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Ai)stract

A convection-diffusion model for the averaged flow of a viscous, incompress-
ible magma through an elastic medium is considered. The magma flows through
a dike from a magma reservoir to the Earth’s surface; only changes in dike width
and velocity over large vertical length scales relative to the characteristic dike
width are considered. The model emerges when nonlinear inertia terms in the
momentum equation are neglected in a viscous, low-speed approximation of a
magma flow model coupled to elastic waves in rock.

Stationary- and traveling-wave solutions are presented in which a Dirichlet -
condition is used at the magma chamber; and either a (i) free boundary condi-
tion, (ii) Dirichlet condition, or (iii) choked-flow condition at the moving free-
or fixed-top boundary. A choked-flow boundary condition, generally used in
the coupled elastic wave and magma flow model, is also used in the convection-
diffusion model. The validity of this choked-flow condition is illustrated by
comparing stationary flow solutions of the convection-diffusion and coupled
elastic wave and magma flow model for parameter values estimated for the Tol-
bachik volcano region in Kamchatka, Russia. These free- and fixed-boundary
solutions are subsequently used in the numerical verification and validation of
a novel extension of a conservative, local discontinuous Galerkin finite-element
discretization. The method uses a mixed Eulerian-Lagrangian finite element
near the free boundary and ensures positivity of the mean aperture subject to
a timestep restriction. A simulation of magma flow with quasi-periodic growth
and collapse of a lava dome based on parameter estimates for the Soufriére Hills
Volcano on Montserrat illustrates the meaning of the model and its analysis.

1 Introduction

We consider the dynamics of viscous, incompressible magma through a dike sur-
rounded by host rock. The dike runs from a magma reservoir deep in the rock to



the Earth’s surface. At leading order, the rock is modeled as an elastic medium in
which the dike width is approximated to be proportional to the difference in fluid
pressure and the lithostatic pressure caused by the overlying weight of the rock. In
this relation, the anisotropy of the stresses is explicitly included by assuming the least
principal stress to be horizontal. When changes of the flow over large vertical scales
relative to the width or cross section of the aperture are considered, the flow across
the aperture is locally in viscous equilibrium. For simplicity, we assume the viscosity
to be constant. Hence, the mass and momentum equations averaged over this cross
section yield a convection-diffusion equation after inertia terms in the momentum
equation have been neglected. The resulting model equals the fracture-propagation
model of Pinel and Jaupart (2000) for the limit of isotropic stresses in the rock once
the influence of an edifice load at the surface is neglected. In contrast, our simplified
model is still (asymptotically) valid for small edifice loads and is more amenable to
mathematical analysis.

In particular, stationary and travehng-wave solutions are derived for the convection
diffusion model, either analytically or by numerically solving the relevant ordinary-
differential equations. Solutions are derived for both a free- and fixed-top boundary;
the first describing magma driving its way along a preexisting crack to the surface,
and the latter describing the magma flow for (time-dependent) pressure conditions
at the surface. In both cases, the (time-dependent) pressure condition at the magma
chamber is prescribed. For high velocities, inertial terms become important, and a
momentum and a continuity equation describe the leading-order flow in an elastic
dike. The most appropriate boundary condition at the top appears to be the con-

dition of choked or critical flow at the surface. The speed of the flow then matches ™

the velocity of the elastic waves. Despite the lack of inertial terms, the condition of
criticality at the top also seems appropriate for the convection-diffusion equation: it
could be viewed as the outcome of an analysis in a boundary layer near the surface
of the inertial, elastic-flow equations. Steady-flow solutions aiming to represent an
eruption of the Tolbachik volcano region in Kamchatka, Russia, show that the solu-
tions of both models are nearly equal when the flow is enforced to be critical at the
top (cf. the inertial, elastic-flow solutions in Woods et al., 2004).

These high-resolution exact and numerical solutions are subsequently used to ver-
ify a novel application and extension of a conservative, local discontinuous Galerkin
finite-element method for convection-diffusion equations (building on Cockburn and
Shu, 1998). First, the extended numerical approach uses an upwind flux to ensure
positivity of the mean aperture subject to a timestep restriction and is addition-
ally designed to satisfy Lo-stability for suitable boundary conditions. Second, the
asymptotic solution at the free boundary or front is used as a basis function in the
time-dependent free-boundary element because the solution at this free boundary is
singular and can, therefore, not be matched easily and satisfactorily in any numer-
ical method and by the usual polynomial basis and test functions in discontinuous



Galerkin methods in particular. The free-boundary treatment uses fixed Eulerian ele-
ments away from the free boundary and a mixed Eulerian-Lagrangian element at the
free boundary akin to the flooding and drying approach in Bokhove (2004). Although
in one dimension an entirely Lagrangian treatment is feasible, the presented mixed
Eulerian-Lagrangian elements are better suited for extension to two-dimensional flow
through a magma dike averaged only over its narrow width. The consideration of such
two-dimensional flows through a dike instead of a (nearly) symmetric flow through a
horizontally uniform dike is important for applications in which the influence of local
sources and sinks of magma in a dike needs to be investigated. Such evolving asym-
metric flows in a dike can occur because of heterogeneities in the surrounding host
rock (near the free surface), horizontal pressure distributions in the magma chamber,
or existing subsurface tunnels intersected by a rising magmatic dike.

Verification of the numerical approach is performed by a comparison with the
high-resolution, stationary and traveling-wave solutions for both the free- and fixed-
boundary cases. Finally, validation of the model is performed while simulating the
growth of a lava dome, caused by magma flow through a dike arising from a chamber,
and its collapse when a critical height has been reached. Parameter values are roughly
based on the Soufriére Hills Volcano on Montserrat.

The organization of this paper is as follows: the convection-diffusion model is
introduced in section 2 and the numerical approach is developed in section 3 and
Appendix A. Stationary and traveling-wave solutions are derived in section 4.1, and
a numerical verification and validation is provided in section 4.2 and section 4.3.
Finally, the conclusion is in section 5.

2 Elastic Wall-Fluid Equations

We investigate the flow of an incompressible fluid with a constant density, p,,, through
a vertical aperture of variable width, . The aperture, b, is narrow enough, relative
to the vertical scales being considered, that we consider only the averaged velocity,
u, along the vertical. In that case, the flow profile at cach cross section is assumed to
be close to its viscous equilibrium even though we allow smooth and sufficiently slow
variations in the vertical and in time. The averaged mass and momentum equations
are '

0:(pm b) + 8, (pm bu) =0 (2.1a)

B:(pmu) + 18 (pmu) = —8:p — pm g — 7 pu/b? (2.1b)

with time ¢; vertical coordinate z; magma pressure p; gravitational acceleration g;
and viscosity y. The last, frictional term in (2.1b) matches the friction of an incom-
pressible flow assumed to be in local equilibrium. For a slit, v = 12. These frictional
coefficients follow from considering steady, viscous flow in a planar configuration.



The system is closed by relating the aperture, b, to the pressure in the fluid and the
pressure in the solid at the wall.

