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1.0 PURPOSE  
 
This drift analysis methodology provides the guidelines to perform drift analyses using 
past calibration history data.  A drift analysis may be used to:  
 

y Estimate component/loop drift for integration into setpoint calculations. 
 
y Establish a technical basis for extending calibration and surveillance intervals 

using historical calibration data. 
 

• Evaluate extended surveillance intervals in support of longer fuel cycles. 
 

• Trend device performance based on extended surveillance intervals. 
 
2.0 APPLICABILITY  
 

2.1 Graded Approach  
 

The amount of effort spent on details and input data validation should be 
proportional to the safety significance of the analyzed equipment.  
Evaluations can be categorized following the Graded Approach to Setpoint 
Calculations sections in Engineering Standards Manual ESM-03.02 
(Reference 8.2.1). 

 
2.2 24-Month Fuel Cycle  

 
Drift analyses performed to support extended surveillance intervals as part of 
the 24-Month Fuel Cycle Extension project require the highest level of detail 
and validation.  Deviations from this instruction should be justified and 
documented as part of the drift analysis.  Drift analyses performed per this 
instruction will be used as part of the justification required by NRC Generic 
Letter 91-04 (Reference 8.1.3). 

 
3.0 PERSONNEL WITH RESPONSIBILITIES DEFINED IN THIS DOCUMENT  
 

• Analysis Preparer  
• Analysis Verifier  
• Analysis Approver  

 
Additional responsibilities for preparers, verifiers, and approvers are contained in 
4 AWI-05.01.25 (Reference 8.2.3). 
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4.0 DISCUSSION/METHODOLOGY  
 

4.1  Methodology Options  
 

This design guide is written to provide the methodology necessary for the 
analysis of As-Found As-Left calibration data as a means of characterizing 
the performance of a component or group of components via the following 
methods:  

 
4.1.1  Electric Power Research Institute (EPRI) has developed a guideline to 

provide nuclear plants with practical methods for analyzing historic 
component calibration data to predict component performance via a 
simple spreadsheet program (e.g., Excel, Lotus 1-2-3).  This design 
guide is written in close adherence to this guideline, Reference 8.1.1. 

 
Reference 8.1.1 was originally issued as TR-103335, dated March 
1994.  By letter dated December 1, 1997, from T.H. Essig, NRC, to 
R.W. James, EPRI (Reference 8.1.6), the NRC staff issued a status 
report documenting its concerns with TR-103335.  The EPRI report 
was reissued as TR-103335-R1 in October, 1998.  The NRC has not 
issued a formal review of TR-103335-R1. 

 
4.1.2  Commercial Grade Software programs other than Microsoft Excel (e.g. 

IPASS, Lotus 1-2-3, etc.), that will perform the functions necessary to 
evaluate drift, may be utilized providing the intent of this design guide 
is met and the software is used only as a tool to produce hard copy 
outputs that will be independently verified. 

 
4.1.3  The EPRI IPASS software (Reference 8.3.6) may be used to perform 

or independently verify certain portions of the drift analysis.  The 
IPASS software does not have the functionality to perform many of the 
functions required by the drift analysis, such as time dependency 
functions, and therefore, should only be used in conjunction with other 
software products to produce or verify an entire drift study. 

 
4.2  Drift Analysis Scope  

 
4.2.1  The scope of this instruction is limited to the calculation of the 

expected performance for a component, group of components, or loop 
using past calibration data.  Analysis performed per this instruction 
should be formatted and controlled as required by 4 AWI-05.01.25 
(Reference 8.2.3). 
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4.2.2  A drift analysis may be performed on all regularly calibrated devices 
where as-found and as-left data is recorded.  The scope of this 
instruction includes, but is not limited to, the following list of devices:  

 
A.  Transmitters (Differential Pressure, Flow, Level, Pressure, 

Temperature, etc.)  
 

B. Bistables (Trip Units, Alarm Units, etc.)  
 

C.  Indicators (Analog, Digital) 
 

D.  Switches (Differential Pressure, Flow, Level, Position, Pressure, 
Temperature, etc.)  

 
E.  Signal Conditioners/Converters (Summers, E/P Converters, Square 

Root Converters, etc.)  
 

F.  Recorders (Differential Pressure, Flow, Level, Pressure, 
Temperature, etc.)  

 
G.  Monitors & Modules (Radiation, Neutron, H2O2, Pre-

Amplifiers,etc.)  
 

H.  Relays (Time Delay, Undervoltage, Overvoltage, etc.) 
 

4.3 As-Found As-Left (AFAL) Calibration Analysis  
 

This Instruction is based on the as-found as-left (AFAL) analysis methodology 
described in EPRI Document TR-103335-R1 (Reference 8.1.1).  Refer to the 
EPRI document for a more detailed description of the AFAL method than 
listed here. 

 
4.3.1  Information Obtained From AFAL Analysis The following information 

can be obtained by evaluating the AFAL data for an instrument or 
group of instruments:  

 
A.  The typical drift between calibrations. 

 
B.  Any tendency to drift in a particular direction (bias). 

 
C.  Any tendency for the drift uncertainty to increase over time. 

 
D.  Confirmation that the setting tolerances are appropriate for the 

device. 
 

E.  Confirmation that instrument performance is consistent with design 
requirements. 
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4.3.2  General Features of AFAL Analysis  
 

A.  Methodology evaluates historical calibration data only; data is 
obtained from instrument calibration records. 

 
B.  Present and future performance is based on statistical analysis of 

past performance. 
 

C.  Data can be analyzed starting from instrument installation up to the 
present or only the more recent data can be evaluated. 

 
D.  Since only historical data is evaluated, the method is not intended 

as a tool to identify individual faulty instruments, although it can be 
used to demonstrate that a particular instrument, model, or 
application is performing well or poorly. 

 
E.  A similar class of instruments, i.e., same make, model, application, 

is evaluated. 
 

F.  The methodology is less suitable for evaluating the drift of a single 
instrument due to statistical analysis penalties that occur with 
smaller sample sizes. 

 
G.  The methodology is based on actual calibration data and is thus 

traceable to calibration standards. 
 

H.  The methodology determines plant-specific drift for a particular 
group of instruments that can be used in instrument uncertainty and 
setpoint calculations. 

 
I.  The methodology is designed to support the analysis of longer 

calibration intervals for fuel cycle extensions and is consistent with 
the NRC expectations described in Reference 8.1.3. 

 
4.3.3  Random Behavior  

 
A.  If the AFAL calibration data indicates that the instrument randomly 

drifts around its setting without a tendency to drift in a particular 
direction, the drift is referred to as random drift. 

 
B.  In terms of AFAL analysis, the standard deviation of the drift result 

is usually taken as the random portion of the instrument drift. 
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4.3.4  Bias Behavior  
 

A.  If the instrument consistently drifts in one direction, the drift is said 
to have a bias. 

 
B.  In terms of AFAL analysis, the mean, or average value, of the drift 

result is usually taken as the bias portion of the instrument 
performance. 

 
4.3.5 Error and Uncertainty Content in AFAL Data  
 

A.  The As-Found versus the As-Left data includes several sources of 
uncertainty over and above component drift.  Each of the following 
sources of error can contribute to the magnitude of the AFAL value:  

 
1.  True drift representing a change, time-dependent or otherwise, 

in instrument/loop output over the time period between any two 
consecutive calibrations. 

 
2.  Accuracy errors present between any two consecutive 

calibrations. 
 

3.  Measurement and test equipment error between any two 
consecutive calibrations. 

 
4.  Personnel-induced or human-related variation or error between 

any two consecutive calibrations. 
 

5.  Normal temperature effects due to a difference in ambient 
temperature between any two consecutive calibrations. 

 
6.  Environmental effects on component performance, e.g., 

radiation, humidity, vibration, etc., between any two consecutive 
calibrations that cause a shift in component output. 

 
7.  Misapplication, improper installation, or other operating effects 

that affect component calibration between any two consecutive 
calibrations. 

 
4.3.6 Potential Impacts of AFAL Data Analysis  
 

A.  Many of the items listed in Step 4.3.5 are not expected to have a 
significant effect on the measured As-Found and As-Left settings. 
Because of the many independent parameters contributing to the 
possible variance in calibration data, they will all be considered 
together and termed the component's Analyzed Drift (AD) 
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uncertainty.  This approach has the following potential impacts on 
an analysis of the component's calibration data:  

 
1.  The magnitude of the calculated variation may exceed any 

assumptions or manufacturer predictions regarding drift. 
Attempts to validate manufacturer's performance claims should 
consider the possible contributors to the calculated drift. 

 
2.  The magnitude of the calculated variation that includes all of the 

above sources of uncertainty may mask any true time-
dependent drift.  In other words, the analysis of AFAL data may 
not demonstrate any time dependency.  This does not mean 
that time-dependent drift does not exist, only that it could be so 
small that it is negligible in the cumulative effects of component 
uncertainty, when all of the above sources of uncertainty are 
combined. 

 
3.  The AFAL drift value can possibly be used in place of more than 

just the drift term in the channel uncertainty calculation. 
 

4.4  Calibration Data Collection  
 

4.4.1  Sources of Data  
 

A.  Calibration and maintenance records for all plant process 
instruments are maintained in the Component Master List (CML) 
computerized database (on some complex instruments, 
procedures are used to document calibration data; in these cases 
the CML instrument record will indicate the procedure number 
where data is recorded).  All previously completed calibration and 
maintenance history records are accessible through the Automated 
Records Management System (ARMS). 

 
4.4.2  How Much Data To Collect  

 
A.  The goal is to collect enough data for the instrument or group of 

instruments to make a statistically valid pool.  There is no hard fast 
number that must be attained for any given pool.  Table 9.1 
provides the Tolerance Interval Factor (TIF) for various sample pool 
sizes; it should be noted that the smaller the pool the larger the 
penalty.  A tolerance interval is a statement of confidence that a 
certain proportion of the total population is contained within a 
defined set of bounds.  For example, a 95%/95% TIF indicates a 
95% level of confidence that 95% of the population is contained 
within the stated interval. 
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Generally, sample sizes of greater than 30 are acceptable.  AFAL 
analysis performed with a smaller sample size must have 
justification provided within the analysis documentation. 

 
B.  Different information may be needed depending on the analysis 

purpose.  Therefore, the total population of components - all 
makes, models, and applications - that will be analyzed must be 
known. 

 
C.  Once the total population of components is known, the components 

should be separated into functionally equivalent groups.  Each 
grouping is treated as a separate population for analysis purposes. 

 
D.  Not all components or available calibration data points need to be 

analyzed within each group in order to establish statistical 
performance limits for the group.  Acquisition of data should be 
considered from different perspectives. 

 
1.  For each grouping, a large enough sample of components 

should be randomly selected from the population, so there is 
assurance that the evaluated components are representative of 
the entire population.  By randomly selecting the components 
and confirming that the behavior of the randomly selected 
components is similar, a basis for not evaluating the entire 
population can be established. 
For sensors, a random sample from the population should 
include representation of all desired component spans and 
functions. 

 
2.  For each selected component in the sample, enough historic 

calibration data should be provided to ensure that the 
component's performance over time is understood. 

 
3.  Due to the difficulty of determining the total sample set, 

developing specific sampling criteria is difficult.  Because of the 
difficulty in developing a valid sampling program, specific 
justification in the drift study is required to document any 
sampling plan. 

 
4.5  Data Grouping  

 
4.5.1  Grouping Calibration Data  

 
A.  One analysis goal should be to combine functionally equivalent 

components (components with similar design and performance 
characteristics) into a single group.  In some cases, all components 
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of a particular manufacturer make and model can be combined into 
a single sample.  In other cases, virtually no grouping of data 
beyond a particular component make, model, and specific span or 
application may be possible. 

 
4.5.2  Rationale for Grouping Components into a Larger Sample  

 
A.  A single component analysis may result in too few data points to 

make statistically meaningful performance predictions. 
 

B.  Smaller sample sizes associated with a single component may 
unduly penalize performance predictions by applying a larger TIF to 
account for the smaller data set.  Larger sample sizes reflect a 
greater understanding and assurance of representative data that in 
turn reduces the uncertainty factor. 

 
C.  Larger groupings of components into a sample set for a single 

population ultimately allows the user to state the plant-specific 
performance for a particular make and model of component. 

 
D.  An analysis of smaller sample sizes is more likely to be influenced 

by non-representative variations of a single component (outliers). 
 

E.  Grouping similar components together, rather than analyzing them 
separately, is more efficient and minimizes the number of separate 
calculations that must be maintained. 

