^2$.

The surfaces will be scanned with both a floor monitor (573 cm^2) and a 126-cm² gas proportional detector. The scan MDC for the floor monitor is 3600 dpm/100 cm² and 2000 dpm/100 cm² for the gas proportional detector. Gamma scans will also be performed over approximately 60% of the floor areas in the power reactor facility.

Number of Surface Activity Measurement: Indoor Areas and Exterior Paved Areas and Structures

(based on nonparametric stats or driven by hot spot potential)

Because the scan MDCs are sufficiently below the DCGL, the number of samples in Class 1 areas will be determined by nonparametric statistics.

The number of surface activity measurements per survey unit based on nonparametric statistics—considering both the Wilcoxon Rank Sum and Quantile tests—is 6718. It is assumed that an additional 2302 (includes 550 measurements from exterior surfaces) measurements are collected based on scan results for a total of 9020 direct surface activity measurements. The number of measurements based on scans will be assumed based on 1 additional measurement per 10 m² of scanned area in Class 1, 1 additional measurement per 50 m² of scanned area in Class 3 areas.

2

Outdoor Areas

1

It should be recognized that the outdoor areas include both soil areas and exterior building surfaces and paved areas. It is general practice for surface activity measurements to be performed on outdoor surfaces such as exterior structures and paved areas.

Survey Unit Classification

Reference Areas

It is assumed that all background soil samples, if necessary, are collected from an offsite reference area. Because Co-60 measurements will be used to demonstrate compliance with criteria for outdoor areas, a reference area is not needed.

For exterior paved areas, it is assumed that all measurements are performed on asphalt in a reference area. The number of measurements equals 9 (from nonparametric statistics).

The Class 1 area includes 1 soil survey unit area of 2000 m^2 , with a total soil scan area of 2000 m^2 . No Class 1 areas have been identified for exterior paved surfaces or building exteriors.

Class 2 areas include 4 soil survey units, each measuring 4180 m², with a total scan surface area of 12,540 m². Class 2 areas for exterior paved surfaces or building exteriors include 10 survey units, each measuring 1000 m², with a total scan surface area of 7500 m².

Class 3 areas include 10 soil survey units, each measuring 5574 m², with a total scan surface area of 5574 m². Class 3 areas for exterior paved surfaces or building exteriors include 20 survey units, each measuring 10,000 m², with a total scan surface area of 20,000 m².

Instrumentation for Surface Scans

Soil surfaces will be scanned with a NaI scintillation detector. The scan MDC for Co-60 is approximately 5 pCi/g.

Exterior paved surfaces and building surfaces will be scanned with both a floor monitor (573 cm^2) and a 126-cm² gas proportional detector. The scan MDC for the floor monitor is 3600 dpm/100 cm² and 2000 dpm/100 cm² for the gas proportional detector. Gamma scans will also be performed over approximately 40% of the exterior paved areas.

Number of Soil Samples

Because the NaI scan MDC is greater than the DCGL (5 vs. 2.75 pCi/g), the number of samples in Class 1 areas will be driven by the potential for small areas of elevated activity. The area factor is 1.8 and corresponds to an area of approximately 20 m². When this acceptable elevated area is divided into the survey unit area (2000 m²), the number of samples based on hot spot potential is 100, which is going to be the driver for class 1 areas because the nonparametric statistics will require fewer than 100 samples per survey unit.

The number of soil samples per survey unit based on nonparametric statistics—considering both the Wilcoxon Rank Sum and Quantile tests—is 272 (252 in Class 2 and 3 areas). It is

assumed that an additional 117 samples are collected based on scan results for a total of 469 soil samples. The number of samples based on scans will be assumed based on 1 additional sample per 50 m² of scanned area in Class 1, 1 additional sample per 200 m² of scanned area in Class 2 areas, and 1 additional sample per 400 m² of scanned areas.

D.5.2.5 Survey Cost Estimate for 3 mrem/y

Surface Activity and Soil Concentration DCGLs (Δ 's)

For the Appendix C concentration ratio for Co-60 to Cs-137, the gross activity DCGL for surface activity is 1220 dpm/100 cm² total beta. Compliance with the surface activity DCGL will be demonstrated by measuring the total beta surface activity. Under the same assumptions, the combined DCGL for Co-60 is 0.55 pCi/g. Compliance with the soil DCGL will be demonstrated based on the Co-60 concentration as measured by gamma spectrometry.

Surface Activity and Soil Concentration Backgrounds and Standard Deviations (σ 's)

Surface Activity

The expected background for beta surface activity measurements is $2,000 \pm 600 \text{ dpm}/100 \text{ cm}^2$ (1 σ).

Class 1 Standard dev	viation is 1400	$dpm/100 cm^2$
----------------------	-----------------	----------------

Class 2 Standard deviation is 900 dpm/100 cm²

Class 3 Standard deviation is 600 dpm/100 cm²

Soil Concentrations

Co-60 is not expected to be present in background.

	Class	1	Standard	deviation	is	0.39	pCi/g
--	-------	---	----------	-----------	----	------	-------

Class 2	Standard	deviation	is	0.27	pCi/g
---------	----------	-----------	----	------	-------

Class 3 Standard deviation is 0.2 pCi/g

Indoor Areas

Reference Area

It is assumed that all measurements are performed on concrete in a reference area. The number of measurements equals 45 (from nonparametric statistics).

Instrumentation for Surface Activity Measurements and Scans

Surface activity measurements will be performed with a gas proportional detector; the MDC for 1 minute measurements is $425 \text{ dpm}/100 \text{ cm}^2$.
The surfaces will be scanned with both a floor monitor (573 cm²) and a 126-cm² gas proportional detector. The scan MDC for the floor monitor is 3600 dpm/100 cm² and 2000 dpm/100 cm² for the gas proportional detector. Gamma scans will also be performed over approximately 60% of the floor areas in the power reactor facility.

Number of Surface Activity Measurement: Indoor Areas and Exterior Paved Areas and Structures

(based on nonparametric stats or driven by hot spot potential)

Because the scan MDC is greater than the DCGL (3600 vs 1220 dpm/100 cm²), the number of samples in Class 1 areas may be determined based on the potential for small areas of elevated activity. The area factor is 3.0 and corresponds to an area of approximately 4 m^2 . When this acceptable elevated area is divided into each survey unit area, the total number of samples based on hot spot potential is 2155.

The number of surface activity measurements per survey unit based on nonparametric statistics—considering both the Wilcoxon Rank Sum and Quantile tests—is 6494 (3822 from Class 2 and 3 areas). It is assumed that an additional 2302 (includes 550 measurements from exterior surfaces) measurements are collected based on scan results for a total of 8796 direct surface activity measurements. The number of measurements based on scans will be assumed based on 1 additional measurement per 10 m² of scanned area in Class 1, 1 additional measurement per 50 m² of scanned area in Class 3 areas.

Outdoor Areas

It should be recognized that the outdoor areas include both soil areas and exterior building surfaces and paved areas. It is general practice for surface activity measurements to be performed on outdoor surfaces such as exterior structures and paved areas.

Reference Areas

It is assumed that all background soil samples, if necessary, are collected from an offsite reference area. Because Co-60 measurements will be used to demonstrate compliance with criteria for outdoor areas, a reference area is not needed.

For exterior paved areas, it is assumed that all measurements are performed on asphalt in a reference area. The number of measurements equals 45 (from nonparametric statistics).

Instrumentation for Surface Scans

Soil surfaces will be scanned with a NaI scintillation detector. The scan MDC for Co-60 is approximately 5 pCi/g.

Exterior paved surfaces and building surfaces will be scanned with both a floor monitor (573 cm^2) and a 126-cm² gas proportional detector. The scan MDC for the floor monitor is

3600 dpm/100 cm² and 2000 dpm/100 cm² for the gas proportional detector. Gamma scans will also be performed over approximately 40% of the exterior paved areas.

Number of Soil Samples

Because the NaI scan MDC is greater than the DCGL (5 vs. 0.55 pCi/g), the number of samples in Class 1 areas will be driven by the potential for small areas of elevated activity. The area factor is 9.1 and corresponds to an area of approximately 1 m^2 . When this acceptable elevated area is divided into the survey unit area (2000 m²), the number of samples based on hot spot potential is 2000, which is going to be the driver for class 1 areas because the nonparametric statistics will require fewer than 2000 samples per survey unit.

The number of soil samples per survey unit based on nonparametric statistics—considering both the Wilcoxon Rank Sum and Quantile tests—is 273 (252 from Class 2 and 3 areas). It is assumed that an additional 77 samples are collected in Class 2 and 3 areas based on scan results for a total of 2329 soil samples. Because of the close sample spacing due to the potential small areas of elevated activity, it is assumed that no additional samples will be collected in Class 1 areas based on scan results. The number of samples based on scans will be assumed based on 1 additional sample per 200 m² of scanned area in Class 2 areas, and 1 additional sample per 400 m² of scanned area in Class 3 areas.

D.5.3 Sealed Source Manufacturer Facility

The contaminants include Co-60 and Cs-137; assume that the radionuclide ratio of Co-60 to Cs-137 is 3:1.

D.5.3.1 Survey Cost Estimate for 100 mrem/y

Surface Activity and Soil Concentration DCGLs

For the concentration ratio of 3 to 1 presented in Appendix C for Co-60 to Cs-137, the gross activity DCGL for surface activity is $40,900 \text{ dpm}/100 \text{ cm}^2$ total beta. Compliance with the surface activity DCGL will be demonstrated by measuring the total beta surface activity. Under the same assumptions, the combined DCGL for Co-60 is 18.3 pCi/g. Compliance with the soil DCGL will be demonstrated based on the Co-60 concentration as measured by gamma spectrometry.

Surface Activity and Soil Concentration Backgrounds and Standard Deviations (σ 's)

Surface Activity

The expected background for beta surface activity measurements is $2,000 \pm 600 \text{ dpm}/100 \text{ cm}^2$ (1 σ).

Class 1 Standard deviation is $17,000 \text{ dpm}/100 \text{ cm}^2$

NUREG-1496

ī

Class 2 Standard deviation is 10,000 dpm/100 cm²

Class 3 Standard deviation is 600 dpm/100 cm²

Soil Concentrations

Co-60 is not expected to be present in background.

Class	1	Stan	dare	1	dev	iati	on	is	7.	3 pCi/g
Class	2	Stan	dare	1	dev	iati	òn	is	7	pCi/g
								-	-	

Class 3 Standard deviation is 0.2 pCi/g

Indoor Areas

Reference Area

It is assumed that all measurements are performed on concrete in a reference area. The number of measurements equals 6 (from nonparametric statistics).

Instrumentation for Surface Activity Measurements and Scans

Surface activity measurements will be performed with a gas proportional detector; the MDC for 1 minute measurements is $425 \text{ dpm}/100 \text{ cm}^2$.

The surfaces will be scanned with both a floor monitor (573 cm^2) and a 126-cm² gas proportional detector. The scan MDC for the floor monitor is 3600 dpm/100 cm² and 2000 dpm/100 cm² for the gas proportional detector. Gamma scans will also be performed over approximately 80% of the floor areas.

Number of Surface Activity Measurements

(based on nonparametric stats or driven by hot spot potential)

Because the scan MDCs are sufficiently below the DCGL, the number of samples in Class 1 areas will be determined by nonparametric statistics.

The number of surface activity measurements per survey unit based on nonparametric statistics—considering both the Wilcoxon Rank Sum and Quantile tests—is 226. It is assumed that an additional 52 measurements are collected based on scan results for a total of 278 direct surface activity measurements. The number of measurements based on scans will be assumed based on 1 additional measurement per 10 m² of scanned area in Class 1, 1 additional measurement per 50 m² of scanned area in Class 3 areas.

NUREG-1496

D-17

Outdoor Areas

Reference Area

It is assumed that all background soil samples, if necessary, are collected from an offsite reference area. Because Co-60 measurements will be used to demonstrate compliance with criteria for outdoor areas, a reference area is not needed.

Instrumentation for Surface Scans

Soil surfaces will be scanned with a NaI scintillation detector. The scan MDC for Co-60 is approximately 5 pCi/g.

Number of Soil Samples

Because there are no Class 1 areas, there is no need to determine the number of samples based on the potential for small areas of elevated activity.

The number of soil samples per survey unit based on nonparametric statistics—considering both the Wilcoxon Rank Sum and Quantile tests—is 54. It is assumed that an additional 13 samples are collected based on scan results for a total of 67 soil samples. The number of samples based on scans will be assumed based on 1 additional sample per 50 m² of scanned area in Class 1, 1 additional sample per 200 m² of scanned area in Class 2 areas, and 1 additional sample per 400 m² of scanned area in Class 3 areas.

D.5.3.2 Survey Cost Estimate for 60 mrem/y

Surface Activity and Soil Concentration DCGLs

For the dose concentration ratio of Appendix C for Co-60 to Cs-137, the gross activity DCGL for surface activity is 24,500 dpm/100 cm² total beta. Compliance with the surface activity DCGL will be demonstrated by measuring the total beta surface activity. Using the same assumptions, the combined DCGL for Co-60 is 11 pCi/g. Compliance with the soil DCGL will be demonstrated based on the Co-60 concentration as measured by gamma spectrometry.

Surface Activity and Soil Concentration Backgrounds and Standard Deviations (σ 's)

Surface Activity

The expected background for beta surface activity measurements is 2,000 \pm 600 dpm/100 cm² (1 σ).

- Class 1 Standard deviation is 10,400 dpm/100 cm²
- Class 2 Standard deviation is 7500 dpm/100 cm²
- Class 3 Standard deviation is 600 dpm/100 cm²

Soil Concentrations

Co-60 is not expected to be present in background.

Class 1	Standard deviation is 4.4 pCi/g
Class 2	Standard deviation is 4 pCi/g
Class 3	Standard deviation is 0.2 pCi/g

Indoor Areas

Reference Area

It is assumed that all measurements are performed on concrete in a reference area. The number of measurements equals 6 (from nonparametric statistics).

Instrumentation for Surface Activity Measurements and Scans

Surface activity measurements will be performed with a gas proportional detector; the MDC for 1 minute measurements is $425 \text{ dpm}/100 \text{ cm}^2$.

The surfaces will be scanned with both a floor monitor (573 cm^2) and a 126-cm² gas proportional detector. The scan MDC for the floor monitor is 3600 dpm/100 cm² and 2000 dpm/100 cm² for the gas proportional detector. Gamma scans will also be performed over approximately 80% of the floor areas.

Number of Surface Activity Measurements

(based on nonparametric stats or driven by hot spot potential)

Because the scan MDCs are sufficiently below the DCGL, the number of samples in Class 1 areas will be determined by nonparametric statistics.

The number of surface activity measurements per survey unit based on nonparametric statistics—considering both the Wilcoxon Rank Sum and Quantile tests—is 234. It is assumed that an additional 52 measurements are collected based on scan results for a total of 286 direct surface activity measurements. The number of measurements based on scans will be assumed based on 1 additional measurement per 10 m² of scanned area in Class 1, `1 additional measurement per 50 m² of scanned area in Class 2 and Class 3 areas.

Outdoor Areas

Reference Area

It is assumed that all background soil samples, if necessary, are collected from an offsite reference area. Because Co-60 measurements will be used to demonstrate compliance with criteria for outdoor areas, a reference area is not needed.

Instrumentation for Surface Scans

Soil surfaces will be scanned with a NaI scintillation detector. The scan MDC for Co-60 is approximately 5 pCi/g.

Number of Soil Samples

Because there are no Class 1 areas, there is no need to determine the number of samples based on the potential for small areas of elevated activity.

The number of soil samples per survey unit based on nonparametric statistics—considering both the Wilcoxon Rank Sum and Quantile tests—is 54. It is assumed that an additional 13 samples are collected based on scan results for a total of 67 soil samples. The number of samples based on scans will be assumed based on 1 additional sample per 50 m² of scanned area in Class 1, 1 additional sample per 200 m² of scanned area in Class 2 areas, and 1 additional sample per 400 m² of scanned area in Class 3 areas.

D.5.3.3 Survey Cost Estimate for 25 mrem/y

Surface Activity and Soil Concentration DCGLs (Δ 's)

For the dose concentration ratio in Appendix C for Co-60 to Cs-137, the gross activity DCGL for surface activity is 10,200 dpm/100 cm² total beta. Compliance with the surface activity DCGL will be demonstrated by measuring the total beta surface activity. Under the same assumptions, the combined DCGL for Co-60 is 4.6 pCi/g. Compliance with the soil DCGL will be demonstrated based on the Co-60 concentration as measured by gamma spectrometry.

Surface Activity and Soil Concentration Backgrounds and Standard Deviations (σ 's)

Surface Activity

The expected background for beta surface activity measurements is $2,000 \pm 600 \text{ dpm}/100 \text{ cm}^2$ (1 σ).

- Class 1 Standard deviation is 6720 dpm/100 cm²
- Class 2 Standard deviation is 5400 dpm/100 cm²
- Class 3 Standard deviation is 600 dpm/100 cm²

Soil Concentrations

Co-60 is not expected to be present in background.

- Class 1 Standard deviation is 2.3 pCi/g
- Class 2 Standard deviation is 2 pCi/g
- Class 3 Standard deviation is 0.2 pCi/g

NUREG-1496

ı

Indoor Areas

Reference Area

It is assumed that all measurements are performed on concrete in a reference area. The number of measurements equals 10 (from nonparametric statistics).

Instrumentation for Surface Activity Measurements and Scans

Surface activity measurements will be performed with a gas proportional detector; the MDC for 1 minute measurements is $425 \text{ dpm}/100 \text{ cm}^2$.

The surfaces will be scanned with both a floor monitor (573 cm²) and a 126-cm² gas proportional detector. The scan MDC for the floor monitor is 3600 dpm/100 cm² and 2000 dpm/100 cm² for the gas proportional detector. Gamma scans will also be performed over approximately 80% of the floor areas.

Number of Surface Activity Measurements

(based on nonparametric stats or driven by hot spot potential)

Because the scan MDCs are sufficiently below the DCGL, the number of samples in Class 1 areas will be determined by nonparametric statistics.

The number of surface activity measurements per survey unit based on nonparametric statistics—considering both the Wilcoxon Rank Sum and Quantile tests—is 322. It is assumed that an additional 52 measurements are collected based on scan results for a total of 374 direct surface activity measurements. The number of measurements based on scans will be assumed based on 1 additional measurement per 10 m² of scanned area in Class 1, 1 additional measurement per 50 m² of scanned area in Class 3 areas.

Outdoor Areas

Reference Area

It is assumed that all background soil samples, if necessary, are collected from an offsite reference area. Because Co-60 measurements will be used to demonstrate compliance with criteria for outdoor areas, a reference area is not needed.

Instrumentation for Surface Scans

Soil surfaces will be scanned with a NaI scintillation detector. The scan MDC for Co-60 is approximately 5 pCi/g.

D-21

Number of Soil Samples

Because there are no Class 1 areas, there is no need to determine the number of samples based on the potential for small areas of elevated activity.

The number of soil samples per survey unit based on nonparametric statistics—considering both the Wilcoxon Rank Sum and Quantile tests—is 54. It is assumed that an additional 13 samples are collected based on scan results for a total of 67 soil samples. The number of samples based on scans will be assumed based on 1 additional sample per 50 m² of scanned area in Class 1, 1 additional sample per 200 m² of scanned area in Class 2 areas, and 1 additional sample per 400 m² of scanned area in Class 3 areas.

D.5.3.4 Survey Cost Estimate for 15 mrem/y

Surface Activity and Soil Concentration DCGLs

The DCGL for Co-60 is $5170 \text{ dpm}/100 \text{ cm}^2$ and for Cs-137 is 13,600 dpm/100 cm². Using the dose concentration ratio of Appendix C for Co-60 to Cs-137, the gross activity DCGL for surface activity is 6,130 dpm/100 cm² total beta. Compliance with the surface activity DCGL will be demonstrated by measuring the total beta surface activity. The soil concentration DCGL is 3.0 pCi/g for Co-60 and 10.7 pCi/g for Cs-137. For the dose concentration ratio of Appendix C, the combined DCGL for Co-60 is 2.75 pCi/g. Compliance with the soil DCGL will be demonstrated based on the Co-60 concentration as measured by gamma spectrometry.

Surface Activity and Soil Concentration Backgrounds and Standard Deviations (σ 's)

The estimated standard deviations for surface activity and soil concentrations in survey units are determined for each area classification. In large part, the estimated standard deviations were based on results of past survey experience. A general guide for Class 1 areas, it was assumed that the ratio of the standard deviation (σ) to the DCGL (Δ) increased as the DCGL was lowered from 100 to 3 mrem/y. For example, for DCGLs at 100 and 60 mrem/y, σ/Δ is 40%; for DCGL at 25 mrem/y, σ/Δ is 50%; for DCGL at 15 mrem/y, σ/Δ is 60%; and for DCGL at 3 mrem/y, σ/Δ is 70%. The standard deviations for Class 2 areas were estimated to be approximately 50 to 95% of the Class 1 standard deviations. The standard deviations for Class 3 areas are assumed to be equal to the standard deviation of background—where the contaminant is not present in background and nuclide-specific measurements are performed, the standard deviation of background, and therefore the standard deviation of the Class 3 area, is assumed to be near zero.

*

Surface Activity

The expected background for beta surface activity measurements is $2,000 \pm 600 \text{ dpm}/100 \text{ cm}^2$ (1 σ).

Class 1	Standard	deviation	is 3700	$dpm/100 cm^2$	
				-	

Class 2 Standard deviation is 3000 dpm/100 cm²

Class 3 Standard deviation is 600 dpm/100 cm²

Soil Concentrations

Co-60 is not expected to be present in background.

Class 1	Standard deviation is 1.7 pCi/g
Class 2	Standard deviation is 1.3 pCi/g
Class 3	Standard deviation is 0.2 nCi/g

Indoor Areas

Survey Unit Classification

Reference Area

It is assumed that all measurements are performed on concrete in a reference area. The number of measurements equals 9 (from nonparametric statistics).

Class 1 areas include the Hot Cell and Hold-up Tank (HUT) room—all surfaces (floors, walls, and ceilings) in the Hot Cell and the HUT floor and lower walls are considered to be Class 1. It is assumed that the ventilation system has been removed from the facility. A total of 2 survey units, measuring 60 and 128 m^2 , for a total surface area of 188 m^2 will be scanned.

Class 2 areas include the floor and lower walls in the loading dock, dry waste handling area, liquid waste handling area, Isotope Shop, Shielded Work room, and equipment area. The upper walls and ceiling in the HUT are considered to be Class 2. A total of 7 survey units, measuring 50 to 300 m², for a total surface area of 736 m², will be scanned.

Class 3 areas consist of the remaining surfaces—floors, walls, and ceilings—on the ground level, basement, and second level. The upper walls and ceilings in the Class 2 rooms are classified as Class 3 areas. A total of 4 survey units, measuring 803 to 1738 m^2 , for a total surface area of 550 m^2 , will be scanned.

Instrumentation for Surface Activity Measurements and Scans

Surface activity measurements will be performed with a gas proportional detector; the MDC for 1 minute measurements is $425 \text{ dpm}/100 \text{ cm}^2$.

The surfaces will be scanned with both a floor monitor (573 cm^2) and a 126-cm² gas proportional detector. The scan MDC for the floor monitor is 3600 dpm/100 cm² and 2000 dpm/100 cm² for the gas proportional detector. Gamma scans will also be performed over approximately 80% of the floor areas.

NUREG-1496

D-23

<u>Number of Surface Activity Measurements</u> (based on nonparametric stats or driven by hot spot potential)

Because the scan MDCs are sufficiently below the DCGL, the number of samples in Class 1 areas will be determined by nonparametric statistics.

The number of surface activity measurements per survey unit based on nonparametric statistics—considering both the Wilcoxon Rank Sum and Quantile tests—is 299. It is assumed that an additional 52 measurements are collected based on scan results for a total of 351 direct surface activity measurements. The number of measurements based on scans will be assumed based on 1 additional measurement per 10 m² of scanned area in Class 1, 1 additional measurement per 50 m² of scanned area in Class 3 areas.

Outdoor Areas

Survey Unit Classification

Reference Area

It is assumed that all background soil samples, if necessary, are collected from an offsite reference area. Because Co-60 measurements will be used to demonstrate compliance with criteria for outdoor areas, a reference area is not needed.

No Class 1 areas have been identified.

Class 2 areas include the Waste Storage Area and Stack Plume area. The stack plume area is calculated to cover the radial area 30 m from the stack and is biased toward the southern end of the facility. Class 2 areas include 2 survey units, measuring 270 and 2500 m², with a total scan surface area of 2078 m².

The Class 3 area consists of the immediate area around the perimeter of the building and includes 1 survey unit measuring 300 m^2 , with a total scan area of 30 m^2 .

Instrumentation for Surface Scans

Soil surfaces will be scanned with a NaI scintillation detector. The scan MDC for Co-60 is approximately 5 pCi/g.

Number of Soil Samples

Because there are no Class 1 areas, there is no need to determine the number of samples based on the potential for small areas of elevated activity.

The number of soil samples per survey unit based on nonparametric statistics—considering both the Wilcoxon Rank Sum and Quantile tests—is 54. It is assumed that an additional 13

NUREG-1496

ı

samples are collected based on scan results for a total of 67 soil samples. The number of samples based on scans will be assumed based on 1 additional sample per 50 m² of scanned area in Class 1, 1 additional sample per 200 m² of scanned area in Class 2 areas, and 1 additional sample per 400 m² of scanned area in Class 3 areas.

D.5.3.5 Survey Cost Estimate for 3 mrem/y

Surface Activity and Soil Concentration DCGLs

Using the Appendix C dose concentration ratio for Co-60 to Cs-137, the gross activity DCGL for surface activity is 1220 dpm/100 cm² total beta. Compliance with the surface activity DCGL will be demonstrated by measuring the total beta surface activity. Using the same assumptions, the combined DCGL for Co-60 is 0.55 pCi/g. Compliance with the soil DCGL will be demonstrated based on the Co-60 concentration as measured by gamma spectrometry.

Surface Activity and Soil Concentration Backgrounds and Standard Deviations (σ 's)

Surface Activity

The expected background for beta surface activity measurements is $2,000 \pm 600 \text{ dpm}/100 \text{ cm}^2$ (1 σ).

Class 1	Standard deviation is 1400 dpm/100 cm ²
Class 2	Standard deviation is 900 dpm/100 cm ²
Class 2	Standard deviation is 600 dom/100 cm ²

Class 3 Standard deviation is 600 dpm/100 cm²

Soil Concentrations

Co-60 is not expected to be present in background.

Class 1	Standard deviation is 0.39 pCi/g
Class 2	Standard deviation is 0.27 pCi/g
Class 3	Standard deviation is 0.2 pCi/g

Indoor Areas

Reference Area

It is assumed that all measurements are performed on concrete in a reference area. The number of measurements equals 23 (from nonparametric statistics).

Instrumentation for Surface Activity Measurements and Scans

Surface activity measurements will be performed with a gas proportional detector; the MDC for 1 minute measurements is $425 \text{ dpm}/100 \text{ cm}^2$.

D-25

The surfaces will be scanned with both a floor monitor (573 cm^2) and a 126 cm² gas proportional detector. The scan MDC for the floor monitor is 3600 dpm/100 cm² and 2000 dpm/100 cm² for the gas proportional detector. Gamma scans will also be performed over approximately 80% of the floor areas.

Number of Surface Activity Measurements

(based on nonparametric stats or driven by hot spot potential)

Because the scan MDC is greater than the DCGL (3600 vs 1220 dpm/100 cm²), the number of samples in Class 1 areas may be determined based on the potential for small areas of elevated activity. The area factor is 3.0 and corresponds to an area of approximately 4 m^2 . When this acceptable elevated area is divided into each survey unit area, the total number of samples based on hot spot potential is 47.

The number of surface activity measurements per survey unit based on nonparametric statistics—considering both the Wilcoxon Rank Sum and Quantile tests—is 407 (215 from Class 2 and 3 areas). It is assumed that an additional 52 measurements are collected based on scan results for a total of 459 direct surface activity measurements. The number of measurements based on scans will be assumed based on 1 additional measurement per 10 m^2 of scanned area in Class 1, 1 additional measurement per 50 m^2 of scanned area in Class 3 areas.

Outdoor Areas

Reference Area

It is assumed that all background soil samples, if necessary, are collected from an offsite reference area. Because Co-60 measurements will be used to demonstrate compliance with criteria for outdoor areas, a reference area is not needed.

Instrumentation for Surface Scans

Soil surfaces will be scanned with a NaI scintillation detector. The scan MDC for Co-60 is approximately 5 pCi/g.

3

Number of Soil Samples

Because there are no Class 1 areas, there is no need to determine the number of samples based on the potential for small areas of elevated activity.

The number of soil samples per survey unit based on nonparametric statistics—considering both the Wilcoxon Rank Sum and Quantile tests—is 54. It is assumed that an additional 13 samples are collected based on scan results for a total of 67 soil samples. The number of samples based on scans will be assumed based on 1 additional sample per 50 m² of scanned

NUREG-1496

Т

D-26

area in Class 1, 1 additional sample per 200 m^2 of scanned area in Class 2 areas, and 1 additional sample per 400 m^2 of scanned area in Class 3 areas.

D.5.4 Uranium Fuel Fabrication Facility

The contaminant is low enriched uranium (3% enriched U-235 by weight); the radionuclides of concern are U-238, U-235, and U-234.

D.5.4.1 Survey Cost Estimate for 100 mrem/y

Surface Activity and Soil Concentration DCGLs

The DCGL for 3% enriched uranium is 4,190 dpm/100 cm² for total alpha and 1,500 dpm/100 cm² for total beta. Compliance with the surface activity DCGL will be demonstrated by measuring the alpha surface activity. The soil concentration DCGL is 18.9 pCi/g for U-238, 4.7 pCi/g for U-235, and 94.4 pCi/g for U-234—for a total U DCGL of 118 pCi/g. Compliance with the soil DCGL will be demonstrated based on the U-235 concentration as measured by gamma spectrometry.

Surface Activity and Soil Concentration Backgrounds and Standard Deviations (σ 's)

Surface Activity

The expected background for alpha surface activity measurements is $63 \pm 30 \text{ dpm}/100 \text{ cm}^2$ (1 σ).

Class 1	Standard	deviation is	1700	dpm/100	cm ²
---------	----------	--------------	------	---------	-----------------

Class 2 Standard deviation is 1200 dpm/100 cm²

Class 3 Standard deviation is 30 dpm/100 cm²

Soil Concentrations

The expected background concentration for U-235 in soil is 0.05 \pm 0.03 pCi/g (1 σ).

is 1.9 pCi/g	1 i s	deviation	Standard	Class 1
is 1.9 pCi/g	1 i s	deviation	Standard	Class 1

Class 2 Standard deviation is 1.5 pCi/g

Class 3 Standard deviation is 0.03 pCi/g

Indoor Areas

Reference Area

It is assumed that all measurements are performed on concrete in a reference area. The number of measurements equals 6 (from nonparametric statistics).

Instrumentation for Surface Activity Measurements and Scans

Surface activity measurements will be performed with a gas proportional detector; the MDC for 1 minute measurements for alpha activity is 130 dpm/100 cm^2 .

The surfaces will be scanned with both a floor monitor (573 cm^2) and a 126-cm² gas proportional detector. The scan MDC for the floor monitor for alpha is 400 dpm/100 cm² and 260 dpm/100 cm² for the gas proportional detector. Surface scans for beta activity will be performed in the same areas as alpha scans, but beta scans will not be used for correlating the scan MDC and hot spot sampling design. Gamma scans will also be performed over approximately 50% of the floor areas.

Number of Surface Activity Measurements

(based on nonparametric stats or driven by hot spot potential)

Because the scan MDCs are sufficiently below the DCGL, the number of samples in Class 1 areas is determined by nonparametric statistics.

The number of surface activity measurements per survey unit for each classification based on nonparametric statistics—considering both the Wilcoxon Rank Sum and Quantile tests—is 3684. It is assumed that an additional 1777 measurements are collected based on scan results for a total of 5461 direct surface activity measurements. The number of measurements based on scans will be assumed based on 1 additional measurement per 10 m^2 of scanned area in Class 1, 1 additional measurement per 50 m² of scanned area in Class 2 and Class 3 areas.

Outdoor Areas

Reference Area

It is assumed that all background soil samples, if necessary, are collected from an offsite reference area. Since U-235 measurements will be used to demonstrate compliance with criteria for outdoor areas, a reference area is needed. (It should be noted that to measure U-235 at background levels with a gamma spectrometer will require long counts, e.g., greater than 4 hours). The number of measurements equals 6.

Instrumentation for Surface Scans

Soil surfaces will be scanned with a NaI scintillation detector. The scan MDC for low enriched uranium is 75 pCi/g.

NUREG-1496

T

Number of Soil Samples

Because the NaI scan MDC is less than the DCGL (75 vs. 118 pCi/g), the number of samples in Class 1 areas will not be driven by the potential for small areas of elevated activity.

The number of soil samples per survey unit, for each classification, based on nonparametric statistics—considering both the Wilcoxon Rank Sum and Quantile tests—is 475. It is assumed that an additional 574 samples are collected based on scan results for a total of 1049 soil samples. The number of samples based on scans will be assumed based on 1 additional sample per 50 m² of scanned area in Class 1, 1 additional sample per 200 m² of scanned area in Class 2 areas, and 1 additional sample per 400 m² of scanned area in Class 3 areas.

D.5.4.2 Survey Cost Estimate for 60 mrem/y

Surface Activity and Soil Concentration DCGLs

The DCGL for 3% enriched uranium is 2,510 dpm/100 cm² for total alpha and 900 dpm/100 cm² for total beta. Compliance with the surface activity DCGL will be demonstrated by measuring the alpha surface activity. The soil concentration DCGL is 11.3 pCi/g for U-238, 2.8 pCi/g for U-235, and 56.6 pCi/g for U-234—for a total U DCGL of 70.8 pCi/g. Compliance with the soil DCGL will be demonstrated based on the U-235 concentration as measured by gamma spectrometry.

Surface Activity and Soil Concentration Backgrounds and Standard Deviations (σ 's)

Surface Activity

The expected background for alpha surface activity measurements is $63 \pm 30 \text{ dpm}/100 \text{ cm}^2$ (1 σ).

- Class 1 Standard deviation is 1030 dpm/100 cm²
- Class 2 Standard deviation is 800 dpm/100 cm²
- Class 3 Standard deviation is 30 dpm/100 cm²

Soil Concentrations

The expected background concentration for U-235 in soil is 0.05 ± 0.03 pCi/g (1 σ).

- Class 1 Standard deviation is 1.1 pCi/g
- Class 2 Standard deviation is 1.0 pCi/g
- Class 3 Standard deviation is 0.03 pCi/g

NUREG-1496

D-29

Indoor Areas

Reference Area

It is assumed that all measurements are performed on concrete in a reference area. The number of measurements equals 6 (from nonparametric statistics).

Instrumentation for Surface Activity Measurements and Scans

Surface activity measurements will be performed with a gas proportional detector; the MDC for 1 minute measurements for alpha activity is 130 dpm/100 cm^2 .

