

Development of Risk-Based Seismic Design Criterion

Robert P. Kennedy

Prepared for the

U. S. Nuclear Regulatory Commission (USNRC)

MAY 18, 2004

Risk-Based Approach Used to Establish Design-Basis Response Spectrum

- Develops a Risk-Consistent Design Response Spectrum (DRS) as opposed to a Relative Uniform Hazard Response Spectrum (UHRS), based upon Median Exceedance Frequency for 29 Sites
- Approach Implements Risk Consistent Regulatory Goals
- Conservatively Aimed at Achieving a Target Performance Goal for Onset of Significant Inelastic Deformation (i.e., Conservative Surrogate for Unacceptable Seismic Performance)

Risk vs. Hazard Approach

- Risk-based approach integrates seismic hazard curve and SSC fragility curve
 - Hazard or demand curve from PSHA
 - Fragility curve defined by conservatism in structural capacity achieved by Standard Review Plan requirements
- Integration of two curves gives seismic risk: probability that demand exceeds capacity; i.e., unacceptable performance
 - Objective is to set Design Response Spectrum (DRS) to achieve mean 10⁻⁵ probability of unacceptable performance of SSC

Risk vs. Hazard Approach

- Benefits
 - Provides risk consistent safety evaluation (avoids risk differences as hazard slope changes by creating site-specific DRS)
 - Achieves seismic risk consistent with risk for population of existing plants
 - Achieves relative-risk seismic design based on existing PRAs, analogous to relative-hazard seismic designs achieved by RG 1.165

Four Required Steps

- STEP #1:Define Target Seismic Risk Goal PFT
to Be Achieved by Seismic Design
Criterion_Preferably:Define in Terms of Mean Annual
- Preferably: Define in Terms of Mean Annual Frequency of Unacceptable Seismic Performance

Selected: P_{FT} = Mean 1x 10⁻⁵/yr Against Onset of Significant Inelastic Behavior for Structures, Systems, or Components (SSCs)

Basis: 1. Mean Seismic Core Damage Frequencies (CDF) Reported for Existing Nuclear Power Plants Average More Than Mean 1x10⁻⁵/yr

- 2. Onset of Significant Inelastic Behavior of an SSC is Generally Far Short of Failure
- 3. Core Damage Frequency is Typically Less Than Highest SSC Failure Frequency
- 4. Therefore, Seismic-Induced Core Damage Frequency Is Expected To Be Significantly Less Than Mean 1x10⁻⁵/yr

Mean Seismic CDF for Plants Performing Seismic PRA from Table 2.2 from NUREG 1742

Plant	Mean Seismic CDF (EPRI)
South Texas Project 1 & 2	1.90E-07
Nine Mile Point 2	2.50E-07
LaSalle 1 & 2	7.60E-07
Hope Creek	1.06E-06
D.C. Cook 1 & 2	3.20E-06
Salem 1 & 2	4.70E-06
Oyster Creek	4.74E-06
Surry 1 & 2	8.20E-06
Millstone 3	9.10E-06
Beaver Valley 2	1.03E-05
Kewaunee	1.10E-05
McGuire 1 & 2	1.10E-05
Seabrook	1.20E-05
Beaver Valley 1	1.29E-05
Indian Point 2	1.30E-05
Point Beach 1 & 2	1.40E-05
Catawba 1 & 2	1.60E-05
SanOnofre 2 & 3	1.70E-05
Columbia (Washington Nuclear Project No. 2) TMI 1	2.10E-05 3.21E-05
Oconee 1, 2, and 3	3.47E-05
Diablo Canyon 1 & 2	4.20E-05
Pilgrim 1	4.20E-05
Indian Point 3	5.90E-05
Haddam Neck	2.30E-04
Median of Mean Seismic CDF Value (EPRI Results)	1.20E-05
Mean of Mean Seismic CDF Value (EPRI Results)	2.50E-05

* CDF Values reported are for EPRI hazard curves. LLNL hazard curves produced substantially higher CDF results.

