

July 21, 2004

Vermont Yankee Docket No. 50-271

BVY 04-068

ATTN: Document Control Desk U.S. Nuclear Regulatory Commission Washington, DC 20555-0001

Subject: Vermont Yankee Cycle 24 Startup Test Report

The purpose of this letter is to submit the Vermont Yankee Nuclear Power Station (VY) Cycle 24 Startup Test Report in accordance with section 6.7.A.1 of the VY Technical Requirements Manual.

There are no new commitments being made in this submittal.

If you have any questions or require additional information, please contact me at (802) 258-4236.

Sincerely,

mallmente

James M. DeVincentis Manager, Licensing Entergy Nuclear Operations, Inc. Vermont Yankee Nuclear Power Station

TE2

BVY 04-068 Docket No. 50-271 Page 2 of 2

cc: Mr. Richard B. Ennis, Project Manager Project Directorate I Division of Licensing Project Management Office of Nuclear Reactor Regulation Mail Stop O 8 B1 Washington, DC 20555

ð

Mr. Samuel J. Collins Regional Administrator, Region 1 U.S. Nuclear Regulatory Commission 475 Allendale Road King of Prussia, PA 19406-1415

USNRC Resident Inspector Entergy Nuclear Vermont Yankee, LLC 320 Governor Hunt Road P.O. Box 157 Vernon, Vermont 05354

Mr. David O'Brien, Commissioner Department of Public Service 112 State Street – Drawer 20 Montpelier, Vermont 05620-2601

STARTUP TEST REPORT - VERMONT YANKEE CYCLE 24

In accordance with Vermont Yankee Technical Requirements Manual Section 6.7.A.1, this Startup Test Report is being submitted as a result of the following changes implemented in Cycle 24 which differ from Cycle 23:

- 1. Improved core physics code (PANAC11 TGBLA 06) NRC approved methodology
- 2. Reduced SLMCPR Uncertainty NRC approved methodology
- 3. Process 8 cladding Process enhancement
- 4. Improved LHGR limits for GE13 fuel GE methodology improvement
- 5. ARTS-MELLLA NRC approved methodology
- 6. Revised thermal limit calculation part of ARTS
- 7. Statistically Based Rod Withdrawal Error Analysis GE methodology improvement part of ARTS

In accordance with USFAR Section 13.5.5, the following information is being provided in this Startup Test Report.

Overview:

~

Vermont Yankee Cycle 24 initial startup commenced on May 3, 2004 following a 30-day outage for refueling and maintenance activities. Steady state, full power conditions were reached on May 8, 2004.

The core loading for Cycle 24 consists of:

Quantity	Fuel	Description	Cycle
	Туре		loaded
8	GE-9B	GE9B-P8DWB335-10GZ-80U-150-T6	17
12	GE-9B	GE9B-P8DWB335-11GZ-80U-150-T6	17
88	GE-13	GE13-P9DTB386-11G4.0/1G3.0-100T-146-T6-3958	22
16	GE-13	GE13-P9DTB225-NOG-100T-146-T6-2571	22B
92	GE-14	GE14-P10DNAB394-7G5.0/6G4.0-100T-150-T6-2566	23
16	GE-14	GE14-P10DNAB394-8G5.0/6G4.0-100T-150-T6-2595	23
20	GE-14	GE14-P10DNAB394-12G5.0-100T-150-T6-2596	23
32	GE-14	GE14-P10DNAB426-16G6.0-100T-150-T6-2682	24
44	GE-14	GE14-P10DNAB390-14GZ-100T-150-T6-2683	24
40	GE-14	GE14-P10DNAB388-17GZ-100T-150-T6-2684	24

For Cycle 24, VY replaced 136 GE13 and GE9B fuel bundles with 116 new GE14 fuel bundles and 20 previously discharged GE9B fuel bundles.

Beginning of Cycle 24 start-up commenced on May 3, 2004 with steady-state full power conditions reached on May 8, 2004.

Core Verification:

2

An as-loaded Cycle 24 core map is included as Figure 1. Details of the Cycle 24 core loading are contained in the Global Nuclear Fuels (GNF) document 0000-0026-5068-CMR, Rev. 0, "Cycle Management Report for Vermont Yankee Nuclear Power Station Cycle 24," March 2004 (PROPRIETARY).

