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Background 
 
Due to the low rates of seismicity, a significant and currently unresolvable issue exists in 
the estimation of strong ground motions for specified magnitude, distance, and site 
conditions in central and eastern North America (CENA).  The preferred approach to 
estimating design ground motions is through the use of empirical attenuation relations, 
perhaps augmented with a model based relation to capture regional influences.  For 
western North America (WNA), particularly California, seismicity rates are such that 
sufficient strong motion recordings are available for ranges in magnitudes and distances 
to properly constrain regression analyses.  Naturally, not enough recorded data are 
available at close distances (� 10 km) to large magnitude earthquakes (M � 6 3/4) so 
large uncertainty exists for these design conditions but, in general, ground motions are 
reasonably well defined.  For CENA however, very few data exist and nearly all are for 
M � 5.8 and distances exceeding about 50 km.  This is a fortunate circumstance in terms 
of hazard but, because the potential exists for large, though infrequent, earthquakes in 
certain areas of CENA, the actual risk to life and structures is comparable to that which 
exists in seismically active WNA.  As a result, the need to characterize strong ground 
motions is significant and considerable effort has been directed to developing appropriate 
attenuation relations for CENA conditions (Boore and Atkinson, 1987; Toro and 
McGuire, 1987; EPRI, 1993; Toro et al., 1997; Atkinson and Boore, 1997).  Because the 
strong motion data set is sparse in the CENA, numerical simulations represent the only 
available approach and the stochastic point-source model (Appendix A) has generally 
been the preferred model used to develop attenuation relations.  The process involves 
repeatedly exercising the model for a range in magnitude and distances as well as 
expected parameter values, adopting a functional form for a regression equation, and 
finally performing regression analyses to determine coefficients for median predictions as 
well as variability about the median.  Essential elements in this process include: a 
physically realistic, reasonably robust and well-validated model (Silva et al., 1997; 
Schneider et al., 1993); appropriate parameter values and their distributions; and a 
statistically stable estimate of model variability (Appendix A).  The model variability is 
added to the variability resulting from the regression analyses (parametric plus regression 
variability) to represent the total variability associated with median estimates of ground 
motions (Appendix A). 
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Model Parameters 
 
For the point-source model implemented here, parameters include stress drop (∆σ), 
source depth (H), path damping (Q(f) = Qo fη), shallow crustal damping (kappa), and 
crustal amplification.  For the regional crust, the Midcontinent model from EPRI (1993; 
also in Toro et al., 1997) was adopted.  The crustal model is listed in Table 1.  The Moho 
is at a depth of about 40 km.  Geometrical attenuation is assumed to be magnitude 
dependent, using a model based on inversions of the Abrahamson and Silva (1997) 
empirical attenuation relation with the point-source model.  The model for geometrical 
attenuation is given by 
 

R-(a + b (M –6.5)), R � 80 km; R-(a + b (M –6.5))/2, R > 80 km  (1) 
 
where a = 1.0296, b = -0.0422, and 80 km reflects about twice the crustal thickness 
(Table 1). 
 
The duration model is taken as the inverse corner frequency plus a smooth distance term 
of 0.05 times the hypocentral distance (Herrmann, 1985).  Monotonic trends in both the 
geometrical attenuation and distance duration models produced no biases in the 
validation exercises using WNA and CENA recordings (Appendix A) and are considered 
appropriate when considerable variability in crustal structure that may exist over a region, 
as well as variability in source depth.  Additionally, extensive modeling exercises have 
shown that the effects of source finiteness, coupled with variability in source depth and 
crustal structure, result in smooth attenuation with distance, accompanied by a large 
variability in ground motions (EPRI, 1993).   
 
To model shallow crustal damping, a kappa value of 0.006 sec is assumed to apply for the 
crystalline basement and below (Silva and Darragh, 1995; EPRI, 1993).  The Q(f) model 
is from Silva et al. (1997), based on inversions of CEUS recordings and is given by Q(f) 
= 351 f0.84.  Both magnitude independent and magnitude dependent stress drop models 
are used.  For the magnitude dependent stress drop model, the stress drop varies from 160 
bars for M 5.5 to 90 bars for M 7.5 and 70 bars for M 8.5 (the range in magnitudes for 
the simulations).  The magnitude scaling of stress drop is based on point-source 
inversions of the Abrahamson and Silva (1997) empirical attenuation relation (Silva et 
al., 1997) and is an empirically driven mechanism to accommodate the observed 
magnitude saturation due to source finiteness.  Similar point-source stress drop scaling 
has been observed by Atkinson and Silva (1997) using (WNA) recordings of strong 
ground motions and from inversions of the Sadigh et al., (1997) attenuation relation 
(EPRI, 1993).  For the CEUS, the stress drop values are constrained by the M 5.5 stress 
drop of 160 bars.  This value is from recent work of Gail Atkinson (personal 
communication, 1998) who determined CENA stress drops based on instrumental and 
intensity data.  Since the majority of her data are from earthquakes below M 6 (M 4 to 7), 
it was assumed her average stress drop (� 180 bars adjusted for the regional crustal 
model to 160 bars) is appropriate for M 5.5.  Table 2 shows the magnitude dependent as 
well as magnitude independent stress drops.  The magnitude independent stress drop of 
120 bars reflects the log average of the M 5.5, M 6.5, and M 7.5 stress drops (Table 2). 
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Source depth is also assumed to be magnitude dependent and is based on the depth 
distribution of stable continental interiors and margins (EPRI, 1993).  The magnitude 
dependent depth distribution is shown in Table 2. 
 
The single corner frequency model was also run with a constant stress drop for all 
magnitudes.  A stress drop of 120 bars was applied to all four magnitudes.  This is the 
same constant stress drop used in the Toro et al. (1997; EPRI, 1993) CEUS hard rock 
relation.   
 
Another source model considered acceptable for CENA ground motions is the double 
corner model (Atkinson and Boore, 1995).  In this model there is no variation of the 
stress drop with magnitude.  Additionally, stress drop is not explicitly defined for this 
model and no uncertainties are given for the corner frequencies (which are magnitude 
dependent).  As a result, the parametric uncertainty obtained from the regression analysis 
will underepresent the total parametric uncertainty.  For this reason, the total parametric 
uncertainty for the two-corner model is taken as the total parametric uncertainty from the 
single corner model with variable stress drop, which is slightly larger than the parametric 
uncertainty for the single corner model with constant stress drop scaling (to avoid 
underestimating the two-corner parametric uncertainty). 
 
To accommodate magnitude saturation in the double-corner and single-corner constant 
stress drop models, magnitude dependent fictitious depth terms were added to the source 
depth.  The functional form is given by 
 
 H = H’ e, a + bM         (2) 
with 
 a = -1.250,  b = 0.227. 
 
H and H’ are the fictitious and original source depths respectively and the coefficients are 
based on the Abrahamson and Silva (1997) empirical attenuation relation.  The 
magnitude saturation built into the constant stress drop single corner and double corner 
models is then constrained empirically, accommodating source finiteness in a manner 
consistent with the WUS strong motion database.  This approach to limiting 
unrealistically high ground motions for large magnitude earthquakes at close distances is 
considered more physically reasonable than limiting the motions directly, which can be 
rather arbitrary and difficult to defend. 
 
Because of the manner in which the model validations were performed (∆σ, Q(f), and H 
were optimized), parametric variability for only ∆σ, Q(f) and H are required to be 
reflected in the model simulations (Appendix B; EPRI, 1993; Roblee et. al., 1996).  For 
source depth variability, a lognormal distribution is used with a σln = 0.6 (EPRI, 1993).  
Bounds are placed on the distribution to prevent nonphysical realizations (Table 2).   
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The stress drop variability, σln = 0.7 is from EPRI (1993) and is based on inversions of 
ground motions for stress drop using CENA earthquakes.  The variability in Q(f) is taken 
in Qo alone (σln = 0.4) and is based on inversions in WNA for Q(f) models.  While not 
strictly required, crystalline basement kappa (0.006 sec) was also varied since its value is 
based entirely on data from other CENA regions and few CENA hard rock sites were 
available for the validation exercises (Silva et al., 1997).  The variability for kappa (σln = 



0.3) is based on the variability seen in kappa values determined from strong ground 
motions recorded at about 20 Northern California rock sites which recorded the M 6.9 
1989 Loma Prieta earthquake (EPRI, 1993). 
 
While this uncertainty of 0.3 for kappa may seem low to characterize both epistemic 
(uncertainty in the median value) and aleatory (uncertainty about the median value) 
variability in a site specific kappa value, the point-source modeling uncertainty 
(Appendix A; Silva et al., 1997) already accommodates the effects of kappa variability.  
This arises because a fixed kappa value of 0.03 sec was used to characterize the linear 
rock damping at all rock sites in the validation exercises.  As a result, site-specific 
departures of kappa values from the assumed value of 0.03 sec increase model departures 
from recorded motions resulting in larger estimates of model uncertainty.  While it is 
possible that the total variability in the attenuation relations has been overestimated due  
to this probable double counting, validations are sparse for the CENA (nonexistent for 
deep soil sites) and for M larger than about 7.0 in the WNA.  As a result, assessment and 
partition of appropriate variability is not an unambiguous issue, particularly in the CENA, 
and the approach taken here is to follow prudent design practice and not underestimate 
uncertainty.   

 
Attenuation Relations 
 
To generate data, which consists of 5% damped spectral acceleration, peak acceleration, 
peak particle velocity, and peak displacements, for the regression analyses, 300 
simulations reflecting parametric variability are made at distances of 1, 5, 10, 20, 50, 75, 
100, 200, and 400 km.  At each distance, five magnitudes are used: M 4.5, 5.5, 6.5, 7.5, 
and 8.5 (Table 2). 
 
The functional form selected for the regressions which provided the best overall fit (from 
a suite of about 25) to the simulations is given by 
 

,)6 - (M C + )e + (R ln     
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      (3) 

 
where R is taken as a closest distance to the surface projection of the rupture surface, 
consistent with the validation exercises (Silva et al., 1997). 
 
Figure 1 shows the simulations for peak accelerations as well as the model fits for the 
single corner model with variable stress drops for M 7.5.  In general, the model fits the 
central trends (medians) of the simulations.  Figure 2 summarizes the magnitude 
dependency of the peak acceleration estimates and saturation is evident, primarily due to 
the magnitude dependent stress drop.  Also evident is the magnitude dependent far-field 
fall off with a decrease in slope as M increases (easily seen beyond 100 km).  This 
feature is especially important in the CEUS where large contributions to the hazard can 
come from distant sources.  The model predicts peak accelerations at a distance of 1 km 
of about 0.30, 0.70, 1.10, 1.50g for M 4.5, 5.5, 6.5, and 7.5, respectively. 
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An example of response spectra at 1 km for M 4.5, 5.5, 6.5, 7.5, and 8.5 are shown in 
Figure 3.  For M 7.5, the peak acceleration (Sa at 100 Hz) is about 1.8g with the peak in 
the spectrum near 0.04 sec.  The jagged nature of the spectra is due to unsmoothed 
coefficients.  The model regression coefficients are listed in Table 3 along with the 
parametric and total variability.  The modeling variability is taken from Appendix A.  
The total variability, solid line in Figure 4, is large.  It ranges from about 2 at short 
periods to about 4 at a period of 10 sec where it is dominated by modeling variability.  
This large long period uncertainty is due to the tendency of the point-source model to 
overpredict low frequency motions at large magnitudes (M > 6.5; EPRI, 1993).  This 
trend led Atkinson and Silva (1997, 2000) to introduce a double-corner point-source 
model for WUS crustal sources, suggesting a similarity in source processes for WUS and 
CEUS crustal sources, but with CEUS sources being more energetic by about a factor of 
two (twice WUS stress drops), on average. 
 
