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ABSTRACT

This report presents the findings from a study of experience with digital instrumentation and
controls (I&C) technology in evolutionary nuclear power plants. In particular, this study
evaluated regulatory approaches employed by the international nuclear power community for
licensing advanced l&C systems and identified lessons learned. The report (1) gives an
overview of the modern l&C technologies employed at numerous evolutionary nuclear power
plants, (2) identifies performance experience derived from those applications, (3) discusses
regulatory processes employed and issues that have arisen, (4) captures lessons learned from
performance and regulatory experience, (5) suggests anticipated issues that may arise from
international near-term deployment of reactor concepts, and (6) offers conclusions and
recommendations for potential activities to support advanced reactor licensing in the United
States.
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EXECUTIVE SUMMARY

This report presents the findings from a study of experience with digital instrumentation and
controls (I&C) technology in evolutionary nuclear power plants. In particular, this study
evaluated regulatory approaches employed by the international nuclear power community for
licensing advanced l&C systems and identified lessons learned. The report (1) gives an
overview of the modern I&C technologies employed at numerous evolutionary nuclear power
plants, (2) identifies performance experience derived from those applications, (3) discusses
regulatory processes employed and issues that have arisen, (4) captures lessons learned from
performance and regulatory experience, (5) suggests anticipated issues that may arise from
international near-term deployment of reactor concepts, and (6) offers conclusions and
recommendations for potential activities to support advanced reactor licensing in the United
States.

Experience with advanced l&C technologies at evolutionary nuclear power plants has shown
that safety-related systems incorporating this technology can be developed and licensed for
commercial nuclear power plants. However, licensing issues have arisen and some design and
performance issues have been experienced. Many of these issues can be attributed to
uncertainties regarding the safety significance of unique physical, functional, and performance
characteristics introduced by this new technology. Existing requirements and regulatory
guidance focus on current generation plants and have a tendency to be prescriptive with
assumptions about particular design approaches.

To prepare for review of future reactors, the U.S. Nuclear Regulatory Commission (NRC)
initiated this study to evaluate current practices and capture lessons learned. This study is
intended to contribute to a determination of what assumptions or technical bases may need to
be changed to prepare for licensing future reactors.

Although several new or unique l&C systems and methods will be used in advanced reactors,
many of these will not be of regulatory concern. Additionally, the current review methods may
be adequate for the review of many of these new technologies. However, as pointed out in the
National Research Council study', the NRC regulations and review methods may unnecessarily
limit new design features, or prove difficult to implement for new technologies or plant applications.

The primary recommendation of this report is that the NRC should review current regulations.
The NRC should review the appropriate regulatory guidance found in the NRC Standard Review
Plan (NUREG-0800), regulatory guides (RGs), and branch technical positions (BTPs). As
appropriate the NRC should determine the need to revise its regulatory guidance (or determine
whether rulemaking may be needed). Areas for review include the following:

* main control room design reviews
* human system interfaces
* displays and soft controls (RG 1.47)
* post-accident instrumentation (RG 1.97)
* alarms

National Research Council, 'Digital Instrumentation and Control Systems in Nuclear Power Plant, Safety, and
Reliability Issues." National Academy Press, Washington, DC, 1997.
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* system isolation and cyber security
* system architecture
* network communications
* software common-cause failures
* redundancy, diversity, and defense in depth
* sensors
* information and data management
* software tools, including change control and security
* system reliability
* commercial off-the-shelf (COTS) systems

These and other issues are of concern in the design, construction, and licensing of the
evolutionary plants and may be issues for the NRC in the licensing of the next generation of
U.S. nuclear power plants.

x



FOREWORD

By

The United States Nuclear Regulatory Commission

The next generation reactors will be the first opportunity for vendors to build new reactor control
rooms in this country. The advances made in the development of many current generation
operating reactors in other parts of the world will be used in the design and construction of new
plants. These new plants are expected to have fully integrated digital control rooms, at least as
modern as the N4 reactors in France or the advanced boiling-water reactors in Japan. In
addition, the desire for much smaller number of control room staffs will push the designs of the
plants in the direction of a much higher degree of automation (e.g., the changes in the fossil-
fired power plants). The future use of multiple modular plants may also require more complex
controls.

The national and international research community has been involved with research and
development of advanced controls and monitoring systems for nuclear power plants for many
years. The international community, particularly in Europe, Japan, and Korea, have developed
integrated advanced control rooms. They have also performed more research in automation of
plant operations, and advanced plant monitoring and diagnosis than in the US. Therefore,
there will be significant opportunities to learn from the international experience in this area.

As part of its planning for the possible review of advanced reactors, the U.S. Nuclear
Regulatory Commission (NRC) determined that a study of these lessons should be the first part
of a multi-year program to develop the regulatory infrastructure (review methods and tools) to
support the review of advanced instrumentation and control (I&C) systems in future reactors.
The Office of Nuclear Regulatory Research (RES) sponsored this study to develop insights
based on the experience that other countries have had in reviewing and licensing of
evolutionary reactors. The NRC intends this study to contribute to a determination of what
assumptions or technical bases may need to be changed to prepare for licensing future
reactors. Additionally, it will be used to further develop the regulatory infrastructure plan and
reassess the planned research program for advanced reactor l&C.

The recommendations presented in this report will be used as an input to the development of
the new plan for digital l&C research and as one input for the determination as to what parts of
Chapter 7, "Instrumentation and Control" of the standard review plan should be revised or
revisited to support advanced reactor reviews. This report is intended to support the review of
current research plans and potential revisions to regulatory guidance. However, the reader is
cautioned that the recommendations are only one input to possible revisions to future research
or regulatory guidance, and should not be assumed to predict future regulatory activities.
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1. INTRODUCTION

This report presents the findings from a study of experience with digital instrumentation and
controls (I&C) technology in evolutionary nuclear power plants. In particular, this study
evaluated regulatory approaches employed by the international nuclear power community for
licensing advanced l&C systems and identified lessons learned. The report (1) gives an
overview of the modern l&C technologies employed at numerous evolutionary nuclear power
plants, (2) identifies performance experience derived from those applications, (3) discusses
regulatory processes employed and issues that have arisen, (4) captures lessons learned from
performance and regulatory experience, (5) suggests anticipated issues that may arise from
international near-term deployment of reactor concepts, and (6) offers conclusions and
recommendations for potential activities to support advanced reactor licensing in the United
States.

1.1 Objective of the Study into Experience with Digital l&C Technologies
at Evolutionary Reactors

Existing requirements and regulatory guidance focused on current generation plants. They
generally are prescriptive with assumptions about particular design approaches. To prepare for
the review of future reactors, the U.S. Nuclear Regulatory Commission (NRC) initiated this
study to review current practices and to capture lessons learned. This study is intended to
contribute to a determination of what assumptions or technical bases may, or perhaps should,
change to prepare for licensing future reactors. For example, are technologies available that
would permit the NRC to relax the requirement to separate control and safety systems, and
what is the potential impact of reduced plant staffing on safety-related operational and/or
maintenance issues?

To provide the desired technical foundation, this investigation reviewed design, licensing, and
operating experience with l&C systems in evolutionary plants (e.g., Chooz B, Kashiwasaki-
Kariwa Units 6 and 7, Darlington, and Sizewell B). The primary focus of this study was driven
by the following questions:

* How did international regulators license these reactors?

* What regulations, requirements, and guidance were used?

* How is the international approach for licensing digital l&C different from that used by the
NRC?

* What has been the operational experience at the plants and what changes to current
NRC guidance may be required?

* Given what we know now about l&C technology, what will be the big issues for the next
generation of U.S. nuclear power plants?

1
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1.2 Research Approach for the Study

This study was broken down into three concurrent tasks. Task 1 identified the relevant
advanced l&C technologies in evolutionary reactors and projected the potential application of
those technologies in future U.S. reactors. Task 2 captured lessons learned from the
operational and regulatory experience with advanced l&C technology. Finally, Task 3
determined the regulatory approaches employed in addressing advanced l&C technology and
their relation to current U.S. regulatory processes.

The information obtained was limited by availability and access. Thus, the amount of
quantitative data that could be obtained was sparse. In addition, the level of detail for the
findings focused mainly on high-level concerns. Specifically, those concerns included the I&C
experience at the evolutionary plants; the types of problems in the design, implementation and
licensing of those systems; and how the international experience relates to applications of this
technology in U.S. reactors. In trying to understand the lessons learned, the study considered
problems that have occurred, as well as potential issues that may emerge (e.g., technical
issues, interface issues, codes and standards issues).

A technology list was established to guide the study of advanced l&C applications and
experience in evolutionary reactors. The topics are as follows:

* commercial dedication
* configuration management
* diversity and defense-in-depth
* impact of support systems or tools on safety
* information management
* sensors (new parameters, networks)
* software
* standards
* system architecture
* system classification (what safety significance was assigned)
* system reliability
* testing philosophy (design for test, onboard testing)

The conclusions and recommendations reflect two considerations: First, does this pose an
open issue because it has not been looked at before? Second, is this technology/method likely
to be used in the next generation of U.S. reactors?

1.3 Structure of the Report

Section 2 presents the technical background and an overview of the advanced l&C
technologies at evolutionary nuclear power plants. This section is organized according to
technology topics derived from the list of technology focus areas (above) that were used to
guide the study. The coalescing of the technology list into general technology groupings for
Section 2 resulted from the determination of a limited set of technical areas for which there
were significant findings. Rather than providing exhaustive dissertations for the l&C systems of
each item on the technology list of each reactor studied, this study's approach was to document
only significant findings, based on innovative application or substantive differences with U.S.

2



experience. Therefore, not every l&C system is described for each evolutionary plant, but each
plant and its significant l&C applications are presented under the relevant technology topics for
which it provides some notable insight. The authors believe that this organization emphasizes
the relevant information so that it can be more directly related to the conclusions and
recommendations derived from this study. Section 8 provides references for readers who want
more comprehensive descriptions of the full l&C systems.

Section 3 identifies experience associated with the advanced l&C applications described in
Section 2. In particular, this section focuses on unique characteristics of the advanced
technology or technical methods that contributed to the success or failure of particular
applications. In addition, this section presents the performance experience for advanced l&C at
evolutionary nuclear power plants for the few cases where noteworthy information was
available.

Section 4 establishes the regulatory context in which these advanced l&C technologies were
licensed and the regulatory approaches employed in the review and licensing of those
technologies. First, this section gives a high-level overview of the regulatory process for
countries where advanced l&C systems have been licensed at evolutionary plants. The intent
is not to give a tutorial on the full regulatory structure for every country, but rather to highlight
the unique aspects of specific regulatory approaches. Next, this section identifies specific
issues that have arisen in licensing processes and discusses the particular approaches
developed to address those issues.

Section 5 documents lessons learned from performance and regulatory experience with
advanced l&C technologies. In particular, this section discusses the evolution of design and
regulatory approaches and summarizes the current findings from an international assessment
of the U.S. regulatory framework for digital l&C.

Section 6 documents potential issues that may arise from international near-term deployment of
reactor concepts based on unique advanced l&C systems characteristics and conditions that
they present.

Finally, Section 7 offers conclusions drawn from an assessment of the current NRC regulatory
processes applicable to the licensing of advance l&C systems. It also provides
recommendations concerning the U.S. regulatory approach for evaluating safety-related
advanced l&C that could be enhanced to support the licensing of next-generation nuclear
power plants.

3
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2. TECHNOLOGY SUMMARIES

2.1 Technology Introduction

This section gives technical background regarding the application of advanced l&C technology
in evolutionary nuclear power plants. This overview describes digital l&C architectures,
components, and design features employed in existing plants as either upgrades or new full-
system implementations. This section also contains information regarding l&C designs for
advanced gas-cooled and light-water reactors. The structure of this section highlights
significant aspects of these advanced l&C technology applications. First, the plants surveyed in
this study are identified. Then, the technology overviews of the advanced l&C applications are
presented. These technology summaries highlight the high-level l&C advances made in
reactors of interest.

The reactors reviewed fall into several categories. The pressurized water reactor (PWR) I&C
technologies reviewed in this report are the British Sizewell B plant [Westinghouse (W)], the
Swiss Beznau plant (W), the French N4 Series (Framatome), and the Temelin water-cooled
water-moderated power reactor (VVER) in the Czech Republic. The boiling-water reactor
(BWR) I&C technologies reviewed are the Orskashamn I plant in Sweden, Kashiwazaki-Kariwa
advanced boiling-water reactor (ABWR) plant in Japan, and the Lungmen ABWR under
construction in Taiwan. The Canada Deuterium Uranium (CANDU) nuclear power plants
reviewed include the early Point Lepreau and Gentilly plants in Canada, Wolsong in Korea, and
Embalse in Argentina, as well as the more recent upgrades at the Darlington plant in Canada
and the recent deployments for the Quinshan plant being constructed in China. In addition, the
l&C design advances proposed in several advanced reactor designs were also studied. These
included the Westinghouse AP 600/1000, the Advanced Pressurized Water Reactor and the
high-temperature gas reactor designs, the Gas Turbine Modular Helium Reactor (GT-MHR) and
the Pebble Bed Modular Reactor (PBMR).

2.2 I&C Designs in Evolutionary Nuclear Power Plants

2.2.1 Sizewell B

Sizewell B is Britain's first pressurized-water reactor power station. The power station is
located on the Suffolk coast of England. Sizewell B began commercial operation in May 1995,
and represented a significant change in commercial nuclear power station technology for the
United Kingdom (UK). Previous UK nuclear power stations were based on gas-cooled reactors.

The overall I&C architecture of Sizewell B is thought of in three groups. The first group consists
of the online control systems, which regulate plant operation under normal circumstances, using
closed-loop control functions to control, for instance, the reactor power. The second group
consists of the controls and instruments in the main control room (and auxiliary panels). These
allow the operating staff to supervise and control the operation of the plant. The third group
comprises the reactor protection system.

Most of the elements of first two control and instrumentation groups are usually referred to
together using the term "Integrated System for Centralized Operation" (ISCO) to reflect the

4
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functional integration of the design. This is manifested in the ISCO object-oriented functional
specification. The ISCO is implemented by three microprocessor-based systems. The first
system is the High-Integrity Control System (HICS), which is based on Westinghouse
Integrated Protection System (IPS) and Integrated Control System (ICS) technologies. The
second system is the Distributed Computer System, which is based on Westinghouse
Distributed Processing Family (WDPF) technology, a commercially' distributed digital control
and supervisory system product line. The third system is the Plant Control System, which is
based on the combined technologies of the WDPF and the turbine control system fabricated by
General Electric of England. In order to meet regulatory separation requirements, the
distributed microcomputer elements of the ISCO system communicate using six data networks.

The reactor protection system functions are performed by two separate and independent
systems, known as the Primary Protection System (PPS) and the Secondary Protection System
(SPS). The PPS is based on the Westinghouse IPS, and the SPS is based on the British
Energy/GEC "Laddic" technology. The Laddic performs logic by connecting dynamic (pulse-
based) elements that perform various logic functions. Sizewell B has two sets of four-way
redundant protection sensors, two sets of four-way redundant protection electronics, and four
trains of safety features equipment. Each of the four-way redundant collections is referred to
as a separation group.

As to classifications established by the Institute of Electrical and Electronics Engineers (IEEE),
all parts of the reactor protection system and portions of the second group would be classified
as 1 E. Specifically, the 1 E portions of the second group are the manual component controls of
the safety features devices and the post-accident monitoring part of the displays of safety
parameters. Load shedding and emergency load sequencing is also a separate 1 E system. At
Sizewell B, this system is classified as an electrical system. Except for the SPS, plant
protection, control, and information presentation are implemented using distributed
microprocessor-based systems.

2.2.2 Beznau NOK ANIS

The Swiss Beznau Nuclear Power Plants, KernKraftwerke Beznau I and 11, are owned and
operated by the Nordostschweizerische Kraftwerke (NOK) AG of Baden, Switzerland. The
plants are 350-MWe PWRs built by Westinghouse and Asea Brown-Boveri Corporation (ABB).
The plants went into commercial operation in 1968 and 1972, respectively.' In 1989, NOK
decided to replace the original Westinghouse P-250 plant computer with a modern distributed
computer network and extended the functionality to what amounted to a control room upgrade.
The project was known as the ANlage (plant) Information System (ANIS). ANIS provides
process control data throughout the plant site, including the main control room, the emergency
control room, the administration building, etc. In addition to the usual plant computer functions
of real-time data logging and some' process data analysis, the ANIS includes a fully
computerized alarm system, a computerized procedure system that contains the Westinghouse
Owners' Group Emergency Operating Procedures, and a modern computerized real-time data
graphical presentation system.'

The NOK ANIS architecture is based on the WDPF. For the ANIS application, NOK upgraded
the WDPF by replacing the industrial version of the WDPF architecture with SUN Microsystems'
SPARC UNIX-based servers and workstations. Subsequently, this became the standard

5



- e

product configuration. The WDPF communications backbone was retained. Two sets of
WDPF networks are employed in the ANIS design. One carries the process data from sensors
to computational nodes (i.e., servers) and to a historical storage and retrieval system. The
WDPF data networks are redundant by design.

NOK also added a third set of Ethernet networks that are dedicated to the needs of the alarm
system. This was done to ensure that possible time delays due to heavy loading/data traffic on
the system network would not interfere with the time response of the abnormality messages
appearing on the various alarm system display devices.

The ANIS software structure is a set of monolithic computational systems that are connected by
a WDPF data network to have access to the same real-time process data. In the ANIS
software architecture, there is little attempt to share calculated results. This is the result of the
use of "legacy" software and a communications network technology (state-of-the-art at the time
of design), which is close to its reliability limits without this additional communications burden.
Essentially, these systems listen for new process data, perform their calculations, and make the
results available for display.

The ANIS hardware design was modeled by the Westinghouse Electronic Systems Reliability
Group using component manufacturer's statistics for mean-time-before-failure and mean-time-
to-repair assuming that adequate inventories of replacement parts were on location at the
Beznau site. The resulting analysis demonstrated that the hardware architecture for the alarm
system and the computer-based procedure system met or exceeded the design goal of
99.9-percent availability. Not all of the other computational nodes are redundant, so the
reliability of data from those nodes was lower.

The ANIS design uses two types of data networks, including the WDPF data highway and the
industry-standard Ethernet data network. The WDPF data highway is a proprietary design that
is optimized to efficiently communicate real-time fixed-format data records, called "points." To
do this, the WPDF data network uses a synchronous broadcast technique with fixed time slots
that guarantee delivery time. This technique places an absolute limit on the number of points
that can be transmitted on the network. Other than the point data, there is little management of
data. In other words, the ANIS is a set of monolithic computational subsystems connected by a
WDPF data network that collects plant process data. There is little that is communicated
between these individual subsystems about the results.

Because of network loading concerns, abnormality messages that appear on the advanced
alarm system are not available through the communications network for use on the displays or
for a stimulus to the procedures. Conversely, some complex process data analysis applications
can only provide their results for display, but are not available for use in building abnormality
message logic or for use in the computerized procedures. The original WDPF design captured
the real-time database only on the WDPF data highway. By contrast, as part of the ANIS
design, a computational node also captures the real-time database. Application software is
maintained on a network server that downloads requested software to servers and workstations
on the network. This is a "by request" operation and represents a significant data load on the
Ethernet networks.