STEP #2: Establish Seismic Hazard Exceedance Frequency H_D at Which Uniform Hazard Response Spectrum UHRS Is To Be Defined

 $H_D = R_P * P_{FT}$

 R_P = Probability Ratio

P_{FT} = Mean 1 x 10⁻⁵/yr. Onset of Significant Inelastic Behavior

Preferably: $2 \le R_P \le 20$

Selected: $R_P = 10$

Result: $H_D = Mean 1 \times 10^{-4}$

STEP #3: Establish the Required Degree of Conservatism of Deterministic Seismic Acceptance Criterion

- Requirement: Seismic Acceptance Criterion Defined by NUREG-0800 Standard Review Plan and Reg Guides
- Premise: Seismic Demand and Structural Capacity Evaluations Have Sufficient Conservatism to Achieve Both of the Following:
 - Less Than about a 1% Probability of Unacceptable Performance for the Design Basis Earthquake Ground Motion, and
 - 2. Less Than about a 10% Probability of Unacceptable Performance for a Ground Motion Equal to 150% of the Design Basis Earthquake Ground Motion

Justification: 1. Past Seismic PRA and Seismic Margin Studies Have Shown that SSCs Designed to Standard Review Plan Requirements Achieve at Least these Levels of Conservatism

> 2. Additional Justifications for Above Premises are Presented in Reference Documents

Resulting Generic Seismic Fragility Curves

Definitions:

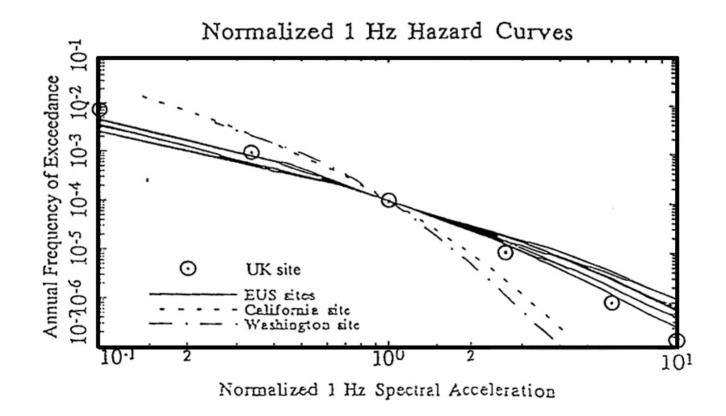
- DRS = Design Basis Earthquake Response Spectrum (Uniform Risk Spectrum)
 - C_P = Seismic Capacity Corresponding to P Probability of Unacceptable Performance
 - $C_P = F_P * DRS$
 - F_P = Seismic Margin Factor Corresponding to P Probability of Unacceptable Performance
 - β = Logarithmic Standard Deviation of Fragility

Example:

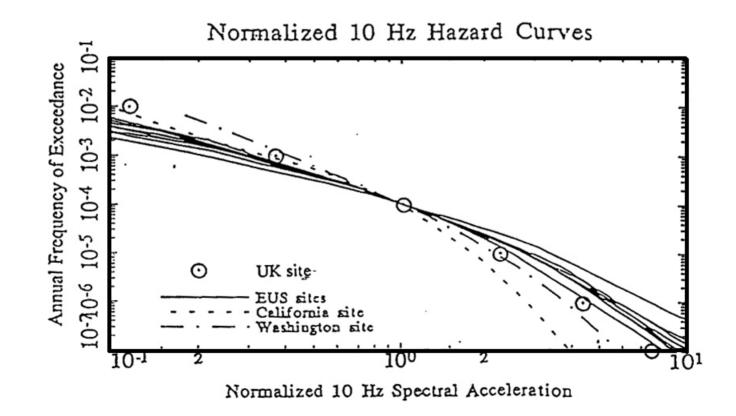
C_{1%} = HCLPF Seismic Capacity Corresponding to 1% Probability of Unacceptable Performance

Result of Premised Conservatism

Minimum F_P Seismic Margins


β	F _{1%}	F _{5%}	F _{10%}	F _{50%}
0.30	1.10	1.35	1.50	2.20
0.40	1.00	1.31	1.52	2.54
0.50	1.00	1.41	1.69	3.20
0.60	1.00	1.50	1.87	4.04

*Minimum seismic margin; premise-design performed to Standard Review Plan and Regulatory Guides


- **STEP #4:** Define Design-Basis Earthquake Response Spectrum (DRS)
 - DRS = DF * UHRS
 - DF = Design Factor
 - DF Function of:
 - Probability Ratio R_P Defined in Step #2
 - Seismic Margin Factor F_P Defined in Step #3 Hazard Curve Slope Ratio A_R
 - A_R = Ratio of Ground Motions Corresponding to Ten-Fold Reduction in Exceedance Frequency
 - A_R Differs at Each Natural Frequency