The results for the single corner frequency model with constant stress drop scaling are 
shown in Figures 5 to 8.  The same plots are shown as were described for the previous 
model.  These two models estimate similar values with the variable stress drop motions 
exceeding the constant stress drop motions at the lower magnitudes (M ≤ 6.5).  The 
constant stress drop of 120 bars will result in about 30% to 50% higher rock motions at 
high frequency (> 1 Hz) for M 7.5 than the variable stress drop model, with a 
corresponding stress drop of 95 bars (EPRI, 1993).  At small M, say M 5.5, the variable 
stress drop motions are higher, reflecting the 160 bar results of Atkinson for CEUS 
earthquakes with average M near 5.5.  Also shown are the results for the model with 
saturation, reducing the large magnitude, close-in motions.  The saturation reduces the M 
7.5 and M 8.5 motions by 30 to 50% within about 10 km distance.  The parametric 
variability is also similar to that of the variable stress drop model.  The regression 
coefficients are given in Tables 4 and 5. 
 
The regression results for the double corner frequency model are listed in Tables 6 and 7.  
The regression model fit to the peak acceleration data as shown in Figure 9.  The PGA 
model is shown in Figure 10, and Figure 12 is a plot of the uncertainty.  Figure 11 shows 
the spectra at a distance of 1 km.  At long period (> 1 sec) and large M (≥ 6.5) the 
motions are significantly lower than those of the single-corner models (Figures 3 and 7).  
The parametric variability was taken as the same as the single corner model with variable 
stress drop as distributions are not currently available to apply to the two corner 
frequencies associated with this model (Atkinson and Boore, 1997).  Since the two corner 
frequency source model was not available when the validations were performed (Silva et 
al., 1997), the model variability for the single corner frequency source model was used.  
This is considered conservative as the total variability for the two corner model is likely 
to be lower than that of the single corner model, as comparisons using WUS data show it 
provides a better fit to recorded motions at low frequencies (≤ 1 Hz; Atkinson and Silva, 
1997, 2000).  This is, of course, assuming the parametric variability associated with the 
two corner frequencies is not significantly larger than that associated with the single 
corner frequency stress drop. 
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At long period (> 1 sec) the total variability is largely empirical, being driven by the 
modeling component or comparisons to recorded motions.  While this variability may be 
considered large, it includes about 17 earthquakes with magnitudes ranging from M 5.3 



to M 7.4, distances out to 500 km, and both rock and soil sites.  The average M for the 
validation earthquakes is about M 6.5, near the magnitude where empirical aleatory 
variability has a significant reduction (Abrahamson and Shedlock, 1997).  The magnitude 
independent point-source variability may then reflect the generally higher variability 
associated with lower magnitude (M ≤ 6.5) earthquakes, being somewhat conservative 
for larger magnitude earthquakes.  In view of all the uncertainties present in estimating 
strong ground motions in the CENA, the total variability estimates, although unpleasant, 
are probably realistic and reflect the substantial current lack of knowledge in addition to 
randomness. 
 
It is important to emphasize that although the total variability is considered appropriate 
for the CEUS, it is assumed to be totally aleatory or randomness in nature.  Epistemic 
variability or uncertainty in mean estimates of ground motions is assumed to be totally 
accommodated in the use of the three models with appropriate weights.  These 
assumptions may underpredict epistemic variability if indeed the extremely high stress 
drop of the 1988 M 5.8 Saquenay, Canada earthquake reflects a different stress drop 
population.  In that case one should develop low, medium, and high stress drop 
attenuation relations for each of the three source models.  As a consequence, the stress 
drop variability (comprised of both epistemic and aleatory components) of σln = 0.7 
(Table 2) would be reduced to a value near 0.5, or even less for the magnitude dependent 
stress drop model, based on inversions of WUS earthquakes (Silva et al., 1997).  With 
this approach the total variability may remain largely unchanged but fractile estimates of 
hazard curves would reflect the assumed partition of aleatory and epistemic variability in 
CEUS stress drops. 
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Table 1 
CRUSTAL MODEL* 

Thickness (km) VS (km/sec) Density (cgs) 
  1.30 2.83 2.52 
11.00 3.52 2.71 
28.00 3.75 2.78 
----- 4.62 3.35 
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* EPRI mid-continent (EPRI, 1993; Toro et al., 1997) 



 
Table 2 

PARAMETERS FOR CRYSTALLINE ROCK  

OUTCROP ATTENUATION SIMULATIONS 

M  4.5, 5.5, 6.5, 7.5, 8.5 

D (km)  1, 5, 10, 20, 50, 75, 100, 200, 400 

300 simulations for each M, R pair 

Randomly vary source depth, ∆σ, kappa, Qo, η, profile 

Depth, σlnH = 0.6, Intraplate Seismicity (EPRI, 1993) 

M mblg Lower Bound (km) H  (km) Upper Bound (km) 

4.5 4.9 2 6 15 

5.5 6.0 2 6 15 

6.5 6.6 4 8 20 

7.5 7.1 5 10 20 

8.5 7.8 5 10 20 

∆σ, σln ∆σ = 0.7 (EPRI, 1993) 

M mblg ∆σ (bars) 

4.5 4.9 160, 120* 

5.5 6.0 160, 120* 

6.5 6.6 120, 120* 

7.5 7.1   90, 120* 

8.5 7.8   70, 120* 

AVG. ∆σ (bars) = 123; Assumes M 5.5 = 160 

bars (Atkinson, 1993) with magnitude scaling 

taken from WUS (Silva et al., 1997); constant 

stress drop model has ∆σ (bars) = 120 

Q(s), oQ  = 351, (Silva et al., 1997) σlnQo = 0.4, (Silva et al., 1997) 

 η = 0.84, (Silva et al., 1997),     ση = 0, (Silva et al., 1997) 

Varying Qo only sufficient, ± 1 σ covers range of CEUS inversions from 1 to 20 Hz 

Kappa, �  = 0.006 sec; σlnκ = 0.3, (EPRI, 1993) 

Profile, Crystaline Basement, randomize top 100 ft 

Geometrical attenuation  R-(a + b (M – 6.5)),  a = 1.0296, b = -0.0422 

    R -(a + b (M – 6.5))/2, R > 80 km, approximately twice crustal  

thickness (Table1) 

Based on inversions of the Abrahamson and Silva (1997) relation 
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Table 3 
HARD ROCK 

REGRESSION COEFFICIENTS FOR THE SINGLE CORNER MODEL WITH 
VARIABLE STRESS DROP AS A FUNCTION OF MOMENT MAGNITUDE (M) 

Parametric Total  
Freq. 
Hz 

 
 
C1 

 
 
C2 

 
 
C4 

 
 
C5 

 
 
C6 

 
 
C7 

 
 
C8 

 
 
C10 Sigma Sigma 

0.1000 -18.88369 2.53845 2.10000 .00000 -1.44182 .05839 .00000 -.30968 .4199 1.3429 
0.2000 -14.96510 2.23977 2.30000 .00000 -1.58733 .06610 .00000 -.38601 .4529 1.2228 
0.3333 -11.66550 1.92782 2.40000 .00000 -1.73789 .07805 .00000 -.39560 .4887 1.0871 
0.5000   -8.82667 1.63766 2.50000 .00000 -1.89973 .09204 .00000 -.37384 .5217 1.0095 
0.6250   -7.43948 1.47547 2.50000 .00000 -1.97181 .09962 .00000 -.35266 .5388   .9450 
1.0000   -4.35940 1.10344 2.60000 .00000 -2.19556 .12077 .00000 -.29213 .5697   .8739 
1.3333   -2.66885   .90369 2.60000 .00000 -2.28860 .13067 .00000 -.24886 .5844   .8815 
2.0000     -.70065   .66331 2.60000 .00000 -2.42230 .14517 .00000 -.19572 .6016   .8426 
2.5000      .27922   .55253 2.60000 .00000 -2.48052 .15109 .00000 -.16795 .6110   .8320 
3.3333    1.27630   .43069 2.60000 .00000 -2.56373 .15989 .00000 -.14085 .6231   .8358 
4.1667    1.94719   .36067 2.60000 .00000 -2.61226 .16463 .00000 -.12422 .6326   .8272 
5.0000    2.43129   .31603 2.60000 .00000 -2.64479 .16751 .00000 -.11332 .6412   .8260 
6.2500    3.29848   .24288 2.70000 .00000 -2.75925 .17594 .00000 -.10319 .6535   .8290 
6.6667    3.42429   .23007 2.70000 .00000 -2.77224 .17711 .00000 -.10076 .6587   .8339 
8.3333     3.82611   .19671 2.70000 .00000 -2.80768 .18000 .00000 -.09412 .6717   .8485 
10.0000    4.09661   .17267 2.70000 .00000 -2.83744 .18244 .00000 -.09012 .6837   .8468 
12.5000    4.36936   .14791 2.70000 .00000 -2.87191 .18520 .00000 -.08661 .6923   .8476 
14.2857    4.49895   .13453 2.70000 .00000 -2.89249 .18688 .00000 -.08509 .6982   .8521 
16.6667     5.06492   .09382 2.80000 .00000 -2.99306 .19346 .00000 -.08376 .7058   .8602 
18.1818    5.13193   .08668 2.80000 .00000 -3.00574 .19447 .00000 -.08317 .7106   .8604 
20.0000    5.20282   .07947 2.80000 .00000 -3.01917 .19552 .00000 -.08262 .7165   .8675 
25.0000    5.37048   .06513 2.80000 .00000 -3.04845 .19764 .00000 -.08164 .7339   .8795 
31.0000    5.53534   .05373 2.80000 .00000 -3.07478 .19936 .00000 -.08092 .7462   .8869 
40.0000    6.17831   .01178 2.90000 .00000 -3.19033 .20660 .00000 -.08055 .7534   .8902 
50.0000     6.21252   .00220 2.90000 .00000 -3.21297 .20863 .00000 -.08080 .7561   .8939 
100.000    4.39500   .06737 2.70000 .00000 -3.02023 .20242 .00000 -.08804 .6994   .8468 
PGA    4.19301   .07506 2.70000 .00000 -3.00408 .20195 .00000 -.08927 .6912   .8400 
PGV    3.39476   .62991 2.40000 .00000 -2.76262 .20554 .00000 -.13908 .5582   ------  
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Table 4 
HARD ROCK 

REGRESSION COEFFICIENTS FOR THE SINGLE CORNER MODEL WITH 
CONSTANT STRESS DROP 

Parametric Total  
Freq. 
Hz 

 
 
C1 

 
 
C2 

 
 
C4 

 
 
C5 

 
 
C6 

 
 
C7 

 
 
C8 

 
 
