SCENARIO INFORMATION	
Exercise Time:	10:30
Interval Since Release Started (hh:mm):	0:00
METEOROLGICAL DATA	
Ground Level Wind Velocity (mph):	7.40
Ground Level Direction (degrees):	167
Stability Class:	D-Neutral

A= 0 deg B= 6 deg C= 12 deg Dose Rate at 3 ft mR/hr closed window mile A mR/hr B mR/hr C mR/hr

0.5 452.9 158.0 6.2	
1.0 172.6 49.9 1.0	
2.0 AS READ AS READ AS READ	
5.0 AS READ AS READ AS READ	
7.5 AS READ AS READ AS READ	
10.0 AS READ AS READ AS READ	_

Dose Rate at 6 in. mR/hr closed window

mile	A mR	/hr	Βm	R/hr	Сп	nR/hr
0.5	4	176.9		166.4	6.5	7E+00
1.0	•	181.8	5.2	6E+01	1.1	0E+00
2.0	AS R	EAD	AS	READ	AS	READ
5.0	AS R	EAD	AS	READ	AS	READ
7.5	AS R	EAD	AS	READ	AS	READ
10.0	AS R	EAD	AS	READ	AS	READ

Ground Deposition: Ludlum #44-40 Probe (10% eff.) (cpm)

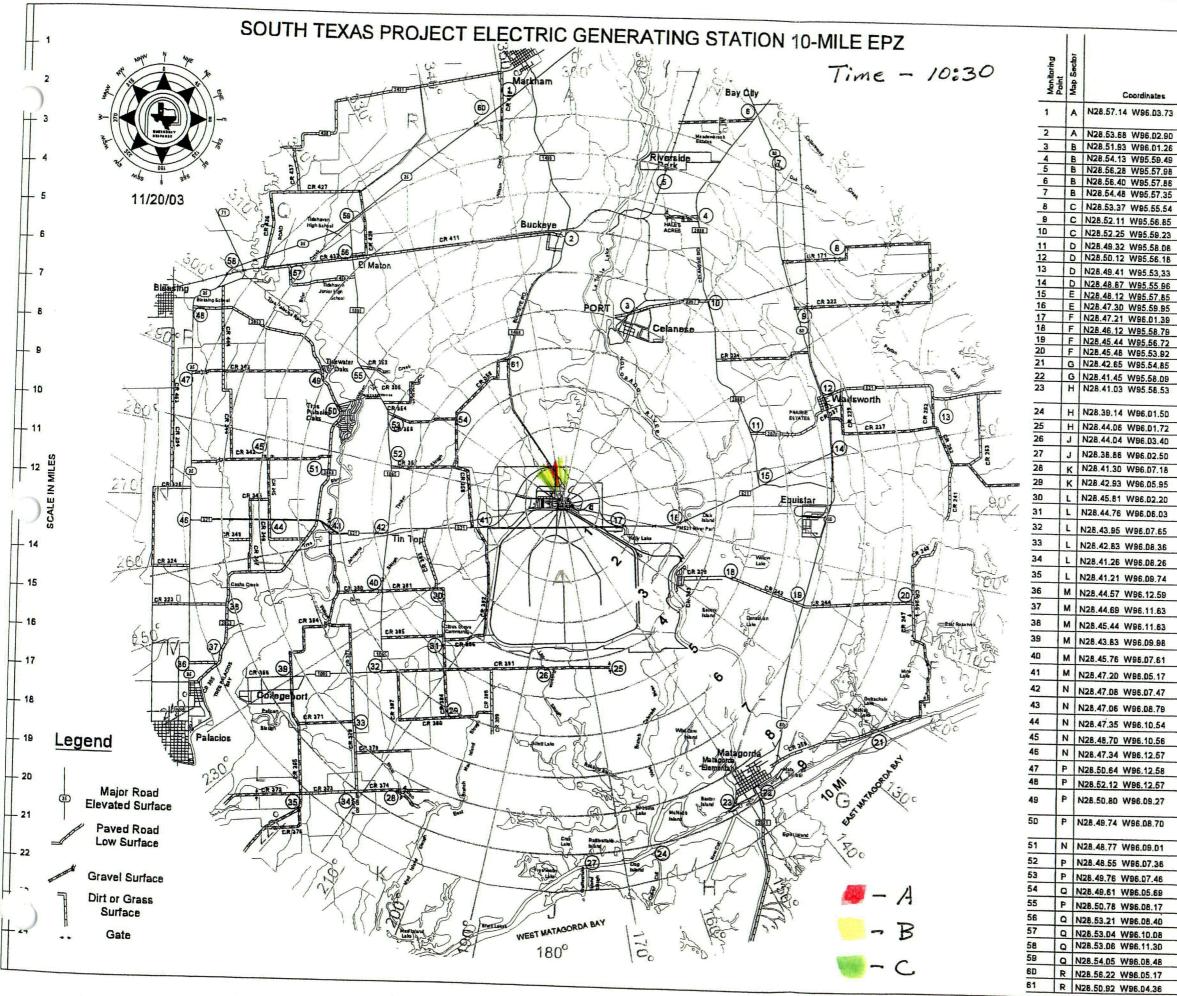
mile	A cpm	B cpm	C cpm		
0.5	153,537	53,628	6,047		
1.0	58,635	1,755	1,755		
2.0	AS READ	AS READ	AS READ		
5.0	AS READ	AS READ	AS READ		
		AS READ			
10.0	AS READ	AS READ	AS READ		

Particulate Measurements: Ludlum #44-40 Probe for 10 cu. Ft. Air Sample (10% eff.) (cpm)

m	mile A cpm			pm	C cpm		
· (0.5 1	60,304		55,991		6,313	
1	1.0	61,219		17,685		1,833	
2	2.0 AS	READ	AS	READ	AS	READ	
5	5.0 AS	READ	AS	READ	AS	READ.	
7	7.5 AS	READ	AS	READ	AS	READ	
10).0 AS	READ	AS	READ	AS	READ	

A= 0 deg B= 6 deg C= 12 deg Dose Rate at 3 ft mR/hr open window

mile		A mR/hr		B mR/hr		C mR/hr	
	0.5		905.8		316.0		12.5
	1.0		345.3		99.8		2.1
	2.0	AS	READ	AS	READ	AS	READ
	5.0	AS	READ	AS	READ	AS	READ
	7.5	AS	READ	AS	READ	AS	READ
	10.0	AS	READ	AS	READ	AS	READ


Dose Rate at 6 in. mR/hr open window

mile	mile A mR/hr			nR/hr	Сп	C mR/hr	
0.5		494.0		172.3	5	6.8	
1.0		188.3		54.5	;	1.1	
2.0	AS	READ	AS	READ	AS	READ	
5.0	AS	READ	AS	READ	AS	READ	
7.5	AS	READ	AS	READ	AS	READ	
10.0	AS	READ	AS	READ	AS	READ	

Swipe Measurement: Ludlum #44-40 Probe (10% eff.) (cpm)

•	mile A cpm			Вc	pm	Сc	C cpm		
	0.5	7	67,676	2	268,13	6	30,234		
	1.0	2	93,171		84,69	4	8,776		
							READ		
	5.0	AS	READ	AS	READ) AS	READ		
•	7.5	AS	READ	AS	READ) AS	READ		
	10.0	AS	READ	AS	READ) AS	READ		

mile	A cpm	B cpm	C cpm
0.5	110,498	38,595	4,352
1.0	42,199	12,191	1,263
2.0	AS READ	AS READ	AS READ
5.0	AS READ	AS READ	AS READ
7.5	AS READ	AS READ	AS READ
10.0	AS READ	AS READ	AS READ

Time - 10:30 PRE-SELECTED MONITORING POINTS

	Location
	Intersection of SH35 and FM1468
	(On STP Directional Sign to N of SH35)
	Intersection of FM1468 & CR 411
	Intersection of Celanese Avenue A and FM3057 Intersection of FM2668 and entrance of Hale's Acres Subdivision
	Riverside Park at Railroad Tracks
	Intersection of FM2668 and SH60
	SH60 at Live Oak Creek
-	Second 90 degree bend on Sims Lane (CR 177), east of SH60
	Intersection of SH6D and CR 222
	Intersection of FM3057 and FM2668
	Intersection of FM2078 and FM2668 Intersection of FM521 and SH6D in Wadsworth
	Intersection of CR 237 and CR 262
	Intersection of FM521 and SH60 south of Wadsworth
	Intersection of FM521 and FM2668
	FM521 and Colorado River FM521 at Kelly Lake
	CR 239 and CR 242
	Intersection of SH6D and CR 244
	Intersection of CR 244 and CR 245
	Bridge on CR 259, 2.6 miles east of SH60
	Junction of 8H6D and FM2D31 in Matagorda Intersection of Intracoastal Waterway and
	Colorado River at the barge traffic signal
	Intracoastal Waterway and Old Colorado River at sunken barge
	East and of CR 391
	CR 391 at Bridge over Robbins Slough
_	Intracoastal Waterway at Rattlesnake Island Slough
	CR 374 at Mad Island Hunting Lodge gate
	Intersection of CR 390 and CR 384
- 61	Intersection of CR 383 and CR 381
	Intersection of CR 384 and CR 385
	Intersection of FM1095 and CR 391
	Intersection of CR 371 and CR 378
	Intersection of CR 378 and CR 374
	Intersection of CR 372 and CR 365
	Intersection of SH35 and FM2853 north of Palacios
	9D degree bend in FM2853 and CR 305
	Intersection of FM2853 and CR 323
	Intersection of CR 366 and CR 364
_	Intersection of FM1095 and CR 380
	Intersection of FM521 and CR 358
_	Intersection of FM521 and FM1095 at Tin Top
	Intersection of FM521 and CR 364
1	Intersection of FM521 and CR 349
	Intersection of CR 342 and CR 345
	Intersection of SH35 and FM 521
	Intersection of SH35 and CR 343
	Intersection of SH35 and FM2853 at Blessing
	Intersection of FM2853 and Tidewater Oaks Subdivision
	North of Harbor
	FM2853 at Tres Palacios Oaks Subdivision at the
	Fire Station
	Intersection of FM2853 and CR 342
	Intersection of FM1095 and CR 357
	Intersection of FM1095 and CR 356
	Intersection of CR 358 and CR 356
	Intersection of FM1095 and CR 352
_	Intersection of FM1095 and CR 411
	Intersection of FM459 and CR 432
	Intersection of 6H35 and FM1095
	SH35 NE of Wilson Creek Bridge
	BH35 NE of Wilson Creek Bridge Intersection of FM1468 and CR 358

C01

SCENARIO INFORMATION	
Exercise Time:	10:45
Interval Since Release Started (hh:mm):	0:15
METEOROLGICAL DATA	
Ground Level Wind Velocity (mph):	7.40
Ground Level Direction (degrees):	165
Stability Class:	D-Neutral
A= 0 deg B= 6 deg C= 12 deg	
Dose Rate at 3 ft mR/hr closed window	
mile A mR/hr B mR/hr C mR/hr	
0.5 1335.8 466.0 52.8	
1.0 509.6 147.4 10.6	

1.0		209.0		147.4		10.0
2.0		64.0		15.8		1.1
5.0	AS	READ	AS	READ	AS	READ
7.5	AS	READ	AS	READ	AS	READ
10.0	AS	READ	AS	READ	AS	READ

Dose Rate at 6 in. mR/hr closed window

mile	A mR/hr	B mR/hr	C mR/hr
0.5	1432.4	499.6	56.6
1.0	546.5	158.0	11.4
2.0	67.3	16.6	0.3
5.0	AS READ	AS READ	AS READ
7.5	AS READ	AS READ	AS READ
10.0	AS READ	AS READ	AS READ

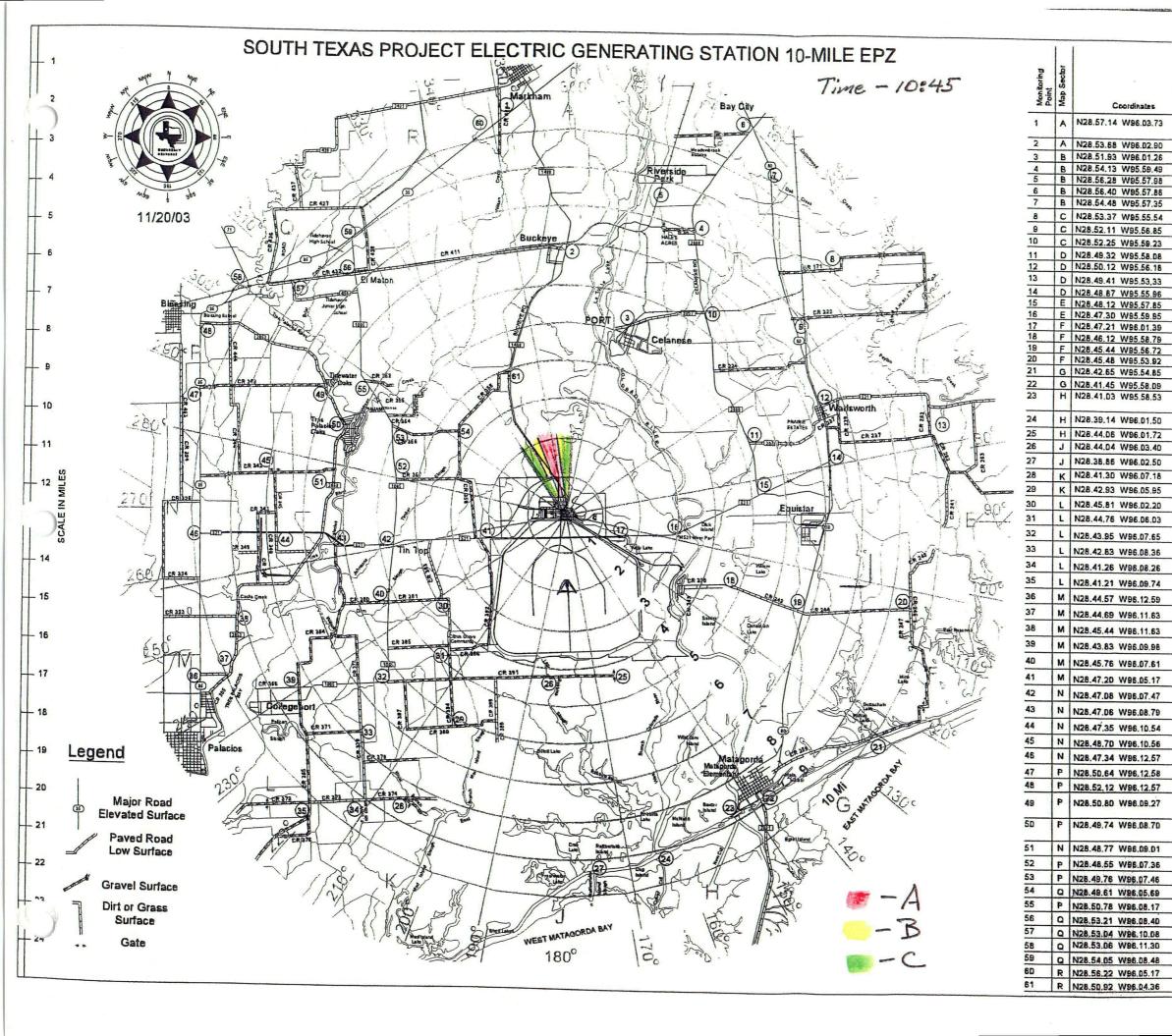
Ground Deposition: Ludlum #44-40 Probe (10% eff.) (cpm)

mile	A cpm	B cpm	C cpm
0.5	617,850	215,804	24,333
1.0	235,953	68,164	7,063
2.0	21,325	5,283	296
5.0	AS READ	AS READ	AS READ
7.5	AS READ	AS READ	AS READ
10.0	AS READ	AS READ	AS READ

Particulate Measurements: Ludlum #44-40 Probe for 10 cu. Ft. Air Sample (10% eff.) (cpm)

mile	A cpm	B cpm	C cpm
0.5	496,427	173,393	19,551
1.0	189,583	54,768	5,675
2.0	22,265	5,516	309
5.0	AS READ	AS READ	AS READ
7.5	AS READ	AS READ	AS READ
10.0	AS READ	AS READ	AS READ

5					
			A= 0 deg	B= 6 deg	C= 12 deg
	Dose	Rate	at 3 ft mR/	hr open win	dow
	mile		A mR/hr	B mR/hr	C mR/hr
	-	0.5	2671.7	931.9	105.5
		1.0	1019.3	294.7	21.2
		2.0	127.9	31.6	2.1
		5.0	AS READ	AS READ	AS READ
		7.5	AS READ	AS READ	AS READ
		10.0	AS READ	AS READ	AS READ
	Dose	Rate	at 6 in. mR	/hr open wi	ndow
		mile	A mR/hr	B mR/hr	C mR/hr
		0.5	1501.1	523.6	59,3
		1.0	572.7	165.6	11.9
		2.0	69 7	17.2	0.3


2.0		69.7		17.2		0.3
5.0	AS	READ	AS	READ	AS	READ
7.5	AS	READ	AS	READ	AS	READ
10.0	AS	READ	AS	READ	AS	READ

Swipe Measurement: Ludlum #44-40 Probe (10% eff.) (cpm)

-

、	7	(-F	···/						
mi	e	Ac	pm	B	cpm_		Сс	pm	
0.	5	3,0	89,230) 1,	079,0	13	1	21,6	65
1.	0	1,1	79,758	3	340,8	19		35,3	816
2	0	1	06,624	4	26,4	13		1,4	181
5.	0	AS	READ	AS	S REA	D	AS	RE/	۱D
7.	.5	AS	READ	AS	S REA	D	AS	RE/	٩D
10	0	AS	READ	AS	S REA	١D	AS	REA	١D

mile	A cpm	B cpm	C cpm
0.5	333,590	116,517	13,138
1.0	127,396	36,803	3,814
2.0	15,347	3,802	213
5.0	AS READ	AS READ	AS READ
7.5	AS READ	AS READ	AS READ
10.0	AS READ	AS READ	AS READ