Some application programs, specifically the advanced alarm system and the computerized
procedure system, are systematically separated from the plant-specific database in the online
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software that processes that database. This separation is analogous to the notion developed in
the artificial intelligence work of the 1980s (i.e., separate the "knowledge base" from the
"inference engine"). In such plant-specific databases reside the data processing
algorithms/logic, constants and coefficients, rules for prioritization of display and processing,
and instructions for data display creation.

Other applications provide the plant-specific data in the processing software. Clearly, this
mixed set of approaches to databases and software provides for some interesting approaches
to the initial verification and validation (V&V) effort and the processes of life cycle configuration
management.

One concern with employing a distributed network for use in real-time process data analysis,
control, and display is that of data coherence. Under steady-state conditions, the data can be
considered consistent or coherent, but under transient conditions, the validity becomes much
less clear. Timing of data is a difficult issue to assess and control in a distributed computer
network.

The ANIS system was subjected to numerous tests of various levels of system completeness
and function. The most robust tests were the factory acceptance tests conducted as a final
system test at the Westinghouse manufacturing site before shipping the system to the Beznau
site. This test was an exhaustive integrated system test, which tested the hardware as a
connected system and the hardware/software as an integrated system.

2.2.3 N4 Series

In the late 1970s, the French nuclear power industry undertook the design of a very large
(1,500-MWe) PWR. The N4 was the first to use the numerical integrated protection system
(SPIN) technology, which was the most modern computer technology used in French safety
systems at the time. The French also included a radical new design for the l&C and human-
system interface. The main control room operator stations are compact cockpit-style, sit-down
workstations that are entirely driven by digital computers. Graphical visual display units (VDUs)
display process data, plant graphics, procedures, and alarms; touch screens provide the means
of executing manual controls. The entire l&C architecture was, for the first time, to be based
upon the use of digital computers, rather than analog hardware.

The I&C system architecture of the N4 is conceptualized in four levels. Level 3 is the human-
system interface processing level; Level 2 is the processing and communications level; Level 1
is the data acquisition, signal processing, and control level; and Level 0 is the process level.
Level 3 includes the control room system which are composed of mainframe computers
manufactured by Thompson-CSF, at least on the Chooz B version of the N4. At Chooz B the
control room hardware is a late 1970s vintage design using late 1970s computer technology.
Level 2 provides immediate support to the operator under normal, incidental, or accident
conditions. These functions require the management of a large amount of process and
calculated data that is transmitted for display, logging, and analysis. The generation of
additional calculated data through application programs includes core mapping, fuel burnup,
load following, xenon following, and equipment monitoring. Storage and retrieval of historical
data for post-event analysis are also available. Data processing needed to support plant
operation and supervision is distributed through level 1 and consists of the following tasks:

7



* time tagging and validation of raw process data

* monitoring of process parameters of automatic actions initiated by the control system

* detection of deviations from normal or required states and, therefore, generation of
alarms concerning critical functions, violation of technical specifications, and
unavailability of essential or important functions

* filtering of alarms depending on plant mode

* grouping of alarms to account for process redundancies and functionalities

* integration of the different parameters to provide the system manager with a general
view of the unit status and dynamic behavior

Level 1 includes the protection and control functions. The implementation of the automatic
protection functions is preformed by SPIN, which includes some associated systems such as
the control rod drive system. SPIN has the high reliability typical of a four-way redundant
system. The N4 plant has four trains of safety features equipment. The control system has a
reliability typical of a modern distributed industrial digital control system. However, human-
system interface processing and communications may lack the robustness of modern
distributed computer systems.

The N4 I&C architecture comprises several major systems from different vendors, each of
which has a different methodology and different level of automation for managing data.
Consequently, the data must be arranged at interfaces between the systems to fit the format
required by the data user.

The Chooz B N4 computer technology used for Levels 3 and 2 uses mainframe computers and
the Fortran programming language. On later versions, it is believed that Electricite de France
(EdF) will change this portion of the architecture to a UNIX-based workstation client-server
network.

One of the more innovative parts of the N4 I&C design is the set of support tools that EdF has
built to support the design. First, EdF has completely computerized all of the design data about
the N4. This includes the piping and instrumentation diagrams (P&lDs), systems descriptions,
procedures, control logic, electrical one-line diagrams, etc. In the late 1970s and early 1 980s,
EdF installed this data in a relational database management system called PHENIX, which was
originally developed by the British to aid in the design of piping layouts. EdF adapted this
database management system to their purposes of supporting the l&C design and configuration
management effort for the N4 plant design. EdF also built a database of control room display
objects (macros) in another relational database management system called SOCRAT and
interfaced it with PHENIX. This coupling has enabled EdF engineers to build code by making
VDU screens on workstations in their engineering offices that can be directly compiled on the
N4 I&C at the plant site. The database management systems can build the appropriate links to
process parameters and synthetic variable calculations within the N4's online database, and
automatically produce the requisite software based upon screens that engineers build on
workstations.
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2.2.4 Swedish BWRs

The Swedish nuclear industry has undertaken an aggressive modernization program.
Specifically,- the Swedish nuclear industry has a consensus agreement that modernization of
l&C systems can have a positive impact on plant safety. The first I&C modernization project
was the Oskarshamn 1 BWR l&C system upgrade based on the ABB Advant Open Control
System (AOCS) distributed digital control product.

The AOCS data communications network in the Oskarshamn 1 I&C system has three levels,
including the corporate/business network, the control network, and the sensor bus. It also
usestwo controller types, including the Advant Controller 160 (AC1 60) and the Advant
Controller 450 (AC450). The AC1 60 (developed by ABB of Manhiem Germany) is used for the
safety functions, while the AC450 (developed by ABB of Sweden) is used for non-safety control
functions. To meet the various environmental and seismic requirements of various countries,
there are three different versions of the AC1 60 racks, each specific for the Swiss, U.S. and
Korean markets. The AC1 60 and AC450 controllers use different hardware and software
operating systems, yet both are programmed using the same'graphical programming language.
This provides a balance between achieving equipment diversity and facilitating plant personnel
familiarization.

The protection system has the high reliability associated with a two-out-of-four trip system logic
design. Redundancy is included in each division of safety equipment using multiprocessing.
However, the AC1 60 multiprocessing redundancy shares some common resources, such as
the computer bus. The AC450 control system controllers can be configured with redundant
microcomputer modules but the microcomputers share common computer and input/output
(I/O) resources.

The AOCS uses the Advant Series 500 Operator Stations for its human-machine interfaces
(HMIs). The Advant Series 500 Operator Station and the associated data management
systems, such as the data storage and retrieval system, provide the operators with supervisory
and control interfaces. The Series 500 Operator Stations can be applied as multiple copies in
physical or parallel redundant configurations. However, some of the plant process data
management stations, such as the data storage and retrieval unit, are not redundant.

Networks, such as the MB300 control network used in Oskarshamn, are not usually based on
Ethernet because of inherent limitations in the Ethernet architecture. -The AF100 data
transmission rate of 1.5 Mbit/second is typical for a remote I/O function, but may be too slow for
communication between controllers. The two control networks, MB300 and AF100, use
different approaches for the transmission of plant process data. The AF1 00 uses a continuous
cyclic update method for the transmission, while the MB300 holds the plant process data locally
and transmits only upon request. It is unusual to have two different control network approaches
for similar functions within the same architecture.

The Advant Series 500 Operator Stations, MB300 control network, and AC450 transmitter
concept for acquisition of plant process data can be efficient for some system configurations.
The AF 00 control concept offers some amount of determinism in data communication. The
plant network and control network are 1980s technology, so it is likely that they will be upgraded
in the near future.
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2.2.5 Temelin

The VVER-1 000 nuclear power plants located at Temelin (in the Czech Republic) provide
another example of a PWR l&C upgrade project. The Czech Republic decided to install
Westinghouse l&C in these plants. Temelin underwent extensive instrumentation, control, and
safety system upgrades using Westinghouse technology.

The Czech Republic chose the Central Electricity Generating Board (CEGB), now British
Energy (BE), owner and operator of the Sizewell B plant as a consultant to aid in writing the
specifications for the new l&C system. The Czechs enhanced the Sizewell B style design
framework with three additional high-level requirements. Automation was to be significantly
increased in comparison with Sizewell B. The new l&C systems were added to Temelin as a
diverse system to the originally installed Russian-designed systems.

The first additional requirement was to provide a system that allows operators to start the
reactor from cold shutdown to hot zero power with the push of a button. This represents a large
step beyond current European automation, which typically has the capability to automatically
startup the steam side or balance-of-plant (BOP) side of the plant.

The second additional design requirement provided for the installation of Westinghouse
process sensors, such as resistance temperature detectors. These sensors were installed
according to the Russian design (i.e., each of the three Safety Class 1 E instrument channels in
the reactor system would be triply redundant). The Russian design has this level of redundancy
because of the lack of reliability of Russian-built sensors. The second requirement also
provided for the installation of modern sit-down control boards at each unit, which are backed
up by an analog-style control board with discrete controls and displays.

The third additional design requirement provided for a diverse protection system. It also
provided for a "limitation" system that functionally operates between the control system and the
protection system.

At Temelin, core protection is provided by the Primary Reactor Protection System (PRPS) and
the Diverse Protections System (DPS). The PRPS performs all of the automatic functions
required for reactor trip and emergency safety features and provides a control path for the
manual actuation of the safety components. The PRPS consists of three divisions. Each
division provides measurement, processing, and actuation functions. Triple redundancy
facilitates two-out-of-three voting for reactor trip and automatic safety feature actuation.

Two-out-of-three voting logic meets the single-failure criteria, where it is arbitrarily assumed that
one channel may fail and another channel may be undergoing maintenance. However, in the
reduced one-out-of-two configuration, the system is vulnerable to spurious actuation.
Consequently, the Czechs added extra microcomputer subsystems to the design to ameliorate
the situation by providing spare internal redundancy within a division used during maintenance
and testing.

The reliability of the PRPS with respect to component failures was estimated to be IO-- failures
per demand. However, the failure to trip is considered limited by common-mode considerations
rather than random failures. To meet the goals of the safety case, the Czechs added a second,
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diverse protection system, called the DPS. A key design require'ient imposed on the PRPS
and the DPS is that the overall plant protection system must be capable of mitigating "frequent
events" concurrent with a postulated common-mode failure in either the PRPS or DPS, but not
both simultaneously.

2.2.6 Advanced Boiling-Water Reactors (ABWRs)

In 1978, General Electric (GE) began the conceptual design of a family of advanced light-water
reactor plants that share'a common technology base. These are'the 1,300-MWe ABWR and
600-MWe Simplified Boiling-Water Reactor (SBWR).' The world's first ABWR, Kashiwazaki-
Kariwa Unit 6, was completed in Japan by a consortium of Toshiba Corporation, Hitachi Ltd.,
and GE. This was followed by Kashiwazaki-Kariwa Unit 7. The design of these two units is
similar to ABWR designs certified by the NRC. Commercially operated by Tokyo Electric Power
Corporation in the Niigata Prefecture. Kashiwazaki-Kariwa Unit 6 began generating electricity
in December 1996 and Kashiwazaki-Kariwa Unit 7 began commercial operation in July 1997. A
third ABWR in Japan, Hamaoka Unit 5, is scheduled to be completed in 2004.

The Kashiwazaki-Kariwa plants in Japan were the ABWRs reviewed in this study. The l&C
systems use state-of-the-art digital and fiber optic technologies. The ABWR has four separate
divisions of safety system logic and control (SSLC), including four redundant multiplexing
networks to ensure plant safety. Separate'control rooms and other panels house the SSLC
equipment for controlling the various safety function actuation devices. The diverse l&C
features are designed to provide protection against common-mode failures of the protection
systems.

Reactor trip process variables are acquired by'a remote multiplexing unit (RMU), which
converts the signals into a format suitable for multiplexing. The data from each RMU are
converted into optical signals and sent via an optical network to corresponding digital trip
modules (DTMs) within the associated SSLC device. The DTMs perform the trip logic
calculations by comparing the individual monitored variables for a given division with set point
values and, for each variable, send a separate "trip" or "no trip" signal to the trip logic unit (TLU)
in that division, and to each TLU of the other three divisions. Communication with the other
three divisional TLUs is via fiber optic serial data links. The DTMs and TLUs use separate
microprocessors. The software in these processors does not perform any other safety-related
logic functions.

Two-out-of-four voting is performed by the TLU, and this trip information is sent to the output
logic unit (OLU), which sends a trip signal to trip actuators. The OLU enables the TLU in the
associated division to be bypassed. That is, it sends a trip output to the load drivers when the
associated division is bypassed.

Each system includes microprocessors to process incoming sensor information and to generate
outgoing control signals, local and remote multiplexing units for data transmission, and a
network of fiber optic cables. The controllers are "fault tolerant," meaning that they continually
generate signals to simulate input data and compare the result against the expected outcome.
Controllers for both sensors and equipment are located on cards that are remotely distributed.
If the controller detects a problem, a signal is sent to the control room. The malfunctioning card
can be replaced with a spare card within a relatively short time.
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2.2.7 CANDU

In CANDU reactors, computerized control systems and fuel handling control systems were
introduced in the 1960s. The current CANDU 6 plant design has evolved over the past two
decades based on the design developed in the 1970s for the original CANDU 6 plants at Point
Lepreau and Gentilly in Canada, Wolsong in Korea, and Embalse in Argentina. The most
recent deployment is for the Quinshan plant being constructed in China. Changes and
additions to the CANDU 6 design have been made over time to reflect experiences in Canada
and elsewhere. The design evolution is expected to continue for the foreseeable future with
potential inputs from all current generation CANDU plants and the Advanced CANDU Reactor
(ACR-700). The Darlington four-unit nuclear power station, which went on line in 1990, was the
first CANDU plant to use fully computerized shutdown systems. The licensing of the Darlington
station in the late 1980s included an extensive review of the shutdown system software.

The CANDU architecture is divided into seven physical plant areas, including the main control
room (MCR), two control equipment rooms, computer room, auxiliary computer room, work
control room, and technical support center. The MCR contains the nuclear steam supply
system (NSSS) and BOP main control panels. The control room instrumentation is based on
the philosophy of having sufficient information displayed to allow the station to be controlled
safely from the control room. To achieve this goal, all indications and controls that are essential
for operation (i.e., startup, shutdown, and normal operation) are located in the MCR panels.
The equipment panels containing the reactor regulating system equipment for the shutdown of
the reactor and the activation of safety equipment are seismically qualified. The remainder of
the panels, including the main control panels and the digital control computers (DCCs) are not
seismically qualified. However, the "watchdog timer" portion of the DCC, which is an
independent hardware device that monitors the operation of the DCC, is seismically qualified for
a design-basis event.

The unit DCCs and support subsystems are located in the computer room of the control
equipment room. The computer room is completely enclosed and has its own heating and air
conditioning systems. This ensures a relatively dust- and dirt-free environment. The
maintenance computer DCC is located in an adjoining room (i.e., the auxiliary computer room).

As part of the safety analysis for Canadian nuclear power plants, a qualitative reliability analysis
is required. For the digital protection systems, reliability qualification (a testing technique based
on statistical observations) is used to estimate the probability that the software will fail to meet
its functional requirements. Eight thousand test cases were run for each shutdown system
software.
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2.3 Future Advanced Reactor I&C Designs

2.3.1 Advanced Plant (AP)-600/1 000

Two other l&C designs reviewed in this report are the Westinghouses AP600/1 000 advanced
reactor designs. These designs are the result of a Westinghouse-led industry effort to design
and obtain early regulatory approval of a PWR plant design that embodies the lessons learned
from the previous 40 years of nuclear power plant operations. The U.S. nuclear industry
captured much of this experience in the Electric Power Research Institute (EPRI) Advanced
Light-Water Reactor (ALWR) Utility Requirements Document. In designing the AP600/1000
design, Westinghouse sought to meet, or exceed, those requirements.

The Westinghouse AP600/1 000 I&C designs are based on the following principles:

* The architecture will distribute elements closer to the monitor systems and parameters.

* The architecture will be consolidated by function into an efficient size and layout.

* The latest industry and regulatory requirements for safe, reliable, and efficient plant
operation will be addressed.

* Separation between non-safety and safety systems will be maintained.

* Systems will use redundancy to meet high reliability and availability goals.

* -The design will enhance and simplify maintenance and testing.

* The systems will be integrated such that data and information are handled consistently.

* Industry-standard open interfaces will be provided for third-party equipment.

* Data transfer between the l&C network and the station information system will be
provided.

Various types of redundancy are employed throughout the system architecture to yield a fault-
tolerant design. Specifically, the types of redundancy employed include physical (or parallel)
redundancy, channel sets, trains, and workstations. Active and standby redundancy is
employed in controllers and workstations, and communication connection redundancy is
employed in network concentrators, controllers, remote 1/O, and workstations. Process
interface level redundancy for critical systems is employed for both analog and digital inputs
and outputs, as well as power supplies.

Information and data management requires efficient data sharing among the HMI elements. In
addition, the system will be integrated such that data and information are handled consistently
across the system. The requirements for information and data management necessitate high-
performance microcomputer and data highway technologies.

Main control room dynamic proof of concept testing was performed by Westinghouse using a
mockup and test facility that was driven by a nuclear power plant simulator. There is a primary
focus on human factors testing using experienced operators. Westinghouse will perform full-
system validation testing prior to equipment installation.
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2.3.2 Advanced Pressurized-Water Reactor (APWR)

The Advanced Pressurized-Water Reactor (APWR) is a large four-loop nuclear power plant
designed jointly by the Westinghouse Electric Company (WELCO) and Mitsubishi Heavy
Industries, Ltd. (MHI) of Japan. The design is scheduled for application in Japan in the near
future. Mitsubishi Electric Company (MELCO) will supply the APWR instrumentation,
protection, control, and control room equipment. MHI and MELCO are in the same company
family but operate separately. MELCO is the oldest licensee of the former Westinghouse
Electric Corporation. Under a supplement to this license, MELCO obtained detailed design
information for the Westinghouse IPS, ICS, and Black Board artificial intelligence technologies.
In addition, MELCO participated with Westinghouse Electric Corporation in the development
programs. Westinghouse also assisted MELCO with APWR control room design by performing
certain development and verification activities.

The APWR l&C architecture is similar to that of the the AP600 advanced reactor. However,
there are differences in the design details, especially in the MCR. The reactor reactivity and
operation control, or NSSS control, is patterned closely after the Westinghouse [CS. The
design of hardware modules and system software is in common with the digital protection
system. The BOP, including the turbine control, is controlled by an extension of the digital
control system, which has a dedicated data highway network.

The design and V&V methodology follows nuclear industry standards with an emphasis on
testing. Hardware elements are methodically tested. Extensive system validation testing is
relied upon to demonstrate proper system operation. Main control room dynamic proof-of-
concept testing was performed using a mockup and test facility that was driven by a nuclear
power plant simulator. Some tests were performed using experienced operators.

Pre-production protection and control systems were tested as complete systems. However, this
was several years ago and it is the designers' intention to build the APWR plant systems using
a new hardware design. Therefore, significant factory testing of the APWR plant systems will
be required.