C10 Sigma Sigma 

0.1000 -19.28945  2.59965 2.10000 .00000 -1.43865 .05802 .00000 -.26815 .4106 1.3400 
0.2000 -15.41671  2.31029 2.30000 .00000 -1.58264 .06531 .00000 -.34272 .4483 1.2211 
0.3333 -12.14626  2.00333 2.40000 .00000 -1.73224 .07698 .00000 -.35126 .4854 1.0857 
0.5000  -9.33586  1.71687 2.50000 .00000 -1.89335 .09080 .00000 -.32809 .5177 1.0074 
0.6250  -7.97407  1.55786 2.50000 .00000 -1.96423 .09820 .00000 -.30626 .5340  .9423 
1.0000  -4.96496  1.19548  2.60000 .00000 -2.18581 .11900 .00000 -.24566 .5639  .8701 
1.3333  -3.32213  1.00226 2.60000 .00000 -2.27821 .12880 .00000 -.20311 .5787  .8777 
2.0000  -1.43548   .77358 2.60000 .00000 -2.40928 .14297 .00000 -.15233 .5971  .8394 
2.5000    -.50467   .67008 2.60000 .00000 -2.46619 .14872 .00000 -.12648 .6075  .8295 
3.3333     .43668   .55655 2.60000 .00000 -2.54754 .15729 .00000 -.10162 .6204  .8338 
4.1667   1.06963   .49226 2.60000 .00000 -2.59470 .16186 .00000 -.08664 .6304  .8255 
5.0000   1.52694   .45169 2.60000 .00000 -2.62629 .16462 .00000 -.07695 .6393  .8246 
6.2500   2.36181   .38344 2.70000 .00000 -2.73859 .17274 .00000 -.06802 .6516  .8275 
6.6667   2.47996   .37179 2.70000 .00000 -2.75112 .17386 .00000 -.06588 .6568  .8324 
8.3333    2.86034   .34166 2.70000 .00000 -2.78522 .17656 .00000 -.06010 .6698  .8470 
10.0000   3.11592   .31985 2.70000 .00000 -2.81384 .17885 .00000 -.05663 .6817  .8452 
12.5000   3.37375   .29732 2.70000 .00000 -2.84698 .18144 .00000 -.05357 .6902  .8459 
14.2857   3.92488   .25884 2.80000 .00000 -2.94339 .18762 .00000 -.05225 .6961  .8503 
16.6667    4.05039   .24603 2.80000 .00000 -2.96583 .18937 .00000 -.05110 .7036  .8584 
18.1818   4.11372   .23943 2.80000 .00000 -2.97807 .19032 .00000 -.05058 .7084  .8586 
20.0000   4.18102   .23274 2.80000 .00000 -2.99106 .19131 .00000 -.05011 .7143  .8657 
25.0000   4.34191   .21938 2.80000 .00000 -3.01949 .19332 .00000 -.04924 .7316  .8776 
31.0000   4.50147   .20875 2.80000 .00000 -3.04513 .19494 .00000 -.04861 .7439  .8849 
40.0000   5.13460   .16824 2.90000 .00000 -3.15909 .20195 .00000 -.04828 .7511  .8883 
50.0000    5.16438   .15928 2.90000 .00000 -3.18078 .20386 .00000 -.04851 .7537  .8918 
100.000   3.36079   .22218 2.70000 .00000 -2.98760 .19761 .00000 -.05509 .6969  .8447 
PGA   3.16202   .22938  2.70000 .00000 -2.97147 .19714 .00000 -.05620 .6886  .8379 
PGV   2.51086   .76168 2.40000 .00000 -2.72601 .20021 .00000 -.10368 .5550  ------ 
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Table 5 
HARD ROCK 

REGRESSION COEFFICIENTS FOR THE SINGLE CORNER MODEL 
WITH CONSTANT STRESS DROP AND SATURATION 

Parametric Total  
Freq. 
Hz 

 
 
C1 

 
 
C2 

 
 
C4 

 
 
C5 

 
 
C6 

 
 
C7 

 
 
C8 

 
 
C10 Sigma Sigma 

0.1000 -17.69763  2.33877 2.30000 .00000 -1.75359 .11071 .00000 -.28005   .4204 1.3431 
0.2000 -13.69697  2.03488 2.50000 .00000 -1.91969 .12052 .00000 -.35463   .4597 1.2253 
0.3333 -10.33313  1.71755 2.60000 .00000 -2.08560 .13401 .00000 -.36316   .4981 1.0914 
0.5000  -7.42051  1.41946 2.70000 .00000 -2.26433 .14984 .00000 -.33999   .5309 1.0142 
0.6250  -6.03692  1.25821 2.70000 .00000 -2.33925 .15765 .00000 -.31816   .5472  .9498 
1.0000  -2.89906   .88116 2.80000 .00000 -2.58296 .18098 .00000 -.25757   .5767  .8785 
1.3333  -1.22930   .68518 2.80000 .00000 -2.68016 .19127 .00000 -.21501   .5914  .8861 
2.0000    .69539   .45254 2.80000 .00000 -2.81800 .20613 .00000 -.16423   .6097  .8484 
2.5000   1.64228   .34751 2.80000 .00000 -2.87774 .21215 .00000 -.13838   .6199  .8386 
3.3333   2.60689   .23165 2.80000 .00000 -2.96321 .22112 .00000 -.11352   .6325  .8428 
4.1667   3.25319   .16616 2.80000 .00000 -3.01272 .22589 .00000 -.09854   .6423  .8346 
5.0000   3.71953   .12490 2.80000 .00000 -3.04591 .22877 .00000 -.08886   .6511  .8338 
6.2500   4.18416   .07875 2.80000 .00000 -3.09159 .23297 .00000 -.07992   .6633  .8368 
6.6667   4.30417   .06695 2.80000 .00000 -3.10445 .23411 .00000 -.07779   .6685  .8417 
8.3333    5.17320   .00188 2.90000 .00000 -3.22475 .24286 .00000 -.07200   .6814  .8562 
10.0000   5.43782  -.02059 2.90000 .00000 -3.25499 .24527 .00000 -.06853   .6933  .8546 
12.5000   5.70631  -.04389 2.90000 .00000 -3.29005 .24799 .00000 -.06548   .7017  .8553 
14.2857   5.83477  -.05663 2.90000 .00000 -3.31101 .24965 .00000 -.06416   .7077  .8599 
16.6667    5.96397  -.06970 2.90000 .00000 -3.33411 .25145 .00000 -.06300   .7152  .8680 
18.1818   6.56761  -.11492 3.00000 .00000 -3.44099 .25904 .00000 -.06249   .7200  .8682 
20.0000   6.63937  -.12193 3.00000 .00000 -3.45478 .26008 .00000 -.06201   .7259  .8753 
25.0000   6.81012  -.13594 3.00000 .00000 -3.48499 .26220 .00000 -.06115   .7429  .8870 
31.0000   6.97878  -.14713 3.00000 .00000 -3.51228 .26392 .00000 -.06051   .7550  .8943 
40.0000   7.14087  -.15876 3.00000 .00000 -3.54274 .26589 .00000 -.06019   .7619  .8974 
50.0000    7.17445  -.16806 3.00000 .00000 -3.56511 .26786 .00000 -.06041   .7643  .9008 
100.000   5.73885  -.12424 2.90000 .00000 -3.43887 .26510 .00000 -.06699   .7079  .8538 
PGA   5.53459  -.11691 2.90000 .00000 -3.42173 .26461 .00000 -.06810   .6998  .8471 
PGV   4.60099   .44166 2.60000 .00000 -3.13013 .26350 .00000 -.11559   .5648 -------- 
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Table 6 
HARD ROCK 

REGRESSION COEFFICIENTS FOR THE DOUBLE CORNER MODEL 
Parametric Total  

Freq. 
Hz 

 
 
C1 

 
 
C2 

 
 
C4 

 
 
C5 

 
 
C6 

 
 
C7 

 
 
C8 

 
 
C10 Sigma Sigma 

0.1000 -17.74463 2.22485 2.10000 .00000 -1.40084 .05305 .00000 -.31641 .4199 1.3429 
0.2000 -13.88893 1.89859 2.30000 .00000 -1.54772 .06068 .00000 -.28960 .4529 1.2228 
0.3333 -11.04809 1.64665 2.40000 .00000 -1.70010 .07272 .00000 -.22943 .4887 1.0871 
0.5000  -8.76880 1.45200 2.50000 .00000 -1.86494 .08722 .00000 -.18125 .5217 1.0095 
0.6250  -7.68301 1.34978 2.50000 .00000 -1.94573 .09603 .00000 -.16127 .5388  .9450 
1.0000  -5.47019 1.12590 2.50000 .00000 -2.13473 .11710 .00000 -.13830 .5697  .8739 
1.3333  -3.77355   .98718 2.60000 .00000 -2.28113 .13007 .00000 -.13323 .5844  .8815 
2.0000  -1.95968   .80810 2.60000 .00000 -2.41132 .14449 .00000 -.12529 .6016  .8426 
2.5000   -.96872   .71370 2.60000 .00000 -2.46500 .15003 .00000 -.11749 .6110  .8320 
3.3333 .10920   .59537 2.60000 .00000 -2.54120 .15808 .00000 -.10506 .6231  .8358 
4.1667 .86777  .52085 2.60000 .00000 -2.58506 .16235 .00000 -.09484 .6326  .8272 
5.0000   1.42831   .46988 2.60000 .00000 -2.61380 .16486 .00000 -.08671 .6412  .8260 
6.2500   1.99361   .41219 2.60000 .00000 -2.65510 .16868 .00000 -.07801 .6535  .8290 
6.6667   2.14018   .39715 2.60000 .00000 -2.66676 .16973 .00000 -.07573 .6587  .8339 
8.3333    2.60454   .35667 2.60000 .00000 -2.69927 .17238 .00000 -.06929 .6717  .8485 
10.0000   3.30684   .30373 2.70000 .00000 -2.79751 .17893 .00000 -.06512 .6837  .8468 
12.5000   3.62400   .27369 2.70000 .00000 -2.83163 .18170 .00000 -.06128 .6923  .8476 
14.2857   3.77510   .25773 2.70000 .00000 -2.85226 .18339 .00000 -.05952 .6982  .8521 
16.6667    3.92454   .24169 2.70000 .00000 -2.87495 .18521 .00000 -.05791 .7058  .8602 
18.1818   3.99907   .23357 2.70000 .00000 -2.88734 .18619 .00000 -.05717 .7106  .8604 
20.0000   4.07670   .22547 2.70000 .00000 -2.90040 .18720 .00000 -.05647 .7165  .8675 
25.0000   4.69293   .18262 2.80000 .00000 -3.00672 .19396 .00000 -.05520 .7339  .8795 
31.0000   4.86717   .17018 2.80000 .00000 -3.03252 .19560 .00000 -.05434 .7462  .8869 
40.0000   5.03119   .15779 2.80000 .00000 -3.06134 .19746 .00000 -.05377 .7534  .8902 
50.0000    5.06834   .14806 2.80000 .00000 -3.08409 .19935 .00000 -.05361 .7561  .8939 
100.000 3.74623   .18152 2.70000 .00000 -2.98867 .19854 .00000 -.05734 .6994  .8468 
PGA 3.54103   .18904 2.70000 .00000 -2.97418 .19819 .00000 -.05814 .6912  .8400 
PGV 4.06989   .46794 2.50000 .00000 -2. 7481 7 .19743 .00000 -.07606 .5582 --------  

 
 

NOTE: PARAMETRIC SIGMA VALUES ARE FROM THE 1 CORNER VARIABLE STRESS DROP MODEL 
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Table 7 
HARD ROCK 

REGRESSION COEFFICIENTS FOR THE DOUBLE CORNER MODEL WITH SATURATION 
Parametric Total  

Freq. 
Hz 

 
 
C1 

 
 
C2 

 
 
C4 

 
 
C5 

 
 
C6 

 
 
C7 

 
 
C8 

 
 