 
4.5.3  Considerations when Combining Components into a Single Group  

 
A.  Consider the following guidelines when grouping functionally 

equivalent components together:  
 

1. If performed on a type-of-component basis, component 
groupings should usually be established down to the 
manufacturer make and model, as a minimum.  The principles 
of operation are different for the various manufacturers, and 
combining the data could mask some trend for one type of 
component. 

 
2.  Sensors of the same manufacturer make and model, but with 

different calibrated spans or elevated zero points, can possibly 
still be combined into a single group.  Note that some 
manufacturers provide a predicted accuracy and drift value for a 
given component model, regardless of its span.  However, the 
validity of combining components with a variation of span, 
ranging from tens of pounds to several thousand pounds, 
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should be confirmed.  As part of the analysis, the performance 
of components within each span should be compared to the 
overall expected performance to determine if any differences 
are evident between components with different spans. 

 
3.  Components combined into a single group should be exposed 

to similar calibration or surveillance conditions, as applicable.  
Although it is desirable that the grouped components perform 
similar functions, the method by which the data is obtained for 
this analysis is also significant.  If half the components are 
calibrated in the summer at 90�F and the other half in the 
winter at 40�F, a difference in observed drift between the data 
for the two sets of components might exist.  In many cases, 
ambient temperature variations are not expected to have a large 
effect since the components are located in environmentally 
controlled areas. 

 
4.5.4  Verification that Data Grouping is Appropriate  

 
A.  Combining functionally equivalent components into a single group 

for analysis purposes may simplify the scope of work; however, 
some level of verification should be performed to confirm that the 
selected component grouping is appropriate.  As an example, the 
manufacturer may claim the same accuracy and drift specifications 
for two components of the same model, but with different ranges, 
e.g., 0-5 psig and 0-3000 psig.  However, in actual application, 
components of one range may perform differently than components 
of another range. 

 
B.  Standard statistics texts provide methods that can be used to 

determine if data from similar types of components can be pooled 
into a single group.  If different groups of components have 
essentially equal variances and means at the desired statistical 
level, the data for the groups can be pooled into a single group. 

 
C.  A t-Test (two samples assuming unequal variances) may also be 

performed on the proposed components to be grouped.  The t-Test 
returns the probability associated with a Student's t-Test to 
determine whether two samples are likely to have come from the 
same two underlying populations that have unequal variances. 
If, for example, the proposed group contains 5 sub-groups, the t-
Tests should be performed on all possible combinations for the 
groupings. However, if there is no plausible engineering 
explanation for the two sets of data being incompatible, the groups 
should be combined, despite the results of the t-Test. 
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1.  The t-Test may be performed using the t-Test: Two-Sample 
Assuming Unequal Variances analysis tool within Microsoft 
Excel. 

 
2.  The following formula is used to determine the test statistic 

value t: 
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where:  
 
t   -  test statistic 
m  -  Number of data points in sample 1 
n  - Number of data points in sample 2 
 x    -  Mean of sample 1 

   y  -  Mean of sample 2 
s2  -  Variance of the two samples 
∆0  -  Hypothesized mean difference (0 if testing 

for equal means) 
 

The following formula is used to estimate the degrees of 
freedom for the test statistic: 
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D.  The F-distribution test may be used to test if two variances are 
likely to have come from the same underlying population.  Since 
the presence of outliers may have a significant effect on the 
results of the test, consideration should be given to performing 
the test before and after the outliers are removed.  The following 
method uses a one-sided 5% test and is based on the 
discussion contained in Section 6.2 of Reference 8.3.3. 

 
1.  The F value is determined by the ratio of the smallest and 

largest variances for the two groups: 
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Fcalc = 
2
2

2

1

s
s  

 
where: 
 
S1   -  largest drift standard deviation value 
S2   -  smallest drift standard deviation value 
 
2.  The critical value of the F-distribution can be found using  

Table 9.8 with: 
 
V1  -   number of samples minus 1 in bin with largest 

 standard deviation 
 

V2  -   number of samples minus 1 in bin with smallest 
 standard deviation 
 

The critical value of F-distribution can also be found using 
the FINV function in Microsoft Excel: 
 
Fcrit = FINV (0.05, V1, V2) 

 
4.5.5  Using Data from Other Nuclear Power Plants A. It is generally not 

recommended to pool MNGP specific data with data obtained from 
other utilities.  It may be acceptable to use data from other utilities in 
cases where limited calibration history is available at MNGP.  In this 
case the data must also be verified to be acceptable for grouping.  
Acceptability may be defined by verification of grouping, and an 
evaluation of calibration procedures, Measurement and Test 
Equipment used, and defined setting tolerances. 

 
4.6  Outlier Analysis  

 
4.6.1  An outlier is a data point significantly different in value from the rest of 

the sample.  The presence of an outlier or multiple outliers in the 
sample of component or group data may result in the calculation of a 
larger than expected sample standard deviation and tolerance interval. 
Calibration data can contain outliers for several reasons.  Outlier 
analyses can be used in the initial analysis process to help to identify 
problems with data that require correction.  Examples include:  

 
A.  Data Transcription Errors - Calibration data can be recorded 

incorrectly either on the original calibration data sheet or in the 
spreadsheet program used to analyze the data. 
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B.  Calibration Errors - Improper setting of a device at the time of 
calibration would indicate larger than normal drift during the 
subsequent calibration. 

 
C.  Measuring & Test Equipment Errors - Improperly selected or 

miscalibrated test equipment could indicate drift, when little or no 
drift was actually present. 

 
D.  Scaling or Setpoint Changes - Changes in scaling or setpoints can 

appear in the data as larger than actual drift points unless the 
change is detected during the data entry or screening process. 

 
E.  Failed Instruments - Calibrations are occasionally performed to 

verify proper operation due to erratic indications, spurious alarms, 
etc. These calibrations may be indicative of component failure (not 
drift), which would introduce errors that are not representative of 
the device performance during routine conditions. 

 
F.  Design or Application Deficiencies - An analysis of calibration data 

may indicate a particular component that always tends to drift 
significantly more than all other similar components installed in the 
plant.  In this case, the component may need an evaluation for the 
possibility of a design, application, or installation problem. 
Including this particular component in the same population as the 
other similar components may skew the drift analysis results. 

 
4.6.2 Detection of Outliers  
 

A.  ASTM Standard E178-02 (Reference 8.1.4) provides several 
methods for determining the presence of outliers.  This instruction 
utilizes the Critical Values for T-Test.  The T-Test utilizes the values 
listed in Table 9.2 with an upper significance level of 5% to 
compare a given data point against.  Note that the critical value of T 
increases as the sample size increases.  This signifies that as the 
sample size grows, it is more likely that the sample is truly 
representative of the population.  The T-Test assumes that the data 
is normally distributed. 

 
4.6.3  T-Test Outlier Detection Equation 

s
xx

T i −
=  

Where: 
 

Xi -  An individual sample data point 
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x  -  Mean of all sample data points 
s  -  Standard deviation of all sample data points 
T  -  Calculated value of extreme studentized  deviate that is 

compared to the critical value  of T for the sample size. 
 

If the calculated value of T exceeds the critical value for the sample 
size and desired significance level, then the evaluated data point is 
identified as an outlier. 

 
4.6.4 Outlier Expulsion  
 

A.  This instruction does not permit multiple outlier tests or passes.  
The removal of poor quality data as listed in Section 4.6.1 is not 
considered removal of outliers, since it is merely assisting in 
identifying data errors.  However, after removal of the poor quality 
data, certain data points can still appear as outliers when the outlier 
analysis is performed.  These "unique outliers" are not consistent 
with the other data collected; and could be judged as erroneous 
points which tend to skew the representation of the distribution of 
the data.  However, for the general case, since these outliers may 
accurately represent instrument performance, only one (1) 
additional unique outlier (as indicated by the T-Test) may be 
removed from the drift data. 

 
B.  If there are many identified outliers, the data should be reviewed in 

more detail to determine if a single instrument or unusual situation 
is influencing the results. 

 
4.7  Normality Testing  

 
4.7.1  A test for normality can be important because many frequently used 

statistical methods are based upon an assumption that the data is 
normally distributed.  This assumption applies to the analysis of 
component calibration data also.  For example, the following analyses 
may rely on an assumption that the data is normally distributed:  

 
A.  Determination of a tolerance interval that bounds a stated 

proportion of the population based on calculation of mean and 
standard deviation  

 
B.  Identification of outliers  

 
C.  Pooling of data from different samples into a single population 

 
4.7.2  The normal distribution occurs frequently and is an excellent 

approximation to describe many processes. Testing the assumption of 
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normality is important to confirm that the data appears to fit the model 
of a normal distribution, but tests will not prove that the normal 
distribution is a correct model for the data.  At best, it can only be 
found that the data is reasonably consistent with the characteristics of 
a normal distribution, and that the treatment of a distribution as normal 
is conservative.  For example, some tests for normality will only allow 
the rejection of the hypothesis that the data is not normally distributed.  
A group of data passing the test does not mean the data is normally 
distributed; it only means that there is no evidence to say that it is not 
normally distributed.  However, because of the wealth of industry 
evidence that drift can be conservatively represented by a normal 
distribution, a group of data passing these tests will be considered as 
normally distributed without adjustments to the standard deviation of 
the data set. 

 
4.7.3  Distribution-free techniques are available when the data is not normally 

distributed; however, these techniques are not as well known and often 
result in penalizing the results by calculating tolerance intervals that 
are substantially larger than the normal distribution equivalent.  
Because of this fact, there is a good reason to demonstrate that the 
data is normally distributed or can be bounded by the assumption of 
normality. 

 
4.7.4  Analytically verifying that a sample appears to be normally distributed 

usually invokes a form of statistics known as hypothesis testing.  In 
general, a hypothesis test includes the following steps: A. Statement of 
the hypothesis to be tested and any assumptions B. Statement of a 
level of significance to use as the basis for acceptance or rejection of 
the hypothesis C. Determination of a test statistic and a critical region 
D. Calculation of the appropriate statistics to compare against the test 
statistic E. Statement of conclusions 

 
4.7.5  The following sections discuss various ways in which the assumption 

of normality can be verified to be consistent with the data or can be 
claimed to be a conservative representation of the actual data. 
Analytical hypothesis testing and subjective graphical analyses are 
discussed.  If any of the analytical hypothesis tests (Chi-Squared, D 
Prime, or W Test) are passed, the coverage analysis and additional 
graphical analyses are not required.  The following are methods for 
assessing normality:  
 
A.  Chi-Squared, Π2, Goodness of Fit Test 

The Π2 test compares the actual distribution of sample values to the 
expected distribution.  The expected values are calculated by using 
the normal mean and standard deviation for the sample.  If the 
distribution is normally or approximately normally distributed, the 
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difference between the actual versus expected values should be 
very small.  And, if the distribution is not normally distributed, the 
differences should be significant. 

 
To perform a Π2  test: 

 
1.  Calculate the mean for the sample group 

 

n
X

X i∑=  

 
where: 
 

iX  -  An individual sample data point 
x  -  Mean of all sample data points 
n -  Total number of data points 

 
2.  Calculate the standard deviation for the sample group: 

 

( )
( )1

22

−

−
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nn
xxn

s  

 
where: 

 
x  – Sample data values ( x 1, x 2, x 3, . . .) 

s  – Standard deviation of all sample data points 

n  – Total number of data points 
 

3.  Divide the data into bins to aid in determination of a normal 
distribution.  The number of bins selected is up to the individual 
performing the analysis.  Refer to Reference 8.1.1 for further 
guidance.  Table 9.3 lists the expected probabilities for normal 
distribution for 9 through 12 bins. 
The data may be divided using the Histogram function in 
Microsoft EXCEL. 

 
4.  Calculate the Π2  value for the sample group: 

 
Ei  =  NPi 
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where:  

 
Ei -  Number of sample items expected in a bin 
N -  Total number of samples in the population 
Pi -  Probability that a given sample will be contained in a bin 
Oi -  Observed number of sample items in a bin 
Π2 -  Chi-squared result 

 
5.  Calculate the degrees of freedom (d).  The degrees of freedom 

term is computed as the number of bins used for the chi-
squared computation minus the constraints.  In all cases for 
these drift calculations, the count, mean, and standard deviation 
are computed.  Therefore, the constraints term is equal to three 
(3). 

 
6.  Compute the chi-squared per degree of freedom term: 

 

χo
2 =  

d
2χ

 

 
7.  Evaluate the results.  The results are evaluated in the following 

manner, as prescribed in Reference 8.1.1.  If the chi-squared 
result computed in Step 4.7.5.A.4. is less than or equal to the 
degrees of freedom (χo

2 ≤ 1), the assumption that the 
distribution is normal will not be rejected. 