Time - 10:45 PRE-SELECTED MONITORING POINTS

	Location	
	Intersection of SH35 and FM1468	-
-	(On STP Directional Sign to N of SH35)	
-	Intersection of FM1468 & CR 411 Intersection of Celanese Avenue A and FM3057]
	Intersection of FM2668 and entrance of Hale's Acres Subdivision	4
	Riverside Park at Railroad Tracks	-
-	Intersection of FM2668 and SH60	1
-	SH60 at Live Oak Creek]
-	Second 90 degree bend on Sims Lane (CR 177), east of SH60 Intersection of SH60 and CR 222]
-	Intersection of FM3057 and FM2668	1
1	Intersection of FM2078 and FM2668	4
	Intersection of FM521 and SH60 in Wadsworth	-
	Intersection of CR 237 and CR 262	1
	Intersection of FM521 and 6H60 south of Wadsworth	1
-	Intersection of FM521 and FM2668]
-	FM521 and Colorado River FM521 at Kelly Lake	
	CR 239 and CR 242	
	Intersection of SH6D and CR 244	
-	Intersection of CR 244 and CR 245	1
+	Bridge on CR 259, 2.6 miles east of 6H60	
+	Junction of 6H6D and FM2031 in Matagorda Intersection of Intracoastal Waterway and	
	Colorado River at the barge traffic signal	
	Intracoastal Waterway and Old Colorado River at sunken barge	
Ţ	East end of CR 391	
	CR 391 at Bridge over Robbins Slough	
	Intracoastal Waterway at Rattlesnake Island Slough	
	CR 374 at Mad Island Hunting Lodge gate	
1	Intersection of CR 39D and CR 384	
1	Intersection of CR 383 and CR 381	
	Intersection of CR 384 and CR 385	
	Intersection of FM1095 and CR 391	
	Intersection of CR 371 and CR 378	
T	Intersection of CR 378 and CR 374	
T	Intersection of CR 372 and CR 365	
+	Intersection of SH35 and FM2853 north of Palacios	
	B0 degree bend in FM2853 and CR 305	
+		
+	Intersection of FM2853 and CR 323	
1	Intersection of CR 366 and CR 364	
	Intersection of FM1095 and CR 380	
	Intersection of FM521 and CR 358	
T	Intersection of FM521 and FM1095 at Tin Top	
	Intersection of FM521 and CR 364	
+	Intersection of FM521 and CR 349	
_	Intersection of CR 342 and CR 345	
-	Intersection of 8H35 and FM 521	
+		
+	Intersection of SH35 and CR 343	
	Intersection of 8H35 and FM2853 at Blessing	
	Intersection of FM2853 and Tidewater Oaks Subdivision North of Harbor	
_	FM2853 at Tres Palacios Oaks Subdivision at the	
	Fire Station	
ſ	Intersection of FM2853 and CR 342	
Γ	Intersection of FM1095 and CR 357	
	Intersection of FM1095 and CR 356	
I	Intersection of CR 358 and CR 356	
ſ	Intersection of FM1095 and CR 352	
ſ	Intersection of FM1095 and CR 411	
	Intersection of FM459 and CR 432	
+	Intersection of 8H71 and 8H35	
+	Intersection of 8H35 and FM1095	
	SH35 NE of Wilson Creek Bridge	
-	Intersection of FM1468 and CR 358	

SCENARIO INFORMATION	
Exercise Time:	11:00
Interval Since Release Started (hh:mm):	0:30
METEOROLGICAL DATA	
Ground Level Wind Velocity (mph):	7.60
Ground Level Direction (degrees):	165
Stability Class:	D-Neutral
A= 0 deg	
Dose Rate at 3 ft mR/hr closed window	

mile		An	nR/hr	Bn	nR/hr	Сn	nR/hr
	0.5		1955.5		682.1		77.3
	1.0		741.7		214.5		15.5
	2.0		187.9		46.4		0.8
	5.0		16.2		3.0	AS	READ
	7.5	AS	READ	AS	READ	AS	READ
	10.0	AS	READ	AS	READ	AS	READ

Dose Rate at 6 in. mR/hr closed window

mile	A mR/hr	B mR/hr	C mR/hr
0.5	2162.0	754.2	85.4
1.0	820.6	237.3	17.1
2.0	201.3	49.8	3.4
5.0	17.1	3.2	0.0
7.5	AS READ	AS READ	AS READ
10.0	AS READ	AS READ	AS READ

Ground Deposition: Ludlum #44-40 Probe (10% eff.) (cpm)

-	mile	Ac	pm	Вс	pm	Сc	pm
	0.5	1,3	21,60	1 4	61,612		52,049
	1.0	5	04,71	1 1	45,806		15,108
	2.0		85,814	4	21,258		1,192
	5.0		5,250	5	970	AS	READ
	7.5	AS	READ	AS	READ	AS	READ
	10.0	AS	READ	AS	READ	AS	READ

Particulate Measurements: Ludlum #44-40 Probe for 10 cu. Ft. Air Sample (10% eff.) (cpm)

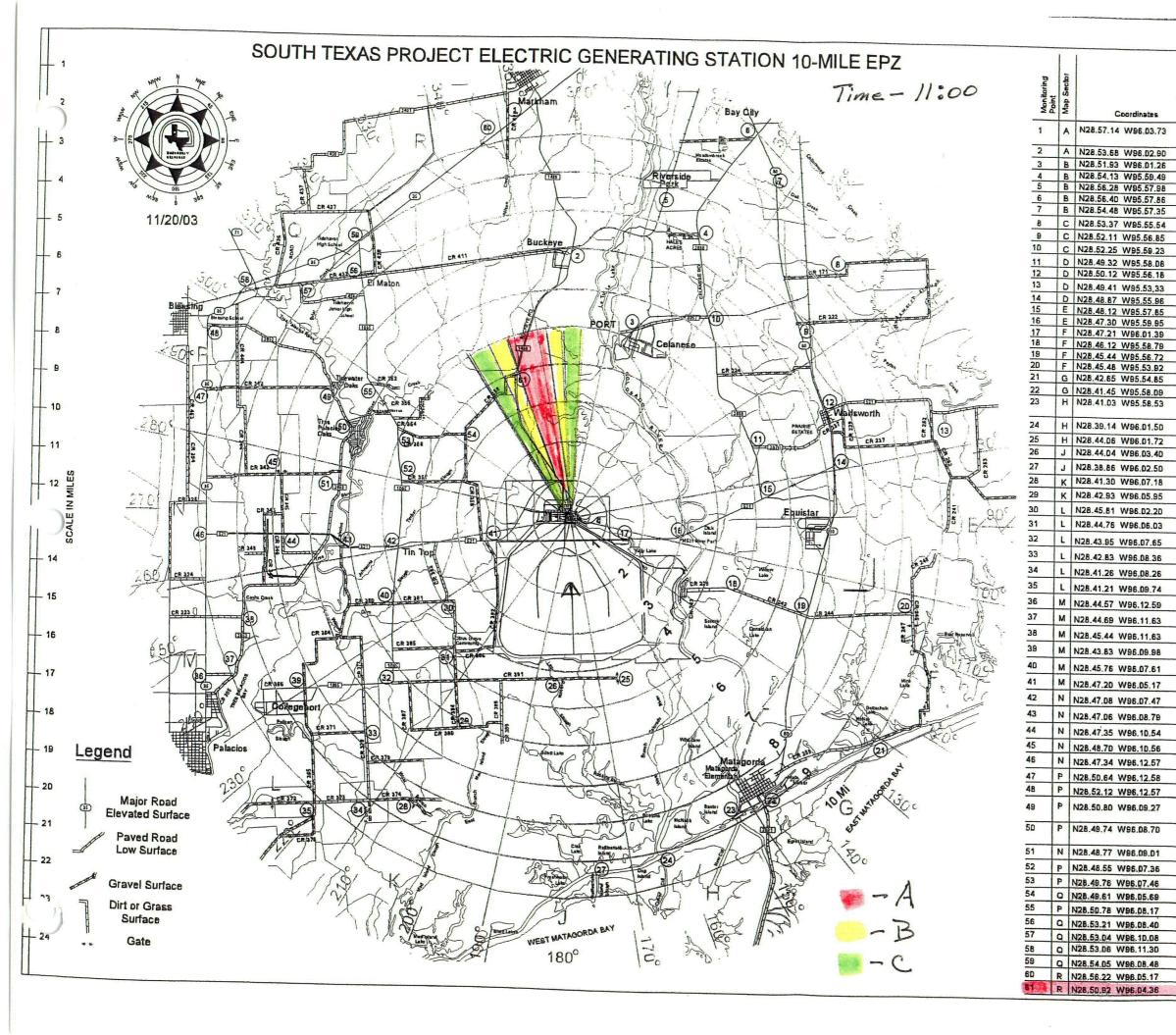
mile	A cpm	B cpm	C cpm
0.5	766,544	267,740	30,189
1.0	292,738	84,569	8,763
2.0	68,950	17,080	958
5.0	5,488	1,013	AS READ
7.5	AS READ	AS READ	AS READ
10.0	AS READ	AS READ	AS READ

	A= 0 deg	B= 6 deg	C= 12 deg
Dose Rate	at 3 ft mR/	hr open win	dow
mile	A mR/hr	B mR/hr	C mR/hr
0.5	3911.1	1364.3	154.5
1.0	1483.5	429.0	30.9
2.0	375.7	92.9	6.3
5.0	140.1	26.2	1.9
7.5	AS READ	AS READ	AS READ

10.0 AS READ AS READ AS READ

Dose Rate at 6 in. mR/hr open window

mile	A mR/hr	B mR/hr	C mR/hr
0.5	2309.0	805.4	91.2
1.0	876.7	253.5	18.3
2.0	210.8	52.1	3.5
5.0	17.6	3.3	AS READ
7.5	AS READ	AS READ	AS READ
10.0	AS READ	AS READ	AS READ


Swipe Measurement: Ludlum #44-40 Probe (10% eff.) (cpm)

mile	A cpm	B cpm	C cpm
0.5	6,607,976	2,308,049	260,246
1.0	2,523,546	729,024	75,541
2.0	429,069	106,290	5,959
5.0	26,282	4,850	151
7.5	AS READ	AS READ	AS READ
10.0	AS READ	AS READ	AS READ

Iodine Measurement: Ludlum #44-40 Probe for 10 cu. Ft. Air Sample (0.49% eff.) (cpm)

.

mile	A cpm	B cpm	C cpm
0.5	504,926	176,362	6,946
1.0	192,828	55,706	1,668
2.0	46,333	11,478	AS READ
5.0	3,783	698	AS READ
7.5	AS READ	AS READ	AS READ
10.0	AS READ	AS READ	AS READ

1	PRE-SELECTED	
V	ONITORING POINTS	
-	Location Intersection of 6H35 and FM1468	
	(On STP Directional Sign to N of SH35)	
_	Intersection of FM1468 & CR 411 Intersection of Celanese Avenue A and FM3057	-
	Intersection of Ceranese Avenue A and FM3057 Intersection of FM2668 and entrance of Hale's Acres Subdivision	
_	Riverside Park at Railroad Tracks	4
	Intersection of FM2668 and SH60 SH60 at Live Oak Creek	
	Second 90 degree bend on Sims Lane (CR 177), east of SH60	
	Intersection of SH6D and CR 222	-
_	Intersection of FM3057 and FM2668	
	Intersection of FM2078 and FM2668 Intersection of FM521 and SH60 in Wadsworth]
	Intersection of CR 237 and CR 262	4
	Intersection of FM521 and SH60 south of Wadsworth	-
-	Intersection of FM521 and FM2668 FM521 and Colorado River]
	FM521 at Kelly Lake	1.0
	CR 239 and CR 242 Intersection of SH60 and CR 244	
•	Intersection of CR 244 and CR 245	
	Bridge on CR 259, 2.6 miles east of SH6D	
	Junction of 6H60 and FM2031 in Matagorda Intersection of Intracoastal Waterway and	
	Colorado River at the barge traffic signal	
	Intracoastal Waterway and Old Colorado River at sunken barge	
-	East end of CR 391	
	CR 391 at Bridge over Robbins Slough	
	Intracoastal Waterway at Rattlesnake Island Slough CR 374 at Mad Island Hunting Lodge gate	
	Intersection of CR 39D and CR 384	
	Intersection of CR 383 and CR 381	
-	Intersection of CR 384 and CR 385	
	Intersection of FM1095 and CR 391	
	Intersection of CR 371 and CR 378	
	Intersection of CR 378 and CR 374	
_	Intersection of CR 372 and CR 365	
	Intersection of 8H35 and FM2853 north of Palacios	
	90 degree bend in FM2853 and CR 305	
	Intersection of FM2853 and CR 323	
	Intersection of CR 366 and CR 364	
	Intersection of FM1095 and CR 380	
	Intersection of FM521 and CR 358	
	Intersection of FM521 and FM1095 at Tin Top	
	Intersection of FM521 and CR 364 Intersection of FM521 and CR 349	
	Intersection of CR 342 and CR 345	
	Intersection of 8H35 and FM 521	
ł	Intersection of \$H35 and CR 343	
t	Intersection of SH35 and FM2853 at Blessing	
I	Intersection of FM2853 and Tidewater Oaks Subdivision	
	North of Harbor FM2853 at Tres Palacios Oaks Subdivision at the Fire Station	
t	Intersection of FM2853 and CR 342	
ļ	Intersection of FM1095 and CR 357	
ļ	Intersection of FM1095 and CR 356	
ļ	Intersection of CR 358 and CR 356	
ł	Intersection of FM1095 and CR 352	
+	Intersection of FM1095 and CR 411 Intersection of FM459 and CR 432	
t	Intersection of \$H71 and \$H35	
	Intersection of 6H35 and FM1095	
1	BH35 NE of Wilson Creek Bridge	

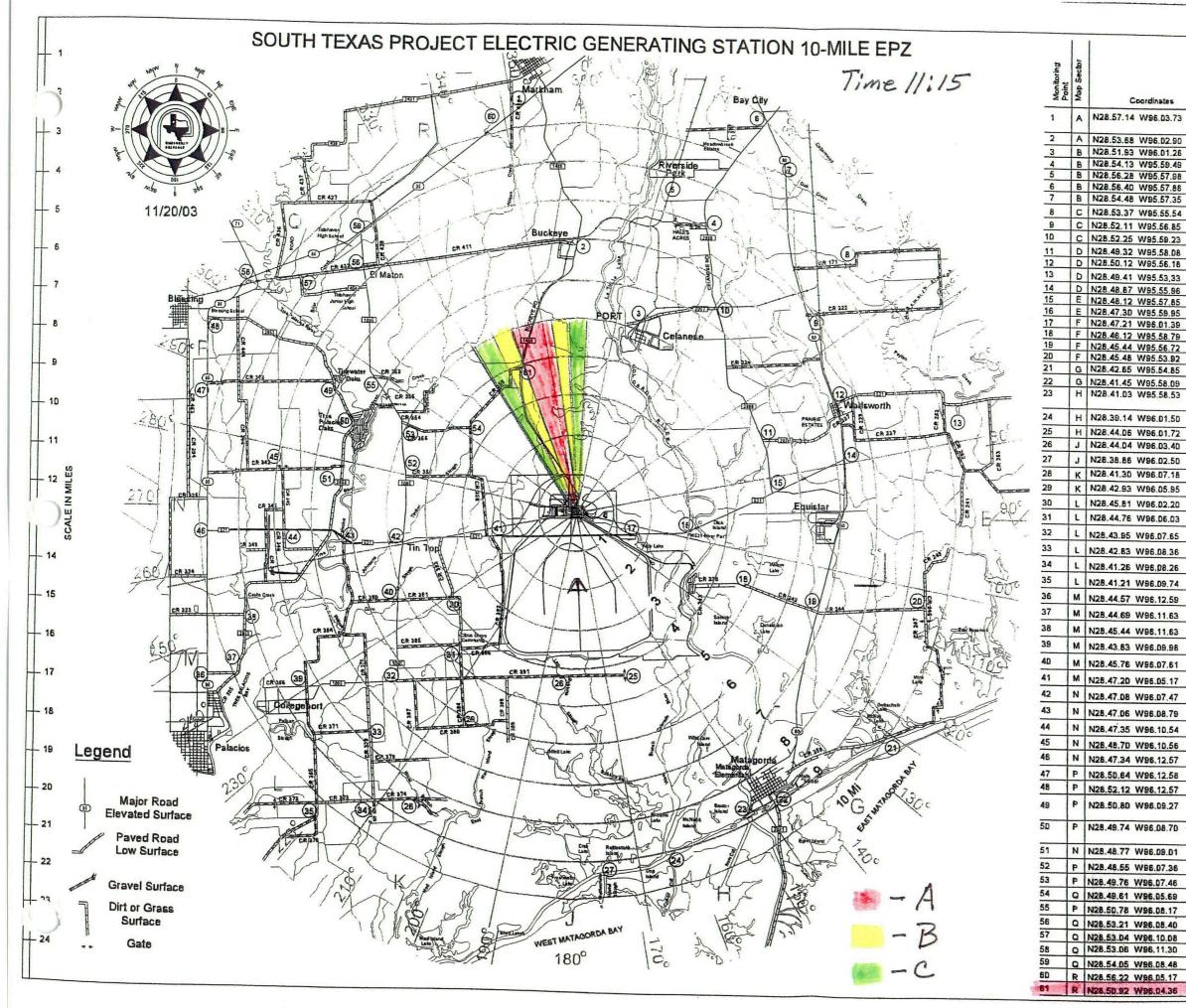
SCENARIO		ATION		
Exercise T				11:15
Interval Si	nce Release	e Started (h	h:mm):	0:45
	DLGICAL D	•		
	vel Wind V		ı):	7.80
	vel Directio	• • •	•	165
Stability Cl		,		D-Neutral
,		B= 6 deg	C= 12 deg	
Dose Rate	at 3 ft mR/	-	-	Do
mile	A mR/hr	B mR/hr	C mR/hr	mi
0.5	1715.9	598.5	67.8	, .
1.0	647.6	187.2	13.5	
2.0	272.3	67.3	16.6	
5.0	48.0	9.0	0.6	
7.5	AS READ	AS READ	AS READ	
10.0	AS READ	AS READ	AS READ	
-				
	at 6 in. mR			Do
	A mR/hr	B mR/hr	C mR/hr	
0.5	2020.9	704.9	27.8	-
1.0				
2.0			1.2	
5.0				
	AS READ			
10.0	AS READ	AS READ	AS READ	
			•	
	eposition: Lu	udlum #44-4	0 Probe	Sv
(10% eff.)		D	•	(1)
the second se		B cpm		
	1,951,627			
1.0	745,314	215,313	22,311	
2.0		45,472		
5.0	21,152 AS READ	•	AS READ	
	AS READ			
	AS READ	AS READ	AS READ	
Particulate	Measurem	ents: Ludiu	m #11-10 P	robe loo
	Ft. Air Sam			fole fol
	A cpm	B cpm	C cpm	101
0.5				• •
1.0	•	•	•	
2.0	•	-	•	
5.0	•	•	AS READ	
0.0	.0,000	0,100		

7.5 AS READ AS READ AS READ 10.0 AS READ AS READ AS READ

.