The surfaces will be scanned with both a floor monitor (573 cm^2) and a 126-cm² gas proportional detector. The scan MDC for the floor monitor for alpha is 400 dpm/100 cm² and 260 dpm/100 cm² for the gas proportional detector. Surface scans for beta activity will be performed in the same areas as alpha scans, but beta scans will not be used for correlating the scan MDC and hot spot sampling design. Gamma scans will be performed over approximately 50% of floor areas.

Number of Surface Activity Measurements (based on nonparametric stats or driven by hot spot potential)

Because the scan MDCs are sufficiently below the DCGL, the number of samples in Class 1 areas is determined by nonparametric statistics.

The number of surface activity measurements per survey unit for each classification based on nonparametric statistics—considering both the Wilcoxon Rank Sum and Quantile tests—is 3731. It is assumed that an additional 1777 measurements are collected based on scan results for a total of 5508 direct surface activity measurements. The number of measurements based on scans will be assumed based on 1 additional measurement per 10 m^2 of scanned area in Class 1, 1 additional measurement per 50 m² of scanned area in Class 2 and Class 3 areas.

Outdoor Areas

Reference Area

It is assumed that all background soil samples, if necessary, are collected from an offsite reference area. Since U-235 measurements will be used to demonstrate compliance with criteria for outdoor areas, a reference area is needed. (It should be noted that to measure U-235 at background levels with a gamma spectrometer will require long counts, e.g., greater than 4 hours). The number of measurements equals 6.

NUREG-1496

I.

Instrumentation for Surface Scans

Soil surfaces will be scanned with a NaI scintillation detector. The scan MDC for low enriched uranium is 75 pCi/g.

Number of Soil Samples

Because the NaI scan MDC is slightly greater than the DCGL (75 vs. 70.8 pCi/g), the number of samples in Class 1 areas is likely not driven by the potential for small areas of elevated activity. The area factor is 1.07 and corresponds to an area of approximately $1,500 \text{ m}^2$. When this acceptable elevated area is divided into each survey unit area (2,183 m²), the number of samples based on hot spot potential is 2 per survey unit. It is very unlikely that the number of samples necessary to satisfy the hot spot potential is going to be the driver because the nonparametric statistics should require more than 2 samples per survey unit. The total number of samples necessary to satisfy the potential for small areas of elevated activity is 12.

The number of soil samples per survey unit, for each classification, based on nonparametric statistics—considering both the Wilcoxon Rank Sum and Quantile tests—is 490 (357 in Class 2 and 3 areas). It is assumed that an additional 574 samples are collected based on scan results for a total of 1064 soil samples. The number of samples based on scans will be assumed based on 1 additional sample per 50 m² of scanned area in Class 1, 1 additional sample per 200 m² of scanned area in Class 2 areas, and 1 additional sample per 400 m² of scanned area in Class 3 areas.

D.5.4.3 Survey Cost Estimate for 25 mrem/y

Surface Activity and Soil Concentration DCGLs

The DCGL for 3% enriched uranium is 1,050 dpm/100 cm² for total alpha and 375 dpm/100 cm² for total beta. Compliance with the surface activity DCGL will be demonstrated by measuring the alpha surface activity. The soil concentration DCGL is 4.7 pCi/g for U-238, 1.2 pCi/g for U-235, and 23.7 pCi/g for U-234—for a total U DCGL of 29.6 pCi/g. Compliance with the soil DCGL will be demonstrated based on the U-235 concentration as measured by gamma spectrometry.

Surface Activity and Soil Concentration Backgrounds and Standard Deviations (σ 's)

Surface Activity

The expected background for alpha surface activity measurements is $63 \pm 30 \text{ dpm}/100 \text{ cm}^2$ (1 σ).

Class 1	Standard	deviation	is 500	dpm/100	cm ²

- Class 2 Standard deviation is 400 dpm/100 cm²
- Class 3 Standard deviation is 30 dpm/100 cm²

D-31

Soil Concentrations

The expected background concentration for U-235 in soil is 0.05 \pm 0.03 pCi/g (1 σ).

Class 1 Standard deviation is 0.6 pCi/g

Class 2 Standard deviation is 0.5 pCi/g

Class 3 Standard deviation is 0.03 pCi/g

Indoor Areas

Reference Area

It is assumed that all measurements are performed on concrete in a reference area. The number of measurements equals 7 (from nonparametric statistics).

Instrumentation for Surface Activity Measurements and Scans

Surface activity measurements will be performed with a gas proportional detector; the MDC for 1 minute measurements for alpha activity is 130 dpm/100 cm^2 .

The surfaces will be scanned with both a floor monitor (573 cm^2) and a 126-cm² gas proportional detector. The scan MDC for the floor monitor for alpha is 400 dpm/100 cm² and 260 dpm/100 cm² for the gas proportional detector. Surface scans for beta activity will be performed in the same areas as alpha scans, but beta scans will not be used for correlating the scan MDC and hot spot sampling design. Gamma scans will also be performed over approximately 50% of the floor areas.

Number of Surface Activity Measurements

(based on nonparametric stats or driven by hot spot potential)

Because the scan MDCs are sufficiently below the DCGL, the number of samples in Class 1 areas is determined by nonparametric statistics.

The number of surface activity measurements per survey unit for each classification based on nonparametric statistics—considering both the Wilcoxon Rank Sum and Quantile tests—is 4177. It is assumed that an additional 1777 measurements are collected based on scan results for a total of 5954 direct surface activity measurements. The number of measurements based on scans will be assumed based on 1 additional measurement per 10 m^2 of scanned area in Class 1, 1 additional measurement per 50 m² of scanned area in Class 2 and Class 3 areas.

÷.

Outdoor Areas

Reference Area

It is assumed that all background soil samples, if necessary, are collected from an offsite reference area. Since U-235 measurements will be used to demonstrate compliance with criteria for outdoor areas, a reference area is needed. (It should be noted that to measure U-235 at background levels with a gamma spectrometer will require long counts, e.g., greater than 4 hours). The number of measurements equals 7.

Instrumentation for Surface Scans

Soil surfaces will be scanned with a NaI scintillation detector. The scan MDC for low enriched uranium is 75 pCi/g.

Number of Soil Samples

Because the NaI scan MDC is greater than the DCGL (75 vs. 29.6 pCi/g), the number of samples in Class 1 areas is likely not driven by the potential for small areas of elevated activity. The area factor is 2.5 and corresponds to an area of approximately 500 m². When this acceptable elevated area is divided into each survey unit area (2,183 m²), the number of samples based on hot spot potential is 5 per survey unit. It is very unlikely that the number of samples necessary to satisfy the hot spot potential is going to be the driver because the nonparametric statistics should require more than 5 samples per survey unit. The total number of samples necessary to satisfy the potential for small areas of elevated activity is 30.

The number of soil samples per survey unit, for each classification, based on nonparametric statistics—considering both the Wilcoxon Rank Sum and Quantile tests—is 553 (388 in Class 2 and 3 areas). It is assumed that an additional 574 samples are collected based on scan results for a total of 1127 soil samples. The number of samples based on scans will be assumed based on 1 additional sample per 50 m² of scanned area in Class 1, 1 additional sample per 200 m² of scanned area in Class 2 areas, and 1 additional sample per 400 m² of scanned area in Class 3 areas.

D.5.4.4 Survey Cost Estimate for 15 mrem/y

Surface Activity and Soil Concentration DCGLs

The DCGL for 3% enriched uranium is 630 dpm/100 cm² for total alpha and 225 dpm/100 cm² for total beta. Compliance with the surface activity DCGL will be demonstrated by measuring the alpha surface activity. The Level 2 soil concentration DCGL is 2.8 pCi/g for U-238, 0.71 pCi/g for U-235, and 14.2 pCi/g for U-234—for a total U DCGL of 17.7 pCi/g. Compliance with the soil DCGL will be demonstrated based on the U-235 concentration as measured by gamma spectrometry.

D-33

Surface Activity and Soil Concentration Backgrounds and Standard Deviations (σ 's)

The estimated standard deviations for surface activity and soil concentrations in survey units are determined for each area classification. In large part, the estimated standard deviations were based on results of past survey experience. A general guide for Class 1 areas, it was assumed that the ratio of the standard deviation (σ) to the DCGL (Δ) increased as the DCGL was lowered from 100 to 3 mrem/y. For example, for DCGLs at 100 and 60 mrem/y, σ/Δ is 40%; for DCGL at 25 mrem/y, σ/Δ is 50%; for DCGL at 15 mrem/y, σ/Δ is 60%; and for DCGL at 3 mrem/y, σ/Δ is 70%. The standard deviations for Class 2 areas were estimated to be approximately 50 to 95% of the Class 1 standard deviations. The standard deviations for Class 3 areas are assumed to be equal to the standard deviation of background—where the contaminant is not present in background and nuclide-specific measurements are performed, the standard deviation of background, and therefore the standard deviation of the Class 3 area, is assumed to be near zero.

Surface Activity

The expected background for alpha surface activity measurements is $63 \pm 30 \text{ dpm}/100 \text{ cm}^2$ (1 σ).

Class 1	Standard	deviation	is 410	dpm/100	cm ²
---------	----------	-----------	--------	---------	-----------------

- Class 2 Standard deviation is 300 dpm/100 cm²
- Class 3 Standard deviation is 30 dpm/100 cm²

Soil Concentrations

The expected background concentration for U-235 in soil is 0.05 ± 0.03 pCi/g (1 σ).

Class 1 Standard	I deviation	is	0.45	pCi/g
------------------	-------------	----	------	-------

- Class 2 Standard deviation is 0.35 pCi/g
- Class 3 Standard deviation is 0.03 pCi/g

Indoor Areas

Survey Unit Classification

Reference Area

It is assumed that all measurements are performed on concrete in a reference area. The number of measurements equals 10 (from nonparametric statistics).

Class 1 areas include the floors, walls, and ceilings in the process buildings. A total of 133 survey units, each measuring 100 m^2 , for a total surface area of 13,300 m^2 will be scanned.

NUREG-1496

I.

Class 2 areas include the floors, walls and ceilings in the process buildings. A total of 46 survey units, 50% measuring 500 m², and 50% measuring 642 m², for a total surface area of 19,843 m², will be scanned.

Class 3 areas consist of the upper walls and ceilings for the process buildings. A total of 5 survey units, each measuring 5472 m^2 , for a total surface area of 2736 m^2 , will be scanned.

Instrumentation for Surface Activity Measurements and Scans

Surface activity measurements will be performed with a gas proportional detector; the MDC for 1 minute measurements for alpha activity is 130 dpm/100 cm^2 .

The surfaces will be scanned with both a floor monitor (573 cm^2) and a 126-cm² gas proportional detector. The scan MDC for the floor monitor for alpha is 400 dpm/100 cm² and 260 dpm/100 cm² for the gas proportional detector. Surface scans for beta activity will be performed in the same areas as alpha scans, but beta scans will not be used for correlating the scan MDC and hot spot sampling design. Gamma scans will also be performed over approximately 50% of the floor areas.

<u>Number of Surface Activity Measurements</u> (based on nonparametric stats or driven by hot spot potential)

Because the scan MDCs are sufficiently below the DCGL, the number of samples in Class 1 areas is determined by nonparametric statistics.

The number of surface activity measurements per survey unit for each classification based on nonparametric statistics—considering both the Wilcoxon Rank Sum and Quantile tests—is 5696. It is assumed that an additional 1777 measurements are collected based on scan results for a total of 7473 direct surface activity measurements. The number of measurements based on scans will be assumed based on 1 additional measurement per 10 m^2 of scanned area in Class 1, 1 additional measurement per 50 m² of scanned area in Class 2 and Class 3 areas.

Outdoor Areas

Survey Unit Classification

Reference Area

It is assumed that all background soil samples, if necessary, are collected from an offsite reference area. Since U-235 measurements will be used to demonstrate compliance with criteria for outdoor areas, a reference area is needed. (It should be noted that to measure U-235 at background levels with a gamma spectrometer will require long counts, e.g., greater than 4 hours). The number of measurements equals 9.

D-35

Class 1 areas include a total of 6 survey units, each measuring 2183 m^2 , with a total surface area of 13,098 m^2 that will be scanned.

Class 2 areas include a total of 15 survey units, each measuring 4948 m², with a total scan surface area of 55,665 m².

Class 3 areas include a total of 5 survey units, each measuring 26,196 m², with a total scan surface area of 13,098 m².

Instrumentation for Surface Scans

Soil surfaces will be scanned with a NaI scintillation detector. The scan MDC for low enriched uranium is 75 pCi/g.

Number of Soil Samples

Because the NaI scan MDC is greater than the DCGL (75 vs. 17.7 pCi/g), the number of samples in Class 1 areas may be driven by the potential for small areas of elevated activity. The area factor is 4.2 (considering the weighted area factor for the isotopic ratios of 3% enriched uranium) and corresponds to an area of approximately 300 m^2 . When this acceptable elevated area is divided into each survey unit area (2183 m^2), the number of samples based on hot spot potential is 8 (rounding up), which is likely not going to be the driver because the nonparametric statistics should require more than 8 samples per survey unit. The total number of samples necessary to satisfy the potential for small areas of elevated activity is 48.

The number of soil samples per survey unit, for each classification, based on nonparametric statistics—considering both the Wilcoxon Rank Sum and Quantile tests—is 643 (434 in Class 2 and 3 areas). It is assumed that an additional 574 samples are collected based on scan results for a total of 1217 soil samples. The number of samples based on scans will be assumed based on 1 additional sample per 50 m² of scanned area in Class 1, 1 additional sample per 200 m² of scanned area in Class 2 areas, and 1 additional sample per 400 m² of scanned area in Class 3 areas.

D.5.4.5 Survey Cost Estimate for 3 mrem/y

Surface Activity and Soil Concentration DCGLs

The DCGL for 3% enriched uranium is 130 dpm/100 cm² for total alpha and 50 dpm/100 cm² for total beta. Compliance with the surface activity DCGL will be demonstrated by measuring the alpha surface activity. The soil concentration DCGL is 0.57 pCi/g for U-238, 0.14 pCi/g for U-235, and 2.83 pCi/g for U-234—for a total U DCGL of 3.5 pCi/g. Compliance with the soil DCGL will be demonstrated based on the U-235 concentration as measured by gamma spectrometry.

NUREG-1496

Surface Activity and Soil Concentration Backgrounds and Standard Deviations (σ 's)

Surface Activity

The expected background for alpha surface activity measurements is $63 \pm 30 \text{ dpm}/100 \text{ cm}^2$ (1 σ).

- Class 1 Standard deviation is 110 dpm/100 cm²
- Class 2 Standard deviation is 80 dpm/100 cm²
- Class 3 Standard deviation is 30 dpm/100 cm²

Soil Concentrations

The expected background concentration for U-235 in soil is 0.05 \pm 0.03 pCi/g (1 σ).

- Class 1 Standard deviation is 0.1 pCi/g Class 2 Standard deviation is 0.07 pCi/g
- Class 3 Standard deviation is 0.03 pCi/g

Indoor Areas

Reference Area

It is assumed that all measurements are performed on concrete in a reference area. The number of measurements equals 19 (from nonparametric statistics).

Instrumentation for Surface Activity Measurements and Scans

Surface activity measurements will be performed with a gas proportional detector; the MDC for 5 minute measurements for alpha activity is 51 dpm/100 cm^2 .

The surfaces will be scanned with both a floor monitor (573 cm^2) and a 126-cm² gas proportional detector. The scan MDC for the floor monitor for alpha is 400 dpm/100 cm² and 260 dpm/100 cm² for the gas proportional detector. Surface scans for beta activity will be performed in the same areas as alpha scans, but beta scans will not be used for correlating the scan MDC and hot spot sampling design. Gamma scans will also be performed over approximately 50% of the floor areas.

Number of Surface Activity Measurements

(based on nonparametric stats or driven by hot spot potential)

Because the scan MDC is greater than the DCGL (400 vs 130 dpm/100 cm²), the number of samples in Class 1 areas may be determined based on the potential for small areas of elevated activity. The area factor is 3.1 and corresponds to an area of approximately 12 m^2 . When this acceptable elevated area is divided into each survey unit area (100 m²), the number of samples based on hot spot potential is 8. It is very unlikely that the number of samples necessary to satisfy the hot spot potential is going to be the driver because the

D-37

nonparametric statistics should require more than 8 samples per survey unit. The total number of samples necessary to satisfy the potential for small areas of elevated activity is 1064.

The number of surface activity measurements per survey unit for each classification based on nonparametric statistics—considering both the Wilcoxon Rank Sum and Quantile tests—is 4416 (802 from Class 2 and 3 areas). It is assumed that an additional 1777 measurements are collected based on scan results for a total of 6193 direct surface activity measurements. The number of measurements based on scans will be assumed based on 1 additional measurement per 10 m² of scanned area in Class 1, 1 additional measurement per 50 m² of scanned area in Class 2 and Class 3 areas.

Outdoor Areas

Reference Area

It is assumed that all background soil samples, if necessary, are collected from an offsite reference area. Since U-235 measurements will be used to demonstrate compliance with criteria for outdoor areas, a reference area is needed. (It should be noted that to measure U-235 at background levels with a gamma spectrometer will require long counts, e.g., greater than 4 hours). The number of measurements equals 11.

Instrumentation for Surface Scans

Soil surfaces will be scanned with a NaI scintillation detector. The scan MDC for low enriched uranium is 75 pCi/g.

Number of Soil Samples

Because the NaI scan MDC is significantly greater than the DCGL (75 vs. 3.5 pCi/g), the number of samples in Class 1 areas will be driven by the potential for small areas of elevated activity. The area factor is 21.4 and corresponds to an area of approximately 8 m^2 . When this acceptable elevated area is divided into each survey unit area (2,183 m^2), the number of samples based on hot spot potential is 273 per survey unit. The total number of samples necessary to satisfy the potential for small areas of elevated activity is 1638.

The number of soil samples per survey unit, for each classification, based on nonparametric statistics—considering both the Wilcoxon Rank Sum and Quantile tests—is 527 (286 in Class 2 and 3 areas). It is assumed that an additional 574 samples are collected based on scan results for a total of 2509 soil samples. The number of samples based on scans will be assumed based on 1 additional sample per 50 m² of scanned area in Class 1, 1 additional sample per 200 m² of scanned area in Class 2 areas, and 1 additional sample per 400 m² of scanned area in Class 3 areas.

D.5.5 Rare Metal Extraction Facility

The contaminants are Th-232 and Ra-226—both assumed to be in secular equilibrium with their progeny.

D.5.5.1 Survey Cost Estimate for 100 mrem/y

Surface Activity and Soil Concentration DCGLs

The DCGL for Th-232 is 2,320 dpm/100 cm² for total alpha and 1550 dpm/100 cm² for total beta. Compliance with the surface activity DCGL will be demonstrated by measuring the alpha surface activity. The soil concentration DCGL is 5.7 pCi/g for Th-232 and 3.3 pCi/g for Ra-226. Compliance with the soil DCGL will be demonstrated based on the Th-232 concentration as measured by gamma spectrometry.

Surface Activity and Soil Concentration Backgrounds and Standard Deviations (σ 's)

Surface Activity

The expected background for alpha surface activity measurements is $63 \pm 30 \text{ dpm}/100 \text{ cm}^2$ (1 σ).

Class 1	Standard deviation is 960 dpm/100 cm ²
Class 2	Standard deviation is 800 dpm/100 cm ²
C1 0	

Class 3 Standard deviation is 30 dpm/100 cm²

Soil Concentrations

The expected background concentration for Th-232 in soil is 1.0 ± 0.4 pCi/g (1 σ).

Class 1	Standard deviation is 2.7 pCi/g
Class 2	Standard deviation is 2 pCi/g
Class 3	Standard deviation is 0.4 pCi/g

Indoor Areas

Reference Area

It is assumed that all measurements are performed on concrete in a reference area. The number of measurements equals 6 (from nonparametric statistics).

Instrumentation for Surface Activity Measurements and Scans

Surface activity measurements will be performed with a gas proportional detector; the MDC for 1 minute measurements for alpha activity is 130 dpm/100 cm^2 .

D-39

The surfaces will be scanned with both a floor monitor (573 cm^2) and a 126-cm² gas proportional detector. The scan MDC for the floor monitor for alpha is 400 dpm/100 cm² and 260 dpm/100 cm² for the gas proportional detector. Surface scans for beta activity will be performed in the same areas as alpha scans, but beta scans will not be used for correlating the scan MDC and hot spot sampling design. Gamma scans will also be performed over approximately 50% of the floor areas.

Number of Surface Activity Measurements

(based on nonparametric stats or driven by hot spot potential)

Because the scan MDC is less than the DCGL (400 vs 2320 dpm/100 cm²), the number of samples in Class 1 areas will not be determined based on the potential for small areas of elevated activity.

The number of surface activity measurements per survey unit for each classification based on nonparametric statistics—considering both the Wilcoxon Rank Sum and Quantile tests—is 2929. It is assumed that an additional 1051 measurements are collected based on scan results for a total of 3980 direct surface activity measurements. The number of measurements based on scans will be assumed based on 1 additional measurement per 10 m^2 of scanned area in Class 1, 1 additional measurement per 50 m² of scanned area in Class 2 and Class 3 areas.

Outdoor Areas

Reference Area

It is assumed that all background soil samples, if necessary, are collected from an offsite reference area. Since Th-232 measurements will be used to demonstrate compliance with criteria for outdoor areas, a reference area is needed. The number of measurements equals 7.

Instrumentation for Surface Scans

Soil surfaces will be scanned with a NaI scintillation detector. The scan MDC for Th-232 is 5 pCi/g.

Number of Soil Samples

Because the NaI scan MDC is less than the DCGL (5 vs. 5.7 pCi/g), the number of samples in Class 1 areas will not be driven by the potential for small areas of elevated activity.

The number of soil samples per survey unit based on nonparametric statistics—considering both the Wilcoxon Rank Sum and Quantile tests—is 173. It is assumed that an additional 197 samples are collected based on scan results for a total of 370 soil samples. The

number of samples based on scans will be assumed based on 1 additional sample per 50 m^2 of scanned area in Class 1 and Class 2 areas, and 1 additional sample per 400 m^2 of scanned area in Class 3 areas.

D.5.5.2 Survey Cost Estimate for 60 mrem/y

Surface Activity and Soil Concentration DCGLs

The DCGL for Th-232 is 1,390 dpm/100 cm² for total alpha and 930 dpm/100 cm² for total beta. Compliance with the surface activity DCGL will be demonstrated by measuring the alpha surface activity. The soil concentration DCGL is 3.4 pCi/g for Th-232 and 2 pCi/g for Ra-226. Compliance with the soil DCGL will be demonstrated based on the Th-232 concentration as measured by gamma spectrometry.

Surface Activity and Soil Concentration Backgrounds and Standard Deviations (o's)

Surface Activity

The expected background for alpha surface activity measurements is $63 \pm 30 \text{ dpm}/100 \text{ cm}^2$ (1 σ).

Class 1	Standard deviation is 590 dpm/100 cm ²
Class 2	Standard deviation is 500 dpm/100 cm ²
Class 3	Standard deviation is 30 dpm/100 cm ²

Soil Concentrations

The expected background concentration for Th-232 in soil is 1.0 ± 0.4 pCi/g (1 σ).

Class 1	Standard deviation is 1.8 pCi/g
Class 2	Standard deviation is 1.5 pCi/g
Class 3	Standard deviation is 0.4 pCi/g

Indoor Areas

Reference Area

It is assumed that all measurements are performed on concrete in a reference area. The number of measurements equals 6 (from nonparametric statistics).

Instrumentation for Surface Activity Measurements and Scans

Surface activity measurements will be performed with a gas proportional detector; the MDC for 1 minute measurements for alpha activity is 130 dpm/100 cm^2 .

The surfaces will be scanned with both a floor monitor (573 cm^2) and a 126- cm^2 gas proportional detector. The scan MDC for the floor monitor for alpha is 400 dpm/100 cm^2

and 260 dpm/100 cm² for the gas proportional detector. Surface scans for beta activity will be performed in the same areas as alpha scans, but beta scans will not be used for correlating the scan MDC and hot spot sampling design. Gamma scans will also be performed over approximately 50% of the floor areas.

Number of Surface Activity Measurements

(based on nonparametric stats or driven by hot spot potential)

Because the scan MDC is less than the DCGL (400 vs 1390 dpm/100 cm^2), the number of samples in Class 1 areas will not be determined based on the potential for small areas of elevated activity.

The number of surface activity measurements per survey unit for each classification based on nonparametric statistics—considering both the Wilcoxon Rank Sum and Quantile tests—is 2987. It is assumed that an additional 1051 measurements are collected based on scan results for a total of 4038 direct surface activity measurements. The number of measurements based on scans will be assumed based on 1 additional measurement per 10 m^2 of scanned area in Class 1, 1 additional measurement per 50 m² of scanned area in Class 2 and Class 3 areas.

Outdoor Areas

Reference Area

It is assumed that all background soil samples, if necessary, are collected from an offsite reference area. Since Th-232 measurements will be used to demonstrate compliance with criteria for outdoor areas, a reference area is needed. The number of measurements equals 8.

Instrumentation for Surface Scans

Soil surfaces will be scanned with a NaI scintillation detector. The scan MDC for Th-232 is 5 pCi/g.

Number of Soil Samples

Because the NaI scan MDC is greater than the DCGL (5 vs. 3.4 pCi/g), the number of samples in Class 1 areas may be driven by the potential for small areas of elevated activity. The area factor is 1.5 and corresponds to an area of approximately 300 m^2 . When this acceptable elevated area is divided into each survey unit area (2324 m^2), the number of samples based on hot spot potential is 8 per survey unit. It is very unlikely that the number of samples necessary to satisfy the hot spot potential is going to be the driver because the nonparametric statistics should require more than 8 samples per survey unit. The total number of samples necessary to satisfy the potential for small areas of elevated activity is 32.

NUREG-1496

The number of soil samples per survey unit based on nonparametric statistics—considering both the Wilcoxon Rank Sum and Quantile tests—is 190 (73 in class 2 and 3 areas). It is assumed that an additional 197 samples are collected based on scan results for a total of 387 soil samples. The number of samples based on scans will be assumed based on 1 additional sample per 50 m² of scanned area in Class 1 and Class 2 areas, and 1 additional sample per 400 m² of scanned area in Class 3 areas.

D.5.5.3 Survey Cost Estimate for 25 mrem/y

Surface Activity and Soil Concentration DCGLs

The DCGL for Th-232 is 580 dpm/100 cm² for total alpha and 390 dpm/100 cm² for total beta. Compliance with the surface activity DCGL will be demonstrated by measuring the alpha surface activity. The soil concentration DCGL is 1.4 pCi/g for Th-232 and 0.84 pCi/g for Ra-226. Compliance with the soil DCGL will be demonstrated based on the Th-232 concentration as measured by gamma spectrometry.

Surface Activity and Soil Concentration Backgrounds and Standard Deviations (σ 's)

Surface Activity

The expected background for alpha surface activity measurements is $63 \pm 30 \text{ dpm}/100 \text{ cm}^2$ (1 σ).

Class 1	Standard deviation is 320 dpm/100 cm ²
Class 2	Standard deviation is 300 dpm/100 cm ²
Class 3	Standard deviation is 30 dpm/100 cm^2

Soil Concentrations

The expected background concentration for Th-232 in soil is 1.0 ± 0.4 pCi/g (1 σ).

Class 1	Standard de	eviation is	1.1 pCi/g
Class 2	Standard de	viation is	1 pCi/g

Class 3 Standard deviation is 0.4 pCi/g

Indoor Areas

Reference Area

It is assumed that all measurements are performed on concrete in a reference area. The number of measurements equals 8 (from nonparametric statistics).

Instrumentation for Surface Activity Measurements and Scans

Surface activity measurements will be performed with a gas proportional detector; the MDC for 1 minute measurements for alpha activity is 130 dpm/100 cm^2 .

D-43

NUREG-1496

÷ ;

The surfaces will be scanned with both a floor monitor (573 cm^2) and a 126-cm² gas proportional detector. The scan MDC for the floor monitor for alpha is 400 dpm/100 cm² and 260 dpm/100 cm² for the gas proportional detector. Surface scans for beta activity will be performed in the same areas as alpha scans, but beta scans will not be used for correlating the scan MDC and hot spot sampling design. Gamma scans will also be performed over approximately 50% of the floor areas.

Number of Surface Activity Measurements

(based on nonparametric stats or driven by hot spot potential)

Because the scan MDC is less than the DCGL (400 vs 580 dpm/100 cm²), the number of samples in Class 1 areas will not be determined based on the potential for small areas of elevated activity.

The number of surface activity measurements per survey unit for each classification based on nonparametric statistics—considering both the Wilcoxon Rank Sum and Quantile tests—is 3865. It is assumed that an additional 1051 measurements are collected based on scan results for a total of 4916 direct surface activity measurements. The number of measurements based on scans will be assumed based on 1 additional measurement per 10 m^2 of scanned area in Class 1, 1 additional measurement per 50 m² of scanned area in Class 2 and Class 3 areas.

Outdoor Areas

Reference Area

It is assumed that all background soil samples, if necessary, are collected from an offsite reference area. Since Th-232 measurements will be used to demonstrate compliance with criteria for outdoor areas, a reference area is needed. The number of measurements equals 13.

Instrumentation for Surface Scans

Soil surfaces will be scanned with a NaI scintillation detector. The scan MDC for Th-232 is 5 pCi/g.

Number of Soil Samples

Because the NaI scan MDC is greater than the DCGL (5 vs. 1.4 pCi/g), the number of samples in Class 1 areas will be driven by the potential for small areas of elevated activity. The area factor is 3.6 and corresponds to an area of approximately 8 m^2 . When this acceptable elevated area is divided into each survey unit area (2324 m^2), the number of samples based on hot spot potential is 290 per survey unit. The total number of samples necessary to satisfy the potential for small areas of elevated activity is 1160.

NUREG-1496

D-44

The number of soil samples per survey unit based on nonparametric statistics—considering both the Wilcoxon Rank Sum and Quantile tests—is 288 (93 in Class 2 and 3 areas). It is assumed that an additional 197 samples are collected based on scan results for a total of 1463 soil samples. The number of samples based on scans will be assumed based on 1 additional sample per 50 m² of scanned area in Class 1 and Class 2 areas, and 1 additional sample per 400 m² of scanned area in Class 3 areas.

D.5.5.4 Survey Cost Estimate for 15 mrem/y

Surface Activity and Soil Concentration DCGLs

The DCGL for Th-232 is 348 dpm/100 cm² for total alpha and 232 dpm/100 cm² for total beta. Compliance with the surface activity DCGL will be demonstrated by measuring the alpha surface activity. The soil concentration DCGL is 0.85 pCi/g for Th-232 and 0.5 pCi/g for Ra-226. Compliance with the soil DCGL will be demonstrated based on the Th-232 concentration as measured by gamma spectrometry.

Surface Activity and Soil Concentration Backgrounds and Standard Deviations (σ 's)

The estimated standard deviations for surface activity and soil concentrations in survey units are determined for each area classification. In large part, the estimated standard deviations were based on results of past survey experience. A general guide for Class 1 areas, it was assumed that the ratio of the standard deviation (σ) to the DCGL (Δ) increased as the DCGL was lowered from 100 to 3 mrem/y. For example, for DCGLs at 100 and 60 mrem/y, σ/Δ is 40%; for DCGL at 25 mrem/y, σ/Δ is 50%; for DCGL at 15 mrem/y, σ/Δ is 60%; and for DCGL at 3 mrem/y, σ/Δ is 70%. The standard deviations for Class 2 areas were estimated to be approximately 50 to 95% of the Class 1 standard deviations. The standard deviations for Class 3 areas are assumed to be equal to the standard deviation of background—where the contaminant is not present in background and nuclide-specific measurements are performed, the standard deviation of background, and therefore the standard deviation of the Class 3 area, is assumed to be near zero.

Surface Activity

The expected background for alpha surface activity measurements is $63 \pm 30 \text{ dpm}/100 \text{ cm}^2$ (1 σ).

- Class 1 Standard deviation is 240 dpm/100 cm²
- Class 2 Standard deviation is 190 dpm/100 cm²
- Class 3 Standard deviation is 30 dpm/100 cm²

Soil Concentrations

The expected background concentration for Th-232 in soil is 1.0 ± 0.4 pCi/g (1 σ).

Class 1 Standard deviation is 0.91 pCi/g Class 2 Standard deviation is 0.82 pCi/g

D-45

Class 3 Standard deviation is 0.4 pCi/g

Indoor Areas

Survey Unit Classification

Reference Area

It is assumed that all measurements are performed on concrete in a reference area. The number of measurements equals 10 (from nonparametric statistics).

Class 1 areas include the floors and walls in the process and miscellaneous buildings. A total of 78 survey units, each measuring 62 to 93 m^2 , with a total surface area of 7161 m^2 , will be scanned.

1

ĩ

Class 2 areas include the floors and lower walls in the process and miscellaneous buildings. A total of 58 survey units, each 62 to 517 m², with a total surface area of 14,530 m², will be scanned.

Class 3 areas consist of the upper walls and ceilings for the process buildings and all surfaces in the outbuildings. A total of 13 survey units, each measuring 496 to 4647 m^2 , with a total surface area of 1900 m^2 , will be scanned.

Instrumentation for Surface Activity Measurements and Scans

Surface activity measurements will be performed with a gas proportional detector; the MDC for 1 minute measurements for alpha activity is 130 dpm/100 cm^2 .

The surfaces will be scanned with both a floor monitor (573 cm^2) and a 126-cm² gas proportional detector. The scan MDC for the floor monitor for alpha is 400 dpm/100 cm² and 260 dpm/100 cm² for the gas proportional detector. Surface scans for beta activity will be performed in the same areas as alpha scans, but beta scans will not be used for correlating the scan MDC and hot spot sampling design. Gamma scans will also be performed over approximately 50% of the floor areas.

Number of Surface Activity Measurements

(based on nonparametric stats or driven by hot spot potential)

Because the scan MDC is just above the DCGL (400 vs 348 dpm/100 cm²), the number of samples in Class 1 areas may be determined based on the potential for small areas of elevated activity. The area factor is 1.2 and corresponds to an area of approximately 25 m². When this acceptable elevated area is divided into each survey unit area, the total number of samples based on hot spot potential is 319. It is very unlikely that the number of samples necessary to satisfy the hot spot potential is going to be the driver because the nonparametric statistics should require more than 4 samples per survey unit.

The number of surface activity measurements per survey unit for each classification based on nonparametric statistics-considering both the Wilcoxon Rank Sum and Quantile tests-is 4491 (1671 in Class 2 and 3 areas). It is assumed that an additional 1051 measurements are collected based on scan results for a total of 5542 direct surface activity measurements. The number of measurements based on scans will be assumed based on 1 additional measurement per 10 m² of scanned area in Class 1, 1 additional measurement per 50 m² of scanned area in Class 2 and Class 3 areas.

Outdoor Areas

Survey Unit Classification

Reference Area

.

It is assumed that all background soil samples, if necessary, are collected from an offsite reference area. Since Th-232 measurements will be used to demonstrate compliance with criteria for outdoor areas, a reference area is needed. The number of measurements equals 21.