In the geophysical application considered, the medium around the aperture is the
host rock. The aperture, b, is then proportional to the difference in the fluid, p, and
wall pressure, p,. A sketch of the configuration is provided in Fig. 1a. Assuming an
elastic response of the rock surrounding the aperture (cf., Pinel and Jaupart, 2000),
we take

b_{f\(p-npr) ifp> kp, (2.2)

- 0 if p< &kp, '

with A describing the elasticity of the host medium. This elastic response is valid
when the aspect ratio between horizontal and vertical length scales, and the aspect
ratio, a/b, of the semi-axes of a thin elliptical fracture are (asymptotically) small.
The parameter, 0 < k¥ < 1, is introduced because the pressure in the rock does not
have to be isotropic, which means the horizontal stresses, which cause the opening or
closing of the dike, can be smaller than the vertical one, and k will denote the ratio
between the horizontal and the vertical stresses. We assume p, to be in lithostatic
balance

0:pr = —pr g (2.3)

with p, = p,(z) the density of the rock.
Hence, from (2.1a)-(2.1b) and (2.3), we obtain

Ob+8,(bu) =0 A
1 \ (2.4)
Ou+ud,u= —p—X6,b+ (K pr — Pm) 9/ pm — v LU/ pmb®.

It is a system that supports elastic waves with speed c. = 1/b/(pm ) (see, e.g.,
Whitham, 1974). The flow of magma in the dike is generally subcritical with 0 <
u < c., except at the Earth’s surface where it is generally modeled to be critical (i.e.,
with u = ¢).

2.1 Elastic Convection-Diffusion Equations

When the flow is viscously dominated, we can ignore the inertia term on the left-hand
side of the momentum equation, (2.1b) or (2.4) and use (2.2) and (2.3) to obtain
b? gb?
= —— — - 2.

u YA 9.b + o (K pr — pm) (2.5)
with p,, constant but with p, = p.(z) the variable density of the host rock. After
combining (2.5) with the mass equation, (2.1a), we arrive at the following convection-
diffusion equation

B+, (ab® — B3 8,b) = 0 (2.6)



Figure 1: Configuration sketch of the geophysical application with a magma chamber,
dike of aperture, b(z), and lava dome. The ambient pressure, pr, is atmospheric.

with the dimensional expressions for @ = a(z) and nonnegative 3 given by

a(z) = g [kpr(2) = pm]/(yp) and  B=1/(ypA) >0. (2.7)

This convection-diffusion equation is essentially equivalent to the the fracture prop-
agation model of Pinel and Jaupart [2000, their equation (4.11)] when the edifice
load caused by the weight of a lava dome above a preexisting crack in their model is
considered sufficiently (or asymptotically) small and, hence, is ignored. The elasticity
of the medium is then A = a (1 — v)/G for a dike or fracture of elliptical cross section
with G ~ 1.12510° Pa as the rigidity, v ~ 0.25 as Poisson’s ratio, and a =~ 100 m as
the long semi-axis of the elliptical crack (cf., Pinel and Jaupart, 2000). To ignore the
edifice load, the appropriate asymptotic number is the aspect ratio of the height of the
lava dome versus the depth of the dike. For a lava dome height of A, = 100 — 1000 m
and a total conduit depth of H = 3 — 10 km, this ratio lies between 0.01 and 0.333.
Pinel and Jaupart (2000) considered the case in which the ratio of the semi-axes of
the ellipse is 1:100, which results in the symmetric dike model used presently.

After scaling the convection-diffusion equation (2.6) using b = Dy b',t = Tyt', z =
Hyz',H = Hy H', and Ty = v A H?/ D3 and dropping the primes, we find (2.6) with
(dimensionless) f = 1 and a(z) = gk pr(2) — pm) A Ho/Dy. Typical variables are
provided in Table 1 which results in a range o = (—25, 50) with typically o = (0.1, 1).

We assume that v > 0 so the boundary at z = 0 is an inflow boundary. The
dimensionless flow domain, Qy C Q = {2z € (0, H)}, provided b(z,t) > 0 and may
be smaller when the dike is closed so b = 0. We consider the following combinations
of boundary conditions. (i) The pressures at the magma chamber and the exit, and
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Variable Value | Unit
g 9.81 m/s®
K 0.95 -~
Pr 2,500 — 2,900 | kg/m®
Pm 2,500 kg/m?
A 1078 —-10"% | m2s%/kg
D, (dike) 05—2 m
Dy (conduit) 5—10 m
Ho 1-10 km
a (dike) (~25,50) -

Table 1: Typical values of the variables introduced.

hence the bottom and top width, are specified yielding Dirichlet boundary conditions,
b(0,t) = bp(t) and b(H,t) = br(t). (ii) The pressure at the magma chamber is
specified, b(0,t) = bp(t), and the flow at the exit is critical

u(H,t) =v/br/(pmA) (dimensional) or u(H,t) =~.vb (dimensionless) (2.8)

with 7. = \/A/pm Y uHo/D0 (iii) The pressure at the magma chamber is specified,
b(0,t) = bp(t), and there is a free boundary at z = 2,(t) < H where b(2.(t),t) = 0.
At the free boundary

42 (0)/at = (1) = u(er(0), ) = ~B1go(6? D) (29)

The free boundary in case (iii) will evolve into case (i) or (ii) when it reaches the exit.
This exit position at z = H(t) may be time dependent when a lava dome is growing
or collapsing. As initial condition, we have b(z, 0) = b;(2).

Next, we investigate what happens at such a free boundary. A front at z = 2,(t)
may exist where the aperture, b = 0, with b > 0 for an interval, 0 < z < z.(2). When
bl 0 as z 1 z.(2), the velocity limits to

. T 2 2 —
léﬂ,lu = ‘é{{,‘(“b B b°9;b) = u,(t). (2.10)

Because the velocity, u, must be finite, the slope of the aperture at the front has to be
infinite or vertical. The solution Ansatz at the front is that b = Dy [z,(t) — z]'/® with
Dy = Dy(2) constant in space, giving a finite frontal velocity, u.(t). Alternatively,
consider a boundary layer with scaled coordinate, 7 = (2, — 2)/e¢, and time, 7 = t/e,
with € < 1. Applying this change of coordinates in (2.6), expanding b = b(®) 4+ ¢ 5(1) 4+



O(€?), and evaluating at leading order 1/¢? yields

8,5 ‘(’i—i’ = B8,[b®° 5,6 (2.11)
Integration over 7 gives

b© %"’T- — Qs =Bb% 54O, (2.12)

If Q; # 0, the discharge, ub, is finite at the front. The velocity, u, is then infinite
at and large near the front, which is unphysical and mathematically inconsistent.
In the derivation of the advection-diffusion model, the inertia terms were considered
negligible in the momentum equation, (2.1b), but for large velocities these terms
should be included. Hence, we have to consider Q; = 0 to be consistent. Further
integration of (2.12) yiclds the free-boundary condition and the asymptotic aperture
profile at the front:

dz, /4t = u,(t) = %ﬁDg and  b=Do)[n(t)—*  (213)

with integration constant Dy = Dy(t). This asymptotic profile will be used as a time-
dependent basis function in a free-boundary element of the discontinuous Galerkin
finite-element method.

Conservation of mass for b > 0 yields

% /o " bz, 1) dz = (b)smo — (B)|sc, (2.14)

and the mass balance is seen to depend on the inflow and outflow at the boundaries.