Dose	Rate	at 3	8 ft mR/	hr o	open win	dow	, ,	
mile		An	nR/hr	B	mR/hr	Cn	nR/hr	
	0.5		3431.8		1197.1		135.6	
	1.0		1295.1		374.5		27.0	
	2.0		544.5		134.6		9.1	
	5.0		95.9		18.0		1.3	
	7.5	AS	READ	AS	S READ	AS	READ	
	10.0	AS	READ	AS	S READ	AS	READ	

A= 0 deg B= 6 deg C= 12 deg


ose Rate at 6 in. mR/hr open window

mile	A mR/hr	B mR/hr	C mR/hr
0.5	2237.9	780.6	30.8
1.0	846.9	244.9	5.1
2.0	321.4	79.5	1.3
5.0	53.6	10.0	0.1
7.5	AS READ	AS READ	AS READ
10.0	AS READ	AS READ	AS READ

wipe Measurement: Ludlum #44-40 Probe 0% eff.) (cpm)

<u> </u>	mile	A cpm	B cpm	C cpm
	0.5	9,758,109	3,408,335	384,309
	1.0	3,726,562	1,076,562	111,553
	2.0	917,794	227,358	12,746
	5.0	105,760	19,515	609
	7.5	AS READ	AS READ	AS READ
	10.0	AS READ	AS READ	AS READ

mile	A cpm	B cpm	C cpm
0.5	451,228	157,606	17,771
1.0	172,321	49,782	5,158
2.0	70,130	17,373	974
5.0	11,421	2,107	AS READ
7.5	AS READ	AS READ	AS READ
10.0	AS READ	AS READ	AS READ

Time -11:15 PRE-SELECTED **MONITORING POINTS**

Intersection of SH35 and FM1	
On STP Directional Sign to N Intersection of FM1468 & CR	
ntersection of Celanese Aven	
	itrance of Hale's Acres Subdivision
Nerside Park at Railroad Tra	cks
tersection of FM2668 and SI	03H
SH60 at Live Oak Creek	
Intersection of SH6D and CR	ms Lane (CR 177), east of SH60
ntersection of FM3057 and FI	
Intersection of FM2078 and FM	
Intersection of FM521 and SH	
Intersection of CR 237 and CR	
Intersection of FM521 and SH	
htersection of FM521 and FM FM521 and Colorado River	2668
FM521 at Kelly Lake	ne senten an Therein we are proved in the set of the se
CR 239 and CR 242	
ntersection of SH6D and CR 2 ntersection of CR 244 and CR	
Bridge on CR 259, 2.6 miles e	
Junction of SH60 and FM2031	
ntersection of Intracoastal Wa	terway and
Colorado River at the barge tra	
_	d Colorado River at sunken barge
East and of CR 391	
CR 391 at Bridge over Robbins	
ntracoastal Waterway at Ratt	
CR 374 at Mad Island Hunting Intersection of CR 390 and CR	
ntersection of CR 383 and CR	
ntersection of CR 383 and CR	
the second se	
ntersection of FM1095 and CR	
ntersection of CR 371 and CR	NAMES AND ADDRESS OF THE OWNER OF
ntersection of CR 378 and CR	
ntersection of CR 372 and CR	
ntersection of SH35 and FM28	153 north of Palacios
90 degree bend in FM2853 and	1 CR 305
ntersection of FM2853 and CR	233
Intersection of CR 366 and CR	364
ntersection of FM1095 and CR	086
ntersection of FM521 and CR	
ntersection of FM521 and FM1	
ntersection of FM521 and CR	
ntersection of FM521 and CR :	349
tersection of CR 342 and CR	
ntersection of 8H35 and FM 52	21
tersection of SH35 and CR 34	43
tersection of 8H35 and FM28	53 at Blessing
tersection of FM2853 and Tid	
lorth of Harbor	
M2853 at Tres Palacios Oaks	Subdivision at the
ire Station Intersection of FM2853 and CR	
tersection of FM1095 and CR	
tersection of FM1095 and CR	
ntersection of CR 358 and CR	
tersection of FM1095 and CR	
ntersection of FM1095 and CR ntersection of FM459 and CR	
ntersection of \$H71 and \$H35	
tersection of SH35 and FM10	the second s
H35 NE of Wilson Creek Bridg	

SCENARIO INFORMATION

11:30
1:00
6.90
165
D-Neutral

A= 0 deg B= 6 deg C= 12 deg Dose Rate at 3 ft mR/hr closed window

mile		A mR/hr	B mR/hr	C mR/hr
	0.5	1352.4	471.7	53.4
	1.0	523.8	151.5	10.9
	2.0	237.2	58.6	4.0
	5.0	70.0	13.1	0.9
	7.5	9.1	1.5	0.1
	10.0	AS READ	AS READ	AS READ

Dose Rate at 6 in. mR/hr closed window

mile	A mR/hr	B mR/hr	C mR/hr
0.5	1731.7	604.1	68.4
1.0	668.6	193.3	13.9
2.0	279.6	69.1	4.7
5.0	77.1	14.4	1.0
7.5	9.6	1.5	0.1
10.0	AS READ	AS READ	AS READ

Ground Deposition: Ludlum #44-40 Probe (10% eff.) (cpm)

·	mile	A cpm	B cpm	C cpm
	0.5	2,428,014	848,062	95,624
	1.0	927,244	267,870	27,757
	2.0	271,065	67,149	3,765
	5.0	45,245	8,349	261
	7.5	2,782	428	AS READ
	10.0	AS READ	AS READ	AS READ

Particulate Measurements: Ludlum #44-40 Probe for 10 cu. Ft. Air Sample (10% eff.) (cpm)

mile	A cpm	B cpm	C cpm
0.5	540,233	188,694	21,276
1.0	206,312	59,601	6,176
2.0	97,591	24,175	1,355
5.0	26,243	4,842	AS READ
7.5	2,904	447	AS READ
10.0	AS READ	AS READ	AS READ

Dose Rate at 3 ft mR/hr open window				
mile		A mR/hr	B mR/hr	C mR/hr
	0.5	2704.7	943.5	106.8
	1.0	1047.5	302.9	21.8
	2.0	474.4	117.3	8.0
	5.0	140.1	26.2	1.9
•.	7.5	18.3	2.9	0.2
	10.0	AS READ	AS READ	AS READ

A= 0 deg B= 6 deg C= 12 deg


Dose Rate at 6 in. mR/hr open window

mile	A mR/hr	B mR/hr	C mR/hr
0.5	2001.8	698.2	79.1
1.0	771.8	223.2	16.1
2.0	309.7	76.6	5.2
5.0	82.1	15.4	1.1
7.5	9.9	1.6	0.1
10.0	AS READ	AS READ	AS READ

Swipe Measurement: Ludlum #44-40 Probe (10% eff.) (cpm)

<u> </u>	mile	A cpm	B cpm	C cpm
	0.5	##########	4,240,305	478,118
	1.0	4,636,211	1,339,350	138,783
	2.0	1,355,321	335,743	18,823
	5.0	226,225	41,744	1,303
	7.5	13,908	2,139	AS READ
	10.0	AS READ	AS READ	AS READ

mile	A cpm	B cpm	C cpm
0.5	340,753	119,019	13,420
1.0	130,132	37,594	3,895
2.0	62,672	15,525	870
5.0	17,286	3,190	AS READ
7.5	2,002	308	AS READ
10.0	AS READ	AS READ	AS READ

	Time - 11:30	
	Time - 11:30 PRE-SELECTED	
R	and the second	
IV	ONITORING POINTS	
	Intersection of SH35 and FM1468 (On STP Directional Sign to N of SH35)	
6 4	Intersection of FM1468 & CR 411	
	Intersection of Celanese Avenue A and FM3057 Intersection of FM2668 and entrance of Hale's Acres Subdivision	
	Riverside Park at Railroad Tracks	
	Intersection of FM2668 and SH60 SH60 at Live Oak Creek	
	Second 90 degree bend on Sims Lane (CR 177), east of SH60	
	Intersection of SH6D and CR 222	
	Intersection of FM3057 and FM2668 Intersection of FM2078 and FM2668	
	Intersection of FM521 and SH60 in Wadsworth	
	Intersection of CR 237 and CR 262	
-	Intersection of FM521 and 6H60 south of Wadsworth Intersection of FM521 and FM2668	
<u>.</u>	FM521 and Colorado River	
	FM521 at Kelly Lake CR 239 and CR 242	
	Intersection of SH6D and CR 244 Intersection of CR 244 and CR 245	
	Bridge on CR 259, 2.6 miles east of 6H6D	
	Junction of 6H60 and FM2031 in Matagorda	
	Intersection of Intracoastal Waterway and Colorado River at the barge traffic signal	
	Intracoastal Waterway and Old Colorado River at sunken barge	
	East and of CR 391	
-	CR 391 at Bridge over Robbins Slough Intracoastal Waterway at Rattlesnake Island Slough	
	CR 374 at Mad Island Hunting Lodge gate	
	Intersection of CR 390 and CR 384	
	Intersection of CR 383 and CR 381	
	Intersection of CR 384 and CR 385	
	Intersection of FM1095 and CR 391	
	Intersection of CR 371 and CR 378 Intersection of CR 378 and CR 374	
	Intersection of CR 372 and CR 365	
	Intersection of SH35 and FM2853 north of Palacios	
	90 degree bend in FM2853 and CR 305	
	Intersection of FM2853 and CR 323	
	Intersection of CR 366 and CR 364	
	Intersection of FM1095 and CR 380	
	Intersection of FM521 and CR 358	
	Intersection of FM521 and FM1095 at Tin Top Intersection of FM521 and CR 364	
	Intersection of FM521 and CR 349	
	Intersection of CR 342 and CR 345	
	Intersection of 8H35 and FM 521	
	Intersection of SH35 and CR 343	1
	Intersection of 8H35 and FM2853 at Blessing	
	Intersection of FM2853 and Tidewater Oaks Subdivision North of Harbor	
	FM2853 at Tres Palacios Oaks Subdivision at the Fire Station	
	Intersection of FM2853 and CR 342	
	Intersection of FM1095 and CR 357	
	Intersection of FM1095 and CR 356	
	Intersection of CR 358 and CR 356	- Sector
	Intersection of FM1095 and CR 352	aptivity.
	Intersection of FM459 and CR 432	
	Intersection of SH71 and SH35 Intersection of SH35 and FM1095	
	6H35 NE of Wilson Creek Bridge	
	Intersection of FM1468 and CR 358	
	<i>(</i> (05
	U.	

SCENARIO INFORMATION	
Exercise Time:	11:45
Interval Since Release Started (hh:mm):	1:15
METEOROLGICAL DATA	
Ground Level Wind Velocity (mph):	6.40
Ground Level Direction (degrees):	163
Stability Class:	D-Neutral

mile		A mR/hr	B mR/hr	C mR/hr
	0.5	1164.4	406.2	46.0
	1.0	456.7	132.0	9.5
	2.0	194.2	48.0	3.3
	5.0	61.0	11.4	0.8
	7.5	25.5	4.1	0.3
	10.0	5.1	0.7	AS READ

Dose Rate at 6 in. mR/hr closed window

mile A	mR/hr	B mR/hr	C mR/hr
0.5	1606.4	560.3	63.5
1.0	625.4	180.8	13.0
2.0	246.9	61.0	4.1
5.0	71.4	13.4	1.0
7.5	27.3	4.4	0.3
10.0	5.4	0.7	0.1

Ground Deposition: Ludlum #44-40 Probe (10% eff.) (cpm)

mile	A cpm	B cpm	C cpm
0.5	2,828,479	987,938	111,396
1.0	1,080,179	312,052	32,335
2.0	337,231	83,540	4,683
5.0	66,814	12,329	385
7.5	11,193	1,721	AS READ
10.0	1,781	221	AS READ

Particulate Measurements: Ludlum #44-40 Probe for 10 cu. Ft. Air Sample (10% eff.) (cpm)

mile	A cpm	B cpm	C cpm
0.5	463,210	161,791	18,243
1.0	176,897	51,104	5,295
2.0	75,034	18,588	1,042
5.0	. 24,055	4,439	139
7.5	8,994	1,383	AS READ
10.0	1,859	231	AS READ

	A= 0 deg	B= 6 deg	C= 12 deg
Dose Rate	at 3 ft mR	/hr open wi	ndow

			_ • · ·	
mile		A mR/hr	B mR/hr	C mR/hr
	0.5	2328.8	812.3	92.0
	1.0	913.3	264.1	19.0
	2.0	388.4	96.0	6.5
	5.0	122.0	22.8	1.6
	7.5	51.0	8.2	0.6
_	10.0	10.2	1.3	0.1

Dose Rate at 6 in. mR/hr open window

mile	A mR/hr	B mR/hr	C mR/hr
0.5	1920.9	670.0	75.9
1.0	745.6	215.6	15.5
2.0	284.4	70.3	4.8
5.0	78.9	14.8	1.1
7.5	28.5	4.6	0.3
10.0	5.6	0.7	0.1

Swipe Measurement: Ludlum #44-40 Probe (10% eff.) (cpm)

e	A cpm	B cpm	C cpm
5		4,939,682	556,977
0	5,400,887	1,560,256	161,674
0	1,686,153	417,698	23,417
0	334,071	61,644	1,924
5	55,966	8,607	188
0	8,903	1,104	AS READ
	.5 .0 .0 .0	5 55,966	5 ######### 4,939,682 0 5,400,887 1,560,256 0 1,686,153 417,698 0 334,071 61,644 5 55,966 8,607

mile	A cpm	B cpm	C cpm
0.5	286,002		3,934
	•	•	•
1.0	109,222	31,553	945
2.0	47,328	11,724	163
5.0	15,448	2,850	AS READ
7.5	6,043	929	AS READ
10.0	1,281	159	AS READ

SCENARIO INFORMATION	
Exercise Time:	12:00
Interval Since Release Started (hh:mm):	1:30
METEOROLGICAL DATA	
Ground Level Wind Velocity (mph):	6.90
Ground Level Direction (degrees):	166
Stability Class:	D-Neutral

A= 0 deg B= 6 deg C= 12 deg Dose Rate at 3 ft mR/hr closed window mile A mR/hr B mR/hr C mR/hr

mile		A mR/nr	BINKIN	CINRVII
	0.5	927.9	323.7	36.7
	1.0	359.2	103.9	7.5
	2.0	171.7	42.4	2.9
	5.0	49.7	9.3	0.7
	7.5	37.1	6.0	0.4
	10.0	16.3	2.1	0.2

Dose Rate at 6 in. mR/hr closed window

•	mile A	mR/hr	B mR/hr	C mR/hr
-	0.5	1606.4	560.3	63.5
	1.0	547.2	158.2	11.4
	2.0	233.1	57.6	3.9
	5.0	62.7	11.7	0.8
	7.5	40.8	6,6	0.5
_	10.0	17.4	2.3	0.2

Ground Deposition: Ludlum #44-40 Probe (10% eff.) (cpm)

mil	A cpm	B cpm	C cpm
0.	5 3,151,197	1,100,657	124,105
1.	0 1,203,423	347,656	36,024
· 2.0) 392,852	97,318	5,456
5.0) 83,124	15,338	479
7.	5 23,943	3,682	AS READ
10.	7,165	889	AS READ

Particulate Measurements: Ludlum #44-40 Probe for 10 cu. Ft. Air Sample (10% eff.) (cpm)

mile A	cpm	B cpm	C cpm
0.5	378,790	132,305	14,918
1.0	144,657	41,790	4,330
2.0	64,336	15,937	893
5.0	18,495	3,413	AS READ
7.5	13,887	2,136	AS READ
10.0	5,757	714	AS READ

	A= 0 deg	B= 6 deg	C= 12 deg
Dose Rat	e at 3 ft mR	/hr open wi	ndow
mile	A mR/hr	B mR/hr	C mR/hr

nuie				
	0.5	1855.9	647.4	73.3
	1.0	718.4	207.7	15.0
	2.0	343.4	84.9	5.8
	5.0	99.5	18.6	1.3
	7.5	74.2	11.9	0.8
	10.0	32.6	4.2	0.3
			#DIV//01	

#DIV/0!

Dose Rate at 6 in. mR/hr open window

mile	A mR/hr	B mR/hr	C mR/hr
0.5	1770.7	617.7	70.0
1.0	681.1	196.9	14.2
2.0	276.8	68.4	4.6
5.0	72.0	13.5	1.0
7.5	43.5	7.0	0.5
10.0	18.2	2.4	0.2

Swipe Measurement: Ludlum #44-40 Probe (10% eff.) (cpm)

`· - · -		(*F)		•
	mile	A cpm	B cpm	C cpm
	0.5	########	5,503,283	620,526
	1.0	6,017,110	1,738,276	180,120
	2.0	1,964,260	486,591	27,279
	5.0	415,617	76,691	2,393
	7.5	119,714	18,410	401
	10.0	35,827	4,444	AS READ

mile	A cpm	B cpm	C cpm
0.5	230,208	80,408	9,066
1.0	87,915	25,398	2,632
2.0	39,723	9,840	552
5.0	11,666	2,153	AS READ
7.5	9,148	1,407	AS READ
10.0	3,869	480	AS READ

SCENARIO INFORMATION	
Exercise Time:	12:15
Interval Since Release Started (hh:mm):	1:45
METEOROLGICAL DATA	
Ground Level Wind Velocity (mph):	· 6.50
Ground Level Direction (degrees):	164
Stability Class:	D-Neutral

mile		A mR/hr	B mR/hr	C mR/hr
•	0.5	738.9	257.7	29.2
	1.0	288.4	83.4	· 6.0
	2.0	133.7	33.1	2.2
	5.0	44.4	8.3	0.6
	7.5	32.6	5.2	0.4
_	10.0	23.7	3.1	0.2

Dose Rate at 6 in. mR/hr closed window

<u> </u>	e A mR/hr	B mR/hr	C mR/hr
0.	5 1269.3	3 442.8	50.1
1.	0 491.0) 142.0	10.2
2.	0 202.1	50.0	3.4
5.	0 59.5	5 11.1	0.8
7.	5 38.1	6.1	0.4
10.	0 26.1	3.4	0.2

Ground Deposition: Ludlum #44-40 Probe (10% eff.) (cpm)

_

mile	A cpm	B cpm	C cpm
0.5	3,394,591	1,185,671	133,691
1.0	1,296,373	374,508	38,806
2.0	437,675	108,422	6,078
5.0	96,833	17,868	558
7.5	35,357	5,437	AS READ
10.0	15,327	1,901	AS READ

Particulate Measurements: Ludlum #44-40 Probe for 10 cu. Ft. Air Sample (10% eff.) (cpm)

mile /	A cpm	B cpm	C cpm
0.5	290,542	101,481	11,443
1.0	110,956	32,054	3,321
2.0	52,611	13,033	731
5.0	15,858	2,926	AS READ
7.5	12,729	1,958	AS READ
10.0	8,890	1,103	AS READ

A= 0 deg B= 6 deg C= 12 deg Dose Rate at 3 ft mR/hr open window

mile		A mR/hr	B mR/hr	C mR/hr
	0.5	1477.8	515.5	58.4
	1.0	576.8	166.8	12.0
	2.0	267.4	66.1	4.5
	5.0	88.7	16.6	1.2
	7.5	65.2	10.5	0.7
	10.0	47.4	6.1	0.5

Dose Rate at 6 in. mR/hr open window

mile	A mR/hr	B mR/hr	C mR/hr
0.5	1646.8	574.4	65.1
1.0	635.1	183.6	13.2
2.0	250.8	62.0	4.2
5.0	70.3	13.2	0.9
7.5	42.0	6.8	0.5
10.0	27.8	3.6	0.3

Swipe Measurement: Ludlum #44-40 Probe (10% eff.) (cpm)

• • •		N 1 1 1 1 2	•	
	mile	A cpm	B cpm	C cpm
	0.5	###########	5,928,349	668,455
	1.0	6,481,864	1,872,538	194,032
	2.0	2,188,375	542,109	30,392
	5.0	484,167	89,340	2,788
	7.5	176,783	27,186	592
	10.0	76,635	9,505	AS READ