Class 1 areas include a total of 4 survey units, each measuring 2324 m², with a total surface area of $9,296 \text{ m}^2$ that will be scanned.

Class 2 areas include 1 survey unit, measuring 929 m², with a total scan surface area of 697 m².

Class 3 areas include a total of 4 survey units, each measuring 3718 to 7435 m², with a total scan surface area of 2600 m².

e .

Instrumentation for Surface Scans

Soil surfaces will be scanned with a NaI scintillation detector. The scan MDC for Th-232 is 5 pCi/g.

Number of Soil Samples

Because the NaI scan MDC is greater than the DCGL (5 vs. 0.85 pCi/g), the number of samples in Class 1 areas may be driven by the potential for small areas of elevated activity. The area factor is 5.9 and corresponds to an area of approximately 3 m^2 . When this acceptable elevated area is divided into each survey unit area (2324 m²), the number of samples based on hot spot potential is 775, which is going to be the driver for class 1 areas because the nonparametric statistics will require fewer than 775 samples per survey unit. The total number of samples necessary to satisfy the potential for small areas of elevated activity is 3100.

D-47

The number of soil samples per survey unit based on nonparametric statistics—considering both the Wilcoxon Rank Sum and Quantile tests—is 422 (136 in Class 2 and 3 areas). It is assumed that an additional 197 samples are collected based on scan results for a total of 3454 soil samples. The number of samples based on scans will be assumed based on 1 additional sample per 50 m² of scanned area in Class 1 and Class 2 areas, and 1 additional sample per 400 m² of scanned area in Class 3 areas.

 \mathcal{D}

7

D.5.5.5 Survey Cost Estimate for 3 mrem/y

Surface Activity and Soil Concentration DCGLs

The DCGL for Th-232 is 70 dpm/100 cm² for total alpha and 47 dpm/100 cm² for total beta. Compliance with the surface activity DCGL will be demonstrated by measuring the alpha surface activity. The soil concentration DCGL is 0.17 pCi/g for Th-232 and 0.1 pCi/g for Ra-226. Compliance with the soil DCGL will be demonstrated based on the Th-232 concentration as measured by gamma spectrometry.

Surface Activity and Soil Concentration Backgrounds and Standard Deviations (σ 's)

Surface Activity

The expected background for alpha surface activity measurements is $63 \pm 30 \text{ dpm}/100 \text{ cm}^2$ (1 σ).

Class I Stainiath ucylation is of upin/ too ch	Class 1	Standa	rd deviation	is 80	dpm/100	cm
--	---------	--------	--------------	-------	---------	----

Class 2 Standard deviation is 50 dpm/100 cm²

Class 3 Standard deviation is 30 dpm/100 cm²

Soil Concentrations

The expected background concentration for Th-232 in soil is 1.0 ± 0.4 pCi/g (1 σ).

Class 1 Standa	d deviation i	is 0.52 pCi/g
----------------	---------------	---------------

Class 2 Standard deviation is 0.48 pCi/g

Class 3 Standard deviation is 0.4 pCi/g

Indoor Areas

:.

Reference Area

It is assumed that all measurements are performed on concrete in a reference area. The number of measurements equals 38 (from nonparametric statistics).

Instrumentation for Surface Activity Measurements and Scans

Surface activity measurements will be performed with a gas proportional detector; the MDC for 10 minute measurements for alpha activity is $35 \text{ dpm}/100 \text{ cm}^2$.

The surfaces will be scanned with both a floor monitor (573 cm^2) and a 126-cm² gas proportional detector. The scan MDC for the floor monitor for alpha is 400 dpm/100 cm² and 260 dpm/100 cm² for the gas proportional detector. Surface scans for beta activity will be performed in the same areas as alpha scans, but beta scans will not be used for correlating the scan MDC and hot spot sampling design. Gamma scans will also be performed over approximately 50% of the floor areas.

Number of Surface Activity Measurements

(based on nonparametric stats or driven by hot spot potential)

Because the scan MDC is greater than the DCGL (400 vs 70 dpm/100 cm²), the number of samples in Class 1 areas may be determined based on the potential for small areas of elevated activity. The area factor is 5.7 and corresponds to an area of approximately 6 m². When this acceptable elevated area is divided into each survey unit area, the total number of samples based on hot spot potential is 1268.

The number of surface activity measurements per survey unit for each classification based on nonparametric statistics—considering both the Wilcoxon Rank Sum and Quantile tests—is 3907 (975 in Class 2 and 3). It is assumed that an additional 1051 measurements are collected based on scan results for a total of 4958 direct surface activity measurements. The number of measurements based on scans will be assumed based on 1 additional measurement per 10 m² of scanned area in Class 1, 1 additional measurement per 50 m² of scanned area in Class 3 areas.

Outdoor Areas

Z

:

Reference Area

It is assumed that all background soil samples, if necessary, are collected from an off-site reference area. Since Th-232 measurements will be used to demonstrate compliance with criteria for outdoor areas, a reference area is needed. The number of measurements equals 236.

Instrumentation for Surface Scans

Soil surfaces will be scanned with a NaI scintillation detector. The scan MDC for Th-232 is 5 pCi/g.

Number of Soil Samples

Because the NaI scan MDC is greater than the DCGL (5 vs. 0.17 pCi/g), the number of samples in Class 1 areas will be driven by the potential for small areas of elevated activity. The area factor is 29.4 and corresponds to an area less than 1 m^2 . When this acceptable elevated area is divided into each survey unit area (2324 m²), the number of samples based

D-49

on hot spot potential is 2324 per survey unit. The total number of samples necessary to satisfy the potential for small areas of elevated activity is 9296.

The number of soil samples per survey unit based on nonparametric statistics—considering both the Wilcoxon Rank Sum and Quantile tests—is 2404 (1161 in Class 2 and 3 areas). It is assumed that an additional 197 samples are collected based on scan results for a total of 10,890 soil samples. The number of samples based on scans will be assumed based on 1 additional sample per 50 m² of scanned area in Class 1 and Class 2 areas, and 1 additional sample per 400 m² of scanned area in Class 3 areas.

D.6 Results

A breakdown of survey costs for each reference facility is provided in Tables D.1.1 through D.4.6. In Figures D.1 through 4, the increasing total cost is shown as a function of decreasing residual dose criteria for each reference facility. For the reference facilities, the increase in cost becomes apparent at 3 mrem/y and below.

D.7 Relative Costs of Conducting Other Radiological Surveys for Decommissioning

As part of the decommissioning process, the cost of surveys other than that of the final status survey should be considered; mainly, that associated with scoping, characterization, remediation control, and confirmatory surveys (MARS, 1996). The scoping survey provides preliminary data used in planning the next phases of the decommissioning activities. It is typically a 1-5% effort compared to that of a final survey.

The characterization survey may involve the greatest effort. In planning a characterization survey, it should be remembered that some of the survey data that are below the guideline values and are from unremediated areas may not have to be duplicated and could later be used as final survey results. However, without the specific condition of a given facility, it is difficult to estimate how much effort would be needed for a radiological characterization of that site. If there is extensive subsurface soil contamination, the cost of site characterization could be several times higher than that of a final survey. On the other hand, if contamination is limited to indoor areas, or if the outdoor soil contamination is only in the surface soil, the cost of radiological characterization surveys can range from 0.5 to 10 times that of the final survey or fall outside of this range. It should be noted that a poor characterization of a facility could result in a much more costly remediation effort.

The remediation control survey is intended to monitor the effectiveness of remediation efforts while they are in progress. It also assures that the workers, the public, and the environment are adequately protected against exposures to radiation and radioactive materials arising from remediation activities. It is estimated that remediation control surveys involve a 10-20% effort compared to that of a final survey. A confirmatory survey

NUREG-1496

ı
is performed to evaluate the adequacy and accuracy of the licensee's final survey and is typically a 5-15% effort compared to that of a final survey.

Although it is difficult to develop exact estimates, it is expected that the cost associated with each of these radiological surveys will increase at the low residual dose criteria. That increase in cost as a function of decreasing residual dose criteria is expected to follow a pattern similar to that of the final survey. Tables D.1.6, D.2.6, D.3.6, and D.4.6 illustrate possible costs of these surveys compared to that of the final survey.

D.8 References

MARS. 1996. Multi-Agency Radiation Survey and Site Investigation Manual (MARSSIM). Draft for Public Comment. December 1996.

NRC. 1992a. Manual for Conducting Radiological Surveys in Support of License Termination, Draft Report. NUREG/CR-5849. Oak Ridge Associated Universities.

NRC. 1992b. Residual Radioactive Contamination From Decommissioning, Technical Basis for Translating Contamination Levels to Annual Total Effective Dose Equivalent, Final Report. NUREG/CR-5512, Vol. 1. Battelle Memorial Institute, Pacific Northwest Laboratory.

NRC. 1995a. A Nonparametric Statistical Methodology for the Design and Analysis of Final Status Decommissioning Surveys. NUREG-1505. U.S. Nuclear Regulatory Commission, Washington, D.C.

NRC. 1995b. Measurement Methods for Radiological Surveys in Support of New Decommissioning Criteria. NUREG-1506. U.S. Nuclear Regulatory Commission, Washington, D.C.

NRC. 1995c. Minimum Detectable Concentrations with Typical Radiation Survey Instruments for Various Contaminants and Field Conditions. NUREG-1507. U.S. Nuclear Regulatory Commission, Washington, D.C.

Table D.1.1

ą

Reference Facility:

.

. .

. . ,

Power Reactor

			Structure Surv	eys		Land Surveys	
Res	udual Dose Limit	Class 1	Class 2	Ciase 3	Class 1	Class 2	Class 3
	100 mrem/yr	Affected Nen-Uniform	MottedUniform	Unuffected	Affected Non-Uniform	Aflected/Uniferm	Unaffected
Site Inform	ation						
1	Total area (m*2) - Outdoor	na -	na	42000	2000	16720	55740
	Total area (m*2) - Floor/Lower Wall	8488	51723	0	c .»	na	na
1	Total area (m ²) - U.Wall/Ceiling	0	10000	260015	na	na -	
	Scan (% Area)	100	75	10	100	125/0	10
	Scan area (m*2) + Outdor Scan area (m*2) - Floorit over Wall	1 158 1 8488	38792.25	 	2000	12340	
	Scan area (m*2) - U.Wal/Ceiling		7500	20001.5	6.8	na	na
Scanning	Survey Time (hr)		1				
(gamma)	Floors & Outdoor Areas	5,31	32.33	70.00	3.333333333	20.9	9.29
(beta)	Floors & L. Watts	28.29	129.31	0.00	na	na	na 🛛
(beta)	U. Walls & Ceilings	0.00	50.00	173.34	na	na	na i
Disert Hear							4 6
Direct Meas	Aurements						
	Survey Time (hd	127 55	258.45	43.50	- 03		
			2.00.40				
Soll Sampli	na						· ·
	No. of Samples	na	6 2	na			
	Collection Time (hr)	nak	na	en l	5.80	13.50	19.40
Survey Tim							
	Subtotal (hours)	181	468	257	9	34	29
	Adjustment A. 20%	40	**7		,	•	,
	Addite charter branks research	~	112	· *	4	•	
	Adjustment B - 15%	24	70	43	1	5	4
	(date review)						
	Total (hours)	226	655	402	13	-45	40
							1
Analytical C	lost (\$)						
	Soil Samples	na	ia -	na	4350	10125	14550
	Smear Samples	944	1898	323	na	na	na
	Subtotal	944	1898	323	4350	10125	14550
rinal Surve	y Cost (S)				474		
	Capor Anabéral	6307	24129	14/91	4/1	10125	14550
	Submai	9251	26027	15114	4821	11898	16029
		· · ·					الديبيبي فتقدي والمستوين
	Sup. Data Review/ Report Preparation	25377					
	Total Cost - Final Survey	108518					
							•
other Surve	ey Costs (5)						
	Gridding - Indoor	173544					
	Uniding - Outdoor	0452					
	Scooling Survey	5426					
	Characterization Survey	108518					
	Remed. Control Survey	10852					
	Confirmatory Survey	5426					
	TOTAL SURVEY COSTS	\$418,731					

NUREG-1496

D-52

.

Reference Facility:

.

Power Reactor

	••••••	1	Structure Surv	eys		Land Surveys	
Re	sidual Dose Limit	Class 1	Class ?	Class I	Class 1	Class 2	Class 1
	60 mrem/vr	Affected Non-Unders	Miscissichilorm	Walletted	All ected Non-Unit ann	Affected/Uniform	Maffected
Site Inform	ation	1	1				
1	Total area (m^2) - Outdoor	Na Na	62	42000	2000	16720	55740
	Total area (m*2) - Floor/Lower Wall	6486	51723	C	na	fiz.	na
1	Total staa (m*2) - U.Wall/Ceiling	0	10000	260015	Na	na	na
·	Scan (% Area)	100	75	10	100	75	10
	Scan area (m*2) - Outdoor	na	83	na ·	2000	12540	5574
l	Scan area (m*2) - Floor/Lower Wall	6488	38792.25	0	A2	. 82	na
	Scan area (m*2) - U.Wall/Ceiling	0	7500	26001.5	na na	<u>na</u>	<u>A2</u>
Scanning	Survey Time (hr)						
(gamma)	Floors & Outdoor Areas	5.31	32.33	70.00	3 333333333	20.9	9 29
(0613)	PICOTS & L. WYARS	25.29	129.31	0.00	7 9	82	na 🛛
(06(2)	U. Waits & Cettings	0.00	50.00	173.34	Ra -	na	na
Direct Mes	0.1174571401 ⁴ 0						· ·
loucer mea	Mumber of Materian ante						
	Super Time And	177 65	768.45	47.60		112	ne ne
ļ	could then that	121.00	200.15	-5.60	F145	THE .	THE.
Soll Sampl	loa .			· ·			
	No. of Samoles		·				
	Collection Time (ht)		63	03	5.80	13.50	19.40
		-			0.00	10.00	
Survey Tim	ie .						
-	Subtotal (hours)	161	480	267	9	34	29
•						-	
	Adjustment A - 25%	· 40	120	72	2	· 9	7
	(daily thecks, breaks, repeats)						
	Adjustment B - 15%	24	72	43	1	5	4
	(data review)					•	
					•		
	Tocal (nours)	Z2 6	672	402	13	48	40
Analytical C	Cost (\$)						
, ,	Soil Samoles	· · 63	88		4350	10125	14550
	Smear Samples	844	1984	323	BE .	82	na
	Subtot-I	944	1984	323	4350	10125	14550
Final Surve	y Cost (\$)						
	Labor	\$307	24732	14791	471	1773	1479
	Analytical	944	1984	323	4350	10125	14550
	Subtotal	9251	26716	15114	4821	11898	16029
						-	
	Sup. Data Review/ Report Preparation	25377					
	Total Cost - Pinal Sulvey	109/205					
A							•
other autve	ey costs (5)						
	Gindang - Indoor	173544					
	Gridding - Outdoor	6452					
	Secsion Submy	ELSO .					
	Characterization Sumau	10000					
	Berned Control Summer	109205					
	Confirmation Summer	KLED		2			1
	and the second						
	TOTAL SURVEY COSTS	\$420 248					
l							

Table D.1.3

3

i

Reference Facility:

.

. . **.**

. • ·

•

· 2 6

Power Reactor

			Structure Surve	Structure Surveys		Land Surveys		
Re	Idual Dose Limit	Class 1	Class 2	Class 3	Class 1	Cizza 2	Cizza 3	
	25 mrem/yr	Affects dition-Lindorm	Affected/Juliana	Unaffected	Affected Non-Uniform	AffectedUniform	Unaffected	
Site Inform	ation	Î						
	Total area (m^2) - Outdoor	na –	na -	42000	2000	15720	55740	
	Total area (m*2) - FloorfLower Walls	8488	51723	0	na 🛛	n8	na	
	Total area (m*2) - U.Wall/Ceting		10000	250015	Na	na si	na l	
	Scan (% Area)	100	75	10	100	13	10	
	Scan area (m*2) - Coupon Scan area (m*2) - Eloora men Walla	5458	72797 75		2000	12540		
	Scan area (m ²) - U.Wall/Celling	~~~	7500	26001.5	10	74		
Scanning	Survey Time (hr)							
(gamma)	Floors & Outdoor Areas	5.31	32.33	70.00	3.333333333	20.9	9.29	
(beta)	Floors & L. Walts	28.29	129.31	0.00	na	na	na	
(beta)	U. Walls & Ceilings	0.00	50.00	173.34	na	RA	· na	
		1						
Direct Meas	surements							
	Number of Measurements				61	F1	na.	
	Survey Time (NI)	177.80	361.49	43.60	~ 4	158	na	
Soli Samali	120							
Jon Sampa	No. of Samples		63					
	Collection Time (hr)	-	08	na	5.80	13.50	19.40	
Survey Tim	19							
	Subtotal (hours)	211	573	287	9	34	29	
		i 1						
	Adjustment A - 25%	53	143	72	2	9	7	
	(daily checks, breaks, repeats)							
	Adjustment 8 - 15%		86	43	,	5	•	
	Total (hours)	296	802	402	13	48	40	
Analytical C	Cost (S)							
	Soll Samples	118	75	11	4350	10125	14550	
	Smear Samples	1315	2675	323	78	72	na	
	Subman	1318	26/3	323	4,50	10129	14000	
Einel Sume	v Cort (S)							
	Labor	10897	29541	\$4793	471	1773	1479	
	Analytical	1318	2675	323	4350	10125	14550	
	Subtotal	12213	32218	15114	4821	11898	16029	
	Sup. Data Review Report Preparation	25377						
	Total Cost - Final Survey,	117667						
other Survi	ey Costs (5)							
	Gridding - Indibor	1/3544 5/65						
	Concerning + Collocat	U-32					*	
	Scooling Survey	5883						
	Characterization Survey	117667						
	Remed, Control Survey	11767						
	Confirmatory Survey	5883						
	TOTAL SURVEY COSTS	\$438,864						
L		1						

NUREG-1496

ι

Reference Facility:

. .

•

Power Reactor

			Structure Surve	Structure Surveys		Land Surveys		
Re	Isidual Dose Limit	Class 1	Class 2	Ciass 3	Cias 1	Class 2	Ciana 3	
	15 mrem/yr	Allected Non-Uniterm	Allected/Inform	Unaffected	Affected/Non-Underm	AllectedUnderm	Unaffected	
Site Inform	nation	1	1					
	Tetal area (m^2) - Outdoor	na	na	42000	2000	16720	55740	
	Tetal area (m*2) - Floor/Lower Wall	8488	51723	0	ra -	na 🛛	nt	
	Total area (m^2) - U.Wall/Cesing	0	10000	260015	na	A1	na	
	Scan (% Area)	100.	75	10	100	75	10	
	Scan area (m*2) - Outdoor	na	na	A2	2000	12540	5574	
	Scan Brez (m*2) - Floor/Lower Wall	8468	36792.25	0	na	ла	na	
	Scan area (m*2) - U.WaivCeling	ļ	7500	25001.5	na.	<u>na</u>	na	
scanning	Survey Tana (nr)							
(gamma)	Floors & Outdoor Areas	5.31	32.33	70.00	3.33333333	20.9	9.29	
(19613)	Ploofs & L. Wans	26.23	129.31	0.00	na	na	na.	
(06.7)	U Walls & Cellings	. 0.00	50.00	173.34	na.	na .	n £	
Direct May	CITADADA	1. Sec. 1. Sec					1	
	Number of Messe semants					-		
•	Rushing Time (hr)	157 15	345.05	67 B	12			
1	Borrey I time first	102.30	240.00	43.60	artis	na		
Soli Samni	tina			1				
oon oomp	No. of Samoles			l				
	Collection Time (hr)				14.00	13.50	49.40	
						10.00	///	
Survey Tkg	ne							
	Subtotal (hours)	196	457 -	287	17	34	29	
						•		
	Adjustment A - 25%	49	114	72	4		7	
	(doly checks, breaks, repeats)							
	Adjustment B - 15%	- 29	69	43	3	5	4	
	(data review)				1			
	_			1 ·			ł	
	Total (hours)	274	639	402	24	48	40	
A not direct (Cost (E)						}	
Analysical						43600	10400	
	Board Samples	4201	114	972	14000	13000		
	errear eampres Enternant	1201	1013	323	14000	13500	19400	
			1013	- -				
Final Surve	v Cost (S)	[
	Labor	10101	23541	\$4791	893	1773	1479	
	Analytical	1201	1813	323	14000	13500	19400	
	Subtotal	11302	25355	15114	14893	15273	20879	
				· · · · ·				
	Sup. Data Review/ Report Preparation	25377						
	Total Cost - Final Survey	128193	× .					
		1						
Other Surv	ey Costs (S)							
	Gndding - Indoor	173544				-	•	
	Gridding - Outdoor	6452		•				
	• • •					•		
	Scoping Survey	5410						
	Characterization Survey	128193						
	Remed. Control Survey	12819						
	Confirmatory Survey	6410	:		· .			
		ا مسمد ا				1		
	TOTAL SURVEY COSTS	\$462,020		-				
		1		;				
					+			

Table D.1.5

÷

4

. 1

Reference Facility:

Power Reactor

			Structure Survi	tys	Land Surveys		
Res	idual Dose Limit	Class 1	Class 2	Class 3	Class 1	Class 2	Class 3
	3 mrem/vr	Affected Non-Uniform	AffectedUniterm	Unaffected	Allected New Uniform	Affected/Uniterm	Unaffected
Site inform	ation						
}	Total area (m^2) - Outdoor	na	ra.	42000	2009	10720	\$\$740
}	Total area (m*2) - Floor/Lower Wall	6493	61723	Q	ra 🛛	60	na
	Total area (m*2) - U.WalVCeiling	•	10000	20001			
	Scan (76 Area) Scan sign (76 Area)				2000	12540	557A
	Scan area (m*2) - Flood over Wall	8488	38792.25	0	2000	03	
	Scan area (m^2) - U.Wall/Ceiling	0	7500	26001.5	na i	na .	na
Scanning	Survey Time (hr)						
(camma)	Floors & Outdoor Areas	5.31	32.33	70.00	3.333333333	20.9	9.29
(Deb)	Floors & L. Walls	28.29	129.31	0.00	na	en e	na
(beta)	U. Walls & Cellings	0.00	50.00	173.34	na -	ra.	na l
Direct Meas							
	Number of Massurements					na -	
	Survey Time (hr)	178.05	211.55	52.20		na	na
			_		-		-
Soll Sampli	ng						
	No. of Samples	na -	62	na	2:00	119	194
	Collection Time (hr)	na	na -	na -	200.00	13.50	19.40
Survey Tim	•						
Survey tim	Subtotal (hours)	210	423	296	203	34	29
	-						
	Adjustment A - 25%	52	106	74	51	9	7
	(duly checks, breaks, repeats)						
	Adjustment 8 - 15%	31	63	- 4	31	5	4
	(data review)						
	Total (hours)	294	592	414	285	48	40
							1
						ļ	
Analytical C	20st (5)				250000	mene	11050
	Smeat Samples	1303	1585	138	35000	23023	33500
	Subtotal	1303	1565	386	350000	23625	33950
Final Surve	y Cost (\$)						
	Labor	10807	21514	15235	10481	1773	1479
	Analytical	1303	1565	386	350000	23525	33950
	Subtotal	12110	23380	15621	360481	25396	35429
	Sun Data Review Report Preparabat	25377					
	Total Cost - Final Survey	497796					
	•						•
Other Surve	ey Costs (\$)		1				
	Gridding - Indoor	173544	[
	Grading - Outdoor	5452	ł				
	Sconing Super	24890	ł				
	Characterization Survey	497796	ł				
	Remed. Control Survey	49750					
	Confirmatory Survey	24890	1				
1			1				
	TOTAL SURVEY COSTS	\$1,275,145	1				
			I				

NUREG-1496

÷

•

. •

: · .

.

D-56

.

.

Table D.1.6

Reference Facility:

Power Reactor

			Residual Do	se Limit (mr	em/yr).	
P	·	3	15	25	60	100
Scan time	outdoor - gamma	10	10	10	10	10
(min/ 100 m^2)	indoor - gamma	15	÷ 15	15	15	15
	floor/ i.wali - beta	20	20	20	20	20
	u. wall/ ceiling - beta	40	40	40	40	40
1	floor/ I.wall - beta	20	20	20	20	20
	u. wall/ ceiling - beta	40	40	40	40	. 40
Direct Measurements (min/ location)	alpha/beta		2	3	3	3
Soil Sampling (samples/hr)	·····	0	10	10	10	10
Analysis Cost	soil	175	100	75	75	75
(\$/sample)	Smear	0.37	0.37	0.37	0.37	0.37
Labor Rate	H.P. Technician	39.82	36.82	36.82	36.82	36.82
(\$ <i>f</i> hr)	H.P. Spervisor	70.99	70.99	70.99	70.99	70.99
Costs of Other Surveys	Seering Suppoy					
	Characterization Survey	100	3 1/10	5		100
	Remed Control Survey	10	100	40	100	10
	Confirmatory Survey	5	5	5		5

Total Survey Costs Power Reactor \$1,275,146 3 **Power Reactor** \$462,020 15 \$438,864 \$420,248 \$418,731 25 \$1,400,000 60 Total Survey Costs (5) \$1,200,000 100

\$1,000,000

\$800,000 \$600,000 \$400,000 \$200,000

\$0

3

.

15

25

Dose Criterion (mrem/yr)

60

100

.

•

•

ı

...

•••

Table D.2.1

Reference Facility:

: ·

.

è

•

.

4

Sealed Source Facility

		ſ	Structure Surv	tructure Surveys		Land Surveys	
Re	siduai Dose Limit	Class 1	Ciass 2	Class 3	Gass 1	Class 2	Class 3
	100 mrem/yr	Affected Nen-Uniform	Affected/Uniform	Unaffected	Affected Non-Uniform	AttactedUniform	Unifieded
Site Inform	nation	1					
	Total area (m*2) - Outdoor	na	na	na	0 .	2770	300
	Total area (m^2) - Floor/Lower Wall	163 👘	853	2350	. na	na –	na
ł	Total area (m^2) - U.Watl/Ceiling	25	128	3153	Ra	84	118
	Scan (% Area)	100	75	10	100	75	10
1	Scan area (m*2) - Outdoor	na .	Rà	82	0	2077.5	30
[Scan area (m^2) - Floor/Lower Watt	163	639.75	235	#1 -	R1	na
L	Scan srea (m*2) - U.Wall/Ceiling	25	9 6	315.3	R3	na	na
Scanning	Survey Time (hr)						
(gamma)	Floors & Outdoor Areas	0.10	0.53	1.47	0	3.4825	0.05
(beta)	Floors & L. Walts	0.54	2.13	0.78	ña 🛛	N2	83
(beta)	U. Watts & Ceilings	0.17	0.64	2.10	62	n 2	na 🛛
							1
Direct Mea	surements					1	
ļ	Number of Measurements	(iii) 77 1 (iii) (iii)	150		na	na	na
ł	Survey Time (hr)	3.60	7.50	2.80	72	63	na
			}				
Soli Sampl	DO	· · · ·					
	No. of Samples	M A 1	63				
	Collecton Time (br)	83	63		0.00	4.80	1.90
Survey Tim	1e						
	Subtratal (house)		44	7 .	•	a .	
		•			v	•	-
	Adjustment A . 25%	•		,	0	,	
	fitela aleader bracht meastel	•	, and a second sec	-	, v		- 1
	Adjustment R . 15%	1	2	•	0	1	
		•	•	•	v		•
	Total (hours)	8	45	10	0	12	3
		, i			-		-
				and the second second			
Analytical C	Cost (S)						
	Soil Samples	na	62	R3	0	3600	1425
	Smear Samples	27	5 5	21	R2	na.	na
	Subtotal	27	56	21	0	3600	1425
	· · · · ·	-			· · · · · ·		
Final Surve	v Cost (S)		· · · ·	L			
	Labor	227	657	369	0	426	101
	Analytical	27	56	21	ŏ	3600	1425
1	Subtotal	254	613	389	ō	4026	1526
	Sup. Data Review/ Report Preparation	25377		*			
	Total Cost - Final Survey	32184	1.1.1				
Other Surve	ev Costs (\$)			•		i.	
	Goddaga - Indoor	3223					•
	Gridding - Outdoor	A3 6					
			:				
	Scoping Superv	1609	'				
	Characterization Summy	16092		2	•		
	Remail Control Science	3218					
	Continuation Super	1809					
ŀ	TOTAL SUPVEY COSTS	\$58,771					
				1			
				-			
L							

NUREG-1496

Table D.2.2

.

1

i

.

.

Reference Facility:

.

۰.

.

ŀ

· •

÷

Sealed Source Facility

			Structure Surv	eys	Land Surveys			
Res	idual Dose Limit	Class 1	Class 2	Class 3	Class 1	Class 2	Class 3	
	60 mrem/yr	AffectedNen-Uniform	AffectedUniform	Unaffected	Affected Nen-Uniform	Affected/Uniferm	Unaffected	
Site Inform	ation							
	Total area (m*2) - Outdoor	64	na	na	0	2770	300	
	Total area (m^2) - Floor/Lower Wall	163	853	2350	na	63	na	
	Total area (m^2) - U.Wall/Ceiling	25	128	3153	na	· 58	na	
	Scan (% Area)	100	75	10	100	75	10	
	Scan area (m ⁴ 2) - Outdoor	na –	na	ពង	0	2077.5	30	
	Scan area (m^2) - Floor/Lower Wall	163	639.75	235	na 👘	68	na	
	Scan area (m^2) - U.WalUCeiling	25	96	315.3	6 7	n	R	
Scanning	Survey Time (hr)	1						
(gamma)	Floors & Outdoor Areas	0.10	0.53	1.47	0	3.4625	0.05	
(beta)	Floors & L. Walls	0.54	2.13	0.78	na	68	na	
(beta)	U. Walls & Coilings	0.17	0.64	2.10	an a	na	68	
Direct Meas	urements							
1	Number of Measurements	72			na	na	na	
	Survey Time (hr)	3.80	7.90	2.50	na	68	na	
		1						
Soil Sameli	na	1				•		
	No of Samples		03	Ċ9				
	Collection Time (hr)		60		0.00	4.80	1.90	
Survey Tim	A							
· · · · · · · · · ·				,		•	-	
	Sectors (Asers)			1	v	•	4	
	Adjustment A 25%		•	•		•		
			3	4	U U	4	U U	
	(any mean, man, reputs) A destances R . 15%						•	
			4	1	•	•	v	
							•	
	rocal (nours)		.0		v	14	3	
Analytical C	ort (\$)							
- iniyucai c							4.005	
	Son Samples		64		Ű	3600	14429	
	Singer Samples	"	00	~	ran a	620	1406	
	SLOUGH	4	50	21	v	3000	1423	
Final Course	0.000							
FIGH SUIVE	A COSt (2)	·						
	Labor	"	5/8	369	0	428	101	
	Analyscal		58	21	0	3600	1425	
	300003	234	6.50	389	0	4025	1526	
	Sup. Data Review/Report Preparation	25377						
	Total Cost - Final Survey	32208						
Other Surve	ry Costs (\$)							
	Gridding - Indoor	3223					•	
	Gndding - Outdoor	536						
	Scoping Survey	1610						
	Characterization Survey	16104						
	Remed. Control Survey	3221						
	Confirmatory Survey	1610						
	TOTAL SURVEY COSTS	\$58,811						
		1 1						

NUREG-1496

Т

D-60

.

.

Reference Facility:

Sealed Source Facility

			Structure Surve	ys .		Land Surveys	······································
Re	sidual Dose Limit	Ciana 1	Class 2	Ciasa 3	Ciene 1	Class 2	Class 3
	25 mrem/vr	Allected Non-Unit orm	AllectedUniform	Unaffected	Allected Non-Uniform	AffectedUniform	Unaffected
Site Inform	notien	1					1
	Total area (m^2) - Outdoor	M	na .	na i	0	2770	300
	Total area (m*2) - Floor/Lower Walls	163	853	2350	na	na	n2
	Total area (m^2) - U Wall/Cesting	25	128	3153	- A3	na	na
	Scan (% Area)	100	75	10	100	75	10
	Scan area (m*2) - Outdoor	na 💦	ns	na	0	2077.5	30
	Scan area (m*2) - Floor/Lower Walls	163	639.75	235	na i	na	na –
	Scan area (m*2) - U WalVCeiling	25	96	315.3	na	na	na –
Scanning	 Survey Time (hr) 						
(gamma)	Floors & Outsioor Areas	0.10	0.53	1.47	0	3.4625	0.05
(beta)	Floors & L. Walls	0.54	2.13	076	na	i na	82
(beta)	U Walls & Celings	0.17	0.64	2.10	na	63	na
	• • • • • • • • • • • • • • • • • • • •						
Direct Mea	surements						
	Number of Measurements	·		10000000000000000000000000000000000000	03	61	63
	Super Time (br)	5 10	10 80	2.60	63	A 1	
	darrey time (try						
Salf Samal	las						
aon eampi	Also of Pamalan				**********		
	NO. St Baimpiets Collection Time (bit)	na .	RA CO	na ,	0.00	4 80	1.60
	Conection Time (m)	11	THE .	ria.	0.00	4.60	1.30
S		{	······································				
201A6A 110							
	Subtocal (hours)	•	14		0	8	Z
						· · _	
	Adjustment A - 25%	1 1	4	2	0	Z	•
	(duly checks, breaks, repeats)	1 .	_				
	Adjustment B - 15%	1 1	2	1	9 -	1	•
	(data reven)				•		
		1 .					
	Total (hours)	•	20	10	0	12	3
Analytical C	Cost (5)	I					
	Soil Samples	na j	fiz (712	0	3600	1425
	Smear Samples	38	80	21	na	na.	na
	Subtotal	38	80	21	0	3600	1425
Final Surve	v Cost (5)						
	l shor	305	727	369	0	426	101
	Anabeirat	38	80	21	ŏ	3600	1425
	Rightotal	342	807	399	ő	4026	1526
	Sun Data Barany Pasad Barantan	26177					
	Tetal Cast - Enal Submu	32457					
	Total Cost of white Convey						
Other Super	av Coste (S)						
		1777					
		3443					
	Gridong - Outdoor	000					•
	•						
	acoping survey	1023					
	Characterization Survey	10233		•			
	Remed. Control Survey	3247					
	Continuatory Survey	1623		•			
		ł					
	TOTAL SURVEY COSTS	\$59,252					
				•			
						•	

NUREG-1496

D-61

.

Table D.2.4

J.

3

1

Reference Facility:

.

.

.

•

.

•

.

.

