

Bases

U.S. Nuclear Regulatory Commission Office of Nuclear Reactor Regulation Washington, DC 20555-0001

NUREG-1431 Vol. 2, Rev. 3

Standard Technical Specifications Westinghouse Plants

Bases

Manuscript Completed: March 2004 Date Published: June 2004

Division of Inspection Program Management Office of Nuclear Reactor Regulation U.S. Nuclear Regulatory Commission Washington, DC 20555-0001

AVAILABILITY OF REFERENCE MATERIALS IN NRC PUBLICATIONS

NRC Reference Material	Non-NRC Reference Material
As of November 1999, you may electronically access NUREG-series publications and other NRC records at NRC's Public Electronic Reading Room at <u>http://www.nrc.qov/reading-rm.html</u> . Publicly released records include, to name a few, NUREG-series publications; <i>Federal Register</i> notices; applicant, licensee, and vendor documents and correspondence; NRC correspondence and internal memoranda; bulletins and information notices; inspection and investigative reports; licensee event reports; and Commission papers and their attachments. NRC publications in the NUREG series, NRC regulations, and <i>Title 10, Energy</i> , in the Code of <i>Federal Regulations</i> may also be purchased from one of these two sources.	Documents available from public and special technical libraries include all open literature items, such as books, journal articles, and transactions, <i>Federal</i> <i>Register</i> notices, Federal and State legislation, and congressional reports. Such documents as theses, dissertations, foreign reports and translations, and non-NRC conference proceedings may be purchased from their sponsoring organization. Copies of industry codes and standards used in a substantive manner in the NRC regulatory process are maintained at The NRC Technical Library Two White Flint North 11545 Rockville Pike
 The Superintendent of Documents U.S. Government Printing Office Mail Stop SSOP Washington, DC 20402–0001 Internet: bookstore.gpo.gov Telephone: 202-512-1800 Fax: 202-512-2250 The National Technical Information Service Springfield, VA 22161–0002 www.ntis.gov 1-800–553–6847 or, locally, 703–605–6000 A single copy of each NRC draft report for comment is available free, to the extent of supply, upon written reguest as follows: 	Rockville, MD 20852–2738 These standards are available in the library for reference use by the public. Codes and standards are usually copyrighted and may be purchased from the originating organization or, if they are American National Standards, from— American National Standards Institute 11 West 42 nd Street New York, NY 10036–8002 www.ansi.org 212–642–4900
Address: Office of the Chief Information Officer, Reproduction and Distribution Services Section U.S. Nuclear Regulatory Commission Washington, DC 20555-0001 E-mail: DISTRIBUTION@nrc.gov Facsimile: 301–415–2289 Some publications in the NUREG series that are posted at NRC's Web site address <u>http://www.nrc.gov/reading-rm/doc-collections/nuregs</u> are updated periodically and may differ from the last printed version. Although references to material found on a Web site bear the date the material was accessed, the material available on the date cited may subsequently be removed from the site.	Legally binding regulatory requirements are stated only in laws; NRC regulations; licenses, including technical specifications; or orders, not in NUREG-series publications. The views expressed in contractor-prepared publications in this series are not necessarily those of the NRC. The NUREG series comprises (1) technical and administrative reports and books prepared by the staff (NUREG-XXXX) or agency contractors (NUREG/CR-XXXX), (2) proceedings of conferences (NUREG/CP-XXXX), (3) reports resulting from international agreements (NUREG/IA-XXXX), (4) brochures (NUREG/BR-XXXX), and (5) compilations of legal decisions and orders of the Commission and Atomic and Safety Licensing Boards and of Directors' decisions under Section 2.206 of NRC's regulations (NUREG-0750).

PREFACE

This NUREG contains the improved Standard Technical Specifications (STS) for Westinghouse plants. Revision 3 incorporates the cumulative changes to Revision 1 and 2, which was published in April 1995 and April 2001, respectively. The changes reflected in Revision 3 resulted from the experience gained from license amendment applications to convert to these improved STS or to adopt partial improvements to existing technical specifications. This publication is the result of extensive public technical meetings and discussions among the Nuclear Regulatory Commission (NRC) staff and various nuclear power plant licensees, Nuclear Steam Supply System (NSSS) Owners Groups, and the Nuclear Energy Institute (NEI). The improved STS were developed based on the criteria in the Final Commission Policy Statement on Technical Specifications Improvements for Nuclear Power Reactors, dated July 22, 1993 (58 FR 39132), which was subsequently codified by changes to Section 36 of Part 50 of Title 10 of the Code of Federal Regulations (10 CFR 50.36) (60 FR 36953). Licensees are encouraged to upgrade their technical specifications consistent with those criteria and conforming, to the practical extent, to Revision 3 to the improved STS. The Commission continues to place the highest priority on requests for complete conversions to the improved STS. Licensees adopting portions of the improved STS to existing technical specifications should adopt all related requirements, as applicable, to achieve a high degree of standardization and consistency.

The Table of Contents is now a Table of Contents / Revision Summary where the revision number and date are listed for each specification and bases, in lieu of traditional page numbers. Each limiting condition for operation (LCO) starts with page 1, with a specification, e.g., "2.0" or bases "B 2.0" number prefix. Subsequent approved revisions to sections will be noted in the Table of Contents, as well as on each affected page, using a decimal number to indicate the number of revisions to that section, along with the date, e.g., (Rev 3.3, 04/01/04) indicates the third approved change and date since Revision 3.0 was published. Additionally, the final page of each LCO section will be a historical listing of the changes affecting that section. This publication will be maintained in electronic format. Subsequent revisions will not be printed in hard copy. Users may access the subsequent revisions to the STS in the PDF format at (<u>http://www.nrc.gov</u>). This Web site will be updated as needed and the contents may differ from the last printed version. Users may print or download copies from the NRC Web site.

PAPERWORK REDUCTION ACT STATEMENT

The information collections contained in this NUREG are covered by the requirements of 10 CFR Part 50, which were approved by the Office of Management and Budget, approval number 3150-0011.

PUBLIC PROTECTION NOTIFICATION

If a means used to impose an information collection does not display a currently valid OMB control number, the NRC may not conduct or sponsor, and a person is not required to respond to, the information collection.

B 2.0 B 2.1.1 B 2.1.2	SAFETY LIMITS (SLs) Reactor Core SLs
B 3.0 B 3.0	LIMITING CONDITION FOR OPERATION (LCO) APPLICABILITY 3.0, 03/31/04 SURVEILLANCE REQUIREMENT (SR) APPLICABILITY
B 3.1 B 3.1.2 B 3.1.3 B 3.1.3 B 3.1.4 B 3.1.5 B 3.1.6 B 3.1.7 B 3.1.8	REACTIVITY CONTROL SYSTEMS 3.0, 03/31/04 SHUTDOWN MARGIN (SDM) 3.0, 03/31/04 Core Reactivity 3.0, 03/31/04 Moderator Temperature Coefficient (MTC) 3.0, 03/31/04 Rod Group Alignment Limits 3.0, 03/31/04 Shutdown Bank Insertion Limits 3.0, 03/31/04 Control Bank Insertion Limits 3.0, 03/31/04 Rod Position Indication 3.0, 03/31/04 PHYSICS TESTS Exceptions - MODE 2 3.0, 03/31/04
B 3.2 B 3.2.1A	POWER DISTRIBUTION LIMITS Heat Flux Hot Channel Factor (F _o (Z)) (CAOC-F _{vv}
B 3.2.1B B 3.2.1C	Methodology)
B 3.2.2	Methodology) 3.0, 03/31/04 Nuclear Enthalpy Rise Hot Channel Factor (F ^N н) 3.0, 03/31/04
B 3.2.3A	AXIAL FLUX DIFFERENCE (AFD) (Constant Axial Offset Control (CAOC) Methodology)
B 3.2.3B	AXIAL FLUX DIFFERENCE (AFD) (Relaxed Axial Offset Control (RAOC) Methodology)
B 3.2.4	QUADRANT POWER TILT RATIO (QPTR) 3.0, 03/31/04
B 3.3	INSTRUMENTATION
B 3.3.1 B 3.3.2	Reactor Trip System (RTS) Instrumentation
B 3.3.3	Post Accident Monitoring (PAM) Instrumentation 3.0, 03/31/04
B 3.3.4	Remote Shutdown System 3.0, 03/31/04
B 3.3.5	Loss of Power (LOP) Diesel Generator (DG) Start
B 3.3.6	Containment Purge and Exhaust Isolation Instrumentation 3.0. 03/31/04
B 3.3.7	Control Room Emergency Filtration System (CREFS) Actuation Instrumentation 3.0.03/31/04
B 3.3.8	Fuel Building Air Cleanup System (FBACS) Actuation
B330	Boron Dilution Protection System (BDPS) 3.0.03/31/04
0.0.8	Doron Dilution rivection System (DDFS)

TABLE OF CONTENTS / REVISION SUMMARY Revision - Date

B 3.4	REACTOR COOLANT SYSTEM (RCS)		
B 3.4.1	RCS Pressure, Temperature, and Flow Departure from		
	Nucleate Boiling (DNB) Limits	3.0,	03/31/04
B 3.4.2	RCS Minimum Temperature for Criticality	3.0,	03/31/04
B 3.4.3	RCS Pressure and Temperature (P/T) Limits	3.0,	03/31/04
B 3.4.4	RCS Loops - MODES 1 and 2	3.0,	03/31/04
B 3.4.5	RCS Loops - MODE 3	3.0.	03/31/04
B 3.4.6	RCS Loops - MODE 4	3.0.	03/31/04
B 3.4.7	RCS Loops - MODE 5. Loops Filled	3.0.	03/31/04
B34.8	RCS Loops - MODE 5, Loops Not Filled	3.0.	03/31/04
B 3 4 9	Pressurizer	3.0.	03/31/04
B 3.4.10	Pressurizer Safety Valves	3.0.	03/31/04
B 3 4 11	Pressurizer Power Operated Relief Valves (PORVs)	3.0.	03/31/04
B 3 4 12	Low Temperature Overpressure Protection (LTOP) System	3.0	03/31/04
B 3 4 13	BCS Operational LEAKAGE	3.0	03/31/04
B 3 4 14	BCS Pressure Isolation Valve (PIV) Leakage	3.0	03/31/04
B 3 4 15	BCS Leakage Detection Instrumentation	3.0	03/31/04
B 3 / 16	BCS Specific Activity	3.0	03/31/04
B 3 / 17	RCS Loon Isolation Valves	3.0	03/31/04
B 3 / 18	RCS isolated I oon Startun	3.0,	03/31/04
B 2 / 10	BCS Loope - Test Exceptions	3.0,	03/31/04
0 0.4.19		0.0,	00/01/04
B35	EMERGENCY COBE COOLING SYSTEMS (ECCS)		
B 3 5 1	Accumulators	3.0	03/31/04
B 3 5 2	ECCS - Operating	3.0	03/31/04
B 3 5 3	ECCS - Shutdown	3.0	03/31/04
B35/	Befueling Water Storage Tank (BWST)	3.0	03/31/04
B 3 5 5	Seal Injection Flow	30	03/31/04
B356	Boron Injection Tank (BIT)	3.0	03/31/04
D 3.3.0		0.0,	00/01/04
B36	CONTAINMENT SYSTEMS		
B 3.6.1A	Containment (Atmospheric)	3.0.	03/31/04
B 3 6 1B	Containment (Dual)	3.0.	03/31/04
B 3 6 1C	Containment (Ice Condenser)	3.0	03/31/04
B 3 6 1D	Containment (Subatmosnberic)	3.0	03/31/04
B362	Containment Air Locks (Atmospheric, Subatmospheric, Ice	0.0,	00/01/04
D 0.0.2	Condenser and Dual)	3.0	03/31/04
B363	Containment Isolation Valves (Atmospheric, Subatmospheric	0.0,	00/01/04
D 0.0.0	lee Condenser and Dual)	30	03/31/04
R264A	Containment Pressure (Atmospheric Dual and Ice Condenser)	20	03/31/04
D 3.0.4A	Containment Pressure (Autosphene, Dual, and ice Condenser)	2.0,	03/31/04
D 3.0.4D	Containment Air Temperature (Atmospheric and Duci)	3.0,	03/31/04
D 3.0.3A	Containment Air Temperature (Achosphene and Duar)	3.0,	03/31/04
	Containment Air Temperature (ICe Condenser)	ა.U, ი	03/31/04
	Containment Air Femperature (Subatmospheric)	J.U,	03/31/04
B 3.0.6A	Containment Spray and Cooling Systems (Atmospheric and Duol) (Credit token for inding tomotol butthe Containment)		
	Dual) (Credit taken for logine removal by the Containment	~ ~	00/04/04
	Spray System)	3.0,	03/31/04

TABLE OF CONTENTS / REVISION SUMMARY..... Revision - Date

B 3.6.6B	Containment Spray and Cooling Systems (Atmospheric and	
	Dual) (Credit not taken for lodine removal by the	
	Containment Spray System)	/31/04
B 3.6.6C	Containment Spray System (Ice Condenser)	31/04
B 3.6.6D	Quench Spray (QS) System (Subatmospheric)	31/04
B 3.6.6E	Recirculation Spray (RS) System (Subatmospheric)	31/04
B 3.6.7	Spray Additive System (Atmospheric, Subatmospheric, Ice	104104
	Condenser, and Dual	31/04
B 3.6.8	Shield Building (Dual and Ice Condenser)	31/04
B 3.6.9	and Dual)	121/01
B 0 6 10	and Dual)	31/04
D 3.0.10	Inding Cleanup System (ICS) (Ite Condense)	31/04
D 3.0.11	Substraspheric) 3.0.02	21/04
B 2 6 12	Vacuum Belief Valves (Atmospheric and Ice Condenser) 3.0,03/	31/04
D 3.0.12 B 2 6 12	Shield Building Air Cleanup System (SBACS) (Dual and Ice	31/04
D 3.0.13	Condenser) 3.0.03/	31/04
B361/	Air Beturn System (ABS) (Ice Condenser) 3.0.03/	31/04
B3615	Ice Bed (Ice Condenser) 3.0.03/	/31/04
B3616	Ice Condenser Doors (Ice Condenser) 3.0.03/	31/04
B 3 6 17	Divider Barrier Integrity (Ice Condenser) 3.0.03/	31/04
B 3 6 18	Containment Recirculation Drains (Ice Condenser) 3.0.03/	31/04
0.0.10		01/04
B 3.7	PLANT SYSTEMS	
B 3.7.1	Main Steam Safety Valves (MSSVs)	31/04
B 3.7.2	Main Steam Isolation Valves (MSIVs)	31/04
B 3.7.3	Main Feedwater Isolation Valves (MFIVs) and Main Feedwater	
	Regulation Valves (MFRVs) [and Associated Bypass	
	Valves]	31/04
B 3.7.4	Atmospheric Dump Valves (ADVs)	31/04
B 3.7.5	Auxiliary Feedwater (AFW) System	31/04
B 3.7.6	Condensate Storage Tank (CST)	31/04
B 3.7.7	Component Cooling Water (CCW) System	31/04
B 3.7.8	Service Water System (SWS)	31/04
B 3.7.9	Ultimate Heat Sink (UHS)	31/04
B 3.7.10	Control Room Emergency Filtration System (CREFS)	31/04
B 3.7.11	Control Room Emergency Air Temperature Control System	04/04
D o T 40	(CREATCS)	31/04
B 3.7.12	Emergency Core Cooling System (ECCS) Pump Room	04/04
D 0 7 40	Exhaust Air Cleanup System (PREACS)	31/04
B 3.7.13	Fuel Building Air Cleanup System (FBACS)	31/04
B 3.7.14	Fuel Storage Real Mater Level	31/U4 21/04
B 3./.15	Fuel Storage Pool Recon Concentration	31/04 21/04 1
[D3./.10	Fuel Stolage Fool Dolon Concentration	ן 1/04 בי 1/0 <i>4</i> בי
	Speni ruei ruei suoi suoi aye	31/04] 21/04
D J./.10	Secondary Specific Addivity	51/04

TABLE OF CONTENTS / REVISION SUMMARY Revision - Date

B 3.8	ELECTRICAL POWER SYSTEMS
B 3.8.1	AC Sources - Operating 3.0, 03/31/04
B 3.8.2	AC Sources - Shutdown 3.0, 03/31/04
B 3.8.3	Diesel Fuel Oil, Lube Oil, and Starting Air 3.0, 03/31/04
B 3.8.4	DC Sources - Operating 3.0, 03/31/04
B 3.8.5	DC Sources - Shutdown 3.0, 03/31/04
B 3.8.6	Battery Parameters 3.0, 03/31/04
B 3.8.7	Inverters - Operating 3.0, 03/31/04
B 3.8.8	Inverters - Shutdown 3.0, 03/31/04
B 3.8.9	Distribution Systems - Operating 3.0, 03/31/04
B 3.8.10	Distribution Systems - Shutdown
B 3.9	REFUELING OPERATIONS
B 3.9.1	Boron Concentration
[B 3.9.2	Unborated Water Source Isolation Valves
B 3.9.3	Nuclear Instrumentation
B 3.9.4	Containment Penetrations
B 3.9.5	Residual Heat Removal (RHR) and Coolant Circulation - High
	Water Level
B 3.9.6	Residual Heat Removal (RHR) and Coolant Circulation - Low
	Water Level 3.0, 03/31/04
B 3.9.7	Refueling Cavity Water Level 3.0, 03/31/04
	· ·

B 2.0 SAFETY LIMITS (SLs)

B 2.1.1 Reactor Core

BASES

BACKGROUND GDC 10 (Ref. 1) requires that specified acceptable fuel design limits are not exceeded during steady state operation, normal operational transients, and anticipated operational occurrences (AOOs). This is accomplished by having a departure from nucleate boiling (DNB) design basis, which corresponds to a 95% probability at a 95% confidence level (the 95/95 DNB criterion) that DNB will not occur and by requiring that fuel centerline temperature stays below the melting temperature.

The restrictions of this SL prevent overheating of the fuel and cladding, as well as possible cladding perforation, that would result in the release of fission products to the reactor coolant. Overheating of the fuel is prevented by maintaining the steady state peak linear heat rate (LHR) below the level at which fuel centerline melting occurs. Overheating of the fuel cladding is prevented by restricting fuel operation to within the nucleate boiling regime, where the heat transfer coefficient is large and the cladding surface temperature is slightly above the coolant saturation temperature.

Fuel centerline melting occurs when the local LHR, or power peaking, in a region of the fuel is high enough to cause the fuel centerline temperature to reach the melting point of the fuel. Expansion of the pellet upon centerline melting may cause the pellet to stress the cladding to the point of failure, allowing an uncontrolled release of activity to the reactor coolant.

Operation above the boundary of the nucleate boiling regime could result in excessive cladding temperature because of the onset of DNB and the resultant sharp reduction in heat transfer coefficient. Inside the steam film, high cladding temperatures are reached, and a cladding water (zirconium water) reaction may take place. This chemical reaction results in oxidation of the fuel cladding to a structurally weaker form. This weaker form may lose its integrity, resulting in an uncontrolled release of activity to the reactor coolant.

The proper functioning of the Reactor Protection System (RPS) and steam generator safety valves prevents violation of the reactor core SLs.

BASES	·
APPLICABLE SAFETY ANALYSES	The fuel cladding must not sustain damage as a result of normal operation and AOOs. The reactor core SLs are established to preclude violation of the following fuel design criteria:
	 There must be at least 95% probability at a 95% confidence level (the 95/95 DNB criterion) that the hot fuel rod in the core does not experience DNB and
	 The hot fuel pellet in the core must not experience centerline fuel melting.

The Reactor Trip System setpoints (Ref. 2), in combination with all the LCOs, are designed to prevent any anticipated combination of transient conditions for Reactor Coolant System (RCS) temperature, pressure, RCS Flow, ΔI , and THERMAL POWER level that would result in a departure from nucleate boiling ratio (DNBR) of less than the DNBR limit and preclude the existence of flow instabilities.

Automatic enforcement of these reactor core SLs is provided by the appropriate operation of the RPS and the steam generator safety valves.

The SLs represent a design requirement for establishing the RPS trip setpoints identified previously. LCO 3.4.1, "RCS Pressure, Temperature, and Flow Departure from Nucleate Boiling (DNB) Limits," or the assumed initial conditions of the safety analyses (as indicated in the FSAR, Ref. 2) provide more restrictive limits to ensure that the SLs are not exceeded.

SAFETY LIMITS The figure provided in the COLR shows the loci of points of THERMAL POWER, RCS pressure, and average temperature for which the minimum DNBR is not less than the safety analyses limit, that fuel centerline temperature remains below melting, that the average enthalpy in the hot leg is less than or equal to the enthalpy of saturated liquid, or that the exit quality is within the limits defined by the DNBR correlation.

> The reactor core SLs are established to preclude violation of the following fuel design criteria:

- There must be at least a 95% probability at a 95% confidence level а (the 95/95 DNB criterion) that the hot fuel rod in the core does not experience DNB and
- b. There must be at least a 95% probability at a 95% confidence level that the hot fuel pellet in the core does not experience centerline fuel melting.

WOG STS

|--|

The reactor core SLs are used to define the various RPS functions such that the above criteria are satisfied during steady state operation, normal operational transients, and anticipated operational occurrences (AOOs). To ensure that the RPS precludes the violation of the above criteria, additional criteria are applied to the Overtemperature and Overpower ΔT reactor trip functions. That is, it must be demonstrated that the average enthalpy in the hot leg is less than or equal to the saturation enthalpy and that the core exit quality is within the limits defined by the DNBR correlation. Appropriate functioning of the RPS ensures that for variations in the THERMAL POWER, RCS Pressure, RCS average temperature, RCS flow rate, and ΔI that the reactor core SLs will be satisfied during steady state operation, normal operational transients, and AOOs.

APPLICABILITY SL 2.1.1 only applies in MODES 1 and 2 because these are the only MODES in which the reactor is critical. Automatic protection functions are required to be OPERABLE during MODES 1 and 2 to ensure operation within the reactor core SLs. The steam generator safety valves or automatic protection actions serve to prevent RCS heatup to the reactor core SL conditions or to initiate a reactor trip function, which forces the unit into MODE 3. Setpoints for the reactor trip functions are specified in LCO 3.3.1, "Reactor Trip System (RTS) Instrumentation." In MODES 3, 4, 5, and 6, Applicability is not required since the reactor is not generating significant THERMAL POWER.

SAFETY LIMITThe following SL violation responses are applicable to the reactor coreVIOLATIONSSLs. If SL 2.1.1 is violated, the requirement to go to MODE 3 places
the unit in a MODE in which this SL is not applicable.

The allowed Completion Time of 1 hour recognizes the importance of bringing the unit to a MODE of operation where this SL is not applicable, and reduces the probability of fuel damage.

- REFERENCES 1. 10 CFR 50, Appendix A, GDC 10.
 - 2. FSAR, Section [7.2].

B 2.0 SAFETY LIMITS (SLs)

B 2.1.2 Reactor Coolant System (RCS) Pressure SL

BASES

BACKGROUND	The SL on RCS pressure protects the integrity of the RCS against overpressurization. In the event of fuel cladding failure, fission products are released into the reactor coolant. The RCS then serves as the primary barrier in preventing the release of fission products into the atmosphere. By establishing an upper limit on RCS pressure, the continued integrity of the RCS is ensured. According to 10 CFR 50, Appendix A, GDC 14, "Reactor Coolant Pressure Boundary," and GDC 15, "Reactor Coolant System Design" (Ref. 1), the reactor pressure coolant boundary (RCPB) design conditions are not to be exceeded during normal operation and anticipated operational occurrences (AOOs). Also, in accordance with GDC 28, "Reactivity Limits" (Ref. 1), reactivity accidents, including rod ejection, do not result in damage to the RCPB greater than limited local yielding.
	The design pressure of the RCS is 2500 psia. During normal operation and AOOs, RCS pressure is limited from exceeding the design pressure by more than 10%, in accordance with Section III of the ASME Code (Ref. 2). To ensure system integrity, all RCS components are hydrostatically tested at 125% of design pressure, according to the ASME Code requirements prior to initial operation when there is no fuel in the core. Following inception of unit operation, RCS components shall be pressure tested, in accordance with the requirements of ASME Code, Section XI (Ref. 3).
	Overpressurization of the RCS could result in a breach of the RCPB. If such a breach occurs in conjunction with a fuel cladding failure, fission products could enter the containment atmosphere, raising concerns relative to limits on radioactive releases specified in 10 CFR 100, "Reactor Site Criteria" (Ref. 4).
APPLICABLE SAFETY ANALYSES	The RCS pressurizer safety valves, the main steam safety valves (MSSVs), and the reactor high pressure trip have settings established to ensure that the RCS pressure SL will not be exceeded.
	The RCS pressurizer safety valves are sized to prevent system pressure from exceeding the design pressure by more than 10%, as specified in Section III of the ASME Code for Nuclear Power Plant Components (Ref. 2). The transient that establishes the required relief capacity, and hence valve size requirements and lift settings, is a complete loss of

APPLICABLE SAFETY ANALYSES (continued)

external load without a direct reactor trip. During the transient, no control actions are assumed, except that the safety valves on the secondary plant are assumed to open when the steam pressure reaches the secondary plant safety valve settings, and nominal feedwater supply is maintained.

The Reactor Trip System setpoints (Ref. 5), together with the settings of the MSSVs, provide pressure protection for normal operation and AOOs. The reactor high pressure trip setpoint is specifically set to provide protection against overpressurization (Ref. 5). The safety analyses for both the high pressure trip and the RCS pressurizer safety valves are performed using conservative assumptions relative to pressure control devices.

More specifically, no credit is taken for operation of any of the following:

- a. Pressurizer power operated relief valves (PORVs),
- b. Steam line relief valve,
- c. Steam Dump System,
- d. Reactor Control System,
- e. Pressurizer Level Control System, or
- f. Pressurizer spray valve.
- SAFETY LIMITS The maximum transient pressure allowed in the RCS pressure vessel under the ASME Code, Section III, is 110% of design pressure. The maximum transient pressure allowed in the RCS piping, valves, and fittings under [USAS, Section B31.1 (Ref. 6)] is 120% of design pressure. The most limiting of these two allowances is the 110% of design pressure; therefore, the SL on maximum allowable RCS pressure is 2735 psig.

BASES	
APPLICABILITY	SL 2.1.2 applies in MODES 1, 2, 3, 4, and 5 because this SL could be approached or exceeded in these MODES due to overpressurization events. The SL is not applicable in MODE 6 because the reactor vessel head closure bolts are not fully tightened, making it unlikely that the RCS can be pressurized.
SAFETY LIMIT VIOLATIONS	If the RCS pressure SL is violated when the reactor is in MODE 1 or 2, the requirement is to restore compliance and be in MODE 3 within 1 hour.
	Exceeding the RCS pressure SL may cause immediate RCS failure and create a potential for radioactive releases in excess of 10 CFR 100, "Reactor Site Criteria," limits (Ref. 4).
	The allowable Completion Time of 1 hour recognizes the importance of reducing power level to a MODE of operation where the potential for challenges to safety systems is minimized.
	If the RCS pressure SL is exceeded in MODE 3, 4, or 5, RCS pressure must be restored to within the SL value within 5 minutes. Exceeding the RCS pressure SL in MODE 3, 4, or 5 is more severe than exceeding this SL in MODE 1 or 2, since the reactor vessel temperature may be lower and the vessel material, consequently, less ductile. As such, pressure must be reduced to less than the SL within 5 minutes. The action does not require reducing MODES, since this would require reducing temperature, which would compound the problem by adding thermal gradient stresses to the existing pressure stress.
REFERENCES	1. 10 CFR 50, Appendix A, GDC 14, GDC 15, and GDC 28.
	2. ASME, Boiler and Pressure Vessel Code, Section III, Article NB-7000.
	 ASME, Boiler and Pressure Vessel Code, Section XI, Article IWX-5000.
	4. 10 CFR 100.
	5. FSAR, Section [7.2].
	 USAS B31.1, Standard Code for Pressure Piping, American Society of Mechanical Engineers, 1967.

•

.....

B 3.0 LIMITING CONDITION FOR OPERATION (LCO) APPLICABILITY

BASES	
LCOs	LCO 3.0.1 through LCO 3.0.7 establish the general requirements applicable to all Specifications and apply at all times, unless otherwise stated.
LCO 3.0.1	LCO 3.0.1 establishes the Applicability statement within each individual Specification as the requirement for when the LCO is required to be met (i.e., when the unit is in the MODES or other specified conditions of the Applicability statement of each Specification).
LCO 3.0.2	 LCO 3.0.2 establishes that upon discovery of a failure to meet an LCO, the associated ACTIONS shall be met. The Completion Time of each Required Action for an ACTIONS Condition is applicable from the point in time that an ACTIONS Condition is entered. The Required Actions establish those remedial measures that must be taken within specified Completion Times when the requirements of an LCO are not met. This Specification establishes that: a. Completion of the Required Actions within the specified Completion Times constitutes compliance with a Specification and
	 b. Completion of the Required Actions is not required when an LCO is met within the specified Completion Time, unless otherwise specified. There are two basic types of Required Actions. The first type of Required Action specifies a time limit in which the LCO must be met. This time limit is the Completion Time to restore an inoperable system or component to OPERABLE status or to restore variables to within specified limits. If this type of Required Action is not completed within the specified Completion Time, a shutdown may be required to place the unit in a MODE or condition in which the Specification is not applicable. (Whether stated as a Required Action or not, correction of the entered Condition is an action that may always be considered upon entering ACTIONS.) The second type of Required Action specifies the remedial measures that permit continued operation of the unit that is not further restricted by the Completion Time. In this case, compliance with the Required Actions provides an acceptable level of safety for continued operation.
	Completing the Required Actions is not required when an LCO is met or is no longer applicable, unless otherwise stated in the individual Specifications.

LCO 3.0.2 (continued)

The nature of some Required Actions of some Conditions necessitates that, once the Condition is entered, the Required Actions must be completed even though the associated Conditions no longer exist. The individual LCO's ACTIONS specify the Required Actions where this is the case. An example of this is in LCO 3.4.3, "RCS Pressure and Temperature (P/T) Limits."

The Completion Times of the Required Actions are also applicable when a system or component is removed from service intentionally. The reasons for intentionally relying on the ACTIONS include, but are not limited to, performance of Surveillances, preventive maintenance, corrective maintenance, or investigation of operational problems. Entering ACTIONS for these reasons must be done in a manner that does not compromise safety. Intentional entry into ACTIONS should not be made for operational convenience. Additionally, if intentional entry into ACTIONS would result in redundant equipment being inoperable, alternatives should be used instead. Doing so limits the time both subsystems/trains of a safety function are inoperable and limits the time conditions exist which may result in LCO 3.0.3 being entered. Individual Specifications may specify a time limit for performing an SR when equipment is removed from service or bypassed for testing. In this case, the Completion Times of the Required Actions are applicable when this time limit expires, if the equipment remains removed from service or bypassed.

When a change in MODE or other specified condition is required to comply with Required Actions, the unit may enter a MODE or other specified condition in which another Specification becomes applicable. In this case, the Completion Times of the associated Required Actions would apply from the point in time that the new Specification becomes applicable, and the ACTIONS Condition(s) are entered.

LCO 3.0.3 LCO 3.0.3 establishes the actions that must be implemented when an LCO is not met and:

a. An associated Required Action and Completion Time is not met and no other Condition applies or

LCO 3.0.3 (continued)

b. The condition of the unit is not specifically addressed by the associated ACTIONS. This means that no combination of Conditions stated in the ACTIONS can be made that exactly corresponds to the actual condition of the unit. Sometimes, possible combinations of Conditions are such that entering LCO 3.0.3 is warranted; in such cases, the ACTIONS specifically state a Condition corresponding to such combinations and also that LCO 3.0.3 be entered immediately.

This Specification delineates the time limits for placing the unit in a safe MODE or other specified condition when operation cannot be maintained within the limits for safe operation as defined by the LCO and its ACTIONS. It is not intended to be used as an operational convenience that permits routine voluntary removal of redundant systems or components from service in lieu of other alternatives that would not result in redundant systems or components being inoperable.

Upon entering LCO 3.0.3, 1 hour is allowed to prepare for an orderly shutdown before initiating a change in unit operation. This includes time to permit the operator to coordinate the reduction in electrical generation with the load dispatcher to ensure the stability and availability of the electrical grid. The time limits specified to reach lower MODES of operation permit the shutdown to proceed in a controlled and orderly manner that is well within the specified maximum cooldown rate and within the capabilities of the unit, assuming that only the minimum required equipment is OPERABLE. This reduces thermal stresses on components of the Reactor Coolant System and the potential for a plant upset that could challenge safety systems under conditions to which this Specification applies. The use and interpretation of specified times to complete the actions of LCO 3.0.3 are consistent with the discussion of Section 1.3, Completion Times.

A unit shutdown required in accordance with LCO 3.0.3 may be terminated and LCO 3.0.3 exited if any of the following occurs:

- a. The LCO is now met,
- b. A Condition exists for which the Required Actions have now been performed, or

LCO 3.0.3 (continued)

c. ACTIONS exist that do not have expired Completion Times. These Completion Times are applicable from the point in time that the Condition is initially entered and not from the time LCO 3.0.3 is exited.

The time limits of LCO 3.0.3 allow 37 hours for the unit to be in MODE 5 when a shutdown is required during MODE 1 operation. If the unit is in a lower MODE of operation when a shutdown is required, the time limit for reaching the next lower MODE applies. If a lower MODE is reached in less time than allowed, however, the total allowable time to reach MODE 5, or other applicable MODE, is not reduced. For example, if MODE 3 is reached in 2 hours, then the time allowed for reaching MODE 4 is the next 11 hours, because the total time for reaching MODE 4 is not reduced from the allowable limit of 13 hours. Therefore, if remedial measures are completed that would permit a return to MODE 1, a penalty is not incurred by having to reach a lower MODE of operation in less than the total time allowed.

In MODES 1, 2, 3, and 4, LCO 3.0.3 provides actions for Conditions not covered in other Specifications. The requirements of LCO 3.0.3 do not apply in MODES 5 and 6 because the unit is already in the most restrictive Condition required by LCO 3.0.3. The requirements of LCO 3.0.3 do not apply in other specified conditions of the Applicability (unless in MODE 1, 2, 3, or 4) because the ACTIONS of individual Specifications sufficiently define the remedial measures to be taken.

Exceptions to LCO 3.0.3 are provided in instances where requiring a unit shutdown, in accordance with LCO 3.0.3, would not provide appropriate remedial measures for the associated condition of the unit. An example of this is in LCO 3.7.15, "Fuel Storage Pool Water Level." LCO 3.7.15 has an Applicability of "During movement of irradiated fuel assemblies in the fuel storage pool." Therefore, this LCO can be applicable in any or all MODES. If the LCO and the Required Actions of LCO 3.7.15 are not met while in MODE 1, 2, or 3, there is no safety benefit to be gained by placing the unit in a shutdown condition. The Required Action of LCO 3.7.15 of "Suspend movement of irradiated fuel assemblies in the fuel storage pool" is the appropriate Required Action to complete in lieu of the actions of LCO 3.0.3. These exceptions are addressed in the individual Specifications.

LCO 3.0.4

LCO 3.0.4 establishes limitations on changes in MODES or other specified conditions in the Applicability when an LCO is not met. It allows placing the unit in a MODE or other specified condition stated in that Applicability (e.g., the Applicability desired to be entered) when unit conditions are such that the requirements of the LCO would not be met, in accordance with LCO 3.0.4.a, LCO 3.0.4.b, or LCO 3.0.4.c.

LCO 3.0.4.a allows entry into a MODE or other specified condition in the Applicability with the LCO not met when the associated ACTIONS to be entered permit continued operation in the MODE or other specified condition in the Applicability for an unlimited period of time. Compliance with Required Actions that permit continued operation of the unit for an unlimited period of time in a MODE or other specified condition provides an acceptable level of safety for continued operation. This is without regard to the status of the unit before or after the MODE change. Therefore, in such cases, entry into a MODE or other specified condition in the Applicability may be made in accordance with the provisions of the Required Actions.

LCO 3.0.4.b allows entry into a MODE or other specified condition in the Applicability with the LCO not met after performance of a risk assessment addressing inoperable systems and components, consideration of the results, determination of the acceptability of entering the MODE or other specified condition in the Applicability, and establishment of risk management actions, if appropriate.

The risk assessment may use guantitative, gualitative, or blended approaches, and the risk assessment will be conducted using the plant program, procedures, and criteria in place to implement 10 CFR 50.65(a)(4), which requires that risk impacts of maintenance activities to be assessed and managed. The risk assessment, for the purposes of LCO 3.0.4.b, must take into account all inoperable Technical Specification equipment regardless of whether the equipment is included in the normal 10 CFR 50.65(a)(4) risk assessment scope. The risk assessments will be conducted using the procedures and guidance endorsed by Regulatory Guide 1.182, "Assessing and Managing Risk Before Maintenance Activities at Nuclear Power Plants." Regulatory Guide 1.182 endorses the guidance in Section 11 of NUMARC 93-01, "Industry Guideline for Monitoring the Effectiveness of Maintenance at Nuclear Power Plants." These documents address general guidance for conduct of the risk assessment, guantitative and gualitative guidelines for establishing risk management actions, and example risk management actions. These include actions to plan and conduct other activities in a manner that controls overall risk, increased risk awareness by shift and

LCO 3.0.4 (continued)

management personnel, actions to reduce the duration of the condition, actions to minimize the magnitude of risk increases (establishment of backup success paths or compensatory measures), and determination that the proposed MODE change is acceptable. Consideration should also be given to the probability of completing restoration such that the requirements of the LCO would be met prior to the expiration of ACTIONS Completion Times that would require exiting the Applicability.

LCO 3.0.4.b may be used with single, or multiple systems and components unavailable. NUMARC 93-01 provides guidance relative to consideration of simultaneous unavailability of multiple systems and components.

The results of the risk assessment shall be considered in determining the acceptability of entering the MODE or other specified condition in the Applicability, and any corresponding risk management actions. The LCO 3.0.4.b risk assessments do not have to be documented.

The Technical Specifications allow continued operation with equipment unavailable in MODE 1 for the duration of the Completion Time. Since this is allowable, and since in general the risk impact in that particular MODE bounds the risk of transitioning into and through the applicable MODES or other specified conditions in the Applicability of the LCO, the use of the LCO 3.0.4.b allowance should be generally acceptable, as long as the risk is assessed and managed as stated above. However, there is a small subset of systems and components that have been determined to be more important to risk and use of the LCO 3.0.4.b allowance is prohibited. The LCOs governing these systems and components contain Notes prohibiting the use of LCO 3.0.4.b by stating that LCO 3.0.4.b is not applicable.

LCO 3.0.4.c allows entry into a MODE or other specified condition in the Applicability with the LCO not met based on a Note in the Specification which states LCO 3.0.4.c is applicable. These specific allowances permit entry into MODES or other specified conditions in the Applicability when the associated ACTIONS to be entered do not provide for continued operation for an unlimited period of time and a risk assessment has not been performed. This allowance may apply to all the ACTIONS or to a specific Required Action of a Specification. The risk assessments performed to justify the use of LCO 3.0.4.b usually only consider systems and components. For this reason, LCO 3.0.4.c is typically applied to Specifications which describe values and parameters (e.g., [Containment Air Temperature, Containment Pressure, MCPR, Moderator Temperature Coefficient]), and may be applied to other Specifications based on NRC plant specific approval.

LCO 3.0.4 (continued)

The provisions of this Specification should not be interpreted as endorsing the failure to exercise the good practice of restoring systems or components to OPERABLE status before entering an associated MODE or other specified condition in the Applicability.

The provisions of LCO 3.0.4 shall not prevent changes in MODES or other specified conditions in the Applicability that are required to comply with ACTIONS. In addition, the provisions of LCO 3.0.4 shall not prevent changes in MODES or other specified conditions in the Applicability that result from any unit shutdown. In this context, a unit shutdown is defined as a change in MODE or other specified condition in the Applicability associated with transitioning from MODE 1 to MODE 2, MODE 2 to MODE 3, MODE 3 to MODE 4, and MODE 4 to MODE 5.

Upon entry into a MODE or other specified condition in the Applicability with the LCO not met, LCO 3.0.1 and LCO 3.0.2 require entry into the applicable Conditions and Required Actions until the Condition is resolved, until the LCO is met, or until the unit is not within the Applicability of the Technical Specification.

Surveillances do not have to be performed on the associated inoperable equipment (or on variables outside the specified limits), as permitted by SR 3.0.1. Therefore, utilizing LCO 3.0.4 is not a violation of SR 3.0.1 or SR 3.0.4 for any Surveillances that have not been performed on inoperable equipment. However, SRs must be met to ensure OPERABILITY prior to declaring the associated equipment OPERABLE (or variable within limits) and restoring compliance with the affected LCO.

- LCO 3.0.5 LCO 3.0.5 establishes the allowance for restoring equipment to service under administrative controls when it has been removed from service or declared inoperable to comply with ACTIONS. The sole purpose of this Specification is to provide an exception to LCO 3.0.2 (e.g., to not comply with the applicable Required Action(s)) to allow the performance of required testing to demonstrate:
 - a. The OPERABILITY of the equipment being returned to service or
 - b. The OPERABILITY of other equipment.

LCO 3.0.5 (continued)

The administrative controls ensure the time the equipment is returned to service in conflict with the requirements of the ACTIONS is limited to the time absolutely necessary to perform the required testing to demonstrate OPERABILITY. This Specification does not provide time to perform any other preventive or corrective maintenance.

An example of demonstrating the OPERABILITY of the equipment being returned to service is reopening a containment isolation valve that has been closed to comply with Required Actions and must be reopened to perform the required testing.

An example of demonstrating the OPERABILITY of other equipment is taking an inoperable channel or trip system out of the tripped condition to prevent the trip function from occurring during the performance of required testing on another channel in the other trip system. A similar example of demonstrating the OPERABILITY of other equipment is taking an inoperable channel or trip system out of the tripped condition to permit the logic to function and indicate the appropriate response during the performance of required testing on another channel in the same trip system.

LCO 3.0.6

LCO 3.0.6 establishes an exception to LCO 3.0.2 for support systems that have an LCO specified in the Technical Specifications (TS). This exception is provided because LCO 3.0.2 would require that the Conditions and Required Actions of the associated inoperable supported system LCO be entered solely due to the inoperability of the support system. This exception is justified because the actions that are required to ensure the unit is maintained in a safe condition are specified in the support system LCO's Required Actions. These Required Actions may include entering the supported system's Conditions and Required Actions or may specify other Required Actions.

When a support system is inoperable and there is an LCO specified for it in the TS, the supported system(s) are required to be declared inoperable if determined to be inoperable as a result of the support system inoperability. However, it is not necessary to enter into the supported systems' Conditions and Required Actions unless directed to do so by the support system's Required Actions. The potential confusion and inconsistency of requirements related to the entry into multiple support and supported systems' LCOs' Conditions and Required Actions are eliminated by providing all the actions that are necessary to ensure the unit is maintained in a safe condition in the support system's Required Actions.

LCO 3.0.6 (continued)

However, there are instances where a support system's Required Action may either direct a supported system to be declared inoperable or direct entry into Conditions and Required Actions for the supported system. This may occur immediately or after some specified delay to perform some other Required Action. Regardless of whether it is immediate or after some delay, when a support system's Required Action directs a supported system to be declared inoperable or directs entry into Conditions and Required Actions for a supported system, the applicable Conditions and Required Actions shall be entered in accordance with LCO 3.0.2.

Specification 5.5.15, "Safety Function Determination Program (SFDP)," ensures loss of safety function is detected and appropriate actions are taken. Upon entry into LCO 3.0.6, an evaluation shall be made to determine if loss of safety function exists. Additionally, other limitations, remedial actions, or compensatory actions may be identified as a result of the support system inoperability and corresponding exception to entering supported system Conditions and Required Actions. The SFDP implements the requirements of LCO 3.0.6.

Cross train checks to identify a loss of safety function for those support systems that support multiple and redundant safety systems are required. The cross train check verifies that the supported systems of the redundant OPERABLE support system are OPERABLE, thereby ensuring safety function is retained. [A loss of safety function may exist when a support system is inoperable, and:

- a. A required system redundant to system(s) supported by the inoperable support system is also inoperable (EXAMPLE B 3.0.6-1),
- A required system redundant to system(s) in turn supported by the inoperable supported system is also inoperable (EXAMPLE B 3.0.6-2), or
- c. A required system redundant to support system(s) for the supported systems (a) and (b) above is also inoperable (EXAMPLE B 3.0.6-3).

EXAMPLE B 3.0.6-1

If System 2 of Train A is inoperable and System 5 of Train B is inoperable, a loss of safety function exists in supported System 5.

LCO 3.0.6 (continued)

EXAMPLE B 3.0.6-2

If System 2 of Train A is inoperable, and System 11 of Train B is inoperable, a loss of safety function exists in System 11 which is in turn supported by System 5.

EXAMPLE B 3.0.6-3

If System 2 of Train A is inoperable, and System 1 of Train B is inoperable, a loss of safety function exists in Systems 2, 4, 5, 8, 9, 10 and 11.]

If this evaluation determines that a loss of safety function exists, the appropriate Conditions and Required Actions of the LCO in which the loss of safety function exists are required to be entered.

[Figure B 3.0-1 Configuration of Trains and Systems]

This loss of safety function does not require the assumption of additional single failures or loss of offsite power. Since operations is being restricted in accordance with the ACTIONS of the support system, any resulting temporary loss of redundancy or single failure protection is taken

LCO 3.0.6 (continued)

into account. Similarly, the ACTIONS for inoperable offsite circuit(s) and inoperable diesel generator(s) provide the necessary restriction for cross train inoperabilities. This explicit cross train verification for inoperable AC electrical power sources also acknowledges that supported system(s) are not declared inoperable solely as a result of inoperability of a normal or emergency electrical power source (refer to the definition of OPERABILITY).

When loss of safety function is determined to exist, and the SFDP requires entry into the appropriate Conditions and Required Actions of the LCO in which the loss of safety function exists, consideration must be given to the specific type of function affected. Where a loss of function is solely due to a single Technical Specification support system (e.g., loss of automatic start due to inoperable instrumentation, or loss of pump suction source due to low tank level) the appropriate LCO is the LCO for the support system. The ACTIONS for a support system LCO adequately addresses the inoperabilities of that system without reliance on entering its supported system LCO. When the loss of function is the result of multiple support systems, the appropriate LCO is the LCO for the supported system.

LCO 3.0.7

There are certain special tests and operations required to be performed at various times over the life of the unit. These special tests and operations are necessary to demonstrate select unit performance characteristics, to perform special maintenance activities, and to perform special evolutions. Test Exception LCOs [3.1.8 and 3.4.19] allow specified Technical Specification (TS) requirements to be changed to permit performances of these special tests and operations, which otherwise could not be performed if required to comply with the requirements of these TS. Unless otherwise specified, all the other TS requirements remain unchanged. This will ensure all appropriate requirements of the MODE or other specified condition not directly associated with or required to be changed to perform the special test or operation will remain in effect.

The Applicability of a Test Exception LCO represents a condition not necessarily in compliance with the normal requirements of the TS. Compliance with Test Exception LCOs is optional. A special operation may be performed either under the provisions of the appropriate Test Exception LCO or under the other applicable TS requirements. If it is desired to perform the special operation under the provisions of the Test Exception LCO, the requirements of the Test Exception LCO shall be followed.

B 3.0 SURVEILLANCE REQUIREMENT (SR) APPLICABILITY

BASES		
SRs	SR 3.0.1 through SR 3.0.4 establish the general requirements applicable to all Specifications and apply at all times, unless otherwise stated.	
SR 3.0.1	SR 3.0.1 establishes the requirement that SRs must be met during the MODES or other specified conditions in the Applicability for which the requirements of the LCO apply, unless otherwise specified in the individual SRs. This Specification is to ensure that Surveillances are performed to verify the OPERABILITY of systems and components, and that variables are within specified limits. Failure to meet a Surveillance within the specified Frequency, in accordance with SR 3.0.2, constitutes a failure to meet an LCO. Surveillances may be performed by means of any series of sequential, overlapping, or total steps provided the entire Surveillance is performed within the specified Frequency. Additionally, the definitions related to instrument testing (e.g., CHANNEL CALIBRATION) specify that these tests are performed by means of any series of sequential, overlapping, or total steps.	
	Systems and components are assumed to be OPERABLE when the associated SRs have been met. Nothing in this Specification, however, is to be construed as implying that systems or components are OPERABLE when:	
	 The systems or components are known to be inoperable, although still meeting the SRs; or 	
	 b. The requirements of the Surveillance(s) are known not to be met between required Surveillance performances. 	
	Surveillances do not have to be performed when the unit is in a MODE or other specified condition for which the requirements of the associated LCO are not applicable, unless otherwise specified. The SRs associated with a test exception are only applicable when the test exception is used as an allowable exception to the requirements of a Specification.	
	Unplanned events may satisfy the requirements (including applicable acceptance criteria) for a given SR. In this case, the unplanned event may be credited as fulfilling the performance of the SR. This allowance includes those SRs whose performance is normally precluded in a given MODE or other specified condition.	
	Surveillances, including Surveillances invoked by Required Actions, do not have to be performed on inoperable equipment because the ACTIONS define the remedial measures that apply. Surveillances have to be met and performed in accordance with SR 3.0.2, prior to returning equipment to OPERABLE status.	

SR 3.0.1 (continued)

Upon completion of maintenance, appropriate post maintenance testing is required to declare equipment OPERABLE. This includes ensuring applicable Surveillances are not failed and their most recent performance is in accordance with SR 3.0.2. Post maintenance testing may not be possible in the current MODE or other specified conditions in the Applicability due to the necessary unit parameters not having been established. In these situations, the equipment may be considered OPERABLE provided testing has been satisfactorily completed to the extent possible and the equipment is not otherwise believed to be incapable of performing its function. This will allow operation to proceed to a MODE or other specified condition where other necessary post maintenance tests can be completed.

Some examples of this process are:

- Auxiliary feedwater (AFW) pump turbine maintenance during refueling that requires testing at steam pressures > 800 psi.
 However, if other appropriate testing is satisfactorily completed, the AFW System can be considered OPERABLE. This allows startup and other necessary testing to proceed until the plant reaches the steam pressure required to perform the testing.
- b. High pressure safety injection (HPI) maintenance during shutdown that requires system functional tests at a specified pressure. Provided other appropriate testing is satisfactorily completed, startup can proceed with HPI considered OPERABLE. This allows operation to reach the specified pressure to complete the necessary post maintenance testing.
- SR 3.0.2 SR 3.0.2 establishes the requirements for meeting the specified Frequency for Surveillances and any Required Action with a Completion Time that requires the periodic performance of the Required Action on a "once per . . ." interval.

SR 3.0.2 permits a 25% extension of the interval specified in the Frequency. This extension facilitates Surveillance scheduling and considers plant operating conditions that may not be suitable for conducting the Surveillance (e.g., transient conditions or other ongoing Surveillance or maintenance activities).

The 25% extension does not significantly degrade the reliability that results from performing the Surveillance at its specified Frequency. This is based on the recognition that the most probable result of any particular Surveillance being performed is the verification of conformance with the SRs. The exceptions to SR 3.0.2 are those Surveillances for which the

SR 3.0.2 (continued)

25% extension of the interval specified in the Frequency does not apply. These exceptions are stated in the individual Specifications. The requirements of regulations take precedence over the TS. An example of where SR 3.0.2 does not apply is in the Containment Leakage Rate Testing Program. This program establishes testing requirements and Frequencies in accordance with the requirements of regulations. The TS cannot in and of themselves extend a test interval specified in the regulations. As stated in SR 3.0.2, the 25% extension also does not apply to the initial portion of a periodic Completion Time that requires performance on a "once per ..." basis. The 25% extension applies to each performance after the initial performance. The initial performance of the Required Action, whether it is a particular Surveillance or some other remedial action, is considered a single action with a single Completion Time. One reason for not allowing the 25% extension to this Completion Time is that such an action usually verifies that no loss of function has occurred by checking the status of redundant or diverse components or accomplishes the function of the inoperable equipment in an alternative manner.

The provisions of SR 3.0.2 are not intended to be used repeatedly merely as an operational convenience to extend Surveillance intervals (other than those consistent with refueling intervals) or periodic Completion Time intervals beyond those specified.

SR 3.0.3

SR 3.0.3 establishes the flexibility to defer declaring affected equipment inoperable or an affected variable outside the specified limits when a Surveillance has not been completed within the specified Frequency. A delay period of up to 24 hours or up to the limit of the specified Frequency, whichever is greater, applies from the point in time that it is discovered that the Surveillance has not been performed in accordance with SR 3.0.2, and not at the time that the specified Frequency was not met.

This delay period provides adequate time to complete Surveillances that have been missed. This delay period permits the completion of a Surveillance before complying with Required Actions or other remedial measures that might preclude completion of the Surveillance.

The basis for this delay period includes consideration of unit conditions, adequate planning, availability of personnel, the time required to perform the Surveillance, the safety significance of the delay in completing the required Surveillance, and the recognition that the most probable result of any particular Surveillance being performed is the verification of conformance with the requirements.

SR 3.0.3 (continued)

When a Surveillance with a Frequency based not on time intervals, but upon specified unit conditions, operating situations, or requirements of regulations (e.g., prior to entering MODE 1 after each fuel loading, or in accordance with 10 CFR 50, Appendix J, as modified by approved exemptions, etc.) is discovered to not have been performed when specified, SR 3.0.3 allows for the full delay period of up to the specified Frequency to perform the Surveillance. However, since there is not a time interval specified, the missed Surveillance should be performed at the first reasonable opportunity.

SR 3.0.3 provides a time limit for, and allowances for the performance of, Surveillances that become applicable as a consequence of MODE changes imposed by Required Actions.

Failure to comply with specified Frequencies for SRs is expected to be an infrequent occurrence. Use of the delay period established by SR 3.0.3 is a flexibility which is not intended to be used as an operational convenience to extend Surveillance intervals. While up to 24 hours or the limit of the specified Frequency is provided to perform the missed Surveillance, it is expected that the missed Surveillance will be performed at the first reasonable opportunity. The determination of the first reasonable opportunity should include consideration of the impact on plant risk (from delaying the Surveillance as well as any plant configuration changes required or shutting the plant down to perform the Surveillance) and impact on any analysis assumptions, in addition to unit conditions, planning, availability of personnel, and the time required to perform the Surveillance. This risk impact should be managed through the program in place to implement 10 CFR 50.65(a)(4) and its implementation guidance. NRC Regulatory Guide 1.182, "Assessing and Managing Risk Before Maintenance Activities at Nuclear Power Plants." This Regulatory Guide addresses consideration of temporary and aggregate risk impacts, determination of risk management action thresholds, and risk management action up to and including plant shutdown. The missed Surveillance should be treated as an emergent condition as discussed in the Regulatory Guide. The risk evaluation may use quantitative, gualitative, or blended methods. The degree of depth and rigor of the evaluation should be commensurate with the importance of the component. Missed Surveillances for important components should be analyzed quantitatively. If the results of the risk evaluation determine the risk increase is significant, this evaluation should be used to determine the safest course of action. All missed Surveillances will be placed in the licensee's Corrective Action Program.

SR 3.0.3 (continued)

If a Surveillance is not completed within the allowed delay period, then the equipment is considered inoperable or the variable is considered outside the specified limits and the Completion Times of the Required Actions for the applicable LCO Conditions begin immediately upon expiration of the delay period. If a Surveillance is failed within the delay period, then the equipment is inoperable, or the variable is outside the specified limits and the Completion Times of the Required Actions for the applicable LCO Conditions begin immediately upon the failure of the Surveillance.

Completion of the Surveillance within the delay period allowed by this Specification, or within the Completion Time of the ACTIONS, restores compliance with SR 3.0.1.

SR 3.0.4 SR 3.0.4 establishes the requirement that all applicable SRs must be met before entry into a MODE or other specified condition in the Applicability.

This Specification ensures that system and component OPERABILITY requirements and variable limits are met before entry into MODES or other specified conditions in the Applicability for which these systems and components ensure safe operation of the unit. The provisions of this Specification should not be interpreted as endorsing the failure to exercise the good practice of restoring systems or components to OPERABLE status before entering an associated MODE or other specified condition in the Applicability.

A provision is included to allow entry into a MODE or other specified condition in the Applicability when an LCO is not met due to a Surveillance not being met in accordance with LCO 3.0.4.

However, in certain circumstances, failing to meet an SR will not result in SR 3.0.4 restricting a MODE change or other specified condition change. When a system, subsystem, division, component, device, or variable is inoperable or outside its specified limits, the associated SR(s) are not required to be performed, per SR 3.0.1, which states that surveillances do not have to be performed on inoperable equipment. When equipment is inoperable, SR 3.0.4 does not apply to the associated SR(s) since the requirement for the SR(s) to be performed is removed. Therefore, failing to perform the Surveillance(s) within the specified Frequency does not result in an SR 3.0.4 restriction to changing MODES or other specified conditions of the Applicability. However, since the LCO is not met in this

SR 3.0.4 (continued)

instance, LCO 3.0.4 will govern any restrictions that may (or may not) apply to MODE or other specified condition changes. SR 3.0.4 does not restrict changing MODES or other specified conditions of the Applicability when a Surveillance has not been performed within the specified Frequency, provided the requirement to declare the LCO not met has been delayed in accordance with SR 3.0.3.

The provisions of SR 3.0.4 shall not prevent entry into MODES or other specified conditions in the Applicability that are required to comply with ACTIONS. In addition, the provisions of SR 3.0.4 shall not prevent changes in MODES or other specified conditions in the Applicability that result from any unit shutdown. In this context, a unit shutdown is defined as a change in MODE or other specified condition in the Applicability associated with transitioning from MODE 1 to MODE 2, MODE 2 to MODE 3, MODE 3 to MODE 4, and MODE 4 to MODE 5.

The precise requirements for performance of SRs are specified such that exceptions to SR 3.0.4 are not necessary. The specific time frames and conditions necessary for meeting the SRs are specified in the Frequency, in the Surveillance, or both. This allows performance of Surveillances when the prerequisite condition(s) specified in a Surveillance procedure require entry into the MODE or other specified condition in the Applicability of the associated LCO prior to the performance or completion of a Surveillance. A Surveillance that could not be performed until after entering the LCO's Applicability, would have its Frequency specified such that it is not "due" until the specific conditions needed are met. Alternately, the Surveillance may be stated in the form of a Note, as not required (to be met or performed) until a particular event, condition, or time has been reached. Further discussion of the specific formats of SRs' annotation is found in Section 1.4, Frequency.

REVISION HISTORY

-

REVISION HISTORY				
REVISION	TSTF	DESCRIPTION	APPROVED	
2.1	TSTF-358, R.6	Missed Surveillance Requirements	10/01/01	

.

.

B 3.1 REACTIVITY CONTROL SYSTEMS

B 3.1.1 SHUTDOWN MARGIN (SDM)

BASES			
BACKGROUND	According to GDC 26 (Ref. 1), the reactivity control systems must be redundant and capable of holding the reactor core subcritical when shut down under cold conditions. Maintenance of the SDM ensures that postulated reactivity events will not damage the fuel.		
	SDM requirements provide sufficient reactivity margin to ensure that acceptable fuel design limits will not be exceeded for normal shutdown and anticipated operational occurrences (AOOs). As such, the SDM defines the degree of subcriticality that would be obtained immediately following the insertion or scram of all shutdown and control rods, assuming that the single rod cluster assembly of highest reactivity worth is fully withdrawn.		
	The system design requires that two independent reactivity control systems be provided, and that one of these systems be capable of maintaining the core subcritical under cold conditions. These requirements are provided by the use of movable control assemblies and soluble boric acid in the Reactor Coolant System (RCS). The Control Rod System can compensate for the reactivity effects of the fuel and water temperature changes accompanying power level changes over the range from full load to no load. In addition, the Control Rod System, together with the boration system, provides the SDM during power operation and is capable of making the core subcritical rapidly enough to prevent exceeding acceptable fuel damage limits, assuming that the rod of highest reactivity worth remains fully withdrawn. The soluble boron system can compensate for fuel depletion during operation and all xenon burnout reactivity changes and maintain the reactor subcritical under cold conditions.		
	During power operation, SDM control is ensured by operating with the shutdown banks fully withdrawn and the control banks within the limits of LCO 3.1.6, "Control Bank Insertion Limits." When the unit is in the shutdown and refueling modes, the SDM requirements are met by means of adjustments to the RCS boron concentration.		
APPLICABLE SAFETY ANALYSES	The minimum required SDM is assumed as an initial condition in safety analyses. The safety analysis (Ref. 2) establishes an SDM that ensures specified acceptable fuel design limits are not exceeded for normal operation and AOOs, with the assumption of the highest worth rod stuck out on scram. For MODE 5, the primary safety analysis that relies on the SDM limits is the boron dilution analysis.		

APPLICABLE SAFETY ANALYSES (continued)

The acceptance criteria for the SDM requirements are that specified acceptable fuel design limits are maintained. This is done by ensuring that:

- a. The reactor can be made subcritical from all operating conditions, transients, and Design Basis Events,
- b. The reactivity transients associated with postulated accident conditions are controllable within acceptable limits (departure from nucleate boiling ratio (DNBR), fuel centerline temperature limits for AOOs, and 280 cal/gm energy deposition for the rod ejection accident), and
- c. The reactor will be maintained sufficiently subcritical to preclude inadvertent criticality in the shutdown condition.

The most limiting accident for the SDM requirements is based on a main steam line break (MSLB), as described in the accident analysis (Ref. 2). The increased steam flow resulting from a pipe break in the main steam system causes an increased energy removal from the affected steam generator (SG), and consequently the RCS. This results in a reduction of the reactor coolant temperature. The resultant coolant shrinkage causes a reduction in pressure. In the presence of a negative moderator temperature coefficient, this cooldown causes an increase in core reactivity. As RCS temperature decreases, the severity of an MSLB decreases until the MODE 5 value is reached. The most limiting MSLB, with respect to potential fuel damage before a reactor trip occurs, is a guillotine break of a main steam line inside containment initiated at the end of core life. The positive reactivity addition from the moderator temperature decrease will terminate when the affected SG boils dry, thus terminating RCS heat removal and cooldown. Following the MSLB, a post trip return to power may occur; however, no fuel damage occurs as a result of the post trip return to power, and THERMAL POWER does not violate the Safety Limit (SL) requirement of SL 2.1.1.

In addition to the limiting MSLB transient, the SDM requirement must also protect against:

- a. Inadvertent boron dilution,
- b. An uncontrolled rod withdrawal from subcritical or low power condition,

APPLICABLE SAFETY ANALYSES (continued)

- c. Startup of an inactive reactor coolant pump (RCP), and
- d. Rod ejection.

Each of these events is discussed below.

In the boron dilution analysis, the required SDM defines the reactivity difference between an initial subcritical boron concentration and the corresponding critical boron concentration. These values, in conjunction with the configuration of the RCS and the assumed dilution flow rate, directly affect the results of the analysis. This event is most limiting at the beginning of core life, when critical boron concentrations are highest.

Depending on the system initial conditions and reactivity insertion rate, the uncontrolled rod withdrawal transient is terminated by either a high power level trip or a high pressurizer pressure trip. In all cases, power level, RCS pressure, linear heat rate, and the DNBR do not exceed allowable limits.

The startup of an inactive RCP will not result in a "cold water" criticality, even if the maximum difference in temperature exists between the SG and the core. The maximum positive reactivity addition that can occur due to an inadvertent RCP start is less than half the minimum required SDM. Startup of an idle RCP cannot, therefore, produce a return to power from the hot standby condition.

The ejection of a control rod rapidly adds reactivity to the reactor core, causing both the core power level and heat flux to increase with corresponding increases in reactor coolant temperatures and pressure. The ejection of a rod also produces a time dependent redistribution of core power.

SDM satisfies Criterion 2 of 10 CFR 50.36(c)(2)(ii). Even though it is not directly observed from the control room, SDM is considered an initial condition process variable because it is periodically monitored to ensure that the unit is operating within the bounds of accident analysis assumptions.

LCO SDM is a core design condition that can be ensured during operation through control rod positioning (control and shutdown banks) and through the soluble boron concentration.

BASES

LCO (continued)			
	The MSLB (Ref. 2) and the boron dilution (Ref. 3) accidents are the most limiting analyses that establish the SDM value of the LCO. For MSLB accidents, if the LCO is violated, there is a potential to exceed the DNBR limit and to exceed 10 CFR 100, "Reactor Site Criteria," limits (Ref. 4). For the boron dilution accident, if the LCO is violated, the minimum required time assumed for operator action to terminate dilution may no longer be applicable.		
APPLICABILITY	In MODE 2 with $k_{eff} < 1.0$ and in MODES 3, 4, and 5, the SDM requirements are applicable to provide sufficient negative reactivity to meet the assumptions of the safety analyses discussed above. In MODE 6, the shutdown reactivity requirements are given in LCO 3.9.1, "Boron Concentration." In MODES 1 and 2, SDM is ensured by complying with LCO 3.1.5, "Shutdown Bank Insertion Limits," and LCO 3.1.6.		
ACTIONS	<u>A.1</u>		
	If the SDM requirements are not met, boration must be initiated promptly. A Completion Time of 15 minutes is adequate for an operator to correctly align and start the required systems and components. It is assumed that boration will be continued until the SDM requirements are met.		
	In the determination of the required combination of boration flow rate and boron concentration, there is no unique requirement that must be satisfied. Since it is imperative to raise the boron concentration of the RCS as soon as possible, the boron concentration should be a highly concentrated solution, such as that normally found in the boric acid storage tank, or the borated water storage tank. The operator should borate with the best source available for the plant conditions.		
	In determining the boration flow rate, the time in core life must be considered. For instance, the most difficult time in core life to increase the RCS boron concentration is at the beginning of cycle when the boron concentration may approach or exceed 2000 ppm. Assuming that a value of 1% $\Delta k/k$ must be recovered and a boration flow rate of [] gpm, it is possible to increase the boron concentration of the RCS by 100 ppm in approximately 35 minutes. If a boron worth of 10 pcm/ppm is assumed, this combination of parameters will increase the SDM by 1% $\Delta k/k$. These boration parameters of [] gpm and [] ppm represent typical values and are provided for the purpose of offering a specific example.		
SURVEILLANCE REQUIREMENTS	<u>SR 3.1.1.1</u>		
------------------------------	--	--	--
	In MODES 1 and 2 with $K_{eff} \ge 1.0$, SDM is verified by observing that the requirements of LCO 3.1.5 and LCO 3.1.6 are met. In the event that a rod is known to be untrippable, however, SDM verification must account for the worth of the untrippable rod as well as another rod of maximum worth.		
	In MODES 3, 4, and 5, the SDM is verified by performing a reactivity balance calculation, considering the listed reactivity effects:		
	a. RCS boron concentration,		
	b. Control bank position,		
	c. RCS average temperature,		
	d. Fuel burnup based on gross thermal energy generation,		
	e. Xenon concentration,		
	f. Samarium concentration, and		
	g. Isothermal temperature coefficient (ITC).		
	Using the ITC accounts for Doppler reactivity in this calculation because the reactor is subcritical, and the fuel temperature will be changing at the same rate as the RCS.		
	The Frequency of 24 hours is based on the generally slow change in required boron concentration and the low probability of an accident occurring without the required SDM. This allows time for the operator to collect the required data, which includes performing a boron concentration analysis, and complete the calculation.		
REFERENCES	1. 10 CFR 50, Appendix A, GDC 26.		
	2. FSAR, Chapter [15].		
	3. FSAR, Chapter [15].		
	4. 10 CFR 100.		

B 3.1 REACTIVITY CONTROL SYSTEMS

B 3.1.2 Core Reactivity

BASES

According to GDC 26, GDC 28, and GDC 29 (Ref. 1), reactivity shall be BACKGROUND controllable, such that subcriticality is maintained under cold conditions. and acceptable fuel design limits are not exceeded during normal operation and anticipated operational occurrences. Therefore, reactivity balance is used as a measure of the predicted versus measured core reactivity during power operation. The periodic confirmation of core reactivity is necessary to ensure that Design Basis Accident (DBA) and transient safety analyses remain valid. A large reactivity difference could be the result of unanticipated changes in fuel, control rod worth, or operation at conditions not consistent with those assumed in the predictions of core reactivity, and could potentially result in a loss of SDM or violation of acceptable fuel design limits. Comparing predicted versus measured core reactivity validates the nuclear methods used in the safety analysis and supports the SDM demonstrations (LCO 3.1.1, "SHUTDOWN MARGIN (SDM)") in ensuring the reactor can be brought safely to cold, subcritical conditions.

> When the reactor core is critical or in normal power operation, a reactivity balance exists and the net reactivity is zero. A comparison of predicted and measured reactivity is convenient under such a balance, since parameters are being maintained relatively stable under steady state power conditions. The positive reactivity inherent in the core design is balanced by the negative reactivity of the control components, thermal feedback, neutron leakage, and materials in the core that absorb neutrons, such as burnable absorbers producing zero net reactivity. Excess reactivity can be inferred from the boron letdown curve (or critical boron curve), which provides an indication of the soluble boron concentration in the Reactor Coolant System (RCS) versus cycle burnup. Periodic measurement of the RCS boron concentration for comparison with the predicted value with other variables fixed (such as rod height. temperature, pressure, and power), provides a convenient method of ensuring that core reactivity is within design expectations and that the calculational models used to generate the safety analysis are adequate.

> In order to achieve the required fuel cycle energy output, the uranium enrichment, in the new fuel loading and in the fuel remaining from the previous cycle, provides excess positive reactivity beyond that required to sustain steady state operation throughout the cycle. When the reactor is

BACKGROUND (continued)

	critical at RTP and moderator temperature, the excess positive reactivity is compensated by burnable absorbers (if any), control rods, whatever neutron poisons (mainly xenon and samarium) are present in the fuel, and the RCS boron concentration.
	When the core is producing THERMAL POWER, the fuel is being depleted and excess reactivity is decreasing. As the fuel depletes, the RCS boron concentration is reduced to decrease negative reactivity and maintain constant THERMAL POWER. The boron letdown curve is based on steady state operation at RTP. Therefore, deviations from the predicted boron letdown curve may indicate deficiencies in the design analysis, deficiencies in the calculational models, or abnormal core conditions, and must be evaluated.
APPLICABLE SAFETY ANALYSES	The acceptance criteria for core reactivity are that the reactivity balance limit ensures plant operation is maintained within the assumptions of the safety analyses.
	Accurate prediction of core reactivity is either an explicit or implicit assumption in the accident analysis evaluations. Every accident evaluation (Ref. 2) is, therefore, dependent upon accurate evaluation of core reactivity. In particular, SDM and reactivity transients, such as control rod withdrawal accidents or rod ejection accidents, are very sensitive to accurate prediction of core reactivity. These accident analysis evaluations rely on computer codes that have been qualified against available test data, operating plant data, and analytical benchmarks. Monitoring reactivity balance additionally ensures that the nuclear methods provide an accurate representation of the core reactivity.
	Design calculations and safety analyses are performed for each fuel cycle for the purpose of predetermining reactivity behavior and the RCS boron concentration requirements for reactivity control during fuel depletion.
	The comparison between measured and predicted initial core reactivity provides a normalization for the calculational models used to predict core reactivity. If the measured and predicted RCS boron concentrations for identical core conditions at beginning of cycle (BOC) do not agree, then the assumptions used in the reload cycle design analysis or the calculational models used to predict soluble boron requirements may not be accurate. If reasonable agreement between measured and predicted core reactivity exists at BOC, then the prediction may be normalized to

APPLICABLE SAFETY ANALYSES (continued)

the measured boron concentration. Thereafter, any significant deviations in the measured boron concentration from the predicted boron letdown curve that develop during fuel depletion may be an indication that the calculational model is not adequate for core burnups beyond BOC, or that an unexpected change in core conditions has occurred.

The normalization of predicted RCS boron concentration to the measured value is typically performed after reaching RTP following startup from a refueling outage, with the control rods in their normal positions for power operation. The normalization is performed at BOC conditions, so that core reactivity relative to predicted values can be continually monitored and evaluated as core conditions change during the cycle.

Core reactivity satisfies Criterion 2 of 10 CFR 50.36(c)(2)(ii).

LCO Long term core reactivity behavior is a result of the core physics design and cannot be easily controlled once the core design is fixed. During operation, therefore, the LCO can only be ensured through measurement and tracking, and appropriate actions taken as necessary. Large differences between actual and predicted core reactivity may indicate that the assumptions of the DBA and transient analyses are no longer valid, or that the uncertainties in the Nuclear Design Methodology are larger than expected. A limit on the reactivity balance of $\pm 1\% \Delta k/k$ has been established based on engineering judgment. A 1% deviation in reactivity from that predicted is larger than expected for normal operation and should therefore be evaluated.

When measured core reactivity is within $1\% \Delta k/k$ of the predicted value at steady state thermal conditions, the core is considered to be operating within acceptable design limits. Since deviations from the limit are normally detected by comparing predicted and measured steady state RCS critical boron concentrations, the difference between measured and predicted values would be approximately 100 ppm (depending on the boron worth) before the limit is reached. These values are well within the uncertainty limits for analysis of boron concentration samples, so that spurious violations of the limit due to uncertainty in measuring the RCS boron concentration are unlikely.

APPLICABILITY The limits on core reactivity must be maintained during MODES 1 and 2 because a reactivity balance must exist when the reactor is critical or producing THERMAL POWER. As the fuel depletes, core conditions are changing, and confirmation of the reactivity balance ensures the core is operating as designed. This Specification does not apply in MODES 3, 4, and 5 because the reactor is shut down and the reactivity balance is not changing.

APPLICABILITY (continued)

In MODE 6, fuel loading results in a continually changing core reactivity. Boron concentration requirements (LCO 3.9.1, "Boron Concentration") ensure that fuel movements are performed within the bounds of the safety analysis. An SDM demonstration is required during the first startup following operations that could have altered core reactivity (e.g., fuel movement, control rod replacement, control rod shuffling).

ACTIONS <u>A.1 and A.2</u>

Should an anomaly develop between measured and predicted core reactivity, an evaluation of the core design and safety analysis must be performed. Core conditions are evaluated to determine their consistency with input to design calculations. Measured core and process parameters are evaluated to determine that they are within the bounds of the safety analysis, and safety analysis calculational models are reviewed to verify that they are adequate for representation of the core conditions. The required Completion Time of 7 days is based on the low probability of a DBA occurring during this period, and allows sufficient time to assess the physical condition of the reactor and complete the evaluation of the core design and safety analysis.

Following evaluations of the core design and safety analysis, the cause of the reactivity anomaly may be resolved. If the cause of the reactivity anomaly is a mismatch in core conditions at the time of RCS boron concentration sampling, then a recalculation of the RCS boron concentration requirements may be performed to demonstrate that core reactivity is behaving as expected. If an unexpected physical change in the condition of the core has occurred, it must be evaluated and corrected, if possible. If the cause of the reactivity anomaly is in the calculation technique, then the calculational models must be revised to provide more accurate predictions. If any of these results are demonstrated, and it is concluded that the reactor core is acceptable for continued operation, then the boron letdown curve may be renormalized and power operation may continue. If operational restriction or additional SRs are necessary to ensure the reactor core is acceptable for continued operation, then they must be defined.

The required Completion Time of 7 days is adequate for preparing whatever operating restrictions or Surveillances that may be required to allow continued reactor operation.

. •

ACTIONS (continued)	
	<u>B.1</u>
	If the core reactivity cannot be restored to within the 1% $\Delta k/k$ limit, the plant must be brought to a MODE in which the LCO does not apply. To achieve this status, the plant must be brought to at least MODE 3 within 6 hours. If the SDM for MODE 3 is not met, then the boration required by SR 3.1.1.1 would occur. The allowed Completion Time is reasonable, based on operating experience, for reaching MODE 3 from full power conditions in an orderly manner and without challenging plant systems.
SURVEILLANCE	<u>SR_3.1.2.1</u>
	Core reactivity is verified by periodic comparisons of measured and predicted RCS boron concentrations. The comparison is made, considering that other core conditions are fixed or stable, including control rod position, moderator temperature, fuel temperature, fuel depletion, xenon concentration, and samarium concentration. The Surveillance is performed prior to entering MODE 1 as an initial check on core conditions and design calculations at BOC. The SR is modified by a Note. The Note indicates that the normalization of predicted core reactivity to the measured value must take place within the first 60 effective full power days (EFPD) after each fuel loading. This allows sufficient time for core conditions to reach steady state, but prevents operation for a large fraction of the fuel cycle without establishing a benchmark for the design calculations. The required subsequent Frequency of 31 EFPD, following the initial 60 EFPD after entering MODE 1, is acceptable, based on the slow rate of core changes due to fuel depletion and the presence of other indicators (QPTR, AFD, etc.) for prompt indication of an anomaly.
REFERENCES	1. 10 CFR 50, Appendix A, GDC 26, GDC 28, and GDC 29.
	2. FSAR, Chapter [15].

.

B 3.1 REACTIVITY CONTROL SYSTEMS

B 3.1.3 Moderator Temperature Coefficient (MTC)

BASES	
BACKGROUND	According to GDC 11 (Ref. 1), the reactor core and its interaction with the Reactor Coolant System (RCS) must be designed for inherently stable power operation, even in the possible event of an accident. In particular, the net reactivity feedback in the system must compensate for any unintended reactivity increases.
	The MTC relates a change in core reactivity to a change in reactor coolant temperature (a positive MTC means that reactivity increases with increasing moderator temperature; conversely, a negative MTC means that reactivity decreases with increasing moderator temperature). The reactor is designed to operate with a negative MTC over the largest possible range of fuel cycle operation. Therefore, a coolant temperature increase will cause a reactivity decrease, so that the coolant temperature tends to return toward its initial value. Reactivity increases that cause a coolant temperature increase will thus be self limiting, and stable power operation will result.
	MTC values are predicted at selected burnups during the safety evaluation analysis and are confirmed to be acceptable by measurements. Both initial and reload cores are designed so that the beginning of cycle (BOC) MTC is less than zero when THERMAL POWER is at RTP. The actual value of the MTC is dependent on core characteristics, such as fuel loading and reactor coolant soluble boron concentration. The core design may require additional fixed distributed poisons to yield an MTC at BOC within the range analyzed in the plant accident analysis. The end of cycle (EOC) MTC is also limited by the requirements of the accident analysis. Fuel cycles that are designed to achieve high burnups or that have changes to other characteristics are evaluated to ensure that the MTC does not exceed the EOC limit.
	The limitations on MTC are provided to ensure that the value of this coefficient remains within the limiting conditions assumed in the FSAR accident and transient analyses.

- ---

BASES

	If the LCO limits are not met, the unit response during transients may not be as predicted. The core could violate criteria that prohibit a return to criticality, or the departure from nucleate boiling ratio criteria of the approved correlation may be violated, which could lead to a loss of the fuel cladding integrity.	
	The SRs for measurement of the MTC at the beginning and near the end of the fuel cycle are adequate to confirm that the MTC remains within its limits, since this coefficient changes slowly, due principally to the reduction in RCS boron concentration associated with fuel burnup.	
APPLICABLE SAFETY ANALYSES	The acceptance criteria for the specified MTC are:	
	a. The MTC values must remain within the bounds of those used in the accident analysis (Ref. 2) and	
	b. The MTC must be such that inherently stable power operations result during normal operation and accidents, such as overheating and overcooling events.	
	The FSAR, Chapter 15 (Ref. 2), contains analyses of accidents that result in both overheating and overcooling of the reactor core. MTC is one of the controlling parameters for core reactivity in these accidents. Both the most positive value and most negative value of the MTC are important to safety, and both values must be bounded. Values used in the analyses consider worst case conditions to ensure that the accident results are bounding (Ref. 3).	
	The consequences of accidents that cause core overheating must be evaluated when the MTC is positive. Such accidents include the rod withdrawal transient from either zero (Ref. 4) or RTP, loss of main feedwater flow, and loss of forced reactor coolant flow. The consequences of accidents that cause core overcooling must be evaluated when the MTC is negative. Such accidents include sudden feedwater flow increase and sudden decrease in feedwater temperature.	

.

APPLICABLE SAFETY ANALYSES (continued)

In order to ensure a bounding accident analysis, the MTC is assumed to be its most limiting value for the analysis conditions appropriate to each accident. The bounding value is determined by considering rodded and unrodded conditions, whether the reactor is at full or zero power, and whether it is the BOC or EOC life. The most conservative combination appropriate to the accident is then used for the analysis (Ref. 2).

MTC values are bounded in reload safety evaluations assuming steady state conditions at BOC and EOC. An EOC measurement is conducted at conditions when the RCS boron concentration reaches approximately 300 ppm. The measured value may be extrapolated to project the EOC value, in order to confirm reload design predictions.