2.3.3 High-Temperature Gas Reactors

The GT-MHR and PBMR designs combine features that lead to high thermal efficiencies, cycle
simplicity, enhanced safety, and improved economics. A very high level of automation will be
designed into the GT-MHR and PBMR plant control systems based on economic, reliability, and
operability requirements. Some control system designs will come from current industry
experience with automation for multi-module plants, including steam and gas combined cycle
plants in the United States and Japan. However most of the instrumentation, control, and
protection system designs will need to be developed before these new plants can be licensed
and built.
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2.3.3.1 Pebble Bed Modular Reactor

A significant digital l&C system planned for the PBMR is the automation system (AS), which will
perform power plant monitoring, control, and protection functions. The AS hardware design will
use integrated commercial off-the-shelf (COTS), all-digital programmable systems. The AS will
consist of several subsystems, including the reactor protection system (RPS), post-event
instrumentation, equipment protection system, operational control system (OCS), and human-
system interfaces (HSIs).

The safety system designs will comply with the IEEE standards and NRC guidance applicable
to the PBMR design. Digital platforms will be used for safety systems; therefore, adequate
diversity and redundancy will be required. Current design concepts contain specific provisions
to address common-mode failure. This includes RPS functions that are also duplicated in the
non-safety OCS (which is a platform diverse from the RPS) and contain provisions for manual
initiation of a reactor trip.

The plant control data and instrumentation system (PCDIS) will use industrial, distributed
microprocessor-based control platforms. The PCDIS will be a hierarchical data information
network that is functionally separate from and physically independent of the Class 1 E nuclear
safety systems and the human-factored operator interfaces. The plant control system will
integrate major plant instrumentation systems using highly reliable, multiple-redundant data
networks with fiber optic isolation. Control signals and data gathered from sensors will be
communicated via remote field control stations located throughout the plant. Redundant data
networks will connect these remote stations with the main control computers and the control
room. The integrated PCDIS will provide plant operators real-time plant status information.

The PCDIS will regulate and coordinate the operation of plant systems through feedforward and
feedback algorithms. The transparency of the helium primary coolant to the neutron flux, the
absence of boiling and phase changes in the cooling system, and the large thermal capacity of
the graphite-moderated core enable the PBMR to have a relatively long, stable, and predictable
time of response. The control strategy for the PBMR is designed to take advantage of these
inherent characteristics.

Previous studies regarding operation of multiple-reactor modules led to selection of a single
control room. This configuration provides a separate workstation for each module, plus an
additional workstation for common plant auxiliary systems. The PCDIS design concept is driven
by top-level operations and control requirements, including human factors; reliability and
availability requirements; and interface requirements with the nuclear, fluid, mechanical, and
electrical systems. It has the following key design features:

* The single control room design will have a separate operator workstation for each
reactor module, plus a workstation for common plant auxiliary systems.

* Dedication to plant control and instrumentation functions with no interaction with the
safety-related protection system functions.

* Distributed control functions will be handled by control processors located near the plant
systems they control.
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* Proven microprocessor-based distributed control systems will connect control room
operator interfaces and local control processors via redundant data networks. The
system is hierarchically arranged to limit failure effects and to provide high response
speed; high reliability; and high security for local control, module monitoring, production
plant monitoring, and PBMR complex monitoring.

* Advanced HMIs will incorporate real-time animated graphic displays, touch-sensitive
screens, color graphics, and audible output messages to enhance operator
effectiveness.

* High levels of redundancy for controlling nuclear power and heat removal systems will
be designed to meet or exceed reliability goals with high assurance and to minimize
challenges to protection systems.

* A highly automated control scheme will provide the operator with the means for manual
intervention at all times.

A central technical management information system and technical database, with plant design,
test, and maintenance data, will be provided to support technical personnel.

The design will also support the idea of distributing process information and online monitoring
information to different personnel (plant manager, maintenance manager, chief engineer, etc.)
who have an interest in plant and system status. Plant operational information will be available
on the plant intranet for access by designated persons. No control actions will be performed
from computers on the network.

2.3.3.2 Gas Turbine Modular Helium Reactor

The plant protection and instrumentation system (PPIS) for the GT-MHR will comprise three
subsystems, including safety protection, special nuclear area instrumentation, and investment
protection. The PPIS design will have reactor trip, main loop shutdown, and initiation of the
shutdown cooling system functions. In addition, the PPIS design will meet the requirements of
Title 10, Part 100, of the Code of Federal Regulations (10 CFR Part 100). The hardware
portion of the PPIS that accomplishes these functions will be grouped and labeled as the safety
protection subsystem. The PPIS hardware that will provide the other active functions will be
grouped and labeled as investment protection subsystems.

Each reactor module will have a separate and independent safety protection subsystem that will
consist of four separate (redundant) safety channels with two-out-of-four coincidence logic to
command initiation of a reactor or turbine trip. Each safety channel will include the field-mounted
process variable sensors, electronic signal conditioning equipment, and electronic trip setpoint
comparators to provide a trip signal when the process variable reaches the trip setpoint.

The GT-MHR will also use an OCS that will be an industrial-grade distributed control system
with redundancy for certain functions to enhance availability. It comprises controllers and
remote I/O modules distributed throughout the plant. Data exchange between the remote I/O,
controllers, and other intelligent field devices (e.g., smart valve positioners) will be via fieldbus
digital networks. The OCS's main function will be to control power generation of the plant.
The plant support systems (e.g., compressed air, waste handling) will be controlled by
dedicated "small" control systems that operate independently of the OCS; however, essential
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information will be displayed on the OCS, and data will be captured on the data server. These
controllers will be connected to the redundant OCS (industrial Ethernet) optical networks. The
OCS software will be organized in a hierarchy of super and subordinate group controllers to
execute the OCS functions in a structured manner. The group controller structure will be
organized in three tiers, making provision for sequential control, continuous control, and
calculations and monitoring functions. -

Besides the control of power generation, the OCS will also execute a backup RPS function
(diverse platform). It will also perform limitation actions by steering the reactor away from
possible trip condition by providing "run-back" (i.e., reduce power rather than tripping the
reactor).
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3. DESIGN, APPLICATION, AND PERFORMANCE EXPERIENCE

This section focuses on unique characteristics of advanced technology or technical methods
that have contributed to the success or failure of particular applications. Limited performance
experience from evolutionary nuclear power plants also is presented. Following a brief
discussion describing the sources of information that were reviewed, this section describes
other countries' experiences with the phased introduction of digital technologies; diversity and
defense-in-depth design approaches; software tools and configuration control; software V&V;
software errors; and hardware failures.

3.1 Sources of Information

Digital l&C technology has seen widespread use in non-nuclear applications within the
international industrial community. The use of digital technologies has increased for both
non-safety and safety-related applications in the nuclear industry, such as at the evolutionary
plants that are the subject of this study. In addition, current ALWR designs and next-generation
reactor concepts incorporate extensive use of advanced l&C technologies. The expanding
experience with advanced l&C technologies should provide a wealth of information regarding
implementation issues and performance characteristics that should be considered in evaluating
advanced technologies for application in safety-related I&C systems at nuclear power plants.

Many resources were examined in this study, such as technical journals, conference
proceedings, event reports maintained by regulatory bodies, and industry-maintained
operational databases. Significant information was gained from topical conferences and
workshops that have been held over the past decade. In particular, useful information
resources have included the series of American Nuclear Society Topical Meetings on Nuclear
Plant Instrumentation, Control, and Human-Machine Interface Technologies; the annual Power
Plant Dynamics, Control, and Testing Symposium; the Organization for Economic Cooperation
and Development (OECD) Nuclear Energy Agency (NEA) Workshop on Licensing and
Operating Experience of Computer-Based l&C Systems, the International Symposium on
Future l&C for Nuclear Power Plants; and selected EPRI workshops.

The information available from operational, performance, and reliability databases was limited
by availability and access. The NRC's Licensee Event Report database is the most accessible
and has been extensively reviewed for l&C failure information. Other databases considered in
this study included the Institute of Nuclear Power Operations (INPO) Equipment Performance
and Information Exchange (EPIX) database, the OECD/NEA Computer-Based Systems
Important to Safety (COMPSYS) database, the Central Research Institute for the Electric Power
Industry (CRIEPI), Nuclear Information Center (NIC) Nuclear Component Reliability Data
System, and electronic component reliability data maintained by the Reliability Analysis Center
(RAC) in Rome, New York. Because of the absence of extensive performance databases for
digital equipment and the product-specific nature of the information that was available, this
section focuses on reported experience from individual applications of advanced l&C
technology at the evolutionary plants that are the primary subjects of this study. Such
experience can be categorized in terms of system design and implementation approaches,
software quality and performance, and hardware failures.
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3.2 Phased Introduction of Digital Technology

Japan

Microprocessors have been used in Japanese nuclear power plants for more than 30 years.
The Japanese nuclear power industry, in collaboration with the Ministry of International Trade
and Industry (MITI), evolved from analog to digital l&C technology in an orderly, step-wise
fashion. From the early 1970s through the mid-1980s, computers and microprocessors were
used primarily for information processing and display of results. In the 1980s, digital
technologies were integrated into the control systems for various subsystems, starting with
auxiliary systems and then moving to principal control loops. By the 1990s, microprocessors
were being used for data logging, control, and display for most non-safety-related systems.
The first fully digitalized l&C system was integrated into the Kashiwazaki-Kariwa ABWR in
1996.

As part of the evolution toward the use of microprocessors in safety-related applications,
a national program was established involving regulators, researchers, and manufacturers.
Reliability testing of software used in safety protection systems began with individual safety-
related systems in the mid-1 980s and progressed to the safety protection system by the early
1990s. For the national qualification program, functional tests were performed on one'complete
train of digital safety system equipment, with inputs from remaining logic trains simulated by
computer inputs. Using noise superimposed onto test signals, these functional tests also were
conducted with instrumentation subjected to simulated conditions of aging, seismic
disturbances, and accident environments. The process for accomplishing these tests involved
verification followed by validation (i.e., "proving" tests). The verification process consisted of
the following steps:
* clarification of the functional and performance requirements for the test devices, based

on regulations and test device specifications
* confirmation that test device specifications were consistent with regulatory requirements

* determination that specific test conditions were based on device specifications and
expected plant conditions

* documentation of test procedures

Validation test procedures were consistent with those specified by IEEE Std. 323-1974 for Class 1 E
electrical equipment at nuclear power plants, which included both electrical tests and the
following safety function tests:

* input/output tests
* automatic system initiation
* manual operation
* bypass functional tests on individual sensors and complete channels

As an integral part of these tests, equipment was subjected to the following conditions:

* sensor failure
* noise
* various ambient temperatures
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* thermal aging
* simulated seismic conditions

The coordinated, systematic introduction of digital technology into Japanese nuclear power
plants has been effective. The experience gained from non-safety-related applications, coupled
with the confidence derived from the Japanese national qualification program, permitted an
orderly transition to digital I&C systems while the supporting infrastructure was developed
concurrently.

3.3 Diversity and Defense-in-Depth Design Approaches

Korea

The use of digital technologies in the Republic of Korea began in the late 1980s through the
use of microprocessor-based I&C equipment in the safety-related Digital Interposing Logic
System (DILS) at Yonggwang (YGN) Nuclear Power Station Units 3 and 4. The NSSS
protection signal processing and bistable circuitry were upgraded at Kori Nuclear Power Station
Unit 1 using commercial-grade digital process instrumentation. Uljin Nuclear Power Station
Units 3 and 4 employ microprocessors for plant control systems, including additional logic
between system- and component-level circuits. These non-safety-related control systems are
based on programmable logic controllers (PLCs). All of the protection systems, including the
reactor trip system and engineered safety features actuation system (ESFAS), of Uljin Nuclear
Power Station Units 5 and 6, are being built to use digital technologies, but the MCR and the
remote shutdown panels are still based on conventional technologies.

With the introduction of digital technology into safety systems at nuclear power plants, Korea
Institute of Nuclear Safety (KINS) has placed special emphasis on diversity and quality as
principal factors in addressing the potential for common-cause failures. At YGN Units 3 and 4,
the DILS is an integrated microprocessor-based control system that receives actuation
commands from the control modules mounted on control panels, on/off logic actuators, and
other control systems. The OILS also sends the output signals to field devices. Each DILS
control board has its own dedicated control card, I/O buffer cards, and I/O terminations.
However, because common-mode software programming errors remain possible, KINS
required a diverse backup system. To meet this requirement, a set of safety-grade, hardwired
displays and controls were installed on a backup panel in the MCR to allow manual actuation of
ESFAS train B equipment.

KINS addressed the issues of diversity and software quality during its design review of Uljin
Units 5 and 6, which are currently under construction. For these units, the digital plant control
system (DPCS) will fulfill the same function as the OILS for the YGN units. In addition, the Uljin
units will have digital plant protection systems (DPPSs), which include the reactor trip system
and ESFAS. Thus, digital technology is being employed at both the system and component
levels. The review of the Uljin Units 5 and 6 design found that the system and component-level
circuitry are diverse because they use different technologies and vendors. Thus, KINS
concluded that little likelihood existed for common-cause failure affecting both levels. However,
to provide protection against common-cause failures within each level, two kinds of backup
panels have been required in the MCR.
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A backup system at the system level was added against loss of the DPPS due to common-
cause failures. This backup system is totally diverse from the DPPS and the system designed
to backup DPPS during anticipated transient without scram (ATWS) events. Thus, three layers
of independent and diverse defense-in-depth exist at the system level.

As with YGN Units 3 and 4 and Uljin Units 3 and 4, KINS required a backup panel at the
component level. This panel is independent and diverse from the system-level backup and the
DPCS, so there are two component-level layers of defense-in-depth.

KINS required the installation of redundant microprocessors in each channel to increase the
availability, testability, and reliability of the DPPS. As a result, two microprocessors are used for
the bistable function and four microprocessors for the local coincidence logic function. This
architecture can provide physical redundancy, but can also support software and functional
diversity within each channel. As an additional measure to address software common-cause
failure, KINS required third-party review independent of the software design, as well as
verification teams to enhance the software quality and reliability of the DPPS for Uljin Units 5
and 6.

The reactor protection system and plant control system at the Kori Unit were upgraded as a
result of component obsolescence, high maintenance costs, and concerns about aging. The
upgrades were implemented using the Foxboro Spec 200 (analog) and Foxboro Spec 200
Micro (digital) line of process instrumentation. A defense-in-depth and diversity assessment
was performed using the licensed design bases for plant responses to conditions and
transients. This assessment determined that common-cause vulnerabilities existed in the
reactor protection system. To address these vulnerabilities, the Spec 200 Micro modules for
process parameters (such as for pressurizer pressure, steam-generator water level, and
containment pressure) were replaced with Spec 200 analog modules.

During the design certification review of the Korean Next-Generation Reactor (KNGR), KINS
raised issues regarding the system structure of the advanced DPPS design, the safety
classification of soft controllers introduced in the DPPS, and the defense-in-depth against
common-cause failures. The integration of the bistable and local coincidence logic functions
into a common microprocessor caused concern. Previous designs that had been licensed
implemented these functions (the generation of trip signals and coincidence logic signals) on
physically separate microprocessors. The integrated structure caused concern about reliability,
functional diversity, and design consistency of the more complex software. To address these
concerns, KINS is requiring that separate bistable and local coincidence logic microprocessors
be maintained in the design to preserve functional distribution and to facilitate software V&V.

The next issue addressed in the KNGR design certification involved the safety classification and
independence of the soft controller to be installed in the digital ESFAS. The l&C systems of
KNGR are designed using digital technologies like multiplexers/demultiplexers in safety
systems to process data efficiently and to design compact and efficient systems. Thus, soft
controllers replace a large number of spatially distributed manual switches. Two concerns were
that this design change makes it more difficult to ensure the independence between safety and
non-safety signals and increases the software V&V effort. Because manual switches that are
used to control the safety-related components are classified as part of the safety system, KINS
adopted the position that soft controllers that are functionally equivalent to manual switches will
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also be classified as part of the safety system, including both software and hardware. In
addition, the electrical isolation and physical separation among channels will be maintained.

3.4 Software Tools and Configuration Control

United Kingdom

British Energy, Plc., the owner-operaror of the Sizewell B nuclear power plant, created an
offline database to define the Sizewell B ISCO design. The database is supplemented with
graphical depictions of control logics and MCR mimics. Graphical depictions are objects
instantiated by fields in the database. The database was an effective configuration
management tool for a very large control and supervisory system.

For Sizewell B, the software verification analysis and testing of the IPS common
microprocessor services code was aided and automated by a software tool. The "test-bed" tool
was an adaptation of a PUIM-86 of a tool developed by Liverpool Data Research Associates to
analyze Pascal software code. The test bed imposed formalism and objectivity to the
independent assessment and testing process for each life cycle phase in which it was used.
The test-bed tool was used to statically analyze the code to ensure that correct programming
standards were followed and code complexity was controlled. The test bed tool was also used
to establish the coverage of the dynamic test cases developed from the software analysis. The
verification test cases were required to have 1 00-percent path coverage at the module level.

The software for the IPS and ICS was developed and is maintained using a set of mainframe
computer software tools. The tool set includes a configuration management tool that, among
other things, tracks all software changes. Proposed software changes must be agreed upon by
a group of software experts who are knowledgeable of the IPS/ICS software design and
verification. The software librarian is the only person authorized and able to change the code.
The change control procedure requires change verification before application in a safety system.

The executable form of the software module also resides in the library. That is, modules do not
require recompilation to be used in different subsystems or systems. Executable modules,
along with subsystem configuration and calibration data, are linked and located in such a way
as to form a memory image of the microprocessor software. The link location process includes
the generation of a checksum from a mainframe calculation of the memory image. A separate
checksum calculation is performed by the host microprocessor as part of the startup sequence.
This ensures the integrity of the transfer process from the mainframe computer to the
microcomputer. The checksum calculation is repeated throughout the microcomputer
operation.

The change control and configuration management for the hardware follows corporate drafting
standards used for previous generation protection systems. After installation, the executable
code that has been burned into programmable read-only memory (PROM) was treated as
hardware. The microprocessor printed circuit board is imprinted with a drawing number that
defines, among other things, the software configuration. A serial number is also imprinted.
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France

One of the more impressive parts of the N4 I&C design is the set of support tools that EdF has
built to support the design. EdF has completely computerized all of the design data about the
N4 plant. This includes P&lDs, system descriptions, procedures, control logic, and electrical
one-line diagrams. In the late 1970s to the early 1980s, EdF installed this data in a relational
database management system called PHENIX, which was developed by the British to aid in the
design of piping layouts. EdF adapted this database management system'to its purposes of
supporting the l&C design and configuration management effort for the N4. EdF also built a
database of control room display objects (often called "macros") in another relational database
management system called SOCRAT and interfaced it with PHENIX. This coupling has
enabled EdF engineers to build code by using engineering workstations to update VDU screens
at the plant site. The database management systems can build the appropriate links to process
parameters and synthetic variable calculations within the N4's online database, and the
systems can automatically produce the requisite software based upon VDU screens. At the
time of this study, the level and scope of automation was the most advanced compared to other
nuclear l&C vendors.