3 Finite-Element Discretization

We reformulate (2.6) as follows

Ob+08,F,=0 and Bq+08,F;=0 (3.1)
with fluxes (F1) _
F=ub=(at®+8vhq)b and Fq=-§,3b5/2 (32)
or (F2)
F=ub?=(@b?+Bq)t** and Fi= % Bb°2, (3.3)
This formulation is concisely written as
b +w +8,F =0 (3.4)

with variables % = (b,0) and w! = (0, 8¢), and fluxes F = (F;, F,).
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3.1 Finite elements

We define a tessellation, 7, of N, elements, each denoted by K, in the spatial flow
domain, ; C Q, with boundary 9§2;:

Ne
ﬁ:{Kk:URk=Q and Kank'“—"(Difk;ék’,lSk,k’SNe}; (3.5)

k=1

here K} may be a time-dependent free-boundary edge element when it includes the
front where the aperture, = 0, and K} denotes the closure of K, and such. Element
K, runs from node z; to node zx41, and has a length of | K| = zx41 — 2x. We consider
finite-element discretizations of (3.4) with approximations, wy, = (b, gs) to the state
vector, (b,q), and basis functions, v = (v, v,), to be introduced. The discretization is
such that by, g, and v, 4 belong to the broken space (when K} is not an edge element)

Vi = {v|v|, € P (Ky),k=1,..., N}, (36)

in which P9 (K}) denotes the space of polynomials in K} of degree dp. For edge
elements, b, consists of an asymptotic solution analogous to (2.13).

3.2 Weak formulation

For the moment, we ignore the time dependence of basis and test functions in the
edge clements. We multiply (3.1) by test functions, v = (vb(z),'uq(z)), integrate by
parts for each individual and isolated element, and then add the contribution from
all elements to obtain the following weak formulation

N,
‘ db
E { / v —2 dz + [Fo(zyq) ve(ziyy) — Fo(2d) ve(z)] — / F, azvbdz} =0
K dt K

k=1
N,

g{ %, Bvg qn dz + [Fy(2py,) ve(2iia) — Fy(2) ve(2f)] — Lk F,0,v, dz} =0,
(3.7)

where vp,(25;1) = limy4z, ., Vs o(2,t) and vy q(2) = lim,y,, vsq(2,t). (We only denote
these dependencies explicitly when confusion may arise.) Hence, the fluxes at the
faces arising in elements K are evaluated inside each element.

Let

denote the jump and mean in the quantity, b, for example, at z; with the trace
values b_ = lim,y,, b(2) and by = lim,,, b(z). Consider the flux at a point, zx41.
Because the elements are isolated from one another at this stage, b_ := b(z,,) #
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b(z},,) =: by, and, consequently, the flux F(zp,,) # F(2{,,) in general. The heart
of the discontinuous Galerkin numerical method hinges, therefore, on the choice of
the numerical flux. To enforce communication and conservation of the fluxes between
each element in (3.7), the fluxes F(z}) and F(z;,,) at the faces of Kj are replaced

by numerical fluxes F'(wg, w}) and F(wp,, wy,,).

3.3 Flux formulation

The numerical flux, F(w_,w,), is chosen to (i) be locally Lipschitz, following Cock-
burn and Shu (1998), implying that there is a constant, X > 0, such that

|F(w-,wy) - F(@)] < K max(jw- — al, |wy — al)

for all w_,wy with |w_ — @| and |wy — @ sufficiently small, (ii) be consistent such
that F(b,b) = F(b), (iii) ensure a local determination of g, in terms of by, (iv) reduce
to an E-flux in the conservative limit when 8 = 0, that is,

fb+ Fb(S;ﬁ = 0) - Fb(b_,b+;ﬂ = 0) ds >0
b-

with Fy(b; 8 = 0) = b, and (v) be L2 stable, as will be shown. Note that the flux
is the only way of communication between elements, and that the flux is determined
‘by the values of b, and ¢, immediately left and right of each face.

To ensure positivity of the mean, an upwind scheme is chosen in contrast to
the scheme developed by Cockburn and Shu (1998), which turned out to be less or
unstable in our application. It is, therefore, necessary to reconsider their L2-stability
analysis.

From such an analysis, the following numerical fluxes emerge for F1

%a(bi+b"l)b_+,5Q+b_\/b_ if a>0 & ¢.>0
=F(b )= a(b2 +b2)b-+ﬂq+b+\/b+ if a>0 & q+<0
o104 72 ;a(b2+b2)b++ﬁq+b_,/—b_ if <0 & g4>0
la(b2 +b2)b++ﬁq+b+\/b+ if a<0 & Q+<0
F, = F,(b.).
(3.9)

Alternatively, we also tested for choice F1

(b2 +b02)b_+Bgh_/b_ if a>0 & §>0
a(® +b2)b-+Bgbi /by if >0 & <0
a(? +b2)by +Bgb_/b_ if a<0 & §>0 (3.10)
a2 +b2)by +Baby /by if a<0 & g<0

Fy = Fybs) = Fy = [Fy(62) + Fa(6)]/2

9
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and for choice F2

.. %% i w >0
o= B(b — Us O_ s =

b= Fy(bs, ) { u_.;bilz if ;<0 (3.11)
F‘q = Fq(b:t) = Fq = [Fq(b-) + Fq(b+)]/2'

For choice F1, we separately use an upwind scheme both for the “convective” wind,
Ucony = ¢ b?, and the “diffusive” wind component, ugg = B¢ vb. For choice F2, we
use an upwind scheme based on the “scaled” velocity, u, = ab%/2 + Bgq, defined in
(3.2). Inspection shows that these fluxes are locally Lipschitz and consistent. ‘The
diffusive part of the flux (3.9) for case F1 alternates and is reported to be more stable
(Yan and Shu, 2002). The local character follows from the spatial discretization in
which g, knowing b at the previous time level, can be solved before it is used in the
discrete equations for the aperture, b; see also Appendix A.

Properties (iv) and (v) are proven next. The flux F2 is more compact than flux F1.
Readers less interested in further numerical analysis could proceed to the numerics
to ensure positivity of the approach and the treatment of the free boundary in §3.5
and further, or to the results in §4.

3.4 L2 stability

L2 stability for the discretized equations follows in an analogy of the L2 stability for
the continuous case with a constant. We simply assume that for general a(z) the
resulting discretization holds as well. In addition, the case without free boundary is
analyzed. To wit, multiply (3.1) times b and g, respectively, sum, and integrate over
space and time to obtain:

1 H T H T H
E/ b2—b?dz+/ / ﬁcfdzdt-/ / (Fs 8,b+ F, 8,q) dz di+
0 0 0 0 0

T
/0 (B + Fy @)oot — (W + Fy @)amo dt = 0 <=>

1 H T H
5/ b2—b,?dz+/ f Bg®dzdi+
0 0 0

fo ' (ub® —ab®/4), _, — (ub®—ab?/d),_, dt=0, (3.12)
because
Fy0:b+ F, 0,9 = a b°0,b+ B ¢ b2 8,b + (2/5) Bb*/ 8,9 = 8,[$(b) + F, q
with ¢(b) = ] as®ds = ab*/4. Note that b;(2) = b(z,0).
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The discrete version of L2 stability for F1 and F2 proceeds as follows (cf., Cock-
burn and Shu, 1998); by adding the weak formulation (3.7) of both equations, we
find

b (wp, vp) = / / —= Uy + g gy dzdt — /T D (F-[walDedt+

2<k<N,

T
/ (F- U k=Nt — (F - v )k dt — / Z F.9,udzdt
0 0

1<k<N, ¥ Kk

(3.13)

with wy = (bs, g) and v, = (vs,v,). As in the continuous case, substitute v, = by,
and vy = g5, into (3.13) to obtain:

bh(wh,wh)=%/oy(b,2,—b )dz+f / B dzdt+
f ( ¢(b3) + Fyf g — F- w,,) dt—~ (3.14)
0

T T
/ (¢(b; ) + F, q— q)-;- - F. 'w; ) di + / @dissipation(t) dt:
0 0

k=N+1
where
Ouespation(t) = = 3 Fllwal] = 3 / F - O,undzt
2<k<N 1<k<N : . (315)
6@+ Foa]_ ~ [60n) + Fyar]”
A A PV, % k=1
Rewriting