Sealed Source Facility

		· · · · · · · · · · · · · · · · · · ·	Structure Surve	ys		Land Surveys	
Re	Idual Dose Limit	Cinest	Cirra 2	Cine 3	Cines 1	Cises 2	Cises 3
	15 mrem/vr	Macteditorialatore	AllectedUniform	Unaffected	Affected Non-Uniferra	Alfectediunierm	Unaffected
Site Inform	ation						
	Total area (m*2) - Outdoor	na	na	na	0	2770	300
	Total area (m*2) - FloorA.ower Wall	163	853	2350	na	na	na
	Total area (m*2) - U Wat/Cering	25	128	3153	na	na	na
	Scan (% Area)	100	75	10	100	75	10
	Scan area (m*2) - Outdoor	na	na	ra -	0	2077.5	30
	Scan area (m*2) - Floon/Lower Wall	163	639.75	235	na	118	68
	Scan area (m ⁴ 2) - U.Wall/Celing	25	96	315.3	6/1	nt	na
Scanning	Survey Time (hr)						
(gamma)	Floors & Outdoor Areas	0.10	0 53	1.47	0	3.4625	0.05
(beth)	Floors & L. Walls	0.54	2.13	0.78	68	na 👘	na i
(beta)	U. Walts & Cedings	0.17	0.64	2.10	60	na.	60
Direct Ster							
-net met	Number of Linesure and					-	ا _م ا
1	Number of Melsurements					778	
	Solvey Line (nr)	4.65	10.30	2.00	na	1961	174
Soll Sampl	ing						
	No. of Samples	na	na	na		4.6	
	Collection Time (hr)	0a	na	ла	0.00	4.80	1.90
Survey Tim				_			
	Subtotal (hours)	\$	13	7	a	8	2
	Advertise and A . 255		•				
	Augusument A + 2016	· ·	3		, v	•	, v
	Adustment 9 - 15%		,				6
		'	· ·		, v	•	i i
	(
	Total (hours)	8	19	10	0	12	3
Analyucal	Sost (S)			-		4800	1900
	Sou samples	14	76	74			
	Simear Samples Sublated	1 2 1	75	21		4300	1900
	30000		,,,	<u></u>	, ,		
Final Surve	y Cost (\$)						
	Labor	282	691	369	0	426	101
	Analytical	34	75	21	0	4800	1900
	Subtotal	316	766	389	0	5226	2001
	Sup. Data Review Report Preparation	253//					
	Total Cost - Final Survey	340/4					
Other Surv	ev Costa (S)						
	Godding - Indoor	3223					
	Godding - Outdoor	835					-
	Scoping Survey	1704					
	Characterization Survey	17037					
	Remod. Control Survey	3407					
	Continuatory Survey	1704					
	I TOTAL SURVEY COSTS	301,384					
		1					

NUREG-1496

١

Reference Facility:

.

•

•

.

•

Sealed Source Facility

			Structure Surv	eys	Land Surveys .			
Res	idual Dose Limit	Class 1	Class 2	Class #	Class 1	Class 2	Class 3	
L	3 mrem/yr	Allected Non-Uniform	Alfected/Uniform	Unaffected	Affected/Hon-Unitorm	Allected/Uniterm	Unaffected	
Site Inform	ation							
1	Total area (m*2) - Outsioor	na l	· 61	Ra		2770	300 SOC	
. ·	Total area (m*2) - FloorLower Wall	1000 HES	655	2250	R2	82	n 2	
	Total area (m*2) - U.Wall/Celling		174	353	na	Ra 🛛	n 2	
	Scan (Si Area)						<u></u> (0)	
	Scan area (m*2) - Outdoor	Ri	R2	#a	· 0	2077.5	- 30	
1	Scan area (m"Z) - Flood Lower Wall	163	639,75	235	R2	#2	M1.	
Scanaina	Scan Brea (m-2) • U.Wat/Celling	@	90	315,3	69	na	fiz	
(mma)	Elearr & Cuthlees Armae				•			
	Finance & L. Muster	0.10	212	1.4/	. 0	3.4625	0.05	
(beta)	U. Walls & Cellings	0.17	0.64	210	13	. 112	na	
	e. erens i cennys	v	0.04	~ 10	na	72	pa j	
Direct Meas	wrements							
	Number of Measurements							
	Survey Time for	10.60	6.70	3.85	-	na 01	114	
1								
Soll Sampli	na .							
	No. of Samples	1 na	61					
1	Collection Time Ind	62	82		0.00	4.80	1.90	
·								
Survey Tim	e							
	Subtotal (hours)	- 11 I	12		0	8	· · · · ·	
· ·				, in the second s	-	•	- 1	
	Adjustment A - 25%	3	3	2	0	2	0	
1	(daily checks, brasics, repeats)			_	_	-		
	Adjustment B - 15%	2	2	1	0	1	0	
	(data Periow)							
1	Taca: (hours)	15	17	11	0	12	3	
Analytical	art (C)							
raises yucat c	Eail Samalar				-			
	Smaat Samales	72	na Al	N2	U	8400	3320	
	Subintal	78	64 ·	27	7 12	n2 8/00	na ****	
	essens:		~	4 /	U	6400	3320	
Final Survey	v Cost (S)							
	Labor	588	61ġ	A19	•	me	404	
	Analytical	78	64	27	ŏ	8400	3325	
	Subtotal	667	683	440	ñ	8826	3426	
	Sup. Data Review/ Report Preparation	25377						
	Total Cost - Final Survey	39417						
							•	
Other Surve	y Costs (\$)							
	Gridding - Indoor	3223						
	Gridding - Outdoor	83 6						
	acoping Survey	1971						
	Characterization Survey	19709						
	Kemea. Control Survey	3942						
	Connimatory Survey	1971						
	L TOTAL SURVEY COSTS	\$71,068						

NUREG-1496

Reference Facility: Sealed Source Facility

		Residual Dose Limit (mrem/yr)							
		3	15	25	60	100			
Scan time	outdoor - gamma	10	· 10	10	10	10			
(min/ 100 m^2)	indoor - gamma	15	15	15	15	15			
•	floor/ Lwall - beta	20	20	20	20	20			
	u, walV ceiling - beta	40	40	40	40	40			
	floor/ Lwall - beta	20	20	20	20	20			
	u, wall/ceiling-beta	40	40	40	40	40			
Direct Measurements	alpha/beta	3	3	3		3			
(min/location)									
Soil Sampling		10	10	10	10	10			
(samples/hr)									
Analysis Cost	soil	175	100	75	7/5	7/5			
(\$/sample)	smear	0.37	0.37	0.37	0.37	0.37			
Labor Rate	H.P. Technician	38 82	36.82	36.82	36.82	36.82			
(\$/hr)	H.P. Spervisor	70.99	70.99	70.9 9	70.99	70.99			
Costs of Other Surveys						00000000000000000000000000000000000000			
(as a % of final survey costs)	Scoping Survey	5	5	5	5	5			
	Characterization Survey	50	50	50	50	.50			
	Remed. Control Survey	10	10	10	10	10			
	Confirmatory Survey	<u> </u>	5	5	5				

NUREG-1496

I.

1

2

i.

:

Figure D.2

. •

÷

. .

Table D.3.1

Reference Facility:

۰.

1

<u>UFuel Fabrication</u>

	i		Structure Surv	eys		Land Surveys	
Res	idual Dose Limit	Class 1	Class 2	Class 3	Class 1	Class 2	Class 3
	100 mrem/yr	Affected Non-Uniform	Affectedfühilfere	Unaffected	Attected Non-Uniform	Affected/Uniterm	Unaffected
Site Informa	ition	í					
	Total area (m^2) - Outdoor	58	na	na	13098	74220	130980
	Total area (m ²) - Floor/Lower Wall	12300	25124	0	R a	na 👘	na
	Total area (m*2) - U.Wall/Ceiling	1000	1000	27360		64	18
	Scan (% Area)	100	. 75	10	100	75	10
	Scan area (mf/2) - Outdoor Scan area (mf/2) - Elevel murr Wall	12200	188.49		13030	33063	13096
	Scan area (m ²) - 11 WallScelling	1000	750	2738		7.8	114
Scanning	Survey Time (b)						
(camma)	Floors & Outdoor Areas	7.69	15.70	0.00	21.83	\$2,775	21.83
(alpha/beta)	Floors & L. Walls	52.00	125.62	0.00	na	84	51 8
(alpha/beta)	U. Walls & Coilings	13.33	10.00	35.48	68	AB.	6 0
Direct Meas	urements						
	Number of Measurements		1720		62	nt	65
	Survey Tame (ni)	200.50	51.30	مد		ria.	118
Soll Sampli	na						
oon oanipin	No. of Samples			-			
	Collection Time (bd)	ra i		5 8	39.50	57.10	8.30
Survey Tim	6						
-	Subtotal (hours)	310	213	12	61	150	30
	Adjustment A - 25%	77	53	10	15	37	8
	(daily checks, breaks, repeats)					~	
	Adjustment # + 13%	40	34	•		4	,
	(one remem)						ł
	Total (hours)	433	298	58	88	210	42
							_
Analyticai C	tost (\$)						
	Soil Samples	na 🛛	Pall .	na .	29625	42525	5725
	Smear Samples	1528	454	39	738 20000	F12	na
	Subtoca	1340	454	- 39	2020	42023	0225
Final Survey	Cost (\$)						
	Labor	15955	10960	2151	3161	7726	1553
	Analytical	1528	454	39	29625	42825	5225
	Subtotal	17483	11414	2190	32786	50551	7778
			Survey costs us	ing in situ gamr	na spectrometry	1	
	Sup. Data Review/ Report Preparation	25377	Conventional	Indoor survey cost	31087		
	Total Cost - Final Survey	147579	in situ costs	Total Cost - Final	167105		
other surve	costs (5)		outer survey C	0273 (2)			-
	Gridding - Indoor	63/5Z		Groding - Indoor	53/32		
	Grading - Outdoor	20100		Gridding + Cuildoon	20100		
	Scoping Survey	7379		Scooling Survey	8355		
	Characterization Survey	36895		Characterization S	125329		
	Remed, Control Survey	22137		Remed, Control S	25068		
	Confirmatory Survey	7379		Confirmatory Surv	8355		
	TOTAL SURVEY COSTS	\$313,281	101	AL SURVEY C	\$457,209		

ι

2

÷

Reference Facility:

 U Fuel Fabrication

			Structure Surv	eys		Land Surveys	
Res	dual Dose Limit	Class 1	Class 2	Class 3	Class 1	Class 2	Class 3
	50 mrem/yr	Affected/lion-Uniferm	AffectedUnitorm	Unaffected	Affected Non-Uniform	Allected/Uniform	Unaffected
Site Informa	tion						
	Total area (m*2) - Outdoor	63	62	na i	. 13098	74220	130980
	Total area (m*2) - Floor/Lower Wall	12300	25124	0 1	61	R2 '	- N2
	Total area (m^2) - U.Wall/Celling	1000	1000	27360	R2	R2 .	n1
	Scan (% Area)	100	75	10	100	75	10
	Scan area (m*2) - Outdoor	63	RZ	na i	13098	5 5665	13098
	Scan area (m*2) - Floor/Lower Wall	12300	18843		R2	412	. 63
Coopelas	Scan great (m-2) - U. valv Cening	1000	750	2/30	na	fla	गव
Scanning	Survey Lane (m)	7.60	46 30		21.62	63775	21.82
(gamma)	Floors & Unidoor Areas	4200	125.62		21.65	82.775	21,05
(sinhs/hets)	11 Malle & Callinge	13.33	10.00	36.48	03	63	
(antime permit	e. viens e connigs		10.00				
Direct Meas	urements						1
	Number of Measurements			05	#1	R2	82
•	Survey Time (hr)	205.50	63.65	5.25	#2	82	82
							* t
Soli Sampli	ng						
	No. of Samples	AL	na	612			
	Collection Time (hr)	na '	R2	#1	39.50	\$8.60	8.30
		· · · · · · · · · · · · · · · · · · ·					
Survey Time							
-	Subtota: (nours)	310	215	42	51	191	30
	Adjustment & . 95%	77	64	10	45	98	
	Adjustitent A - 2076		.		13		•
	Adjustment B - 15%	46	32		9	23	5
	(data review)						-
	Total (hours)	433	301	58	8 6	212	42
					•		•
Analytical C	051 (3)				80676	(7050)	me
	Sou samples	53e	471	80	29060	43930	6225
	Subtrat	1528	471	30	29675	43950	6225
	000000			- · ·			
Final Survey	v Cost (\$)						
	Labor	15955	11081	2151	3161	7803	1553
L.	Analytical	1528	471	\$9	29625	43950	6225
	Subtotal,	17483	11552	2190	32786	51753	7778
	`		Survey costs u	sing in situ gami	ma spectrometry	Į –	
1	Sup. Data Review/ Report Preparation	25377	Conventional	Indoor survey cost	\$1226		
	Total Cost - Final Survey	148920	in situ costs	Total Cost - Final	167105		•
			O hos B				
other surve	y Costs (5)		outer survey (*	
1	Grading - Indoor	53/52 		Gridding - Indoor	28100		
	ungang • Uutdoor	40100		Grading • Outdoor	20100		
	Scholar Super	7448		Scooling Summy	8355		
	Characterization Summy	111690	· · ·	Characterization S	125329		
J	Remed. Control Survey	22338	j	Remed. Control S	25066	1	
1	Confirmatory Survey	7446		Confirmatory Surv	8355		
1							
	TOTAL SURVEY COSTS	\$389,752	то	TAL SURVEY C	\$457,348		
					_	-	

Table D.3.3

ر:

4

Reference Facility:

:•

5

1

U Fuel Fabrication

•

		[Structure Surve	73	· · · ·	Land Surveys	
Res	Idual Dose Limit	Class 1	Class 2	Class 3	Class 1	Class 2	Class 3
L	25 mrem/yr	Mictod Non-Uniform	Motodilatore	Unaffected	Affected Non-Uniform	Affected/Uniform	Unaffected
Site Informa	tion						
ſ	Total area (m^2) - Outdoor	73	na 🛛	na 🛛	13098	74220	130950
1	Total area (m*2) - Floor/Lower Walls	12300	25124	0	na 👘	702	na
	Total area (m^2) - U.Wall/Ceiling	1000	1000	27360	5 8	.m	
	Scan (% Area)	100	75	10	100	75	19
	Scan area (m*2) - Outdoor	na	កង	na.	13098	55653	13098
	Scan area (m*2) - Floor/Lower Walle	12300	15543	-	63		83
	Scan area (m*2) - U.Wall/Celling	1000	750	2736	69	748	na
Scanning	Survey Time (ht)						
(gamma)	Floors & Outdoor Areas	7.63	15.70	0.00	21.53	92.775	21.83
(alpha/beta)	Floors & L. Walls	82.00	123.62	0.00	52	78	74
(sibunosol)	U. Walls & Collings	14.43	19.00	36.44	£18,	ារ	na
Disease Mana		1					
Toward wears	Al emetics						
1		776 60	65 05	A DE	00 01	110	
	Statey (and (in)	200.00		9.69			
Soll Semalk]					
Con Compa	No. of Samoles						
1	Collection Time (bd)		63		47 70	61.70	8.30
1	Construct these (ca)				-	••	
Survey Thm	•						
	Subtribil (hours)	330	217	12	<u></u>	154	-30
				-			
	Adjustment A - 25%	82	54	10	15	39	· 8
6	(daily shecks, breaks, repeats)						
	Adjustment B - 15%	- 49	33	6	10	23	5
1	(data review)	1					
				1			
	Total (hours)	461	304	54	- 90	216	42
		1		1			
Analytical C	20st (5)						
	Sol Samples		na	na .	3,2029	46279	6723
1	Smear Samples	1676	488		88	52 (777)	
	Subtoca	10/6	458	39	32029	402/3	6225
Eleal Sugar	- Cont (5)						
rata survey	Case (S)	10020	447000		2226	7067	1653
	Callor Anabdical	10300	11200	30	22026	18776	6775
		18587	41698	2190	35351	54238	7778
			Survey costs in	cine in situ como	an spectrometry		
	Sun Data Barinal Banad Branaration	253377	Company costs u	integration and gamme	l	1	
	Total Cost - Einel Susaw	155784	in eihr coste	Total Cost - Ensi S	220535		
	Four Cost - File Outrey						
Other Surve	v Costa (S)	1	Other Survey C	osta (S)			
	Gidding - Indoor	63752		Godding - Indoor	63752	I .	
	Griddina - Outdoor	28160		Gridding - Outdoor	28160		
		I				1	
	Scoping Survey	7764		Scoping Survey	11027	1	
	Characterization Survey	116463		Characterization Su	165401		•
	Remed. Control Survey	23293		Remed. Control Su	33080	1	
	Confirmatory Survey	7764		Confirmatory Surve	11027		•
		1	ł		1	l	
	TOTAL SURVEY COSTS	\$402,481	ΤΟ	TAL SURVEY CO	\$565,522	l	
		1			-	-	
			1				

NUREG-1496

Reference Facility:

•

4

-

U Fuel Fabrication

	Reference Facility:	U Fuel Fabric	ation	• .			
				-			
			Photos Sugar			hand furnishing	
		1 · ·	ecucinie enive	iys		Cano Surveys	
Res	idual Dose Limit	Class 1	Cises 2	Class 3	Class 1	Class 2	Class 3
	15 mremlyr	Affected Non-Unitern	AllectedUniform	Unaffected	AffectedNon-Uniterm	Alfacted/Uniterm	Unaffected
Site Informa	ition .						
	Total area (m*2) - Outdoor	R 1	A 2	81	13098	74220	130980
	Total area (m*2) - Floor/Lower Walt	12300	25124	Q - 1	84	#1,	81
	Total Brea (m^2) - U.Wall/Colling	1000	\$000	27360	84	<u>, m</u>	- S .
	Scan (% Area)	- 100	75	10	100	75	- 10
	Scin sites (m*2) - Outdoor	82	R3	. 84	13098	\$5665	13098
	Scan area (m-2) - Frich/Lower Vial	1200	18043			74	141
Scanolog	Summy Time (ht)		/30	4/30	·		ma
(mma)		7.00	15 70		91 61	e2 775	94.83
(alpha/beta)	Floors & L. Walls	82.00	175.67	0.00	61.457 (13)	62	21.63
(alpha/beta)	U. Walls & Calines	1133	10.00	36.48	82	82	82
Direct Meas	urements						
	Number of Measurements		1504 (SOA	1000000	R2	62	Ra
	Survey Time (N/)	293.20	75.20	\$.25	#1	62	R1
			÷		•		
Soll Sampli	ng						
	No. of Samples	K1	R2 -	61 :			
	Collection Time (hr)	N1 N1	R1	R1 .	47,10	66.30	8.30
Survey Tim							
outey tam	Subletal (hours)	396	777	1	63	159	30
	Adjustment A - 25%	\$ 5	67	10	- 17	40	
	(daily checks, braaks, repeats)						
	Adjustment 8 - 15%	5 9	34	6	\$0	24	, 5
	(data ferient)	1	1)			
	Total Desures					870	
	aere (poets)	800	a1/ .	80	• 3/	~~~	•2
				· ·			
Analytical C	ost (5)						
•	Sol Samples	64 -	81	· • • •	70650	\$9450	12450
	Smear Samples	2170	656	\$9	R5.	R1.	fiz fiz
	Subtotal	2170	\$55	19 ; 1	70650	89450	12450
	······································		· · · · · · · · · · · · · · · · · · ·				
-insi Survey	Cost (5)	-					
	Labor	20424	116/7	2151	3003	6200	1553
	Antelyucal Rededed	77594	800.	4100	7/203	907650	12400
	OUDDA		12233			107630	14003
	Aus Data Burland Burnat Burgandan		Survey costs a	sing in situ gamn	la specuomeny	н н н	
	Sup. Usia Kenew Report Preparation	-958250	Conventional	Total Past - East C	381060		•
	TOUR GUS . FEIR DUIVEY	20000		TOTAL COST - FERRES	601200	1 - A	
Other Surve	y Costs (S)		Other Survey Co	osts (S) 🕴 🕴			
	Gridding - Indoor	63752		Gridding - Indoor	63752		•
	Gridding - Outdoor	25160		Gridding - Outdoor	28160		
				-			
	Scoping Survey	12913		Scoping Survey	19098		
	Characterization Survey	193688		Characterization Su	285470		
•	Remed. Control Survey	38738		Remed. Control Su	87294		
	Constitution Survey	12913		Confirmatory Surve	19038		
I	TOTAL SUDIEV COSTC		-	TAL SUPLY A	5100 FM		
1	TOTAL BURVET CUSTS	8000,413	10	ML OURVET CO	8032,843	ł	

D-69

Table D.3.5

2

1

Reference Facility:

•

.

U Fuel Fabrication

		[Structure Surv	eys		Land Surveys	
Res	Idual Dose Limit	Class 1	Class 2	Class 3	Class 1	Class 2	Class 3
	3 mrem/yr	Affected Non-Uniter	Affected/Uniform	Unaffected	Affected Non-Unifer	AllectedUnitors	Unaffected
Site Informa	lton						
	Total area (m ⁵ 2) - Outdoor	718	na	. na	11004		
	Total area (m*2) - FloorfLower Wall	12305	25124	•	na.	- 13	na)
	Total ansa (m^2) - U.Wal/Ceiling			27560	58	ករ	na j
	Scan (% Area)						
	Scan area (nr 2) - Outdoor	na Cinto	RA	i na i	13054	55663	13058
	Scan area (m ² 2) - HoodLower Was	12300	18543		na -	11	19
Scanning	Scan and (nr-2) - 0. Wall Cering	1000	/30	2/30	F18		
(commo)	Survey time (my	7.09	+6.70	0.00	21.87	0775	20
	Floors & Culture Areas	1.00	13.70	0.00	£1.69	32.713	21,60
(alpha/beta)	II Malle & Calince	13.33	10.00	36.48	104 114		
(o. mais a cenngs			~~~			
Direct Mess	urements						
	Number of Measurements				na	DA	64
	Survey Time (hr)	576.80	133.47	12.25	ne	na –	na -
						•	
Soll Sampli	ng						
•	No. of Samples	R	na,	na i		61	
	Collection Time (hr)	CAR .	ra 🛛	60	191,10	51.50	8.30
Survey Tim							
	Subtotal (hours)	680	285	49	213	144	30
					-		
	Adjustment A - 25%	170	71	12	53	36	•
	(daily checks, breaks, repeats)						
		3442	•>		34	4	
		1					l i
	Total (hours)	957	399	68	298	202	0
				~			
		1					
Analytical C	iost (\$)	l					
	Sol Samples	na 👘	na (na	573300	154500	24900
	Smear Samples	1829	423	39	ra.	ra 🛛	ាង
	Subtotal	1829	423	39	573300	154500	24900
Final Survey	y Cost (S)	1	1				
ł	Labor	35043	14680	2512	10976	7437	1553
1	Analytical	1829	423	39	573300	154500	24900
	SUCTOR	36873	15104	2351	584278	181937	20433
			Survey costs	using in sice gamma	spectrometry		
	Sup. Data Review/ Report Preparation	25377	Conventional	Indoor survey costs	54527		
	Total Cost - Petal Survey	654570	in sice costs	Total Cost - Final Survey	1752440		
	NI Cinete (S)	Į		Santa (B)			
Surer Surve	Gridding Indeed	67767	Conter Survey (Caldina Indone	61765		
	Griding - Dutrioor	22150	1	Octoberg - Floor	28180		
	And a Address			Ground - Caroon	20100		
l	Scooling Survey	42628	4	Scooling Super	89122	l i i i i i i i i i i i i i i i i i i i	•
1	Characterization Survey	639427	1	Characterization Survey	1336830		
	Remed, Control Survey	127885	ł	Remed, Control Survey	267366		
	Confirmatory Survey	42628		Confirmatory Survey	89122		
			1				
	TOTAL SURVEY COSTS	\$1,797,052	ר ן	OTAL SURVEY COS	\$3,711,319		
		1			-	-	
4							

Table D.3.6

Reference Facility:

U Fuel Fabrication

			Residual Do	se Limit (mre	em/yr)	
		3	15	25	60	100
Scan tíme	outdoor - gamma	40	10	10	10	10
(min/ 100 m^2)	indoor - gamma	15	15	15	15	15
	floor/ I.wall - alpha/beta	40	40	40	40	40
	u. wall/ ceiling - alpha/beta	6 0	80	80	80	80
	floor/ Lwall - beta	20	20	20	20	20
	u. wall/ ceiling - beta	40	40	40	40	40
Direct Measurements	alpha/beta	7	3	2	3	3
(min/location)	÷	· ·	i i i	:		
Soil Sampling		10	10	10	10	10
(samples/hr)						
Analysis Cost	soii	300	150	75	75	75
(\$/sample)	smear	0.97	0.37	0.37	0.37	0.37
Labor Rate	H.P. Technician	39 82	36.82	36.82	36.82	36.82
(\$/hr)	H.P. Spervisor	70.99	70.99	70.99	70.99	70.9 9
	,	·				
Costs of Other Surveys						
(as a % of final survey costs)	Scoping Survey	2	С Т			5
	Remed Control Survey	45	45	45	45	
	Confirmatory Survey	5	5	5	5	5
· · · · · · · · · · · · · · · · · · ·						

NUREG-1496

44

h

4

۰.

D-72

Figure D.3

Table D.4.1

Reference Facility:

Rare Metal Extraction Facility

			Structure Surveys		Land Surveys		
Res	idual Dose Limit	Class 1	Class 2	Ciace 1	Clace 1	Class 2	Class 1
	100 mrem/yr	Affected Nen-Unitern	Mechalinian	Unaffected	All acted high line and	Allected/Uniterm	Unational and
Site Inform	ation	1					
1	Total area (m*2) - Outdoor	64	R2	R2	\$296	\$ 29	25023
	Total area (m^2) - FloorfLower Wall	7161	19373	0	na	n 2	na
	Total area (m*2) - U.Wall/Ceiling	0	0	19026	ña	'Ma	fi2
	Scan (% Area)	100	75	10	100	75	10
l	Scan ansa (m*2) - Outdoor	N2 7161	**	Ma .	9296	696.75	2602.3
	Scan sma (m*2) - Floorighed wall	/101	14329.75	1000 6	62	. 62	na
Scanning	Survey Time (h)	{	<u>*</u>	1802.0			
(gamma)	Floors & Outdoor Areas	4.48	12.11	000	15 49133313	1 16125	A 337185657
(atpha/beta)	Ficors & L. Watts	47.74	96.87	000	63.0000000	63	4.33/10000/
(alpha/beta)	U. Walls & Ceilings	0.00	0.00	25.37	63	A1	112
Direct Man							
Cuect meas	Number of Measurements	SHOW AND A COMPANY					
	Super Time Art	122.15	70.05		na	na .	. na
	Concept the coup	144.10	10.0.3	0.00	na -	164	FIE.
Soli Sampli	nd						
	No. of Samples	ma	na	éa -			
	Collection Time (hr)	Na	83	#1	29.00	3.10	4.90
Company Theory				· · · · · · · · · · · · · · · · · · ·	· · · ·		
Survey time							
	anomen (uonis)	1/4	1/9	32	44	• .	
	Adjustment A - 25%	44	45	a	11	•	, ,
	(dialy shocks, breaks, repeats)			Ť		· •	-
	Adjustment B - 15%	26	27	5	7	1	1
	(data review)						
	Total (house)	244	551	Ae	~		
	road (normal)		401	• •	92	6	13
Anabelant							
Augucai C	Soil Complex				24752		
	Smaat Samples	604	63 518	#3 #0	21/50	222	3675
	Subtotal .	3 04	518	50	21750	2325	3675
Final Survey	Cost (\$)	· · · · ·					
	Labor	8988	9228	1658	2294	220	476
	Analytical	904	518	\$0	21750	2325	3675
	autoci	9892	9/4/	1709	24044	2545	4151
	Sup Data Review In sout Descention	00077	Survey costs us	ing in situ gami	na specuomeuy		
	Total Cost - Final Super	77483	Conventionat	Total Cost - Final	21347		
					-0130		
Other Surve	y Costs (\$)		Other Survey C	osts (\$)		• • •	•
	Gridding - Indoor	43082		Gridding - Indoor	43082		
	Gridding - Outdoor	3458		Gridding - Outdoor	3458		•
	Economa Eliminu			Sector Comme	-	• .	
	Characterization Summer	30/3		Characterization	2005		
	Remed Control Superv	15493		Remail Control C	A037		-
	Confirmatory Survey	3873		Confirmatory Surv	2008		
			•				
	TOTAL SURVEY COSTS	\$166,607	TOT	AL SURVEY C	\$150,211		
			-			1	

NUREG-1496

Table D.4.2

4

2

1

Reference Facility:

۰. , .

.

٠... .

. •

. • •

Rare Metal Extraction Facility

		Structure Surveys			Land Surveys		
Res	idual Dose Limit	Class 1	Class 2	Class 3	Class 1	Class 2	Class 3
	50 mrem/yr	Affected/Hen-Uniform	Affected/Uniterm	Unaffected	Affected/Nen-Uniform	Affected/Uniform	Unaffected
Sae intorma					~~~~	~~~	
1	Total area (m ² 2) - Outdoor Total area (m ² 2) - Eloord cust Wall	7161	10171	n	¥290	828	20023
1	Total area (m ²) - Hour, Over Wall	0	0	19026	748 15.8	0.8	na -
	Scan (% Area)	100	75	10	100	75	10
	Scan area (m^2) - Outdoor	na	na	n#	9298	696.75	2602.3
1	Scan area (m^2) - Floor/Lower Wali	7161	14529.75	0	ria -	na -	na
L	Scan area (m^2) - U.Wall/Ceiling	0	0	1902.6	na	na	na
Scanning	Survey Time (hr)						м. С
(gamma)	Floors & Outdoor Areas	4.48	12.11	0.00	15 49333333	1.18125	4.337166687
(alpha/beta)	Floors & L. Walls	47.74	96.87	0.00	na -	na	na
(alpharoeta)	U. washs & Comings	0.00	0.00	25.3/	na -	na -	. 112
Direct Mean	wements						
	Number of Measurements				03	0.2	7 4
I.	Survey Time (hd)	122.15	72.95	8 80		64	7.1
Soll Sampli	ng			Į į			
	No. of Samples	na	ra	rub -	203		
	Collection Time (hr)	na	na	na	30.30	3.50	4.90
Survey Timi	ŧ					_	
	Subtotal (hours)	174	182	32	46	5	9
	Adjustment A - 20%		45	•	ท	1	4
ł	(carry checks, creates, repairs) Adjustment B = 15%	- 26	27		,	1	1
	(dilla review)		2.				
	Total (hours)	244	255	45	64	7	13
Analytical C	:ost (\$)						
	Soil Samples	na	na Cro	na (1	212	2625	30/5
	Sinear Samples	904	540	50	10	na 2625	118 3875
	Sublock	3 ~~	340		21/25	2023	5015
Final Survey	v Cost (\$)			 			
	Labor	8988	9378	1658	2381	240	476
	Analytical	904	540	50	22725	2625	3675
	Subtotal	9892	9918	1709	25088	2865	4151
			Survey costs u	sing in situ gami	na spectrometry	1	
	Sup. Data Review/ Report Preparation	25377	Conventional	Indoor survey cost	21518		
	Total Cost - Final Survey	78997		Total Cost - Final	40158		
Other Sulve	Hy Costs (5)		Other Survey C	Costs (\$)			
	Gridding - Indoor	43082		Gridding - Indoor	43082		
	Grading - Outdoof	3458		Grading - Outdoor	3456		
	Secolar Super	3950		Section Supre-	2008		
	Characterization Summy	19749		Characterization S	30119		
	Remed: Control Survey	15799		Remed, Control S	8032		
1	Confirmatory Survey	3950	ł	Confirmatory Surv	2008		
1	TOTAL SURVEY COSTS	\$168,984	TO'	TAL SURVEY C	\$150,382		
]			-	-	
f		I					

NUREG-1496

÷

Ł

Reference Facility:

.

.

.

: .