Czech Republic

Westinghouse engineers created a very large offline database to define and control all aspects
of the Temelin l&C upgrade design. The database used a robust relational database
management system. For example, about 100 fields were used to define a sensor. The fields
included information, such as the sensor supplier and qualification level, that were not
incorporated into the online information system. One of the main benefits of such' an approach
was that various l&C engineering teams used a consistent data set throughout the upgrade
project, and the data was associated with a level of certification and authentication. This
database also allowed capture of design data provided by Czech and Russian plant designers,
and it identified information that was missing early in the upgrade process.

3.5 Software Verification and Validation

United Kingdom

For the Sizewell B Nuclear Power Station, Westinghouse built a pre-production PPS for
environmental qualification test purposes. After the completion of those tests, the unit was
turned over to British Energy for use as a validation test unit. The pre-production unit was
connected to a computerized test harness that performed a series of dynamic tests based, in
large part,'on the design-basis events. A subcontractor designed the test harness and
executed the tests for British Energy.

Several of the dynamic PPS validation tests using the computerized test harness did not work.
At first, these results were classified as test failures, implying problems with the PPS. However,
British Energy engineers concluded that the PPS test harness contained timing problems.
Those timing problems were resolved, and the tests were executed again with positive results.
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France

EdF identified several unresolvable issues with the initial design for the control and protection
system of the Chooz B Nuclear Power Station. The initial design was based on a unique
architectural design. The initial Chooz B N4 plant l&C architectural design consisted of an
automatic protection system and a decentralized control and monitoring system. The automatic
protection system included the nuclear instrumentation, control rod controller, and reactor
protection system (the SPIN system). The decentralized control and monitoring system
included the CONTROBLOC P20 and the CENTRALOG P20 that were based on the Integrated
System for Plant Operation concept.

CONTROBLOC P20 is a decentralized control system initially developed for the N4 plants by
Cegelec. The purpose of the CONTROBLOC P20 control system was to provide plant control
and a safeguard support system (Class 1 E). The CENTRALOG P20 system was a supervision
system to provide all plant computer functions and emergency response functions. The P20
system architecture was to be divided into distributed clusters consisting of a redundant bus
network. The CONTRONET was to provide the control room network, the CONTROBUS was
to provide the distributed control network, and the LOCABUS was to provide the field bus
network. The computational platforms selected for the P20 systems included the Motorola
68020 microprocessor and INMOS transputer, which is a 32-bit microprocessor primarily
designed for parallel applications (i.e., parallel processing). The configuration of the P20
system was to be based on an object-oriented design database approach using the
CONTROCAD computer-based software design tool.

The unique features of the P20 system included the integration of Class 1 E and non-Class 1 E
functions within a common architecture utilizing shared data paths. It also included the use of
state-of-the-technology computing platforms, which had not previously been employed in
nuclear plant applications and which did not have extensive performance histories. In addition,
it included the development and application of a new design tool as the basis for system-wide
software implementation.

The Chooz B N4 plant was originally scheduled to go into commercial operation in 1991 or early
1992, but the French regulatory authority interrupted the schedule because of its concerns
about the P20 system. In particular, three main issues were identified:

* With its complex, fully redundant communication links and shared communication links
between safety and non-safety functions, the P20 architectural design was extremely
ambitious in light of the available technology. It was found that a communications-by-
exception approach employed for some parameters created the potential for
communication saturation of cluster interfaces (i.e., "choke" points) during off-normal
events. While this response characteristic might have been addressed through design
modification, the regulatory authority was concerned that the Class 1 E functions could
not be qualified without major design changes.

* Another issue was that the parallel development of hardware and software posed
uncertainties about the ability to achieve expected performance. In particular, the
transputers had never been used before, and the CONTROCAD design tool was
unproven. As a result, the capability of the suppliers to meet project schedules while
satisfying regulatory requirements and ambitious functional requirements was uncertain.
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* Finally, the IPSN regulators had serious reservations about the'capability to perform
proper V&V analyses'on software generated by the CONTROCAD design tool because
of its complexity.

The schedule interruption and technical concerns caused EdF to abandon the P20 system and
select an entirely new vendor for the control and monitoring system of Chooz B. Following the
decision by EdF, British Energy also abandoned the P20 system for Sizewell B.

It can be concluded that one of the primary technical difficulties faced by the P20 system was
that the software for the system had become too complex to be verified effectively and
confidently. This resulted from a combination of the complexity of an unproven computing
platform and the difficulty in evaluating the quality of the software product from the code design
tool. One outcome of this experience is the development by EdF of guidelines for the use of
software tools.

Canada

In preparation for the first Darlington operating license, the Canadian Nuclear Safety
Commission (CNSC) indicated that before the redesign of the shutdown system software
started, a suitable standard must be developed. Afterward, Ontario Power Generation, Inc.
(OPG) and Atomic Energy of Canada, Ltd. (AECL), developed the Standard for Software
Engineering of Safety Critical Software (OPG/AECL Standard, CE1001 Std Rev.1-1995
"Standard for Software Engineering of Safety Critical Software", referred to as CE-1 001).
CNSC staff monitored the development of this standard. OPG and AECL'started from IEC
60880-1986 "Software for computers in safety systems of nuclear power stationst and a survey
of other international standards, and incorporated the advice of renowned software experts.
CNSC found that the CE-1 001 satisfactorily addressed the concerns it had with the
development of the original shutdown system software. CE-1001 emphasizes formal software
review and maintainability, including formal requirements and specifications.

Following development of CE-1 001, OPG and AECL produced a series of procedures, work
practices, tools, and guidelines contained in the Standards and Procedures Handbook (OPG
Document, 1998) for the redesign of the Darlington Shut Down System #1 (SDS1) and Shut
Down System #2 (SDS2) software. The CNSC staff reviewed the standards and procedures
related to software development and determined that they would ensure the production of
reviewable and maintainable software.

The Darlington plant trip computer software was developed using the spiral model. In this
approach, each phase chosen around the spiral loop yields a comprehensive product without
incurring the full design documentation overhead. The CNSC staff found the use of the spiral
model acceptable. Because the software requirements were not stable before development
began, several functional changes were anticipated. Eventually, only two loops around the
spiral were necessary to complete the design.

Two different specification formats, one for SDS1 and another for SDS2, were used to achieve
diversity for software production. For SDS1, the trip computer design requirements and design
description consisted of an English overview description and a corresponding mathematical
functional description based on a box-structured method. The design description described the
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interface requirements between hardware and software components. The required software
functions contained in the design requirements and design were combined to form the "virtual"
trip computer software requirement specifications.

For SDS2, the software requirement specifications were written using function tables.
The CNSC staff found the specifications to be complete and correct with respect to the system
requirements. They also determined that the specifications would lead to software that was
easy to modify and test. The licensee chose a development approach that met the regulatory
requirement of design diversity between the two shutdown systems.

Systematic design verification involved providing objective evidence that the behavior of every
output in the software design met the software requirement specifications. The verification
approach adopted provided evidence that the software design performed all functions specified
and did not perform any unintended functions. The CNSC staff insisted that the group of
verifiers must be independent of the group responsible for design and implementation of the
software.

For both SDS1 and SDS2, the licensee performed unit testing, software integration testing,
validation testing, system integration testing, and reliability qualification. The CNSC staff
followed and reviewed the testing activities and found that minor deviations from the system
specification occurred during the first loop of the software cycle. Those deviations were
effectively dealt with using a discrepancy and change resolution process.

Reliability qualification is a testing technique, based on statistical observations, which is used to
estimate the probability of software failing to meet its functional requirements. Given the
developmental nature of this field (i.e., statistical testing), the CNSC staff did not have a high
degree of confidence in the numerical results of reliability qualification. However, it was a
useful and diverse validation of software behavior. Eight thousand test cases were run for each
shutdown system software. Fewer than 5 percent of the results were found to be discrepant,
and those discrepancies were caused by limitations of the testing rig, rather than software
faults.

Commissioning activities performed by the licensee included a subset of tests to provide
additional confidence that the trip, display/test, and monitor computer software met their
specified functional requirements. OPG prepared an SDS1/SDS2 installation guide, and
SDS1/SDS2 commissioning specification, which were consistent with the plant operating
procedures. CNSC staff was involved in reviewing the guidelines and approving the documents
associated with temporary and permanent changes. The installation of the redesigned
shutdown system trip computer software on all four units was completed in late 1999.

Switzerland

The principal issue surrounding the HSK regulatory approval of the ANIS for the Beznau
Nuclear Power Station concerned the possibility that the logic in the database(s) of the
computerized procedures and/or the alarm system might be flawed in a way that would mislead
the control room operating staff to perform an incorrect action. This concern was initiated by
the French regulatory authority (IPSN). During the regulatory review of the N4 control room,
IPSN discovered that the computerized presentation of the operating procedures performed a
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comparison of the demands of the current procedure step against the current plant state. The
French regulatory authority insisted that the procedure steps be presented separately from the
current plant conditions so that any conclusions regarding actions to be taken must be made by
operators and not the computer.

The ANIS computerized procedure presentation system performs this comparison and advises
the control room staff of the satisfaction/completeness of each procedure step. By doing so,
the Beznau control room operators can address malfunctions much more quickly, thereby
reducing the time the plant process is beyond design limits, thereby potentially limiting the
severity of transients. This benefit was so important to the Beznau Operations Department that
they devised an entirely new "method of operation" for plant operation and procedure use.

The concern of the French regulatory authority caused roughly a 3-year delay in 'getting the
ANIS approved by the Swiss regulatory authority. It was during this period that the Swiss
regulatory authority required Beznau to conduct an independent third-party'review of the
significant portions of the computerized procedure database and the alarm logic database.
Beznau was also required to perform extensive additional simulator demonstrations and formal
tests in the presence of members from both the French and Swiss regulatory authorities.

3.6 Software Errors

United Kingdom

Commissioning testing of HICS at the Sizewell B Nuclear Power Station revealed an error in the
system software. The software error, which was in the'data network controller, was easy to
uncover and reproduce. Under burdened operation, the data buffer management could corrupt
the data. The problem occurred at a threshold, so it was easily detected after the threshold
was reached. However, the software error was a subtle problem with dynamic data buffers that
is not amenable to analysis using formal methods. Nevertheless, the problem was localized
and readily corrected.

A root-cause analysis was undertaken immediately. The same software module is part of the
Sizewell B PPS software. Moreover, the PPS software had completed both the Westinghouse
and British Energy verification programs. The PPS uses' the same data network design, but the
number of nodes is small. The analysis showed that, in the limited PPS application, the
threshold was not reached and a malfunction of the software would not occur. Therefore, the
defect was not classified as a PPS software error. It was agreed that a normal PPS software
maintenance update could include the HICS software correction, but the PPS software would
not be updated solely to include that correction.

Sweden

The AC1 60 supplied by ABB was selected for application to the reactor protection system of the
Oskarshamn Nuclear Power Station Unit 1. The ABB AC1 60 had been previously certified for
boiler protection in Germany by the TOV Nord regulatory authority, which has regulatory
purview beyond nuclear applications. To satisfy Swedish regulations, the'AC1 60 software
design and verification process was amended to meet the requirements of IEC-60880. The
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software implementation by ABB, however, did not strictly meet the recommendations of IEC-
60880. For example, the use of interruptible structures and multitasking did not follow IEC-
60880 recommendations. During this process, errors in the AC1 60 controller software and
software tools were discovered. To address these defects, ABB performed an extensive "add
quality" process on the AC1 60 software. In effect, the "add quality' process reworked the
AC160 software design and verification process so that it met the requirements of IEC-60880
and addressed the reported software errors. To reduce the complexity of this process, ABB
removed features from the nuclear product line of the Al 60 controller software and software
tools.

Korea

In 1999, an incident at Uljin Nuclear Power Station Unit 3 corrupted data on the performance
net of the DPCS. This incident was caused by a failure of the application-specific integrated
circuit (ASIC) chip on the rehostable module, which is part of the network interface module.
The data communication architecture of the DPCS has a dual-ring topology. The incident
occurred at the end of the first cycle over an interval of approximately 8 hours. The plant was in
normal operation, but several non-safety components displayed abnormal behaviors. For
example, several pumps that were not in operation suddenly started without any demand, some
closed valves opened and other open valves closed, and some circuit breakers used in tying
electrical buses switched on or off. Intermittent chattering of relays also occurred. Due to the
response of the operators and diverse systems, the incident was mitigated without adverse
consequences. A review of the system found that a common-cause software error was the
likely cause. It was found that there was no provision to protect against foreign writes in the
global memories within the communication network. As a result, software modifications were
implemented that included a change of data format, mirror testing, status testing, and hardware
foreign write protection.

The safety-critical interlock signals were hardwired at the request of KINS. The safety-related
components operated normally despite the communication failure. As a result, a hardwired
backup panel was installed to prevent software common-mode failures. However, reviewers
concluded that the system architecture was still vulnerable to a foreign write in the rehostable
module despite the presence of foreign write protection. Therefore, all safety-related signals
were hardwired to make up for the vulnerability of the system architecture. As an added
measure, KINS required the installation of an alarm window in the MCR to alert operators of
possible network failures and development of an abnormal operations procedure to address
possible control system failures caused by data communication errors.

3.7 Hardware Failures

Japan

In 2001, a failure of control rod transponder circuit boards at Kashiwazaki-Kariwa Nuclear
Power Station Unit 5 rendered the control rods inoperable. Following detection of the defective
cards, an analysis revealed that the failure mechanism was aluminum (Al) wire breakage in the
integrated circuits (ICs) caused by electromigration. The particular ICs used at Kashiwazaki-
Kariwa were manufactured at Hitachi Takaski Works. It was discovered that, from 1985 to
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1990, ICs manufactured at that plant that contained Al crystal grain sizes that were too small,
which contributed to their susceptibility to electromigration. The utility, Tokyo Electric Power
Company, replaced all of the affected boards, and the manufacturer confirmed that quality
control methods for the IC manufacturing process subsequently improved.

Electromigration is the transport of metal atoms induced by high electric current. The effect of
electromigration is typically negligible for discrete and medium-scale IC components. However,
at the level of miniaturization of current very large-scale integrated (VLSI) circuits, the current
density of metal interconnects and/or inter-level contacts is high enough (-1 06 A/cm2) to
increase the likelihood of occurrence of this phenomenon. The mechanism for this
phenomenon is high-current loading, which causes an increase in interconnect temperature due
to Joule heating. This Joule heating results in the creation of voids that lead to the failure of the
metal interconnects. The mass flow of the metal atoms takes place in the form-of diffusion
along interfaces (such as grain boundaries and surfaces) and volume diffusion. In Al
interconnects, grain boundary and interface diffusion are the dominating transport mechanisms
at operating conditions (temperatures below 2500C). Thus, the small grain sizes of the lCs at
Kashiwazaki-Kariwa provided ample interfaces to promote the metal migration.

As stated, Hitachi and its IC suppliers improved their quality control. In particular, the IC
suppliers have improved their processes since the late 1980s by developing standard sample,
accelerated test methods applied at the IC development stage. Through these evaluations, IC
suppliers establish reliability targets and control IC quality. Concurrently, the Hitachi
Information and Control Systems Division has improved its analysis methods for failed ICs that
occur in the field and promoted more effective use of field data in accrediting IC suppliers.
Presently, Hitachi follows a multistage quality control process for its digital products. The
process begins with an accreditation process involving evaluation of the quality controls and
product performance of the IC supplier. As part of this process, a series of IC qualification tests
are conducted (see Table 3.1). Hitachi now performs IC acceptance tests after purchase of ICs
from an accredited supplier (see Table 3.2). Following component assembly, Hitachi also
performs printed circuit board tests (see Table 3.3). Any failure detected during testing or field
use prompts a failure investigation and analysis (see Table 3.4), with the results leading to
improvement requests directed to the IC supplier.

29



Table 3.1 IC Qualification Tests (Accreditation)

Qualification Test Item
Preliminary evaluation
Appearance & dimension
Workability

Characteristic test
Heat test

X-ray vision

Withstand voltage test
Electrostatic resistance

Thermal shock test
Operation life test at high
temperature*
Life test at high
temperature & high
humidity*
Disassemble

Content
Document and reliability data

Heat-resistance to solder,
chemical-proof, etc.
Electrical and function test
Characteristic test at low, normal
and high temperature
Inner workings

Electrostatic discharge voltage

Thermal stress strength
(acceleration life test)

Test Equipment

Stereomicroscope
Solder bath

VLSI tester
Variable temperature
control box
X-ray fluoroscope,
ultrasonic image scanner
Curve tracer
Electrostatic discharge
tester
Thermal shock tester
Burn-in tester

(acceleration life test) Variable temperature and
humidity control box,
Unsaturated heat-cooker

Evaluation of inner workings and Metaloscope,
materials Scanning microscope

mnted by IC suppliers. Hitachi reviews the data.* These tests are impleme

Table 3.2 IC Acceptance Tests

Test Item Remarks

Appearance

Thermal shock test

Characteristic test

Lot-by-lot sampling tests: X-ray vision

Disassemble

Life test at high humidity
(heat-cooker)
Characteristic test

Burn-in test

Characteristic test

Short-term test
(first stage test)

Long-term test
(second stage test)
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Table 3.3 Printed Circuit Board Tests

Test Item Content Test Equipment

Component assembly Checking a correct components' Component assembly
check mounting and solder treatment checker (image scanner),

3D X-ray tester
Open / short circuit check Checking a print-circuit mis-bonding In-circuit tester
Dielectric measurement --- Automatic dielectric with

stand tester
Aging test Exposing to high-temperature Variable temperature and

environment for specified time humidity control box
Operation test Accuracy, function, response time, ---

etc.
Power source Stable operation at low voltage Variable voltage

and high voltage regulator
Thermal test Stable operation at low Variable temperature

temperature and high temperature control box
Note; Table 3 shows the typical test items of a printed circuit-board.

Table 3.4 Failure Investigation and Analysis

Test Item Content Test Equipment

Voltage-current --- Curve tracer
characteristics
measurement
Input-output --- In-circuit tester
characteristics
measurement
X-ray and ultrasonic vision Checking inner workings and X-ray fluoroscope,

wiring such as open circuit ultrasonic image scanner

Microscopic observation of --- Scanning electron
failed IC microscope
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4. REGULATORY PROCESSES AND ISSUES

A survey of international regulatory processes that were employed in licensing digital l&C
systems at evolutionary nuclear power plants was conducted during this study. The findings
established the context in which the advanced l&C technologies were reviewed and licensed.
In addition, these findings contributed to an understanding of how similarities and differences in
regulatory requirements and review approaches can facilitate or inhibit an effective licensing
process for advanced l&C technology.

In this section, an overview of regulatory regimes from the international community is provided.
Next, selected regulatory approaches applicable to advanced l&C technology are discussed.
Finally, key regulatory issues are identified that were addressed in particular digital I&C
licensing examples from this survey. Additional information on the regulatory regime and
licensing experience for several countries can be found in a report entitled "Four-Party
Regulatory Consensus Report on the Safety Case for Computer-Based Systems in Nuclear
Power Plants," which the NRC prepared issued in 1997, and a report entitled "Harmonization of
the Licensing Process for Digital Instrumentation and Control Systems in Nuclear Power
Plants," which the International Atomic Energy Agency (IAEA) published in 2002.