MTC satisfies Criterion 2 of 10 CFR 50.36(c)(2)(ii). Even though it is not directly observed and controlled from the control room, MTC is considered an initial condition process variable because of its dependence on boron concentration.

LCO LCO 3.1.3 requires the MTC to be within specified limits of the COLR to ensure that the core operates within the assumptions of the accident analysis. During the reload core safety evaluation, the MTC is analyzed to determine that its values remain within the bounds of the original accident analysis during operation.

> Assumptions made in safety analyses require that the MTC be less positive than a given upper bound and more positive than a given lower bound. The MTC is most positive at BOC; this upper bound must not be exceeded. This maximum upper limit occurs at BOC, all rods out (ARO), hot zero power conditions. At EOC the MTC takes on its most negative value, when the lower bound becomes important. This LCO exists to ensure that both the upper and lower bounds are not exceeded.

During operation, therefore, the conditions of the LCO can only be ensured through measurement. The Surveillance checks at BOC and EOC on MTC provide confirmation that the MTC is behaving as anticipated so that the acceptance criteria are met.

LCO (continued)	
	The LCO establishes a maximum positive value that cannot be exceeded. The BOC positive limit and the EOC negative limit are established in the COLR to allow specifying limits for each particular cycle. This permits the unit to take advantage of improved fuel management and changes in unit operating schedule.
APPLICABILITY	Technical Specifications place both LCO and SR values on MTC, based on the safety analysis assumptions described above.
	In MODE 1, the limits on MTC must be maintained to ensure that any accident initiated from THERMAL POWER operation will not violate the design assumptions of the accident analysis. In MODE 2 with the reactor critical, the upper limit must also be maintained to ensure that startup and subcritical accidents (such as the uncontrolled control rod assembly or group withdrawal) will not violate the assumptions of the accident analysis. The lower MTC limit must be maintained in MODES 2 and 3, in addition to MODE 1, to ensure that cooldown accidents will not violate the assumptions of the accident analysis. In MODES 4, 5, and 6, this LCO is not applicable, since no Design Basis Accidents using the MTC as an analysis assumption are initiated from these MODES.
ACTIONS	<u>A.1</u>
	If the BOC MTC limit is violated, administrative withdrawal limits for control banks must be established to maintain the MTC within its limits. The MTC becomes more negative with control bank insertion and decreased boron concentration. A Completion Time of 24 hours provides enough time for evaluating the MTC measurement and computing the required bank withdrawal limits.
	As cycle burnup is increased, the RCS boron concentration will be reduced. The reduced boron concentration causes the MTC to become more negative. Using physics calculations, the time in cycle life at which the calculated MTC will meet the LCO requirement can be determined. At this point in core life Condition A no longer exists. The unit is no longer in the Required Action, so the administrative withdrawal limits are no longer in effect.

•

ACTIONS (continued)

<u>B.1</u>

If the required administrative withdrawal limits at BOC are not established within 24 hours, the unit must be brought to MODE 2 with $k_{eff} < 1.0$ to prevent operation with an MTC that is more positive than that assumed in safety analyses.

The allowed Completion Time of 6 hours is reasonable, based on operating experience, for reaching the required MODE from full power conditions in an orderly manner and without challenging plant systems.

C.1

Exceeding the EOC MTC limit means that the safety analysis assumptions for the EOC accidents that use a bounding negative MTC value may be invalid. If the EOC MTC limit is exceeded, the plant must be brought to a MODE or condition in which the LCO requirements are not applicable. To achieve this status, the unit must be brought to at least MODE 4 within 12 hours.

The allowed Completion Time is reasonable, based on operating experience, for reaching the required MODE from full power conditions in an orderly manner and without challenging plant systems.

SURVEILLANCE REQUIREMENTS

SR 3.1.3.1

This SR requires measurement of the MTC at BOC prior to entering MODE 1 in order to demonstrate compliance with the most positive MTC LCO. Meeting the limit prior to entering MODE 1 ensures that the limit will also be met at higher power levels.

The BOC MTC value for ARO will be inferred from isothermal temperature coefficient measurements obtained during the physics tests after refueling. The ARO value can be directly compared to the BOC MTC limit of the LCO. If required, measurement results and predicted design values can be used to establish administrative withdrawal limits for control banks.

SURVEILLANCE REQUIREMENTS (continued)

<u>SR 3.1.3.2</u>

	In s the ma ext ma vali bor nec vali tha me	In similar fashion, the LCO demands that the MTC be less negative than the specified value for EOC full power conditions. This measurement may be performed at any THERMAL POWER, but its results must be extrapolated to the conditions of RTP and all banks withdrawn in order to make a proper comparison with the LCO value. Because the RTP MTC value will gradually become more negative with further core depletion and boron concentration reduction, a 300 ppm SR value of MTC should necessarily be less negative than the EOC LCO limit. The 300 ppm SR value is sufficiently less negative than the EOC LCO limit value to ensure that the LCO limit will be met when the 300 ppm Surveillance criterion is met.		
	SR req	SR 3.1.3.2 is modified by three Notes that include the following requirements:		
	a.	The SR is not required to be performed until 7 effective full power days (EFPDs) after reaching the equivalent of an equilibrium RTP all rods out (ARO) boron concentration of 300 ppm.		
	b.	If the 300 ppm Surveillance limit is exceeded, it is possible that the EOC limit on MTC could be reached before the planned EOC. Because the MTC changes slowly with core depletion, the Frequency of 14 effective full power days is sufficient to avoid exceeding the EOC limit.		
	C.	The Surveillance limit for RTP boron concentration of 60 ppm is conservative. If the measured MTC at 60 ppm is more positive than the 60 ppm Surveillance limit, the EOC limit will not be exceeded because of the gradual manner in which MTC changes with core burnup.		
REFERENCES	1.	10 CFR 50, Appendix A, GDC 11.		
	2.	FSAR, Chapter [15].		
	3.	WCAP 9273-NP-A, "Westinghouse Reload Safety Evaluation Methodology," July 1985.		
	4.	FSAR, Chapter [15].		

B 3.3 INSTRUMENTATION

B 3.1.4 Rod Group Alignment Limits

BASES	
BACKGROUND	The OPERABILITY (i.e., trippability) of the shutdown and control rods is an initial assumption in all safety analyses that assume rod insertion upor reactor trip. Maximum rod misalignment is an initial assumption in the safety analysis that directly affects core power distributions and assumptions of available SDM.
	The applicable criteria for these reactivity and power distribution design requirements are 10 CFR 50, Appendix A, GDC 10, "Reactor Design," GDC 26, "Reactivity Control System Redundancy and Capability" (Ref. 1) and 10 CFR 50.46, "Acceptance Criteria for Emergency Core Cooling Systems for Light Water Nuclear Power Plants" (Ref. 2).
	Mechanical or electrical failures may cause a control or shutdown rod to become inoperable or to become misaligned from its group. Rod inoperability or misalignment may cause increased power peaking, due to the asymmetric reactivity distribution and a reduction in the total available rod worth for reactor shutdown. Therefore, rod alignment and OPERABILITY are related to core operation in design power peaking limits and the core design requirement of a minimum SDM.
	Limits on rod alignment have been established, and all rod positions are monitored and controlled during power operation to ensure that the power distribution and reactivity limits defined by the design power peaking and SDM limits are preserved.
	Rod cluster control assemblies (RCCAs), or rods, are moved by their control rod drive mechanisms (CRDMs). Each CRDM moves its RCCA one step (approximately e inch) at a time, but at varying rates (steps per minute) depending on the signal output from the Rod Control System.
	The RCCAs are divided among control banks and shutdown banks. Each bank may be further subdivided into two groups to provide for precise reactivity control. A group consists of two or more RCCAs that are electrically paralleled to step simultaneously. If a bank of RCCAs consists of two groups, the groups are moved in a staggered fashion, but always within one step of each other. All units have four control banks and at least two shutdown banks.

BACKGROUND (continued)

The shutdown banks are maintained either in the fully inserted or fully withdrawn position. The control banks are moved in an overlap pattern, using the following withdrawal sequence: When control bank A reaches a predetermined height in the core, control bank B begins to move out with control bank A. Control bank A stops at the position of maximum withdrawal, and control bank B continues to move out. When control bank B reaches a predetermined height, control bank C begins to move out with control bank B. This sequence continues until control banks A, B, and C are at the fully withdrawn position, and control bank D is approximately halfway withdrawn. The insertion sequence is the opposite of the withdrawal sequence. The control rods are arranged in a radially symmetric pattern, so that control bank motion does not introduce radial asymmetries in the core power distributions.

The axial position of shutdown rods and control rods is indicated by two separate and independent systems, which are the Bank Demand Position Indication System (commonly called group step counters) and the Digital Rod Position Indication (DRPI) System.

The Bank Demand Position Indication System counts the pulses from the rod control system that moves the rods. There is one step counter for each group of rods. Individual rods in a group all receive the same signal to move and should, therefore, all be at the same position indicated by the group step counter for that group. The Bank Demand Position Indication System is considered highly precise (\pm 1 step or \pm e inch). If a rod does not move one step for each demand pulse, the step counter will still count the pulse and incorrectly reflect the position of the rod.

The DRPI System provides a highly accurate indication of actual rod position, but at a lower precision than the step counters. This system is based on inductive analog signals from a series of coils spaced along a hollow tube. To increase the reliability of the system, the inductive coils are connected alternately to data system A or B. Thus, if one data system fails, the DRPI will go on half accuracy. The DRPI System is capable of monitoring rod position within at least \pm 12 steps with either full accuracy or half accuracy.

APPLICABLEControl rod misalignment accidents are analyzed in the safety analysisSAFETY(Ref. 3). The acceptance criteria for addressing control rod inoperabilityANALYSESor misalignment are that:

- a. There be no violations of:
 - 1. Specified acceptable fuel design limits or
 - 2. Reactor Coolant System (RCS) pressure boundary integrity and
- b. The core remains subcritical after accident transients.

Two types of misalignment are distinguished. During movement of a control rod group, one rod may stop moving, while the other rods in the group continue. This condition may cause excessive power peaking. The second type of misalignment occurs if one rod fails to insert upon a reactor trip and remains stuck fully withdrawn. This condition requires an evaluation to determine that sufficient reactivity worth is held in the control rods to meet the SDM requirement, with the maximum worth rod stuck fully withdrawn.

Two types of analysis are performed in regard to static rod misalignment (Ref. 4). With control banks at their insertion limits, one type of analysis considers the case when any one rod is completely inserted into the core. The second type of analysis considers the case of a completely withdrawn single rod from a bank inserted to its insertion limit. Satisfying limits on departure from nucleate boiling ratio in both of these cases bounds the situation when a rod is misaligned from its group by 12 steps.

Another type of misalignment occurs if one RCCA fails to insert upon a reactor trip and remains stuck fully withdrawn. This condition is assumed in the evaluation to determine that the required SDM is met with the maximum worth RCCA also fully withdrawn (Ref. 5).

The Required Actions in this LCO ensure that either deviations from the alignment limits will be corrected or that THERMAL POWER will be adjusted so that excessive local linear heat rates (LHRs) will not occur, and that the requirements on SDM and ejected rod worth are preserved.

APPLICABLE SAFETY ANALYSES (continued)

Continued operation of the reactor with a misaligned control rod is allowed if the heat flux hot channel factor ($F_Q(Z)$) and the nuclear enthalpy hot channel factor ($F_{\Delta H}^N$) are verified to be within their limits in the COLR and the safety analysis is verified to remain valid. When a control rod is misaligned, the assumptions that are used to determine the rod insertion limits, AFD limits, and quadrant power tilt limits are not preserved. Therefore, the limits may not preserve the design peaking factors, and $F_Q(Z)$ and $F_{\Delta H}^N$ must be verified directly by incore mapping. Bases Section 3.2 (Power Distribution Limits) contains more complete discussions of the relation of $F_Q(Z)$ and $F_{\Delta H}^N$ to the operating limits.

Shutdown and control rod OPERABILITY and alignment are directly related to power distributions and SDM, which are initial conditions assumed in safety analyses. Therefore they satisfy Criterion 2 of 10 CFR 50.36(c)(2)(ii).

LCO

The limits on shutdown or control rod alignments ensure that the assumptions in the safety analysis will remain valid. The requirements on control rod OPERABILITY ensure that upon reactor trip, the assumed reactivity will be available and will be inserted. The control rod OPERABILITY requirements (i.e., trippability) are separate from the alignment requirements, which ensure that the RCCAs and banks maintain the correct power distribution and rod alignment. The rod OPERABILITY requirement is satisfied provided the rod will fully insert in the required rod drop time assumed in the safety analysis. Rod control malfunctions that result in the inability to move a rod (e.g., rod lift coil failures), but that do not impact trippability, do not result in rod inoperability.

The requirement to maintain the rod alignment to within plus or minus 12 steps is conservative. The minimum misalignment assumed in safety analysis is 24 steps (15 inches), and in some cases a total misalignment from fully withdrawn to fully inserted is assumed.

Failure to meet the requirements of this LCO may produce unacceptable power peaking factors and LHRs, or unacceptable SDMs, all of which may constitute initial conditions inconsistent with the safety analysis.

BASES APPLICABILITY The requirements on RCCA OPERABILITY and alignment are applicable in MODES 1 and 2 because these are the only MODES in which neutron (or fission) power is generated, and the OPERABILITY (i.e., trippability) and alignment of rods have the potential to affect the safety of the plant. In MODES 3, 4, 5, and 6, the alignment limits do not apply because the control rods are bottomed and the reactor is shut down and not producing fission power. In the shutdown MODES, the OPERABILITY of the shutdown and control rods has the potential to affect the required SDM, but this effect can be compensated for by an increase in the boron concentration of the RCS. See LCO 3.1.1, "SHUTDOWN MARGIN (SDM)," for SDM in MODES 3, 4, and 5 and LCO 3.9.1, "Boron Concentration," for boron concentration requirements during refueling.

ACTIONS <u>A.1.1 and A.1.2</u>

When one or more rods are inoperable (i.e., untrippable), there is a possibility that the required SDM may be adversely affected. Under these conditions, it is important to determine the SDM, and if it is less than the required value, initiate boration until the required SDM is recovered. The Completion Time of 1 hour is adequate for determining SDM and, if necessary, for initiating emergency boration and restoring SDM.

In this situation, SDM verification must include the worth of the untrippable rod, as well as a rod of maximum worth.

<u>A.2</u>

If the inoperable rod(s) cannot be restored to OPERABLE status, the plant must be brought to a MODE or condition in which the LCO requirements are not applicable. To achieve this status, the unit must be brought to at least MODE 3 within 6 hours.

The allowed Completion Time is reasonable, based on operating experience, for reaching MODE 3 from full power conditions in an orderly manner and without challenging plant systems.

<u>B.1</u>

When a rod becomes misaligned, it can usually be moved and is still trippable. If the rod can be realigned within the Completion Time of 1 hour, local xenon redistribution during this short interval will not be significant, and operation may proceed without further restriction.

ACTIONS (continued)

An alternative to realigning a single misaligned RCCA to the group average position is to align the remainder of the group to the position of the misaligned RCCA. However, this must be done without violating the bank sequence, overlap, and insertion limits specified in LCO 3.1.5, "Shutdown Bank Insertion Limits," and LCO 3.1.6, "Control Bank Insertion Limits." The Completion Time of 1 hour gives the operator sufficient time to adjust the rod positions in an orderly manner.

B.2.1.1 and B.2.1.2

With a misaligned rod, SDM must be verified to be within limit or boration must be initiated to restore SDM to within limit.

In many cases, realigning the remainder of the group to the misaligned rod may not be desirable. For example, realigning control bank B to a rod that is misaligned 15 steps from the top of the core would require a significant power reduction, since control bank D must be moved fully in and control bank C must be moved in to approximately 100 to 115 steps.

Power operation may continue with one RCCA trippable but misaligned, provided that SDM is verified within 1 hour. The Completion Time of 1 hour represents the time necessary for determining the actual unit SDM and, if necessary, aligning and starting the necessary systems and components to initiate boration.

B.2.2, B.2.3, B.2.4, B.2.5, and B.2.6

For continued operation with a misaligned rod, RTP must be reduced, SDM must periodically be verified within limits, hot channel factors ($F_Q(Z)$ and $F_{\Delta H}^N$) must be verified within limits, and the safety analyses must be re-evaluated to confirm continued operation is permissible.

Reduction of power to 75% RTP ensures that local LHR increases due to a misaligned RCCA will not cause the core design criteria to be exceeded (Ref. 7). The Completion Time of 2 hours gives the operator sufficient time to accomplish an orderly power reduction without challenging the Reactor Protection System.

ACTIONS (continued)

When a rod is known to be misaligned, there is a potential to impact the SDM. Since the core conditions can change with time, periodic verification of SDM is required. A Frequency of 12 hours is sufficient to ensure this requirement continues to be met.

Verifying that $F_Q(Z)$, as approximated by $F_Q^c(Z)$ and $F_Q^w(Z)$, and $F_{\Delta H}^N$ are within the required limits ensures that current operation at 75% RTP with a rod misaligned is not resulting in power distributions that may invalidate safety analysis assumptions at full power. The Completion Time of 72 hours allows sufficient time to obtain flux maps of the core power distribution using the incore flux mapping system and to calculate $F_Q(Z)$ and $F_{\Delta H}^N$.

Once current conditions have been verified acceptable, time is available to perform evaluations of accident analysis to determine that core limits will not be exceeded during a Design Basis Event for the duration of operation under these conditions. The accident analyses presented in FSAR Chapter 15 (Ref. 5) that may be adversely affected will be evaluated to ensure that the analysis results remain valid for the duration of continued operation under these conditions. A Completion Time of 5 days is sufficient time to obtain the required input data and to perform the analysis.

<u>C.1</u>

When Required Actions cannot be completed within their Completion Time, the unit must be brought to a MODE or Condition in which the LCO requirements are not applicable. To achieve this status, the unit must be brought to at least MODE 2 with $K_{eff} < 1.0$ within 6 hours, which obviates concerns about the development of undesirable xenon or power distributions. The allowed Completion Time of 6 hours is reasonable, based on operating experience, for reaching MODE 3 from full power conditions in an orderly manner and without challenging the plant systems.

D.1.1 and D.1.2

More than one control rod becoming misaligned from its group average position is not expected, and has the potential to reduce SDM. Therefore, SDM must be evaluated. One hour allows the operator adequate time to determine SDM. Restoration of the required SDM, if necessary, requires

ACTIONS (continued)

increasing the RCS boron concentration to provide negative reactivity, as described in the Bases or LCO 3.1.1. The required Completion Time of 1 hour for initiating boration is reasonable, based on the time required for potential xenon redistribution, the low probability of an accident occurring, and the steps required to complete the action. This allows the operator sufficient time to align the required valves and start the boric acid pumps. Boration will continue until the required SDM is restored.

<u>D.2</u>

If more than one rod is found to be misaligned or becomes misaligned because of bank movement, the unit conditions fall outside of the accident analysis assumptions. Since automatic bank sequencing would continue to cause misalignment, the unit must be brought to a MODE or Condition in which the LCO requirements are not applicable. To achieve this status, the unit must be brought to at least MODE 2 with $K_{eff} < 1.0$ within 6 hours.

The allowed Completion Time is reasonable, based on operating experience, for reaching MODE 2 with $K_{eff} < 1.0$ from full power conditions in an orderly manner and without challenging plant systems.

SURVEILLANCE <u>SR 3.1.4.1</u> REQUIREMENTS

Verification that individual rod positions are within alignment limits at a Frequency of 12 hours provides a history that allows the operator to detect a rod that is beginning to deviate from its expected position. The specified Frequency takes into account other rod position information that is continuously available to the operator in the control room, so that during actual rod motion, deviations can immediately be detected.

SR 3.1.4.2

Verifying each control rod is OPERABLE would require that each rod be tripped. However, in MODES 1 and 2 with $K_{eff} \ge 1.0$, tripping each control rod would result in radial or axial power tilts, or oscillations. Exercising each individual control rod every 92 days provides increased confidence that all rods continue to be OPERABLE without exceeding the alignment limit, even if they are not regularly tripped. Moving each control rod by 10 steps will not cause radial or axial power tilts, or oscillations, to occur. The 92 day Frequency takes into consideration other information

SURVEILLANCE REQUIREMENTS (continued)

available to the operator in the control room and SR 3.1.4.1, which is performed more frequently and adds to the determination of OPERABILITY of the rods. Between required performances of SR 3.1.4.2 (determination of control rod OPERABILITY by movement), if a control rod(s) is discovered to be immovable, but remains trippable, the control rod(s) is considered to be OPERABLE. At any time, if a control rod(s) is immovable, a determination of the trippability (OPERABILITY) of the control rod(s) must be made, and appropriate action taken.

SR 3.1.4.3

Verification of rod drop times allows the operator to determine that the maximum rod drop time permitted is consistent with the assumed rod drop time used in the safety analysis. Measuring rod drop times prior to reactor criticality, after reactor vessel head removal, ensures that the reactor internals and rod drive mechanism will not interfere with rod motion or rod drop time, and that no degradation in these systems has occurred that would adversely affect control rod motion or drop time. This testing is performed with all RCPs operating and the average moderator temperature $\geq 500^{\circ}$ F to simulate a reactor trip under actual conditions.

This Surveillance is performed during a plant outage, due to the plant conditions needed to perform the SR and the potential for an unplanned plant transient if the Surveillance were performed with the reactor at power.

- REFERENCES 1. 10 CFR 50, Appendix A, GDC 10 and GDC 26.
 - 2. 10 CFR 50.46.
 - 3. FSAR, Chapter [15].
 - 4. FSAR, Chapter [15].
 - 5. FSAR, Chapter [15].
 - 6. FSAR, Chapter [15].
 - 7. FSAR, Chapter [15].

B 3.1 REACTIVITY CONTROL SYSTEMS

B 3.1.5 Shutdown Bank Insertion Limits

BASES

BACKGROUND The insertion limits of the shutdown and control rods are initial assumptions in all safety analyses that assume rod insertion upon reactor trip. The insertion limits directly affect core power and fuel burnup distributions and assumptions of available ejected rod worth, SDM and initial reactivity insertion rate.

The applicable criteria for these reactivity and power distribution design requirements are 10 CFR 50, Appendix A, GDC 10, "Reactor Design," GDC 26, "Reactivity Control System Redundancy and Protection," GDC 28, "Reactivity Limits" (Ref. 1), and 10 CFR 50.46, "Acceptance Criteria for Emergency Core Cooling Systems for Light Water Nuclear Power Reactors" (Ref. 2). Limits on control rod insertion have been established, and all rod positions are monitored and controlled during power operation to ensure that the power distribution and reactivity limits defined by the design power peaking and SDM limits are preserved.

The rod cluster control assemblies (RCCAs) are divided among control banks and shutdown banks. Each bank may be further subdivided into two groups to provide for precise reactivity control. A group consists of two or more RCCAs that are electrically paralleled to step simultaneously. A bank of RCCAs consists of two groups that are moved in a staggered fashion, but always within one step of each other. All plants have four control banks and at least two shutdown banks. See LCO 3.1.4, "Rod Group Alignment Limits," for control and shutdown rod OPERABILITY and alignment requirements, and LCO 3.1.7, "Rod Position Indication," for position indication requirements.

The control banks are used for precise reactivity control of the reactor. The positions of the control banks are normally automatically controlled by the Rod Control System, but they can also be manually controlled. They are capable of adding negative reactivity very quickly (compared to borating). The control banks must be maintained above designed insertion limits and are typically near the fully withdrawn position during normal full power operations.

BACKGROUND (continued)

Hence, they are not capable of adding a large amount of positive reactivity. Boration or dilution of the Reactor Coolant System (RCS) compensates for the reactivity changes associated with large changes in RCS temperature. The design calculations are performed with the assumption that the shutdown banks are withdrawn first. The shutdown banks can be fully withdrawn without the core going critical. This provides available negative reactivity in the event of boration errors. The shutdown banks are controlled manually by the control room operator. During normal unit operation, the shutdown banks are either fully withdrawn or fully inserted. The shutdown banks must be completely withdrawn from the core, prior to withdrawing any control banks during an approach to criticality. The shutdown banks are then left in this position until the reactor is shut down. They affect core power and burnup distribution, and add negative reactivity to shut down the reactor upon receipt of a reactor trip signal.

APPLICABLE On a reactor trip, all RCCAs (shutdown banks and control banks), except SAFETY the most reactive RCCA, are assumed to insert into the core. The shutdown banks shall be at or above their insertion limits and available to ANALYSES insert the maximum amount of negative reactivity on a reactor trip signal. The control banks may be partially inserted in the core, as allowed by LCO 3.1.6, "Control Bank Insertion Limits." The shutdown bank and control bank insertion limits are established to ensure that a sufficient amount of negative reactivity is available to shut down the reactor and maintain the required SDM (see LCO 3.1.1, "SHUTDOWN MARGIN (SDM)") following a reactor trip from full power. The combination of control banks and shutdown banks (less the most reactive RCCA, which is assumed to be fully withdrawn) is sufficient to take the reactor from full power conditions at rated temperature to zero power, and to maintain the required SDM at rated no load temperature (Ref. 3). The shutdown bank insertion limit also limits the reactivity worth of an ejected shutdown rod.

The acceptance criteria for addressing shutdown and control rod bank insertion limits and inoperability or misalignment is that:

- a. There be no violations of:
 - 1. Specified acceptable fuel design limits or
 - 2. RCS pressure boundary integrity and

APPLICABLE SAFETY AN	ALYSES (continued)
----------------------	--------------------

b. The core remains subcritical after accident transients.

As such, the shutdown bank insertion limits affect safety analysis involving core reactivity and SDM (Ref. 3).

The shutdown bank insertion limits preserve an initial condition assumed in the safety analyses and, as such, satisfy Criterion 2 of 10 CFR 50.36(c)(2)(ii).

LCO The shutdown banks must be within their insertion limits any time the reactor is critical or approaching criticality. This ensures that a sufficient amount of negative reactivity is available to shut down the reactor and maintain the required SDM following a reactor trip.

The shutdown bank insertion limits are defined in the COLR.

APPLICABILITY The shutdown banks must be within their insertion limits, with the reactor in MODES 1 and 2. This ensures that a sufficient amount of negative reactivity is available to shut down the reactor and maintain the required SDM following a reactor trip. The shutdown banks do not have to be within their insertion limits in MODE 3, unless an approach to criticality is being made. In MODE 3, 4, 5, or 6, the shutdown banks are fully inserted in the core and contribute to the SDM. Refer to LCO 3.1.1 for SDM requirements in MODES 3, 4, and 5. LCO 3.9.1, "Boron Concentration," ensures adequate SDM in MODE 6.

The Applicability requirements have been modified by a Note indicating the LCO requirement is suspended during SR 3.1.4.2. This SR verifies the freedom of the rods to move, and requires the shutdown bank to move below the LCO limits, which would normally violate the LCO.

ACTIONS

A.1.1, A.1.2, and A.2

When one or more shutdown banks is not within insertion limits, 2 hours is allowed to restore the shutdown banks to within the insertion limits. This is necessary because the available SDM may be significantly reduced, with one or more of the shutdown banks not within their insertion limits. Also, verification of SDM or initiation of boration within 1 hour is required, since the SDM in MODES 1 and 2 is ensured by adhering to the control and shutdown bank insertion limits (see LCO 3.1.1). If shutdown banks are not within their insertion limits, then SDM will be verified by performing a reactivity balance calculation, considering the effects listed in the BASES for SR 3.1.1.1.

ACTIONS (continued)		
	The allowed Completion Time of 2 hours provides an acceptable time for evaluating and repairing minor problems without allowing the plant to remain in an unacceptable condition for an extended period of time.	
	<u>B.1</u>	
	If the shutdown banks cannot be restored to within their insertion limits within 2 hours, the unit must be brought to a MODE where the LCO is not applicable. The allowed Completion Time of 6 hours is reasonable, based on operating experience, for reaching the required MODE from full power conditions in an orderly manner and without challenging plant systems.	
SURVEILLANCE REQUIREMENTS	<u>SR 3.1.5.1</u>	
	Verification that the shutdown banks are within their insertion limits prior to an approach to criticality ensures that when the reactor is critical, or being taken critical, the shutdown banks will be available to shut down the reactor, and the required SDM will be maintained following a reactor trip. This SR and Frequency ensure that the shutdown banks are withdrawn before the control banks are withdrawn during a unit startup.	
	Since the shutdown banks are positioned manually by the control room operator, a verification of shutdown bank position at a Frequency of 12 hours, after the reactor is taken critical, is adequate to ensure that they are within their insertion limits. Also, the 12 hour Frequency takes into account other information available in the control room for the purpose of monitoring the status of shutdown rods.	
REFERENCES	1. 10 CFR 50, Appendix A, GDC 10, GDC 26, and GDC 28.	
	2. 10 CFR 50.46.	
	3. FSAR, Chapter [15].	

-____

B 3.1 REACTIVITY CONTROL SYSTEMS

B 3.1.6 Control Bank Insertion Limits

BASES

BACKGROUND The insertion limits of the shutdown and control rods are initial assumptions in all safety analyses that assume rod insertion upon reactor trip. The insertion limits directly affect core power and fuel burnup distributions and assumptions of available SDM, and initial reactivity insertion rate.

The applicable criteria for these reactivity and power distribution design requirements are 10 CFR 50, Appendix A, GDC 10, "Reactor Design," GDC 26, "Reactivity Control System Redundancy and Protection," GDC 28, "Reactivity Limits" (Ref. 1), and 10 CFR 50.46, "Acceptance Criteria for Emergency Core Cooling Systems for Light Water Nuclear Power Reactors" (Ref. 2). Limits on control rod insertion have been established, and all rod positions are monitored and controlled during power operation to ensure that the power distribution and reactivity limits defined by the design power peaking and SDM limits are preserved.

The rod cluster control assemblies (RCCAs) are divided among control banks and shutdown banks. Each bank may be further subdivided into two groups to provide for precise reactivity control. A group consists of two or more RCCAs that are electrically paralleled to step simultaneously. A bank of RCCAs consists of two groups that are moved in a staggered fashion, but always within one step of each other. All plants have four control banks and at least two shutdown banks. See LCO 3.1.4, "Rod Group Alignment Limits," for control and shutdown rod OPERABILITY and alignment requirements, and LCO 3.1.7, "Rod Position Indication," for position indication requirements.

The control bank insertion limits are specified in the COLR. An example is provided for information only in Figure B 3.1.6-1. The control banks are required to be at or above the insertion limit lines.

Figure B 3.1.6-1 also indicates how the control banks are moved in an overlap pattern. Overlap is the distance travelled together by two control banks. The predetermined position of control bank C, at which control bank D will begin to move with bank C on a withdrawal, will be at 118 steps for a fully withdrawn position of 231 steps. The fully withdrawn position is defined in the COLR.

BACKGROUND (continued)

The control banks are used for precise reactivity control of the reactor. The positions of the control banks are normally controlled automatically by the Rod Control System, but can also be manually controlled. They are capable of adding reactivity very quickly (compared to borating or diluting).
The power density at any point in the core must be limited, so that the fuel design criteria are maintained. Together, LCO 3.1.4, LCO 3.1.5, "Shutdown Bank Insertion Limits," LCO 3.1.6, LCO 3.2.3, "AXIAL FLUX DIFFERENCE (AFD)," and LCO 3.2.4, "QUADRANT POWER TILT RATIO (QPTR)," provide limits on control component operation and on monitored process variables, which ensure that the core operates within the fuel design criteria.
The shutdown and control bank insertion and alignment limits, AFD, and QPTR are process variables that together characterize and control the three dimensional power distribution of the reactor core. Additionally, the control bank insertion limits control the reactivity that could be added in the event of a rod ejection accident, and the shutdown and control bank insertion limits ensure the required SDM is maintained.

Operation within the subject LCO limits will prevent fuel cladding failures that would breach the primary fission product barrier and release fission products to the reactor coolant in the event of a loss of coolant accident (LOCA), loss of flow, ejected rod, or other accident requiring termination by a Reactor Trip System (RTS) trip function.

APPLICABLE SAFETY ANALYSES The shutdown and control bank insertion limits, AFD, and QPTR LCOs are required to prevent power distributions that could result in fuel cladding failures in the event of a LOCA, loss of flow, ejected rod, or other accident requiring termination by an RTS trip function.

The acceptance criteria for addressing shutdown and control bank insertion limits and inoperability or misalignment are that:

- a. There be no violations of:
 - 1. Specified acceptable fuel design limits or
 - 2. Reactor Coolant System pressure boundary integrity and
- b. The core remains subcritical after accident transients.

APPLICABLE SAFETY ANALYSES (continued)

	As such, the shutdown and control bank insertion limits affect safety analysis involving core reactivity and power distributions (Ref. 3).
	The SDM requirement is ensured by limiting the control and shutdown bank insertion limits so that allowable inserted worth of the RCCAs is such that sufficient reactivity is available in the rods to shut down the reactor to hot zero power with a reactivity margin that assumes the maximum worth RCCA remains fully withdrawn upon trip (Ref. 4).
	Operation at the insertion limits or AFD limits may approach the maximum allowable linear heat generation rate or peaking factor with the allowed QPTR present. Operation at the insertion limit may also indicate the maximum ejected RCCA worth could be equal to the limiting value in fuel cycles that have sufficiently high ejected RCCA worths.
	The control and shutdown bank insertion limits ensure that safety analyses assumptions for SDM, ejected rod worth, and power distribution peaking factors are preserved (Ref. 5).
	The insertion limits satisfy Criterion 2 of 10 CFR 50.36(c)(2)(ii), in that they are initial conditions assumed in the safety analysis.
LCO	The limits on control banks sequence, overlap, and physical insertion, as defined in the COLR, must be maintained because they serve the function of preserving power distribution, ensuring that the SDM is maintained, ensuring that ejected rod worth is maintained, and ensuring adequate negative reactivity insertion is available on trip. The overlap between control banks provides more uniform rates of reactivity insertion and withdrawal and is imposed to maintain acceptable power peaking during control bank motion.
APPLICABILITY	The control bank sequence, overlap, and physical insertion limits shall be maintained with the reactor in MODES 1 and 2 with $k_{eff} \ge 1.0$. These limits must be maintained, since they preserve the assumed power distribution, ejected rod worth, SDM, and reactivity rate insertion assumptions. Applicability in MODES 3, 4, and 5 is not required, since neither the power distribution nor ejected rod worth assumptions would be exceeded in these MODES.
	The applicability requirements have been modified by a Note indicating the LCO requirements are suspended during the performance of SR 3.1.4.2. This SR verifies the freedom of the rods to move, and requires the control bank to move below the LCO limits, which would violate the LCO.

ACTIONS

A.1.1, A.1.2, A.2, B.1.1, B.1.2, and B.2

When the control banks are outside the acceptable insertion limits, they must be restored to within those limits. This restoration can occur in two ways:

- a. Reducing power to be consistent with rod position or
- b. Moving rods to be consistent with power.

Also, verification of SDM or initiation of boration to regain SDM is required within 1 hour, since the SDM in MODES 1 and 2 normally ensured by adhering to the control and shutdown bank insertion limits (see LCO 3.1.1, "SHUTDOWN MARGIN (SDM)") has been upset. If control banks are not within their insertion limits, then SDM will be verified by performing a reactivity balance calculation, considering the effects listed in the BASES for SR 3.1.1.1.

Similarly, if the control banks are found to be out of sequence or in the wrong overlap configuration, they must be restored to meet the limits.

Operation beyond the LCO limits is allowed for a short time period in order to take conservative action because the simultaneous occurrence of either a LOCA, loss of flow accident, ejected rod accident, or other accident during this short time period, together with an inadequate power distribution or reactivity capability, has an acceptably low probability.

The allowed Completion Time of 2 hours for restoring the banks to within the insertion, sequence, and overlaps limits provides an acceptable time for evaluating and repairing minor problems without allowing the plant to remain in an unacceptable condition for an extended period of time.

<u>C.1</u>

If Required Actions A.1 and A.2, or B.1 and B.2 cannot be completed within the associated Completion Times, the plant must be brought to MODE 2 with $k_{eff} < 1.0$, where the LCO is not applicable. The allowed Completion Time of 6 hours is reasonable, based on operating experience, for reaching the required MODE from full power conditions in an orderly manner and without challenging plant systems.

.

BASES	
SURVEILLANCE REQUIREMENTS	SR 3.1.6.1 This Surveillance is required to ensure that the reactor does not achieve
	criticality with the control banks below their insertion limits.
	The estimated critical position (ECP) depends upon a number of factors, one of which is xenon concentration. If the ECP was calculated long before criticality, xenon concentration could change to make the ECP substantially in error. Conversely, determining the ECP immediately before criticality could be an unnecessary burden. There are a number of unit parameters requiring operator attention at that point. Performing the ECP calculation within 4 hours prior to criticality avoids a large error from changes in xenon concentration, but allows the operator some flexibility to schedule the ECP calculation with other startup activities.
	<u>SR 3.1.6.2</u>
	Verification of the control bank insertion limits at a Frequency of 12 hours is sufficient to detect control banks that may be approaching the insertion limits since, normally, very little rod motion occurs in 12 hours.
	<u>SR 3.1.6.3</u>
	When control banks are maintained within their insertion limits as checked by SR 3.1.6.2 above, it is unlikely that their sequence and overlap will not be in accordance with requirements provided in the COLR. A Frequency of 12 hours is consistent with the insertion limit check above in SR 3.1.6.2.
REFERENCES	1. 10 CFR 50, Appendix A, GDC 10, GDC 26, GDC 28.
	2. 10 CFR 50.46.
	3. FSAR, Chapter [15].
	4. FSAR, Chapter [15].
	5. FSAR, Chapter [15].

_

.

Figure B 3.1.6 (page 1 of 1) Control Bank Insertion vs. Percent RTP

B 3.1 REACTIVITY CONTROL SYSTEMS

B 3.1.7 Rod Position Indication

BASES

BACKGROUND According to GDC 13 (Ref. 1), instrumentation to monitor variables and systems over their operating ranges during normal operation, anticipated operational occurrences, and accident conditions must be OPERABLE. LCO 3.1.7 is required to ensure OPERABILITY of the control rod position indicators to determine control rod positions and thereby ensure compliance with the control rod alignment and insertion limits.

> The OPERABILITY, including position indication, of the shutdown and control rods is an initial assumption in all safety analyses that assume rod insertion upon reactor trip. Maximum rod misalignment is an initial assumption in the safety analysis that directly affects core power distributions and assumptions of available SDM. Rod position indication is required to assess OPERABILITY and misalignment.

> Mechanical or electrical failures may cause a control rod to become inoperable or to become misaligned from its group. Control rod inoperability or misalignment may cause increased power peaking, due to the asymmetric reactivity distribution and a reduction in the total available rod worth for reactor shutdown. Therefore, control rod alignment and OPERABILITY are related to core operation in design power peaking limits and the core design requirement of a minimum SDM.

Limits on control rod alignment and OPERABILITY have been established, and all rod positions are monitored and controlled during power operation to ensure that the power distribution and reactivity limits defined by the design power peaking and SDM limits are preserved.

Rod cluster control assemblies (RCCAs), or rods, are moved out of the core (up or withdrawn) or into the core (down or inserted) by their control rod drive mechanisms. The RCCAs are divided among control banks and shutdown banks. Each bank may be further subdivided into two groups to provide for precise reactivity control.

The axial position of shutdown rods and control rods are determined by two separate and independent systems: the Bank Demand Position Indication System (commonly called group step counters) and the [Digital] Rod Position Indication ([D]RPI) System.

BACKGROUND (continued)

The Bank Demand Position Indication System counts the pulses from the Rod Control System that move the rods. There is one step counter for each group of rods. Individual rods in a group all receive the same signal to move and should, therefore, all be at the same position indicated by the group step counter for that group. The Bank Demand Position Indication System is considered highly precise (± 1 step or $\pm e$ inch). If a rod does not move one step for each demand pulse, the step counter will still count the pulse and incorrectly reflect the position of the rod.

The [D]RPI System provides a highly accurate indication of actual control rod position, but at a lower precision than the step counters. This system is based on inductive analog signals from a series of coils spaced along a hollow tube with a center to center distance of 3.75 inches, which is 6 steps. To increase the reliability of the system, the inductive coils are connected alternately to data system A or B. Thus, if one system fails, the [D]RPI will go on half accuracy with an effective coil spacing of 7.5 inches, which is 12 steps. Therefore, the normal indication accuracy of the [D]RPI System is \pm 6 steps (\pm 3.75 inches), and the maximum uncertainty is \pm 12 steps (\pm 7.5 inches). With an indicated deviation of 12 steps between the group step counter and [D]RPI, the maximum deviation between actual rod position and the demand position could be 24 steps, or 15 inches.

Control and shutdown rod position accuracy is essential during power APPLICABLE operation. Power peaking, ejected rod worth, or SDM limits may be SAFETY violated in the event of a Design Basis Accident (Ref. 2), with control or ANALYSES shutdown rods operating outside their limits undetected. Therefore, the acceptance criteria for rod position indication is that rod positions must be known with sufficient accuracy in order to verify the core is operating within the group sequence, overlap, design peaking limits, ejected rod worth, and with minimum SDM (LCO 3.1.5, "Shutdown Bank Insertion Limits," and LCO 3.1.6, "Control Bank Insertion Limits"). The rod positions must also be known in order to verify the alignment limits are preserved (LCO 3.1.4, "Rod Group Alignment Limits"). Control rod positions are continuously monitored to provide operators with information that ensures the plant is operating within the bounds of the accident analysis assumptions.

The control rod position indicator channels satisfy Criterion 2 of 10 CFR 50.36(c)(2)(ii). The control rod position indicators monitor control rod position, which is an initial condition of the accident.

BASES	
LCO	LCO 3.1.7 specifies that one [D]RPI System and one Bank Demand Position Indication System be OPERABLE for each control rod. For the control rod position indicators to be OPERABLE requires meeting the SR of the LCO and the following:
	a. The [D]RPI System indicates within 12 steps of the group step counter demand position as required by LCO 3.1.4, "Rod Group Alignment Limits,"
	b. For the [D]RPI System there are no failed coils, and
	c. The Bank Demand Indication System has been calibrated either in the fully inserted position or to the [D]RPI System.
	The 12 step agreement limit between the Bank Demand Position Indication System and the [D]RPI System indicates that the Bank Demand Position Indication System is adequately calibrated, and can be used for indication of the measurement of control rod bank position.
	A deviation of less than the allowable limit, given in LCO 3.1.4, in position indication for a single control rod, ensures high confidence that the position uncertainty of the corresponding control rod group is within the assumed values used in the analysis (that specified control rod group insertion limits).
	These requirements ensure that control rod position indication during power operation and PHYSICS TESTS is accurate, and that design assumptions are not challenged.
	OPERABILITY of the position indicator channels ensures that inoperable, misaligned, or mispositioned control rods can be detected. Therefore, power peaking, ejected rod worth, and SDM can be controlled within acceptable limits.
APPLICABILITY	The requirements on the [D]RPI and step counters are only applicable in MODES 1 and 2 (consistent with LCO 3.1.4, LCO 3.1.5, and LCO 3.1.6), because these are the only MODES in which power is generated, and the OPERABILITY and alignment of rods have the potential to affect the safety of the plant. In the shutdown MODES, the OPERABILITY of the shutdown and control banks has the potential to affect the required SDM, but this effect can be compensated for by an increase in the boron concentration of the Reactor Coolant System.

ACTIONS

The ACTIONS Table is modified by a Note indicating that a separate Condition entry is allowed for each inoperable rod position indicator and each demand position indicator. This is acceptable because the Required Actions for each Condition provide appropriate compensatory actions for each inoperable position indicator.

<u>A.1</u>

When one [D]RPI channel per group fails, the position of the rod may still be determined indirectly by use of the movable incore detectors. The Required Action may also be satisfied by ensuring at least once per 8 hours that F_Q satisfies LCO 3.2.1, $F_{\Delta H}^N$ satisfies LCO 3.2.2, and SHUTDOWN MARGIN is within the limits provided in the COLR, provided the nonindicating rods have not been moved. Based on experience, normal power operation does not require excessive movement of banks. If a bank has been significantly moved, the Required Action of C.1 or C.2 below is required. Therefore, verification of RCCA position within the Completion Time of 8 hours is adequate for allowing continued full power operation, since the probability of simultaneously having a rod significantly out of position and an event sensitive to that rod position is small.

A.2

Reduction of THERMAL POWER to \leq 50% RTP puts the core into a condition where rod position is not significantly affecting core peaking factors (Ref. 3).

The allowed Completion Time of 8 hours is reasonable, based on operating experience, for reducing power to $\leq 50\%$ RTP from full power conditions without challenging plant systems and allowing for rod position determination by Required Action A.1 above.

B.1, B.2, B.3, and B.4

When more than one [D]RPI per group fail, additional actions are necessary to ensure that acceptable power distribution limits are maintained, minimum SDM is maintained, and the potential effects of rod misalignment on associated accident analyses are limited. Placing the Rod Control System in manual assures unplanned rod motion will not occur. Together with the indirect position determination available via

ACTIONS (continued)

movable incore detectors will minimize the potential for rod misalignment. The immediate Completion Time for placing the Rod Control System in manual reflects the urgency with which unplanned rod motion must be prevented while in this Condition.

Monitoring and recording reactor coolant T_{avg} help assure that significant changes in power distribution and SDM are avoided. The once per hour Completion Time is acceptable because only minor fluctuations in RCS temperature are expected at steady state plant operating conditions.

The position of the rods may be determined indirectly by use of the movable incore detectors. The Required Action may also be satisfied by ensuring at least once per 8 hours that F_Q satisfies LCO 3.2.1, F_{AH}^N satisfies LCO 3.2.2, and SHUTDOWN MARGIN is within the limits provided in the COLR, provided the nonindicating rods have not been moved. Verification of control rod position once per 8 hours is adequate for allowing continued full power operation for a limited, 24 hour period, since the probability of simultaneously having a rod significantly out of position and an event sensitive to that rod position is small. The 24 hour Completion Time provides sufficient time to troubleshoot and restore the [D]RPI system to operation while avoiding the plant challenges associated with the shutdown without full rod position indication.

Based on operating experience, normal power operation does not require excessive rod movement. If one or more rods has been significantly moved, the Required Action of C.1 or C.2 below is required.

C.1 and C.2

These Required Actions clarify that when one or more rods with inoperable position indicators have been moved in excess of 24 steps in one direction, since the position was last determined, the Required Actions of A.1 and A.2, [or B.1, as applicable] are still appropriate but must be initiated promptly under Required Action C.1 to begin verifying that these rods are still properly positioned, relative to their group positions.

If, within [4] hours, the rod positions have not been determined, THERMAL POWER must be reduced to $\leq 50\%$ RTP within 8 hours to avoid undesirable power distributions that could result from continued operation at > 50% RTP, if one or more rods are misaligned by more than 24 steps. The allowed Completion Time of [4] hours provides an acceptable period of time to verify the rod positions.
ACTIONS (continued)

D.1.1 and D.1.2

With one demand position indicator per bank inoperable, the rod positions can be determined by the [D]RPI System. Since normal power operation does not require excessive movement of rods, verification by administrative means that the rod position indicators are OPERABLE and the most withdrawn rod and the least withdrawn rod are \leq 12 steps apart within the allowed Completion Time of once every 8 hours is adequate.

<u>D.2</u>

Reduction of THERMAL POWER to $\leq 50\%$ RTP puts the core into a condition where rod position is not significantly affecting core peaking factor limits (Ref. 3). The allowed Completion Time of 8 hours provides an acceptable period of time to verify the rod positions per Required Actions C.1.1 and C.1.2 or reduce power to $\leq 50\%$ RTP.

<u>E.1</u>

If the Required Actions cannot be completed within the associated Completion Time, the plant must be brought to a MODE in which the requirement does not apply. To achieve this status, the plant must be brought to at least MODE 3 within 6 hours. The allowed Completion Time is reasonable, based on operating experience, for reaching the required MODE from full power conditions in an orderly manner and without challenging plant systems.

SURVEILLANCE <u>SR 3.1.7.1</u> REQUIREMENTS

Verification that the [D]RPI agrees with the demand position within [12] steps ensures that the [D]RPI is operating correctly. Since the [D]RPI does not display the actual shutdown rod positions between 18 and 210 steps, only points within the indicated ranges are required in comparison.

This Surveillance is performed prior to reactor criticality after each removal of the reactor head, as there is the potential for unnecessary plant transients if the SR were performed with the reactor at power. REFERENCES 1. 10 CFR 50, Appendix A, GDC 13.

2. FSAR, Chapter [15].

3. FSAR, Chapter [15].

.

.

B 3.1 REACTIVITY CONTROL SYSTEMS

B 3.1.8 PHYSICS TESTS Exceptions - MODE 2

BASES	
BACKGROUND	The primary purpose of the MODE 2 PHYSICS TESTS exceptions is to permit relaxations of existing LCOs to allow certain PHYSICS TESTS to be performed.
	Section XI of 10 CFR 50, Appendix B (Ref. 1), requires that a test program be established to ensure that structures, systems, and components will perform satisfactorily in service. All functions necessary to ensure that the specified design conditions are not exceeded during normal operation and anticipated operational occurrences must be tested This testing is an integral part of the design, construction, and operation of the plant. Requirements for notification of the NRC, for the purpose of conducting tests and experiments, are specified in 10 CFR 50.59 (Ref. 2)
	The key objectives of a test program are to (Ref. 3):
	a. Ensure that the facility has been adequately designed,
	b. Validate the analytical models used in the design and analysis,
	c. Verify the assumptions used to predict unit response,
	 Ensure that installation of equipment in the facility has been accomplished in accordance with the design, and
	e. Verify that the operating and emergency procedures are adequate.
	To accomplish these objectives, testing is performed prior to initial criticality, during startup, during low power operations, during power ascension, at high power, and after each refueling. The PHYSICS TESTS requirements for reload fuel cycles ensure that the operating characteristics of the core are consistent with the design predictions and that the core can be operated as designed (Ref. 4).
	PHYSICS TESTS procedures are written and approved in accordance with established formats. The procedures include all information necessary to permit a detailed execution of the testing required to ensure that the design intent is met. PHYSICS TESTS are performed in accordance with these procedures and test results are approved prior to continued power escalation and long term power operation.

BACKGROUND (continued)

The PHYSICS TESTS required for reload fuel cycles (Ref. 4) in MODE 2 are listed below:

- a. Critical Boron Concentration Control Rods Withdrawn,
- b. Critical Boron Concentration Control Rods Inserted,
- c. Control Rod Worth,
- d. Isothermal Temperature Coefficient (ITC), and
- e. Neutron Flux Symmetry.

The first four tests are performed in MODE 2, and the last test can be performed in either MODE 1 or 2. These and other supplementary tests may be required to calibrate the nuclear instrumentation or to diagnose operational problems. These tests may cause the operating controls and process variables to deviate from their LCO requirements during their performance.

- [a. The Critical Boron Concentration Control Rods Withdrawn Test measures the critical boron concentration at hot zero power (HZP). With all rods out, the lead control bank is at or near its fully withdrawn position. HZP is where the core is critical ($k_{eff} = 1.0$), and the Reactor Coolant System (RCS) is at design temperature and pressure for zero power. Performance of this test should not violate any of the referenced LCOs.
 - b. The Critical Boron Concentration Control Rods Inserted Test measures the critical boron concentration at HZP, with a bank having a worth of at least 1% ∆k/k when fully inserted into the core. This test is used to measure the boron reactivity coefficient. With the core at HZP and all banks fully withdrawn, the boron concentration of the reactor coolant is gradually lowered in a continuous manner. The selected bank is then inserted to make up for the decreasing boron concentration until the selected bank has been moved over its entire range of travel. The reactivity resulting from each incremental bank movement is measured with a reactivity computer. The difference between the measured critical boron concentration with all rods fully withdrawn and with the bank inserted is determined. The boron

BACKGROUND (continued)

reactivity coefficient is determined by dividing the measured bank worth by the measured boron concentration difference. Performance of this test could violate LCO 3.1.4, "Rod Group Alignment Limits," LCO 3.1.5, "Shutdown Bank Insertion Limit," or LCO 3.1.6, "Control Bank Insertion Limits."

- The Control Rod Worth Test is used to measure the reactivity worth C. of selected control banks. This test is performed at HZP and has three alternative methods of performance. The first method, the Boron Exchange Method, varies the reactor coolant boron concentration and moves the selected control bank in response to the changing boron concentration. The reactivity changes are measured with a reactivity computer. This sequence is repeated for the remaining control banks. The second method, the Rod Swap Method, measures the worth of a predetermined reference bank using the Boron Exchange Method above. The reference bank is then nearly fully inserted into the core. The selected bank is then inserted into the core as the reference bank is withdrawn. The HZP critical conditions are then determined with the selected bank fully inserted into the core. The worth of the selected bank is inferred. based on the position of the reference bank with respect to the selected bank. This sequence is repeated as necessary for the remaining control banks. The third method, the Boron Endpoint Method, moves the selected control bank over its entire length of travel and then varies the reactor coolant boron concentration to achieve HZP criticality again. The difference in boron concentration is the worth of the selected control bank. This sequence is repeated for the remaining control banks. Performance of this test could violate LCO 3.1.4, LCO 3.1.5, or LCO 3.1.6.
- d. The ITC Test measures the ITC of the reactor. This test is performed at HZP and has two methods of performance. The first method, the Slope Method, varies RCS temperature in a slow and continuous manner. The reactivity change is measured with a reactivity computer as a function of the temperature change. The ITC is the slope of the reactivity versus the temperature plot. The test is repeated by reversing the direction of the temperature change, and the final ITC is the average of the two calculated ITCs. The second method, the Endpoint Method, changes the RCS temperature and measures the reactivity at the beginning and end of the

BACKGROUND (continued)

	 temperature change. The ITC is the total reactivity change divided by the total temperature change. The test is repeated by reversing the direction of the temperature change, and the final ITC is the average of the two calculated ITCs. Performance of this test could violate LCO 3.4.2, "RCS Minimum Temperature for Criticality." e. The Flux Symmetry Test measures the degree of azimuthal symmetry of the neutron flux at as low a power level as practical, depending on the test method employed. This test can be performed at HZP (Control Rod Worth Symmetry Method) or at ≤ 30% RTP (Flux Distribution Method). The Control Rod Worth Symmetry Method inserts a control bank, which can then be withdrawn to compensate for the insertion of a single control rod from a symmetric set. The symmetric rods of each set are then tested to evaluate the symmetry of the control rod worth and neutron flux (power distribution). A reactivity computer is used to measure the control rod worths. Performance of this test could violate LCO 3.1.4, LCO 3.1.5, or LCO 3.1.6. The Flux Distribution Method uses the incore flux detectors to measure the azimuthal flux distribution at selected locations with the core at ≤ 30% RTP.]
APPLICABLE SAFETY ANALYSES	The fuel is protected by LCOs that preserve the initial conditions of the core assumed during the safety analyses. The methods for development of the LCOs that are excepted by this LCO are described in the Westinghouse Reload Safety Evaluation Methodology Report (Ref. 5). The above mentioned PHYSICS TESTS, and other tests that may be required to calibrate nuclear instrumentation or to diagnose operational problems, may require the operating control or process variables to deviate from their LCO limitations.
	The FSAR defines requirements for initial testing of the facility, including PHYSICS TESTS. Tables [14.1-1 and 14.1-2] summarize the zero, low power, and power tests. Requirements for reload fuel cycle PHYSICS TESTS are defined in ANSI/ANS-19.6.1-1985 (Ref. 4). Although these PHYSICS TESTS are generally accomplished within the limits for all LCOs, conditions may occur when one or more LCOs must be suspended to make completion of PHYSICS TESTS possible or practical. This is acceptable as long as the fuel design criteria are not violated. When one or more of the requirements specified in LCO 3.1.3, "Moderator Temperature Coefficient (MTC)," LCO 3.1.4, LCO 3.1.5, LCO 3.1.6, and LCO 3.4.2 are suspended for PHYSICS TESTS, the fuel design criteria are preserved as long as the power level is limited to $\leq 5\%$ RTP, the reactor coolant temperature is kept $\geq 531^{\circ}$ F, and SDM is within the limits provided in the COLR.

APPLICABLE SAFETY ANALYSES (continued)

The PHYSICS TESTS include measurement of core nuclear parameters or the exercise of control components that affect process variables. Among the process variables involved are AFD and QPTR, which represent initial conditions of the unit safety analyses. Also involved are the movable control components (control and shutdown rods), which are required to shut down the reactor. The limits for these variables are specified for each fuel cycle in the COLR.

As described in LCO 3.0.7, compliance with Test Exception LCOs is optional, and therefore no criteria of 10 CFR 50.36(c)(2)(ii) apply. Test Exception LCOs provide flexibility to perform certain operations by appropriately modifying requirements of other LCOs. A discussion of the criteria satisfied for the other LCOs is provided in their respective Bases.

Reference 6 allows special test exceptions (STEs) to be included as part of the LCO that they affect. It was decided, however, to retain this STE as a separate LCO because it was less cumbersome and provided additional clarity.

LCO

This LCO allows the reactor parameters of MTC and minimum temperature for criticality to be outside their specified limits. In addition, it allows selected control and shutdown rods to be positioned outside of their specified alignment and insertion limits. One power range neutron flux channel may be bypassed, reducing the number of required channels from 4 to 3. Operation beyond specified limits is permitted for the purpose of performing PHYSICS TESTS and poses no threat to fuel integrity, provided the SRs are met.

The requirements of LCO 3.1.3, LCO 3.1.4, LCO 3.1.5, LCO 3.1.6, and LCO 3.4.2 may be suspended and the number of required channels for LCO 3.3.1, "RTS Instrumentation," Functions 2, 3, 6 and 18.e may be reduced to 3 required channels during the performance of PHYSICS TESTS provided:

- a. RCS lowest loop average temperature is \geq [531]°F,
- b. SDM is within the limits provided in the COLR, and
- c. THERMAL POWER is \leq 5% RTP.

BASES APPLICABILITY This LCO is applicable when performing low power PHYSICS TESTS. The Applicability is stated as "during PHYSICS TESTS initiated in MODE 2" to ensure that the 5% RTP maximum power level is not exceeded. Should the THERMAL POWER exceed 5% RTP, and consequently the unit enter MODE 1, this Applicability statement prevents exiting this Specification and its Required Actions. ACTIONS A.1 and A.2 If the SDM requirement is not met, boration must be initiated promptly. A Completion Time of 15 minutes is adequate for an operator to correctly

If the SDM requirement is not met, boration must be initiated promptly. A Completion Time of 15 minutes is adequate for an operator to correctly align and start the required systems and components. The operator should begin boration with the best source available for the plant conditions. Boration will be continued until SDM is within limit.

Suspension of PHYSICS TESTS exceptions requires restoration of each of the applicable LCOs to within specification.

<u>B.1</u>

When THERMAL POWER is > 5% RTP, the only acceptable action is to open the reactor trip breakers (RTBs) to prevent operation of the reactor beyond its design limits. Immediately opening the RTBs will shut down the reactor and prevent operation of the reactor outside of its design limits.

<u>C.1</u>

When the RCS lowest T_{avg} is < 531°F, the appropriate action is to restore T_{avg} to within its specified limit. The allowed Completion Time of 15 minutes provides time for restoring T_{avg} to within limits without allowing the plant to remain in an unacceptable condition for an extended period of time. Operation with the reactor critical and with temperature below 531°F could violate the assumptions for accidents analyzed in the safety analyses.

ACTIONS (continued)

<u>D.1</u>

If the Required Actions cannot be completed within the associated Completion Time, the plant must be brought to a MODE in which the requirement does not apply. To achieve this status, the plant must be brought to at least MODE 3 within an additional 15 minutes. The Completion Time of 15 additional minutes is reasonable, based on operating experience, for reaching MODE 3 in an orderly manner and without challenging plant systems.

SURVEILLANCE <u>SR 3.1.8.1</u> REQUIREMENTS

The power range and intermediate range neutron detectors must be verified to be OPERABLE in MODE 2 by LCO 3.3.1, "Reactor Trip System (RTS) Instrumentation." A CHANNEL OPERATIONAL TEST is performed on each power range and intermediate range channel prior to initiation of the PHYSICS TESTS. This will ensure that the RTS is properly aligned to provide the required degree of core protection during the performance of the PHYSICS TESTS.

<u>SR 3.1.8.2</u>

Verification that the RCS lowest loop T_{avg} is $\geq 531^{\circ}$ F will ensure that the unit is not operating in a condition that could invalidate the safety analyses. Verification of the RCS temperature at a Frequency of 30 minutes during the performance of the PHYSICS TESTS will ensure that the initial conditions of the safety analyses are not violated.

<u>SR 3.1.8.3</u>

Verification that the THERMAL POWER is \leq 5% RTP will ensure that the plant is not operating in a condition that could invalidate the safety analyses. Verification of the THERMAL POWER at a Frequency of 30 minutes during the performance of the PHYSICS TESTS will ensure that the initial conditions of the safety analyses are not violated.

SURVEILLANCE REQUIREMENTS (continued)

SR 3.1.8.4

The SDM is verified by performing a reactivity balance calculation, considering the following reactivity effects:

- a. RCS boron concentration,
- b. Control bank position,
- c. RCS average temperature,
- d. Fuel burnup based on gross thermal energy generation,
- e. Xenon concentration,
- f. Samarium concentration,
- g. Isothermal temperature coefficient (ITC), when below the point of adding heat (POAH),
- h. Moderate defect, when above the POAH, and
- i. Doppler defect, when above the POAH.

Using the ITC accounts for Doppler reactivity in this calculation when the reactor is subcritical or critical but below the POAH, and the fuel temperature will be changing at the same rate as the RCS.

The Frequency of 24 hours is based on the generally slow change in required boron concentration and on the low probability of an accident occurring without the required SDM.

- REFERENCES 1. 10 CFR 50, Appendix B, Section XI.
 - 2. 10 CFR 50.59.
 - 3. Regulatory Guide 1.68, Revision 2, August, 1978.
 - 4. ANSI/ANS-19.6.1-1985, December 13, 1985.
 - 5. WCAP-9273-NP-A, "Westinghouse Reload Safety Evaluation Methodology Report," July 1985.
 - 6. WCAP-11618, including Addendum 1, April 1989.

B 3.2 POWER DISTRIBUTION LIMITS

B 3.2.1A Heat Flux Hot Channel Factor ($F_Q(Z)$) (CAOC- F_{xy} Methodology)

BACKGROUND	The purpose of the limits on the values of $F_{\alpha}(Z)$ is to limit the local (i.e., pellet) peak power density. The value of $F_{\alpha}(Z)$ varies along the axial height of the core (Z).
	$F_{Q}(Z)$ is defined as the maximum local fuel rod linear power density divided by the average fuel rod linear power density, assuming nominal fuel pellet and fuel rod dimensions. Therefore, $F_{Q}(Z)$ is a measure of the peak fuel pellet power within the reactor core.
	During power operation, the global power distribution is limited by LCO 3.2.3, "AXIAL FLUX DIFFERENCE (AFD)," and LCO 3.2.4, "QUADRANT POWER TILT RATIO (QPTR)," which are directly and continuously measured process variables. These LCOs, along with LCO 3.1.7, "Control Bank Insertion Limits," maintain core limits on power distributions on a continuous basis.
	$F_{\rm Q}(Z)$ varies with fuel loading patterns, control bank insertion, fuel burnup, and changes in axial power distribution.
	$F_{Q}(Z)$ is measured periodically using the incore detector system. These measurements are generally taken with the core at or near steady state conditions.
	Using the measured three dimensional power distributions, it is possible to determine a measured value for $F_Q(Z)$. However, because this value represents a steady state condition, it does not include variations in the value of $F_Q(Z)$, which are present during a nonequilibrium situation such as load following or during power ascension.
	The steady state value of the fundamental radial peaking factor (F_{xy}) is adjusted by an elevation dependent factor to account for the variations in $F_Q(Z)$ due to transient conditions.
	Core monitoring and control under nonsteady state conditions are accomplished by operating the core within the limits of the appropriate LCOs, including the limits on AFD, QPTR, and control rod insertion.

· · · · · · · · ·

BASES			
APPLICABLE SAFETY ANALYSES	This LCO precludes core power distributions that violate the following fuel design criteria:		
	 During a large break loss of coolant accident (LOCA), the peak cladding temperature must not exceed 2200°F (Ref. 1), 		
	b. During a loss of forced reactor coolant flow accident, there must be a least 95% probability at the 95% confidence level (the 95/95 DNB criterion) that the hot fuel rod in the core does not experience a departure from nucleate boiling (DNB) condition,		
	 During an ejected rod accident, the energy deposition to the fuel must not exceed 280 cal/gm (Ref. 2), and 		
	d. The control rods must be capable of shutting down the reactor with a minimum required SDM with the highest worth control rod stuck fully withdrawn (Ref. 3).		
	Limits on $F_{\alpha}(Z)$ ensure that the value of the initial total peaking factor assumed in the accident analyses remains valid. Other criteria must also be met (e.g., maximum cladding oxidation, maximum hydrogen generation, coolable geometry, and long term cooling). However, the peak cladding temperature is typically most limiting.		
	$F_{\alpha}(Z)$ limits assumed in the LOCA analysis are typically limiting relative to (i.e., lower than) the $F_{\alpha}(Z)$ assumed in safety analyses for other postulated accidents. Therefore, this LCO provides conservative limits for other postulated accidents.		
	F _Q (Z) satisfies Criterion 2 of 10 CFR 50.36(c)(2)(ii).		
LCO	The Heat Flux Hot Channel Factor $F_Q(Z)$ shall be limited by the following relationships:		
	$F_{Q}(Z) \le (CFQ / P) K(Z)$ for P > 0.5		
	$F_Q(Z) \le (CFQ / 0.5) K(Z)$ for $P \le 0.5$		
	where: CFQ is the F_{Q} limit at RTP provided in the COLR,		
	$K(Z)$ is the normalized $F_Q(Z)$ as a function of core height provided in the COLR, and		
	P = THERMAL POWER / RTP		

LCO (continued)	
	For this facility, the actual values of CFQ and K(Z) are given in the COLR; however, CFQ is normally a number on the order of [2.32], and K(Z) is a function that looks like the one provided in Figure B 3.2.1A-1.
	The F _Q (Z) limits define limiting values for core power peaking that precludes peak cladding temperatures above 2200°F during either a large or small break LOCA.
	This LCO requires operation within the bounds assumed in the safety analyses. Calculations are performed in the core design process to confirm that the core can be controlled in such a manner during operation that it can stay within the LOCA $F_{Q}(Z)$ limits. If $F_{Q}(Z)$ cannot be maintained within the LCO limits, reduction of the core power is required.
	Violating the LCO limits for $F_Q(Z)$ may produce unacceptable consequences if a design basis event occurs while $F_Q(Z)$ is outside its specified limits.
APPLICABILITY	The $F_Q(Z)$ limits must be maintained while in MODE 1 to prevent core power distributions from exceeding the limits assumed in the safety analyses. Applicability in other MODES is not required because there is insufficient stored energy in the fuel or energy being transferred to the reactor coolant to require a limit on the distribution of core power.
ACTIONS	<u>A.1</u>
	Reducing THERMAL POWER by $\geq 1\%$ for each 1% by which $F_Q(Z)$ exceeds its limit maintains an acceptable absolute power density. The Completion Time of 15 minutes provides an acceptable time to reduce power in an orderly manner and without allowing the plant to remain in an unacceptable condition for an extended period of time. The maximum allowable power level initially determined by Required Action A.1 may be affected by subsequent determinations of $F_Q(Z)$ and would require power reductions within 15 minutes of the $F_Q(Z)$ determination, if necessary to comply with the decreased maximum allowable power level. Decreases in $F_Q(Z)$ would allow increasing the maximum allowable power level and increasing power up to this revised limit.

ACTIONS (continued)

<u>A.2</u>

A reduction of the Power Range Neutron - High trip setpoints by $\geq 1\%$ for each 1% by which $F_{Q}(Z)$ exceeds its specified limit, is a conservative action for protection against the consequences of severe transients with unanalyzed power distributions. The Completion Time of 72 hours is sufficient, considering the small likelihood of a severe transient in this period, and the preceding prompt reduction in THERMAL POWER in accordance with Required Action A.1. The maximum allowable Power Range Neutron Flux – High trip setpoints initially determined by Required Action A.2 may be affected by subsequent determinations of $F_Q(Z)$ and would require Power Range Neutron Flux – High trip setpoint reductions within 72 hours of the $F_Q(Z)$ determination, if necessary to comply with the decreased maximum allowable Power Range Neutron Flux – High trip setpoints. Decreases in $F_Q(Z)$ would allow increasing the maximum allowable Power Range Neutron Flux – High trip setpoints.

<u>A.3</u>

Reduction in the Overpower ΔT trip setpoints (value of K₄) by \geq 1% for each 1% by which F_Q(Z) exceeds its limit, is a conservative action for protection against the consequences of severe transients with unanalyzed power distributions. The Completion Time of 72 hours is sufficient considering the small likelihood of a severe transient in this period, and the preceding prompt reduction in THERMAL POWER in accordance with Required Action A.1. The maximum allowable Overpower ΔT trip setpoints initially determined by Required Action A.3 may be affected by subsequent determinations of F_Q(Z) and would require Overpower ΔT trip setpoint reductions within 72 hours of the F_Q(Z) determination, if necessary to comply with the decreased maximum allowable Overpower ΔT trip setpoints. Decreases in F_Q(Z) would allow increasing the maximum allowable Overpower ΔT trip setpoints.

<u>A.4</u>

Verification that $F_Q(Z)$ has been restored to within its limit by performing SR 3.2.1.1 and SR 3.2.1.2 prior to increasing THERMAL POWER above the limit imposed by Required Action A.1 ensures that core conditions during operation at higher power levels and future operation are consistent with safety analyses assumptions.

ACTIONS (continued)

Condition A is modified by a Note that requires Required Action A.4 to be performed whenever the Condition is entered. This ensures that SR 3.2.1.1 and SR 3.2.1.2 will be performed prior to increasing THERMAL POWER above the limit of Required Action A.1, even when Condition A is exited prior to performing Required Action A.4. Performance of SR 3.2.1.1 and SR 3.2.1.2 are necessary to assure $F_{Q}(Z)$ is properly evaluated prior to increasing THERMAL POWER.

<u>B.1</u>

If the Required Actions of A.1 through A.4 cannot be met within their associated Completion Times, the plant must be placed in a MODE or condition in which the LCO requirements are not applicable. This is done by placing the plant in at least MODE 2 within 6 hours.

This allowed Completion Time is reasonable based on operating experience regarding the amount of time it takes to reach MODE 2 from full power operation in an orderly manner and without challenging plant systems.

SURVEILLANCE REQUIREMENTS

<u>SR 3.2.1.1</u>

Verification that $F_Q(Z)$ is within its limit involves increasing the measured values of $F_Q(Z)$ to allow for manufacturing tolerance and measurement uncertainties and then making a comparison with the limits. These limits are provided in the COLR. Specifically, the measured value of the Heat Flux Hot Channel Factor (F_Q^M) is increased by 3% to account for fuel manufacturing tolerances and by 5% for flux map measurement uncertainty for a full core flux map using the moveable incore detector flux mapping system. This procedure is equivalent to multiplying the directly measured values of $F_Q(Z)$ by 1.0815 before comparing with LCO limits (Ref. 4).

Performing the Surveillance in MODE 1 prior to THERMAL POWER exceeding 75% RTP after each refueling ensures that $F_Q(Z)$ is within limit when RTP is achieved, because peaking factors generally decrease as power level is increased. The surveillance also provides confirmation of the nuclear design and the fuel loading pattern.

SURVEILLANCE REQUIREMENTS (continued)

The Frequency of 31 EFPD is adequate for monitoring the change of power distribution with core burnup because the power distribution changes relatively slowly for this amount of fuel burnup. The Surveillance may be done more frequently if required by the results of SR 3.2.1.2.

SR 3.2.1.2

The nuclear design process includes calculations performed to determine that the core can be operated within the $F_{Q}(Z)$ limits. Because flux maps are taken at steady state conditions, the axial variations in power distribution for normal operation maneuvers such as load following are not present in the flux map data. These axial variations are, however, conservatively calculated by considering, in the nuclear design process, a wide range of unit maneuvers in normal operation. $F_{xy}(Z)$ is the radial peaking factor, which is one component of $F_Q(Z)$ and should be consistent between the nuclear design values and the measured values. $(F_{xy}(Z) = F_Q(Z))$

The core plane regions applicable to an F_{xy} evaluation exclude the following, measured in percent of core height:

- a. Lower core region, from 0% to 15% inclusive,
- b. Upper core region, from 85% to 100% inclusive,
- c. Grid plane regions, ± 2% inclusive, and
- d. Core plane regions, within ± 2% of the bank demand position of the control banks.

The following terms are used in the F_{xy} evaluation:

- F_{XY}^{M} = The measured value of F_{xy} obtained directly from the flux map results.
- F_{XY}^{C} = The measured value, F_{XY}^{M} , multiplied by 1.0815 to account for fuel manufacturing tolerances and flux map measurement uncertainty (Ref. 2).

SURVEILLANCE REQUIREMENTS (continued)

- F_{XY}^{RTP} = The limit of F_{xy} at RTP.
- $F_{XY}^{L} = F_{XY}^{RTP} [(1 + PFXY)(1 P)]$ (the limit of F_{xy} at the current THERMAL POWER level).
- PFXY = The power factor multiplier for F_{xy} .
- P = [The Fraction of RTP at which F_{xy} was measured.]
- F^{PR}_Q = The predicted value of the Heat Flux Hot Channel Factor. The predicted value is a maximum value which includes load follow impacts.

 F_{XY}^{RTP} and PFXY are provided in the COLR. F_{XY}^{M} and F_{XY}^{C} are measured and calculated at discrete core elevations. Note that F_{xy} can be rewritten as $F_{xy}(Z)$ to indicate that F_{xy} varies along the axial height of the core. Flux map data are typically taken for 30 to 75 core elevations.

The top and bottom regions of the core are excluded from the F_{xy} evaluation because of the difficulty of making precise and meaningful measurements in these regions and also because of the low probability that these regions would be more limiting than the central 70% of the core in the accident analyses.

Grid plane regions and rod tip regions are also excluded because the flux data may give spurious values because of the difficulty in lining up flux traces accurately in regions of rapidly varying flux. In addition, these small portions of the core are reduced in local power density because of neutron absorption in the grids and control rods and, therefore, cannot be regions of peak linear power.

An evaluation of $F_{xy}(Z)$ is used to confirm that $F_Q(Z)$ is within its limits. If F_{XY}^C is $< F_{XY}^{RTP}$, it is concluded that the LCO limit on $F_Q(Z)$ is met. This result is true for flux maps taken at reduced power because the $F_{xy}(Z)$ value is inherently decreased as THERMAL POWER is increased. The feedback from the Doppler coefficient and moderator effects flattens the power distribution with increased THERMAL POWER.

.

BASES

	The first Note of this Surveillance provides the action to be taken if F_{XY}^{C} is > F_{XY}^{RTP} In this case, the $F_{Q}(Z)$ limit may be exceeded. Proportionally
	increasing the predicted $F_Q^{PR}(Z)$ by the amount that F_{XY}^L is exceeded gives an adjusted $F_Q(Z)$, which is compared with the $F_Q(Z)$ limit. If the adjusted $F_Q(Z)$ exceeds the LCO limit, the operator must perform Required Actions A.1 through A.5.
	The second Note in this Surveillance states that if F_{XY}^{C} is > F_{XY}^{RTP} but < F_{XY}^{L} then this Surveillance shall be repeated within 24 hours after exceeding by $\ge 20\%$ RTP the THERMAL POWER at which F_{XY}^{C} was last determined, so as to demonstrate that $F_{xy}(Z)$ is being sufficiently reduced as power increases. This reduction, because of feedback from the Doppler coefficient and moderator effects, ensures that when RTP is attained, the computed $F_{XY}^{c}(Z)$ is < F_{XY}^{RTP} .
	Performing the Surveillance in MODE 1 prior to exceeding 75% RTP after each refueling ensures that the $F_Q(Z)$ limit is met when RTP is achieved.
	The Surveillance Frequency of 31 EFPD is adequate to monitor the change of power distribution with core burnup because the power distribution changes relatively slowly for this amount of fuel burnup. The Surveillance may be done more frequently if required by the results of F_{xy} evaluations. Specifically, the F_{xy} evaluation is required by this Surveillance if the evaluation shows that $F_{xy}^{RTP} < F_{xy}^{C}$ and to demonstrate that the LCO is met after its limit has been exceeded.
REFERENCES	1. 10 CFR 50.46.
	2. Regulatory Guide 1.77, Rev. [].
	3. 10 CFR 50.46, GDC 26.
	[4. WCAP-7308-L-P-A, "Evaluation of Nuclear Hot Channel Factor Uncertainties," June 1988.]

Figure B 3.2.1A-1 (page 1 of 1) K(Z) - Normalized Fo(Z) as a Function of Core Height

B 3.2 POWER DISTRIBUTION LIMITS

B 3.2.1B Heat Flux Hot Channel Factor (F_Q(Z) (RAOC-W(Z) Methodology)

BACKGROUND	The purpose of the limits on the values of $F_{Q}(Z)$ is to limit the local (i.e., pellet) peak power density. The value of $F_{Q}(Z)$ varies along the axial height (Z) of the core.
	$F_{Q}(Z)$ is defined as the maximum local fuel rod linear power density divided by the average fuel rod linear power density, assuming nominal fuel pellet and fuel rod dimensions. Therefore, $F_{Q}(Z)$ is a measure of the peak fuel pellet power within the reactor core.
	During power operation, the global power distribution is limited by LCO 3.2.3, "AXIAL FLUX DIFFERENCE (AFD)," and LCO 3.2.4, "QUADRANT POWER TILT RATIO(QPTR)," which are directly and continuously measured process variables. These LCOs, along with LCO 3.1.6, "Control Bank Insertion Limits," maintain the core limits on power distributions on a continuous basis.
	$F_{Q}(Z)$ varies with fuel loading patterns, control bank insertion, fuel burnup, and changes in axial power distribution.
	$F_{Q}(Z)$ is measured periodically using the incore detector system. These measurements are generally taken with the core at or near equilibrium conditions.
	Using the measured three dimensional power distributions, it is possible to derive a measured value for $F_Q(Z)$. However, because this value represents an equilibrium condition, it does not include the variations in the value of $F_Q(Z)$ which are present during nonequilibrium situations such as load following or power ascension.
	To account for these possible variations, the equilibrium value of $F_{\alpha}(Z)$ is adjusted as $F_{\alpha}^{w}(Z)$ by an elevation dependent factor that accounts for the calculated worst case transient conditions.
	Core monitoring and control under non-equilibrium conditions are accomplished by operating the core within the limits of the appropriate LCOs, including the limits on AFD, QPTR, and control rod insertion.

BASES				
APPLICABLE SAFETY ANALYSES	This LCO precludes core power distributions that violate the following fuel design criteria:			
	a. Dur clao	ing a large break loss of coo Iding temperature must not e	lant accident (LOCA), the peak exceed 2200°F (Ref. 1),	
	b. Dur leas crite dep	ing a loss of forced reactor c st 95% probability at the 95% erion) that the hot fuel rod in parture from nucleate boiling	coolant flow accident, there must be at confidence level (the 95/95 DNB the core does not experience a (DNB) condition,	
	c. Dur mu	ing an ejected rod accident, st not exceed 280 cal/gm (Re	the energy deposition to the fuel ef. 2), and	
	d. The min with	d. The control rods must be capable of shutting down the reactor with a minimum required SDM with the highest worth control rod stuck fully withdrawn (Ref. 3).		
	Limits o assume be met generat peak cla	n $F_Q(Z)$ ensure that the value d in the accident analyses re (e.g., maximum cladding oxic ion, coolable geometry, and l adding temperature is typical	e of the initial total peaking factor mains valid. Other criteria must also dation, maximum hydrogen long term cooling). However, the ly most limiting.	
	F _Q (Z) lir (i.e., lov postulat other po	nits assumed in the LOCA ar ver than) the $F_{Q}(Z)$ limit assumed accidents. Therefore, this postulated accidents	nalysis are typically limiting relative to med in safety analyses for other s LCO provides conservative limits for	
	F _Q (Z) sa	$F_{Q}(Z)$ satisfies Criterion 2 of 10 CFR 50.36(c)(2)(ii).		
LCO	The Heat Flux Hot Channel Factor, $F_Q(Z)$, shall be limited by the following relationships:			
		$F_Q(Z) \le (CFQ / P) K(Z)$	for P > 0.5	
		$F_{Q}(Z) \leq (CFQ / 0.5) K(Z)$	for P ≤ 0.5	
	where:	CFQ is the $F_Q(Z)$ limit at RT	P provided in the COLR,	
		K(Z) is the normalized FQ(Z provided in the COLR, and	2) as a function of core height	
·		P = THERMAL POWER / R	TP	

LCO (continued)

For this facility, the actual values of CFQ and K(Z) are given in the COLR; however, CFQ is normally a number on the order of [2.32], and K(Z) is a function that looks like the one provided in Figure B 3.2.1B-1.