- Z F.0,wpdzdt = Z ([#(br) + Fy gn]x+
1<k<v Y Ke 2<k<N (3.16)

[6n) + Fuas]_ — [8(0w) + Fya] —

is used to evaluate (3.15) further. Hence, requiring that

Oaispaion(t) = 3 Ofipaion(®) = D {[16(8) + Fyanl] = F - [fwall},

2<k<N 2<k<N
= 3 {16OI+ 13 - (o) i+ Fllal - el 5}, >0
2<k<N

(3.17)
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motivates the choice (3.9) and its limits. Reordering the chosen convective flux in the
limit 8 = 0 produces

1im O wpaon(®) = [400) — (Bl 5 @ (82 + 82) b
by 1 (3'18)
= Fb(s;ﬁ=0)——2-a(b3+b'i)bids>0
for Fy(b; 8 = 0) = a'b®, when « # 0 proving property (iv), that the convective part of
the flux is an E-flux. The flux, F;, in the diffusive limit is also an upwind flux as it
introduces extra stabilizing dissipation becausc some (graphical) analysis shows that

) )+ N6 -pllle { Voo § B201s0 o)

For the flux F2, we have been unable to prove L2 stability when o # 0 and 8 # 0 be-
cause the convective and diffusive parts in general cannot be considered in separation.
Nevertheless, in the frictionless limit, 8 — 0, we find

. 1
1im Ofieipation(t) = [[B(6n)]] ~ [IBal] 5 @ (6% + b3*) Y
by (3.20)
- / Fy(s; 8= 0) ~ % o (B2 4+ 52) 522 ds > 0,
b-

while in the diffusive limit, a — 0, (3.19) holds again.

3.5 Time discretization: non-negative mean aperture

The upwind nature of the chosen fluxes is favored to avoid a negative aperture. The
idea of a maximum principle (e.g., Morton and Mayers, 1994; Bokhove, 2004) can
then be used to estimate a suitable timestep restriction such that the mean aperture
in each element remains positive.

Define the mean, By, and fluctuation, By, of by, in element K

b},l}{k = Bk + CB)C (3.21)

with ¢ € [-1,1] the reference coordinate in clement K} (sec Appendix A). Using the
test function v, = 1, we obtain the discrete equation for the mean aperture, By, in
element K

dB;

ar + ﬁ'b(zkﬂ) - Fb(zk) =0, (3.22)

| Kk
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where for F1: F = F}, = (4)cony b+ + (u)aig b+ With (W) cony = Teomy = a b? and

_ [ Bavbo if 320
(w)air = { Bayby if g<0 (3.23)
and for F2: F, = (u), b 2 with (u)s = %;. So if Ugeny > 0 we choose bi(zx) = b and
vice versa, and ]lkCWlse for the diffusive velocity, (u)4ig, and scaled velocity, u,.

The third-order total variation diminishing Runge-Kutta (RK3) method of Shu
and Osher (1989) is used to discretize time (see Appendix A). Given b} at time level,
t =1t,, then bEH at the next timelevel, t = ¢, = t,+At, is found using intermediate
stages b{") and bg") . Consider the case second order in space for F2 such that at the
face zx41: b_ = By + By and by = Bgyy — By, with a positive velocity, (u)" > 0,
and a positive aperture, b" > 0, at time i, for the first forward Euler intermediate
time stage in the RK3 method. We deduce

B(l) Bk II{ I (u)k-H (Bk +Bk) + 7 II( I (u)k (Bk 1 +Bk 1)

2At
< B? B Br 24
< B (1 - Tt k) + 7y R (Ba + BRL), (3.24)
since By + By < 2 By if (br)r > 0. We can ensure positivity of B,(cl) by limiting the
time step in (3.24) such that the coefficients of B} remain positive (e.g., in the above
case)

Aty < 0.5 [Ki|/(u)isa- (3.25)

An overall timestep is obtained by taking the smallest timestep resulting from the
elements K. A similar timestep criterion appears at the other intermediate time
stages by taking (1)), (1) to eventually ensure that Bf*! > 0. The same analysis
can be made for F1. Because we do not know the values at intermediate stages ()
and t@ in advance, it may be necessary to restart the time integration at ¢, with a
smaller timestep.

In addition, a slope limiter is required such that By & By > 0 at (intermediate)
stages. In addition, we used the limiter of Burbeau et al. (2001) to limit oscillations
around steep gradients. After each completed timestep, closure of the aperture so that
By + By < 0 for positive mean By would indicate that a closing event has emerged.

3.6 Free-boundary elements

In the presented simulations, only one free boundary (point) may be considered with
b= 0 for 2 > z.(t). Consider an underlying fixed mesh of clements and a mesh with
flooded elements where b > 0. The flooded part of the mesh consists of Eulerian

13



finite elements coinciding with the fixed mesh for z < 2z, and a Eulerian-Lagrangian
moving top-element with & = fe and a fixed bottom node at z = 2, and a moving
top node with z.(f) > ze.

The aperture in this top element, k = te, is expressed in terms of the asymptotic
free boundary solution as

4o [5@) = 2]
bn(2,1) = 3 Bee(t) Ke[ (3.26)
since by, is approximated by (2.13) and its mean satisfies
Bie(t) = ! / ' bn(2,t)dz. (3.27)
Ry — Rte 2te

After substitution in the weak formulation with v, = 1, but now allowing for a time-
dependent basis and test functions, mass conservation emerges

d(| Kzl Bie) dz _ 648 B}
dt dt 81 [Ki

with [Kie| = z-(f) — 2. Likewise, we can handle a bottom free-boundary element.
The discretization of the equation for ¢ remains the same (or can be altered corre-
spondingly), except that the the basis function used for b in a free-boundary element
has to be altered.

When the top element becomes too large, for instance, larger than

thel + 0.6 |Kte+1|ﬁxed1

then element K. becomes a regular fixed element and Ky.4; the new time-dependent
top element, see Fig. 2a. Conservation of mass yields By and By.,;, while B, follows -
by (numerical) projection. When the top element becomes too small, for instance,
less than 0.4 |Kje|nxeq of the fixed underlying element, then elements Ky._; and K,
are combined under conservation of mass; sce Fig. 2b. A new time-dependent top ele-
ment, K;._,, cmerges with By._,, while B,. becomes void. In principle, closing events
emerging in the middle of the domain can be included as well (in the analogy of the
drying events in Bokhove, 2004) but were not required in the presented simulations.
Furthermore, the timestep criterion for free-boundary elements is adjusted to include
the effect of the moving free-boundary node.

— Fy(ze) =0  and (3.28)

4 Results

4.1 Stationary and Traveling-Wave Solutions
Substituting the traveling-wave Ansatz, b = b(¢), with ¢ = (z — ct) into (2.6) yields
BBY =ab®—cb—Q=f(b)—Q (4.1)
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Figure 2: (a) Splitting and (b) merging of the time-dependent top element with
expansion, b= by(z,t) o< Bx(t) [2-(t) — 2]'/3.

with ¥’ = db/dy and the integration constant @, which equals the flow rate when
¢ = 0. Several cases will be considered: stationary solutions with ¢ =0 and @ > 0,
and traveling-wave solutions with ¢ # 0. For traveling-wave solutions with a free
boundary, we must have a finite velocity at the front, and thus @ = 0.