4.1 International Regulatory Regimes

United Kingdom

The Nuclear Installations Act of 1965 is the primary statutory basis for licensing nuclear power
plants in the United Kingdom. Under this act, no site may be used for the construction or
operation of any commercial nuclear installation unless the Health and Safety Executive (HSE)
has granted a nuclear site license. The HSE has delegated responsibility for administration of
this licensing function to the Nuclear Safety Directorate (NSD), which encompasses the Nuclear
Installations Inspectorate (Nil).

The goal of the NSD is to ensure proper control of risks to peoples' health and safety resulting
from work activities on licensed nuclear sites. The NESD comprises three divisions, including
inspection, assessment, and strategy/resource management. The inspection division is
primarily responsible for carrying out site inspection activities to confirm that licensees are
complying with their legal obligations. The assessment division develops standards and
provides specialist technical advice on the adequacy of the licensees' safety cases. The
strategy/resource management division develops strategies that enable the NSD to meet its
objectives and undertakes project management activities for the directorate.

The NSD establishes general safety requirements to address the risks at a nuclear site. In
addition, the directorate provides guidance in the form of safety principles. Licensees
demonstrate their compliance with these requirements and principles by generating and
maintaining a "safety case" and procedures to satisfy license conditions. The "safety case"
provides the documentation of the safety analysis developed to demonstrate how the plant will
operate within the guidance and safety requirements.
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France

The responsibility of nuclear safety in France is placed on the nuclear operator. The provisions
taken by the nuclear operator to ensure nuclear safety are supervised by the Nuclear Safety
Authority (Autorit de SOret6 Nucl6aire), which acts under the joint authority of the Ministry of
Environment, the Ministry of Industry, and the Ministry of Health. The central organization
within this independent authority is the General Directorate for Nuclear Safety and
Radioprotection (DGSNR or Direction G6n6rale de la Soret6 Nucl6aire et de la
Radioprotection). The primary responsibilities of the DGSNR include developing general
technical regulations concerning the safety of nuclear installations, licensing nuclear
installations, and inspecting and monitoring nuclear installations. The DGSNR draws on the
expertise of the Institute of Radiological Protection and Nuclear Safety (IRSN or Institut de
Radioprotection et de SOret6 Nuclaire). The IRSN is composed of the Institute for Nuclear
Protection and Safety (IPSN or Institut de Protection et de Soret6 Nucl6aire) and the Office for
Protection against Ionizing Rays (OPRI or Office de Protection Contre les Rayonnements
lonisants). At the request of DGSNR, the IRSN performs safety analyses to evaluate
provisions proposed by the nuclear plant operators. For matters such as major modifications to
nuclear installations or examination of preliminary, intermediate, and final safety analysis
reports, the DGSNR requests the opinion of expert advisory committees (Groupe Permanents
d'Experts). For other matters, such as minor modification to plants or provisions made to .
address minor incidents, the safety analyses conducted by IRSN give rise to recommendations
that are transmitted directly to the DGSNR.

Canada

The Canadian nuclear industry consists of a mixture of public organizations and private firms.
At the federal level, the CNSC is empowered to make all regulations governing all aspects of
the development and application of nuclear energy. The CNSC reports to the Canadian
Parliament through the Minister of Natural Resources. The Canadian licensing process
requires the licensee to prove that the nuclear plant operations are safe. The safety of
operating nuclear power plants is reviewed for compliance with the requirements of CNSC,
industry codes and standards, and pertinent policies and procedures.

Japan

Regulatory authority for nuclear reactors in Japan is established in the Electric Utility Industry
Law and the Law for the Regulation of Nuclear Source Material, Nuclear Fuel Material, and
Nuclear Reactors. The Ministry of Economy, Trade, and Industry (METI) has responsibility for
approving the construction and operation of commercial nuclear power plants. Within METI,
the Agency of Natural Resources and Energy (ANRE) addresses nuclear power issues and
actions. The Nuclear and Industrial Safety Agency (NISA), which reports to ANRE, has the
central role in safety regulation of commercial nuclear power. Its responsibilities include
generation of safety regulations, licensing of facilities and processes engaged in all aspects of
the nuclear fuel cycle, and oversight of commercial nuclear plants. The Ministry of Education,
Culture, Sports, Science, and Technology (MEXT) and the Nuclear Safety Commission (NSC)
of the Atomic Energy Commission also have advice and consent roles in the approval process
for reactor installations. The licensing process involves authorization for a nuclear power
installation followed by permission for the construction and operation of the power plant. During
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this approval process, Japan employs a double check system of nuclear safety review
employing NISA and NSC.

The Japanese safety regulation system is largely based on a voluntary assurance system
administered by the electric utility industry. Thus, the main governmental regulatory role is
largely one of approval, and the utilities are responsible for ensuring nuclear safety. However,
the Japanese government is very active in sponsoring collaborative research supporting nuclear
safety. In particular, the Nuclear Power Engineering Test Center (NUPEC) performs safety
research to establish data and methods that provide the necessary basis for standards and
guidelines.

Korea

The Ministry of Science and Technology (MOST) has responsibility for protecting public health
and safety through regulatory control and safety inspections of nuclear installations. KINS
performs technical assessment of licensee submittals and conducts safety inspections for
MOST. However, the ultimate responsibility for nuclear safety rests with the operating
organizations for nuclear plants in Korea. The licensing of nuclear power plants in Korea
consists of a three-stage process, including site selection, construction, and operation. In
addition, the Nuclear Safety Commission (NSC), an independent body that advises MOST,
performs periodic safety reviews.

Czech Republic

The national regulatory authority in nuclear safety and radiation protection for the Czech
Republic is the State Office for Nuclear Safety (SUJB or Stdtni Ufad pro Jademou Bezpeenost).
The Atomic Act on the Peaceful Utilization of Nuclear Energy and Ionizing Radiation provides
the legal framework for SJJB. The Chairman of SUJB acts as the Nuclear Safety Inspector
General, with authority to appoint nuclear safety and radiation inspectors.

Sweden

The operators of nuclear facilities in Sweden have full responsibility for enacting the necessary
steps to ensure safety. The Swedish Nuclear Power Inspectorate (SKI or Statens
kamkraftinspektion) within the Ministry of Environment is responsible for establishing a clear
definition of safety requirements and monitoring compliance with those requirements. SKI
ensures that Swedish nuclear installations have adequate defense-in-depth methods to prevent
serious incidents or accidents originating from technical or organizational conditions; protects
installations and nuclear materials against terrorism, sabotage, or theft; and provides for the
final disposal of spent nuclear fuel and nuclear waste.

Switzerland

In Switzerland, a general license for the construction and operation of nuclear facilities much be
granted before a technical license is issued. The Swiss Federal Council has responsibility for
granting these licenses following consultation with the affected Cantons (provinces) and federal
departments, and upon approval of the Federal Assembly (for general licenses). The Swiss
Federal Nuclear Safety Inspectorate (HSK or Haupabteilung fOr die Sicherheit der Kemanlagen)
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is responsible for reviewing the technical evidence submitted in support of license applications
for nuclear facilities. Each license application must be accompanied by a technical report that
demonstrates the safe operation of the facility under normal, abnormal, and accident
conditions. Following review by technical experts, HSK provides a safety assessment report
that includes conditions and recommendations. This assessment is submitted to the Federal
Office of Energy, which solicits third-party input before the decision on issuance of the license
by the Federal Council. Construction and operating licenses may be subdivided, with the
construction license consisting of up to three sub-licenses and the operating license consisting
of commissioning and operating elements.

4.2 International Regulatory Approaches

4.2.1 -United Kingdom

4.2.1.1 Safety Philosophy

The safety philosophy in the United Kingdom adopts the "as low as reasonably practicable"
(ALARP) approach to require that risk to the public must be maintained in the "tolerable" level.
This "tolerability of risk" is defined in terms of three levels of risk:

* An "intolerable risk" is a risk that is so great or has an outcome that is so unacceptable
that it must be rejected outright. The "intolerable risk" cannot be justified except in
extraordinary circumstances.

* A minimal risk is one that is so small that no further precaution is necessary. A risk in
this level is acceptable and requires no detailed work to show that risks are as low as
reasonably practicable.

* A risk falling between these two states is one that has been reduced to the lowest level
practicable, taking into account the benefits that will accrue from its acceptance and the
cost of further risk reduction.

4.2.1.2 Licensing Procedures

It is the responsibility of the operating company to ensure the safety of a nuclear installation.
Such companies must execute all license requirements to the satisfaction of the regulator. The
NSD assesses the capability of the prospective operator to satisfy the safety requirements from
design to decommissioning. NSD attaches license conditions to the site license and monitors
the performance of the nuclear installation in adhering to those conditions. The current typical
site license has 35 attached conditions covering such topics as safety cases, operating limits,
training, and maintenance. NSD uses several controls derived from the license conditions,
including giving consents, approvals, or directions. The arrangements may also require the
licensee to obtain NSD's formal agreement before passing defined hold points.

All activities that affect safety in the nuclear industry are expected to be supported with a safety
case. A safety case is the documented information and arguments that justify the safety of the
plant, activity, operation, or modification under consideration. A safety case must be
maintained throughout the plant's life cycle, and it may address the design, construction, and
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commissioning of a new plant, modifications to existing plants, and the decommissioning of a
plant.

Safety cases are intended to demonstrate how the proposed action (e.g., construction,
modification, etc.) complies with the ALARP criteria and the licensee's health and safety
standards. The safety case should be based on robust design; defense in depth; and
deterministic analysis of normal operations, design-basis accidents, and severe accidents.
In addition, the deterministic analysis should be supplemented by a probabilistic safety analysis
to reveal any potential design weaknesses and confirm that reliability goals are met.

The safety case is the end product of a licensee's assessment of a proposed activity. NSD
assesses a safety case to establish confidence in the arguments advanced by the licensee and
to determine if the latter has, as a minimum, met its own criteria and demonstrated that the
risks are ALARP. The licensee is responsible for safety at all times, and NSD requires that the
licensee undertakes adequate peer review and independent assessment of its safety cases.

4.2.1.3 Guidance

To have a uniform approach for assessing licensees' safety cases, the NSD has published sets
of criteria against which safety cases are judged. These criteria are called Safety Assessment
Principles (SAPs). Not all of these principles are applicable to every plant. However, the extent
to which the applicable principles are met has a direct bearing on decisions to grant or deny a
license change. The SAPs contain guidance on good engineering principles that may be
regarded as the basis for safe design, and overall risk targets that are derived from the
tolerability of risk criteria. Other SAPs relate to diversity of fault detection, adequacy of
margins, appropriate interfaces to plant operators or alarm systems, independence of function
and independence of failure, reliability, testing, and maintenance of the safety system.

Where system reliability is significantly dependent on computer software, the appropriate SAPs
promote demonstration that (1) accepted standards have been thoroughly applied, (2) adequate
quality assurance has been implemented, (3) complete and preferably diverse checks are
carried out on the final software by an independent team, and (4) a comprehensive and
independently assessed test program is applied to check every system function and
demonstrate system reliability. For these software-based safety systems, the assessment
addresses the software development process based on criteria derived from an accepted model
for the software development life cycle. While the criteria are not a set of mandatory
conditions, they provide guidance for assessors when examining software designs and their
associated safety cases.

4.2.2 France

4.2.2.1 Safety Philosophy

French nuclear safety philosophy is based on the principle of defense-in-depth. This principle
requires the provision of a series of safety layers, with each layer aimed at offsetting design-
basis events and accidents. Each safety layer is required to be as reliable as possible, but the
extremely low accident probabilities associated with nuclear safety requirements can only be
achieved when the impact of the various safety layers is assessed collectively. The French
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defense-in-depth approach also postulates the failure of all preventive measures taken and the
occurrence of accident scenarios, the consequences of which must then be mitigated.

Overall,-the French nuclear safety approach is deterministic. However, this deterministic
approach is also supplemented by probabilistic assessments to estimate the safety level
achieved and to identify weak points in the installation.

4.2.2.2 Licensing Procedures

In France, regulation of basic nuclear installations (BNls), which includes nuclear power plants,
involves an authorization decree procedure followed by a series of licenses issued at key points
in during the life of a plant, including fuel loading or precommissioning tests, startup of normal
operation, decommissioning, and dismantling.

The application of these various procedures starts with site selection and plant design and ends
with the ultimate site dismantling, as follows:

* An operator who decides to build a new type of BNI is expected to present the relevant
safety objectives and the main characteristics as early as possible, and well before
submitting the authorization application.

* Based on an analysis by the IRSN, the DGSNR asks the competent advisory committee
to formally examine the proposals submitted.

* The DGSNR informs the operator of the issues that must be covered by its authorization
decree application.

* Application for the BNI authorization decree (plant authorization decree) is sent to the
Minister for the Environment and the Minister for Industry, who forward it to other
ministers concerned, such as the interior and health ministries. As a minimum, the
application file includes a description of the main characteristics of the planned
installation, location drawings, and a preliminary safety analysis report.

* The processing of the operator's application includes a public inquiry and a technical
assessment. Note that the. preparatory application procedures identified in the first three
bullets do not exempt the applicant from this technical assessment or any other
regulatory examination; rather, they simply facilitate the application processing
procedure.

* -Six months before fuel loading, the operator must submit a provisional report with
provisional general operating rules and an internal emergency plan. The DGSNR
consults the Advisory Committee for Reactors on these documents before drafting its
own recommendations. The ministers can authorize fuel loading and precommissioning
tests upon receiving the recommendations from DGSNR.

* The first core load can only be delivered to the new fuel storage after authorization by
the Ministers for the Environment and for Industry. This authorization is granted only
after the DGSNR has (1) examined the storage facility provided by the operator
(presented at least 3 months beforehand), and (2) reviewed the conclusions of an
inspection carried out just before the date fixed for the delivery of the fuel elements.

* Four successive licenses are required in the startup stages for a PWR. Specifically,
these include a fuel loading license, a license for precritical hot testing, a license for first
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criticality and power escalation to 90 percent of nominal, and a license for power up to
100 percent of nominal.

After the initial startup, the operator requests the issuance of a definitive commissioning
license. The request must be made within a time limit stipulated in the authorization
basis. The operator's request is substantiated by a final safety analysis report, final
general operating rules ,and a revised version of the internal emergency plan. These
documents must reflect the experience acquired during the operating period since initial
startup.

4.2.2.3 Guidance

Technical nuclear safety rules are provided in a set of regulatory texts ranging from very
general to specific and detailed, as follows:

* General technical regulations

The general technical regulations deal with the two main areas of quality and pressure
vessels. Two ministerial orders specific to BNIs address these areas.

* Basic Safety Rules

The DGSNR issues basic safety rules (RFSs) on various technical subjects. There are
about 40 RFSs in all. These basic safety rules provide recommendations defining the
safety objectives to be achieved in different technical fields and describe accepted
practices with these objectives. Although they may be seen as the equivalent of the
NRC's regulatory guides, they are not, strictly speaking, regulatory documents. In
particular, a plant operator is not obligated to adhere to the RFSs, provided that the
operator can demonstrate that the safety objectives underlying the rule can be achieved
by alternative means. Thus the RFSs provide great flexibility, allowing for technical
advances and new technical knowledge.

* Design and Construction Rules

Regulations require the operator to submit a document defining the rules, codes, and
standards that will be used for the design, construction, and startup of safety-related
equipment. The main codes and standards are known as the Design and Construction
Rules (RCCs). Many of these rules are published by the French Association for Design
and Construction Rules for Nuclear Steam Supply System Equipment. Framatome and
EdF are members of this association. Although DGSNR is not responsible for drawing
up the documents, it examines them in detail, both in their initial and final versions.

4.2.3 Canada

4.2.3.1 Safety Philosophy

The safety approach used in Canada is to ensure that the risk to the public presented by
nuclear power plants is substantially lower than that from alternative sources of energy. This
approach includes numerical safety goals to ensure that the likelihood of a serious release of
fission products is negligibly small. A fundamental principle of the regulatory approach is that
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the licensee bears the basic responsibility for plant safety. The basic consideration applied is
that no technology is fail proof, so licensees must incorporate multiple layers of protection.

4.2.3.2 Licensing Procedures

CNSR regulations with respect nuclear power plants are primarily procedural. The board sets
the general requirements for reactor design and operation, and then leaves it to the licensee to
develop the processes necessary to meet those requirements. In this sense, designers have a
considerable degree of freedom to design nuclear plants to meet the regulatory criteria. Over
the years, this approach has led to the gradual establishment of acceptable safety features for
CANDU power plants. CNSR holds further discussions with the applicant if a new design does
not contain these design features.

Software for safety-related systems should be submitted for assessment by the CNSR at the
following specific points during the development of the software:

* -At the beginning of the software development project, a licensee should submit an
analysis of the system criticality and categorization of the software, plus the appropriate
standards, plans, and procedures.

* When the system and software requirement specifications have been completed,
a licensee should submit the requirements, including corresponding test plans. System
requirements and testing are discussed in further detail in the next section.

* Near the end of the project, a licensee should submit the results of the systematic
inspection of the software, including how the analysis of the system hazards has been
addressed. Systematic inspection requirements are discussed in the next section.

* At the close of the project, a licensee should submit software and system test reports.
Testing requirements are discussed in the next section.

4.2.3.3 Guidance

The basic requirements set limits on both the frequency of serious process failures and the
availability of safety systems. CNSR defines a userious process failure" as any failure of
process equipment or procedure that, without special safety system action, could lead to
significant release of radioactive material from the station. The special safety systems include
the reactor shutdown system, the emergency core cooling systems, and the containment
system.

Basic Guidance on Software

When control and protection are provided by computer software, licensees are required to
submit sufficient evidence that the software is complete, correct, and safe. The documentation
provided to demonstrate these characteristics has to be independently reviewed. Licensees
categorize the software at various levels according to criticality or the impact of possible :
software failures. The degree of formality and completeness in software development,'
analysis, and verification is then made dependent on the criticality level to which the software is
assigned.
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Software categorized as the most critical to safety is called "safety-critical" software. Safety-
critical software should meet the full range of criteria described below. Less critical software
should still meet the same criteria, but to a less detailed level. Areas that may be relaxed for
less critical software include (1) the degree of mathematical formality of specification and
verification, (2) the extent of the hazard analysis (e.g., if the system level hazard analysis shows
that a software failure cannot have a serious impact, then further hazard analysis may not be
necessary), and (3) the amount of testing required.

Safety-critical software requirements should be unambiguous. Each requirement should be
sufficiently precise that a test or verification is feasible to distinguish between correct and
incorrect implementations. Software requirements should also be complete; in other words,
they should cover any situation that could arise during operation. They should also define what
the software must do, and should include functional, performance, safety, reliability, and
maintenance requirements. The software requirements document should be sufficiently
complete that if all requirements are demonstrably met, the software will be considered
adequate and acceptable. Reliability requirements should specify the reliability targets for the
software based on system- and component-level reliability targets.

System inspection of software design should include analysis of both the functionality and the
safety of the software. Functional analysis should demonstrate that the software performs all
required functions and does not perform any unintended functions. It should also verify that
each product is complete, and should validate that the final system meets all system
requirements and user needs.

