1.18 VENTILATION EXHAUST TREATMENT SYSTEM

A VENTILATION EXHAUST TREATMENT SYSTEM is any system designed and installed to reduce gaseous radioiodine or radioactive material in particulate form in effluent by passing ventilation or vent exhaust gases through charcoal absorbers and/or HEPA filters for the purpose of removing iodine or particulates from the gaseous exhaust system prior to the release to the environment. Engineered Safety Feature (ESF) atmospheric cleanup systems are not considered to be VENTILATION EXHAUST TREATMENT SYSTEMS.

1.19 PURGE - PURGING

PURGE or PURGING is the controlled process of discharging air or gas from a confinement to maintain temperature, pressure, humidity, concentration or other operating conditions in such a manner that replacement air or gas is required to purify the confinement.

1.20 <u>VENTING</u>

VENTING is the controlled process of discharging air as gas from a confinement to maintain temperature, pressure, humidity, concentration or other operating conditions in such a manner that replacement air or gas is not provided. Vent used in system name does not imply a VENTING process.

1.21 REPORTABLE EVENT

A REPORTABLE EVENT shall be any of those conditions specified in 10 CFR 50.73.

1.22 MEMBER(S) OF THE PUBLIC

MEMBER(S) OF THE PUBLIC shall include any individual except when that individual is receiving an occupational dose.

1.23 SUBSTANTIVE CHANGES

SUBSTANTIVE CHANGES are those which affect the activities associated with a document or the document's meaning or intent. Examples of non-substantive changes are: (1) correcting spelling; (2) adding (but not deleting) sign-off spaces; (3) blocking in notes, cautions, etc.; (4) changes in corporate and personnel titles which do not reassign responsibilities and which are not referenced in the Appendix A Technical Specifications; and (5) changes in nomenclature or editorial changes which clearly do not change function, meaning or intent.

The system is not a required system to mitigate evaluated accidents. It may be useful to have the system operable but there will be no adverse impact if it is not operable.

The LCO action statement provides the level of emphasis required for an information system.

The Reactor Vessel Water Level is a Regulatory Guide 1.97 Category 1 variable.

Reference

- (1) UFSAR, Update Section 7.3.2.2(c)10(d) "Reactor Coolant Inventory Trending System".
- (2) USNRC Regulatory Guide 1.97.

4.4.2 Structural Integrity

Specification

4.4.2.1 <u>Inservice Tendon Surveillance Requirements</u>

The surveillance program for structural integrity and corrosion protection conforms to the requirements of Subsection IWL of Section XI of the ASME Boiler and Pressure Vessel Code, as incorporated by reference into 10 CFR 50.55a. The detailed surveillance program for the prestressing system tendons shall be based on periodic inspection and mechanical tests to be performed on selected tendons.

4.4.2.1.1 <u>DELETED</u>

4.4.2.1.6 <u>Reports</u>

- a. Within 3 months after the completion of each tendon surveillance a special report shall be submitted to the NRC Region I Administrator. This Report will include a section dealing with trends for the rate of prestress loss as compared to the predicted rate for the duration of the plant life (after an adequate number of surveillances have been completed).
- b. Reports submitted in accordance with 10 CFR 50.73 shall include a description of the tendon condition, the condition of the concrete (especially at tendon anchorages), the inspection procedures, the tolerances on cracking, and any corrective actions taken.

4.4.3 DELETED

BASES

For ungrouted, post-tensioned tendons, this surveillance requirement ensures that the structural integrity of the containment will be maintained in accordance with the provisions of the TMI-1 Reactor Building Structural Integrity Tendon Surveillance Program. Testing and frequency are consistent with the requirements of Subsection IWL of Section XI of the ASME Boiler and Pressure Vessel Code, as incorporated by reference into 10 CFR 50.55a, and as described in the FSAR.

The modified visual inspection requirements pertaining to the dome tendons in the ring girder were implemented as a result of: 1) discovery of ring girder voids in 1977 and the potential that more undetected voids in the ring girder could exist, and 2) the number of dome tendon bearing areas having cracks appeared to be growing with time (Reference Amendment No. 59).

REFERENCES

(1) UFSAR, Section 5.7.5 - Tendon Stress Surveillances