Four Required Steps (cont.) **STEP #4: Recommend:** For $R_P = (H_D/P_{FT}) = 10.0$ $DF = Maximum (DF_1, DF_2)$ Equation 6: $DF_1 = 1.0$ $DF_2 = 0.60 A_R^{0.8}$

Seismic Hazard Curves Normalized By the Spectral Acceleration Value Corresponding to a 10⁻⁴ Annual Probability

Seismic Hazard Curves Normalized By the Spectral Acceleration Value Corresponding to a 10⁻⁴ Annual Probability (cont.)

For $H_D = Mean 1x10^{-4}$

Calif. Site: $A_R = 1.5$ to 2.25EUS Site: $A_R = 2.25$ to 4.0

Design Factors DF For Various Seismic Hazard Slope Factors A_R

A _R	DF
1.5	1
1.75	1
2	1.04
2.25	1.15
2.5	1.25
2.75	1.35
3	1.44
3.25	1.54
3.5	1.63
3.75	1.73

A _R	DF
4	1.82
4.25	1.91
4.5	2
4.75	2.09
5	2.17
5.25	2.26
5.5	2.35
5.75	2.43
6	2.52

Basis for Design Factor DF

• Approximate Hazard Curve By:

$$H_{(\alpha)} = K_{I} \alpha^{-K_{H}}$$
$$K_{H} = \frac{1}{\log(A_{R})}$$

- Assume Lognormal Fragility Curve for SSC Defined By:
 - $C_{1\%}$ = 1% Probability of Failure Capacity
 - β = Logarithmic Standard Deviation
- Rigorous Closed Form Evaluation for Required DF

$$DF = \frac{\left[R_{P}e^{-f}\right]^{1/K_{H}}}{F_{1\%}}$$

f = 2.326K_Hβ-½(K_Hβ)²

Design Factor DF Values Required To Achieve A Probability Ratio $R_P = 10$

A _R		DF			
	$\beta = .3$	$\beta = .4$	$\beta = .5$	$\beta = .6$	Eqn (6)
1.5	0.88	0.93	0.95	1.03	1.0
1.75	0.96	0.96	0.91	0.91	1.0
2	1.05	1.03	0.95	0.9	1.04
2.25	1.16	1.11	1	0.93	1.15
2.5	1.27	1.21	1.07	0.97	1.25
2.75	1.38	1.3	1.14	1.03	1.35
3	1.50	1.4	1.22	1.08	1.44
3.25	1.61	1.5	1.3	1.14	1.54
3.5	1.73	1.6	1.38	1.21	1.63
3.75	1.84	1.7	1.46	1.27	1.73
4	1.96	1.8	1.54	1.34	1.82
4.25	2.07	1.9	1.62	1.4	1.91
4.5	2.19	2.01	1.7	1.47	2.0
4.75	2.30	2.11	1.79	1.54	2.09
5	2.42	2.21	1.87	1.6	2.17
5.25	2.54	2.31	1.95	1.67	2.26
5.5	2.65	2.42	2.04	1.74	2.35
5.75	2.77	2.52	2.12	1.8	2.43
6	2.88	2.62	2.2	1.87	2.52

Recommended Eqn. (6) DF Factors Are Conservatively Biased on Average

(300.340c.083)

Individual SSC Seismic Risk R_{FC} Obtained Using Eqn. (6) Design Factors

(P_{FC} values shown should be multiplied times $0.1*H_D$)

A _R	P _{FC}					
	$\beta = .3$	$\beta = .4$	β =.5	$\beta = .6$		
1.5	0.81	0.67	0.76	1.2		
1.75	1.08	0.84	0.69	0.68		
2	1.03	0.95	0.72	0.61		
2.25	1.03	0.92	0.68	0.55		
2.5	1.04	0.92	0.68	0.53		
2.75	1.06	0.92	0.69	0.54		
3	1.08	0.93	0.7	0.55		
3.25	1.09	0.95	0.71	0.56		
3.5	1.1	0.96	0.73	0.57		
3.75	1.12	0.97	0.74	0.59		
4	1.13	0.98	0.76	0.6		
4.25	1.14	1	0.77	0.61		
4.5	1.15	1.01	0.78	0.62		
4.75	1.16	1.02	0.79	0.64		
5	1.17	1.02	0.81	0.65		
5.25	1.17	1.03	0.82	0.66		
5.5	1.18	1.04	0.83	0.67		
5.75	1.19	1.05	0.83	0.68		
6	1.19	1.05	0.84	0.68		