•

Rare Metal Extraction Facility

			Structure Sun	veys		Land Surveys	
	ident Base Limb	1					
	25 mmm/m	Class 1	Class Z	Class 3	Class 1	Class Z	Class 3
Site Inform	tion			GURINCING	ALLOCING HON-UNIT OF IN	ACLACTEGISTING	UNITECTER
	Total area (m*2) - Dutidoor	63	83		8796	879	36031
	Tetal area (m*2) - Floor/Lower Wall	7161	19373	0	22	- 61	83
1	Total area (m*2) - U.Wati/Ceding	0	0	+grine		54	74
1	Scan (% Area)	100	75	1 10	100	75	10
	Scan area (m^2) - Outdoor	m	ha	14	\$296 ·	696.75	2602.3
•	Scan area (m*2) - Floor/Lower Wall	7161	14529.75	0	118	R1	R8
	Scan area (m^2) - U.Wal/Celing	0	0	1902.6	na –	R3	ńa.
Scanning	Survey Time (hr)						
(gamma)	Floors & Outdoor Areas	4.45	12.11	0.00	15.49333333	1.16125	4.337166667
(alpha/beta)	Floors & L. Walls	47.74	96.87	0.00	na	62	5 2
(alpha/beta)	U. Walls & Ceilings	· ¢.00	6.00	25.37	na	۶N	# 2
Direct Meas							
	Number of Lister manage					-	
	Super Time (br)	145 65	83.35	6 8 0	07	700 R2	69
Soll Sampli	ng			1			N 1
	No. ef Samples	82	64	na .	10000000000000000000000000000000000000	·····	**************************************
	Collection Time (hr)	94	64	ma	135.90	5.50	4.90
	· · · · · · · · · · · · · · · · · · ·						
Survey Tim							
	Subtotal (hours)	198	202	32	151	7	9
						-	
	Adjustment A - 25%	•	51		36	2	2
	(any means, trans, repairs)		. 30		-		
	Adjesument B = 1376	•• ••		5	4 3	•••	,
	(data revers)						
1. Sec. 1. Sec	Total (hours)	277	263	45	212		13
		_				-	
Analytical C	ost (5)						
· ·	Eof Samples	N2 .	- 11	112	101925	4125	3675
	Smear Samples	10/8	691	50	62	fi2	NE .
	BACIDCI:	10/10	631	*	101920	4120	30/3
Final Survey	Cost (S)						
	Labor	. 10200	10429	1658	7804	363	476
	Analytical	1078	691	50	101925	4125	3675
	Subtotal	11277	11120	1709	109729	4468	4151
			Survey costs	using in situ gamn	na spectrometry		
	Sup. Data Review/ Report Preparation	25377	Conventional	Indoor survey costs	24106	1	-
	Tetal Cost - Final Survey	167831		Total Cost - Final S	48904		
Juner Surve	y Costs (3)		Uner Survey	Costs (3)			
	Gridding - Indoor	43082	4	Gridding - Indoor	43082		
	Sugard - Chagos			Groung - Outdoor	3458		•
	Scoping Survey	6392		Scoping Super-	2445		¢.
	Characterization Survey	125873	:	Characterization Ru	36578		
	Remed. Control Survey	23566	1	Remed, Control Su	3781	1. A.	
	Confirmatory Survey	\$392	1	Confirmatory Surve	2445		
	· ·	j]	ł	
	TOTAL SURVEY COSTS	\$390,593	t T	OTAL SURVEY CO	\$170,899	1.	
1							
			1				

NUREG-1496

. •

Table D.4.4

ł

··· ·

ŧ

Reference Facility:

Rare Metal Extraction Facility

			Structure Surve	уз		Land Surveys	
Res	Idual Dose Limit	Class 1	Class 2	Class 3	Class 1	Class 2	Class 3
	15 mrem/yr	Altacted Non-Unitern	Allectedfiniterns	Unaffected	Affected Non-Unitorm	Affected/Unitoria	Unifiected
Site Informa	ition						
1	Total area (m*2) - Outdoor) na	na	74	\$296	\$29	26023
Į	Total area (m^2) - Floor/Lower Wall	7161	19373	l o i	na.	na	na
l .	Total area (m^2) - U.Wall/Ceiling	0	0	19026	na	na 👘	na
1	Scan (% Area)	100	75	10	100	75	10
1	Scan area (m^2) - Outdoor	na	na	na i	\$296	696,75	2602.3
	Scan area (m*2) - Floor/Lower Wall	7161	14529.75	} 0	N8	118	na
	Scan area (m^2) - U.Wall/Celing	<u> </u>	0	1902.8	na	N 8	na
scanning	Survey Time (hr)						
(gamma)	Floors & Outdoor Areas	4.48	12.11	0.00	15.49333333	1.16125	4.337166667
(alpha/beta)	Floors & L. Walts	47.74	96.87	0.00	.na	THE .	na .
(arbusyoed)	U. Walls & Celings	0.00	0.00	25.37	na 🛛	na	na
Direct Meas	urements						
	Number of Measurements			11 C C C C C C C C C C C C C C C C C C	12	64	na
	Survey Time (hr)	178.95	\$3.35	6.50	64	na i	na
					-	-	-
Soll Sampli	ng	l i					
	No. of Samples	na	na	na l	3502		
	Collection Time (hr)	68	na	na	330.70	8.50	6,10
Survey Time							
	Subtotal (hours)	229	202	32	345	10	10
	Adjustment A - 25%	57	51	8	87	2	3
	(duly checks, prezius, repeats)						
	Adjustment B - 15%	34	30	5	52	1	2
	(deth review)						
	Total (house)						
	. oran (constraint)	321	263	43	462	16	15
Analytical C	ost (\$)		·····				
-	Soil Samples	na	63		495050	12900	9150
	Smear Samples	1309	691	50	1 38	F18	na
	Subtotal	1309	691	50	496050	12900	9150
Final Survey	/ Cost (S)					-	
	Labor	11813	10429	1658	17846) 503	538
	Analyocal	1309	691	50	496050	12900	9150
	Subtotal	13122	11120	1709	513896	13403	9688
		•	Survey costs u	sing in situ gamn	na spectrometry	-	
	Sup. Data Review Report Preparation	25377	Conventional	Indoor survey costs	25951	1	
	Total Cost - Final Survey	558314		Total Cost - Final S	50044		
Comer Surger					1		
Onter Stirve	y Costs (3)		Other Survey C	osta (5)	· · · · · · · · · · · · · · · · · · ·		
	Gridding - Indoor	43082		Gridding - Indoor	43082	1	•
	CHOREN - COMORE	3458		Gridding - Outdoor	3458	l	
	Scoope Super	20414		Consist Outstand	2400	1	
1	Characterization Summ	41775		Survey	17571	1	
	Remail Control Summer	117661	1	Parried Control Co.	1 0000		
	Continuation Survey	29416	1	Configuration During	2500		
			1	Contractory Stave	2.000	1	
	TOTAL SURVEY COSTS	\$1,252.584	-	TAL SUDIEY CO	1 8178 rat	1	
		1	1 ''	THE SURVEY OL	3	4	
		l	I				
ويتباد ويتكرن فالمتحد							

NUREG-1496

• •

٠.,

Table D.4.5

Reference Facility:

2

Rare Metal Extraction Facility

			Structure Surv	eys ·		Land Surveys	
Res	Idual Dose Limit	Class 1	Class 2	Class 3	Class 1	Class 2	Class 3
1	3 mrem/yr	Affected Non-Unifor	Affected Unit orm	Unaffected	Affected Non-Unifor	Affected/Uniform	Unaffected
Site Informa	tion	1					
	Tetal area (m*2) - Outdoor	na	na	na		420	25073
	Tetal area (m*2) - Floor/Lower Wall	2161	(3073)		na	na	na
1	Tetal area (m*2) - U.Wall/Celling	Q	a 👘 🖉	19026	A2	62	na 🛛
	Scan (% Area)		(100		10
	Scan area (m*2) - Outdoor	63	na	na	\$296	69 6. 75	2602.3
	Scan area (m*2) - Floor/Lower Wall	7161	14529.75	0	na 🛛	72	na
	Scan area (m^2) - U.WaiVCeiing	0	0	1902.6	fit	63	ña .
Scanning	Survey Time (hr)			1			
(gamma)	Floors & Outdoor Areas	4.48	12.11	0.00	15,49333333	1.16125	4.337166667
(Cherry Control of the Control of th	Floors & L. Walls	47,74	96.87	0.00	na 🛛	N2	ñ1
(alpha/beta)	U. Walts & Cellings	0.00	0.00	- 25.37	64	64	na
Ulrect Mezs	urements						
I	Number of Massurements				na -	THE OF	na i
	Survey Time (nr)	730.20	228.20	33.20	na	# L	na :
Sall Com-H				1			
Sou Sambu				J · · · J			
	No. or samples	A 4	na			46 20	70.90
· ·	Conscion rame (m)	**	142	N 4	3/1.60	40.00	10.00
Survey Time							
	Publish (house)	782	317	40	887	47	
· ·	anowas friendst						
	Adjustment & . 25%	196	84	15	247	12	19
	(duly sharks, brasis, subarts)						
•	Adustment B - 15%	117	51		148	7	11
	(data finanu)						
	Total (hours)	1095	472	L 12	1382	6 6	105
Analytical C	ost (5)						0.0000
	Soil Samples	Na	68	NA I	2915400	138900	212/00
	Smear Samples	1351			83	138000	242200
	Subtocal	1351	422	§ 1	2915400	130300	£12/00 .
Einel Curren	(Cart IS)						
- mai aurve)	tabar	40332	17381	3019	50893	2447	3578
		1351	422	R1	2915400	138900	212700
	Subtrital	41683	17803	3050	2966293	141347	216578
			Survey costs	using in situ gamma	spectrometry		
	Sun Data Renew Report Prenaming	75377	Conventional	Indon's show costs	1 62566	8	
· ·	Total Cost - Final Superv	3412160		Total Cost - Final Survey	147580		
						1	
Other Surve	v Costs (S)		Other Survey (Costs (S)			
1	Gindding - Indoor	43082	1	Gridding - Indoor	43082	1	
1	Gridding - Outdoor	3458		Gridding - Outdoor	3458	ł	
	-		Į	-		1	•
1	Scoping Survey	170608	1	Scoping Survey	7379		
1	Characterization Survey	2559120	I	Characterization Survey	110685	1	
1	Remed. Control Survey	682432	1	Remed. Control Survey	29516	1	
	Confirmatory Survey	170608	ł	Confirmatory Survey	7379	1	
1		1	Ι.			1	
ſ	TOTAL SURVEY COSTS	57,041,468	1	TOTAL SURVEY COS	3 .2411,642	I	
1		1	1				
		1	1				

/

.

.-

.\

Reference Facility: <u>Rare Metal Extraction Facility</u>

		Residual Dose Limit (mrem/yr)							
		3	15	25	60	100			
Scan time	outdoor - gamma	10	10	10	10	10			
(min/ 100 m^2)	indoor - gamma	15	15	15	15	15			
	floor/ I.wall - alpha/beta	40	40	40	40	40			
	u. wall/ ceiling - alpha/beta	80	80	80	80	80			
	floor/ I.wall - beta	20	20	20	20	20			
	u. wall/ceiling - beta	40	40	40	40	40			
Direct Measurements (min/ location)	alpha/beta	12	3	3	3	3			
Soil Sampling (samples/hr)		10	10	10	10	10			
Analysis Cost	soil	300	150	75	75	75			
(\$/sample)	smear	0.37	0.37	0.37	0.37	0.37			
Labor Rate	H.P. Technician	38 82	36.82	36.82	36.82	35.82			
(\$/hr)	H.P. Spervisor	70.99	70.99	70.99	70.99	70.99			
Costs of Other Surveys									
(as a % of final survey costs)	Scoping Survey Characterization Survey	ə 75	9 75	5 75	5 25	25			
	Remed. Control Survey Confirmatory Survey	20 5	20 5	20 5	20 5	20 5			

3

ł

Figure D.4

APPENDIX E

SUMMARY OF DRAFT GEIS SCOPING PROCESS

.

•

. .

. ..

· . .

APPENDIX E

E.1 Basis for Scoping Process

a

.

The Commission's regulations in 10 CFR Part 51 for complying with NEPA contain requirements for conducting a scoping process prior to preparation of an Environmental Impact Statement (EIS). Section 51.26 indicates that, whenever the NRC determines that an EIS will be prepared by NRC in connection with a proposed action, the NRC will publish a notice of intent in the Federal Register stating that a Generic Environmental Impact Statement (GEIS) will be prepared, and conduct an appropriate scoping process. Section 51.26 indicates that this scoping process may include the holding of a public scoping meeting as well as opportunity for written comment.

Section 51.27 contains requirements regarding the content of the notice of intent, in particular that it should describe the proposed action and, to the extent that sufficient information is available, also describe possible alternatives. In addition, the notice of intent is to describe the proposed scoping process, including the role of participants, whether written comments will be accepted, and whether a public scoping meeting will be held.

E.2 Scoping Activities Conducted

In accord with 10 CFR 51.26 and 10 CFR 51.27, a notice of intent announcing the scoping process was published in the Federal Register on June 18, 1993 (58 FR 33570). The notice of intent (referred to as an FRN) included a discussion of the proposed action, the bases for preparation of the GEIS, and the scoping process. The FRN also invited comment on the scope of the GEIS by describing then-current preliminary NRC staff views on the scope and major topics to be dealt with in the GEIS including: (1) the facilities to be considered; (2) the affected environment; (3) the regulatory alternatives to be considered; (4) the methods of analysis of regulatory alternatives; (5) impacts (both radiological and nonradiological) and costs associated with the regulatory alternatives; and (5) areas considered to be outside the scope of the GEIS. The FRN indicated that oral comment and discussion on the proposed action and alternatives could be presented at any of eight public scoping meetings. The eight public scoping meetings were held in Washington DC, San Francisco, Oklahoma City, and Cleveland during July 1993. In addition to the scoping meetings, the FRN also indicated that written comments on the proposed action and alternatives could be submitted to NRC by August 15, 1993 (as a result of written requests, the written public comment period was subsequently extended to September 20, 1993).

E.3 Scoping Comments Received

Oral comments presented at the scoping meetings and written comments submitted subsequent to the scoping meetings were received from members of the general public,

interest groups, Federal agencies, licensees, and industry organizations. Section E.5, below, summarizes the conclusions reached in the scoping process based on the comments received.

Transcripts of the Scoping Meetings and copies of related letters are available for inspection or copying for a fee in the NRC Public Document Room, 2120 L Street, NW (Lower Level), Washington, DC.

24

E.4 Nature of Scoping Process

The Commission's regulations in 10 CFR Part 51.29(a) require that the scoping process will be used to: (1) define the proposed action which is to be the subject of the statement; (2) determine the scope of the statement and identify the significant issues to be analyzed in depth; (3) identify and eliminate from detailed study issues which are peripheral or are not significant or which have been covered by prior environmental review (discussion of issues in the EIS which are eliminated from detailed study would then include a brief presentation of why they are peripheral or will not have a significant effect on the quality of the human environment or a reference to their coverage elsewhere); (4) identify any environmental assessment and other environmental impact statements which are being or will be prepared that are related to but are not part of the scope of the statement under consideration; (5) identify other environmental review and consultant requirements related to the proposed action so that other required analyses and studies may be prepared concurrently and integrated with the EIS; (6) indicate the relationship between the timing of the preparation of environmental analyses and the Commission's tentative planning and decisionmaking schedule; (7) identify any cooperating agencies; (8) describe the means by which the EIS will be prepared, including any contractor assistance to be used.

The June 18, 1993, FRN (58 FR 33570) provided detailed description of the technical issues associated with Items (1) through (3), above, in Items (b) and (c) of the FRN on pages 33572 and 33573 by providing a proposed outline of the sections of the GEIS and preliminary NRC staff views on the scope and nature of the analyses to be conducted in those GEIS sections. These preliminary staff views were developed based on staff review of existing data and scientific information and also on the information presented in the seven public workshops on the Enhanced Participatory Rulemaking held between January and May of 1993. It is those Items (1) through (3), above, where the large majority of public comment was received during the scoping process, and it is those items where the principal determinations and conclusions regarding significant issues are discussed below in Section E.5. The FRN also presented information regarding Items (4) through (8), above, in items (d) through (g) on pages 33573 through 33574 of the FRN.

E.5 Summary of Conclusions of the Scoping Process

The Commission's regulations in 10 CFR 51.29(b) require that, at the conclusion of the scoping process used to perform the actions listed in 10 CFR 51.29(a) (listed in E.4 above),

NUREG-1496

ī

the NRC prepare a concise summary of the determinations and conclusions reached as a result of the scoping process, including the significant issues identified.

A number of public comments were received during the scoping process regarding the need for, general form of, and procedural aspects of a rule. These comments were not, strictly speaking, part of the GEIS scoping process and were not treated in the conclusions and determinations. These comments were treated more fully in the rulemaking development. In general, however, based on the comments received during the scoping process and as part of the rulemaking workshop process, most of which agreed that there should be a regulation which codifies residual radioactivity for decommissioning, the NRC is proceeding with a rulemaking to establish radiological criteria for decommissioning. Based on the scoping process, a proposed rule was issued for public comment in August 1994. NRC plans to issue a final rule in 1997. In accordance with 10 CFR Part 51 and with the National Environmental Policy Act, this GEIS is being prepared as part of that rulemaking action. Based on the scoping process, the GEIS is analyzing regulatory alternatives for establishing radiological criteria for decommissioning structures and lands of licensed facilities.

The following is a summary of the conclusions reached as a result of the GEIS scoping process as it related to the scope of this GEIS:

1. Regulatory Alternatives

.

. • . . .

Based on the comments received, the GEIS analyzes in detail the regulatory alternatives for establishing residual dose criteria and considers the impacts and costs associated with those alternatives. Chapter 2 indicates that the following regulatory alternatives are analyzed in this GEIS: (1) "no regulatory change"; (2) abandonment of facilities; (3) risk-based limits or goals; (4) use of best available technology; (5) return of the site to preexisting background conditions; and (6) restrictions on future use of the site.

The analysis of the regulatory alternatives includes impacts on public health and the environment and costs associated with the regulatory alternatives. The analysis of impacts include radiological and nonradiological impacts to workers, the public, and the environment, as well as societal, economic, land use, and other impacts. Costs include the costs of decontamination of buildings and structures, waste disposal, and radiation surveys. The details of the bases for the analyses and of how the analyses were performed are discussed below in Item 3. This includes the bases for the comparison of impacts and costs, the bases for the risk levels evaluated, how worker and public impacts are calculated, collective risks, ALARA considerations, and development of the bases for costs, including aspects of measurability at low dose levels.

2. Method of Approach

The scope of the facilities covered by the GEIS consists of licensed nuclear fuel cycle and non-fuel cycle facilities listed in Chapter 1 of this GEIS and described more fully in Chapter

3. In the GEIS analysis, reference facilities are analyzed, and reference contamination at the buildings and soils surrounding these facilities is estimated for a range of contamination levels to provide reasonable consideration of the incremental impacts and costs resulting from the regulatory alternatives.

The affected environment considered in Chapter 3 includes that affecting human health and safety, and in particular radiation exposure pathways resulting from occupancy of site buildings and from residential, agricultural, and recreational use of site lands, and of affected water sources, both on an unrestricted use basis and a restricted use basis. In addition, the affected environment includes consideration of waste disposal, nonradiological impacts on humans, impacts on biota, economic impacts, societal impacts, and land use impacts.

With regard to the technical approach, Chapters 4-6 (and Appendices B, C, and D) analyze the impacts on public health and the environment and costs associated with the regulatory alternatives using data as available for a set of reference facilities for a modeled set of reasonable pathways. The analysis of impacts includes radiological and nonradiological impacts to workers, the public, and the environment, as well as societal, economic, land use, and other impacts. Costs include the costs of decontamination of buildings and structures, waste disposal, and radiation surveys. The details of how the analyses were performed are discussed below in Item 3.

3. Analysis of Impacts, Costs, and Wastes

With regard to the bases for health risks from exposure to radioactive material, the NRC has generally followed the basic radiation protection recommendations of the ICRP and its U.S. counterpart, the NCRP, in formulating basic radiation protection standards.

Recommendations of the ICRP and the NCRP were relied on in the revision of 10 CFR Part 20, "Standards for Protection Against Radiation," which were implemented by licensees on or after January 1, 1994. The analysis in Chapter 4 with regard to impacts from exposure to radioactive materials continues this practice and bases the analysis on the estimates of the NCRP and ICRP. It is outside the scope of this GEIS to review other studies to establish a new basis for health effects from radiation exposure.

Risks specifically related to exposure to chemical hazards are outside the scope of this GEIS although licensees would continue to be required to meet the applicable standards set by Federal, State, or local agencies with jurisdiction over these matters. Nevertheless, a licensee would be required to meet such standards before the NRC would terminate its license.

With regard to the analysis of impacts in this GEIS, incremental radiological and nonradiological impacts from the regulatory alternatives are considered. Chapter 4 considers impacts to persons occupying the site following license termination based on several possible exposure pathways. These pathways are based on scenario and pathway analyses developed

NUREG-1496

Т

in NUREG/CR-5512 which was subject to significant public and peer technical review. In addition to these impacts, Chapter 4 of the GEIS also considers both radiological and nonradiological (e.g., industrial accidents) impacts to workers involved in the decontamination activities, which occur during decommissioning, and considers the radiological and nonradiological (e.g., transportation accidents) impacts to workers and the public as a result of transport and disposal of decommissioning wastes, and issues related to transfer of the waste as opposed to keeping it on site. Consideration of the need to site added LLW facilities is included in Chapter 4 and in Appendix G. Chapter 4 of the GEIS also considers incremental impacts on biota and the environment, on society, and on economics which may result from the regulatory alternatives.

With regard to the analysis of the costs associated with the regulatory alternatives, Chapter 5 of the GEIS considers decontamination costs, waste transport and disposal costs, costs of surveys, and related issues. Incremental costs are assessed for the regulatory alternatives. ALARA issues are considered in Chapters 6 and 7.

Development of specific actions related to LLW disposal actions is outside the scope of this GEIS and can be considered as part of issues related to 10 CFR Part 61.

4. Planning for, and Funding and Timing of Decommissioning

In considering whether these areas are in the scope of this GEIS, it is important to note the GEIS prepared in 1988 (NUREG-0586) to support the promulgation of rules on general decommissioning planning requirements considered these areas in detail and resulted in general requirements for decommissioning in the Commission's regulations in 10 CFR Parts 30, 40, 50, 70, and 72 for reactors, and for fuel cycle and non-fuel cycle facilities in the areas of planning, financial assurance, and timing.

Development of these requirements was based on an analysis in NUREG-0586 which assessed the decommissioning activities for a number of reference nuclear facilities. The analysis in NUREG-0586 considered activities necessary to carry out decommissioning at the reference facilities, including the engineering and planning necessary for decommissioning, decontamination of facilities, the dismantling of equipment and structures, disposal of radioactive wastes, and radiation surveys. Based on that analysis for each of the reference facilities, NUREG-0586 assessed potential radiation exposures to workers and to the public during the decommissioning process, costs of decommissioning, the effect on planning and timing of the half-lives of principal radionuclides, the waste volumes generated and disposed of, and other environmental consequences. The analysis considered both prompt decommissioning and decommissioning following a storage period. Based on the analysis in NUREG-0586, requirements for planning of decommissioning were included in the 1988 rulemaking. Specific timing and planning requirements for certain facilities were modified in a 1994 rulemaking (59 FR 36026; July 15, 1994) and a 1996 rulemaking (61 FR 39278; July

29, 1996), however, the analysis of NUREG-0586 remained valid for use in these modifications.

The incremental costs and impacts associated with the regulatory alternatives being treated in this GEIS do not appear to significantly affect these above issues or to affect the nature of the requirements in the existing regulations. In any of the regulatory alternatives being considered in this GEIS, licensees must continue to plan for, secure funding for, and complete decommissioning in a timely manner according to the current requirements.

An area that can be affected by the considerations of this GEIS, and which is therefore discussed, is if significant additional funds beyond that considered in NUREG-0586 and the previous rulemaking are necessary to accommodate a regulatory alternative, as for example if significantly higher costs for survey measurements capability or waste disposal result from a particular alternative. These costs are considered in Chapters 5 and 6 of this GEIS.

5. Continued Liability for Facilities

As discussed in Item 4, under existing regulations in 10 CFR Parts 30, 40, 50, 70, and 72, licensees are responsible for planning for and providing funding for decommissioning, including planning and funding for disposal of the wastes associated with decommissioning. Under existing regulations in 10 CFR Part 61, the licensee is responsible for packaging waste in a manner which protects public health and safety, but licensed waste disposal facilities are responsible for safe handling and disposal of the wastes at the disposal site. Chapters 5, 6, and 7 discuss impacts and costs of different regulatory alternatives.

6. <u>Recycle of Materials</u>

In response, although the GEIS does not analyze recycle in detail, it does address the potential for future inadvertent recycle of soils or structures following decommissioning of a site. With regard to proposed release of contaminated materials such as equipment, components, piping, etc., the Commission plans to consider separately impacts and costs related to potential recycle of these materials from nuclear facilities to deal with cases where the licensee proposes to intentionally release material containing residual radioactivity for reuse or recycle. In the interim, the Commission will continue to review such actions on a case-by-case basis. The costs and impacts associated with recycle of such materials can be addressed on a separate basis without affecting the NEPA analysis of this GEIS.

7. Use of a GEIS vs. the Need to Prepare a Site-Specific EIS

This GEIS does not attempt to analyze site-specific issues which may arise in the licensing process involved with the decommissioning of specific facilities, rather its principal intent is to provide a decision analysis leading to establishment of technical requirements regarding acceptable residual radioactive contamination levels for decommissioning. These requirements would establish a single set of radiological criteria which would apply to the
decommissioning of all sites, however they would also recognize the need for flexibility in applying these criteria because of constraints posed by site-specific conditions (e.g. geology, hydrology, meteorology, demographics, and radiation background levels) and to provide opportunity for meaningful participation by local communities in individual decommissioning actions and, therefore, as discussed in Chapter 7, would provide for site-specific implementation of the generic criteria.

8. Citizen Participation

Site-specific considerations arise in Chapters 4 and 5 of this GEIS, when analyzing impacts and costs associated with reference facilities, and in Chapter 6 when evaluating the regulatory alternatives. Based on these considerations, comment from affected parties is discussed in Chapter 7.

9. Waste Minimization

Analysis of the waste quantities generated, of problems related to disposal of these waste quantities, and of associated costs in Chapters 4, 5, and 6 and Appendix G of this GEIS illustrate the need for efforts to minimize waste generation at nuclear facilities. The need for provisions in facility design and procedures for operation to minimize contamination of the facility and the environment, to facilitate eventual decommissioning, and to minimize the generation of radioactive waste is discussed in Chapter 7.

APPENDIX F

4

• . . .

ACCESS RESTRICTIONS FOR RESTRICTED USE OF FACILITIES THAT HAVE HAD THEIR LICENSES TERMINATED BY NRC

APPENDIX F

ACCESS RESTRICTIONS FOR RESTRICTED USE OF FACILITIES THAT HAVE HAD THEIR LICENSES TERMINATED BY NRC

Licensees may choose to only remediate a contaminated site sufficiently to allow restricted release of the site. Examples include situations where further remediation is determined to be not cost effective for the benefit received and/or further remediation is determined to cause net public harm or to be unfeasible with existing technology. Site use can be restricted by means of deed restrictions, simple access restrictions, and more complex engineered barriers. This Appendix discusses simple and relatively low cost access restrictions that could be used as part of a restricted use alternative. Deed restrictions, which can be very site specific in their application, are not discussed here. Engineered barriers can be very complex and site specific although a general discussion of stabilization and capping is contained in Section 6.6.7 of Appendix C. In order to show that a site has been remediated to ALARA, a licensee could further reduce dose to individuals on the site by installing inexpensive but effective technologies to prevent inadvertent access to the site. This section provides methods for representative low-cost technologies as well as cost estimates for those methods. The technologies evaluated in the section include installing a perimeter fence around the contaminated site, paving the contaminated site, and landscaping the site in a way to discourage access.

F.1 Perimeter Fence

One low cost but effective technology for restricting access to a site is a perimeter fence. For the purposes of this analysis, a cost estimate is developed for both a residential fence and a low-security industrial fence that are intended to only prevent unintentional access to the site. The residential chain link fence is six feet high, is made of 11-gauge wire and galvanized steel, and has 1-5/8" line posts every 10 feet, two-inch corner posts, and a 1-3/8" top rail. It is also assumed to have a six-foot high, four-foot wide gate every 1000 feet and to have a warning sign posted every 50 feet. The cost for installation of this fence is about \$12.20 per linear foot, or \$40.00 per linear meter (Means, 1993).

The industrial chain link fence is six feet high, is made of 6-gauge wire and galvanized steel, and has two-inch line posts every ten feet and a 1-5/8" top rail. It is also assumed that a set of double swing gates are in the fence every 1000 feet and that a warning sign is posted every 50 feet. The cost for installation of this fence is about \$19.80 per linear foot, or \$64.90 per linear meter (Means, 1993).

F.2 Paving and Surfacing

Another technology that can be used to minimize exposure of individuals to contaminated soil is to cover the contaminated land surface area with a material such as asphalt. This allows the possibility of reusing the site, such as for a parking area for

F-1

vehicles. Cost estimates for installation of this technology range from about $11.9/m^2$ for a residential driveway-grade paved surface to $19.7/m^2$ for a highway-grade asphaltic concrete pavement (Means, 1993). The cost estimate for the driveway-grade paved surface includes estimates for grading the surface in preparation for paving, the lay-down of a stabilization (polypropylene) fabric, and the lay-down of a $2\frac{1}{2}$ -inch thick asphaltic concrete pavement. The cost estimate for the highway-grade paved surface includes for grading the surface in preparation for paving, installation of a 4-inch thick granular ($1\frac{1}{2}$ -inch diameter stones) base course, lay-down of a 3-inch thick asphaltic concrete binder course, lay-down of a stabilization (polypropylene) fabric, and the lay-down of a $1\frac{1}{2}$ -inch thick asphaltic concrete wearing course.

In some cases, a more robust engineered barrier may be desired, such as to prevent burrowing animals and vegetation from accessing the contaminated soil. Cost estimates for such an engineered barrier, or multi-layered cap, were provided in Section 6.6.7 of Appendix C.

F.3 Landscaping

A low cost technology for preventing unintentional access to a site is to landscape the site with plants that discourage access. For this analysis, it is assumed that a barberry shrub is planted around the perimeter of the site. The barberry shrub is a prickly shrub with sour green or red berries and yellow flowers and is often used for hedges. It grows to a height of four to five feet and a width of about four feet. The cost of landscaping with the barberry shrub is estimated to be \$3.90/ft, or \$12.90/m, and includes purchase and planting of the shrub and preparation of the bedding area with peat moss.

F.4 Access Restriction Costs for Reference Facilities

Table F.1 provides estimates for the costs to implement site access restrictions for each of the reference facilities described in Section 4 of Appendix C. The capital costs are estimated using the unit costs discussed above. The average annual cost of maintenance was derived from the assumptions that the capital investment in the access restrictions depreciated by 5% each year, that the maintenance cost for the first year is 1% of the capital investment cost, and that maintenance costs increase by 10% each year thereafter. It is assumed that essentially the only wear and tear on the access restrictions are from natural environmental conditions. The assumed values for these parameters are, therefore, low relative to what they would be for actual operating equipment. Based on these assumptions, the lifetime of the access restrictions is about 30 years, and the annual maintenance cost reported in Table F.1 is the average annual maintenance costs would be expected to be significantly higher than shown in Table F.1, and the lifetime of the surface would be expected to be considerably less than 30 years.

2

NUREG-1496

÷.

	Perimeter Fence (\$K)		Paved Sur	face (\$K)	Landscaping (\$K)	
Reference Facility	Capital	Annual Maintenance	Capital	Annual Maintenance	Capital	Annual Maintenance
Nuclear Power Plant	2.7 - 4.3	0.15 - 0.24	3.3 - 5.5	0.18 - 0.30	0.90	0.05
Uranium Fuel Fabrication Plant	15.4 - 25.1	0.84 - 1.38	110 - 180	6.0 - 9.9	5.0	0.27
Sealed Source Manufacturer	3.4 - 5.6	0.19 - 0.31	5.5 - 9.2	0.30 - 0.50	1.1	0.06
Rare Metals Extraction Plant	15.4 - 25.1	0.84 - 1.4	110 - 180	6.0 - 9.9	5.0	0.27
Uranium Mill	148 - 240	8.1 - 13.2	10,200-16,800	560 - 920	48	2.6

Table F.1. Calculated Costs for Site Access Kestr

F.5 References

Means. 1993. Means Building Construction Cost Data. Kingston, Massachusetts.

NUREG-1496

I

.

7

I

APPENDIX G

EVALUATION OF THE PLANNED DISPOSAL CAPACITY FOR DECOMMISSIONING AND NORMAL OPERATION WASTE

. . . .

•••

APPENDIX G

G.1 Introduction and Background

The cost analyses performed in Appendix C of the GEIS assumed that the waste generated from the decommissioning of buildings and soils for most of the reference facilities was placed in low-level waste burial sites. Appendix G estimates the amount of available planned disposal capacity by compact and noncompact states and compares this capacity to the incremental amount of waste generated by decontaminating the structures and soils for all licensed facilities considering the regulatory alternatives and alternative residual dose criteria discussed in Chapter 2 of this GEIS.

G.2 Approach and Method

For the purpose of this study, the focus is placed on low-specific-activity waste usually present in large volumes. Such waste includes contaminated building rubble, soils, slag, ash, sands, etc., and tailings-like materials. For the lower alternative residual dose criteria considered in Appendix C (i.e., approximately 3 - 0.03 mrem/y), larger waste volumes would potentially occur and require disposal at approved disposal sites and could become a consideration with regard to available and planned disposal capacity to accommodate the resulting waste volume. Conversely, for the higher alternative residual dose criteria (approximately 3 to 100 mrem/y), lesser waste volumes could potentially occur. Other risk and cost considerations are discussed in Chapters 4 and 5, and in Appendices B, C, and D. This Appendix factors waste disposal capacity considerations into the development of acceptable residual dose criteria for decommissioning.

Inherent in this approach is the assumption that the total amount of activity (even when associated with very large waste volumes) is not expected to be a limiting factor for disposal. It is assumed that the total radioactivity present in such waste from decommissioning of lands and structures would be a small fraction of that contained in waste generated under routine and normal operations. In other words, it is assumed that the volume might be a limiting factor, rather than total activity or radionuclide concentrations. Because the GEIS determines the incremental impact of alternative residual dose criteria for lands and structures, this Appendix does not analyze waste volumes from disposal of metals and equipment. The decommissioning waste volume estimates of low specific activity waste are based on the information in Attachments C and D of Appendix C (to provide complete information on waste volume estimates, Appendix C of the draft GEIS is reproduced in this final GEIS as Attachment D to Appendix C) and, where appropriate, information provided by the low-level Compacts and unaffiliated States.

The estimated incremental waste volumes from decommissioning of lands and structures are compared to the overall volume of waste generated under normal operations and are also compared to waste disposal capacity provisions by the Compact regions or States. This comparison is performed for each of the nine Compacts and all unaffiliated States.

G-1

This Appendix also considers the Site Decommissioning Management Plan (SDMP) facilities identified by the NRC. The facilities have contaminated buildings, soils, slag, and groundwater and former waste disposal areas and tailing piles (NRC, 1993b).

G.3 Waste Generator Profiles and Population

Waste generators are grouped in this Appendix into five categories: nuclear power plants, test and research reactors, fuel cycle facilities, non-fuel cycle material facilities, and dry spent fuel storage facilities. Reference facilities for the categories of nuclear power plants, fuel cycle facilities, and non-fuel cycle facilities are described in Appendix C. As noted there, the number of reference facilities analyzed in this final GEIS have been reduced from the draft GEIS, but because this Appendix G is summarizing total quantities of waste and comparing it to waste compact capacities, it estimates volumes for all NRC-licensed facilities in the U.S. including those not analyzed in detail in Attachment C of Appendix C. However, a description of reference research and test reactors and spent fuel storage facilities, including waste volumes, can be found in Attachment D to Appendix C. Site Decommissioning Management Plan sites are discussed as a separate category. Low-level radioactive waste produced by these categories of waste generators is generated in diverse types of activities, including power production, fuel fabrication, materials testing, chemical production, drug research and testing, mineral processing, and basic and applied research in various scientific disciplines (e.g., physics, chemistry, medicine, and biology). The radioactivity contained in the waste originates from various sources, such as reactors (research and power), industrial facilities, ore extraction and processing, etc. Waste generators are licensed under Nuclear Regulatory Commission and Agreement State regulations governing the possession and use of radioactive materials.

5

ĩ.

2

There are over 22,000 licensees (issued by the Nuclear Regulatory Commission and Agreement States) authorized to possess and use radioactive materials (NRC, 1993a). Both NRC and Agreement State licensees generate waste. The following sections describe the operating and nonoperating nuclear power plants, fuel-cycle facilities, approved and pending independent spent fuel storage facilities, materials licensees, and operating and nonoperating research and test reactors licensed by the NRC that are considered in this appendix.

Category	NRC	Agreement-State
Academic	83	6,210
Medical	2,260	1,120
Industrial	4,060	7,880
Source Materials	166	n/a

Using the NRC license program code data, the distribution of licensees is estimated to be as follows:

Sources: NUREG-1350, Vol. 5, NRC, 1993a; NRC license Management System output dated 11/9/93 (R1201005A).

236

n/a

NUREG-1496

ı

Special Nuclear Materials

Not all of these facilities have the potential of generating low-level radioactive waste. For example, the following tabulation summarizes the distribution of licensed facilities generating waste for selected Compacts and States. A review of NRC materials license program codes and results of surveys conducted by States and Compacts indicates that up to 25% of the licensees may generate low-level waste. In some States, however, it is less than two percent. Also, the number of licensees and those that generate waste are known to fluctuate from year-to-year. However, the number of facilities reporting to generate and ship waste is perhaps more reliable as it is based on survey data. If the number of licensees were updated to reflect current information (matching data sets, total number of licensees with those that generate waste), it is expected that the fraction of facilities generating waste might be lower still. Accordingly, this information is presented here for illustrative purposes only.

	Estimated	Licensees G Was	·	
Selected State	Number of Licenses	Number	Percent	Year of LLW Data
Southeast Compact	4,325	61	1.4	1990
Texas	1,801	26	1.4	1992
Appalachian Compact	1,776	300	17.0	1990/1991
New York	1,749	· 245 -	14.0	1992
Central Midwest	1,438	363	25.0	1992
Michigan	700	49	7.0	1992
New Jersey	661	72	11.0	1988
Massachusetts	476	104	22.0	1991
Maine	130	16	12.0	1992
Rhode Island	73	10	14.0	1989
Dist. of Columbia	67	15	22.0	1989

Sources: NRC, 1993a; NRC, 1988b; PADER, 1993; NYSERDA, 1993a; MDEP, 1992; Ebasco, 1990; SCC, 1991; MLLRWMB, 1992; Shuman, 1993; IDNS, 1993; DiPrete, 1989; Barry, 1989; MLLRWA, 1993.