Vermont Yankee personnel verified the final as-loaded core loading in accordance with Vermont Yankee procedure OP-1411, "Core Verification." Three separate criteria were checked:

- 1. Proper bundle seating was checked, corrected as necessary and verified.
- 2. Proper bundle orientation, channel fastener integrity and upper tie plate cleanliness were checked and verified.
- 3. Proper core loading was verified by checking the serial number of each bundle against the final approved core-loading map.

This verification was performed independently by two separate teams.

Process Computer Data Checks:

Process computer data evaluation checks were completed in accordance with OP- 5401 "Data Shuffling and Data Checks for Process Computer at BOC." These checks included various manual and computer checks of the new databank.

Control Rod Drive System Testing:

Eight control blades and six control rod drives were replaced during RFO24. Control rod coupling and withdrawal speed verification was completed satisfactorily for all 89 control rods per OP-4111, "Control Rod Drive System Surveillance."

Strongest rod out sub-critical check was performed satisfactorily after the independent review of the core verification was completed. This was performed in accordance with OP-4430, "Reactivity Anomalies/Shutdown Margin Check."

Single rod scram timing was performed in accordance with OP-4424, "Control Rod Scram Testing and Data Reduction". Testing of all 89 control rods was completed during the Reactor Hydrostatic Test in accordance with Vermont Yankee Technical Specification Section 4.3.C.1. All insertion times were within the limits defined in the Vermont Yankee Technical Specifications Section 3.3.C.1. In accordance with Vermont Yankee Technical Specification Section 4.3.C.2, the results of the testing are included in Table 1.

Shutdown Margin Testing:

The cold shutdown margin calculation was performed using data collected during the in-sequence critical and information provided in GNF document 0000-0026-5068-CMR, Rev. 0, "Cycle Management Report for Vermont Yankee Nuclear Power Station Cycle 24," March 2004 (PROPRIETARY).

In accordance with Vermont Yankee Technical Specifications (3.3.A.1), the minimum shutdown margin required is 0.38% $\Delta k/k$. The actual demonstrated shutdown margin was 1.291% $\Delta k/k$ as determined in accordance with OP-4430 "Reactivity Anomalies/Shutdown Margin Check."

In-Sequence Critical Eigenvalue:

The in-sequence critical test was performed as part of the reactor startup. Control rod sequence 24-A2-(1) was used to perform the in-sequence critical test. Criticality was achieved on the 10^{th} (last) rod in group 2 (26-15) at notch position 36. The moderator temperature was 152.6 °F.

The actual critical rod pattern and the prediction agreed within +/- 1% Δk per OP-4430 "Reactivity Anomalies/Shutdown Margin Check."

LPRM Operability Check:

Four NA300 local power range monitors (LPRM) were replaced during RFO24. The new LPRM initial operating current was set in accordance with OP-1408, "LPRM Removal and Replacement" and electrically checked per OP-5307 "Electrical Checkout of Neutron Monitoring Detectors."

LPRM connection verification and hi and low trip alarm set points were performed satisfactorily in accordance with OP-4406, "LPRM Calibration and Functional Check".

The local power range monitors were calibrated at approximately 100% core thermal power (CTP) in accordance with OP-2425, "Core Power Distribution Calculation Utilizing the Traversing In-Core (TIP) System."

APRM Calibration:

In accordance with Vermont Yankee Technical Specification Section 2.1.A, Average Power Range Monitor (APRM) gain adjustments were performed as required in accordance with OP-4400 "Calibration of the Average Power Range Monitoring System to Core Thermal Power." In addition, APRM gain adjustments were performed throughout the reactor startup.