 
If the value from Step 4.7.5.A.4. is greater than the degrees of 
freedom, then one final check will be made.  The degrees of 
freedom and obtained chi-squared value are used to look up the 
probability that the observed χo

2 will exceed the expected value.  
(See Table 9.4)  If the lookup value is greater than or equal to 
5%, then the assumption of normality will not be rejected.  
However, if the lookup value is less than 5%, the assumption of 
normality is rejected. 

 
B.  The W Test  

 
Reference 8.1.5 recommends this test for sample sizes less than 
50.  The W Test calculates a test statistic value for the sample 
population and compares the calculated value to the critical values 
for W, which are tabulated in Table 9.6.  The W Test is a lower-
tailed test.  Thus if the calculated value of W is less than the critical 
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value of W, the assumption of normality would be rejected at the 
stated significance level.  If the calculated value of W is larger than 
the critical value of W, there is no evidence to reject the assumption 
of normality.  Reference 8.1.5 establishes the methods and 
equations required for performing a W Test. 

 
To perform a W test:  

 
1.  Order the sample data in ascending order from smallest to 

largest. 
 

2. Calculate the S2 for the group: 
 

S2 = (n –1) x s2 
 

where:  
 

S2 -  Sum of the square about the mean 
s2  -  Unbiased estimate of the sample population variance 
n  -  Total number of data points 

 
3.  Calculate the quantity b: 

 

b = ∑ [an-i + 1 x (χn-i + 1 - χi) ] 
 

where:  
 

i – 1 to k, and k = n/2 if n is even or k = (n–1)/2 if n is  
odd 

n – total number of samples 

χi  – An individual sample data point 
 
The coefficients an–i+1 are obtained from Table 9.5. 

 
 

4.  Compute the test statistic: 
 

W  =  2

2

s
b
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5.  Compare the test statistic to the corresponding critical value at 
5% level of confidence.  Critical values for W are tabulated in 
Table 9.6.  If the calculated value of W is less than the critical 
value of W, the assumption of normality would be rejected at the 
stated significance level.  If the calculated value of W is larger 
than the critical value of W, there is no evidence to reject the 
assumption of normality. 

 
C.  The D-Prime (D�) Test Reference 8.1.5 recommends this test for 

moderate to large sample sizes, greater than or equal to 50.  The 
D� Test calculates a test statistic value for the sample population 
and compares the calculated value to the values for the D� 
percentage points of the distribution, which are tabulated in Table 
9.7.  The D� Test is two-sided, which means that the two-sided 
percentage limits at the stated level of significance must bound the 
calculated D� value.  For the given sample size, the calculated 
value of D� must lie within the two values provided in Table 9.7 in 
order to accept the hypothesis of normality. 

 
To perform a D� test  

 
1.  Order the sample data in ascending order from smallest to 

largest. 
 

2. Calculate the S2 for the group: 
 

S2 = (n – 1) x s2 
 

Where:  
 

S2 - Sum of the squares about the mean 
s2  - Unbiased estimate of the sample population variance 
n - Total number of data points 

 
3.  Calculate the linear combination  (T) of the sample group 

∑ 







×






 +

−= ix
niT

2
1   

where: 

i – The number of the sample point 
n – Total number of data points 
χi – An individual sample data point 
 

 

Page 20 of 59 



 

4.  Calculate the D' value for the sample group: 
 

S
TD =′   

 
5.  Evaluate the results.  If the D� value lies within the acceptable 

range of results (for the given data count) per Table 9.7, for the 
P = 0.025 and 0.975, then the assumption of normality is not 
rejected.  (If the exact data count is not contained within the 
tables, the critical value limits for the D� value should be 
linearly interpolated to the correct data count.)  If however, the 
value lies outside that range, the assumption of normality is 
rejected. 

 
D.  Probability Plots A graphical presentation of the data can reveal 

possible reasons for why the data is or is not normal.  A probability 
plot is a graph of the sample data with the axes scaled for a normal 
distribution.  If the data is normal, the data will tend to follow a 
straight line.  If the data is non-normal, a nonlinear shape should be 
evident from the graph.  Refer to Section C.4 of Reference 8.1.1 for 
further discussion.  This method of normality determination is 
subjective, and is not required if the numerical methods show the 
data to be normal, or if a coverage analysis is used. 

 
1.  Cumulative Probability Plot - an XY scatter plot of the Final Data 

Set plotted against the percent probability (Pi) for a normal 
distribution.  The following steps are required to produce a 
probability plot: 

 
a.  Order the sample data in ascending order from smallest to 

largest value. 
 

b.  Calculate the cumulative probability (Pi) for each point: 

P
i

ni =
× −





100 1
2   

where: 

i – The number of the sample point 
n – Total number of sample points 
 

c.  Plot the ordered data in ascending order, xi versus Pi. 
 

d.  Attempt to draw a straight line through the data. 
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The closer the data is to a straight line, the more likely that 
the data is normally distributed. 

 
2.  Normalized Probability Plot - an XY scatter plot of the Final Data 

Set plotted against the probability for a normal distribution 
expressed in multiples of the standard deviation. 

 
Reference 8.1.1 provides for the alternate method of plotting the 
sample data against multiples of the standard deviation rather 
than Pi.  The examples in Reference 8.1.1 and the results of the 
IPASS software are presented in this format.  However, since 
the shape of the plot is the critical factor, this method is not 
further discussed in this instruction. 

 
E.  Coverage Analysis  

 
1.  A coverage analysis is discussed for cases in which the 

hypothesis tests reject the assumption of normality, but the 
assumption of normality may still be a conservative 
representation of the data.  The coverage analysis involves the 
use of a histogram of the data set, overlaid with the equivalent 
probability distribution curve for the normal distribution, based 
on the data sample's mean and standard deviation.  Visual 
examination of the plot is used, and the kurtosis is analyzed to 
determine if the distribution of the data is near normal.  If the 
data is near normal, then a normal distribution model which 
adequately covers the set of drift data as observed is derived.  
This normal distribution will be used as the model for the drift of 
the device. 

 
2.  Sample counting is used to determine an acceptable normal 

distribution.  The Standard Deviation of the group is computed.  
The number of times the samples are within two Standard 
Deviations of the mean is computed.  The count is divided by 
the total number of samples in the group to determine a 
percentage. 

 
3.  If the mean is small per the criteria in Section 4.9, it will not be 

considered when performing the coverage analysis.  In this case 
the number of times the samples are within two Standard 
Deviations of zero is computed.  This provides slightly more 
conservative results for the coverage analysis. 

 
4.  If the percentage of data within the two standard deviations 

tolerance is greater than 95.45%, the existing standard 
deviation is acceptable to be used for the encompassing normal 
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distribution model.  However, if the percentage is less than 
required, the standard deviation of the model will be enlarged, 
such that the required percentage within two Standard 
Deviations is greater than 95.45%.  The required multiplier for 
the standard deviation in order to provide this coverage is 
termed the Normality Adjustment Factor (NAF).  If no 
adjustment is required, the NAF is equal to one (1). 

 
4.8 Time-Dependency Analysis  
 

The component drift calculated in the previous sections represented a 
predicted performance limit without any consideration of whether the drift may 
vary with time between calibrations or component age.  This section 
discusses the importance of understanding the time-related performance and 
the impact of any time-dependency on an analysis.  A time dependency 
analysis is important whenever the drift analysis results are intended to 
support an extension of calibration intervals. 

 
4.8.1 Limitations of Time Dependency Analyses  
 

A.  Reference 8.1.1 performed drift analysis for numerous components 
at several nuclear plants as part of the project.  The data evaluated 
did not demonstrate any significant time-dependent or age-
dependent trends.  Time dependency may have existed in all of the 
cases analyzed, but was insignificant in comparison to other 
uncertainty contributors.  Because time dependency cannot be 
completely ruled out, there should be an ongoing evaluation to 
verify that component drift continues to meet expectations 
whenever calibration intervals are extended. 

 
4.8.2 Drift Interval Plot  
 

A.  A drift interval plot is an XY scatter plot that shows the Final Data 
Set plotted against the time interval between tests for the data 
points.  This plot method relies upon the human eye to discriminate 
the plot for any trend in the data to exhibit a time dependency.  A 
prediction line can be added to this plot which shows a "least 
squares" fit of the data over time.  This can provide visual evidence 
of an increasing or decreasing mean over time, considering all drift 
data.  An increasing standard deviation is indicated by a trend 
towards increasing "scatter" over the increased calibration intervals. 

 
4.8.3 Standard Deviations and Means at Different Calibration Intervals 

(Binning Analysis)  
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This analysis technique is the most recommended method of 
determining time dependent tendencies in a given sample pool.  The 
test consists simply of segregating the drift data into different groups 
(Bins) corresponding to different ranges of calibration or surveillance 
intervals and comparing the standard deviations and means for the 
data in the various groups.  The purpose of this type of analysis is to 
determine if the standard deviation or mean tends to become larger as 
the time interval between calibrations increases. 

 
A. The data that is available will be placed in interval bins.  The 

intervals that will normally be used will coincide with Technical 
Specification calibration intervals plus the allowed tolerance as 
follows:  

 
1.  0 to 1.25 months (covers most weekly and monthly 

calibrations) 
 

2.  >1.25 to 3.75 months (covers most quarterly calibrations) 
 

3.  >3.75 to 7.50 months (covers most semi-annual 
calibrations) 

 
4. >7.50 to 15.0 months (covers most annual calibrations) 

 
5.  >15.0 to 22.5 months (covers most old refuel cycle 

calibrations) 
 

6.  >22.5 to 30.0 months (covers most extended refuel cycle 
calibrations) 

 
7.  >30.0 months covers missed and forced outage refueling 

cycle calibrations. 
  

Data will naturally fall into these time interval bins based on the 
calibration requirements for the subject instrument loops.  Only 
on occasion will a device be calibrated on a much longer or 
shorter interval than that of the rest of the population within its 
calibration requirement group.  Therefore, the data will naturally 
separate into groups for analysis. 

 
B.  Different bin splits may be used, but must be evaluated for data 

coverage and acceptable data groupings. 
 

C. For each bin, where there is data, the mean (average), standard 
deviation, average time interval and data count will be computed. 
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D. To determine if time dependency does or does not exist, the data 
needs to be distributed across multiple bins, with a sufficient 
population of data in each of two or more bins to consider the 
statistical results for those bins to be valid.  Normally the minimum 
expected distribution that would allow evaluation is defined below:  

 
1.  A bin will be considered valid in the final analysis if it holds more 

than five data points and more than ten percent of the total data 
count. 

 
2.  At least two bins, including the bin with the most data, must be 

left for evaluation to occur. 
 

The distribution percentages listed in these criteria are somewhat 
arbitrary, and thus engineering evaluation can modify them for a 
given evaluation. 

 
The mean and standard deviations of the valid bins are plotted 
versus average time interval on a diagram.  This diagram can give 
a good visual indication of whether or not the mean or standard 
deviation of a data set is increasing significantly over time interval 
between calibrations. 

 
If multiple valid bins do NOT exist for a given data set, there is not 
enough diversity in the calibration intervals analyzed to make 
meaningful conclusions about time dependency from the existing 
data.  Unless overwhelming evidence to the contrary exists in the 
scatter plot, the single bin data set will be established as 
moderately time dependent for the purposes of extrapolation of the 
drift value. 

 
E.  For evaluation of the binning method, the critical value of the F-

distribution is compared to the ratio of the smallest and largest 
variances for the evaluated bins.  If the ratio of variances exceeds 
the critical value, the drift uncertainty should be considered as 
moderately or strongly time dependent.  If the ratio of variances 
does not exceed the critical value, the drift uncertainty may be 
considered as time independent. 

 
4.8.4  Regression Analyses and Plots 

 
A.  Regression Analyses can often provide very valuable data for the 

determination of time dependency.  A standard regression analysis 
within an EXCEL spreadsheet will plot the drift data versus time, 
with a prediction line showing the trend.  It will also provide Analysis 
of Variance (ANOVA) table printouts, which contain information 
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required for various numerical tests to determine level of 
dependency between two parameters (time and drift value).  
Regression analyses are only to be performed if multiple valid bins 
are determined from the binning analysis. 

 
B.  Regression Analyses are to be performed on the Final Data Set 

drift values and on the Absolute Value of the Final Data Set drift 
values.  The Final Data Set drift values show trends for the mean of 
the data set, and the Absolute Values show trends for the standard 
deviation over time. 