C10 Sigma Sigma 

0.1000 -16.16329  1.96535 2.30000 .00000 -1.71374 .10547 .00000 -.32832 .4199 1.3429 
0.2000 -12.17910  1.62451 2.50000 .00000 -1.88291 .11564 .00000 -.30150 .4529 1.2228 
0.3333  -9.24347  1.36201 2.60000 .00000 -2.05193 .12954 .00000 -.24133 .4887 1.0871 
0.5000  -6.86049  1.15548 2.70000 .00000 -2.23472 .14610 .00000 -.19315 .5217 1.0095 
0.6250  -5.75016  1.05061 2.70000 .00000 -2.32003 .15540 .00000 -.17317 .5388  .9450 
1.0000  -3.10841   .79561 2.80000 .00000 -2.58562 .18195 .00000 -.15020 .5697  .8739 
1.3333  -1.68010   .66971 2.80000 .00000 -2.68318 .19261 .00000 -.14513 .5844  .8815 
2.0000     .17104   .48663 2.80000 .00000 -2.81997 .20773 .00000 -.13719 .6016  .8426 
2.5000   1.17695   .39078 2.80000 .00000 -2.87626 .21352 .00000 -.12940 .6110  .8320 
3.3333   2.27626   .27031 2.80000 .00000 -2.95623 .22193 .00000 -.11697 .6231  .8358 
4.1667   3.04705   .19471 2.80000 .00000 -3.00223 .22639 .00000 -.10675 .6326  .8272 
5.0000   3.61568   .14311 2.80000 .00000 -3.03239 .22900 .00000 -.09861 .6412  .8260 
6.2500   4.19281   .08441 2.80000 .00000 -3.07579 .23300 .00000 -.08991 .6535  .8290 
6.6667   4.34277   .06911 2.80000 .00000 -3.08805 .23409 .00000 -.08764 .6587  .8339 
8.3333    4.81663   .02793 2.80000 .00000 -3.12224 .23686 .00000 -.08119 .6717  .8485 
10.0000   5.13706  -.00173 2.80000 .00000 -3.15185 .23929 .00000 -.07703 .6837  .8468 
12.5000   5.94942  -.06741 2.90000 .00000 -3.27328 .24822 .00000 -.07318 .6923  .8476 
14.2857   6.10708  -.08387 2.90000 .00000 -3.29509 .25000 .00000 -.07142 .6982  .8521 
16.6667    6.26384  -.10044 2.90000 .00000 -3.31911 .25192 .00000 -.06982 .7058  .8602 
18.1818   6.34238  -.10886 2.90000 .00000 -3.33222 .25295 .00000 -.06908 .7106  .8604 
20.0000   6.42423  -.11726 2.90000 .00000 -3.34604 .25401 .00000 -.06838 .7165  .8675 
25.0000   6.61204  -.13370 2.90000 .00000 -3.37593 .25613 .00000 -.06711 .7339  .8795 
31.0000   7.33736  -.18563 3.00000 .00000 -3.49824 .26456 .00000 -.06625 .7462  .8869 
40.0000   7.51145  -.19862 3.00000 .00000 -3.52888 .26652 .00000 -.06568 .7534  .8902 
50.0000    7.55648  -.20898 3.00000 .00000 -3.55306 .26853 .00000 -.06551 .7561  .8939 
100.000   6.12213  -.16489 2.90000 .00000 -3.43941 .26601 .00000 -.06925 .6994  .8468 
PGA   5.91196  -.15727 2.90000 .00000 -3.42401 .26564 .00000 -.07004 .6912  .8400 
PGV   5.79531   .17529 2.60000 .00000 -3.11215 .25573 .00000 -.08796 .5582 -------- 

 
 
NOTE: PARAMETRIC SIGMA VALUES ARE FROM THE 1 CORNER VARIABLE STRESS DROP MODEL 
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 Figure 1.  Peak acceleration estimates and regression fit at M 7.5 for the single corner 

model with variable stress drop.  
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Figure 2.  Attenuation of median peak horizontal accelerations at M 4.5, 5.5, 6.5, 7.5 and 
8.5 for the single corner model with variable stress drop. 
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Figure 3.  Median response spectra (5% damping) at a distance of 1 km for magnitudes M 
4.5, 5.5, 6.5, 7.5, and 8.5 for the single corner model with variable stress drop. 
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Figure 4.  Estimates of total variability (uncertainty) for the attenuation model.  Parametric
variability is due to variation of variable stress drop, single corner frequency point-source 
parameters (Table 2), and fit of regression model (Table 3).  Model variability is from validation
exercises with 16 earthquakes (M 5.3 to 7.4) at 500 sites over the fault distance range of 1 to 460 
km (Appendix B). 
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Figure 5.  Peak acceleration estimates and regression fit at M 7.5 for the single corner 
model with constant stress drop. 
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Figure 6.  Attenuation of median peak horizontal accelerations at M 4.5, 5.5, 6.5, 7.5, and 
8.5 for the single corner model with constant stress drop, with and without saturation. 
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Figure 7.  Median response spectra (5% damping) at a distance of 1 km for magnitudes M 
4.5, 5.5, 6.5, 7.5, and 8.5 for the single corner model with constant stress drop, with and 
without saturation.
22



Figure 8.  Estimates of total variability (uncertainty) for the attenuation model.  Parametric
variability is due to variation of constant stress drop, single corner frequency point-source 
parameters (Table 2), and fit of regression model (Table 4).  Model variability is from
validation exercises with 16 earthquakes (M 5.3 to 7.4) at 500 sites over the fault distance 
range of 1 to 460 km (Appendix B). 
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Figure 9.  Peak acceleration estimates and regression fit at M 7.5 for the double 
corner model. 
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Figure 10.  Attenuation of median peak horizontal accelerations at M 4.5, 5.5, 6.5, 7.5, and 
8.5 for the double corner model, with and without saturation. 
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Figure 11.  Median response spectra (5% damping) at a distance of 1 km for 
magnitudes M 4.5, 5.5, 6.5, 7.5, and 8.5 for the double corner model,  
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Figure 12.  Estimates of total variability (uncertainty) for the attenuation model.  
Parametric variability is due to variation of variable stress drop, single corner frequency 
point-source parameters (Table 2) and fit of regression model (Table 6).  Model 
variability is from validation exercises with 16 earthquakes (M 5.3 to 7.4) at 500 sites 
over the fault  distance range of 1 to 460 km using the single corner frequency model 
(Appendix B). 
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APPENDIX A 

 
STOCHASTIC GROUND MOTION MODEL DESCRIPTION 
 
 
Background  
 
In the context of strong ground motion, the term "stochastic" can be a fearful concept to 
some and may be interpreted to represent a fundamentally incorrect or inappropriate 
model (albeit the many examples demonstrating that it works well; Boore, 1983, 1986).  
To allay any initial misgivings, a brief discussion seems prudent to explain the term 
stochastic in the stochastic ground motion model.  
 
The stochastic point-source model may be termed a spectral model in that it 
fundamentally describes the Fourier amplitude spectral density at the surface of a half-
space (Hanks and McGuire, 1981).  The model uses a Brune (1970, 1971) omega-square 
description of the earthquake source Fourier amplitude spectral density.  This model is 
easily the most widely used and qualitatively validated source description available.  
Seismic sources ranging from M = -6 (hydrofracture) to M = 8 have been interpreted in 
terms of the Brune omega-square model in dozens of papers over the last 30 years.  The 
general conclusion is that it provides a reasonable and consistent representation of crustal 
sources, particularly for tectonically active regions such as plate margins.  A unique 
phase spectrum can be associated with the Brune source amplitude spectrum to produce a 
complex spectrum which can be propagated using either exact or approximate (1-2- or 3-
D) wave propagation algorithms to produce single or multiple component time histories.  
In this context the model is not stochastic, it is decidedly deterministic and as exact and 
rigorous as one chooses.  A two-dimensional array of such point-sources may be 
appropriately located on a fault surface (area) and fired with suitable delays to simulate 
rupture propagation on an extended rupture plane.  As with the single point-source, any 
degree of rigor may be used in the wave propagation algorithm to produce multiple 
component or average horizontal component time histories.  The result is a kinematic1 
finite-source model which has as its basis a source time history defined as a Brune pulse 
whose Fourier amplitude spectrum follows an omega-square model.  This finite-fault 
model would be very similar to that used in published inversions for slip models if the 1-
D propagation were treated using a reflectivity algorithm (Aki and Richards, 1980).  This 
algorithm is a complete solution to the wave equation from static offsets (near-field 
terms) to an arbitrarily selected high frequency cutoff (generally 1-2 Hz).   
 
Alternatively, to model the wave propagation more accurately, recordings of small 
earthquakes at the site of interest and with source locations distributed along the fault of 
interest may be used as empirical Green functions (Hartzell, 1978).  To model the design 
earthquake, the empirical Green functions are delayed and summed in a manner to 
simulate rupture propagation (Hartzell, 1978).  Provided a sufficient number of small 

                                                 
1Kinematic source model is one whose slip (displacement ) is defined (imposed) 

while in a dynamic source model forces (stress) are defined (see Aki and Richards 1980 
for a complete description). 
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earthquakes are recorded at the site of interest, the source locations adequately cover the 
expected rupture surface, and sufficient low frequency energy is present in the Green 
functions, this would be the most appropriate procedure to use if nonlinear site response 
is not an issue.  With this approach the wave propagation is, in principle, exactly 
represented from each Green function source to the site.  However, nonlinear site 
response is not treated unless Green function motions are recorded at a nearby rock 
outcrop with dynamic material properties similar to the rock underlying the soils at the 
site or recordings are made at depth within the site soil column.  These motions may then 
be used as input to either total or effective stress site response codes to model nonlinear 
effects.  Important issues associated with this approach include the availability of an 
appropriate nearby (1 to 2 km) rock outcrop and, for the downhole recordings, the 
necessity to remove all downgoing energy from the at-depth soil recordings.  The 
downgoing energy must be removed from the downhole Green functions (recordings) 
prior to generating the control motions (summing) as only the upgoing wavefields are 
used as input to the nonlinear site response analyses.  Removal of the downgoing energy 
from each recording requires multiple site response analyses which introduce uncertainty 
into the Green functions due to uncertainty in dynamic material properties and the 
numerical site response model used to separate the upgoing and downgoing wavefields. 
 
To alleviate these difficulties one can use recordings well distributed in azimuth at close 
distances to a small earthquake and correct the recordings back to the source by removing 
wave propagation effects using a simple approximation (say 1/R plus a constant for 
crustal amplification and radiation pattern), to obtain an empirical source function.  This 
source function can be used to replace the Brune pulse to introduce some natural 
(although source, path, and site specific) variation into the dislocation time history.  If 
this is coupled to an approximate wave propagation algorithm (asymptotic ray theory) 
which includes the direct rays and those which have undergone a single reflection, the 
result is the empirical source function method (EPRI, 1993).  Combining the reflectivity 
propagation (which is generally limited to frequencies � 1-2 Hz due to computational 
demands) with the empirical source function approach (appropriate for frequencies � 1 
Hz; EPRI, 1993) results in a broad band simulation procedure which is strictly 
deterministic at low frequencies (where an analytical source function is used) and 
incorporates some natural variation at high frequencies through the use of an empirical 
source function (Sommerville et al., 1995).  
 
All of these techniques are fundamentally similar, well founded in seismic source and 
wave propagation physics, and importantly, they are all approximate.  Simply put, all 
models are wrong (approximate) and the single essential element in selecting a model is 
to incorporate the appropriate degree of rigor, commensurate with uncertainties and 
variabilities in crustal structure and site effects, through extensive validation exercises.  It 
is generally felt that more complicated models produce more accurate results, however, 
the implications of more sophisticated models with the increased number of parameters 
which must be specified is often overlooked.  This is not too serious a consequence in 
modeling past earthquakes since a reasonable range in parameter space can be explored 
to give the "best" results.  However for future predictions, this increased rigor may carry 
undesirable baggage in increased parametric variability (Roblee et al., 1996).  The effects 
of lack of knowledge (epistemic uncertainty; EPRI, 1993) regarding parameter values for 
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future occurrences results in uncertainty or variability in ground motion predictions.  It 
may easily be the case that a very simple model, such as the point-source model can have 
comparable, or even smaller, total variability (modeling plus parametric) than a much 
more rigorous model with an increased number of parameters (EPRI, 1993).  What is 
desired in a model is sufficient sophistication such that it captures the dominant and 
stable features of source, distance, and site dependencies observed in strong ground 
motions.  It is these considerations which led to the development of the stochastic point- 
and finite-source models and, in part, leads to the stochastic element of the models. 
 