For Relaxed Axial Offset Control operation, $F_Q(Z)$ is approximated by $F_Q^c(Z)$ and $F_Q^w(Z)$. Thus, both $F_Q^c(Z)$ and $F_Q^w(Z)$ must meet the preceding limits on $F_Q(Z)$.

An $F_{\alpha}^{c}(Z)$ evaluation requires obtaining an incore flux map in MODE 1. From the incore flux map results we obtain the measured value ($F_{\alpha}^{M}(Z)$) of $F_{\alpha}(Z)$. Then,

 $F_{q}^{c}(Z) = F_{q}^{M}(Z) [1.0815]$

where [1.0815] is a factor that accounts for fuel manufacturing tolerances and flux map measurement uncertainty.

 $F_{q}^{c}(Z)$ is an excellent approximation for $F_{q}(Z)$ when the reactor is at the steady state power at which the incore flux map was taken.

The expression for $F_{\alpha}^{w}(Z)$ is:

 $F^{w}_{\alpha}(Z) = F^{c}_{\alpha}(Z) W(Z)$

where W(Z) is a cycle dependent function that accounts for power distribution transients encountered during normal operation. W(Z) is included in the COLR. The $F_{\alpha}^{c}(Z)$ is calculated at equilibrium conditions.

The $F_{\alpha}(Z)$ limits define limiting values for core power peaking that precludes peak cladding temperatures above 2200°F during either a large or small break LOCA.

This LCO requires operation within the bounds assumed in the safety analyses. Calculations are performed in the core design process to confirm that the core can be controlled in such a manner during operation that it can stay within the LOCA $F_Q(Z)$ limits. If $F_Q^c(Z)$ cannot be maintained within the LCO limits, reduction of the core power is required and if $F_Q^w(Z)$ cannot be maintained within the LCO limits, reduction of the AFD limits is required. Note that sufficient reduction of the AFD limits will also result in a reduction of the core power.

Violating the LCO limits for $F_Q(Z)$ produces unacceptable consequences if a design basis event occurs while $F_Q(Z)$ is outside its specified limits.

Applicability in other MODES is not required because there is either insufficient stored energy in the fuel or insufficient energy being transferred to the reactor coolant to require a limit on the distribution of core power.

ACTIONS

Reducing THERMAL POWER by $\geq 1\%$ RTP for each 1% by which $F_{\alpha}^{c}(Z)$ exceeds its limit, maintains an acceptable absolute power density. $F_{\alpha}^{c}(Z)$ is $F_{\alpha}^{M}(Z)$ multiplied by a factor accounting for manufacturing tolerances and measurement uncertainties. $F_{\alpha}^{M}(Z)$ is the measured value of $F_{\alpha}(Z)$. The Completion Time of 15 minutes provides an acceptable time to reduce power in an orderly manner and without allowing the plant to remain in an unacceptable condition for an extended period of time. The maximum allowable power level initially determined by Required Action A.1 may be affected by subsequent determinations of $F_{\alpha}^{c}(Z)$ and would require power reductions within 15 minutes of the $F_{\alpha}^{c}(Z)$ determination, if necessary to comply with the decreased maximum allowable power level. Decreases in $F_{\alpha}^{c}(Z)$ would allow increasing the maximum allowable power level.

<u>A.2</u>

<u>A.1</u>

A reduction of the Power Range Neutron Flux - High trip setpoints by $\geq 1\%$ for each 1% by which $F_{\alpha}^{c}(Z)$ exceeds its limit, is a conservative action for protection against the consequences of severe transients with unanalyzed power distributions. The Completion Time of 72 hours is sufficient considering the small likelihood of a severe transient in this time period and the preceding prompt reduction in THERMAL POWER in accordance with Required Action A.1. The maximum allowable Power Range Neutron Flux - High trip setpoints initially determined by Required Action A.2 may be affected by subsequent determinations of $F_{\alpha}^{c}(Z)$ and would require Power Range Neutron Flux - High trip setpoint reductions within 72 hours of the $F_{\alpha}^{c}(Z)$ determination, if necessary to comply with the decreased maximum allowable Power Range Neutron Flux - High trip setpoints. Decreases in $F_{\alpha}^{c}(Z)$ would allow increasing the maximum allowable Power Range Neutron Flux - High trip setpoints.

ACTIONS (continued)

<u>A.3</u>

Reduction in the Overpower ΔT trip setpoints (value of K₄) by \geq 1% for each 1% by which $F_{\alpha}^{c}(Z)$ exceeds its limit, is a conservative action for protection against the consequences of severe transients with unanalyzed power distributions. The Completion Time of 72 hours is sufficient considering the small likelihood of a severe transient in this time period, and the preceding prompt reduction in THERMAL POWER in accordance with Required Action A.1. The maximum allowable Overpower ΔT trip setpoints initially determined by Required Action A.3 may be affected by subsequent determinations of $F_{\alpha}^{c}(Z)$ and would require Overpower ΔT trip setpoint reductions within 72 hours of the $F_{\alpha}^{c}(Z)$ determination, if necessary to comply with the decreased maximum allowable Overpower ΔT trip setpoints. Decreases in $F_{\alpha}^{c}(Z)$ would allow increasing the maximum allowable Overpower ΔT trip setpoints.

<u>A.4</u>

Verification that $F_{\alpha}^{c}(Z)$ has been restored to within its limit, by performing SR 3.2.1.1 and SR 3.2.1.2 prior to increasing THERMAL POWER above the limit imposed by Required Action A.1, ensures that core conditions during operation at higher power levels and future operation are consistent with safety analyses assumptions.

Condition A is modified by a Note that requires Required Action A.4 to be performed whenever the Condition is entered. This ensures that SR 3.2.1.1 and SR 3.2.1.2 will be performed prior to increasing THERMAL POWER above the limit of Required Action A.1, even when Condition A is exited prior to performing Required Action A.4. Performance of SR 3.2.1.1 and SR 3.2.1.2 are necessary to assure $F_Q(Z)$ is properly evaluated prior to increasing THERMAL POWER.

<u>B.1</u>

If it is found that the maximum calculated value of $F_Q(Z)$ that can occur during normal maneuvers, $F_Q^w(Z)$, exceeds its specified limits, there exists a potential for $F_Q^c(Z)$ to become excessively high if a normal operational transient occurs. Reducing the AFD by $\ge 1\%$ for each 1% by which $F_Q^w(Z)$ exceeds its limit within the allowed Completion Time of 4 hours, restricts the axial flux distribution such that even if a transient occurred, core peaking factors are not exceeded.

ACTIONS (continued)

The implicit assumption is that if W(Z) values were recalculated (consistent with the reduced AFD limits), then $F_{q}^{c}(Z)$ times the recalculated W(Z) values would meet the $F_{q}(Z)$ limit. Note that complying with this action (of reducing AFD limits) may also result in a power reduction. Hence the need for Required Actions B.2, B.3 and B.4.

<u>B.2</u>

A reduction of the Power Range Neutron Flux-High trip setpoints by \geq 1% for each 1% by which the maximum allowable power is reduced, is a conservative action for protection against the consequences of severe transients with unanalyzed power distributions. The Completion Time of 72 hours is sufficient considering the small likelihood of a severe transient in this time period and the preceding prompt reduction in THERMAL POWER as a result of reducing AFD limits in accordance with Required Action B.1.

<u>B.3</u>

Reduction in the Overpower ΔT trip setpoints value of K₄ by \geq 1% for each 1% by which the maximum allowable power is reduced, is a conservative action for protection against the consequences of severe transients with unanalyzed power distributions. The Completion Time of 72 hours is sufficient considering the small likelihood of a severe transient in this time period, and the preceding prompt reduction in THERMAL POWER as a result of reducing AFD limits in accordance with Required Action B.1.

<u>B.4</u>

Verification that $F_{\alpha}^{w}(Z)$ has been restored to within its limit, by performing SR 3.2.1.1 and SR 3.2.1.2 prior to increasing THERMAL POWER above the maximum allowable power limit imposed by Required Action B.1 ensures that core conditions during operation at higher power levels and future operation are consistent with safety analyses assumptions.

ACTIONS (continued)

Condition B is modified by a Note that requires Required Action B.4 to be performed whenever the Condition is entered. This ensures that SR 3.2.1.1 and SR 3.2.1.2 will be performed prior to increasing THERMAL POWER above the limit of Required Action B.1, even when Condition A is exited prior to performing Required Action B.4. Performance of SR 3.2.1.1 and SR 3.2.1.2 are necessary to assure $F_Q(Z)$ is properly evaluated prior to increasing THERMAL POWER.

<u>C.1</u>

If Required Actions A.1 through A.4 or B.1 through B.4 are not met within their associated Completion Times, the plant must be placed in a mode or condition in which the LCO requirements are not applicable. This is done by placing the plant in at least MODE 2 within 6 hours.

This allowed Completion Time is reasonable based on operating experience regarding the amount of time it takes to reach MODE 2 from full power operation in an orderly manner and without challenging plant systems.

SURVEILLANCE SR 3.2.1.1 and SR 3.2.1.2 are modified by a Note. The Note applies during the first power ascension after a refueling. It states that REQUIREMENTS THERMAL POWER may be increased until an equilibrium power level has been achieved at which a power distribution map can be obtained. This allowance is modified, however, by one of the Frequency conditions that requires verification that $F_{Q}^{c}(Z)$ and $F_{Q}^{w}(Z)$ are within their specified limits after a power rise of more than 10% RTP over the THERMAL POWER at which they were last verified to be within specified limits. Because $F_{\alpha}^{c}(Z)$ and $F_{\alpha}^{w}(Z)$ could not have previously been measured in this reload core, there is a second Frequency condition, applicable only for reload cores, that requires determination of these parameters before exceeding 75% RTP. This ensures that some determination of $F_0^c(Z)$ and $F_{0}^{w}(Z)$ are made at a lower power level at which adequate margin is available before going to 100% RTP. Also, this Frequency condition, together with the Frequency condition requiring verification of $F_0^c(Z)$ and $F_{0}^{w}(Z)$ following a power increase of more than 10%, ensures that they are verified as soon as RTP (or any other level for extended operation) is achieved. In the absence of these Frequency conditions, it is possible to

SURVEILLANCE REQUIREMENTS (continued)

increase power to RTP and operate for 31 days without verification of $F_{\alpha}^{c}(Z)$ and $F_{\alpha}^{w}(Z)$. The Frequency condition is not intended to require verification of these parameters after every 10% increase in power level above the last verification. It only requires verification after a power level is achieved for extended operation that is 10% higher than that power at which $F_{\alpha}(Z)$ was last measured.

<u>SR 3.2.1.1</u>

Verification that $F_{\alpha}^{c}(Z)$ is within its specified limits involves increasing $F_{\alpha}^{M}(Z)$ to allow for manufacturing tolerance and measurement uncertainties in order to obtain $F_{\alpha}^{c}(Z)$. Specifically, $F_{\alpha}^{M}(Z)$ is the measured value of $F_{\alpha}(Z)$ obtained from incore flux map results and $F_{\alpha}^{c}(Z) = F_{\alpha}^{M}(Z)$ [1.0815] (Ref. 4). $F_{\alpha}^{c}(Z)$ is then compared to its specified limits.

The limit with which $F_a^c(Z)$ is compared varies inversely with power above 50% RTP and directly with a function called K(Z) provided in the COLR.

Performing this Surveillance in MODE 1 prior to exceeding 75% RTP ensures that the $F_{\alpha}^{c}(Z)$ limit is met when RTP is achieved, because peaking factors generally decrease as power level is increased.

If THERMAL POWER has been increased by $\geq 10\%$ RTP since the last determination of $F_{q}^{c}(Z)$, another evaluation of this factor is required [12] hours after achieving equilibrium conditions at this higher power level (to ensure that $F_{q}^{c}(Z)$ values are being reduced sufficiently with power increase to stay within the LCO limits).

The Frequency of 31 EFPD is adequate to monitor the change of power distribution with core burnup because such changes are slow and well controlled when the plant is operated in accordance with the Technical Specifications (TS).

SURVEILLANCE REQUIREMENTS (continued)

SR 3.2.1.2

The nuclear design process includes calculations performed to determine that the core can be operated within the $F_Q(Z)$ limits. Because flux maps are taken in steady state conditions, the variations in power distribution resulting from normal operational maneuvers are not present in the flux map data. These variations are, however, conservatively calculated by considering a wide range of unit maneuvers in normal operation. The maximum peaking factor increase over steady state values, calculated as a function of core elevation, Z, is called W(Z). Multiplying the measured total peaking factor, $F_Q^c(Z)$, by W(Z) gives the maximum $F_Q(Z)$ calculated to occur in normal operation, $F_Q^w(Z)$.

The limit with which $F_{q}^{w}(Z)$ is compared varies inversely with power above 50% RTP and directly with the function K(Z) provided in the COLR.

The W(Z) curve is provided in the COLR for discrete core elevations. Flux map data are typically taken for 30 to 75 core elevations. $F_Q^w(Z)$ evaluations are not applicable for the following axial core regions, measured in percent of core height:

a. Lower core region, from 0 to 15% inclusive and

b. Upper core region, from 85 to 100% inclusive.

The top and bottom 15% of the core are excluded from the evaluation because of the low probability that these regions would be more limiting in the safety analyses and because of the difficulty of making a precise measurement in these regions.

This Surveillance has been modified by a Note that may require that more frequent surveillances be performed. If $F_{Q}^{W}(Z)$ is evaluated, an evaluation of the expression below is required to account for any increase to $F_{Q}^{M}(Z)$ that may occur and cause the $F_{Q}(Z)$ limit to be exceeded before the next required $F_{Q}(Z)$ evaluation.

If the two most recent $F_Q(Z)$ evaluations show an increase in the expression maximum over z [$F_Q^c(Z) / K(Z)$], it is required to meet the $F_Q(Z)$ limit with the last $F_Q^w(Z)$ increased by the greater of a factor of [1.02] or by an appropriate factor specified in the COLR (Ref. 5)

SURVEILLANCE REQUIREMENTS (continued)

	REVIEWER'S NOTE		
	WCAP-10216-P-A, Rev. 1A, "Relaxation of Constant Axial Offset Control and F_{α} Surveillance Technical Specification," February 1994, or other appropriate plant specific methodology, is to be listed in the COLR description in the Administrative Controls Section 5.0 to address the methodology used to derive this factor.		
	or to evaluate $F_Q(Z)$ more frequently, each 7 EFPD. These alternative requirements prevent $F_Q(Z)$ from exceeding its limit for any significant period of time without detection.		
	Performing the Surveillance in MODE 1 prior to exceeding 75% RTP ensures that the $F_Q(Z)$ limit is met when RTP is achieved, because peaking factors are generally decreased as power level is increased.		
	$F_{Q}(Z)$ is verified at power levels $\geq 10\%$ RTP above the THERMAL POWER of its last verification, [12] hours after achieving equilibrium conditions to ensure that $F_{Q}(Z)$ is within its limit at higher power levels.		
	The Surveillance Frequency of 31 EFPD is adequate to monitor the change of power distribution with core burnup. The Surveillance may be done more frequently if required by the results of $F_Q(Z)$ evaluations.		
	The Frequency of 31 EFPD is adequate to monitor the change of power distribution because such a change is sufficiently slow, when the plant is operated in accordance with the TS, to preclude adverse peaking factors between 31 day surveillances.		
REFERENCES	1. 10 CFR 50.46, 1974.		
	2. Regulatory Guide 1.77, Rev. 0, May 1974.		
	3. 10 CFR 50, Appendix A, GDC 26.		
	 WCAP-7308-L-P-A, "Evaluation of Nuclear Hot Channel Factor Uncertainties," June 1988. 		
	 WCAP-10216-P-A, Rev. 1A, "Relaxation of Constant Axial Offset Control (and) F_Q Surveillance Technical Specification," February 1994. 		

Figure B 3.2.1B-1 (page 1 of 1) K(Z) - Normalized Fo(Z) as a Function of Core Height

B 3.2 POWER DISTRIBUTION LIMITS

B 3.2.1C Heat Flux Hot Channel Factor (F_Q(Z) (CAOC-W(Z) Methodology)

BASES	
BACKGROUND	The purpose of the limits on the values of $F_Q(Z)$ is to limit the local (i.e., pellet) peak power density. The value of $F_Q(Z)$ varies along the axial height (Z) of the core.
	$F_Q(Z)$ is defined as the maximum local fuel rod linear power density divided by the average fuel rod linear power density, assuming nominal fuel pellet and fuel rod dimensions. Therefore, $F_Q(Z)$ is a measure of the peak fuel pellet power within the reactor core.
	During power operation, the global power distribution is limited by LCO 3.2.3, "AXIAL FLUX DIFFERENCE (AFD)," and LCO 3.2.4, "QUADRANT POWER TILT RATIO (QPTR)," which are directly and continuously measured process variables. These LCOs, along with LCO 3.1.6, "Control Bank Insertion Limits," maintain the core limits on power distributions on a continuous basis.
	$F_{Q}(Z)$ varies with fuel loading patterns, control bank insertion, fuel burnup, and changes in axial power distribution.
	F _Q (Z) is measured periodically using the incore detector system. These measurements are generally taken with the core at or near equilibrium conditions.
	Using the measured three dimensional power distributions, it is possible to derive a measured value for $F_Q(Z)$. However, because this value represents a equilibrium condition, it does not include the variations in the value of $F_Q(Z)$ which are present during nonequilibrium situations such as load following or power ascension.
	To account for these possible variations, the equilibrium value of $F_Q(Z)$ is adjusted as $F_Q^w(Z)$ by an elevation dependent factor that accounts for the calculated worst case transient conditions.
	Core monitoring and control under non-equilibrium conditions are accomplished by operating the core within the limits of the appropriate LCOs, including the limits on AFD, QPTR, and control rod insertion.

BASES			
APPLICABLE SAFETY ANALYSES	This LCO precludes core power distributions that violate the following fuel design criteria:		
	 During a large break loss of coolant accident (LOCA), the peak cladding temperature must not exceed 2200°F (Ref. 1), 		
	b. During a loss of forced reactor coolant flow accident, there must be at least 95% probability at the 95% confidence level (the 95/95 DNB criterion) that the hot fuel rod in the core does not experience a departure from nucleate boiling (DNB) condition,		
	 During an ejected rod accident, the energy deposition to the fuel must not exceed 280 cal/gm (Ref. 2), and 		
	d. The control rods must be capable of shutting down the reactor with a minimum required SDM with the highest worth control rod stuck fully withdrawn (Ref. 3).		
	Limits on $F_0(Z)$ ensure that the value of the initial total peaking factor assumed in the accident analyses remains valid. Other criteria must also be met (e.g., maximum cladding oxidation, maximum hydrogen generation, coolable geometry, and long term cooling). However, the peak cladding temperature is typically most limiting.		
	$F_{Q}(Z)$ limits assumed in the LOCA analysis are typically limiting relative to (i.e., lower than) the $F_{Q}(Z)$ limit assumed in safety analyses for other postulated accidents. Therefore, this LCO provides conservative limits for other postulated accidents.		
	F _Q (Z) satisfies Criterion 2 of 10 CFR 50.36(c)(2)(ii).		
LCO	The Heat Flux Hot Channel Factor, $F_Q(Z)$, shall be limited by the following relationships:		
	$F_Q(Z) \le (CFQ/P) K(Z)$ for P > 0.5		
	$F_Q(Z) \le (CFQ/0.5) K(Z)$ for $P \le 0.5$		
	where: CFQ is the $F_Q(Z)$ limit at RTP provided in the COLR,		
	$K(Z)$ is the normalized $F_Q(Z)$ as a function of core height provided in the COLR, and		
	P = THERMAL POWER/RTP		

LCO (continued)

For this facility, the actual values of CFQ and K(Z) are given in the COLR; however, CFQ is normally a number on the order of [2.32], and K(Z) is a function that looks like the one provided in Figure B 3.2.1C-1.

For Constant Axial Offset Control operation, $F_Q(Z)$ is approximated by $F_Q^c(Z)$ and $F_Q^w(Z)$. Thus, both $F_Q^c(Z)$ and $F_Q^w(Z)$ must meet the preceding limits on $F_Q(Z)$.

An $F_{\alpha}^{c}(Z)$ evaluation requires obtaining an incore flux map in MODE 1. From the incore flux map results we obtain the measured value ($F_{\alpha}^{M}(Z)$) of $F_{\alpha}(Z)$. Then,

 $F_{q}^{c}(Z) = F_{q}^{M}(Z)$ [1.0815]

where [1.0815] is a factor that accounts for fuel manufacturing tolerances and flux map measurement uncertainty.

 $F_{Q}^{c}(Z)$ is an excellent approximation for $F_{Q}(Z)$ when the reactor is at the steady state power at which the incore flux map was taken.

The expression for $F_{o}^{w}(Z)$ is:

 $F_{\alpha}^{w}(Z) = F_{\alpha}^{c}(Z) W(Z)$

where W(Z) is a cycle dependent function that accounts for power distribution transients encountered during normal operation. W(Z) is included in the COLR. The $F_{q}^{c}(Z)$ is calculated at equilibrium conditions.

The $F_{\alpha}(Z)$ limits define limiting values for core power peaking that precludes peak cladding temperatures above 2200°F during either a large or small break LOCA.

This LCO requires operation within the bounds assumed in the safety analyses. Calculations are performed in the core design process to confirm that the core can be controlled in such a manner during operation that it can stay within the LOCA $F_Q(Z)$ limits. If $F_Q^c(Z)$ cannot be maintained within the LCO limits, reduction of the core power is required.

Violating the LCO limits for $F_Q(Z)$ produces unacceptable consequences if a design basis event occurs while $F_Q(Z)$ is outside its specified limits.

BASES APPLICABILITY The Fq(Z) limits must be maintained in MODE 1 to prevent core power distributions from exceeding the limits assumed in the safety analyses. Applicability in other MODES is not required because there is either insufficient stored energy in the fuel or insufficient energy being transferred to the reactor coolant to require a limit on the distribution of core power.

ACTIONS

Reducing THERMAL POWER by $\geq 1\%$ RTP for each 1% by which $F_{\alpha}^{c}(Z)$ exceeds its limit, maintains an acceptable absolute power density. $F_{\alpha}^{c}(Z)$ is $F_{\alpha}^{M}(Z)$ multiplied by a factor accounting for manufacturing tolerances and measurement uncertainties. $F_{\alpha}^{M}(Z)$ is the measured value of $F_{\alpha}(Z)$. The Completion Time of 15 minutes provides an acceptable time to reduce power in an orderly manner and without allowing the plant to remain in an unacceptable condition for an extended period of time. The maximum allowable power level initially determined by Required Action A.1 may be affected by subsequent determinations of $F_{\alpha}^{c}(Z)$ and would require power reductions within 15 minutes of the $F_{\alpha}^{c}(Z)$ determination, if necessary to comply with the decreased maximum allowable power level. Decreases in $F_{\alpha}^{c}(Z)$ would allow increasing the maximum allowable power level.

<u>A.2</u> ·

<u>A.1</u>

A reduction of the Power Range Neutron Flux - High trip setpoints by $\geq 1\%$ for each 1% by which $F_{\alpha}^{c}(Z)$ exceeds its limit, is a conservative action for protection against the consequences of severe transients with unanalyzed power distributions. The Completion Time of 72 hours is sufficient considering the small likelihood of a severe transient in this time period and the preceding prompt reduction in THERMAL POWER in accordance with Required Action A.1. The maximum allowable Power Range Neutron Flux – High trip setpoints initially determined by Required Action A.2 may be affected by subsequent determinations of $F_{\alpha}^{c}(Z)$ and would require Power Range Neutron Flux – High trip setpoint reductions within 72 hours of the $F_{\alpha}^{c}(Z)$ determination, if necessary to comply with the decreased maximum allowable Power Range Neutron Flux – High trip setpoints. Decreases in $F_{\alpha}^{c}(Z)$ would allow increasing the maximum allowable Power Range Neutron Flux – High trip setpoints.

ACTIONS (continued)

<u>A.3</u>

Reduction in the Overpower ΔT trip setpoints (value of K₄) by \geq 1% for each 1% by which $F_{\alpha}^{c}(Z)$ exceeds its limit, is a conservative action for protection against the consequences of severe transients with unanalyzed power distributions. The Completion Time of 72 hours is sufficient considering the small likelihood of a severe transient in this time period, and the preceding prompt reduction in THERMAL POWER in accordance with Required Action A.1. The maximum allowable Overpower ΔT trip setpoints initially determined by Required Action A.3 may be affected by subsequent determinations of $F_{\alpha}^{c}(Z)$ and would require Overpower ΔT trip setpoint reductions within 72 hours of the $F_{\alpha}^{c}(Z)$ determination, if necessary to comply with the decreased maximum allowable Overpower ΔT trip setpoints. Decreases in $F_{\alpha}^{c}(Z)$ would allow increasing the maximum Overpower ΔT trip setpoints.

<u>A.4</u>

Verification that $F_{q}^{c}(Z)$ has been restored to within its limit, by performing SR 3.2.1.1 and SR 3.2.1.2 prior to increasing THERMAL POWER above the limit imposed by Required Action A.1, ensures that core conditions during operation at higher power levels and future operation are consistent with safety analyses assumptions.

Condition A is modified by a Note that requires Required Action A.4 to be performed whenever the Condition is entered. This ensures that SR 3.2.1.1 and SR 3.2.1.2 will be performed prior to increasing THERMAL POWER above the limit of Required Action A.1, even when Condition A is exited prior to performing Required Action A.4. Performance of SR 3.2.1.1 and SR 3.2.1.2 are necessary to assure $F_Q(Z)$ is properly evaluated prior to increasing THERMAL POWER.

<u>B.1</u>

If it is found that the maximum calculated value of $F_Q(Z)$ that can occur during normal maneuvers, $F_Q^w(Z)$, exceeds its specified limits, there exists a potential for $F_Q^c(Z)$ to become excessively high if a normal operational

ACTIONS (continued)

transient occurs. Reducing the THERMAL POWER by $\ge 1\%$ RTP for each 1% by which $F_Q^w(Z)$ exceeds its limit within the allowed Completion Time of 4 hours, maintains an acceptable absolute power density such that even if a transient occurred, core peaking factors are not exceeded.

<u>B.2</u>

A reduction of the Power Range Neutron Flux-High trip setpoints by $\geq 1\%$ for each 1% by which $F_{\alpha}^{w}(Z)$ exceeds its limit, is a conservative action for protection against the consequences of severe transients with unanalyzed power distributions. The Completion Time of 72 hours is sufficient considering the small likelihood of a severe transient in this time period and the preceding prompt reduction in THERMAL POWER in accordance with Required Action B.1.

<u>B.3</u>

Reduction in the Overpower ΔT trip setpoints value of K₄ by \geq 1% for each 1% by which $F_{\alpha}^{w}(Z)$ exceeds its limit, is a conservative action for protection against the consequences of severe transients with unanalyzed power distributions. The Completion Time of 72 hours is sufficient considering the small likelihood of a severe transient in this time period, and the preceding prompt reduction in THERMAL POWER in accordance with Required Action B.1.

<u>B.4</u>

Verification that $F_{q}^{w}(Z)$ has been restored to within its limit, by performing SR 3.2.1.1 and SR 3.2.1.2 prior to increasing THERMAL POWER above the limit imposed by Required Action B.1 ensures that core conditions during operation at higher power levels and future operation are consistent with safety analyses assumptions.

Condition B is modified by a Note that requires Required Action B.4 to be performed whenever the Condition is entered. This ensures that SR 3.2.1.1 and SR 3.2.1.2 will be performed prior to increasing THERMAL POWER above the limit of Required Action B.1, even when Condition A is exited prior to performing Required Action B.4. Performance of SR 3.2.1.1 and SR 3.2.1.2 are necessary to assure $F_Q(Z)$ is properly evaluated prior to increasing THERMAL POWER.
ACTIONS (continue		d)
		<u>C.1</u>
		If Required Actions A.1 through A.4 or B.1 through B.4 are not met within their associated Completion Times, the plant must be placed in a mode or condition in which the LCO requirements are not applicable. This is done by placing the plant in at least MODE 2 within 6 hours.
		This allowed Completion Time is reasonable based on operating experience regarding the amount of time it takes to reach MODE 2 from full power operation in an orderly manner and without challenging plant systems.
	SURVEILLANCE REQUIREMENTS	SR 3.2.1.1 and SR 3.2.1.2 are modified by a Note. The Note applies during the first power ascension after a refueling. It states that THERMAL POWER may be increased until an equilibrium power level has been achieved at which a power distribution map can be obtained. This allowance is modified, however, by one of the Frequency conditions that requires verification that $F_{\alpha}^{c}(Z)$ and $F_{\alpha}^{w}(Z)$ are within their specified limits after a power rise of more than 10% RTP over the THERMAL POWER at which they were last verified to be within specified limits. Because $F_{\alpha}^{c}(Z)$ and $F_{\alpha}^{w}(Z)$ could not have previously been measured in this reload core, there is a second Frequency condition, applicable only for reload cores, that requires determination of these parameters before exceeding 75% RTP. This ensures that some determination of $F_{\alpha}^{c}(Z)$ and $F_{\alpha}^{w}(Z)$ are made at a lower power level at which adequate margin is available before going to 100% RTP. Also, this Frequency condition, together with the Frequency condition requiring verification of $F_{\alpha}^{c}(Z)$ and $F_{\alpha}^{w}(Z)$ following a power increase of more than 10%, ensures that they are verified as soon as RTP (or any other level for extended operation) is achieved. In the absence of these Frequency conditions, it is possible to increase power to RTP and operate for 31 days without verification of $F_{\alpha}^{c}(Z)$ and $F_{\alpha}^{w}(Z)$. The Frequency condition is not intended to require verification of these parameters after every 10% increase in power level above the last verification. It only requires verification after a power level is achieved for extended operation that is 10% higher than that power at which $F_{\alpha}(Z)$ was last measured.

.

SURVEILLANCE REQUIREMENTS (continued)

SR 3.2.1.1

Verification that $F_{\alpha}^{c}(Z)$ is within its specified limits involves increasing $F_{\alpha}^{M}(Z)$ to allow for manufacturing tolerance and measurement uncertainties in order to obtain $F_{\alpha}^{c}(Z)$. Specifically, $F_{\alpha}^{M}(Z)$ is the measured value of $F_{\alpha}(Z)$ obtained from incore flux map results and $F_{\alpha}^{c}(Z) = F_{\alpha}^{M}(Z)$ [1.0815] (Ref. 4). $F_{\alpha}^{c}(Z)$ is then compared to its specified limits.

The limit with which $F_{\alpha}^{c}(Z)$ is compared varies inversely with power above 50% RTP and directly with a function called K(Z) provided in the COLR.

Performing this Surveillance in MODE 1 prior to exceeding 75% RTP ensures that the $F_{\alpha}^{c}(Z)$ limit is met when RTP is achieved, because peaking factors generally decrease as power level is increased.

If THERMAL POWER has been increased by $\ge 10\%$ RTP since the last determination of $F_{\alpha}^{c}(Z)$, another evaluation of this factor is required [12] hours after achieving equilibrium conditions at this higher power level (to ensure that $F_{\alpha}^{c}(Z)$ values are being reduced sufficiently with power increase to stay within the LCO limits).

The Frequency of 31 EFPD is adequate to monitor the change of power distribution with core burnup because such changes are slow and well controlled when the plant is operated in accordance with the Technical Specifications (TS).

<u>SR 3.2.1.2</u>

The nuclear design process includes calculations performed to determine that the core can be operated within the $F_{Q}(Z)$ limits. Because flux maps are taken in steady state conditions, the variations in power distribution resulting from normal operational maneuvers are not present in the flux map data. These variations are, however, conservatively calculated by considering a wide range of unit maneuvers in normal operation. The maximum peaking factor increase over steady state values, calculated as a function of core elevation, Z, is called W(Z). Multiplying the measured total peaking factor, $F_{Q}^{c}(Z)$, by W(Z) gives the maximum $F_{Q}(Z)$ calculated to occur in normal operation, $F_{Q}^{w}(Z)$.

SURVEILLANCE REQUIREMENTS (continued)

The limit with which $F_{q}^{w}(Z)$ is compared varies inversely with power above 50% RTP and directly with the function K(Z) provided in the COLR.

The W(Z) curve is provided in the COLR for discrete core elevations. Flux map data are typically taken for 30 to 75 core elevations. $F_{Q}^{w}(Z)$ evaluations are not applicable for the following axial core regions, measured in percent of core height:

a. Lower core region, from 0 to 15% inclusive and

b. Upper core region, from 85 to 100% inclusive.

The top and bottom 15% of the core are excluded from the evaluation because of the low probability that these regions would be more limiting in the safety analyses and because of the difficulty of making a precise measurement in these regions.

This Surveillance has been modified by a Note that may require that more frequent surveillances be performed. If $F_{\alpha}^{W}(Z)$ is evaluated, an evaluation of the expression below is required to account for any increase to $F_{\alpha}^{M}(Z)$ that may occur and cause the $F_{\alpha}(Z)$ limit to be exceeded before the next required $F_{\alpha}(Z)$ evaluation.

If the two most recent $F_{Q}(Z)$ evaluations show an increase in the expression

maximum over z $[F_q^c(Z) / K(Z)]$,

it is required to meet the $F_q(Z)$ limit with the last $F_q^w(Z)$ increased by the greater of a factor of [1.02] or by an appropriate factor specified in the COLR (Ref. 5)

------REVIEWER'S NOTE-------WCAP-10216-P-A, Rev. 1A, Relaxation of Constant Axial Offset Control and F_{Q} Surveillance Technical Specification, February 1994, or other appropriate plant specific methodology, is to be listed in the COLR description in the Administrative Controls Section 5.0 to address the methodology used to derive this factor.

or to evaluate $F_Q(Z)$ more frequently, each 7 EFPD. These alternative requirements prevent $F_Q(Z)$ from exceeding its limit for any significant period of time without detection.

SURVEILLANCE REQUIREMENTS (continued)

	Performing the Surveillance in MODE 1 prior to exceeding 75% RTP ensures that the $F_{\alpha}(Z)$ limit is met when RTP is achieved, because peaking factors are generally decreased as power level is increased.
	$F_{\alpha}(Z)$ is verified at power levels $\geq 10\%$ RTP above the THERMAL POWER of its last verification, [12] hours after achieving equilibrium conditions to ensure that $F_{\alpha}(Z)$ is within its limit at higher power levels.
	The Surveillance Frequency of 31 EFPD is adequate to monitor the change of power distribution with core burnup. The Surveillance may be done more frequently if required by the results of $F_{Q}(Z)$ evaluations.
	The Frequency of 31 EFPD is adequate to monitor the change of power distribution because such a change is sufficiently slow, when the plant is operated in accordance with the TS, to preclude adverse peaking factors between 31 day surveillances.
REFERENCES	1. 10 CFR 50.46, 1974.
	2. Regulatory Guide 1.77, Rev. 0, May 1974.
	3. 10 CFR 50, Appendix A, GDC 26.
	 WCAP-7308-L-P-A, "Evaluation of Nuclear Hot Channel Factor Uncertainties," June 1988.
	 WCAP-10216-P-A, Rev. 1A, "Relaxation of Constant Axial Offset Control (and) F_Q Surveillance Technical Specification," February 1994.

Figure B 3.2.1C-1 (page 1 of 1) K(Z) - Normalized Fo(Z) as a Function of Core Height

B 3.2 POWER DISTRIBUTION LIMITS

B 3.2.2 Nuclear Enthalpy Rise Hot Channel Factor $(F_{\Delta,H}^{N})$

))

BASES

BACKGROUND

The purpose of this LCO is to establish limits on the power density at any point in the core so that the fuel design criteria are not exceeded and the accident analysis assumptions remain valid. The design limits on local (pellet) and integrated fuel rod peak power density are expressed in terms of hot channel factors. Control of the core power distribution with respect to these factors ensures that local conditions in the fuel rods and coolant channels do not challenge core integrity at any location during either normal operation or a postulated accident analyzed in the safety analyses.

 $F_{\Delta H}^{N}$ is defined as the ratio of the integral of the linear power along the fuel rod with the highest integrated power to the average integrated fuel rod power. Therefore, $F_{\Delta H}^{N}$ is a measure of the maximum total power produced in a fuel rod.

 $F_{\Delta H}^{N}$ is sensitive to fuel loading patterns, bank insertion, and fuel burnup. $F_{\Delta H}^{N}$ typically increases with control bank insertion and typically decreases with fuel burnup.

 $F_{\Delta H}^{N}$ is not directly measurable but is inferred from a power distribution map obtained with the movable incore detector system. Specifically, the results of the three dimensional power distribution map are analyzed by a computer to determine $F_{\Delta H}^{N}$. This factor is calculated at least every 31 EFPD. However, during power operation, the global power distribution is monitored by LCO 3.2.3, "AXIAL FLUX DIFFERENCE (AFD)," and LCO 3.2.4, "QUADRANT POWER TILT RATIO (QPTR)," which address directly and continuously measured process variables.

The COLR provides peaking factor limits that ensure that the design basis value of the departure from nucleate boiling (DNB) is met for normal operation, operational transients, and any transient condition arising from events of moderate frequency. The DNB design basis precludes DNB and is met by limiting the minimum local DNB heat flux ratio to [1.3] using the [W3] CHF correlation. All DNB limited transient events are assumed to begin with an F_{AH}^{N} value that satisfies the LCO requirements.

Operation outside the LCO limits may produce unacceptable consequences if a DNB limiting event occurs. The DNB design basis ensures that there is no overheating of the fuel that results in possible cladding perforation with the release of fission products to the reactor coolant.

APPLICABLE SAFETY	Limits on $F_{\Delta H}^{N}$ preclude core power distributions that exceed the following fuel design limits:		
ANALISES	 There must be at least 95% probability at the 95% confidence level (the 95/95 DNB criterion) that the hottest fuel rod in the core does not experience a DNB condition, 		
	 During a large break loss of coolant accident (LOCA), peak cladding temperature (PCT) must not exceed 2200°F, 		
	 During an ejected rod accident, the energy deposition to the fuel must not exceed 280 cal/gm [Ref. 1], and 		
	d. Fuel design limits required by GDC 26 (Ref. 2) for the condition when control rods must be capable of shutting down the reactor with a minimum required SDM with the highest worth control rod stuck fully withdrawn.		
	For transients that may be DNB limited, the Reactor Coolant System flow and $F_{\Delta H}^{N}$ are the core parameters of most importance. The limits on $F_{\Delta H}^{N}$ ensure that the DNB design basis is met for normal operation, operational transients, and any transients arising from events of moderate frequency. The DNB design basis is met by limiting the minimum DNBR to the 95/95 DNB criterion of [1.3] using the [W3] CHF correlation. This value provides a high degree of assurance that the hottest fuel rod in the core does not experience a DNB.		
	The allowable $F_{\Delta H}^{N}$ limit increases with decreasing power level. This functionality in $F_{\Delta H}^{N}$ is included in the analyses that provide the Reactor Core Safety Limits (SLs) of SL 2.1.1. Therefore, any DNB events in which the calculation of the core limits is modeled implicitly use this variable value of $F_{\Delta H}^{N}$ in the analyses. Likewise, all transients that may be DNB limited are assumed to begin with an initial $F_{\Delta H}^{N}$ as a function of power level defined by the COLR limit equation.		
	The LOCA safety analysis indirectly models $F_{\Delta H}^{N}$ as an input parameter. The Nuclear Heat Flux Hot Channel Factor ($F_{Q}(Z)$) and the axial peaking factors are inserted directly into the LOCA safety analyses that verify the acceptability of the resulting peak cladding temperature [Ref. 3].		

٠.

BASES

APPLICABLE SAFE	ETY ANALYSES (continued)
	The fuel is protected in part by Technical Specifications, which ensure that the initial conditions assumed in the safety and accident analyses remain valid. The following LCOs ensure this: LCO 3.2.3, "AXIAL FLUX DIFFERENCE (AFD)," LCO 3.2.4, "QUADRANT POWER TILT RATIO (QPTR)," LCO 3.1.6, "Control Bank Insertion Limits," LCO 3.2.2, "Nuclear Enthalpy Rise Hot Channel Factor ($F_{\Delta H}^{N}$)," and LCO 3.2.1, "Heat Flux Hot Channel Factor ($F_{Q}(Z)$)."
	$F_{\Delta H}^{N}$ and $F_{Q}(Z)$ are measured periodically using the movable incore detector system. Measurements are generally taken with the core at, or near, steady state conditions. Core monitoring and control under transient conditions (Condition 1 events) are accomplished by operating the core within the limits of the LCOs on AFD, QPTR, and Bank Insertion Limits.
	$F_{\Delta H}^{N}$ satisfies Criterion 2 of 10 CFR 50.36(c)(2)(ii).
LCO	$F_{\Delta H}^{N}$ shall be maintained within the limits of the relationship provided in the COLR.
	The $F_{\Delta H}^{N}$ limit identifies the coolant flow channel with the maximum enthalpy rise. This channel has the least heat removal capability and thus the highest probability for a DNB.
	The limiting value of $F_{\Delta H}^{N}$, described by the equation contained in the COLR, is the design radial peaking factor used in the unit safety analyses.
	A power multiplication factor in this equation includes an additional margin for higher radial peaking from reduced thermal feedback and greater control rod insertion at low power levels. The limiting value of is $F_{\Delta H}^{N}$ allowed to increase 0.3% for every 1% RTP reduction in THERMAL POWER.
APPLICABILITY	The $F_{\Delta H}^{N}$ limits must be maintained in MODE 1 to preclude core power distributions from exceeding the fuel design limits for DNBR and PCT. Applicability in other modes is not required because there is either insufficient stored energy in the fuel or insufficient energy being

.

APPLICABILITY (continued)

A.1.1

transferred to the coolant to require a limit on the distribution of core power. Specifically, the design bases events that are sensitive to $F_{\Delta H}^{N}$ in other modes (MODES 2 through 5) have significant margin to DNB, and therefore, there is no need to restrict $F_{\Delta H}^{N}$ in these modes.

ACTIONS

With $F_{\Delta H}^{N}$ exceeding its limit, the unit is allowed 4 hours to restore $F_{\Delta H}^{N}$ to within its limits. This restoration may, for example, involve realigning any misaligned rods or reducing power enough to bring $F_{\Delta H}^{N}$ within its power dependent limit. When the $F_{\Delta H}^{N}$ limit is exceeded, the DNBR limit is not likely violated in steady state operation, because events that could significantly perturb the $F_{\Delta H}^{N}$ value (e.g., static control rod misalignment) are considered in the safety analyses. However, the DNBR limit may be violated if a DNB limiting event occurs. Thus, the allowed Completion Time of 4 hours provides an acceptable time to restore $F_{\Delta H}^{N}$ to within its limits without allowing the plant to remain in an unacceptable condition for an extended period of time.

Condition A is modified by a Note that requires that Required Actions A.2 and A.3 must be completed whenever Condition A is entered. Thus, if power is not reduced because this Required Action is completed within the 4 hour time period, Required Action A.2 nevertheless requires another measurement and calculation of $F_{\Delta H}^{N}$ within 24 hours in accordance with SR 3.2.2.1.

However, if power is reduced below 50% RTP, Required Action A.3 requires that another determination of $F_{\Delta H}^{N}$ must be done prior to exceeding 50% RTP, prior to exceeding 75% RTP, and within 24 hours after reaching or exceeding 95% RTP. In addition, Required Action A.2 is performed if power ascension is delayed past 24 hours.

A.1.2.1 and A.1.2.2

If the value of $F_{\Delta H}^{N}$ is not restored to within its specified limit either by adjusting a misaligned rod or by reducing THERMAL POWER, the alternative option is to reduce THERMAL POWER to < 50% RTP in accordance with Required Action A.1.2.1 and reduce the Power Range Neutron Flux - High to \leq 55% RTP in accordance with Required

ACTIONS (continued)

Action A.1.2.2. Reducing RTP to < 50% RTP increases the DNB margin and does not likely cause the DNBR limit to be violated in steady state operation. The reduction in trip setpoints ensures that continuing operation remains at an acceptable low power level with adequate DNBR margin. The allowed Completion Time of 4 hours for Required Action A.1.2.1 is consistent with those allowed for in Required Action A.1.1 and provides an acceptable time to reach the required power level from full power operation without allowing the plant to remain in an unacceptable condition for an extended period of time. The Completion Times of 4 hours for Required Actions A.1.1 and A.1.2.1 are not additive.

The allowed Completion Time of 72 hours to reset the trip setpoints per Required Action A.1.2.2 recognizes that, once power is reduced, the safety analysis assumptions are satisfied and there is no urgent need to reduce the trip setpoints. This is a sensitive operation that may inadvertently trip the Reactor Protection System.

<u>A.2</u>

Once the power level has been reduced to < 50% RTP per Required Action A.1.2.1, an incore flux map (SR 3.2.2.1) must be obtained and the measured value of $F_{\Delta H}^{N}$ verified not to exceed the allowed limit at the lower power level. The unit is provided 20 additional hours to perform this task over and above the 4 hours allowed by either Action A.1.1 or Action A.1.2.1. The Completion Time of 24 hours is acceptable because of the increase in the DNB margin, which is obtained at lower power levels, and the low probability of having a DNB limiting event within this 24 hour period. Additionally, operating experience has indicated that this Completion Time is sufficient to obtain the incore flux map, perform the required calculations, and evaluate $F_{\Delta H}^{N}$.

ACTIONS (continued)

<u>A.3</u>

	Verification that $F_{\Delta H}^{N}$ is within its specified limits after an out of limit occurrence ensures that the cause that led to the $F_{\Delta H}^{N}$ exceeding its limit is corrected, and that subsequent operation proceeds within the LCO limit. This Action demonstrates that the $F_{\Delta H}^{N}$ limit is within the LCO limits prior to exceeding 50% RTP, again prior to exceeding 75% RTP, and within 24 hours after THERMAL POWER is \geq 95% RTP.
	This Required Action is modified by a Note that states that THERMAL POWER does not have to be reduced prior to performing this Action.
	<u>B.1</u>
	When Required Actions A.1.1 through A.3 cannot be completed within their required Completion Times, the plant must be placed in a mode in which the LCO requirements are not applicable. This is done by placing the plant in at least MODE 2 within 6 hours. The allowed Completion Time of 6 hours is reasonable, based on operating experience regarding the time required to reach MODE 2 from full power conditions in an orderly manner and without challenging plant systems.
SURVEILLANCE	<u>SR 3.2.2.1</u>
REQUIREMENTS	The value of $F_{\Delta H}^{N}$ is determined by using the movable incore detector system to obtain a flux distribution map. A data reduction computer program then calculates the maximum value of $F_{\Delta H}^{N}$ from the measured flux distributions. The measured value of $F_{\Delta H}^{N}$ must be multiplied by 1.04 to account for measurement uncertainty before making comparisons to the $F_{\Delta H}^{N}$ limit.
	After each refueling, $F_{\Delta H}^{N}$ must be determined in MODE 1 prior to exceeding 75% RTP. This requirement ensures that $F_{\Delta H}^{N}$ limits are met at the beginning of each fuel cycle.
	The 31 EFPD Frequency is acceptable because the power distribution changes relatively slowly over this amount of fuel burnup. Accordingly, this Frequency is short enough that the $F_{\Delta H}^{N}$ limit cannot be exceeded for any significant period of operation.

BASES		
REFERENCES	1.	Regulatory Guide 1.77, Rev. [0], May 1974.
	2.	10 CFR 50, Appendix A, GDC 26.
	3.	10 CFR 50.46.

B 3.2 POWER DISTRIBUTION LIMITS

B 3.2.3A AXIAL FLUX DIFFERENCE (AFD) (Constant Axial Offset Control (CAOC) Methodology)

BASES

BACKGROUND The purpose of this LCO is to establish limits on the values of the AFD in order to limit the axial power distribution skewing to either the top or bottom of the core. By limiting the amount of power distribution skewing, core peaking factors are consistent with the assumptions used in the safety analyses. Limiting power distribution skewing over time also minimizes the xenon distribution skewing, which is a significant factor in axial power distribution control.

The operating scheme used to control the axial power distribution, CAOC, involves maintaining the AFD within a tolerance band around a burnup dependent target, known as the target flux difference, to minimize the variation of the axial peaking factor and axial xenon distribution during unit maneuvers.

The target flux difference is determined at equilibrium xenon conditions. The control banks must be positioned within the core in accordance with their insertion limits and Control Bank D should be inserted near its normal position (i.e., \geq 210 steps withdrawn) for steady state operation at high power levels. The power level should be as near RTP as practical. The value of the target flux difference obtained under these conditions divided by the Fraction of RTP is the target flux differences for other THERMAL POWER levels are obtained by multiplying the RTP value by the appropriate fractional THERMAL POWER level.

The AFD is monitored on an automatic basis using the unit process computer that has an AFD monitor alarm. The frequency of monitoring the AFD by the computer is once per minute providing an essentially continuous accumulation of penalty deviation time that allows the operator to assess the status of the penalty deviation time. The computer determines the 1 minute average of each of the OPERABLE excore detector outputs and provides an alarm message immediately if the AFDs for two or more OPERABLE excore channels are outside the target band and the THERMAL POWER is > 90% RTP. During operation at THERMAL POWER levels < 90% RTP but > 15% RTP, the computer sends an alarm message when the cumulative penalty deviation time is > 1 hour in the previous 24 hours.

BACKGROUND (continued)

Periodic updating of the target flux difference value is necessary to follow the change of the flux difference at steady state conditions with burnup.

The Nuclear Enthalpy Rise Hot Channel Factor $(F^{N}_{\Delta H})$ and QPTR LCOs limit the radial component of the peaking factors.

APPLICABLE The AFD is a measure of axial power distribution skewing to the top or SAFETY bottom half of the core. The AFD is sensitive to many core related ANALYSES parameters such as control bank positions, core power level, axial burnup, axial xenon distribution and, to a lesser extent, reactor coolant temperature and boron concentrations. The allowed range of the AFD is used in the nuclear design process to confirm that operation within these limits produces core peaking factors and axial power distributions that meet safety analysis requirements.

The CAOC methodology (Refs. 1, 2, and 3) entails:

- a. Establishing an envelope of allowed power shapes and power densities,
- b. Devising an operating strategy for the cycle that maximizes unit flexibility (maneuvering) and minimizes axial power shape changes,
- c. Demonstrating that this strategy does not result in core conditions that violate the envelope of permissible core power characteristics, and
- d. Demonstrating that this power distribution control scheme can be effectively supervised with excore detectors.

The limits on the AFD ensure that the Heat Flux Hot Channel Factor $(F_{\Omega}(Z))$ is not exceeded during either normal operation or in the event of xenon redistribution following power changes. The limits on the AFD also limit the range of power distributions that are assumed as initial conditions in analyzing Condition 2, 3, and 4 events. This ensures that fuel cladding integrity is maintained for these postulated accidents. The most important Condition 4 event is the loss of coolant accident. The most significant Condition 2 events are uncontrolled bank withdrawal and boration or dilution accidents. Condition 2 accidents, assumed to begin from within the AFD limits, are used to confirm the adequacy of Overpower ΔT and Overtemperature ΔT trip setpoints.

The limits on the AFD satisfy Criterion 2 of 10 CFR 50.36(c)(2)(ii).

The shape of the power profile in the axial (i.e., the vertical) direction is largely under the control of the operator, through either the manual operation of the control banks, or automatic motion of control banks responding to temperature deviations resulting from either manual operation of the Chemical and Volume Control System to change boron concentration, or from power level changes.
Signals are available to the operator from the Nuclear Instrumentation System (NIS) excore neutron detectors (Ref. 4). Separate signals are taken from the top and bottom detectors. The AFD is defined as the difference in normalized flux signals between the top and bottom excore detector in each detector well. For convenience, this flux difference is converted to provide flux difference units expressed as a percentage and labeled as $\%\Delta$ flux or $\%\Delta$ I.
The required target band varies with axial burnup distribution, which in turn varies with the core average accumulated burnup. The target band defined in the COLR may provide one target band for the entire cycle or more than one band, each to be followed for a specific range of cycle burnup. With THERMAL POWER \geq 90% RTP, the AFD must be kept within the target band. With the AFD outside the target band with THERMAL POWER \geq 90% RTP, the assumptions of the accident analyses may be violated.
Violating the LCO on the AFD could produce unacceptable consequences if a Condition 2, 3, or 4 event occurs while the AFD is outside its limits.
Figure B 3.2.3A-1 shows a typical target band and typical AFD acceptable operation limits.
The LCO is modified by four Notes. Note 1 states the conditions necessary for declaring the AFD outside of the target band. Notes 2 and 3 describe how the cumulative penalty deviation time is calculated. It is intended that the unit is operated with the AFD within the target band about the target flux difference. However, during rapid THERMAL POWER reductions, control bank motion may cause the AFD to deviate outside of the target band at reduced THERMAL POWER levels. This deviation does not affect the xenon distribution sufficiently to change the envelope of peaking factors that may be reached on a subsequent return to RTP with the AFD within the target band, provided the time duration of the deviation is limited. Accordingly, while THERMAL POWER is \geq 50% RTP and < 90% RTP (i.e., Part b of this LCO), a 1 hour cumulative penalty deviation time limit, cumulative during the preceding 24 hours, is

.

•

BASES

LCO (continued)			
	allowed during which the unit may be operated outside of the target band but within the acceptable operation limits provided in the COLR (Note 2). This penalty time is accumulated at the rate of 1 minute for each 1 minute of operating time within the power range of Part b of this LCO (i.e., THERMAL POWER \geq 50% RTP). The cumulative penalty time is the sum of penalty times from Parts b and c of this LCO.		
	For THERMAL POWER levels > 15% RTP and < 50% RTP (i.e., Part c of this LCO), deviations of the AFD outside of the target band are less significant. Note 3 allows the accumulation of 1/2 minute penalty deviation time per 1 minute of actual time outside the target band and reflects this reduced significance. With THERMAL POWER < 15% RTP, AFD is not a significant parameter in the assumptions used in the safety analysis and, therefore, requires no limits. Because the xenon distribution produced at THERMAL POWER levels less than RTP does affect the power distribution as power is increased, unanalyzed xenon and power distribution is prevented by limiting the accumulated penalty deviation time.		
	For surveillance of the power range channels performed according to SR 3.3.1.6, Note 4 allows deviation outside the target band for 16 hours and no penalty deviation time accumulated. Some deviation in the AFD is required for doing the NIS calibration with the incore detector system. This calibration is performed every 92 days		
APPLICABILITY	AFD requirements are applicable in MODE 1 above 15% RTP. Above 50% RTP, the combination of THERMAL POWER and core peaking factors are the core parameters of primary importance in safety analyses (Ref. 1).		
	Between 15% RTP and 90% RTP, this LCO is applicable to ensure that the distributions of xenon are consistent with safety analysis assumptions.		
	• At or below 15% RTP and for lower operating MODES, the stored energy in the fuel and the energy being transferred to the reactor coolant are low. The value of the AFD in these conditions does not affect the consequences of the design basis events.		
	Low signal levels in the excore channels may preclude obtaining valid AFD signals below 15% RTP.		

ACTIONS

With the AFD outside the target band and THERMAL POWER \geq 90% RTP, the assumptions used in the accident analyses may be violated with respect to the maximum heat generation. Therefore, a Completion Time of 15 minutes is allowed to restore the AFD to within the target band because xenon distributions change little in this relatively short time.

<u>B.1</u>

A.1

If the AFD cannot be restored within the target band, then reducing THERMAL POWER to < 90% RTP places the core in a condition that has been analyzed and found to be acceptable, provided that the AFD is within the acceptable operation limits provided in the COLR.

The allowed Completion Time of 15 minutes provides an acceptable time to reduce power to < 90% RTP without allowing the plant to remain in an unanalyzed condition for an extended period of time.

<u>C.1</u>

With THERMAL POWER < 90% RTP but \ge 50% RTP, operation with the AFD outside the target band is allowed for up to 1 hour if the AFD is within the acceptable operation limits provided in the COLR. With the AFD within these limits, the resulting axial power distribution is acceptable as an initial condition for accident analyses assuming the then existing xenon distributions. The 1 hour cumulative penalty deviation time restricts the extent of xenon redistribution. Without this limitation, unanalyzed xenon axial distributions may result from a different pattern of xenon buildup and decay. The reduction to a power level < 50% RTP puts the reactor at a THERMAL POWER level at which the AFD is not a significant accident analysis parameter.

If the indicated AFD is outside the target band and outside the acceptable operation limits provided in the COLR, the peaking factors assumed in accident analysis may be exceeded with the existing xenon condition. (Any AFD within the target band is acceptable regardless of its relationship to the acceptable operation limits.) The Completion Time of 30 minutes allows for a prompt, yet orderly, reduction in power.

Condition C is modified by a Note that requires that Required Actions C.1 and C.2 must be completed whenever this Condition is entered.

ACTIONS (continued)

<u>D.1</u>

If Required Action C.1 is not completed within its required Completion Time of 30 minutes, the axial xenon distribution starts to become significantly skewed with the THERMAL POWER ≥ 50% RTP. In this situation, the assumption that a cumulative penalty deviation time of 1 hour or less during the previous 24 hours while the AFD is outside its target band is acceptable at < 50% RTP, is no longer valid. Reducing the power level to < 15% RTP within the Completion Time of 9 hours and complying with LCO penalty deviation time requirements for subsequent increases in THERMAL POWER ensure that acceptable xenon conditions are restored. This Required Action must also be implemented either if the cumulative penalty deviation time is > 1 hour during the previous 24 hours, or the AFD is not within the target band and not within the acceptable operation

limits.

SURVEILLANCE <u>S</u>REQUIREMENTS

<u>SR 3.2.3.1</u>

This Surveillance verifies that the AFD as indicated by the NIS excore channels is within the target band. The Surveillance Frequency of 7 days is adequate because the AFD is controlled by the operator and monitored by the process computer. Furthermore, any deviations of the AFD from the target band that is not alarmed should be readily noticed.

The AFD should be monitored and logged more frequently in periods of operation for which the power level or control bank positions are changing to allow corrective measures when the AFD is more likely to move outside the target band.

SR_3.2.3.2

This Surveillance requires that the target flux difference is updated at a Frequency of 31 effective full power days (EFPD) to account for small changes that may occur in the target flux differences in that period due to burnup by performing SR 3.2.3.3.

Alternatively, linear interpolation between the most recent measurement of the target flux differences and a predicted end of cycle value provides a reasonable update because the AFD changes due to burnup tend toward 0% AFD. When the predicted end of cycle AFD from the cycle nuclear design is different from 0%, it may be a better value for the interpolation.

SURVEILLANCE REQUIREMENTS (continued)

SR 3.2.3.3

Measurement of the target flux difference is accomplished by taking a flux
map when the core is at equilibrium xenon conditions, preferably at high
power levels with the control banks nearly withdrawn. This flux map
provides the equilibrium xenon axial power distribution from which the
target value can be determined. The target flux difference varies slowly
with core burnup.

A Frequency of 31 EFPD after each refueling and 92 EFPD thereafter for remeasuring the target flux differences adjusts the target flux difference for each excore channel to the value measured at steady state conditions. This is the basis for the CAOC. Remeasurement at this Surveillance interval also establishes the AFD target flux difference values that account for changes in incore excore calibrations that may have occurred in the interim.

A Note modifies this SR to allow the predicted end of cycle AFD from the cycle nuclear design to be used to determine the initial target flux difference after each refueling.

REFERENCES 1. WCAP-8403 (nonproprietary), "Power Distribution Control and Load Following Procedures," Westinghouse Electric Corporation,

- T. M. Anderson to K. Kniel (Chief of Core Performance Branch, NRC), Attachment: "Operation and Safety Analysis Aspects of an Improved Load Follow Package," January 31, 1980.
- 3. C. Eicheldinger to D. B. Vassallo (Chief of Light Water Reactors Branch, NRC), Letter NS-CE-687, July 16, 1975.
- 4. FSAR, Chapter [15].

September 1974.

Figure B 3.2.3A-1 (Page 1 of 1) AXIAL FLUX DIFFERENCE Acceptable Operation Limits and Target Band Limits as a Function of RATED THERMAL POWER

Rev. 3.0, 03/31/04

B 3.2 POWER DISTRIBUTION LIMITS

B 3.2.3B AXIAL FLUX DIFFERENCE (AFD) (Relaxed Axial Offset Control (RAOC) Methodology)

BASES

BACKGROUND The purpose of this LCO is to establish limits on the values of the AFD in order to limit the amount of axial power distribution skewing to either the top or bottom of the core. By limiting the amount of power distribution skewing, core peaking factors are consistent with the assumptions used in the safety analyses. Limiting power distribution skewing over time also minimizes the xenon distribution skewing, which is a significant factor in axial power distribution control.

RAOC is a calculational procedure that defines the allowed operational space of the AFD versus THERMAL POWER. The AFD limits are selected by considering a range of axial xenon distributions that may occur as a result of large variations of the AFD. Subsequently, power peaking factors and power distributions are examined to ensure that the loss of coolant accident (LOCA), loss of flow accident, and anticipated transient limits are met. Violation of the AFD limits invalidate the conclusions of the accident and transient analyses with regard to fuel cladding integrity.

The AFD is monitored on an automatic basis using the unit process computer, which has an AFD monitor alarm. The computer determines the 1 minute average of each of the OPERABLE excore detector outputs and provides an alarm message immediately if the AFD for two or more OPERABLE excore channels is outside its specified limits.

Although the RAOC defines limits that must be met to satisfy safety analyses, typically an operating scheme, Constant Axial Offset Control (CAOC), is used to control axial power distribution in day to day operation (Ref. 1). CAOC requires that the AFD be controlled within a narrow tolerance band around a burnup dependent target to minimize the variation of axial peaking factors and axial xenon distribution during unit maneuvers.

The CAOC operating space is typically smaller and lies within the RAOC operating space. Control within the CAOC operating space constrains the variation of axial xenon distributions and axial power distributions. RAOC calculations assume a wide range of xenon distributions and then confirm that the resulting power distributions satisfy the requirements of the accident analyses.

BASES		
APPLICABLE SAFETY ANALYSES	The AFD is a measure of the axial power distribution skewing to either the top or bottom half of the core. The AFD is sensitive to many core related parameters such as control bank positions, core power level, axial burnup, axial xenon distribution, and, to a lesser extent, reactor coolant temperature and boron concentration.	
	The allowed range of the AFD is used in the nuclear design process to confirm that operation within these limits produces core peaking factors and axial power distributions that meet safety analysis requirements.	
	The RAOC methodology (Ref. 2) establishes a xenon distribution library with tentatively wide AFD limits. One dimensional axial power distribution calculations are then performed to demonstrate that normal operation power shapes are acceptable for the LOCA and loss of flow accident, and for initial conditions of anticipated transients. The tentative limits are adjusted as necessary to meet the safety analysis requirements.	
	The limits on the AFD ensure that the Heat Flux Hot Channel Factor $(F_Q(Z))$ is not exceeded during either normal operation or in the event of xenon redistribution following power changes. The limits on the AFD also restrict the range of power distributions that are used as initial conditions in the analyses of Condition 2, 3, or 4 events. This ensures that the fuel cladding integrity is maintained for these postulated accidents. The most important Condition 4 event is the LOCA. The most important Condition 3 event is the loss of flow accident. The most important Condition 2 events are uncontrolled bank withdrawal and boration or dilution accidents. Condition 2 accidents simulated to begin from within the AFD limits are used to confirm the adequacy of the Overpower ΔT and Overtemperature ΔT trip setpoints.	
	The limits on the AFD satisfy Criterion 2 of 10 CFR 50.36(c)(2)(ii).	
LCO	The shape of the power profile in the axial (i.e., the vertical) direction is largely under the control of the operator through the manual operation of the control banks or automatic motion of control banks. The automatic motion of the control banks is in response to temperature deviations resulting from manual operation of the Chemical and Volume Control System to change boron concentration or from power level changes.	
	System (NIS) excore neutron detectors (Ref. 3). Separate signals are taken from the top and bottom detectors. The AFD is defined as the difference in normalized flux signals between the top and bottom excore detectors in each detector well. For convenience, this flux difference is converted to provide flux difference units expressed as a percentage and labeled as $\%\Delta$ flux or $\%\Delta$ I.	

.

BASES		
LCO (continued)		
	The AFD limits are provided in the COLR. Figure B 3.2.3B-1 shows typical RAOC AFD limits. The AFD limits for RAOC do not depend on the target flux difference. However, the target flux difference may be used to minimize changes in the axial power distribution.	
	Violating this LCO on the AFD could produce unacceptable consequences if a Condition 2, 3, or 4 event occurs while the AFD is outside its specified limits.	
APPLICABILITY	The AFD requirements are applicable in MODE 1 greater than or equal to 50% RTP when the combination of THERMAL POWER and core peaking factors are of primary importance in safety analysis.	
	For AFD limits developed using RAOC methodology, the value of the AFD does not affect the limiting accident consequences with THERMAL POWER < 50% RTP and for lower operating power MODES.	
ACTIONS	<u>A.1</u>	
	As an alternative to restoring the AFD to within its specified limits, Required Action A.1 requires a THERMAL POWER reduction to < 50% RTP. This places the core in a condition for which the value of the AFD is not important in the applicable safety analyses. A Completion Time of 30 minutes is reasonable, based on operating experience, to reach 50% RTP without challenging plant systems.	
SURVEILLANCE	<u>SR 3.2.3.1</u>	
REQUIREMENTS	This Surveillance verifies that the AFD, as indicated by the NIS excore channel, is within its specified limits. The Surveillance Frequency of 7 days is adequate considering that the AFD is monitored by a computer and any deviation from requirements is alarmed.	
REFERENCES	 WCAP-8403 (nonproprietary), "Power Distribution Control and Load Following Procedures," Westinghouse Electric Corporation, September 1974. 	
	 R. W. Miller et al., "Relaxation of Constant Axial Offset Control: F_Q Surveillance Technical Specification," WCAP-10217(NP), June 1983. 	
	3. FSAR, Chapter [15].	

.

AXIAL FLUX DIFFERENCE (%)

B 3.2 POWER DISTRIBUTION LIMITS

B 3.2.4 QUADRANT POWER TILT RATIO (QPTR)

BASES	
BACKGROUND	The QPTR limit ensures that the gross radial power distribution remains consistent with the design values used in the safety analyses. Precise radial power distribution measurements are made during startup testing, after refueling, and periodically during power operation.
	The power density at any point in the core must be limited so that the fuel design criteria are maintained. Together, LCO 3.2.3, "AXIAL FLUX DIFFERENCE (AFD)," LCO 3.2.4, and LCO 3.1.6, "Control Rod Insertion Limits," provide limits on process variables that characterize and control the three dimensional power distribution of the reactor core. Control of these variables ensures that the core operates within the fuel design criteria and that the power distribution remains within the bounds used in the safety analyses.
APPLICABLE SAFETY	This LCO precludes core power distributions that violate the following fuel design criteria:
ANALISES	 During a large break loss of coolant accident, the peak cladding temperature must not exceed 2200°F (Ref. 1),
	b. During a loss of forced reactor coolant flow accident, there must be at least 95% probability at the 95% confidence level (the 95/95 departure from nucleate boiling (DNB) criterion) that the hot fuel rod in the core does not experience a DNB condition,
	 During an ejected rod accident, the energy deposition to the fuel must not exceed 280 cal/gm (Ref. 2), and
	d. The control rods must be capable of shutting down the reactor with a minimum required SDM with the highest worth control rod stuck fully withdrawn (Ref. 3).
	The LCO limits on the AFD, the QPTR, the Heat Flux Hot Channel Factor $(F_Q(Z))$, the Nuclear Enthalpy Rise Hot Channel Factor $(F_{\Delta H}^{N})$, and control bank insertion are established to preclude core power distributions that exceed the safety analyses limits.
	The QPTR limits ensure that $F_{\Delta H}^{N}$ and $F_{Q}(Z)$ remain below their limiting values by preventing an undetected change in the gross radial power distribution.

APPLICABLE SAFETY ANALYSES (continued)

	In MODE 1, the $F_{\Delta H}^{N}$ and $F_{Q}(Z)$ limits must be maintained to preclude core power distributions from exceeding design limits assumed in the safety analyses.
	The QPTR satisfies Criterion 2 of 10 CFR 50.36(c)(2)(ii).
LCO	The QPTR limit of 1.02, at which corrective action is required, provides a margin of protection for both the DNB ratio and linear heat generation rate contributing to excessive power peaks resulting from X-Y plane power tilts. A limiting QPTR of 1.02 can be tolerated before the margin for uncertainty in $F_Q(Z)$ and (F_{AH}^{N}) is possibly challenged.
APPLICABILITY	The QPTR limit must be maintained in MODE 1 with THERMAL POWER > 50% RTP to prevent core power distributions from exceeding the design limits.
	Applicability in MODE 1 \leq 50% RTP and in other MODES is not required because there is either insufficient stored energy in the fuel or insufficient energy being transferred to the reactor coolant to require the implementation of a QPTR limit on the distribution of core power. The QPTR limit in these conditions is, therefore, not important. Note that the F_{AH}^{N} and $F_{Q}(Z)$ LCOs still apply, but allow progressively higher peaking factors at 50% RTP or lower.
ACTIONS	<u>A.1</u>
	With the QPTR exceeding its limit, a power level reduction of 3% RTP for each 1% by which the QPTR exceeds 1.00 is a conservative tradeoff of total core power with peak linear power. The Completion Time of 2 hours allows sufficient time to identify the cause and correct the tilt. Note that the power reduction itself may cause a change in the tilted condition.
	The maximum allowable power level initially determined by Required Action A.1 may be affected by subsequent determinations of QPTR. Increases in QPTR would require power reduction within 2 hours of QPTR determination, if necessary to comply with the decreased maximum allowable power level. Decreases in QPTR would allow increasing the maximum allowable power level and increasing power up

to this revised limit.

ACTIONS (continued)

<u>A.2</u>

After completion of Required Action A.1, the QPTR alarm may still be in its alarmed state. As such, any additional changes in the QPTR are detected by requiring a check of the QPTR once per 12 hours thereafter. A 12 hour Completion Time is sufficient because any additional change in QPTR would be relatively slow.

<u>A.3</u>

The peaking factors $F_{Q}(Z)$, as approximated by $F_{Q}^{c}(Z)$ and $F_{Q}^{w}(Z)$, and $F_{\Delta H}^{N}$ are of primary importance in ensuring that the power distribution remains consistent with the initial conditions used in the safety analyses. Performing SRs on F_{AH}^{N} and $F_{Q}(Z)$ within the Completion Time of 24 hours after achieving equilibrium conditions from a Thermal Power reduction per Required Action A.1 ensures that these primary indicators of power distribution are within their respective limits. Equilibrium conditions are achieved when the core is sufficiently stable at intended operating conditions to support flux mapping. A Completion Time of 24 hours after achieving equilibrium conditions from Thermal Power reduction per Required Action A.1 takes into consideration the rate at which peaking factors are likely to change, and the time required to stabilize the plant and perform a flux map. If these peaking factors are not within their limits, the Required Actions of these Surveillances provide an appropriate response for the abnormal condition. If the QPTR remains above its specified limit, the peaking factor surveillances are required each 7 days thereafter to evaluate $F_{\Delta H}^{N}$ and $F_{Q}(Z)$ with changes in power distribution. Relatively small changes are expected due to either burnup and xenon redistribution or correction of the cause for exceeding the **QPTR** limit.

<u>A.4</u>

Although $F_{\Delta H}^{N}$ and $F_{Q}(Z)$ are of primary importance as initial conditions in the safety analyses, other changes in the power distribution may occur as the QPTR limit is exceeded and may have an impact on the validity of the safety analysis. A change in the power distribution can affect such reactor parameters as bank worths and peaking factors for rod

ACTIONS (continued)

malfunction accidents. When the QPTR exceeds its limit, it does not necessarily mean a safety concern exists. It does mean that there is an indication of a change in the gross radial power distribution that requires an investigation and evaluation that is accomplished by examining the incore power distribution. Specifically, the core peaking factors and the quadrant tilt must be evaluated because they are the factors that best characterize the core power distribution. This re-evaluation is required to ensure that, before increasing THERMAL POWER to above the limit of Required Action A.1, the reactor core conditions are consistent with the assumptions in the safety analyses.

<u>A.5</u>

If the QPTR has exceeded the 1.02 limit and a re-evaluation of the safety analysis is completed and shows that safety requirements are met, the excore detectors are normalized to restore QPTR to within limits prior to increasing THERMAL POWER to above the limit of Required Action A.1. Normalization is accomplished in such a manner that the indicated QPTR following normalization is near 1.00. This is done to detect any subsequent significant changes in QPTR.

Required Action A.5 is modified by two Notes. Note 1 states that the QPTR is not restored to within limits until after the re-evaluation of the safety analysis has determined that core conditions at RTP are within the safety analysis assumptions (i.e., Required Action A.4). Note 2 states that if Required Action A.5 is performed, then Required Action A.6 shall be performed. Required Action A.5 normalizes the excore detectors to restore QPTR to within limits, which restores compliance with LCO 3.2.4. Thus, Note 2 prevents exiting the Actions prior to completing flux mapping to verify peaking factors, per Required Action A.6. These Notes are intended to prevent any ambiguity about the required sequence of actions.

<u>A.6</u>

Once the flux tilt is restored to within limits (i.e., Required Action A.5 is performed), it is acceptable to return to full power operation. However, as an added check that the core power distribution is consistent with the safety analysis assumptions, Required Action A.6 requires verification

ACTIONS (continued)

that $F_Q(Z)$, as approximated by $F_Q^c(Z)$ and $F_Q^w(Z)$, and $F_{\Delta H}^N$ are within their specified limits within 24 hours of achieving equilibrium conditions at RTP. As an added precaution, if the core power does not reach equilibrium conditions at RTP within 24 hours, but is increased slowly, then the peaking factor surveillances must be performed within 48 hours after increasing THERMAL POWER above the limit of Required Action A.1. These Completion Times are intended to allow adequate time to increase THERMAL POWER to above the limit of Required Action A.1, while not permitting the core to remain with unconfirmed power distributions for extended periods of time.

Required Action A.6 is modified by a Note that states that the peaking factor surveillances may only be done after the excore detectors have been normalized to restore QPTR to within limits (i.e., Required Action A.5). The intent of this Note is to have the peaking factor surveillances performed at operating power levels, which can only be accomplished after the excore detectors are normalized to restore QPTR to within limits and the core returned to power.

<u>B.1</u>

If Required Actions A.1 through A.6 are not completed within their associated Completion Times, the unit must be brought to a MODE or condition in which the requirements do not apply. To achieve this status, THERMAL POWER must be reduced to < 50% RTP within 4 hours. The allowed Completion Time of 4 hours is reasonable, based on operating experience regarding the amount of time required to reach the reduced power level without challenging plant systems.

SURVEILLANCE <u>SR 3.2.4.1</u> REQUIREMENTS

SR 3.2.4.1 is modified by two Notes. Note 1 allows QPTR to be calculated with three power range channels if THERMAL POWER is ≤ 75% RTP and the input from one Power Range Neutron Flux channel is inoperable. Note 2 allows performance of SR 3.2.4.2 in lieu of SR 3.2.4.1.

This Surveillance verifies that the QPTR, as indicated by the Nuclear Instrumentation System (NIS) excore channels, is within its limits. The Frequency of 7 days takes into account other information and alarms available to the operator in the control room.

SURVEILLANCE REQUIREMENTS (continued)

For those causes of QPT that occur quickly (e.g., a dropped rod), there typically are other indications of abnormality that prompt a verification of core power tilt.

SR 3.2.4.2

This Surveillance is modified by a Note, which states that it is not required until 12 hours after the input from one or more Power Range Neutron Flux channels are inoperable and the THERMAL POWER is > 75% RTP.

With an NIS power range channel inoperable, tilt monitoring for a portion of the reactor core becomes degraded. Large tilts are likely detected with the remaining channels, but the capability for detection of small power tilts in some quadrants is decreased. Performing SR 3.2.4.2 at a Frequency of 12 hours provides an accurate alternative means for ensuring that any tilt remains within its limits.

For purposes of monitoring the QPTR when one power range channel is inoperable, the moveable incore detectors are used to confirm that the normalized symmetric power distribution is consistent with the indicated QPTR and any previous data indicating a tilt. The incore detector monitoring is performed with a full incore flux map or two sets of four thimble locations with quarter core symmetry. The two sets of four symmetric thimbles is a set of eight unique detector locations. These locations are C-8, E-5, E-11, H-3, H-13, L-5, L-11, and N-8 for three and four loop cores.

The symmetric thimble flux map can be used to generate symmetric thimble "tilt." This can be compared to a reference symmetric thimble tilt, from the most recent full core flux map, to generate an incore QPTR. Therefore, incore monitoring of QPTR can be used to confirm that QPTR is within limits.

With one NIS channel inoperable, the indicated tilt may be changed from the value indicated with all four channels OPERABLE. To confirm that no change in tilt has actually occurred, which might cause the QPTR limit to be exceeded, the incore result may be compared against previous flux maps either using the symmetric thimbles as described above or a complete flux map. Nominally, quadrant tilt from the Surveillance should be within 2% of the tilt shown by the most recent flux map data.

BASES		
REFERENCES	1.	10 CFR 50.46.
	2.	Regulatory Guide 1.77, Rev [0], May 1974.
	3.	10 CFR 50, Appendix A, GDC 26.

B 3.3 INSTRUMENTATION

B 3.3.1 Reactor Trip System (RTS) Instrumentation

BASES	
BACKGROUND	The RTS initiates a unit shutdown, based on the values of selected unit parameters, to protect against violating the core fuel design limits and Reactor Coolant System (RCS) pressure boundary during anticipated operational occurrences (AOOs) and to assist the Engineered Safety Features (ESF) Systems in mitigating accidents.
	The protection and monitoring systems have been designed to assure safe operation of the reactor. This is achieved by specifying limiting safety system settings (LSSS) in terms of parameters directly monitored by the RTS, as well as specifying LCOs on other reactor system parameters and equipment performance.
	Technical Specifications are required by 10 CFR 50.36 to contain LSSS defined by the regulation as "settings for automatic protective devicesso chosen that automatic protective action will correct the abnormal situation before a Safety Limit (SL) is exceeded." The Analytic Limit is the limit of the process variable at which a safety action is initiated, as established by the safety analysis, to ensure that a SL is not exceeded. Any automatic protection action that occurs on reaching the Analytic Limit therefore ensures that the SL is not exceeded. However, in practice, the actual settings for automatic protective devices must be chosen to be more conservative than the Analytic Limit to account for instrument loop uncertainties related to the setting at which the automatic protective action would actually occur.
	The trip setpoint is a predetermined setting for a protective device chosen to ensure automatic actuation prior to the process variable reaching the Analytic Limit and thus ensuring that the SL would not be exceeded. As such, the trip setpoint accounts for uncertainties in setting the device (e.g., calibration), uncertainties in how the device might actually perform (e.g., repeatability), changes in the point of action of the device over time (e.g., drift during surveillance intervals), and any other factors which may influence its actual performance (e.g., harsh accident environments). In this manner, the trip setpoint plays an important role in ensuring that SLs are not exceeded. As such, the trip setpoint meets the definition of an LSSS (Ref. 1) and could be used to meet the requirement that they be contained in the Technical Specifications.

BACKGROUND (continued)

Technical Specifications contain values related to the OPERABILITY of equipment required for safe operation of the facility. OPERABLE is defined in Technical Specifications as "...being capable of performing its safety functions(s)." For automatic protective devices, the required safety function is to ensure that a SL is not exceeded and therefore the LSSS as defined by 10 CFR 50.36 is the same as the OPERABILITY limit for these devices. However, use of the trip setpoint to define OPERABILITY in Technical Specifications and its corresponding designation as the LSSS required by 10 CFR 50.36 would be an overly restrictive requirement if it were applied as an OPERABILITY limit for the "as found" value of a protective device setting during a surveillance. This would result in Technical Specification compliance problems, as well as reports and corrective actions required by the rule which are not necessary to ensure safety. For example, an automatic protective device with a setting that has been found to be different from the trip setpoint due to some drift of the setting may still be OPERABLE since drift is to be expected. This expected drift would have been specifically accounted for in the setpoint methodology for calculating the trip setpoint and thus the automatic protective action would still have ensured that the SL would not be exceeded with the "as found" setting of the protective device. Therefore, the device would still be OPERABLE since it would have performed its safety function and the only corrective action required would be to reset the device to the trip setpoint to account for further drift during the next surveillance interval.