	•	•	
mile	A cpm	B cpm	C cpm
0.5	173,384	60,560	6,828
1.0	66,214	19,129	1,982
2.0	31,974	7,921	444
5.0	9,791	1,807	AS READ
7.5	8,175	1,257	AS READ
10.0	5,856	726	AS READ

SCENARIO INFORMATION	
Exercise Time:	12:30
Interval Since Release Started (hh:mm):	2:00
METEOROLGICAL DATA	
Ground Level Wind Velocity (mph):	7.70
Ground Level Direction (degrees):	166
Stability Class:	D-Neutral

mile		A mR/hr	B mR/hr	C mR/hr
	0.5	590.7	206.1	23.3
	1.0	224.8	65.0	4.7
	2.0	107.2	26.5	1.8
	5.0	33.9	6.3	0.5
	7.5	27.0	4.3	0.3
1	0.0	21.0	2.7	0.2

Dose Rate at 6 in. mR/hr closed window

mile A	mR/hr	B mR/hr	C mR/hr
0.5	1151.7	401.7	45.5
1.0	439.0	126.9	9.1
2.0	180.9	44.7	3.0
5.0	50.7	9.5	0.7
7.5	33.9	5.5	0.4
10.0	24.6	3.2	0.2

Ground Deposition: Ludlum #44-40 Probe (10% eff.) (cpm)

mile	A cpm	B cpm	C cpm
0.5	3,591,763	1,254,539	141,456
1.0	1,371,670	396,260	41,060
2.0	471,756	116,864	6,552
5.0	107,974	19,924	622
7.5	44,067	6,777	148
10.0	22,698	2,815	AS READ

Particulate Measurements: Ludlum #44-40 Probe for 10 cu. Ft. Air Sample (10% eff.) (cpm)

mile	A cpm	B cpm	C cpm
0.5	237,408	82,922	6,828
1.0	90,665	26,192	1,982
2.0	40,354	9,997	444
5.0	12,968	2,393	AS READ
7.5	9,787	1,505	AS READ
10.0	8,149	1,011	AS READ

	A= 0 deg	B= 6 deg	C= 12 deg
Dose Rate	at 3 ft mR/	/hr open wir	ndow

mile		A mR/hr	B mR/hr	C mR/hr
	0.5	1181.5	412.1	46.7
	1.0	449.5	130.0	9.4
	2.0	214.5	53.0	3.6
	5.0	67.7	12.7	0.9
	7.5	54.0	8.7	0.6
_	10.0	42.0	5.4	0.4

Dose Rate at 6 in. mR/hr open window

mile	A mR/hr	B mR/hr	C mR/hr
0.5	1551.0	541.0	61.3
1.0	591.5	171.0	12.3
2.0	233.3	57.7	3.9
5.0	62.7	11.7	0.8
7.5	38.7	6.2	0.4
10.0	27.1	3.5	0.3

Swipe Measurement: Ludlum #44-40 Probe (10% eff.) (cpm)

	· · ·		
 mile	A cpm	B cpm	C cpm
0.5	#############	6,270,299	707,012
1.0	6,855,740	1,980,547	205,224
2.0	2,357,403	583,981	32,739
5.0	539,408	99,534	3,106
7.5	219,936	33,822	737
10.0	113,168	14,036	201

mile	A cpm	B cpm	C cpm
0.5	139,301	48,655	5,486
1.0	53,198	15,368	1,592
2.0	24,082	5,966	334
5.0	7,881	1,454	AS READ
7.5	6,173	949	AS READ
10.0	5,233	649	AS READ

SCENARIO INFORMATION	
Exercise Time:	12:45
Interval Since Release Started (hh:mm):	2:15
METEOROLGICAL DATA	
Ground Level Wind Velocity (mph):	6.80
Ground Level Direction (degrees):	165
Stability Class:	D-Neutral

D 000			
mile	A mR/hr	B mR/hr	C mR/hr
0.5	569.9	198.8	22.5
1.0	220.9	63.9	4.6
2.0	82.5	20.4	1.4
5.0	27.2	5.1	0.4
7.5	23.3	3.8	0.3
10.0	17.3	2.2	0.2

Dose Rate at 6 in. mR/hr closed window

mile A	mR/hr	B mR/hr	C mR/hr
0.5	1159.1	404.3	45.8
1.0	445.9	128.9	9.3
2.0	160.4	39.7	2.7
5.0	45.4	8.5	0.6
7.5	31.3	5.0	0.3
10.0	21.7	2.8	0.2

Ground Deposition: Ludlum #44-40 Probe (10% eff.) (cpm)

-

mile	A cpm	B cpm	C cpm
0.5	3,772,231	1,317,573	148,564
1.0	1,440,602	416,174	43,124
2.0	498,868	123,581	6,928
5.0	116,285	21,457	670
7.5	51,309	7,890	172
10.0	28,210	3,499	AS READ

Particulate Measurements: Ludlum #44-40 Probe for 10 cu. Ft. Air Sample (10% eff.) (cpm)

mile	A cpm	B cpm	C cpm
0.5	222,553	77,734	8,765
1.0	84,991	24,553	2,544
2.0	32,974	8,168	458
5.0	9,947	1,835	AS READ
7.5	8,392	1,290	AS READ
10.0	6,265	777	AS READ

	A= 0 deg	B= 6 deg	C= 12 deg
Dose Rate	at 3 ft mR/	'hr open wir	ndow

mile		A mR/hr	B mR/hr	C mR/hr
_	0.5	1139.7	397.6	45.0
	1.0	441.7	127.7	9.2
	2.0	164.9	40.8	. 2.8
	5.0	54.5	10.2	0.7
	7.5	46.6	7.5	0.5
	10.0	34.5	4.5	0.3

Dose Rate at 6 in. mR/hr open window

mile A	mR/hr	B mR/hr	C mR/hr
0.5	1578.4	550.6	62.4
1.0	606.0	175.2	12.6
2.0	215.8	53.4	3.6
5.0	58.3	10.9	0.8
7.5	37.0	6.0	0.4
10.0	24.8	3.2	0.2

Swipe Measurement: Ludlum #44-40 Probe (10% eff.) (cpm)

(,	(-F)		
	mile	A cpm	B cpm	C cpm
	0.5	#########	6,585,632	742,567
	1.0	7,200,515	2,080,149	215,545
	2.0	2,493,378	617,666	34,628
	5.0	581,072	107,222	3,346
	7.5	256,211	39,401	859
	10.0	140,792	17,463	250

	A cpm	B cpm	C cpm
0.5	128,280	44,806	5,052
1.0	48,990	14,153	1,466
2.0	19,348	4,793	269
5.0	5,936	1,095	AS READ
7.5	5,181	797	AS READ
10.0	3,952	490	AS READ

SCENARIO INFORMATION	
Exercise Time:	13:00
Interval Since Release Started (hh:mm):	2:30
METEOROLGICAL DATA	
Ground Level Wind Velocity (mph):	5,70
Ground Level Direction (degrees):	169
Stability Class:	D-Neutral

mile		A mR/hr	B mR/hr	C mR/hr
	0.5	550.2	191.9	21.7
	1.0	218.7	63.2	4.6
	2.0	81.6	20.2	1.4
	5.0	20.5	3.8	0.3
	7.5	18.6	3.0	0.2
	10.0	14.5	1.9	0.1

Dose Rate at 6 in. mR/hr closed window

mile	A mR/hr	B mR/hr	C mR/hr
0.5	1165.0	406.4	46.0
1.0	453.4	131.1	9.4
2.0	163.4	40.4	2.7
5.0	39.7	7.4	0.5
7.5	27.5	4.4	0.3
10.0	19.6	2.5	0.2

Ground Deposition: Ludlum #44-40 Probe (10% eff.) (cpm)

mile	A cpm	B cpm	C cpm
0.5	3,935,476	1,374,592	154,993
1.0	1,502,962	434,189	44,991
2.0	523,940	129,792	7,276
5.0	122,966	22,690	708
7.5	57,140	8,787	192
10.0	32,844	4,074	AS READ

Particulate Measurements: Ludlum #44-40 Probe for 10 cu. Ft. Air Sample (10% eff.) (cpm)

mile	A cpm	B cpm	C cpm
0.5	204,254	71,342	8,044
1.0	78,004	22,534	2,335
2.0	30,911	7,657	429
5.0	8,128	.1,500	AS READ
7.5	6,862	1,055	AS READ
10.0	5,372	666	AS READ

A	= 0 deg	B= 6 deg	C= 12 deg
Dose Rate at	3 ft mR/	'hr open wii	ndow

mile		A mR/hr	B mR/hr	C mR/hr
-	0.5	1100.4	383.9	43.5
	1.0	437.4	126.5	9.1
	2.0	163.2	40.3	2.7
	5.0	41.1	7.7	0.5
	7.5	37.1	6.0	0.4
	10.0	29.0	3.7	0.3

Dose Rate at 6 in. mR/hr open window

mile A	mR/hr	B mR/hr	C mR/hr
0.5	1602.5	559.0	63.3
1.0	620.5	179.4	12.9
2.0	221.7	54.8	3.7
5.0	53.4	10.0	0.7
7.5	33.8	5.4	0.4
10.0	23.3	3.0	0.2

Swipe Measurement: Ludlum #44-40 Probe (10% eff.) (cpm)

•	mile	A cpm	B cpm	C cpm
	0.5	############	6,870,877	774,730
	1.0	7,512,392	2,170,247	224,881
	2.0	2,618,770	648,728	36,369
	5.0	614,588	113,406	3,539
	7.5	285,444	43,896	957
	10.0	164,013	20,343	291

mile	A cpm	B cpm	C cpm
0.5	115,896	40,480	4,564
1.0	44,260	12,786	1,325
2.0	17,817	4,414	247
5.0	4,769	880	AS READ
7.5	4,171	641	AS READ
10.0	3,317	411	AS READ

SCENARIO INFORMATION

Exercise Time:	13:15
Interval Since Release Started (hh:mm):	2:45
METEOROLGICAL DATA	
Ground Level Wind Velocity (mph):	6.90
Ground Level Direction (degrees):	167
Stability Class:	D-Neutral

A= 0 deg B= 6 deg C= 12 deg Dose Rate at 3 ft mR/hr closed window

mile	•	A mR/hr	B mR/hr	C mR/hr
	0.5	491.9	171.6	19.4
	1.0	190.2	55.0	4.0
	2.0	82.6	20.4	1.4
	5.0	20.8	3.9	0.3
	7.5	14.8	2.4	0.2
	10.0	11.6	1.5	0.1

Dose Rate at 6 in. mR/hr closed window

mile	A mR/hr	B mR/hr	C mR/hr
0.5	1130.0	394.2	44.6
1.0	433.9	125.5	9.0
2.0	168.0	41.5	2.8
5.0	41.0	7.7	0.5
7.5	24.4	3.9	0.3
10.0	17.4	2.2	0.2

Ground Deposition: Ludlum #44-40 Probe (10% eff.) (cpm)

-

mile	A cpm	B cpm	C cpm
0.5	4,084,429	1,426,619	160,859
1.0	1,559,826	450,616	46,693
2.0	546,625	135,411	7,591
5.0	129,147	23,831	744
7.5	61,537	9,463	206
10.0	36,577	4,537	AS READ

Particulate Measurements: Ludlum #44-40 Probe for 10 cu. Ft. Air Sample (10% eff.) (cpm)

mile A	\ cpm	B cpm	C cpm
0.5	189,224	66,092	7,452
1.0	72,263	20,876	2,163
2.0	28,369	7,028	394
5.0	7,619	. 1,406	AS READ
7.5	5,264	809	AS READ
10.0	4,393	545	AS READ

A= 0 deg	B= 6 deg	C= 12 deg
Dose Rate at 3 ft mR/	hr open wir	ndow

Duse Male	alunin	in open win	0000
mile	A mR/hr	B mR/hr	C mR/hr
0.5	5 <u>983.9</u>	343.2	38.9
1.0	380.5	110.0	7.9
2.0) 165.2	40.9	2.8
5.0) 41.6	7.8	0.6
7.5	5 29.5	4.8	0.3
10.0) 23.3	3.0	0.2

Dose Rate at 6 in. mR/hr open window

mile	A mR/hr	B mR/hr	C mR/hr
0.5	1584.1	552.6	62.6
1.0	607.3	175.6	12.7
2.0	228.8	56.6	3.8
5.0	55.3	10.4	0.7
7.5	31.2	5.0	0.3
10.0	21.4	2.8	0.2

Swipe Measurement: Ludlum #44-40 Probe (10% eff.) (cpm)

	mile	A cpm	B cpm	C cpm
	0.5	#########	7,131,372	804,103
	1.0	7,797,209	2,252,527	233,407
	2.0	2,732,198	676,826	37,945
	5.0	645,496	119,109	3,717
•	7.5	307,491	47,286	1,031
	10.0	182,727	22,664	324

mile	A cpm	B cpm	C cpm
0.5	105,708	36,922	4,163
1.0	40,369	11,662	1,208
2.0	16,097	3,988	224
5.0	4,392	810	AS READ
7.5	3,141	483	AS READ
10.0	2,670	331	AS READ

SCENARIO INFORMATION	
Exercise Time:	13:30
Interval Since Release Started (hh:mm):	3:00
METEOROLGICAL DATA	
Ground Level Wind Velocity (mph):	8.50
Ground Level Direction (degrees):	167
Stability Class:	D-Neutral

A= 0 deg	B= 6 deg	C= 12 deg
Dose Rate at 3 ft mR	/h <mark>r c</mark> losed w	rindow

mile		A mR/hr	B mR/hr	C mR/hr
	0.5	436.9	152.4	17.3
	1.0	164.5	47.6	3.4
	2.0	70.5	17.4	1.2
	5.0	21.1	3.9	0.3
	7.5	10.9	1.8	0.1
-	10.0	9.8	1.3	0.1

Dose Rate at 6 in. mR/hr closed window

mile A	mR/hr	B mR/hr	C mR/hr
0.5	1095.8	382.2	43.3
1.0	416.1	120.3	8.7
2.0	159.2	39.4	2.7
5.0	42.1	7.9	0.6
7.5	21.1	3.4	0.2
10.0	15.9	2.1	0.2

Ground Deposition: Ludlum #44-40 Probe (10% eff.) (cpm)

-

mile	A cpm	B cpm	C cpm
. 0.5	4,216,481	1,472,742	166,060
1.0	1,610,248	465,183	48,202
2.0	567,157	140,497	7,877
5.0	134,691	24,854	776
7.5	65,045	10,003	218
10.0	39,368	4,883	AS READ

Particulate Measurements: Ludlum #44-40 Probe for 10 cu. Ft. Air Sample (10% eff.) (cpm)

mile A	cpm	B cpm	C cpm
0.5	171,486	59,897	6,754
1.0	65,489	18,919	1,960
2.0	26,282	6,511	365
5.0	6,993	1,290	AS READ
7.5	4,301	661	AS READ
10.0	3,370	418	AS READ

A= 0 deg	B= 6 deg	C= 12 deg
Dose Rate at 3 ft mR	/hr open wir	ndow

mile	A mR/hr	B mR/hr	C mR/hr
0.5	873.9	304.8	34.5
1.0	329.1	95.2	6.9
2.0	141.1	34.9	2.4
5.0	42.1	7.9	0.6
7.5	21.9	3.5	0.2
10.0	19.5	2.5	0.2

Dose Rate at 6 in. mR/hr open window

mile A	mR/hr	B mR/hr	C mR/hr
0.5	1564.7	545.8	61.8
1.0	595.2	172.1	12.4
2.0	222.2	54.9	3.7
5.0	57.1	10.7	0.8
7.5	28.3	4.6	0.3
10.0	20.3	2.6	0.2

Swipe Measurement: Ludlum #44-40 Probe (10% eff.) (cpm)

	mile	A cpm	B cpm	C cpm	
	0.5	#########	7,363,710	830,300	
	1.0	8,051,240	2,325,914	241,011	
	2.0	2,835,783	702,487	39,383	
	5.0	673,454	124,268	3,878	
	7.5	325,227	50,014	1,090	
-	10.0	196,840	24,414	349	

mile	A cpm	B cpm	C cpm
0.5	94,149	32,885	3,708
1.0	35,955	10,387	1,076
2.0	14,682	3,637	204
5.0	3,968	732	AS READ
7.5	2,524	388	AS READ
10.0	2,011	249	AS READ
	0.5 1.0 2.0 5.0 7.5	1.035,9552.014,6825.03,9687.52,524	0.5 94,149 32,885 1.0 35,955 10,387 2.0 14,682 3,637 5.0 3,968 732 7.5 2,524 388

SCENARIO INFORMATION	•
Exercise Time:	13:45
Interval Since Release Started (hh:mm):	3:15
METEOROLGICAL DATA	
Ground Level Wind Velocity (mph):	6.00
Ground Level Direction (degrees):	173
Stability Class:	D-Neutral

mile	A mR/hr		B mR/hr	C mR/hr
	0.5	188.0	65.6	7.4
	1.0	71.8	20.8	1.5
	2.0	59.4	14.7	1.0
	5.0	18.3	3.4	0.2
	7.5	11.1	1.8	0.1
	10.0	6.9	0.9	0.1

Dose Rate at 6 in. mR/hr closed window

<u> </u>	nile A m	R/hr	B mR/hr	C mR/hr
	0.5	840.3	293.1	33.2
	1.0	320.9	92.8	6.7
:	2.0	150.9	37.3	2.5
4	5.0	40.1	7.5	0.5
•	7.5	21.8	3.5	0.2
1	0.0	13.4	1.7	0.1

Ground Deposition: Ludlum #44-40 Probe (10% eff.) (cpm)

	mile	A cpm	B cpm	C cpm
	0.5	4,174,316	1,458,015	164,399
	1.0	1,594,146	460,531	47,720
	2.0	585,635	145,075	8,133
	5.0	139,797	25,796	805
	7.5	68,317	10,506	229
_	10.0	41,639	5,165	AS READ

Particulate Measurements: Ludium #44-40 Probe for 10 cu. Ft. Air Sample (10% eff.) (cpm)

4	A cpm		C cpm
0.5	AS READ	AS READ	AS READ
1.0	AS READ	AS READ	AS READ
2.0	23,818	5,900	331
5.0	6,478	1,195	AS READ
7.5	4,032	620	AS READ
10.0	2,753	341	AS READ

A= 0 deg B= 6 deg C= 12 deg Dose Rate at 3 ft mR/hr open window

:

mile	A mR/hr	B mR/hr	C mR/hr
0.5	376.1	131.2	14.9
1.0	143.6	41.5	3.0
2.0	118.8	29.4	2.0
5.0	36.6	6.9	0.5
7.5	22.2	3.6	0.2
10.0	13.8	1.8	0.1

Dose Rate at 6 in. mR/hr open window

mile	A mR/hr	B mR/hr	C mR/hr
0.5	1304.5	455.0	51.5
1.0	498.2	144.0	10.4
2.0	216.0	53.4	3.6
5.0	55.7	10.4	0.7
7.5	29.3	4.7	0.3
10.0	18.0	2.3	0.2