The stochastic nature of the point- and finite-source RVT models is simply the 
assumption made about the character of ground motion time histories that permits stable 
estimates of peak parameters (e.g. acceleration, velocity, strain, stress, oscillator 
response) to be made without computing detailed time histories (Hanks and McGuire, 
1981; Boore, 1983).  This process uses random vibration theory to relate a time domain 
peak value to the time history root-mean-square (RMS) value (Boore, 1983).  The 
assumption of the character of the time history for this process to strictly apply is that it 
be normally distributed random noise and stationary (its statistics do not change with 
time) over its duration.  A visual examination of any time history quickly reveals that this 
is clearly not the case: time histories (acceleration, velocity, stress, strain, oscillator) start, 
build up, and then diminish with time.  However poor the assumption of stationary 
Gaussian noise may appear, the net result is that the assumption is weak enough to permit 
the approach to work surprisingly well, as numerous comparisons with recorded motions 
and both qualitative and quantative validations have shown (Hanks and McGuire, 1981; 
Boore, 1983, 1986; McGuire et al., 1984; Boore and Atkinson, 1987; Silva and Lee, 
1987; Toro and McGuire, 1987; Silva et al., 1990; EPRI, 1993; Schneider et al., 1993; 
Silva and Darragh, 1995; Silva et al., 1997).  Corrections to RVT are available to 
accommodate different distributions as well as non-stationarity and are usually applied to 
the estimation of peak oscillator response in the calculated response spectra (Boore and 
Joyner, 1984; Toro, 1985). 
 
Point-source Model 
 
The conventional stochastic ground motion model uses an ω-square source model (Brune, 
1970, 1971) with a single corner frequency and a constant stress drop (Boore, 1983; 
Atkinson, 1984).  Random vibration theory is used to relate RMS (root-mean-square) 
values to peak values of acceleration (Boore, 1983), and oscillator response (Boore and 
Joyner, 1984; Toro, 1985; Silva and Lee, 1987) computed from the power spectra to 
expected peak time domain values (Boore, 1983). 
 
The shape of the acceleration spectral density, a(f), is given by 
 

a(f) =  C f

1+( f
f

)
 MSUB0

R
 P(f) A(f) e

2

2

0

-  f R
 Q(f)0

�

�                                                   (A-1)  
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C = ( 1  )  (2)  (0.55)  ( 1
2

)  .3
0 0� �

�� � � �

 
M0 = seismic moment, 
R = hypocentral distance, 
β0 = shear-wave velocity at the source, 
ρ0 = density at the source 
Q(f) = frequency dependent quality factor (crustal damping), 
A(f) = crustal amplification,  
P(f) = high-frequency truncation filter, 
fo = source corner frequency. 
 
C is a constant which contains source region density (ρ0) and shear-wave velocity terms 
and accounts for the free-surface effect (factor of 2), the source radiation pattern averaged 
over a sphere (0.55) (Boore, 1986), and the partition of energy into two horizontal 
components (1/�2). 
 
Source scaling is provided by specifying two independent parameters, the seismic 
moment (M0) and the high-frequency stress parameter or stress drop (∆σ).  The seismic 
moment is related to magnitude through the definition of moment magnitude M by the 
relation 
 
 

log M0 = 1.5 M + 16.05                      (Hanks and Kanamori, 1979)   (A - 2). 
 
 

The stress drop (∆σ) relates the corner frequency f0 to M0 through the relation 
 
 

f0 = β0 (∆σ/8.44 M0)1/3                      (Brune; 1970, 1971)                    (A - 3). 
 
 
The stress drop is sometimes referred to as the high frequency stress parameter (Boore, 
1983) (or simply the stress parameter) since it directly scales the Fourier amplitude 
spectrum for frequencies above the corner frequency (Silva, 1991; Silva and Darragh 
1995).  High (> 1 Hz) frequency model predictions are then very sensitive to this 
parameter (Silva, 1991; EPRI, 1993) and the interpretation of it being a stress drop or 
simply a scaling parameter depends upon how well real earthquake sources (on average) 
obey the omega-square scaling (Equation A-3) and how well they are fit by the single-
corner-frequency model (Atkinson and Silva, 1997).  If earthquakes truly have single-
corner-frequency omega-square sources, the stress drop in Equation A-3 is a physical 
parameter and its values have a physical interpretation of the forces (stresses) 
accelerating the relative slip across the rupture surface.  High stress drop sources are due 
to a smaller source (fault) area (for the same M) than low stress drop sources (Brune, 
1970).  Otherwise, it simply a high frequency (f > fo) scaling or fitting parameter. 
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The spectral shape of the single-corner-frequency ω-square source model is then 
described by the two free parameters M0 and ∆σ.  The corner frequency increases with 
the shear-wave velocity and with increasing stress drop, both of which may be region 
dependent.   
 
The crustal amplification accounts for the increase in wave amplitude as seismic energy 
travels through lower- velocity crustal materials from the source to the surface.  The 
amplification depends on average crustal and near surface shear-wave velocity and 
density (Boore, 1986).   
 
The P(f) filter is used in an attempt to model the observation that acceleration spectral 
density appears to fall off rapidly beyond some region- or site-dependent maximum 
frequency (Hanks, 1982; Silva and Darragh, 1995).  This observed phenomenon truncates 
the high frequency portion of the spectrum and is responsible for the band-limited nature 
of the stochastic model.  The band limits are the source corner frequency at low 
frequency and the high frequency spectral attenuation.  This spectral fall-off at high 
frequency has been attributed to near-site attenuation (Hanks, 1982; Anderson and 
Hough, 1984) or to source processes (Papageorgiou and Aki, 1983) or perhaps to both 
effects.  In the Anderson and Hough (1984) attenuation model, adopted here, the form of 
the P(f) filter is taken as 
 
 

P(f, r) = e-πκ(r)f          (A-4). 
 
 
Kappa (r) (κ(r) in Equation A-4) is a site and distance dependent parameter that 
represents the effect of intrinsic attenuation upon the wavefield as it propagates through 
the crust from source to receiver.  Kappa (r) depends on epicentral distance (r) and on 
both the shear-wave velocity (β) and quality factor (QS) averaged over a depth of H 
beneath the site (Hough et al., 1988).  At zero epicentral distance kappa (κ) is given by 
 

�
�

(0) =  H
 QS

         (A-5), 

 
and is referred to as κ. 
 
The bar in Equation A-5 represents an average of these quantities over a depth H.  The 
value of kappa at zero epicentral distance is attributed to attenuation in the very shallow 
crust directly below the site (Hough and Anderson, 1988; Silva and Darragh, 1995).  The 
intrinsic attenuation along this part of the path is not thought to be frequency dependent 
and is modeled as a frequency independent, but site and crustal region dependent, 
constant value of kappa (Hough et al., 1988; Rovelli et al., 1988).  This zero epicentral 
distance kappa is the model implemented in this study. 
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The crustal path attenuation from the source to just below the site is modeled with the 
frequency- dependent quality factor Q(f).  Thus the distance component of the original 
κ(r) (Equation A-4) is accommodated by Q(f) and R in the last term of Equation A-1: 

 

  �         (A-6). 
� �

(r) =  H
 Q

 +  R
 Q(f)S 0

 
The Fourier amplitude spectrum, a(f), given by Equation A-1 represents the stochastic 
ground motion model employing a Brune source spectrum that is characterized by a 
single corner frequency.  It is a point source and models direct shear-waves in a 
homogeneous half-space (with effects of a velocity gradient captured by the A(f) filter, 
Equation A-1).  For horizontal motions, vertically propagating shear-waves are assumed.  
Validations using incident inclined SH-waves accompanied with raytracing to find 
appropriate incidence angles leaving the source showed little reduction in uncertainty 
compared to results using vertically propagating shear-waves.  For vertical motions, P/SV 
propagators are used coupled with raytracing to model incident inclined plane waves 
(EPRI, 1993).  This approach has been validated with recordings from the 1989 M 6.9 
Loma Prieta earthquake (EPRI, 1993). 
 
Equation A-1 represents an elegant ground motion model that accommodates source and 
wave propagation physics as well as propagation path and site effects with an attractive 
simplicity. The model is appropriate for an engineering characterization of ground motion 
since it captures the general features of strong ground motion in terms of peak 
acceleration and spectral composition with a minimum of free parameters (Boore, 1983; 
McGuire et al., 1984; Boore, 1986; Silva and Green, 1988; Silva et al., 1988; Schneider 
et al., 1993; Silva and Darragh, 1995).  An additional important aspect of the stochastic 
model employing a simple source description is that the region-dependent parameters 
may be evaluated by observations of small local or regional earthquakes.  Region-specific 
seismic hazard evaluations can then be made for areas with sparse strong motion data 
with relatively simple spectral analyses of weak motion (Silva, 1992). 
 
In order to compute peak time-domain values, i.e. peak acceleration and oscillator 
response, RVT is used to relate RMS computations to peak value estimates.  Boore 
(1983) and Boore and Joyner (1984) present an excellent development of the RVT 
methodology as applied to the stochastic ground motion model.  The procedure involves 
computing the RMS value by integrating the power spectrum from zero frequency to the 
Nyquist frequency and applying Parsevall's relation.  Extreme value theory is then used 
to estimate the expected ratio of the peak value to the RMS value of a specified duration 
of the stochastic time history.  The duration is taken as the inverse of the source corner 
frequency (Boore, 1983). 
 
Factors that affect strong ground motions such as surface topography, finite and 
propagating seismic sources, laterally varying near-surface velocity and Q gradients, and 
random inhomogeneities along the propagation path are not included in the model.  While 
some or all of these factors are generally present in any observation of ground motion and 
may exert controlling influences in some cases, the simple stochastic point-source model 
appears to be robust in predicting median or average properties of ground motion (Boore 
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1983, 1986; Schneider et al., 1993; Silva and Stark, 1993; Silva et al., 1997).  The 
motivation for comprehensive validation exercises involving many earthquakes with a 
wide range in magnitudes, rupture distances, and site conditions is to capture unmodeled 
effects.  The unmodeled effects which are random are captured in estimates of model 
uncertainty and those which are pervasive are captured in the estimates of model bias (see 
later sections).  The combination of realistic, albeit simple, model physics with 
comprehensive validation exercises makes the stochastic point source ground motion 
model a powerful predictive and interpretative tool for engineering characterization of 
strong ground motion. 
 
Finite-source Model Ground Motion Model 
 
In the near-source region of large earthquakes, aspects of a finite-source including 
rupture propagation, directivity source-receiver geometry, and saturation of high-
frequency (≥ 1 Hz) motions with increasing magnitude can be significant and may be 
incorporated into strong ground motion predictions.  To accommodate these effects, a 
methodology that combines the aspects of finite-earthquake-source modeling techniques 
(Hartzell, 1978; Irikura 1983) with the stochastic point-source ground motion model has 
been developed to produce response spectra as well as time histories appropriate for 
engineering design (Silva et al., 1990; Silva and Stark, 1993; Schneider et al., 1993).  The 
approach is very similar to the empirical Green function methodology introduced by 
Hartzell (1978) and Irikura (1983).  In this case however, the stochastic point-source is 
substituted for the empirical Green function and peak amplitudes; PGA, PGV, and 
response spectra (when time histories are not produced) are estimated using random 
process theory.   
 
Use of the stochastic point-source as a Green function is motivated by its demonstrated 
success in modeling ground motions in general and strong ground motions in particular 
(Boore, 1983, 1986; Silva and Stark, 1993; Schneider et al., 1993; Silva and Darragh, 
1995) and the desire to have a model that is truly site- and region-specific.  The model 
can accommodate a region specific Q(f), Green function sources of arbitrary moment or 
stress drop, and site specific kappa values and soil profiles.  The necessity for having 
available regional and site specific recordings distributed over the rupture surface of a 
future earthquake or modifying possibly inappropriate empirical Green functions is 
eliminated. 
 