Use of the trip setpoint to define "as found" OPERABILITY and its designation as the LSSS under the expected circumstances described above would result in actions required by both the rule and Technical Specifications that are clearly not warranted. However, there is also some point beyond which the device would have not been able to perform its function due, for example, to greater than expected drift. This value needs to be specified in the Technical Specifications in order to define OPERABILITY of the devices and is designated as the Allowable Value which, as stated above, is the same as the LSSS.

The Allowable Value specified in Table 3.3.1-1 serves as the LSSS such that a channel is OPERABLE if the trip setpoint is found not to exceed the Allowable Value during the CHANNEL OPERATIONAL TEST (COT). As such, the Allowable Value differs from the trip setpoint by an amount primarily equal to the expected instrument loop uncertainties, such as drift, during the surveillance interval. In this manner, the actual setting of the device will still meet the LSSS definition and ensure that a SL

BACKGROUND (continued)

is not exceeded at any given point of time as long as the device has not drifted beyond that expected during the surveillance interval. Note that, although the channel is "OPERABLE" under these circumstances, the trip setpoint should be left adjusted to a value within the established trip setpoint calibration tolerance band, in accordance with uncertainty assumptions stated in the referenced setpoint methodology (as-left criteria), and confirmed to be operating within the statistical allowances of the uncertainty terms assigned. If the actual setting of the device is found to have exceeded the Allowable Value the device would be considered inoperable from a technical specification perspective. This requires corrective action including those actions required by 10 CFR 50.36 when automatic protective devices do not function as required.

[Note: Alternatively, a Technical Specification format incorporating an Allowable Value only column may be proposed by a licensee. In this case the trip setpoint value of Table 3.3.1-1 is located in the Technical Specification Bases or in a licensee-controlled document outside the Technical Specification. Changes to the trip setpoint value would be controlled by 10 CFR 50.59 or administratively as appropriate, and adjusted per the setpoint methodology and applicable surveillance requirements. At their option, the licensee may include the trip setpoint in Table 3.3.1-1 as shown, or as suggested by the licensees' setpoint methodology or license.]

During AOOs, which are those events expected to occur one or more times during the unit life, the acceptable limits are:

- 1. The Departure from Nucleate Boiling Ratio (DNBR) shall be maintained above the Safety Limit (SL) value to prevent departure from nucleate boiling (DNB),
- 2. Fuel centerline melt shall not occur, and
- 3. The RCS pressure SL of 2750 psia shall not be exceeded.

Operation within the SLs of Specification 2.0, "Safety Limits (SLs)," also maintains the above values and assures that offsite dose will be within the 10 CFR 50 and 10 CFR 100 criteria during AOOs.

Accidents are events that are analyzed even though they are not expected to occur during the unit life. The acceptable limit during accidents is that offsite dose shall be maintained within an acceptable fraction of 10 CFR 100 limits. Different accident categories are allowed a different fraction of these limits, based on probability of occurrence. Meeting the acceptable dose limit for an accident category is considered having acceptable consequences for that event.

BACKGROUND (continued)

The RTS instrumentation is segmented into four distinct but interconnected modules as illustrated in Figure [], FSAR, Chapter [7] (Ref. 2), and as identified below:

- 1. Field transmitters or process sensors: provide a measurable electronic signal based upon the physical characteristics of the parameter being measured,
- 2. Signal Process Control and Protection System, including Analog Protection System, Nuclear Instrumentation System (NIS), field contacts, and protection channel sets: provides signal conditioning, bistable setpoint comparison, process algorithm actuation, compatible electrical signal output to protection system devices, and control board/control room/miscellaneous indications,
- 3. Solid State Protection System (SSPS), including input, logic, and output bays: initiates proper unit shutdown and/or ESF actuation in accordance with the defined logic, which is based on the bistable outputs from the signal process control and protection system, and
- 4. Reactor trip switchgear, including reactor trip breakers (RTBs) and bypass breakers: provides the means to interrupt power to the control rod drive mechanisms (CRDMs) and allows the rod cluster control assemblies (RCCAs), or "rods," to fall into the core and shut down the reactor. The bypass breakers allow testing of the RTBs at power.

Field Transmitters or Sensors

To meet the design demands for redundancy and reliability, more than one, and often as many as four, field transmitters or sensors are used to measure unit parameters. To account for the calibration tolerances and instrument drift, which are assumed to occur between calibrations, statistical allowances are provided in the trip setpoint and Allowable Values. The OPERABILITY of each transmitter or sensor is determined by either "as-found" calibration data evaluated during the CHANNEL CALIBRATION or by qualitative assessment of field transmitter or sensor as related to the channel behavior observed during performance of the CHANNEL CHECK.

BACKGROUND (continued)

Signal Process Control and Protection System

Generally, three or four channels of process control equipment are used for the signal processing of unit parameters measured by the field instruments. The process control equipment provides signal conditioning, comparable output signals for instruments located on the main control board, and comparison of measured input signals with setpoints established by safety analyses. These setpoints are defined in FSAR, Chapter [7] (Ref. 2), Chapter [6] (Ref. 3), and Chapter [15] (Ref. 4). If the measured value of a unit parameter exceeds the predetermined setpoint, an output from a bistable is forwarded to the SSPS for decision evaluation. Channel separation is maintained up to and through the input bays. However, not all unit parameters require four channels of sensor measurement and signal processing. Some unit parameters provide input only to the SSPS, while others provide input to the SSPS, the main control board, the unit computer, and one or more control systems.

Generally, if a parameter is used only for input to the protection circuits, three channels with a two-out-of-three logic are sufficient to provide the required reliability and redundancy. If one channel fails in a direction that would not result in a partial Function trip, the Function is still OPERABLE with a two-out-of-two logic. If one channel fails, such that a partial Function trip occurs, a trip will not occur and the Function is still OPERABLE with a one-out-of-two logic.

Generally, if a parameter is used for input to the SSPS and a control function, four channels with a two-out-of-four logic are sufficient to provide the required reliability and redundancy. The circuit must be able to withstand both an input failure to the control system, which may then require the protection function actuation, and a single failure in the other channels providing the protection function actuation. Again, a single failure will neither cause nor prevent the protection function actuation. These requirements are described in IEEE-279-1971 (Ref. 5). The actual number of channels required for each unit parameter is specified in Reference 2.

Two logic channels are required to ensure no single random failure of a logic channel will disable the RTS. The logic channels are designed such that testing required while the reactor is at power may be accomplished without causing trip. Provisions to allow removing logic channels from service during maintenance are unnecessary because of the logic system's designed reliability.
BACKGROUND (continued)

Allowable Values and RTS Setpoints

The trip setpoints used in the bistables are based on the analytical limits stated in Reference 2. The selection of these trip setpoints is such that adequate protection is provided when all sensor and processing time delays are taken into account. To allow for calibration tolerances, instrumentation uncertainties, instrument drift, and severe environment errors for those RTS channels that must function in harsh environments as defined by 10 CFR 50.49 (Ref. 6), the Allowable Values specified in Table 3.3.1-1 in the accompanying LCO are conservative with respect to the analytical limits. A detailed description of the methodology used to calculate the Allowable Values and trip setpoints, including their explicit uncertainties, is provided in the "RTS/ESFAS Setpoint Methodology Study" (Ref. 7) which incorporates all of the known uncertainties applicable to each channel. The magnitudes of these uncertainties are factored into the determination of each trip setpoint and corresponding Allowable Value. The trip setpoint entered into the bistable is more conservative than that specified by the Allowable Value (LSSS) to account for measurement errors detectable by the COT. The Allowable Value serves as the Technical Specification OPERABILITY limit for the purpose of the COT. One example of such a change in measurement error is drift during the surveillance interval. If the measured setpoint does not exceed the Allowable Value, the bistable is considered OPERABLE.

The trip setpoint is the value at which the bistable is set and is the expected value to be achieved during calibration. The trip setpoint value ensures the LSSS and the safety analysis limits are met for surveillance interval selected when a channel is adjusted based on stated channel uncertainties. Any bistable is considered to be properly adjusted when the "as left" setpoint value is within the band for CHANNEL CALIBRATION uncertainties). The trip setpoint value is therefore considered a "nominal" value (i.e., expressed as a value without inequalities) for the purposes of COT and CHANNEL CALIBRATION.

Trip setpoints consistent with the requirements of the Allowable Value ensure that SLs are not violated during AOOs (and that the consequences of DBAs will be acceptable, providing the unit is operated from within the LCOs at the onset of the AOO or DBA and the equipment functions as designed).

BACKGROUND (continued)

Each channel of the process control equipment can be tested on line to verify that the signal or setpoint accuracy is within the specified allowance requirements of Reference 3. Once a designated channel is taken out of service for testing, a simulated signal is injected in place of the field instrument signal. The process equipment for the channel in test is then tested, verified, and calibrated. SRs for the channels are specified in the SRs section.

Solid State Protection System

The SSPS equipment is used for the decision logic processing of outputs from the signal processing equipment bistables. To meet the redundancy requirements, two trains of SSPS, each performing the same functions, are provided. If one train is taken out of service for maintenance or test purposes, the second train will provide reactor trip and/or ESF actuation for the unit. If both trains are taken out of service or placed in test, a reactor trip will result. Each train is packaged in its own cabinet for physical and electrical separation to satisfy separation and independence requirements. The system has been designed to trip in the event of a loss of power, directing the unit to a safe shutdown condition.

The SSPS performs the decision logic for actuating a reactor trip or ESF actuation, generates the electrical output signal that will initiate the required trip or actuation, and provides the status, permissive, and annunciator output signals to the main control room of the unit.

The bistable outputs from the signal processing equipment are sensed by the SSPS equipment and combined into logic matrices that represent combinations indicative of various unit upset and accident transients. If a required logic matrix combination is completed, the system will initiate a reactor trip or send actuation signals via master and slave relays to those components whose aggregate Function best serves to alleviate the condition and restore the unit to a safe condition. Examples are given in the Applicable Safety Analyses, LCO, and Applicability sections of this Bases.

Reactor Trip Switchgear

The RTBs are in the electrical power supply line from the control rod drive motor generator set power supply to the CRDMs. Opening of the RTBs interrupts power to the CRDMs, which allows the shutdown rods and control rods to fall into the core by gravity. Each RTB is equipped with a bypass breaker to allow testing of the RTB while the unit is at power.

BACKGROUND (continued)

	During normal operation the output from the SSPS is a voltage signal that energizes the undervoltage coils in the RTBs and bypass breakers, if in use. When the required logic matrix combination is completed, the SSPS output voltage signal is removed, the undervoltage coils are de- energized, the breaker trip lever is actuated by the de-energized undervoltage coil, and the RTBs and bypass breakers are tripped open. This allows the shutdown rods and control rods to fall into the core. In addition to the de-energization of the undervoltage coils, each breaker is also equipped with a shunt trip device that is energized to trip the breaker open upon receipt of a reactor trip signal from the SSPS. Either the undervoltage coil or the shunt trip mechanism is sufficient by itself, thus providing a diverse trip mechanism.
	The decision logic matrix Functions are described in the functional diagrams included in Reference 3. In addition to the reactor trip or ESF, these diagrams also describe the various "permissive interlocks" that are associated with unit conditions. Each train has a built in testing device that can automatically test the decision logic matrix Functions and the actuation devices while the unit is at power. When any one train is taken out of service for testing, the other train is capable of providing unit monitoring and protection until the testing has been completed. The testing device is semiautomatic to minimize testing time.
APPLICABLE SAFETY ANALYSES, LCO, and APPLICABILITY	The RTS functions to maintain the SLs during all AOOs and mitigates the consequences of DBAs in all MODES in which the Rod Control System is capable of rod withdrawal or one or more rods are not fully inserted.
	Each of the analyzed accidents and transients can be detected by one or more RTS Functions. The accident analysis described in Reference 4 takes credit for most RTS trip Functions. RTS trip Functions not specifically credited in the accident analysis are qualitatively credited in the safety analysis and the NRC staff approved licensing basis for the unit. These RTS trip Functions may provide protection for conditions that

unit. These RTS trip Functions may provide protection for conditions that do not require dynamic transient analysis to demonstrate Function performance. They may also serve as backups to RTS trip Functions that were credited in the accident analysis.

The LCO requires all instrumentation performing an RTS Function, listed in Table 3.3.1-1 in the accompanying LCO, to be OPERABLE. A channel is OPERABLE with a trip setpoint value outside its calibration tolerance band provided the trip setpoint "as-found" value does not exceed its

APPLICABLE SAFETY ANALYSES, LCO, and APPLICABILITY (continued)

associated Allowable Value and provided the trip setpoint "as-left" value is adjusted to a value within the "as-left" calibration tolerance band of the Nominal Trip Setpoint. A trip setpoint may be set more conservative than the Nominal Trip Setpoint as necessary in response to plant conditions. Failure of any instrument renders the affected channel(s) inoperable and reduces the reliability of the affected Functions.

The LCO generally requires OPERABILITY of four or three channels in each instrumentation Function, two channels of Manual Reactor Trip in each logic Function, and two trains in each Automatic Trip Logic Function. Four OPERABLE instrumentation channels in a two-out-of-four configuration are required when one RTS channel is also used as a control system input. This configuration accounts for the possibility of the shared channel failing in such a manner that it creates a transient that requires RTS action. In this case, the RTS will still provide protection, even with random failure of one of the other three protection channels. Three OPERABLE instrumentation channels in a two-out-of-three configuration are generally required when there is no potential for control system and protection system interaction that could simultaneously create a need for RTS trip and disable one RTS channel. The two-out-of-three and two-out-of-four configurations allow one channel to be tripped during maintenance or testing without causing a reactor trip. Specific exceptions to the above general philosophy exist and are discussed below.

Reactor Trip System Functions

The safety analyses and OPERABILITY requirements applicable to each RTS Function are discussed below:

1. Manual Reactor Trip

The Manual Reactor Trip ensures that the control room operator can initiate a reactor trip at any time by using either of two reactor trip switches in the control room. A Manual Reactor Trip accomplishes the same results as any one of the automatic trip Functions. It is used by the reactor operator to shut down the reactor whenever any parameter is rapidly trending toward its Trip Setpoint.

The LCO requires two Manual Reactor Trip channels to be OPERABLE. Each channel is controlled by a manual reactor trip switch. Each channel activates the reactor trip breaker in both trains. Two independent channels are required to be OPERABLE so that no single random failure will disable the Manual Reactor Trip Function.

APPLICABLE SAFETY ANALYSES, LCO, and APPLICABILITY (continued)

In MODE 1 or 2, manual initiation of a reactor trip must be OPERABLE. These are the MODES in which the shutdown rods and/or control rods are partially or fully withdrawn from the core. In MODE 3, 4, or 5, the manual initiation Function must also be OPERABLE if one or more shutdown rods or control rods are withdrawn or the Rod Control System is capable of withdrawing the shutdown rods or the control rods. In this condition, inadvertent control rod withdrawal is possible. In MODE 3, 4, or 5, manual initiation of a reactor trip does not have to be OPERABLE if the Rod Control System is not capable of withdrawing the shutdown rods or control rods and if all rods are fully inserted. If the rods cannot be withdrawn from the core, or all of the rods are inserted, there is no need to be able to trip the reactor. In MODE 6, neither the shutdown rods nor the control rods are permitted to be withdrawn and the CRDMs are disconnected from the control rods and shutdown rods. Therefore, the manual initiation Function is not required.

2. Power Range Neutron Flux

The NIS power range detectors are located external to the reactor vessel and measure neutrons leaking from the core. The NIS power range detectors provide input to the Rod Control System and the Steam Generator (SG) Water Level Control System. Therefore, the actuation logic must be able to withstand an input failure to the control system, which may then require the protection function actuation, and a single failure in the other channels providing the protection function actuation. Note that this Function also provides a signal to prevent automatic and manual rod withdrawal prior to initiating a reactor trip. Limiting further rod withdrawal may terminate the transient and eliminate the need to trip the reactor.

a. Power Range Neutron Flux - High

The Power Range Neutron Flux - High trip Function ensures that protection is provided, from all power levels, against a positive reactivity excursion leading to DNB during power operations. These can be caused by rod withdrawal or reductions in RCS temperature.

The LCO requires all four of the Power Range Neutron Flux -High channels to be OPERABLE.

APPLICABLE SAFETY ANALYSES, LCO, and APPLICABILITY (continued)

In MODE 1 or 2, when a positive reactivity excursion could occur, the Power Range Neutron Flux - High trip must be OPERABLE. This Function will terminate the reactivity excursion and shut down the reactor prior to reaching a power level that could damage the fuel. In MODE 3, 4, 5, or 6, the NIS power range detectors cannot detect neutron levels in this range. In these MODES, the Power Range Neutron Flux - High does not have to be OPERABLE because the reactor is shut down and reactivity excursions into the power range are extremely unlikely. Other RTS Functions and administrative controls provide protection against reactivity additions when in MODE 3, 4, 5, or 6.

b. Power Range Neutron Flux - Low

The LCO requirement for the Power Range Neutron Flux - Low trip Function ensures that protection is provided against a positive reactivity excursion from low power or subcritical conditions.

The LCO requires all four of the Power Range Neutron Flux -Low channels to be OPERABLE.

In MODE 1, below the Power Range Neutron Flux (P-10 setpoint), and in MODE 2, the Power Range Neutron Flux - Low trip must be OPERABLE. This Function may be manually blocked by the operator when two out of four power range channels are greater than approximately 10% RTP (P-10 setpoint). This Function is automatically unblocked when three out of four power range channels are below the P-10 setpoint. Above the P-10 setpoint, positive reactivity additions are mitigated by the Power Range Neutron Flux - High trip Function.

In MODE 3, 4, 5, or 6, the Power Range Neutron Flux - Low trip Function does not have to be OPERABLE because the reactor is shut down and the NIS power range detectors cannot detect neutron levels in this range. Other RTS trip Functions and administrative controls provide protection against positive reactivity additions or power excursions in MODE 3, 4, 5, or 6.

APPLICABLE SAFETY ANALYSES, LCO, and APPLICABILITY (continued)

3. Power Range Neutron Flux Rate

The Power Range Neutron Flux Rate trips use the same channels as discussed for Function 2 above.

a. Power Range Neutron Flux - High Positive Rate

The Power Range Neutron Flux - High Positive Rate trip Function ensures that protection is provided against rapid increases in neutron flux that are characteristic of an RCCA drive rod housing rupture and the accompanying ejection of the RCCA. This Function compliments the Power Range Neutron Flux - High and Low Setpoint trip Functions to ensure that the criteria are met for a rod ejection from the power range.

The LCO requires all four of the Power Range Neutron Flux -High Positive Rate channels to be OPERABLE.

In MODE 1 or 2, when there is a potential to add a large amount of positive reactivity from a rod ejection accident (REA), the Power Range Neutron Flux - High Positive Rate trip must be OPERABLE. In MODE 3, 4, 5, or 6, the Power Range Neutron Flux - High Positive Rate trip Function does not have to be **OPERABLE** because other RTS trip Functions and administrative controls will provide protection against positive reactivity additions. Also, since only the shutdown banks may be withdrawn in MODE 3, 4, or 5, the remaining complement of control bank worth ensures a sufficient degree of SDM in the event of an REA. In MODE 6, no rods are withdrawn and the SDM is increased during refueling operations. The reactor vessel head is also removed or the closure bolts are detensioned preventing any pressure buildup. In addition, the NIS power range detectors cannot detect neutron levels present in this mode.

b. Power Range Neutron Flux - High Negative Rate

The Power Range Neutron Flux - High Negative Rate trip Function ensures that protection is provided for multiple rod drop accidents. At high power levels, a multiple rod drop accident could cause local flux peaking that would result in an unconservative local DNBR. DNBR is defined as the ratio of the

APPLICABLE SAFETY ANALYSES, LCO, and APPLICABILITY (continued)

heat flux required to cause a DNB at a particular location in the core to the local heat flux. The DNBR is indicative of the margin to DNB. No credit is taken for the operation of this Function for those rod drop accidents in which the local DNBRs will be greater than the limit.

The LCO requires all four Power Range Neutron Flux - High Negative Rate channels to be OPERABLE.

In MODE 1 or 2, when there is potential for a multiple rod drop accident to occur, the Power Range Neutron Flux - High Negative Rate trip must be OPERABLE. In MODE 3, 4, 5, or 6, the Power Range Neutron Flux - High Negative Rate trip Function does not have to be OPERABLE because the core is not critical and DNB is not a concern. Also, since only the shutdown banks may be withdrawn in MODE 3, 4, or 5, the remaining complement of control bank worth ensures a sufficient degree of SDM in the event of an REA. In MODE 6, no rods are withdrawn and the required SDM is increased during refueling operations. In addition, the NIS power range detectors cannot detect neutron levels present in this MODE.

4. Intermediate Range Neutron Flux

The Intermediate Range Neutron Flux trip Function ensures that protection is provided against an uncontrolled RCCA bank rod withdrawal accident from a subcritical condition during startup. This trip Function provides redundant protection to the Power Range Neutron Flux - Low Setpoint trip Function. The NIS intermediate range detectors are located external to the reactor vessel and measure neutrons leaking from the core. The NIS intermediate range detectors do not provide any input to control systems. Note that this Function also provides a signal to prevent automatic and manual rod withdrawal prior to initiating a reactor trip. Limiting further rod withdrawal may terminate the transient and eliminate the need to trip the reactor.

The LCO requires two channels of Intermediate Range Neutron Flux to be OPERABLE. Two OPERABLE channels are sufficient to ensure no single random failure will disable this trip Function.

APPLICABLE SAFETY ANALYSES, LCO, and APPLICABILITY (continued)

Because this trip Function is important only during startup, there is generally no need to disable channels for testing while the Function is required to be OPERABLE. Therefore, a third channel is unnecessary.

In MODE 1 below the P-10 setpoint, and in MODE 2 above the P-6 setpoint, when there is a potential for an uncontrolled RCCA bank rod withdrawal accident during reactor startup, the Intermediate Range Neutron Flux trip must be OPERABLE. Above the P-10 setpoint, the Power Range Neutron Flux - High Setpoint trip and the Power Range Neutron Flux - High Positive Rate trip provide core protection for a rod withdrawal accident. In MODE 2 below the P-6 setpoint, the Source Range Neutron Flux Trip provides the core protection for reactivity accidents. In MODE 3, 4, or 5, the Intermediate Range Neutron Flux trip does not have to be OPERABLE because the control rods must be fully inserted and only the shutdown rods may be withdrawn. The reactor cannot be started up in this condition. The core also has the required SDM to mitigate the consequences of a positive reactivity addition accident. In MODE 6, all rods are fully inserted and the core has a required increased SDM. Also, the NIS intermediate range detectors cannot detect neutron levels present in this MODE.

5. Source Range Neutron Flux

The LCO requirement for the Source Range Neutron Flux trip Function ensures that protection is provided against an uncontrolled RCCA bank rod withdrawal accident from a subcritical condition during startup. This trip Function provides redundant protection to the Power Range Neutron Flux - Low trip Function. In MODES 3, 4, and 5, administrative controls also prevent the uncontrolled withdrawal of rods. The NIS source range detectors are located external to the reactor vessel and measure neutrons leaking from the core. The NIS source range detectors do not provide any inputs to control systems. The source range trip is the only RTS automatic protection function required in MODES 3, 4, and 5 when rods are capable of withdrawal or one or more rods are not fully inserted. Therefore, the functional capability at the specified Trip Setpoint is assumed to be available.

The Source Range Neutron Flux Function provides protection for control rod withdrawal from subcritical, boron dilution and control rod ejection events.

APPLICABLE SAFETY ANALYSES, LCO, and APPLICABILITY (continued)

In MODE 2 when below the P-6 setpoint and in MODES 3, 4, and 5 when there is a potential for an uncontrolled RCCA bank rod withdrawal accident, the Source Range Neutron Flux trip must be OPERABLE. Two OPERABLE channels are sufficient to ensure no single random failure will disable this trip Function. Above the P-6 setpoint, the Intermediate Range Neutron Flux trip and the Power Range Neutron Flux - Low trip will provide core protection for reactivity accidents. Above the P-6 setpoint, the NIS source range detectors are de-energized.

In MODES 3, 4, and 5 with all rods fully inserted and the Rod Control System not capable of rod withdrawal, and in MODE 6, the outputs of the Function to RTS logic are not required OPERABLE. The requirements for the NIS source range detectors to monitor core neutron levels and provide indication of reactivity changes that may occur as a result of events like a boron dilution are addressed in LCO 3.3.9 "Boron Dilution Protection System (BDPS)," for MODE 3, 4, or 5 and LCO 3.9.3, "Nuclear Instrumentation," for MODE 6.

6. Overtemperature ΔT

The Overtemperature ΔT trip Function is provided to ensure that the design limit DNBR is met. This trip Function also limits the range over which the Overpower ΔT trip Function must provide protection. The inputs to the Overtemperature ΔT trip include all pressure, coolant temperature, axial power distribution, and reactor power as indicated by loop ΔT assuming full reactor coolant flow. Protection from violating the DNBR limit is assured for those transients that are slow with respect to delays from the core to the measurement system. The Function monitors both variation in power and flow since a decrease in flow has the same effect on ΔT as a power increase. The Overtemperature ΔT trip Function uses each loop's ΔT as a measure of reactor power and is compared with a setpoint that is automatically varied with the following parameters:

 reactor coolant average temperature - the Trip Setpoint is varied to correct for changes in coolant density and specific heat capacity with changes in coolant temperature,

APPLICABLE SAFETY ANALYSES, LCO, and APPLICABILITY (continued)

- pressurizer pressure the Trip Setpoint is varied to correct for changes in system pressure, and
- axial power distribution f(∆I), the Trip Setpoint is varied to account for imbalances in the axial power distribution as detected by the NIS upper and lower power range detectors. If axial peaks are greater than the design limit, as indicated by the difference between the upper and lower NIS power range detectors, the Trip Setpoint is reduced in accordance with Note 1 of Table 3.3.1-1.

Dynamic compensation is included for system piping delays from the core to the temperature measurement system.

The Overtemperature ΔT trip Function is calculated for each loop as described in Note 1 of Table 3.3.1-1. Trip occurs if Overtemperature ΔT is indicated in two loops. At some units, the pressure and temperature signals are used for other control functions. For those units, the actuation logic must be able to withstand an input failure to the control system, which may then require the protection function actuation, and a single failure in the other channels providing the protection function actuation. Note that this Function also provides a signal to generate a turbine runback prior to reaching the Trip Setpoint. A turbine runback will reduce turbine power and reactor power. A reduction in power will normally alleviate the Overtemperature ΔT condition and may prevent a reactor trip.

The LCO requires all four channels of the Overtemperature ΔT trip Function to be OPERABLE for two and four loop units (the LCO requires all three channels on the Overtemperature ΔT trip Function to be OPERABLE for three loop units). Note that the Overtemperature ΔT Function receives input from channels shared with other RTS Functions. Failures that affect multiple Functions require entry into the Conditions applicable to all affected Functions.

In MODE 1 or 2, the Overtemperature ΔT trip must be OPERABLE to prevent DNB. In MODE 3, 4, 5, or 6, this trip Function does not have to be OPERABLE because the reactor is not operating and there is insufficient heat production to be concerned about DNB.

APPLICABLE SAFETY ANALYSES, LCO, and APPLICABILITY (continued)

7. Overpower ΔT

The Overpower ΔT trip Function ensures that protection is provided to ensure the integrity of the fuel (i.e., no fuel pellet melting and less than 1% cladding strain) under all possible overpower conditions. This trip Function also limits the required range of the Overtemperature ΔT trip Function and provides a backup to the Power Range Neutron Flux - High Setpoint trip. The Overpower ΔT trip Function ensures that the allowable heat generation rate (kW/ft) of the fuel is not exceeded. It uses the ΔT of each loop as a measure of reactor power with a setpoint that is automatically varied with the following parameters:

- reactor coolant average temperature the Trip Setpoint is varied to correct for changes in coolant density and specific heat capacity with changes in coolant temperature, and
- rate of change of reactor coolant average temperature including dynamic compensation for the delays between the core and the temperature measurement system.

The Overpower ΔT trip Function is calculated for each loop as per Note 2 of Table 3.3.1-1. Trip occurs if Overpower ΔT is indicated in two loops. At some units, the temperature signals are used for other control functions. At those units, the actuation logic must be able to withstand an input failure to the control system, which may then require the protection function actuation and a single failure in the remaining channels providing the protection function actuation. Note that this Function also provides a signal to generate a turbine runback prior to reaching the Allowable Value. A turbine runback will reduce turbine power and reactor power. A reduction in power will normally alleviate the Overpower ΔT condition and may prevent a reactor trip.

The LCO requires four channels for two and four loop units (three channels for three loop units) of the Overpower ΔT trip Function to be OPERABLE. Note that the Overpower ΔT trip Function receives input from channels shared with other RTS Functions. Failures that affect multiple Functions require entry into the Conditions applicable to all affected Functions.

APPLICABLE SAFETY ANALYSES, LCO, and APPLICABILITY (continued)

In MODE 1 or 2, the Overpower ΔT trip Function must be OPERABLE. These are the only times that enough heat is generated in the fuel to be concerned about the heat generation rates and overheating of the fuel. In MODE 3, 4, 5, or 6, this trip Function does not have to be OPERABLE because the reactor is not operating and there is insufficient heat production to be concerned about fuel overheating and fuel damage.

8. <u>Pressurizer Pressure</u>

The same sensors provide input to the Pressurizer Pressure - High and - Low trips and the Overtemperature ΔT trip. At some units, the Pressurizer Pressure channels are also used to provide input to the Pressurizer Pressure Control System. For those units, the actuation logic must be able to withstand an input failure to the control system, which may then require the protection function actuation, and a single failure in the other channels providing the protection function actuation.

a. Pressurizer Pressure - Low

The Pressurizer Pressure - Low trip Function ensures that protection is provided against violating the DNBR limit due to low pressure.

The LCO requires four channels for two and four loop units (three channels for three loop units) of Pressurizer Pressure - Low to be OPERABLE.

In MODE 1, when DNB is a major concern, the Pressurizer Pressure - Low trip must be OPERABLE. This trip Function is automatically enabled on increasing power by the P-7 interlock (NIS power range P-10 or turbine impulse pressure greater than approximately 10% of full power equivalent (P-13)). On decreasing power, this trip Function is automatically blocked below P-7. Below the P-7 setpoint, no conceivable power distributions can occur that would cause DNB concerns.

b. Pressurizer Pressure - High

The Pressurizer Pressure - High trip Function ensures that protection is provided against overpressurizing the RCS. This trip Function operates in conjunction with the pressurizer relief and safety valves to prevent RCS overpressure conditions.

APPLICABLE SAFETY ANALYSES, LCO, and APPLICABILITY (continued)

The LCO requires four channels for two and four loop units (three channels for three loop units) of the Pressurizer Pressure - High to be OPERABLE.

The Pressurizer Pressure - High LSSS is selected to be below the pressurizer safety valve actuation pressure and above the power operated relief valve (PORV) setting. This setting minimizes challenges to safety valves while avoiding unnecessary reactor trip for those pressure increases that can be controlled by the PORVs.

In MODE 1 or 2, the Pressurizer Pressure - High trip must be OPERABLE to help prevent RCS overpressurization and minimize challenges to the relief and safety valves. In MODE 3, 4, 5, or 6, the Pressurizer Pressure - High trip Function does not have to be OPERABLE because transients that could cause an overpressure condition will be slow to occur. Therefore, the operator will have sufficient time to evaluate unit conditions and take corrective actions. Additionally, low temperature overpressure protection systems provide overpressure protection when below MODE 4.

9. Pressurizer Water Level - High

The Pressurizer Water Level - High trip Function provides a backup signal for the Pressurizer Pressure - High trip and also provides protection against water relief through the pressurizer safety valves. These valves are designed to pass steam in order to achieve their design energy removal rate. A reactor trip is actuated prior to the pressurizer becoming water solid. The LCO requires three channels of Pressurizer Water Level - High to be OPERABLE. The pressurizer level channels are used as input to the Pressurizer Level Control System. A fourth channel is not required to address control/protection interaction concerns. The level channels do not actuate the safety valves, and the high pressure reactor trip is set below the safety valve setting. Therefore, with the slow rate of charging available, pressure overshoot due to level channel failure cannot cause the safety valve to lift before reactor high pressure trip.

In MODE 1, when there is a potential for overfilling the pressurizer, the Pressurizer Water Level - High trip must be OPERABLE. This trip Function is automatically enabled on increasing power by the P-7

APPLICABLE SAFETY ANALYSES, LCO, and APPLICABILITY (continued)

interlock. On decreasing power, this trip Function is automatically blocked below P-7. Below the P-7 setpoint, transients that could raise the pressurizer water level will be slow and the operator will have sufficient time to evaluate unit conditions and take corrective actions.

10. Reactor Coolant Flow - Low

The Reactor Coolant Flow - Low trip Function ensures that protection is provided against violating the DNBR limit due to low flow in one or more RCS loops, while avoiding reactor trips due to normal variations in loop flow. Above the P-7 setpoint, the reactor trip on low flow in two or more RCS loops is automatically enabled. Above the P-8 setpoint, which is approximately 48% RTP, a loss of flow in any RCS loop will actuate a reactor trip. Each RCS loop has three flow detectors to monitor flow. The flow signals are not used for any control system input.

The LCO requires three Reactor Coolant Flow - Low channels per loop to be OPERABLE in MODE 1 above P-7.

In MODE 1 above the P-8 setpoint, a loss of flow in one RCS loop could result in DNB conditions in the core because of the higher power level. In MODE 1 below the P-8 setpoint and above the P-7 setpoint, a loss of flow in two or more loops is required to actuate a reactor trip because of the lower power level and the greater margin to the design limit DNBR. Below the P-7 setpoint, all reactor trips on low flow are automatically blocked since there is insufficient heat production to generate DNB conditions.

11. Reactor Coolant Pump (RCP) Breaker Position

Both RCP Breaker Position trip Functions operate together on two sets of auxiliary contacts, with one set on each RCP breaker. These Functions anticipate the Reactor Coolant Flow - Low trips to avoid RCS heatup that would occur before the low flow trip actuates.

APPLICABLE SAFETY ANALYSES, LCO, and APPLICABILITY (continued)

a. Reactor Coolant Pump Breaker Position (Single Loop)

The RCP Breaker Position (Single Loop) trip Function ensures that protection is provided against violating the DNBR limit due to a loss of flow in one RCS loop. The position of each RCP breaker is monitored. If one RCP breaker is open above the P-8 setpoint, a reactor trip is initiated. This trip Function will generate a reactor trip before the Reactor Coolant Flow - Low (Single Loop) Trip Setpoint is reached.

The LCO requires one RCP Breaker Position channel per RCP to be OPERABLE. One OPERABLE channel is sufficient for this trip Function because the RCS Flow - Low trip alone provides sufficient protection of unit SLs for loss of flow events. The RCP Breaker Position trip serves only to anticipate the low flow trip, minimizing the thermal transient associated with loss of a pump.

This Function measures only the discrete position (open or closed) of the RCP breaker, using a position switch. Therefore, the Function has no adjustable trip setpoint with which to associate an LSSS.

In MODE 1 above the P-8 setpoint, when a loss of flow in any RCS loop could result in DNB conditions in the core, the RCP Breaker Position (Single Loop) trip must be OPERABLE. In MODE 1 below the P-8 setpoint, a loss of flow in two or more loops is required to actuate a reactor trip because of the lower power level and the greater margin to the design limit DNBR.

b. Reactor Coolant Pump Breaker Position (Two Loops)

The RCP Breaker Position (Two Loops) trip Function ensures that protection is provided against violating the DNBR limit due to a loss of flow in two or more RCS loops. The position of each RCP breaker is monitored. Above the P-7 setpoint and below the P-8 setpoint, a loss of flow in two or more loops will initiate a reactor trip. This trip Function will generate a reactor trip before the Reactor Coolant Flow - Low (Two Loops) Trip Setpoint is reached.

APPLICABLE SAFETY ANALYSES, LCO, and APPLICABILITY (continued)

The LCO requires one RCP Breaker Position channel per RCP to be OPERABLE. One OPERABLE channel is sufficient for this Function because the RCS Flow - Low trip alone provides sufficient protection of unit SLs for loss of flow events. The RCP Breaker Position trip serves only to anticipate the low flow trip, minimizing the thermal transient associated with loss of an RCP.

This Function measures only the discrete position (open or closed) of the RCP breaker, using a position switch. Therefore, the Function has no adjustable trip setpoint with which to associate an LSSS.

In MODE 1 above the P-7 setpoint and below the P-8 setpoint, the RCP Breaker Position (Two Loops) trip must be OPERABLE. Below the P-7 setpoint, all reactor trips on loss of flow are automatically blocked since no conceivable power distributions could occur that would cause a DNB concern at this low power level. Above the P-7 setpoint, the reactor trip on loss of flow in two RCS loops is automatically enabled. Above the P-8 setpoint, a loss of flow in any one loop will actuate a reactor trip because of the higher power level and the reduced margin to the design limit DNBR.

12. Undervoltage Reactor Coolant Pumps

The Undervoltage RCPs reactor trip Function ensures that protection is provided against violating the DNBR limit due to a loss of flow in two or more RCS loops. The voltage to each RCP is monitored. Above the P-7 setpoint, a loss of voltage detected on two or more RCP buses will initiate a reactor trip. This trip Function will generate a reactor trip before the Reactor Coolant Flow - Low (Two Loops) Trip Setpoint is reached. Time delays are incorporated into the Undervoltage RCPs channels to prevent reactor trips due to momentary electrical power transients.

The LCO requires three Undervoltage RCPs channels (one per phase) per bus to be OPERABLE.

In MODE 1 above the P-7 setpoint, the Undervoltage RCP trip must be OPERABLE. Below the P-7 setpoint, all reactor trips on loss of flow are automatically blocked since no conceivable power distributions could occur that would cause a DNB concern at this low

APPLICABLE SAFETY ANALYSES, LCO, and APPLICABILITY (continued)

power level. Above the P-7 setpoint, the reactor trip on loss of flow in two or more RCS loops is automatically enabled. This Function uses the same relays as the ESFAS Function 6.f, "Undervoltage Reactor Coolant Pump (RCP)" start of the auxiliary feedwater (AFW) pumps.

13. Underfrequency Reactor Coolant Pumps

The Underfrequency RCPs reactor trip Function ensures that protection is provided against violating the DNBR limit due to a loss of flow in two or more RCS loops from a major network frequency disturbance. An underfrequency condition will slow down the pumps, thereby reducing their coastdown time following a pump trip. The proper coastdown time is required so that reactor heat can be removed immediately after reactor trip. The frequency of each RCP bus is monitored. Above the P-7 setpoint, a loss of frequency detected on two or more RCP buses will initiate a reactor trip. This trip Function will generate a reactor trip before the Reactor Coolant Flow - Low (Two Loops) Trip Setpoint is reached. Time delays are incorporated into the Underfrequency RCPs channels to prevent reactor trips due to momentary electrical power transients.

The LCO requires three Underfrequency RCPs channels per bus to be OPERABLE.

In MODE 1 above the P-7 setpoint, the Underfrequency RCPs trip must be OPERABLE. Below the P-7 setpoint, all reactor trips on loss of flow are automatically blocked since no conceivable power distributions could occur that would cause a DNB concern at this low power level. Above the P-7 setpoint, the reactor trip on loss of flow in two or more RCS loops is automatically enabled.

14. Steam Generator Water Level - Low Low

The SG Water Level - Low Low trip Function ensures that protection is provided against a loss of heat sink and actuates the AFW System prior to uncovering the SG tubes. The SGs are the heat sink for the reactor. In order to act as a heat sink, the SGs must contain a minimum amount of water. A narrow range low low level in any SG is indicative of a loss of heat sink for the reactor. The level transmitters provide input to the SG Level Control System. Therefore, the actuation logic must be able to withstand an input failure to the control system, which may then require the protection function actuation, and a single failure in the other channels providing the protection function actuation. This Function also performs the ESFAS function of starting the AFW pumps on low low SG level.

APPLICABLE SAFETY ANALYSES, LCO, and APPLICABILITY (continued)

The LCO requires four channels of SG Water Level - Low Low per SG to be OPERABLE for four loop units in which these channels are shared between protection and control. In two, three, and four loop units where three SG Water Levels are dedicated to the RTS, only three channels per SG are required to be OPERABLE.

In MODE 1 or 2, when the reactor requires a heat sink, the SG Water Level - Low Low trip must be OPERABLE. The normal source of water for the SGs is the Main Feedwater (MFW) System (not safety related). The MFW System is only in operation in MODE 1 or 2. The AFW System is the safety related backup source of water to ensure that the SGs remain the heat sink for the reactor. During normal startups and shutdowns, the AFW System provides feedwater to maintain SG level. In MODE 3, 4, 5, or 6, the SG Water Level - Low Low Function does not have to be OPERABLE because the MFW System is not in operation and the reactor is not operating or even critical. Decay heat removal is accomplished by the AFW System in MODE 3 and by the Residual Heat Removal (RHR) System in MODE 4, 5, or 6.

15. <u>Steam Generator Water Level - Low, Coincident With Steam</u> Flow/Feedwater Flow Mismatch

SG Water Level - Low, in conjunction with the Steam Flow/Feedwater Flow Mismatch, ensures that protection is provided against a loss of heat sink and actuates the AFW System prior to uncovering the SG tubes. In addition to a decreasing water level in the SG, the difference between feedwater flow and steam flow is evaluated to determine if feedwater flow is significantly less than steam flow. With less feedwater flow than steam flow, SG level will decrease at a rate dependent upon the magnitude of the difference in flow rates. There are two SG level channels and two Steam Flow/Feedwater Flow Mismatch channels per SG. One narrow range level channel sensing a low level coincident with one Steam Flow/Feedwater Flow Mismatch channel sensing flow mismatch (steam flow greater than feed flow) will actuate a reactor trip.

The LCO requires two channels of SG Water Level - Low coincident with Steam Flow/Feedwater Flow Mismatch.

APPLICABLE SAFETY ANALYSES, LCO, and APPLICABILITY (continued)

In MODE 1 or 2, when the reactor requires a heat sink, the SG Water Level - Low coincident with Steam Flow/Feedwater Flow Mismatch trip must be OPERABLE. The normal source of water for the SGs is the MFW System (not safety related). The MFW System is only in operation in MODE 1 or 2. The AFW System is the safety related backup source of water to ensure that the SGs remain the heat sink for the reactor. During normal startups and shutdowns, the AFW System provides feedwater to maintain SG level. In MODE 3, 4, 5, or 6, the SG Water Level - Low coincident with Steam Flow/Feedwater Flow Mismatch Function does not have to be OPERABLE because the MFW System is not in operation and the reactor is not operating or even critical. Decay heat removal is accomplished by the AFW System in MODE 3 and by the RHR System in MODE 4, 5, or 6. The MFW System is in operation only in MODE 1 or 2 and, therefore, this trip Function need only be **OPERABLE** in these MODES.

16. Turbine Trip

a. <u>Turbine Trip - Low Fluid Oil Pressure</u>

The Turbine Trip - Low Fluid Oil Pressure trip Function anticipates the loss of heat removal capabilities of the secondary system following a turbine trip. This trip Function acts to minimize the pressure/temperature transient on the reactor. Any turbine trip from a power level below the P-9 setpoint, approximately 50% power, will not actuate a reactor trip. Three pressure switches monitor the control oil pressure in the Turbine Electrohydraulic Control System. A low pressure condition sensed by two-out-of-three pressure switches will actuate a reactor trip. These pressure switches do not provide any input to the control system. The unit is designed to withstand a complete loss of load and not sustain core damage or challenge the RCS pressure limitations. Core protection is provided by the Pressurizer Pressure - High trip Function and RCS integrity is ensured by the pressurizer safety valves.

The LCO requires three channels of Turbine Trip - Low Fluid Oil Pressure to be OPERABLE in MODE 1 above P-9.

Below the P-9 setpoint, a turbine trip does not actuate a reactor trip. In MODE 2, 3, 4, 5, or 6, there is no potential for a turbine trip, and the Turbine Trip - Low Fluid Oil Pressure trip Function does not need to be OPERABLE.

APPLICABLE SAFETY ANALYSES, LCO, and APPLICABILITY (continued)

b. <u>Turbine Trip - Turbine Stop Valve Closure</u>

The Turbine Trip - Turbine Stop Valve Closure trip Function anticipates the loss of heat removal capabilities of the secondary system following a turbine trip from a power level below the P-9 setpoint, approximately 50% power. This action will not actuate a reactor trip. The trip Function anticipates the loss of secondary heat removal capability that occurs when the stop valves close. Tripping the reactor in anticipation of loss of secondary heat removal acts to minimize the pressure and temperature transient on the reactor. This trip Function will not and is not required to operate in the presence of a single channel failure. The unit is designed to withstand a complete loss of load and not sustain core damage or challenge the RCS pressure limitations. Core protection is provided by the Pressurizer Pressure - High trip Function, and RCS integrity is ensured by the pressurizer safety valves. This trip Function is diverse to the Turbine Trip - Low Fluid Oil Pressure trip Function. Each turbine stop valve is equipped with one limit switch that inputs to the RTS. If all four limit switches indicate that the stop valves are all closed, a reactor trip is initiated.

The LSSS for this Function is set to assure channel trip occurs when the associated stop valve is completely closed.

The LCO requires four Turbine Trip - Turbine Stop Valve Closure channels, one per valve, to be OPERABLE in MODE 1 above P-9. All four channels must trip to cause reactor trip.

Below the P-9 setpoint, a load rejection can be accommodated by the Steam Dump System. In MODE 2, 3, 4, 5, or 6, there is no potential for a load rejection, and the Turbine Trip - Stop Valve Closure trip Function does not need to be OPERABLE.

17. <u>Safety Injection Input from Engineered Safety Feature Actuation</u> <u>System</u>

The SI Input from ESFAS ensures that if a reactor trip has not already been generated by the RTS, the ESFAS automatic actuation logic will initiate a reactor trip upon any signal that initiates SI. This is a condition of acceptability for the LOCA. However, other transients

APPLICABLE SAFETY ANALYSES, LCO, and APPLICABILITY (continued)

and accidents take credit for varying levels of ESF performance and rely upon rod insertion, except for the most reactive rod that is assumed to be fully withdrawn, to ensure reactor shutdown. Therefore, a reactor trip is initiated every time an SI signal is present.

Trip Setpoint and Allowable Values are not applicable to this Function. The SI Input is provided by relay in the ESFAS. Therefore, there is no measurement signal with which to associate an LSSS.

The LCO requires two trains of SI Input from ESFAS to be OPERABLE in MODE 1 or 2.

A reactor trip is initiated every time an SI signal is present. Therefore, this trip Function must be OPERABLE in MODE 1 or 2, when the reactor is critical, and must be shut down in the event of an accident. In MODE 3, 4, 5, or 6, the reactor is not critical, and this trip Function does not need to be OPERABLE.

18. <u>Reactor Trip System Interlocks</u>

Reactor protection interlocks are provided to ensure reactor trips are in the correct configuration for the current unit status. They back up operator actions to ensure protection system Functions are not bypassed during unit conditions under which the safety analysis assumes the Functions are not bypassed. Therefore, the interlock Functions do not need to be OPERABLE when the associated reactor trip functions are outside the applicable MODES. These are:

a. Intermediate Range Neutron Flux, P-6

The Intermediate Range Neutron Flux, P-6 interlock is actuated when any NIS intermediate range channel goes approximately one decade above the minimum channel reading. If both channels drop below the setpoint, the permissive will automatically be defeated. The LCO requirement for the P-6 interlock ensures that the following Functions are performed:

APPLICABLE SAFETY ANALYSES, LCO, and APPLICABILITY (continued)

- on increasing power, the P-6 interlock allows the manual block of the NIS Source Range, Neutron Flux reactor trip. This prevents a premature block of the source range trip and allows the operator to ensure that the intermediate range is OPERABLE prior to leaving the source range. When the source range trip is blocked, the high voltage to the detectors is also removed,
- on decreasing power, the P-6 interlock automatically energizes the NIS source range detectors and enables the NIS Source Range Neutron Flux reactor trip, and
- on increasing power, the P-6 interlock provides a backup block signal to the source range flux doubling circuit. Normally, this Function is manually blocked by the control room operator during the reactor startup.

The LCO requires two channels of Intermediate Range Neutron Flux, P-6 interlock to be OPERABLE in MODE 2 when below the P-6 interlock setpoint.

Above the P-6 interlock setpoint, the NIS Source Range Neutron Flux reactor trip will be blocked, and this Function will no longer be necessary.

In MODE 3, 4, 5, or 6, the P-6 interlock does not have to be OPERABLE because the NIS Source Range is providing core protection.

b. Low Power Reactor Trips Block, P-7

The Low Power Reactor Trips Block, P-7 interlock is actuated by input from either the Power Range Neutron Flux, P-10, or the Turbine Impulse Pressure, P-13 interlock. The LCO requirement for the P-7 interlock ensures that the following Functions are performed:

(1) on increasing power, the P-7 interlock automatically enables reactor trips on the following Functions:

APPLICABLE SAFETY ANALYSES, LCO, and APPLICABILITY (continued)

- Pressurizer Pressure Low,
- Pressurizer Water Level High,
- Reactor Coolant Flow Low (low flow in two or more RCS loops),
- RCPs Breaker Open (Two Loops),
- Undervoltage RCPs, and
- Underfrequency RCPs.

These reactor trips are only required when operating above the P-7 setpoint (approximately 10% power). The reactor trips provide protection against violating the DNBR limit. Below the P-7 setpoint, the RCS is capable of providing sufficient natural circulation without any RCP running.

- (2) on decreasing power, the P-7 interlock automatically blocks reactor trips on the following Functions:
 - Pressurizer Pressure Low,
 - Pressurizer Water Level High,
 - Reactor Coolant Flow Low (low flow in two or more RCS loops),
 - RCP Breaker Position (Two Loops),
 - Undervoltage RCPs, and
 - Underfrequency RCPs.

Trip Setpoint and Allowable Value are not applicable to the P-7 interlock because it is a logic Function and thus has no parameter with which to associate an LSSS.

The P-7 interlock is a logic Function with train and not channel identity. Therefore, the LCO requires one channel per train of Low Power Reactor Trips Block, P-7 interlock to be OPERABLE in MODE 1.

APPLICABLE SAFETY ANALYSES, LCO, and APPLICABILITY (continued)

The low power trips are blocked below the P-7 setpoint and unblocked above the P-7 setpoint. In MODE 2, 3, 4, 5, or 6, this Function does not have to be OPERABLE because the interlock performs its Function when power level drops below 10% power, which is in MODE 1.

c. Power Range Neutron Flux, P-8

The Power Range Neutron Flux, P-8 interlock is actuated at approximately 48% power as determined by two-out-of-four NIS power range detectors. The P-8 interlock automatically enables the Reactor Coolant Flow - Low and RCP Breaker Position (Single Loop) reactor trips on low flow in one or more RCS loops on increasing power. The LCO requirement for this trip Function ensures that protection is provided against a loss of flow in any RCS loop that could result in DNB conditions in the core when greater than approximately 48% power. On decreasing power, the reactor trip on low flow in any loop is automatically blocked.

The LCO requires four channels of Power Range Neutron Flux, P-8 interlock to be OPERABLE in MODE 1.

In MODE 1, a loss of flow in one RCS loop could result in DNB conditions, so the Power Range Neutron Flux, P-8 interlock must be OPERABLE. In MODE 2, 3, 4, 5, or 6, this Function does not have to be OPERABLE because the core is not producing sufficient power to be concerned about DNB conditions.

d. Power Range Neutron Flux, P-9

The Power Range Neutron Flux, P-9 interlock is actuated at approximately 50% power as determined by two-out-of-four NIS power range detectors. The LCO requirement for this Function ensures that the Turbine Trip - Low Fluid Oil Pressure and Turbine Trip - Turbine Stop Valve Closure reactor trips are enabled above the P-9 setpoint. Above the P-9 setpoint, a turbine trip will cause a load rejection beyond the capacity of the Steam Dump System. A reactor trip is automatically initiated on a turbine trip when it is above the P-9 setpoint, to minimize the transient on the reactor.

The LCO requires four channels of Power Range Neutron Flux, P-9 interlock to be OPERABLE in MODE 1.

APPLICABLE SAFETY ANALYSES, LCO, and APPLICABILITY (continued)

In MODE 1, a turbine trip could cause a load rejection beyond the capacity of the Steam Dump System, so the Power Range Neutron Flux interlock must be OPERABLE. In MODE 2, 3, 4, 5, or 6, this Function does not have to be OPERABLE because the reactor is not at a power level sufficient to have a load rejection beyond the capacity of the Steam Dump System.

e. Power Range Neutron Flux, P-10

The Power Range Neutron Flux, P-10 interlock is actuated at approximately 10% power, as determined by two-out-of-four NIS power range detectors. If power level falls below 10% RTP on 3 of 4 channels, the nuclear instrument trips will be automatically unblocked. The LCO requirement for the P-10 interlock ensures that the following Functions are performed:

- on increasing power, the P-10 interlock allows the operator to manually block the Intermediate Range Neutron Flux reactor trip. Note that blocking the reactor trip also blocks the signal to prevent automatic and manual rod withdrawal,
- on increasing power, the P-10 interlock allows the operator to manually block the Power Range Neutron Flux - Low reactor trip,
- on increasing power, the P-10 interlock automatically provides a backup signal to block the Source Range Neutron Flux reactor trip, and also to de-energize the NIS source range detectors,
- the P-10 interlock provides one of the two inputs to the P-7 interlock, and
- on decreasing power, the P-10 interlock automatically enables the Power Range Neutron Flux - Low reactor trip and the Intermediate Range Neutron Flux reactor trip (and rod stop).

The LCO requires four channels of Power Range Neutron Flux, P-10 interlock to be OPERABLE in MODE 1 or 2.

APPLICABLE SAFETY ANALYSES, LCO, and APPLICABILITY (continued)

OPERABILITY in MODE 1 ensures the Function is available to perform its decreasing power Functions in the event of a reactor shutdown. This Function must be OPERABLE in MODE 2 to ensure that core protection is provided during a startup or shutdown by the Power Range Neutron Flux - Low and Intermediate Range Neutron Flux reactor trips. In MODE 3, 4, 5, or 6, this Function does not have to be OPERABLE because the reactor is not at power and the Source Range Neutron Flux reactor trip provides core protection.

f. <u>Turbine Impulse Pressure, P-13</u>

The Turbine Impulse Pressure, P-13 interlock is actuated when the pressure in the first stage of the high pressure turbine is greater than approximately 10% of the rated full power pressure. This is determined by one-out-of-two pressure detectors. The LCO requirement for this Function ensures that one of the inputs to the P-7 interlock is available.

The LCO requires two channels of Turbine Impulse Pressure, P-13 interlock to be OPERABLE in MODE 1.

The Turbine Impulse Chamber Pressure, P-13 interlock must be OPERABLE when the turbine generator is operating. The interlock Function is not required OPERABLE in MODE 2, 3, 4, 5, or 6 because the turbine generator is not operating.

19. <u>Reactor Trip Breakers</u>

This trip Function applies to the RTBs exclusive of individual trip mechanisms. The LCO requires two OPERABLE trains of trip breakers. A trip breaker train consists of all trip breakers associated with a single RTS logic train that are racked in, closed, and capable of supplying power to the Rod Control System. Thus, the train may consist of the main breaker, bypass breaker, or main breaker and bypass breaker, depending upon the system configuration. Two OPERABLE trains ensure no single random failure can disable the RTS trip capability.

These trip Functions must be OPERABLE in MODE 1 or 2 when the reactor is critical. In MODE 3, 4, or 5, these RTS trip Functions must be OPERABLE when the Rod Control System is capable of rod withdrawal or one or more rods are not fully inserted.

APPLICABLE SAFETY ANALYSES, LCO, and APPLICABILITY (continued)

20. Reactor Trip Breaker Undervoltage and Shunt Trip Mechanisms

The LCO requires both the Undervoltage and Shunt Trip Mechanisms to be OPERABLE for each RTB that is in service. The trip mechanisms are not required to be OPERABLE for trip breakers that are open, racked out, incapable of supplying power to the Rod Control System, or declared inoperable under Function 19 above. OPERABILITY of both trip mechanisms on each breaker ensures that no single trip mechanism failure will prevent opening any breaker on a valid signal.

These trip Functions must be OPERABLE in MODE 1 or 2 when the reactor is critical. In MODE 3, 4, or 5, these RTS trip Functions must be OPERABLE when the Rod Control System is capable of rod withdrawal or one or more rods are not fully inserted.

21. Automatic Trip Logic

The LCO requirement for the RTBs (Functions 19 and 20) and Automatic Trip Logic (Function 21) ensures that means are provided to interrupt the power to allow the rods to fall into the reactor core. Each RTB is equipped with an undervoltage coil and a shunt trip coil to trip the breaker open when needed. Each RTB is equipped with a bypass breaker to allow testing of the trip breaker while the unit is at power. The reactor trip signals generated by the RTS Automatic Trip Logic cause the RTBs and associated bypass breakers to open and shut down the reactor.

The LCO requires two trains of RTS Automatic Trip Logic to be OPERABLE. Having two OPERABLE channels ensures that random failure of a single logic channel will not prevent reactor trip.

These trip Functions must be OPERABLE in MODE 1 or 2 when the reactor is critical. In MODE 3, 4, or 5, these RTS trip Functions must be OPERABLE when the Rod Control System is capable of rod withdrawal or one or more rods are not fully inserted.

The RTS instrumentation satisfies Criterion 3 of 10 CFR 50.36(c)(2)(ii).

.

BASES	
ACTIONS	In Table 3.3.1-1, Functions 11.a and 11.b were not included in the generic evaluations approved in either WCAP-10271, as supplemented, WCAP-15376, or WCAP-14333. In order to apply the WCAP-10271, as supplemented, and WCAP-15376 or WCAP-14333 TS relaxations to plant specific Functions not evaluated generically, licensees must submit plant specific evaluations for NRC review and approval.
	A Note has been added to the ACTIONS to clarify the application of Completion Time rules. The Conditions of this Specification may be entered independently for each Function listed in Table 3.3.1-1.
	In the event a channel's Trip Setpoint is found nonconservative with respect to the Allowable Value, or the transmitter, instrument loop, signal processing electronics, or bistable is found inoperable, then all affected Functions provided by that channel must be declared inoperable and the LCO Condition(s) entered for the protection Function(s) affected.
	When the number of inoperable channels in a trip Function exceed those specified in one or other related Conditions associated with a trip Function, then the unit is outside the safety analysis. Therefore, LCO 3.0.3 must be immediately entered if applicable in the current MODE of operation.
	<u>A.1</u>
	Condition A applies to all RTS protection Functions. Condition A addresses the situation where one or more required channels or trains for one or more Functions are inoperable at the same time. The Required Action is to refer to Table 3.3.1-1 and to take the Required Actions for the protection functions affected. The Completion Times are those from the referenced Conditions and Required Actions.

ACTIONS (continued)

B.1 and B.2

Condition B applies to the Manual Reactor Trip in MODE 1 or 2. This action addresses the train orientation of the SSPS for this Function. With one channel inoperable, the inoperable channel must be restored to OPERABLE status within 48 hours. In this Condition, the remaining OPERABLE channel is adequate to perform the safety function.

The Completion Time of 48 hours is reasonable considering that there are two automatic actuation trains and another manual initiation channel OPERABLE, and the low probability of an event occurring during this interval.

If the Manual Reactor Trip Function cannot be restored to OPERABLE status within the allowed 48 hour Completion Time, the unit must be brought to a MODE in which the requirement does not apply. To achieve this status, the unit must be brought to at least MODE 3 within 6 additional hours (54 hours total time). The 6 additional hours to reach MODE 3 is reasonable, based on operating experience, to reach MODE 3 from full power operation in an orderly manner and without challenging unit systems. With the unit in MODE 3, ACTION C would apply to any inoperable Manual Reactor Trip Function if the Rod Control System is capable of rod withdrawal or one or more rods are not fully inserted.

C.1, C.2.1, and C.2.2

Condition C applies to the following reactor trip Functions in MODE 3, 4, or 5 with the Rod Control System capable of rod withdrawal or one or more rods not fully inserted:

- Manual Reactor Trip,
- RTBs,
- RTB Undervoltage and Shunt Trip Mechanisms, and
- Automatic Trip Logic.

This action addresses the train orientation of the SSPS for these Functions. With one channel or train inoperable, the inoperable channel or train must be restored to OPERABLE status within 48 hours. If the affected Function(s) cannot be restored to OPERABLE status within the allowed 48 hour Completion Time, the unit must be placed in a MODE in

ACTIONS (continued)

which the requirement does not apply. To achieve this status, action must be initiated within the same 48 hours to ensure that all rods are fully inserted, and the Rod Control System must be placed in a condition incapable of rod withdrawal within the next hour. The additional hour provides sufficient time to accomplish the action in an orderly manner. With rods fully inserted and the Rod Control System incapable of rod withdrawal, these Functions are no longer required.

The Completion Time is reasonable considering that in this Condition, the remaining OPERABLE train is adequate to perform the safety function, and given the low probability of an event occurring during this interval.

D.1.1, D.1.2, D.2.1, D.2.2, and D.3

Condition D applies to the Power Range Neutron Flux - High Function.

The NIS power range detectors provide input to the Rod Control System and the SG Water Level Control System and, therefore, have a two-outof-four trip logic. A known inoperable channel must be placed in the tripped condition. This results in a partial trip condition requiring only one-out-of-three logic for actuation. The 72 hours allowed to place the inoperable channel in the tripped condition is justified in WCAP-14333-P-A (Ref. 8).

In addition to placing the inoperable channel in the tripped condition, THERMAL POWER must be reduced to \leq 75% RTP within 78 hours. Reducing the power level prevents operation of the core with radial power distributions beyond the design limits. With one of the NIS power range detectors inoperable, 1/4 of the radial power distribution monitoring capability is lost.

As an alternative to the above actions, the inoperable channel can be placed in the tripped condition within 72 hours and the QPTR monitored once every 12 hours as per SR 3.2.4.2, QPTR verification. Calculating QPTR every 12 hours compensates for the lost monitoring capability due to the inoperable NIS power range channel and allows continued unit operation at power levels < 75% RTP. The 12 hour Frequency is consistent with LCO 3.2.4, "QUADRANT POWER TILT RATIO (QPTR)."

ACTIONS (continued)

As an alternative to the above Actions, the plant must be placed in a MODE where this Function is no longer required OPERABLE. Seventyeight hours are allowed to place the plant in MODE 3. The 78 hour Completion Time includes 72 hours for channel corrective maintenance, and an additional 6 hours for the MODE reduction as required by Required Action D.3. This is a reasonable time, based on operating experience, to reach MODE 3 from full power in an orderly manner and without challenging plant systems. If Required Actions cannot be completed within their allowed Completion Times, LCO 3.0.3 must be entered.

[The Required Actions have been modified by a Note that allows placing the inoperable channel in the bypass condition for up to 12 hours while performing routine surveillance testing of other channels. The Note also allows placing the inoperable channel in the bypass condition to allow setpoint adjustments of other channels when required to reduce the setpoint in accordance with other Technical Specifications. The 12 hour time limit is justified in Reference 8.]

The Required Actions are modified by a Note that allows placing one channel in bypass for 12 hours while performing routine surveillance testing, and setpoint adjustments when a setpoint reduction is required by other Technical Specifications. The 12 hour time limit is justified in Reference 8.

Required Action D.2.2 has been modified by a Note which only requires SR 3.2.4.2 to be performed if the Power Range Neutron Flux input to QPTR becomes inoperable. Failure of a component in the Power Range Neutron Flux Channel which renders the High Flux Trip Function inoperable may not affect the capability to monitor QPTR. As such, determining QPTR using this movable incore detectors once per 12 hours may not be necessary.

ACTIONS (continued)

E.1 and E.2

Condition E applies to the following reactor trip Functions:

- Power Range Neutron Flux Low,
- Overtemperature ΔT ,
- Overpower ΔT ,
- Power Range Neutron Flux High Positive Rate,
- Power Range Neutron Flux High Negative Rate,
- Pressurizer Pressure High,
- SG Water Level Low Low, and
- SG Water Level Low coincident with Steam Flow/Feedwater Flow Mismatch.

A known inoperable channel must be placed in the tripped condition within 72 hours. Placing the channel in the tripped condition results in a partial trip condition requiring only one-out-of-two logic for actuation of the two-out-of-three trips and one-out-of-three logic for actuation of the twoout-of-four trips. The 72 hours allowed to place the inoperable channel in the tripped condition is justified in Reference 8.

If the inoperable channel cannot be placed in the trip condition within the specified Completion Time, the unit must be placed in a MODE where these Functions are not required OPERABLE. An additional 6 hours is allowed to place the unit in MODE 3. Six hours is a reasonable time, based on operating experience, to place the unit in MODE 3 from full power in an orderly manner and without challenging unit systems.

[The Required Actions have been modified by a Note that allows placing the inoperable channel in the bypassed condition for up to 12 hours while performing routine surveillance testing of the other channels. The 12 hour time limit is justified in Reference 8.]

ACTIONS (continued)

The Required Actions are modified by a Note that allows placing one channel in bypass for up to 12 hours while performing routine surveillance testing. The 12 hour time limit is justified in Reference 9.

F.1 and F.2

Condition F applies to the Intermediate Range Neutron Flux trip when THERMAL POWER is above the P-6 setpoint and below the P-10 setpoint and one channel is inoperable. Above the P-6 setpoint and below the P-10 setpoint, the NIS intermediate range detector performs the monitoring Functions. If THERMAL POWER is greater than the P-6 setpoint but less than the P-10 setpoint, 24 hours is allowed to reduce THERMAL POWER below the P-6 setpoint or increase to THERMAL POWER above the P-10 setpoint. The NIS Intermediate Range Neutron Flux channels must be OPERABLE when the power level is above the capability of the source range, P-6, and below the capability of the power range, P-10. If THERMAL POWER is greater than the P-10 setpoint, the NIS power range detectors perform the monitoring and protection functions and the intermediate range is not required. The Completion Times allow for a slow and controlled power adjustment above P-10 or below P-6 and take into account the redundant capability afforded by the redundant OPERABLE channel, and the low probability of its failure during this period. This action does not require the inoperable channel to be tripped because the Function uses one-out-of-two logic. Tripping one channel would trip the reactor. Thus, the Required Actions specified in this Condition are only applicable when channel failure does not result in reactor trip.

G.1 and G.2

Condition G applies to two inoperable Intermediate Range Neutron Flux trip channels in MODE 2 when THERMAL POWER is above the P-6 setpoint and below the P-10 setpoint. Required Actions specified in this Condition are only applicable when channel failures do not result in reactor trip. Above the P-6 setpoint and below the P-10 setpoint, the NIS intermediate range detector performs the monitoring Functions. With no intermediate range channels OPERABLE, the Required Actions are to suspend operations involving positive reactivity additions immediately. This will preclude any power level increase since there are no

ACTIONS (continued)

OPERABLE Intermediate Range Neutron Flux channels. The operator must also reduce THERMAL POWER below the P-6 setpoint within two hours. Below P-6, the Source Range Neutron Flux channels will be able to monitor the core power level. The Completion Time of 2 hours will allow a slow and controlled power reduction to less than the P-6 setpoint and takes into account the low probability of occurrence of an event during this period that may require the protection afforded by the NIS Intermediate Range Neutron Flux trip..

Required Action G.1 is modified by a Note to indicate that normal plant control operations that individually add limited positive reactivity (e.g., temperature or boron fluctuations associated with RCS inventory management or temperature control) are not precluded by this Action, provided they are accounted for in the calculated SDM.

<u>H.1</u>

Condition H applies to one inoperable Source Range Neutron Flux trip channel when in MODE 2, below the P-6 setpoint, and performing a reactor startup. With the unit in this Condition, below P-6, the NIS source range performs the monitoring and protection functions. With one of the two channels inoperable, operations involving positive reactivity additions shall be suspended immediately.

This will preclude any power escalation. With only one source range channel OPERABLE, core protection is severely reduced and any actions that add positive reactivity to the core must be suspended immediately.

Required Action H.1 is modified by a Note to indicate that normal plant control operations that individually add limited positive reactivity (e.g., temperature or boron fluctuations associated with RCS inventory management or temperature control) are not precluded by this Action, provided they are accounted for in the calculated SDM.

<u>l.1</u>

Condition I applies to two inoperable Source Range Neutron Flux trip channels when in MODE 2, below the P-6 setpoint, and in MODE 3, 4, or 5 with the Rod Control System capable of rod withdrawal or one or more rods not fully inserted. With the unit in this Condition, below P-6, the NIS source range performs the monitoring and protection functions. With both source range channels inoperable, the RTBs must be opened immediately. With the RTBs open, the core is in a more stable condition.

ACTIONS (continued)

J.1, J.2.1, and J.2.2

Condition J applies to one inoperable source range channel in MODE 3, 4, or 5 with the Rod Control System capable of rod withdrawal or one or more rods not fully inserted. With the unit in this Condition, below P-6, the NIS source range performs the monitoring and protection functions. With one of the source range channels inoperable, 48 hours is allowed to restore it to an OPERABLE status. If the channel cannot be returned to an OPERABLE status, action must be initiated within the same 48 hours to ensure that all rods are fully inserted, and the Rod Control System must be placed in a condition incapable of rod withdrawal within the next hour.

K.1 and K.2

Condition K applies to the following reactor trip Functions:

- Pressurizer Pressure Low,
- Pressurizer Water Level High,
- Reactor Coolant Flow Low,
- Undervoltage RCPs, and
- Underfrequency RCPs.

With one channel inoperable, the inoperable channel must be placed in the tripped condition within 72 hours (Ref. 8). For the Pressurizer Pressure - Low, Pressurizer Water Level - High, Undervoltage RCPs, and Underfrequency RCPs trip Functions, placing the channel in the tripped condition when above the P-7 setpoint results in a partial trip condition requiring only one additional channel to initiate a reactor trip. For the Reactor Coolant Flow - Low trip Function, placing the channel in the tripped condition when above the P-8 setpoint results in a partial trip condition requiring only one additional channel in the same loop to initiate a reactor trip. For the latter trip Function, two tripped channels in two RCS loops are required to
ACTIONS (continued)

initiate a reactor trip when below the P-8 setpoint and above the P-7 setpoint. These Functions do not have to be OPERABLE below the P-7 setpoint because there are no loss of flow trips below the P-7 setpoint. There is insufficient heat production to generate DNB conditions below the P-7 setpoint. The 72 hours allowed to place the channel in the tripped condition is justified in Reference 8. An additional 6 hours is allowed to reduce THERMAL POWER to below P-7 if the inoperable channel cannot be restored to OPERABLE status or placed in trip within the specified Completion Time.

Allowance of this time interval takes into consideration the redundant capability provided by the remaining redundant OPERABLE channel, and the low probability of occurrence of an event during this period that may require the protection afforded by the Functions associated with Condition K.

[The Required Actions have been modified by a Note that allows placing the inoperable channel in the bypassed condition for up to 12 hours while performing routine surveillance testing of the other channels. The 12 hour time limit is justified in Reference 8.]

The Required Actions are modified by a Note that allows placing one channel in bypass for up to 12 hours while performing routine surveillance testing. The 12 hour time limit is justified in Reference 8.

L.1 and L.2

Condition L applies to the RCP Breaker Position (Single Loop) reactor trip Function. There is one breaker position device per RCP breaker. With one channel inoperable, the inoperable channel must be restored to OPERABLE status within [6] hours. If the channel cannot be restored to OPERABLE status within the [6] hours, then THERMAL POWER must be reduced below the P-8 setpoint within the next 4 hours.

This places the unit in a MODE where the LCO is no longer applicable. This Function does not have to be OPERABLE below the P-8 setpoint because other RTS Functions provide core protection below the P-8 setpoint. The [6] hours allowed to restore the channel to OPERABLE status and the 4 additional hours allowed to reduce THERMAL POWER to below the P-8 setpoint are justified in Reference 11.

ACTIONS (continued)

The Required Actions have been modified by a Note that allows placing the inoperable channel in the bypassed condition for up to [4] hours while performing routine surveillance testing of the other channels. The [4] hour time limit is justified in Reference 11.

M.1 and M.2

Condition M applies to the RCP Breaker Position (Two Loops) reactor trip Function. There is one breaker position device per RCP breaker. With one channel inoperable, the inoperable channel must be placed in trip within [6] hours. If the channel cannot be placed in trip within the [6] hours, then THERMAL POWER must be reduced below the P-7 setpoint within the next 6 hours.

This places the unit in a MODE where the LCO is no longer applicable. This Function does not have to be OPERABLE below the P-7 setpoint because other RTS Functions provide core protection below the P-7 setpoint. The [6] hours allowed to place the channel in trip and the 6 additional hours allowed to reduce THERMAL POWER to below the P-7 setpoint are justified in Reference 11.

The Required Actions have been modified by a Note that allows placing the inoperable channel in the bypassed condition for up to [4] hours while performing routine surveillance testing of the other channels. The [4] hour time limit is justified in Reference 11.

N.1 and N.2

Condition N applies to Turbine Trip on Low Fluid Oil Pressure or on Turbine Stop Valve Closure. With one channel inoperable, the inoperable channel must be placed in the trip condition within 72 hours. If placed in the tripped condition, this results in a partial trip condition requiring only one additional channel to initiate a reactor trip. If the channel cannot be restored to OPERABLE status or placed in the trip condition, then power must be reduced below the P-9 setpoint within the next 4 hours. The 72 hours allowed to place the inoperable channel in the tripped condition is justified in Reference 8. Four hours is allowed for reducing power.

ACTIONS (continued)

[The Required Actions have been modified by a Note that allows placing the inoperable channel in the bypassed condition for up to 12 hours while performing routine surveillance testing of the other channels. The 12 hour time limit is justified in Reference 8.]

The Required Actions are modified by a Note that allows placing one channel in bypass for up to 12 hours while performing routine surveillance testing. The 12 hour time limit is justified in Reference 8.

0.1 and 0.2

Condition O applies to the SI Input from ESFAS reactor trip and the RTS Automatic Trip Logic in MODES 1 and 2. These actions address the train orientation of the RTS for these Functions. With one train inoperable, 24 hours are allowed to restore the train to OPERABLE status (Required Action 0.1) or the unit must be placed in MODE 3 within the next 6 hours. The Completion Time of 24 hours (Required Action 0.1) is reasonable considering that in this Condition, the remaining OPERABLE train is adequate to perform the safety function and given the low probability of an event during this interval. The 24 hours allowed to restore the inoperable RTS Automatic Trip Logic train to OPERABLE status is justified in Reference 8. The Completion Time of 6 hours (Required Action 0.2) is reasonable, based on operating experience, to reach MODE 3 from full power in an orderly manner and without challenging unit systems.

The Required Actions have been modified by a Note that allows bypassing one train up to [4] hours for surveillance testing, provided the other train is OPERABLE. [The [4] hour time limit for testing the RTS Automatic Trip logic train may include testing the RTB also, if both the Logic test and RTB test are conducted within the [4] hour time limit. The [4] hour time limit is justified in Reference 8.]

The below text should replace the bracketed information in the previous paragraph if WCAP-14333 and WCAP-15376 are being incorporated:

The [4] hour time limit for the RTS Automatic Trip Logic train testing is greater than the 2 hour time limit for the RTBs, which the logic train

ACTIONS (continued)

supports. The longer time limit for the logic train ([4] hours) is acceptable based on Reference 12

P.1 and P.2

WCAP-14333-P-A, Rev. 1 and the associated TSTF-418 provide a Completion Time for Required Action P.1 of 1 hour and Required Action P.2 of 7 hours. WCAP-14333-P-A, Rev. 1 contains three Notes to TS 3.3.1 Condition P. Note 1 states, "One train may be bypassed for up to 2 hours for surveillance testing, provided the other train is OPERABLE." Note 2 states, "One RTB may be bypassed for up to 2 hours for maintenance on undervoltage or shunt trip mechanisms, provided the other train is OPERABLE." WCAP-14333-P-A, Rev. 1 also adds a third Note, which states: "One RTB train may be bypassed for up to [4] hours for concurrent surveillance testing of the RTB and automatic trip logic, provided the other train is OPERABLE."

WCAP-15376-P and the associated TSTF-411 provide a Completion Time for Required Action P.1 of 24 hours and Required Action P.2 of 30 hours. WCAP-15376-P relaxes the time that an RTB train may be bypassed for surveillance testing from 2 hours to 4 hours, and deletes Notes 2 and 3 that are added by WCAP-14333-P-A, Rev. 1.

Implementation of TS 3.3.1, Condition P:

- 1. If WCAP-14333-P-A, Rev. 1 is implemented without implementing WCAP-15376-P, the Completion Time for Required Action P.1 will be 1 hour and for Required Action P.2 will be 7 hours. Condition P will contain the three Notes as discussed above, with 2 hours to bypass an RTB train for surveillance testing in Note 1.
- If WCAP-15376-P is implemented without implementing WCAP-14333-P-A, Rev. 1, the Completion Time for Required Action P.1 will be 24 hours and for Required Action P.2 will be 30 hours. Condition P will only contain one Note (Note 1 as discussed in the first

ACTIONS (continued)

paragraph above), with 4 hours to bypass an RTB train for surveillance testing in the Note.

3. If WCAP-14333-P-A, Rev. 1, and WCAP-15376-P are both implemented, follow the direction for Item 2, above.

Use the following Bases if WCAP-14333-P-A, Rev. 1 is adopted without adopting WCAP-15376-P:

Condition P applies to the RTBs in MODES 1 and 2. These actions address the train orientation of the RTS for the RTBs. With one train inoperable, 1 hour is allowed to restore the train to OPERABLE status or the unit must be placed in MODE 3 within the next 6 hours. The Completion Time of 6 hours is reasonable, based on operating experience, to reach MODE 3 from full power in an orderly manner and without challenging unit systems. The 1 hour and 6 hour Completion Times are equal to the time allowed by LCO 3.0.3 for shutdown actions in the event of a complete loss of RTS Function. Placing the unit in MODE 3 results in Condition C entry while an RTB is inoperable.

The Required Actions have been modified by three Notes. Note 1 allows one channel to be bypassed for up to 2 hours for surveillance testing, provided the other train is OPERABLE. Note 1 applies to RTB testing that is performed independently from the corresponding automatic trip logic testing. Note 2 allows one RTB to be bypassed for up to 2 hours for maintenance if the other RTP train is OPERABLE. The 2 hour time limit is justified in Reference 9. Note 3 applies to RTB testing that is performed concurrently with the corresponding automatic trip logic test. For concurrent testing of the automatic trip logic and RTB, one RTB train may be bypassed for up to [4] hours provided the other train is OPERABLE. The [4] hour time limit is approved by Reference 8.

Use the following Bases if WCAP-15376-P is adopted without adopting WCAP-14333-P-A, Rev. 1 or if both are adopted:

Condition P applies to the RTBs in MODES 1 and 2. These actions address the train orientation of the RTS for the RTBs. With one train inoperable, 24 hours is allowed for train corrective maintenance to restore the train to OPERABLE status or the unit must be placed in MODE 3 within the next 6 hours. The 24 hour Completion Time is justified in Reference 13. The Completion Time of 6 hours is reasonable, based on operating experience, to reach MODE 3 from full power in an orderly manner and without challenging unit systems.

ACTIONS (continued)

Placing the unit in MODE 3 results in Condition C entry while an RTB is inoperable.

The Required Actions have been modified by a Note. The Note allows one train to be bypassed for up to 4 hours for surveillance testing, provided the other train is OPERABLE. The 4 hour time limit is justified in Reference 13.

Q.1 and Q.2

Condition Q applies to the P-6 and P-10 interlocks. With one or more channels inoperable for one-out-of-two or two-out-of-four coincidence logic, the associated interlock must be verified to be in its required state for the existing unit condition within 1 hour or the unit must be placed in MODE 3 within the next 6 hours. Verifying the interlock status manually accomplishes the interlock's Function. The Completion Time of 1 hour is based on operating experience and the minimum amount of time allowed for manual operator actions. The Completion Time of 6 hours is reasonable, based on operating experience, to reach MODE 3 from full power in an orderly manner and without challenging unit systems. The 1 hour and 6 hour Completion Times are equal to the time allowed by LCO 3.0.3 for shutdown actions in the event of a complete loss of RTS Function.