Analysis of software safety should demonstrate that the software does not initiate any unsafe
actions under expected operating and accident conditions. A system-level hazard analysis
should identify system hazards and trace them through the system to determine the software
contribution to each hazard. Safety-critical software must be sufficiently simple that a complete
analysis of software safety is both feasible and credible. The software should also be isolated
from non-critical software. Physical isolation by means of hardware is preferred to isolation
using only software.

Analysis of software should include an analysis of both the expected and possible operations of
the user interface. Software should be designed to incorporate fail-safe and fault-tolerant
features where the increase in safety justifies the additional complexity. For example, in a
situation in which a fail-safe feature increases the complexity of the software to the extent that
safety analysis is doubtful, it becomes preferable to omit the software feature.

CNSR also provides guidance on software testing. The aim of software testing is to enable
identification and removal of as many faults as reasonably possible (functional testing), and to
establish confidence in the safety and reliability of the system (random testing). Software
testing should include both functional and random testing. Functional testing exercises the
software with inputs selected to cover the functionality and logic of the software. It should
include integration testing and system testing, and may include unit testing if this is appropriate
to the development method. Functional tests should also check the timing and performance
requirements of the software running on the target computer.

Random testing should be statistically valid to establish confidence that a system will function
without failure under specific operating conditions. Statistical validity should be demonstrated
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by showing that many independent, randomly selected test cases have been run without failure.
Input data selected for the random tests should accurately represent either real operating
conditions, or operating conditions in the area of greatest concern. The number of tests should
be related to the reliability requirements.

4.2.4 Korea

4.2.4.1 Safety Philosophy

Five regulatory principles drive the policies and procedures implemented by MOST.
Specifically, those principles are independence, openness, clarity, efficiency, and reliability.
Through application of those principles, MOST strives to secure consistency, adequacy, and
rationality in its regulatory activities. Of primary importance in the Korean nuclear industry is
adherence to the principle of upriority to safety.", Since the operating organization bears
responsibility for safety at commercial nuclear power plants in Korea, MOST encourages
development of a safety culture and works to clearly define the necessary safety requirements
that contribute to achieving and maintaining nuclear safety. Emphasis on diversity and
defense-in-depth in its requirements are the primary means of establishing safety, and periodic
safety reviews are intended to help maintain that condition.

4.2.4.2 Licensing Procedures

The regulation and licensing procedures are subdivided into three stages:

* In site selection, the conceptual design is examined to assess the appropriateness of
the proposed site and the safety requirements' of the site are reviewed in terms of
design, construction, and operational issues.

* A construction permit application is contingent on review of the reference design, quality
assurance program, preliminary safety analysis report (PSAR), and environmental
impact statement.

* An operating license application is contingent on review of the operational technical
specification and emergency plans and procedures. MOST also confirms that the as-
built plant conforms to the reviewed design.

4.2.4.3 Guidance

The approach for classifying the safety importance of l&C systems is based on deterministic
methods and engineering judgment, which focuses on the use of diverse l&C systems as a
guard against software-related common-mode failures. The classification criterion is based on
plant design bases such as design-basis events,'special events'including software common-
mode failure, and normal operation. The diverse I&C systems are provided for special events
such as ATWS and software common-mode failures of the reactor protection systems.

I&C systems are classified into four categories (i.e., IC-i, IC-2, IC-3 and Non-IC). The software
for I&C systems is further classified into three categories,'including safety-critical, safety-
related, and non-safety-related. Safety-critical software must meet the most stringent
standards and criteria. To address the potential for common-cause failures in safety-critical
software, an independent diverse backup system is required. If the backup system is digital, its
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software is classified as safety-related. Safety-related software is subject to less stringent
practices and graded requirements than safety-critical software. The requirements of non-
safety-related software may be tailored to account for its lower safety importance. The major
differences among the three software categories relate to the extent and severity of V&V
activities, software safety hazard analysis, configuration management activities, and quality
assurance activities.

In summary, the IC-1 systems (e.g., reactor protection systems) must meet all of the safety
requirements, but the IC-2 systems do not require analysis of defense-in-depth and diversity.
The IC-3 systems are diverse l&C systems, which should be subject to environmental
qualification and should be specially classified as safety-related software. Table 4.1 identifies
some key requirements for each category.

Table 4.1 Key Requirements for l&C Systems According to Safety Category

I&C Systems Important to Safety
Requirements Protection Systems ISaety.Related I&C Systems

Reacor S&C SyeJ(IC-l) tIC.2)

I&C Systems Not Important to
Safety

Non-Safely-Related I&C
Systems (Non-IC)

Plant QA Programs for Non-
Safety Items

Quality A tomie Act -QA Req.s (similar Atomic Act * QA Reqs. (similar as
Assurance as IOCFR50 App. B) I I OCFRSO.App. i I

US NRC GLSS-06

Single Failure Required Required or Not Required Not Required Not Required
Criteria

Environmental Required Required Required(') Required(-)

Quatification Required Required Not Required Not Required

CleissI Required Required Not Required Not Required
Criteria

D-1-D and
Diversity Required Not Required Not Required Not Required
Criteria

so twalre Sare ty-C ritical Softwre SafefSlty- Related softwtar Saftyt- Reflated Softw are Non.S fely-Related Softtware

- The environmental qualirication should be done commensurate with the importance of the safety functions to be performed.

4.3 Regulatory Issues

4.3.1 Diversity and Defense in Depth

Recently, the regulatory concern about common-cause failure has focused on the use of
computer software in reactor protection systems. Most regulatory authorities accept that for
conventional systems, or the hardware of a computer-based system, comprehensive physical
and electrical separation of the redundant equipment and the equipment services normally
provides sufficient demonstration of defense against common-cause failures. In some cases,
this may be an assumption of convenience, so a protection design comprising two separate
systems can resolve the signal priority for the control of a single device. However, where a
safety function is implemented by a software-based system, most regulatory authorities require
at least one additional, demonstrably diverse and independent means of implementing that
safety function.

42



Software-based digital systems are more complex than systems based on conventional analog
technology.- Nevertheless, operational experience shows that, when properly engineered,
software-based digital systems are also more reliable than their analog counterparts. This
added reliability largely derives from the fact that the calibration adjustments required for
conventional analog systems are tedious and need to be done at regulator intervals because of
instrument and equipment drift. Conventional designs also require relatively massive cabling
both within the equipment cubicles and throughout the plant. By contrast, the proper operation
of a microcomputer-based system can be more transparent than a conventional analog system
because of the following factors:

* Internal variables are shown in engineering units.

* Multiplexed outputs accommodate viewing process and system internal variables
without adding complexity to the design, disturbing the operation of the system, or
requiring access to the protection system electronics cubicles.

* The operation of a software-based computer system is inherently dynamic, so system
functioning can be readily discerned.

* The inclusion of cyclic hardware diagnostics within the software design can ensure
proper operation of the hardware and can quickly identify hardware failures, thereby
precluding latent failures in the system.

* -The manual, routine operational testing for the conventional analog reactor protection
'systems requires reconfiguration of the protection circuits and takes considerable time
to perform.

System classification is a significant requirement surrounding the diverse and independent
means for actuating the safety system. For example, in the existing U.S. approach, the ATWS
system is classified as a non-Class 1 E system. Other regulatory authorities, such as the
DGSNR in France, agree with this classification. However, some regulatory authorities, such
as the NIl in the U.K., require that a reactor protection system must comprise at least two Class
1 E parts. The two different positions can be justified because of the subjective nature of the
situation. On one hand, the functions being performed are safety functions, so they should be
implemented with Class 1 E designs. On the other hand, non-Class 1 E design solutions are the
most diverse and independent because the treatment can be very different and, therefore, less
likely to share common flaws with a Class 1 E design.

The complexity of the overall design solution should also be considered, and is especially
important for emergency safety features functions. 'For example, the Temelin common-cause
failure diversity requirements led to the need for a complete system, the Non-Programmable
Logic (NPL), in addition to the two diverse systems. The NPL is not based on microprocessor
technology. The NPL is needed to implement valve priority logic that prioritizes the commands
from the diverse Class 1 E systems and the non-Class 1 E Reactor Limitations System, and it
issues prioritized commands to the actuators. In addition, the NPL implements a part of the
diesel load sequencing to address the potential for common-cause failures. This is an example
where it is assumed that systems or logics that are based on conventional technology are not
subject to common-cause failure.

The AP600 Diverse Actuation System (DAS) is an example where the design flexibility afforded
by a non-Class 1 E diverse system can lead to a significantly less complex solution. The
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non-Class 1 E DAS solution allows the DAS to interface to existing fluid systems, although
generally at a different, non-safety point. Therefore, the AP600 design reduces the need for
logic to prioritize signals from the reactor protection system and the DAS.

The case for protection system diversity and defense-in-depth must be made in conjunction
with the nuclear plant safety case, taking into account all plant-specific factors. However, the
Sizewell B nuclear power plant IPS itself has numerous features that will support the case. To
monitor the operation of a Westinghouse PWR, many different types of sensors are used,
especially when the evolutionary sensor types are employed. For example, postulated PWR
events are covered by multiple measurements by different types of sensors. The manual
reactor trip feature interfaces directly with the reactor trip breaker undervoltage coils and opens
all eight circuit breakers. The reactor trip functions and engineered safety features functions
are performed in completely independent microcomputer subsystems, including inputs and
outputs, in order to separate independent functions that protect against the same event. The
two-of-out-four logic facilitates plant arrangements with significant physical separation.

With failsafe design, if a common-mode failure occurs, it is still likely to lead to a safe state for
the plant. The system software must be substantially constrained and subjected to an
extensive V&V program. In addition, the system hardware design must be verified and tested
to nuclear environmental and seismic qualification requirements.

The United States employs a structured qualitative methodology for analyzing diversity and
defense-in-depth. This approach evaluates the vulnerability of the reactor protection system
design with respect to common-cause failure. The methodology identifies several types of
diversity that can be employed in the analysis:

* Human diversity is the effect of human beings on the design, development, installation,
operation, and maintenance of systems.

* Design diversity involves the use of different approaches (including both software and
hardware) to solve the same or similar problem.

* Software diversity involves the use of different programs designed and implemented by
different development groups with different key personnel to accomplish the same
safety goals.

* Functional diversity involves the use of two systems that are functionally diverse
because they perform different physical functions although they may have overlapping
safety effects.

* Signal diversity is the use of different sensed parameters to initiate protective action, in
which any of the parameters may independently indicate an abnormal condition, even if
the other parameters fail to be sensed correctly.

* Equipment diversity is the use of different equipment to perform similar safety functions,
where "different7 means sufficiently unlike as to significantly decrease vulnerability to
common-mode failure.

The regulatory authorities in other countries, such as France and Japan, impose requirements
similar to 10 CFR Part 50.62, "Requirements for Reduction of Risk from Anticipated Transient
without Scram (ATWS) Events for Light-Water Cooled Nuclear Power Plants," to addressg
common-cause failures in microprocessor-based designs. Other countries have developed
more prescriptive requirements.
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The Czech Republic specifically requires that the reactor protection system must comprise two
separate Class 1 E parts. Each part must be capable of terminating and mitigating frequent
design-basis events (i.e., those with a probability of occurrence greater than 1 in 1,000 per
year) concurrent with a postulated common-cause software failure in either part, but not both
simultaneously. This requirement resulted in a very complex software-based reactor protection
system design.

The view in the UK in general, and in the regulatory agency in particular, is that as the level of
claimed reliability increases, it becomes progressively more difficult to demonstrate freedom
from common-cause failures. The judgment is that current methods of analysis, not necessarily
the actual system reliability, limit the reliability that can be claimed for any single system. In
particular, the UK regulatory position is that currently available methods are not capable of
providing adequate demonstration below the level of 10i5 failures per demand. In addition, for
novel or more complex designs, the practicable demonstration limit is considered to be higher
(typically 1 O' failures per demand). Moreover, in order to meet even this level of reliability, the
design must incorporate replication redundancy, as well as diversity, because of the potential
for common-cause failures.

To support this requirement, four different systems perform Sizewell B Category 1 or Class 1 E
safety functions. The PPS and the SPS both perform the automatic safety functions. A major
portion of HICS performs safety functions. Most of the HICS microcomputer system services
software modules and hardware are of common design with the PPS, but are used to perform
different control and supervisory functions. The load shedding and emergency load sequencing
system is a conventional system that performs safety functions. Most of the safety case is
based on, and most of the deliberation focuses on, the PPS and the SPS. The PPS has the
diversity and defense-in-depth features described in the Westinghouse IPS discussion.
However, these features were considered necessary just to meet the 1 0 failures per demand
reliability criterion in the Sizewell B safety case.

At Temelin, a key design requirement imposed on the PRPS and the DPS is that the overall
plant protection system can mitigate "frequent events" concurrent with a postulated common-
mode failure in either the PRPS or DPS, but not both simultaneously. "Frequent events" are
design-basis events with a probability of occurrence greater than 1 in 1,000 per year.

There are similarities and differences between the Sizewell B and Temelin protection system
requirements related to common-cause failures. Both are based on frequent design-basis
events. However, where the Sizewell B solution gives more emphasis to the PPS over the SPS
based on numerical reliability, the Temelin requirements for the PRPS and the DPS are more
symmetrical and place no numerical burden on either system.

The AP600 diversity and defense-in-depth analysis shows that the protection and safety
monitoring system (PMS) is sufficiently reliable to meet the objectives of protection against all
design-basis events and support meeting the plant's probabilistic safety assessment goals.
A diverse l&C system, the DAS, is provided for unlikely common-mode failures of the PMS, for
beyond-design-basis events, and to optimize the probabilistic safety assessment results. The
fundamental goal is to protect against common-mode failure in the protection and safety
monitoring system. The main common-mode failure issue is system microprocessor hardware
and software failures. Common-mode failures of ventilation systems and power sources are
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also considered credible. Seismic events are not considered to be initiators for common-mode
failures.

For the SPIN platform, the case for protection system diversity and defense-in-depth must be
made in conjunction with the nuclear plant safety case, taking into account all plant-specific
factors. However, the SPIN itself has many features that support the protection system
diversity and defense-in-depth case. The defense-in-depth implementation is not as distinct
because, for a division or separation group, sensor signals are collected at a single, albeit
redundant, point and then retransmitted to the control (prevention) function, reactor trip
(termination) function, and safety features (mitigation) function. The defense-in-depth
implementation is not as distinct because signals for reactor trip (termination) voting and safety
features (mitigation) logic and voting are transmitted on the same network. Galvanic isolation is
also not as robust as fiber optic isolation.

In France, the N4 reactor designs have a manual reactor trip that operates separately from the
SPIN electronics and does not require electronics apart from the reactor trip breakers. The
original design of the N4 control room had a small "safety panel," with perhaps a dozen discrete
switches. These were system-level actuation switches for the Safety Class 1 E emergency
safety features systems. These switches interface with SPIN. EdF has since added a panel
that contains discrete actuation switches for most of the individual safety system process
components. These switches interface with the Contronic control system, which is not a Class
1 E system.

4.3.2 Safety Classification Normally Associated with ATWS

Safety classification can provide a practical approach to allocate resources during design and
licensing. The safety classifications used in today's nuclear power plants are defined in
standards, but deviations exist in the various classification definitions.

The regulatory authorities in countries such as France and Japan impose requirements for
addressing common cause failures in microprocessor-based designs that are similar to 10 CFR
Part 50.62, "Requirements for Reduction of Risk from Anticipated Transients without Scram
(ATWS) Events for Light Water Cooled Nuclear Power Plants." Other countries have
developed more prescriptive requirements.

Although regulatory authorities and standards committees generally agree on the scope of
Class 1 E or Category 1 functions, some regulatory authorities place a different emphasis on
certain areas. For example, the UK devotes more attention to automatic functions than to the
manual control of individual safety features components. In addition, late in the design process
for the Chooz B N4 plant, EdF added a panel that contains discrete actuation switches for most
of the individual safety components. The switches on the panel interface with the Contronic
control system, which is not a Class 1 E system. In Korea, the hardware of the diverse backup
shutdown system is considered non-safety-related, while the software is considered safety-
related.
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4.3.3 Commercial Off-the-Shelf Hardware and Software

The use of COTS systems dedicated for Class 1 E application has received much attention in
the United States, but not in other countries with large nuclear programs. In many countries,
nuclear l&C system vendors remain the preferred suppliers for product lines that are specifically
qualified for nuclear application. In Japan, because of tradition, ownership, quality assurance,
and obsolescence considerations, the preferred approach is to design everything "from
scratch." Nevertheless, there is an incentive (based on economics and availability) that
prompts consideration of COTS hardware and software. In addition, the hardware components
(such as microprocessors and circuit boards) have not generally been appropriately treated as
COTS.

For COTS software, operational experience must not be the sole basis for establishing quality
and reliability. This is because the licensee does not control the software development
process. Thus, there are difficulties in establishing the relevance of experience for similar but
not identical applications. Also, if the dedication process requires modifications to satisfy safety
requirements, the difficulty in establishing a link with past operational experience increases.

Significant issues that may affect any COTS dedication approach are rapid obsolescence and
configuration management. For example, commercially distributed digital control systems are
rapidly changing at the present time. While the rapid advancement of technology is one factor,
another is that these systems are past the point of mimicking conventional analog control
systems and are expanding, in an integrated fashion, into the areas of data management and
plant supervision. Thus, the foundational software packages are evolving with new features
and functions being added to each revision. Updating non-safety system software to expand its
capabilities may be desirable, but safety-related software must be maintained in a dedicated
configuration in strict adherence to an imposed quality assurance program. Additionally, the
accelerated pace of integrated circuit (IC) development limits the lifetime of a product line.
Care must be taken to ensure that replacement parts use the same version of the same IC.

The application of the AC1 60 to Class 1 E functions may be considered an example of
dedication of commercial equipment. The controller is primarily used in fossil-fueled plant
applications in general, and for boiler control and turbine control in particular. Predecessor
designs (namely the AC700 and AC 1 0) have seen widespread application in Europe. The
dedication was facilitated by an "add quality" process in which features were removed from the
nuclear version of the AC1 60 controller and tool software.
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5. LESSONS LEARNED

5.1 I&C System Architectures

The communication networks have typically been the 'weak link" in evolutionary plant
architectures, with communications technology limiting the overall throughput of the
architecture. The number of networks involved in any given architecture has been governed
primarily by the available communications technology and the amount of data that must be put
through the system to meet the system's functionality requirements. As a result, the most
recent architectures employ the fewest number of networks as the technology has improved
their capacity.

Often, the networks employed, particularly for the lower levels (e.g., data acquisition) of the
architecture, are a vendor's proprietary design. The upper levels tend to use "open architecture"
protocols, such as Ethernet (copper) or fiber distributed data interface (FDDI optical fiber). In
most designs, requirements for "isolation" between those portions of the architecture that are
designed to be Safety Class 1 E and those that are not safety-related are met by fiber optic links
rather than galvanic means.

The cost reductions have been dramatic relative to building physical volume, signal and control
cable quantity and pulling, and support structures throughout the plant. When compared to
solutions based on conventional analog technology, studies show that, if properly exploited, this
feature can justify the cost of the entire system in a new plant application. Multiplexing also
provides needed flexibility for backfit applications.

