VIPRE-D Topical Report DOM-NAF-2 Information Meeting with NRC

Presenters

- Kerry L. Basehore Director, Nuclear Analysis and Fuel
- Dana M. Knee TA Supervisor, Nuclear Safety Analysis
- Dr. Sama Bilbao y León Nuclear Safety Analysis Engineer and DOM-NAF-2 author
- Kurt F. Flaig Lead Core T/H Engineer

2

Outline

- I. Core Thermal-Hydraulics at Dominion
- II. VIPRE-01 Licensing History
- III. VIPRE-D is VIPRE-01
- IV. DOM-NAF-2 Topical Philosophy
- V. VIPRE-D Modeling

3

- VI. Qualification of VIPRE-D Subchannel Model
- VII. Standards for Core T/H Topical Reports

Current NRC-approved Code and Method

- → COBRA-IIIC/MIT (VEP-FRD-33-A and VEP-NE-3-A)
- → W-3 and WRB-1 CHF Correlations

Current uses of COBRA-IIIC/MIT

- → Statistical & Deterministic DNB FSAR Analyses
- → Steady State & Transient DNB Evaluations
- Develop Reactor Core Safety Limits for DNB Protection
- Basis for Reactor Protection Setpoints (OTDT, OPDT, fdl)
- → Code/correlation DNBR design limits
- → North Anna and Surry Power Stations

- Basis for switching to VIPRE-01
 - Fuel Vendor Independence
 - Industry-wide code with User's Group
 - Capable of analyzing PWRs
 - Capable of analyzing AOA/CIPS
 - Already approved for Westinghouse and AREVA fuel products and CHF correlations

Dominion Plan for VIPRE-01

- Recover UFSAR Chapter 15 DNB analyses & RPS setpoint analyses for North Anna with AREVA fuel
- Replace COBRA-IIIC/MIT for UFSAR Chapter 14 DNB & RPS setpoint analyses for Surry with Westinghouse fuel
- Incorporate additional vendor CHF correlations for advanced fuel products
- Use at other Dominion plants

Dominion Implementation of VIPRE-01

- Compliance with Dominion's 10CFR50
 Appendix B QA Program
- Staff Qualification
 - → 20+ years of core T/H analysis experience
 - → Training on VIPRE-W with W-3 and WRB-1
 - Training on thermal-hydraulic design bases at Westinghouse facilities
 - ➔ In-house training on code enhancements

II. VIPRE-01 Licensing History

 VIPRE-01 developed by Battelle for EPRI from COBRA codes (including COBRA-IIIC/MIT)

→NRC SER dated May 1986

- VIPRE-01 MOD-02
 - →Error corrections and enhancements 1 177
 - →Released April 1989
 - →NRC SER dated October 1993

II. VIPRE-01 Licensing History

• VIPRE-01, MOD-02.1

- → Error corrections and enhancements 178 231
- → Released in May 2001
- → No NRC review required
- Recent VIPRE-01 Approved Topicals
 - → Duke VIPRE-01 + BWU CHF Correlations (2/97)
 - ➔ Westinghouse VIPRE-01 + WRB-1, WRB-2 and WRB-2M CHF Correlations (10/99)
 - → Kewaunee VIPRE-01 + HTP CHF Correlation (9/01)

- Dominion has made <u>NO</u> modifications to the NRC-approved constitutive models, equations, and algorithms in VIPRE-01
- Enhancements made to VIPRE-01 MOD
 2.1 under 10CFR50 Appendix B
 - → Vendor Proprietary CHF Correlations
 - Input/Output customizations to integrate VIPRE-01 with other codes
 - ➔ Incorporate error corrections provided by code custodian after release of VIPRE-01, Mod. 2.1

- Dominion verified that each enhancement did NOT affect any of the original internal models and algorithms present in VIPRE-01
- Dominion process to customize VIPRE-01 is identical to other approved topicals
 - → VIPRE-01 + CHF Correlations + Customizations
 - Verify that additions do not affect any of the original internal models and algorithms

CHF Correlations

- o AREVA BWU-Z (DOM-NAF-2 Appendix A)
- AREVA BWU-ZM (DOM-NAF-2 Appendix A)
- AREVA BWU-N (DOM-NAF-2 Appendix A)
- O AREVA BWU-I
- Westinghouse W-3
- Westinghouse WRB-1

Code Customizations

- Option to apply each CHF correlation at its applicable axial location
- Checks hot channel parameters against range of validity for each CHF correlation
- Increased stacked cases from 30 to 1000
- Increased # of axial nodes from 80 to 201
- Ability to adjust radial power distribution according to partial power multiplier when iterating on power for a given MDNBR

Non-proprietary

o Vendor CHF test data already at NRC

- \odot Fuel specific parameters omitted (FLC, F Δ HE)
- Level of detail comparable to approved
 VIPRE-01 topicals
- Divided in two parts:
 - o Main body VIPRE-01 modeling choices
 - Appendixes code/correlation DNBR design limits for fuel vendor CHF correlations

14

Intended Uses (Section 2.1)

- Statistical & Deterministic DNB FSAR Analyses
 Steady State & Transient DNB Evaluations
 Development of Reactor Core Safety Limits
 Basis for Reactor Protection Setpoints
 Code/correlation DNBR design limits
 Analysis of 14x14, 15x15 and 17x17 fuel in
 - PWR reactors

→North Anna, Surry and plants of similar design

- Compliance with VIPRE-01 SER (Section 2.2)
 - 1. PWR licensing calculations with heat transfer regime up to CHF
 - 2. CHF correlations reviewed and approved by NRC. DNBR design limits will be derived and submitted to NRC for review and approval.
 - 3. Justification for all modeling assumptions
 - 4. Appropriate time steps selected for transient analyses
 - 5. Code maintained within Dominion's 10CFR50 Appendix B Quality Assurance program.