 
C.  Regression Plots 

 
1.  Drift Regression  - an XY scatter plot that fits a line through the 

final drift data plotted against the time interval between tests for 
the data points using the "least squares" method to predict 
values for the given data set.  The predicted line is plotted 
through the actual data for use in predicting drift over time.  It is 
important to note that statistical outliers can have a dramatic 
effect upon the regression line. 

 
2.  Absolute Value Drift Regression  - an XY scatter plot that fits a 

line through the Absolute Value of the final drift data plotted 
against the time interval between tests for the data points using 
the "least squares" method to predict values for the given data 
set.  The predicted line is plotted through the actual data for use 
in predicting drift, in either direction, over time.  It is important to 
note that statistical outliers can have a dramatic effect upon the 
regression line. 

 
D.  Regression Time Dependency Analytical Tests – Typical 

spreadsheet software includes capabilities to include ANOVA 
tables with regression analyses.  ANOVA tables give various 
statistical information, which can allow certain numerical tests to be 
employed to search for time dependency of the drift data.  For each 
of the two regressions (drift regression and absolute value drift 
regression), the following ANOVA parameters will be used to 
determine if time dependency of the drift data is evident.  All tests 
listed should be evaluated, and if time dependency is indicated by 
any of the tests, the data should be considered as time dependent.  
Note that these tests only support the indication of time 
dependency and not the indication of time independence (i.e., a R 
Squared value of less then 0.09 does not indicate that the drift is 
time independent). 
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1.  R Squared Test  - The R Squared value, printed out in the 
ANOVA table, is a relatively good indicator of time dependency.  
If the value is greater than 0.09, then it appears that the data 
does closely conform to a linear function, and therefore, should 
be considered time dependent. 

 
2.  P Value Test  - A P Value for X Variable 1 (as indicated by the 

ANOVA table for an EXCEL spreadsheet) less than 0.05 is 
indicative of time dependency. 

 
3.  Significance of F Test  - An ANOVA table F value greater than 

the critical F-table value (for a 0.05 probability, the number of 
data points for the regression, and two degrees of freedom for 
the numerator) would indicate a time dependency.  In an 
EXCEL spreadsheet, the FINV function can be used to return 
critical values from the F distribution.  To return the critical value 
of F, use the significance level (in this case 0.05 or 5%) as the 
probability argument to FINV, 2 as the numerator degrees of 
freedom, and the data count minus two as the denominator.  If 
the F value in the ANOVA table exceeds the critical value of F, 
then the drift is considered time dependent. 

 
4.  For each of these tests, if time dependency is indicated, the 

plots should be observed to determine the reasonableness of 
the result.  The tests above generally assess the possibility that 
the function of drift is linear over time, not necessarily that the 
function is significantly increasing over time.  Time dependency 
can be indicated even when the plot shows the drift to remain 
approximately the same or decrease over time.  Generally, a 
decreasing drift over time is not expected for instrumentation, 
nor is a case where the drift function crosses zero.  Under these 
conditions, the extrapolation of the drift term would normally be 
established assuming no time dependency, if extrapolation of 
the results is required beyond the analyzed time intervals 
between calibrations. 

 
 

4.8.5 Age-Dependent Drift Considerations  
 

Age-dependency is the tendency for a component's drift to increase in 
magnitude as the component ages.  This can be assessed by plotting 
the As-Found value for each calibration minus the previous calibration 
As-Left value of each component over the period of time for which data 
is available.  Random fluctuations around zero may obscure any age-
dependent drift trends.  By plotting the absolute values of the As-
Found versus As-Left calibration data, the tendency for the magnitude 
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of drift to increase with time can be assessed.  This analysis is 
generally not performed as a part of a standard drift study, but can be 
used when establishing maintenance practices. 

 
4.9 Drift Bias Determination  
 

An absolute value of the mean of less than 0.1% of calibrated span is 
adequate to state that the instrument drift does not appear to have a bias, 
provided that the tolerance interval centered around the mean is significantly 
larger.  The application of the bias must be carefully considered separately, 
so that the overall treatment of the analyzed drift remains conservative. 

 
4.10 Time Dependent Drift Uncertainty  
 

When calibration intervals are extended beyond the range for which historical 
data is available, the statistical confidence in the ability to predict drift is 
reduced.  The bias and the random portions of the drift will be extrapolated 
separately, but in the same manner. 

 
Where the analysis shows slight to moderate time dependency or time 
dependency is indeterminate, the formula below will be used. 

 

o

E
E

CI
CIADAD   x  =  

where: 
 
ADE – drift bias or random term for the extended calibration interval 
AD – drift bias or random term calculated from the observed data 
CIE – extended calibration interval (surveillance interval +25%) 
CI0 – maximum observed calibration time interval within the observed 

data 
 

This equation matches the adjustment of vendor drift for surveillance intervals 
contained in the GE methodology (Section 4.3.2 of Reference 8.3.1).  The GE 
methodology is based on drift being random, therefore, the effect of one time 
period is independent of another and can be combined using the square root 
of the sum of the squares method.  The calculated ADE will be verified to 
bound the 99%/95% tolerance level recommended in the EPRI report. 

 
Where there is indication of a strong relationship between drift and time, the 
following formula may be used: 

 

o

E
E

CI
CIADAD   x  =  
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This equation assumes that the drift from one time period may be dependent 
on the drift that occurred in the previous time period.  Therefore, this equation 
is used to provide a larger analyzed drift value than would result from use of 
the GE methodology.  The calculated ADE will be verified to bound the 
99%/95% tolerance level recommended in the EPRI report. 

 
Where it can be shown that there is no relationship between surveillance 
interval and drift, the drift value determined may be used for other time 
intervals without change.  However, for conservatism, due to the uncertainty 
involved in extrapolation to time intervals outside of the analysis period, drift 
values that show minimal or no particular time dependency will generally be 
addressed by increasing the tolerance interval to the 99%/95% level. 

 
4.11  Shelf Life Of Analysis Results  

 
4.11.1 Any analysis result based on performance of existing components has 

a shelf life.  In this case, the term shelf life is used to describe a period 
of time extending from the present into the future during which the 
analysis results are considered valid.  Predictions for future 
performance are based upon our knowledge of past calibration 
performance.  This approach assumes that changes in performance 
will occur slowly or not at all over time.  For example, if evaluation of 
the last ten years of data shows the component/loop drift is stable with 
no observable trend, there is little reason to expect a dramatic change 
in performance during the next year.  However, it is also difficult to 
claim that an analysis completed today is still a valid indicator of 
performance ten years from now.  For this reason, the analysis results 
should be re-verified periodically. 

 
4.11.2 Depending on the type of component/loop, the analysis results are 

also dependent on the method of calibration, the component/loop 
span, and the M&TE accuracy.  Any of the following program or 
component/loop changes should be evaluated to determine if they 
affect the analysis results:  

 
A. Changes to M&TE accuracy  

 
B. Changes to the component or loop (e.g. span, environment, 

manufacturer, model, etc.)  
 

C. Calibration procedure changes that alter the calibration 
methodology 
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5.0 INSTRUCTIONS  
 

5.1  Extended Surveillance Intervals  
 

5.1.1  Drift analysis performed to support extended surveillance intervals 
should be stand-alone calculations prepared and controlled in 
accordance with the requirements of 4 AWI-05.01.25 (Reference 
8.2.3). 

 
5.1.2  Data for the drift analysis will be entered into Microsoft Excel 

spreadsheets grouped by manufacturer and model number.  All data 
may also be entered into the IPASS software program.  Analysis may 
be performed using both IPASS and EXCEL spreadsheets.  The 
IPASS analyses are all embedded in the software and it is not possible 
to follow each specific analysis.  The discussion provided in this 
section is to assist in setting up an EXCEL spreadsheet and 
performing the independent analysis (Reference 8.3.5).  For IPASS 
analysis see the IPASS User's Manual (Reference 8.3.2). 

 
5.1.3  Microsoft Excel spreadsheets generally compute values to an 

approximate 15 decimal resolution, which is well beyond any required 
rounding for engineering analyses.  However, for printing and display 
purposes, most values are displayed to lesser resolution.  It is possible 
that hand computations will produce slightly different results because 
of using rounded numbers in initial and intermediate steps, but the 
Excel computed values are considered highly accurate in comparison.  
Values with significant differences between the original computations 
and the computations of the independent verifier will be investigated to 
ensure that the Excel spreadsheet is properly computing the required 
values. 

 
5.2  Verification of Drift Assumptions  

 
5.2.1  Drift analysis performed to verify the drift assumptions in a setpoint 

calculation may be either a stand-alone calculation or an attachment to 
a setpoint calculation performed following the guidelines of Reference 
8.2.2.  Since a time dependency analysis is generally not required for 
this analysis, an IPASS analysis will usually be sufficient. 

 
5.3  Populating The Spreadsheet  

 
5.3.1  The component group to be analyzed (e.g., all Rosemount Trip Units) 

is determined.  The Responsible Engineer should determine the 
possible sub-groups within the large groupings, which from an 
engineering perspective, might show different drift characteristics, and 
therefore, may warrant separation into smaller groups.  This would 

Page 30 of 59 



 

entail looking at the manufacturer, model, calibration span, setpoints, 
time intervals, specifications, locations, environment, etc., as 
necessary. 

 
5.3.2  Develop a list of component numbers, manufacturers, models, 

component types, brief descriptions, surveillance tests, calibration 
procedures and calibration information (spans, setpoints, etc.). 

 
5.3.3  Determine the data to be collected, following the guidance of Sections 

4.4 through 4.6 of this Design Guide. 
 

5.3.4  Identify, locate and collect data for the component group to be 
analyzed. 

 
5.3.5  Sort the data by surveillance test or calibration procedure if more than 

one test/procedure is involved. 
 

5.3.6  Sequentially sort the surveillance or calibration sheets, descending by 
date, starting with the most recent date. 

 
5.3.7  Enter the Date, As-Found, and As-Left values on the appropriate data 

entry sheet. 
 

5.3.8  Review the notes on each calibration data sheet to determine possible 
contributors for excluding data.  The notes should be condensed and 
entered onto the EXCEL spreadsheet for the applicable calibration 
points.  Where appropriate and obvious, the Responsible Engineer 
should remove the data that is invalid for calculating drift for the device. 
The reasons for excluding or correcting invalid data should be 
categorized following the categories in Attachment 10.1. 

 
5.3.9  Calculate the time interval for each drift point by taking the difference 

between the current calibration date and the previous calibration date. 
The time interval is converted to months using 30.5 days per month.  
(If the data is not valid for either the As-Left or As-Found calibration 
information, then the value will not be computed for this data point.) 

 
5.3.10 Calculate the Drift value by taking the difference between the current 

calibration As-Found value and the previous calibration As-Left value 
for each calibration check point.  (If the data is not valid for either the 
As-Left or As-Found calibration information, then the value will not be 
computed for this data point.) 
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5.4  Spreadsheet Performance Of Basic Statistics  
 

5.4.1  Separate data columns are created for each calibration point within the 
calibrated span of the device.  The percent Span of each calibration 
point should closely match from device to device within a given 
analysis.  Basic statistics include at a minimum, determining the 
number of data points in the sample, the average drift, standard 
deviation of the drift, minimum drift value, and maximum drift value 
contained in each data column.   This section provides the specific 
details for using Microsoft Excel.  Other spreadsheet programs, 
statistical, or Math programs that are similar in function are acceptable 
for use to perform the data analysis, provided all analysis requirements 
are met. 

 
5.4.2  Determine the average for the data points contained in each column 

for each initial group by using the "AVERAGE" function.  Example cell 
format = AVERAGE (C2:C133).  The Average function returns the 
average of the data contained within the range of cells C2 through 
C133.  This average is also known as the mean of the data. 

 
5.4.3  Determine the standard deviation for the data points contained in each 

column for each initial group by using the "STDEV" function.  Example 
cell format = STDEV (C2:C133).  The Standard Deviation function 
returns the measure of how widely values are dispersed from the mean 
of the data contained within the range of cells C2 through C133. 
Formula used by Microsoft Excel to determine the standard deviation:  
 
A.  STDEV (Standard Deviation of the sample population): 

 

( )
( )1
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−
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s  

 
where: 

x  – Sample data values ( x 1, x 2, x 3, ....) 
 – Standard deviation of all sample data points 
 – Total number of data points 
s
n

 
5.4.4 Determine the variance for the data points contained in each column 

for each initial group by using the "VAR" function.  Example cell format 
= VAR (C2:C133).  The Variance function returns the measure of how 
widely values are dispersed from the mean of the data contained within 
the range of cells C2 through C133.  Formula used by Microsoft Excel 
to determine the variance:  
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A.  VAR (Variance of the sample population): 
 

( )
( )1
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s  

where: 

x  – Sample data values ( x 1, x 2, x 3, ....) 
s 2 – Variance of the sample population 
n  – Total number of data points 
 

5.4.5  Determine the largest positive drift value for the data points contained 
in each column for each initial group by using the "MAX" function. 
Example cell format = MAX (C2:C133).  The Maximum function returns 
the largest value of the cells contained within the range of cells C2 
through C133. 