R.1 and R.2

Condition R applies to the P-7, P-8, P-9, and P-13 interlocks. With one or more channels inoperable for one-out-of-two or two-out-of-four coincidence logic, the associated interlock must be verified to be in its required state for the existing unit condition within 1 hour or the unit must be placed in MODE 2 within the next 6 hours. These actions are conservative for the case where power level is being raised. Verifying the interlock status manually accomplishes the interlock's Function. The Completion Time of 1 hour is based on operating experience and the minimum amount of time allowed for manual operator actions. The Completion Time of 6 hours is reasonable, based on operating experience, to reach MODE 2 from full power in an orderly manner and without challenging unit systems.

ACTIONS (continued)

S.1 and S.2

	Condition S applies to the RTB Undervoltage and Shunt Trip Mechanisms, or diverse trip features, in MODES 1 and 2. With one of the diverse trip features inoperable, it must be restored to an OPERABLE status within 48 hours or the unit must be placed in a MODE where the requirement does not apply. This is accomplished by placing the unit in MODE 3 within the next 6 hours (54 hours total time). The Completion Time of 6 hours is a reasonable time, based on operating experience, to reach MODE 3 from full power in an orderly manner and without challenging unit systems. With the unit in MODE 3, ACTION C would apply to any inoperable RTB trip mechanism. The affected RTB shall not be bypassed while one of the diverse features is inoperable except for the time required to perform maintenance to one of the diverse features. The allowable time for performing maintenance of the diverse features is 2 hours for the reasons stated under Condition P.
	considering that in this Condition there is one remaining diverse feature for the affected RTB, and one OPERABLE RTB capable of performing the safety function and given the low probability of an event occurring during this interval.
SURVEILLANCE	REVIEWER'S NOTE
REQUIREMENTS	In Table 3.3.1-1, Functions 11.a and 11.b were not included in the generic evaluations approved in either WCAP-10271, as supplemented, or WCAP-14333. In order to apply the WCAP-10271, as supplemented, and WCAP-14333 TS relaxations to plant specific Functions not evaluated generically, licensees must submit plant specific evaluations for NRC review and approval.

SURVEILLANCE REQUIREMENTS (continued)

The SRs for each RTS Function are identified by the SRs column of Table 3.3.1-1 for that Function.

A Note has been added to the SR Table stating that Table 3.3.1-1 determines which SRs apply to which RTS Functions.

Note that each channel of process protection supplies both trains of the RTS. When testing Channel I, Train A and Train B must be examined. Similarly, Train A and Train B must be examined when testing Channel II, Channel III, and Channel IV (if applicable). The CHANNEL

CALIBRATION and COTs are performed in a manner that is consistent with the assumptions used in analytically calculating the required channel accuracies.

<u>SR 3.3.1.1</u>

Performance of the CHANNEL CHECK once every 12 hours ensures that gross failure of instrumentation has not occurred. A CHANNEL CHECK is normally a comparison of the parameter indicated on one channel to a similar parameter on other channels. It is based on the assumption that instrument channels monitoring the same parameter should read approximately the same value. Significant deviations between the two instrument channels could be an indication of excessive instrument drift in one of the channels or of something even more serious. A CHANNEL CHECK will detect gross channel failure; thus, it is key to verifying that the instrumentation continues to operate properly between each CHANNEL CALIBRATION.

Agreement criteria are determined by the unit staff based on a combination of the channel instrument uncertainties, including indication and readability. If a channel is outside the criteria, it may be an indication that the sensor or the signal processing equipment has drifted outside its limit.

SURVEILLANCE REQUIREMENTS (continued)

The Frequency is based on operating experience that demonstrates channel failure is rare. The CHANNEL CHECK supplements less formal, but more frequent, checks of channels during normal operational use of the displays associated with the LCO required channels.

<u>SR 3.3.1.2</u>

SR 3.3.1.2 compares the calorimetric heat balance calculation to the power range channel output every 24 hours. If the calorimetric heat balance calculation results exceed the power range channel output by more than 2% RTP, the power range channel is not declared inoperable, but must be adjusted. The power range channel output shall be adjusted consistent with the calorimetric heat balance calculation results if the calorimetric calculation exceed the power range channel output by more than + 2% RTP. If the power range channel output cannot be properly adjusted, the channel is declared inoperable.

If the calorimetric is performed at part power (< [70]% RTP), adjusting the power range channel indication in the increasing power direction will assure a reactor trip below the safety analysis limit (< [118]% RTP). Making no adjustment to the power range channel in the decreasing power direction due to a part power calorimetric assures a reactor trip consistent with the safety analyses.

This allowance does not preclude making indicated power adjustments, if desired, when the calorimetric heat balance calculation is less than the power range channel output. To provide close agreement between indicated power and to preserve operating margin, the power range channels are normally adjusted when operating at or near full power during steady-state conditions. However, discretion must be exercised if the power range channel output is adjusted in the decreasing power direction due to a part power calorimetric (< [70]% RTP). This action may introduce a non-conservative bias at higher power levels which may result in an NIS reactor trip above the safety analysis limit (> [118]% RTP). The cause of the potential non-conservative bias is the decreased accuracy of the calorimetric at reduced power conditions. The primary error contributor to the instrument uncertainty for a secondary side power calorimetric measurement is the feedwater flow measurement, which is typically a ΔP measurement across a feedwater venturi. While the measurement uncertainty remains constant in ΔP as power decreases, when translated into flow, the uncertainty increases as a square term. Thus a 1% flow error at 100% power can approach a 10% flow error at

SURVEILLANCE REQUIREMENTS (continued)

30% RTP even though the ΔP error has not changed. An evaluation of extended operation at part power conditions would conclude that it is prudent to administratively adjust the setpoint of the Power Range Neutron Flux - High bistables to ≤ [85]% RTP when: 1) the power range channel output is adjusted in the decreasing power direction due to a part power calorimetric below [70]% RTP; or 2) for a post refueling startup. The evaluation of extended operation at part power conditions would also conclude that the potential need to adjust the indication of the Power Range Neutron Flux in the decreasing power direction is quite small, primarily to address operation in the intermediate range about P-10 (nominally 10% RTP) to allow enabling of the Power Range Neutron Flux - Low setpoint and the Intermediate Range Neutron Flux reactor trips. Before the Power Range Neutron Flux - High bistables are reset to ≤ [109]% RTP, the power range channel adjustment must be confirmed based on a calorimetric performed at ≥ [70]% RTP.

A plant specific evaluation based on the guidance in Westinghouse Technical Bulletin ESBU-TB-92-14 is required to determine the power level below which power range channel adjustments in a decreasing power direction become a concern. This evaluation must reflect the plant specific RTS setpoint study. In addition, this evaluation should determine if additional administrative controls are required for Power Range Neutron Flux-High trip setpoint setting changes

The Note clarifies that this Surveillance is required only if reactor power is $\geq 15\%$ RTP and that 12 hours are allowed for performing the first Surveillance after reaching 15% RTP. A power level of 15% RTP is chosen based on plant stability, i.e., automatic rod control capability and turbine generator synchronized to the grid.

The Frequency of every 24 hours is adequate. It is based on unit operating experience, considering instrument reliability and operating history data for instrument drift. Together these factors demonstrate that a difference between the calorimetric heat balance calculation and the power range channel output of more than +2% RTP is not expected in any 24 hour period.

In addition, control room operators periodically monitor redundant indications and alarms to detect deviations in channel outputs.

SURVEILLANCE REQUIREMENTS (continued)

<u>SR 3.3.1.3</u>

SR 3.3.1.3 compares the incore system to the NIS channel output every 31 EFPD. If the absolute difference is \geq 3%, the NIS channel is still OPERABLE, but must be readjusted. The excore NIS channel shall be adjusted if the absolute difference between the incore and excore AFD is \geq 3%.

If the NIS channel cannot be properly readjusted, the channel is declared inoperable. This Surveillance is performed to verify the $f(\Delta I)$ input to the overtemperature ΔT Function.

A Note clarifies that the Surveillance is required only if reactor power is \geq [15%] RTP and that 24 hours is allowed for performing the first Surveillance after reaching [15%] RTP.

The Frequency of every 31 EFPD is adequate. It is based on unit operating experience, considering instrument reliability and operating history data for instrument drift. Also, the slow changes in neutron flux during the fuel cycle can be detected during this interval.

<u>SR 3.3.1.4</u>

SR 3.3.1.4 is the performance of a TADOT every 62 days on a STAGGERED TEST BASIS. This test shall verify OPERABILITY by actuation of the end devices. A successful test of the required contact(s) of a channel relay may be performed by the verification of the change of state of a single contact of the relay. This clarifies what is an acceptable TADOT of a relay. This is acceptable because all of the other required contacts of the relay are verified by other Technical Specifications and non-Technical Specifications tests at least once per refueling interval with applicable extensions.

The RTB test shall include separate verification of the undervoltage and shunt trip mechanisms. Independent verification of RTB undervoltage and shunt trip Function is not required for the bypass breakers. No capability is provided for performing such a test at power. The independent test for bypass breakers is included in SR 3.3.1.14. The bypass breaker test shall include a local shunt trip. A Note has been added to indicate that this test must be performed on the bypass breaker prior to placing it in service.

SURVEILLANCE REQUIREMENTS (continued)

The Frequency of every 62 days on a STAGGERED TEST BASIS is justified in Reference 13.

SR 3.3.1.5

SR 3.3.1.5 is the performance of an ACTUATION LOGIC TEST. The SSPS is tested every 92 days on a STAGGERED TEST BASIS, using the semiautomatic tester. The train being tested is placed in the bypass condition, thus preventing inadvertent actuation. Through the semiautomatic tester, all possible logic combinations, with and without applicable permissives, are tested for each protection function, including operation of the P-7 permissive which is a logic function only. The Frequency of every 92 days on a STAGGERED TEST BASIS is justified in Reference 13.

<u>SR 3.3.1.6</u>

SR 3.3.1.6 is a calibration of the excore channels to the incore channels. If the measurements do not agree, the excore channels are not declared inoperable but must be calibrated to agree with the incore detector measurements. If the excore channels cannot be adjusted, the channels are declared inoperable. This Surveillance is performed to verify the $f(\Delta I)$ input to the overtemperature ΔT Function.

A Note modifies SR 3.3.1.6. The Note states that this Surveillance is required only if reactor power is > 50% RTP and that [24] hours is allowed for performing the first surveillance after reaching 50% RTP.

The Frequency of 92 EFPD is adequate. It is based on industry operating experience, considering instrument reliability and operating history data for instrument drift.

SURVEILLANCE REQUIREMENTS (continued)

SR 3.3.1.7

SR 3.3.1.7 is the performance of a COT every 184 days.

A COT is performed on each required channel to ensure the entire channel will perform the intended Function. A successful test of the required contact(s) of a channel relay may be performed by the verification of the change of state of a single contact of the relay. This clarifies what is an acceptable COT of a relay. This is acceptable because all of the other required contacts of the relay are verified by other Technical Specifications and non-Technical Specifications tests at least once per refueling interval with applicable extensions.

Setpoints must be within the Allowable Values specified in Table 3.3.1-1.

The difference between the current "as found" values and the previous test "as left" values must be consistent with the drift allowance used in the setpoint methodology. The setpoint shall be left set consistent with the assumptions of the current unit specific setpoint methodology.

The "as found" and "as left" values must also be recorded and reviewed for consistency with the assumptions of Reference 9.

SR 3.3.1.7 is modified by a Note that provides a 4 hours delay in the requirement to perform this Surveillance for source range instrumentation when entering MODE 3 from MODE 2. This Note allows a normal shutdown to proceed without a delay for testing in MODE 2 and for a short time in MODE 3 until the RTBs are open and SR 3.3.1.7 is no longer required to be performed. If the unit is to be in MODE 3 with the RTBs closed for > 4 hours this Surveillance must be performed prior to 4 hours after entry into MODE 3.

The Frequency of 184 days is justified in Reference 9.

SURVEILLANCE REQUIREMENTS (continued)

<u>SR 3.3.1.8</u>

SR 3.3.1.8 is the performance of a COT as described in SR 3.3.1.7. except it is modified by a Note that this test shall include verification that the P-6 and P-10 interlocks are in their required state for the existing unit condition. A successful test of the required contact(s) of a channel relay may be performed by the verification of the change of state of a single contact of the relay. This clarifies what is an acceptable COT of a relay. This is acceptable because all of the other required contacts of the relay are verified by other Technical Specifications and non-Technical Specifications tests at least once per refueling interval with applicable extensions. The Frequency is modified by a Note that allows this surveillance to be satisfied if it has been performed within 184 days of the Frequencies prior to reactor startup and four hours after reducing power below P-10 and P-6. The Frequency of "prior to startup" ensures this surveillance is performed prior to critical operations and applies to the source, intermediate and power range low instrument channels. The Frequency of [12] hours after reducing power below P-10 (applicable to intermediate and power range low channels) and 4 hours after reducing power below P-6 (applicable to source range channels) allows a normal shutdown to be completed and the unit removed from the MODE of Applicability for this surveillance without a delay to perform the testing required by this surveillance. The Frequency of every 92 days thereafter applies if the plant remains in the MODE of Applicability after the initial performances of prior to reactor startup and [12] and four hours after reducing power below P-10 or P-6, respectively. The MODE of Applicability for this surveillance is < P-10 for the power range low and intermediate range channels and < P-6 for the source range channels. Once the unit is in MODE 3, this surveillance is no longer required. If power is to be maintained < P-10 for more than [12] hours or < P-6 for more than 4 hours, then the testing required by this surveillance must be performed prior to the expiration of the time limit. [Twelve] hours and four hours are reasonable times to complete the required testing or place the unit in a MODE where this surveillance is no longer required. This test ensures that the NIS source, intermediate, and power range low channels are OPERABLE prior to taking the reactor critical and after reducing power into the applicable MODE (< P-10 or < P-6) for periods > [12] and 4 hours, respectively. The Frequency of 184 days is justified in Reference 13.

SURVEILLANCE REQUIREMENTS (continued)

SR 3.3.1.9

SR 3.3.1.9 is the performance of a TADOT and is performed every [92] days, as justified in Reference 9. A successful test of the required contact(s) of a channel relay may be performed by the verification of the change of state of a single contact of the relay. This clarifies what is an acceptable TADOT of a relay. This is acceptable because all of the other required contacts of the relay are verified by other Technical Specifications and non-Technical Specifications tests at least once per refueling interval with applicable extensions.

The SR is modified by a Note that excludes verification of setpoints from the TADOT. Since this SR applies to RCP undervoltage and underfrequency relays, setpoint verification requires elaborate bench calibration and is accomplished during the CHANNEL CALIBRATION.

<u>SR 3.3.1.10</u>

A CHANNEL CALIBRATION is performed every [18] months, or approximately at every refueling. CHANNEL CALIBRATION is a complete check of the instrument loop, including the sensor. The test verifies that the channel responds to a measured parameter within the necessary range and accuracy.

CHANNEL CALIBRATIONS must be performed consistent with the assumptions of the unit specific setpoint methodology. The difference between the current "as found" values and the previous test "as left" values must be consistent with the drift allowance used in the setpoint methodology.

The Frequency of 18 months is based on the assumption of an 18 month calibration interval in the determination of the magnitude of equipment drift in the setpoint methodology.

SR 3.3.1.10 is modified by a Note stating that this test shall include verification that the time constants are adjusted to the prescribed values where applicable.

SURVEILLANCE REQUIREMENTS (continued)

<u>SR 3.3.1.11</u>

SR 3.3.1.11 is the performance of a CHANNEL CALIBRATION, as described in SR 3.3.1.10, every [18] months. This SR is modified by a Note stating that neutron detectors are excluded from the CHANNEL CALIBRATION. The CHANNEL CALIBRATION for the power range neutron detectors consists of a normalization of the detectors based on a power calorimetric and flux map performed above 15% RTP. The CHANNEL CALIBRATION for the source range and intermediate range neutron detectors consists of obtaining the detector plateau or preamp discriminator curves, evaluating those curves, and comparing the curves to the manufacturer's data. This Surveillance is not required for the NIS power range detectors for entry into MODE 2 or 1, and is not required for the NIS intermediate range detectors for entry into MODE 2, because the unit must be in at least MODE 2 to perform the test for the intermediate range detectors and MODE 1 for the power range detectors. The [18] month Frequency is based on the need to perform this Surveillance under the conditions that apply during a plant outage and the potential for an unplanned transient if the Surveillance were performed with the reactor at power. Operating experience has shown these components usually pass the Surveillance when performed on the [18] month Frequency.

<u>SR 3.3.1.12</u>

SR 3.3.1.12 is the performance of a CHANNEL CALIBRATION, as described in SR 3.3.1.10, every [18] months. This SR is modified by a Note stating that this test shall include verification of the RCS resistance temperature detector (RTD) bypass loop flow rate. Whenever a sensing element is replaced, the next required CHANNEL CALIBRATION of the resistance temperature detectors (RTD) sensors is accomplished by an inplace cross calibration that compares the other sensing elements with the recently installed sensing element.

This test will verify the rate lag compensation for flow from the core to the RTDs.

The Frequency is justified by the assumption of an 18 month calibration interval in the determination of the magnitude of equipment drift in the setpoint analysis.

SURVEILLANCE REQUIREMENTS (continued)

SR 3.3.1.13

SR 3.3.1.13 is the performance of a COT of RTS interlocks every [18] months. A successful test of the required contact(s) of a channel relay may be performed by the verification of the change of state of a single contact of the relay. This clarifies what is an acceptable COT of a relay. This is acceptable because all of the other required contacts of the relay are verified by other Technical Specifications and non-Technical Specifications tests at least once per refueling interval with applicable extensions.

The Frequency is based on the known reliability of the interlocks and the multichannel redundancy available, and has been shown to be acceptable through operating experience.

<u>SR 3.3.1.14</u>

SR 3.3.1.14 is the performance of a TADOT of the Manual Reactor Trip, RCP Breaker Position, and the SI Input from ESFAS. A successful test of the required contact(s) of a channel relay may be performed by the verification of the change of state of a single contact of the relay. This clarifies what is an acceptable TADOT of a relay. This is acceptable because all of the other required contacts of the relay are verified by other Technical Specifications and non-Technical Specifications tests at least once per refueling interval with applicable extensions. This TADOT is performed every [18] months. The test shall independently verify the OPERABILITY of the undervoltage and shunt trip mechanisms for the Manual Reactor Trip Function for the Reactor Trip Breakers and Reactor Trip Bypass Breakers. The Reactor Trip Bypass Breaker test shall include testing of the automatic undervoltage trip.

The Frequency is based on the known reliability of the Functions and the multichannel redundancy available, and has been shown to be acceptable through operating experience.

The SR is modified by a Note that excludes verification of setpoints from the TADOT. The Functions affected have no setpoints associated with them.

SURVEILLANCE REQUIREMENTS (continued)

SR 3.3.1.15

SR 3.3.1.15 is the performance of a TADOT of Turbine Trip Functions. A successful test of the required contact(s) of a channel relay may be performed by the verification of the change of state of a single contact of the relay. This clarifies what is an acceptable TADOT of a relay. This is acceptable because all of the other required contacts of the relay are verified by other Technical Specifications and non-Technical Specifications tests at least once per refueling interval with applicable extensions. This TADOT is as described in SR 3.3.1.4, except that this test is performed prior to exceeding the [P-9] interlock whenever the unit has been in MODE 3. This Surveillance is not required if it has been performed within the previous 31 days. Verification of the Trip Setpoint does not have to be performed for this Surveillance. Performance of this test will ensure that the turbine trip Function is OPERABLE prior to exceeding the [P-9] interlock.

SR 3.3.1.16

SR 3.3.1.16 verifies that the individual channel/train actuation response times are less than or equal to the maximum values assumed in the accident analysis. Response time testing acceptance criteria are included in Technical Requirements Manual, Section 15 (Ref. 14). Individual component response times are not modeled in the analyses.

The analyses model the overall or total elapsed time, from the point at which the parameter exceeds the trip setpoint value at the sensor to the point at which the equipment reaches the required functional state (i.e., control and shutdown rods fully inserted in the reactor core).

For channels that include dynamic transfer Functions (e.g., lag, lead/lag, rate/lag, etc.), the response time test may be performed with the transfer Function set to one, with the resulting measured response time compared to the appropriate FSAR response time. Alternately, the response time test can be performed with the time constants set to their nominal value, provided the required response time is analytically calculated assuming the time constants are set at their nominal values. The response time may be measured by a series of overlapping tests such that the entire response time is measured.

Applicable portions of the following Bases are applicable for plants adopting WCAP-13632-P-A and/or WCAP-14036-P.

SURVEILLANCE REQUIREMENTS (continued)

Response time may be verified by actual response time tests in any series of sequential, overlapping or total channel measurements, or by the summation of allocated sensor, signal processing and actuation logic response times with actual response time tests on the remainder of the channel. Allocations for sensor response times may be obtained from: (1) historical records based on acceptable response time tests (hydraulic, noise, or power interrupt tests), (2) in place, onsite, or offsite (e.g., vendor) test measurements, or (3) utilizing vendor engineering specifications. WCAP-13632-P-A, Revision 2, "Elimination of Pressure Sensor Response Time Testing Requirements," (Ref. 10) provides the basis and methodology for using allocated sensor response times in the overall verification of the channel response time for specific sensors identified in the WCAP. Response time verification for other sensor types must be demonstrated by test.

[WCAP-14036-P, Revision 1, "Elimination of Periodic Protection Channel Response Time Tests," (Ref. 15) provides the basis and methodology for using allocated signal processing and actuation logic response times in the overall verification of the protection system channel response time.] The allocations for sensor, signal conditioning, and actuation logic response times must be verified prior to placing the component in operational service and re-verified following maintenance that may adversely affect response time. In general, electrical repair work does not impact response time provided the parts used for repair are of the same type and value. Specific components identified in the WCAP may be replaced without verification testing. One example where response time could be affected is replacing the sensing assembly of a transmitter.

As appropriate, each channel's response must be verified every [18] months on a STAGGERED TEST BASIS. Testing of the final actuation devices is included in the testing. Response times cannot be determined during unit operation because equipment operation is required to measure response times. Experience has shown that these components usually pass this surveillance when performed at the 18 months Frequency. Therefore, the Frequency was concluded to be acceptable from a reliability standpoint.

SR 3.3.1.16 is modified by a Note stating that neutron detectors are excluded from RTS RESPONSE TIME testing. This Note is necessary because of the difficulty in generating an appropriate detector input signal. Excluding the detectors is acceptable because the principles of detector operation ensure a virtually instantaneous response.

BASES	
REFERENCES	 Regulatory Guide 1.105, Revision 3, "Setpoints for Safety Related Instrumentation." FSAR, Chapter [7].
	3. FSAR, Chapter [6].
	4. FSAR, Chapter [15].
	5. IEEE-279-1971.
	6. 10 CFR 50.49.
	7. Plant specific setpoint methodology study.
	8. WCAP-14333-P-A, Rev. 1, October 1998.
	9. WCAP-10271-P-A, Supplement 1, May 1986.
	 WCAP-13632-P-A, Revision 2, "Elimination of Pressure Sensor Response Time Testing Requirements," January 1996.
	11. [Plant specific evaluation reference].
	12. WCAP-10271-P-A, Supplement 2, June 1990.
	13. WCAP-15376, Rev. 0, October 2000.
	14. Technical Requirements Manual, Section 15, "Response Times."
	 WCAP-14036-P, Revision 1, "Elimination of Periodic Protection Channel Response Time Tests," December 1995.

.

.

•

.

B 3.3 INSTRUMENTATION

B 3.3.2 Engineered Safety Feature Actuation System (ESFAS) Instrumentation

BASES		
BACKGROUND	The ESFAS initiates necessary safety systems, based on the values of selected unit parameters, to protect against violating core design limits and the Reactor Coolant System (RCS) pressure boundary, and to mitigate accidents.	
	The ESFAS instrumentation is segmented into three distinct but interconnected modules as identified below:	
	• Field transmitters or process sensors and instrumentation: provide a measurable electronic signal based on the physical characteristics of the parameter being measured,	
	 Signal processing equipment including analog protection system, field contacts, and protection channel sets: provide signal conditioning, bistable setpoint comparison, process algorithm actuation, compatible electrical signal output to protection system devices, and control board/control room/miscellaneous indications, and 	
	 Solid State Protection System (SSPS) including input, logic, and output bays: initiates the proper unit shutdown or engineered safety feature (ESF) actuation in accordance with the defined logic and based on the bistable outputs from the signal process control and protection system. 	
	The Allowable Value in conjunction with the trip setpoint and LCO establishes the threshold for ESFAS action to prevent exceeding acceptable limits such that the consequences of Design Basis Accidents (DBAs) will be acceptable. The Allowable Value is considered a limiting value such that a channel is OPERABLE if the setpoint is found not to exceed the Allowable Value during the CHANNEL OPERATIONAL TEST (COT). Note that, although a channel is "OPERABLE" under these circumstances, the ESFAS setpoint must be left adjusted to within the established calibration tolerance band of the ESFAS setpoint in accordance with the uncertainty assumptions stated in the referenced setpoint methodology, (as-left criteria) and confirmed to be operating within the statistical allowances of the uncertainty terms assigned.	

BACKGROUND (continued)

Field Transmitters or Sensors

To meet the design demands for redundancy and reliability, more than one, and often as many as four, field transmitters or sensors are used to measure unit parameters. In many cases, field transmitters or sensors that input to the ESFAS are shared with the Reactor Trip System (RTS). In some cases, the same channels also provide control system inputs. To account for calibration tolerances and instrument drift, which are assumed to occur between calibrations, statistical allowances are provided in the Trip Setpoint and Allowable Values. The OPERABILITY of each transmitter or sensor is determined by either "as-found" calibration data evaluated during the CHANNEL CALIBRATION or by qualitative assessment of field transmitter or sensor, as related to the channel behavior observed during performance of the CHANNEL CHECK.

Signal Processing Equipment

Generally, three or four channels of process control equipment are used for the signal processing of unit parameters measured by the field instruments. The process control equipment provides signal conditioning, comparable output signals for instruments located on the main control board, and comparison of measured input signals with setpoints established by safety analyses. These setpoints are defined in FSAR, Chapter [6] (Ref. 1), Chapter [7] (Ref. 2), and Chapter [15] (Ref. 3). If the measured value of a unit parameter exceeds the predetermined setpoint, an output from a bistable is forwarded to the SSPS for decision evaluation. Channel separation is maintained up to and through the input bays. However, not all unit parameters require four channels of sensor measurement and signal processing. Some unit parameters provide input only to the SSPS, while others provide input to the SSPS, the main control board, the unit computer, and one or more control systems.

Generally, if a parameter is used only for input to the protection circuits, three channels with a two-out-of-three logic are sufficient to provide the required reliability and redundancy. If one channel fails in a direction that would not result in a partial Function trip, the Function is still OPERABLE with a two-out-of-two logic. If one channel fails such that a partial Function trip occurs, a trip will not occur and the Function is still OPERABLE with a one-out-of- two logic.

BACKGROUND (continued)

Generally, if a parameter is used for input to the SSPS and a control function, four channels with a two-out-of-four logic are sufficient to provide the required reliability and redundancy. The circuit must be able to withstand both an input failure to the control system, which may then require the protection function actuation, and a single failure in the other channels providing the protection function actuation. Again, a single failure will neither cause nor prevent the protection function actuation.

These requirements are described in IEEE-279-1971 (Ref. 4). The actual number of channels required for each unit parameter is specified in Reference 2.

Allowable Values and ESFAS Setpoints

The trip setpoints used in the bistables are based on the analytical limits stated in Reference 2. The selection of these trip setpoints is such that adequate protection is provided when all sensor and processing time delays are taken into account. To allow for calibration tolerances, instrumentation uncertainties, instrument drift, and severe environment errors for those ESFAS channels that must function in harsh environments as defined by 10 CFR 50.49 (Ref. 5), the Allowable Values specified in Table 3.3.2-1 in the accompanying LCO are conservative with respect to the analytical limits. A detailed description of the methodology used to calculate the Allowable Values and ESFAS setpoints including their explicit uncertainties, is provided in the plant specific setpoint methodology study (Ref. 6) which incorporates all of the known uncertainties applicable to each channel. The magnitudes of these uncertainties are factored into the determination of each ESFAS setpoint and corresponding Allowable Value. The nominal ESFAS setpoint entered into the bistable is more conservative than that specified by the Allowable Value to account for measurement errors detectable by the COT. The Allowable Value serves as the Technical Specification OPERABILITY limit for the purpose of the COT. One example of such a change in measurement error is drift during the surveillance interval. If the measured setpoint does not exceed the Allowable Value, the bistable is considered OPERABLE.

The ESFAS setpoints are the values at which the bistables are set and is the expected value to be achieved during calibration. The ESFAS setpoint value ensures the safety analysis limits are met for the surveillance interval selected when a channel is adjusted based on stated channel uncertainties. Any bistable is considered to be properly adjusted when the "as-left" setpoint value is within the band for CHANNEL

BACKGROUND (continued)

CALIBRATION uncertainty allowance (i.e., calibration tolerance uncertainties). The ESFAS setpoint value is therefore considered a "nominal value" (i.e., expressed as a value without inequalities) for the purposes of the COT and CHANNEL CALIBRATION.

Setpoints adjusted consistent with the requirements of the Allowable Value ensure that the consequences of Design Basis Accidents (DBAs) will be acceptable, providing the unit is operated from within the LCOs at the onset of the DBA and the equipment functions as designed.

Each channel can be tested on line to verify that the signal processing equipment and setpoint accuracy is within the specified allowance requirements of Reference 2. Once a designated channel is taken out of service for testing, a simulated signal is injected in place of the field instrument signal. The process equipment for the channel in test is then tested, verified, and calibrated. SRs for the channels are specified in the SR section.

Solid State Protection System

The SSPS equipment is used for the decision logic processing of outputs from the signal processing equipment bistables. To meet the redundancy requirements, two trains of SSPS, each performing the same functions, are provided. If one train is taken out of service for maintenance or test purposes, the second train will provide ESF actuation for the unit. If both trains are taken out of service or placed in test, a reactor trip will result. Each train is packaged in its own cabinet for physical and electrical separation to satisfy separation and independence requirements.

The SSPS performs the decision logic for most ESF equipment actuation; generates the electrical output signals that initiate the required actuation; and provides the status, permissive, and annunciator output signals to the main control room of the unit.

The bistable outputs from the signal processing equipment are sensed by the SSPS equipment and combined into logic matrices that represent combinations indicative of various transients. If a required logic matrix combination is completed, the system will send actuation signals via master and slave relays to those components whose aggregate Function best serves to alleviate the condition and restore the unit to a safe condition. Examples are given in the Applicable Safety Analyses, LCO, and Applicability sections of this Bases.

BACKGROUND (continued)

Each SSPS train has a built in testing device that can automatically test the decision logic matrix functions and the actuation devices while the unit is at power. When any one train is taken out of service for testing, the other train is capable of providing unit monitoring and protection until the testing has been completed. The testing device is semiautomatic to minimize testing time.

The actuation of ESF components is accomplished through master and slave relays. The SSPS energizes the master relays appropriate for the condition of the unit. Each master relay then energizes one or more slave relays, which then cause actuation of the end devices. The master and slave relays are routinely tested to ensure operation. The test of the master relays energizes the relay, which then operates the contacts and applies a low voltage to the associated slave relays. The low voltage is not sufficient to actuate the slave relays but only demonstrates signal path continuity. The SLAVE RELAY TEST actuates the devices if their operation will not interfere with continued unit operation. For the latter case, actual component operation is prevented by the SLAVE RELAY TEST circuit, and slave relay contact operation is verified by a continuity check of the circuit containing the slave relay.

APPLICABLE Each of the analyzed accidents can be detected by one or more ESFAS Functions. One of the ESFAS Functions is the primary actuation signal SAFETY for that accident. An ESFAS Function may be the primary actuation ANALYSES, LCO, signal for more than one type of accident. An ESFAS Function may also and APPLICABILITY be a secondary, or backup, actuation signal for one or more other accidents. For example, Pressurizer Pressure - Low is a primary actuation signal for small loss of coolant accidents (LOCAs) and a backup actuation signal for steam line breaks (SLBs) outside containment. Functions such as manual initiation, not specifically credited in the accident safety analysis, are qualitatively credited in the safety analysis and the NRC staff approved licensing basis for the unit. These Functions may provide protection for conditions that do not require dynamic transient analysis to demonstrate Function performance. These Functions may also serve as backups to Functions that were credited in the accident analysis (Ref. 3).

APPLICABLE SAFETY ANALYSES, LCO, and APPLICABILITY (continued)

The LCO requires all instrumentation performing an ESFAS Function to be OPERABLE. A channel is OPERABLE with a trip setpoint value outside its calibration tolerance band provided the trip setpoint "as-found" value does not exceed its associated Allowable Value and provided the trip setpoint "as-left" value is adjusted to a value within the calibration tolerance band of the Nominal Trip Setpoint. A trip setpoint may be set more conservative than the Nominal Trip Setpoint as necessary in response to plant conditions. Failure of any instrument renders the affected channel(s) inoperable and reduces the reliability of the affected Functions.

The LCO generally requires OPERABILITY of four or three channels in each instrumentation function and two channels in each logic and manual initiation function. The two-out-of-three and the two-out-of-four configurations allow one channel to be tripped during maintenance or testing without causing an ESFAS initiation. Two logic or manual initiation channels are required to ensure no single random failure disables the ESFAS.

The required channels of ESFAS instrumentation provide unit protection in the event of any of the analyzed accidents. ESFAS protection functions are as follows:

1. Safety Injection

Safety Injection (SI) provides two primary functions:

- Primary side water addition to ensure maintenance or recovery of reactor vessel water level (coverage of the active fuel for heat removal, clad integrity, and for limiting peak clad temperature to < 2200°F), and
- 2. Boration to ensure recovery and maintenance of SDM ($k_{eff} < 1.0$).

APPLICABLE SAFETY ANALYSES, LCO, and APPLICABILITY (continued)

These functions are necessary to mitigate the effects of high energy line breaks (HELBs) both inside and outside of containment. The SI signal is also used to initiate other Functions such as:

- Phase A Isolation,
- Containment Purge Isolation,
- Reactor Trip,
- Turbine Trip,
- Feedwater Isolation,
- Start of motor driven auxiliary feedwater (AFW) pumps,
- Control room ventilation isolation, and
- Enabling automatic switchover of Emergency Core Cooling Systems (ECCS) suction to containment sump.

These other functions ensure:

- Isolation of nonessential systems through containment penetrations,
- Trip of the turbine and reactor to limit power generation,
- Isolation of main feedwater (MFW) to limit secondary side mass losses,
- Start of AFW to ensure secondary side cooling capability,
- Isolation of the control room to ensure habitability, and
- Enabling ECCS suction from the refueling water storage tank (RWST) switchover on low low RWST level to ensure continued cooling via use of the containment sump.

APPLICABLE SAFETY ANALYSES, LCO, and APPLICABILITY (continued)

a. Safety Injection - Manual Initiation

The LCO requires one channel per train to be OPERABLE. The operator can initiate SI at any time by using either of two switches in the control room. This action will cause actuation of all components in the same manner as any of the automatic actuation signals.

The LCO for the Manual Initiation Function ensures the proper amount of redundancy is maintained in the manual ESFAS actuation circuitry to ensure the operator has manual ESFAS initiation capability.

Each channel consists of one push button and the interconnecting wiring to the actuation logic cabinet. Each push button actuates both trains. This configuration does not allow testing at power.

b. <u>Safety Injection - Automatic Actuation Logic and Actuation</u> <u>Relays</u>

This LCO requires two trains to be OPERABLE. Actuation logic consists of all circuitry housed within the actuation subsystems, including the initiating relay contacts responsible for actuating the ESF equipment.

Manual and automatic initiation of SI must be OPERABLE in MODES 1, 2, and 3. In these MODES, there is sufficient energy in the primary and secondary systems to warrant automatic initiation of ESF systems. Manual Initiation is also required in MODE 4 even though automatic actuation is not required. In this MODE, adequate time is available to manually actuate required components in the event of a DBA, but because of the large number of components actuated on a SI, actuation is simplified by the use of the manual actuation push buttons. Automatic actuation logic and actuation relays must be OPERABLE in MODE 4 to support system level manual initiation.

These Functions are not required to be OPERABLE in MODES 5 and 6 because there is adequate time for the operator to evaluate unit conditions and respond by manually starting individual systems, pumps, and other equipment to mitigate the consequences of an abnormal condition or accident. Unit

APPLICABLE SAFETY ANALYSES, LCO, and APPLICABILITY (continued)

pressure and temperature are very low and many ESF components are administratively locked out or otherwise prevented from actuating to prevent inadvertent overpressurization of unit systems.

c. Safety Injection - Containment Pressure - High 1

This signal provides protection against the following accidents:

- SLB inside containment,
- LOCA, and
- Feed line break inside containment.

Containment Pressure - High 1 provides no input to any control functions. Thus, three OPERABLE channels are sufficient to satisfy protective requirements with a two-out-of-three logic. The transmitters (d/p cells) and electronics are located outside of containment with the sensing line (high pressure side of the transmitter) located inside containment.

Thus, the high pressure Function will not experience any adverse environmental conditions and the Trip Setpoint reflects only steady state instrument uncertainties.

Containment Pressure - High 1 must be OPERABLE in MODES 1, 2, and 3 when there is sufficient energy in the primary and secondary systems to pressurize the containment following a pipe break. In MODES 4, 5, and 6, there is insufficient energy in the primary or secondary systems to pressurize the containment.

d. Safety Injection - Pressurizer Pressure - Low

This signal provides protection against the following accidents:

- Inadvertent opening of a steam generator (SG) relief or safety valve,
- SLB,

APPLICABLE SAFETY ANALYSES, LCO, and APPLICABILITY (continued)

- A spectrum of rod cluster control assembly ejection accidents (rod ejection),
- Inadvertent opening of a pressurizer relief or safety valve,
- LOCAs, and
- SG Tube Rupture.

At some units pressurizer pressure provides both control and protection functions: input to the Pressurizer Pressure Control System, reactor trip, and SI. Therefore, the actuation logic must be able to withstand both an input failure to control system, which may then require the protection function actuation, and a single failure in the other channels providing the protection function actuation. Thus, four OPERABLE channels are required to satisfy the requirements with a two-out-of-four logic. For units that have dedicated protection and control channels, only three protection channels are necessary to satisfy the protective requirements.

The transmitters are located inside containment, with the taps in the vapor space region of the pressurizer, and thus possibly experiencing adverse environmental conditions (LOCA, SLB inside containment, rod ejection). Therefore, the Trip Setpoint reflects the inclusion of both steady state and adverse environmental instrument uncertainties.

This Function must be OPERABLE in MODES 1, 2, and 3 (above P-11) to mitigate the consequences of an HELB inside containment. This signal may be manually blocked by the operator below the P-11 setpoint. Automatic SI actuation below this pressure setpoint is then performed by the Containment Pressure - High 1 signal.

This Function is not required to be OPERABLE in MODE 3 below the P-11 setpoint. Other ESF functions are used to detect accident conditions and actuate the ESF systems in this MODE. In MODES 4, 5, and 6, this Function is not needed for accident detection and mitigation.

APPLICABLE SAFETY ANALYSES, LCO, and APPLICABILITY (continued)

- e. Safety Injection Steam Line Pressure
 - (1) <u>Steam Line Pressure Low</u>

Steam Line Pressure - Low provides protection against the following accidents:

- SLB,
- Feed line break, and
- Inadvertent opening of an SG relief or an SG safety valve.

Steam Line Pressure - Low provides no input to any control functions. Thus, three OPERABLE channels on each steam line are sufficient to satisfy the protective requirements with a two-out-of-three logic on each steam line.

With the transmitters typically located inside the steam tunnels, it is possible for them to experience adverse environmental conditions during a secondary side break. Therefore, the Trip Setpoint reflects both steady state and adverse environmental instrument uncertainties.

This Function is anticipatory in nature and has a typical lead/lag ratio of 50/5.

Steam Line Pressure - Low must be OPERABLE in MODES 1, 2, and 3 (above P-11) when a secondary side break or stuck open valve could result in the rapid depressurization of the steam lines. This signal may be manually blocked by the operator below the P-11 setpoint. Below P-11, feed line break is not a concern. Inside containment SLB will be terminated by automatic SI actuation via Containment Pressure - High 1, and outside containment SLB will be terminated by the Steam Line Pressure - Negative Rate - High signal for steam line isolation. This Function is not required to be OPERABLE in MODE 4, 5, or 6 because there is insufficient energy in the secondary side of the unit to cause an accident.

APPLICABLE SAFETY ANALYSES, LCO, and APPLICABILITY (continued)

(2) <u>Steam Line Pressure - High Differential Pressure Between</u> <u>Steam Lines</u>

Steam Line Pressure - High Differential Pressure Between Steam Lines provides protection against the following accidents:

- SLB,
- Feed line break, and
- Inadvertent opening of an SG relief or an SG safety valve.

Steam Line Pressure - High Differential Pressure Between Steam Lines provides no input to any control functions. Thus, three OPERABLE channels on each steam line are sufficient to satisfy the requirements, with a two-out-of-three logic on each steam line.

With the transmitters typically located inside the steam tunnels, it is possible for them to experience adverse environmental conditions during an SLB event. Therefore, the Trip Setpoint reflects both steady state and adverse environmental instrument uncertainties. Steam line high differential pressure must be OPERABLE in MODES 1, 2, and 3 when a secondary side break or stuck open valve could result in the rapid depressurization of the steam line(s). This Function is not required to be OPERABLE in MODE 4, 5, or 6 because there is not sufficient energy in the secondary side of the unit to cause an accident.

f, g. <u>Safety Injection - High Steam Flow in Two Steam Lines</u> <u>Coincident With T_{avg} - Low Low or Coincident With Steam Line</u> <u>Pressure – Low</u>

These Functions (1.f and 1.g) provide protection against the following accidents:

- SLB, and
- the inadvertent opening of an SG relief or an SG safety valve.

APPLICABLE SAFETY ANALYSES, LCO, and APPLICABILITY (continued)

Two steam line flow channels per steam line are required OPERABLE for these Functions. The steam line flow channels are combined in a one-out-of-two logic to indicate high steam flow in one steam line. The steam flow transmitters provide control inputs, but the control function cannot cause the events that the Function must protect against. Therefore, two channels are sufficient to satisfy redundancy requirements. The one-outof-two configuration allows online testing because trip of one high steam flow channel is not sufficient to cause initiation. High steam flow in two steam lines is acceptable in the case of a single steam line fault due to the fact that the remaining intact steam lines will pick up the full turbine load. The increased steam flow in the remaining intact lines will actuate the required second high steam flow trip. Additional protection is provided by Function 1.e.(2), High Differential Pressure Between Steam Lines.

One channel of Tave per loop and one channel of low steam line pressure per steam line are required OPERABLE. For each parameter, the channels for all loops or steam lines are combined in a logic such that two channels tripped will cause a trip for the parameter. For example, for three loop units, the low steam line pressure channels are combined in two-out-of- three logic. Thus, the Function trips on one-out-of-two high flow in any two-out-of-three steam lines if there is one-out-of-one low low Tave trip in any two-out-of-three RCS loops, or if there is a oneout-of-one low pressure trip in any two-out-of-three steam lines. Since the accidents that this event protects against cause both low steam line pressure and low low Tava, provision of one channel per loop or steam line ensures no single random failure can disable both of these Functions. The steam line pressure channels provide no control inputs. The T_{avg} channels provide control inputs, but the control function cannot initiate events that the Function acts to mitigate.

The Allowable Value for high steam flow is a linear function that varies with power level. The function is a ΔP corresponding to 44% of full steam flow between 0% and 20% load to 114% of full steam flow at 100% load. The nominal trip setpoint is similarly calculated.

APPLICABLE SAFETY ANALYSES, LCO, and APPLICABILITY (continued)

With the transmitters typically located inside the containment (T_{avg}) or inside the steam tunnels (High Steam Flow), it is possible for them to experience adverse steady state environmental conditions during an SLB event. Therefore, the Trip Setpoint reflects both steady state and adverse environmental instrument uncertainties. The Steam Line Pressure - Low signal was discussed previously under Function 1.e.(1).

This Function must be OPERABLE in MODES 1, 2, and 3 (above P-12) when a secondary side break or stuck open valve could result in the rapid depressurization of the steam line(s). This signal may be manually blocked by the operator when below the P-12 setpoint. Above P-12, this Function is automatically unblocked. This Function is not required OPERABLE below P-12 because the reactor is not critical, so feed line break is not a concern. SLB may be addressed by Containment Pressure High 1 (inside containment) or by High Steam Flow in Two Steam Lines coincident with Steam Line Pressure - Low, for Steam Line Isolation, followed by High Differential Pressure Between Two Steam Lines, for SI. This Function is not required to be OPERABLE in MODE 4, 5, or 6 because there is insufficient energy in the secondary side of the unit to cause an accident.

2. Containment Spray

Containment Spray provides three primary functions:

- 1. Lowers containment pressure and temperature after an HELB in containment,
- 2. Reduces the amount of radioactive iodine in the containment atmosphere, and
- 3. Adjusts the pH of the water in the containment recirculation sump after a large break LOCA.

These functions are necessary to:

• Ensure the pressure boundary integrity of the containment structure,

APPLICABLE SAFETY ANALYSES, LCO, and APPLICABILITY (continued)

- Limit the release of radioactive iodine to the environment in the event of a failure of the containment structure, and
- Minimize corrosion of the components and systems inside containment following a LOCA.

The containment spray actuation signal starts the containment spray pumps and aligns the discharge of the pumps to the containment spray nozzle headers in the upper levels of containment. Water is initially drawn from the RWST by the containment spray pumps and mixed with a sodium hydroxide solution from the spray additive tank. When the RWST reaches the low low level setpoint, the spray pump suctions are shifted to the containment sump if continued containment spray is required. Containment spray is actuated manually by Containment Pressure - High 3 or Containment Pressure - High High.

a. Containment Spray - Manual Initiation

The operator can initiate containment spray at any time from the control room by simultaneously turning two containment spray actuation switches in the same train. Because an inadvertent actuation of containment spray could have such serious consequences, two switches must be turned simultaneously to initiate containment spray. There are two sets of two switches each in the control room. Simultaneously turning the two switches in either set will actuate containment spray in both trains in the same manner as the automatic actuation signal. Two Manual Initiation switches in each train are required to be OPERABLE to ensure no single failure disables the Manual Initiation Function. Note that Manual Initiation of containment spray also actuates Phase B containment isolation.

b. <u>Containment Spray - Automatic Actuation Logic and Actuation</u> <u>Relays</u>

Automatic actuation logic and actuation relays consist of the same features and operate in the same manner as described for ESFAS Function 1.b.

APPLICABLE SAFETY ANALYSES, LCO, and APPLICABILITY (continued)

Manual and automatic initiation of containment spray must be OPERABLE in MODES 1, 2, and 3 when there is a potential for an accident to occur, and sufficient energy in the primary or secondary systems to pose a threat to containment integrity due to overpressure conditions. Manual initiation is also required in MODE 4, even though automatic actuation is not required. In this MODE, adequate time is available to manually actuate required components in the event of a DBA. However, because of the large number of components actuated on a containment spray, actuation is simplified by the use of the manual actuation push buttons. Automatic actuation logic and actuation relays must be OPERABLE in MODE 4 to support system level manual initiation. In MODES 5 and 6, there is insufficient energy in the primary and secondary systems to result in containment overpressure. In MODES 5 and 6, there is also adequate time for the operators to evaluate unit conditions and respond, to mitigate the consequences of abnormal conditions by manually starting individual components.

c. <u>Containment Spray - Containment Pressure</u>

This signal provides protection against a LOCA or an SLB inside containment. The transmitters (d/p cells) are located outside of containment with the sensing line (high pressure side of the transmitter) located inside containment. The transmitters and electronics are located outside of containment. Thus, they will not experience any adverse environmental conditions and the Trip Setpoint reflects only steady state instrument uncertainties.

This is one of the only Functions that requires the bistable output to energize to perform its required action. It is not desirable to have a loss of power actuate containment spray, since the consequences of an inadvertent actuation of containment spray could be serious. Note that this Function also has the inoperable channel placed in bypass rather than trip to decrease the probability of an inadvertent actuation.

Two different logic configurations are typically used. Three and four loop units use four channels in a two-out-of-four logic configuration. This configuration may be called the Containment Pressure - High 3 Setpoint for three and four loop units, and
APPLICABLE SAFETY ANALYSES, LCO, and APPLICABILITY (continued)

Containment Pressure - High High Setpoint for other units. Some two loop units use three sets of two channels, each set combined in a one-out-of-two configuration, with these outputs combined so that two-out-of-three sets tripped initiates containment spray. This configuration is called Containment Pressure - High 3 Setpoint. Since containment pressure is not used for control, both of these arrangements exceed the minimum redundancy requirements. Additional redundancy is warranted because this Function is energize to trip. Containment Pressure - [High 3] [High High] must be OPERABLE in MODES 1. 2. and 3 when there is sufficient energy in the primary and secondary sides to pressurize the containment following a pipe break. In MODES 4, 5, and 6, there is insufficient energy in the primary and secondary sides to pressurize the containment and reach the Containment Pressure - High 3 (High High) setpoints.

3. Containment Isolation

Containment Isolation provides isolation of the containment atmosphere, and all process systems that penetrate containment, from the environment. This Function is necessary to prevent or limit the release of radioactivity to the environment in the event of a large break LOCA.

There are two separate Containment Isolation signals, Phase A and Phase B. Phase A isolation isolates all automatically isolable process lines, except component cooling water (CCW), at a relatively low containment pressure indicative of primary or secondary system leaks. For these types of events, forced circulation cooling using the reactor coolant pumps (RCPs) and SGs is the preferred (but not required) method of decay heat removal. Since CCW is required to support RCP operation, not isolating CCW on the low pressure Phase A signal enhances unit safety by allowing operators to use forced RCS circulation to cool the unit. Isolating CCW on the low pressure signal may force the use of feed and bleed cooling, which could prove more difficult to control.

Phase A containment isolation is actuated automatically by SI, or manually via the automatic actuation logic. All process lines penetrating containment, with the exception of CCW, are isolated.

APPLICABLE SAFETY ANALYSES, LCO, and APPLICABILITY (continued)

CCW is not isolated at this time to permit continued operation of the RCPs with cooling water flow to the thermal barrier heat exchangers and air or oil coolers. All process lines not equipped with remote operated isolation valves are manually closed, or otherwise isolated, prior to reaching MODE 4.

Manual Phase A Containment Isolation is accomplished by either of two switches in the control room. Either switch actuates both trains. Note that manual actuation of Phase A Containment Isolation also actuates Containment Purge and Exhaust Isolation.

The Phase B signal isolates CCW. This occurs at a relatively high containment pressure that is indicative of a large break LOCA or an SLB. For these events, forced circulation using the RCPs is no longer desirable. Isolating the CCW at the higher pressure does not pose a challenge to the containment boundary because the CCW System is a closed loop inside containment. Although some system components do not meet all of the ASME Code requirements applied to the containment itself, the system is continuously pressurized to a pressure greater than the Phase B setpoint. Thus, routine operation demonstrates the integrity of the system pressure boundary for pressures exceeding the Phase B setpoint. Furthermore, because system pressure exceeds the Phase B setpoint, any system leakage prior to initiation of Phase B isolation would be into containment. Therefore, the combination of CCW System design and Phase B isolation ensures the CCW System is not a potential path for radioactive release from containment.

Phase B containment isolation is actuated by Containment Pressure -High 3 or Containment Pressure - High High, or manually, via the automatic actuation logic, as previously discussed. For containment pressure to reach a value high enough to actuate Containment Pressure - High 3 or Containment Pressure - High High, a large break LOCA or SLB must have occurred and containment spray must have been actuated. RCP operation will no longer be required and CCW to the RCPs is, therefore, no longer necessary. The RCPs can be operated with seal injection flow alone and without CCW flow to the thermal barrier heat exchanger.

Manual Phase B Containment Isolation is accomplished by the same switches that actuate Containment Spray. When the two switches in either set are turned simultaneously, Phase B Containment Isolation and Containment Spray will be actuated in both trains.

- a. Containment Isolation Phase A Isolation
 - (1) Phase A Isolation Manual Initiation

Manual Phase A Containment Isolation is actuated by either of two switches in the control room. Either switch actuates both trains. Note that manual initiation of Phase A Containment Isolation also actuates Containment Purge Isolation.

(2) <u>Phase A Isolation - Automatic Actuation Logic and Actuation</u> <u>Relays</u>

Automatic Actuation Logic and Actuation Relays consist of the same features and operate in the same manner as described for ESFAS Function 1.b.

Manual and automatic initiation of Phase A Containment Isolation must be OPERABLE in MODES 1, 2, and 3, when there is a potential for an accident to occur. Manual initiation is also required in MODE 4 even though automatic actuation is not required. In this MODE, adequate time is available to manually actuate required components in the event of a DBA, but because of the large number of components actuated on a Phase A Containment Isolation. actuation is simplified by the use of the manual actuation push buttons. Automatic actuation logic and actuation relays must be OPERABLE in MODE 4 to support system level manual initiation. In MODES 5 and 6, there is insufficient energy in the primary or secondary systems to pressurize the containment to require Phase A Containment Isolation. There also is adequate time for the operator to evaluate unit conditions and manually actuate individual isolation valves in response to abnormal or accident conditions.

(3) Phase A Isolation - Safety Injection

Phase A Containment Isolation is also initiated by all Functions that initiate SI. The Phase A Containment Isolation requirements for these Functions are the same as the requirements for their SI function. Therefore, the requirements are not repeated in Table 3.3.2-1. Instead, Function 1, SI, is referenced for all initiating Functions and requirements.

 \mathbf{t}

b. <u>Containment Isolation - Phase B Isolation</u>

Phase B Containment Isolation is accomplished by Manual Initiation, Automatic Actuation Logic and Actuation Relays, and by Containment Pressure channels (the same channels that actuate Containment Spray, Function 2). The Containment Pressure trip of Phase B Containment Isolation is energized to trip in order to minimize the potential of spurious trips that may damage the RCPs.

- (1) Phase B Isolation Manual Initiation
- (2) <u>Phase B Isolation Automatic Actuation Logic and Actuation</u> <u>Relays</u>
 - Manual and automatic initiation of Phase B containment isolation must be OPERABLE in MODES 1, 2, and 3, when there is a potential for an accident to occur. Manual initiation is also required in MODE 4 even though automatic actuation is not required. In this MODE, adequate time is available to manually actuate required components in the event of a DBA. However, because of the large number of components actuated on a Phase B containment isolation, actuation is simplified by the use of the manual actuation push buttons. Automatic actuation logic and actuation relays must be OPERABLE in MODE 4 to support system level manual initiation. In MODES 5 and 6, there is insufficient energy in the primary or secondary systems to pressurize the containment to require Phase B containment isolation. There also is adequate time for the operator to evaluate unit conditions and manually actuate individual isolation valves in response to abnormal or accident conditions.
- (3) Phase B Isolation Containment Pressure

The basis for containment pressure MODE applicability is as discussed for ESFAS Function 2.c above.

APPLICABLE SAFETY ANALYSES, LCO, and APPLICABILITY (continued)

4. Steam Line Isolation

Isolation of the main steam lines provides protection in the event of an SLB inside or outside containment. Rapid isolation of the steam lines will limit the steam break accident to the blowdown from one SG, at most. For an SLB upstream of the main steam isolation valves (MSIVs), inside or outside of containment, closure of the MSIVs limits the accident to the blowdown from only the affected SG. For an SLB downstream of the MSIVs, closure of the MSIVs terminates the accident as soon as the steam lines depressurize. For units that do not have steam line check valves, Steam Line Isolation also mitigates the effects of a feed line break and ensures a source of steam for the turbine driven AFW pump during a feed line break.

a. Steam Line Isolation - Manual Initiation

Manual initiation of Steam Line Isolation can be accomplished from the control room. There are two switches in the control room and either switch can initiate action to immediately close all MSIVs. The LCO requires two channels to be OPERABLE.

b. <u>Steam Line Isolation - Automatic Actuation Logic and Actuation</u> <u>Relays</u>

Automatic actuation logic and actuation relays consist of the same features and operate in the same manner as described for ESFAS Function 1.b.

Manual and automatic initiation of steam line isolation must be OPERABLE in MODES 1, 2, and 3 when there is sufficient energy in the RCS and SGs to have an SLB or other accident. This could result in the release of significant quantities of energy and cause a cooldown of the primary system. The Steam Line Isolation Function is required in MODES 2 and 3 unless all MSIVs are closed and [de-activated]. In MODES 4, 5, and 6, there is insufficient energy in the RCS and SGs to experience an SLB or other accident releasing significant quantities of energy.

c. Steam Line Isolation - Containment Pressure - High 2

This Function actuates closure of the MSIVs in the event of a LOCA or an SLB inside containment to maintain at least one unfaulted SG as a heat sink for the reactor, and to limit the mass and energy release to containment. The transmitters (d/p cells) are located outside containment with the sensing line (high pressure side of the transmitter) located inside containment. Containment Pressure - High 2 provides no input to any control functions. Thus, three OPERABLE channels are sufficient to satisfy protective requirements with two-out-of-three logic. However, for enhanced reliability, this Function was designed with four channels and a two-out-of-four logic. The transmitters and electronics are located outside of containment. Thus, they will not experience any adverse environmental conditions, and the Trip Setpoint reflects only steady state instrument uncertainties.

Containment Pressure - High 2 must be OPERABLE in MODES 1, 2, and 3, when there is sufficient energy in the primary and secondary side to pressurize the containment following a pipe break. This would cause a significant increase in the containment pressure, thus allowing detection and closure of the MSIVs. The Steam Line Isolation Function remains OPERABLE in MODES 2 and 3 unless all MSIVs are closed and [de-activated]. In MODES 4, 5, and 6, there is not enough energy in the primary and secondary sides to pressurize the containment to the Containment Pressure - High 2 setpoint.

- d. Steam Line Isolation Steam Line Pressure
 - (1) <u>Steam Line Pressure Low</u>

Steam Line Pressure - Low provides closure of the MSIVs in the event of an SLB to maintain at least one unfaulted SG as a heat sink for the reactor, and to limit the mass and energy release to containment. This Function provides closure of the MSIVs in the event of a feed line break to ensure a supply of steam for the turbine driven AFW pump. Steam Line Pressure - Low was discussed previously under SI Function 1.e.1.

APPLICABLE SAFETY ANALYSES, LCO, and APPLICABILITY (continued)

Steam Line Pressure - Low Function must be OPERABLE in MODES 1, 2, and 3 (above P-11), with any main steam valve open, when a secondary side break or stuck open valve could result in the rapid depressurization of the steam lines. This signal may be manually blocked by the operator below the P-11 setpoint. Below P-11, an inside containment SLB will be terminated by automatic actuation via Containment Pressure - High 2. Stuck valve transients and outside containment SLBs will be terminated by the Steam Line Pressure - Negative Rate - High signal for Steam Line Isolation below P-11 when SI has been manually blocked. The Steam Line Isolation Function is required in MODES 2 and 3 unless all MSIVs are closed and [de-activated]. This Function is not required to be OPERABLE in MODES 4, 5, and 6 because there is insufficient energy in the secondary side of the unit to have an accident.

(2) <u>Steam Line Pressure - Negative Rate – High</u>

Steam Line Pressure - Negative Rate - High provides closure of the MSIVs for an SLB when less than the P-11 setpoint, to maintain at least one unfaulted SG as a heat sink for the reactor, and to limit the mass and energy release to containment. When the operator manually blocks the Steam Line Pressure - Low main steam isolation signal when less than the P-11 setpoint, the Steam Line Pressure -Negative Rate - High signal is automatically enabled. Steam Line Pressure - Negative Rate - High provides no input to any control functions. Thus, three OPERABLE channels are sufficient to satisfy requirements with a twoout-of-three logic on each steam line.

Steam Line Pressure - Negative Rate - High must be OPERABLE in MODE 3 when less than the P-11 setpoint, when a secondary side break or stuck open valve could result in the rapid depressurization of the steam line(s). In MODES 1 and 2, and in MODE 3, when above the P-11 setpoint, this signal is automatically disabled and the Steam Line Pressure - Low signal is automatically enabled. The

APPLICABLE SAFETY ANALYSES, LCO, and APPLICABILITY (continued)

Steam Line Isolation Function is required to be OPERABLE in MODES 2 and 3 unless all MSIVs are closed and [deactivated]. In MODES 4, 5, and 6, there is insufficient energy in the primary and secondary sides to have an SLB or other accident that would result in a release of significant enough quantities of energy to cause a cooldown of the RCS.

While the transmitters may experience elevated ambient temperatures due to an SLB, the trip function is based on rate of change, not the absolute accuracy of the indicated steam pressure. Therefore, the Trip Setpoint reflects only steady state instrument uncertainties.

e, f. <u>Steam Line Isolation - High Steam Flow in Two Steam Lines</u> <u>Coincident with T_{avg} - Low Low or Coincident With Steam Line</u> <u>Pressure - Low (Three and Four Loop Units)</u>

These Functions (4.e and 4.f) provide closure of the MSIVs during an SLB or inadvertent opening of an SG relief or a safety valve, to maintain at least one unfaulted SG as a heat sink for the reactor and to limit the mass and energy release to containment.

These Functions were discussed previously as Functions 1.f. and 1.g.

These Functions must be OPERABLE in MODES 1 and 2, and in MODE 3, when a secondary side break or stuck open valve could result in the rapid depressurization of the steam lines unless all MSIVs are closed and [de-activated]. These Functions are not required to be OPERABLE in MODES 4, 5, and 6 because there is insufficient energy in the secondary side of the unit to have an accident.

g. <u>Steam Line Isolation - High Steam Flow Coincident With Safety</u> Injection and Coincident With T_{avg} - Low Low (Two Loop Units)

This Function provides closure of the MSIVs during an SLB or inadvertent opening of an SG relief or safety valve to maintain at least one unfaulted SG as a heat sink for the reactor, and to limit the mass and energy release to containment.

Two steam line flow channels per steam line are required OPERABLE for this Function. These are combined in a one-outof-two logic to indicate high steam flow in one steam line. The steam flow transmitters provide control inputs, but the control function cannot cause the events that the function must protect against. Therefore, two channels are sufficient to satisfy redundancy requirements. The one-out-of-two configuration allows online testing because trip of one high steam flow channel is not sufficient to cause initiation.

The High Steam Flow Allowable Value is a ΔP corresponding to 25% of full steam flow at no load steam pressure. The Trip Setpoint is similarly calculated.

With the transmitters (d/p cells) typically located inside the steam tunnels, it is possible for them to experience adverse environmental conditions during an SLB event. Therefore, the Trip Setpoints reflect both steady state and adverse environmental instrument uncertainties.

The main steam line isolates only if the high steam flow signal occurs coincident with an SI and low low RCS average temperature. The Main Steam Line Isolation Function requirements for the SI Functions are the same as the requirements for their SI function. Therefore, the requirements are not repeated in Table 3.3.2-1. Instead, Function 1, SI, is referenced for all initiating functions and requirements.

Two channels of T_{avg} per loop are required to be OPERABLE. The T_{avg} channels are combined in a logic such that two channels tripped cause a trip for the parameter. The accidents that this Function protects against cause reduction of T_{avg} in the entire primary system. Therefore, the provision of two OPERABLE channels per loop in a two-out-of-four configuration ensures no single random failure disables the T_{avg} - Low Low Function. The T_{avg} channels provide control inputs, but the control function cannot initiate events that the Function acts to mitigate. Therefore, additional channels are not required to address control protection interaction issues.

With the T_{avg} resistance temperature detectors (RTDs) located inside the containment, it is possible for them to experience adverse environmental conditions during an SLB event. Therefore, the Trip Setpoint reflects both steady state and adverse environmental instrumental uncertainties.

This Function must be OPERABLE in MODES 1 and 2, and in MODE 3, when above the P-12 setpoint, when a secondary side break or stuck open valve could result in rapid depressurization of the steam lines. Below P-12 this Function is not required to be OPERABLE because the High High Steam Flow coincident with SI Function provides the required protection. The Steam Line Isolation Function is required to be OPERABLE in MODES 2 and 3 unless all MSIVs are closed and [de-activated]. This Function is not required to be OPERABLE in MODES 4, 5, and 6 because there is insufficient energy in the secondary side of the unit to have an accident.

h. <u>Steam Line Isolation - High High Steam Flow Coincident With</u> Safety Injection (Two Loop Units)

This Function provides closure of the MSIVs during a steam line break (or inadvertent opening of a relief or safety valve) to maintain at least one unfaulted SG as a heat sink for the reactor, and to limit the mass and energy release to containment.

Two steam line flow channels per steam line are required to be OPERABLE for this Function. These are combined in a one-outof-two logic to indicate high steam flow in one steam line. The steam flow transmitters provide control inputs, but the control function cannot cause the events that the Function must protect against. Therefore, two channels are sufficient to satisfy redundancy requirements.

The Allowable Value for high steam flow is a ΔP , corresponding to 130% of full steam flow at full steam pressure. The Trip Setpoint is similarly calculated.

With the transmitters typically located inside the steam tunnels, it is possible for them to experience adverse environmental conditions during an SLB event. Therefore, the Trip Setpoint reflects both steady state and adverse environmental instrument uncertainties.

The main steam lines isolate only if the high steam flow signal occurs coincident with an SI signal. The Main Steam Line Isolation Function requirements for the SI Functions are the same as the requirements for their SI function. Therefore, the requirements are not repeated in Table 3.3.2-1. Instead, Function 1, SI, is referenced for all initiating functions and requirements.

APPLICABLE SAFETY ANALYSES, LCO, and APPLICABILITY (continued)

This Function must be OPERABLE in MODES 1, 2, and 3 when a secondary side break or stuck open valve could result in rapid depressurization of the steam lines unless all MSIVs are closed and [de-activated]. This Function is not required to be OPERABLE in MODES 4, 5, and 6 because there is insufficient energy in the secondary side of the unit to have an accident.

5. <u>Turbine Trip and Feedwater Isolation</u>

The primary functions of the Turbine Trip and Feedwater Isolation signals are to prevent damage to the turbine due to water in the steam lines, and to stop the excessive flow of feedwater into the SGs. These Functions are necessary to mitigate the effects of a high water level in the SGs, which could result in carryover of water into the steam lines and excessive cooldown of the primary system. The SG high water level is due to excessive feedwater flows.

The Function is actuated when the level in any SG exceeds the high high setpoint, and performs the following functions:

- Trips the main turbine,
- Trips the MFW pumps,
- Initiates feedwater isolation, and
- Shuts the MFW regulating valves and the bypass feedwater regulating valves.

This Function is actuated by SG Water Level - High High, or by an SI signal. The RTS also initiates a turbine trip signal whenever a reactor trip (P-4) is generated. In the event of SI, the unit is taken off line and the turbine generator must be tripped. The MFW System is also taken out of operation and the AFW System is automatically started. The SI signal was discussed previously.

a. <u>Turbine Trip and Feedwater Isolation - Automatic Actuation Logic</u> and Actuation Relays

Automatic Actuation Logic and Actuation Relays consist of the same features and operate in the same manner as described for ESFAS Function 1.b.

b. <u>Turbine Trip and Feedwater Isolation - Steam Generator Water</u> Level - High High (P-14)

This signal provides protection against excessive feedwater flow. The ESFAS SG water level instruments provide input to the SG Water Level Control System. Therefore, the actuation logic must be able to withstand both an input failure to the control system (which may then require the protection function actuation) and a single failure in the other channels providing the protection function actuation. Thus, four OPERABLE channels are required to satisfy the requirements with a two-out-of-four logic. For units that have dedicated protection and control channels, only three protection channels are necessary to satisfy the protective requirements. For other units that have only three channels, a median signal selector is provided or justification is provided in NUREG-1218 (Ref. 7).

The transmitters (d/p cells) are located inside containment. However, the events that this Function protects against cannot cause a severe environment in containment. Therefore, the Trip Setpoint reflects only steady state instrument uncertainties.

c. <u>Turbine Trip and Feedwater Isolation - Safety Injection</u>

Turbine Trip and Feedwater Isolation is also initiated by all Functions that initiate SI. The Feedwater Isolation Function requirements for these Functions are the same as the requirements for their SI function. Therefore, the requirements are not repeated in Table 3.3.2-1. Instead Function 1, SI, is referenced for all initiating functions and requirements.

Turbine Trip and Feedwater Isolation Functions must be OPERABLE in MODES 1 and 2 [and 3] except when all MFIVs, MFRVs, [and associated bypass valves] are closed and [de-activated] [or isolated by a closed manual valve] when the MFW System is in operation and the turbine generator may be in operation. In MODES [3,] 4, 5, and 6, the MFW System and the turbine generator are not in service and this Function is not required to be OPERABLE.

APPLICABLE SAFETY ANALYSES, LCO, and APPLICABILITY (continued)

6. Auxiliary Feedwater

The AFW System is designed to provide a secondary side heat sink for the reactor in the event that the MFW System is not available. The system has two motor driven pumps and a turbine driven pump, making it available during normal unit operation, during a loss of AC power, a loss of MFW, and during a Feedwater System pipe break. The normal source of water for the AFW System is the condensate storage tank (CST) (normally not safety related). A low level in the CST will automatically realign the pump suctions to the Essential Service Water (ESW) System (safety related). The AFW System is aligned so that upon a pump start, flow is initiated to the respective SGs immediately.

a. <u>Auxiliary Feedwater - Automatic Actuation Logic and Actuation</u> <u>Relays (Solid State Protection System)</u>

Automatic actuation logic and actuation relays consist of the same features and operate in the same manner as described for ESFAS Function 1.b.

b. <u>Auxiliary Feedwater - Automatic Actuation Logic and Actuation</u> <u>Relays (Balance of Plant ESFAS)</u>

Automatic actuation logic and actuation relays consist of the same features and operate in the same manner as described for ESFAS Function 1.b.

c. Auxiliary Feedwater - Steam Generator Water Level - Low Low

SG Water Level - Low Low provides protection against a loss of heat sink. A feed line break, inside or outside of containment, or a loss of MFW, would result in a loss of SG water level. SG Water Level - Low Low provides input to the SG Level Control System. Therefore, the actuation logic must be able to withstand both an input failure to the control system which may then require a protection function actuation and a single failure in the other channels providing the protection function actuation. Thus, four OPERABLE channels are required to satisfy the requirements with two-out-of-four logic. For units that have dedicated protection and control channels, only three protection channels are necessary to satisfy the protective requirements. For other units that have only three channels, a median signal selector is provided or justification is provided in Reference 7.

With the transmitters (d/p cells) located inside containment and thus possibly experiencing adverse environmental conditions (feed line break), the Trip Setpoint reflects the inclusion of both steady state and adverse environmental instrument uncertainties.

d. Auxiliary Feedwater - Safety Injection

An SI signal starts the motor driven and turbine driven AFW pumps. The AFW initiation functions are the same as the requirements for their SI function. Therefore, the requirements are not repeated in Table 3.3.2-1. Instead, Function 1, SI, is referenced for all initiating functions and requirements.

e. Auxiliary Feedwater - Loss of Offsite Power

A loss of offsite power to the service buses will be accompanied by a loss of reactor coolant pumping power and the subsequent need for some method of decay heat removal. The loss of offsite power is detected by a voltage drop on each service bus. Loss of power to either service bus will start the turbine driven AFW pumps to ensure that at least one SG contains enough water to serve as the heat sink for reactor decay heat and sensible heat removal following the reactor trip.

Functions 6.a through 6.e must be OPERABLE in MODES 1, 2, and 3 to ensure that the SGs remain the heat sink for the reactor. SG Water Level - Low Low in any operating SG will cause the motor driven AFW pumps to start. The system is aligned so that upon a start of the pump, water immediately begins to flow to the SGs. SG Water Level - Low Low in any two operating SGs will cause the turbine driven pumps to start. These Functions do not have to be OPERABLE in MODES 5 and 6 because there is not enough heat being generated in the reactor to require the SGs as a heat sink. In MODE 4, AFW actuation does not need to be OPERABLE because either AFW or residual heat removal (RHR) will already be in operation to remove decay heat or sufficient time is available to manually place either system in operation.

APPLICABLE SAFETY ANALYSES, LCO, and APPLICABILITY (continued)

f. Auxiliary Feedwater - Undervoltage Reactor Coolant Pump

A loss of power on the buses that provide power to the RCPs provides indication of a pending loss of RCP forced flow in the RCS. The Undervoltage RCP Function senses the voltage downstream of each RCP breaker. A loss of power, or an open RCP breaker, on two or more RCPs, will start the turbine driven AFW pump to ensure that at least one SG contains enough water to serve as the heat sink for reactor decay heat and sensible heat removal following the reactor trip.

g. Auxiliary Feedwater - Trip of All Main Feedwater Pumps

A Trip of all MFW pumps is an indication of a loss of MFW and the subsequent need for some method of decay heat and sensible heat removal to bring the reactor back to no load temperature and pressure. A turbine driven MFW pump is equipped with two pressure switches on the control air/oil line for the speed control system. A low pressure signal from either of these pressure switches indicates a trip of that pump. Motor driven MFW pumps are equipped with a breaker position sensing device. An open supply breaker indicates that the pump is not running. Two OPERABLE channels per pump satisfy redundancy requirements with one-out-of-two taken twice logic. A trip of all MFW pumps to ensure that at least one SG is available with water to act as the heat sink for the reactor.

Functions 6.f and 6.g must be OPERABLE in MODES 1 and 2. This ensures that at least one SG is provided with water to serve as the heat sink to remove reactor decay heat and sensible heat in the event of an accident. In MODES 3, 4, and 5, the RCPs and MFW pumps may be normally shut down, and thus neither pump trip is indicative of a condition requiring automatic AFW initiation.

h. <u>Auxiliary Feedwater - Pump Suction Transfer on Suction</u> <u>Pressure - Low</u>

A low pressure signal in the AFW pump suction line protects the AFW pumps against a loss of the normal supply of water for the pumps, the CST. Two pressure switches are located on the AFW pump suction line from the CST. A low pressure signal

sensed by any one of the switches will cause the emergency supply of water for both pumps to be aligned, or cause the AFW pumps to stop until the emergency source of water is aligned. ESW (safety grade) is then lined up to supply the AFW pumps to ensure an adequate supply of water for the AFW System to maintain at least one of the SGs as the heat sink for reactor decay heat and sensible heat removal.

Since the detectors are located in an area not affected by HELBs or high radiation, they will not experience any adverse environmental conditions and the Trip Setpoint reflects only steady state instrument uncertainties.

This Function must be OPERABLE in MODES 1, 2, and 3 to ensure a safety grade supply of water for the AFW System to maintain the SGs as the heat sink for the reactor. This Function does not have to be OPERABLE in MODES 5 and 6 because there is not enough heat being generated in the reactor to require the SGs as a heat sink. In MODE 4, AFW automatic suction transfer does not need to be OPERABLE because RHR will already be in operation, or sufficient time is available to place RHR in operation, to remove decay heat.

7. Automatic Switchover to Containment Sump

At the end of the injection phase of a LOCA, the RWST will be nearly empty. Continued cooling must be provided by the ECCS to remove decay heat. The source of water for the ECCS pumps is automatically switched to the containment recirculation sump. The low head residual heat removal (RHR) pumps and containment spray pumps draw the water from the containment recirculation sump, the RHR pumps pump the water through the RHR heat exchanger, inject the water back into the RCS, and supply the cooled water to the other ECCS pumps. Switchover from the RWST to the containment sump must occur before the RWST empties to prevent damage to the RHR pumps and a loss of core cooling capability. For similar reasons, switchover must not occur before there is sufficient water in the containment sump to support ESF pump suction. Furthermore, early switchover must not occur to ensure that sufficient borated water is injected from the RWST. This ensures the reactor remains shut down in the recirculation mode.

a. <u>Automatic Switchover to Containment Sump - Automatic</u> <u>Actuation Logic and Actuation Relays</u>

Automatic actuation logic and actuation relays consist of the same features and operate in the same manner as described for ESFAS Function 1.b.

b, c.

c. <u>Automatic Switchover to Containment Sump - Refueling Water</u> Storage Tank (RWST) Level - Low Low Coincident With Safety Injection and Coincident With Containment Sump Level – High

During the injection phase of a LOCA, the RWST is the source of water for all ECCS pumps. A low low level in the RWST coincident with an SI signal provides protection against a loss of water for the ECCS pumps and indicates the end of the injection phase of the LOCA. The RWST is equipped with four level transmitters. These transmitters provide no control functions. Therefore, a two-out-of-four logic is adequate to initiate the protection function actuation. Although only three channels would be sufficient, a fourth channel has been added for increased reliability.

The RWST - Low Low Allowable Value/Trip Setpoint has both upper and lower limits. The lower limit is selected to ensure switchover occurs before the RWST empties, to prevent ECCS pump damage. The upper limit is selected to ensure enough borated water is injected to ensure the reactor remains shut down. The high limit also ensures adequate water inventory in the containment sump to provide ECCS pump suction.

The transmitters are located in an area not affected by HELBs or post accident high radiation. Thus, they will not experience any adverse environmental conditions and the Trip Setpoint reflects only steady state instrument uncertainties.

Automatic switchover occurs only if the RWST low low level signal is coincident with SI. This prevents accidental switchover during normal operation. Accidental switchover could damage ECCS pumps if they are attempting to take suction from an empty sump. The automatic switchover Function requirements for the SI Functions are the same as the requirements for their SI function. Therefore, the requirements are not repeated in Table 3.3.2-1. Instead, Function 1, SI, is referenced for all initiating Functions and requirements.

APPLICABLE SAFETY ANALYSES, LCO, and APPLICABILITY (continued)

---REVIEWER'S NOTE---In some units, additional protection from spurious switchover is provided by requiring a Containment Sump Level - High signal as well as RWST Level - Low Low and SI. This ensures sufficient water is available in containment to support the recirculation phase of the accident. A Containment Sump Level - High signal must be present, in addition to the SI signal and the RWST Level - Low Low signal, to transfer the suctions of the RHR pumps to the containment sump. The containment sump is equipped with four level transmitters. These transmitters provide no control functions. Therefore, a two-out-of-four logic is adequate to initiate the protection function actuation. Although only three channels would be sufficient, a fourth channel has been added for increased reliability. The containment sump level Trip Setpoint/Allowable Value is selected to ensure enough borated water is injected to ensure the reactor remains shut down. The high limit also ensures adequate water inventory in the containment sump to provide ECCS pump suction. The transmitters are located inside containment and thus possibly experience adverse environmental conditions. Therefore, the trip setpoint reflects the inclusion of both steady state and environmental instrument uncertainties.

Units only have one of the Functions, 7.b or 7.c.

These Functions must be OPERABLE in MODES 1, 2, 3, and 4 when there is a potential for a LOCA to occur, to ensure a continued supply of water for the ECCS pumps. These Functions are not required to be OPERABLE in MODES 5 and 6 because there is adequate time for the operator to evaluate unit conditions and respond by manually starting systems, pumps, and other equipment to mitigate the consequences of an abnormal condition or accident. System pressure and temperature are very low and many ESF components are administratively locked out or otherwise prevented from actuating to prevent inadvertent overpressurization of unit systems.

8. Engineered Safety Feature Actuation System Interlocks

To allow some flexibility in unit operations, several interlocks are included as part of the ESFAS. These interlocks permit the operator to block some signals, automatically enable other signals, prevent some actions from occurring, and cause other actions to occur. The interlock Functions back up manual actions to ensure bypassable functions are in operation under the conditions assumed in the safety analyses.

APPLICABLE SAFETY ANALYSES, LCO, and APPLICABILITY (continued)

a. Engineered Safety Feature Actuation System Interlocks -Reactor Trip, P-4

The P-4 interlock is enabled when a reactor trip breaker (RTB) and its associated bypass breaker is open. Once the P-4 interlock is enabled, automatic SI initiation is blocked after a [] second time delay. This Function allows operators to take manual control of SI systems after the initial phase of injection is complete. Once SI is blocked, automatic actuation of SI cannot occur until the RTBs have been manually closed. The functions of the P-4 interlock are:

- Trip the main turbine,
- Isolate MFW with coincident low Tavg,
- Prevent reactuation of SI after a manual reset of SI,
- Transfer the steam dump from the load rejection controller to the unit trip controller, and
- Prevent opening of the MFW isolation valves if they were closed on SI or SG Water Level High High.

Each of the above Functions is interlocked with P-4 to avert or reduce the continued cooldown of the RCS following a reactor trip. An excessive cooldown of the RCS following a reactor trip could cause an insertion of positive reactivity with a subsequent increase in generated power. To avoid such a situation, the noted Functions have been interlocked with P-4 as part of the design of the unit control and protection system.