·

. .

Similarly, a low percentage of licensees have the potential for generating significant waste volumes during facility decommissioning. In many instances, decommissioning involves the use of simple decontamination methods, resulting in minimal waste generation. For other types of facilities (e.g., medical, academic, and industrial), the radioactive materials used are short-lived and would not require any significant decommissioning efforts. The same is true for licensees using sealed sources (e.g., industrial radiography and irradiation facilities). Such facilities are also not expected to generate any significant amounts of waste.

Tables G.3.1-G.3.6 provide a listing of facility numbers, locations, and types and also indicate the compact location (or unaffiliated State) in which the facility is located. Tables indicate whether the facility was operating or in decommissioning at the time of the reference used although, because the analysis that follows combines the waste volumes from all facilities both in operation and in decommissioning, the operational status of the facilities is for informational purposes and does not affect the analysis.

G-3

State and		No. of		
Compact Region ^(b)	Plant Name	Units	Туре	Net MWe
Alabama/SE	Browns Ferry	3	BWR	1065
	J.M. Farley	2	PWR	828
Arizona/SW	Palo Verde	3	PWR	1221
Arkansas/CE	Arkansas Nuclear	2	PWR	858
California/SW	Diablo Canyon	2	PWR	1087
	San Onofre	2	PWR	1080/436
Connecticut/NE	Haddam Neck	1	PWR	565
	Millstone-1	1	BWR	654
	Millstone-2/3	2	PWR	863/1142
Florida/SE	Crystal River-3	1 .	PWR	821
	St. Lucie	2	PWR	839
	Turkey Point-3/4	2	PWR	666
Georgia/SE	E.I. Hatch	2	BWR	766
-	A.W. Vogtle	2	PWR	1100
Illinois/CM	Byron	2	PWR	1105
	Clinton	1	BWR	930
	Dresden-2/3	2	BWR	773
	Lasalle	2	BWR	1036
	Quad Cities	2	BWR	769
•	Zion	2	PWR	1040
	Braidwood	2	PWR	1120
Iowa/MW	Duane Arnold	1	BWR	538
Kansas/CE	Wolf Creek	1	PWR	1135
Louisiana/CE	River Bend	1	BWR	936
	Waterford-3	1	PWR	1075
Maine/Unaf.	Maine Yankee	1	PWR	830
Maryland/AP	Calvert Cliffs	2	PWR	825
Massachusetts/Unaf.	Pilgrim	1	BWR	670
Michigan/Unaf.	Big Rock Point	1	BWR	67
-	D.C.Cook	2	PWR	1060
	Fermi-2	1	BWR	1075
	Palisades	1	PWR	768
Minnesota/MW	Monticello	1	BWR	536
	Prairie Island	2	PWR	503
Mississippi/SE	Grand Gulf	1	BWR	1142
Missouri/MW	Callaway	1	PWR	1125

 Table G.3-1 Nuclear Power Plants in Commercial Operation^(a)

NUREG-1496

.

. .

•.

۰.

•

ŧ

State and Compact Region ^(b)	Plant Name	No. of Units	Туре	Net MWe
Nebraska/CE	Cooper	1	BWR	764
	Fort Calhoun	1	PWR	478
New Jersev/NE	Hope Creek	1	BWR	1031
· · · · · · · · · · · · · · · · · · ·	Ovster Creek	1 +	BWR	620
	Salem	2	PWR	1106
New Hampshire/		-		
Unaf.	Seabrook	1	PWR	1150
New York/Unaf.	J.A. Fitzpatrick	1	BWR	757
	R.E. Ginna	ī	PWR	470
	Indian Point-2/3	2	PWR	970
	Nine Mile Point	2	BWR	610/1072
North Carolina/SE	Brunswick	2	BWR	790
	McGuire	2	PWR	1129
	Shearon Harris	1	PWR	860
Ohio/MW	Davis Besse	1	PWR	874
	Perry	1	BWR	1141
	Fermi-2	1	BWR	876
Pennsylvania/AP	Beaver Valley	2	PWR	810/833
·	Limerick	2	BWR	1055
	Peach Bottom-2/3	2	BWR	1035/1051
	Susquehanna	2	BWR	1038
	Three Mile Island	1	PWR	808
South Carolina/SE	Catawba	2	PWR	1129
	Oconee	3	PWR	846
	Robinson-2	1	PWR	665
	V.C. Summer	1	PWR	885
Tennessee/SE	Sequoyah	2	PWR	1148
	Watts Bar-1	1	PWR	1125
Texas/Unaf.	South Texas Project	2	PWR	1250
	Comanche Peak	2	PWR	1150
Vermont/Unaf.	Vermont Yankee	1	BWR	504
Virginia/SE	North Anna	2	PWR	915
	Surry	2	PWR	781
Washington/NW	Washington			
	Project-2	1	BWR	1095
Wisconsin/MW	Kewaunee	1	PWR	503
	Point Beach	2	PWR	485

3

Table G.3-1 Nuclear Power Plants in Commercial Operation^(a) (Continued)

(a) Commercially operating plants by the end of 1995 (Nuclear News, 1993a, NRC, 1996a).

(b) Key to low-level waste Compact regions: NW, Northwest.; MW, Midwest; NE, Northeast; AP, Appalachian; CE, Central Interstate; CM, Central Midwest; SE, Southeast; SW, Southwestern; and Unaf., unaffiliated States.

.

Unit & Location	Type & Power (MWt)	D&D Option Status ^(b)	State or Compact
CVTR, Parr, SC	PTHW 65	SAFSTOR	Southeast
Dresden 1, Morris, IL	BWR 700	SAFSTOR	Central Midwest
Fort St. Vrain, Platteville, CO	HTGR 842	DECON	Rocky Mountain
Trojan, Portland, OR	PWR 3,411	Pending	Northwest
Humbolt Bay, Humbolt Bay, CA	BWR 200	SAFSTOR	Southwestern
Rancho Seco, Herald, CA	PWR 2,772	SAFSTOR	Southwestern
GE VBWR, Pleasanton, CA	BWR 50	SAFSTOR	Southwestern
San Onofre-1, San Clemente, CA	PWR 1,347	SAFSTOR	Southwestern
Pathfinder, Sioux Falls, SD	BWR 190	DECON	Southwestern
Lacrosse, Genoa, WI	BWR 165	SAFSTOR	Midwest
Yankee Rowe, MA	PWR 600	pending	Massachusetts
Peach Bottom 1, Peach Bottom, PA	HTGR 115	SAFSTOR	Appalachian
Three Mile Island 2, Londonderry, PA	PWR 2,772	DECON/SAFSTOR	Appalachian
Fermi 1, Lagoona Beach, MI	SCF 200	SAFSTOR	Michigan
Shoreham, Wading River, NY	BWR 2,436	DECON	New York
Indian Point 1, Buchanan, NY	PWR 615	SAFSTOR	New York

Table G.3-2 Formerly Operated Commercial Nuclear Power Plants^(a)

(a) Extracted from NRC, 1993a. Five plants under the custodial care of the AEC/DOE are excluded from this listing.

(b) Key to D&D options: SAFSTOR, facility placed in safe storage for decontamination at some future time; and DECON, facility, equipment, and site decontaminated for unrestricted release shortly after plant shutdown.

NUREG-1496

..

,

•....

G-6

State & Location	Licensee	Type of Reactor	Low-Level Waste Compact
Washington	<u></u>		Northwest
washingun Seettle	Ilain of Weshing	A recommet(b)	Notuiwest
Dullman	Washington S. Univ	Trico	•
	washington 5. Only.	i figa	Manthanact
Generallia	One and State Unive	The Mart II	Normwest
	Oregon State Univ.	Triga Mark II	
Portiand	Reed College	Inga Mark I	
Idano			Northwest
Pocatello	Idano State Univ.	AGN-201	NTT
Utah			Northwest
Salt Lake City	Univ. of Utah	Triga Mark I	
California			Southwestern
San Ramon	Acrotest	Triga (Industrial)	
San Diego	General Atomics	Triga Mark I & F	· · · · ·
Pleasanton	General Electric	Nuclear Test	
Irvine	Univ. of Calif.	Triga Mark I	
Arizona			Southwestern
Tucson	Univ. of Ariz.	Triga Mark I	
Colorado		i i	Rocky Mountain
Denver	U.S. Geological	Triga Mark I	·
,	Survey	•	
New Mexico			Rocky Mountain
Albuquerque	Univ. of New Mex.	AGN-201	· · · · · · · · · · · · · · · · · · ·
Texas			Texas
Austin	Univ. of Texas	Triga Mark II	
College Station	Texas A&M	Triga/AGN-201	
Iowa		11.60.1011 201	Midwest
Ames	Iowa S. University	ITTR-10	INTROVOUL
Miccouri	IOWA S. Chiveishy		Midwart
Polis	Univ of Missouri	Pool	Midwest
Columbia	Univ. of Missouri	Tonk	
Wisconsin	Olliv. Of Missouri	IGUN	Midwast
Madicon	Liniu of Wisconsin	Trico	Midwest
Madison	Only. Of wisconsin	Inga	Midmont
	Dentes Main	T a state as d	Midwest
west Larayette	Puraue Univ.	Lockneed	
			Midwest
Columbus	Ohio S. Univ.	Pool	
Nebraska			Central Interstate
Omaha	Veterans Admin.	Triga	
Kansas			Central Interstate
Manhattan	Kansas State Univ.	Triga	
Arkansas			Central Interstate
Russellville	Arkansas Tech, Univ.	Triga	

Table G.3-3 Location and Types of Research and Test Nuclear Reactors^(a)

• •

•

3

.

•

NUREG-1496

G-7

. •

State & Location	Licensee	Type of Reactor	Low-Level Waste Compact
Illinois			Central Midwest
Urbana	Univ. of Illinois	Triga	
		Lopra	
Michigan		•	Michigan
Ann Arbor	Univ. of Michigan	Pool	C
Midland	Dow Chemical	Triga	
Pennsylvania		•	Appalachian
Univ. Park	Penn. State Univ.	Triga	**
Massachusetts		U	Massachusetts
Worcester	Worcester Poly. Tech.	GE	
Lowell	Univ. of Lowell	GE Pool	
Cambridge	MIT	HWR	
Rhode Island			Rhode Island
Narragansett	RI AEC	Critical Assy.	
New York		•	New York
Ithaca	Cornell Univ.	Triga Mark II	
		& Zero Power	
Buffalo	S. Univ. of NY	Pulstar	
Тгоу	Rensselaer Poly Tech.	Critical Assy.	
Bronx	Manhattan College	Tank	
Maryland	-		Appalachian
Bethesda	Armed Forces Radio-	Triga	
	biology Institute		
Gaithersburg	NIST	Nuclear test	
College Park	Univ. of Maryland	Triga	
Virginia	-	-	Southeast
Charlottesville	Univ. of Virginia	Pool	
North Carolina	_		Southeast
Raleigh	NC State Univ.	Pulstar	
Georgia			Southeast
Atlanta	Georgia Tech.	Heavy Water	
Florida	-	-	Southeast
Gainesville	Univ. of Florida	Argonaut	
		-	

Table G.3-3 Location and Types of Research and Test Nuclear Reactors⁽⁴⁾ (Continued)

(a) Extracted from NRC, 1993a.

·:

•

.

۰,

.

(b) Facilities that are pending or undergoing decommissioning.

NUREG-1496

.

1

2

ž

State &	7.8	Type of	Low-Level
Location	Lacensee	Keactor	waste Compaci
Washington		······································	<u></u>
Seattle	Univ. of Washing.	Argonaut	Northwest
Utah	-		Northwest
Provo	Brigham Young Univ.	L-77	:
Salt Lake City	Univ. of Utah	AGN-201	
California			Southwestern
Los Angeles	Univ. of Calif.	Argonaut	
Pleasanton	General Electric	GETR	
Pleasanton	General Electric	EVESR	
Texas		1 1	,
Austin	Univ. of Texas	Pool	Texas Compact
District of Columbia	Catholic Univ.	AGN-201	Dist. of Columbia
Ohio			Midwest
Sandusky	NASA	Mock-up	
Plum Brook	NASA	Test	
Pennsylvania			Appalachian
Saxton	Saxton Nuclear	PWR	• •
	Experiment Corp.		
Waltz Mill	Westinghouse	Test	
Virginia	·		Southeast
Charlottesville	Univ. of Virginia	Pool	
Lynchburg	Babcock & Wilcox	Pool	
Kansas			Central Interstate
Lawrence	Univ. of Kansas	Pool	
Arkansas	:		Central Interstate
Strickler	SEFOR	Na-cooled	
Massachusetts		•	Massachusetts
Watertown	Watertown Arsenal	Pool	

2

Table G.3-4 Research and Test Nuclear Reactors Preparing for orUndergoing Decommissioning; Possession Only License^(a)

(a) Obtained from the Office of Nonpower Reactors and Decommissioning Directorate, November 1993, and NRC, 1993a.

Location	Fuel Fabrication	Uranium Hexafluoride Production	Uranium Enrichment	Low-Level Waste Compact
Windsor, CT	ABB Combustion Engineering ^(b)	n		Northeast
Lynchburg, VA	Babcock & Wilcox (2)			Southeast
Wilmington, NC	General Electric			Southeast
Columbia, SC	Westinghouse			Southeast
Hematite, MO	ABB Combustic Engineering	on		Midwest
Erwin, TN	Nuclear Fuel Services			Southeast
Richland, WA	Siemens Nuclea Power	r		Northwest
San Diego, CA	General Atomics			Southwestern
Metropolis, IL		Allied-Signal		Central Midwest
Gore, OK		Sequoyah Fuels	(b)	Central Interstate
Homer, LA			Louisiana Energy Services ^(c)	Central Interstate

Table G.3-5 Location of Fuel Fabrication, Uranium Hexafluoride Production, and Uranium Enrichment Facilities^(a)

(a) Extracted from NRC, 1993a.

••••

. • •

(b) Facility under decommissioning.
(c) Louisiana Energy Services, NRC Docket No. 70-3070, June 1993.

NUREG-1496

.

ı

Power Plant/ Facility	Licensee & State	Licensing Status	Low-Level Waste Compact
Surry 1/2	Virginia Electric & Power Co., VA	approved	Southeast
H.B. Robinson	Carolina Power & Light Co., SC	approved	Southeast
Oconee 1/2/3	Duke Power Co., SC	approved	Southeast
Fort St. Vrain	Public Service Co. of Colorado, CO	approved	Rocky Mountain
Calvert Cliffs	Baltimore Gas & Electric Co., MD	approved	Appalachian
Brunswick	Carolina Power & Light Co., NC	pending	Southeast
Prairie Island	Northern States Power Co., MN	approved	Midwest
Rancho Seco	Sacramento Municipal Utility District, CA	pending	Southwestern
General Electric	Morris, IL	approved	Central Midwest
Point Beach 1/2	Wisconsin Electric and Power Co., WI	general license	Midwest .
Davis-Besse	Toledo Edison Co., OH	general license	Midwest
Palisades	Consumer Power Co., MI	general license	Michigan

Table G.3-6 Dry Spent Fuel Storage Facilities^(a)

. .

...

• • • •

1

(a) Data extracted from NUREG-1350, Vol.5 (NRC, 1993a; 1996a) and DOE, 1990.

G.4 Estimated Quantities of Low-Level Waste Generated

For the population of waste generators discussed in Section G.3, this section provides estimates of the quantities of low-level waste generated from normal operations and from decommissioning of structures and lands.

G.4.1 Normal Operations Waste

Over the past recent years, the trend in normal operations waste generation rates has been generally downward (see tabulation below) in response to the volume allocations imposed by the disposal sites and higher disposal costs (DOE, 1988; 1989; 1990; 1991; 1992a; Lockheed, 1996). Over the past 13 years, annual waste generation rates have varied significantly, ranging from a high of about 2.7 million ft³ to as low as 0.7 million ft³.

 				······································			
<u>1983</u> 2.71E+6	<u>1984</u> 2.62E+6	<u>1985</u> 2.68E+6	<u>1986</u> 1.80E+6	<u>1987</u> 1.84E+6	<u>1988</u> 1.43E+6	<u>1989</u> 1.63+6	<u>1990</u> 1.14E+6
1991	1992	199	3	1994	1995		
1.37E+6	1.74E+6	7.92	E+5	8.58E+5	6.89E+5		

National Low-Level Waste Generation Rates (ft³)

Table G.4-1 presents a breakdown of normal operation waste generation by Compact and nonmember states (unaffiliated). Table G.4-2 presents, for illustrative purposes, the total volume and total activity of all radioactive waste shipped for disposal by each of the five categories of waste generators from 1988 to 1992 (EG&G, 1989; 1990; 1991; 1992; 1993). This table captures all waste (i.e., Classes A, B, and C, brokered and nonbrokered). Typically, Class A waste constitutes over 95 percent of the volume but only about 3 to 13 percent of the activity of the waste (NRC, 1990).

G.4.2 Estimated Waste Volumes from Decommissioning of Structures and Lands at Reference Facilities

The estimates of total waste volume from decommissioning of structures and lands, given below, are based on information in Attachments C and D of Appendix C for the five categories of facilities indicated in Section G.3, the estimated number of sites to be decommissioned, and information provided by the low-level Compacts and unaffiliated States. The results presented here represent a broad estimate in that they are based on a number of assumptions regarding contamination levels and extent discussed in Appendix C, and assuming similar behavior by the licensed facilities categorized by the reference facilities.

 Table G.4-1

 Compacts and Non-Member States Low-Level Normal Operations Waste Generation Rates^(a)

		Waste Volumes (ft')						
Compact/State	1988	1989	1990	1991	1992	5-Year Average		
Appalachian	182,600	171,212	119,582	244,930	112,083	166,000		
Central Int.	71,718	85,244	58,328	56,774	80,116	70,500		
Central Midwest	114,655	143,353	102,977	104,302	287,219	150,500		
Midwest	96,758	157,820	123,511	112,800	88,793	116,000		
Northeast	88,209	102,439	87,018	106,207	91,064	95,000		
Northwest	128,377	115,016	95,9 43	137,935	235,620	143,000		
Rocky Mountain	3,076	10,215	4,481	4,783	37,481	12,000		
Southeast	479,114	497,208	336,474	285,828	369,951	390,000		
Southwestern	111,530	149,909	84,910	100,599	133,758	116,000		
District of Columbia	909	925	539	1,206	1,598	1,000		
Maine	6,330	15,634	6,865	5,209	8,789	8,500		
Massachusetts	50,614	56,526	40,750	34,425	56,734	48,000		
New Hampshire	486	27	1198	4,324	48	1,200		
New York	73,020	96,642	73,394	9 9 ,2 54	70,272	82,000		
Puerto Rico	0	0	.0.	0	0	0		
Rhode Island	1,108	1,419	160	361	374	700		
Texas	12,376	22,101	9,185	53,087	162,844	26,000		
Vermont	7,247	172	0	17,138	6,090	7,700		
Total	1.43E+6	1.63E+6	1.14E+6	1.37E+6	1.74E+6			

(a) Extracted from DOE, 1989; 1990; 1991; 1992a; and EG&G, 1993.

•

ć

.

1.11.1

Year	Academic	Government	Medical	Industrial	Utility	Total
<u>1988</u>						
Volume	4.94E+4	8.76E+4	2.42E+4	4.56E+5	8.11E+5	1.43E+6
Activity	2.26E+3	1.05E+4	8.60E+1	3.44E+4	2.13E+5	2.59E+5
<u>1989</u>						
Volume	6.61E+4	1.14E+5	3.47E+4	5.65E+5	8.47E+5	1.63E+6
Activity	1.94E+3	1.26E+4	1.49E+2	1.27E+5	7.25E+5	8.67E+5
<u>1990</u>						
Volume	4.86E+4	7.23E+4	2.28E+4	3.56E+5	6.42E+5	1.14E+6
Activity	1.09E+3	1.01E+4	5.95E+1	1.03E+5	4.33E+5	5.47E+5
<u>1991</u>						
Volume	4.80E+4	1.03E+5	2.86E+4	5.51E+5	6.37E+5	1.37E+6
Activity	4.72E+2	1.93E+4	7.00E+4	7.17E+4	7.08E+5	7.99E+5
<u>1992</u>						
Volume	4.43E+4	1.58E+5	2.62E+4	9.08E+5	6.06E+5	1.74E+6
Activity	1.72E+3	4.07E+4	3.97E+2	1.00E+5	8.57E+5	1.00E+6

Table G.4-2 Yearly Activity (Ci) and Waste Volumes (ft³) of All Waste Shipped for Disposal^(a)

(a) Includes Class A, B, and C, brokered, and nonbrokered waste. Data extracted from EG&G, 1989; 1990; 1991; 1992; 1993.

To convert volume to cubic meters, multiply cubic feet by 0.02832. To convert activity in SI units, multiply Ci by 3.7×10^{10} Bq.

NUREG-1496

ī

.

i

G.4.2.1 Nuclear Power Plants

Table G.4-3 presents estimates of low-specific activity waste volumes for nuclear power plants. In making overall volume estimates, Table G.4-3 includes waste volumes from both the operating and nonoperating power plants listed in Tables G.3-1 and G.3-2. For comparison purposes, the waste volumes are aggregated by Compact regions and unaffiliated States. Table G.4-3 estimates that nuclear power plants would produce approximately 1 million cubic feet of decommissioning waste.

G.4.2.2 Test and Research Reactors

The estimated amounts of low-specific activity waste for test and research reactors are shown in Table G.4-4. In making overall volume estimates, Table G.4-4 includes decommissioning waste volumes from both the operating and nonoperating test and research reactors listed in Tables G.3-3 and G.3-4. Table G.4-4 estimates that test and research reactors would produce approximately 0.15 million cubic feet of decommissioning waste.

G.4.2.3 Fuel Cycle Facilities

Table G.4-5 shows the estimated amounts of low-specific activity waste for the fuel cycle facilities listed in Table G.3-5. These facilities are estimated to produce approximately 0.66 million cubic feet of waste.

G.4.2.4 Non-Fuel Cycle Materials Facilities

Table G.4-6 presents the estimated volumes of low-specific activity waste resulting from decommissioning activities at non-fuel cycle materials facilities. For comparison, the waste volumes are aggregated by Compact regions and unaffiliated States. In total, non-fuel cycle materials facilities are estimated to produce about 5 million cubic feet of waste.

G.4.2.5 Dry Spent Fuel Storage

The amounts of low-specific activity waste generated during the decommissioning structures and lands for dry spent fuel storage facilities are shown in Table G.4-7. Based on Table G.3-6, the overall waste volumes in this section are based on the presence of 12 storage facilities. In total, this category is estimated to produce about 6E+3 ft³ of waste.

Compact/State	Operating Plants	Non- Operating	Total No.	Waste Vol. (ft ³)	
· · · · · · · · · · · · · · · · · · ·					
Appalachian	11	2	13	104,000	
Central Int.	7		7	56,000	
Central Midwest	13	1	14	112,000	
Midwest	11	1	12	96,000	
Northeast	8		8	64,000	
Northwest	1	1	2	16,000	
Rocky Mountain		1	1	8,000	
Southeast	34	1	35	280,000	
Southwestern	7	5	12	96,000	
Maine	1		1	8.000	
Massachusetts	1	1	2	16.000	
Michigan	5	1	6	48.000	
New Hampshire	1		1	8.000	
New York	6	2	8	64 000	
Texas	ů 4	-	4	32,000	
Vermont	1		1	8,000	
Total	<u> </u>	16	127	<u> </u>	

Table G.4-3 Estimates of Low-Specific Activity Decommissioning Waste Volumes for Nuclear Power Plants^(a)

(a) The number of operating and shutdown power plants are based on data presented in Tables G.3-1 and G.3-2. Waste volumes for decommissioning of structures and lands were taken from Appendix C and rounded off to 8,000 R³ per plant.

ş

ļ

٠,

.

Compact/State	Operating Reactors	D&D and Poss. Only	Total No.	Waste Vol. (ft ³)	
Appalachian	4	2	6	15,000	
Central Int.	3	2	5	12,500	
Central Midwest	2		2	5,000	
Midwest	6	2	8	20,000	
Northwest	6	3	9	22,500	
Rocky Mountain	2		2	5,000	
Southeast	4	2	6	15,000	
Southwestern	5	3	8	20,000	
Massachusetts	3	1	4	10,000	-
Michigan	2		2	5,000	
New York	4		4	10,000	
Texas	2	1	3	7,500	•
Rhode Island	- 1		- 1	2,500	
District of Columbia		1	1	2,500	•
Total	44	17	61	1.5E+5	

8

.'

.

•

6

 Table G.4-4 Estimates of Low-Specific Activity Decommissioning Waste

 Volumes for Test and Research Reactors^(a)

4

(a) The number of operating and shutdown reactors is based on data presented in Tables G.3-3 and G.3-4. Waste volumes from decommissioning structures and lands were based on Attachments C and D of Appendix C and rounded off to 2,500 ft³ per plant.

Compact/State	No. of Projected Facilities	Waste Vol. (ft ³)
Northeast	1	60,000
Southeast	4	240,000
Midwest	1	60,000
Northwest	1	60,000
Southwestern	1	60,000
Central Midwest	1	60,000
Central Int.	2_	120,000
Total	11	6.6E+5

Table G.4-5	Estimates of	Low-Specific	Activity	Decommissioning	Waste	Volumes
		for Fue	d Cycle I	Facilities ^(a)		

(a) The number of facilities is based on data presented in Table G.3-5. Waste volumes from decommissioning of structures and lands were based on Appendix C and rounded off to 60,000 ft³ per site.

Compost/State	Assumed No. of	% of Total Facilities	No. of D&D Sites	Waste	
Compact/State	Licensees	Facilities	51105	voi. (it)	
Appalachian	1.776	7.99	193	482,500	
Central Int.	1.550	6.98	169	422,500	
Central Midwest	1.438	6.47	156	390,000	
Midwest	2,098	9.44	228	570,000	
Northeast	893	4.00	97	242,000	
Northwest	1,350	6.07	147	367,500	
Rocky Mountain	882	3.96	96	240,000	
Southeast	4,325	19.5	47	117,500	
Southwestern	2,753	12.3	300	750,000	
District of	67	0.30	7	17,500	
Columbia					
Maine	130	6.00	14	35,000	
Michigan	700	3.15	76	190,000	
Massachusetts	476	2.14	52	130,000	
New Hampshire	115	0.50	13	32,500	
New York	1,749	7.87	190	475,000	
Rhode Island	73	0.30	8	20,000	
Texas	1,801	8.10	196	490,000	
Vermont	43	<u>0.20</u>	5	12,500	
Total	22,219		1,994	5E+6	

Table G.4-6 Estimates of Low-Specific Activity Decommissioning Waste Volumes for Materials Facilities^(a)

(a) The number of licensees is based on NUREG-1350 Vol. 5 (NRC, 1993a) and survey data from States and Compacts provided in periodic survey reports and from the 1989 Governor's Certification package. The number of licensees generating decommissioning waste was based upon the number of facilities estimated in JFA, 1994, for this category. Waste volumes from decommissioning structures and lands were based on Appendix C, assuming 2,500 ft³ per site.

NUREG-1496

۰.,

.

G-18

Compact/State	No. of Projected Facilities	Waste Vol. (ft ³)	
Southeast	4	2,000	
Rocky Mountain	1	500	
Appalachian	1	500	
Midwest	3	1,500	
Southwestern	1	500	
Michigan	1	500	
Central Midwest	1	500	
	80644		
Total	12	6E+3	

Table G.4-7 Estimates of Low-Specific Activity Decommissioning Waste Volumes for Dry Spent Fuel Storage Facilities^(a)

(a) The number of dry spent fuel storage facilities is based on DOE data, see Table 4-9 (DOE, 1990). Waste volumes are 500 ft³ per site (Appendix C).

G.4.3 Sites in the Site Decommissioning Management Plan (SDMP)

200

£.

Under the Site Decommissioning Management Plan (SDMP), the NRC has identified a number of facilities that warrant special attention. The SDMP program includes over 50 sites, however, the actual number of sites varies depending upon licensing actions and progress of clean up activities. The SDMP program classifies the sites into seven categories:

Category	No. of Sites	
Metal Extraction	14	
Fuel Cycle	6	
Research	6	
Byproduct	9	
U-Catalyst	3	
Mg-Th Alloy	3	
Others	9	

Some sites are known or suspected of having some groundwater contamination. The sites have contaminated buildings, soils, slag, process waste, and former waste disposal areas and tailing piles (NRC, 1993b,c; NRC, 1995; NRC, 1996b). The contaminants include uranium (47%), thorium (34%), byproduct materials (14%), and plutonium (5%). The greater waste volumes are associated with ore processors. Fourteen of the SDMP sites, contaminated primarily with thorium, are estimated to generate potentially large volumes of contaminated soil and rubble, ranging from 20,000 to 10 million ft³.

Table G.4-8 presents the estimated waste volumes for the NRC's SDMP sites and Table G.4-9 presents waste volume estimates associated with the decontamination of specific SDMP sites (NRC, 1993b,c; NRC, 1995; NRC, 1996b). Based on these data, the SDMP sites are estimated to produce about 57 million cubic feet of waste.

It should be recognized that such facilities are in a class apart from the traditional categorization of waste generators. Essentially, most of the waste is associated with the movement and processing of large volumes of uranium- and thorium- bearing ores.

Compact/State	No. of Projected Facilities	Waste Vol. (ft ³)	
Appalachian ^(b)	13	5.4E+6	
Midwest	12	2.6E+7	
Northeast	3	4.7E+6	
Central Interstate	5	1.6E+7	
Massachusetts ^(c)	3	1.3E+5	
Michigan	_4	4,4E+6	
Total	40	5.7E+7	

Table G.4-8	Summary	Estimates	of	Low-Specific	Activity	Decommissioning	Waste	Volumes	
from NRC SDMP Sites ^(a)									

(a) The number of SDMP sites is based on information provided in Table G.4-9.

(b) One site without data on waste volumes and characteristics omitted for the purpose of this estimate.

(c) One site without data on waste volumes and characteristics omitted for the purpose of this estimate.

G.5 Waste Capacity Projections

This section discusses the estimated current or planned waste disposal capacities for the unaffiliated States and Low-Level Waste Compacts (LLW Forum, 1993; 1996). Table G.5-1 summarizes this information, based on projections made by the Compacts or States.

Facility/State	Estimated Quantity Nuclide		Material	Compart	
	Quantity				
U.S. Army, Aberdeen	1.3E+5 kg	Dep.U	Soils	Appalachian	
Proving Ground, MD	•	-			
Babcock & Wilcox,					
Parks Township, PA	6.0E+5 ft ³	U/Th	Soils/Metals	Appalachian	
BP Chemicals, Lima, OH	2.8E+6 ft ³	Dep.U	Soils/Sludge	Midwest	
Cabot Comp.:		•	•		
- Bovertown, PA	2.5E+5 ft ³	U/Th	Soils		
,,	1.3E+4 tons	U/Th	Tailings	Appalachian	
- Reading PA	$6.0E+4 ft^{3}$	U/Th	Slag	# N	
- Revere PA	$8.2E + 5 ft^3$	U/Th	Slag/Soils	* 1	
Chemetron Corn. Newburgh		~/ #H			
Heights OH:				Midwest	
- Bert Ave	4 8F+5 ft ³	Den H	Soils	N N N	
- Horvert Ave	4.05 +5 m 1 KF + 5 m	Den U	Soile		
- martau Art. Dow Chemical:	1.0573 1	Dep.0			
Midland MI	2 25-15 63	Th .	Slag/Soile	Michigan	
- Milliand, Mi	J.267J H 1 1616 83	лц ТЪ	Slag/Soils		
- Day City, Mil	1.1ETO K 0 1E16 63	111 11/Th	Slag/30118	Central	
Palisteel, Muskogee, OK	0.15 7 5 IC	0/11	alluge/sons	Central	
haruey & Haruey,					
Bay County, MI:	0 75 1 6 63	T L.	Class/Calls) fishing	
· SCA	$2.7E \pm 0 \pi^{-1}$		Slag/Solls	Michigan	
MDNR	$2.5E+5 \pi^{-1}$		Siag/Solis	Manthanat	
Heritage Minerals,	2.8E+0 T	U/In	Sands/ Lattings	Normeast	
Lakehurst, NJ	,	1			
Kerr-McGee:				- ·	
- Crescent, OK	5.0E+5 ft ³	U	Soils/Sludge	Central	
- Cushing, OK	4.4E+6 ft ³	U/Th	Soils/Sludge		
U.S. Army, Lake City	3.4E+6 ft'	Dep.U	Soils/Sands	Midwest	
Independence, MO	. .				
Magnesium Elektron,	7.0E+5 ft ³	U/Th	Sludge/Soils	Northeast	
Flemington, NJ				•	
3M-Kerrick,	$2.0E + 4 ft^{3}$	U/Th	Metals/Debris	Midwest	
Pine County, MN	•			· · · · · · · · · · · · · · · · · · ·	
Molycorp:	1				
- Washington, PA	1.6E+6 ft ³	Th/U	Soil/Slag	Appalachian	
- York, PA	3.3E+5 ft ³	Th/U/Ra	Soils/Waste	* *	
Nuclear Metals,	1.3E+5 ft ³	Dep.U	Soils/Sludge	Massachusetts	
Concord, MA		-	· · · · · · · · · · · · · · · · · · ·		
Metcoa, Pulaski, PA	4.6E+4 ft ³	Th	Soil/Slag	Appalachian	
RMI Titanium,	1.4E+6 ft ³	U/Tc/Dep.U	Soils/Rubble	Midwest	
Ashtabula, OH	• • • • • • • • • • • • • • • • •	F			

Table G.4-9 Estimated Waste Volume From Selected SDMP Facilities^(a)

1

ė

•

.

.

-

NUREG-1496

.