Swipe Measurement: Ludlum #44-40 Probe (10% eff.) (cpm) :

mile	A cpm	B cpm	C cpm
0.5	#########	7,290,073	821,997
1.0	7,970,728	2,302,655	238,601
2.0	2,928,172	725,374	40,666
5.0	698,987	128,980	4,025
.7.5	341,583	52,529	1,145
10.0	208,194	25,823	369

mile	A cpm	B cpm	C cpm
0.5	AS READ	AS READ	AS READ
1.0	AS READ	AS READ	AS READ
2.0	13,077	3,239	182
5.0	3,619	668	AS READ
7.5	2,324	357	AS READ
10.0	1,616	200	AS READ

SCENARIO INFORMATION Exercise Time:

Exercise Time:	14:00
Interval Since Release Started (hh:mm):	3:30
METEOROLGICAL DATA	
Ground Level Wind Velocity (mph):	7.00
Ground Level Direction (degrees):	174
Stability Class:	C-Slightly L

'4 ghtly Unstable

A=0 deg B=6 deg C= 12 deg Dose Rate at 3 ft mR/hr closed window mile A mR/hr B mR/hr C mR/hr

ille _				
	0.5	186.2	64.9	7.4
	1.0	71.1	20.6	1.5
	2.0	26.1	6.5	0.4
	5.0	15.5	2.9	0.2
	7.5	11.2	1.8	0.1
_	10.0	7.0	0.9	0.1

Dose Rate at 6 in. mR/hr closed window

mile	A mR/hr	B mR/hr	C mR/hr
0.5	831.9	290.2	32.9
1.0	317.7	91.9	6.6
2.0	116.7	28.9	2.0
5.0	38.1	7.1	0.5
7.5	22.3	3.6	0.2
10.0	13.8	1.8	0.1

Ground Deposition: Ludlum #44-40 Probe (10% eff.) (cpm)

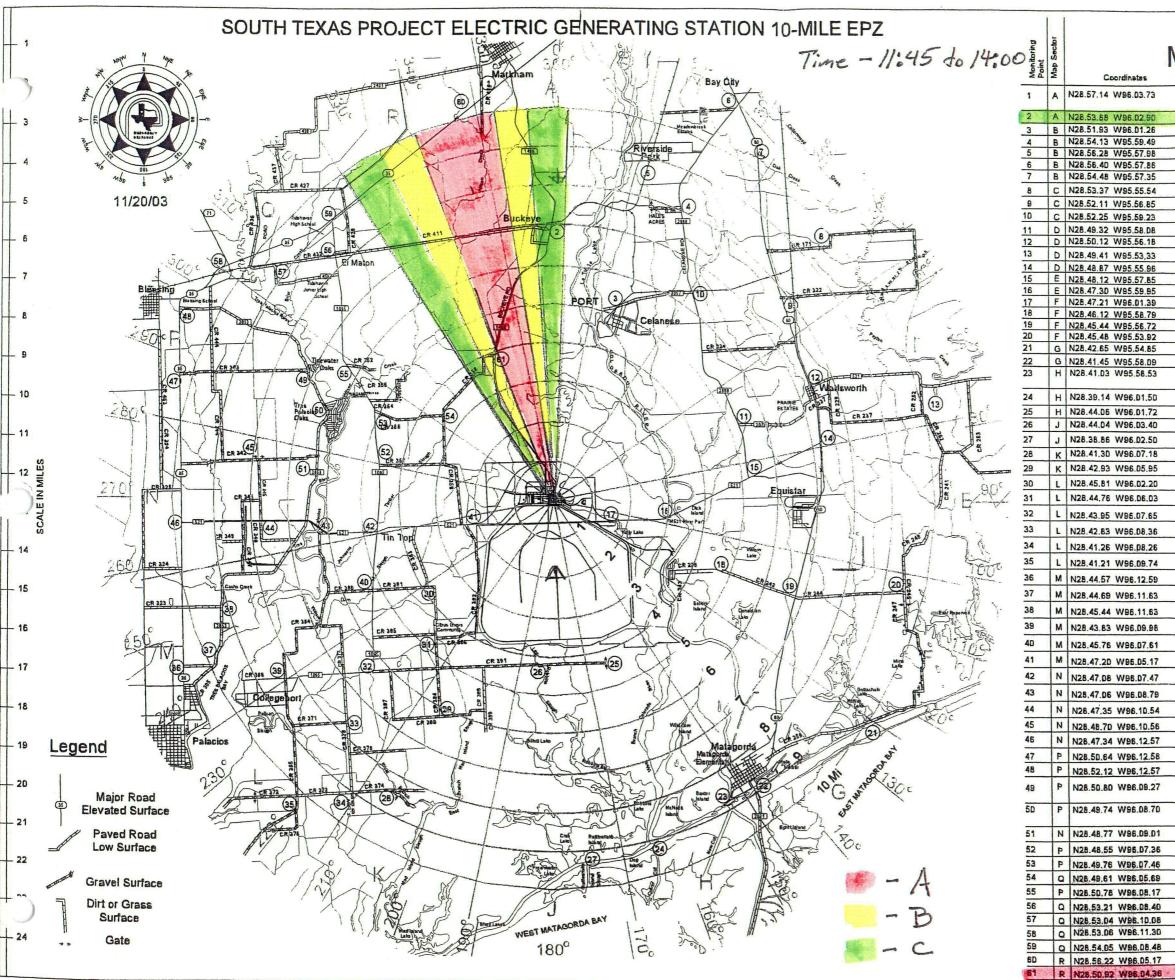
mile	A cpm	B cpm	C cpm
0.5	4,132,573	1,443,434	162,755
1.0	1,578,204	455,926	47,243
2.0	579,778	143,624	8,052
5.0	144,381	26,642	831
7.5	71,301	10,965	239
10.0	43,749	5,426	AS READ

Particulate Measurements: Ludium #44-40 Probe for 10 cu. Ft. Air Sample (10% eff.) (cpm)

mile	A cpm	B cpm	C cpm
0.5	AS READ	AS READ	AS READ
1.0	AS READ	AS READ	AS READ
2.0	AS READ	AS READ	AS READ
5.0	5,871	1,083	AS READ
7.5	3,700	569	AS READ
10.0	2,581	320	AS READ

Dose Rate at 3 ft mR/hr open window				
mile	A mR/hr	B mR/hr	C mR/hr	
0.5	372.3	129.9	14.7	
1.0	142.2	41.1	3.0	
2.0	52.2	12.9	0.9	
5.0	31.0	5.8	0.4	
7.5	22.4	3.6	0.2	
10.0	13.9	1.8	0.1	

A=0 deg B=6 deg C= 12 deg


Dose Rate at 6 in. mR/hr open window

	mile	A mR/hr	B mR/hr	C mR/hr
_	0.5	1291.4	450,5	51.0
	1.0	493.2	142.6	10.3
	2.0	181.2	44.8	3.0
	5.0	54.1	10.1	0.7
	7.5	30.3	4.9	0.3
_	10.0	18.7	2.4	0.2

Swipe Measurement: Ludlum #44-40 Probe (10% eff.) (cpm)

•	mile	A cpm	B cpm	C cpm
	0.5	#########	7,217,172	813,777
	1.0	7,891,021	2,279,628	236,215
	2.0	2,898,891	718,120	40,260
	5.0	721,760	133,182	4,156
	7.5	356,378	54,804	1,194
	10.0	218,664	27,121	388

mile	A cpm	B cpm	C cpm
0.5	AS READ	AS READ	AS READ
1.0	AS READ	AS READ	AS READ
2.0	AS READ	AS READ	AS READ
5.0	3,223	595	AS READ
7.5	2,100	323	AS READ
10.0	1,488	185	AS READ

	Time - 11:45 + 14:00
	Time - 11:45 to 14:00 PRE-SELECTED
R	
VI	ONITORING POINTS
T	Location Intersection of SH35 and FM1468
(On STP Directional Sign to N of SH35)
	Intersection of FM1468 & CR 411 Intersection of Celanese Avenue A and FM3057
	Intersection of FM2668 and entrance of Hale's Acres Subdivision
_	Riverside Park at Railroad Tracks Intersection of FM2668 and SH60
	SH60 at Live Oak Creek
-	Second 90 degree bend on Sims Lane (CR 177), east of SH60 Intersection of SH60 and CR 222
-	Intersection of FM3057 and FM2668
4	Intersection of FM2D78 and FM2668 Intersection of FM521 and SHS0 in Wadsworth
+	Intersection of CR 237 and CR 262
4	Intersection of FM521 and SH60 south of Wadsworth
	Intersection of FM521 and FM2668 FM521 and Colorado River
-	FM521 at Kelly Lake
	CR 239 and CR 242 Intersection of SH6D and CR 244
-	Intersection of CR 244 and CR 245 Bridge on CR 259, 2.6 miles east of 6H6D
	Junction of 6H6D and FM2D31 in Matagorda
I	Intersection of Intracoastal Waterway and Colorado River at the barge traffic signal
1	Intracoastal Waterway and Old Colorado River at sunken barge
	East end of CR 391
+	CR 391 at Bridge over Robbins Blough
-	Intracoastal Waterway at Rattlesnake Island Slough CR 374 at Mad Island Hunting Lodge gate
	Intersection of CR 390 and CR 384
	Intersection of CR 383 and CR 381
_	Intersection of CR 384 and CR 385
-	Intersection of FM1095 and CR 391 Intersection of CR 371 and CR 378
	Intersection of CR 378 and CR 374
	Intersection of CR 372 and CR 365
	Intersection of 8H35 and FM2853 north of Palacios
	90 degree bend in FM2853 and CR 305
	Intersection of FM2853 and CR 323
	Intersection of CR 366 and CR 364
	Intersection of FM1095 and CR 380
_	Intersection of FM521 and CR 358
	Intersection of FM521 and FM1095 at Tin Top Intersection of FM521 and CR 364
	Intersection of FM521 and CR 364
	Intersection of CR 342 and CR 345
	Intersection of 8H35 and FM 521
	Intersection of SH35 and CR 343
_	Intersection of 8H35 and FM2853 at Blessing
	Intersection of FM2853 and Tidewater Oaks Subdivision North of Harbor
	FM2853 at Tres Palacios Oaks Subdivision at the
-	Fire Station Intersection of FM2853 and CR 342
	Intersection of FM1095 and CR 357
	Intersection of FM1095 and CR 356
	Intersection of CR 356 and CR 356
	Intersection of FM1095 and CR 352
	Intersection of FM459 and CR 432
	Intersection of SH71 and SH35
	Intersection of SH35 and FM1095 SH35 NE of Wilson Creek Bridge
4	Intersection of FM1468 and CR 358
-	

CRAMER CONTRACTOR OF A CONTRACT OF A CONT

06

	· ·					
		•				
	•					
	· · · ·					•
					•	
	SCENARIO INFORMATION	40.00				
J	Exercise Time:	10:30				
ノ	Interval Since Release Started (hh:mm): METEOROLGICAL DATA	0:00		•		• •
		7.40	•	£,		
	Ground Level Wind Velocity (mph):	7.40	· · · ·	•		
	Ground Level Direction (degrees):	167 D. Najstari	: 	•		
•		D-Neutral				
	A= 0 deg B= 6 deg C= 12 deg		A= 0 deg B= 6 deg C= 12 deg	•		
	Dose Rate at 3 ft mR/hr closed window		Dose Rate at 3 ft mR/hr open window	•		
	mile A mR/hr B mR/hr C mR/hr	· · ·	nile A mR/hr B mR/hr C mR/hr	,		
	0.5 475.6 237.8 19.8		0.5 679.4 339.7 28.3		•	·.
	1.0 181.3 72.5 4.8		1.0 259.0 103.6 6.9			
	2.0 AS READ AS READ AS READ		2.0 AS READ AS READ AS READ			:
	5.0 AS READ AS READ AS READ		5.0 AS READ AS READ AS READ		•	
	7.5 AS READ AS READ AS READ		7.5 AS READ AS READ AS READ		•	
	10.0 AS READ AS READ AS READ	· _	10.0 AS READ AS READ AS READ	•		
		_				
	Dose Rate at 6 in. mR/hr closed window	Ĺ	Dose Rate at 6 in. mR/hr open window	.:		
•	mile A mR/hr B mR/hr C mR/hr	-	mile A mR/hr B mR/hr C mR/hr	•		:
	0.5 500.8 250.4 41.7		0.5 592.8 296.4 49.4		· ·	
-	1.0 190.9 76.4 12.7		1.0 226.0 90.4 15.1			
	2.0 AS READ AS READ AS READ		2.0 AS READ AS READ AS READ			
	5.0 AS READ AS READ AS READ		5.0 AS READ AS READ AS READ			•
	7.5 AS READ AS READ AS READ	;	7.5 AS READ AS READ AS READ.	•	•	
•	10.0 AS READ AS READ AS READ	-	10.0 AS READ AS READ AS READ		•	•
Ľ		•				
	•					
	· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·		-	
	- -	•	· ·			
	· · · ·		:		•	
• '	SPACE INTENTIONALLY BLANK	. 5	SPACE INTENTIONALLY BLANK	4		
					•	
•			•			
-		•		• •	-	
	Particulate Measurements: Ludlum #44-9 Pro		odine Measurement: Ludlum #44-9 Probe	*		
	for 10 cu. Ft. Air Sample (cpm)	f	or 10 cu. Ft. Air Sample (cpm)			
	mile A cpm B cpm C cpm		mile A cpm B cpm C cpm	···.		
	0.5 298,165 130,053 17,126		0.5 1,826,532 796,695 104,914			
	1.0 113,867 47,111 5,690		1.0 697,541 288,595 34,857			
	2.0 AS READ AS READ AS READ		2.0 AS READ AS READ AS READ			
	5.0 AS READ AS READ AS READ		5.0 AS READ AS READ AS READ	•		
	7.5 AS READ AS READ AS READ		7.5 AS READ AS READ AS READ			
	10.0 AS READ AS READ AS READ	-	10.0 AS READ AS READ AS READ			•
	*					

•

.

	SCENARIO INFORMATION	10.15
ì	Exercise Time:	10:45
1.	Interval Since Release Started (hh:mm):	0:15
	METEOROLGICAL DATA	
	Ground Level Wind Velocity (mph):	7.40
•	Ground Level Direction (degrees):	165
·	Stability Class:	D-Neutral
	A= 0 deg B= 6 deg C= 12 deg	
	Dose Rate at 3 ft mR/hr closed window	D
•.	mile A mR/hr B mR/hr C mR/hr	. <u>m</u>
•	0.5 1402.6 701.3 58.4	•
	1.0 535.1 214.0 14.3	•
•	2.0 67.2 16.8 0.7	•
	5.0 AS READ AS READ AS READ	
•	7.5 AS READ AS READ AS READ	
Ľ	10.0 AS READ AS READ AS READ	
:	Dose Rate at 6 in. mR/hr closed window	D
•••	mile A mR/hr B mR/hr C mR/hr	
	0.5 1504.0 752.0 125.3	
•	1.0 573.8 229.5 38.3	
3	2.0 70.7 17.7 0.7	•
-	5.0 AS READ AS READ AS READ	
	7.5 AS READ AS READ AS READ	
•	10.0 AS READ AS READ AS READ	
•		· <u> </u>
)		•.
	•	
	SPACE INTENTIONALLY BLANK	S
	<u></u>	
		_
·	Particulate Measurements: Ludlum #44-9 Pro	
	for 10 cu. Ft. Air Sample (cpm)	fc
•	mile. A cpm B cpm C cpm	• –
;;	0.5 923,355 402,748 53,037	. –
•	1.0 352,623 145,892 17,621	
	20 44 412 15 555 4 501	

2.0	•	41,413		15,555		1,591	
5.0	AS	READ	AS	READ	AS	READ	
7.5	AS	READ	AS	READ	AS	READ	
10.0	۵S	READ	۵S	READ	45	READ	

A= 0 deg B= 6 deg C= 12 deg Dose Rate at 3 ft mR/hr open window A mR/hr B mR/hr C mR/hr nile 2003.7 0.5 1001.9 83.5 1.0 764.4 305.8 20.4 2.0 95.9 24.0 1.0 5.0 AS READ AS READ AS READ 7.5 AS READ AS READ AS READ 10.0 AS READ AS READ AS READ

Dose Rate at 6 in. mR/hr open window

mile	A mR/hr	B mR/hr	C mR/hr
0.5	1801.3	900.6	150.1
1.0	687.3	274.9	45.8
2.0	83.6	· 20.9	0.9
5.0	AS READ	AS READ	AS READ
7.5	AS READ	AS READ	AS READ
10.0	AS READ	AS READ	AS READ

.