None of the noted Functions serves a mitigation function in the unit licensing basis safety analyses. Only the turbine trip Function is explicitly assumed since it is an immediate consequence of the reactor trip Function. Neither turbine trip, nor any of the other four Functions associated with the reactor trip signal, is required to show that the unit licensing basis safety analysis acceptance criteria are not exceeded.

APPLICABLE SAFETY ANALYSES, LCO, and APPLICABILITY (continued)

The RTB position switches that provide input to the P-4 interlock only function to energize or de-energize or open or close contacts. Therefore, this Function has no adjustable trip setpoint with which to associate a Trip Setpoint and Allowable Value.

This Function must be OPERABLE in MODES 1, 2, and 3 when the reactor may be critical or approaching criticality. This Function does not have to be OPERABLE in MODE 4, 5, or 6 because the main turbine, the MFW System, and the Steam Dump System are not in operation.

b. Engineered Safety Feature Actuation System Interlocks -Pressurizer Pressure, P-11

The P-11 interlock permits a normal unit cooldown and depressurization without actuation of SI or main steam line isolation. With two-out-of-three pressurizer pressure channels (discussed previously) less than the P-11 setpoint, the operator can manually block the Pressurizer Pressure - Low and Steam Line Pressure - Low SI signals and the Steam Line Pressure -Low steam line isolation signal (previously discussed). When the Steam Line Pressure - Low steam line isolation signal is manually blocked, a main steam isolation signal on Steam Line Pressure - Negative Rate - High is enabled. This provides protection for an SLB by closure of the MSIVs. With two-out-ofthree pressurizer pressure channels above the P-11 setpoint, the Pressurizer Pressure - Low and Steam Line Pressure - Low SI signals and the Steam Line Pressure - Low steam line isolation signal are automatically enabled. The operator can also enable these trips by use of the respective manual reset buttons. When the Steam Line Pressure - Low steam line isolation signal is enabled, the main steam isolation on Steam Line Pressure -Negative Rate - High is disabled. The Trip Setpoint reflects only steady state instrument uncertainties.

This Function must be OPERABLE in MODES 1, 2, and 3 to allow an orderly cooldown and depressurization of the unit without the actuation of SI or main steam isolation. This Function does not have to be OPERABLE in MODE 4, 5, or 6 because system pressure must already be below the P-11 setpoint for the requirements of the heatup and cooldown curves to be met.

APPLICABLE SAFETY ANALYSES, LCO, and APPLICABILITY (continued)

c. Engineered Safety Feature Actuation System Interlocks - T_{avg} -Low Low, P-12

On increasing reactor coolant temperature, the P-12 interlock reinstates SI on High Steam Flow Coincident With Steam Line Pressure - Low or Coincident With T_{avg} - Low Low and provides an arming signal to the Steam Dump System. On decreasing reactor coolant temperature, the P-12 interlock allows the operator to manually block SI on High Steam Flow Coincident With Steam Line Pressure - Low or Coincident with T_{avg} - Low Low. On a decreasing temperature, the P-12 interlock also removes the arming signal to the Steam Dump System to prevent an excessive cooldown of the RCS due to a malfunctioning Steam Dump System.

Since T_{avg} is used as an indication of bulk RCS temperature, this Function meets redundancy requirements with one OPERABLE channel in each loop. In three loop units, these channels are used in two-out-of-three logic. In four loop units, they are used in two-out-of-four logic.

This Function must be OPERABLE in MODES 1, 2, and 3 when a secondary side break or stuck open valve could result in the rapid depressurization of the steam lines. This Function does not have to be OPERABLE in MODE 4, 5, or 6 because there is insufficient energy in the secondary side of the unit to have an accident.

The ESFAS instrumentation satisfies Criterion 3 of 10 CFR 50.36(c)(2)(ii).

ACTIONS In Table 3.3.2-1, Functions 7.b and 7.c were not included in the generic evaluations approved in either WCAP-10271, as supplemented, WCAP-15376 or WCAP-14333. In order to apply the WCAP-10271, as supplemented, and WCAP-15376 or WCAP-14333 TS relaxations to plant specific Functions not evaluated generically, licensees must submit plant specific evaluations for NRC review and approval.

A Note has been added in the ACTIONS to clarify the application of Completion Time rules. The Conditions of this Specification may be entered independently for each Function listed on Table 3.3.2-1.

ACTIONS (continued)

In the event a channel's Trip Setpoint is found nonconservative with respect to the Allowable Value, or the transmitter, instrument Loop, signal processing electronics, or bistable is found inoperable, then all affected Functions provided by that channel must be declared inoperable and the LCO Condition(s) entered for the protection Function(s) affected. When the Required Channels in Table 3.3.2-1 are specified (e.g., on a per steam line, per loop, per SG, etc., basis), then the Condition may be entered separately for each steam line, loop, SG, etc., as appropriate.

When the number of inoperable channels in a trip function exceed those specified in one or other related Conditions associated with a trip function, then the unit is outside the safety analysis. Therefore, LCO 3.0.3 should be immediately entered if applicable in the current MODE of operation.

<u>A.1</u>

Condition A applies to all ESFAS protection functions.

Condition A addresses the situation where one or more channels or trains for one or more Functions are inoperable at the same time. The Required Action is to refer to Table 3.3.2-1 and to take the Required Actions for the protection functions affected. The Completion Times are those from the referenced Conditions and Required Actions.

B.1, B.2.1, and B.2.2

Condition B applies to manual initiation of:

- SI,
- Containment Spray,
- Phase A Isolation, and
- Phase B Isolation.

ACTIONS (continued)

This action addresses the train orientation of the SSPS for the functions listed above. If a channel or train is inoperable, 24 hours is allowed to return it to an OPERABLE status. Note that for containment spray and Phase B isolation, failure of one or both channels in one train renders the train inoperable. Condition B, therefore, encompasses both situations. The specified Completion Time is reasonable considering that there are two automatic actuation trains and another manual initiation train OPERABLE for each Function, and the low probability of an event occurring during this interval. If the train cannot be restored to OPERABLE status, the unit must be placed in a MODE in which the LCO does not apply. This is done by placing the unit in at least MODE 3 within an additional 6 hours (54 hours total time) and in MODE 5 within an additional 30 hours (84 hours total time). The allowable Completion Times are reasonable, based on operating experience, to reach the required unit conditions from full power conditions in an orderly manner and without challenging unit systems.

C.1, C.2.1, and C.2.2

Condition C applies to the automatic actuation logic and actuation relays for the following functions:

- SI,
- Containment Spray,
- Phase A Isolation,
- Phase B Isolation, and
- Automatic Switchover to Containment Sump.

This action addresses the train orientation of the SSPS and the master and slave relays. If one train is inoperable, 24 hours are allowed to restore the train to OPERABLE status. The 24 hours allowed for restoring the inoperable train to OPERABLE status is justified in Reference 8. The specified Completion Time is reasonable considering that there is another train OPERABLE, and the low probability of an event occurring during this interval. If the train cannot be restored to OPERABLE status, the unit must be placed in a MODE in which the LCO does not apply. This is done by placing the unit in at least MODE 3 within

ACTIONS (continued)

an additional 6 hours (30 hours total time) and in MODE 5 within an additional 30 hours (60 hours total time). The Completion Times are reasonable, based on operating experience, to reach the required unit conditions from full power conditions in an orderly manner and without challenging unit systems.

The Required Actions are modified by a Note that allows one train to be bypassed for up to [4] hours for surveillance testing, provided the other train is OPERABLE. This allowance is based on the reliability analysis assumption of WCAP-10271-P-A (Ref. 9) that 4 hours is the average time required to perform train surveillance.

D.1, D.2.1, and D.2.2

Condition D applies to:

- Containment Pressure High 1,
- Pressurizer Pressure Low (two, three, and four loop units),
- Steam Line Pressure Low,
- Steam Line Differential Pressure High,
- High Steam Flow in Two Steam Lines Coincident With T_{avg} Low Low or Coincident With Steam Line Pressure Low,
- Containment Pressure High 2,
- Steam Line Pressure Negative Rate High,
- High Steam Flow Coincident With Safety Injection Coincident With T_{avg} - Low Low,
- High High Steam Flow Coincident With Safety Injection,
- High Steam Flow in Two Steam Lines Coincident With T_{avg} Low Low,
- SG Water level Low Low (two, three, and four loop units), and
- [SG Water level High High (P-14) (two, three, and four loop units).]

ACTIONS (continued)

If one channel is inoperable, 72 hours are allowed to restore the channel to OPERABLE status or to place it in the tripped condition. Generally this Condition applies to functions that operate on two-out-of-three logic. Therefore, failure of one channel places the Function in a two-out-of-two configuration. One channel must be tripped to place the Function in a one-out-of-three configuration that satisfies redundancy requirements. The 72 hours allowed to restore the channel to OPERABLE status or to place it in the tripped condition is justified in Reference 8.

Failure to restore the inoperable channel to OPERABLE status or place it in the tripped condition within 72 hours requires the unit be placed in MODE 3 within the following 6 hours and MODE 4 within the next 6 hours.

The allowed Completion Times are reasonable, based on operating experience, to reach the required unit conditions from full power conditions in an orderly manner and without challenging unit systems. In MODE 4, these Functions are no longer required OPERABLE.

[The Required Actions are modified by a Note that allows the inoperable channel to be bypassed for up to 12 hours for surveillance testing of other channels. The 12 hours allowed for testing, are justified in Reference 8.]

The Required Actions are modified by a Note that allows placing one channel in bypass for up to 12 hours while performing routine surveillance testing. The 12 hour time limit is justified in Reference 8.

E.1, E.2.1, and E.2.2

Condition E applies to:

- Containment Spray Containment Pressure High 3 (High, High) (two, three, and four loop units), and
- Containment Phase B Isolation Containment Pressure High 3 (High, High).

ACTIONS (continued)

None of these signals has input to a control function. Thus, two-out-ofthree logic is necessary to meet acceptable protective requirements. However, a two-out-of-three design would require tripping a failed channel. This is undesirable because a single failure would then cause spurious containment spray initiation. Spurious spray actuation is undesirable because of the cleanup problems presented. Therefore, these channels are designed with two-out-of-four logic so that a failed channel may be bypassed rather than tripped. Note that one channel may be bypassed and still satisfy the single failure criterion. Furthermore, with one channel bypassed, a single instrumentation channel failure will not spuriously initiate containment spray.

To avoid the inadvertent actuation of containment spray and Phase B containment isolation, the inoperable channel should not be placed in the tripped condition. Instead it is bypassed. Restoring the channel to OPERABLE status, or placing the inoperable channel in the bypass condition within 72 hours, is sufficient to assure that the Function remains OPERABLE and minimizes the time that the Function may be in a partial trip condition (assuming the inoperable channel has failed high). The Completion Time is further justified based on the low probability of an event occurring during this interval. Failure to restore the inoperable channel to OPERABLE status, or place it in the bypassed condition within 6 hours, requires the unit be placed in MODE 3 within the following 6 hours and MODE 4 within the next 72 hours. The allowed Completion Times are reasonable, based on operating experience, to reach the required unit conditions from full power conditions in an orderly manner and without challenging unit systems. In MODE 4, these Functions are no longer required OPERABLE.

[The Required Actions are modified by a Note that allows one additional channel to be bypassed for up to 12 hours for surveillance testing. Placing a second channel in the bypass condition for up to 12 hours for testing purposes is acceptable based on the results of Reference 8.]

------REVIEWER'S NOTE------The below text should be used for plants with installed bypass test capability:

The Required Actions are modified by a Note that allows placing one channel in bypass for up to 12 hours while performing routine surveillance testing. The 12 hour time limit is justified in Reference 8.

ACTIONS (continued)

F.1, F.2.1, and F.2.2

Condition F applies to:

- Manual Initiation of Steam Line Isolation,
- Loss of Offsite Power,
- Auxiliary Feedwater Pump Suction Transfer on Suction Pressure -Low, and
- P-4 Interlock.

For the Manual Initiation and the P-4 Interlock Functions, this action addresses the train orientation of the SSPS. For the Loss of Offsite Power Function, this action recognizes the lack of manual trip provision for a failed channel. For the AFW System pump suction transfer channels, this action recognizes that placing a failed channel in trip during operation is not necessarily a conservative action. Spurious trip of this function could align the AFW System to a source that is not immediately capable of supporting pump suction. If a train or channel is inoperable, 48 hours is allowed to return it to OPERABLE status. The specified Completion Time is reasonable considering the nature of these Functions, the available redundancy, and the low probability of an event occurring during this interval. If the Function cannot be returned to OPERABLE status, the unit must be placed in MODE 3 within the next 6 hours and MODE 4 within the following 6 hours. The allowed Completion Times are reasonable. based on operating experience, to reach the required unit conditions from full power in an orderly manner and without challenging unit systems. In MODE 4, the unit does not have any analyzed transients or conditions that require the explicit use of the protection functions noted above.

G.1, G.2.1, and G.2.2

Condition G applies to the automatic actuation logic and actuation relays for the Steam Line Isolation [,Turbine Trip and Feedwater Isolation,] and AFW actuation Functions.

ACTIONS (continued)

The action addresses the train orientation of the SSPS and the master and slave relays for these functions. If one train is inoperable, 24 hours are allowed to restore the train to OPERABLE status. The 24 hours allowed for restoring the inoperable train to OPERABLE status is justified in Reference 8. The Completion Time for restoring a train to OPERABLE status is reasonable considering that there is another train OPERABLE. and the low probability of an event occurring during this interval. If the train cannot be returned to OPERABLE status, the unit must be brought to MODE 3 within the next 6 hours and MODE 4 within the following 6 hours. The allowed Completion Times are reasonable, based on operating experience, to reach the required unit conditions from full power conditions in an orderly manner and without challenging unit systems. Placing the unit in MODE 4 removes all requirements for OPERABILITY of the protection channels and actuation functions. In this MODE, the unit does not have analyzed transients or conditions that require the explicit use of the protection functions noted above.

The Required Actions are modified by a Note that allows one train to be bypassed for up to [4] hours for surveillance testing provided the other train is OPERABLE. This allowance is based on the reliability analysis (Ref. 9) assumption that 4 hours is the average time required to perform channel surveillance.

[<u>H.1 and H.2</u>

Condition H applies to the automatic actuation logic and actuation relays for the Turbine Trip and Feedwater Isolation Function.

This action addresses the train orientation of the SSPS and the master and slave relays for this Function. If one train is inoperable, 24 hours are allowed to restore the train to OPERABLE status or the unit must be placed in MODE 3 within the following 6 hours. The 24 hours allowed for restoring the inoperable train to OPERABLE status is justified in Reference 8. The Completion Time for restoring a train to OPERABLE status is reasonable considering that there is another train OPERABLE. and the low probability of an event occurring during this interval. The allowed Completion Time of 6 hours is reasonable, based on operating experience, to reach MODE 3 from full power conditions in an orderly manner and without challenging unit systems. These Functions are no longer required in MODE 3. Placing the unit in MODE 3 removes all requirements for OPERABILITY of the protection channels and actuation functions. In this MODE, the unit does not have analyzed transients or conditions that require the explicit use of the protection functions noted above.

ACTIONS (continued)

The Required Actions are modified by a Note that allows one train to be bypassed for up to [4] hours for surveillance testing provided the other train is OPERABLE. This allowance is based on the reliability analysis (Ref. 9) assumption that 4 hours is the average time required to perform channel surveillance.]

1.1 and 1.2

Condition I applies to:

- [SG Water Level High High (P-14) (two, three, and four loop units), and]
- Undervoltage Reactor Coolant Pump.

If one channel is inoperable, 72 hours are allowed to restore one channel to OPERABLE status or to place it in the tripped condition. If placed in the tripped condition, the Function is then in a partial trip condition where one-out-of-two or one-out-of-three logic will result in actuation. Failure to restore the inoperable channel to OPERABLE status or place it in the tripped condition within 72 hours requires the unit to be placed in MODE 3 within the following 6 hours. The allowed Completion Time of 78 hours is reasonable, based on operating experience, to reach MODE 3 from full power conditions in an orderly manner and without challenging unit systems. In MODE 3, these Functions are no longer required OPERABLE.

[The Required Actions are modified by a Note that allows the inoperable channel to be bypassed for up to [12] hours for surveillance testing of other channels. The 72 hours allowed to place the inoperable channel in the tripped condition, and the 12 hours allowed for a second channel to be in the bypassed condition for testing, are justified in Reference 8.]

The Required Actions are modified by a Note that allows placing one channel in bypass for up to 12 hours while performing routine surveillance - testing. The 72 hours allowed to place the inoperable channel in the tripped condition, and the 12 hours allowed for a second channel to be in the bypassed condition for testing, are justified in Reference 8.

ACTIONS (continued)

J.1 and J.2

Condition J applies to the AFW pump start on trip of all MFW pumps.

This action addresses the train orientation of the SSPS for the auto start function of the AFW System on loss of all MFW pumps. The OPERABILITY of the AFW System must be assured by allowing automatic start of the AFW System pumps. If a channel is inoperable, 48 hours are allowed to return it to an OPERABLE status. If the function cannot be returned to an OPERABLE status, 6 hours are allowed to place the unit in MODE 3. The allowed Completion Time of 6 hours is reasonable, based on operating experience, to reach MODE 3 from full power conditions in an orderly manner and without challenging unit systems. In MODE 3, the unit does not have any analyzed transients or conditions that require the explicit use of the protection function noted above. The allowance of 48 hours to return the train to an OPERABLE status is justified in Reference 9.

K.1, K.2.1, and K.2.2

Condition K applies to:

- RWST Level Low Low Coincident with Safety Injection, and
- RWST Level Low Low Coincident with Safety Injection and Coincident with Containment Sump Level High.

RWST Level - Low Low Coincident With SI and Coincident With Containment Sump Level - High provides actuation of switchover to the containment sump. Note that this Function requires the bistables to energize to perform their required action. The failure of up to two channels will not prevent the operation of this Function. However, placing a failed channel in the tripped condition could result in a premature switchover to the sump, prior to the injection of the minimum volume from the RWST. Placing the inoperable channel in bypass results in a two-outof-three logic configuration, which satisfies the requirement to allow another failure without disabling actuation of the switchover when required. Restoring the channel to OPERABLE status or placing the inoperable channel in the bypass condition within [6] hours is sufficient to ensure that the Function remains OPERABLE, and minimizes the time that the Function may be in a partial trip condition (assuming the

ACTIONS (continued)

inoperable channel has failed high). The [6] hour Completion Time is justified in Reference 10. If the channel cannot be returned to OPERABLE status or placed in the bypass condition within 6 hours, the unit must be brought to MODE 3 within the following [6] hours and MODE 5 within the next 30 hours. The allowed Completion Times are reasonable, based on operating experience, to reach the required unit conditions from full power conditions in an orderly manner and without challenging unit systems. In MODE 5, the unit does not have any analyzed transients or conditions that require the explicit use of the protection functions noted above.

[The Required Actions are modified by a Note that allows placing a second channel in the bypass condition for up to [4] hours for surveillance testing. The total of [12] hours to reach MODE 3 and [4] hours for a second channel to be bypassed is acceptable based on the results of Reference 10.]

------REVIEWER'S NOTE-------The below text should be used for plants with installed bypass test capability:

The Required Actions are modified by a Note that allows placing one channel in bypass for up to 12 hours while performing routine surveillance testing. The channel to be tested can be tested in bypass with the inoperable channel also in bypass. The total of [12] hours to reach MODE 3 and [4] hours for a second channel to be bypassed is acceptable based on the results of Reference 10.

L.1, L.2.1, and L.2.2

Condition L applies to the P-11 and P-12 [and P-14] interlocks.

With one or more channels inoperable, the operator must verify that the interlock is in the required state for the existing unit condition. This action manually accomplishes the function of the interlock. Determination must be made within 1 hour. The 1 hour Completion Time is equal to the time allowed by LCO 3.0.3 to initiate shutdown actions in the event of a complete loss of ESFAS function. If the interlock is not in the required state (or placed in the required state) for the existing unit condition, the unit must be placed in MODE 3 within the next 6 hours and MODE 4 within the following 6 hours. The allowed Completion Times are reasonable, based on operating experience, to reach the required unit conditions from full power conditions in an orderly manner and without challenging unit systems. Placing the unit in MODE 4 removes all requirements for OPERABILITY of these interlocks.

SURVEILLANCE REQUIREMENTS	REVIEWER'S NOTE
	The SRs for each ESFAS Function are identified by the SRs column of Table 3.3.2-1.
	A Note has been added to the SR Table to clarify that Table $3.3.2-1$ determines which SRs apply to which ESFAS Functions.
	Note that each channel of process protection supplies both trains of the ESFAS. When testing channel I, train A and train B must be examined. Similarly, train A and train B must be examined when testing channel II, channel III, and channel IV (if applicable). The CHANNEL CALIBRATION and COTs are performed in a manner that is consistent with the assumptions used in analytically calculating the required channel accuracies.
	BEV/JEWER'S NOTE
	Certain Frequencies are based on approved topical reports. In order for a licensee to use these times, the licensee must justify the Frequencies as required by the staff SER for the topical report.
	<u>SR_3.3.2.1</u>
	Performance of the CHANNEL CHECK once every 12 hours ensures that a gross failure of instrumentation has not occurred. A CHANNEL CHECK is normally a comparison of the parameter indicated on one channel to a similar parameter on other channels. It is based on the assumption that

similar parameter on other channels. It is based on the assumption that instrument channels monitoring the same parameter should read approximately the same value. Significant deviations between the two instrument channels could be an indication of excessive instrument drift in one of the channels or of something even more serious. A CHANNEL CHECK will detect gross channel failure; thus, it is key to verifying the instrumentation continues to operate properly between each CHANNEL CALIBRATION.

.

SURVEILLANCE REQUIREMENTS (continued)

Agreement criteria are determined by the unit staff, based on a combination of the channel instrument uncertainties, including indication and reliability. If a channel is outside the criteria, it may be an indication that the sensor or the signal processing equipment has drifted outside its limit.

The Frequency is based on operating experience that demonstrates channel failure is rare. The CHANNEL CHECK supplements less formal, but more frequent, checks of channels during normal operational use of the displays associated with the LCO required channels.

<u>SR 3.3.2.2</u>

SR 3.3.2.2 is the performance of an ACTUATION LOGIC TEST. The SSPS is tested every 92 days on a STAGGERED TEST BASIS, using the semiautomatic tester. The train being tested is placed in the bypass condition, thus preventing inadvertent actuation. Through the semiautomatic tester, all possible logic combinations, with and without applicable permissives, are tested for each protection function. In addition, the master relay coil is pulse tested for continuity. This verifies that the logic modules are OPERABLE and that there is an intact voltage signal path to the master relay coils. The Frequency of every 92 days on a STAGGERED TEST BASIS is justified in Reference 11.

SR 3.3.2.3

SR 3.3.2.3 is the performance of an ACTUATION LOGIC TEST as described in SR 3.3.2.2, except that the semiautomatic tester is not used and the continuity check does not have to be performed, as explained in the Note. This SR is applied to the balance of plant actuation logic and relays that do not have the SSPS test circuits installed to utilize the semiautomatic tester or perform the continuity check. This test is also performed every 31 days on a STAGGERED TEST BASIS. The Frequency is adequate based on industry operating experience, considering instrument reliability and operating history data.

SURVEILLANCE REQUIREMENTS (continued)

SR 3.3.2.4

SR 3.3.2.4 is the performance of a MASTER RELAY TEST. The MASTER RELAY TEST is the energizing of the master relay, verifying contact operation and a low voltage continuity check of the slave relay coil. Upon master relay contact operation, a low voltage is injected to the slave relay coil. This voltage is insufficient to pick up the slave relay, but large enough to demonstrate signal path continuity. This test is performed every 92 days on a STAGGERED TEST BASIS. The time allowed for the testing (4 hours) is justified in Reference 11. The Frequency of 92 days is justified in Reference 9.

<u>SR_3.3.2.5</u>

SR 3.3.2.5 is the performance of a COT.

A COT is performed on each required channel to ensure the entire channel will perform the intended Function. Setpoints must be found within the Allowable Values specified in Table 3.3.1-1. A successful test of the required contact(s) of a channel relay may be performed by the verification of the change of state of a single contact of the relay. This clarifies what is an acceptable COT of a relay. This is acceptable because all of the other required contacts of the relay are verified by other Technical Specifications and non-Technical Specifications tests at least once per refueling interval with applicable extensions.

The difference between the current "as found" values and the previous test "as left" values must be consistent with the drift allowance used in the setpoint methodology. The setpoint shall be left set consistent with the assumptions of the current unit specific setpoint methodology.

The "as found" and "as left" values must also be recorded and reviewed for consistency with the assumptions of Reference 6.

The Frequency of 184 days is justified in Reference 11.

SURVEILLANCE REQUIREMENTS (continued)

SR 3.3.2.6

SR 3.3.2.6 is the performance of a SLAVE RELAY TEST. The SLAVE RELAY TEST is the energizing of the slave relays. Contact operation is verified in one of two ways. Actuation equipment that may be operated in the design mitigation MODE is either allowed to function, or is placed in a condition where the relay contact operation can be verified without operation of the equipment. Actuation equipment that may not be operated in the design mitigation MODE is prevented from operation by the SLAVE RELAY TEST circuit. For this latter case, contact operation is verified by a continuity check of the circuit containing the slave relay. This test is performed every [92] days. The Frequency is adequate, based on industry operating experience, considering instrument reliability and operating history data.

<u>SR 3.3.2.7</u>

SR 3.3.2.7 is the performance of a TADOT every [92] days. This test is a check of the Loss of Offsite Power, Undervoltage RCP, and AFW Pump Suction Transfer on Suction Pressure - Low Functions. Each Function is tested up to, and including, the master transfer relay coils. A successful test of the required contact(s) of a channel relay may be performed by the verification of the change of state of a single contact of the relay. This clarifies what is an acceptable TADOT of a relay. This is acceptable because all of the other required contacts of the relay are verified by other Technical Specifications and non-Technical Specifications tests at least once per refueling interval with applicable extensions.

The test also includes trip devices that provide actuation signals directly to the SSPS. The SR is modified by a Note that excludes verification of setpoints for relays. Relay setpoints require elaborate bench calibration and are verified during CHANNEL CALIBRATION. The Frequency is adequate. It is based on industry operating experience, considering instrument reliability and operating history data.

SURVEILLANCE REQUIREMENTS (continued)

SR 3.3.2.8

SR 3.3.2.8 is the performance of a TADOT. This test is a check of the Manual Actuation Functions and AFW pump start on trip of all MFW pumps. It is performed every [18] months. Each Manual Actuation Function is tested up to, and including, the master relay coils. A successful test of the required contact(s) of a channel relay may be performed by the verification of the change of state of a single contact of the relay. This clarifies what is an acceptable TADOT of a relay. This is acceptable because all of the other required contacts of the relay are verified by other Technical Specifications and non-Technical Specifications tests at least once per refueling interval with applicable extensions. In some instances, the test includes actuation of the end device (i.e., pump starts, valve cycles, etc.). The Frequency is adequate, based on industry operating experience and is consistent with the typical refueling cycle. The SR is modified by a Note that excludes verification of setpoints during the TADOT for manual initiation Functions. The manual initiation Functions have no associated setpoints.

<u>SR 3.3.2.9</u>

SR 3.3.2.9 is the performance of a CHANNEL CALIBRATION.

A CHANNEL CALIBRATION is performed every [18] months, or approximately at every refueling. CHANNEL CALIBRATION is a complete check of the instrument loop, including the sensor. The test verifies that the channel responds to measured parameter within the necessary range and accuracy.

CHANNEL CALIBRATIONS must be performed consistent with the assumptions of the unit specific setpoint methodology. The difference between the current "as found" values and the previous test "as left" values must be consistent with the drift allowance used in the setpoint methodology.

The Frequency of [18] months is based on the assumption of an [18] month calibration interval in the determination of the magnitude of equipment drift in the setpoint methodology.

This SR is modified by a Note stating that this test should include verification that the time constants are adjusted to the prescribed values where applicable.
SURVEILLANCE REQUIREMENTS (continued)

SR 3.3.2.10

This SR ensures the individual channel ESF RESPONSE TIMES are less than or equal to the maximum values assumed in the accident analysis. Response Time testing acceptance criteria are included in the Technical Requirements Manual, Section 15 (Ref. 12). Individual component response times are not modeled in the analyses. The analyses model the overall or total elapsed time, from the point at which the parameter exceeds the Trip Setpoint value at the sensor, to the point at which the equipment in both trains reaches the required functional state (e.g., pumps at rated discharge pressure, valves in full open or closed position).

For channels that include dynamic transfer functions (e.g., lag, lead/lag, rate/lag, etc.), the response time test may be performed with the transfer functions set to one with the resulting measured response time compared to the appropriate FSAR response time. Alternately, the response time test can be performed with the time constants set to their nominal value provided the required response time is analytically calculated assuming the time constants are set at their nominal values. The response time may be measured by a series of overlapping tests such that the entire response time is measured.

Response time may be verified by actual response time tests in any series of sequential, overlapping or total channel measurements, or by the summation of allocated sensor, signal processing and actuation logic response times with actual response time tests on the remainder of the channel. Allocations for sensor response times may be obtained from: (1) historical records based on acceptable response time tests (hydraulic, noise, or power interrupt tests), (2) in place, onsite, or offsite (e.g., vendor) test measurements, or (3) utilizing vendor engineering specifications. WCAP-13632-P-A, Revision 2, "Elimination of Pressure Sensor Response Time Testing Requirements," (Ref. 13) dated January 1996, provides the basis and methodology for using allocated sensor response times in the overall verification of the channel response time for specific sensors identified in the WCAP. Response time verification for other sensor types must be demonstrated by test.

SURVEILLANCE REQUIREMENTS (continued)

WCAP-14036-P, Revision 1, "Elimination of Periodic Protection Channel Response Time Tests," (Ref. 14) provides the basis and methodology for using allocated signal processing and actuation logic response times in the overall verification of the protection system channel response time. The allocations for sensor, signal conditioning, and actuation logic response times must be verified prior to placing the component in operational service and re-verified following maintenance that may adversely affect response time. In general, electrical repair work does not impact response time provided the parts used for repair are of the same type and value. Specific components identified in the WCAP may be replaced without verification testing. One example where response time could be affected is replacing the sensing assembly of a transmitter.

ESF RESPONSE TIME tests are conducted on an [18] month STAGGERED TEST BASIS. Testing of the final actuation devices, which make up the bulk of the response time, is included in the testing of each channel. The final actuation device in one train is tested with each channel. Therefore, staggered testing results in response time verification of these devices every [18] months. The [18] month Frequency is consistent with the typical refueling cycle and is based on unit operating experience, which shows that random failures of instrumentation components causing serious response time degradation, but not channel failure, are infrequent occurrences.

This SR is modified by a Note that clarifies that the turbine driven AFW pump is tested within 24 hours after reaching [1000] psig in the SGs.

SR 3.3.2.11

SR 3.3.2.11 is the performance of a TADOT as described in SR 3.3.2.8, except that it is performed for the P-4 Reactor Trip Interlock, and the Frequency is once per RTB cycle. A successful test of the required contact(s) of a channel relay may be performed by the verification of the change of state of a single contact of the relay. This clarifies what is an acceptable TADOT of a relay. This is acceptable because all of the other required contacts of the relay are verified by other Technical Specifications and non-Technical Specifications tests at least once per refueling interval with applicable extensions. This Frequency is based on operating experience demonstrating that undetected failure of the P-4 interlock sometimes occurs when the RTB is cycled.

The SR is modified by a Note that excludes verification of setpoints during the TADOT. The Function tested has no associated setpoint.

BASES	·
REFERENCES	1. FSAR, Chapter [6].
	2. FSAR, Chapter [7].
	3. FSAR, Chapter [15].
	4. IEEE-279-1971.
	5. 10 CFR 50.49.
	6. Plant-specific setpoint methodology study.
	7. NUREG-1218, April 1988.
	8. WCAP-14333-P-A, Rev. 1, October 1998.
	9. WCAP-10271-P-A, Supplement 2, Rev. 1, June 1990.
	10. [Plant specific evaluation reference.]
	11. WCAP-15376, Rev. 0. October 2000.
	12. Technical Requirements Manual, Section 15, "Response Times."
	 WCAP-13632-P-A, Revision 2, "Elimination of Pressure Sensor Response Time Testing Requirements," January 1996.
	 WCAP-14036-P, Revision 1, "Elimination of Periodic Protection Channel Response Time Tests," December 1995.

B 3.3 INSTRUMENTATION

B 3.3.3 Post Accident Monitoring (PAM) Instrumentation

BASES	
BACKGROUND	The primary purpose of the PAM instrumentation is to display unit variables that provide information required by the control room operators during accident situations. This information provides the necessary support for the operator to take the manual actions for which no automatic control is provided and that are required for safety systems to accomplish their safety functions for Design Basis Accidents (DBAs).
	The OPERABILITY of the accident monitoring instrumentation ensures that there is sufficient information available on selected unit parameters to monitor and to assess unit status and behavior following an accident.
	The availability of accident monitoring instrumentation is important so that responses to corrective actions can be observed and the need for, and magnitude of, further actions can be determined. These essential instruments are identified by unit specific documents (Ref. 1) addressing the recommendations of Regulatory Guide 1.97 (Ref. 2) as required by Supplement 1 to NUREG-0737 (Ref. 3).
	The instrument channels required to be OPERABLE by this LCO include two classes of parameters identified during unit specific implementation of Regulatory Guide 1.97 as Type A and Category I variables.
	Type A variables are included in this LCO because they provide the primary information required for the control room operator to take specific manually controlled actions for which no automatic control is provided, and that are required for safety systems to accomplish their safety functions for DBAs. Because the list of Type A variables differs widely between units, Table 3.3.3-1 in the accompanying LCO contains no examples of Type A variables, except for those that may also be Category I variables.
	Category I variables are the key variables deemed risk significant because they are needed to:
	• Determine whether other systems important to safety are performing their intended functions,
	 Provide information to the operators that will enable them to determine the likelihood of a gross breach of the barriers to radioactivity release, and

BACKGROUND	(continued)
DAGROROOND	(continuou)

	 Provide information regarding the release of radioactive materials to allow for early indication of the need to initiate action necessary to protect the public, and to estimate the magnitude of any impending threat. 		
	These key variables are identified by the unit specific Regulatory Guide 1.97 analyses (Ref. 1). These analyses identify the unit specific Type A and Category I variables and provide justification for deviating from the NRC proposed list of Category I variables.		
	REVIEWER'S NOTE Table 3.3.3-1 provides a list of variables typical of those identified by the unit specific Regulatory Guide 1.97 analyses. Table 3.3.3-1 in unit specific Technical Specifications (TS) shall list all Type A and Category I variables identified by the unit specific Regulatory Guide 1.97 analyses, as amended by the NRC's Safety Evaluation Report (SER).		
	The specific instrument Functions listed in Table 3.3.3-1 are discussed in the LCO section.		
APPLICABLE SAFETY ANALYSES	The PAM instrumentation ensures the operability of Regulatory Guide 1.97 Type A and Category I variables so that the control room operating staff can:		
	 Perform the diagnosis specified in the emergency operating procedures (these variables are restricted to preplanned actions for the primary success path of DBAs), e.g., loss of coolant accident (LOCA), 		
	 Take the specified, pre-planned, manually controlled actions, for which no automatic control is provided, and that are required for safety systems to accomplish their safety function, 		
	 Determine whether systems important to safety are performing their intended functions, 		
	 Determine the likelihood of a gross breach of the barriers to radioactivity release, 		
	 Determine if a gross breach of a barrier has occurred, and 		

LCO

APPLICABLE SAFETY ANALYSES (continued)

• Initiate action necessary to protect the public and to estimate the magnitude of any impending threat.

PAM instrumentation that meets the definition of Type A in Regulatory Guide 1.97 satisfies Criterion 3 of 10 CFR 50.36(c)(2)(ii). Category I, non-Type A, instrumentation must be retained in TS because it is intended to assist operators in minimizing the consequences of accidents. Therefore, Category I, non-Type A, variables are important for reducing public risk.

The PAM instrumentation LCO provides OPERABILITY requirements for Regulatory Guide 1.97 Type A monitors, which provide information required by the control room operators to perform certain manual actions specified in the unit Emergency Operating Procedures. These manual actions ensure that a system can accomplish its safety function, and are credited in the safety analyses. Additionally, this LCO addresses Regulatory Guide 1.97 instruments that have been designated Category I, non-Type A.

The OPERABILITY of the PAM instrumentation ensures there is sufficient information available on selected unit parameters to monitor and assess unit status following an accident. This capability is consistent with the recommendations of Reference 1.

LCO 3.3.3 requires two OPERABLE channels for most Functions. Two OPERABLE channels ensure no single failure prevents operators from getting the information necessary for them to determine the safety status of the unit, and to bring the unit to and maintain it in a safe condition following an accident.

Furthermore, OPERABILITY of two channels allows a CHANNEL CHECK during the post accident phase to confirm the validity of displayed information. More than two channels may be required at some units if the unit specific Regulatory Guide 1.97 analyses (Ref. 1) determined that failure of one accident monitoring channel results in information ambiguity (that is, the redundant displays disagree) that could lead operators to defeat or fail to accomplish a required safety function.

The exception to the two channel requirement is Containment Isolation Valve (CIV) Position. In this case, the important information is the status of the containment penetrations. The LCO requires one position indicator for each active CIV. This is sufficient to redundantly verify the isolation status of each isolable penetration either via indicated status of the active valve and prior knowledge of a passive valve, or via system boundary

LCO (continued)

status. If a normally active CIV is known to be closed and deactivated, position indication is not needed to determine status. Therefore, the position indication for valves in this state is not required to be OPERABLE.

Table 3.3.3-1 provides a list of variables typical of those identified by the unit specific Regulatory Guide 1.97 (Ref. 1) analyses. Table 3.3.3-1 in unit specific TS should list all Type A and Category I variables identified by the unit specific Regulatory Guide 1.97 analyses, as amended by the NRC's SER.

Type A and Category I variables are required to meet Regulatory Guide 1.97 Category I (Ref. 2) design and qualification requirements for seismic and environmental qualification, single failure criterion, utilization of emergency standby power, immediately accessible display, continuous readout, and recording of display.

Listed below are discussions of the specified instrument Functions listed in Table 3.3.3-1. These discussions are intended as examples of what should be provided for each Function when the unit specific list is prepared.

1, 2. Power Range and Source Range Neutron Flux

Power Range and Source Range Neutron Flux indication is provided to verify reactor shutdown. The two ranges are necessary to cover the full range of flux that may occur post accident.

Neutron flux is used for accident diagnosis, verification of subcriticality, and diagnosis of positive reactivity insertion.

3, 4. Reactor Coolant System (RCS) Hot and Cold Leg Temperatures

RCS Hot and Cold Leg Temperatures are Category I variables provided for verification of core cooling and long term surveillance.

RCS hot and cold leg temperatures are used to determine RCS subcooling margin. RCS subcooling margin will allow termination of safety injection (SI), if still in progress, or reinitiation of SI if it has been stopped. RCS subcooling margin is also used for unit stabilization and cooldown control.

LCO (continued)

In addition, RCS cold leg temperature is used in conjunction with RCS hot leg temperature to verify the unit conditions necessary to establish natural circulation in the RCS.

Reactor outlet temperature inputs to the Reactor Protection System are provided by two fast response resistance elements and associated transmitters in each loop. The channels provide indication over a range of 32°F to 700°F.

5. <u>Reactor Coolant System Pressure (Wide Range)</u>

RCS wide range pressure is a Category I variable provided for verification of core cooling and RCS integrity long term surveillance.

RCS pressure is used to verify delivery of SI flow to RCS from at least one train when the RCS pressure is below the pump shutoff head. RCS pressure is also used to verify closure of manually closed spray line valves and pressurizer power operated relief valves (PORVs).

In addition to these verifications, RCS pressure is used for determining RCS subcooling margin. RCS subcooling margin will allow termination of SI, if still in progress, or reinitiation of SI if it has been stopped. RCS pressure can also be used:

- to determine whether to terminate actuated SI or to reinitiate stopped SI,
- to determine when to reset SI and shut off low head SI,
- to manually restart low head SI,
- as reactor coolant pump (RCP) trip criteria, and
- to make a determination on the nature of the accident in progress and where to go next in the procedure.

RCS subcooling margin is also used for unit stabilization and cooldown control.

LCO (continued)

RCS pressure is also related to three decisions about depressurization. They are:

- to determine whether to proceed with primary system depressurization,
- to verify termination of depressurization, and
- to determine whether to close accumulator isolation valves during a controlled cooldown/depressurization.

A final use of RCS pressure is to determine whether to operate the pressurizer heaters.

In some units, RCS pressure is a Type A variable because the operator uses this indication to monitor the cooldown of the RCS following a steam generator tube rupture (SGTR) or small break LOCA. Operator actions to maintain a controlled cooldown, such as adjusting steam generator (SG) pressure or level, would use this indication. Furthermore, RCS pressure is one factor that may be used in decisions to terminate RCP operation.

6. Reactor Vessel Water Level

Reactor Vessel Water Level is provided for verification and long term surveillance of core cooling. It is also used for accident diagnosis and to determine reactor coolant inventory adequacy.

The Reactor Vessel Water Level Monitoring System provides a direct measurement of the collapsed liquid level above the fuel alignment plate. The collapsed level represents the amount of liquid mass that is in the reactor vessel above the core. Measurement of the collapsed water level is selected because it is a direct indication of the water inventory.

7. Containment Sump Water Level (Wide Range)

Containment Sump Water Level is provided for verification and long term surveillance of RCS integrity.

Containment Sump Water Level is used to determine:

containment sump level accident diagnosis,

LCO (continued)

- when to begin the recirculation procedure, and
- whether to terminate SI, if still in progress.
- 8. <u>Containment Pressure (Wide Range)</u>

Containment Pressure (Wide Range) is provided for verification of RCS and containment OPERABILITY.

Containment pressure is used to verify closure of main steam isolation valves (MSIVs), and containment spray Phase B isolation when High-3 containment pressure is reached.

9. Containment Isolation Valve Position

CIV Position is provided for verification of Containment OPERABILITY, and Phase A and Phase B isolation.

When used to verify Phase A and Phase B isolation, the important information is the isolation status of the containment penetrations. The LCO requires one channel of valve position indication in the control room to be OPERABLE for each active CIV in a containment penetration flow path, i.e., two total channels of CIV position indication for a penetration flow path with two active valves. For containment penetrations with only one active CIV having control room indication, Note (b) requires a single channel of valve position indication to be OPERABLE. This is sufficient to redundantly verify the isolation status of each isolable penetration either via indicated status of the active valve, as applicable, and prior knowledge of a passive valve, or via system boundary status. If a normally active CIV is known to be closed and deactivated, position indication is not needed to determine status. Therefore, the position indication for valves in this state is not required to be OPERABLE. Note (a) to the Required Channels states that the Function is not required for isolation valves whose associated penetration is isolated by at least one closed and deactivated automatic valve, closed manual valve, blind flange, or check valve with flow through the valve secured. Each penetration is treated separately and each penetration flow path is considered a separate function. Therefore, separate Condition entry is allowed for each inoperable penetration flow path.

LCO (continued)

10. Containment Area Radiation (High Range)

Containment Area Radiation is provided to monitor for the potential of significant radiation releases and to provide release assessment for use by operators in determining the need to invoke site emergency plans. Containment radiation level is used to determine if a high energy line break (HELB) has occurred, and whether the event is inside or outside of containment.

11. Pressurizer Level

Pressurizer Level is used to determine whether to terminate SI, if still in progress, or to reinitiate SI if it has been stopped. Knowledge of pressurizer water level is also used to verify the unit conditions necessary to establish natural circulation in the RCS and to verify that the unit is maintained in a safe shutdown condition.

12. Steam Generator Water Level (Wide Range)

SG Water Level is provided to monitor operation of decay heat removal via the SGs. The Category I indication of SG level is the extended startup range level instrumentation. The extended startup range level covers a span of ≥ 6 inches to ≤ 394 inches above the lower tubesheet. The measured differential pressure is displayed in inches of water at 68°F.

Temperature compensation of this indication is performed manually by the operator. Redundant monitoring capability is provided by two trains of instrumentation. The uncompensated level signal is input to the unit computer, a control room indicator, and the Emergency Feedwater Control System.

SG Water Level (Wide Range) is used to:

- identify the faulted SG following a tube rupture,
- verify that the intact SGs are an adequate heat sink for the reactor,
- determine the nature of the accident in progress (e.g., verify an SGTR), and
- verify unit conditions for termination of SI during secondary unit HELBs outside containment.

LCO (continued)

At some units, operator action is based on the control room indication of SG level. The RCS response during a design basis small break LOCA depends on the break size. For a certain range of break sizes, the boiler condenser mode of heat transfer is necessary to remove decay heat. Extended startup range level is a Type A variable because the operator must manually raise and control SG level to establish boiler condenser heat transfer. Operator action is initiated on a loss of subcooled margin. Feedwater flow is increased until the indicated extended startup range level reaches the boiler condenser setpoint.

13. Condensate Storage Tank (CST) Level

CST Level is provided to ensure water supply for auxiliary feedwater (AFW). The CST provides the ensured safety grade water supply for the AFW System. The CST consists of two identical tanks connected by a common outlet header. Inventory is monitored by a 0 inch to 144 inch level indication for each tank. CST Level is displayed on a control room indicator, strip chart recorder, and unit computer. In addition, a control room annunciator alarms on low level.

At some units, CST Level is considered a Type A variable because the control room meter and annunciator are considered the primary indication used by the operator.

The DBAs that require AFW are the loss of electric power, steam line break (SLB), and small break LOCA.

The CST is the initial source of water for the AFW System. However, as the CST is depleted, manual operator action is necessary to replenish the CST or align suction to the AFW pumps from the hotwell.

14, 15, 16, 17. Core Exit Temperature

Core Exit Temperature is provided for verification and long term surveillance of core cooling.

An evaluation was made of the minimum number of valid core exit thermocouples (CET) necessary for measuring core cooling. The evaluation determined the reduced complement of CETs necessary to detect initial core recovery and trend the ensuing core heatup. The evaluations account for core nonuniformities, including incore effects of the radial decay power distribution, excore effects of condensate runback in the hot legs, and nonuniform inlet

LCO (continued)

temperatures. Based on these evaluations, adequate core cooling is ensured with two valid Core Exit Temperature channels per quadrant with two CETs per required channel. The CET pair are oriented radially to permit evaluation of core radial decay power distribution. Core Exit Temperature is used to determine whether to terminate SI, if still in progress, or to reinitiate SI if it has been stopped. Core Exit Temperature is also used for unit stabilization and cooldown control.

Two OPERABLE channels of Core Exit Temperature are required in each quadrant to provide indication of radial distribution of the coolant temperature rise across representative regions of the core. Power distribution symmetry was considered in determining the specific number and locations provided for diagnosis of local core problems. Therefore, two randomly selected thermocouples are not sufficient to meet the two thermocouples per channel requirement in any quadrant. The two thermocouples in each channel must meet the additional requirement that one is located near the center of the core and the other near the core perimeter, such that the pair of Core Exit Temperatures indicate the radial temperature gradient across their core guadrant. Unit specific evaluations in response to Item II.F.2 of NUREG-0737 (Ref. 3) should have identified the thermocouple pairings that satisfy these requirements. Two sets of two thermocouples ensure a single failure will not disable the ability to determine the radial temperature gradient.

18. Auxiliary Feedwater Flow

AFW Flow is provided to monitor operation of decay heat removal via the SGs.

The AFW Flow to each SG is determined from a differential pressure measurement calibrated for a range of 0 gpm to 1200 gpm. Redundant monitoring capability is provided by two independent trains of instrumentation for each SG. Each differential pressure transmitter provides an input to a control room indicator and the unit computer. Since the primary indication used by the operator during an accident is the control room indicator, the PAM specification deals specifically with this portion of the instrument channel.

AFW flow is used three ways:

- to verify delivery of AFW flow to the SGs,
- to determine whether to terminate SI if still in progress, in conjunction with SG water level (narrow range), and

BASES	
LCO (continued)	
	• to regulate AFW flow so that the SG tubes remain covered.
	At some units, AFW flow is a Type A variable because operator action is required to throttle flow during an SLB accident to prevent the AFW pumps from operating in runout conditions. AFW flow is also used by the operator to verify that the AFW System is delivering the correct flow to each SG. However, the primary indication used by the operator to ensure an adequate inventory is SG level.
APPLICABILITY	The PAM instrumentation LCO is applicable in MODES 1, 2, and 3. These variables are related to the diagnosis and pre-planned actions required to mitigate DBAs. The applicable DBAs are assumed to occur in MODES 1, 2, and 3. In MODES 4, 5, and 6, unit conditions are such that the likelihood of an event that would require PAM instrumentation is low; therefore, the PAM instrumentation is not required to be OPERABLE in these MODES.
ACTIONS	A Note has been added in the ACTIONS to clarify the application of Completion Time rules. The Conditions of this Specification may be entered independently for each Function listed on Table 3.3.3-1. The Completion Time(s) of the inoperable channel(s) of a Function will be tracked separately for each Function starting from the time the Condition was entered for that Function.
	<u>A.1</u>
	Condition A applies when one or more Functions have one required channel that is inoperable. Required Action A.1 requires restoring the inoperable channel to OPERABLE status within 30 days. The 30 day Completion Time is based on operating experience and takes into account the remaining OPERABLE channel (or in the case of a Function that has only one required channel, other non Required 1.97

that has only one required channel, other non-Regulatory Guide 1.97 instrument channels to monitor the Function), the passive nature of the instrument (no critical automatic action is assumed to occur from these instruments), and the low probability of an event requiring PAM instrumentation during this interval.

ACTIONS (continued)

<u>B.1</u>

Condition B applies when the Required Action and associated Completion Time for Condition A are not met. This Required Action specifies initiation of actions in Specification 5.6.7, which requires a written report to be submitted to the NRC immediately. This report discusses the results of the root cause evaluation of the inoperability and identifies proposed restorative actions. This action is appropriate in lieu of a shutdown requirement since alternative actions are identified before loss of functional capability, and given the likelihood of unit conditions that would require information provided by this instrumentation.

<u>C.1</u>

Condition C applies when one or more Functions have two inoperable required channels (i.e., two channels inoperable in the same Function). Required Action C.1 requires restoring one channel in the Function(s) to OPERABLE status within 7 days. The Completion Time of 7 days is based on the relatively low probability of an event requiring PAM instrument operation and the availability of alternate means to obtain the required information. Continuous operation with two required channels inoperable in a Function is not acceptable because the alternate indications may not fully meet all performance qualification requirements applied to the PAM instrumentation. Therefore, requiring restoration of one inoperable channel of the Function limits the risk that the PAM Function will be in a degraded condition should an accident occur.

<u>D.1</u>

Condition D applies when the Required Action and associated Completion Time of Condition C is not met. Required Action D.1 requires entering the appropriate Condition referenced in Table 3.3.3-1 for the channel immediately. The applicable Condition referenced in the Table is Function dependent. Each time an inoperable channel has not met the Required Action of Condition C, and the associated Completion Time has expired, Condition D is entered for that channel and provides for transfer to the appropriate subsequent Condition.

ACTIONS (continued)

E.1 and E.2

If the Required Action and associated Completion Time of Condition C is not met and Table 3.3.3-1 directs entry into Condition E, the unit must be brought to a MODE where the requirements of this LCO do not apply. To achieve this status, the unit must be brought to at least MODE 3 within 6 hours and MODE 4 within 12 hours.

The allowed Completion Times are reasonable, based on operating experience, to reach the required unit conditions from full power conditions in an orderly manner and without challenging unit systems.

<u>F.1</u>

At this unit, alternate means of monitoring Reactor Vessel Water Level and Containment Area Radiation have been developed and tested. These alternate means may be temporarily installed if the normal PAM channel cannot be restored to OPERABLE status within the allotted time. If these alternate means are used, the Required Action is not to shut down the unit but rather to follow the directions of Specification 5.6.7, in the Administrative Controls section of the TS. The report provided to the NRC should discuss the alternate means used, describe the degree to which the alternate means are equivalent to the installed PAM channels, justify the areas in which they are not equivalent, and provide a schedule for restoring the normal PAM channels.

SURVEILLANCEA Note has been added to the SR Table to clarify that SR 3.3.3.1 andREQUIREMENTSSR 3.3.3.3 apply to each PAM instrumentation Function in Table 3.3.3-1.

<u>SR 3.3.3.1</u>

Performance of the CHANNEL CHECK once every 31 days ensures that a gross instrumentation failure has not occurred. A CHANNEL CHECK is normally a comparison of the parameter indicated on one channel to a similar parameter on other channels. It is based on the assumption that instrument channels monitoring the same parameter should read approximately the same value. Significant deviations between the two instrument channels could be an indication of excessive instrument drift in one of the channels or of something even more serious. A CHANNEL CHECK will detect gross channel failure; thus, it is key to verifying the instrumentation continues to operate properly between each CHANNEL CALIBRATION. The high radiation instrumentation should be compared to similar unit instruments located throughout the unit.

SURVEILLANCE REQUIREMENTS (continued)

Agreement criteria are determined by the unit staff, based on a combination of the channel instrument uncertainties, including isolation, indication, and readability. If a channel is outside the criteria, it may be an indication that the sensor or the signal processing equipment has drifted outside its limit. If the channels are within the criteria, it is an indication that the channels are OPERABLE.

As specified in the SR, a CHANNEL CHECK is only required for those channels that are normally energized.

The Frequency of 31 days is based on operating experience that demonstrates that channel failure is rare. The CHANNEL CHECK supplements less formal, but more frequent, checks of channels during normal operational use of the displays associated with the LCO required channels.

<u>SR 3.3.3.2</u>

A CHANNEL CALIBRATION is performed every [18] months, or approximately at every refueling. CHANNEL CALIBRATION is a complete check of the instrument loop, including the sensor. The test verifies that the channel responds to measured parameter with the necessary range and accuracy. This SR is modified by a Note that excludes neutron detectors. The calibration method for neutron detectors is specified in the Bases of LCO 3.3.1, "Reactor Trip System (RTS) Instrumentation." Whenever a sensing element is replaced, the next required CHANNEL CALIBRATION of the Core Exit thermocouple sensors is accomplished by an inplace cross calibration that compares the other sensing elements with the recently installed sensing element. The Frequency is based on operating experience and consistency with the typical industry refueling cycle.

REFERENCES	[1. Unit specific document (e.g., FSAR, NRC Regulatory Guide 1.97
	SER letter).]

- 2. Regulatory Guide 1.97, [date].
- 3. NUREG-0737, Supplement 1, "TMI Action Items."

B 3.3 INSTRUMENTATION

B 3.3.4 Remote Shutdown System

BASES

BACKGROUND	The Remote Shutdown System provides the control room operator with sufficient instrumentation and controls to place and maintain the unit in a safe shutdown condition from a location other than the control room. This capability is necessary to protect against the possibility that the control room becomes inaccessible. A safe shutdown condition is defined as MODE 3. With the unit in MODE 3, the Auxiliary Feedwater (AFW) System and the steam generator (SG) safety valves or the SG atmospheric dump valves (ADVs) can be used to remove core decay heat and meet all safety requirements. The long term supply of water for the AFW System and the ability to borate the Reactor Coolant System (RCS) from outside the control room allows extended operation in MODE 3.
	If the control room becomes inaccessible, the operators can establish control at the remote shutdown panel, and place and maintain the unit in MODE 3. Not all controls and necessary transfer switches are located at the remote shutdown panel. Some controls and transfer switches will have to be operated locally at the switchgear, motor control panels, or other local stations. The unit automatically reaches MODE 3 following a unit shutdown and can be maintained safely in MODE 3 for an extended period of time.
	The OPERABILITY of the remote shutdown control and instrumentation functions ensures there is sufficient information available on selected unit parameters to place and maintain the unit in MODE 3 should the control room become inaccessible.
APPLICABLE SAFETY ANALYSES	The Remote Shutdown System is required to provide equipment at appropriate locations outside the control room with a capability to promptly shut down and maintain the unit in a safe condition in MODE 3.
	The criteria governing the design and specific system requirements of the Remote Shutdown System are located in 10 CFR 50, Appendix A, GDC 19 (Ref. 1).
	The Remote Shutdown System satisfies Criterion 4 of 10 CFR 50.36(c)(2)(ii).

BASES	
LCO	The Remote Shutdown System LCO provides the OPERABILITY requirements of the instrumentation and controls necessary to place and maintain the unit in MODE 3 from a location other than the control room. The instrumentation and controls required are listed in Table B 3.3.4-1.
	The controls, instrumentation, and transfer switches are required for:
	Core reactivity control (initial and long term),
	RCS pressure control,
	 Decay heat removal via the AFW System and the SG safety valves or SG ADVs,
	RCS inventory control via charging flow, and
	 Safety support systems for the above Functions, including service water, component cooling water, and onsite power, including the diesel generators.
	A Function of a Remote Shutdown System is OPERABLE if all instrument and control channels needed to support the Remote Shutdown System Function are OPERABLE. In some cases, Table B 3.3.4-1 may indicate that the required information or control capability is available from several alternate sources. In these cases, the Function is OPERABLE as long as one channel of any of the alternate information or control sources is OPERABLE.
	The remote shutdown instrument and control circuits covered by this LCO do not need to be energized to be considered OPERABLE. This LCO is intended to ensure the instruments and control circuits will be OPERABLE if unit conditions require that the Remote Shutdown System be placed in operation.
APPLICABILITY	The Remote Shutdown System LCO is applicable in MODES 1, 2, and 3. This is required so that the unit can be placed and maintained in MODE 3 for an extended period of time from a location other than the control room.
	This LCO is not applicable in MODE 4, 5, or 6. In these MODES, the facility is already subcritical and in a condition of reduced RCS energy. Under these conditions, considerable time is available to restore necessary instrument control functions if control room instruments or controls become unavailable.

ACTIONS A Remote Shutdown System division is inoperable when each function is not accomplished by at least one designated Remote Shutdown System channel that satisfies the OPERABILITY criteria for the channel's Function. These criteria are outlined in the LCO section of the Bases.

A Note has been added to the ACTIONS to clarify the application of Completion Time rules. Separate Condition entry is allowed for each Function. The Completion Time(s) of the inoperable channel(s)/train(s) of a Function will be tracked separately for each Function starting from the time the Condition was entered for that Function.

<u>A.1</u>

Condition A addresses the situation where one or more required Functions of the Remote Shutdown System are inoperable. This includes the control and transfer switches for any required Function.

The Required Action is to restore the required Function to OPERABLE status within 30 days. The Completion Time is based on operating experience and the low probability of an event that would require evacuation of the control room.

B.1 and B.2

If the Required Action and associated Completion Time of Condition A is not met, the unit must be brought to a MODE in which the LCO does not apply. To achieve this status, the unit must be brought to at least MODE 3 within 6 hours and to MODE 4 within 12 hours. The allowed Completion Times are reasonable, based on operating experience, to reach the required unit conditions from full power conditions in an orderly manner and without challenging unit systems.

SURVEILLANCE <u>SR 3.3.4.1</u> REQUIREMENTS

Performance of the CHANNEL CHECK once every 31 days ensures that a gross failure of instrumentation has not occurred. A CHANNEL CHECK is normally a comparison of the parameter indicated on one channel to a similar parameter on other channels. It is based on the assumption that instrument channels monitoring the same parameter should read approximately the same value. Significant deviations between the two instrument channels could be an indication of excessive instrument drift in one of the channels or of something even more serious. CHANNEL CHECK will detect gross channel failure; thus, it is key to verifying that the instrumentation continues to operate properly between each CHANNEL CALIBRATION.

SURVEILLANCE REQUIREMENTS (continued)

Agreement criteria are determined by the unit staff, based on a combination of the channel instrument uncertainties, including indication and readability. If the channels are within the criteria, it is an indication that the channels are OPERABLE. If a channel is outside the criteria, it may be an indication that the sensor or the signal processing equipment has drifted outside its limit.

As specified in the Surveillance, a CHANNEL CHECK is only required for those channels which are normally energized.

The Frequency of 31 days is based upon operating experience which demonstrates that channel failure is rare. The CHANNEL CHECK supplements less formal, but more frequent, checks of channels during normal operational use of the displays associated with the LCO required channels.

<u>SR 3.3.4.2</u>

SR 3.3.4.2 verifies each required Remote Shutdown System control circuit and transfer switch performs the intended function. This verification is performed from the remote shutdown panel and locally, as appropriate. Operation of the equipment from the remote shutdown panel is not necessary. The Surveillance can be satisfied by performance of a continuity check. This will ensure that if the control room becomes inaccessible, the unit can be placed and maintained in MODE 3 from the remote shutdown panel and the local control stations. The [18] month Frequency is based on the need to perform this Surveillance under the conditions that apply during a plant outage and the potential for an unplanned transient if the Surveillance were performed with the reactor at power. (However, this Surveillance is not required to be performed only during a unit outage.) Operating experience demonstrates that remote shutdown control channels usually pass the Surveillance test when performed at the [18] month Frequency.

SURVEILLANCE REQUIREMENTS (continued)

SR 3.3.4.3

CHANNEL CALIBRATION is a complete check of the instrument loop and the sensor. The test verifies that the channel responds to a measured parameter within the necessary range and accuracy.

Whenever a sensing element is replaced, the next required CHANNEL CALIBRATION of the resistance temperature detectors (RTD) sensors is accomplished by an inplace cross calibration that compares the other sensing elements with the recently installed sensing element.

The Frequency of [18] months is based upon operating experience and consistency with the typical industry refueling cycle.

[<u>SR 3.3.4.4</u>

SR 3.3.4.4 is the performance of a TADOT every 18 months. This test should verify the OPERABILITY of the reactor trip breakers (RTBs) open and closed indication on the remote shutdown panel, by actuating the RTBs. A successful test of the required contact(s) of a channel relay may be performed by the verification of the change of state of a single contact of the relay. This clarifies what is an acceptable TADOT of a relay. This is acceptable because all of the other required contacts of the relay are verified by other Technical Specifications and non-Technical Specifications tests at least once per refueling interval with applicable extensions. The Frequency is based upon operating experience and consistency with the typical industry refueling outage.]

REFERENCES 1. 10 CFR 50, Appendix A, GDC 19.

			REQUIRED
		OR CONTROL PARAMETER	NUMBER OF FUNCTIONS
1.	Reactivity Control		
	a.	Source Range Neutron Flux	[1]
	b.	Reactor Trip Breaker Position	[1 per trip breaker]
	C.	Manual Reactor Trip	[2]
2. Reactor Coolant System (RCS) Pressure Control			
	a.	Pressurizer Pressure	[1]
		RCS Wide Range Pressure	
	b.	Pressurizer Power Operated Relief Valve (PORV) Control and Block Valve Control	[1, controls must be for PORV & block valves on same line]
3.	 Decay Heat Removal via Steam Generators (SGs) 		
	а.	RCS Hot Leg Temperature	[1 per loop]
	b.	RCS Cold Leg Temperature	[1 per loop]
	C .	AFW Controls Condensate Storage Tank Level	[1]
	d.	SG Pressure	[1 per SG]
4.	RC	S Inventory Control	
	а.	Pressurizer Level	[1]
	b.	Charging Pump Controls	[1]

Table B 3.3.4-1 (page 1 of 1)Remote Shutdown System Instrumentation and Controls

-REVIEWER'S NOTE----

For channels that fulfill GDC 19 requirements, the number of OPERABLE channels required depends upon the unit licensing basis as described in the NRC unit specific Safety Evaluation Report (SER). Generally, two divisions are required OPERABLE. However, only one channel per a given Function is required if the unit has justified such a design, and NRC's SER accepted the justification.

-REVIEWER'S NOTE---

This Table is for illustration purposes only. It does not attempt to encompass every Function used at every unit, but does contain the types of Functions commonly found.

B 3.3 INSTRUMENTATION

B 3.3.5 Loss of Power (LOP) Diesel Generator (DG) Start Instrumentation

The DGs provide a source of emergency power when offsite power is either unavailable or is insufficiently stable to allow safe unit operation. Undervoltage protection will generate an LOP start if a loss of voltage or degraded voltage condition occurs in the switchyard. There are two LOP start signals, one for each 4.16 kV vital bus.
Three undervoltage relays with inverse time characteristics are provided on each 4160 Class 1E instrument bus for detecting a sustained degraded voltage condition or a loss of bus voltage. The relays are combined in a two-out-of-three logic to generate an LOP signal if the voltage is below 75% for a short time or below 90% for a long time. The LOP start actuation is described in FSAR, Section 8.3 (Ref. 1).
The Allowable Value in conjunction with the trip setpoint and LCO establishes the threshold for Engineered Safety Features Actuation System (ESFAS) action to prevent exceeding acceptable limits such that the consequences of Design Basis Accidents (DBAs) will be acceptable. The Allowable Value is considered a limiting value such that a channel is OPERABLE if the setpoint is found not to exceed the Allowable Value during the CHANNEL CALIBRATION. Note that although a channel is OPERABLE under these circumstances, the setpoint must be left adjusted to within the established calibration tolerance band of the setpoint in accordance with uncertainty assumptions stated in the referenced setpoint methodology, (as-left-criteria) and confirmed to be operating within the statistical allowances of the uncertainty terms assigned.
Allowable Values and LOP_DG Start Instrumentation Setpoints
REVIEWER'S NOTE
Alternatively, a TS format incorporating an Allowable Value only may be proposed by a licensee. In this case the Nominal Trip Setpoint value is located in the TS Bases or in a licensee controlled document outside the TS. Changes to the trip setpoint value would be controlled by 10 CFR 50.59 or administratively as appropriate, and adjusted per the setpoint methodology and applicable surveillance requirements. At their option, the licensee may include the trip setpoint in the surveillance requirement as shown, or suggested by the licensee's setpoint

BACKGROUND (continued)

The Trip Setpoints used in the relays are based on the analytical limits presented in FSAR, Chapter 15 (Ref. 2). The selection of these trip setpoints is such that adequate protection is provided when all sensor and processing time delays are taken into account.

Setpoints adjusted consistent with the requirements of the Allowable Value ensure that the consequences of accidents will be acceptable, providing the unit is operated from within the LCOs at the onset of the accident and that the equipment functions as designed.

Allowable Values and/or Nominal Trip Setpoints are specified for each Function in SR 3.3.5.3. Nominal Trip Setpoints are also specified in the unit specific setpoint calculations. The trip setpoints are selected to ensure that the setpoint measured by the surveillance procedure does not exceed the Allowable Value if the relay is performing as required. If the measured setpoint does not exceed the Allowable Value, the relay is considered OPERABLE. Operation with a trip setpoint less conservative than the nominal Trip Setpoint, but within the Allowable Value, is acceptable provided that operation and testing is consistent with the assumptions of the unit specific setpoint calculation (Ref. 3).

APPLICABLEThe LOP DG start instrumentation is required for the Engineered SafetySAFETYFeatures (ESF) Systems to function in any accident with a loss of offsiteANALYSESpower. Its design basis is that of the ESF Actuation System (ESFAS).

Accident analyses credit the loading of the DG based on the loss of offsite power during a loss of coolant accident (LOCA). The actual DG start has historically been associated with the ESFAS actuation. The DG loading has been included in the delay time associated with each safety system component requiring DG supplied power following a loss of offsite power. The analyses assume a non-mechanistic DG loading, which does not explicitly account for each individual component of loss of power detection and subsequent actions.

The required channels of LOP DG start instrumentation, in conjunction with the ESF systems powered from the DGs, provide unit protection in the event of any of the analyzed accidents discussed in Reference 2, in which a loss of offsite power is assumed.

The delay times assumed in the safety analysis for the ESF equipment include the 10 second DG start delay, and the appropriate sequencing delay, if applicable. The response times for ESFAS actuated equipment in LCO 3.3.2, "Engineered Safety Feature Actuation System (ESFAS) Instrumentation," include the appropriate DG loading and sequencing delay.

APPLICABLE SAFETY ANALYSES (continued)

	The LOP DG start instrumentation channels satisfy Criterion 3 of 10 CFR 50.36(c)(2)(ii).		
LCO	The LCO for LOP DG start instrumentation requires that [three] channels per bus of both the loss of voltage and degraded voltage Functions shall be OPERABLE in MODES 1, 2, 3, and 4 when the LOP DG start instrumentation supports safety systems associated with the ESFAS. In MODES 5 and 6, the [three] channels must be OPERABLE whenever the associated DG is required to be OPERABLE to ensure that the automatic start of the DG is available when needed. A channel is OPERABLE with a trip setpoint value outside its calibration tolerance band provided the trip setpoint "as-found" value does not exceed its associated Allowable Value and provided the trip setpoint "as-left" value is adjusted to a value within the "as-left" calibration tolerance band of the Nominal Trip Setpoint. A trip setpoint may be set more conservative than the Nominal Trip Setpoint as necessary in response to plant conditions. Loss of the LOP DG Start Instrumentation Function could result in the delay of safety systems initiation when required. This could lead to unacceptable consequences during accidents. During the loss of offsite power the DG powers the motor driven auxiliary feedwater pumps. Failure of these pumps to start would leave only one turbine driven pump, as well as an increased potential for a loss of decay heat removal through the secondary system.		
APPLICABILITY	The LOP DG Start Instrumentation Functions are required in MODES 1, 2, 3, and 4 because ESF Functions are designed to provide protection in these MODES. Actuation in MODE 5 or 6 is required whenever the required DG must be OPERABLE so that it can perform its function on an LOP or degraded power to the vital bus.		

ACTIONS

---REVIEWER'S NOTE---In TS 3.3.5, "Loss of Power (LOP) Diesel Generator (DG) Start Instrumentation," the loss of power function was not included in the generic evaluations approved in either WCAP-10271, as supplemented, · or WCAP-14333. In order to apply relaxations similar to those in WCAP-10271, as supplemented, or WCAP-14333, licensees must submit plant specific evaluations for NRC review and approval.

In the event a channel's trip setpoint is found nonconservative with respect to the Allowable Value, or the channel is found inoperable, then the function that channel provides must be declared inoperable and the LCO Condition entered for the particular protection function affected.

ACTIONS (continued)

Because the required channels are specified on a per bus basis, the Condition may be entered separately for each bus as appropriate.

A Note has been added in the ACTIONS to clarify the application of Completion Time rules. The Conditions of this Specification may be entered independently for each Function listed in the LCO. The Completion Time(s) of the inoperable channel(s) of a Function will be tracked separately for each Function starting from the time the Condition was entered for that Function.

<u>A.1</u>

Condition A applies to the LOP DG start Functions with one loss of voltage or one degraded voltage channel per bus inoperable.

If one channel is inoperable, Required Action A.1 requires that channel to be placed in trip within [6] hours. With a channel in trip, the LOP DG start instrumentation channels are configured to provide a one-out-of-three logic to initiate a trip of the incoming offsite power.

A Note is added to allow bypassing an inoperable channel for up to [4] hours for surveillance testing of other channels. This allowance is made where bypassing the channel does not cause an actuation and where at least two other channels are monitoring that parameter.

The specified Completion Time and time allowed for bypassing one channel are reasonable considering the Function remains fully OPERABLE on every bus and the low probability of an event occurring during these intervals.

<u>B.1</u>

Condition B applies when more than one loss of voltage or more than one degraded voltage channel per bus are inoperable.

Required Action B.1 requires restoring all but one channel per bus to OPERABLE status. The 1 hour Completion Time should allow ample time to repair most failures and takes into account the low probability of an event requiring an LOP start occurring during this interval.

ACTIONS (continued)

<u>C.1</u>

Condition C applies to each of the LOP DG start Functions when the Required Action and associated Completion Time for Condition A or B are not met.

In these circumstances the Conditions specified in LCO 3.8.1, "AC Sources - Operating," or LCO 3.8.2, "AC Sources - Shutdown," for the DG made inoperable by failure of the LOP DG start instrumentation are required to be entered immediately. The actions of those LCOs provide for adequate compensatory actions to assure unit safety.

SURVEILLANCE <u>SR 3.3.5.1</u> REQUIREMENTS

Performance of the CHANNEL CHECK once every 12 hours ensures that a gross failure of instrumentation has not occurred. A CHANNEL CHECK is normally a comparison of the parameter indicated on one channel to a similar parameter on other channels. It is based on the assumption that instrument channels monitoring the same parameter should read approximately the same value. Significant deviations between the two instrument channels could be an indication of excessive instrument drift in one of the channels or of something even more serious. A CHANNEL CHECK will detect gross channel failure; thus, it is key to verifying that the instrumentation continues to operate properly between each CHANNEL CALIBRATION.

Agreement criteria are determined by the unit staff, based on a combination of the channel instrument uncertainties, including indication and readability. If a channel is outside the criteria, it may be an indication that the sensor or the signal processing equipment has drifted outside its limit.

The Frequency is based on operating experience that demonstrates channel failure is rare. The CHANNEL CHECK supplements less formal, but more frequent, checks of channels during normal operational use of the displays associated with the LCO required channels.

SURVEILLANCE REQUIREMENTS (continued)

SR 3.3.5.2

SR 3.3.5.2 is the performance of a TADOT. A successful test of the required contact(s) of a channel relay may be performed by the verification of the change of state of a single contact of the relay. This clarifies what is an acceptable TADOT of a relay. This is acceptable because all of the other required contacts of the relay are verified by other Technical Specifications and non-Technical Specifications tests at least once per refueling interval with applicable extensions. This test is performed every [31 days]. The test checks trip devices that provide actuation signals directly, bypassing the analog process control equipment. For these tests, the relay trip setpoints are verified and adjusted as necessary. The Frequency is based on the known reliability of the relays and controls and the multichannel redundancy available, and has been shown to be acceptable through operating experience.

<u>SR 3.3.5.3</u>

SR 3.3.5.3 is the performance of a CHANNEL CALIBRATION.

The setpoints, as well as the response to a loss of voltage and a degraded voltage test, shall include a single point verification that the trip occurs within the required time delay, as shown in Reference 1.

A CHANNEL CALIBRATION is performed every [18] months, or approximately at every refueling. CHANNEL CALIBRATION is a complete check of the instrument loop, including the sensor. The test verifies that the channel responds to a measured parameter within the necessary range and accuracy.

The Frequency of [18] months is based on operating experience and consistency with the typical industry refueling cycle and is justified by the assumption of an [18] month calibration interval in the determination of the magnitude of equipment drift in the setpoint analysis.

REFERENCES	1.	FSAR, Section [8.3].
	2.	FSAR, Chapter [15].

3. Plant specific setpoint methodology study.

B 3.3 INSTRUMENTATION

B 3.3.6 Containment Purge and Exhaust Isolation Instrumentation

BASES	
BACKGROUND	Containment purge and exhaust isolation instrumentation closes the containment isolation valves in the Mini Purge System and the Shutdown Purge System. This action isolates the containment atmosphere from the environment to minimize releases of radioactivity in the event of an accident. The Mini Purge System may be in use during reactor operation and the Shutdown Purge System will be in use with the reactor shutdown.
	Containment purge and exhaust isolation initiates on a automatic safety injection (SI) signal through the Containment Isolation - Phase A Function, or by manual actuation of Phase A Isolation. The Bases for LCO 3.3.2, "Engineered Safety Feature Actuation System (ESFAS) Instrumentation," discuss these modes of initiation.
	Four radiation monitoring channels are also provided as input to the containment purge and exhaust isolation. The four channels measure containment radiation at two locations. One channel is a containment area gamma monitor, and the other three measure radiation in a sample of the containment purge exhaust. The three purge exhaust radiation detectors are of three different types: gaseous, particulate, and iodine monitors. All four detectors will respond to most events that release radiation to containment. However, analyses have not been conducted to demonstrate that all credible events will be detected by more than one monitor. Therefore, for the purposes of this LCO the four channels are not considered redundant. Instead, they are treated as four one-out-of-one Functions. Since the purge exhaust monitors constitute a sampling system, various components such as sample line valves, sample line heaters, sample pumps, and filter motors are required to support monitor OPERABILITY.
	Each of the purge systems has inner and outer containment isolation valves in its supply and exhaust ducts. A high radiation signal from any one of the four channels initiates containment purge isolation, which closes both inner and outer containment isolation valves in the Mini Purge System and the Shutdown Purge System. These systems are described in the Bases for LCO 3.6.3, "Containment Isolation Valves."
APPLICABLE SAFETY ANALYSES	The safety analyses assume that the containment remains intact with penetrations unnecessary for core cooling isolated early in the event, within approximately 60 seconds. The isolation of the purge valves has not been analyzed mechanistically in the dose calculations, although its

LCO

APPLICABLE SAFETY ANALYSES (continued)

rapid isolation is assumed. The containment purge and exhaust isolation radiation monitors act as backup to the SI signal to ensure closing of the purge and exhaust valves. They are also the primary means for automatically isolating containment in the event of a fuel handling accident during shutdown. Containment isolation in turn ensures meeting the containment leakage rate assumptions of the safety analyses, and ensures that the calculated accidental offsite radiological doses are below 10 CFR 100 (Ref. 1) limits. [Due to radioactive decay, containment is only required to isolate during fuel handling accidents involving handling recently irradiated fuel (i.e., fuel that has occupied part of a critical reactor core within the previous [X] days).]

The containment purge and exhaust isolation instrumentation satisfies Criterion 3 of 10 CFR 50.36(c)(2)(ii).

The LCO requirements ensure that the instrumentation necessary to initiate Containment Purge and Exhaust Isolation, listed in Table 3.3.6-1, is OPERABLE.

1. Manual Initiation

The LCO requires two channels OPERABLE. The operator can initiate Containment Purge Isolation at any time by using either of two switches in the control room. Either switch actuates both trains. This action will cause actuation of all components in the same manner as any of the automatic actuation signals.

The LCO for Manual Initiation ensures the proper amount of redundancy is maintained in the manual actuation circuitry to ensure the operator has manual initiation capability.

Each channel consists of one push button and the interconnecting wiring to the actuation logic cabinet.

2. Automatic Actuation Logic and Actuation Relays

The LCO requires two trains of Automatic Actuation Logic and Actuation Relays OPERABLE to ensure that no single random failure can prevent automatic actuation.

LCO (continued)

Automatic Actuation Logic and Actuation Relays consist of the same features and operate in the same manner as described for ESFAS Function 1.b, SI, and ESFAS Function 3.a, Containment Phase A Isolation. The applicable MODES and specified conditions for the containment purge isolation portion of these Functions are different and less restrictive than those for their Phase A isolation and SI roles. If one or more of the SI or Phase A isolation Functions becomes inoperable in such a manner that only the Containment Purge Isolation Function is affected, the Conditions applicable to their SI and Phase A isolation Functions need not be entered. The less restrictive Actions specified for inoperability of the Containment Purge Isolation Functions specify sufficient compensatory measures for this case.

3. Containment Radiation

The LCO specifies four required channels of radiation monitors to ensure that the radiation monitoring instrumentation necessary to initiate Containment Purge Isolation remains OPERABLE.

For sampling systems, channel OPERABILITY involves more than OPERABILITY of the channel electronics. OPERABILITY may also require correct valve lineups, sample pump operation, and filter motor operation, as well as detector OPERABILITY, if these supporting features are necessary for trip to occur under the conditions assumed by the safety analyses.

4. Containment Isolation - Phase A

Refer to LCO 3.3.2, Function 3.a., for all initiating Functions and requirements.

APPLICABILITY The Manual Initiation, Automatic Actuation Logic and Actuation Relays, Containment Isolation - Phase A, and Containment Radiation Functions are required OPERABLE in MODES 1, 2, 3, and 4, and during movement of [recently] irradiated fuel assemblies [(i.e., fuel that has occupied part of a critical reactor core within the previous [X] days)] within containment. Under these conditions, the potential exists for an accident that could release significant fission product radioactivity into containment. Therefore, the containment purge and exhaust isolation instrumentation must be OPERABLE in these MODES.

APPLICABILITY (continued)

While in MODES 5 and 6 without fuel handling in progress, the containment purge and exhaust isolation instrumentation need not be OPERABLE since the potential for radioactive releases is minimized and operator action is sufficient to ensure post accident offsite doses are maintained within the limits of Reference 1.

The Applicability for the containment purge and exhaust isolation on the ESFAS Containment Isolation-Phase A Functions are specified in LCO 3.3.2. Refer to the Bases for LCO 3.3.2 for discussion of the Containment Isolation-Phases A Function Applicability.

ACTIONS

The most common cause of channel inoperability is outright failure or drift of the bistable or process module sufficient to exceed the tolerance allowed by unit specific calibration procedures. Typically, the drift is found to be small and results in a delay of actuation rather than a total loss of function. This determination is generally made during the performance of a COT, when the process instrumentation is set up for adjustment to bring it within specification. If the Trip Setpoint is less conservative than the tolerance specified by the calibration procedure, the channel must be declared inoperable immediately and the appropriate Condition entered.