For the finite-source characterization, a rectangular fault is discretized into NS subfaults 
of moment MS

0.  The empirical relationship  
 

log (A) = M - 4.0,    A in km2          (A-7) 
 
is used to assign areas to both the target earthquake (if its rupture surface is not fixed) as 
well as to the subfaults.  This relation results from regressing log area on M using the 
data of Wells and Coppersmith (1994).  In the regression, the coefficient on M is set to 
unity which implies a constant static stress drop of about 30 bars (Equation A-9).  This is 
consistent with the general observation of a constant static stress drop for earthquakes 
based on aftershock locations (Wells and Coppersmith 1994).  The static stress drop, 
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defined by Equation A-10, is related to the average slip over the rupture surface as well 
as rupture area.  It is theoretically identical to the stress drop in Equation A-3 which 
defines the omega-square source corner frequency assuming the rupture surface is a 
circular crack model (Brune, 1970; 1971).  The stress drop determined by the source 
corner frequency (or source duration) is usually estimated through the Fourier amplitude 
spectral density while the static stress drop uses the moment magnitude and an estimate 
of the rupture area.  The two estimates for the same earthquake seldom yield the same 
values with the static generally being the smaller.  In a recent study (Silva et al., 1997), 
the average stress drop based on Fourier amplitude spectra determined from an empirical 
attenuation relation (Abrahamson and Silva, 1997) is about 70 bars while the average 
static stress drop for the crustal earthquakes studied by Wells and Coppersmith (1994) is 
about 30 bars.  These results reflect a general factor of about 2 on average between the 
two values.  These large differences may simply be the result of using an inappropriate 
estimate of rupture area as the zone of actual slip is difficult to determine unambiguously.  
In general however, even for individual earthquakes, the two stress drops scale similarly 
with high static stress drops (> 30 bars) resulting in large high frequency (> 1 Hz for M � 
5) ground motions which translates to high corner frequencies (Equation A-3). 
 
The subevent magnitude MS is generally taken in the range of 5.0-6.5 depending upon the 
size of the target event.  MS 5.0 is used for crustal earthquakes with M in the range of 5.5 
to 8.0 and MS 6.4 is used for large subduction earthquakes with M > 7.5.  The value of 
NS is determined as the ratio of the target event area to the subfault area.  To constrain 
the proper moment, the total number of events summed (N) is given by the ratio of the 
target event moment to the subevent moment.  The subevent and target event rise times 
(duration of slip at a point) are determined by the equation  
 
 

log τ = 0.33 log M0 - 8.54           (A-8) 
 
 
which results from a fit to the rise times used in the finite-fault modeling exercises, (Silva 
et al., 1997).  Slip on each subfault is assumed to continue for a time τ.  The ratio of 
target-to-subevent rise times is given by 
 
 

�

�
s

0.5 ( =  10 M - MSUPs)         (A-9) 
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and determines the number of subevents to sum in each subfault.  This approach is 
generally referred to as the constant-rise-time model and results in variable slip velocity 
for nonuniform slip distributions.  Alternatively, one can assume a constant slip velocity 
(as do Beresnev and Atkinson, 2002) resulting in a variable-rise-time model for 
heterogenous slip distributions.  This approach was implemented and validations resulted 
in an overall “best” average slip velocity of about 70 cm/sec, with no significant 
improvement over a magnitude dependent rise time (Equation A-8).  The feature is 
retained as an option in the simulation code. 
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Recent modeling of the Landers (Wald and Heaton, 1994), Kobe (Wald, 1996) and 
Northridge (Hartzell et al. 1996) earthquakes suggests that a mixture of both constant rise 
time and constant slip velocity may be present.  Longer rise times seem to be associated 
with areas of larger slip with the ratio of slip-to-rise time (slip velocity) being depth 
dependent.  Lower slip velocities (longer rise times) are associated with shallow slip 
resulting in relatively less short period seismic radiation.  This result may explain the 
general observation that shallow slip is largely aseismic.  The significant contributions to 
strong ground motions appear to originate at depths exceeding about 4 km (Campbell, 
1993; Boore et al., 1994) as the fictitious depth term in empirical attenuation relation 
(Abrahamson and Silva, 1997; Boore et al., 1997).  Finite-fault models generally predict 
unrealistically large strong ground motions for large shallow (near surface) slip using rise 
times or slip velocities associated with deeper (> 4 km) zones of slip.  This is an 
important and unresolved issue in finite-fault modeling and the general approach is 
constrain the slip to relatively small values in the top 2 to 4 km.  For the composite 
source model, the approach is to taper the subevent stress drop to zero at the ground 
surface (Yehua Zeng, personal communication 1999).  A more thorough analysis is 
necessary, ideally using several well validated models, before this issue can be 
satisfactorily resolved.   

 
To introduce heterogeneity of the earthquake source process into the stochastic finite-
fault model, the location of the sub-events within each subfault (Hartzell, 1978) are 
randomized as well as the subevent rise time (σln = 0.8).  The stress drop of the stochastic 
point-source Green function is taken as 30 bars, consistent with the static value based on 
the M 5.0 subevent area using the equation  
 

�� =  7
16

 ( M
R

)e

e
3

                               (Brune, 1970, 1971)             (A-10) 

 
where Re is the equivalent circular radius of the rectangular sub-event. 
 
Different values of slip are assigned to each subfault as relative weights so that asperities 
or non-uniform slip can be incorporated into the methodology.  For validation exercises, 
slip models are taken from the literature and are based on inversions of strong motion as 
well as regional or teleseismic recordings.  To produce slip distributions for future 
earthquakes, random slip models are generated based on a statistical asperity model with 
parameters calibrated to the published slip distributions.  This approach has been 
validated by comparing the modeling uncertainty and bias estimates for the Loma Prieta 
and Whittier Narrows earthquakes using motion at each site averaged over several (30) 
random slip models to the bias and uncertainty estimates using the published slip model.  
The results show nearly identical bias and uncertainty estimates suggesting that averaging 
the motions over random slip models produces as accurate a prediction at a site as a 
single motion computed using the "true" slip model which is determined from inverting 
actual recordings. 
 
The rupture velocity is taken as depth independent at a value of 0.8 times the shear-wave 
velocity, generally at the depth of the dominant slip.  This value is based on a number of 
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studies of source rupture processes which also suggest that rupture velocity is non-
uniform.  To capture the effects of non-uniform rupture velocity, a random component is 
added through the randomized location of the subevents within each subfault.  The 
radiation pattern is computed for each subfault, a random component added, and the 
RMS applied to the motions computed at the site when modeling an average horizontal 
component.  To model individual horizontal components, the radiation pattern for each 
subfault is used to scale each subfaults contribution to the final summed motion. 
 
The ground-motion time history at the receiver is computed by summing the 
contributions from each subfault associated with the closest Green function, transforming 
to the frequency domain, and convolving with the appropriate Green function spectrum 
(Equation A-1).  The locations of the Green functions are generally taken at center of 
each subfault for small subfaults or at a maximum separation of about 5 to 10 km for 
large subfaults.  As a final step, the individual contributions associated with each Green 
function are summed in the frequency domain, multiplied by the RMS radiation pattern, 
and the resultant power spectrum at the site is computed.  The appropriate duration used 
in the RVT computations for PGA, PGV, and oscillator response is computed by 
transforming the summed Fourier spectrum into the time domain and computing the 5 to 
75% Arias intensity (Ou and Herrmann, 1990). 
 
As with the point-source model, crustal response effects are accommodated through the 
amplification factor (A(f)) or by using vertically propagating shear waves through a 
vertically heterogenous crustal structure.  Propagation path damping, through the Q(f) 
model, is incorporated from each fault element to the site.  Near-surface crustal damping 
is incorporated through the kappa operator (Equation A-1).  To model crustal propagation 
path effects, the raytracing method of Ou and Herrmann (1990) is applied from each 
subfault to the site. 
 
Time histories may be computed in the process as well by simply adding a phase 
spectrum appropriate to the subevent earthquake.  The phase spectrum can be extracted 
from a recording made at close distance to an earthquake of a size comparable to that of 
the subevent (generally M 5.0 to 6.5).  Interestingly, the phase spectrum need not be from 
a recording in the region of interest (Silva et al., 1989).  A recording in WNA (Western 
North America) can effectively be used to simulate motions appropriate to ENA (Eastern 
North America).  Transforming the Fourier spectrum computed at the site into the time 
domain results in a computed time history which then includes all of the aspects of 
rupture propagation and source finiteness, as well as region specific propagation path and 
site effects. 
 
For fixed fault size, mechanism, and moment, the specific source parameters for the 
finite-fault are slip distribution, location of nucleation point, and site azimuth.  The 
propagation path and site parameters remain identical for both the point- and finite-source 
models. 
 
Partition and assessment of ground motion variability 
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An essential requirement of any numerical modeling approach, particularly one which is 
implemented in the process of defining design ground motions, is a quantative 
assessment of prediction accuracy.  A desirable approach to achieving this goal is in a 
manner which lends itself to characterizing the variability associated with model 
predictions.  For a ground motion model, prediction variability is comprised of two 
components:  modeling variability and parametric variability.  Modeling variability is a 
measure of how well the model works (how accurately it predicts ground motions) when 
specific parameter values are known.  Modeling variability is measured by misfits of 
model predictions to recorded motions through validation exercises and is due to 
unaccounted for components in the source, path, and site models (i.e. a point-source 
cannot model the effects of directivity and linear site response cannot accommodate 
nonlinear effects).  Results from a viable range of values for model parameters (i.e., slip 
distribution, soil profile, G/Gmax and hysteretic damping curves, etc).  Parametric 
variability is the sensitivity of a model to a viable range of values for model parameters.  
The total variability, modeling plus parametric, represents the variance associated with 
the ground motion prediction and, because it is a necessary component in estimating 
fractile levels, may be regarded as important as median predictions. 
 
Both the modeling and parametric variabilities may have components of randomness and 
uncertainty.  Table A.1 summarizes the four components of total variability in the context 
of ground motion predictions.  Uncertainty is that portion of both modeling and 
parametric variability which, in principle, can be reduced as additional information 
becomes available, whereas randomness represents the intrinsic or irreducible component 
of variability for a given model or parameter.  Randomness is that component of 
variability which is intrinsic or irreducible for a given model.  The uncertainty component 
reflects a lack of knowledge and may be reduced as more data are analyzed.  For 
example, in the point-source model, stress drop is generally taken to be independent of 
source mechanism as well as tectonic region and is found to have a standard error of 
about 0.7 (natural log) for the CEUS (EPRI, 1993).  This variation or uncertainty plus 
randomness in ∆σ results in a variability in ground motion predictions for future 
earthquakes.  If, for example, it is found that normal faulting earthquakes have generally 
lower stress drops than strike-slip which are, in turn, lower than reverse mechanism 
earthquakes, perhaps much of the variability in ∆σ may be reduced.  In extensional 
regimes, where normal faulting earthquakes are most likely to occur, this new 
information may provide a reduction in variability (uncertainty component) for stress 
drop, say to 0.3 or 0.4 resulting in less ground motion variation due to a lack of 
knowledge of the mean or median stress drop.  There is, however, a component of this 
stress drop variability which can never be reduced in the context of the Brune model.  
This is simply due to the heterogeneity of the earthquake dynamics which is not 
accounted for in the model and results in the randomness component of parametric 
variability in stress drop.  A more sophisticated model may be able to accommodate or 
model more accurately source dynamics but, perhaps, at the expense of a larger number 
of parameters and increased parametric uncertainty (i.e. the finite-fault with slip model 
and nucleation point as unknown parameters for future earthquakes).  That is, more 
complex models typically seek to reduce modeling randomness by more closely 
modeling physical phenomena.  However, such models often require more 
comprehensive sets of observed data to constrain additional model parameters, which 
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generally leads to increased parametric variability.  If the increased parametric variability 
is primarily in the form of uncertainty, it is possible to reduce total variability, but only at 
the additional expense of constraining the additional parameters.  Therefore, existing 
knowledge and/or available resources may limit the ability of more complex models to 
reduce total variability. 
 