4.1.1 Stationary solutions

When ¢ = 0, we find
Y3 =ab®—Q = f(b) - Q. } (4.2)

In Fig. 3a, we display f(b) versus b for a > 0; with root b = b, when f(b)—Q = 0 while
b,Q > 0. We note that ¥ < 0 when f(b) < @Q, so if we start with a value b = bg < b,
at the bottom, z = 0, then the aperture decreases going upward. Otherwise, when
f(b) > @, we find ¥ > 0, and the aperture increases. In Fig. 4a, we divide the
parameter plane Q-bg with bp > 0 into an inaccessible region where the aperture
closes before the top at z = H and regions where the aperture expands (right of the
dash-dotted line) and contracts (between the two indicated lines). Corresponding
profiles of z versus b(z) in Fig. 4b for various values of @ illustrate some of the
permissable profiles. When the aperture becomes asymptotically small at the top,
flow speeds become asymptotically large, implying that the neglected inertia terms
are no longer negligible. The profile with a critical flow speed, u = ¢ = 7. Vb [¢f,,

(2.8)), implies that Q = ub =, b}/ ?, corresponding to the dashed line in Fig. 4b.
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(a)a>0,c=0 (b)a<0,c=0

0o

(b)

9]

(b)

0 b b 0 b

Figure 3: The function f(b) versus b for the stationary cases with ¢ =0 and Q > 0:
(a) for a > 0, the dike width contracts for b < b, and expands when b > b,, and (b)
for a > 0, the dike width only contracts.

In Fig. 3b, we display f(b) versus b for oz < 0. We see that when o < 0, we always
find ¥ < 0 for the relevant cases with b,Q > 0. The parameter plane @-bg in Fig. 5a
indicates that only the contracting profiles emerge, as in Fig. 5b.

In general, the density, p,, of the rock may vary mildly with depth (e.g., approxi-
mately linearly), .

pr=01—2z/H)po+ pnz/H. (4.3)

We obtain the same equation (4.2), and the qualitative behavior is the same if the
sign of « is definite in the domain. For a(z) > 0, we obtain the parameter space
Q-bg, as shown in Fig. 6 with the corresponding depth-versus-aperture-profiles.

Another representative model of the crustal density arises from the Tolbachik
volcano region in Kamchatka, Russia, with

2,600kg/m® 22km <z <26km . (4.4)

2,400kg/m® 26km < z < 30km
pr(z) =
2,800kg/m® O0km < 2<22km

So the magma chamber lies at a 30 km depth. Furthermore, the ratio of minimum to
maximum principle stress is taken as k = 0.7; the viscosity ¢ = 100 Pa s; the magma
density p, = 2,600 kg/m3; and A = 10-8m/Pa. Steady-state solutions of the inertial,
elastic equations (see Woods et al., 2004) and the convection-diffusion equations are
both displayed in Fig. 7. They are indistinguishable on the scale shown. Hence, the
condition of choked flow in the convection-diffusion model seems appropriate here.
The steady-state equation for the elastic flow equations (2.4) with @ = bu is

(57~ o @[7) b = 8, (5 /A + pra Q1) = g (5 — pr) b= 71 Q[. (45)
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Figure 4: Stationary case o > 0. (a) The parameter plane Q-bg with bg > 0 is from
left to right divided into an inaccesible, contracting and expanding region. (b) Profiles
of the vertical coordinate, z, versus the aperture, b(z), of the latter two regions are
displayed. The profile with the dashed line indicates the profile with critical speed at
the top for which « = 7,v/b and here b = by = 0.1245m and U= 27180 /5.
Parameters are o = 0.4709, Hy = 3,000m,Dy = 1m,p, = 2,500 kg/m3, p,
2,800kg/m* k = 0.95,A = 107"m?s%/kg,p = 100 Pas,g = 9.81m/s?, v = 12,

and v, = 22.77.
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Figure 5: Stationary case @ < 0. (a) The parameter plane Q-bg with bg > 0 is
from left to right divided into an inaccessible, contracting and expanding region. (b)
Profiles of the vertical coordinate, z, versus the aperture, b(z), of the relevant con-
tracting region are displayed. The profile with the dashed line indicates the profile
with critical speed at the top for which u = 7,v/b and here b = by = 0.1245m and
Q@ = 2.7778 m?/s. The parameters are oo = —0.0883, Hy = 3,000 m, D, = 1m, pp, =
2,500 kg/m?, p. = 2,600kg/m® k = 095X = 107" m?s%/kg,u = 100 Pas,g =
9.81m/s?,v =12, and v, = 22.77.
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Figure 6: Stationary case with & = a(z). (a) The parameter plane Q-bg with bg > 0
is from left to right divided into a choked, contracting and expanding region. (b)
Profiles of the vertical coordinate, z, versus the aperture, b(z), of the latter two
regions are displayed. The profile with critical speed at the top corresponds with the
dashed line and by = 0.1245m. Parameter values are Hy = 3,000m, Dy = 1 m D ==
2,500 kg/m?, py = 2,800 kg/m?, py = 2,800 kg/m?, & = 0.95, X = 107 m2 s?/kg, p =
100 Pa s, g = 9.81m/s?, and v = 12.
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Figure T: Stationary  solutions for the three flow  rates
Q = bu=0.289,1.766,9.96 m?/s from left to right for both the elastic-flow
and convection-diffusion models. Note that these two solutions per flow rate are
indistinguishable in the scale shown. Parameter values are assumed to model the
Tolbachik volcano region in Kamchatka, Russia.

For choked flow, 0,b is infinite, and u = 7c\/- o« VvV H — z near the top. We used
this asymptotic shape of the profile of u to scale the ﬁmte difference gnd to obtaln a
numerical solution.

4.1.2 Traveling-wave solutions

When ¢ # 0, traveling-wave solutions emerge. We consider first the most relevant
cases with constant a > 0. In Fig. 8, we display f(b) versus b and denoted the roots of
f(b)—Q = 0 by by, by, or b,. Note that Q is no longer the flow rate. Four cases emerge
with (2) ¢>0,@=0,(b) c<0,@>0,(c) c>0,Q <0, and (d) ¢>0,Q > 0. We
don’t consider (sub)cases in which b may become zero and @ # 0, and hence exclude
the case with ¢, @ < 0. The cases (b), (c), and (d) with a > 0 correspond to the cases
(1) ec>0,Q@ <0,(c) c<0,Q >0, and (d") ¢ <0,Q < 0 for constant & < 0 when
we reverse the sign of ¥. Hence, we do not consider cases with a < 0 separately.

For choked flow at the top boundary, the boundary condition for traveling waves
is Q@ = v.ar®/? — cay. So for traveling-wave free-boundary solutions this choked-flow
condition yields ¢ = y,a73/2 > 0.

Solutions with fronts exist for @ # 0 with ﬁmtc discharge and infinite velocity at
the front. The exception is the case @ = 0 for which the velocity at the front is finite
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(a) ¢>0, Q=0 (b) c<0, Q>0

f(b)

o

(

(c) c>0, Q<0 g (@e>0,050

f(b)

0O

0 b 0 b
bo b, b.
Figure 8: f(b) versus b for the four traveling wave cases considered with a > 0: (a)
for ¢ > 0,Q = 0 there is one root b, and two situations b < b, where ¥ < 0, and
b > b, where & > 0; (b) for ¢ < 0,@ > 0 there is one root b, and two situations b < b,
where ¥ < 0, and b > b, where ¥’ > 0; (c) for ¢ > 0,Q < 0 there are two roots bg, b,
and three situations with b < by where b’ > 0, by < b < b; where ¥ < 0, and b > b,
where ¥ > 0; and (d) for ¢ > 0,Q > 0 there is one root b, and two situations b < b,
where V' < 0, and b > b, where ¥ > 0. Arrows indicate whether ¥ > 0 or ¥/ < 0 and

are not added when b} 0 for Q) # 0 as these cases are excluded.
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Figure 9: Profiles of the depth, z, versus the aperture, b(z,t), for the traveling wave
solutions with o > 0. Arrows indicate the propagation direction of the wave.
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Run | Location | Type [ F, | Fq

Fig. 10 | z=0 | Dirichlet | Fy(bs, q+) | Fy(b-)

z=H | choked | 7.0¥* | F(b.)