- VIPRE-D Code Description (Section 3)
- VIPRE-D Modeling (Section 4)
- Qualification of Subchannel Model (Section 5)
- Appendix A: DNBR Design Limits for BWU CHF Correlations

V. VIPRE-D Modeling

- Modeling choices described in Section 4 are consistent with industry practice and satisfy SER Restriction #3
- User instructions are not part of a Topical
 VIPRE-01 User Manual fully applicable
 - VIPRE-D manual constructed to describe code enhancements (e.g., how to select the BWU-Z CHF correlation)

V. VIPRE-D Modeling

VIPRE-01 MODEL	SELECTION	DOM-NAF-2
Turbulent Mixing	No momentum mixing ABETA = 0.038	Section 4.5
Axial Friction Losses	McAdams Correlation	Section 4.6
Crossflow Resistance	Idel-Chik Correlation	Section 4.6
Two Phase Flow and Heat Transfer	EPRI Correlations Dittus-Boelter Correlation	Sections 4.8 & 5.4
Run Control Parameters	Default Options with Courant > 1 for transients	Section 4.12

V. VIPRE-D Modeling

Fuel Specific Parameters

- Radial Nodalization Section 4.1 method applicable to 14x14, 15x15 and 17x17 fuel
- Radial Power Distribution Section 4.4 method applicable to 14x14, 15x15 and 17x17 fuel
- OAxial Nodalization
- Fuel Rod Modeling (dummy rod model)
- Form Loss Coefficients (vendor proprietary)
- OCHF Correlation (vendor proprietary)

Engineering Factors (vendor proprietary)

Dominion

- 173 Statepoints from UFSAR Chapter 15 (Section 5.1)
 - → Reactor Core Safety Limits
 - →Axial Offset Envelopes
 - → Rod Withdrawal at Power
 - → Rod Withdrawal from Subcritical
 - → Control Rod Misalignment
 - → Loss of Flow Accident
 - →Locked Rotor
- Main Steam Line Break (Section 5.2)

21

747 3 14

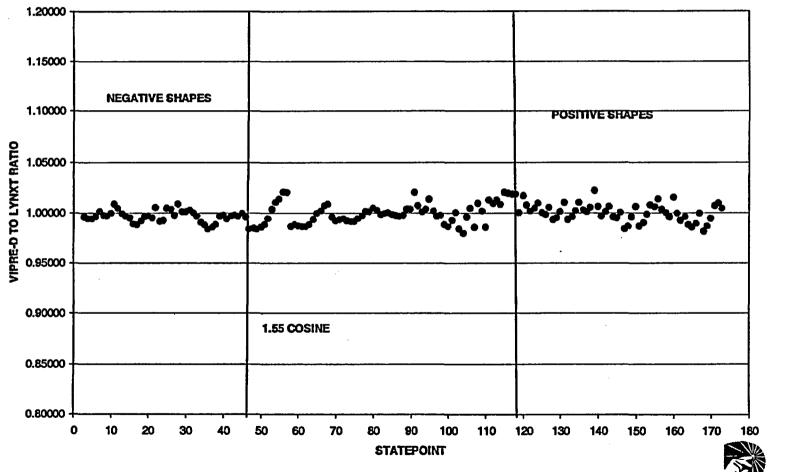
Exercise DNB sensitivity to

→Power level, pressure and temperature

→Axial power shapes

→Elevated Hot Rod Power

→Low Flow


VARIABLE	RANGE	
Pressure [psia]	1860 to 2400	
Power [%]	66 to 135	
Inlet Temperature [°F]	506.6 to 626.2	
Flow [%]	64 to 100	
FΔH	1.49 to 1.945	
Axial Offset [%]	-48.7 to 57.9	

- Benchmarked to the AREVA LYNXT code
 - Average Deviation in MDNBR of 0.14%
 - Maximum Deviation in MDNBR of 2.2%
 - Within 5% uncertainty associated to thermalhydraulic codes

VIPRE-D/LYNXT

24

- Transient calculations (Section 5.3)
 - VIPRE-01 transients in EPRI NP-2511-CCM still applicable
 - VIPRE-D demonstrate model integrity and code capability to process forcing functions
 - o LOFA and RWAP examples
 - Transient MDNBR was rerun as a steady-state statepoint condition --> same result

VII. Standards for Core T/H Topical Reports

- VIPRE-D is VIPRE-01: VIPRE-01 qualification is fully applicable
- DOM-NAF-2 includes expected uses and compliance with VIPRE-01 SER
- Dominion qualification of subchannel models consistent with approved VIPRE-01 topicals
- DOM-NAF-2 format and level of detail consistent with approved VIPRE-01 topicals

VII. Standards for Core T/H Topical Reports

- Dominion develops DNBR design limits from test section data
 - O COBRA/WRB-1
 - o VIPRE-D/BWU (Appendix A)
- NRC expectations for qualification of CHF correlations (Appendix A)