SPACE INTENTIONALLY BLANK

lodine Measurement: Ludlum #44-9 Probe for 10 cu. Ft. Air Sample (cpm)

 		Fre Ver my	
mile	A cpm	B cpm	C cpm
0.5	5,514,239	2,405,195	316,733
1.0	2,105,854	l 871,260	105,233
2.0	253,690	95,286	9,749
5.0	AS READ	AS READ	AS READ
7.5	AS READ	AS READ	AS READ
 10.0	AS READ	AS READ	AS READ

SCENARI	O INFORM	ATION		
Exercise T	ïme:			11:00
Interval Si	nce Release	e Started (h	h:mm):	0:30
METEORO	DLGICAL D	ATA	-	
Ground Le	vel Wind V	elocity (mpl	h):	7.60
Ground Le	vel Directio	n (degrees)	i.	165
Stability C	lass:			D-Neutral
•	A= 0 deg	B= 6 deg	C= 12 deg	
Dose Rate	at 3 ft mR/	hr closed w	indow	
_mile	A mR/hr	B mR/hr	C mR/hr	•
0.5	2053.3	1026.7	171.1	
1.0	778.8	311.5	51.9	
	197.3			
	17.0			
	AS READ			
[•] 10.0	AS READ	AS READ	AS READ	
	at 6 in. mR			
- mile	A mR/hr	B mR/hr	C mR/hr	

- 11116		DIIIRVIII	
0.5	2270.1	1135.1	189.2
· 1.0	861.6	344.7	57.4
2.0	211.3	52.8	2.2
5.0			AS READ
7.5	AS READ	AS READ	AS READ
10.0	AS READ	AS READ	AS READ

mile	A	nR/hr	Вп	nR/hr	Сп	nR/hr
	0.5	2933.3		1466.6	-	244.4
	1.0	1112.6		445.0		74.2
	2.0	281.8		70.4		11.7
	5.0	24.4	•	3.0		0.5
	7.5 AS	READ	AS	READ	AS	READ
	10.0 AS	READ	AS	READ	AS	READ

Dose Rate at 6 in. mR/hr open window

· mile	A mR/hr	B mR/hr	<u>C</u> mR/hr
0.5	2770.8	1385.4	230.9
1.0	1052.1	420.8	70.1
2.0	253.0	63.2	2.6
5.0	21.2	· 2.6	0.1
7.5	AS READ	AS READ	AS READ
10.0	AS READ	AS READ	AS READ

SPACE INTENTIONALLY BLANK

Particulate Measurements: Ludlum #44-9 Probe for 10 cu. Ft. Air Sample (cpm)

mile	A cpm	B cpm	C cpm
. 0.5	1,425,772	621,892	81,895
: 1.0	544,494	225,275	27,209
2.0	128,246	48,169	4,928
5.0	5,488	· 1,868	148
7.5	AS READ	AS READ	AS READ
10.0	AS READ	AS READ	AS READ

SPACE INTENTIONALLY BLANK

lodine Measurement: Ludlum #44-9 Probe for 10 cu. Ft. Air Sample (cpm)

mile	A cpm	B cpm	C cpm
0.5	8,346,421	3,640,532	479,410
1.0	3,187,447	1,318,750	159,283
2.0	765,883	287,665	29,432
5.0	62,532	21,280	1,684
7.5	AS READ	AS READ	AS READ
10.0	AS READ	AS READ	AS READ

	SCENARI	O INFORM	ATION		
\	Exercise T	'ime:	•		11:15
; ,	Interval Si	nce Release	e Started (h	h:mm):	0:45
	METEOR	DLGICAL D	ATA		
	Ground Le	vel Wind V	elocity (mpl	ו):	7.80
	Ground Le	vel Directio	n (degrees)	:	165
	Stability C	lass:	•		D-Neutral
		A= 0 deg	B= 6 deg	C= 12 deg	
•	Dose Rate	at 3 ft mR/	h <mark>r clo</mark> sed w	indow	Ĩ
	mile	A mR/hr	B mR/hr	C mR/hr	
	0.5	1801.7	900.9	150.1	
	1.0	680.0	272.0	45.3	
	2.0	285.9	71.5	11.9	
	5.0	50.4	6.3	0.1	
		AS READ			•
	10.0	AS READ	AS READ	AS READ	
·		at 6 in. mR	•		. · · [
	the state of the s	A mR/hr			
·	· 0.5				
	1.0				
	2.0				
	5.0	53.8	6.7	0.1	

7.5 AS READ AS READ AS READ 10.0 AS READ AS READ AS READ

•			•		-		12 deg
Dose Rate at 3 ft mR/hr open window							
mile	•	An	nR/hr	Bn	nR/hr	Cr	nR/hr
	0.5		2573.9		1286.9	}	214.5
	1.0		971.4		388.5	5	. 64.8
	2.0		408.4		102.1	I j	17.0
	5.0		71.9		9.0)	· 1.5
	7.5	AS	READ	AS	READ	AS	READ
	10.0	AS	READ	AS	READ	AS	READ
_	•	•					

Dose Rate at 6 in. mR/hr open window

	mile	Ап	nR/hr	Bn	nR/hr	Cn	nR/hr
•.	0.5		2685.5		1342.7		223.8
	1.0		1016.3		406.5		67.8
•	2.0		385.6		96.4	•	16.1
	5.0		40.2		5.0		0.1
	7.5	AS	READ	AS	READ	AS	READ
	10.0	AS	READ	AS	READ	AS	READ

SPACE INTENTIONALLY BLANK

198,028

5.0 . 31,611

2.0

Particulate Measurements: Ludlum #44-9 Probe					
for 10 cu. F					
	• • • • • •	D	0		
mile	A cpm	B cpm	C cpm		
	A cpm 1,306,908				

74,379

7.5 AS READ AS READ AS READ 10.0 AS READ AS READ AS READ

10,758 852

7,610

SPACE	INTEN	TIONAL	LY.	BLANK
-------	-------	--------	-----	-------

Iodine Measurement: Ludlum #44-9 Probe for 10 cu. Ft. Air Sample (cpm)

	mile	A cpm	B cpm	C cpm
	0.5	7,458,795	3,253,369	186,870
•	1.0	2,848,468	1,178,504	58,892
	2.0	1,159,249	435,414	16,733
	5.0	188,781	64,244	1,731
	7.5	AS READ	AS READ	AS READ
	10.0	AS READ	AS READ	AS READ

SCENARIO INFORMATION	
Exercise Time:	11:30
Interval Since Release Started (hh:mm):	1:00
METEOROLGICAL DATA	
Ground Level Wind Velocity (mph):	6.90
Ground Level Direction (degrees):	165
Stability Class:	D-Neutral

mile		A mR/hr	B mR/hr	C mR/hr
-	0.5	1420.0	710.0	118.3
	1.0	550.0	220.0	36.7
	2.0	249.1	62.3	15.6
	5.0	73.5	9.2	1.1
	7.5	9.6	1.0	0.2
	10.0	AS READ	AS READ	AS READ

Dose Rate at 6 in. mR/hr closed window

•	mile	A mR/hr	B mR/hr	C mR/hr
	0.5	1818.3	909.2	75.8
•	1.0	702.1	280.8	18.7
	2.0	293.5	73.4	3.1
	5.0	81.0	10.1	0.2
	7.5	10.0	. 1.0	AS READ
	10.0	AS READ	AS READ	AS READ

	A= u aeg	B= p aeg	C= 12 deg
Dose Rate		h <mark>r open win</mark>	
mile	A mR/hr	B mR/hr	C mR/hr
0.5	2028.6	1014.3	169.0
1.0	785.7	314.3	52.4
2.0	355.8	89.0	14.8
5.0	105.1	13.1	2.2
7.5			AS READ
10.0	AS READ	AS READ	AS READ

Dose Rate at 6 in. mR/hr open window

mile	A mR/hr	B mR/hr	C mR/hr
0.5	2402.1	1201.1	100.1
1.0	926.1	. 370.4	24.7
2.0	371.6	92.9	3.9
5.0	98.6	12.3	0.3
7.5	11.8	1.2	AS READ
10.0	AS READ	AS READ	AS READ

.

SPACE INTENTIONALLY BLANK

Particulate Measurements: Ludlum #44-9 Probe for 10 cu. Ft. Air Sample (cpm)

mi	le A	cpm	B cpm	C cpm
. 0	5 1	,004,834	438,287	57,717
1	.0	383,740	158,766	19,176
2	.0	181,519	68,178	6,976
. 5	.0	48,812	16,611	1,315
7	.5	2,904	939	63
<u> </u>	.0 A	S READ	AS READ	AS READ

SPACE INTENTIONALLY BLANK

Iodine Measurement: Ludlum #44-9 Probe for 10 cu. Ft. Air Sample (cpm)

10 04.1	are carry		•
mile	A cpm	B cpm	C cpm
0.5	5,632,655	2,456,845	323,534
1.0	2,151,076	889,970	107,493
2.0	1,035,965	389,109	39,811
5.0	285,741	97,241	7,697
7.5	33,090	10,704	713
 10.0	AS READ	AS READ	AS READ

SCENARIO INFORMATION	
Exercise Time:	11:45
Interval Since Release Started (hh:mm):	· 1:15
METEOROLGICAL DATA	
Ground Level Wind Velocity (mph):	6.40
Ground Level Direction (degrees):	163
Stability Class:	D-Neutral
A= 0 deg B= 6 deg C= 12 deg	

Dose Rate at 3 ft mR/hr closed window mile A mP/hr B mP/hr C mP/hr

IIIIe		A IIIIVIII	DIIIIVIII	
	0.5	1222.6	611.3	101.9
	1.0	479.5	191.8	32.0
	2.0	[°] 203.9	51.0	8.5
	5.0	64.1	8.0	1.3
	7.5	26.8	2.7	. 0.4
	10.0	5.3	0.4	0.1

Dose Rate at 6 in. mR/hr closed window

-	mile	A mR/hr	B mR/hr	C mR/hr
	0.5	1686.7	843.3	140.6
	1.0	656.7	262.7	43.8
	2.0	259.2	64.8	10.8
	5.0	75.0	9.4	1.6
	7.5	28.6	2.9	· 0.5 .
	10.0	5.6	0.4	AS READ
•		-		

•	A= 0 deg	B= 6 deg	C= 12 deg		
Dose Rate at 3 ft mR/hr open window					
mile	A mR/hr	B mR/hr	C mR/hr		
0.5	1746.6	873.3	145.6		
· 1.0	685.0	274.0	45.7		
2.0	291.3	72.8	12.1		
· 5.0	91.5	11.4	1.9		
7.5	38.3	3.8	0.6		
10.0	7.6	0.6	0.1		

. : : ;

: [

4

Dose Rate at 6 in. mR/hr open window

mile	A mR/hr	B mR/hr	C mR/hr
0.5	2305.1	1152.5	192.1
1.0	894.7	357.9	59.6
2.0	341.3	85.3	.14.2
5.0	94.7	11.8	2.0
7.5	34.2	3.4	0.6
10.0	6.7	0.5	0.1

SPACE INTENTIONALLY BLANK

Particulate Measurements: Ludium #44-9 Probe for 10 cu. Ft. Air Sample (cpm)

mile	A cpm	B cpm	C cpm
0.5	861,571	375,799	49,488
1.0	329,029	136,130	16,442
2.0	139,563	52,420	5,363
5.0	44,742	15,226	1,205
7.5	8,994	2,909	194
10.0	1,859	572	AS READ

SPACE INTENTIONALLY BLANK

Iodine Measurement: Ludlum #44-9 Probe for 10 cu. Ft. Air Sample (cpm) . mile A cpm B cpm C cpm 0.5 4,727,609 2,062,083 271,549 · 1.0 1,805,445 746,971 90,221 30,064 2.0 782,329 293,843 5.0 255,353 86,900 6,879 7.5 6,043 1,955 130 10.0 1,281 394 AS READ

	rcise Tim		Started (hh:r		12:00 1:30			•	
		GICAL DAT			1.50				2
			city (mph):		6.90				•
		Direction (166				
	bility Clas		,	Ē	D-Neutral	•			
	Â=	=0 deg B	=6 deg C:	= 12 deg		A	=0 deg B	= 6 deg C	= 12 deg
Dos	e Rate at	3 ft mR/hr	closed wind	ow		Dose Rate a	t 3 ft mR/hr	open windo	w .
nile	eA		mR/hr C	mR/hr	•	mile A	mR/hr B	mR/hr C	mR/hr
	0.5	974.3	487.2	81.2		0.5	1391.9	696.0	116.0
	1.0	377.2	150.9	25.1		1.0	538.8	215.5	35.9
	2.0	180.3	45.1	7.5		2.0	257.5	64.4	10.7
	5.0	52.2	6.5	1.1		5.0	74.6	9.3	1.6
	7.5 10.0	· 38.9 17.1	3.9 1.3	0.6 0.2		· 7.5 10.0	55.6 24.5	5.6 1.9	0.9 0.3
									•
JOS	mile A		r closed win mR/hr C	aow mR/hr	• .	Dose Rate a	mR/hr B		ow mR/hr
	0.5	1491.3	745.7	124.3		0.5	2124.9	1062.4	177.1
	.1.0	574.6	229.8	38.3		· 1.0	817.3	326.9	54.5
	2.0	244.7	61.2	10.2		2.0	332.1	83.0	13.8
	5.0	65.9	8.2	1.4		5.0	86.4	10.8	1.8
		42.9	4.3	0.7	. •	· 7.5	52.2	5.2	0.9
	7.5					· 10.0	21.9	1.7	0.3
	7.5 10.0	18.3	1.4	0.2		10.0	21.5		
			1.4	0.2		10.0	21.5		
			<u> </u>	0.2		10.0	21.5		
<u>.</u>			1.4				21.5		

Particulate Measurements: Ludlum #44-9 Probe for 10 cu. Ft. Air Sample (cpm)

Ś

_	mile A	\ cpm	B cpm	C cpm
-	0.5	704,549	307,309	40,469
	1.0	269,063	111,320	13,446
	2.0	119,665	44,946	4,599
	5.0	34,401	11,707	927
	7.5	25,830	8,356	557
_	10.0	10,708	3,293	177

lodine Measurement: Ludium #44-9 Probe for 10 cu. Ft. Air Sample (cpm)

mile	A cpm	B cpm	C cpm
0.5	3,805,340	1,659,809	95,338
1.0	1,453,236	601,251	30,046
2.0	656,626	246,629	9,478
5.0	192,835	65,624	1,768
7.5	151,208	48,914	1,054
10.0	63,950	19,665	326

L

SCENARIO INFORMATION	
Exercise Time:	12:15
Interval Since Release Started (hh:mm):	1:45
METEOROLGICAL DATA	
Ground Level Wind Velocity (mph):	6.50
Ground Level Direction (degrees):	164
Stability Class:	D-Neutral

mile		A mR/hr	B mR/hr	C mR/hr
· ·	0.5	775.9	387.9	64.7
	1.0	302.8	121.1	20.2
	2.0	140.4	35.1	5.9
	5.0	46.6	5.8	1.0
	7.5	34.2	. 3.4	0.6
	10.0	24.9	1.9	0.3

Dose Rate at 6 in. mR/hr closed window

÷	mile A	mR/hr	B mR/hr	C mR/hr
	0.5	1332.8	666.4	111.1
	1.0	515.5	206.2	34.4
	2.0	212.2	53.1	8.8
•	5.0	62.5	7.8	1.3
	7.5	40.0	4.0	0.7
	10.0	27.4	2.1	0.4

		A= 0 deg	B= 6 deg	C= 12 deg
Dose	Rate	at 3 ft mR/	hr open win	dow ·
mile		A mR/hr	B mR/hr	C mR/hr
	0.5	1108.4	554.2	92.4
	. 1.0	432.6	173.0	28,8
	2.0	200.6	50.1	· 8.4
	5.0	66.5	8.3	1.4

4.9

2.7

0.8

0.5

Dose Rate at 6 in. mR/hr open window

48.9

35.5

7.5

10.0

mile	A mR/hr	B mR/hr	C mR/hr
0.5	1976.2	988.1	164.7
1.0	762.1	304.9	50.8
2.0	300.9	75.2	12.5
5.0	84.3	10.5	1.8
7.5	50.5	5.0	0.8
10.0	33.3	2.6	0.4

SPACE INTENTIONALLY BLANK

Particulate Measurements: Ludlum #44-9 Probe for 10 cu. Ft. Air Sample (cpm)

 :	mile.	A cpm	B cpm	C cpm
	0.5	540,408	235,715	31,041
<u>}.</u>	1.0	206,379	85,385	10,313
:	2.0	97,856	36,755	3,761
•	5.0	29,496	10,038	270
	7.5	23,677	7,659	165
 	10.0	<u> 16,</u> 535	5,085	AS READ

SPACE INTENTIONALLY BLANK

Iodine Measurement: Ludlum #44-9 Probe for 10 cu. Ft. Air Sample (cpm)

mile	A cpm	B cpm	C cpm
0.5	2,866,042	1,250,107	164,623
1.0	1,094,524	452,840	54,695
2.0	528,530	198,516	20,311
5.0	161,851	55,080	1,484
7.5	135,128	43,712	. 942
10.0	96,796	29,765	493

SCENARIO INFORMATION	
Exercise Time:	12:30
Interval Since Release Started (hh:mm):	2:00
METEOROLGICAL DATA	
Ground Level Wind Velocity (mph):	7.70
Ground Level Direction (degrees):	166
Stability Class:	D-Neutral

mile		A mR/hr	B mR/hr	C mR/hr
	0.5	620.3	310.1	51.7
	1.0	236.0	94.4	15.7
	2.0	112.6	28.1	4.7
	5.0	35.6	4.4	0.7
	7.5	28.3	2.8	0.5
	10.0	22.1	1.7	0.3

Dose Rate at 6 in. mR/hr closed window

	mile	A mR/hr	B mR/hr	C mR/hr
•.	0.5	1209.3	604.7	100.8
	1.0	461.0	184.4	30.7
	2.0	190.0	47.5	7.9
	5.0	53.3	6.7	1.1
	7.5	35.5	3.6	0.6
	10.0	- 25.8	2.0	0.3

	A= 0 deg	B= 6 deg	C= 12 deg
Dose Rate	at 3 ft mR/	h <mark>r open wi</mark> r	ndow

Booo rate at e it in en open maden			
mile	A mR/hr	B mR/hr	C mR/hr
0.5	886.1	443.0	73.8
1.0	337.1	134.9	22.5
2.0	160.9	40.2	6.7
5.0	50.8	6.3	- 1.1 -
7.5	40.5	4.0	0.7
10.0	31.5	2.4	0.4

Dose Rate at 6 in. mR/hr open window

mile A	mR/hr	B mR/hr	C mR/hr
0.5	1861.2	930.6	155.1
1.0	709.8	283.9	47.3
2.0	280.0	70.0	11.7
5.0	75.3	9.4	1.6
7.5	46.5	4.6	0.8
10.0	32.5	· 2.5	0.4

SPACE INTENTIONALLY BLANK

Particulate Measurements: Ludium #44-9 Probe for 10 cu. Ft. Air Sample (cpm)

mile	A cpm	B cpm	C cpm
0.5	441,578	192,607	25,364
1.0	168,636	69,770	8,427
2.0	. 75,058	28,192	2,884
5.0	24,120	8,208	650
7.5	18,204	5,889	392
10.0	15,157	4,661	251

SPACE INTENTIONALLY BLANK

Iodine Measurement: Ludlum #44-9 Probe for 10 cu. Ft. Air Sample (cpm)

mile	A cpm	B cpm	C cpm
	2,302,640	1,004,363	132,261
1.0	879,364	363,821	43,943
2.0	398,070	149,515	15,298
5.0	130,276	44,335	3,509
7.5	102,044	33,010	2,199
10.0	86,502	26,600	1,432

12:45
2:15
• .
6.80
165
D-Neutral

mile		A mR/hr	B mR/hr	C mR/hr
	0.5	598.4	299.2	49,9
•	1.0	231.9	92.8	15.5
	2.0	86.6	21.6	3.6
	5.0	28.6	3.6	0.6
	7.5	24.5	2.4	0.4
•	10.0	18.1	1.4	0.2

Dose Rate at 6 in. mR/hr closed window

<u> </u>	nile A	mR/hr	B mR/hr	C mR/hr
	0.5	1217.0	608.5	101.4
	1.0	468.2	187.3	31.2
	2.0 ·	· 168.4	42.1	7.0
	5.0	47.7	6.0	1.0
	7.5	32.9	3.3	0.5
1	0.0	22.8	1.8	0.3

		-	B= 6 deg	-
Dose	Rate	at 3 ft mR/	hr open win	dow .
mile		A mR/hr	B mR/hr	C mR/hr
	0.5	854.8	427.4	71.2
	1.0	331.3	132.5	22.1
•	່ 2.0	123.7	30.9	5.2
· ·	5.0	40.9	5.1	· 0.9
•	7.5	35.0	3,5	0.6
•	10.0	25.9	2.0	0.3

Dose Rate at 6 in. mR/hr open window

•	mile A	mR/hr	B mR/hr	C mR/hr
	0.5	1894.1	947.1	157.8
	1.0	727.2	290.9	48.5
	2.0	259.0	· 64.8	10.8
•	5.0	70.0	8.7	1.5
••	7.5	44.4	· 4.4	. 0.7
	10.0	29.8	2.3	:0.4