Fig.11 | 2z=0 | Dirichlet | Fy(bs, q4) | Fy(b-)

z=H | Dirichlet | Fy(bs,q-) | Fy(bs)

Fig.12| z=0 | Dirichlet | Fp(bs,q4) | F4(b-)
z = z.(t) free 0 0

z=H | Dirichlet }z‘b(b:h’ q_) Fq(b+)

Fig. 14| 2z=0 | Dirichlet | Fp(b+, q4) | F4(b-)
z = z.(t) free 0 0

z=H | choked | ~b¥* | Fyb.)

Fig. 16 | z=0 | Dirichlet | Fy(bs, q4) | Fo(b-)
z=2.(t) free 0 0

z=H | choked N F,(b2)

Table 2: The boundary conditions are provided at z = 0; and z = 2,(t) (free bound-
ary), z = H (fixed) or z = H(t) (dome growth), whichever is applicable, for the five
runs presented for flux formulation F1 (3.9). The free-boundary conditions are valid
provided 0 < z(t) < H.-

and the exact solution is

-g— [b - \/%arctanh(\/&b/\/é)] =z—2(t)=2—29—ct (4.6)

with integration constant z,y the position of the front at ¢ = 0.

The profiles for the depth, z, versus the aperture, b(2,1), for the traveling-wave
cases are shown in Fig. 9 for cases (a) ¥ <0and @ =0; (b) ¥ > 0; (c) ¥ < 0,89 <
b<b and ¥ > 0,b > by; and (d) ¥’ > 0, corresponding to the cases in Fig. 8. The
arrows indicate the direction or time propagation of the wave, and the dashed lines
indicate the constant aperture limits corresponding to the roots in the cases (b) b,,
(C) bo, b; with by < by, and (d) b..

4.2 Numerical Verification

To verify the algorithm and numerical implementation, a comparison is made be-
tween the numerical solutions of the partial differential equations with a mixture of
(time-dependent) Dirichlet, choked-flow, and free-boundary conditions, and high(er)
resolution exact or numerical solutions of the stationary and traveling-wave solutions
governed by the relevant ordinary differential equation. For the full system, we use
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Figure 10: The evolution of the aperture, b(z,t), as function of depth, z, is shown
for the numerical solution (solid lines) at times 0,1.8,...,45min (dimensionless
t = 0.1,...,2.5). The final, nearly stationary state as a high-resolution (fourth
order Runge Kutta space discretization and 10 times higher resolution) numerical
solution of the relevant ordinary differential equation is displayed as a dashed line.
The Dirichlet condition at z = 0 and initial conditions are bp = 1.1774489332 and
b(z,0) = 0.1244834652. At the top, the choked flow is imposed. a = 0.4709, 8 = 1.0,
and v, = 22.7683991532. Forty equidistant elements are used.

second-order accuracy in space and choose the timestep sufficiently small, while, for
the ordinary differential equations, we use a fourth-order Runge-Kutta spatial dis-
cretization and at least a tenfold higher resolution. Only the results of formulation
F1 are shown because the results of the two formulations are similar. In each case,
the total number of underlying fixed elements is stated. The boundary conditions
used in the five presented simulations are summarized in Table 2. When nothing is
mentioned, the flux rule as it stands in (3.9) is implemented.

To determine the spatial accuracy, the Ly-norm of the error has been used (and
approximated by taking the mean values in each element)

HWCQ
L; = \/Hl f (bnumerica] - bexac’t.)2 dz, (47)
wet 0

and the Lo, norm, the maximum absolute difference between the numerical and the
“exact” solution with H,., the inundated, open part of the domain.

We considered stationary solution and two traveling-wave solutions, corresponding
to Fig. 4 for (a) ¢ = 0,a > 0; and Fig. 9 for (a) ¢ > 0, =0 and (c) ¢ > 0,Q < 0
with b < b, and by < b < b;.
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N=20 | N=40 N=80 N =160
Error Error | Order|{ Error | Order | Error | Order
L, | 0.0376041 | 0.020769 | 0.86 | 0.011052 ] 0.91 | 0.005590 | 0.98
Lo | 0.037604 | 0.16191 | 0.38 | 0.12085 | 0.42 | 0.08668 | 0.48

Table 3: Ly and L, crrors as function of resolution and the spatial order of accuracy
for the stationary case with ¢ = 0, > 0. Polynomial order dp = 1. Solutions are
considered at dimensionless time ¢ = 2.5.

[-2.1d
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Figure 11: The evolution of the aperture, b(z,t), as function of depth, z, for
the numerical solution (solid lines) at times 0,3.6,...,36 hr (dimensionless ¢ =
0,0.012,...,0.12). The fourth profile at 18 hrs in the middle of the graph is used
to determine the Ly and L, errors. The traveling-wave solution is a high-resolution
(fourth order Runge Kutta space discretization and approximately 10 times higher
resolution) numerical solution of the relevant ordinary differential equation. For each
time, this solution displayed as a dashed line. The Dirichlet conditions are time de-
pendent and given by the traveling-wave solution with dimensionless ¢ = 32.9616 and
Q = —28.2528. a = 4.7088 and B = 1.0. Ten equidistant elements are used.
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N=10 N=20 N =40 N =280

Error Error Order Error Order Error Order
L, | 0.0067878 | 0.0022502 | 1.5929 | 0.0007432 | 1.5982 | 0.0002381 | 1.6419
L, | 0.0140886 | 0.0049057 | 1.5220 | 0.0016545 | 1.5680 | 0.0005139 | 1.6870

Table 4: L, and L, errors as functions of resolution and the spatial order of accuracy
for the traveling-wave case with ¢ > 0,Q < 0,5y < b < b;. Polynomial order dp = 1.
Solutions are considered at dimensionless time ¢ = 0.06.

The exact stationary solution with Dirichlet and choked-flow boundary conditions,
displayed in Fig. 4b with the dashed line, was considered first. The sequence of
numerical solutions approaching this state are displayed in Fig. 10. Table 3 shows
that the spatial accuracy reduces to order 1 for the Lo—error and order 0.5 for the
Ly—error in the stationary case because of the steep gradient and the choked-flow
condition, both at z = H. In Fig. 10, this discrepancy is observed at z = H = 3km,
where the largest pointwise error occurs. Such a reduction of order is also observed
in solutions with shocks or discontinuities. The exact and numerical traveling-wave
solution is shown in Fig. 11. Table 4 shows that the spatial accuracy is approximately
1.5—1.64 for the traveling-wave case, as opposed to the expected, formal second-order
accuracy.

The exact and numerical traveling-wave solution with a free boundary propagating

in the domain is provided in Fig. 12. The numerical solution uses the free-boundary--

strategy explained in §3.6. The numerical solution corresponds relatively well with
the exact solution. The Ls-error has an order of 1.6, while the Ly-error behaves
poorly and fluctuates heavily. The actual time of splitting an element in relation
to the measurement time makes the latter error a poor indicator of the order of
convergence. Oscillations in the speed of the frontal position shown in Fig. 13 are
caused by the element-splitting procedure.