So far, microprocessor and workstation processing power has significantly outperformed
communications throughput. Architecture design is fundamentally the process of collecting or
arranging sets of computational platforms to perform traditional functions by sharing a common
process-variable database. Little or no attempt has been made to break up and distribute the
functionality in ways that would optimize the amount or productivity of the software and, in the
process, probably improve the reliability of software and database maintenance. As a result,
commonly used or calculated variables, such as steam table results, are found calculated in
multiple locations throughout the typical architecture.

The commercial process control business has recently become very interested in being able to
extract data and information from the plant l&C system to support plant "enterprise
management." The desire to incorporate similar automation into the operation of nuclear power
plants is a significant and growing factor in the decision process to upgrade the plant l&C
systems.

In spite of the desire by some customers to use PC-based architectures and common industrial
HSIs (such as Microsoft's Windows® technology), nuclear power plant l&C architectures have
remained in the domain of the more robust UNIX-based servers, workstations, operating
systems, and applications software. This is because designers, to date, have not been
convinced that the data collection, processing, and communications demands of nuclear power
plants can be adequately met, under all operating conditions, by the lower-cost, but less reliable
Windows® technology, particularly during abnormal event (i.e., high data load and processing)
conditions.
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The regulatory view of the origin of possible operational errors and how to design to prevent this
class of errors can dramatically affect the complexity of the l&C architecture. In some
regulatory environments, the view is that human operators in the control room, more times than
not, represent the major source of operational error. As a result, architectures have been
designed that contain "limitation" systems intended to monitor human control actions and thwart
or limit any actions that are detrimental to plant safety. Typically, such systems are functionally
placed between the control system and the protection system to reduce challenges to the
protection system.

Other regulatory cultures consider "common cause" the major source of error. The humans
that erred are the designers/implementors, and the result of their error is common across
redundant systems and devices, such that an entire function is lost or made inoperable. This
has imposed the need to design and implement diverse means for accomplishing some or all
safety tasks. Some cultures have taken a "belt and suspenders" approach so that the
complexity of the l&C architecture is often increased to address both views.

The consequence of added systems and devices driven by some regulatory authorities and
tradition, in the interests of improved safety, is to add levels of equipment actuation within the
operating margin between the plant's designed "normal" operating condition and the ultimate
process equipment design limits. These additional levels of equipment add complexity to the
l&C design and operation. In addition, operation set points for these added systems and
devices tend to eat away at the plant's operating margins and, unless carefully designed, can
make normal operations and expected transients economically taxing by challenging these
additional safety-related systems when they are not required.

5.1.1 Safety System Architectures

All of the evolutionary designs include functional diversity and defense-in-depth in the
microprocessor architecture within each safety division. However, the approaches to achieving
separation varies significantly as a result of the degree to which separate microprocessors
share process input electronics and computer resources.

If properly engineered, the inclusion of a computer-based tester in the reactor protection system
design can be a very comprehensive method for performing regular proof testing of the safety
functions. In some countries, the need to include the feature is driven by licensees who need it
to address operational test requirements, so the feature is not included in all evolutionary
systems. The approach can eliminate potential common-cause errors of previous designs
because the testing does not require manual recorifiguration of the protection system circuits.
For example, the first version of SPIN required external cable reconfiguration to perform the
regular proof testing, but the N4 SPIN version improved the design so that cable reconfiguration
is no longer required.

5.1.2 Control System Architectures

The different configurations for the evolutionary designs are based on the plant instrumentation
configuration, national culture, commercial arrangements, and a view (by some) that NSSS
controls need to be of higher integrity than other plant process controls. The most reliable of
these configurations include NSSS controllers that have redundant computer and I/O resources

49



to meet single-failure requirements. Most evolutionary plant control systems do not completely
satisfy this requirement, in that they usually employ their standard control system redundancy
configurations, which share computer resources and/or process variable 1/0 circuits.

5.1.3 System and Human Interfaces

Digital computer-driven human interfaces are currently in their infancy. For most of the
evolutionary l&C designs reviewed, the human interfaces are barely more than computer
implementations of analog interfaces and P&lDs.

For some evolutionary designs, advanced human interfaces as part of the HMI were the
primary regulatory concern. The most significant regulatory issues concerned the possibility of
increasing human error rates to errors in advanced operator support systems. For example,
one evolutionary design incorporates computerized operating procedures, including emergency
procedures, that could lead an operator to an incorrect part of a procedure if the system was to
fail. Another advanced human interface is designed to reduce the operators' workload by
suppressing redundant alarms using a sophisticated abnormal message logic. However, if this
system does not work as designed, it could suppress alarms that the operators need to
effectively respond to the event and validate automatic system responses.

Databases associated with the human interface portion of the l&C design are large and
complex. Modern HMI systems use sophisticated state of the art computer graphics and
methods to synthesize information for the operator. This requires significant computational
power

Currently, no regulatory agencies have approved a design for Safety Class 1 E soft controls
(i.e., those that are displayed and activated by the VDU). In most cases, this has led to the
installation of discrete controls in addition to soft controls. However, having two sets of controls
exacerbates the problem of control signal priority resolution within the l&C design, adds to
operator training and operating procedures costs, and increases the need for physical space on
the control room panels.

As is the case with the required plant process scope of the diverse protection system, vast
differences of opinion exist within the regulatory agencies around the world as to the scope of
backup necessary for the use of soft controls in nuclear power plants. The notion of system-
level verus component-level actuation is symptomatic of these differences.

A similar argument is ongoing about the need for a minimum inventory set of process variable
indications that are to be displayed in a diverse manner. This is beyond, yet, intertwined with,
the requirements already in place for post-accident monitoring. Computer-based design and
configuration management tools are essential to the economical design and maintenance of the
computer-based human interfaces.
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5.1.4 Dependability Features

Software-based digital systems are more complex than systems based on conventional analog
technology. Nevertheless, operational experience shows that, when properly engineered,
software-based systems are as or more reliable as the conventional systems they replace.
However, software-based digital system can have different failure modes. The primary concern
has been that software common mode failure can be a significant failure mode and can defeat
the diversity and defense in depth features of the protection and control system. When
designing or reviewing these systems, the complexity of the overall design solution should also
be considered. The case for protection system diversity and defense-in-depth must be made in
conjunction with the nuclear plant safety case taking into account all plant-specific factors. For
example, the Temelin common cause failure diversity requirements led to the need for a
complete system, besides the two diverse systems. The AP600 DAS is an example where the
design flexibility afforded by a non Class 1 E diverse system can lead to a significantly less
complex solution. -

In the United States, a structured qualitative methodology for analyzing diversity and defense-
in-depth is employed. This approach evaluates the reactor protection system design
vulnerability with respect to common cause failure. The methodology identifies several types of
diversity that can be employed in the analysis (i.e., human diversity, design diversity, software
diversity, functional diversity, signal diversity, and equipment diversity). The regulatory
authorities in other countries, such as France and Japan, impose requirements for addressing
common cause failures in microprocessor-based designs that are similar to 10 CFR Part 50.62,
"Requirements for Reduction of Risk from Anticipated Transients without Scram (ATWS)
Events for Light Water Cooled Nuclear Power Plants." Other countries have developed more
prescriptive requirements. The Czech Republic specifically requires that the reactor protection
system be comprised of two separate Class 1 E parts. Each part must be capable of
terminating and mitigating frequent design basis events (i.e., those with a probability of
occurrence greater than 1 in 1000 per year) concurrent with a postulated common cause
software failure in either part, but not both simultaneously. The requirement resulted in a very
complex software-based reactor protection system design. The view in the UK and with the
regulatory agency in particular, is that as the level of claimed reliability increases, the
demonstration of freedom from common cause failures becomes progressively more difficult.
The UK regulatory position is that currently available methods are not capable of providing
adequate demonstration below the 105 failures per demand level.

The issue of software common cause failures and diversity and defense in depth requirements
is also an issue in the ability to risk inform current regulatory requirements. As the countries
that have more quantitative reliability requirements have seen the inability to demonstrate
compliance with high reliability requirements can result in more complicated solutions. As.a
result improvements in digital reliability methods will potentially be of significant benefit to
vendors, in that it will permit less complicated and expensive solutions to this requirement. This
will need to be closely monitored by the regulatory agencies, so that they are prepared to
review alternate solutions to diversity and defense and depth requirements.
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5.2 Field Devices

Sensors used to measure PWR Safety Class I E variables required for the reactor protection
system are a mature technology. Some sensor types that provide new methods for measuring
the operation of the NSSS are beneficial because they provide additional sensor and functional
diversity. The power range monitor and reactor coolant pump speed sensors are examples of
such sensors. Multi-section ex-core neutron flux detectors are based on the same technology
as the previous design, but the extra detectors provide more information.

5.3 Communications Technology

The hierarchal arrangement of communications networks is based on the technology available
in the 1980s and early 1990s. These networks can accomplish the required function, but the
performance is sometimes marginal. The performance deficiencies were addressed by adding
networks to achieve the needed bandwidth. However, this approach significantly increased the
complexity of the communications design.

Evolutionary plant communication installations require restructuring or creation of data records
as data passes through layers of the communications network hierarchy. This presents the
following difficulties:

* Restructuring or creating data records adds to the response time.

* Restructuring or creating data records adds to the software engineering design and
maintenance efforts.

* Restructuring or creating data records is a source of error in software engineering and
maintenance.

* Some data attributes, such as time tags, may not be instantiated in all data records
because the desired information is not available from all parts of the system.

5.4 Digital Plafforms

Operational experience with digital platforms in the evolutionary nuclear plants has been very
good. The operational experience to date has shown that this trend is beneficial. In the U.S
application-specific integrated circuits (ASICs) have not been proposed for any RPS
replacements to date. Research and applications in other industries as well as in evolutionary
nuclear plants indicate that functions once done in software are being absorbed into ASICs.
For ASIC applications, the functions are more likely to be treated as hardware instead of
software, with greater confidence attributed to the completeness of analysis results. Expected
steps in the movement to fully ASIC-based protection functions may include embedded
operating systems and library computational functions such as lead/lag, for future digital
platforms.
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5.5 Software

5.5.1 Life Cycle Approach

None of the software life cycles chosen for the evolutionary l&C designs reviewed in this study
has been completed. These digital l&C designs are still in operation today. The experience to
date is from that portion of the life cycle that deals with the design, construction, and installation
of the software. In addition, reporting of software operational and maintenance experience has
been limited.

The most common software life cycle approach is the waterfall model, which assumes that the
life cycle phases (requirements, design, implementation, etc.) are continuous processes that
are revisited any time software requirements are modified. While attempting to reduce errors
and provide high-quality software, the waterfall model does not fully guarantee that the resulting
software will be totally error-free under all possible operating conditions. The impact of this fact
has been appreciated and accounted for only in the later evolutionary l&C designs. The
realization that some errors may still be present in the software has prompted regulators and
concerned vendors to include some form of diverse protection system, but often of limited
scope. - - -

To date, the large quantity of software produced for these evolutionary l&C designs has
performed well, and no known abnormal plant events have occurred as a result of software
errors. Complaints about the life cycle processes primarily have focused on the time,
manpower, and documentation required to develop the software in accordance with the life
cycle processes.

5.5.2 Languages

Most evolutionary l&C designs use some variant of the C computer language. Overall, there
were no reported problems when the C language was used. By contrast, other software
languages have had various issues. For Westinghouse implementations, the choice of the
PUM-86 computer language proved to be too microprocessor-specific. Because of the limited
use of this language, it proved difficult to expand its use across different applications. The lack
of familiarity with the language among vendor and plant personnel also contributed to problems,
such as reduced sources of support and limited data. Because of similar problems, the PL-1
and PASCAL languages have been replaced by C. ADA was adopted for use in the Temelin -

Class 1 E diverse protection system because of its unique characteristics and its history of
development and use by the U.S. Military. However, for the above-mentioned reasons, ADA
will most likely not be used in future reactor designs.

5.5.3 Coding Approaches

The division of the development of executing software and plant-specific databases into
separate activities has been highly effective. Each requires the application of different
technology disciplines (i.e., computer science and engineering vs. plant systems engineering).
The division has permitted plant staff to take ownership of the appropriate portion of the total
task.
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Software tools aimed at improving the productivity and quality of the initial software
programming and ongoing software configuration management efforts are essential. However,
the use of software tools to support extensive nuclear plant I&C system development has had
mixed results. All cases they have required significant effort. A set of limited-scope tools that
may be combined into an integrated tool in the future is an approach that should reduce the
risk.

The creation of the plant-specific database (i.e., the offline task) for digital l&C systems is a
monumental and very costly task that currently is not particularly amenable to the development
and application of special-purpose, software-based tools. Little capability is available to transfer
a learning curve from one plant to the next. TXS-based safety systems are created using the
Specification and Coding Environment (SPACE) tool, which provides a graphical user interface
for translating plant engineering data into software system requirements and design data. This
data is subsequently translated into software modules that are compiled with an ANSI C
compiler. Most of the SPACE work is done by Framatome personnel under contract to the
licensee. Consequently, for this system development environment there is some knowledge
transfer between tasks.

5.5.4 Safety System Verification and Validation

The licensing of software-based systems illustrates differences in regulatory methodologies and
emphasis among countries. The primary differences result from the quantity of evidence
considered necessary and the perceived quality of the evidence derived from various V&V
approaches. Sometimes, additional independent V&V activities were required to satisfy
regulatory concerns. The confidence contributed by such supplemental evidence could not be
quantified, and the efforts proved costly and time-consuming. As a result, the principal lessons
learned are that clear and consistent expectations for software V&V are still evolving. A more
systematic determination of the relationship between the required evidence (e.g., type, quantity,
and quality) and the necessary and sufficient confidence level is needed.

A case study of the application of software-based microprocessor technology to a reactor
protection system at Sizewell B demonstrates the impact of varying international expectations
and the potential for licensing inefficiency. The licensing review of the Westinghouse PPS at
Sizewell B resulted in supplemental independent software V&V. One of the safety assessment
principles in the United Kingdom requires licensees to undertake adequate peer review and
independent assessment of their safety cases. Therefore, the PPS design was reviewed first
by the licensee (British Energy) and then by the NIl.

The software assessment performed by British Energy was separate from the Westinghouse
independent verification based on accepted U.S. nuclear industry standards. The review was
done, in part, through contracts with various outside groups. The British Energy software
assessment consisted of a "fitness for purpose" review and additional confirmatory
assessments that used techniques to impose formalism on the assessment process. Because
the British Energy confirmatory V&V activities took place after the completion of the
Westinghouse IPS/PPS design and verification, it was also a check of the Westinghouse
verification process, as well as corroboration of the design implementation. No findings arising
from the British Energy confirmatory activities resulted in software modification for the safety-
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critical functionality of the system; that is, the system could trip the reactor and initiate safety
equipment when required.

During the Sizewell B licensing process, software experts raised several issues, including
concerns from the internal review and from' external interested parties. Specifically, the
software experts expressed concerns about the use of the PUM-86 language, and some
reviewers felt that PASCAL-would perhaps have been a better selection. After a consensus
was finally achieved that PUM-86 was a suitable structured language, the reviewers raised
concerns about the capability of a unique language such as PUM-86 to produce error-free
executable code. However, it was the designer's position that the widespread use of a
particular compiler, not the language, leads to confidence in the fidelity of the executable code.
Nevertheless, to address this concern, a decompilation verification was performed and no
problems were discovered.

Additionally, the reviewers raised a concern about the PPS software size. The reasoning
behind this concern derives from the thought that a monolithic subsystem software approach
would be shorter and, therefore, simpler than that achieved by a structured modular software
design, where software modules are intended for use in many subsystems and systems. In
addition, it was argued that such an approach, where each subsystem has completely separate
code, would be less prone to common-mode failure. The designer's position was that, while a
single subsystem would have smaller code size, the code for the entire system would be larger.
Moreover, approaches to common-cause failure are generally subjective, and the design
approach that stressed reuse to gain maximum operational experience was an equally valid
approach. The Westinghouse position was accepted.

Next, the reviewers expressed concerns regarding the use of indirect addressing, which was
necessary to meet several PPS software design principles. For example, the separation of
code and configuration data provide for reusable software modules to allow microcomputers to
have the same software across the entire system and thus be treated like other replaceable
hardware modules. In addition, the separation-of the code and calibration data allows
calibration data adjustments to be performed without reverifyinrg the code. The concern was
exacerbated because pointers associated with some indirect addressing were located in
random access memory (RAM) due to a limitation in the PUM-86 compiler. Some reviewers
viewed RAM as having lower integrity than PROM, despite its inclusion in the self-diagnostic
regimen. The software tool could not analyze this software configuration automatically, so the
consulting software team used software inspection to conclude that no threat condition existed.

5.6 Information/Data Management

From the point of view of data management, other than the broadcast of real-time data records,
little management of the data occurs in current distributed digital control and supervisory
systems. The software architecture for data processing and plant supervision is usually based
on a set of monolithic subsystems connected by a control data network that exchanges plant
process data among the subsystems. Very little data is communicated among these individual
systems about their computational results. Essentially, these systems listen for new process
data, perform their calculations, and make that data available for VDU display. This is the
combined result of the limited capabilities of the communications technology that was available
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in the late 1980s and early 1 990s implementation approach, which was prevalent for most l&C
upgrades. So far, emphasis is limited to the control portion of the distributed digital control and
supervisory systems.

Evolutionary designs use two approaches for plant alarms. One approach includes the alarm
state and associated alarm data as fields or attributes of a real-time data record structure.
The other approach treats the alarm as a separate synthetic variable. Each approach has
benefits and deficiencies ,and the correct selection depends of the operation of the alarm
system. Some solutions, such as the Beznau alarm system, use both approaches within one
system. This causes potential conflicts, which can be left to the control room operators to
resolve in real time.

5.7 Testing Approach

Since the Three Mile Island Unit 2 incident, the use of plant-specific operator training simulators
for all of the Western-style commercial nuclear power plants has become the accepted practice.
This situation includes the development of validated computer modules for most commercial
nuclear power plants. To meet the requirements of operator training, these models operate in
real time. Portions of some evolutionary plant l&C designs were developed and/or validated
using test equipment designed to employ these models.

While the use of simulators for system validation testing yields good results, the costs of some
of these efforts causes concern in some applications. The development of the Sizewell B
primary protection system test harness, which was based on Sizewell B simulator models, was
an expensive exercise.

The NOK ANIS project was the first of these evolutionary l&C designs to use simulators in the
manner advocated by EPRI ALWR Utility Requirements Document. A single complete train of
the NOK ANIS evolutionary l&C hardware, including the software and plant-specific databases,
was set up in the computer room of the NOK Beznau crew training simulator. The simulator
plant process models developed simulated plant process signals that were then sent to the
ANIS hardware to simulate its operation. Operating crews were then given plant transients and
operational problems that, in the end, provided validation of the entire system (i.e., the system's
hardware, software, and databases, as well as the human operators who must work in real time
with that hardware and software). In addition, it gave the operators training on the new
computerized HSI. This configuration has remained, permitting Beznau personnel to make any
needed changes to the plant-specific databases, validate those changes, and familiarize the
operators with the changes before they are implemented.