SPACE INTENTIONALLY BLANK

SPACE INTENTIONALLY BLANK

Particulate Measurements: Ludlum #44-9 Probe for 10 cu. Ft. Air Sample (cpm)

mile	A cpm	B cpm	C cpm
0.5	413,948	180,555	132,261
1.0	158,084	65,405	43,943
2.0	61,332	23,036	15,298
5.0	18,501	6,296	3,509
7.5	15,609	5,049	. 2,199
10.0	11,653	3,583	1,432

lodine Measurement: Ludlum #44-9 Probe for 10 cu. Ft. Air Sample (cpm)				
mile	A cpm	B cpm	C cpm	
· 0.5	2,120,476	924,907	121,798	
.1.0	809,797	335,039	40,467	
2.0	319,818	120,124	12,290	

2.0	319,818	120,124	12,290
5.0	98,119	33,391	2,643
7.5	85,648	27,706	1,846
10.0	65,324	20,087	1,081

SCENARIO INFORMATION	
Exercise Time:	13:00
Interval Since Release Started (hh:mm):	· 2:30
METEOROLGICAL DATA	
Ground Level Wind Velocity (mph):	5.70
Ground Level Direction (degrees):	169
Stability Class:	D-Neutral

mile		A mR/hr	B mR/hr	C mR/hr
	0.5	577.7	288.9	48.1
	1.0	229.6	91.8	15.3
•	2.0	85.7	21.4	3.6
	5.0	21.6	2.7	0.4
	7.5	19.5	2.0	0.3
	10.0	15.2	1.2	0.2

Dose Rate at 6 in. mR/hr closed window

mile	A mR/hr	B mR/hr	C mR/hr
0.5	1223.2	611.6	101.9
1.0	476.1	190.4	31.7
2.0	171.6	. 42.9	7.2
5.0	41.7	5.2	0.9
7.5	28.9	2.9	0.5
· 10.0	<u> </u>	1.6	0.3

	A= 0 deg	B= 6 deg	C= 12 deg			
Dose Rate	Dose Rate at 3 ft mR/hr open window					
mile	A mR/hr	B mR/hr	C mR/hr			
0.5	825.3	412.7	68.8			
1.0	328.0	131.2	21 . 9			
2.0	122.4	30.6	5.1			
5.0	30.8	3.9	0.6			
7.5	27.9	2.8	. 0 <i>.</i> 5			
10.0	21.7	1.7	0.3			

Dose Rate at 6 in. mR/hr open window

	mile A	mR/hr	B mR/hr	C mR/hr
	0.5	1923.0	961.5	160.2
	1.0	744.6	297.9	49.6
	2.0	266.0	66.5	11.1
	5.0	64.1	8,0	1.3
,	7.5	40.6	4.1	0.7
_	. 10.0	27.9	2.1	0.4

SPACE INTENTIONALLY BLANK

Particulate Measurements: Ludlum #44-9 Probe	
for 10 cu. Ft. Air Sample (cpm)	

j

mile	A cpm	B cpm	C cpm
0.5	379,913	165,710	21,822
1.0	145,087	60,027	7,250
2.0	57,494	21,595	2,209
5.0	15,118	5,145	407
7.5	12,764	4,129	275
10.0	<u>9,</u> 992	3,073	165

SPACE INTENTIONALLY BLANK

lodine Measurement: Ludlum #44-9 Probe for 10 cu. Ft. Air Sample (cpm)

mile	A cpm	B cpm	C cpm
0.5	1,915,764	835,616	110,040
1.0	731,619	302,694	36,560
2.0	294,517	110,620	11,318
5.0	· 78,831	. 26,827	2,124
7.5	68,940	22,301	1,486
10.0	54,827	16,860	908

SCENARIO INFORMATION	
Exercise Time:	13:15
Interval Since Release Started (hh:mm):	2:45
METEOROLGICAL DATA	
Ground Level Wind Velocity (mph):	6.90
Ground Level Direction (degrees):	· 167
Stability Class:	D-Neutral
	•

A= 0 deg B= 6 deg C= 12 deg Dose Rate at 3 ft mR/hr closed window mile A mR/hr B mR/hr C mR/hr

me			DIIIR/III	
	0.5	516.5	258.3	43.0
	1.0	199.8	79.9	13.3
	2.0	86.7	21.7	3.6
	5.0	21.9	· · 2.7	· 0.5
	7.5	[`] 15.5	1.6	0.3
	10.0	12.2	· 0.9	0.2

Dose Rate at 6 in. mR/hr closed window

•	·mile A	mR/hr	B mR/hr	C mR/hr	
	0.5	1186.5	593.2	98.9	
	1.0	455.6	182.2	30.4	
	2.0	176.4	44.1	·7.3	
	5.0	43.0	5.4	0.9	
	7.5	25.6	2.6	0.4	•
_	10.0	18.2	1.4	0.2	
-					

	A= 0 deg	B= 6 deg	C= 12 deg		
Dose Rate at 3 ft mR/hr open window					
mile	A mR/hr	B mR/hr	C mR/hr		

ŝ

0.5	737.9	369.0	61.5
1.0	285.4	114.1	19.0
2.0	123.9	31.0	5.2
5.0	31.2	· 3.9	0.7
7.5	22.2	2.2	0.4
10.0	17.5 ·	1.3	0.2

Dose Rate at 6 in. mR/hr open window

•	mile A	mR/hr	B mR/hr	C mR/hr
	0.5	1900.9	950.4	158.4
• •	1.0	728.8	291.5	48.6
•	2.0	274.5	<u>ć</u> 68.6	11.4
	5.0 ·	66.4	. 8.3	1.4
	7.5	37.5	3.7	0.6
	10.0	25.7	2.0	0.3

SPACE INTENTIONALLY BLANK

· ·	
Particulate Measurements: Ludium #44-9 Prob	е
for 10 cu. Ft. Air Sample (cpm)	

	mile A	A cpm	B cpm	C cpm
	0.5	351,956	153,516	20,216
	1.0	134,410	55,610	6,717
	2.0	52,767	19,819	2,028
	5.0 ·	14,172	4,823	382
-	7.5	9,790	3,167	211
-	10.0	8,171	2,513	135

SPACE INTENTIONALLY BLANK

Iodine Measurement:	Ludium #44-9 Probe
for 10 cu. Ft. Air Sam	pie (cpm)

mile	A cpm	B cpm	C cpm
0.5	1,747,360	762,161	100,367
1.0	667,306	276,086	. 33,347
2.0	266,084	99,941	10,225
5.0	. 72,595	24,705	1,956
7.5	51,923	16,796	1,119
10.0	44,132	13,571	. 731

SCENARIO INFORMATION	
Exercise Time:	13:30
Interval Since Release Started (hh:mm):	3:00
METEOROLGICAL DATA	
Ground Level Wind Velocity (mph):	. 8.50
Ground Level Direction (degrees):	167
Stability Class:	D-Neutral
-	

A= 0 deg B= 6 deg C= 12 deg Dose Rate at 3 ft mR/hr closed window mile A mR/hr B mR/hr C mR/hr

nie		A mR/nr	BWK/NL	C mR/nr
	0.5	458.8	229.4	38.2
	1:0	172.8	69.1	11.5
	2.0	." 74.1	18.5	3.1
	5.0	22.1	2.8	0.5
	7.5	. 11.5	1.1	0.2
	10.0	10.3	0.8	0.1

Dose Rate at 6 in. mR/hr closed window

mile A	mR/hr	B mR/hr	C mR/hr
0.5	1150.5	575.3	95.9
1.0	436.9	174.8	29.1
2.0	167.1	41.8	7.0
5.0	44.2	5.5	0.9
7.5	22.1	2.2	0.4
 10.0	· 16.7	. 1.3	0.2

	A= 0 deg	B= 6 deg	C= 12 deg
Dose Rate	at 3 ft mR/	hr open win	dow
mile	A mR/hr	B mR/hr	C mR/hr
0.5	655.4	327.7	54.6
1.0	246.8	98.7	16.5
2.0	105.8	26.5	4.4
5.0	31.6	4:0	·0.7
· 7.5	16.4	1.6	0.3
10.0	14.7	1:1	0.2

÷

2

Dose Rate at 6 in. mR/hr open window

	mile	A mR/hr	B mR/hr.«	C mR/hr
۰.	0.5	1877.6	938.8	156.5
	1.0	714.2	285.7	47.6
	2.0	266.7	66.7	. 11.1
	5.0	68.5	8.6	1.4
	7.5	34.0	3.4	.0.6
_	10.0	24.4	1.9	0.3

SPACE INTENTIONALLY BLANK

• .

Particulate Measurements: Ludium #44-9 Probe for 10 cu. Ft. Air Sample (cpm)

mile	A cpm	B cpm	C cpm
0.5	318,964	139,125	18,321
· 1.0	121,810	50,397	6,087
2.0	48,884	18,361	1,879
5.0	13,006	4,426	350
7.5	8,000	2,588	172
10.0	6,267	1,927	104

SPACE INTENTIONALLY BLANK ·

Iodine Measurement: Ludlum #44-9 Probe for 10 cu. Ft. Air Sample (cpm)

mile	A cpm	B cpm	C cpm
0.5	1,556,291	678,821	89,392
1.0	594,338	245,897	29,700
2.0	242,694	91,156	9,327
5.0	65,587	. 22,320	1,767
7.5	41,716	13,495	· 899
10.0	33,238	10,221	÷550

	SCENARIO INFORMATION	
(Exercise Time:	13:45
,	Interval Since Release Started (hh:mm):	3:15
	METEOROLGICAL DATA	
	Ground Level Wind Velocity (mph):	6.00
	Ground Level Direction (degrees):	173
•	Stability Class:	D-Neutral
	A= 0 deg B= 6 deg C= 12 deg	•

Dose Rate at 3 ft mR/hr closed window mile A mR/hr B mR/hr C mR/hr

• ?

mile		A mR/nr	B WK/NL	C mR/hr
	0,5	197.4	98.7	16.5
	÷ 1.0	75.4	30.2	5.0
	2.0	62.3	15.6	2.6
	5.0	19.2	2.4	0.4
	7.5	11.6	. 1.2	0.2
	10.0	7.2	0.6	0.1

Dose Rate at 6 in. mR/hr closed window

1.0 336.9 134.8 22. 2.0 158.4 39.6 6. 5.0 42.1 5.3 0.		<u>'mile</u>	A mR/hr	B mR/hr	C mR/hr
2.0158.439.66.5.042.15.30.	•	0.5	882.3	441.1	73.5
5.0 42.1 5.3 0.		1.0	336.9	134.8	22.5
· · ·		⁺ 2.0	158.4	39,6	6.6
7.5 22.8 2.3 0.		5.0	42.1	5.3	0.9
		7.5	22.8	2.3	0.4
<u> 10.0 14.1 1.1 0.</u>		10.0	14.1	<u> </u>	0.2

	A= 0 deg .	B= 6 deg	C= 12 deg
Dose Rate	at 3 ft mR	/hr open wir	idow .

milė		A mR/hr	B mR/hr	C mR/hr
	0.5	282.0	141.0	23.5
	1.0	107.7	43.1	7.2
	2.0	89.1	22.3	3.7
	5.0	27.4	· 3.4	0.6
	7.5	· 16.6	1.7	0.3
	10.0	10.3	0.8	0.1

Dose Rate at 6 in. mR/hr open window

mile	mile A mR/hr E		C mR/hr
0.5	0.5 1565.4		130.4
1.0	597.8	239.1	· 39.9
2.0	259.2	64.8	10.8
5.0	66.8	8.4	1.4
. 7.5	35.2	3.5	0.6
10.0	21.6	·1.7	0.3
			·. · · ·

SPACE INTENTIONALLY BLANK

12,049

7,499

5,121

5.0

7.5

10.0

• •				
Particulate	Measurem	ents: Ludlu	m #44-9 Pro	be
for 10 cu. F	t. Air Sam	ple (cpm)		
. mile	A cpm	B cpm	C cpm	
0.5	AS READ	AS READ	AS READ	
. 1. 0	AS READ	AS READ	AS READ	
2.0	AA 201	16,640	1.702	

4,101

2,426

1,575

325

162

85

÷

SPACE INTENTIONALLY BLANK

			Ludium #4	4-9 Probe
for 10 cu	1. F	I. Air Sam	ple (cpm)	
m	ile	A cpm	B cpm	C cpm
			AS READ	
. 1	.0	AS READ	AS READ	AS READ
2	2.0	216,156	81,188	8,307
5	0.0	59,821	•	
7	.5	38,416	12,427	828
10	0.0	26,704	8,212	442
	_			

SCENARIO INFORMATION	
Exercise Time:	14:00
Interval Since Release Started (hh:mm):	3:30
METEOROLGICAL DATA	
Ground Level Wind Velocity (mph):	7.00
Ground Level Direction (degrees):	174
Stability Class:	C-Slightly Unstable
A= 0 deg B= 6 deg C= 12 deg	•••

Dose Rate at 3 ft mR/hr closed window mile A mR/hr B mR/hr C mR/hr

e			D IIIRVIII	C mR/nr
	0.5	195.5	97.7	16.3
	1.0	74.6	29.9	5.0
•	2.0	27.4	6.9	1.1
	5.0	16.3	2.0	0.3
	7.5	11.8	1.2	0.2
	10.0	7.3	0.6	0.1 .

Dose Rate at 6 in. mR/hr closed window

ĉ

1 ¹	mile A mR/hr		B mR/hr	C mR/hr
	0.5	873.5	436.7	72.8
	1.0	333.6	133.4	· 22.2
	2.0	122.5	30.6	5.1
	5.0	40.0	5.0	0.8
	7.5	23.5	2.3	0.4
	10.0	14.5	1.1	0.2

A= 0 deg B= 6 deg C= 12 deg Dose Rate at 3 ft mR/hr open window						
		B mR/hr				
0.5	279.2	139.6	23,3			
1.0	106.6	· 42.7	7.1			
2.0	39.2	9.8	1.6			
5.0	23.3	2.9	0.5			
7.5	16.8	1.7	0.3			
10.0	10.5	0.8	0.1			

Dose Rate at 6 in. mR/hr open window e

mile	A mR/hr	B mR/hr	C mR/hr
0.5	1549.7	• 774.9	129.1
1.0	591.8	236.7	39.5
2.0	217.4	54.4	9.1
5.0	64.9	8.1	1.4
7.5	36.3	[.] 3.6	0.6
10.0	22.4	1.7	0.3

SPACE INTENTIONALLY BLANK

SPACE INTENTIONALLY BLANK

Particulate Measurements: Ludlum #44-9 Probe for 10 cu. Ft. Air Sample (cpm)

	mile	Ac	pm	Вс	pm	Сc	pm
	0.5	AS	READ	AS	READ	AS	READ
•	1.0	AS	READ	AS	READ	AS	READ
	2.0	AS	READ	AS	READ	AS	READ
	5.0	·	10,920		3,716		294
	7.5		6,883		2,226		148
	10.0		4,801		1,476		79

lodine Measurement: Ludlum #44-9 Probe for 10 cu. Ft. Air Sample (cpm)

•••								
	mile	A cpm		B cpm		C cpm		_
	0.5	AS	READ	AS	READ	AS	READ	
	1.0	AS	READ	AS	READ	AS	READ	
	2.0	AS	READ	AS	READ	AS	READ	
	5.0		53,280		18,132	•	1,435	
	7.5		34,707		11,227	•	748	
_	10.0		24,592		7,562		407	Ś

SCENARIO INFORMATION	
Exercise Time:	14:15
Interval Since Release Started (hh:mm):	3:45
METEOROLGICAL DATA	
Ground Level Wind Velocity (mph):	6.00
Ground Level Direction (degrees):	173
Stability Class:	C-Slightly Unstable
A= 0 deg B= 6 deg C= 12 deg	
Dose Rate at 3 ft mR/hr closed window	Dose Ra
	• •

nne		A IIIK/III	DINIRVINI		
	0.5	193.5	96.8	16.1	
	1.0	73.9	29.6	4.9	
• •	2.0	27.1	6.8	1.1	
	5.0	· 6.8	0.8	0.1	
	7.5	9.8	1.0	. 0.2	
	10.0	. 7.4	0.6	0.1	

Dose Rate at 6 in. mR/hr closed window

mile	A mR/hr	B mR/hr	C mR/hr
0.5	864.7	432.4	72.1
1.0	. 330,2	132.1	22.0
. 2.0	121.3	30.3	5.1
5.0	30.2	3.8	0.6
. 7.5	· 21.9	2.2	0.4
. 10.0	14.9	1.1	0.2

: A= 0 deg B= 6 deg C= 12 deg Dose Rate at 3 ft mR/hr open window mile · A mR/hr B mR/hr C mR/hr

	0.5	276.4	138.2	23.0
	1.0	105.6	42.2	7.0
	2.0	38.8	9.7	1.6
	5.0 ·	9.7	1.2	0.2
•	7.5	14.0	1.4	0.2
	10.0	10.6	0.8	0.1

Dose Rate at 6 in. mR/hr open window

	mile A	mR/hr	B mR/hr	C mR/hr
	0,5	1534.2	767.1	127.9
:	1.0	585.9	234.4	39.1
ŧ	2.0	215.2	53.8	· · 9.0
	5.0	53.6	6.7	1.1
	7.5	34.9	3.5	0.6
	10.0	23.1	1.8	0.3

SPACE INTENTIONALLY BLANK

• .					
Particulate Measure	ments: Lud	lum #44-9 Probe			
for 10 cu. Ft. Air Sample (cpm)					
mile A cpm	B cpm	C cpm			

nme		D Chill	o opin
0.5	AS READ	AS READ	AS READ
1.0	AS READ	AS READ	AS READ
2.0	AS READ	AS READ	AS READ
5.0	AS READ	AS READ	AS READ
7.5	6,376	2,063	137
10.0	4,406	1,355	73
			The second s

SPACE INTENTIONALLY BLANK

Iodine Measurement: Ludlum #44-9 Probe for 10 cu. Ft. Air Sample (cpm) mile A cpm B cpm C cpm

0.5 AS	READ	AS READ	AS READ
1.0 AS	READ	AS READ	AS READ
2.0 AS	READ	AS READ	AS READ
5.0 AS	S READ	AS READ	AS READ
7.5	31,656	10,240	682
10.0	22,218	6,832	368

SCENARIO		ION		14:30	•				
Interval Sinc		Started (hh:	: : : :	4:00		•			
METEOROL								•	
Ground Leve				7.00					
Ground Leve				173.60					•
Stability Clas		(. (C-Slightly		bie	· ·		
•	=0 deg B	=6 dea C					= 0 dea	B= 6 dea	C= 12 deg
Dose Rate at	-	•	•		Dose		-	hr open win	v
	•		mR/hr		mile		mR/hr	B mR/hr	C mR/hr
0.5	191.6	95.8	16.0			0.5	273.7		
1.0	73.2	29.3	4.9			1.0	104.5		
2.0	· 26.9	6.7	1.1			2.0	38.4		
5.0	6.7	· 0.8	0.1		•	5.0	9.6		
7.5	8.9	0.9	0.1		• •	7.5	12.7	1.3	0.2
10.0	6.4	0.5	0.1		•	<u>10.0</u>	9.2	0.7	0.1
Dena Dete et			- -		D	D-1			-
Dose Rate at					Dose			Vhr open wi	
mile A		mR/hr C					mR/hr	B mR/hr	C mR/hr
0.5	856.1	428.0	71.3		•	0.5	1518.9		
· 1.0	326.9	130.8	21.8			1.0	580.0		
2.0	120.1	30.0	5.0 · ·	L	•	2.0	213.1	53.3	
5.0	29.9	3.7	0.6	•	i.	5.0	53.1		
7.5	21.4	2.1	0.4			7.5	34.6		
10.0	14.2	1.1	0.2			10.0	22.6	1.7	0.3
						•			

SPACE INTENTIONALLY BLANK

		<u> </u>			
Particulate Measurements: Ludlum #44-9 Probe for 10 cu. Ft. Air Sample (cpm)					
mile A cpm		Com			
		C cpm			

÷

0.5	AS READ	AS READ	AS READ
1.0	AS READ	AS READ	AS READ
2.0	AS READ	AS READ	AS READ
5.0	AS READ	AS READ	AS READ
7.5	5,779	1,869	125
10.0	4,082	•	

SPACE INTENTIONALLY BLANK

٥.