• For $H_D = 1 \times 10^{-4}$

 $P_{FC} = 1.2 \times 10^{-5}$ to 0.53 x 10⁻⁵

Demonstration Of Achieved P_F For Actual Hazard Curves Typical Normalized Spectral Acceleration Hazard Curve Values

Hazard	Easter	n U.S.	Calif	ornia
Exceedance	1 Hz	10 Hz	1Hz	10 Hz
Frequency				
H _(SA)	SA	SA	SA	SA
5 x 10 ⁻²	0.014	0.018	0.087	0.046
2×10^{-2}	0.027	0.034	0.13	0.072
1×10^{-2}	0.045	0.055	0.175	0.100
5 x 10 ⁻³	0.07	0.089	0.236	0.139
2×10^{-3}	0.143	0.169	0.351	0.215
1×10^{-3}	0.235	0.275	0.474	0.334
5 x 10 ⁻⁴	0.383	0.424	0.629	0.511
2×10^{-4}	0.681	0.709	0.814	0.762
1×10^{-4}	1.00	1.0	1.0	1.0
5 x 10 ⁻⁵	1.46	1.41	1.23	1.22
2×10^{-5}	2.35	2.13	1.61	1.51
1 x 10 ⁻⁵	3.27	2.88	1.89	1.76
5 x 10 ⁻⁶	4.38	3.65	2.2	2.05
2×10^{-6}	6.44	4.62	2.68	2.42
1 x 10 ⁻⁶	8.59	5.43	3.1	2.72
5 x 10 ⁻⁷	10.34	6.38	3.58	3.06
2 x 10 ⁻⁷	13.21	7.9	4.24	3.56
1 x 10 ⁻⁷	15.9	9.28	4.67	3.84

Individual SSC Seismic Risks P_{FC} Achieved for Representative Hazard Curves

Hazard	UHRS			DRS	SSC Seismic Risk P _{FC} (*10 ⁻⁵)			
Curve								
	SA _{UHRS}	A _R	DF	SADRS	$\beta = 0.30$	$\beta = 0.40$	$\beta = 0.50$	$\beta = 0.60$
EUS 1Hz	1.00	3.27	1.68	1.68	1.09	0.93	0.69	0.52
EUS 10 Hz	1.00	2.88	1.52	1.52	1.03	0.87	0.62	0.46
Calif 1 Hz	1.00	1.89	1.08	1.08	1.04	0.96	0.73	0.61
Calif 10 Hz	1.00	1.76	1.02	1.02	0.84	0.78	0.58	0.48

Other Options Exist For Achieving Performance Goal

 $P_{FT} = Mean 1x10^{-5}/yr$

Options

 $DF = Maximum (DF_1, DF_2)$

 $DF_{2} = 0.6A_{R}^{a}$

Mean H _D	R _P	DF ₁	α	
$2x10^{-4}/yr$	20	1.15	1.10	
$1 \times 10^{-4}/yr$	10	1.0	0.80	- Chosen
5x10 ⁻⁵ /yr	5	0.87	0.50	
4x10 ⁻⁵ /yr	4	0.8	0.40	
$2 \times 10^{-5} / yr$	2	0.67	0.0	

References

- 1. Kennedy, R.P., Establishing Seismic Design Criteria to Achieve an Acceptable Seismic Margin, Plenary 5, Transaction of the 14th International Conference on Structural Mechanics in Reactor Technology (SMiRT), Lyon, France, August 1997
- 2. Kennedy, R.P., *Development of Risk-Based Seismic Design Criterion*, Proceedings of the OECD-NEA Workshop on Seismic Risk, Tokyo, Japan, August 1999
- **3. Draft ASCE Standard,** *Seismic Design Criteria for Structures, Systems, and Components in Nuclear Facilities,* December 2003
- 4. DOE-STD-1020-2002, Natural Phenomena Hazards Design and Evaluation Criteria for Department of Energy Facilities, January 2002
- 5. NUREG/CR-6728, Technical Basis for Revision of Regulatory Guidance on Design Ground Motions: Hazard and Risk Consistent Ground Motion Spectra Guidelines, October 2001