Facility/State	Estimated Quantity	Nuclide U/Th	Material	Compact Appalachian	
Schott Glass Tech., Duryea, PA	2.7E+5 ft ³		Soils/Glass		
- Cambridge OH	1 0F+7 ft ³	II/Th/Ra	Soile/Slag	Midwect	
- Newfield NI	1.02 + 7 ft $1.2E \pm 6 \text{ ft}^3$	Th/II/Ra	Soile/Slag	Northeast	
CSA Boston MA	1.2E+0 R A 3E+2 A ³	III	Soile	Massachusette	
Whittaker Corp., Greenville, PA	1.1E+6 ft ³	U/Th/Ra	Slag/Soils	Appalachian	
Horizons, Inc., Cleveland, OH	2.2E+4 ft ³	U/Th	Soils/Rubble	Midwest	
Jefferson Proving Ground, IN	1.9E+6 ft ³	Dep. U	Soils	Midwest	
Kaiser Aluminum Specialty, Tulsa, OK	3.4E+6 ft ³	Th	Soils/Slag	Central	
Advanced Med. Syst., Cleveland, OH	8.1E+4 ft ³	Co/Dep.U	Slag/Solids	Midwest	
Elkem Metals, Marietta, OH	8.1E+3 ft ³	U/Th	Soils	Midwest	
Englehard Corp., Plainville, MA	Unknown	U .	Sludge	Massachusetts	
NE Ohio Reg. Sewer Dist., Cleveland, OH	5.3E+6 ft ³	Со	Soils/Sludge	Midwest	
Permagrain, Quehanna, PA	1.2E+4 ft ³	Sr/Co	Soils/Rubble	Appalachian	
Safety Light, Bloomsburg, PA	Unknown	H/Ra/Cs/Sr	Soils/Rubble	Appalachian	
Sequoyah Fuels, Gore, OK	7.0+6 ft ³	U	Soils/Rubble	Central	
Westinghouse, Waltz Mill, Madison, PA	Unknown	Sr/Co/Cs	Soils	Appalachian	

Table G.4-9 Estimated Waste Volume From Selected SDMP Facilities^(a) (Continued)

(a) Partial listing extracted from updated report on Site Decommissioning Management Plan, SECY-93-179 (NRC, 1993b), NUREG-1444 (NRC, 1993c), Supplement 1 to NUREG-1444 (NRC, 1995), and SECY-96-207 (NRC, 1996b). Listing excludes five sites expected to be removed from SDMP program by mid-1997 and nine others recently removed from the SDMP program from 1994 to mid-1996.

G.5.1 Appalachian States Compact

The Appalachian States Low-Level Radioactive Waste Compact (Appalachian Compact) is comprised of four states, including Pennsylvania, Delaware, Maryland, and West Virginia. Pennsylvania is the host state for the disposal facility. The Appalachian Compact's disposal facility is designed to accommodate an annual waste generation of 235,000 ft³. However, based on current waste generation rates, the annual average is lower, about 100,000 ft³ (PADER, 1993). The facility is designed to accommodate about 3.1 million ft³ over a 30-

year period. The design does not make special provisions for D&D waste. Based on a study conducted by the Compact, it is thought that the design basis provides an ample margin to handle future D&D waste. Most of the LWR D&D waste volume is assumed to be generated beyond the life of the planned LLW facility, assuming plant life extension.

G.5.2 Central Interstate Compact

The Central Interstate Low-Level Radioactive Waste Compact (Central Compact) consists of five states: Nebraska, Arkansas, Kansas, Louisiana, and Oklahoma. The State of Nebraska has been designated as the host state. The Central Compact generates about 25,000 ft³ of waste per year. Initially, the disposal is planned to accommodate 500,000 ft³, with authorized expansions in 250,000 ft³ increments, up to the maximum design capacity. The facility will handle up to 2.5 million ft³ of waste, including D&D waste. However, current volume estimates do not include provisions for D&D waste. The Compact requires that the disposal of D&D waste be addressed on a case-by-case basis and get legislative approval.

G.5.3 Central Midwest Compact

The Central Midwest Interstate Compact Low-Level Radioactive Waste Compact (Central Midwest Compact) is comprised of the States of Illinois and Kentucky. The State of Illinois has been chosen to host the disposal facility. The Central Midwest Compact is projected to generate about 50,000 ft³ per year on average. The facility will be designed to handle about 5.5 million ft³ over its 50-year life span (Chem-Nuclear, 1991). For planning purposes, D&D waste volumes have been estimated for various scenarios, with a volume of about 3.0 million ft³ for the most likely scenario.

G.5.4 Midwest Interstate Compact

The Midwest Interstate Low-Level Radioactive Waste Compact (Midwest Compact) consists of six states: Indiana, Iowa, Minnesota, Missouri, Ohio, and Wisconsin. Ohio has been designated as the first alternate host state after Michigan left the Compact.

The Midwest Compact generates 125,000 ft³ of waste per year, on average. The facility is designed for a capacity of 1.5 million ft³, averaging approximately 75,000 ft³ over the 20-year life of the facility (OLLRWAC, 1993). For planning purposes, D&D waste volumes have been estimated for various scenarios and, depending upon the scenario, the D&D and unusual waste volumes are estimated to be up to 1.7 million ft³ (Baird, 1988).

G.5.5 Northeast Compact

The Northeast Interstate Compact Low-Level Radioactive Waste Compact (Northeast Compact) is comprised of the States of New Jersey and Connecticut. The Compact requires that each State develop the facilities needed to manage an equitable portion of the region's waste.

Compact/State	Assumed Genera- tion (ft ³ /y.)	Facility Life or Projection (y.)	Planned Disposal/ Storage Capacity (10 ⁶ ft ³)	Provision for D&D (10 ⁶ ft ³)	Out-of- Region Waste (10 ⁶ ft ³)	Planned Capacity Waste (10 ⁶ ft ³)
Appalachian ⁽⁹⁾	100,000	30	3.0	0.1		3.1
Central Interstate ^(&)	25,000	30	2.5		· ·	2.5
Central Midwest	50,000	50	2.5	3.0		5.5
Midwest Interstate	75,000	20	1.5	<u><</u> 1.7		3.2
Northeast:						
Connecticut	10,000	50	0.5	0.96		1.5
New Jersey ^(@)	37,000	50	1.0	1.7		2.7
Northwest	90,000	60	5.4	0.2	1.1	6.7
Rocky Mountain	16,000	60	0.96	0.14		1.1
Southeast	370,000	20	7.4	3.6		11.0
Southwestern	100,000	30	3.0	2.5	***	5.5
District of Columbia	1,000	n/a				
Rhode Island ⁽⁺⁾	500	n/a				puig
Massachusetts	20,000	30	0.6	0.45	***	1.1
Michigan ^(*)	18,000	20	0.36	0.97		1.3
New Hampshire	500	n/a				
New York ^(%)	72,000	60	4.3	(3.4)	***	4.3
Puerto Rico	0	n/a	***			` <u></u>
Texas Compact ^(*)	26,000	50	1.3	1.5		2.8
Maine	6,300	50	0.11	0.10		0.21
Vermont	5,900	50	0.11	0.18		0.29

Table G.5-1 Estimated Low-Level Waste Disposal Capacity by Compacts and Non-Member States^(a)

3

i

(a) All values are rounded off. Footnotes continued on next page. See Section 5.0 for details and sources. Additional sources for update: Lockheed, 1996; NYSERDA, 1996; MLLRWA, 1996; TLLRWDA, 1996; MLLRWMB, 1996; SWLLRWC, 1996; WADOE, 1996; PADER, 1996; LADEQ, 1996; CTHWMS, 1996; NJLLRWDFSB, 1996; IDNS, 1996.

NUREG-1496

ı

.

G-24

.

Table G.5-1 Footnotes:

(#) Adjusted from prior estimates based on recent trends. Most of the D&D waste volume for LWRs assumed to occur beyond life of currently planned LLW disposal facility. All LWRs are assumed to obtain operating-life extensions.

- (@) The assumed yearly generation rate is based on an analysis for 1989-1993 waste disposal practices. The planned disposal volume is based on an "as-disposed" waste volume. For LWR D&D waste volumes, projections assume immediate dismantlement, minimal recycling/reuse, and no access to low-activity and high-volume rubble disposal facilities.
- (&) Planned capacity for disposal is 500,000 ft³. This initial capacity is expandable in 250,000 ft³ increments to a maximum capacity of 2.5E+06 ft³. Total capacity includes provisions for D&D waste from LWRs.
- (^) Operational life span of LLW facility to be determined at discretion of volunteer community. Preliminary estimate for LWR D&D waste volume.
- (+) No plans are being made for developing an LLW facility. State is planning to join a compact or unaffiliated state.
- (%) Based on the "Expected Case." D&D waste volume from LWRs included in the projected yearly waste generation rate.
- (*) Compact awaiting congressional ratification. Waste from Maine and Vermont will be disposed of at the planned Texas LLW disposal facility. The assumed generation rate is based on 50-year projections for "as-disposed" waste volumes.

The State of Connecticut is projected to generate annually about 10,000 ft³ of waste for disposal. Based on 50-year projections, the total waste disposal volume is expected to be 0.5 million ft³, assuming a 20-year life extension for the currently operating power plants (CTHWMS, 1993). For planning purposes, the anticipated D&D waste volume has been estimated to be 0.96 million ft³. The total waste volume is expected to be 1.5 million ft³.

New Jersey is expected to generate about 37,000 ft³ per year, based on a trend established over a five-year period (from 1989 to 1993). Over the projected operational life of the planned New Jersey disposal facility, the total disposal volume is expected to be 2.7 million ft³, from all sources. For planning purposes, the D&D waste volume from LWRs is estimated to be about 1.7 million ft³. This estimate assumes immediate dismantlement, minimal recycling/reuse, and no access to low-activity and high volume rubble disposal sites.

G.5.6 Northwest Compact

The Northwest Interstate Compact on Low-Level Radioactive Waste Management (Northwest Compact) consists of eight states: Alaska, Hawaii, Idaho, Montana, Oregon, Utah, Washington, and Wyoming. The Northwest Compact is also accepting waste, under contract, from the Rocky Mountain Compact, which is addressed separately below. The Northwest Compact is one of the two remaining sited States, with its facility located in Richland, WA. The disposal site is slated to remain operational well into the next century (2063, based on DOE land-lease expiration date). The current license is due for renewal in May 1997. The U.S. Ecology site lease with the State of Washington is due for renewal in 2005. Assuming a waste generation rate of about 90,000 ft³/y, it is deemed that the Compact will have a sufficient disposal capacity to handle its waste and that of the Rocky Mountain Compact. The Northwest Compact is expected to generate about 200,000 ft³ from D&D activities. The additional waste volume from the Rocky Mountain Compact is estimated to total about 1.11 million ft³, which includes a provision of 140,000 ft³ for D&D (Nuclear Waste News, 1993a). The site's total capacity has been estimated to be about 30 million ft³.

G.5.7 Rocky Mountain Compact

The Rocky Mountain Low-Level Radioactive Waste Compact (Rocky Mountain Compact) is comprised of three states: Colorado, Nevada, and New Mexico. The Rocky Mountain Compact was one of the three sited States with a facility located in Beatty, NV. However, the Beatty facility was closed at the end of 1992 (LLW Forum, 1993). The Rocky Mountain Compact has since made arrangements with the Northwest Compact to dispose of its waste at the Richland, WA, facility.

The Rocky Mountain Compact is expected to generate about 16,000 ft³/y over the life of the agreement with the Northwest Compact. If the agreement with the Northwest Compact remains open for the life of the Richland facility, the Rocky Mountain Compact is expected to generate about 1.11 million ft³ (Nuclear Waste News, 1993a).

G.5.8 Southeast Compact

The Southeast Interstate Low-Level Radioactive Waste Management Compact (Southeast Compact) consist of eight states: Alabama, Florida, Georgia, Mississippi, North Carolina, South Carolina, Tennessee, and Virginia. The Southeast Compact is one of the currently two sited States, with its facility located in Barnwell, SC. Since July 1, 1995, the disposal site has been accepting waste from all Compacts and States. The alternate host State is North Carolina, with its new facility expected to become operational at the turn of the century.

On average, the Southeast Compact generates annually about 370,000 ft³ of waste. The Compact has estimated (under a base case analysis) that the new North Carolina site will be required to handle at least 7.4 million ft³ over 20 years (Guichard, 1993). This volume includes a provision for 200,000 ft³ to accommodate waste from nuclear power plant life extensions but does not include any D&D waste from power reactors. Other alternatives consider waste volumes ranging from 7.5 to 10.6 million ft³. The facility design and development are based on 11 million ft³. This volume includes 3.42 million ft³ for D&D and excludes waste due to plant life extension.

G.5.9 Southwestern Compact

The Southwestern Low-Level Radioactive Waste Compact (Southwestern Compact) consists of four States: California, Arizona, North Dakota, and South Dakota. California is the host state for the disposal facility.

The Southwestern Compact generates annually about 100,000 ft³ of waste. The Southwestern Compact is expected to generate about 5.5 million ft³ over 30 years. This waste volume includes D&D waste, about 2.5 million ft³.

NUREG-1496

I

G.5.10 New Hampshire

New Hampshire is an unaffiliated State. New Hampshire generators have produced varying amounts of waste over the past five years, ranging from 9 to 235 ft³ annually, excluding that generated by the Seabrook nuclear power plant (Lockheed, 1996). For planning purposes, the State is assumed to generate annually about 500 ft³ of waste.

G.5.11 Massachusetts

The State of Massachusetts is not affiliated with a low-level waste compact. Between 1988 to 1991, Massachusetts waste generators produced annually about 46,000 ft³. The waste generated by the Yankee Rowe (shut down since 1991) and Pilgrim nuclear power station is being stored and, since July 1, 1995, has been shipped to Barnwell, SC, for disposal. The State is expected to generate about 600,000 ft³ over the next 30 years, assuming a yearly generation rate of 20,000 ft³ (MLLRWMB, 1993; MLLRWMB, 1992). The State is also anticipating that an additional 450,000 ft³ will be generated by various D&D activities.

G.5.12 Rhode Island

Rhode Island is not affiliated with a low-level waste compact. Rhode Island generators have produced varying amounts of waste over the past five years, ranging from 6 to 374 ft³ annually (Lockheed, 1996). For planning purposes, the State is assumed to generate annually about 500 ft³ of waste. The State is not planning to build a disposal facility but is considering joining an LLW Compact or an unaffiliated State.

G.5.13 New York

The State of New York is not affiliated with a low-level waste compact. The State has been considering various waste management options, including the need to establish long-term waste storage capabilities, relying on a volunteer community to host a site, and using an existing site for storage and/or disposal purposes (NYSERDA, 1993b).

The State of New York generates annually about 72,000 ft³ of waste (NYSLLRWSC, 1995). Current disposal plans are based on 30- and 60-year waste generation rates. It is anticipated that about 4.3 million ft³ will be generated under the "expected-case" scenario. This waste volume includes an estimated 3.4 million ft³ of D&D waste from LWRs.

G.5.14 Texas Compact - Pending

The State of Texas will operate a disposal facility for its own waste and that from the States of Maine and Vermont (Nuclear Waste News, 1993b). The Compact agreement has been ratified by all three States, however, the agreement has yet to be ratified by the U.S. Congress. A site has been located and a license application to design and operate the facility has been submitted to the appropriate State agency.

The State of Texas is projected to generate annually about 26,000 ft^3 of waste and 1.3 million ft^3 over the next 50 years (TLLRWDA, 1996). An additional 1.5 million ft^3 is expected from the decommissioning of various facilities over the next 50 years. These waste projections characterize "disposal" volumes.

The State of Vermont is projected to generate annually about 5,900 ft³ of waste, for a total of about 290,000 ft³ from all sources (VLLRWA, 1993; Stanton, 1993; TLLRWDA, 1996). As before, these waste projections characterize "disposal" volumes.

The State of Maine is expected to generate annually about 6,300 ft³ of waste (TLLRWDA, 1996) and about 100,000 ft³ from decommissioning (MDEP, 1992). Again, these waste projections characterize "disposal" volumes.

G.5.15 Michigan

In May 1990, the Michigan Low-Level Radioactive Waste Authority concluded that none of the three potential disposal sites met the siting criteria (MLLRWA, 1993). The three sited States warned that Michigan was out of compliance with the Federal Law and that access to the disposal sites would be terminated. Since November 1990, Michigan low-level waste generators have been storing their waste on site. In July 1991, the Midwest Compact Commission revoked Michigan's membership in the Compact. The State of Ohio became the host state for the Midwest Compact. Since July 1, 1995, Michigan waste generators have been able to ship waste to Barnwell, SC, for disposal. Meanwhile, Michigan is pursuing plans that rely on a volunteer community to host the disposal facility.

The State has estimated that 18,000 ft³/y will be generated, for long-term projection purposes (MLLRWA, 1996). The waste volume from D&D activities of LWRs has been estimated to be about 970,000 ft³. The operational life span of the planned disposal facility is expected to be about 20 years; a time frame which would be set at the discretion of the volunteer community.

G.5.16 District of Columbia

The District of Columbia is not affiliated with a low-level waste compact. District . generators have produced varying amounts of waste over the last five years, ranging from <1 to 1,598 ft³ annually (Lockheed, 1996). For planning purposes, the District is assumed to generate annually about 1,000 ft³ of waste (LLW Forum, 1993; Barry, 1989). The District is not expected to site a facility because of the high population density, limited land space, and low waste volumes.

G.5.17 Puerto Rico

Over the past decade, the Commonwealth of Puerto Rico has not shipped any waste for disposal (EG&G, 1988-1993; Lockheed, 1996). The Commonwealth is not expected to site a

NUREG-1496

T

disposal facility as waste volumes are very small (LLW Forum, 1993; CPR, 1990; Lockheed, 1996). The generators also rely on radioactive decay for short-lived radionuclides.

G.6 Onsite Waste Disposal

In the past, waste generators have disposed of certain waste on site under the provisions of 10 CFR Part 20.304. This provision was rescinded by the NRC in 1980 and replaced by requirements under 10 CFR 20.302 (45 FR 71761, October 30, 1980). Under Part 20.304, a licensee was authorized to dispose of low-specific activity waste not exceeding 1,000 times the amounts specified in Appendix C of 10 CFR 20.

It has been estimated by the NRC that about 100 licensees conducted burial under Part 20.304 (45 FR 71761, October 30, 1980). Under the requirements of Part 20.302, the licensees were required to obtain specific approval. Based on preliminary data, it is estimated that about 40 disposal requests have been authorized by the NRC (NMSS files, preliminary data). In addition, there are approximately another 30 pending applications in various stages of review and evaluation, while some have been denied or are being held up pending the submission of additional information from the applicants.

Based on preliminary NRC data, waste volumes have ranged from minimal (a few hundred cubic feet) to larger amounts (3 million ft³). Most of the burials, however, involve waste volumes ranging from a few tens to several thousands of cubic feet. The waste materials include contaminated soils, sand, animal carcasses, ash, sludge, rubble, hardware, etc. Such materials were generated under normal operations, unusual occurrences, and decontamination activities initiated by the licensee. The radionuclides most often cited in applications include H-3, C-14, P-32, S-35, Cr-51, Mn-54, Fe-59, Co-58, Co-60, Zn-65, Ga-67, Tc-99m, I-125, I-131, Cs-134, and Cs-137. Radionuclide concentrations vary significantly, from a fraction to several hundreds of picocuries per gram.

If, under the implementation of a D&D Plan, a licensee were required to remove any materials buried on site, the total volume of excavated waste would be determined on a site-specific basis. The total volume would include the waste itself and some soil which has commingled with the waste.

G.7 Discussion and Summary

Table G.7-1 gives the estimated waste volumes for decommissioning of lands and structures at licensed facilities categorized by the reference facilities for all five waste sectors, across all States and Compacts. The total volume for these facilities is 6.8 million ft³ (Table G.7-1 does not include the estimated waste volumes from SDMP sites).
Table G.7-2 compares the results shown in Table G.7-1 against planned disposal capacities of the Compact regions and States. A review of this information indicates the following with regard to incremental impacts of alternate residual dose criteria:

• The estimated waste volumes from decommissioning of lands and structures make up about 13% of the planned disposal capacity based on the assumptions of footnote (c) of Table G.7-2. As indicated in Attachments C and D of Appendix C, incremental waste volumes from decommissioning are estimated to vary by about a 40% decrease in going from 100-25 mrem/y and a 250% increase in going from 100-.03 mrem/y as compared to a range of 100 to 3 mrem/y. However, as already noted based on Attachments C and D of Appendix C, a very large cost is associated with a very small dose reduction in reducing the dose below 3 mrem/y, and so such a reduction is extremely unlikely (see footnote (c) to Table G.7-2) and need not be considered further. To simplify and bound this assessment, the analysis of waste disposal volumes has focused on examination of incremental effects of moving from a residual dose criteria from 100 to 3 and to 0.03 mrem/y and does not consider the incremental differences for the intermediate residual dose criteria examined in Chapters 4 through 6 of this GEIS. Incremental volumes and effects related to these intermediate residual dose criteria would be lower than the bounding values presented here.

Therefore, the estimated incremental waste volumes from decommissioning of lands and structures corresponding to bounding alternative residual dose criteria being considered here would not have a significant effect on the overall amount of disposal capacity, making up about 13% of the total planned low-level waste disposal capacity, and making up approximately 25% or less of the planned disposal capacity for any of the regions.

- For four regions, the review in Section G.5 indicates that there are not definitive plans for the disposal of the waste due to both normal operation and decommissioning. The regions are the District of Columbia, New Hampshire, Puerto Rico, and Rhode Island.
- Although not addressed here, it is assumed that since the waste is characterized by low radionuclide concentrations, the total radioactivity is not expected to be a limiting factor for disposal. It is assumed that such waste would produce a small fraction of the activity contained in normal operation waste (see Section G.4).
- In establishing disposal capacity needs, Compacts and States have adopted varying approaches. Some do not include any specific provisions for D&D waste. Rather, the design basis incorporates ample margin to handle such waste. In other cases, the disposal of D&D waste will be addressed on a case-by-case basis. In other Compacts, the assumption is that D&D waste will be placed into another disposal facility. This is the case for waste that will be generated beyond the operational life of the currently planned disposal sites.

NUREG-1496

ī.

The disposition of wastes from SDMP sites is highly site-specific and consists mostly of waste associated with movement and processing of larger volumes of uranium and thorium bearing ores and soil, and such wastes may not go to currently planned disposal sites. For example, this type of waste may either be stabilized in place or may be shipped to other disposal sites designed to handle large volumes of very low level waste. One such facility is Envirocare of Utah, Inc., located in Tooele County, Utah (NRC, 1993d). The facility is authorized to handle large quantities of bulk lowlevel waste, NORM waste, and mixed waste under specific restrictions. The restrictions include limits on nuclides, concentrations, and specifications on the physical and chemical properties of the waste. In addition, some of these facilities could be placed into restricted use, and as described in Appendix C, this would result in a reduction in soil volumes requiring disposal.

Waste Volume (10 ⁶ ft ³)								
Compact/State	Power Plants	Research Reactors	Fuel Cycle	Materials	Dry Fuel Storage	Total Volume		
Appalachian	0.104	0.015	<u></u>	0.483	0.0005	0.602		
Central Interstate	0.056	0.013	0.120	0.423		0.611		
Central Midwest	0.112	0.005	0.060	0.390	0.0005	0.568		
Midwest	0.096	0.020	0.060	0.570	0.0015	0.748		
Northeast	0.064		0.060	0.243		0.367		
Northwest	0.016	0.023	0.060	0.368		0.466		
Rocky Mountain	0.008	0.005		0.240	0.0005	0.254		
Southeast	0.280	0.015	0.240	0.118	0.002	0.655		
Southwestern	0.096	0.020	0.060	0.750	0.0005	0.927		
District of Columbia		0.003		0.018		0.020		
Maine	0.008			0.035		0.043		
Massachusetts	0.016	0.010		0.130		0.156		
Michigan	0.048	0.005		0.190	0.0005	0.244		
New Hampshire	0.008			0.033		0.041		
New York	0.064	0.010		0.475		0.549		
Puerto Rico				0.000		0.000		
Rhode Island		0.003		0.020		0.023		
Texas	0.032	0.008		0.490		0.530		
Vermont	0.008			0.013		0.021		
Total	1.02	0.153	0.660	4.99	0.006	6.8		

Table G.7-1Total Waste Volume Summary from Decommissioning ofLands and Structures for Reference Facility Categories by
Compacts and Non-Member States

NUREG-1496

I

::

•

1

· · · · · · · · · · · · · · · · · · ·	W	Ratio Estimate		
Compact/State	Total Planned Capacity	TotalReference Facility CategoriesPlannedTotal Waste Volume(e)CapacityEstimates(c)		
Appalachian	3.10	0.60	0.19	
Central Interstate	2.5	0.61	0.24	
Central Midwest	5.5	0.57	0.10	
Midwest	3.2	0.75	0.23	
Northeast	4.2	0.37	0.09	
Northwest	6.7	0.72	0.11	
Rocky Mountain	(a)			
Southeast	11.0	0.65	0.06	
Southwestern	5.5	0.93	0.17	
District of Columbia	5	0.02	·	
Maine	(b)			
Massachusetts	1.1	0.16	0.15	
Michigan	1.3	0.24	0.18	
New Hampshire		0.04		
New York	4.3	0.55	0.13	
Puerto Rico		0.00		
Rhode Island		0.02		
Texas	3.3	0.59	0.18	
Vermont	(b)			
Total	51.7	6.8	0.13	

Table G.7-2Estimated Low-Level Waste Disposal Capacity by
Compacts and Non-Member States

(a) Included in total for the Northwest Compact.

(b) Included in total for the Texas Compact.

(c) Numbers given are for total waste volume for decommissioning lands and structures at a residual dose criterion of 3 mrem/y. Incremental waste volumes would be approximately 40% of these values for residual dose criteria of 100 to 25 mrem/y and approximately 250% for the 100 - .03 mrem/y range. Because very large costs are incurred with very small dose reduction (i.e., 3 - .03 mrem/y), this is extremely unlikely to occur.

4

(d) Refer to (c), above, for explanation of ratio estimates.

(e) Does not include waste volumes estimated to be generated by NRC SDMP sites.

G-33

G.8 References

AIF 1985, Atomic Industrial Forum, Inc., The Environmental Consequence of Higher Fuel Burn-up, AIF/NESP-032, June 1985, available from Nuclear Management and Resources Council, Inc., Washington, DC.

Baird, R.D., and Sutherland, A.A., 1988, Projections of Low-Level Radioactive Waste Disposal Needs Within the Midwest Compact, Rogers and Associates, Engineering Corp., Salt Lake City, UT, December 1988.

2

Barry, M. Jr. 1989, Mayor's Certification Provisions of the Low-Level Radioactive Waste Policy Amendments Act of 1985, The District of Columbia, Washington, DC, December 29, 1989.

Chem-Nuclear Systems, Inc. 1991, Volume, Make-up, & Source of LLRW, Illinois Low-Level Radioactive Waste Disposal Facility, Report to the Illinois Low-Level Radioactive Waste Disposal Facility Siting Commission, May 15, 1993, Springfield, IL,

Cintichem 1991, Order Authorizing Dismantling of Facility and Disposition of Component Parts, November 21, 1991, Nuclear Regulatory Commission, Cintichem Docket No. 50-54, Washington, DC.

CTHWMS 1993, Plan for Developing a Centralized Temporary Low-Level Radioactive Waste Storage Facility in Connecticut, Connecticut Hazardous Waste Management and Services, January 1993, Hartford, CT.

CTHWMS 1996, Connecticut Hazardous Waste Management and Services, fax data transmittal, Oct. 21, 1996, Hartford, CT.

CPR 1990, Commonwealth of Puerto Rico, Commonwealth of Puerto Rico Certification, Office of the Governor, January 29, 1990, San Juan, Puerto Rico.

Denero, J.V., et al., 1984, Decontamination and Decommissioning of the Westinghouse Nuclear Fuel Facility at Cheswick, PA, report prepared for the U.S. Department of Energy contract No. DE-ACO6-82RL10363, Westinghouse Electric Corporation, Nuclear Energy Systems, Pittsburgh, PA, June, 1984.

DiPrete, E. D., 1989, Governor's Certification, Low-Level Radioactive Waste Policy Amendments Act of 1985, State of Rhode Island, Providence RI, December 22, 1989.

DOE 1988, Department of Energy, 1987 Annual Report on Low-Level Radioactive Waste Management Progress, Report to Congress in Response to Public Law 99-240, DOE/NE-0094, August 1988, Washington, DC.

NUREG-1496

1

DOE 1989, Department of Energy, 1988 Annual Report on Low-Level Radioactive Waste Management Progress, Report to Congress in Response to Public Law 99-240, DOE/NE-0098, October 1989, Washington, DC.

DOE 1990, Department of Energy, 1989 Annual Report on Low-Level Radioactive Waste Management Progress, Report to Congress in Response to Public Law 99-240, DOE/EM-0006P, October 1990, Washington, DC.

DOE 1991, Department of Energy, 1990 Annual Report on Low-Level Radioactive Waste Management Progress, Report to Congress in Response to Public Law 99-240, DOE/EM-0059P, September 1991, Washington, DC.

DOE 1992a, Department of Energy, Annual Report on Low-Level Radioactive Waste Management Progress - 1992, Report to Congress in Response to Public Law 99-240, DOE/EM-0091P, Washington, DC, November 1992.

DOE 1992b, Department of Energy, Integrated Data Base for 1992: U.S. Spent Fuel and Radioactive Waste Inventories, Projections, and Characteristics, Office of Civilian Radioactive Waste Management, DOE/RW-0006, Rev. 8, October 1992, Washington, DC.

Ebasco 1990, New Jersey Low-Level Radioactive Waste Disposal Plan, Task 2 Final Report, New Jersey Low-Level Radioactive Waste Disposal Facility Siting Board, Trenton. NJ, May 3, 1990.

EG&G 1989, EG&G Idaho, Inc., 1988 State-by-State Assessment of Low-Level Radioactive Wastes Received at Commercial Disposal Sites, National Low-Level Waste Management Program, Idaho Falls, ID, DOE/LLW-87, December 1989

EG&G 1990, EG&G Idaho, Inc., 1989 State-by-State Assessment of Low-Level Radioactive Wastes Received at Commercial Disposal Sites, National Low-Level Waste Management Program, Idaho Falls, ID, DOE/LLW-107, December 1990

EG&G 1991, EG&G Idaho, Inc., 1990 State-by-State Assessment of Low-Level Radioactive Wastes Received at Commercial Disposal Sites, National Low-Level Waste Management . Program, Idaho Falls, ID, DOE/LLW-132, September 1991.

EG&G 1992, EG&G Idaho, Inc., 1991 State-by-State Assessment of Low-Level Radioactive Wastes Received at Commercial Disposal Sites, National Low-Level Waste Management Program, Idaho Falls, ID, DOE/LLW-152, September 1992.

EG&G 1993, EG&G Idaho, Inc., 1992 State-by-State Assessment of Low-Level Radioactive Wastes Received at Commercial Disposal Sites, National Low-Level Waste Management Program, Idaho Falls, ID, DOE/LLW-181, September 1993.

EPRI 1985, Electric Power Research Institute, Decontamination Waste Management, Final Report, EPRI NP-4240, Palo Alto, CA, September 1985.

EPRI 1988, Electric Power Research Institute, Radwaste Generation Survey Update, Final Report, Vol. 1: Boiling Water Reactors, Vol.2: Pressurized Water Reactors, EPRI NP-5526, Palo Alto, CA, February 1988.

EPRI 1989, Electric Power Research Institute, Proceedings: 1988 EPRI Radwaste Workshop, EPRI NP-6453, Palo Alto, CA, June 1989.

Guichard, P.R., 1993, North Carolina Low-Level Radioactive Waste Management Authority, letter to J-C. Dehmel, SC&A, Inc., October 28, 1993.

IDNS 1993, Annual Survey Report - 1992, Illinois Department of Nuclear Safety, Springfield, IL, July 1993.

IDNS 1996, Illinois Department of Nuclear Safety, fax data transmittal, Nov. 7, 1996, Springfield, IL.

JFA 1994, Draft Regulatory Impact Analysis for Radiological Criteria for Decommissioning of Nuclear Facilities, July 1994, Jack Faucett Associates.

LADEQ 1996, Louisiana Department of Environmental Quality, fax data transmittal, Oct. 24, 1996, Baton Rouge, LA.

LES 1993, Louisiana Energy Services, NRC Docket No. 70-3070, June 1993, Nuclear Regulatory Commission, Washington, DC.

LLW Forum 1993, Low-Level Radioactive Waste Management Activities in the States and Compacts, Afton Associates, Inc., Washington, DC, August 1993.

LLW Forum 1996, Low-Level Radioactive Waste Management Activities in the States and Compacts, Afton Associates, Inc., Washington, DC, August 1996.

Lockheed 1996, Lockheed Martin Idaho Technologies, 1994 State-by-State Assessment of Low-Level Radioactive Wastes Received at Commercial Disposal Sites, National Low-Level Waste Management Program, Idaho Falls, ID, DOE/LLW-237, September 1996.

MDEP 1992, Maine Department of Environmental Protection, Low-Level Radioactive Waste Activity Report, Augusta, ME, 1992.

MLLRWA 1993, Michigan Low-Level Radioactive Waste Authority, Storage of Level Radioactive Waste in Michigan, Lansing, MI, April 1993.

NUREG-1496

ī

MLLRWA 1996, Michigan Low-Level Radioactive Waste Authority, fax data transmittal, Oct. 21, 1996, Lansing, MI.

MLLRWMB 1992, Massachusetts Low-Level Radioactive Waste Survey Report - 1991, Massachusetts Low-Level Radioactive Waste Management Board, Boston, MA, Nov. 1992.

MLLRWMB 1993, Directions for Low-Level Radioactive Waste Management in Massachusetts, Management Plan, Vols. I and II, Massachusetts Low-Level Radioactive Waste Management Board, Boston, MA, January 1993.

1

MLLRWMB 1996, Massachusetts Low-Level Radioactive Waste Management Board, fax data transmittal, Oct. 22, 1996, Boston, MA.

NJLLRWDFSB 1996, New Jersey Low-Level Radioactive Waste Disposal Facility Siting Board, fax data transmittal, Oct. 30, 1996, Trenton, NJ.

Nuclear News 1993a, World List of Nuclear Power Plants, American Nuclear Society, March 1993, La Grange Park, IL.

Nuclear News 1993b, Storage Gets Tighter With Each Discharge, May 1993, p.51, American Nuclear Society, La Grange Park, IL.

Nuclear Waste News 1993a, Northwest, Southeast Compacts Only Regions with LLW Sites, Vol. 13, No. 1, p.2, January 7, 1993.

Nuclear Waste News 1993b, Vermont Authority Approves Texas LLW Disposal Site, Vol. 13, No. 42, p.421, October 28, 1993.

NUMARC 1989, Nuclear Management and Resources Council, Inc., Report on Nuclear Power Plant License Renewal, April 1990, Washington, DC.

NRC 1980, Nuclear Regulatory Commission, Technology, Safety, and Costs of Decommissioning a Reference Uranium Fuel Fabrication Plant, NUREG/CR-1266, 2 Vol., October 1980, Washington, DC.

NRC 1981, Nuclear Regulatory Commission, Technology, Safety and Costs of Decommissioning Reference Non-Fuel Cycle Nuclear Facilities, NUREG/CR-1754, February 1981, Washington, DC.

NRC 1983, Nuclear Regulatory Commission, Radiological Assessment of Steam Generator Repairs and Replacement, NUREG/CR-3540, December 1983, Washington, DC.

NRC 1986, Nuclear Regulatory Commission, Radiological Assessment of BWR Recirculatory Pipe Replacement, NUREG/CR-4494, February 1986, Washington, DC.

G-37

NRC 1988a, Nuclear Regulatory Commission, Assessment of the Use of Extended Burn-up Fuel in Light Water Power Reactors, NUREG/CR-5009, February 1988, Washington, DC.

NRC 1988b, Nuclear Regulatory Commission, Final Generic Environmental Impact Statement on Decommissioning of Nuclear Facilities, NUREG-0586, August 1988, Washington, DC.

NRC 1990, Nuclear Regulatory Commission, Characteristics of Low-Level Waste Disposed During 1987 Through 1989, Office of Nuclear Materials Safety and Safeguards, NUREG-1418, December 1990, Washington, DC.