4.3 Validation

The validity of the mathematical model and numerical modeling is illustrated by
presenting numerical solutions of magma flow through an opening elastic dike from
a magma chamber with a fixed pressure until the dike reaches the surface. The
subsequent growth of a lava dome or pile implies that the overpressure of the magma
chamber reduces. Once the lava pile reaches a critical height, failure causes immediate
removal of the pile on the slow time scale considered, whence the overpressure in the
magma chamber is suddenly increased again.
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Figure 12: The evolution of the aperture, b(z, t), as function of depth, z, for the numer-
ical solution (solid lines) at times 0,3.6,...,54 min (dimensionless ¢ = 0,0.2,...,3).
The fifth profile at 14.4min in the middle of the picture is used to determine the
L, and L, errors. The traveling-wave solution is provided by the exact solution for
Q@ = 0 (dashed lines). The Dirichlet conditions are time dependent and provided
by the traveling-wave solution with dimensionless ¢ = a = 0.4709, 8 = 1. Twenty
equidistant underlying regular elements are used, of which only a fraction is used with
one time-dependent free-boundary element when the aperture is only open, b > 0, in
part of the domain.

N=10 | N=20 N =40 N =280 N =160
oy Emq | Order | EZF | Order | 2%F |Order| =% | Order
L | 127.7914 | 51.171 | 1.32 | 17.467 | 1.55 | 4.591 | 1.93 | 1.490 | 1.62
Lo | 181.7607 | 108.020 | 0.75 | 40.409 | 1.42 | 10.364 | 1.96 | 7.276 | 0.51

Table 5: L, and L, errors as functions of resolution and the spatial order of accuracy
for the traveling-wave case with ¢ > 0,Q = 0. In the interior, the polynomial order
is dp = 1, and at the free boundary, a fractional basis function is used. Solutions are
considered at dimensionless time ¢ = 0.8.
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Figure 13: The speed of the front, dz,/dt, till ¢ ~ 27min and the discharge, ¢ =

ud, are displayed at the end of the dike after ¢ ~ 27min. This speed should be

¢/U = 0.4709 (with dimensional U = 2.778 m/s) and the discharge q/Q = 0.4709

(Q = 2.778 m?/s). The oscillations in the frontal speed clearly demarcate the element-

splitting process; there are 40 fixed elements.
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Figure 14: The same simulation as in Fig. 12 but after the magma reaches the exit;
the flow at the exit is choked. Profiles at times 0, 7.2 man, ..., 2.4 hrs (dimensionless
t=0,04,...,8). The dashed lines represent the traveling-wave solution with corre-
sponding exact solution before the magma meets the exit. This exact solution is used
to determine the Dirichlet condition at z = 0 for all times.
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Figure 15: The cross-sectional area of the lava dome is assumed to consist of the
two triangles shown. The elongated dike is considered to have constant width as
approximation to a very thin dike with an elliptical cross section in a horizontal
plane. The dome height, h,(t), depends on the eruption area and the inclination
angle, 6.

4.4 Lava dome growth and collapse

We consider the growth of a lava dome of modest height as a consequence of a lava
eruption at the Earth’s surface. As long as the ratio of dome height, h,, versus
the depth of the magma chamber, H = 10km, is small, the convection-diffusion
equation is appropriate. Otherwise, the edifice load has to be taken into account, as
in Pinel and Jaupart (2000). Parameter values include p = 1,000 Pas, A\ = 1077,
k = 0.95, pm = 2,500 kg/m?, p, = 2,800 kg/m3, and roughly mimick estimates for the
Soufriere Hills Volcano in Montserrat (Melnik and Sparks, 1999). The overpressure
in the absence of a lava dome is approximately 10 M Pa against a lithostatic pressure
of approximately p, g H = 275 M Pa.

During its growth, a simplified shape of the dome, which cross-sectional area
consists of two triangles, will be assumed. The shape of this dome is an approximation
of a very elongated, solid elliptical cone excluding the volume of the dike through the
cone, see Fig. 15. Hence, we deduce that, for a dome of height h,(t) and angle of
incline 6, the cross-sectional area, O = O(¢), is

O(t) = hy (/2 + hy/ tan®) = h, (ar/2 + h,/ tan6) (4.8)

with the half-width of the dike in the dome w,/, ~ a(H,t)/2 = ar(t)/2. This area is
the cumulation in time of the discharge of lava at the growing top of the dike and starts
at time ¢y when the dike breaks through the surface at z = H when h,(¢) = 0. The
wy jo-factor is included to avoid an infinite growth speed when h, | 0. Alternatively,
one could fill an area of fixed width so that the dome shape is rectangular. The
shape of the dome is simply chosen to illustrate the leading-order dynamics and has
no further significance. Lava flow will again start at some time less than ¢, from the
magma chamber at z = 0 following the exact solution (4.6). Upon breakthrough at
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Figure 16: Profiles of the evolution approximately every 67 hrs. After approximately
five hours the dike reaches the surface, and the eruption reaches a periodic cycle. In
total, 80 elements are used.

time o the speed dz,/dt¢ will change abruptly from the speed of the lava front to the
growth speed of the dome height, dh,/dt,

dh, _ 2ur(t)br(t)
dt = br+4h,/tand’

(4.9)

because hy(tp) — H = h,(t) = 0. This relationship follows from relating the arca
growth to the discharge rate at the top of the dike: dO(¢)/dt = ur(t) b(t) with the
critical velocity ur(t) = u(z = H,t) at the top, 2 = H, of the dike and likewise for
width br. In addition, we neglected 8b/3t|,=p-

The bottom boundary condition is Dirichlet and follows from expression (4.6)
minus the additional pressure increase because of the dome growth. After break-
through, the width at the magma chamber decreases following relation (2.2) because
the absolute pressure in the host rock increases as the dome grows in height.

After the dome growth starts, the dike width decreases as the constant magma
overpressure needs to overcome a larger lithostatic pressure of the host rock and lava
dome combined, see Fig. 16. In the initial phase, the dike propagates to the surface
with a speed of 0.1308 m/s to break through after approximately five hours. After
breakthrough, the discharge in Fig. 17 becomes periodic as the dome collapses and
disappears instantly (on the slow time scale modeled) after the dome height reaches
a critical height chosen to be h, = 50m. The periodicity observed is approximately
100 hrs.
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Figure 17: The discharge at the dike tip (per unit length along the dike) versus time
shows the eruption reaches a periodic cycle when the dome collapses every time it
reaches a critical height, here chosen to be h, = 50m.

5 Conclusion and Discussion

The flow of incompressible magma through a dike has been investigated in a model
with leading-order coupling between the elastic rock walls and the magma flow. The
resulting convection-diffusion model admitted various stationary and traveling-wave
solutions, and more complex numerical solutions were found with a new discretiza-
tion method. The stationary and traveling-wave solutions were used as building
blocks to understand the evolving flows and end-states in geophysical applications.
More detailed information was obtained by performing simulations for a variety of
time-dependent boundary conditions using the developed local discontinuous Galerkin
finite-element method. The numerical method displayed a convergence of order 1.6
for smooth solutions in the Ly—norm also for a free-boundary solutions which were
treated with a special arbitrary Lagrangian-Eulerian time-dependent element. For
flows with steep gradients, the Lo—norm reduced to order one because a slope limiter
was needed to ensure stability (see Burbeau et al., 2001). The Lo-error showed a
convergence of 1.6 for a smooth solution without free boundary, and order 0.5 was
reached in the free-boundary case and the case where steep gradients emerged.