A Note has been added to the ACTIONS to clarify the application of Completion Time rules. The Conditions of this Specification may be entered independently for each Function listed in Table 3.3.6-1. The Completion Time(s) of the inoperable channel(s)/train(s) of a Function will be tracked separately for each Function starting from the time the Condition was entered for that Function.

<u>A.1</u>

Condition A applies to the failure of one containment purge isolation radiation monitor channel. Since the four containment radiation monitors measure different parameters, failure of a single channel may result in loss of the radiation monitoring Function for certain events. Consequently, the failed channel must be restored to OPERABLE status. The 4 hours allowed to restore the affected channel is justified by the low likelihood of events occurring during this interval, and recognition that one or more of the remaining channels will respond to most events.

ACTIONS (continued)

<u>B.1</u>

Condition B applies to all Containment Purge and Exhaust Isolation Functions and addresses the train orientation of the Solid State Protection System (SSPS) and the master and slave relays for these Functions. It also addresses the failure of multiple radiation monitoring channels, or the inability to restore a single failed channel to OPERABLE status in the time allowed for Required Action A.1.

If a train is inoperable, multiple channels are inoperable, or the Required Action and associated Completion Time of Condition A are not met, operation may continue as long as the Required Action for the applicable Conditions of LCO 3.6.3 is met for each valve made inoperable by failure of isolation instrumentation.

A Note is added stating that Condition B is only applicable in MODE 1, 2, 3, or 4.

C.1 and C.2

Condition C applies to all Containment Purge and Exhaust Isolation Functions and addresses the train orientation of the SSPS and the master and slave relays for these Functions. It also addresses the failure of multiple radiation monitoring channels, or the inability to restore a single failed channel to OPERABLE status in the time allowed for Required Action A.1. If a train is inoperable, multiple channels are inoperable, or the Required Action and associated Completion Time of Condition A are not met, operation may continue as long as the Required Action to place and maintain containment purge and exhaust isolation valves in their closed position is met or the applicable Conditions of LCO 3.9.4, "Containment Penetrations," are met for each valve made inoperable by failure of isolation instrumentation. The Completion Time for these Required Actions is Immediately.

A Note states that Condition C is applicable during movement of [recently] irradiated fuel assemblies within containment.

SURVEILLANCE A Note has been added to the SR Table to clarify that Table 3.3.6-1 determines which SRs apply to which Containment Purge and Exhaust Isolation Functions.

SURVEILLANCE REQUIREMENTS (continued)

SR 3.3.6.1

Performance of the CHANNEL CHECK once every 12 hours ensures that a gross failure of instrumentation has not occurred. A CHANNEL CHECK is normally a comparison of the parameter indicated on one channel to a similar parameter on other channels. It is based on the assumption that instrument channels monitoring the same parameter should read approximately the same value. Significant deviations between the two instrument channels could be an indication of excessive instrument drift in one of the channels or of something even more serious. A CHANNEL CHECK will detect gross channel failure; thus, it is key to verifying the instrumentation continues to operate properly between each CHANNEL CALIBRATION.

Agreement criteria are determined by the unit staff, based on a combination of the channel instrument uncertainties, including indication and readability. If a channel is outside the criteria, it may be an indication that the sensor or the signal processing equipment has drifted outside its limit.

The Frequency is based on operating experience that demonstrates channel failure is rare. The CHANNEL CHECK supplements less formal, but more frequent, checks of channels during normal operational use of the displays associated with the LCO required channels.

SR 3.3.6.2

SR 3.3.6.2 is the performance of an ACTUATION LOGIC TEST. The train being tested is placed in the bypass condition, thus preventing inadvertent actuation. Through the semiautomatic tester, all possible logic combinations, with and without applicable permissives, are tested for each protection function. In addition, the master relay coil is pulse tested for continuity. This verifies that the logic modules are OPERABLE and there is an intact voltage signal path to the master relay coils. This test is performed every 31 days on a STAGGERED TEST BASIS. The Surveillance interval is acceptable based on instrument reliability and industry operating experience.

SURVEILLANCE REQUIREMENTS (continued)

SR 3.3.6.3

SR 3.3.6.3 is the performance of a MASTER RELAY TEST. The MASTER RELAY TEST is the energizing of the master relay, verifying contact operation and a low voltage continuity check of the slave relay coil. Upon master relay contact operation, a low voltage is injected to the slave relay coil. This voltage is insufficient to pick up the slave relay, but large enough to demonstrate signal path continuity. This test is performed every 31 days on a STAGGERED TEST BASIS. The Surveillance interval is acceptable based on instrument reliability and industry operating experience.

[SR 3.3.6.4

SR 3.3.6.4 is the performance of an ACTUATION LOGIC TEST. The train being tested is placed in the bypass condition, thus preventing inadvertent actuation. Through the semiautomatic tester, all possible logic combinations, with and without applicable permissives, are tested for each protection function. In addition, the master relay coil is pulse tested for continuity. This verifies that the logic modules are OPERABLE and there is an intact voltage signal path to the master relay coils. This test is performed every 92 days on a STAGGERED TEST BASIS. The Surveillance interval is justified in Reference 2.

The SR is modified by a Note stating that the Surveillance is only applicable to the actuation logic of the ESFAS Instrumentation.]

[SR 3.3.6.5

SR 3.3.6.5 is the performance of a MASTER RELAY TEST. The MASTER RELAY TEST is the energizing of the master relay, verifying contact operation and a low voltage continuity check of the slave relay coil. Upon master relay contact operation, a low voltage is injected to the slave relay coil. This voltage is insufficient to pick up the slave relay, but large enough to demonstrate signal path continuity. This test is performed every 92 days on a STAGGERED TEST BASIS. The Surveillance interval is justified in Reference 2.

The SR is modified by a Note stating that the Surveillance is only applicable to the master relays of the EFAS Instrumentation.]
SURVEILLANCE REQUIREMENTS (continued)

<u>SR_3.3.6.6</u>

A COT is performed every 92 days on each required channel to ensure the entire channel will perform the intended Function. A successful test of the required contact(s) of a channel relay may be performed by the verification of the change of state of a single contact of the relay. This clarifies what is an acceptable COT of a relay. This is acceptable because all of the other required contacts of the relay are verified by other Technical Specifications and non-Technical Specifications tests at least once per refueling interval with applicable extensions. The Frequency is based on the staff recommendation for increasing the availability of radiation monitors according to NUREG-1366 (Ref. 3). This test verifies the capability of the instrumentation to provide the containment purge and exhaust system isolation. The setpoint shall be left consistent with the current unit specific calibration procedure tolerance.

<u>SR 3.3.6.7</u>

SR 3.3.6.7 is the performance of a SLAVE RELAY TEST. The SLAVE RELAY TEST is the energizing of the slave relays. Contact operation is verified in one of two ways. Actuation equipment that may be operated in the design mitigation mode is either allowed to function or is placed in a condition where the relay contact operation can be verified without operation of the equipment. Actuation equipment that may not be operated in the design mitigation mode is prevented from operation by the SLAVE RELAY TEST circuit. For this latter case, contact operation is verified by a continuity check of the circuit containing the slave relay. This test is performed every [92] days. The Frequency is acceptable based on instrument reliability and industry operating experience.

<u>SR_3.3.6.8</u>

SR 3.3.6.8 is the performance of a TADOT. This test is a check of the Manual Actuation Functions and is performed every [18] months. Each Manual Actuation Function is tested up to, and including, the master relay coils. A successful test of the required contact(s) of a channel relay may be performed by the verification of the change of state of a single contact of the relay. This clarifies what is an acceptable TADOT of a relay. This is acceptable because all of the other required contacts of the relay are

SURVEILLANCE REQUIREMENTS (continued)

verified by other Technical Specifications and non-Technical Specifications tests at least once per refueling interval with applicable extensions. In some instances, the test includes actuation of the end device (i.e., pump starts, valve cycles, etc.).

The test also includes trip devices that provide actuation signals directly to the SSPS, bypassing the analog process control equipment. The SR is modified by a Note that excludes verification of setpoints during the TADOT. The Functions tested have no setpoints associated with them.

The Frequency is based on the known reliability of the Function and the redundancy available, and has been shown to be acceptable through operating experience.

<u>SR 3.3.6.9</u>

A CHANNEL CALIBRATION is performed every [18] months, or approximately at every refueling. CHANNEL CALIBRATION is a complete check of the instrument loop, including the sensor. The test verifies that the channel responds to a measured parameter within the necessary range and accuracy.

The Frequency is based on operating experience and is consistent with the typical industry refueling cycle.

REFERENCES 1. 10 CFR 100.11.

2. WCAP-15376, Rev. 0, October 2000.

3. NUREG-1366, [date].

B 3.3 INSTRUMENTATION

B 3.3.7 Control Room Emergency Filtration System (CREFS) Actuation Instrumentation

BASES	
BACKGROUND	The CREFS provides an enclosed control room environment from which the unit can be operated following an uncontrolled release of radioactivity. During normal operation, the Auxiliary Building Ventilation System provides control room ventilation. Upon receipt of an actuation signal, the CREFS initiates filtered ventilation and pressurization of the control room. This system is described in the Bases for LCO 3.7.10, "Control Room Emergency Filtration System."
	The actuation instrumentation consists of redundant radiation monitors in the air intakes and control room area. A high radiation signal from any of these detectors will initiate both trains of the CREFS. The control room operator can also initiate CREFS trains by manual switches in the control room. The CREFS is also actuated by a safety injection (SI) signal. The SI Function is discussed in LCO 3.3.2, "Engineered Safety Feature Actuation System (ESFAS) Instrumentation."
APPLICABLE SAFETY ANALYSES	The control room must be kept habitable for the operators stationed there during accident recovery and post accident operations.
	The CREFS acts to terminate the supply of unfiltered outside air to the control room, initiate filtration, and pressurize the control room. These actions are necessary to ensure the control room is kept habitable for the operators stationed there during accident recovery and post accident operations by minimizing the radiation exposure of control room personnel.
	In MODES 1, 2, 3, and 4, the radiation monitor actuation of the CREFS is a backup for the SI signal actuation. This ensures initiation of the CREFS during a loss of coolant accident or steam generator tube rupture.
	The radiation monitor actuation of the CREFS in MODES 5 and 6, and during movement of [recently] irradiated fuel assemblies are the primary means to ensure control room habitability in the event of a fuel handling or waste gas decay tank rupture accident.
	The CREFS actuation instrumentation satisfies Criterion 3 of 10 CFR 50.36(c)(2)(ii).

•

- ------

BASES		
LCO	The the	LCO requirements ensure that instrumentation necessary to initiate CREFS is OPERABLE.
	1.	Manual Initiation
		The LCO requires two channels OPERABLE. The operator can initiate the CREFS at any time by using either of two switches in the control room. This action will cause actuation of all components in the same manner as any of the automatic actuation signals.
		The LCO for Manual Initiation ensures the proper amount of redundancy is maintained in the manual actuation circuitry to ensure the operator has manual initiation capability.
		Each channel consists of one push button and the interconnecting wiring to the actuation logic cabinet.
	2.	Automatic Actuation Logic and Actuation Relays
		The LCO requires two trains of Actuation Logic and Relays OPERABLE to ensure that no single random failure can prevent automatic actuation.
		Automatic Actuation Logic and Actuation Relays consist of the same features and operate in the same manner as described for ESFAS Function 1.b., SI, in LCO 3.3.2. The applicable MODES and specified conditions for the CREFS portion of these functions are different and less restrictive than those specified for their SI roles. If one or more of the SI functions becomes inoperable in such a manner that only the CREFS function is affected, the Conditions applicable to their SI function need not be entered. The less restrictive Actions specified for inoperability of the CREFS Functions specify sufficient compensatory measures for this case.
	3.	Control Room Radiation
		The LCO specifies two required Control Room Atmosphere Radiation Monitors and two required Control Room Air Intake Radiation Monitors to ensure that the radiation monitoring instrumentation necessary to initiate the CREFS remains OPERABLE.
		For sampling systems, channel OPERABILITY involves more than OPERABILITY of channel electronics. OPERABILITY may also require correct valve lineups, sample pump operation, and filter motor operation, as well as detector OPERABILITY, if these supporting features are necessary for trip to occur under the conditions assumed by the safety analyses.

.

BASES	
LCO (continued)	
	4. Safety Injection
	Refer to LCO 3.3.2, Function 1, for all initiating Functions and requirements.
APPLICABILITY	The CREFS Functions must be OPERABLE in MODES 1, 2, 3, 4, and during movement of [recently] irradiated fuel assemblies. The Functions must also be OPERABLE in MODES [5 and 6] when required for a waste gas decay tank rupture accident, to ensure a habitable environment for the control room operators.
	The Applicability for the CREFS actuation on the ESFAS Safety Injection Functions are specified in LCO 3.3.2. Refer to the Bases for LCO 3.3.2 for discussion of the Safety Injection Function Applicability.
ACTIONS	The most common cause of channel inoperability is outright failure or drift of the bistable or process module sufficient to exceed the tolerance allowed by the unit specific calibration procedures. Typically, the drift is found to be small and results in a delay of actuation rather than a total loss of function. This determination is generally made during the performance of a COT, when the process instrumentation is set up for adjustment to bring it within specification. If the Trip Setpoint is less conservative than the tolerance specified by the calibration procedure, the channel must be declared inoperable immediately and the appropriate Condition entered.
	A Note has been added to the ACTIONS indicating that separate Condition entry is allowed for each Function. The Conditions of this Specification may be entered independently for each Function listed in Table 3.3.7-1 in the accompanying LCO. The Completion Time(s) of the inoperable channel(s)/train(s) of a Function will be tracked separately for each Function starting from the time the Condition was entered for that Function.
	<u>A.1</u>
	Condition A applies to the actuation logic train Function of the CREFS, the radiation monitor channel Functions, and the manual channel Functions.

ACTIONS (continued)

If one train is inoperable, or one radiation monitor channel is inoperable in one or more Functions, 7 days are permitted to restore it to OPERABLE status. The 7 day Completion Time is the same as is allowed if one train of the mechanical portion of the system is inoperable. The basis for this Completion Time is the same as provided in LCO 3.7.10. If the channel/train cannot be restored to OPERABLE status, one CREFS train must be placed in the emergency radiation protection mode of operation. This accomplishes the actuation instrumentation Function and places the unit in a conservative mode of operation.

The Required Action for Condition A is modified by a Note that requires placing one CREFS train in the toxic gas protection mode instead of the [radiation protection] mode of operation if the automatic transfer to toxic gas protection mode is inoperable. This ensures the CREFS train is placed in the most conservative mode of operation relative to the OPERABILITY of the associated actuation instrumentation.

B.1.1, B.1.2, and B.2

Condition B applies to the failure of two CREFS actuation trains, two radiation monitor channels, or two manual channels. The first Required Action is to place one CREFS train in the emergency [radiation protection] mode of operation immediately. This accomplishes the actuation instrumentation Function that may have been lost and places the unit in a conservative mode of operation. The applicable Conditions and Required Actions of LCO 3.7.10 must also be entered for the CREFS train made inoperable by the inoperable actuation instrumentation. This ensures appropriate limits are placed upon train inoperability as discussed in the Bases for LCO 3.7.10.

Alternatively, both trains may be placed in the emergency [radiation protection] mode. This ensures the CREFS function is performed even in the presence of a single failure.

The Required Action for Condition B is modified by a Note that requires placing one CREFS train in the toxic gas protection mode instead of the [radiation protection] mode of operation if the automatic transfer to toxic gas protection mode is inoperable. This ensures the CREFS train is placed in the most conservative mode of operation relative to the OPERABILITY of the associated actuation instrumentation.

ACTIONS (continued)

C.1 and C.2

Condition C applies when the Required Action and associated Completion Time for Condition A or B have not been met and the unit is in MODE 1, 2, 3, or 4. The unit must be brought to a MODE in which the LCO requirements are not applicable. To achieve this status, the unit must be brought to MODE 3 within 6 hours and MODE 5 within 36 hours. The allowed Completion Times are reasonable, based on operating experience, to reach the required unit conditions from full power conditions in an orderly manner and without challenging unit systems.

<u>D.1</u>

Condition D applies when the Required Action and associated Completion Time for Condition A or B have not been met when [recently] irradiated fuel assemblies are being moved. Movement of [recently] irradiated fuel assemblies must be suspended immediately to reduce the risk of accidents that would require CREFS actuation.

<u>E.1</u>

Condition E applies when the Required Action and associated Completion Time for Condition A or B have not been met in MODE 5 or 6. Actions must be initiated to restore the inoperable train(s) to OPERABLE status immediately to ensure adequate isolation capability in the event of a waste gas decay tank rupture.

SURVEILLANCE A Note has been added to the SR Table to clarify that Table 3.3.7-1 determines which SRs apply to which CREFS Actuation Functions.

<u>SR 3.3.7.1</u>

Performance of the CHANNEL CHECK once every 12 hours ensures that a gross failure of instrumentation has not occurred. A CHANNEL CHECK is normally a comparison of the parameter indicated on one channel to a similar parameter on other channels. It is based on the assumption that instrument channels monitoring the same parameter should read approximately the same value. Significant deviations between the two instrument channels could be an indication of excessive instrument drift in one of the channels or of something even more serious. A CHANNEL CHECK will detect gross channel failure; thus, it is key to verifying the instrumentation continues to operate properly between each CHANNEL CALIBRATION.

SURVEILLANCE REQUIREMENTS (continued)

Agreement criteria are determined by the unit staff, based on a combination of the channel instrument uncertainties, including indication and readability. If a channel is outside the criteria, it may be an indication that the sensor or the signal processing equipment has drifted outside its limit.

The Frequency is based on operating experience that demonstrates channel failure is rare. The CHANNEL CHECK supplements less formal, but more frequent, checks of channels during normal operational use of the displays associated with the LCO required channels.

<u>SR 3.3.7.2</u>

A COT is performed once every 92 days on each required channel to ensure the entire channel will perform the intended function. This test verifies the capability of the instrumentation to provide the CREFS actuation. A successful test of the required contact(s) of a channel relay may be performed by the verification of the change of state of a single contact of the relay. This clarifies what is an acceptable COT of a relay. This is acceptable because all of the other required contacts of the relay are verified by other Technical Specifications and non-Technical Specifications tests at least once per refueling interval with applicable extensions. The setpoints shall be left consistent with the unit specific calibration procedure tolerance. The Frequency is based on the known reliability of the monitoring equipment and has been shown to be acceptable through operating experience.

SR 3.3.7.3

SR 3.3.7.3 is the performance of an ACTUATION LOGIC TEST. The train being tested is placed in the bypass condition, thus preventing inadvertent actuation. Through the semiautomatic tester, all possible logic combinations, with and without applicable permissives, are tested for each protection function. In addition, the master relay coil is pulse tested for continuity. This verifies that the logic modules are OPERABLE and there is an intact voltage signal path to the master relay coils. This test is performed every 31 days on a STAGGERED TEST BASIS. The Frequency is acceptable based on instrument reliability and industry operating experience.

SURVEILLANCE REQUIREMENTS (continued)

SR 3.3.7.4

SR 3.3.7.4 is the performance of a MASTER RELAY TEST. The MASTER RELAY TEST is the energizing of the master relay, verifying contact operation and a low voltage continuity check of the slave relay coil. Upon master relay contact operation, a low voltage is injected to the slave relay coil. This voltage is insufficient to pick up the slave relay, but large enough to demonstrate signal path continuity. This test is performed every 31 days on a STAGGERED TEST BASIS. The Frequency is acceptable based on instrument reliability and industry operating experience.

[SR 3.3.7.5

SR 3.3.7.5 is the performance of an ACTUATION LOGIC TEST. The train being tested is placed in the bypass condition, thus preventing inadequate actuation. Through the semiautomatic tester, all possible logic combinations, with and without applicable permissives, are tested for each protection function. In addition, the master relay coil is pulse tested for continuity. This verifies that the logic modules are OPERABLE and there is an intact voltage signal path to the master relay coils. This test is performed ever 92 days on a STAGGERED TEST BASIS. The Surveillance interval is justified in Reference 1.

The SR is modified by a Note stating that the Surveillance is only applicable to the actuation logic of the ESFAS Instrumentation.]

[SR 3.3.7.6

SR 3.3.7.6 is the performance of a MASTER RELAY TEST. The MASTER RELAY TEST is the energizing of the master relay, verifying contact operation and a low voltage continuity check of the slave relay coil. Upon master relay contact operation, a low voltage is injected to the slave relay coil. This voltage is insufficient to pick up the slave relay, but large enough to demonstrate signal path continuity. This test is performed every 92 days on a STAGGERED TEST BASIS. The Surveillance interval is justified in Reference 1.

The SR is modified by a Note stating that the Surveillance is only applicable to the master relays of the ESFAS Instrumentation.]

SURVEILLANCE REQUIREMENTS (continued)

SR 3.3.7.7

SR 3.3.7.7 is the performance of a SLAVE RELAY TEST. The SLAVE RELAY TEST is the energizing of the slave relays. Contact operation is verified in one of two ways. Actuation equipment that may be operated in the design mitigation MODE is either allowed to function or is placed in a condition where the relay contact operation can be verified without operation of the equipment. Actuation equipment that may not be operated in the design mitigation MODE is prevented from operation by the SLAVE RELAY TEST circuit. For this latter case, contact operation is verified by a continuity check of the circuit containing the slave relay. This test is performed every [92] days. The Frequency is acceptable based on instrument reliability and industry operating experience.

<u>SR 3.3.7.8</u>

SR 3.3.7.8 is the performance of a TADOT. This test is a check of the Manual Actuation Functions and is performed every [18] months. Each Manual Actuation Function is tested up to, and including, the master relay coils. A successful test of the required contact(s) of a channel relay may be performed by the verification of the change of state of a single contact of the relay. This clarifies what is an acceptable TADOT of a relay. This is acceptable because all of the other required contacts of the relay are verified by other Technical Specifications and non-Technical Specifications tests at least once per refueling interval with applicable extensions. In some instances, the test includes actuation of the end device (i.e., pump starts, valve cycles, etc.).

The test also includes trip devices that provide actuation signals directly to the Solid State Protection System, bypassing the analog process control equipment. The Frequency is based on the known reliability of the Function and the redundancy available, and has been shown to be acceptable through operating experience. The SR is modified by a Note that excludes verification of setpoints during the TADOT. The Functions tested have no setpoints associated with them.

SURVEILLANCE REQUIREMENTS (continued)

<u>SR 3.3.7.9</u>

A CHANNEL CALIBRATION is performed every [18] months, or approximately at every refueling. CHANNEL CALIBRATION is a complete check of the instrument loop, including the sensor. The test verifies that the channel responds to a measured parameter within the necessary range and accuracy.

The Frequency is based on operating experience and is consistent with the typical industry refueling cycle.

REFERENCES 1. WCAP-15376, Rev. 0, October 2000.

B 3.3 INSTRUMENTATION

B 3.3.8 Fuel Building Air Cleanup System (FBACS) Actuation Instrumentation

BASES	
BACKGROUND	The FBACS ensures that radioactive materials in the fuel building atmosphere following a fuel handling accident [involving handling recently irradiated fuel] or a loss of coolant accident (LOCA) are filtered and adsorbed prior to exhausting to the environment. The system is described in the Bases for LCO 3.7.13, "Fuel Building Air Cleanup System." The system initiates filtered ventilation of the fuel building automatically following receipt of a high radiation signal (gaseous or particulate) or a safety injection (SI) signal. Initiation may also be performed manually as needed from the main control room.
	High gaseous and particulate radiation, each monitored by either of two monitors, provides FBACS initiation. Each FBACS train is initiated by high radiation detected by a channel dedicated to that train. There are a total of two channels, one for each train. Each channel contains a gaseous and particulate monitor. High radiation detected by any monitor or an SI signal from the Engineered Safety Features Actuation System (ESFAS) initiates fuel building isolation and starts the FBACS. These actions function to prevent exfiltration of contaminated air by initiating filtered ventilation, which imposes a negative pressure on the fuel building. Since the radiation monitors include an air sampling system, various components such as sample line valves, sample line heaters, sample pumps, and filter motors are required to support monitor OPERABILITY.
APPLICABLE SAFETY ANALYSES	The FBACS ensures that radioactive materials in the fuel building atmosphere following a fuel handling accident [involving handling recently irradiated fuel] or a LOCA are filtered and adsorbed prior to being exhausted to the environment. This action reduces the radioactive content in the fuel building exhaust following a LOCA or fuel handling accident so that offsite doses remain within the limits specified in 10 CFR 100 (Ref. 1). The FBACS actuation instrumentation satisfies Criterion 3 of
LCO	10 CFR 50.36(c)(2)(ii). The LCO requirements ensure that instrumentation necessary to initiate the FBACS is OPERABLE.

LCO (continued)

1. Manual Initiation

The LCO requires two channels OPERABLE. The operator can initiate the FBACS at any time by using either of two switches in the control room. This action will cause actuation of all components in the same manner as any of the automatic actuation signals.

The LCO for Manual Initiation ensures the proper amount of redundancy is maintained in the manual actuation circuitry to ensure the operator has manual initiation capability.

Each channel consists of one push button and the interconnecting wiring to the actuation logic cabinet.

2. Automatic Actuation Logic and Actuation Relays

The LCO requires two trains of Actuation Logic and Relays OPERABLE to ensure that no single random failure can prevent automatic actuation.

Automatic Actuation Logic and Actuation Relays consist of the same features and operate in the same manner as described for ESFAS Function 1.b., SI, in LCO 3.3.2. The applicable MODES and specified conditions for the FBACS portion of these functions are different and less restrictive than those specified for their SI roles. If one or more of the SI functions becomes inoperable in such a manner that only the FBACS function is affected, the Conditions applicable to their SI function need not be entered. The less restrictive Actions specified for inoperability of the FBACS functions specify sufficient compensatory measures for this case.

3. Fuel Building Radiation

The LCO specifies two required Gaseous Radiation Monitor channels and two required Particulate Radiation Monitor channels to ensure that the radiation monitoring instrumentation necessary to initiate the FBACS remains OPERABLE.

For sampling systems, channel OPERABILITY involves more than OPERABILITY of channel electronics. OPERABILITY may also require correct valve lineups, sample pump operation, filter motor operation, detector OPERABILITY, if these supporting features are necessary for actuation to occur under the conditions assumed by the safety analyses.

BASES LCO (continued) Only the Trip Setpoint is specified for each FBACS Function in the LCO. The Trip Setpoint limits account for instrument uncertainties, which are defined in the Unit Specific Setpoint Calibration Procedure (Ref. 2). **APPLICABILITY** The manual FBACS initiation must be OPERABLE in MODES [1, 2, 3, and 4] and when moving [recently] irradiated fuel assemblies in the fuel building, to ensure the FBACS operates to remove fission products associated with leakage after a LOCA or a fuel handling accident [involving handling recently irradiated fuel]. The automatic FBACS actuation instrumentation is also required in MODES [1, 2, 3, and 4] to remove fission products caused by post LOCA Emergency Core Cooling Systems leakage. High radiation initiation of the FBACS must be OPERABLE in any MODE during movement of [recently] irradiated fuel assemblies in the fuel building to ensure automatic initiation of the FBACS when the potential for the limiting fuel handling accident exists. [Due to radioactive decay, the FBACS instrumentation is only required to be OPERABLE during fuel handling involving handling recently irradiated fuel (i.e., fuel that has occupied part of a critical reactor core within the previous [X] days).] While in MODES 5 and 6 without fuel handling [involving handling recently irradiated fuel) in progress, the FBACS instrumentation need not be OPERABLE since a fuel handling accident [involving handling recently irradiated fuel] cannot occur. ACTIONS The most common cause of channel inoperability is outright failure or drift of the bistable or process module sufficient to exceed the tolerance allowed by unit specific calibration procedures. Typically, the drift is found to be small and results in a delay of actuation rather than a total loss of function. This determination is generally made during the performance of a COT, when the process instrumentation is set up for adjustment to bring it within specification. If the Trip Setpoint is less conservative than the tolerance specified by the calibration procedure, the channel must be declared inoperable immediately and the appropriate Condition entered. LCO 3.0.3 is not applicable while in MODE 5 or 6. However, since irradiated fuel assembly movement can occur in MODE 1, 2, 3, or 4, the ACTIONS have been modified by a Note stating that LCO 3.0.3 is not applicable. If moving irradiated fuel assemblies while in MODE 5 or 6. LCO 3.0.3 would not specify any action. If moving irradiated fuel assemblies while in MODE 1, 2, 3, or 4, the fuel movement is independent of reactor operations. Entering LCO 3.0.3, while in MODE 1, 2. 3. or 4 would require the unit to be shutdown unnecessarily.

ACTIONS (continued)

A second Note has been added to the ACTIONS to clarify the application of Completion Time rules. The Conditions of this Specification may be entered independently for each Function listed in Table 3.3.8-1 in the accompanying LCO. The Completion Time(s) of the inoperable channel(s)/train(s) of a Function will be tracked separately for each Function starting from the time the Condition was entered for that Function.

<u>A.1</u>

Condition A applies to the actuation logic train function of the Solid State Protection System (SSPS), the radiation monitor functions, and the manual function. Condition A applies to the failure of a single actuation logic train, radiation monitor channel, or manual channel. If one channel or train is inoperable, a period of 7 days is allowed to restore it to OPERABLE status. If the train cannot be restored to OPERABLE status, one FBACS train must be placed in operation. This accomplishes the actuation instrumentation function and places the unit in a conservative mode of operation. The 7 day Completion Time is the same as is allowed if one train of the mechanical portion of the system is inoperable. The basis for this time is the same as that provided in LCO 3.7.13.

<u>B.1.1, B.1.2, B.2</u>

Condition B applies to the failure of two FBACS actuation logic trains, two radiation monitors, or two manual channels. The Required Action is to place one FBACS train in operation immediately. This accomplishes the actuation instrumentation function that may have been lost and places the unit in a conservative mode of operation. The applicable Conditions and Required Actions of LCO 3.7.13 must also be entered for the FBACS train made inoperable by the inoperable actuation instrumentation. This ensures appropriate limits are placed on train inoperability as discussed in the Bases for LCO 3.7.13.

Alternatively, both trains may be placed in the emergency [radiation protection] mode. This ensures the FBACS Function is performed even in the presence of a single failure.

ACTIONS (continued)

<u>C.1</u>

Condition C applies when the Required Action and associated Completion Time for Condition A or B have not been met and [recently] irradiated fuel assemblies are being moved in the fuel building. Movement of [recently] irradiated fuel assemblies in the fuel building must be suspended immediately to eliminate the potential for events that could require FBACS actuation.

D.1 and D.2

Condition D applies when the Required Action and associated Completion Time for Condition A or B have not been met and the unit is in MODE 1, 2, 3, or 4. The unit must be brought to a MODE in which the LCO requirements are not applicable. To achieve this status, the unit must be brought to MODE 3 within 6 hours and MODE 5 within 36 hours. The allowed Completion Times are reasonable, based on operating experience, to reach the required unit conditions from full power conditions in an orderly manner and without challenging unit systems.

SURVEILLANCE A Note has been added to the SR Table to clarify that table 3.3.8-1 REQUIREMENTS determines which SRs apply to which FBACS Actuation Functions.

<u>SR 3.3.8,1</u>

Performance of the CHANNEL CHECK once every 12 hours ensures that a gross failure of instrumentation has not occurred. A CHANNEL CHECK is normally a comparison of the parameter indicated on one channel to a similar parameter on other channels. It is based on the assumption that instrument channels monitoring the same parameter should read approximately the same value. Significant deviations between the two instrument channels could be an indication of excessive instrument drift in one of the channels or of something even more serious. A CHANNEL CHECK will detect gross channel failure; thus, it is key to verifying the instrumentation continues to operate properly between each CHANNEL CALIBRATION.

Agreement criteria are determined by the unit staff, based on a combination of the channel instrument uncertainties, including indication and readability. If a channel is outside the criteria, it may be an indication that the sensor or the signal processing equipment has drifted outside its limit.

SURVEILLANCE REQUIREMENTS (continued)

The Frequency is based on operating experience that demonstrates channel failure is rare. The CHANNEL CHECK supplements less formal, but more frequent, checks of channels during normal operational use of the displays associated with the LCO required channels.

<u>SR 3.3.8.2</u>

A COT is performed once every 92 days on each required channel to ensure the entire channel will perform the intended function. A successful test of the required contact(s) of a channel relay may be performed by the verification of the change of state of a single contact of the relay. This clarifies what is an acceptable COT of a relay. This is acceptable because all of the other required contacts of the relay are verified by other Technical Specifications and non-Technical Specifications tests at least once per refueling interval with applicable extensions. This test verifies the capability of the instrumentation to provide the FBACS actuation. The setpoints shall be left consistent with the unit specific calibration procedure tolerance. The Frequency of 92 days is based on the known reliability of the monitoring equipment and has been shown to be acceptable through operating experience.

<u>SR 3.3.8.3</u>

[SR 3.3.8.3 is the performance of an ACTUATION LOGIC TEST. The actuation logic is tested every 31 days on a STAGGERED TEST BASIS. All possible logic combinations, with and without applicable permissives, are tested for each protection function. The Frequency is based on the known reliability of the relays and controls and the multichannel redundancy available, and has been shown to be acceptable through operating experience.]

<u>SR 3.3.8.4</u>

SR 3.3.8.4 is the performance of a TADOT. This test is a check of the manual actuation functions and is performed every [18] months. Each manual actuation function is tested up to, and including, the master relay coils. A successful test of the required contact(s) of a channel relay may be performed by the verification of the change of state of a single contact of the relay. This clarifies what is an acceptable TADOT of a relay. This is acceptable because all of the other required contacts of the relay are verified by other Technical Specifications and non-Technical

SURVEILLANCE REQUIREMENTS (continued)

Specifications tests at least once per refueling interval with applicable extensions. In some instances, the test includes actuation of the end device (e.g., pump starts, valve cycles, etc.). The Frequency is based on operating experience and is consistent with the typical industry refueling cycle. The SR is modified by a Note that excludes verification of setpoints during the TADOT. The Functions tested have no setpoints associated with them.

SR 3.3.8.5

A CHANNEL CALIBRATION is performed every [18] months, or approximately at every refueling. CHANNEL CALIBRATION is a complete check of the instrument loop, including the sensor. The test verifies that the channel responds to a measured parameter within the necessary range and accuracy. The Frequency is based on operating experience and is consistent with the typical industry refueling cycle.

REFERENCES 1. 10 CFR 100.11.

2. Unit Specific Setpoint Calibration Procedure.

B 3.3 INSTRUMENTATION

B 3.3.9 Boron Dilution Protection System (BDPS)

BASES	
BACKGROUND	The primary purpose of the BDPS is to mitigate the consequences of the inadvertent addition of unborated primary grade water into the Reactor Coolant System (RCS) when the reactor is in a shutdown condition (i.e., MODES 2, 3, 4, and 5).
	The BDPS utilizes two channels of source range instrumentation. Each source range channel provides a signal to both trains of the BDPS. A unit computer is used to continuously record the counts per minute provided by these signals. At the end of each minute, an algorithm compares the counts per minute value (flux rate) of that 1 minute interval with the counts per minute value for the previous nine, 1 minute intervals. If the flux rate during a 1 minute interval is greater than or equal to twice the flux rate during any of the prior nine 1 minute intervals, the BDPS provides a signal to initiate mitigating actions.
	Upon detection of a flux doubling by either source range instrumentation train, an alarm is sounded to alert the operator and valve movement is automatically initiated to terminate the dilution and start boration. Valves that isolate the refueling water storage tank (RWST) are opened to supply 2000 ppm borated water to the suction of the charging pumps, and valves which isolate the Chemical and Volume Control System (CVCS) are closed to terminate the dilution.
APPLICABLE SAFETY ANALYSES	The BDPS senses abnormal increases in source range counts per minute (flux rate) and actuates CVCS and RWST valves to mitigate the consequences of an inadvertent boron dilution event as described in FSAR, Chapter 15 (Ref. 1). The accident analyses rely on automatic BDPS actuation to mitigate the consequences of inadvertent boron dilution events.
	The BDPS-satisfies Criterion 3 of 10 CFR 50.36(c)(2)(ii).
LCO	LCO 3.3.9 provides the requirements for OPERABILITY of the instrumentation and controls that mitigate the consequences of a boron dilution event. Two redundant trains are required to be OPERABLE to provide protection against single failure.

LCO (continued)	
	Because the BDPS utilizes the source range instrumentation as its detection system, the OPERABILITY of the detection system, (i.e., the flux doubling algorithm, the alarms, and signals to the various valves) for one SRM is also required for each train in the system to be considered OPERABLE. Therefore, with both SRMs inoperable for supporting the BDPS, both trains are inoperable.
APPLICABILITY	The BDPS must be OPERABLE in MODES [2], 3, 4, and 5 because the safety analysis identifies this system as the primary means to mitigate an inadvertent boron dilution of the RCS.
	The BDPS OPERABILITY requirements are not applicable in MODE[S] 1 [and 2] because an inadvertent boron dilution would be terminated by a source range trip, a trip on the Power Range Neutron Flux - High (low setpoint nominally 25% RTP), or Overtemperature ΔT . These RTS Functions are discussed in LCO 3.3.1, "RTS Instrumentation."
	In MODE 6, a dilution event is precluded by locked values that isolate the RCS from the potential source of unborated water (according to LCO 3.9.2, "Unborated Water Source Isolation Values").
	The Applicability is modified by a Note that allows the boron dilution flux doubling signal to be blocked during reactor startup in MODES 2 and 3. Blocking the flux doubling signal is acceptable during startup while in MODE 3, provided the reactor trip breakers are closed with the intent to withdraw rods for startup.
ACTIONS	The most common cause of channel inoperability is outright failure or drift of the bistable or process module sufficient to exceed the tolerance allowed by the unit specific calibration procedure. Typically, the drift is found to be small and results in a delay of actuation rather than a total loss of function. This determination of setpoint drift is generally made during the performance of a COT when the process instrumentation is set up for adjustment to bring it to within specification. If the Trip Setpoint is less conservative than the tolerance specified by the calibration procedure, the channel must be declared inoperable immediately and the appropriate Condition entered.

.

ACTIONS (continued)

<u>A.1</u>

With one train of the BDPS OPERABLE, Required Action A.1 requires that the inoperable train must be restored to OPERABLE status within 72 hours. In this Condition, the remaining the BDPS train is adequate to provide protection. The 72 hour Completion Time is based on the BDPS Function and is consistent with Engineered Safety Feature Actuation System Completion Times for loss of one redundant train. Also, the remaining OPERABLE train provides continuous indication of core power status to the operator, has an alarm function, and sends a signal to both trains of the BDPS to assure system actuation.

B.1, B.2.1, B.2.2.1, and B.2.2.2

With two trains inoperable, or the Required Action and associated Completion Time of Condition A not met, the initial action (Required Action B.1) is to suspend all operations involving positive reactivity additions immediately. This includes withdrawal of control or shutdown rods and intentional boron dilution. A Completion Time of 1 hour is provided to restore one train to OPERABLE status.

As an alternate to restoring one train to OPERABLE status (Required Action B.2.1), Required Action B.2.2.1 requires valves listed in LCO 3.9.2 (Required Action A.2) to be secured to prevent the flow of unborated water into the RCS. Once it is recognized that two trains of the BDPS are inoperable, the operators will be aware of the possibility of a boron dilution, and the 1 hour Completion Time is adequate to complete the requirements of LCO 3.9.2.

Required Action B.2.2.2 accompanies Required Action B.2.2.1 to verify the SDM according to SR 3.1.1.1 within 1 hour and once per 12 hours thereafter. This backup action is intended to confirm that no unintended boron dilution has occurred while the BDPS was inoperable, and that the required SDM has been maintained. The specified Completion Time takes into consideration sufficient time for the initial determination of SDM and other information available in the control room related to SDM.

Required Action B.1 is modified by a Note which permits plant temperature changes provided the temperature change is accounted for in the calculated SDM. Introduction of temperature changes, including temperature increases when a positive MTC exists, must be evaluated to ensure they do not result in a loss of required SDM.

SURVEILLANCE <u>SR 3.3.9.1</u> REQUIREMENTS

The BDPS trains are subject to a COT and a CHANNEL CALIBRATION.

Performance of the CHANNEL CHECK once every 12 hours ensures that gross failure of instrumentation has not occurred. A CHANNEL CHECK is normally a comparison of the parameter indicated on one channel to a similar parameter on other channels. It is based on the assumption that instrument channels monitoring the same parameter should read approximately the same value. Significant deviations between the two instrument channels could be an indication of excessive instrument drift in one of the channels or of something even more serious. A CHANNEL CHECK will detect gross channel failure; thus, it is key to verifying that the instrumentation continues to operate properly between each CHANNEL CALIBRATION.

Agreement criteria are determined by the unit staff based on a combination of the channel instrument uncertainties, including indication and readability. If a channel is outside the criteria, it may be an indication that the senor or the signal processing equipment has drifted outside its limit.

The Frequency is based on operating experience that demonstrates channel failure is rare. The CHANNEL CHECK supplements less formal, but more frequent, checks of channels during normal operational use of the displays associated with the LCO required channels.

SR 3.3.9.2

SR 3.3.9.2 requires the performance of a COT every [92] days, to ensure that each train of the BDPS and associated trip setpoint are fully operational. A successful test of the required contact(s) of a channel relay may be performed by the verification of the change of state of a single contact of the relay. This clarifies what is an acceptable COT of a relay. This is acceptable because all of the other required contacts of the relay are verified by other Technical Specifications and non-Technical Specifications tests at least once per refueling interval with applicable extensions. This test shall include verification that the boron dilution alarm setpoint is equal to or less than an increase of twice the count rate within a 10 minute period. The Frequency of [92] days is consistent with the requirements for source range channels in WCAP-15376 (Ref. 2).

SURVEILLANCE REQUIREMENTS (continued)

SR 3.3.9.3

SR 3.3.9.3 is the performance of a CHANNEL CALIBRATION every [18] months. CHANNEL CALIBRATION is a complete check of the instrument loop, including the sensor except the neutron detector of the SRM circuit. The test verifies that the channel responds to a measured parameter within the necessary range and accuracy. For the BDPS, the CHANNEL CALIBRATION shall include verification that on a simulated or actual boron dilution flux doubling signal the centrifugal charging pump suction valves from the RWST open, and the normal CVCS volume control tank discharge valves close in the required closure time of \leq 20 seconds.

The Frequency is based on operating experience and consistency with the typical industry refueling cycle.

- REFERENCES 1. FSAR, Chapter [15].
 - 2. WCAP-15376, Revision 0, October 2000.

B 3.4 REACTOR COOLANT SYSTEM (RCS)

B 3.4.1 RCS Pressure, Temperature, and Flow Departure from Nucleate Boiling (DNB) Limits

BASES	
BACKGROUND	These Bases address requirements for maintaining RCS pressure, temperature, and flow rate within limits assumed in the safety analyses. The safety analyses (Ref. 1) of normal operating conditions and anticipated operational occurrences assume initial conditions within the normal steady state envelope. The limits placed on RCS pressure, temperature, and flow rate ensure that the minimum departure from nucleate boiling ratio (DNBR) will be met for each of the transients analyzed.
	The RCS pressure limit is consistent with operation within the nominal operational envelope. Pressurizer pressure indications are averaged to come up with a value for comparison to the limit. A lower pressure will cause the reactor core to approach DNB limits.
	The RCS coolant average temperature limit is consistent with full power operation within the nominal operational envelope. Indications of temperature are averaged to determine a value for comparison to the limit. A higher average temperature will cause the core to approach DNB limits.
	The RCS flow rate normally remains constant during an operational fuel cycle with all pumps running. The minimum RCS flow limit corresponds to that assumed for DNB analyses. Flow rate indications are averaged to come up with a value for comparison to the limit. A lower RCS flow will cause the core to approach DNB limits.
	Operation for significant periods of time outside these DNB limits increases the likelihood of a fuel cladding failure in a DNB limited event.
APPLICABLE SAFETY ANALYSES	The requirements of this LCO represent the initial conditions for DNB limited transients analyzed in the plant safety analyses (Ref. 1). The safety analyses have shown that transients initiated from the limits of this LCO will result in meeting the DNBR criterion. This is the acceptance limit for the RCS DNB parameters. Changes to the unit that could impact these parameters must be assessed for their impact on the DNBR criteria. The transients analyzed for include loss of coolant flow events and dropped or stuck rod events. A key assumption for the analysis of these events is that the core power distribution is within the limits of LCO 3.1.6, "Control Bank Insertion Limits," LCO 3.2.3, "AXIAL FLUX DIFFERENCE (AFD)," and LCO 3.2.4, "QUADRANT POWER TILT RATIO (QPTR)."

APPLICABLE SAFETY ANALYSES (continued)

The pressurizer pressure limit and RCS average temperature limit specified in the COLR correspond to the analytical limits used in the safety analyses, with allowance for measurement uncertainty.

The RCS DNB parameters satisfy Criterion 2 of 10 CFR 50.36(c)(2)(ii).

LCO

This LCO specifies limits on the monitored process variables - pressurizer pressure, RCS average temperature, and RCS total flow rate - to ensure the core operates within the limits assumed in the safety analyses. These variables are contained in the COLR to provide operating and analysis flexibility from cycle to cycle. However, the minimum RCS flow, usually based on [maximum analyzed steam generator tube plugging], is retained in the TS LCO. Operating within these limits will result in meeting the DNBR criterion in the event of a DNB limited transient.

RCS total flow rate contains a measurement error based on performing a precision heat balance and using the result to calibrate the RCS flow rate indicators. Potential fouling of the feedwater venturi, which might not be detected, could bias the result from the precision heat balance in a nonconservative manner. Therefore, a penalty for undetected fouling of the feedwater venturi raises the nominal flow measurement allowance for no fouling.

Any fouling that might bias the flow rate measurement greater than the penalty for undetected fouling of the feedwater venturi can be detected by monitoring and trending various plant performance parameters. If detected, either the effect of the fouling shall be quantified and compensated for in the RCS flow rate measurement or the venturi shall be cleaned to eliminate the fouling.

The numerical values for pressure, temperature, and flow rate specified in the COLR are given for the measurement location and have been adjusted for instrument error.

APPLICABILITY In MODE 1, the limits on pressurizer pressure, RCS coolant average temperature, and RCS flow rate must be maintained during steady state operation in order to ensure DNBR criteria will be met in the event of an unplanned loss of forced coolant flow or other DNB limited transient. In all other MODES, the power level is low enough that DNB is not a concern.

APPLICABILITY (continued)

A Note has been added to indicate the limit on pressurizer pressure is not applicable during short term operational transients such as a THERMAL POWER ramp increase > 5% RTP per minute or a THERMAL POWER step increase > 10% RTP. These conditions represent short term perturbations where actions to control pressure variations might be counterproductive. Also, since they represent transients initiated from power levels < 100% RTP, an increased DNBR margin exists to offset the temporary pressure variations.

The DNBR limit is provided in SL 2.1.1, "Reactor Core SLs." The conditions which define the DNBR limit are less restrictive than the limits of this LCO, but violation of a Safety Limit (SL) merits a stricter, more severe Required Action. Should a violation of this LCO occur, the operator must check whether or not an SL may have been exceeded.

ACTIONS

RCS pressure and RCS average temperature are controllable and measurable parameters. With one or both of these parameters not within LCO limits, action must be taken to restore parameter(s).

RCS total flow rate is not a controllable parameter and is not expected to vary during steady state operation. If the indicated RCS total flow rate is below the LCO limit, power must be reduced, as required by Required Action B.1, to restore DNB margin and eliminate the potential for violation of the accident analysis bounds.

The 2 hour Completion Time for restoration of the parameters provides sufficient time to adjust plant parameters, to determine the cause for the off normal condition, and to restore the readings within limits, and is based on plant operating experience.

<u>B.1</u>

<u>A.1</u>

If Required Action A.1 is not met within the associated Completion Time, the plant must be brought to a MODE in which the LCO does not apply. To achieve this status, the plant must be brought to at least MODE 2 within 6 hours. In MODE 2, the reduced power condition eliminates the potential for violation of the accident analysis bounds. The Completion Time of 6 hours is reasonable to reach the required plant conditions in an orderly manner.

SURVEILLANCE S REQUIREMENTS

<u>SR 3.4.1.1</u>

Since Required Action A.1 allows a Completion Time of 2 hours to restore parameters that are not within limits, the 12 hour Surveillance Frequency for pressurizer pressure is sufficient to ensure the pressure can be restored to a normal operation, steady state condition following load changes and other expected transient operations. The 12 hour interval has been shown by operating practice to be sufficient to regularly assess for potential degradation and to verify operation is within safety analysis assumptions.

SR 3.4.1.2

Since Required Action A.1 allows a Completion Time of 2 hours to restore parameters that are not within limits, the 12 hour Surveillance Frequency for RCS average temperature is sufficient to ensure the temperature can be restored to a normal operation, steady state condition following load changes and other expected transient operations. The 12 hour interval has been shown by operating practice to be sufficient to regularly assess for potential degradation and to verify operation is within safety analysis assumptions.

<u>SR 3.4.1.3</u>

The 12 hour Surveillance Frequency for RCS total flow rate is performed using the installed flow instrumentation. The 12 hour interval has been shown by operating practice to be sufficient to regularly assess potential degradation and to verify operation within safety analysis assumptions.

SR 3.4.1.4

Measurement of RCS total flow rate by performance of a precision calorimetric heat balance once every [18] months allows the installed RCS flow instrumentation to be calibrated and verifies the actual RCS flow rate is greater than or equal to the minimum required RCS flow rate.

The Frequency of [18] months reflects the importance of verifying flow after a refueling outage when the core has been altered, which may have caused an alteration of flow resistance.

SURVEILLANCE REQUIREMENTS (continued)

This SR is modified by a Note that allows entry into MODE 1, without having performed the SR, and placement of the unit in the best condition for performing the SR. The Note states that the SR is not required to be performed until 24 hours after \geq [90%] RTP. This exception is appropriate since the heat balance requires the plant to be at a minimum of [90%] RTP to obtain the stated RCS flow accuracies. The Surveillance shall be performed within 24 hours after reaching [90%] RTP.

REFERENCES 1. FSAR, Section [15].

B 3.4 REACTOR COOLANT SYSTEM (RCS)

B 3.4.2 RCS Minimum Temperature for Criticality

BASES	
BACKGROUND	This LCO is based upon meeting several major considerations before the reactor can be made critical and while the reactor is critical.
	The first consideration is moderator temperature coefficient (MTC), LCO 3.1.3, "Moderator Temperature Coefficient (MTC)." In the transient and accident analyses, the MTC is assumed to be in a range from slightly positive to negative and the operating temperature is assumed to be within the nominal operating envelope while the reactor is critical. The LCO on minimum temperature for criticality helps ensure the plant is operated consistent with these assumptions.
	The second consideration is the protective instrumentation. Because certain protective instrumentation (e.g., excore neutron detectors) can be affected by moderator temperature, a temperature value within the nominal operating envelope is chosen to ensure proper indication and response while the reactor is critical.
	The third consideration is the pressurizer operating characteristics. The transient and accident analyses assume that the pressurizer is within its normal startup and operating range (i.e., saturated conditions and steam bubble present). It is also assumed that the RCS temperature is within its normal expected range for startup and power operation. Since the density of the water, and hence the response of the pressurizer to transients, depends upon the initial temperature of the moderator, a minimum value for moderator temperature within the nominal operating envelope is chosen.
	The fourth consideration is that the reactor vessel is above its minimum nil ductility reference temperature when the reactor is critical.
APPLICABLE SAFETY ANALYSES	Although the RCS minimum temperature for criticality is not itself an initial condition assumed in Design Basis Accidents (DBAs), the closely aligned temperature for hot zero power (HZP) is a process variable that is an initial condition of DBAs, such as the rod cluster control assembly (RCCA) withdrawal, RCCA ejection, and main steam line break accidents performed at zero power that either assumes the failure of, or presents a challenge to, the integrity of a fission product barrier.

.

BASES

APPLICABLE SAFETY ANALYSES (continued)

	All low power safety analyses assume initial RCS loop temperatures ≥ the HZP temperature of 547°F (Ref. 1). The minimum temperature for criticality limitation provides a small band, 6°F, for critical operation below HZP. This band allows critical operation below HZP during plant startup and does not adversely affect any safety analyses since the MTC is not significantly affected by the small temperature difference between HZP and the minimum temperature for criticality. The RCS minimum temperature for criticality satisfies Criterion 2 of
	10 CFR 50.36(c)(2)(ii).
LCO	Compliance with the LCO ensures that the reactor will not be made or maintained critical ($k_{eff} \ge 1.0$) at a temperature less than a small band below the HZP temperature, which is assumed in the safety analysis. Failure to meet the requirements of this LCO may produce initial conditions inconsistent with the initial conditions assumed in the safety analysis.
APPLICABILITY	In MODE 1 and MODE 2 with $k_{eff} \ge 1.0$, LCO 3.4.2 is applicable since the reactor can only be critical ($k_{eff} \ge 1.0$) in these MODES.
	The special test exception of LCO 3.1.8, "PHYSICS TESTS Exceptions - MODE 2," permits PHYSICS TESTS to be performed at \leq 5% RTP with RCS loop average temperatures slightly lower than normally allowed so that fundamental nuclear characteristics of the core can be verified. In order for nuclear characteristics to be accurately measured, it may be necessary to operate outside the normal restrictions of this LCO. For example, to measure the MTC at beginning of cycle, it is necessary to allow RCS loop average temperatures to fall below T _{no load} , which may cause RCS loop average temperatures to fall below the temperature limit of this LCO.
ACTIONS	<u>A.1</u>
	If the parameters that are outside the limit cannot be restored, the plant must be brought to a MODE in which the LCO does not apply. To achieve this status, the plant must be brought to MODE 2 with $K_{eff} < 1.0$ within 30 minutes. Rapid reactor shutdown can be readily and practically achieved within a 30 minute period. The allowed time is reasonable, based on operating experience, to reach MODE 2 with $K_{eff} < 1.0$ in an orderly manner and without challenging plant systems.

BASES	
SURVEILLANCE	<u>SR 3.4.2.1</u>
	RCS loop average temperature is required to be verified at or above [541]°F every 12 hours. The SR to verify RCS loop average temperatures every 12 hours takes into account indications and alarms that are continuously available to the operator in the control room and is consistent with other routine Surveillances which are typically performed once per shift. In addition, operators are trained to be sensitive to RCS temperature during approach to criticality and will ensure that the minimum temperature for criticality is met as criticality is approached.
REFERENCES	1. FSAR, Section [15.0.3].

• .

.

.

B 3.4 REACTOR COOLANT SYSTEM (RCS)

B 3.4.3 RCS Pressure and Temperature (P/T) Limits

BASES	·
BACKGROUND	All components of the RCS are designed to withstand effects of cyclic loads due to system pressure and temperature changes. These loads are introduced by startup (heatup) and shutdown (cooldown) operations, power transients, and reactor trips. This LCO limits the pressure and temperature changes during RCS heatup and cooldown, within the design assumptions and the stress limits for cyclic operation.
	The PTLR contains P/T limit curves for heatup, cooldown, inservice leak and hydrostatic (ISLH) testing, and data for the maximum rate of change of reactor coolant temperature (Ref. 1).
	Each P/T limit curve defines an acceptable region for normal operation. The usual use of the curves is operational guidance during heatup or cooldown maneuvering, when pressure and temperature indications are monitored and compared to the applicable curve to determine that operation is within the allowable region.
	The LCO establishes operating limits that provide a margin to brittle failure of the reactor vessel and piping of the reactor coolant pressure boundary (RCPB). The vessel is the component most subject to brittle failure, and the LCO limits apply mainly to the vessel. The limits do not apply to the pressurizer, which has different design characteristics and operating functions.
	10 CFR 50, Appendix G (Ref. 2), requires the establishment of P/T limits for specific material fracture toughness requirements of the RCPB materials. Reference 2 requires an adequate margin to brittle failure during normal operation, anticipated operational occurrences, and system hydrostatic tests. It mandates the use of the American Society of Mechanical Engineers (ASME) Code, Section III, Appendix G (Ref. 3).
	The neutron embrittlement effect on the material toughness is reflected by increasing the nil ductility reference temperature (RT _{NDT}) as exposure to neutron fluence increases.
	The actual shift in the RT_{NDT} of the vessel material will be established periodically by removing and evaluating the irradiated reactor vessel material specimens, in accordance with ASTM E 185 (Ref. 4) and Appendix H of 10 CFR 50 (Ref. 5). The operating P/T limit curves will be adjusted, as necessary, based on the evaluation findings and the recommendations of Regulatory Guide 1.99 (Ref. 6).

BACKGROUND (continued)

	The P/T limit curves are composite curves established by superimposing limits derived from stress analyses of those portions of the reactor vessel and head that are the most restrictive. At any specific pressure, temperature, and temperature rate of change, one location within the reactor vessel will dictate the most restrictive limit. Across the span of the P/T limit curves, different locations are more restrictive, and, thus, the curves are composites of the most restrictive regions.
	The heatup curve represents a different set of restrictions than the cooldown curve because the directions of the thermal gradients through the vessel wall are reversed. The thermal gradient reversal alters the location of the tensile stress between the outer and inner walls.
	The criticality limit curve includes the Reference 2 requirement that it be $\geq 40^{\circ}$ F above the heatup curve or the cooldown curve, and not less than the minimum permissible temperature for ISLH testing. However, the criticality curve is not operationally limiting; a more restrictive limit exists in LCO 3.4.2, "RCS Minimum Temperature for Criticality."
	The consequence of violating the LCO limits is that the RCS has been operated under conditions that can result in brittle failure of the RCPB, possibly leading to a nonisolable leak or loss of coolant accident. In the event these limits are exceeded, an evaluation must be performed to determine the effect on the structural integrity of the RCPB components. The ASME Code, Section XI, Appendix E (Ref. 7), provides a recommended methodology for evaluating an operating event that causes an excursion outside the limits.
APPLICABLE SAFETY ANALYSES	The P/T limits are not derived from Design Basis Accident (DBA) analyses. They are prescribed during normal operation to avoid encountering pressure, temperature, and temperature rate of change conditions that might cause undetected flaws to propagate and cause nonductile failure of the RCPB, an unanalyzed condition. Reference 1 establishes the methodology for determining the P/T limits. Although the P/T limits are not derived from any DBA, the P/T limits are acceptance limits since they preclude operation in an unanalyzed condition.
	RCS P/T limits satisfy Criterion 2 of 10 CFR 50.36(c)(2)(ii).

BASES	
LCO	The two elements of this LCO are:
	a. The limit curves for heatup, cooldown, and ISLH testing and
	b. Limits on the rate of change of temperature.
	The LCO limits apply to all components of the RCS, except the pressurizer. These limits define allowable operating regions and permit a large number of operating cycles while providing a wide margin to nonductile failure.
	The limits for the rate of change of temperature control the thermal gradient through the vessel wall and are used as inputs for calculating the heatup, cooldown, and ISLH testing P/T limit curves. Thus, the LCO for the rate of change of temperature restricts stresses caused by thermal gradients and also ensures the validity of the P/T limit curves.
	Violating the LCO limits places the reactor vessel outside of the bounds of the stress analyses and can increase stresses in other RCPB components. The consequences depend on several factors, as follow:
	 The severity of the departure from the allowable operating P/T regime or the severity of the rate of change of temperature,
	 The length of time the limits were violated (longer violations allow the temperature gradient in the thick vessel walls to become more pronounced), and
	c. The existences, sizes, and orientations of flaws in the vessel material.
APPLICABILITY	The RCS P/T limits LCO provides a definition of acceptable operation for prevention of nonductile failure in accordance with 10 CFR 50, Appendix G (Ref. 2). Although the P/T limits were developed to provide guidance for operation during heatup or cooldown (MODES 3, 4, and 5) or ISLH testing, their Applicability is at all times in keeping with the concern for nonductile failure. The limits do not apply to the pressurizer.
	During MODES 1 and 2, other Technical Specifications provide limits for operation that can be more restrictive than or can supplement these P/T limits. LCO 3.4.1, "RCS Pressure, Temperature, and Flow Departure from Nucleate Boiling (DNB) Limits," LCO 3.4.2, "RCS Minimum Temperature for Criticality," and Safety Limit 2.1, "Safety Limits," also provide operational restrictions for pressure and temperature and

APPLICABILITY (continued)

maximum pressure. Furthermore, MODES 1 and 2 are above the temperature range of concern for nonductile failure, and stress analyses have been performed for normal maneuvering profiles, such as power ascension or descent.

ACTIONS A.1 and A.2

Operation outside the P/T limits during MODE 1, 2, 3, or 4 must be corrected so that the RCPB is returned to a condition that has been verified by stress analyses.

The 30 minute Completion Time reflects the urgency of restoring the parameters to within the analyzed range. Most violations will not be severe, and the activity can be accomplished in this time in a controlled manner.

Besides restoring operation within limits, an evaluation is required to determine if RCS operation can continue. The evaluation must verify the RCPB integrity remains acceptable and must be completed before continuing operation. Several methods may be used, including comparison with pre-analyzed transients in the stress analyses, new analyses, or inspection of the components.

ASME Code, Section XI, Appendix E (Ref. 7), may be used to support the evaluation. However, its use is restricted to evaluation of the vessel beltline.

The 72 hour Completion Time is reasonable to accomplish the evaluation. The evaluation for a mild violation is possible within this time, but more severe violations may require special, event specific stress analyses or inspections. A favorable evaluation must be completed before continuing to operate.

Condition A is modified by a Note requiring Required Action A.2 to be completed whenever the Condition is entered. The Note emphasizes the need to perform the evaluation of the effects of the excursion outside the allowable limits. Restoration alone per Required Action A.1 is insufficient because higher than analyzed stresses may have occurred and may have affected the RCPB integrity.

ACTIONS (continued)

B.1 and B.2

If a Required Action and associated Completion Time of Condition A are not met, the plant must be placed in a lower MODE because either the RCS remained in an unacceptable P/T region for an extended period of increased stress or a sufficiently severe event caused entry into an unacceptable region. Either possibility indicates a need for more careful examination of the event, best accomplished with the RCS at reduced pressure and temperature. In reduced pressure and temperature conditions, the possibility of propagation with undetected flaws is decreased.

If the required restoration activity cannot be accomplished within 30 minutes, Required Action B.1 and Required Action B.2 must be implemented to reduce pressure and temperature.

If the required evaluation for continued operation cannot be accomplished within 72 hours or the results are indeterminate or unfavorable, action must proceed to reduce pressure and temperature as specified in Required Action B.1 and Required Action B.2. A favorable evaluation must be completed and documented before returning to operating pressure and temperature conditions.

Pressure and temperature are reduced by bringing the plant to MODE 3 within 6 hours and to MODE 5 with RCS pressure < [500] psig within 36 hours.

The allowed Completion Times are reasonable, based on operating experience, to reach the required plant conditions from full power conditions in an orderly manner and without challenging plant systems.

C.1 and C.2

Actions must be initiated immediately to correct operation outside of the P/T limits at times other than when in MODE 1, 2, 3, or 4, so that the RCPB is returned to a condition that has been verified by stress analysis.

The immediate Completion Time reflects the urgency of initiating action to restore the parameters to within the analyzed range. Most violations will not be severe, and the activity can be accomplished in this time in a controlled manner.
•

BASES

ACTIONS (continued)

	Besides restoring operation within limits, an evaluation is required to determine if RCS operation can continue. The evaluation must verify that the RCPB integrity remains acceptable and must be completed prior to entry into MODE 4. Several methods may be used, including comparison with pre-analyzed transients in the stress analyses, or inspection of the components.		
	ASME Code, Section XI, Appendix E (Ref. 7), may be used to support the evaluation. However, its use is restricted to evaluation of the vessel beltline.		
	Condition C is modified by a Note requiring Required Action C.2 to be completed whenever the Condition is entered. The Note emphasizes the need to perform the evaluation of the effects of the excursion outside the allowable limits. Restoration alone per Required Action C.1 is insufficient because higher than analyzed stresses may have occurred and may have affected the RCPB integrity.		
	<u>SR 3.4.3.1</u>		
REQUIREMENTS	Verification that operation is within the PTLR limits is required every 30 minutes when RCS pressure and temperature conditions are undergoing planned changes. This Frequency is considered reasonable in view of the control room indication available to monitor RCS status. Also, since temperature rate of change limits are specified in hourly increments, 30 minutes permits assessment and correction for minor deviations within a reasonable time.		
	Surveillance for heatup, cooldown, or ISLH testing may be discontinued when the definition given in the relevant plant procedure for ending the activity is satisfied.		
	This SR is modified by a Note that only requires this SR to be performed during system heatup, cooldown, and ISLH testing. No SR is given for criticality operations because LCO 3.4.2 contains a more restrictive requirement.		
REFERENCES	1. WCAP-7924-A, April 1975.		
	2. 10 CFR 50, Appendix G.		
	3. ASME, Boiler and Pressure Vessel Code, Section III, Appendix G.		

REFERENCES (continued)

- 4. ASTM E 185-82, July 1982.
- 5. 10 CFR 50, Appendix H.
- 6. Regulatory Guide 1.99, Revision 2, May 1988.

۰.

7. ASME, Boiler and Pressure Vessel Code, Section XI, Appendix E.

.

B 3.4.4 RCS Loops - MODES 1 and 2

BASES		
BACKGROUND	The primary function of the RCS is removal of the heat generated in the fuel due to the fission process, and transfer of this heat, via the steam generators (SGs), to the secondary plant.	
	The secondary functions of the RCS include:	
	 Moderating the neutron energy level to the thermal state, to increase the probability of fission, 	
	b. Improving the neutron economy by acting as a reflector,	
	c. Carrying the soluble neutron poison, boric acid,	
	 Providing a second barrier against fission product release to the environment, and 	
	e. Removing the heat generated in the fuel due to fission product decay following a unit shutdown.	
	The reactor coolant is circulated through [four] loops connected in parallel to the reactor vessel, each containing an SG, a reactor coolant pump (RCP), and appropriate flow and temperature instrumentation for both control and protection. The reactor vessel contains the clad fuel. The SGs provide the heat sink to the isolated secondary coolant. The RCPs circulate the coolant through the reactor vessel and SGs at a sufficient rate to ensure proper heat transfer and prevent fuel damage. This forced circulation of the reactor coolant ensures mixing of the coolant for proper boration and chemistry control.	
APPLICABLE SAFETY ANALYSES	Safety analyses contain various assumptions for the design bases accident initial conditions including RCS pressure, RCS temperature, reactor power level, core parameters, and safety system setpoints. The important aspect for this LCO is the reactor coolant forced flow rate, which is represented by the number of RCS loops in service. Both transient and steady state analyses have been performed to establish the effect of flow on the departure from nucleate boiling (DNB).	
	The transient and accident analyses for the plant have been performed assuming [four] RCS loops are in operation. The majority of the plant	

APPLICABLE SAFETY ANALYSES (continued)

safety analyses are based on initial conditions at high core power or zero power. The accident analyses that are most important to RCP operation are the [four] pump coastdown, single pump locked rotor, single pump (broken shaft or coastdown), and rod withdrawal events (Ref. 1).

Steady state DNB analysis has been performed for the [four] RCS loop operation. For [four] RCS loop operation, the steady state DNB analysis, which generates the pressure and temperature Safety Limit (SL) (i.e., the departure from nucleate boiling ratio (DNBR) limit) assumes a maximum power level of 109% RTP. This is the design overpower condition for [four] RCS loop operation. The value for the accident analysis setpoint of the nuclear overpower (high flux) trip is 107% and is based on an analysis assumption that bounds possible instrumentation errors. The DNBR limit defines a locus of pressure and temperature points that result in a minimum DNBR greater than or equal to the critical heat flux correlation limit.

The plant is designed to operate with all RCS loops in operation to maintain DNBR above the SL, during all normal operations and anticipated transients. By ensuring heat transfer in the nucleate boiling region, adequate heat transfer is provided between the fuel cladding and the reactor coolant.

RCS Loops - MODES 1 and 2 satisfy Criterion 2 of 10 CFR 50.36(c)(2)(ii).

The purpose of this LCO is to require an adequate forced flow rate for core heat removal. Flow is represented by the number of RCPs in operation for removal of heat by the SGs. To meet safety analysis acceptance criteria for DNB, [four] pumps are required at rated power.

An OPERABLE RCS loop consists of an OPERABLE RCP in operation providing forced flow for heat transport and an OPERABLE SG in accordance with the Steam Generator Tube Surveillance Program.

APPLICABILITY In MODES 1 and 2, the reactor is critical and thus has the potential to produce maximum THERMAL POWER. Thus, to ensure that the assumptions of the accident analyses remain valid, all RCS loops are required to be OPERABLE and in operation in these MODES to prevent DNB and core damage.

The decay heat production rate is much lower than the full power heat rate. As such, the forced circulation flow and heat sink requirements are reduced for lower, noncritical MODES as indicated by the LCOs for MODES 3, 4, and 5.

LCO

.

LCO (continued)		
	Operation ir	other MODES is covered by:
	LCO 3.4.5, LCO 3.4.6, LCO 3.4.7, LCO 3.4.8, LCO 3.9.5, LCO 3.9.6,	"RCS Loops - MODE 3," "RCS Loops - MODE 4," "RCS Loops - MODE 5, Loops Filled," "RCS Loops - MODE 5, Loops Not Filled," "Residual Heat Removal (RHR) and Coolant Circulation - High Water Level" (MODE 6), and "Residual Heat Removal (RHR) and Coolant Circulation - Low Water Level" (MODE 6).
ACTIONS	<u>A.1</u>	
	If the require reduce powe and thus red possibility of	ements of the LCO are not met, the Required Action is to er and bring the plant to MODE 3. This lowers power level duces the core heat removal needs and minimizes the f violating DNB limits.
	The Completion Time of 6 hours is reasonable, base experience, to reach MODE 3 from full power conditi manner and without challenging safety systems.	
SURVEILLANCE	<u>SR 3.4.4.1</u>	
	This SR requires verification every 12 hours that each RCS loop is in operation. Verification includes flow rate, temperature, or pump status monitoring, which help ensure that forced flow is providing heat removal while maintaining the margin to DNB. The Frequency of 12 hours is sufficient considering other indications and alarms available to the operator in the control room to monitor RCS loop performance.	
REFERENCES	1. FSAR,	Section [].

B 3.4.5 RCS Loops - MODE 3

BASES		
BACKGROUND	In MODE 3, the primary function of the reactor coolant is removal of decay heat and transfer of this heat, via the steam generator (SG), to the secondary plant fluid. The secondary function of the reactor coolant is to act as a carrier for soluble neutron poison, boric acid.	
	The reactor coolant is circulated through [four] RCS loops, connected in parallel to the reactor vessel, each containing an SG, a reactor coolant pump (RCP), and appropriate flow, pressure, level, and temperature instrumentation for control, protection, and indication. The reactor vessel contains the clad fuel. The SGs provide the heat sink. The RCPs circulate the water through the reactor vessel and SGs at a sufficient rate to ensure proper heat transfer and prevent fuel damage.	
	In MODE 3, RCPs are used to provide forced circulation for heat removal during heatup and cooldown. The MODE 3 decay heat removal requirements are low enough that a single RCS loop with one RCP running is sufficient to remove core decay heat. However, [two] RCS loops are required to be OPERABLE to ensure redundant capability for decay heat removal.	
APPLICABLE SAFETY ANALYSES	Whenever the reactor trip breakers (RTBs) are in the closed position and the control rod drive mechanisms (CRDMs) are energized, an inadvertent rod withdrawal from subcritical, resulting in a power excursion, is possible. Such a transient could be caused by a malfunction of the rod control system. In addition, the possibility of a power excursion due to the ejection of an inserted control rod is possible with the breakers closed or open. Such a transient could be caused by the mechanical failure of a CRDM.	
	Therefore, in MODE 3 with the Rod Control System capable of rod withdrawal, accidental control rod withdrawal from subcritical is postulated and requires at least [two] RCS loops to be OPERABLE and in operation to ensure that the accident analyses limits are met. For those conditions when the Rod Control System is not capable of rod withdrawal, two RCS loops are required to be OPERABLE, but only one RCS loop is required to be in operation to be consistent with MODE 3 accident analyses.	

APPLICABLE SAFETY ANALYSES (continued)

Failure to provide decay heat removal may result in challenges to a fission product barrier. The RCS loops are part of the primary success path that functions or actuates to prevent or mitigate a Design Basis Accident or transient that either assumes the failure of, or presents a challenge to, the integrity of a fission product barrier.

RCS Loops - MODE 3 satisfy Criterion 3 of 10 CFR 50.36(c)(2)(ii).

LCO

The purpose of this LCO is to require that at least [two] RCS loops be OPERABLE. In MODE 3 with the Rod Control System capable of rod withdrawal, [two] RCS loops must be in operation. [Two] RCS loops are required to be in operation in MODE 3 with the Rod Control System capable of rod withdrawal due to the postulation of a power excursion because of an inadvertent control rod withdrawal. The required number of RCS loops in operation ensures that the Safety Limit criteria will be met for all of the postulated accidents.

When the Rod Control System is not capable of rod withdrawal, only one RCS loop in operation is necessary to ensure removal of decay heat from the core and homogenous boron concentration throughout the RCS. An additional RCS loop is required to be OPERABLE to ensure that safety analyses limits are met.

The Note permits all RCPs to be removed from operation for ≤ 1 hour per 8 hour period. The purpose of the Note is to perform tests that are designed to validate various accident analyses values. One of these tests is validation of the pump coastdown curve used as input to a number of accident analyses including a loss of flow accident. This test is generally performed in MODE 3 during the initial startup testing program, and as such should only be performed once. If, however, changes are made to the RCS that would cause a change to the flow characteristics of the RCS, the input values of the coastdown curve must be revalidated by conducting the test again. Another test performed during the startup testing program is the validation of rod drop times during cold conditions, both with and without flow.

The no flow test may be performed in MODE 3, 4, or 5 and requires that the pumps be stopped for a short period of time. The Note permits the stopping of the pumps in order to perform this test and validate the assumed analysis values. As with the validation of the pump coastdown curve, this test should be performed only once unless the flow characteristics of the RCS are changed. The 1 hour time period specified is adequate to perform the desired tests, and operating experience has shown that boron stratification is not a problem during this short period with no forced flow.

LCO (continued)		
	Utilization of the Note is permitted provided the following conditions are met, along with any other conditions imposed by initial startup test procedures:	
	a. No operations are permitted that would dilute the RCS boron concentration with coolant at boron concentrations less than required to assure the SDM of LCO 3.1.1, thereby maintaining the margin to criticality. Boron reduction with coolant at boron concentrations less than required to assure SDM is maintained is prohibited because a uniform concentration distribution throughout the RCS cannot be ensured when in natural circulation and	
	 b. Core outlet temperature is maintained at least 10°F below saturation temperature, so that no vapor bubble may form and possibly cause a natural circulation flow obstruction. 	
	An OPERABLE RCS loop consists of one OPERABLE RCP and one OPERABLE SG in accordance with the Steam Generator Tube Surveillance Program, which has the minimum water level specified in SR 3.4.5.2. An RCP is OPERABLE if it is capable of being powered and is able to provide forced flow if required.	
APPLICABILITY	In MODE 3, this LCO ensures forced circulation of the reactor coolant to remove decay heat from the core and to provide proper boron mixing. The most stringent condition of the LCO, that is, two RCS loops OPERABLE and two RCS loops in operation, applies to MODE 3 with th Rod Control System capable of rod withdrawal. The least stringent condition, that is, two RCS loops OPERABLE and one RCS loop in operation, applies to MODE 3 with the Rod Control System not capable rod withdrawal.	
	Operation in other MODES is covered by:	
	LCO 3.4.4, "RCS Loops - MODES 1 and 2," LCO 3.4.6, "RCS Loops - MODE 4," LCO 3.4.7, "RCS Loops - MODE 5, Loops Filled," LCO 3.4.8, "RCS Loops - MODE 5, Loops Not Filled," LCO 3.9.5, "Residual Heat Removal (RHR) and Coolant Circulation - High Water Level" (MODE 6), and	
	LCO 3.9.6, "Residual Heat Removal (RHR) and Coolant Circulation - Low Water Level" (MODE 6).	

.

ACTIONS

A.1

If one [required] RCS loop is inoperable, redundancy for heat removal is lost. The Required Action is restoration of the required RCS loop to OPERABLE status within the Completion Time of 72 hours. This time allowance is a justified period to be without the redundant, nonoperating loop because a single loop in operation has a heat transfer capability greater than that needed to remove the decay heat produced in the reactor core and because of the low probability of a failure in the remaining loop occurring during this period.

<u>B.1</u>

If restoration for Required Action A.1 is not possible within 72 hours, the unit must be brought to MODE 4. In MODE 4, the unit may be placed on the Residual Heat Removal System. The additional Completion Time of 12 hours is compatible with required operations to achieve cooldown and depressurization from the existing plant conditions in an orderly manner and without challenging plant systems.

[C.1 and C.2

If one required RCS loop is not in operation, and the Rod Control System is capable of rod withdrawal, the Required Action is either to restore the required RCS loop to operation or to place the Rod Control System in a condition incapable of rod withdrawal (e.g., de-energize all CRDMs by opening the RTBs or de-energizing the motor generator (MG) sets). When the Rod Control System is capable of rod withdrawal, it is postulated that a power excursion could occur in the event of an inadvertent control rod withdrawal. This mandates having the heat transfer capacity of two RCS loops in operation. If only one loop is in operation, the Rod Control System must be rendered incapable of rod withdrawal. The Completion Times of 1 hour, to restore the required RCS loop to operation or defeat the Rod Control System is adequate to perform these operations in an orderly manner without exposing the unit to risk for an undue time period.]

ACTIONS (continued)

D.1, D.2, and D.3

If [two] [required] RCS loops are inoperable or a required RCS loop is not in operation, except as during conditions permitted by the Note in the LCO section, the Rod Control System must be placed in a condition incapable of rod withdrawal (e.g., all CRDMs must be de-energized by opening the RTBs or de-energizing the MG sets). All operations involving introduction of coolant into the RCS with boron concentration less than required to meet the minimum SDM of LCO 3.1.1 must be suspended. and action to restore one of the RCS loops to OPERABLE status and operation must be initiated. Boron dilution requires forced circulation for proper mixing, and opening the RTBs or de-energizing the MG sets removes the possibility of an inadvertent rod withdrawal. Suspending the introduction of coolant into the RCS of coolant with boron concentration less than required to meet the minimum SDM of LCO 3.1.1 is required to assure continued safe operation. With coolant added without forced circulation, unmixed coolant could be introduced to the core, however coolant added with boron concentration meeting the minimum SDM maintains acceptable margin to subcritical operations. The immediate Completion Time reflects the importance of maintaining operation for heat removal. The action to restore must be continued until one loop is restored to OPERABLE status and operation.

SURVEILLANCE REQUIREMENTS

SR 3.4.5.1

This SR requires verification every 12 hours that the required loops are in operation. Verification includes flow rate, temperature, and pump status monitoring, which help ensure that forced flow is providing heat removal. The Frequency of 12 hours is sufficient considering other indications and alarms available to the operator in the control room to monitor RCS loop performance.

SR 3.4.5.2

SR 3.4.5.2 requires verification of SG OPERABILITY. SG OPERABILITY is verified by ensuring that the secondary side narrow range water level is \geq [17]% for required RCS loops. If the SG secondary side narrow range water level is < [17]%, the tubes may become uncovered and the associated loop may not be capable of providing the heat sink for removal of the decay heat. The 12 hour Frequency is considered adequate in view of other indications available in the control room to alert the operator to a loss of SG level.

SURVEILLANCE REQUIREMENTS (continued)

<u>SR 3.4.5.3</u>

Verification that each required RCP is OPERABLE ensures that safety analyses limits are met. The requirement also ensures that an additional RCP can be placed in operation, if needed, to maintain decay heat removal and reactor coolant circulation. Verification is performed by verifying proper breaker alignment and power availability to each required RCP. Alternatively, verification that a pump is in operation also verifies proper breaker alignment and power availability.

This SR is modified by a Note that states the SR is not required to be performed until 24 hours after a required pump is not in operation.

REFERENCES None.

.