The distinction of randomness and uncertainty is model driven and somewhat arbitrary.  
The allocation is only important in the context of probabilistic seismic hazard analyses as 
uncertainty is treated as alternative hypotheses in logic trees while randomness is 
integrated over in the hazard calculation (Cornell, 1968).  For example, the uncertainty 
component in stress drop may be treated by using an N-point approximation to the stress 
drop distribution and assigning a branch in a logic tree for each stress drop and associated 
weight.  A reasonable three point approximation to a normal distribution is given by 
weights of 0.2, 0.6, 0.2 for expected 5%, mean, and 95% values of stress drop 
respectively.  If the distribution of uncertainty in stress drop was such that the 5%, mean, 
and 95% values were 50, 100, and 200 bars respectively, the stress drop branch on a logic 
tree would have 50, and 200 bars with weights of 0.2 and 100 bars with a weight of 0.6.  
The randomness component in stress drop variability would then be formally integrated 
over in the hazard calculation. 
 
Assessment of Modeling Variability 
 
Modeling variability (uncertainty plus randomness) is usually evaluated by comparing 
response spectra computed from recordings to predicted spectra and is a direct 
assessment of model accuracy.  The modeling variability is defined as the standard error 
of the residuals of the log of the average horizontal component (or vertical component) 
response spectra.  The residual is defined as the difference of the logarithms of the 
observed average 5% damped acceleration response spectra and the predicted response 
spectra.  At each period, the residuals are squared, and summed over the total number of 
sites for one or all earthquakes modeled.  Dividing the resultant sum by the number of 
sites results in an estimate of the model variance.  Any model bias (average offset) that 
exists may be estimated in the process (Abrahamson et al., 1990; EPRI, 1993) and used to 
correct (lower) the variance (and to adjust the median as well).  In this approach, the 
modeling variability can be separated into randomness and uncertainty where the bias 
corrected variability represents randomness and the total variability represents 
randomness plus uncertainty.  The uncertainty is captured in the model bias as this may 
be reduced in the future by refining the model.  The remaining variability (randomness) 
remains irreducible for this model.  In computing the variance and bias estimates only the 
frequency range between processing filters at each site (minimum of the 2 components) 
should be used.   

 
Assessment of Parametric Variability  
 
Parametric variability, or the variation in ground motion predictions due to uncertainty 
and randomness in model parameters is difficult to assess.  Formally, it is straight-
forward in that a Monte Carlo approach may be used with each parameter randomly 
sampled about its mean (median) value either individually for sensitivity analyses (Silva, 
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1992; Roblee et al., 1996) or in combination to estimate the total parametric variability 
(Silva, 1992; EPRI, 1993).  In reality, however, there are two complicating factors. 
 
The first factor involves the specific parameters kept fixed with all earthquakes, paths, 
and sites when computing the modeling variability.  These parameters are then implicitly 
included in modeling variability provided the data sample a sufficiently wide range in 
source, path, and site  conditions.  The parameters which are varied during the assessment 
of modeling variation should have a degree of uncertainty and randomness associated 
with them for the next earthquake.  Any ground motion prediction should then have a 
variation reflecting this lack of knowledge and randomness in the free parameters. 
 
An important adjunct to fixed and free parameters is the issue of parameters which may 
vary but by fixed rules.  For example, source rise time (Equation A-8) is magnitude 
dependent and in the stochastic finite-source model is specified by an empirical relation.  
In evaluating the modeling variability with different magnitude earthquakes, rise time is 
varied, but because it follows a strict rule, any variability associated with rise time 
variation is counted in modeling variability.  This is strictly true only if the sample of 
earthquakes has adequately spanned the space of magnitude, source mechanism, and 
other factors which may affect rise time.  Also, the earthquake to be modeled must be 
within that validation space.  As a result, the validation or assessment of model variation 
should be done on as large a number of earthquakes of varying sizes and mechanisms as 
possible. 
 
The second, more obvious factor in assessing parametric variability is a knowledge of the 
appropriate distributions for the parameters (assuming correct values for median or mean 
estimates are known).  In general, for the stochastic models, median parameter values and 
uncertainties are based, to the extent possible, on evaluating the parameters derived from 
previous earthquakes (Silva, 1992; EPRI, 1993).   
 
The parametric variability is site, path, and source dependent and must be evaluated for 
each modeling application (Roblee et al., 1996).  For example, at large source-to-site 
distances, crustal path damping may control short-period motions.  At close distances to a 
large fault, both the site and finite-source (asperity location and nucleation point) may 
dominate, and, depending upon site characteristics, the source or site may control 
different frequency ranges (Silva, 1992; Roblee et al., 1996).  Additionally, level of 
control motion may affect the relative importance of G/Gmax and hysteretic damping 
curves. 
 
In combining modeling and parametric variations, independence is assumed (covariance 
is zero) and the variances are simply added to give the total variability.  
 
 

lnσ2
Τ = lnσ2

Μ + lnσ2
P

2        (A-11), 
 

                                                 
2Strong ground motions are generally considered to be log normally distributed. 
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where 
 
 

lnσ2
Μ = modeling variation, 

 
lnσ2

P = parametric variation. 
 
 
 
Validation Of The Point- and Finite-Source Models 
 
In a recent Department of Energy sponsored project (Silva et al., 1997), both the point- 
and finite-source stochastic models were validated in a systematic and comprehensive 
manner.  In this project, 16 well recorded earthquakes were modeled at about 500 sites.  
Magnitudes ranged from M 5.3 to M 7.4 with fault distances from about 1 km out to 218 
km for WUS earthquakes and 460 km for CEUS earthquakes.  This range in magnitude 
and distance as well as number of earthquakes and sites results in the most 
comprehensively validated model currently available to simulate strong ground motions.  
 
For these exercises, regional Q(f) models and point source stress drops were determined 
through inversions using the strong motion recordings (Silva et al., 1997).  Small strain 
WUS rock and soil kappa values were set to 0.04 sec, the average from the inversions of 
small strain data.  CEUS rock site kappa values were fixed at inversion values, which 
averaged about 0.02 sec and ranged from 0.004 to 0.06 sec.  For the finite source 
parameters, slip models and nucleation points were taken from the literature (Silva et al., 
1997).  Point-source depths were taken as the depth of the center of the largest asperity in 
the slip models while point-source distance used the closest distance to the surface 
projection of the rupture surface. 
 
A unique aspect of this validation is that rock and soil sites were modeled using generic 
rock and soil profiles and equivalent-linear site response.  Validations done with other 
simulation procedures typically neglect site conditions as well as nonlinearity resulting in 
ambiguity in interpretation of the simulated motions. 
 
Point-Source Model 
 
Final model bias and variability estimates for the point-source model are shown in Figure 
A1.  Over all the sites (Figure A1) the bias is slightly positive for frequencies greater than 
about 10 Hz and is near zero from about 10 Hz to 1 Hz.  Below 1 Hz, a stable point-
source overprediction is reflected in the negative bias.  The analyses are considered 
reliable down to about 0.3 Hz (3.3 sec) where the point-source shows about a 40% 
overprediction.   

 
The model variability is low, about 0.5 above about 3 to 4 Hz and increases with 
decreasing frequency to near 1 at 0.3 Hz.  Above 1 Hz, there is little difference between 
the total variability (uncertainty plus randomness) and randomness (bias corrected 
 
 

A-14



APPENDIX A 

variability) reflecting the near zero bias estimates.  Below 1 Hz there is considerable 
uncertainty contributing to the total variability suggesting that the model can be 
measurably improved as its predictions tend to be consistently high at very low 
frequencies (� 1 Hz).  This stable misfit may be interpreted as the presence of a second 
corner frequency for WNA sources (Atkinson and Silva, 1997). 
 
Finite-Source Model 
 
For the finite-fault, Figure A2 shows the corresponding bias and variability estimates.  
For all the sites, the finite-source model provides slightly smaller bias estimates and, 
surprisingly, slightly higher variability for frequencies exceeding about 5 Hz.  The low 
frequency (� 1 Hz) point-source overprediction is not present in the finite-source results, 
indicating that it is giving more accurate predictions than the point-source model over a 
broad frequency range, from about 0.3 Hz (the lowest frequency of reliable analyses) to 
the highest frequency of the analyses. 
 
In general, for frequencies of about 1 Hz and above the point-source and finite-source 
give comparable results: the bias estimates are small (near zero) and the variabilities 
range from about 0.5 to 0.6.  These estimates are low considering the analyses are based 
on a data set comprised of earthquakes with M less than M 6.5 (288 of 513 sites) and 
high frequency ground motion variance decreases with increasing magnitude, particularly 
above M 6.5 (Youngs et al., 1995) Additionally, for the vast majority of sites, generic site 
conditions were used (inversion kappa values were used for only the Saguenay and 
Nahanni earthquake analyses, 25 rock sites).  As a result, the model variability (mean = 
0) contains the total uncertainty and randomness contribution for the site.  The parametric 
variability due to uncertainty and randomness in site parameters: shear-wave velocity, 
profile depth, G/Gmax and hysteretic damping curves need not be added to the model 
variability estimates.  It is useful to perform parametric variations to assess site parameter 
sensitivities on the ground motions, but only source and path damping Q(f) parametric 
variabilities require assessment on a site specific basis and added to the model variability.  
The source uncertainty and randomness components include point-source stress drop as 
well as source depth and finite-source slip model and nucleation point (Silva, 1992). 

 
The general approach taken in these validations is to have few free parameters and accept 
a relatively large model misfit.  This approach relaxes the need to develop appropriate 
distributions for poorly resolved parameters such as spatially varying rise times and 
rupture velocity as well as non-planar rupture surfaces (e.g. Landers, Kobe, and Kocaeli 
earthquakes).  An alternative approach is to adjust these suites of parameters, which 
naturally improves the fits to recorded motions and results in smaller modeling 
uncertainties.  However, unless independent information is available to constrain these 
parameters for future earthquakes, they must be appropriately counted as parametric 
variability.  This may result in the total variability remaining comparable between the two 
approaches.  This concept parallels the utility of increased model complexity, i.e., simple 
verses complex models.  More complex models may increase an understanding of 
physical processes but, in the context of predicting motions due to the next earthquake, 
increased model complexity may not provide more accurate estimates of strong ground 
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motions, again unless independent information is available to constrain potential ranges 
in some or all of the free parameters.   

 
A summary of fixed and free parameters for the implementation of the stochastic point 
and finite source models presented here is listed in Table 2. 
 
Empirical Attenuation Model 
 
As an additional assessment of the stochastic models, bias and variability estimates were 
made over the same earthquakes (except Saguenay since it was not used in the 
regressions) and sites using a recently develop empirical attenuation relation 
(Abrahamson and Silva, 1997).  For all the sites, the estimates are shown in Figure A3.  
Interestingly, the point-source overprediction below about 1 Hz is present in the 
empirical relation perhaps suggesting that this suite of earthquakes possess lower than 
expected motions in this frequency range as the empirical model does not show this bias 
over all earthquakes (� 50) used in its development.  Comparing these results to the 
point- and finite-source results (Figures A1 and A2) show comparable bias and variability 
estimates.  For future predictions, source and path damping parametric variability must be 
added to the numerical simulations which will contribute a σln of about 0.2 to 0.4, 
depending upon frequency, source and path conditions, and site location.  This will raise 
the modeling variability from about 0.50 to the range of 0.54 to 0.64, about 10 to 30%.  
These values are still comparable to the variability of the empirical relation indicating 
that the point- and finite-source numerical models perform about as well as a recently 
developed empirical attenuation relation for the validation earthquakes and sites. 
 