 
5.4.6  Determine the largest negative drift value for the data points contained 

in each column for each initial group by using the "MIN" function. 
Example cell format = MIN (C2:C133).  The Minimum function returns 
the smallest value of the cells contained within the range of cells C2 
through C133. 

 
5.4.7  Determine the number of data points contained in each column for 

each initial group by using the "COUNT" function.  Example cell format 
= COUNT (C2:C133).  The Count function returns the number of all 
populated cells within the range of cells C2 through C133. 

 
5.4.8  Where sub-groups which have engineering reasons for the possibility 

that the data should be separated have been combined in a data set, 
analyze the statistics and component data of the sub-groups to 
determine the acceptability for combination. 

 
A.  Perform a t-Test in accordance with Step 4.5.4 on each possible 

sub-group combination to test for the acceptability of combining the 
data.  Acceptability for combining the data is indicated when the 
absolute value of the Test Statistic (t Stat) is less than the t Critical 
two-tail.  Example:  t Stat for combining sub-group A & B may be 
0.703, which is larger than the t Critical two-tail of 0.485.  However, 
as a part of this process, the Responsible Engineer should ensure 
that the indication of unacceptability does not mask time 
dependency.  In other words, if the only difference in the groupings 
is that of the calibration interval, the differences in the data 
characteristics could exist because of time dependent drift.  If this is 
the only difference, the data should be combined, even though the 
tests show that it may not be appropriate. 
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B. Perform a F-distribution test in accordance with Step 4.5.4 to test 
for the acceptability of combining the data.  Acceptability for 
combining the data is indicated when the ratio of variances (Fcalc) is 
less than the critical value of the F-distribution (Fcrit).  The same 
cautions on use of the t-Test apply to the F-distribution test. 

 
5.5 Outlier Detection And Expulsion  
 

5.5.1  A drift trend plot should be developed for each instrument in the group 
by plotting the drift value versus calibration date.  Bounds 
corresponding to � 2 Sigma (2 Standard Deviations) should be 
included on the plot.  Drift values outside the 2 Sigma bounds should 
be evaluated for possible erroneous data.  The reasons for excluding 
or correcting invalid data should be categorized following the 
categories in Attachment 10.1. 

 
5.5.2  Obtain the Critical Values for the T-Test from Table 9.2, based on the 

sample size of the data contained within the specified range of cells. 
Use the COUNT value to determine the sample size. 

 
5.5.3  Perform the outlier test for all the samples at each calibration point.  

For any values that show up as outliers, analyze the initial input data to 
determine if the data is erroneous.  If so, remove or correct the data in 
the earlier pages of the spreadsheet, and re-run all of the analysis up 
to this point.  Continue this process until all erroneous data has been 
removed.  The reasons for excluding or correcting invalid data should 
be categorized following the categories in Attachment 10.1. 

 
5.5.4  If appropriate, if any outliers are still displayed, remove the worst case 

outlier as a statistical outlier, per step 4.6.4 above. 
 

5.5.5  Recalculate the Average, Standard Deviation, largest positive drift, 
largest negative drift, and Count for each calibration point after the 
removal of any outliers. 

 
5.6 Normality Tests  

 
5.6.1  To test for normality of the data set, the first step is to perform the 

required hypothesis testing.  For data sets with 50 or more data points, 
the hypothesis testing can be done with either the Chi-Square (Step 
4.7.5.A.) or the D� Tests (Step 4.7.5.C.).  If the data set has less than 
50 data points, the W Test (Step 4.7.5.B.) or Chi-Square Test may be 
used.  The Chi-Square test should generally be performed with 12 bins 
of data, starting from [-� to (mean-2.5�)], and bin increments of 0.5�, 
ending at [(mean+2.5�) to +�].  (Since the same bins are to be used 
for the histogram in the coverage analysis, the work for these two tasks 
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may be combined.)  If the data passes either of the tests, only the 
passed test need be shown in the spreadsheet.  However, if the 
assumption of normality is rejected by both of the hypothesis tests, the 
results of both tests should be presented. 

 
5.6.2  If the assumption of normality is rejected by both tests, then a 

coverage analysis should be performed as described in Section 
4.7.5.E.  As explained above for the Chi-Square test, the coverage 
analysis and histogram will be established with a 12 bin approach 
unless inappropriate for the application. 

 
5.6.3  If an adjustment is required to the standard deviation to provide a 

normal distribution that adequately covers the data set, then the 
required multiplier to the standard deviation (Normality Adjustment 
Factor (NAF)) will be determined iteratively in the coverage analysis. 
This multiplier will produce a normal distribution model for the drift, 
which shows adequate data population from the data set within the 
∀2� band of the model. 

 
5.6.4  The Chi-Square Test and coverage analysis should be shown for the 

original data set and for the data set with the outlier removed. 
 

5.6.5  Probability Plots (Step 4.7.5.D.) may be used if the numerical methods 
show that the data is not normally distributed. 

 
5.7 Selection of Final Data Set  

 
5.7.1  For transmitters, or other devices with multiple calibration points, the 

general process will be to use the calibration point with the worst case 
drift values.  Care must be taken in selecting the final data set since a 
data set that has a high bias (mean) with a lower standard deviation 
may result in a less conservative setpoint than a data set that has a 
lower bias with a high standard deviation.  The point(s) of interest and 
the direction of the setpoint (increasing or decreasing) should be 
considered when evaluating the data set for selecting bounding limits. 

 
5.7.2 The following method is used to evaluate the calibration points:  
 

A.  Determine the 95%/95% tolerance interval for each calibration 
point: TI = s x TIF x NAF where: TI   -  Tolerance Interval s   -  drift 
standard deviation calculated from the observed data TIF -  
95%/95% Tolerance Interval factor from Table 9.1 NAF - Normality 
Adjustment factor from Coverage Analysis  (NAF = 1 if no coverage 
analysis was performed)  
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B.  Plot the tolerance interval as a function of calibration point.  The 
Calibration Point Drift plot visually shows the amount of drift 
exhibited by the group of devices at the different calibration points. 

 
C.  If the points show a significant average (greater than 0.1% of span), 

plot the average as a function of calibration point. 
 

D.  A data set with bounding statistics is selected to ensure the most 
conservative setpoint results. 

 
E.  Provide plots for the original data set and the data set with the 

outlier removed. 
 

5.8 Time Dependency Testing  
 

5.8.1  Drift Interval Plot  
 

A.  A scatter plot is performed under a new page to the spreadsheet 
entitled "Scatter Plot" or "Drift Interval Plot".  The chart function of 
EXCEL is used to chart the data with the x-axis being the 
calibration interval and the y-axis being the drift value.  The 
prediction line should be added to the chart, along with the equation 
of the prediction line. 

 
B.  The Tolerance Interval calculated above should be added to the 

Drift Interval Plot as a plus/minus band centered around zero.  If a 
significant average was determined (greater than 0.1% of span), 
the average should also be plotted with the Tolerance Interval 
centered around the average. 

 
C. This plot provides visual indication of the trend of the mean, and 

somewhat obscurely, of any increases in the scatter of the data 
over time.  Plotting the Tolerance Interval provides visual 
verification that an acceptable number of the data points are 
bounded by the Tolerance Interval. 

 
D.  Once the extended Analyzed Drift value is determined, it should be 

reflected on the Drift Interval Plot similar to the Tolerance Interval. 
 

5.8.2  Binning Analysis  
 

A.  The binning analysis is performed under a separate worksheet of 
the EXCEL spreadsheet.  The Final Data Set is copied onto the 
worksheet and then split by bins into the time intervals as defined in 
Section 4.8.3.A.  The standard deviation, mean, average time 
interval, and count of the data in each time bin is calculated. 
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Similar equation methods are used here as described in Section 
5.4 above when characterizing the drift data set.  The validity of the 
bins is evaluated based on population per the criteria of Section 
4.8.3.D.  If multiple valid bins are not established, the data will be 
considered as moderately time dependent. 

 
B.  If multiple bins are established, the standard deviations, means, 

and average time intervals are tabulated and a plot is generated to 
show the variation of the bin averages and standard deviations 
versus average time interval.  This plot can be used to establish 
whether standard deviations and means are significantly increasing 
over time between calibrations. 

 
C.  If the plot shows an increase in standard deviation over time, 

compare the critical value of the F-distribution of the ratio of the 
smallest and largest variances for the required bins: 

 

Fcalc=  
S1 2

S2 2
 

where: 
S

1 – largest drift standard deviation value 
S

2 – smallest drift standard deviation value 
 
The critical value of the F-distribution can be found using  Table 9.8 
with: 
 
V

1 – number of samples minus 1 in bin with largest standard 
        deviation 

 
V

2 – number of samples minus 1 in bin with smallest standard 
  deviation 

The critical value of F–distribution can also be found using the FINV 
function in Microsoft Excel: 

F
crit = FINV (0.05, V1, 

V
2) 

 
D.  If the Fcalc value is less than the Fcrit value, the standard deviations 

of the drift uncertainty for the two bins are not significantly different 
and is not indicative of time dependent behavior.  The drift 
uncertainty may be treated as time independent. 
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E.  If the Fcalc value is greater than the Fcrit value, the standard 
deviations of the drift uncertainty for the two bins appear to be 
different, indicative of time-dependent behavior.  At the minimum, 
the drift uncertainty will be treated as moderately time dependent. 

 
F.  If the plots tend to indicate significant increases in either the mean 

or standard deviation over time, those parameters should be judged 
to be strongly time dependent. 

 
5.8.3  Regression Analyses 

 
A.  The regression analyses are performed in accordance with the 

requirements of Section 4.8.4 given that multiple valid time bins 
were established in the binning analysis.  The Final Data Set 
should be set up with the blank lines removed.  For the Absolute 
Value Regression, a third column should be created which takes 
the absolute value of the drift column. 

 
B.  For each of the two Regression Analyses, use the following steps 

to produce the regression analysis output.  Using the "Data 
Analysis" package under "Tools" in Microsoft EXCEL, the 
Regression option should be chosen.  The Y range will be 
established as the Drift (or Absolute Value of Drift) data range, and 
the X range should be the calibration time intervals.  The output 
range should be established on a new worksheet for each analysis.  
The option for the residuals should be established as "Line Fit 
Plots".  The regression computation should then be performed.  
The output of the regression routine will be a list of residuals, an 
ANOVA table listing, and a plot of the Drift (or Absolute Value of 
Drift) versus the Time Interval Between Calibrations.  A prediction 
line will be included on the plot.  Add a cell close to the ANOVA 
table listing which establishes the Critical Value of F, using the 
guidance of Section 4.8.4 for the Significance of F Test.  This will 
utilize the FINV function of Microsoft EXCEL. 

 
C.  Analyze the results in the Drift Regression ANOVA table for R 

Square, P Value, and F Value, using the guidance of Section 4.8.4.  
If any of these analytical means shows time dependency in the Drift 
Regression and the slope of the prediction line significantly 
increases over time from an initially positive value (or decreases 
over time from an initially negative value), without crossing zero 
within the time interval of the regression analysis, the mean of the 
data set should be established as strongly time dependent.  This 
increase can also be validated by observing the results of the 
binning analysis plot for the mean of the bins, and by observing the 
scatter plot prediction line. 
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D.  Analyze the results in the Absolute Value of Drift Regression 

ANOVA table for R Square, P Value, and F Value, using the 
guidance of Section 4.8.4.  If any of these analytical means shows 
time dependency and the slope of the prediction line significantly 
increases over time, the standard deviation of the data set should 
be established as strongly time dependent.  This increase can also 
be validated by observing the results of the binning analysis plot for 
the standard deviation of the bins, and by observing any discernible 
increases in data scatter as time increases on the scatter plot. 

 
E.  Regardless of the results of the analytical regression tests, if the 

plots tend to indicate significant increases in either the mean or 
standard deviation over time, those parameters should be judged to 
be strongly time dependent.  Otherwise, for conservatism, the data 
will always be considered to be moderately time dependent if 
extrapolation of the data is necessary to accommodate the 
uncertainty involved in the extrapolation process. 

 
5.9 Drift Bias Determination  
 

5.9.1  If the mean of the Final Data Set is significant per the criteria in Section 
4.9, the average is treated as a bias to the drift term. 