B 3.4.6 RCS Loops - MODE 4

BASES		
BACKGROUND	In MODE 4, the primary function of the reactor coolant is the removal of decay heat and the transfer of this heat to either the steam generator (SG) secondary side coolant or the component cooling water via the residual heat removal (RHR) heat exchangers. The secondary function of the reactor coolant is to act as a carrier for soluble neutron poison, boric acid.	
	The reactor coolant is circulated through [four] RCS loops connected in parallel to the reactor vessel, each loop containing an SG, a reactor coolant pump (RCP), and appropriate flow, pressure, level, and temperature instrumentation for control, protection, and indication. The RCPs circulate the coolant through the reactor vessel and SGs at a sufficient rate to ensure proper heat transfer and to prevent boric acid stratification.	
	In MODE 4, either RCPs or RHR loops can be used to provide forced circulation. The intent of this LCO is to provide forced flow from at least one RCP or one RHR loop for decay heat removal and transport. The flow provided by one RCP loop or RHR loop is adequate for decay heat removal. The other intent of this LCO is to require that two paths be available to provide redundancy for decay heat removal.	
APPLICABLE SAFETY ANALYSES	In MODE 4, RCS circulation is considered in the determination of the time available for mitigation of the accidental boron dilution event. The RCS and RHR loops provide this circulation.	
	RCS Loops - MODE 4 satisfies Criterion 4 of 10 CFR 50.36(c)(2)(ii).	
LCO	The purpose of this LCO is to require that at least two loops be OPERABLE in MODE 4 and that one of these loops be in operation. The LCO allows the two loops that are required to be OPERABLE to consist of any combination of RCS loops and RHR loops. Any one loop in operation provides enough flow to remove the decay heat from the core with forced circulation. An additional loop is required to be OPERABLE to provide redundancy for heat removal.	
	Note 1 permits all RCPs or RHR pumps to be removed from operation for \leq 1 hour per 8 hour period. The purpose of the Note is to permit tests that are designed to validate various accident analyses values. One of the tests performed during the startup testing program is the validation of rod drop times during cold conditions, both with and without flow. The no flow test may be performed in MODE 3, 4, or 5 and requires that the pumps be	

LCO (continued)

stopped for a short period of time. The Note permits the stopping of the pumps in order to perform this test and validate the assumed analysis values. If changes are made to the RCS that would cause a change to the flow characteristics of the RCS, the input values must be revalidated by conducting the test again. The 1 hour time period is adequate to perform the test, and operating experience has shown that boron stratification is not a problem during this short period with no forced flow.

Utilization of Note 1 is permitted provided the following conditions are met along with any other conditions imposed by initial startup test procedures:

- a. No operations are permitted that would dilute the RCS boron concentration with coolant with boron concentrations less than required to meet SDM of LCO 3.1.1, therefore maintaining the margin to criticality. Boron reduction with coolant at boron concentrations less than required to assure SDM is maintained is prohibited because a uniform concentration distribution throughout the RCS cannot be ensured when in natural circulation and
- b. Core outlet temperature is maintained at least 10°F below saturation temperature, so that no vapor bubble may form and possibly cause a natural circulation flow obstruction.

Note 2 requires that the secondary side water temperature of each SG be \leq [50]°F above each of the RCS cold leg temperatures before the start of an RCP with any RCS cold leg temperature \leq [275°F] [Low Temperature Overpressure Protection (LTOP) arming temperature specified in the PTLR]. This restraint is to prevent a low temperature overpressure event due to a thermal transient when an RCP is started.

An OPERABLE RCS loop comprises an OPERABLE RCP and an OPERABLE SG in accordance with the Steam Generator Tube Surveillance Program, which has the minimum water level specified in SR 3.4.6.2.

Similarly for the RHR System, an OPERABLE RHR loop comprises an OPERABLE RHR pump capable of providing forced flow to an OPERABLE RHR heat exchanger. RCPs and RHR pumps are OPERABLE if they are capable of being powered and are able to provide forced flow if required.

APPLICABILITY	In MODE 4, this LCO ensures forced circulation of the reactor coolant to remove decay heat from the core and to provide proper boron mixing. One loop of either RCS or RHR provides sufficient circulation for these purposes. However, two loops consisting of any combination of RCS an RHR loops are required to be OPERABLE to meet single failure considerations.
-	Operation in other MODES is covered by:
	 LCO 3.4.4, "RCS Loops - MODES 1 and 2," LCO 3.4.5, "RCS Loops - MODE 3," LCO 3.4.7, "RCS Loops - MODE 5, Loops Filled," LCO 3.4.8, "RCS Loops - MODE 5, Loops Not Filled," LCO 3.9.5, "Residual Heat Removal (RHR) and Coolant Circulation - High Water Level" (MODE 6), and LCO 3.9.6, "Residual Heat Removal (RHR) and Coolant Circulation - Low Water Level" (MODE 6).

If one required loop is inoperable, redundancy for heat removal is lost. Action must be initiated to restore a second RCS or RHR loop to OPERABLE status. The immediate Completion Time reflects the importance of maintaining the availability of two paths for heat removal.

<u>A.2</u>

If restoration is not accomplished and an RHR loop is OPERABLE, the unit must be brought to MODE 5 within 24 hours. Bringing the unit to MODE 5 is a conservative action with regard to decay heat removal. With only one RHR loop OPERABLE, redundancy for decay heat removal is lost and, in the event of a loss of the remaining RHR loop, it would be safer to initiate that loss from MODE 5 rather than MODE 4. The Completion Time of 24 hours is a reasonable time, based on operating experience, to reach MODE 5 from MODE 4 in an orderly manner and without challenging plant systems.

This Required Action is modified by a Note which indicates that the unit must be placed in MODE 5 only if a RHR loop is OPERABLE. With no RHR loop OPERABLE, the unit is in a condition with only limited cooldown capabilities. Therefore, the actions are to be concentrated on the restoration of a RHR loop, rather than a cooldown of extended duration.

ACTIONS (continued)

B.1 and B.2

If two required loops are inoperable or a required loop is not in operation, except during conditions permitted by Note 1 in the LCO section, all operations involving introduction of coolant into the RCS with boron concentration less than required to meet the minimum SDM of LCO 3.1.1 must be suspended and action to restore one RCS or RHR loop to OPERABLE status and operation must be initiated. The required margin to criticality must not be reduced in this type of operation. Suspending the introduction of coolant into the RCS of coolant with boron concentration less than required to meet the minimum SDM of LCO 3.1.1 is required to assure continued safe operation. With coolant added without forced circulation, unmixed coolant could be introduced to the core, however coolant added with boron concentration meeting the minimum SDM maintains acceptable margin to subcritical operations. The immediate Completion Times reflect the importance of maintaining operation for decay heat removal. The action to restore must be continued until one loop is restored to OPERABLE status and operation.

SURVEILLANCE REQUIREMENTS

<u>SR 3.4.6.1</u>

This SR requires verification every 12 hours that the required RCS or RHR loop is in operation. Verification includes flow rate, temperature, or pump status monitoring, which help ensure that forced flow is providing heat removal. The Frequency of 12 hours is sufficient considering other indications and alarms available to the operator in the control room to monitor RCS and RHR loop performance.

SR 3.4.6.2

SR 3.4.6.2 requires verification of SG OPERABILITY. SG OPERABILITY is verified by ensuring that the secondary side narrow range water level is $\geq [17]$ %. If the SG secondary side narrow range water level is < [17]%, the tubes may become uncovered and the associated loop may not be capable of providing the heat sink necessary for removal of decay heat. The 12 hour Frequency is considered adequate in view of other indications available in the control room to alert the operator to the loss of SG level.

SURVEILLANCE REQUIREMENTS (continued)

SR 3.4.6.3

Verification that each required pump is OPERABLE ensures that an additional RCS or RHR pump can be placed in operation, if needed, to maintain decay heat removal and reactor coolant circulation. Verification is performed by verifying proper breaker alignment and power available to each required pump. Alternatively, verification that a pump is in operation also verifies proper breaker alignment and power availability. The Frequency of 7 days is considered reasonable in view of other administrative controls available and has been shown to be acceptable by operating experience.

This SR is modified by a Note that states the SR is not required to be performed until 24 hours after a required pump is not in operation.

REFERENCES None.

B 3.4.7 RCS Loops - MODE 5, Loops Filled

BASES

BACKGROUND

In MODE 5 with the RCS loops filled, the primary function of the reactor coolant is the removal of decay heat and transfer this heat either to the steam generator (SG) secondary side coolant via natural circulation (Ref. 1) or the component cooling water via the residual heat removal (RHR) heat exchangers. While the principal means for decay heat removal is via the RHR System, the SGs via natural circulation (Ref. 1) are specified as a backup means for redundancy. Even though the SGs cannot produce steam in this MODE, they are capable of being a heat sink due to their large contained volume of secondary water. As long as the SG secondary side water is at a lower temperature than the reactor coolant, heat transfer will occur. The rate of heat transfer is directly proportional to the temperature difference. The secondary function of the reactor coolant is to act as a carrier for soluble neutron poison, boric acid.

In MODE 5 with RCS loops filled, the reactor coolant is circulated by means of two RHR loops connected to the RCS, each loop containing an RHR heat exchanger, an RHR pump, and appropriate flow and temperature instrumentation for control, protection, and indication. One RHR pump circulates the water through the RCS at a sufficient rate to prevent boric acid stratification.

The number of loops in operation can vary to suit the operational needs. The intent of this LCO is to provide forced flow from at least one RHR loop for decay heat removal and transport. The flow provided by one RHR loop is adequate for decay heat removal. The other intent of this LCO is to require that a second path be available to provide redundancy for heat removal.

The LCO provides for redundant paths of decay heat removal capability. The first path can be an RHR loop that must be OPERABLE and in operation. The second path can be another OPERABLE RHR loop or maintaining two SGs with secondary side water levels \geq [17]% to provide an alternate method for decay heat removal via natural circulation (Ref. 1).

APPLICABLE SAFETY ANALYSES

In MODE 5, RCS circulation is considered in the determination of the time available for mitigation of the accidental boron dilution event. The RHR loops provide this circulation.

RCS Loops - MODE 5 (Loops Filled) satisfies Criterion 4 of 10 CFR 50.36(c)(2)(ii).

LCO

The purpose of this LCO is to require that at least one of the RHR loops be OPERABLE and in operation with an additional RHR loop OPERABLE or two SGs with secondary side water level \geq [17]%. One RHR loop provides sufficient forced circulation to perform the safety functions of the reactor coolant under these conditions. An additional RHR loop is required to be OPERABLE to meet single failure considerations. However, if the standby RHR loop is not OPERABLE, an acceptable alternate method is two SGs with their secondary side water levels \geq [17]%. Should the operating RHR loop fail, the SGs could be used to remove the decay heat via natural circulation.

Note 1 permits all RHR pumps to be removed from operation \leq 1 hour per 8 hour period. The purpose of the Note is to permit tests designed to validate various accident analyses values. One of the tests performed during the startup testing program is the validation of rod drop times during cold conditions, both with and without flow. The no flow test may be performed in MODE 3, 4, or 5 and requires that the pumps be stopped for a short period of time. The Note permits stopping of the pumps in order to perform this test and validate the assumed analysis values. If changes are made to the RCS that would cause a change to the flow characteristics of the RCS, the input values must be revalidated by conducting the test again. The 1 hour time period is adequate to perform the test, and operating experience has shown that boron stratification is not likely during this short period with no forced flow.

Utilization of Note 1 is permitted provided the following conditions are met, along with any other conditions imposed by initial startup test procedures:

- a. No operations are permitted that would dilute the RCS boron concentration with coolant with boron concentrations less than required to meet SDM of LCO 3.1.1, therefore maintaining the margin to criticality. Boron reduction with coolant at boron concentrations less than required to assure SDM is maintained is prohibited because a uniform concentration distribution throughout the RCS cannot be ensured when in natural circulation and
- b. Core outlet temperature is maintained at least 10°F below saturation temperature, so that no vapor bubble may form and possibly cause a natural circulation flow obstruction.

Note 2 allows one RHR loop to be inoperable for a period of up to 2 hours, provided that the other RHR loop is OPERABLE and in operation. This permits periodic surveillance tests to be performed on the inoperable loop during the only time when such testing is safe and possible.

	LCO (continued))		
		Note 3 requ ≤ [50]°F abo a reactor co ≤ [275°F] [Le temperature temperature is started.	ires that the secondary side water temperature of each SG be ove each of the RCS cold leg temperatures before the start of iolant pump (RCP) with an RCS cold leg temperature ow Temperature Overpressure Protection (LTOP) arming especified in the PTLR]. This restriction is to prevent a low e overpressure event due to a thermal transient when an RCP	
Note 4 provides for an orderly transition from MO a planned heatup by permitting removal of RHR I when at least one RCS loop is in operation. This transition to MODE 4 where an RCS loop is perm and replaces the RCS circulation function provide		ides for an orderly transition from MODE 5 to MODE 4 during eatup by permitting removal of RHR loops from operation st one RCS loop is in operation. This Note provides for the MODE 4 where an RCS loop is permitted to be in operation s the RCS circulation function provided by the RHR loops.		
		RHR pumps are OPERABLE if they are capable of being powered and are able to provide flow if required. An OPERABLE SG can perform as heat sink via natural circulation when it has an adequate water level an is OPERABLE in accordance with the Steam Generator Tube Surveillance Program.		
	APPLICABILITY	ABILITY In MODE 5 with RCS loops filled, this LCO requires forced circulation of the reactor coolant to remove decay heat from the core and to provide proper boron mixing. One loop of RHR provides sufficient circulation for these purposes. However, one additional RHR loop is required to be OPERABLE, or the secondary side water level of at least [two] SGs is required to be ≥ [17]%. Operation in other MODES is covered by:		
		LCO 3.4.4, LCO 3.4.5, LCO 3.4.6, LCO 3.4.8, LCO 3.9.5, LCO 3.9.6,	"RCS Loops - MODES 1 and 2;" "RCS Loops - MODE 3;" "RCS Loops - MODE 4;" "RCS Loops - MODE 5, Loops Not Filled;" "Residual Heat Removal (RHR) and Coolant Circulation High Water Level" (MODE 6)," and "Residual Heat Removal (RHR) and Coolant Circulation - Low Water Level" (MODE 6)."	

ACTIONS

A.1, A.2, B.1 and B.2

If one RHR loop is OPERABLE and either the required SGs have secondary side water levels < [17]%, or one required RHR loop is inoperable, redundancy for heat removal is lost. Action must be initiated immediately to restore a second RHR loop to OPERABLE status or to restore the required SG secondary side water levels. Either Required Action will restore redundant heat removal paths. The immediate Completion Time reflects the importance of maintaining the availability of two paths for heat removal.

C.1 and C.2

If a required RHR loop is not in operation, except during conditions permitted by Note 1, or if no required loop is OPERABLE, all operations involving introduction of coolant into the RCS with boron concentration less than required to meet the minimum SDM of LCO 3.1.1 must be suspended and action to restore one RHR loop to OPERABLE status and operation must be initiated. Suspending the introduction of coolant into the RCS of coolant with boron concentration less than required to meet the minimum SDM of LCO 3.1.1 is required to assure continued safe operation. With coolant added without forced circulation, unmixed coolant could be introduced to the core, however coolant added with boron concentration meeting the minimum SDM maintains acceptable margin to subcritical operations. The immediate Completion Times reflect the importance of maintaining operation for heat removal.

SURVEILLANCE REQUIREMENTS

<u>SR 3.4.7.1</u>

This SR requires verification every 12 hours that the required loop is in operation. Verification includes flow rate, temperature, or pump status monitoring, which help ensure that forced flow is providing heat removal. The Frequency of 12 hours is sufficient considering other indications and alarms available to the operator in the control room to monitor RHR loop performance.

<u>SR 3.4.7.2</u>

Verifying that at least two SGs are OPERABLE by ensuring their secondary side narrow range water levels are \geq [17]% ensures an alternate decay heat removal method via natural circulation in the event that the second RHR loop is not OPERABLE. If both RHR loops are OPERABLE, this Surveillance is not needed. The 12 hour Frequency is considered adequate in view of other indications available in the control room to alert the operator to the loss of SG level.

SURVEILLANCE REQUIREMENTS (continued)

SR 3.4.7.3

Verification that each required RHR pump is OPERABLE ensures that an additional pump can be placed in operation, if needed, to maintain decay heat removal and reactor coolant circulation. Verification is performed by verifying proper breaker alignment and power available to each required RHR pump. Alternatively, verification that a pump is in operation also verifies proper breaker alignment and power availability. If secondary side water level is \geq [17]% in at least two SGs, this Surveillance is not needed. The Frequency of 7 days is considered reasonable in view of other administrative controls available and has been shown to be acceptable by operating experience.

This SR is modified by a Note that states the SR is not required to be performed until 24 hours after a required pump is not in operation.

REFERENCES 1. NRC Information Notice 95-35, "Degraded Ability of Steam Generators to Remove Decay Heat by Natural Circulation."

B 3.4.8 RCS Loops - MODE 5, Loops Not Filled

BASES		
BACKGROUND	In MODE 5 with the RCS loops not filled, the primary function of the reactor coolant is the removal of decay heat generated in the fuel, and the transfer of this heat to the component cooling water via the residual heat removal (RHR) heat exchangers. The steam generators (SGs) are not available as a heat sink when the loops are not filled. The secondary function of the reactor coolant is to act as a carrier for the soluble neutron poison, boric acid.	
	In MODE 5 with loops not filled, only RHR pumps can be used for coolant circulation. The number of pumps in operation can vary to suit the operational needs. The intent of this LCO is to provide forced flow from at least one RHR pump for decay heat removal and transport and to require that two paths be available to provide redundancy for heat removal.	
APPLICABLE SAFETY ANALYSES	In MODE 5, RCS circulation is considered in the determination of the time available for mitigation of the accidental boron dilution event. The RHR loops provide this circulation. The flow provided by one RHR loop is adequate for heat removal and for boron mixing.	
	RCS loops in MODE 5 (loops not filled) satisfies Criterion 4 of 10 CFR 50.36(c)(2)(ii).	
LCO	The purpose of this LCO is to require that at least two RHR loops be OPERABLE and one of these loops be in operation. An OPERABLE loop is one that has the capability of transferring heat from the reactor coolant at a controlled rate. Heat cannot be removed via the RHR System unless forced flow is used. A minimum of one running RHR pump meets the LCO requirement for one loop in operation. An additional RHR loop is required to be OPERABLE to meet single failure considerations.	
	Note 1 permits all RHR pumps to be removed from operation for ≤ 15 minutes when switching from one loop to another. The circumstances for stopping both RHR pumps are to be limited to situations when the outage time is short [and core outlet temperature is maintained > 10°F below saturation temperature]. The Note prohibits boron dilution with coolant at boron concentrations less than required to assure SDM of LCO 3.1.1 is maintained or draining operations when RHR forced flow is stopped.	

BASES		
LCO (continued)		
	Note 2 allows one RHR loop to be provided that the other loop is OP periodic surveillance tests to be pe the only time when these tests are	inoperable for a period of \leq 2 hours, ERABLE and in operation. This permits erformed on the inoperable loop during a safe and possible.
	An OPERABLE RHR loop is comp capable of providing forced flow to RHR pumps are OPERABLE if the are able to provide flow if required	orised of an OPERABLE RHR pump o an OPERABLE RHR heat exchanger. By are capable of being powered and
APPLICABILITY	In MODE 5 with loops not filled, th coolant circulation by the RHR Sy	is LCO requires core heat removal and stem.
	Operation in other MODES is cove	ered by:
	LCO 3.4.4, "RCS Loops - MODE "RCS Loops - MODE "Residual Heat Rem High Water Level" (M LCO 3.9.6, "Residual Heat Rem Low Water Level" (M	ES 1 and 2," 5 3," 5 4," 5 5, Loops Filled," oval (RHR) and Coolant Circulation - MODE 6)," and oval (RHR) and Coolant Circulation - IODE 6)".
ACTIONS	<u>A.1</u>	

If one required RHR loop is inoperable, redundancy for RHR is lost. Action must be initiated to restore a second loop to OPERABLE status. The immediate Completion Time reflects the importance of maintaining the availability of two paths for heat removal.

B.1 and B.2

If no required loop is OPERABLE or the required loop is not in operation, except during conditions permitted by Note 1, all operations involving introduction of coolant into the RCS with boron concentration less than required to meet the minimum SDM of LCO 3.1.1 must be suspended and action must be initiated immediately to restore an RHR loop to OPERABLE status and operation. The required margin to

ACTIONS (continued)

criticality must not be reduced in this type of operation. Suspending the introduction of coolant into the RCS of coolant with boron concentration less than required to meet the minimum SDM of LCO 3.1.1 is required to assure continued safe operation. With coolant added without forced circulation, unmixed coolant could be introduced to the core, however coolant added with boron concentration meeting the minimum SDM maintains acceptable margin to subcritical operations. The immediate Completion Time reflects the importance of maintaining operation for heat removal. The action to restore must continue until one loop is restored to OPERABLE status and operation.

SURVEILLANCE REQUIREMENTS

<u>SR_3.4.8.1</u>

This SR requires verification every 12 hours that the required loop is in operation. Verification includes flow rate, temperature, or pump status monitoring, which help ensure that forced flow is providing heat removal. The Frequency of 12 hours is sufficient considering other indications and alarms available to the operator in the control room to monitor RHR loop performance.

<u>SR 3.4.8.2</u>

Verification that each required pump is OPERABLE ensures that an additional pump can be placed in operation, if needed, to maintain decay heat removal and reactor coolant circulation. Verification is performed by verifying proper breaker alignment and power available to each required pump. Alternatively, verification that a pump is in operation also verifies proper breaker alignment and power availability. The Frequency of 7 days is considered reasonable in view of other administrative controls available and has been shown to be acceptable by operating experience.

This SR is modified by a Note that states the SR is not required to be performed until 24 hours after a required pump is not in operation.

REFERENCES None.

B 3.4.9 Pressurizer

BACKGROUND	The pressurizer provides a point in the RCS where liquid and vapor are maintained in equilibrium under saturated conditions for pressure control purposes to prevent bulk boiling in the remainder of the RCS. Key functions include maintaining required primary system pressure during steady state operation, and limiting the pressure changes caused by reactor coolant thermal expansion and contraction during normal load transients.
	The pressure control components addressed by this LCO include the pressurizer water level, the required heaters, and their controls and emergency power supplies. Pressurizer safety valves and pressurizer power operated relief valves are addressed by LCO 3.4.10, "Pressurizer Safety Valves," and LCO 3.4.11, "Pressurizer Power Operated Relief Valves (PORVs)," respectively.
	The intent of the LCO is to ensure that a steam bubble exists in the pressurizer prior to power operation to minimize the consequences of potential overpressure transients. The presence of a steam bubble is consistent with analytical assumptions. Relatively small amounts of noncondensible gases can inhibit the condensation heat transfer betweer the pressurizer spray and the steam, and diminish the spray effectiveness for pressure control.
	Electrical immersion heaters, located in the lower section of the pressurizer vessel, keep the water in the pressurizer at saturation temperature and maintain a constant operating pressure. A minimum required available capacity of pressurizer heaters ensures that the RCS pressure can be maintained. The capability to maintain and control system pressure is important for maintaining subcooled conditions in the RCS and ensuring the capability to remove core decay heat by either forced or natural circulation of reactor coolant. Unless adequate heater capacity is available, the hot, high pressure condition cannot be maintained indefinitely and still provide the required subcooling margin in the primary system. Inability to control the system pressure and maintain subcooling under conditions of natural circulation flow in the primary system could lead to a loss of single phase natural circulation and decreased capability to remove core decay heat.

BASES		
APPLICABLE SAFETY ANALYSES	In MODES 1, 2, and 3, the LCO requirement for a steam bubble is reflected implicitly in the accident analyses. Safety analyses performed for lower MODES are not limiting. All analyses performed from a critical reactor condition assume the existence of a steam bubble and saturated conditions in the pressurizer. In making this assumption, the analyses neglect the small fraction of noncondensible gases normally present.	
	Safety analyses presented in the FSAR (Ref. 1) do not take credit for pressurizer heater operation; however, an implicit initial condition assumption of the safety analyses is that the RCS is operating at normal pressure.	
	The maximum pressurizer water level limit, which ensures that a steam bubble exists in the pressurizer, satisfies Criterion 2 of 10 CFR 50.36(c)(2)(ii). Although the heaters are not specifically used in accident analysis, the need to maintain subcooling in the long term during loss of offsite power, as indicated in NUREG-0737 (Ref. 2), is the reason for providing an LCO.	
LCO	REVIEWER'S NOTE	
	The LCO requirement for the pressurizer to be OPERABLE with a water volume ≤ [1240] cubic feet, which is equivalent to [92]%, ensures that a steam bubble exists. Limiting the LCO maximum operating water level preserves the steam space for pressure control. The LCO has been established to ensure the capability to establish and maintain pressure control for steady state operation and to minimize the consequences of potential overpressure transients. Requiring the presence of a steam bubble is also consistent with analytical assumptions.	
	The LCO requires [two groups of] OPERABLE pressurizer heaters, [each] with a capacity \geq [125] kW, [capable of being powered from either the offsite power source or the emergency power supply]. The minimum heater capacity required is sufficient to maintain the RCS near normal operating pressure when accounting for heat losses through the pressurizer insulation. By maintaining the pressure near the operating conditions, a wide margin to subcooling can be obtained in the loops. The exact design value of [125 kW is derived from the use of seven heaters rated at 17.9 kW each]. The amount needed to maintain pressure is dependent on the heat losses.	

.

BASES	
APPLICABILITY	The need for pressure control is most pertinent when core heat can cause the greatest effect on RCS temperature, resulting in the greatest effect on pressurizer level and RCS pressure control. Thus, applicability has been designated for MODES 1 and 2. The applicability is also provided for MODE 3. The purpose is to prevent solid water RCS operation during heatup and cooldown to avoid rapid pressure rises caused by normal operational perturbation, such as reactor coolant pump startup.
	In MODES 1, 2, and 3, there is need to maintain the availability of pressurizer heaters, capable of being powered from an emergency power supply. In the event of a loss of offsite power, the initial conditions of these MODES give the greatest demand for maintaining the RCS in a hot pressurized condition with loop subcooling for an extended period. For MODE 4, 5, or 6, it is not necessary to control pressure (by heaters) to ensure loop subcooling for heat transfer when the Residual Heat Removal (RHR) System is in service, and therefore, the LCO is not applicable.
ACTIONS	A.1, A.2, A.3, and A.4
	Pressurizer water level control malfunctions or other plant evolutions may result in a pressurizer water level above the nominal upper limit, even with the plant at steady state conditions. Normally the plant will trip in this event since the upper limit of this LCO is the same as the Pressurizer Water Level - High Trip.
	If the pressurizer water level is not within the limit, action must be taken to bring the plant to a MODE in which the LCO does not apply. To achieve this status, within 6 hours the unit must be brought to MODE 3 with all rods fully inserted and incapable of withdrawal. Additionally, the unit must be brought to MODE 4 within 12 hours. This takes the unit out of the applicable MODES.
	The allowed Completion Times are reasonable, based on operating experience, to reach the required plant conditions from full power conditions in an orderly manner and without challenging plant systems.
	<u>B.1</u>
	If one [required] group of pressurizer heaters is inoperable, restoration is required within 72 hours. The Completion Time of 72 hours is reasonable considering the anticipation that a demand caused by loss of offsite power would be unlikely in this period. Pressure control may be maintained during this time using normal station powered heaters.

.

ACTIONS (continued)

C.1 and C.2

If one group of pressurizer heaters are inoperable and cannot be restored in the allowed Completion Time of Required Action B.1, the plant must be brought to a MODE in which the LCO does not apply. To achieve this status, the plant must be brought to MODE 3 within 6 hours and to MODE 4 within 12 hours. The allowed Completion Times are reasonable, based on operating experience, to reach the required plant conditions from full power conditions in an orderly manner and without challenging plant systems.

SURVEILLANCE REQUIREMENTS

<u>SR 3.4.9.1</u>

This SR requires that during steady state operation, pressurizer level is maintained below the nominal upper limit to provide a minimum space for a steam bubble. The Surveillance is performed by observing the indicated level. The Frequency of 12 hours corresponds to verifying the parameter each shift. The 12 hour interval has been shown by operating practice to be sufficient to regularly assess level for any deviation and verify that operation is within safety analyses assumption of ensuring that a steam bubble exists in the pressurizer. Alarms are also available for early detection of abnormal level indications.

<u>SR 3.4.9.2</u>

The SR is satisfied when the power supplies are demonstrated to be capable of producing the minimum power and the associated pressurizer heaters are verified to be at their design rating. This may be done by testing the power supply output and by performing an electrical check on heater element continuity and resistance. The Frequency of [18] months is considered adequate to detect heater degradation and has been shown by operating experience to be acceptable.

SURVEILLANCE REQUIREMENTS (continued)

[<u>SR 3.4.9.3</u>

This SR is not applicable if the heaters are permanently powered by Class 1E power supplies.

This Surveillance demonstrates that the heaters can be manually transferred from the normal to the emergency power supply and energized. The Frequency of 18 months is based on a typical fuel cycle and is consistent with similar verifications of emergency power supplies.]

REFERENCES 1. FSAR, Section [].

2. NUREG-0737, November 1980.

B 3.4.10 Pressurizer Safety Valves

BASES

BACKGROUND The pressurizer safety valves provide, in conjunction with the Reactor Protection System, overpressure protection for the RCS. The pressurizer safety valves are totally enclosed pop type, spring loaded, self actuated valves with backpressure compensation. The safety valves are designed to prevent the system pressure from exceeding the system Safety Limit (SL), [2735] psig, which is 110% of the design pressure.

> Because the safety valves are totally enclosed and self actuating, they are considered independent components. The relief capacity for each valve, [380,000] lb/hr, is based on postulated overpressure transient conditions resulting from a complete loss of steam flow to the turbine. This event results in the maximum surge rate into the pressurizer, which specifies the minimum relief capacity for the safety valves. The discharge flow from the pressurizer safety valves is directed to the pressurizer relief tank. This discharge flow is indicated by an increase in temperature downstream of the pressurizer safety valves or increase in the pressurizer relief tank temperature or level.

> Overpressure protection is required in MODES 1, 2, 3, 4, and 5; however, in MODE 4, with one or more RCS cold leg temperatures $\leq [275^{\circ}F]$ [Low Temperature Overpressure Protection (LTOP) arming temperature specified in the PTLR], and MODE 5 and MODE 6 with the reactor vessel head on, overpressure protection is provided by operating procedures and by meeting the requirements of LCO 3.4.12, "Low Temperature Overpressure Protection (LTOP) System."

> The upper and lower pressure limits are based on the \pm 1% tolerance requirement (Ref. 1) for lifting pressures above 1000 psig. The lift setting is for the ambient conditions associated with MODES 1, 2, and 3. This requires either that the valves be set hot or that a correlation between hot and cold settings be established.

The pressurizer safety valves are part of the primary success path and mitigate the effects of postulated accidents. OPERABILITY of the safety valves ensures that the RCS pressure will be limited to 110% of design pressure. The consequences of exceeding the American Society of Mechanical Engineers (ASME) pressure limit (Ref. 1) could include damage to RCS components, increased leakage, or a requirement to perform additional stress analyses prior to resumption of reactor operation.

.

BASES	
APPLICABLE SAFETY ANALYSES	All accident and safety analyses in the FSAR (Ref. 2) that require safety valve actuation assume operation of three pressurizer safety valves to limit increases in RCS pressure. The overpressure protection analysis (Ref. 3) is also based on operation of [three] safety valves. Accidents that could result in overpressurization if not properly terminated include:
	a. Uncontrolled rod withdrawal from full power,
	b. Loss of reactor coolant flow,
	c. Loss of external electrical load,
	d. Loss of normal feedwater,
	e. Loss of all AC power to station auxiliaries, and
	f. Locked rotor.
	Detailed analyses of the above transients are contained in Reference 2. Safety valve actuation is required in events c, d, and e (above) to limit the pressure increase. Compliance with this LCO is consistent with the design bases and accident analyses assumptions.
	Pressurizer safety valves satisfy Criterion 3 of 10 CFR 50.36(c)(2)(ii).
LCO .	The [three] pressurizer safety valves are set to open at the RCS design pressure (2500 psia), and within the ASME specified tolerance, to avoid exceeding the maximum design pressure SL, to maintain accident analyses assumptions, and to comply with ASME requirements. The upper and lower pressure tolerance limits are based on the ± 1% tolerance requirements (Ref. 1) for lifting pressures above 1000 psig. The limit protected by this Specification is the reactor coolant pressure boundary (RCPB) SL of 110% of design pressure. Inoperability of one or more valves could result in exceeding the SL if a transient were to occur. The consequences of exceeding the ASME pressure limit could include damage to one or more RCS components, increased leakage, or additional stress analysis being required prior to resumption of reactor operation.
APPLICABILITY	In MODES 1, 2, and 3, and portions of MODE 4 above the LTOP arming temperature, OPERABILITY of [three] valves is required because the combined capacity is required to keep reactor coolant pressure below 110% of its design value during certain accidents. MODE 3 and portions of MODE 4 are conservatively included, although the listed accidents may not require the safety valves for protection.

APPLICABILITY (continued)

The LCO is not applicable in MODE 4 when any RCS cold leg temperatures are $\leq [275^{\circ}F]$ [Low Temperature Overpressure Protection (LTOP) arming temperature specified in the PTLR] or in MODE 5 because LTOP is provided. Overpressure protection is not required in MODE 6 with reactor vessel head detensioned.

The Note allows entry into MODES 3 and 4 with the lift settings outside the LCO limits. This permits testing and examination of the safety valves at high pressure and temperature near their normal operating range, but only after the valves have had a preliminary cold setting. The cold setting gives assurance that the valves are OPERABLE near their design condition. Only one valve at a time will be removed from service for testing. The [54] hour exception is based on 18 hour outage time for each of the [three] valves. The 18 hour period is derived from operating experience that hot testing can be performed in this timeframe.

ACTIONS

<u>A.1</u>

With one pressurizer safety valve inoperable, restoration must take place within 15 minutes. The Completion Time of 15 minutes reflects the importance of maintaining the RCS Overpressure Protection System. An inoperable safety valve coincident with an RCS overpressure event could challenge the integrity of the pressure boundary.

B.1 and B.2

If the Required Action of A.1 cannot be met within the required Completion Time or if two or more pressurizer safety valves are inoperable, the plant must be brought to a MODE in which the requirement does not apply. To achieve this status, the plant must be brought to at least MODE 3 within 6 hours and to MODE 4 with any RCS cold leg temperatures ≤ [275°F] [Low Temperature Overpressure Protection (LTOP) arming temperature specified in the PTLR] within [24] hours. The allowed Completion Times are reasonable, based on operating experience, to reach the required plant conditions from full power conditions in an orderly manner and without challenging plant systems. With any RCS cold leg temperatures at or below [275°F] [Low Temperature Overpressure (LTOP) arming temperature specified in the PTLR], overpressure protection is provided by the LTOP System. The change from MODE 1, 2, or 3 to MODE 4 reduces the RCS energy (core power and pressure), lowers the potential for large pressurizer insurges, and thereby removes the need for overpressure protection by [three] pressurizer safety valves.

BASES	
SURVEILLANCE REQUIREMENTS	<u>SR 3.4.10.1</u>
	SRs are specified in the Inservice Testing Program. Pressurizer safety valves are to be tested in accordance with the requirements of Section XI of the ASME Code (Ref. 4), which provides the activities and Frequencies necessary to satisfy the SRs. No additional requirements are specified.
	The pressurizer safety valve setpoint is \pm [3]% for OPERABILITY; however, the valves are reset to \pm 1% during the Surveillance to allow for drift.
REFERENCES	1. ASME, Boiler and Pressure Vessel Code, Section III.
	2. FSAR, Chapter [15].
	3. WCAP-7769, Rev. 1, June 1972.
	4. ASME, Boiler and Pressure Vessel Code, Section XI.

B 3.4.11 Pressurizer Power Operated Relief Valves (PORVs)

BASES BACKGROUND The pressurizer is equipped with two types of devices for pressure relief: pressurizer safety valves and PORVs. The PORVs are air operated valves that are controlled to open at a specific set pressure when the pressurizer pressure increases and close when the pressurizer pressure decreases. The PORVs may also be manually operated from the control room. Block valves, which are normally open, are located between the pressurizer and the PORVs. The block valves are used to isolate the PORVs in case of excessive leakage or a stuck open PORV. Block valve closure is accomplished manually using controls in the control room. A stuck open PORV is, in effect, a small break loss of coolant accident (LOCA). As such, block valve closure terminates the RCS depressurization and coolant inventory loss. The PORVs and their associated block valves may be used by plant operators to depressurize the RCS to recover from certain transients if normal pressurizer spray is not available. Additionally, the series arrangement of the PORVs and their block valves permit performance of surveillances on the valves during power operation. The PORVs may also be used for feed and bleed core cooling in the case of multiple equipment failure events that are not within the design basis. such as a total loss of feedwater. The PORVs, their block valves, and their controls are powered from the vital buses that normally receive power from offsite power sources, but are also capable of being powered from emergency power sources in the event of a loss of offsite power. Two PORVs and their associated block valves are powered from two separate safety trains (Ref. 1). The plant has two PORVs, each having a relief capacity of 210,000 lb/hr at 2335 psig. The functional design of the PORVs is based on maintaining pressure below the Pressurizer Pressure - High reactor trip setpoint following a step reduction of 50% of full load with steam dump. In addition, the PORVs minimize challenges to the pressurizer safety valves and also may be used for low temperature overpressure protection

(LTOP) System."

(LTOP). See LCO 3.4.12, "Low Temperature Overpressure Protection

BASES	
APPLICABLE SAFETY ANALYSES	Plant operators employ the PORVs to depressurize the RCS in response to certain plant transients if normal pressurizer spray is not available. For the Steam Generator Tube Rupture (SGTR) event, the safety analysis assumes that manual operator actions are required to mitigate the event. A loss of offsite power is assumed to accompany the event, and thus, normal pressurizer spray is unavailable to reduce RCS pressure. The PORVs are assumed to be used for RCS depressurization, which is one of the steps performed to equalize the primary and secondary pressures in order to terminate the primary to secondary break flow and the radioactive releases from the affected steam generator.
	The PORVs are also modeled in safety analyses for events that result in increasing RCS pressure for which departure from nucleate boiling ratio (DNBR) criteria are critical (Ref. 2). By assuming PORV actuation, the primary pressure remains below the high pressurizer pressure trip setpoint; thus, the DNBR calculation is more conservative. As such, this actuation is not required to mitigate these events, and PORV automatic operation is, therefore, not an assumed safety function.
	Pressurizer PORVs satisfy Criterion 3 of 10 CFR 50.36(c)(2)(ii).
LCO	The LCO requires the PORVs and their associated block valves to be OPERABLE for manual operation to mitigate the effects associated with an SGTR.
	By maintaining two PORVs and their associated block valves OPERABLE, the single failure criterion is satisfied. An OPERABLE block valve may be either open and energized with the capability to be closed, or closed and energized with the capability to be opened, since the required safety function is accomplished by manual operation. Although typically open to allow PORV operation, the block valves may be OPERABLE when closed to isolate the flow path of an inoperable PORV that is capable of being manually cycled (e.g., as in the case of excessive PORV leakage). Similarly, isolation of an OPERABLE PORV does not render that PORV or block valve inoperable provided the relief function remains available with manual action.
	An OPERABLE PORV is required to be capable of manually opening and closing, and not experiencing excessive seat leakage. Excessive seat leakage, although not associated with a specific acceptance criteria, exists when conditions dictate closure of the block valve to limit leakage.
	Satisfying the LCO helps minimize challenges to fission product barriers.

BASES	
APPLICABILITY	In MODES 1, 2, and 3, the PORV and its block valve are required to be OPERABLE to limit the potential for a small break LOCA through the flow path. The most likely cause for a PORV small break LOCA is a result of a pressure increase transient that causes the PORV to open. Imbalances in the energy output of the core and heat removal by the secondary system can cause the RCS pressure to increase to the PORV opening setpoint. The most rapid increases will occur at the higher operating power and pressure conditions of MODES 1 and 2. The PORVs are also required to be OPERABLE in MODES 1, 2, and 3 for manual actuation to mitigate a steam generator tube rupture event.
	Pressure increases are less prominent in MODE 3 because the core input energy is reduced, but the RCS pressure is high. Therefore, the LCO is applicable in MODES 1, 2, and 3. The LCO is not applicable in MODES 4, 5, and 6 with the reactor vessel head in place when both pressure and core energy are decreased and the pressure surges become much less significant. LCO 3.4.12 addresses the PORV requirements in these MODES.
ACTIONS	Note 1 has been added to clarify that all pressurizer PORVs and block valves are treated as separate entities, each with separate Completion Times (i.e., the Completion Time is on a component basis).
	REVIEWER'S NOTE
	The bracketed options in Conditions B, C, E, and F are to accommodate plants with three PORVs and associated block valves.
	<u>A.1</u>
	PORVs may be inoperable and capable of being manually cycled (e.g., excessive seat leakage). In this condition, either the PORVs must be restored or the flow path isolated within 1 hour. The associated block valve is required to be closed, but power must be maintained to the associated block valve, since removal of power would render the block

associated block valve, since removal of power would render the block valve inoperable. This permits operation of the plant until the next refueling outage (MODE 6) so that maintenance can be performed on the PORVs to eliminate the problem condition.

Quick access to the PORV for pressure control can be made when power remains on the closed block valve. The Completion Time of 1 hour is based on plant operating experience that has shown that minor problems can be corrected or closure accomplished in this time period.
ACTIONS (continued)

B.1, B.2, and B.3

If one [or two] PORV[s] is inoperable and not capable of being manually cycled, it must be either restored, or isolated by closing the associated block valve and removing the power to the associated block valve. The Completion Times of 1 hour are reasonable, based on challenges to the PORVs during this time period, and provide the operator adequate time to correct the situation. If the inoperable valve cannot be restored to OPERABLE status, it must be isolated within the specified time. Because there is at least one PORV that remains OPERABLE, an additional 72 hours is provided to restore the inoperable PORV to OPERABLE status. If the PORV cannot be restored within this additional time, the plant must be brought to a MODE in which the LCO does not apply, as required by Condition D.

C.1 and C.2

If one [or two] block valve(s) are inoperable, then it is necessary to either restore the block valve(s) to OPERABLE status within the Completion Time of 1 hour or place the associated PORV in manual control. The prime importance for the capability to close the block valve(s) is to isolate a stuck open PORV. Therefore, if the block valve(s) cannot be restored to OPERABLE status within 1 hour, the Required Action is to place the PORV in manual control to preclude its automatic opening for an overpressure event and to avoid the potential for a stuck open PORV at a time that the block valve(s) are inoperable. The Completion Time of 1 hour is reasonable, based on the small potential for challenges to the system during this time period, and provides the operator time to correct the situation. Because at least one PORV remains OPERABLE, the operator is permitted a Completion Time of 72 hours to restore the inoperable block valve(s) to OPERABLE status. The time allowed to restore the block valve(s) is based upon the Completion Time for restoring an inoperable PORV in Condition B, since the PORVs may not be capable of mitigating an event if the inoperable block valve(s) are not full open. If the block valve(s) are restored within the Completion Time of 72 hours, the PORV may be restored to automatic operation. If it cannot be restored within this additional time, the plant must be brought to a MODE in which the LCO does not apply, as required by Condition D.

ACTIONS (continued)

The Required Actions C.1 and C.2 are modified by a Note stating that the Required Actions do not apply if the sole reason for the block valve being declared inoperable is as a result of power being removed to comply with other Required Actions. In this event, the Required Actions for inoperable PORV(s) (which require the block valve power to be removed once it is closed) are adequate to address the condition. While it may be desirable to also place the PORV(s) in manual control, this may not be possible for all causes of Condition B or E entry with PORV(s) inoperable and not capable of being manually cycled (e.g., as a result of failed control power fuse(s) or control switch malfunctions(s)).

D.1 and D.2

If the Required Action of Condition A, B, or C is not met, then the plant must be brought to a MODE in which the LCO does not apply. To achieve this status, the plant must be brought to at least MODE 3 within 6 hours and to MODE 4 within 12 hours. The allowed Completion Times are reasonable, based on operating experience, to reach the required plant conditions from full power conditions in an orderly manner and without challenging plant systems. In MODES 4 and 5, automatic PORV OPERABILITY may be required. See LCO 3.4.12.

E.1, E.2, E.3, and E.4

If more than one PORV is inoperable and not capable of being manually cycled, it is necessary to either restore at least one valve within the Completion Time of 1 hour or isolate the flow path by closing and removing the power to the associated block valves. The Completion Time of 1 hour is reasonable, based on the small potential for challenges to the system during this time and provides the operator time to correct the situation. If no PORVs are restored within the Completion Time, then the plant must be brought to a MODE in which the LCO does not apply. To achieve this status, the plant must be brought to at least MODE 3 within 6 hours and to MODE 4 within 12 hours. The allowed Completion Times are reasonable, based on operating experience, to reach the required plant conditions from full power conditions in an orderly manner and without challenging plant systems. In MODES 4 and 5, automatic PORV OPERABILITY may be required. See LCO 3.4.12.

ACTIONS (continued)

<u>F.1</u>

If two [or three] block valve(s) are inoperable, it is necessary to restore at least one block valve within 2 hours. The Completion Time is reasonable, based on the small potential for challenges to the system during this time and provide the operator time to correct the situation.

Required Action F.1 is modified by a Note stating that the Required Action does not apply if the sole reason for the block valve being declared inoperable is a result of power being removed to comply with other Required Actions. In this event, the Required Actions for inoperable PORV(s) (which require the block valve power to be removed once it is closed) are adequate to address the condition. While it may be desirable to also place the PORV(s) in manual control, this may not be possible for all causes of Condition B or E entry with PORV(s) inoperable and not capable of being manually cycled (e.g., as a result of failed control power fuse(s) or control switch malfunctions(s)).

G.1 and G.2

If the Required Action of Condition F is not met, then the plant must be brought to a MODE in which the LCO does not apply. To achieve this status, the plant must be brought to at least MODE 3 within 6 hours and to MODE 4 within 12 hours. The allowed Completion Times are reasonable, based on operating experience, to reach the required plant conditions from full power conditions in an orderly manner and without challenging plant systems. In MODES 4 and 5, automatic PORV OPERABILITY may be required. See LCO 3.4.12.

SURVEILLANCE <u>SR 3.4.11.1</u> REQUIREMENTS

Block valve cycling verifies that the valve(s) can be opened and closed if needed. The basis for the Frequency of 92 days is the ASME Code, Section XI (Ref. 3).

SURVEILLANCE REQUIREMENTS (continued)

This SR is modified by two Notes. Note 1 modifies this SR by stating that it is not required to be performed with the block valve closed in accordance with the Required Actions of this LCO. Opening the block valve in this condition increases the risk of an unisolable leak from the RCS since the PORV is already inoperable. Note 2 modifies this SR to allow entry into and operation in MODE 3 prior to performing the SR. This allows the test to be performed in MODE 3 under operating temperature and pressure conditions, prior to entering MODE 1 or 2. [In accordance with Reference 4, administrative controls require this test be performed in MODE 3 or 4 to adequately simulate operating temperature and pressure effects on PORV operation.]

<u>SR 3.4.11.2</u>

SR 3.4.11.2 requires a complete cycle of each PORV. Operating a PORV through one complete cycle ensures that the PORV can be manually actuated for mitigation of an SGTR. The Frequency of [18] months is based on a typical refueling cycle and industry accepted practice.

The Note modifies this SR to allow entry into and operation in MODE 3 prior to performing the SR. This allows the test to be performed in MODE 3 under operating temperature and pressure conditions, prior to entering MODE 1 or 2. [In accordance with Reference 4, administrative controls require this test be performed in MODE 3 or 4 to adequately simulate operating temperature and pressure effects on PORV operation.]

[<u>SR 3.4.11.3</u>

Operating the solenoid air control valves and check valves on the air accumulators ensures the PORV control system actuates properly when called upon. The Frequency of [18] months is based on a typical refueling cycle and the Frequency of the other Surveillances used to demonstrate PORV OPERABILITY.]

SURVEILLANCE REQUIREMENTS (continued)

[<u>SR 3.4.11.4</u>

This Surveillance is not required for plants with permanent 1E power supplies to the valves.

The Surveillance demonstrates that emergency power can be provided and is performed by transferring power from normal to emergency supply and cycling the valves. The Frequency of [18] months is based on a typical refueling cycle and industry accepted practice.]

REFERENCES	1.	Regulatory Guide 1.32, February 1977	•
------------	----	--------------------------------------	---

- 2. FSAR, Section [15.2].
- 3. ASME, Boiler and Pressure Vessel Code, Section XI.
- [4. Generic Letter 90-06, "Resolution of Generic Issue 70, 'Power-Operated Relief Valve and Block Valve Reliability,' and Generic Issue 94, 'Additional Low-Temperature Overpressure for Light-Water Reactors,' Pursuant to 10 CFR 50.54(f)," June 25, 1990.]

B 3.4 REACTOR COOLANT SYSTEM (RCS)

B 3.4.12 Low Temperature Overpressure Protection (LTOP) System

BASES

BACKGROUND The LTOP System controls RCS pressure at low temperatures so the integrity of the reactor coolant pressure boundary (RCPB) is not compromised by violating the pressure and temperature (P/T) limits of 10 CFR 50, Appendix G (Ref. 1). The reactor vessel is the limiting RCPB component for demonstrating such protection. The PTLR provides the maximum allowable actuation logic setpoints for the power operated relief valves (PORVs) and the maximum RCS pressure for the existing RCS cold leg temperature during cooldown, shutdown, and heatup to meet the Reference 1 requirements during the LTOP MODES.

The reactor vessel material is less tough at low temperatures than at normal operating temperature. As the vessel neutron exposure accumulates, the material toughness decreases and becomes less resistant to pressure stress at low temperatures (Ref. 2). RCS pressure, therefore, is maintained low at low temperatures and is increased only as temperature is increased.

The potential for vessel overpressurization is most acute when the RCS is water solid, occurring only while shutdown; a pressure fluctuation can occur more quickly than an operator can react to relieve the condition. Exceeding the RCS P/T limits by a significant amount could cause brittle cracking of the reactor vessel. LCO 3.4.3, "RCS Pressure and Temperature (P/T) Limits," requires administrative control of RCS pressure and temperature during heatup and cooldown to prevent exceeding the PTLR limits.

This LCO provides RCS overpressure protection by having a minimum coolant input capability and having adequate pressure relief capacity. Limiting coolant input capability requires all but [one] [high pressure injection (HPI)] pump [and one charging pump] incapable of injection into the RCS and isolating the accumulators. The pressure relief capacity requires either two redundant RCS relief valves or a depressurized RCS and an RCS vent of sufficient size. One RCS relief valve or the open RCS vent is the overpressure protection device that acts to terminate an increasing pressure event.

With minimum coolant input capability, the ability to provide core coolant addition is restricted. The LCO does not require the makeup control system deactivated or the safety injection (SI) actuation circuits blocked. Due to the lower pressures in the LTOP MODES and the expected core

BACKGROUND (continued)

decay heat levels, the makeup system can provide adequate flow via the makeup control valve. If conditions require the use of more than one [HPI or] charging pump for makeup in the event of loss of inventory, then pumps can be made available through manual actions.

The LTOP System for pressure relief consists of two PORVs with reduced lift settings, or two residual heat removal (RHR) suction relief valves, or one PORV and one RHR suction relief valve, or a depressurized RCS and an RCS vent of sufficient size. Two RCS relief valves are required for redundancy. One RCS relief valve has adequate relieving capability to keep from overpressurization for the required coolant input capability.

PORV Requirements

As designed for the LTOP System, each PORV is signaled to open if the RCS pressure approaches a limit determined by the LTOP actuation logic. The LTOP actuation logic monitors both RCS temperature and RCS pressure and determines when a condition not acceptable in the PTLR limits is approached. The wide range RCS temperature indications are auctioneered to select the lowest temperature signal.

The lowest temperature signal is processed through a function generator that calculates a pressure limit for that temperature. The calculated pressure limit is then compared with the indicated RCS pressure from a wide range pressure channel. If the indicated pressure meets or exceeds the calculated value, a PORV is signaled to open.

The PTLR presents the PORV setpoints for LTOP. The setpoints are normally staggered so only one valve opens during a low temperature overpressure transient. Having the setpoints of both valves within the limits in the PTLR ensures that the Reference 1 limits will not be exceeded in any analyzed event.

When a PORV is opened in an increasing pressure transient, the release of coolant will cause the pressure increase to slow and reverse. As the PORV releases coolant, the RCS pressure decreases until a reset pressure is reached and the valve is signaled to close. The pressure continues to decrease below the reset pressure as the valve closes.

BACKGROUND (continued)

[RHR Suction Relief Valve Requirements

During LTOP MODES, the RHR System is operated for decay heat removal and low pressure letdown control. Therefore, the RHR suction isolation valves are open in the piping from the RCS hot legs to the inlets of the RHR pumps. While these valves are open and the RHR suction valves are open, the RHR suction relief valves are exposed to the RCS and are able to relieve pressure transients in the RCS.

The RHR suction isolation valves and the RHR suction valves must be open to make the RHR suction relief valves OPERABLE for RCS overpressure mitigation. Autoclosure interlocks are not permitted to cause the RHR suction isolation valves to close. The RHR suction relief valves are spring loaded, bellows type water relief valves with pressure tolerances and accumulation limits established by Section III of the American Society of Mechanical Engineers (ASME) Code (Ref. 3) for Class 2 relief valves.]

RCS Vent Requirements

Once the RCS is depressurized, a vent exposed to the containment atmosphere will maintain the RCS at containment ambient pressure in an RCS overpressure transient, if the relieving requirements of the transient do not exceed the capabilities of the vent. Thus, the vent path must be capable of relieving the flow resulting from the limiting LTOP mass or heat input transient, and maintaining pressure below the P/T limits. The required vent capacity may be provided by one or more vent paths.

For an RCS vent to meet the flow capacity requirement, it requires removing a pressurizer safety valve, removing a PORV's internals, and disabling its block valve in the open position, or similarly establishing a vent by opening an RCS vent valve. The vent path(s) must be above the level of reactor coolant, so as not to drain the RCS when open.

APPLICABLE SAFETY ANALYSES

Safety analyses (Ref. 4) demonstrate that the reactor vessel is adequately protected against exceeding the Reference 1 P/T limits. In MODES 1, 2, and 3, and in MODE 4 with RCS cold leg temperature exceeding [275°F] [LTOP arming temperature specified in the PTLR], the pressurizer safety valves will prevent RCS pressure from exceeding the Reference 1 limits. At about [275°F] [LTOP arming temperature specified in the PTLR] and below, overpressure prevention falls to two OPERABLE RCS relief valves or to a depressurized RCS and a sufficient sized RCS vent. Each of these means has a limited overpressure relief capability.

APPLICABLE SAFETY ANALYSES (continued)

The actual temperature at which the pressure in the P/T limit curve falls below the pressurizer safety valve setpoint increases as the reactor vessel material toughness decreases due to neutron embrittlement. Each time the PTLR curves are revised, the LTOP System must be reevaluated to ensure its functional requirements can still be met using the RCS relief valve method or the depressurized and vented RCS condition.

The PTLR contains the acceptance limits that define the LTOP requirements. Any change to the RCS must be evaluated against the Reference 4 analyses to determine the impact of the change on the LTOP acceptance limits.

Transients that are capable of overpressurizing the RCS are categorized as either mass or heat input transients, examples of which follow:

Mass Input Type Transients

- a. Inadvertent safety injection or
- b. Charging/letdown flow mismatch.

Heat Input Type Transients

- a. Inadvertent actuation of pressurizer heaters,
- b. Loss of RHR cooling, or
- c. Reactor coolant pump (RCP) startup with temperature asymmetry within the RCS or between the RCS and steam generators.

The following are required during the LTOP MODES to ensure that mass and heat input transients do not occur, which either of the LTOP overpressure protection means cannot handle:

- a. Rendering all but [one] [HPI] pump [and one charging pump] incapable of injection,
- b. Deactivating the accumulator discharge isolation valves in their closed positions, and
- c. Disallowing start of an RCP if secondary temperature is more than [50]°F above primary temperature in any one loop. LCO 3.4.6, "RCS Loops - MODE 4," and LCO 3.4.7, "RCS Loops - MODE 5, Loops Filled," provide this protection.

APPLICABLE SAFETY ANALYSES (continued)

The Reference 4 analyses demonstrate that either one RCS relief valve or the depressurized RCS and RCS vent can maintain RCS pressure below limits when only one [HPI] pump [and one charging pump are] is [are] actuated. Thus, the LCO allows only [one] [HPI] pump [and one charging pump] OPERABLE during the LTOP MODES. Since neither one RCS relief valve nor the RCS vent can handle the pressure transient need from accumulator injection, when RCS temperature is low, the LCO also requires the accumulators isolation when accumulator pressure is greater than or equal to the maximum RCS pressure for the existing RCS cold leg temperature allowed in the PTLR.

The isolated accumulators must have their discharge valves closed and the valve power supply breakers fixed in their open positions. The analyses show the effect of accumulator discharge is over a narrower RCS temperature range ([175]°F and below) than that of the LCO ([275]°F and below).

Fracture mechanics analyses established the temperature of LTOP Applicability at [275°F] [LTOP arming temperature specified in the PTLR].

The consequences of a small break loss of coolant accident (LOCA) in LTOP MODE 4 conform to 10 CFR 50.46 and 10 CFR 50, Appendix K (Refs. 5 and 6), requirements by having a maximum of [one] [HPI] pump [and one charging pump] OPERABLE and SI actuation enabled.

PORV Performance

The fracture mechanics analyses show that the vessel is protected when the PORVs are set to open at or below the limit shown in the PTLR. The setpoints are derived by analyses that model the performance of the LTOP System, assuming the limiting LTOP transient of [one] [HPI] pump [and one charging pump] injecting into the RCS. These analyses consider pressure overshoot and undershoot beyond the PORV opening and closing, resulting from signal processing and valve stroke times. The PORV setpoints at or below the derived limit ensures the Reference 1 P/T limits will be met.

The PORV setpoints in the PTLR will be updated when the revised P/T limits conflict with the LTOP analysis limits. The P/T limits are periodically modified as the reactor vessel material toughness decreases due to neutron embrittlement caused by neutron irradiation. Revised limits are determined using neutron fluence projections and the results of

APPLICABLE SAFETY ANALYSES (continued)

examinations of the reactor vessel material irradiation surveillance specimens. The Bases for LCO 3.4.3, "RCS Pressure and Temperature (P/T) Limits," discuss these examinations.

The PORVs are considered active components. Thus, the failure of one PORV is assumed to represent the worst case, single active failure.

[RHR Suction Relief Valve Performance

The RHR suction relief valves do not have variable pressure and temperature lift setpoints like the PORVs. Analyses must show that one RHR suction relief valve with a setpoint at or between [436.5] psig and [463.5] psig will pass flow greater than that required for the limiting LTOP transient while maintaining RCS pressure less than the P/T limit curve. Assuming all relief flow requirements during the limiting LTOP event, an RHR suction relief valve will maintain RCS pressure to within the valve rated lift setpoint, plus an accumulation \leq 10% of the rated lift setpoint.

Although each RHR suction relief valve may itself meet single failure criteria, its inclusion and location within the RHR System does not allow it to meet single failure criteria when spurious RHR suction isolation valve closure is postulated. Also, as the RCS P/T limits are decreased to reflect the loss of toughness in the reactor vessel materials due to neutron embrittlement, the RHR suction relief valves must be analyzed to still accommodate the design basis transients for LTOP.

The RHR suction relief valves are considered active components. Thus, the failure of one valve is assumed to represent the worst case single active failure.]

RCS Vent Performance

With the RCS depressurized, analyses show a vent size of 2.07 square inches is capable of mitigating the allowed LTOP overpressure transient. The capacity of a vent this size is greater than the flow of the limiting transient for the LTOP configuration, [one] HPI pump [and one charging pump] OPERABLE, maintaining RCS pressure less than the maximum pressure on the P/T limit curve.

The RCS vent size will be re-evaluated for compliance each time the P/T limit curves are revised based on the results of the vessel material surveillance.

APPLICABLE SAFETY ANALYSES (continued)

The RCS vent is passive and is not subject to active failure.

The LTOP System satisfies Criterion 2 of 10 CFR 50.36(c)(2)(ii).

LCO

This LCO requires that the LTOP System is OPERABLE. The LTOP System is OPERABLE when the minimum coolant input and pressure relief capabilities are OPERABLE. Violation of this LCO could lead to the loss of low temperature overpressure mitigation and violation of the Reference 1 limits as a result of an operational transient.

To limit the coolant input capability, the LCO requires that a maximum of [one] [HPI] pump [and one charging pump] be capable of injecting into the RCS, and all accumulator discharge isolation valves be closed and immobilized (when accumulator pressure is greater than or equal to the maximum RCS pressure for the existing RCS cold leg temperature allowed in the PTLR).

The LCO is modified by two Notes. Note 1 allows [two charging pumps] to be made capable of injecting for \leq 1 hour during pump swap operations. One hour provides sufficient time to safely complete the actual transfer and to complete the administrative controls and Surveillance Requirements associated with the swap. The intent is to minimize the actual time that more than [one] charging pump is physically capable of injection. Note 2 states that accumulator isolation is only required when the accumulator pressure is more than or at the maximum RCS pressure for the existing temperature, as allowed by the P/T limit curves. This Note permits the accumulator discharge isolation valve Surveillance to be performed only under these pressure and temperature conditions.

The elements of the LCO that provide low temperature overpressure mitigation through pressure relief are:

a. Two OPERABLE PORVs,

A PORV is OPERABLE for LTOP when its block valve is open, its lift setpoint is set to the limit required by the PTLR and testing proves its ability to open at this setpoint, and motive power is available to the two valves and their control circuits.

LCO (continued)			
	[b. Two OPERABLE RHR suction relief valves,		
	An RHR suction relief valve is OPERABLE for LTOP when its RHR suction isolation valve and its RHR suction valve are open, its setpoint is at or between [436.5] psig and [463.5] psig, and testing has proven its ability to open at this setpoint.		
	c. One OPERABLE PORV and one OPERABLE RHR suction relief valve, or }		
	d. A depressurized RCS and an RCS vent.		
	An RCS vent is OPERABLE when open with an area of \geq [2.07] square inches.		
	Each of these methods of overpressure prevention is capable of mitigating the limiting LTOP transient.		
APPLICABILITY	This LCO is applicable in MODE 4 when any RCS cold leg temperature is \leq [275°F] [LTOP arming temperature specified in the PTLR], in MODE 5, and in MODE 6 when the reactor vessel head is on. The pressurizer safety valves provide overpressure protection that meets the Reference 1 P/T limits above [275°F] [LTOP arming temperature specified in the PTLR]. When the reactor vessel head is off, overpressurization cannot occur.		
	LCO 3.4.3 provides the operational P/T limits for all MODES. LCO 3.4.10, "Pressurizer Safety Valves," requires the OPERABILITY of the pressurizer safety valves that provide overpressure protection during MODES 1, 2, and 3, and MODE 4 above [275°F] [LTOP arming temperature specified in the PTLR].		
	Low temperature overpressure prevention is most critical during shutdown when the RCS is water solid, and a mass or heat input transient can cause a very rapid increase in RCS pressure when little or no time allows operator action to mitigate the event.		
ACTIONS	A Note prohibits the application of LCO 3.0.4.b to an inoperable LTOP System. There is an increased risk associated with entering MODE 4 from MODE 5 with LTOP inoperable and the provisions of LCO 3.0.4.b, which allow entry into a MODE or other specified condition in the Applicability with the LCO not met after performance of a risk assessment addressing inoperable systems and components, should not be applied in this circumstance.		

ACTIONS (continued)

A.1 and [B.1]

With two or more HPI pumps capable of injecting into the RCS, RCS overpressurization is possible.

To immediately initiate action to restore restricted coolant input capability to the RCS reflects the urgency of removing the RCS from this condition.

C.1, D.1, and D.2

An unisolated accumulator requires isolation within 1 hour. This is only required when the accumulator pressure is at or more than the maximum RCS pressure for the existing temperature allowed by the P/T limit curves.

If isolation is needed and cannot be accomplished in 1 hour, Required Action D.1 and Required Action D.2 provide two options, either of which must be performed in the next 12 hours. By increasing the RCS temperature to > [275°F] [LTOP arming temperature specified in the PTLR], an accumulator pressure of [600] psig cannot exceed the LTOP limits if the accumulators are fully injected. Depressurizing the accumulators below the LTOP limit from the PTLR also gives this protection.

The Completion Times are based on operating experience that these activities can be accomplished in these time periods and on engineering evaluations indicating that an event requiring LTOP is not likely in the allowed times.

<u>E.1</u>

In MODE 4 when any RCS cold leg temperature is $\leq [275^{\circ}F]$ [LTOP arming temperature specified in the PTLR], with one required RCS relief valve inoperable, the RCS relief valve must be restored to OPERABLE status within a Completion Time of 7 days. Two RCS relief valves [in any combination of the PORVS and the RHR suction relief valves] are required to provide low temperature overpressure mitigation while withstanding a single failure of an active component.

The Completion Time considers the facts that only one of the RCS relief valves is required to mitigate an overpressure transient and that the likelihood of an active failure of the remaining valve path during this time period is very low.

ACTIONS (continued)

<u>F.1</u>

The consequences of operational events that will overpressurize the RCS are more severe at lower temperature (Ref. 7). Thus, with one of the two RCS relief valves inoperable in MODE 5 or in MODE 6 with the head on, the Completion Time to restore two valves to OPERABLE status is 24 hours.

The Completion Time represents a reasonable time to investigate and repair several types of relief valve failures without exposure to a lengthy period with only one OPERABLE RCS relief valve to protect against overpressure events.

<u>G.1</u>

The RCS must be depressurized and a vent must be established within 12 hours when:

- a. Both required RCS relief valves are inoperable,
- b. A Required Action and associated Completion Time of Condition A, [B], D, E, or F is not met, or
- c. The LTOP System is inoperable for any reason other than Condition A, [B], C, D, E, or F.

The vent must be sized \geq [2.07] square inches to ensure that the flow capacity is greater than that required for the worst case mass input transient reasonable during the applicable MODES. This action is needed to protect the RCPB from a low temperature overpressure event and a possible brittle failure of the reactor vessel.

 The Completion Time considers the time required to place the plant in this Condition and the relatively low probability of an overpressure event during this time period due to increased operator awareness of administrative control requirements.

SURVEILLANCE REQUIREMENTS	SR 3.4.12.1, [SR 3.4.12.2], and SR 3.4.12.3
	To minimize the potential for a low temperature overpressure event by limiting the mass input capability, a maximum of [one] [HPI] pump [and a maximum of one charging pump] are verified incapable of injecting into the RCS and the accumulator discharge isolation valves are verified closed and locked out.

SURVEILLANCE REQUIREMENTS (continued)

The [HPI] pump[s] and charging pump[s] are rendered incapable of injecting into the RCS through removing the power from the pumps by racking the breakers out under administrative control. An alternate method of LTOP control may be employed using at least two independent means to prevent a pump start such that a single failure or single action will not result in an injection into the RCS. This may be accomplished through the pump control switch being placed in [pull to lock] and at least one valve in the discharge flow path being closed.

The Frequency of 12 hours is sufficient, considering other indications and alarms available to the operator in the control room, to verify the required status of the equipment.

[<u>SR 3.4.12.4</u>

Each required RHR suction relief valve shall be demonstrated OPERABLE by verifying its RHR suction valve and RHR suction isolation valves are open and by testing it in accordance with the Inservice Testing Program. (Refer to SR 3.4.12.7 for the RHR suction isolation valve Surveillance.) This Surveillance is only required to be performed if the RHR suction relief valve is being used to meet this LCO.

The RHR suction valve is verified to be opened every 12 hours. The Frequency is considered adequate in view of other administrative controls such as valve status indications available to the operator in the control room that verify the RHR suction valve remains open.

The ASME Code, Section XI (Ref. 8), test per Inservice Testing Program verifies OPERABILITY by proving proper relief valve mechanical motion and by measuring and, if required, adjusting the lift setpoint.]

SR 3.4.12.5

The RCS vent of \geq [2.07] square inches is proven OPERABLE by verifying its open condition either:

- a. Once every 12 hours for a valve that is not locked (valves that are sealed or secured in the open position are considered "locked" in this context) or
- b. Once every 31 days for other vent path(s) (e.g., a vent valve that is locked, sealed, or secured in position). A removed pressurizer safety valve or open manway also fits this category.

SURVEILLANCE REQUIREMENTS (continued)

The passive vent path arrangement must only be open to be OPERABLE. This Surveillance is required to be met if the vent is being used to satisfy the pressure relief requirements of the LCO 3.4.12d.

SR 3.4.12.6

The PORV block valve must be verified open every 72 hours to provide the flow path for each required PORV to perform its function when actuated. The valve must be remotely verified open in the main control room. [This Surveillance is performed if the PORV satisfies the LCO.]

The block valve is a remotely controlled, motor operated valve. The power to the valve operator is not required removed, and the manual operator is not required locked in the inactive position. Thus, the block valve can be closed in the event the PORV develops excessive leakage or does not close (sticks open) after relieving an overpressure situation.

The 72 hour Frequency is considered adequate in view of other administrative controls available to the operator in the control room, such as valve position indication, that verify that the PORV block valve remains open.

[<u>SR 3.4.12.7</u>

Each required RHR suction relief valve shall be demonstrated OPERABLE by verifying its RHR suction valve and RHR suction isolation valve are open and by testing it in accordance with the Inservice Testing Program. (Refer to SR 3.4.12.4 for the RHR suction valve Surveillance and for a description of the requirements of the Inservice Testing Program.) This Surveillance is only performed if the RHR suction relief valve is being used to satisfy this LCO.]

Every 31 days the RHR suction isolation valve is verified locked open, with power to the valve operator removed, to ensure that accidental closure will not occur. The "locked open" valve must be locally verified in its open position with the manual actuator locked in its inactive position. The 31 day Frequency is based on engineering judgment, is consistent with the procedural controls governing valve operation, and ensures correct valve position.]

SURVEILLANCE REQUIREMENTS (continued)

SR 3.4.12.8

·	Performance of a COT is required within 12 hours after decreasing RCS temperature to $\leq [275^{\circ}F]$ [LTOP arming temperature specified in the PTLR] and every 31 days on each required PORV to verify and, as necessary, adjust its lift setpoint. A successful test of the required contact(s) of a channel relay may be performed by the verification of the change of state of a single contact of the relay. This clarifies what is an acceptable COT of a relay. This is acceptable because all of the other required contacts of the relay are verified by other Technical Specifications and non-Technical Specifications tests at least once per refueling interval with applicable extensions. The COT will verify the setpoint is within the PTLR allowed maximum limits in the PTLR. PORV actuation could depressurize the RCS and is not required.
	The 12 hour Frequency considers the unlikelihood of a low temperature overpressure event during this time.
	A Note has been added indicating that this SR is required to be performed 12 hours after decreasing RCS cold leg temperature to \leq [275°F] [LTOP arming temperature specified in the PTLR]. The COT cannot be performed until in the LTOP MODES when the PORV lift setpoint can be reduced to the LTOP setting. The test must be performed within 12 hours after entering the LTOP MODES.
	<u>SR_3.4.12.9</u>
	Performance of a CHANNEL CALIBRATION on each required PORV actuation channel is required every [18] months to adjust the whole channel so that it responds and the valve opens within the required range and accuracy to known input.
REFERENCES	1. 10 CFR 50, Appendix G.
	2. Generic Letter 88-11.
	3. ASME, Boiler and Pressure Vessel Code, Section III.
	4. FSAR, Chapter [15].
	5. 10 CFR 50, Section 50.46.

REFERENCES (continued)

- 6. 10 CFR 50, Appendix K.
- 7. Generic Letter 90-06.
- 8. ASME, Boiler and Pressure Vessel Code, Section XI.

B 3.4 REACTOR COOLANT SYSTEM (RCS)

B 3.4.13 RCS Operational LEAKAGE

BASES

BACKGROUND Components that contain or transport the coolant to or from the reactor core make up the RCS. Component joints are made by welding, bolting, rolling, or pressure loading, and valves isolate connecting systems from the RCS.

During plant life, the joint and valve interfaces can produce varying amounts of reactor coolant LEAKAGE, through either normal operational wear or mechanical deterioration. The purpose of the RCS Operational LEAKAGE LCO is to limit system operation in the presence of LEAKAGE from these sources to amounts that do not compromise safety. This LCO specifies the types and amounts of LEAKAGE.

10 CFR 50, Appendix A, GDC 30 (Ref. 1), requires means for detecting and, to the extent practical, identifying the source of reactor coolant LEAKAGE. Regulatory Guide 1.45 (Ref. 2) describes acceptable methods for selecting leakage detection systems.

The safety significance of RCS LEAKAGE varies widely depending on its source, rate, and duration. Therefore, detecting and monitoring reactor coolant LEAKAGE into the containment area is necessary. Quickly separating the identified LEAKAGE from the unidentified LEAKAGE is necessary to provide quantitative information to the operators, allowing them to take corrective action should a leak occur that is detrimental to the safety of the facility and the public.

A limited amount of leakage inside containment is expected from auxiliary systems that cannot be made 100% leaktight. Leakage from these systems should be detected, located, and isolated from the containment atmosphere, if possible, to not interfere with RCS leakage detection.

This LCO deals with protection of the reactor coolant pressure boundary (RCPB) from degradation and the core from inadequate cooling, in addition to preventing the accident analyses radiation release assumptions from being exceeded. The consequences of violating this LCO include the possibility of a loss of coolant accident (LOCA).

APPLICABLE SAFETY ANALYSES	Except for primary to secondary LEAKAGE, the safety analyses do not address operational LEAKAGE. However, other operational LEAKAGE is related to the safety analyses for LOCA; the amount of leakage can affect the probability of such an event. The safety analysis for an event resulting in steam discharge to the atmosphere assumes a 1 gpm primary to secondary LEAKAGE as the initial condition.			
	Primary to secondary LEAKAGE is a factor in the dose releases outside containment resulting from a steam line break (SLB) accident. To a lesser extent, other accidents or transients involve secondary steam release to the atmosphere, such as a steam generator tube rupture (SGTR). The leakage contaminates the secondary fluid.			
	The FSAR (Ref. 3) analysis for SGTR assumes the contaminated secondary fluid is only briefly released via safety valves and the majority is steamed to the condenser. The 1 gpm primary to secondary LEAKAGE is relatively inconsequential.			
	The SLB is more limiting for site radiation releases. The safety analysis for the SLB accident assumes 1 gpm primary to secondary LEAKAGE in one generator as an initial condition. The dose consequences resulting from the SLB accident are well within the limits defined in 10 CFR 100 or the staff approved licensing basis (i.e., a small fraction of these limits).			
	The RCS operational LEAKAGE satisfies Criterion 2 of 10 CFR 50.36(c)(2)(ii).			
LCO	RCS operational LEAKAGE shall be limited to:			
	a. Pressure Boundary LEAKAGE			
	No pressure boundary LEAKAGE is allowed, being indicative of material deterioration. LEAKAGE of this type is unacceptable as the leak itself could cause further deterioration, resulting in higher LEAKAGE. Violation of this LCO could result in continued degradation of the RCPB. LEAKAGE past seals and gaskets is not pressure boundary LEAKAGE.			
	b. Unidentified LEAKAGE			
	One gallon per minute (gpm) of unidentified LEAKAGE is allowed as a reasonable minimum detectable amount that the containment air monitoring and containment sump level monitoring equipment can detect within a reasonable time period. Violation of this LCO could			

the pressure boundary.

result in continued degradation of the RCPB, if the LEAKAGE is from

LCO (continued)

c. Identified LEAKAGE

Up to 10 gpm of identified LEAKAGE is considered allowable because LEAKAGE is from known sources that do not interfere with detection of unidentified LEAKAGE and is well within the capability of the RCS Makeup System. Identified LEAKAGE includes LEAKAGE to the containment from specifically known and located sources, but does not include pressure boundary LEAKAGE or controlled reactor coolant pump (RCP) seal leakoff (a normal function not considered LEAKAGE). Violation of this LCO could result in continued degradation of a component or system.

d. Primary to Secondary LEAKAGE through All Steam Generators (SGs)

Total primary to secondary LEAKAGE amounting to 1 gpm through all SGs produces acceptable offsite doses in the SLB accident analysis. Violation of this LCO could exceed the offsite dose limits for this accident. Primary to secondary LEAKAGE must be included in the total allowable limit for identified LEAKAGE.

e. Primary to Secondary LEAKAGE through Any One SG

The [500] gallons per day limit on one SG is based on the assumption that a single crack leaking this amount would not propagate to a SGTR under the stress conditions of a LOCA or a main steam line rupture. If leaked through many cracks, the cracks are very small, and the above assumption is conservative.

APPLICABILITY In MODES 1, 2, 3, and 4, the potential for RCPB LEAKAGE is greatest when the RCS is pressurized.

In MODES 5 and 6, LEAKAGE limits are not required because the reactor coolant pressure is far lower, resulting in lower stresses and reduced potentials for LEAKAGE.

LCO 3.4.14, "RCS Pressure Isolation Valve (PIV) Leakage," measures leakage through each individual PIV and can impact this LCO. Of the two PIVs in series in each isolated line, leakage measured through one PIV does not result in RCS LEAKAGE when the other is leak tight. If both valves leak and result in a loss of mass from the RCS, the loss must be included in the allowable identified LEAKAGE.

ACTIONS <u>A.1</u>

Unidentified LEAKAGE, identified LEAKAGE, or primary to secondary LEAKAGE in excess of the LCO limits must be reduced to within limits within 4 hours. This Completion Time allows time to verify leakage rates and either identify unidentified LEAKAGE or reduce LEAKAGE to within limits before the reactor must be shut down. This action is necessary to prevent further deterioration of the RCPB.

B.1 and B.2

If any pressure boundary LEAKAGE exists, or if unidentified LEAKAGE, identified LEAKAGE, or primary to secondary LEAKAGE cannot be reduced to within limits within 4 hours, the reactor must be brought to lower pressure conditions to reduce the severity of the LEAKAGE and its potential consequences. It should be noted that LEAKAGE past seals and gaskets is not pressure boundary LEAKAGE. The reactor must be brought to MODE 3 within 6 hours and MODE 5 within 36 hours. This action reduces the LEAKAGE and also reduces the factors that tend to degrade the pressure boundary.

The allowed Completion Times are reasonable, based on operating experience, to reach the required plant conditions from full power conditions in an orderly manner and without challenging plant systems. In MODE 5, the pressure stresses acting on the RCPB are much lower, and further deterioration is much less likely.

SURVEILLANCE <u>SR</u> REQUIREMENTS

<u>SR 3.4.13.1</u>

Verifying RCS LEAKAGE to be within the LCO limits ensures the integrity of the RCPB is maintained. Pressure boundary LEAKAGE would at first appear as unidentified LEAKAGE and can only be positively identified by inspection. It should be noted that LEAKAGE past seals and gaskets is not pressure boundary LEAKAGE. Unidentified LEAKAGE and identified LEAKAGE are determined by performance of an RCS water inventory balance. Primary to secondary LEAKAGE is also measured by performance of an RCS water inventory balance in conjunction with effluent monitoring within the secondary steam and feedwater systems.

The RCS water inventory balance must be met with the reactor at steady state operating conditions (stable temperature, power level, pressurizer and makeup tank levels, makeup and letdown, [and RCP seal injection and return flows]). Therefore, a Note is added allowing that this SR is not required to be performed until 12 hours after establishing steady state operation. The 12 hour allowance provides sufficient time to collect and process all necessary data after stable plant conditions are established.

SURVEILLANCE REQUIREMENTS (continued)

Steady state operation is required to perform a proper inventory balance since calculations during maneuvering are not useful. For RCS operational LEAKAGE determination by water inventory balance, steady state is defined as stable RCS pressure, temperature, power level, pressurizer and makeup tank levels, makeup and letdown, and RCP seal injection and return flows.

An early warning of pressure boundary LEAKAGE or unidentified LEAKAGE is provided by the automatic systems that monitor the containment atmosphere radioactivity and the containment sump level. It should be noted that LEAKAGE past seals and gaskets is not pressure boundary LEAKAGE. These leakage detection systems are specified in LCO 3.4.15, "RCS Leakage Detection Instrumentation."

The 72 hour Frequency is a reasonable interval to trend LEAKAGE and recognizes the importance of early leakage detection in the prevention of accidents.

<u>SR 3.4.13.2</u>

This SR provides the means necessary to determine SG OPERABILITY in an operational MODE. The requirement to demonstrate SG tube integrity in accordance with the Steam Generator Tube Surveillance Program emphasizes the importance of SG tube integrity, even though this Surveillance cannot be performed at normal operating conditions

REFERENCES 1. 10 CFR 50, Appendix A, GDC 30.

2. Regulatory Guide 1.45, May 1973.

3. FSAR, Section [15].