.

NRC 1991, Nuclear Regulatory Commission, Generic Environmental Impact Statement for License Renewal of Nuclear Plants, NUREG-1437, August 1991, Washington, DC.

NRC 1992, Information Digest, 1992 Edition, NUREG-1350, Volume 4, Nuclear Regulatory Commission, Washington, DC, March 1992.

NRC 1993a, Information Digest, 1993 Edition, NUREG-1350, Volume 5, Nuclear Regulatory Commission, Washington, DC, March 1993.

NRC 1993b, Updated Report On Site Decommissioning Management Plan, SECY-93-179, June 24, 1993, Washington, DC.

NRC 1993c, Site Decommissioning Management Plan, NUREG-1444, Nuclear Regulatory Commission, Washington, DC, October 1993.

NRC 1993d, Final Environmental Impact Statement to Construct and Operate a Facility to Receive, Store, and Dispose of 11(e)(2) Byproduct Material Near Clive, Utah, NUREG-1476, Nuclear Regulatory Commission, Washington, DC, August 1993.

NRC 1995, Site Decommissioning Management Plan, NUREG-1444, Suppl. 1, issued under Policy and Program Issues at Site Decommissioning Management Plan Sites, SECY-95-209, Aug. 11, 1995, Nuclear Regulatory Commission, Washington, DC.

NRC 1996a, Information Digest, 1996 Edition, NUREG-1350, Volume 8, Nuclear Regulatory Commission, Washington, DC, July 1996.

NRC 1996b, Update of Policy and Program Issues at Site Decommissioning Management Plan Sites, SECY-96-207, Sept. 25, 1996, Washington, DC.

NYSERDA 1993a, New York State Low-Level Radioactive Waste Status Report for 1992, New York State Energy Research and Development Authority, Albany, NY, June 1993.

NUREG-1496

ı

NYSERDA 1993b, Low-Level Radioactive Waste Storage Study, New York State Energy Research and Development Authority, Albany, NY, September 1993.

NYSERDA 1996, New York State Energy Research and Development Authority, excerpts from the 1994 Source Term Report, Vol. I, July 1995, letter of Oct. 23, 1996, Albany, NY.

OLLRWAC 1993, Ohio Low Level Radioactive Waste Advisory Committee, Report and Recommendations on the Development and Operation of a Regional Low Level Radioactive Waste Disposal Facility, Columbus, OH, September 1993.

PADER 1993, Annual Low-Level Radioactive Waste Program Report to the General Assembly, 1990-1991, Pennsylvania Department of Environmental Resources, Bureau of Radiation Protection, Harrisburg, PA, January 1993.

PADER 1996, Pennsylvania Department of Environmental Resources, Bureau of Radiation Protection, fax data transmittal, Oct. 28, 1996, Harrisburg, PA.

TLLRWDA 1996, Texas Low-Level Radioactive Waste Disposal Authority, Excerpts from the license application to the Texas Water Commission for the States of Texas, Maine, and Vermont, Texas Low-Level Radioactive Waste Disposal Authority, fax data transmittals, Oct. 18 and Nov. 5, 1996, Austin, TX.

SCC 1991, Southeast Compact Commission, File data, facilities generating 100 or more ft³ per year, Raleigh, North Carolina, August 9, 1991.

Shuman, R., and Baird, R., 1993, Characterization of Waste to be Disposed of at the Texas Low-Level Radioactive Waste Disposal Facility, Rogers & Associates Engineering Corp., Salt Lake City, UT, October 1993.

Stanton 1993, Final Report on the Characterization of Low-Level Radioactive Waste in the State of Vermont, Vermont Low-Level Radioactive Waste Authority, Montpelier, VT, November 1991.

SWLLRWC 1996, Southwestern Low-Level Radioactive Waste Commission, fax data transmittal, Oct. 19, 1996, Sacramento, CA.

VLLRWA, 1993, Vermont Low-Level Radioactive Waste Authority, Annual Report, July 1, 1992 - June 30, 1993, Montpelier, VT, September 1993.

WADOE, Washington Department of Ecology, Nuclear Waste Program, fax data transmittal, Nov. 5, 1996, Olympia, WA.

G-39

APPENDIX H

SUMMARY OF COMMENTS ON DRAFT GENERIC ENVIRONMENTAL IMPACT STATEMENT

•

APPENDIX H

SUMMARY OF COMMENTS ON DRAFT GENERIC ENVIRONMENTAL IMPACT STATEMENT

H.1 Regulatory Alternatives and Approach

<u>Comments</u>

Some commenters agreed with the general content of the GEIS and stated that it sufficiently addressed all environmental, social, and economic impacts of the proposed rulemaking on radiological criteria for decommissioning and fulfilled NEPA requirements which eliminated the need for licensees' environmental reports or for site-specific NRC preliminary environmental reviews for decommissioning to both unrestricted or restricted release. Other commenters criticized the GEIS as being technically incomplete or inconsistent because there is a lack of documentation, there are apparent discrepancies in the analysis, it is not clear why existing decommissioning criteria provide inadequate protection of public health, and the conclusions were derived from flawed bases and analyses. Some commenters indicated that the ALARA process is used inappropriately, that determining whether the proposed decommissioning criteria will minimize overall public risk is impossible, and that the totality of impact must be reviewed and included in decisionmaking. Some commenters questioned the results of the GEIS regarding the costs, impacts, and conclusions reached as a result of the GEIS analysis and also questioned why Alternative 5a (maintenance of a license) was excluded from consideration in the GEIS.

Response

In response to the comment on the use of the results of the GEIS in site-specific licensing cases of either unrestricted or restricted use, Section 7.2.3 discusses the approach for such use. In response to comments criticizing the GEIS for the reasons noted, the responses contained in Section H.2.2 describe the modifications made to the GEIS to improve the analysis in detail and in clarity. It should be understood that this is a generic analysis which reviews a large potential pool of facilities and sites and therefore, of necessity, is broad in its analysis of costs and impacts. Nevertheless, despite the range of possible parameters, scenarios, and site-specific situations, Appendices B and C provide analysis of impacts and costs, and provide results which can be helpful for gaining insight in making decisions regarding the dose criterion, ALARA, the decommissioning objective, and whether restricted use should be permitted. The analyses of costs in Appendix C and the analysis of impacts in Appendix B consider a range of possible cases. Nevertheless, with the range of cases studied, it is believed that this GEIS provides sufficient supporting information for the issuance of a final rule, in particular based on the rationale in Chapter 7.2.2.

Alternative 5a was not analyzed in detail in the GEIS because it is outside the scope of the rulemaking supported by this rule which is intended to evaluate alternatives for establishing radiological criteria for decommissioning and license termination.

H.2 Analysis of Impacts and Costs

H.2.1 Reference Facilities

Comments

A number of comments were received that criticized the analysis of costs and risks as incomplete and inadequate and submitted information in support of those comments. In general, some of the major comments suggested, and provided data on, using additional data from actual decommissionings that should be included which would consider variations in site contamination characteristics, including the concentration and volume of contamination and the profile of the contamination with depth. Specific comments were received suggesting such additional data for reactors, fuel fabrication facilities, uranium mills, rare-earth facilities, sealed source manufacturers, and independent spent fuel storage installations.

Response

In response to the comment, the NRC has reviewed additional data from a number of operating facilities. These facilities include power reactors, research reactors, uranium fabrication plants, rare metal facilities, and sealed source manufacturers and broad R&D facilities. A discussion of that data, with the exception of uranium mills, is contained in the specific facility discussions in Appendix C. The results of that review are incorporated into the results of Appendix C. Because of the complexities associated with decommissioning mill facilities, they are excluded from the scope of this final GEIS (see Section 3.2.1).

H.2.2 Human Health Impacts; Dose/Mortality Modeling

H.2.2.1 Dose Modeling Approach

Comments

Several commenters had specific criticism of the calculational method for estimating doses, including that it employed models that were inappropriately conservative and that more realism was needed, that it did not take into account dose reduction by simple techniques such as tearing down buildings, that it lacked supporting data for comparison of individual versus collective dose, that it did not include alpha radiation, that it was inconsistent in its use of default assumptions, that it omits evaluation above 100 mrem, that it does not consider completely nonradiological impacts or collective dose, that using an average member of a critical group in calculations is inappropriate, or that the supporting technical basis had not been released for public review.

In particular, there were questions regarding the uranium dose modeling approach, including consistency in estimating doses to the bone and to the lung and in summing organ doses, the need to take into account that, for many source-material wastes, uranium is insoluble, use of 1:1 concentration ratios for residual uranium and its long-lived decay products which is too conservative because fuel cycle facilities process refined uranium (separated from its progeny), and ingrowth of daughter products from long-lived radionuclides.

Response

Based on examination of additional information for the facilities considered (see Appendix C) and by expanding the alternative uses for unrestricted release sites (see Appendix B), the modeling was refined to include a broader range of possible site-specific circumstances and impacts than in the draft GEIS. While there can be other approaches to reducing residual doses (such as tearing buildings down), or other approaches to dose modeling for specific circumstances beyond that used in Appendix B, these are not considered typical and would require justification on a case-specific basis. Finally, doses above 100 mrem/y were included in Appendices B and C evaluations. However, based on 10 CFR Part 20, 100 mrem/y was used as the highest alternative dose criterion because it is the NRC's public dose limit in 10 CFR Part 20.

H.2.2.2 Use of the Linear Nonthreshold Hypothesis in Analysis

<u>Comments</u>

Commenters stated that the use of the linear nonthreshold hypothesis was not appropriate in the GEIS analysis as a decisionmaking tool for setting standards, for reasons ranging from that it overestimates to that it underestimates the risk.

Response

Use of the linear nonthreshold model for estimating incremental health effects per radiation dose incurred is considered a reasonable assumption for regulatory purposes by international and national scientific bodies such as ICRP and NCRP. The principal international and national radiological protection criteria, including the NRC's, are based on this assumption as a measure of conservatism. NRC's policy regarding use of the linear nonthreshold model was stated in the preamble to the issuance of 10 CFR Part 20 (56 FR 23360; May 21, 1991) noting that the assumptions regarding a linear nonthreshold dose effect model are appropriate for formulating radiation protection standards. Although this matter continues to be the subject of further consideration at this time, there is not sufficient evidence to convince the NRC to alter its policy as part of this rulemaking.

A discussion of the basis for the analysis of dose and associated risk is contained in Appendix B.

H.2.2.3 Time Period for Analysis

<u>Comments</u>

Commenters were concerned that the time period for analysis in the GEIS was not appropriate. Some commenters objected to the time frame used for calculating dose and wanted it lengthened to better predict health effects over the hazardous life of each isotope. Other commenters wanted the time frame shortened. Other commenters questioned the 70year time period as excessive when evaluating exposures of individuals living on site in that it exaggerates the real-world risks noting that the EPA uses a 30-year exposure period in its parallel radiation site cleanup standards, and there is no justification for the NRC's assuming a 70-year exposure period because it is highly unlikely that any person would, in fact, spend 70 years working or living on site after a facility is decommissioned.

1

Response

The GEIS uses time periods following license termination of 1000 years for estimating collective doses from soil and 70 years for estimating collective exposures in buildings which have previously been used for licensed activities. Doses are calculated assuming radioactive decay of principal radionuclides.

The use of 1000 years in estimating site exposures is reasonable based on the nature of the levels of radioactivity at decommissioned sites and the potential for changes in the physical characteristics at the site over long periods of time. Unlike analyses of situations where large quantities of long-lived radioactive material may be involved (e.g., a high-level waste repository) and where distant future calculations may provide some insight into long term consequences, in the analysis for decommissioning, where the consequences of exposure to residual radioactivity at levels near background are small and peak doses for radionuclides of interest in decommissioning occur within 1000 years, long term modeling thousands of years into the future of doses that are near background may be virtually meaningless. In 10 CFR Part 40, Appendix A makes reference to both a 200-year and 1000-year time frame. In 10 CFR Part 61, references to the design of a physical barrier rather than a calculation of exposure are made.

The use of a 70-year time period for calculating collective dose and risk following license termination for buildings that have been involved in licensed activities is a reasonable building lifetime. The use of these time periods is discussed in Appendix B.

H.2.2.4 Transfer of Risk – Nonradiological Impacts and Waste Disposal Impacts

Comments

Commenters questioned the use of collective dose in the analysis indicating that the GEIS incorrectly uses collective versus individual dose.

NUREG-1496

ı

Several commenters questioned whether the net risk from decommissioning adequately considers all risks involved, including real risks to the worker and public risks associated with cleanup activities and waste handling and transport, compared to hypothetical risks from radiation exposure, and also questioned whether transferring risk without minimizing total risk is appropriate; for example, risks incurred at offsite disposal sites cannot be used to offset risks at the site being decommissioned and whether transfer to another site can be justified as an option for adequate long-term protection of the public since there is no net reduction in dose. Some commenters favored a risk-based approach that, in addition to radiological impacts, considers other impacts, such as risks to remediation workers, risks, both radiological and nonradiological, from transportation and waste disposal, and risks of damage to ecosystems and wildlife.

Response

The GEIS uses a risk-based approach to obtain comparisons for selecting alternative dose and associated cost. It was recognized that various aspects of decommissioning risk, such as traffic accidents from shipping, radioactive waste, or industrial activities, are different from risks incurred from exposure to radiation. Nevertheless, to obtain some measure of overall risk balance of major decommissioning activities and their respective costs, a measure of risk equivalency is permissible (see Appendix B for risk translation of decommissioning activities). In this way, the overall risk versus cost could be compared to obtain cost-benefit ratios for the alternative residual doses evaluated and the ratios compared with a range of acceptable associated cost-benefit ratios (see Chapter 6 for such comparisons).

H.2.2.5 Effect of Chemicals

<u>Comments</u>

Commenters indicated that the GEIS fails to consider nonradioactive hazardous pollutants and the adequacy of funding to deal with them, and in particular the synergistic effects of nonradiation hazards and radiation hazards, and injuries and illnesses from exposures to chemicals and from conventional industrial hazards that might present the greatest risks to workers' health and safety.

Response

This GEIS is concerned with the cost-benefit impacts resulting from considering alternative dose rate criteria. The impacts from other aspects of decommissioning have already been considered in the FGEIS on the 1988 final rule (NUREG-0586). While there can be some small impacts resulting from nonradioactive (e.g., chemical decontamination) removal of radioactive contamination from structures in achieving alternative dose rate levels, their consideration is covered by other Federal and State regulations (e.g., Department of Labor, Environmental Protection Agency, etc.).

H.2.2.6 Radon

Comments

Commenters questioned the approach to radon in the draft GEIS and in the proposed rule with some indicating that the rule should specifically include reference to radon whereas other commenters stated that the rule should not include standards for radon or expressed concerns about the complications introduced by these considerations and the fact that background radon levels are so high.

2

Response

As discussed in Appendix A, wide variations in local concentrations of naturally-occurring radon have been observed in all regions of the United States, including in soils and buildings. These variations make it very difficult to distinguish between naturally-occurring radon and radon resulting from licensed material. Because of these variations and the limitation of measurement techniques, Sections 4.2.2 and 7.2.2 discuss the approach taken in the GEIS analysis and in conclusions regarding radon.

H.2.3 Nonhuman Impacts

<u>Comments</u>

Commenters indicated that all environmental impacts, not only risks to humans, need to be incorporated into the GEIS analysis and in site-specific decisions, and that because of the paucity of our understanding of ecosystems, a full case-by-case consideration of all environmental and social "aspects" for each site or facility should be included. There are situations whereby a slightly larger dose/risk of radiation exposure would be an acceptable tradeoff (i.e., major environmental disruption due to restoration efforts, safety risk to cleanup workers).

Response

In general, the scientific literature concludes that protecting humans against radiological. exposure is sufficient to ensure protection of other flora and fauna, especially at the levels of exposure being considered in this GEIS and rulemaking. Thus, both the draft and final GEIS state that the protection being provided to human populations by the standards imposed in these regulations should be sufficient to protect environmental resources (see Attachment C to Appendix B and Section 4.3).

Other aspects of decommissioning, such as general disturbance of ground cover, use of chemicals, etc., are either not related specifically to the level of the residual dose criteria and thus are outside the scope of the GEIS or the effects will be temporary and populations would

NUREG-1496

ı,

be reestablished to former levels as discussed in Section 5.3 of the draft GEIS (see Attachment C to Appendix B).

H.2.4 Impacts on Waste Disposal/Capacity

H.2.4.1 Limits on Capacity

Comments

Commenters were concerned about whether the analysis had appropriately considered the effect on disposal capacity, whether the full scope of impacts of the cleanup criteria had been considered, including the impact of future waste management regulations, and also that the GEIS analysis appears to be volume-based without any activity analysis.

Response

As noted in the response to Comment H.2.2.1, several of the assumptions, models, and approaches in Appendix C have been revised in response to public comments to include additional data and alternate waste disposal costs. A complete discussion of such revisions is contained in Appendix C. Based on those revisions, an updated analysis of disposal capacity is contained in Appendix G, including considerations of waste regulations and activity analysis.

H.2.4.2 NORM Waste

Comments

Commenters questioned the appropriateness of the GEIS analysis to NORM with regard to EPA and State and local government requirements, and with regard to the impact of high volume NORM wastes, including impacts on available waste disposal capacity.

Response

The criteria of the rule supported by this final GEIS apply to residual radioactivity from activities under a licensee's control and not to background radiation (which includes radiation from NORM). Issues related to NRC-licensed sites containing materials which occur in nature are discussed in more detail in Appendices A, C, and G. As noted in response to Comment H.2.4.1, above, Appendices C and G have been modified as appropriate to consider a range of waste volumes for remediation and disposal.

NRC's legislative and regulatory authority extends to those materials and facilities under the Atomic Energy Act of 1954, as amended, and not to naturally-occurring radioactive material (sometimes referred to as NORM), except as it is defined as source material in Section 40.4 of 10 CFR Part 40. The analysis of the GEIS applies to residual radioactivity from activities

H-7

under a licensee's control and not to background radiation (which includes radiation from NORM). There is a wide variety of sites containing NORM subject to EPA jurisdiction and not licensed by the NRC. The extent to which the analysis in this GEIS would apply to these sites would be based on a separate evaluation. However, the considerations and analyses done in the GEIS regarding large fuel cycle and non-fuel-cycle facilities containing large quantities of naturally-occurring nuclides, such as uranium and thorium, are appropriate for certain NORM sites, and the broad provisions of Chapter 7 may be useful in considerations regarding NORM sites.

H.2.5 Methods and Costs for Decommissioning

H.2.5.1 Inaccuracy in Costs

Comments

Some commenters criticized the models used to estimate the costs and risks of waste handling (including soil washing), removal, and disposal, and in particular noted that the models for the reference facilities underestimated volumes of material and thus underestimated costs. Commenters also indicated that the costs for waste disposal should be reviewed in particular in recognition of uncertainty associated with various radioactive waste disposal options. Commenters also indicated that NRC should thoroughly reexamine the analysis of the survey costs of demonstrating compliance at cleanup levels marginally above background radiation.

Response

As discussed in response to Comment H.2.1, the models used to estimate the waste volumes and resultant costs have been reevaluated. That reevaluation is contained in Appendix C. It is recognized, as is discussed in Appendix G, that there is some uncertainty in waste disposal availability and costs. For purposes of this GEIS, which attempts to provide a generic analysis and illustration of trends in potential impacts and costs associated with alternative residual dose criteria, Appendix C contains waste disposal costs based on a review of available information. A specific site in its licensing activities related to the decommissioning of that site would evaluate specific waste disposal charges. With regard to survey costs, Appendix D contains an updated evaluation of the methods and costs of surveys based on current information regarding capabilities to measure residual radioactivity at the dose levels evaluated in this GEIS.

H.2.5.2 Cost of Compliance, Social Costs, and Other Costs

Comments

Commenters indicated that the NRC needs to consider other costs not included in the cost analysis; e.g., costs owing to limited available disposal capacity, increased NRC and State and local regulatory costs, SSAB costs, costs of extensive public comment and hearing procedures.

NUREG-1496

L

Commenters also noted that the full social cost of radiological exposure was not considered, e.g., costs of decommissioning are emphasized but not costs of morbidity or mortality over the full period of toxicity of residual radioactivity to both present and future members of the public.

Response:

Disposal capacity space in considering alternative dose levels is addressed in Appendix G and is evaluated based on current and planned waste disposal sites. The differences in cost for decommissioning to alternative dose levels and the mortalities averted for various alternative uses of the sites for the dose levels evaluated are also considered in Appendices B and C, and cost-benefit comparisons are presented in Appendix B. Reasonable expectation of facility buildings lasting 70 years after license termination and sites requiring consideration for 1000 years are included in these alternatives. While there are costs in terminating licenses to the government, states, and affected populations, these are not necessarily increased costs and are likely to decrease because of licensing uniformity and inclusion of restricted release alternatives and appropriate consideration of mitigation before terminating a license.

H.3 Results of Analysis

H.3.1 Completeness/Validity of Analysis and Suggested Alternative Cost-Benefit Analysis Approaches

Comments

Some commenters criticized the inclusion of considerations of cost-effectiveness, objecting to using cost in decisionmaking and that the completeness of decontamination or cleanup should be decided by some criterion that does not include any consideration of the costs to achieve them, i.e., the health, public welfare, and environment must be NRC's priority without regard to costs associated with decommissioning. Other commenters criticized the GEIS because, although they favored use of cost-benefit analyses in decisionmaking, they felt that the costbenefit analysis was inadequate because it used an improper approach combining the building and soil analysis and that separate analyses of the cost-effectiveness of soil removal and building removal should be performed. A commenter illustrated that such separate analyses would clarify differences between costs and impacts of cleanup of soils and structures that were not obvious in the draft GEIS. Commenters also suggested deleting the "knee-in-curve" approach as not clearly illustrating the information regarding costs and impacts for cleanup of both soils and structures, and also suggested alternative values of the \$/person-rem value used or indicated that the cost per mortality averted was high compared to other costs per risk in Federal regulations. They also felt that the GEIS analysis underestimated the amount of contamination at reference facilities as well as the costs of remediation and final site closeout surveys.

Response

The rationale for establishing a dose criterion is explained in Section 7.2.2 of Chapter 7. It indicates that considerations are given to health and safety issues and issues regarding expenditure of resources compared to the benefits obtained. NRC methods and policy regarding cost considerations are stated in NUREG/BR-0058, Rev. 2, and call for preparation of an appropriate regulatory analysis in support of regulatory decisions. NUREG/BR-0058 does note that costs cannot be considered for regulatory actions necessary to ensure adequate protection of the health and safety of the public; however, it further notes that costs can be a factor in those cases where there may be more than one way to reach a level of adequate protection. Thus, the analysis in the GEIS was prepared in support of the rulemaking to provide additional information to decisionmakers with regard to the rule criteria being considered.

Based on the comments and information received, additional information has been added to the GEIS. Data on contamination submitted by the commenters were reviewed, compared with other existing data, including that in the draft GEIS and incorporated into Appendix C, as appropriate. Appendix C thus considers additional soil contamination data as well as soil and building contamination levels comparable to those evaluated in the draft GEIS. It also considers the range of disposal costs and survey methods and costs presented in the draft GEIS as well as those suggested in the comments. The Commission agrees with the commenters that consideration of soil and buildings separately can provide added information. Thus, Appendices B and C have used the analysis of the draft GEIS, which contained the data for performing separate analyses, and has presented the data more clearly in its tables. In addition, the "knee-in-curve" figures, which provided general information about behavior of costs and impacts associated with cleanup, have been replaced with a set of tables in Appendix B and in Chapter 6.

With regard to comments on the \$/person-rem value, the evaluation of regulatory alternatives in the GEIS has been done using the regulatory analysis framework presented in NUREG/BR-0058 and NUREG-1530. NUREG/BR-0058 provides a decisionmaking tool for deciding between regulatory alternatives. A value of \$2000/person-rem is developed in NUREG-1530, which includes a review of costs of other Federal regulations, and used in NUREG-0058 as part of that decisionmaking tool.

H.3.2 Comparison of Costs and Benefits

<u>Comments</u>

Some commenters agreed that the analysis of the GEIS supports a 15 mrem/y residual dose criterion, which was recommended in Chapter 8 of the draft GEIS, and that such a level is attainable, provides a margin of safety, and isn't unjustifiably costly. However, most commenters did not agree that the analysis of the GEIS supports a 15 mrem/y criterion. Some opposed 15 mrem/y as being too high and indicated that the analysis supported

NUREG-1496

I

alternatives that reduced the contamination level to lower levels, including preexisting background. Others opposed 15 mrem/y as being too low and indicated that an appropriate analysis would support alternatives which generally included increasing the limit to 25, 30, 50, or 100 mrem/y with further reduction based on ALARA.

Response

As discussed in response to previous comments, modifications to the GEIS analysis have been made with regard to the reference facilities, the dose modeling approach, and the overall costbenefit analysis approach. The results of these modifications and the effect on the costbenefit analysis are discussed in Chapter 7. Also discussed in Section 7.2.2 of Chapter 7 is the rationale for establishing a dose criterion for unrestricted use.

H.3.3 Restricted Use

Comments

Some commenters agreed with the concepts and analyses permitting restricted use of decommissioned sites because it may be financially impractical to reach unrestricted levels, especially if health and safety considerations do not warrant it and because restricted release allows realistic land uses to be considered. Some commenters opposed the concept of, and analysis of, any planned restricted release of decommissioned sites because of concerns over the durability and effectiveness of institutional controls to provide needed protection of public health and safety at decommissioned sites, and because licensees should accept responsibility for their actions and not place the burden on other parties.

Commenters also noted that the cost analysis should take into account institutional and engineering controls, including the costs of SSAB involvement in the restricted use process, that can be maintained to ensure that the costs of incremental reductions in residual radioactivity are truly proportional to the benefits achieved and should allow credit for soil covers in meeting the criteria for restricted use.

Response

Current NRC regulations pertaining to decommissioning, promulgated on June 27, 1988 (53 FR 24018), do not contain provisions for release of a facility for restricted use but limit a licensee's options in decommissioning to release of a facility for unrestricted use. Experience with decommissioning of facilities since 1988 has indicated that for certain facilities, achieving unrestricted use might not be appropriate because there may be net public or environmental harm in achieving unrestricted use, or because expected future use of the site would likely preclude unrestricted use, or because the cost of site cleanup and waste disposal to achieve unrestricted use is excessive compared to achieving the same dose criterion by restricting use of the site and eliminating exposure pathways. The input received from the rulemaking workshops held from January through May 1993 confirmed this experience and

NUREG-1496

H-11

indicated that restricted use of a facility, if properly designed and if proper controls were in place, was a reasonable means for terminating licenses at certain facilities.

Current NRC-licensed sites which might request restricted use are largely industrial sites. It is reasonable for them to remain industrial because of their locations and previous siting considerations. Nevertheless, there may be instances where if a site had high cultural value, such considerations would be presented as part of the public process that is part of restricted use and could be considered as a socioeconomic effect under the ALARA process.

7

Ĵ

The proposed rule, and the analysis of the draft GEIS of environmental impacts, thus provided for both unrestricted and restricted use of sites. Appendix C and Appendix F provide additional information with regard to impacts and costs related to restricted use. Based on the analyses of Appendices B, C, F, and G, it would appear that release of certain facilities for restricted use is an appropriate option assuming the presence of the specific provisions described below to ensure that appropriate controls are in place so that the restrictions on use remain in effect.

An important question raised in the public comments relates to the durability of institutional controls, i.e., whether the controls provide reasonable assurance that the exposure will be limited to the dose criterion in the rule over the periods in question.

For many types of decommissioned sites released under restricted conditions where potential doses to an individual are caused by relatively short-lived nuclides, the radiation exposure that could potentially be received if controls were to fail will gradually decrease to below the unrestricted dose criterion so the restrictions on use would no longer be necessary. Examples of facilities with nuclides of this type include reactors or materials facilities for which the principal dose contributing nuclides after decommissioning are Co-60 or Cs-137 (half-lives 5.3 and 30 years, respectively), or other similarly short-lived nuclides. The Commission has considered the effectiveness of institutional controls for up to 100 years in similar contexts such as low-level waste disposal sites. Because decommissioned facilities will have contamination at much lower levels than low-level disposal sites, the Commission believes that institutional controls using relatively simple deed restrictions can provide reasonable assurance that the TEDE will be below the dose criterion in the rule with restrictions in place.

In a limited number of cases, in particular those involving large quantities of uranium and thorium contamination, the presence of long-lived nuclides at decommissioned sites will continue the potential for radiation exposure beyond the 100-year period. More stringent institutional controls should be required in these situations, such as legally enforceable deed restrictions and/or controls backed up by State and local government control or ownership, engineered barriers, and Federal ownership, as appropriate. Such Federal control is authorized under Section 151(b) of the National Waste Policy Act (NWPA). Requiring absolute proof that such controls would endure over long periods of time would be difficult and should not be required. Rather, institutional controls should be established by the licensee with the

objective of lasting 1000 years to be consistent with the time-frame used for calculations (and discussed in Section IV.F.7 of the Supplementary Information to the final rule). Having done this, the licensee would be expected to demonstrate that the institutional controls could reasonably be expected to be effective into the foreseeable future.

To provide added assurance that the public will be protected, there should be financial assurance to provide that the controls remain in place and are effective over the period needed. Given these provisions, the use of reliable institutional controls is appropriate, and such controls will provide a high level of assurance that doses will not exceed the dose criterion for unrestricted use.

Although it is anticipated that failure of active and passive institutional controls with the appropriate provisions in place will be rare, it is recognized that it is not possible to preclude the failure of controls. Therefore, in the proposed rule, the Commission included a requirement that remediation be conducted so that there would be a maximum value ("cap") on the TEDE from residual radioactivity if the institutional controls were no longer effective in limiting the possible scenarios or pathways of exposure. The cap included in the proposed rule was 1 mSv/y (100 mrem/y), which is the public dose limit codified in 10 CFR Part 20. Public comments on the proposed rule suggested other values for the cap, both higher than and lower than the proposed value. The analysis of those comments, and their potential effect on the institutional controls used, is discussed in Section IV.B.3.4 of the Supplementary Information to the final rule.

Given the discussion above on the viability of controls and on the provisions for financial assurance and for a "cap", the provision for restricted use and institutional controls should provide a high level of assurance that public health and safety will be protected. Licensees seeking restricted use should be required to demonstrate, to NRC's satisfaction, that the institutional controls they propose are comparable to those discussed above, are legally enforceable, and are backed by financial assurance. Licensees should also be required to demonstrate that the cap will be met.

.

With regard to responsibility for cleanup, the need to fix responsibility for decommissioning of licensed sites is appropriate. The planning and financial assurance requirements adopted June 27, 1988 (53 FR 24018) recognized the responsibility of licensees to plan for the cleanup of their sites and to provide adequate financial assurance for that cleanup. Similarly in the proposed rule and in the draft GEIS, it was indicated that licensees would not be permitted to release a facility for unrestricted or restricted public use unless the dose criteria stipulated in the rule had been satisfied. As noted in Chapter 7 and in Appendices B and C, further cleanup to levels such as background is not generally reasonable because it results in very little additional health benefit with very large costs incurred and could result in an increase in the overall risk associated with cleanup of a particular site when all factors (e.g., estimated fatalities due to traffic accidents during transport of radioactive wastes) are considered. Therefore, for the reasons discussed in more detail in Chapter 7 and Appendices B and C,

potential use of restrictions is considered appropriate to protect public health and safety and to permit release of the sites and termination of license.

H.3.4 Need for Groundwater Analysis

<u>Comments</u>

The GEIS does not adequately analyze the technical basis or costs of applying the EPA drinking-water standard as proposed and should provide a cost benefit analysis of imposing the EPA's drinking-water standard as proposed.

7

77

Response

Chapter 6 and Appendix C have been modified to include an analysis of impacts and costs associated with remediation of the site to reduce the dose from the groundwater pathway to alternative residual dose levels.

NUREG-1496

Т

	NRC FORM 335 U.S. NUCLEAR REGULATORY COMMISSION (2-89) NRCM 1102	1. REPORT NUMBER (Assigned by NRC, Add Vol., Supp., Rev., and Addendum Numbers, if env.)					
	S201, S202 BIBLIOGRAPHIC DATA SHEET						
· .		Vol. 3					
	Einel Conorie Emvironmentel Impert Statement in Summert of Dulemelting on	3. DATE REPORT PUBLISHED					
	Radiological Criteria for License Termination of NRC-Licensed Nuclear Facilities	MONTH YEAR					
		July 1997					
	Appendices C-H Final Report	4. FIN OR GRANT NUMBER					
1	5. AUTHOR(S)	6. TYPE OF REPORT					
(بسعد		Regulatory					
1		7. PERIOD COVERED (Inclusive Dates)					
	R DERECRIMING ODGANIZATION - NAME AND ADDRESS (# NOC provide Division Office or Bonice 11.S. Nuclear Registeror Comprised	n and mellino arthress if contractor					
	provide name and mailing address.) Division of Degulatory Amplications						
•*	Office of Nuclear Regulatory Research						
	U.S. Nuclear Regulatory Commission						
	washington, DC 20555–0001						
	 SPONSORING ORGANIZATION - NAME AND ADDRESS (If NRC, type "Same as above"; If contractor, provide NRC Division, Office or Re and mailing address.) 	gion, U.S. Nuclear Regulatory Commission,					
	Same as 8 above						
;							
	10. SUPPLEMENTARY NOTES						
	11. ABSTRACT (200 words or less)						
	The action being considered in this Final Generic Environmental Impact Statement (G	EIS) is an amendment to the					
	Nuclear Regulatory Commission's (NRC) regulations in 10 CFR Part 20 to include radiological criteria for decom-						
	missioning of lands and structures at nuclear facilities. Under the National Environmental Policy Act (NEPA), all Federal agencies must consider the effect of their actions on the environment. To fulfill NRC's responsibilities under						
۰.	NEPA, the Commission is preparing this GEIS which analyzes alternative courses of action and the costs and impacts						
;	associated with those alternatives.						
. .	In preparing the final GEIS, the following approach was taken: (1) a listing was develo	ped of regulatory alternatives					
	for establishing radiological criteria for decommissioning; (2) for each alternative, a detailed analysis and comparison of incremental impacts both radiological and nonrediological to workers, members of the public, and the emission						
	ment, and costs were performed; and (3) based on the analysis of impacts and costs, conclusions on radiological crite-						
	ria for decommissioning were provided. Contained in the GEIS are results and conclusions related to achieving, as						
	stricted use, decommissioning ALARA analysis for soils and structures containing contamination, restricted use and						
	alternative analysis for special site-specific situations and groundwater cleanup.						
	12. KEY WORDS/DESCRIPTORS (List words or phrases that will assist researchers in locating the report.)	13. AVAILABILITY STATEMENT					
	· ,	Unlimited					
	Generic Environmental Impact Statement	(This Page)					
	Radiological Criteria	Unclassified					
	Nuclear Reactors	(This Report) I Inclassified					
	ruel Cycle Facilities Non-Fuel Cycle Facilities	15. NUMBER OF PAGES					
		16. PRICE					

•

2

.

Federal Recycling Program