 
5.10 Calculate The Analyzed Drift Value  
 

5.10.1 Determine the required time interval for which the value must be 
computed.  Technical Specifications allow time intervals between tests 
to be extended up to 25% of the surveillance interval.  Therefore, the 
analyzed drift value is determined for the required calibration interval 
plus 25%. 

 
5.10.2 Bias Term  
 

If the mean of the Final Data Set is significant per the criteria in Section 
4.9, a bias term will be considered.  If no extrapolation is necessary, 
the bias term will be set equal to the mean of the Final Data Set. 
Extrapolation of this term will be performed in one of two methods, as 
determined by the degree of time dependency established in the time 
dependency analysis.  If the mean is determined to be strongly time 
dependent, the following equation will be used to extrapolate the value 
in a linear fashion: 

 
 

 
o

E
Ebias

CI
CIAD x   AD   bias =
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where: 

ADE.bias – drift bias term for the extended calibration interval 
ADbias – drift bias (mean) calculated from the observed data 
CIE – extended calibration interval (surveillance interval 
  + 25%) 
CI0 – average observed calibration time interval from bin with 
  longest time interval 

 
If the mean is determined to be moderately time dependent, the 
following equation will be used to extrapolate the mean.  (Note that 
because of the uncertainty in defining a drift value beyond analysis 
limits, this equation will also generally be used for cases where no time 
dependency is evident.) 

  x   AD    bias 
o

E
Ebias

CL
CLAD =  

5.10.3 Random Term  
 

A. The random portion of the Analyzed Drift is calculated by multiplying 
the standard deviation of the Final Data Set by the Tolerance 
Interval Factor (TIF) for the sample size and by the Normality 
Adjustment Factor (NAF), if required from the Coverage Analysis, 
and extrapolating the final result in a fashion similar to the methods 
shown above for the bias term. 

 
B.  Obtain the appropriate Tolerance Interval Factor for the size of the 

sample set from Table 9.1. 
 

NAFTIFsADrandom   x     x      =  

where: 
s – drift standard deviation calculated from the observed  
  data 
TIF – 95%/95% Tolerance Interval factor from Table 9.1 
NAF – Normality Adjustment Factor from Coverage Analysis 
 

5.10.4 30-Month Predicted Drift (Random Term)  
 

A.  If the drift uncertainty was not shown to be time-dependent, the drift 
uncertainty for the extended calibration interval is determined by 
increasing the tolerance factor to the 99%/95% level: 

 
 

95/95

95/99
       x    
TIF
TIFADAD randomrandomE =
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where: 
ADE.random – random drift term for the extended calibration 
  interval 
ADrandom – random drift term calculated from the observed 
  data 
TIF99/95 – 99%/95% Tolerance Interval Factor from  
  Table 9.1 
TIF95/95 – 95%/95% Tolerance Interval Factor from  
  Table 9.1 

B.  If the drift was determined to be moderately time dependent, the 
following equation should be used to extrapolate the drift 
uncertainty: 

 

o

E
randomrandomE

CI
CIADAD  x          =  

where: 
CIE – extended calibration interval (surveillance interval +25%) 
CIO – average observed calibration time interval from bin 
  with longest time interval 

 
A check should be made to ensure that the obtained drift 
uncertainty is greater than the uncertainty calculated with the 
99%/95% tolerance factor.  The larger of the two values should be 
used. 

 
C.  If the drift is determined to be strongly time dependent, the 

following equation will be used to extrapolate the value in a linear 
fashion: 

o

E
randomrandomE

CI
CIADAD  x          =  

A check should be made to ensure that the obtained drift 
uncertainty is greater than the uncertainty calculated with the 
99%/95% tolerance factor.  The larger of the two values should be 
used. 

 
6.0 CALCULATIONS  
 

6.1 Drift Studies  
 

The Drift Studies should be performed in accordance with the methodology 
described above and the requirements of Reference 8.2.3.  The following 
items are to be addressed in the calculation. 
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6.1.1 Describe, at a minimum, that the objective of the calculation is to 

document the drift analysis results for the component group, and 
extrapolate the drift value to the required calibration period (if 
applicable). 

 
6.1.2  Provide a list for the group of all pertinent information in tabular form 

(e.g. Tag Numbers, Manufacturer, Model Numbers, ranges and 
calibration spans). 

 
6.1.3  Describe any limitations on the application of the results.  For instance, 

if the analysis only applies to a certain range code, the objective will 
state this fact. 

 
6.1.4  The method of solution will describe, at a minimum, a summary of the 

methodology used to perform the drift analysis outlined by this Design 
Guide.  Exceptions taken to this instruction will be identified, including 
basis and references for exceptions. 

 
6.1.5  The actual calculation/analysis will provide:  

 
A.  A listing of data which was removed, and the justification for doing 

so. 
 

B.  A narrative discussion of the specific activities performed for this 
calculation. 

 
C. Results and conclusions, including:  

 
1. Manufacturer and model number analyzed  

 
2. Bias and random Analyzed Drift values, as applicable  

 
3. The applicable Tolerance Interval Factors (provide detailed 

discussion and justification if other than 95%/95%)  
 

4. Applicable drift time interval for application  
 

5. Normality conclusion  
 

6. Statement of time dependency observed, as applicable  
 

7. Limitations on the use of this value in application to uncertainty 
calculations, as applicable  

 
8. Limitations on the application of the results to similar 

instruments, as applicable 
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D. Attachments, including the following information:  

 
1. Input data with notes on removal and validity  

 
2. Computation of drift data and calibration time intervals  

 
3. Outlier summary, including Final Data Set and basic statistical 

summaries  
 

4. Chi-Square Test Results (If Applicable) 
 

5. W Test or D� Test Results (If Applicable)  
 

6. Coverage analysis, including histogram, percentages in the 
required sigma bands, and Normality Adjustment Factor (if 
applicable)  

 
7. Scatter Plot with prediction line and equation  

 
8.  Binning Analysis Summaries for Bins and Plots (as applicable) 
 
9.  Derivation of the Analyzed Drift values, with summary of 

conclusions 
 

6.2 Use of Analyzed Drift Value in Setpoint/Uncertainty Calculations  
 

6.2.1  To apply the results of the drift analyses to a specific device or loop, a 
setpoint/uncertainty calculation will be performed, revised or evaluated 
in accordance with References 8.2.3 and 8.2.2, as appropriate.  Per 
Section 4.3.5 above, the Analyzed Drift term characterizes the Vendor 
Accuracy (VA), M&TE (or calibration error), and drift error terms for the 
analyzed device, loop, or function.  In order to save time, a comparison 
between these terms (or subset of these terms) in an existing setpoint 
calculation to the Analyzed Drift can be made.  If the terms within the 
existing calculation bound the Analyzed Drift term, then the existing 
calculation is conservative as is, and does not specifically require 
revision.  If revision to the calculation is necessary, the Analyzed Drift 
term may be incorporated into the calculation, setting the Vendor 
Accuracy, M&TE (or calibration error), and drift terms for the analyzed 
devices to zero. 

 
Only the Vendor Drift and Drift Temperature Effect terms may be 
replaced with the analyzed drift value for the Technical Specification 
calculations performed per the GE setpoint methodology. 
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6.2.2 When comparing the results to setpoint calculations which have more 
than one device in the instrument loop which has been analyzed for 
drift, comparisons can be made between the AD terms and the original 
terms on a device-by-device basis, or on a total loop basis.  Care 
should be taken to properly combine terms for comparison in 
accordance with Reference 8.2.2, as appropriate. 

 
6.2.3  When applying the drift study results of bistables or switches to a 

setpoint calculation, the preparer should fully understand the 
directionality of any bias terms within AD and apply the bias terms 
accordingly.  See the guidelines within Reference 8.2.2 for working 
with bias terms. 

 
7.0 DEFINITIONS  
 

As-Found  The condition in which a channel, or portion of a channel,  Ref. 8.1.1 
is found after a period of operation and prior to any  
calibration. 

 
As-Left  The condition in which a channel, or portion of a channel,   Ref. 8.1.1 

is left after a calibration or surveillance check. 
 

Kurtosis  A characterization of the relative peakedness or flatness   Ref. 8.1.1 
of a distribution compared to a normal distribution.  A   
large kurtosis indicates a relatively peaked distribution and   
a small kurtosis indicates a relatively flat distribution. 
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9.0 TABLES 
 

Table 9.1  Tolerance Interval Factors 
 

Sample Size 95%/95% 99%/95% Sample Size 95%/95% 99%/95%
≥ 2 37.674 188.491 ≥ 55 2.354 2.538 
≥ 3 9.916 22.401 ≥ 60 2.333 2.506 
≥ 4 6.370 11.150 ≥ 65  2.315 2.478 
≥ 5 5.079 7.855 ≥ 70 2.299 2.454 
≥ 6 4.414 6.345 ≥ 75 2.285 2.433 
≥ 7 4.007 5.488 ≥ 80 2.272 2.414 

 ≥ 8 3.732 4.936 ≥ 85 2.261 2.397 
≥ 9 3.532 4.550 ≥ 90 2.251 2.382 
≥ 10 3.379 4.265 ≥ 95 2.241 2.368 
≥ 11 3.259 4.045 ≥ 100 2.233 2.355 
≥ 12 3.162 3.870 ≥ 110 2.218 2.333 
≥ 13 3.081 3.727 ≥ 120 2.205 2.314 
≥ 14 3.012 3.608 ≥ 130 2.194 2.298 
≥ 15 2.954 3.507 ≥ 140 2.184 2.283 
≥ 16 2.903 3.421 ≥ 150 2.175 2.270 
≥ 17 2.858 3.345 ≥ 160 2.167 2.259 
≥ 18 2.819 3.279 ≥ 170 2.160 2.248 
≥ 19 2.784 3.221 ≥ 180 2.154 2.239 
≥ 20 2.752 3.168 ≥ 190 2.148 2.230 
≥ 21 2.723 3.121 ≥ 200 2.143 2.222 
≥ 22 2.697 3.078 ≥ 250 2.121 2.191 
≥ 23 2.673 3.040 ≥ 300 2.106 2.169 
≥ 24 2.651 3.004 ≥ 400 2.084 2.138 
≥ 25 2.631 2.972 ≥ 500 2.070 2.117 
≥ 26 2.612 2.941 ≥ 600 2.060 2.102 
≥ 27 2.595 2.914 ≥ 700 2.052 2.091 
≥ 30 2.549 2.841 ≥ 800 2.046 2.082 
≥ 35 2.490 2.748 ≥ 900 2.040 2.075 
≥ 40 2.445 2.677 1000 2.036 2.068 
≥ 45 2.408 2.621 ∞ 1.960 1.960 
≥ 50 2.379 2.576    
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NOTE 1:  For cases where the exact count is not contained within the table, 

either the higher value or linear interpolation of the values may be 
used to determine the Tolerance Interval Factor. 

 
NOTE 2:  Table data from Table VII(a) of Reference 8.3.3. 
 
NOTE 3:  Data matches the Tolerance Interval Factors used in the IPASS 

Revision 2.03 software. 
 
NOTE 4:  An AFAL analysis performed with a sample size <  30 must have 

justification provided within the analysis documentation. 
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9.0 TABLES (Cont'd) 
 

 

Table 9.2  Critical Values For T–Test 
 

Sample 
Size 

Upper 5% 
Significance Level 

Sample 
Size 

Upper 5% 
Significance Level 

≤ 3 1.15 22 2.60 
4 1.46 23 2.62 
5 1.67 24 2.64 
6 1.82 25 2.66 
7 1.94 ≤ 30 2.75 
8 2.03 ≤ 35 2.81 
9 2.11 ≤ 40 2.87 
10 2.18 ≤ 45 2.91 
11 2.23 ≤ 50 2.96 
12 2.29 ≤ 60 3.03 
13 2.33 ≤ 70 3.08 
14 2.37 ≤ 75 3.11 
15 2.41 ≤ 80 3.13 
16 2.44 ≤ 90 3.17 
17 2.47 ≤ 100 3.21 
18 2.50 ≤ 125 3.28 
19 2.53 ≤ 150 3.33 
20 2.56 >150 4.00 (Note 2) 
21 2.58 

NOTE 1: Table data from Table 1 of Reference 8.1.4. 

NOTE 2: For sample sizes greater than 150, an outlier factor of 4.00 is used in 
accordance with the guidance in Reference 8.1.1. 