TABLE 1

CONTROL ROD SCRAM TESTING RESULTS VERMONT YANKEE BEGINNING OF CYCLE 24

Scram Number: <u>210</u> Single Rod Scram testing performed on April 26, 2004 Reactor Pressure: <u>1020 Pisa</u> Reactor Power: <u>0%</u>

Å

r

Full Core Average - Number of Rods Averaged: 89

Dropout Positio	n Avg. So	cram Time	Admin. Limit	Pass/Fail				
46	0.2	291	0.347	PASS				
Dropout from Notch Position	Average Scram Insertion Time	Criteria 3.3.C.1.1	Pass /Fail	Tech. Spec Criteria 3.3.C.1.2	Pass/Fail			
46	0.291	0.358	PASS	0.358	PASS			
36 0.794		0.912	PASS	1.096	PASS			
		1.468	PASS	1.860	PASS			
6	2.405	2.686	PASS	3.419	PASS			

Slowest 2X2 Average Summary for Each % Insertion *

Dropout Position	2 X 2 Ave	rage * A	Admin. Limit	Pass/Fail				
46	0.299		0.368	PASS				
Notch Number	Insertion time					Tech. Spec. Criteria 3.3.C.1.2	Pass/ Fail	
46	0.299	0.379	PASS	0.379	PASS			
36	0.813	0.967	PASS	1.164	PASS			
26	1.343	1.343 1.556		1.971	PASS			
06	2.474	2.848	PASS	3.624	PASS			

* The 2X2 Averages consist of the slowest arithmetic average of the three fastest rods in a 2X2 array.

Slowest Single Rod

Dropout Position	Rod Id.	Scram Time	Tech. Spec. Criteria 3.3.C.2.	Pass/ Fail

6	06-23	2.691	7.000	PASS

TABLE 2

CORE AVERAGE AXIAL POWER DISTRIBUTION COMPARISON BETWEEN PROCESS COMPUTER (3D MONICORE) AND SIMULATE-3 VERMONT YANKEE BEGINNING OF CYCLE 24

Node	<u>3D</u>	<u>Simulate</u>
25	0.082	0.090
24	0.214	0.220
23	0.397	0.370
22	0.511	0.470
21	0.595	0.540
20	0.657	0.600
19	0.706	0.650
18	0.757	0.700
17	0.787	0.720
16	0.820	0.760
15	0.892	0.840
14	1.064	1.000
13	1.151	1.100
12	1.253	1.220
11	1.335	1.300
10	1.385	1.370
9	1.453	1.470
8	1.518	1.540
7	1.554	1.600
6	1.603	1.680
5	1.635	1.720
4	1.611	1.710
3	1.481	1.580
2	1.146	1.240
1	0.392	0.350

TABLE 3

RELATIVE RADIAL POWER DISTRIBUTION COMPARISON BETWEEN PROCESS COMPUTER (3D MONICORE) AND SIMULATE-3 VERMONT YANKEE BEGINNING OF CYCLE 24

<u>Ring</u>	<u>3D</u>	<u>Simulate</u>					
1	0.935	0.929					
2	1.347	1.368					
3	1.172	1.201					
4	1.138	1.142					
5	1.120	1.115					
6	0.673	0.655					