5.8 System Performance

A large and robust l&C system is required to meet the needs of nuclear power plant protection,
control, and supervisory functions. With respect to data throughput for the supervisory and
data management functions that have been put into operation to date, the evolutionary designs
demonstrate marginal performance, as illustrated by the following examples:
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* The N4 data management, complex data processing, and human system interfaces are
based on late 1970s and early 1980s computer technology. This has limited the
capabilities of the N4 systems.

* The Beznau NOK ANIS required additional data networks dedicated to particular
functions (such as the alarm system).

* Little capacity margin exists for additions to the Sizewell B non-Class 1 E data networks.
The data networks that broadcast plant process variables for plant supervision have to
be carefully monitored when changes or additions are made.

* The Temelin l&C architecture uses a high-performance data network for plant
supervision. However, in the Temelin layered network design, certain functions (such as
the manual control function) have marginal performance. In addition, new requirements
on the network from the diagnostic and monitoring system and other systems take up a
significant portion of the network bandwidth.

* The ABB Advant system applied to the Oskarshamn Unit 1 BWR has high-performance
microprocessors but medium-performance data networks. Moreover, the non-Class 1 E
control network is based on the Ethernet protocol. The network performance is
marginal for a nuclear power plant.
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6. ANTICIPATED NEW ISSUES

The I&C systems envisioned for the nuclear reactor concepts under consideration for near-term
deployment, which are primarily derived from ALWR designs, are very similar to those
implemented at evolutionary nuclear power plants. However, the International Near-Term
Deployment (INTD) and Generation IV reactor concepts may pose some new issues that need
to be considered in establishing an effective and efficient licensing regime within the United
States. Principally, the modular reactor configurations, such as the International Reactor
Innovative and Secure (IRIS), the PBMR, and the GT-MHR, may introduce unique
considerations regarding phase commissioning of modules, common control rooms and/or
auxiliary systems, and shared site operations and maintenance functions. Because the
modular plant designs have not definitively established the full scope of 'modularity,' it is
difficult to predict the specific issues that may arise. However, consideration of the potential
impact of various approaches to building a modular multi-unit plant is necessary to prepare for
the review of future license applications. This section discusses some of the relevant issues.

The evolution of l&C technology may also pose new issues for review and evaluation as new
capabilities and different performance characteristics emerge. Examples would include
radiation-hardened electronics that permits microprocessor-based implementations within
containment and wireless communications networks that can reduce cable installations and
increase bandwidth. The prospects for the introduction of emerging technologies to nuclear
plant safety-related l&C systems are presented in detail in NUREG/CR-6812, "Emerging
Technologies in Instrumentation and Controls." In addition, NUREG/CR-6812 discusses the
potential research needs arising from those technologies. This information is not repeated in
this report.

Finally, the development of reactor concepts outside of the traditional light-water experience
may alter the context for licensing safety-related l&C systems, which may be required to
withstand environmental conditions that are more extreme than those experienced by
conventional design. The evolutionary designs may also experience different safety demands
associated with unique design-basis events and potentially more forgiving nuclear systems.
Because the issues related to the nature of the innovative nuclear systems are more properly
covered in the broader scope of establishing the overall safety case for those reactor concepts,
and because the issues would be unique for each INTD and Generation IV concept, they are
not be explicitly treated in this text. However, the issues of multi-module construction and
environmental conditions are discussed below.

6.1 Multi-Module Construction Sequencing of l&C Systems

While multiple-module operation of any reactor systems is an option, it has been explicitly
included in the design of the gas reactors and the integral PWR with multiple smaller units
making up approximately 1,000 MWe output from a single site. For both the pebble bed and
prismatic block designs, a common plant-wide control architecture is employed on the non-
Class 1 E monitoring systems. This plant-wide data network addresses the specific module
operating systems and essential plant-wide auxiliary systems shared between all the units. The
control design allows a control operator to operate a single unit in a shared control complex.
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The challenge is to address operability issues of the shared and common systems when the
first module is declared operational and the follow-on modules are still under construction.
Because of the advances in l&C technology, common data networks that transmit and utilize
large amounts of information will serve as integrated data links rather than the traditional direct
point-to-point wiring. Thus, the control and monitoring operations of these modules must be
fully operational and not susceptible to interference from construction and testing activities in
the non-operational modules. Research is needed to address basic guidelines that may include
modifications to the data highway and control room design to optimize the construction
sequencing. This may result in a control room that is less optimal for human factors at all levels
than would otherwise be possible if all the modules simultaneously completed construction. In
addition to licensed operation, an option to consider is the use of a dedicated commissioning
room in which a module would be commissioned and then "transferred" to the shared control
room.

6.2 Environmental Qualification

Qualification of instrumentation for applications in either gas reactor design (pebble bed or
block) presents significant challenges, which should be addressed through both short- and
long-term analysis and testing. This new qualification process needs to address whether
existing qualified instrumentation used at light-water reactors can be expanded so that it can be
used for gas reactor applications, or whether new classes of instrumentation will be necessary.
In either case, the instrumentation must be qualified in accordance with IEEE-323 for
environmental qualification and IEEE-344 for seismic qualification, along with the associated
NRC regulatory guides and applicable sections of the standard review plan. This qualification
will require a revised hazards profile over time, consisting of temperature, pressure, chemical
spray, and other environmental stressors. The peaks and variation over time for temperature'
and other environmental stressors are clearly different for gas reactors'and may require
significant changes and testing to verify that the environmental envelope bounds all of the
accident scenarios that will be part of the reactor-specific safety analysis.

In moving forward for the gas reactor designs, initial studies have shown the following
challenges to environmental qualification for the gas reactor instruments:

* Find accurate helium flow meters for the high-temperature and high-pressure -

environment. These measurements are required to calculate fluidic power and to
thermally correct the neutron instrumentation systems. The flow meters will not be
safety-related, but will operate at 5000C and 8300 kPa in the pebble bed design.
The equivalent system design for the prismatic block design has not yet been defined.
Accurate flow meters will largely determine the maximum power setting for plant
operation.

* Find small neutron detectors, especially source range detectors. These detectors need
to be embedded in the core reflector for reactor control during startup and will remain
functional in the temperature ranges around 5000C.
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7. CONCLUSIONS AND RECOMMENDATIONS

Experience with advanced I&C technologies at evolutionary nuclear power plants has shown
that safety-related systems can be developed and licensed for commercial nuclear power
plants. However, as shown by the evidence documented within this report, licensing issues
have arisen and some design and performance issues have been experienced. Many of these
issues can be attributed to uncertainties regarding the safety significance of unique physical,
functional, and performance characteristics introduced by new technology. Existing
requirements and regulatory guidance are focused on current generation plants, and they have
a tendency to be prescriptive with assumptions about particular design approaches. As a
result, the introduction of advanced l&C technologies has prompted reassessments,
enhancements, and development of regulatory positions to address these issues.

Although several new or unique l&C systems and methods will be used in advanced reactors,
many of these will not be of regulatory concern. Additionally, the current review methods may
be adequate for the review of many of these new technologies. However, as the National
Research Council study noted, the NRC's regulations and review methods may unnecessarily
limit new design features or prove difficult to implement for new technologies or plant
applications.

The primary recommendation of this report is that the NRC should review its current regulations
in several areas to determine whether revisions may be needed in either the regulations
themselves, or the appropriate regulatory guidance found in the standard review plan,
regulatory guides, and BTPs. Specifically, the NRC should consider the following areas:

* main control room design reviews
* human system interfaces
* displays and soft controls (RG 1.47)
* post-accident instrumentation (RG 1.97)
* alarms
* system isolation and cyber security
* system architecture
* network communications
* software common-cause failures
* redundancy, diversity, and defense in depth
* sensors
* information and data management
* software tools, including change control and security
* system reliability
* commercial off-the-shelf (COTS) systems

These and other issues are of concern in the design, construction, and licensing of the
evolutionary plants and may be issues for the NRC in the licensing of the next generation of
U.S. nuclear power plants.

Specific recommendations for research to support the reviews suggested above are given in
the following sections according to topic.
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7.1 I&C System Architectures

The use of high-bandwidth communications technologies, such as fiber optic data links,
facilitates the transmission of extensive quantities of data from plant safety systems to other
non-safety systems such as control, surveillance, and plant information systems. This data can
yield significant operational and safety-related performance benefits. However, this
communication capability can introduce functional coupling between safety and non-safety
systems. While it is usually best for the safety system to perform only computations that are
directly associated with the safety functions, some non-safety function computations(e.g., time-
tagging) can only be performed, or are best performed, in the safety system. Research to
develop the technical basis for guidance in this area would be useful. One element of such
research could be a detailed study of the tradeoffs in evolutionary nuclear plants between
benefits derived from equipment added to improve safety and the impact on plant safety
margins.

With distributed digital l&C designs that contain multiple communications networks and/or
complex, time-consuming calculations, the time coherency of the data provided to automatic
systems and the presence of control room operators can no longer be assumed. Nuclear
power plant l&C architecture designers have paid little attention to this issue in the past. As a
result, no standard techniques exist for establishing and confirming the time coherency of data,
and there are no standard criteria for acceptable tolerances of non coherence. The NRC has
conducted research regarding data sampling rates for digital applications, but further
investigations are warranted to determine the time coherency characteristics of distributed
digital systems.

The desire to extract data from the nuclear plant l&C system to support and automate
enterprise management functions raises issues of data control and integrity, as well as the
security of the safety function. If such communication connections are established, measures
must be taken to ensure that plant safety cannot be adversely affected by either accident or
sabotage. Ongoing research into cyber security should continue to establish guidance on
effective design and implementation practices and approaches that will confirm and maintain
cyber security.

7.1.1 Safety System Architectures

Increased microprocessor performance enables more compact reactor protection system
implementations. Thus, current safety system configurations, which are based on extensive
internal diversity and defense-in-depth, may be condensed in future implementations through
increased functional density. Two key points are associated with this potential research topic.
First, if licensees or vendors do not receive credit for the full range of architectural features in
present designs, they will be motivated to cut costs by collapsing features into a more compact
architecture. If credit is then given for diversity and defense-in-depth within a single safety
system channel, guidelines should be established for internal separation throughout the
channel. The following questions must then be addressed:

* Are diverse functions permitted to share common signal conditioning electronics?

* Are multiple microcomputers containing diverse functions permitted to share a common
computer bus or a common data network?
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* Are safety divisions permitted to share a common fiber optic data network?

These considerations should be investigated to determine their potential safety significance and
to develop the necessary technical bases for guidance.

Operational and safety benefits can be associated with incorporating regular proof testing of
safety functions within the safety system design. However, accommodating dynamic testing
leads to design considerations that warrant study. This research should address the following
questions:

* Is safety software permitted to alter its input or output data path during the test period to
accommodate the test regime?

* Is it permissible to test a representative function of a similar functional grouping rather
than routinely testing all functions?

The technical basis for dynamic testing guidelines should be established to address this design
feature.

Including hardware diagnostics in the software design has shown to be an effective method to
quickly identify random hardware failures, thereby providing a positive impact on plant safety
and availability. However, analysis and test methods that would verify that the hardware
diagnostics are comprehensive are needed. Although data from operating experience is
sparse, some compilation of available data might provide additional insight into the
effectiveness of different techniques.

7.1.2 Control System Architectures

Evolutionary plants use automated control over an extensive operational range and utilize
surveillance and diagnostic systems to contribute to operational and maintenance decisions.
Increased automation and the advent of autonomous control capabilities present the
opportunity to improve the operational performance of advanced nuclear power plants and to
reduce the prospect for human error challenging a safety system. However, the assumption of
decisionmaking responsibilities by the computer systems expands the need for highly reliable
software and raises the issue of the fidelity of the surveillance and diagnostic information upon
which decisions would be based. Research issues that should be considered include the role of
the human in plant operations, the potential safety significance and quality requirements for
control systems that assume a greater role in the planning and management of the plant, and
the uncertainties inherent in diagnostic/prognostic techniques.

7.1.3 System and Human Interfaces

There is a need for systematic determination of the requisite attributes of computer-based
support tools and databases that can contribute to safety. This evaluation should have two
elements. First, determine the capabilities or attributes that have a safety benefit. Second,
determine the capabilities or attributes that can have an undesired safety impact. Detailed
evaluation of experience from evolutionary plant implementations and confirmatory research
using laboratory demonstrations can support the identification of desired attributes and help
establish guidelines on design and implementation of these types of information systems. In
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addition, an assessment is needed of the demands that improved human-system interfaces
impose on the design of distributed digital l&C systems and the impact of those design changes
on the safe operation of the plant.

7.1.4 Dependability Features

For advanced plants, the practice of imposing a diverse and independent means of
implementing a safety function should be carefully considered in terms of the overall reliability
of the reactor protection system to ensure that neither unnecessary complexity nor an
undesired safety impact is introduced. To keep the overall system design as simple as
practical, the type, or class, of common-cause failures should be identified early in the design
process. Research should be conducted to develop the technical basis for guidelines for
performing these evaluations. An element of this research could be a detailed study of the
consequences of the evolutionary plants' "risk-based" (e.g., Sizewell B), "risk-informed" (e.g.,
AP600), and "deterministic" (e.g., Temelin) approaches. This will be particularly important as
the NRC moves forward in its development of the risk-informed future reactor licensing
framework.

Developing a completely failsafe reactor protection system design is probably not possible.
Nevertheless, failsafe design attributes can improve protection system dependability. -
Therefore, the NRC should establish the technical basis for guidance for evaluating the
effectiveness of various failsafe approaches in a reactor protection system design. This
guidance should consider the feature as a defense against common-cause failure.

7.2 Field Devices

For light-water reactor technology, the evolutionary digital l&C designs have not revealed any
new regulatory issues about Safety Class 1 E sensor technology. However, significant research
has been conducted toward improving sensor technology that will probably have application and
be cost-effective in commercial nuclear power plants. In addition, new sensing systems, unique
measurement parameters, and environmental compatibility under more extreme conditions may
be required to support other advanced reactor designs. As a result, a research program to
support licensing of future plants should consider maintaining an ongoing awareness of such
developments and determining the viability of such improvements to nuclear power plant
applications.

7.3 Communications Technology

Communications technology may have the most significant impact on nuclear power plant l&C
systems of any technology since the introduction of the microprocessor. Research can
contribute the technical basis for guidance on the application of advanced communications
technology for safety-related l&C systems. In particular, this research should address issues
such as separation, isolation, redundancy, topology, predictability, timeliness (or lag time), and
data transmission/reception consistency throughout the communications architecture. The
scope of communications guidance should include the safety, automation, and human interface
portions of the safety-related l&C system in a nuclear plant.
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Although enhanced sensor network functionality may increase the design complexity for Class
1 E applications, safety-class versions of field device communications architectures are under
development and safety-related application of such networks seems likely for future nuclear
power plants. Therefore, the NRC should conduct a study of the safety characteristics of
various fieldbus network approaches.

7.4 Digital Platforms

A current issue surrounding analog l&C systems is equipment obsolescence. The pace of
technology advancement for microprocessors is much more rapid than that of analog
technologies. As a result, it will be problematic to maintain a product line using a digital
platform based on a particular generation of microprocessors over an extended period.
Consequently, the NRC should conduct research to develop guidance to address issues
associated with platform obsolescence. For example, the design and performance
characteristics must be determined to establish the equivalence of same-generation versions of
microprocessors or subsequent generations of microprocessor families.

7.5 Software

7.5.1 Life Cycle Approach

Given the costs of the software life cycle process used by the nuclear industry and the
qualitative nature of the evidence generated, a need exists for periodic reviews of the state-of-
the-art to maintain an in-depth awareness of developments in the software engineering
discipline. These state-of-the-art reviews are particularly important because they affect the
productivity of software engineers and the development of effective, efficient processes for the
design and maintenance of high-integrity software. In particular, the NRC should pursue
research regarding measures of the effectiveness of life cycle approaches to establish
quantitative evidence of expected software quality and to provide the basis for optimizing the
activities that are necessary over the software lifetime. In addition, the NRC should follow the
recent trends toward the use of "object-oriented" software design, reusable code, and domain
engineering.

7.5.2 Languages

The NRC has previously conducted research to evaluate the safety aspects of various
languages and coding structures. However, it would be beneficial to maintain awareness of any
emerging trends or developments. This is particularly true with regard to evaluating the
selection of alternative languages for diverse implementations to address potential common-
cause failures. Thus, it could prove valuable to conduct a periodic review of the application of
formal methods in high-integrity military applications.

7.5.3 Coding Approaches

Currently, little guidance is available for software-based development tools and code generation
approaches, particularly those used to build and maintain databases. Since these tools are
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usually used for a wide variety of coding for both generic and plant-specific implementations,
they present a potential for introducing common-mode faults. Research is warranted to
investigate and classify potential sources of errors from their use and to contribute to standards
for software-based development tools. The NRC should also establish a basis for evaluating
the safety significance of the use of such tools in the design, construction, and maintenance of
both online and off line executing code and databases.

7.5.4 Safety System Verification and Validation

Because of the process-oriented, qualitative nature of the V&V process for software design and
implementation, development has focused on diversity to provide acceptably reliable safety
system software. However, a consequence of this approach is a more complex overall design
for reactor protection systems. Research should continue to investigate methods and
measures to quantify software dependability. A main consideration in the use of formal
methods for software development is the assertion that such software is mathematically
"proven" correct. The NRC should develop a benchmark employing a test case suite, to
evaluate the capability of various methodologies, and that suite should contain complex real-
time software structures inherent to reactor protection system software. The value would be an
understanding of the confidence levels that can be established for software and the potential for
less complex reactor protection and l&C system architectures.

7.6 Information/Data Management

Given the discrete nature of digital data and the distributed nature of digital data acquisition and
computational systems, careful analysis is required to verify the claims of different time-tagging
schemes. Consequently, the NRC should conduct research to identify the potential safety-
related issues that could arise from different approaches. The NRC should also develop the
technical basis for evaluating time-tagging methods.

The technology for evaluating the quality and effectiveness of a functionally distributed software
architecture within a physically distributed digital hardware architecture is currently in its infancy.
Thus, the NRC should monitor emerging trends and conduct research to identify and evaluate
the safety attributes associated with the prominent software architectures.

7.7 Testing Approach

The use of simulators for system functional validation is one of the more novel and powerful
design and testing approaches used for l&C systems at evolutionary nuclear power plants. A
detailed investigation of the industry's specific experiences with this approach could better
characterize its potential value and identify any issues of concern (e.g., level of simulation
fidelity, impact of unmodeled dynamics). This study was necessarily limited as a result of
restricted access to detailed information. An additional area of research arises from software
testing. In addition, the NRC should investigate issues of fault seeding and detection
limitations, the statistics of rare events, and usage modeling for test management to develop
the technical basis for guidance where warranted.
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7.8 System Performance

No specific requirements exist for the time responses required for protection, control, and
supervisory portions of the nuclear l&C system. This lack of requirements is a legacy from
conventional technology, where the response time for protection and control was considered
instantaneous and the computer functions were not as important. In addition, no standards
exist for confirming these numbers. For example, no standard is available to determine
whether worst case or statistical methods should be used, and no guidance is available on
testing to support analytical results. Consequently, the NRC should consider research to
develop the technical basis for guidance on defining the necessary time response
requirements, acceptable methodologies for developing the requirement, and acceptable
methods for confirming the actual time response.
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