NOTE 3: An AFAL analysis performed with a sample size < 30 must have 
justification provided within the analysis documentation. 
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9.0 TABLES (Cont'd) 
 

Table 9.3  Expected Probabilities for Normal Distribution 
 

9 Bin Analysis 10 Bin Analysis 
Bin Range (ó) Probability (%) Bin Range (ó) Probability (%) 

- ∞ to -2.38 0.866 - ∞ to -2.4 0.820 
-2.38 to -1.70 3.594 -2.4 to -1.8 2.770 
-1.70 to -1.02 10.930 -1.8 to -1.2 7.920 
-1.02 to -0.34 21.300 -1.2 to -0.6 15.920 
-0.34 to 0.34 26.620 -0.6 to 0.0 22.570 
0.34 to 1.02 21.300 0.0 to 0.6 22.570 
1.02 to 1.70 10.930 0.6 to 1.2 15.920 
1.70 to 2.38 3.594 1.2 to 1.8 7.920 

2.38 to ∞ 0.866 1.8 to 2.4 2.770 
 2.4 to ∞ 0.820 

 
11 Bin Analysis 12 Bin Analysis 

Bin Range (ó) Probability (%) Bin Range (ó) Probability (%) 
- ∞ to -2.52 0.587 - ∞ to -2.5 0.621 

-2.52 to -1.96 1.913 -2.5 to -2.0 1.659 
-1.96 to -1.40 5.580 -2.0 to -1.5 4.400 
-1.40 to -0.84 11.970 -1.5 to -1.0 9.190 
-0.84 to -0.28 18.920 -1.0 to -0.5 14.980 
-0.28 to 0.28 22.060 -0.5 to 0.0 19.150 
0.28 to 0.84 18.920 0.0 to 0.5 19.150 
0.84 to 1.40 11.970 0.5 to 1.0 14.980 
1.40 to 1.96 5.580 1.0 to 1.5 9.190 
1.96 to 2.52 1.913 1.5 to 2.0 4.400 

2.52 to ∞ 0.587 2.0 to 2.5 1.659 
 2.5 to ∞ 0.621 

NOTE: Data developed from Table III of Reference 8.3.3. 
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Table 9.4  Probabilities of Πd
2 > Πo

2 (percent) 
 

Πo
2 

d 0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 8.0 10.0
1 100 48 32 22 16 11 8.3 6.1 4.6 3.4 2.5 1.9 1.4 0.5 0.2 
2 100 61 37 22 14 8.2 5.0 3.0 1.8 1.1 0.7 0.4 0.2 - - 
3 100 68 39 21 11 5.8 2.9 1.5 0.7 0.4 0.2 0.1 - - - 
4 100 74 41 20 9.2 4.0 1.7 0.7 0.4 0.2 0.1 - - - - 
5 100 78 42 19 7.5 2.9 1.0 0.4 0.1 - - - - - - 
d 0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8 
1 100 65 53 44 37 32 27 25 21 18 16 14 12 11 9.4 
2 100 82 67 55 45 37 30 24 20 17 14 11 9.1 7.4 6.1 
3 100 90 75 61 49 39 31 24 19 14 11 8.6 6.6 5.0 3.8 
4 100 94 81 66 52 41 31 23 17 13 9.2 6.6 4.8 3.4 2.4 
5 100 96 85 70 55 42 31 22 16 11 7.5 5.1 3.5 2.3 1.6 
6 100 98 88 73 57 42 30 21 14 9.5 6.2 4.0 2.5 1.6 1.0 
7 100 99 90 76 59 43 30 20 13 8.2 5.1 3.1 1.9 1.1 0.7 
8 100 99 92 78 60 43 29 19 12 7.2 4.2 2.4 1.4 0.8 0.4 
9 100 99 94 80 62 44 29 18 11 6.3 3.5 1.9 1.0 0.5 0.3 

10 100 100 95 82 63 44 29 17 10 5.5 2.9 1.5 0.8 0.4 0.2 
11 100 100 96 83 64 44 28 16 9.1 4.8 2.4 1.2 0.6 0.3 0.1 
12 100 100 96 84 65 45 28 16 8.4 4.2 2.0 0.9 0.4 0.2 0.1 
13 100 100 97 86 66 45 27 15 7.7 3.7 1.7 0.7 0.3 0.1 0.1 
14 100 100 98 87 67 45 27 14 7.1 3.3 1.4 0.6 0.2 0.1 - 
15 100 100 98 88 68 45 26 14 6.5 2.9 1.2 0.5 0.2 0.1 - 

NOTE: Data from Table 19–3 of Reference 8.1.1. 
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Table 9.5  Coefficients (an–i+1) Used in the W Test for Normality 

 

 n 
i 3 4 5 6 7 8 9 10 11 12 13 14 
1 0.7071 0.6872 0.6646 0.6431 0.6233 0.6052 0.5888 0.5739 0.5601 0.5475 0.5359 0.5251
2  0.1677 0.2413 0.2806 0.3031 0.3164 0.3244 0.3291 0.3315 0.3325 0.3325 0.3318
3    0.0875 0.1401 0.1743 0.1976 0.2141 0.2260 0.2347 0.2412 0.2460
4    0.0561 0.0947 0.1224 0.1429 0.1586 0.1707 0.1802
5    0.0399 0.0695 0.0922 0.1099 0.1240
6     0.0303 0.0539 0.0727
7     0.0240

 
 n 

i 15 16 17 18 19 20 21 22 23 24 25 26 
1 0.5150 0.5056 0.4968 0.4886 0.4808 0.4734 0.4643 0.4590 0.4542 0.4493 0.4450 0.4407
2 0.3306 0.3290 0.3273 0.3253 0.3232 0.3211 0.3185 0.3156 0.3126 0.3098 0.3069 0.3043
3 0.2495 0.2521 0.2540 0.2553 0.2561 0.2565 0.2578 0.2571 0.2563 0.2554 0.2543 0.2533
4 0.1878 0.1939 0.1988 0.2027 0.2059 0.2085 0.2119 0.2131 0.2139 0.2145 0.2148 0.2151
5 0.1353 0.1447 0.1524 0.1587 0.1641 0.1686 0.1736 0.1764 0.1787 0.1807 0.1822 0.1836
6 0.0880 0.1005 0.1109 0.1197 0.1271 0.1334 0.1399 0.1443 0.1480 0.1512 0.1539 0.1563
7 0.0433 0.0593 0.0725 0.0837 0.0932 0.1013 0.1092 0.1150 0.1201 0.1245 0.1283 0.1316
8  0.0196 0.0359 0.0496 0.0612 0.0711 0.0804 0.0878 0.0941 0.0997 0.1046 0.1089
9    0.0163 0.0303 0.0422 0.0530 0.0618 0.0696 0.0764 0.0823 0.0876

10    0.0140 0.0263 0.0368 0.0459 0.0539 0.0610 0.0672
11    0.0122 0.0228 0.0321 0.0403 0.0476
12     0.0107 0.0200 0.0284
13     0.0094

 
 n 

i 27 28 29 30 31 32 33 34 35 36 37 38 
1 0.4366 0.4328 0.4291 04254 0.4220 0.4188 0.4156 0.4127 0.4096 0.4068 0.4040 0.4015
2 0.3018 0.2992 0.2968 0.2944 0.2921 0.2898 0.2876 0.2854 0.2834 0.2813 0.2794 0.2774
3 0.2522 0.2510 0.2499 0.2487 0.2475 0.2463 0.2451 0.2439 0.2427 0.2415 0.2403 0.2391
4 0.2152 0.2151 0.2150 0.2148 0.2145 0.2141 0.2137 0.2132 0.2127 0.2121 0.2116 0.2110
5 0.1848 0.1857 0.1864 0.1870 0.1874 0.1878 0.1880 0.1882 0.1883 0.1883 0.1883 0.1881
6 0.1584 0.1601 0.1616 0.1630 0.1641 0.1651 0.1660 0.1667 0.1673 0.1678 0.1683 0.1686
7 0.1346 0.1372 0.1395 0.1415 0.1433 0.1449 0.1463 0.1475 0.1487 0.1496 0.1505 0.1513
8 0.1128 0.1162 0.1192 0.1219 0.1243 0.1265 0.1284 0.1301 0.1317 0.1331 0.1344 0.1356
9 0.0923 0.0965 0.1002 0.1036 0.1066 0.1093 0.1118 0.1140 0.1160 0.1179 0.1196 0.1211

10 0.0728 0.0778 0.0822 0.0862 0.0899 0.0931 0.0961 0.0988 0.1013 0.1036 0.1056 0.1075
11 0.0540 0.0598 0.0650 0.0697 0.0739 0.0777 0.0812 0.0844 0.0873 0.0900 0.0924 0.0947
12 0.0358 0.0424 0.0483 0.0537 0.0585 0.0629 0.0669 0.0706 0.0739 0.0770 0.0798 0.0824
13 0.0178 0.0253 0.0320 0.0381 0.0435 0.0485 0.0530 0.0572 0.0610 0.0645 0.0677 0.0706
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Table 9.5 Coefficients (an–i+1) Used in the W Test for Normality (Cont’d)  

 
 

14  0.0084 0.0159 0.0227 0.0289 0.0344 0.0395 0.0441 0.0484 0.0523 0.0559 0.0592
15    0.0076 0.0144 0.0206 0.0262 0.0314 0.0361 0.0404 0.0444 0.0481
16    0.0068 0.0131 0.0187 0.0239 0.0287 0.0331 0.0372
17    0.0062 0.0119 0.0172 0.0220 0.0264
18     0.0057 0.0110 0.0158
19    0.0053 

 
 n 

i 39 40 41 42 43 44 45 46 47 48 49 50 
1 0.3989 0.3964 0.3940 0.3917 0.3894 0.3872 0.3850 0.3830 0.3808 0.3789 0.3770 0.3751
2 0.2755 0.2737 0.2719 0.2701 0.2684 0.2667 0.2651 0.2635 0.2620 0.2604 0.2589 0.2574
3 0.2380 0.2368 0.2357 0.2345 0.2334 0.2323 0.2313 0.2302 0.2291 0.2281 0.2271 0.2260
4 0.2104 0.2098 0.2091 0.2085 0.2078 0.2072 0.2065 0.2058 0.2052 0.2045 0.2038 0.2032
5 0.1880 0.1878 0.1876 0.1874 0.1871 0.1868 0.1865 0.1862 0.1859 0.1855 0.1851 0.1847
6 0.1689 0.1691 0.1693 0.1694 0.1695 0.1695 0.1695 0.1695 0.1695 0.1693 0.1692 0.1691
7 0.1520 0.1526 0.1531 0.1535 0.1539 0.1542 0.1545 0.1548 0.1550 0.1551 0.1553 0.1554
8 0.1366 0.1376 0.1384 0.1392 0.1398 0.1405 0.1410 0.1415 0.1420 0.1423 0.1427 0.1430
9 0.1225 0.1237 0.1249 0.1259 0.1269 0.1278 0.1286 0.1293 0.1300 0.1306 0.1312 0.1317

10 0.1092 0.1108 0.1123 0.1136 0.1149 0.1160 0.1170 0.1180 0.1189 0.1197 0.1205 0.1212
11 0.0967 0.0986 0.1004 0.1020 0.1035 0.1049 0.1062 0.1073 0.1085 0.1095 0.1105 0.1113
12 0.0848 0.0870 0.0891 0.0909 0.0927 0.0943 0.0959 0.0972 0.0986 0.0998 0.1010 0.1020
13 0.0733 0.0759 0.0782 0.0804 0.0824 0.0842 0.0860 0.0876 0.0892 0.0906 0.0919 0.0932
14 0.0622 0.0651 0.0677 0.0701 0.0724 0.0745 0.0765 0.0783 0.0801 0.0817 0.0832 0.0846
15 0.0515 0.0546 0.0575 0.0602 0.0628 0.0651 0.0673 0.0694 0.0713 0.0731 0.0748 0.0764
16 0.0409 0.0444 0.0476 0.0506 0.0534 0.0560 0.0584 0.0607 0.0628 0.0648 0.0667 0.0685
17 0.0305 0.0343 0.0379 0.0411 0.0442 0.0471 0.0497 0.0522 0.0546 0.0568 0.0588 0.0608
18 0.0203 0.0244 0.0283 0.0318 0.0352 0.0383 0.0412 0.0439 0.0465 0.0489 0.0511 0.0532
19 0.0101 0.0146 0.0188 0.0227 0.0263 0.0296 0.0328 0.0357 0.0385 0.0411 0.0436 0.0459
20  0.0049 0.0094 0.0136 0.0175 0.0211 0.0245 0.0277 0.0307 0.0335 0.0361 0.0386
21    0.0045 0.0087 0.0126 0.0163 0.0197 0.0229 0.0259 0.0288 0.0314
22    0.0042 0.0081 0.0118 0.0153 0.0185 0.0215 0.0244
23    0.0039 0.0076 0.0111 0.0143 0.0174
24     0.0037 0.0071 0.0104
25     0.0035