2 -

							V DI U		*****		010		1 00		211							
44									YJ5329	YJZ336	YJZ321	YJZ288	¥JZ300	YJ5328								
42								YIZ294	AL301	A.CSZS	¥JZ308	VJZ282	ice in	JLC562	Y)Z301]						
40					YJ5332	YJZ322	YJZ334	172270	JLL753	JLC\$21	jLL757	JLL758		JLL754	YJZ326	YJZ320	YJZ287	YJ5340				
38				775331	YJZ356	JLC309	JLC537	JLL761	i an		AC\$85				JLL762	JLC538	JLC510	YJZ329	<u>Y</u> J5334			
36			Y]5341	YJZ333	JUL785	AC\$45	JLL765	HCS49		porto.			1424		JLCSSO	JLL766	JLC546	jLL785	YJZ330	YJS336		
34			YJZ307	JLC569	JLC573	JL.789	JLC533		JLC517	JLL793	JLE306	JLE308	111.761	JLC518		JLC534	JLL 790	JLCS74	JLC570	¥JZ286		
32			YJZ299	JLC557	JUL 769				ALLEOS		ji.i,809	11.810		JLL806	JLC506	ŧ.	Ante	JLL770	A.C558	¥JZ340		
30		YJZ341	YJZ269	JLL773	25377		A CSUS	RLEIS	Y)Z311	YJZ278	jle298	JLE207		YJZ312	JLL814	jl.CS86		JUC378	JLL774	YJZ328	YJZ318	
28	YJ5325	AC531	JUL777			للأدعار	ALS 01	¥)Z276	YJZ351		1589486 JEE826	1000 C		YJZ350	Y)2275	HLLBO2	بددعته			ju.778	JLCSBZ	YJ\$324
26	YJZ297	AC513	JLC 589			KL797		102280			jLC\$29	jl.C830		1997	YJZ277		JLL798			AC\$90	JLC514	Y)Z344
24	¥JZ337	YJZ281	JL[78]	4		JLE305	JLL817	JLESTO	JLL825	JLC541	¥JZ349	Y]2274	1.517	JLL826	JLE312	jirra ja	JLE307		JLC594	JU.782	YJ2284	YJZ316
22	YJZ333	YJZ319	JLL784	JLC595		JLE302	JLL870	JLE200	1.1.828	ACS43	¥JZ273	Y)Z323	1584	JLL827	JLE311	AL 819	106341		ji.cs96	JLL.783	VJZ315	YJZ339
20	YJZ298	BC515	JLCS91		11775	JLL800	1.16.57.1.9	VJZ279	1.241		JLCS3))LC\$32			YJZ289	1 e. 3	JLL799	1+/1		JLC592	JLCS 16	YJZ345
18	YJS322	,ILC583	JL1.780			ACSSS	ji.1.804	172355	Y)Z352	.	ji.1.824	JLL823		YJZ324	V)Z353	JLL 803	ACSSS			јц779	AC284	YJ5327
16		YJZ304	YJZ327	JL1776	ILCS79		A.C587	11.81¢	YJZ310	YJZ292	JLEBOO	JLE309	VJZ291	YJZ309	JLL 81 5	#C288	n a gla (r 1 a gla (r 1 mast	AC\$10	JLL775	Y)Z271	YJZ314	
14			YJZ347	JLCS59	um			1.1	111808	ion:	JLLE12	JLLAIT		JLL807	JLCSOS			JUL771	1 <u>1.C 560</u>	VJZ203		
12			¥JZ343	JLC571	JLC575	#1792	A.CS35			JL1.796	JLE304	JLE303	ALL S	JLCS20		RC536	JLL791	JLC376	JLC572	Y)Z335		
10			YJ5348	YJZ346	11.782	BC347	AL768	JLC551					14 [[[]	2 	JLCS52	JL1767	8.C348	JLL787	YJZ354	YIS33S		
8				Y)5338	YJZ344	JLCSII	JLC539	JL 764		40.22	RC367	AC\$01			JL1763	JLC540	ACS12	YJZ332	¥IS337			
6					¥J5339	YJZ285	YJZ338	¥JZ272	JLL756	hczzy	jl1760	JLL 759	1511	JLL755	¥JZ325	YJZ317	VJZ306	YJ\$349				
4						•		¥JZ305	HC383	JLC\$27	YJZ283	¥JZ295	Kant Kant	LC564	¥JZ296							
2									Y)5323	VIZ342	YJZ303	¥12302	Y/2331	YJ5326								
		-	_	_							• •											
	1	3	5	7	9	11	13	15	17	19	21	23	25	27	29	31	33	35	37	39	41	43
												Core	loading	referen	ce docu	ment:		Cycle 2	4 Core M	lanagem	ent Repr	ort
	V 17 2	69-356	1	0 22. 0				66 h				F			.							
	JLE 2	7-312		C-22B: (E-13 386 GE-13 22	25-NO G	led (16 b	undles)	-			rom	i compa	eted by:		hip Dea		a	/ Mar. 1 det			
ULC 505-598 C-23: GE-14 394-7G5.0/6G4.0 (92 bundles) 								Verified By: Original 1401.03 Signed / Mar. 18, 2004														
	JLL 78	53-784 5-828		C-24: G	E-14 420 E-14 390	5-16G6.0) (32 bur	ncles)								se Ande	_		det			
	¥J5	- 83 P. (C-24: G	E-14 388 E-98 33	3-17GZ (40 bund	les)	bundles	orignially	loaded	in Cycle	17)	1	Co	e We	ght: 7	2.145	51			

FIGURE 1 VERMONT YANKEE CYCLE 24 CORE MAP

2 F 🔸