These results are very encouraging and provide an additional qualitative validation of the 
point- and finite-source models.  Paranthetically this approach provides a rational basis 
for evaluating empirical attenuation models. 
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Table A.1 
 

CONTRIBUTIONS TO TOTAL VARIABILITY 
IN GROUND MOTION MODELS 

 
 
 

 
Modeling Variability 

 
Parametric Variability 

 
Uncertainty 
 
(also Epistemic 
Uncertainty) 

 
Modeling Uncertainty: 
 
Variability in predicted motions 
resulting from particular model 
assumptions, simplifications 
and/or fixed parameter values. 
 
Can be reduced by adjusting or 
"calibrating" model to better fit 
observed earthquake response. 

 
Parametric Uncertainty: 
 
Variability in predicted motions 
resulting from incomplete data 
needed to characterize parameters. 
 
Can be reduced by collection of 
additional information which better 
constrains parameters 
 
 

 
Randomness 
 
(also Aleatory 
Uncertainty) 

 
Modeling Randomness: 
 
Variability in predicted motions 
resulting from discrepancies 
between model and actual 
complex physical processes. 
 
Cannot be reduced for a given 
model form. 

 
Parametric Randomness: 
 
Variability in predicted motions 
resulting from inherent randomness 
of parameter values. 
 
Cannot be reduced a priori*** by 
collection of additional information.

 

                                                 
***Some parameters (e.g. source characteristics) may be well defined after an  
 earthquakes. 
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Table A.2 
 

FIXED AND FREE PARAMETERS 
 

 
Fixed Parameters 
 

Regional Curstal Model  
 Rock and Soil Generic Profiles 
 Kappa 
 G/Gmax and Hysteric Damping Curves 
 Finite Source Rise Time 
 Finite Source Rupture Velocity 
 
 
Free Parameters 
 
 Regional Q(f) Model 
 Point Source Stress Drop and Depth 
 Finite Source Slip Model and Nucleation Point 
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Figure A1.  Model bias and variability estimates for all earthquakes computed over all 503 
sites for the point-source model. 
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Figure A2.  Model bias and variability estimates for all earthquakes computed over all 487 
sites for the finite-source model. 
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Figure A3.  Model bias and variability estimates for all earthquakes computed over all 481 
sites for the empirical model. 

 
 

A-25



APPENDIX B 
 
SITE RESPONSE ANALYSIS METHOD 
 
Development of Site Specific Soil Motions 
 
The conventional approach to estimating the effects of site-specific site conditions on 
strong ground motions involves development of a set (1, 2, or 3 component) of time 
histories compatible with the specified outcrop response spectra to serve as control (or 
input) motions.  The control motions are then used to drive a nonlinear computational 
formulation to transmit the motions through the profile.  Simplified analyses generally 
assume vertically propagating shear-waves for horizontal components and vertically 
propagating compression-waves for vertical motions.  These are termed one-dimensional 
site response analyses.   
 
Equivalent-Linear Computational Scheme 
 
The computational scheme which has been most widely employed to evaluate one-
dimensional site response assumes vertically-propagating plane shear-waves.  Departures 
of soil response from a linear constitutive relation are treated in an approximate manner 
through the use of the equivalent-linear approach. 
 
The equivalent-linear approach, in its present form, was introduced by Seed and Idriss 
(1970).  This scheme is a particular application of the general equivalent-linear theory 
developed by Iwan (1967).  Basically, the approach is to approximate a second order 
nonlinear equation, over a limited range of its variables, by a linear equation.  Formally 
this is done in such a way that the average of the difference between the two systems is 
minimized.  This was done in an ad-hoc manner for ground response modeling by 
defining an effective strain which is assumed to exist for the duration of the excitation.  
This value is usually taken as 65% of the peak time-domain strain calculated at the 
midpoint of each layer, using a linear analysis.  Modulus reduction and hysteretic 
damping curves are then used to define new parameters for each layer based on the 
effective strain computations.  The linear response calculation is repeated, new effective 
strains evaluated, and iterations performed until the changes in parameters are below 
some tolerance level.  Generally a few iterations are sufficient to achieve a strain-
compatible linear solution. 
 
This stepwise analysis procedure was formalized into a one-dimensional, vertically 
propagating shear-wave code called SHAKE (Schnabel et al.,  1972).  Subsequently, this 
code has easily become the most widely used analysis package for one-dimensional site 
response calculations. 
 
The advantages of the equivalent-linear approach are that parameterization of complex 
nonlinear soil models is avoided and the mathematical simplicity of a linear analysis is 
preserved.  A truly nonlinear approach requires the specification of the shapes of 
hysteresis curves and their cyclic dependencies through an increased number of material 
parameters.  In the equivalent-linear methodology the soil data are utilized directly and, 
because at each iteration the problem is linear and the material properties are frequency 
independent, the damping is rate independent and hysteresis loops close. 
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Careful validation exercises between equivalent-linear and fully nonlinear formulations 
using recorded motions from 0.05 to 0.50g showed little difference in results (EPRI, 
1993).  Both formulations compared very favorably to recorded motions suggesting both 
the adequacy of the vertically propagating shear-wave model and the approximate 
equivalent-linear formulation.  While the assumptions of vertically propagating shear-
waves and equivalent-linear soil response certainly represent approximations to actual 
conditions, their combination has achieved demonstrated success in modeling 
observations of site effects and represent a stable, mature, and reliable means of 
estimating the effects of site conditions on strong ground motions (Schnabel et al., 1972; 
Silva et al., 1988; Schneider et al., 1993; EPRI, 1993). 
 
To accommodate both uncertainty and randomness in dynamic material properties, 
analyses are typically done for the best estimate shear-wave velocity profile as well as 
upper- and lower-range profiles.  The upper- and lower-ranges are usually specified as 
twice and one-half the best estimate shear-wave moduli.  Depending upon the nature of 
the structure, the final design spectrum is then based upon an envelope or average of the 
three spectra. 
 
For vertical motions, the SHAKE code is also used with compression-wave velocities and 
damping substituted for the shear-wave values.  To accommodate possible nonlinear 
response on the vertical component, since modulus reduction and hysteretic damping 
curves are not generally available for the constrained modulus, the low-strain Poisson's 
ratio is usually fixed and strain compatible compression-wave velocities calculated using 
the strain compatible shear moduli from the horizontal component analyses combined 
with the low-strain Poisson's ratios.  In a similar manner, strain compatible compression-
wave damping values are estimated by combining the strain compatible shear-wave 
damping values with the low-strain damping in bulk or pure volume change.  This 
process assumes the loss in bulk (volume change) is constant or strain independent.  
Alternatively, zero loss in bulk is assumed and the equation relating shear- and 
compression-wave damping (ηS and ηP) and velocities (VS and VP)    
 
 

 , 
V
V 

3
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S
P �� �           (B-1) 

 
 
is used. 
 
 
RVT Based Computational Scheme 
 
The computational scheme employed to compute the site response for this project uses an 
alternative approach employing random vibration theory (RVT).  In this approach the 
control motion power spectrum is propagated through the one-dimensional soil profile 
using the plane-wave propagators of Silva (1976).  In this formulation only SH waves are 
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considered.  Arbitrary angles of incidence may be specified but normal incidence is used 
throughout the present analyses.  
 
In order to treat possible material nonlinearities, an RVT based equivalent-linear 
formulation is employed.  Random process theory is used to predict peak time domain 
values of shear-strain based upon the shear-strain power spectrum.  In this sense the 
procedure is analogous to the program SHAKE except that peak shear-strains in SHAKE 
are measured in the time domain.  The purely frequency domain approach obviates a time 
domain control motion and, perhaps just as significant, eliminates the need for a suite of 
analyses based on different input motions.  This arises because each time domain analysis 
may be viewed as one realization of a random process.  Different control motion time 
histories reflecting different time domain characteristics but with nearly identical 
response spectra can result in different nonlinear and equivalent-linear response. 
 
In this case, several realizations of the random process must be sampled to have a 
statistically stable estimate of site response.  The realizations are usually performed by 
employing different control motions with approximately the same level of peak 
accelerations and response spectra. 
 
In the case of the frequency domain approach, the estimates of peak shear-strain as well 
as oscillator response are, as a result of the random process theory, fundamentally 
probabilistic in nature.  For fixed material properties, stable estimates of site response can 
then be obtained with a single run. 
 
In the context of the RVT equivalent-linear approach, a more robust method of 
incorporating uncertainty and randomness of dynamic material properties into the 
computed response has been developed.  Because analyses with multiple time histories 
are not required, parametric variability can be accurately assessed through a Monte Carlo 
approach by randomly varying dynamic material properties.  This results in median as 
well as other fractile levels (e.g. 16th, mean, 84th) of smooth response spectra at the 
surface of the site.  The availability of fractile levels reflecting randomness and 
uncertainty in dynamic material properties then permits a more rational basis for selecting 
levels of risk. 
 
In order to randomly vary the shear-wave velocity profile, a profile randomization 
scheme has been developed which varies both layer velocity and thickness.  The 
randomization is based on a correlation model developed from an analysis of variance on 
about 500 measured shear-wave velocity profiles (EPRI, 1993; Silva et al., 1997).  Profile 
depth (depth to competent material) is also varied on a site specific basis using a uniform 
distribution.  The depth range is generally selected to reflect expected variability over the 
structural foundation as well as uncertainty in the estimation of depth to competent 
material. 
 
To model parametric variability for compression-waves, the base-case Poisson's ratio is 
generally fixed.  Suites of compatible random compression- and shear-wave velocities are 
then generated based on the random shear-wave velocities profiles. 
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To accommodate variability in modulus reduction and hysteretic damping curves on a 
generic basis, the curves are independently randomized about the base case values.  A log 
normal distribution is assumed with a σln of 0.35 at a cyclic shear strain of 3 x 10-2%.  
These values are based on an analysis of variance on a suite of laboratory test results.  An 
upper and lower bound truncation of 2σ is used to prevent modulus reduction or damping 
models that are not physically possible.  The random curves are generated by sampling 
the transformed normal distribution with a σln of 0.35, computing the change in 
normalized modulus reduction or percent damping at 3 x 10-2% shear strain, and applying 
this factor at all strains.  The random perturbation factor is reduced or tapered near the 
ends of the strain range to preserve the general shape of the median curves (Silva, 1992). 
 
To model vertical motions, incident inclined compression- and shear (SV)-waves are 
assumed.  Raytracing is done from the source location to the site to obtain appropriate 
angles of incidence.  In the P-SV site response analyses, linear response is assumed in 
both compression and shear with the low-strain shear-wave damping used for the 
compression-wave damping (Johnson and Silva, 1981).  The vertical and horizontal 
motions are treated independently in separate analyses.  Validation exercises with a fully 
3-D soil model using recorded motions up to 0.50%g showed these approximations to be 
validate (EPRI, 1993).   
 
In addition, the site response model for the vertical motions has been validated at over 
100 rock and soil sites for three large earthquakes:  1989 M 6.9 Loma Prieta, 1992 M 7.2 
Landers, and the 1994 Northridge earthquakes.  In general, the model performs well and 
captures the site and distance dependency of vertical motions over the frequency range of 
about 0.3 to 50.0 Hz and the fault distance range of about 1 to 100 km. 
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