NOTE: Data from Table 1 of Reference 8.1.5 
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Table 9.6  Percentage Points of the Distribution of the W Test Statistic for P = 0.05 

 
 

n P n P 
3 0.767 27 0.923 
4 0.748 28 0.924 
5 0.762 29 0.926 
6 0.788 30 0.927 
7 0.803 31 0.929 
8 0.818 32 0.930 
9 0.829 33 0.931 
10 0.842 34 0.933 
11 0.850 35 0.934 
12 0.859 36 0.935 
13 0.866 37 0.936 
14 0.874 38 0.938 
15 0.881 39 0.939 
16 0.887 40 0.940 
17 0.892 41 0.941 
18 0.897 42 0.942 
19 0.901 43 0.943 
20 0.905 44 0.944 
21 0.908 45 0.945 
22 0.911 46 0.945 
23 0.914 47 0.946 
24 0.916 48 0.947 
25 0.918 49 0.947 
26 0.920 50 0.947 

 

NOTE: Data from Table 2 of Reference 8.1.5. 
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Table 9.7  Percentage Points of the Distribution of the D' Test Statistic 

 
 P  P  P 

n 0.025 0.975 n 0.025 0.975 n 0.025 0.975 
50 95.6 101.3 120 361.8 375.7 640 4525.0 4600.0 
52 101.5 107.4 140 456.9 473.2 660 4739.0 4817.0 
54 107.5 113.7 160 559.2 577.8 680 4975.0 5037.0 
56 113.6 120.0 180 668.2 689.2 700 5178.0 5260.0 
58 119.9 126.5 200 783.6 806.9 720 5403.0 5487.0 
60 126.3 133.1 220 904.9 930.5 740 5630.0 5717.0 
62 132.7 139.8 240 1023.0 1060.0 760 5861.0 5950.0 
64 139.3 146.6 260 1164.0 1195.0 780 6094.0 6186.0 
66 146.0 153.5 280 1302.0 1335.0 800 6331.0 6425.0 
68 152.8 160.6 300 1445.0 1480.0 850 6935.0 7035.0 
70 159.6 167.7 320 1593.0 1630.0 900 7558.0 7664.0 
72 166.6 174.9 340 1745.0 1785.0 950 8198.0 8310.0 
74 173.7 182.2 360 1902.0 1944.0 1000 8856.0 8973.0 
76 180.9 189.7 380 2064.0 2108.0 1050 9530.0 9653.0 
78 188.2 197.2 400 2230.0 2276.0 1100 10220 10,350 
80 195.6 204.8 420 2400.0 2449.0 1150 10930 11,060 
82 203.1 212.5 440 2574.0 2625.0 1200 11650 11,790 
84 210.6 220.3 460 2752.0 2806.0 1250 12390 12,530 
86 218.3 228.2 480 2934.0 2991.0 1300 13140 13,290 
88 226.1 236.2 500 3120.0 3179.0 1350 13910 14,060 
90 233.9 244.3 520 3310.0 3371.0 1400 14690 14,850 
92 241.8 252.4 540 3504.0 3567.0 1450 15,480 15,650 
94 249.9 260.7 560 3701.0 3767.0 1500 16,290 16,470 
96 258.0 269.1 580 3902.0 3970.0    
98 266.2 277.5 600 4106.0 4176.0    

100 274.4 286.0 620 4314.0 4387.0    
   

 

      

NOTE 1: For cases where the exact count is not contained within the table linear 
interpolation of the values may be used to determine the Critical D' 
Values. 

NOTE 2: Data from Table 5 of Reference 8.1.5. 
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Table 9.8 Critical Values of F–Distribution 

 α = 0.05 
 
√2 

√1 

 1 2 3 4 5 6 7 8 9 10 
1 161.4 199.5 215.7 224.6 230.2 234.0 236.8 238.9 240.5 241.9
2 18.51 19.00 19.16 19.25 19.30 19.33 19.35 19.37 19.38 19.40
3 10.13 9.55 9.28 9.12 9.01 8.94 8.89 8.85 8.81 8.79 
4 7.71 6.94 6.59 6.39 6.26 6.16 6.09 6.04 6.00 5.96 
5 6.61 5.79 5.41 5.19 5.05 4.95 4.88 4.82 4.77 4.74 
6 5.99 5.14 4.76 4.53 4.39 4.28 4.21 4.15 4.10 4.06 
7 5.59 4.74 4.35 4.12 3.97 3.87 3.79 3.73 3.68 3.64 
8 5.32 4.46 4.07 3.84 3.69 3.58 3.50 3.44 3.39 3.35 
9 5.12 4.26 3.86 3.63 3.48 3.37 3.29 3.23 3.18 3.14 

10 4.96 4.10 3.71 3.48 3.33 3.22 3.14 3.07 3.02 2.98 
11 4.84 3.98 3.59 3.36 3.20 3.09 3.01 2.95 2.90 2.85 
12 4.75 3.89 3.49 3.26 3.11 3.00 2.91 2.85 2.80 2.75 
13 4.67 3.81 3.41 3.18 3.03 2.92 2.83 2.77 2.71 2.67 
14 4.60 3.74 3.34 3.11 2.96 2.85 2.76 2.70 2.65 2.60 
15 4.54 3.68 3.29 3.06 2.90 2.79 2.71 2.64 2.59 2.54 
16 4.49 3.63 3.24 3.01 2.85 2.74 2.66 2.59 2.54 2.49 
17 4.45 3.59 3.20 2.96 2.81 2.70 2.61 2.55 2.49 2.45 
18 4.41 3.55 3.16 2.93 2.77 2.66 2.58 2.51 2.46 2.41 
19 4.38 3.52 3.13 2.90 2.74 2.63 2.54 2.48 2.42 2.38 
20 4.35 3.49 3.10 2.87 2.71 2.60 2.51 2.45 2.39 2.35 
21 4.32 3.47 3.07 2.84 2.68 2.57 2.49 2.42 2.37 2.32 
22 4.30 3.44 3.05 2.82 2.66 2.55 2.46 2.40 2.34 2.30 
23 4.28 3.42 3.03 2.80 2.64 2.53 2.44 2.37 2.32 2.27 
24 4.26 3.40 3.01 2.78 2.62 2.51 2.42 2.36 2.30 2.25 
25 4.24 3.39 2.99 2.76 2.60 2.49 2.40 2.34 2.28 2.24 
26 4.23 3.37 2.98 2.74 2.59 2.47 2.39 2.32 2.27 2.22 
27 4.21 3.35 2.96 2.73 2.57 2.46 2.37 2.31 2.25 2.20 
28 4.20 3.34 2.95 2.71 2.56 2.45 2.36 2.29 2.24 2.19 
29 4.18 3.33 2.93 2.70 2.55 2.43 2.35 2.28 2.22 2.18 
30 4.17 3.32 2.92 2.69 2.53 2.42 2.33 2.27 2.21 2.16 
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Table 9.8    Critical Values of F-Distribution – Continued 

 

 α = 0.05 
 
√2 

√1 

 1 2 3 4 5 6 7 8 9 10 
40 4.08 3.23 2.84 2.61 2.45 2.34 2.25 2.18 2.12 2.08 
60 4.00 3.15 2.76 2.53 2.37 2.25 2.17 2.10 2.04 1.99 
120 3.92 3.07 2.68 2.45 2.29 2.17 2.09 2.02 1.96 1.91 
∞ 3.84 3.00 2.60 2.37 2.21 2.10 2.01 1.94 1.88 1.83 

 

 NOTE 1: Data from Table VI of Reference 8.3.3 

 NOTE 2: Values may also be calculated using the FINV function in 
Microsoft Excel:  Fcrit = FINV(0.05, √1, √2) 
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10.0 ATTACHMENTS  
 

10.1 Evaluation of Drift Data  
 

To complete these evaluations, it is necessary to perform a review of the data 
points.  In some cases, historical data points must be corrected or deleted 
because the identified data points represent a unique occurrence not related 
to instrument drift.  To properly address the corrected or deleted data points, 
each affected data point is placed into one of seven categories. 

 
The category descriptions and a basis for why the adjustment of the data 
point does not represent a drift problem is provided as follows:  

 
CATEGORY A.1 "Data Transcription Errors"  

 
This category is assigned to data points that are identified as being data 
transcription problems.  A data transcription error indicates that the data 
provided for evaluation in the Excel spreadsheet was in error and did not 
match the data recorded in the original Surveillance Test procedure or the 
model number of the instrument needed to be corrected.  Also included in this 
category is data impacted by unavailable historical supporting data, which by 
its absence will skew the evaluation.  For resolvable transcription errors, the 
points were not eliminated but modified to correct the obvious typographical 
error or changed to make the data points consistent.  The change is 
acceptable because it ensures that proper data is evaluated.  All changes to 
the data set were independently reviewed and verified to ensure control of the 
data set was maintained. 

 
CATEGORY A.2 "Technician Data Entry Error"  

 
This category is assigned to data points which are eliminated from the 
associated instruments data set based on an obvious data entry error by the 
Technician recording the data.  This category was assigned to data points 
where a value, for example, was entered as 101.27 when the acceptance 
range is between 1 and 10 units.  Obvious data entry errors of this type may 
be eliminated because it was either physically impossible or highly unlikely for 
the instrument to have reached this value.  Therefore, the elimination of the 
data points which fall into this category does not invalidate the instrument drift 
evaluation. 

 
CATEGORY B.1 "Equipment Replacement'  

 
This category is assigned to data points in the data set impacted by As-Found 
data taken from a new or replacement instrument.  When a new instrument is 
installed the As-Found setting is not a valid data point.  Therefore, the 
elimination of the data points which fall into this category does not invalidate 
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the drift study.  Any chronic problems with instrumentation failures, which 
would only be detected by the performance of the Channel Calibration Test, 
would be evaluated in the surveillance test history evaluation. 

 
CATEGORY B.2 "Chronic Equipment Failure"  

 
This category is assigned to data points which are eliminated from the 
associated instrument's data set based on a review of the component's 
history that identified this particular component as a chronic problem 
instrument.  The problems are normally determined to be design, application 
or installation related.  In this case, all data points associated with this 
instrument would be eliminated to prevent skewing the drift analysis results.  
The repetitive failures of this instrument are considered unique and the 
elimination of the data points that fall into this category does not invalidate the 
drift study. 

 
CATEGORY B.3 "Scaling or Setpoint Changes"  

 
This category is assigned to data points in the data set affected by changes to 
the setpoint or input scaling values.  New changes in instrument scaling or 
setpoints can appear in the data set as a larger than actual drift point unless 
the change is detected during the data entry process.  Instrument data sheets 
may not always indicate what happened or the purpose of a change.  As a 
result, an undetected setpoint change can appear as an outlier.  When new 
Instrument inputs or setpoints are incorporated, the As-Found setting is not a 
valid data point.  Therefore, the elimination of the data points that fall into this 
category does not invalidate the drift study. 

 
CATEGORY C.1 "M&TE Equipment Out of Calibration"  

 
This category is assigned to data points which are eliminated from the 
associated instrument's data set based on the fact that the measuring and 
test equipment used to perform the test was out of calibration.  This was 
identified by review of the Condition Reports generated when an item of 
M&TE is discovered to be out of calibration.  The elimination of the data is 
acceptable because the use of out of calibration M&TE equipment makes all 
data obtained suspect and invalid.  Therefore, the elimination of the data 
points that fall into this category does not invalidate the drift study.  A 
separate evaluation is performed for all M&TE out of calibration incidents to 
ensure an Operability issue does not exist. 

 
CATEGORY C.2 "Poor Calibration Techniques"  

 
This category is assigned to data points which are eliminated from the 
associated instrument's data set based on a determination that poor 
calibration techniques have been employed.  The primary criteria used to 
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identify data points affected by these techniques are as follows: a Check for 
linearity problems.  If one or more points of a multiple point calibration is out 
of tolerance, and subsequent calibrations indicate that all points were 
consistent, this would indicate a problem with calibration techniques if the 
instruments typically have good linearity characteristics over the instrument 
span. 

 
1) Check for unnecessary adjustment.  For example, if one cycle adjusts the 

instrument a certain amount in one direction and the next cycle adjusts the 
instrument back into calibration the same/similar amount in the opposite 
direction. 

 
2)  Check for inconsistent data.  If several cycles demonstrate good 

performance and only one cycle of data indicates very poor performance, 
then the outlier data point can be eliminated based on poor calibration 
techniques. 

 
The elimination of the data points that fall into this category does not 
invalidate the instrument drift evaluation because the data is not 
representative of true instrument performance. 
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