The numerical finite-element method developed can readily be extended to asym-
metric flows in the two-dimensional dike plane and can then be considered in com-
plicated geometries, which can arise because of heterogeneities in the rock or dike
intersection with a subsurface tunnel. For the two-dimensional extension of the
convection-diffusion model, it may be advisable to use an implicit Crank-Nicolson
time discretization. The latter will permit shorter time steps and enhance stability,
in which case a slope limiter is probably no longer required (cf., Yan & Shu, 2002).
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The formulation of the proper in- and outflow boundary conditions in averaged
models with a simplified elastic response of the host rock remains an outstanding
question. Nevertheless, the critical flow condition at the exit gave satisfactory results.
In particular, steady-state solutions of the convection-diffusion model with the critical
flow condition at the surface were nearly indistinguishable with steady-state solutions
of the elastic model in which the inertia terms are not neglected. Solution of this
elastic model, further geophysical applications of the current model for steady-state
conditions and including the compressible effects of viscous, bubbly magma, are found
in Woods et al. (2004).

Presumably, improved conditions follow from further consideration of the feedback
between the dynamics in the dike and the response of the magma chamber and the
coupling with the erupted flows above and over the Earth’s surface.
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A Discontinuous Galerkin Finite-Element Method

A.1 Geometry and polynomial basis functions

In one dimension, the bounded interval Q := [0, H] C R is partitioned by N, + 1 “regu-
lar” faces (points in one dimension) £ := {zx}p¢, and into N, “regular” elements. It is
convenient to introduce a reference element in one dimension, K = [-1,1], and define the
mapping Fi : R — R between the reference element, K, and element K} as follows: z =
Fr,(¢) = Y2 _, zk,m Xm(€) = 2k + |Ki| (/2, where the zx)3 = 2zx,1 and zx2 = zx, g are the
left and right end points of element Ky = (2,1, 2k,r) = (2k, 2k+1). The shape functions are
x1(¢) = (1=¢)/2, x2(¢) = (1+¢)/2. Note that %1 = (2x,L+2k,r)/2, | Kil(t) = (2x,r—2,L)-
In the basis element K, we define basis functions

@o(¢) =1 and @m(()=(¢™ for m=1,...,dp. (A.1)
Finally we relate the local basis functions in K to the basis functions in K}, as follows:
onl(() = ‘ﬁn[F}?: (2, t)] = ‘Pn,k(za t) for n=0,...,dp. (A.2)

In principle, elements can be time dependent by allowing the nodes to move in time. We
distinguish fixed interior elements where b > 0 and edge elements where b = 0 at one of the
nodes.

To unify notation, for F1, we have w = (b,¢), and for F2, take w = (b,¢g = u). The
vector (b,q) in both F1 and F2 and test functions, v, are approximated in each interior
element, K}, by their polynomial appraximations (for time-independent elements), (b, gr)
and vy, g, as follows:

dp dp
bh(za t) = z Bm(Kkat) ¢m(z; t)a vb,q(z) = Z ﬁm(Kk) "/)m(za t) (A3)

m=0 m=0

with polynomial basis functions 4, (2,t) € P4 (K}). These are chosen such that
By = B(Ky, 1) = / b(z,4)dz/|Ky| and
Ky

_ 1 ifm=0
1/’m,k(z) = { ‘Prn,k(zst) - ka (Pm,k(zat) dz/]Kk| fm>1 }.

Likewise, we approximate g with gj.
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A.2 Weak formulation and finite-element discretization
Taking dp = 1 in (A.3), we approximate b; by a mean and a slope
bu(z,t) = Bp + B 1 x(z,t) and  vp(2) = Wi + Wi 14(2,) (A.4)

with By = B(K},t), and such, and hkewxse for g;. We now restrict to the case, where the
nodes remain fixed. Since W and Wy are arbitrary, we obtain the following equations for
the mean and fluctuating part after substxtutmg (A.4) into (3.7) for formulation F1 and F2:

|Kk| + Fb(zk+1) - Fb(zk) =0

K| dB,
l 3kl dtk + [Fo(z41) + Fy(ze)] ~ / Fy(br,grn)d¢ =0 (A5)
B1Kk| Qi+ Fylzrs1) — Fylar) =
K.l 4 . . 1

8% Qo+ Fytarsn) + Foonl) ~ [ Fltman i =0,
The integrals are approximated with a third-order Gauss quadrature rule.
A.3 Time integration
We write (A.5) as a system of ordinary differential and algebraic equations

3’: Go(b,q) and  q=G,(b) (A.6)

with b = (B, B) the state vector of unknown coefficients of the basis functions, and ¢ =
(@, Q). We can then use the third-order Runge-Kutta method of Shu and Osher (1989), for
example, to discretize (A.6) in time, and obtain

g" = G(b")  bY) =" + ALGy(b", ")
¢V = Gq(b(l)) b2 = [3 " + b)) 4 At Gb(b(l),q(l))] /4 (A7)
@@ =G(6) b+ = [1"+ 26 + 281Gy (6P, ¢)] /3.

Note that we can solve for b and ¢ in an explicit manner because the new (intermediate)
stage of ¢ can always be found from the new (intermediate) stage of b before commencing
the time update.

B List of Symbaols

a = a(z), dimensionless coefficient for advective term
a, long semi-axis of elliptical cross section
b = b(z,t), aperture, and short semi-axis of elliptical cross section
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4@, 5™, b, and such, consecutive coefficients in series expansion of b b(z, t)
bgp(t), boundary value of b(z,t) at z =0

br(t), boundary value of b(z,) at z = H

Bk,Bk, numerical coefficients in finite element discretization of variable, b(z,t)
By, mean coefficient of top (free boundary) element

B, dimensionless diffusive coefficient

Ce, €lastic wave speed

¢, traveling wave speed

dp, degree of the polynomial used in the finite element approximation
Dy, length scale of aperture b

¢, small parameter

1 = (zr — 2) /¢, stretched coordinate at the free boundary

S function used in determining the stationary and traveling-wave solutions
F, flux

Fy, flux of the aperture equation

Fy, flux for diffusive variable g

g, accelaration of gravity

G, rigidity

G, G, righthand sides in numerical discretization

=, frictional coefficient

v, coefficient in dimensionless elastic wave speed

hy, height of lava dome

H, length of domain

Hy, length scale of H

Ky, element k

K., top finite element at free boundary

K, closure of element, K.

K, anisotropy parameter, ratio between horizontal and vertical stresses
k,k', finite element index

A, elasticity of the rock

Lg, L, €ITor measures

U, viscosity of magma

N, number of finite elements

v, Poisson’s ratio

Q,Qy, domain and spatial flow domain, respectively

02y, boundary of spatial flow domain

p = p(z,1), pressure of magma

pr = pr(2), pressure in the host rock

pB = pg(t), pressure in the magma chamber at the bottom

rr, ambient pressure

¢ = z — ct, traveling wave coordinate

¢y m, polynomials outside and inside the reference element

g, diffusive aid variable in numerical formulation
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Q,Qj, integration constants of the flux expressed as area per second

Qrx, Qx, numerical coefficients in numerical approximation of variable ¢

Pm, constant density of magma

Pr, constant density of the host rock

Po, PH, constant densities

i, time

T, stretched or slow time coordinate

To, time scale

Th, tesselation

u = u(z,t), the vertical velocity of the magma averaged over the cross section of the
dike

u, = u,(t), frontal velocity at z = 2,(t)

Udiff , Uconv, diffusive and convective part of the advective velocity

ur, velocity at top of dike

v,V;, Vg, test function, general, and for variables b and g, respectively

W, b, gn, numerical approximation of w = (b, q)

z, vertical coordinate

zr = 2,(t), position of free boundary where b — 0.
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