3

..

ś

: •

ı.

•

lodine	e Mea	sur	ement:	Lud	llum #4	4-9	Probe
for 10) cu. F	Ft. A	lir Samj	ple (cpm)	•	
	mile	Àc	pm	Вс	pm	Сс	pm
·	0.5	AS	READ	AS	READ	ĀS	READ
:	1.0	AS	READ	AS	READ	AS	READ
	2.0	AS	READ	AS	READ	AS	READ
•	5.0	AS	READ	AS	READ	AS	READ
			28,195		9,121		608
	10.0	•	20,265		6,232		. 335

SCENARIO INFORMATION	
Exercise Time:	10:30
Interval Since Release Started (hh:mm):	0:00
METEOROLGICAL DATA	
Ground Level Wind Velocity (mph):	7.40
Ground Level Direction (degrees):	167
Stability Class:	D-Neutral
A= 0 deg B= 6 deg C= 12 deg	

Particulate Concentration

Iodine Concentration

mile A (uCi/cc) B (uCi/cc) C (uCi/cc) 0.5 2.55E-04 1.11E-04 1.46E-05 1.0 9.73E-05 4.03E-05 4.86E-06 2.0 BKG. BKG. BKG. 5.0 BKG. BKG. BKG. 7.5 BKG. BKG. BKG. 10.0 BKG.: BKG. BKG. Particulate Fraction

Faniculate Flaction					
Cs-134	5.46E-01				
Cs-137	2.91E-01				
Ce/Pr-144	7.79E-05				
Ce-141	9.78E-05				
La-140	5.98E-04				
Mo-99	1.16E-01				
Ru/Rh-106	2.88E-05				
Ru-103	9.09E-05				
Te-132	4.58E-02				
Zr-95	9.98E-05				

	mile	A (uCi/cc)	B (uCi/cc)	C (uCi/cc)
•	0.5	3.59E-03	1.57E-03	2.06E-04
	. 1.0	1.37E-03	5.67E-04	6.85E-05
•	2.0	BKG.	BKG.	BKG.
	5.0	BKG.	BKG.	BKG.
	7.5	BKG.	BKG.	BKG.
	10.0	BKG.	BKG.	BKG.
4				

4

lodine Fr	action.		•	
I-131	2.03E-01			
I-132	1.10E-01	•		
I-133	3.81E-01			
I-134	3.13E-02			
I-135	2.74E-01			

SCENARIO INFORMATION	
Exercise Time:	10:45
Interval Since Release Started (hh:mm):	0:15
METEOROLGICAL DATA	
Ground Level Wind Velocity (mph):	7.40
Ground Level Direction (degrees):	165
Stability Class:	D-Neutral
A= 0 deg B= 6 deg C= 12 deg	

:

. .

Particulate Concentration

Iodine Concentration

mile	A (uCi/cc)	B (uCi/cc)	C (uCi/cc)
0.5	7.89E-04	3.44E-04	4.53E-05
1.0	3.01E-04	1.25E-04	1.51E-05
2.0	3.54E-05	1.33E-05	1.36E-06
· 5.0	BKG.	BKG.	BKG.
7.5	BKG.	BKG.	BKG.
10.0	BKG.	BKG.	BKG.

	Particulate	Fraction
	Cs-134 ·	5.45E-01
	Cs-137	2.92E-01
	Ce/Pr-144	7.79E-05
	Ce-141	9.78E-05
,	La-140	5.99E-04
	Mo-99	1.16E-01
	Ru/Rh-106	2.89E-05
	Ru-103	9.10E-05
	Te-132	4.58E-02
	Zr-95 .	9.98E-05

	2.0	4.99E-04	1.87E	-04	1.92E-05	
	5.0	BKG.	BKG.	٦	BKG.	
•	7.5	BKG.	BKG.	7	BKG.	
:	10.0	BKG.	BKG.	\$	BKG.	
		•.				•
					•	
Iodine Fraction						
I-131		2.08E-01			· .	

 mile A (uCi/cc)
 B (uCi/cc)
 C (uCi/cc)

 0.5
 1.08E-02
 4.73E-03
 6.23E-04

 1.0
 4.14E-03
 1.71E-03
 2.07E-04

-131		2.08E-01	
-132		1.05E-01	•
-133	•	3.87E-01	÷
-134		2.64E-02	
-135		2.74E-01	

SCENARIO INFORMATION	
Exercise Time:	11:00
Interval Since Release Started (hh:mm):	0:30
METEOROLGICAL DATA	•
Ground Level Wind Velocity (mph):	7.60
Ground Level Direction (degrees):	165
Stability Class:	D-Neutral
A= 0 deg B= 6 deg C= 12 deg	

Particulate Concentration

•	0.5 1.0 2.0 5.0	1.22E-03 4.65E-04 1.10E-04 4.69E-06 BKG.	1.93E-04 4.12E-05	7.00E-05 2.33E-05 4.21E-06	:	0.5 1.0 2.0 5.0 7.5		7.16E-03 2.59E-03	3 9.43 3 3.13 4 5.79	E-04 E-04 E-05 E-06	
•	Particulate Cs-134 Cs-137 Ce/Pr-144 Ce-141 La-140 Mo-99 Ru/Rh-106 Ru-103 Te-132 Zr-95	Fraction 5.45E-01 2.92E-01 7.82E-05 9.80E-05 5.96E-04 1.16E-01 2.89E-05 9.08E-05 4.57E-02 9.99E-05			lod -1 -1 -1 -1	32 33 34	tion 2.12E-01 9.99E-02 3.94E-01 2.21E-02 2.72E-01		an		

	SCENARIO INFORMATION	
	Exercise Time:	11:15
	Interval Since Release Started (hh:mm):	0:45
	METEOROLGICAL DATA	
	Ground Level Wind Velocity (mph):	7.80
	Ground Level Direction (degrees):	165
•	Stability Class:	D-Neutral
	+ A=0 deg B=6 deg C=12 deg	

:

7

Ś

Particulate Concentration

Iodine Concentration

2.	mile	A (uCi/cc)	B (uCi/cc)	C (uĆi/cc)	
•	. 0.5	1.12E-03	4.87E-04	6.42E-05	-
.;	. 1.0	4.27E-04	1.77E-04	· 2.13E-05	
:.	2.0	1.69E-04	6.36E-05	6.51E-06	
	· 5.0	2.70E-05	9.20E-06	7.28E-07	
· •	7.5	BKG.	BKG.	BKG.	
•	10.0	BKG.	BKG.	BKG.	۰.

•	•
Particulate	Fraction
Cs-134	5.47E-01
Cs-137	2.91E-01
Ce/Pr-144	7.77E-05
Ce-141	9.77E-05
La-140 [`]	5.92E-04
Mo-99	1.15E-01
Ru/Rh-106	2.89E-05
Ru-103	9.08E-05
Te-132	4.54E-02
Zr-95	9.97E-05

1.0	5.60E-03	2.32E-03	2.80E-04
2.0	2.28E-03	8.56E-04	8.76E-05
5.0	3.71E-04	1.26E-04	1.00E-05
7.5	BKG.	BKG.	BKG.
10.0	BKG.	BKG.	BKG.
			•
dine Fred	diam.	۰.	

 mile
 A (uCi/cc)
 B (uCi/cc)
 C (uCi/cc)

 0.5
 1.47E-02
 6.40E-03
 8.42E-04

lodi	ne Fra	ction	` .		
I-13	1 ·	2.17E-0	1 🕚		
I-13	2.	9.53E-02	2 🤐	•	
I-13	3.	3.99E-0	1	•	
I-13-	4	1.86E-0	2	٠	
I-13	5	2.70E-0	1 🕴		•
		, .	1		
		· .	:	۰.	
		•			•

SCENARIO INFORMATION	
Exercise Time:	11:30
Interval Since Release Started (hh:mm):	1:00
METEOROLGICAL DATA	•
Ground Level Wind Velocity (mph):	6.90
Ground Level Direction (degrees):	165
Stability Class:	D-Neutral
Ar O don Dr C don Or 40 do	-

A= 0 deg B= 6 deg C= 12 deg

Particulate Concentration

Iodine Concentration

mile	A (uCi/cc)	B (uCi/cc)	C (uCi/cc)
0.5	8.59E-04	3.75E-04	4.93E-05
1.0	3.28E-04	1.36E-04	1.64E-05
2.0	1.55E-04	5.83E-05	5.96E-06
5.0	4.17E-05	1.42E-05	1.12E-06
7.5	2.48E-06	8.03E-07	5.35E-08
10.0	BKG.	BKG.	BKG.

:	Particulate	Fraction
	Cs-134	5.46E-01
	Cs-137	2.92E-01
	Ce/Pr-144	7.83E-05
	Ce-141	9.80E-05
ί.	La-140	5.90E-04
	Mo-99	1.15E-01
	Ru/Rh-106	2.89E-05
	Ru-103	9.08E-05
	Te-132	4.56E-02
	Zr-95	1.00E-04

mile	A (uCi/cc)	B (uCi/cc)	C (uCi/cc)
0.5	1.11E-02	4.83E-03	6.36E-04
1.0	4.23E-03	1.75E-03	2.11E-04
2.0	2.04E-03	7.65E-04	7.83E-05
5.0	5.62E-04	1.91E-04	1.51E-05
7.5	6.51E-05	2.10E-05	1.40E-06
10.0	BKG.	BKG.	BKG.

.

•.

SCENARIO INFORMATION	
Exercise Time:	11:45
Interval Since Release Started (hh:mm):	1:15
METEOROLGICAL DATA	
Ground Level Wind Velocity (mph):	6.40
Ground Level Direction (degrees):	163
Stability Class:	D-Neutral
A= 0 deg B= 6 deg C= 12 deg	

Particulate Concentration

A (uCi/cc)	B (uCi/cc)	C (uCi/cc)
7.37E-04	3.21E-04	4.23E-05
2.81E-04	1.16E-04	1.41E-05
1.19E-04	4.48E-05	4.58E-06
3.82E-05	1.30E-05	1.03E-06
7.69E-06	2.49E-06	1.66E-07
1.59E-06	4.89E-07	2.63E-08
	7.37E-04 2.81E-04	2.81E-041.16E-041.19E-044.48E-053.82E-051.30E-057.69E-062.49E-06

•	•
Particulate	Fraction
Cs-134	5.48E-01
Cs-137	2.91E-01
Ce/Pr-144	7.77E-05
Ce-141	9.76E-05
La-140	5.84E-04
Mo-99	1.14E-01
Ru/Rh-106	2.88E-05
Ru-103	9.08E-05
Te-132	4.53E-02
Zr-95	9.96E-05

mile	A (uCi/cc)	B (uCi/cc)	C (uCi/cc)
0.5	9.30E-03	4.05E-03	5.34E-04
1.0	3.55E-03	1.47E-03	1.77E-04
2.0	1.54E-03	5.78E-04	5.91E-05
5.0	5.02E-04	1.71E-04	1.35E-05
7.5	1.19E-05	3.84E-06	2.56E-07
10.0	2.52E-06	7.75E-07	4.17E-08

Iodine Fraction				
I-131	2.25E-01			
I-132	8.57E-02			
1-133	4.08E-01			
I-134	1.30E-02			
I-135 -	2.68E-01			

SCENARIO INFORMATIONExercise Time:12:00Interval Since Release Started (hh:mm):1:30METEOROLGICAL DATAGround Level Wind Velocity (mph):6.90Ground Level Direction (degrees):166Stability Class:D-Neutral

A= 0 deg B= 6 deg C= 12 deg

 $A=0 \deg B=6 \deg C= 12 \deg$

3.87E-05

2.08E-06

mile A (uCi/cc)B (uCi/cc)C (uCi/cc)0.57.48E-033.26E-034.30E-041.02.86E-031.18E-031.43E-042.01.29E-034.85E-044.96E-055.03.79E-041.29E-041.02E-057.52.97E-049.62E-056.41E-06

Particulate Concentration

Particulate Fraction

Ce/Pr-144 7.78E-05

Ru/Rh-106 2.89E-05

5.47E-01

2.92E-01

9.76E-05

5.85E-04

1.14E-01

9.12E-05

4.53E-02

1.00E-04

Cs-134

Cs-137

Ce-141

La-140

Mo-99

Ru-103

Te-132

Zr-95

Iodine Concentration

	mile	A (uCi/cc)	B (uCi/cc)	C (uCi/cc)
	0.5	6.02E-04	2.63E-04	3.46E-05
	1.0	2.30E-04	9.52E-05	1.15E-05
·.	2.0	1.02E-04	3.84E-05	3.93E-06
	5.0	2.94E-05	1.00E-05	7.92E-07
	7.5	2.21E-05	7.14E-06	4.76E-07
•	10.0	9.15E-06	2.81E-06	1.52E-07

14E-06	4.76E-07	
81E-06	1.52E-07	
		· lodi
		I-13
		I-13

odine Fr	action
-131	2.29E-01
-132	8.13E-02
-133	4.13E-01
-134	1.09E-02
-135	2.66E-01

10.0 1.26E-04

SCENARIO INFORMATION	
Exercise Time:	12:15
Interval Since Release Started (hh:mm):	1:45
METEOROLGICAL DATA	
Ground Level Wind Velocity (mph):	6.50
Ground Level Direction (degrees):	164
Stability Class:	D-Neutral
	_

A= 0 deg B= 6 deg C= 12 deg

: 3

1

Particulate Concentration

Iodine Concentration

mile	A (uCi/cc)	B (uCi/cc)	C (uCi/cc)
0.5	4.62E-04	2.01E-04	2.65E-05
· 1.0	1.76E-04	7.30E-05	8.82E-06
2.0	8.37E-05	3.14E-05	3.21E-06
5.0	2.52E-05	8.58E-06	6.79E-07
7.5	2.02E-05	6.55E-06	4.36E-07
10.0	1.41E-05	4.35E-06	2.34E-07

	Particulate	Fraction
	Cs-134	5.47E-01
	Cs-137	2.92E-01
	Ce/Pr-144	7.82E-05
	Ce-141	9.81E-05
	La-140	5.83E-04
ł	Mo-99	1.14E-01
	Ru/Rh-106	2.89E-05
	Ru-103	9.07E-05
	Te-132	4.52E-02
	Zr-95 .	9.98E-05

•	mile	A (uCi/cc)	B (uCi/cc)	C (uCi/cc)
	0.5	5.63E-03	2.46E-03	3.24E-04
	1.0	2.15E-03	8.90E-04	1.08E-04
	2.0	1.04E-03	3.90E-04	3.99E-05
	5.0	3.18E-04	1.08E-04	8.57E-06
	7.5	2.66E-04	8.59E-05	5.72E-06
	10.0	1.90E-04	5.85E-05	3.15E-06

۰.

Iodine Fraction			· *	1
1-131	2.34E-01			÷
I-132	7.65E-02		•	•
I-133	4.17E-01	.•	· 1	Ż
I-134	9.08E-03	÷.		٠.,
I-135	2.64E-01			•
		•		•.
		۰.	•	٠.
-				• • • •

SCENARIO INFORMATION	
Exercise Time:	12:30
Interval Since Release Started (hh:mm):	2:00
METEOROLGICAL DATA	
Ground Level Wind Velocity (mph):	7.70
Ground Level Direction (degrees):	166
Stability Class:	D-Neutral
A= 0 deg B= 6 deg C= 12 deg	

.

Particulate Concentration

Iodine Concentration

. .

	mile	A (uCi/cc)	B (uCi/cc)	C (uCi/cc)
•	0.5	3.77E-04	1.65E-04	2.17E-05
• :	1.0	1.44E-04	5.96E-05	7.20E-06
·7:	2.0	6.42E-05	2.41E-05	2.47E-06
	5.0	2.06E-05	7.02E-06	5.55E-07
Ş	7.5	1.56E-05	5.03E-06	3.35E-07
	10.0	1.30E-05	3.98E-06	2.14E-07

Particulate	Fraction
Cs-134	5.48E-01
Cs-137	2.92E-01
Ce/Pr-144	7.83E-05
Ce-141	9.81E-05
La-140	5.81E-04
Mo-99	1.14E-01
Ru/Rh-106	2.90E-05
Ru-103	9.11E-05
Te-132	4.52E-02
Zr-95	1.00E-04

	mile	A (uCi/cc)	B (uCi/cc)	C (uCi/cc)
	0.5	4.53E-03	1.97E-03	2.60E-04
	1.0	1.73E-03	7.15E-04	8.64E-05
	2.0	7.83E-04	2.94E-04	3.01E-05
	5.0	2.56E-04	8.72E-05	6.90E-06
•	7.5	2.01E-04	6.49E-05	4.32E-06
	10.0	1.70E-04	5.23E-05	2.82E-06

-02	
-01	•
-03	
-01 •	
	-03

SCENARIO INFORMATION	
Exercise Time:	12:45
Interval Since Release Started (hh:mm):	2:15
METEOROLGICAL DATA	
Ground Level Wind Velocity (mph):	6.80
Ground Level Direction (degrees):	165
Stability Class:	D-Neutral
A= 0 deg B= 6 deg C= 12 deg	

Particulate Concentration

· .	mile .	A (uCi/cc)	B (uCi/cc)	C (uCi/cc)	•	mile	A (uCi/cc)	B (uCi/cc)	C (uCi/cc)
:	0.5	3.54E-04	1.54E-04	2.03E-05	-	0.5	4.17E-03	1.82E-03	2.39E-04
:	1.0	1.35E-04	5.59E-05	6.75E-06		1.0	1.59E-03	6.59E-04	7.96E-05
	2.0	5.24E-05	1.97E-05	2.01E-06	•	2.0	6.29E-04	2.36E-04	2.42E-05
· ·	5.0	1.58E-05	5.38E-06	4.26E-07		5.0	1.93E-04	6.57E-05	5.20E-06
·. ·	7.5	1.33E-05	4.32E-06	2.88E-07		∵7 . 5	1.68E-04	5.45E-05	3.63E-06
	10:0	9.96E-06	3.06E-06	1.65E-07	•	10.0	1.28E-04	3.95E-05	2.13E-06

Particulate	Fraction
Cs-134	5.47E-01
Cs-137	2.92E-01
Ce/Pr-144	7.82E-05
Ce-141	9.79E-05
La-140	5.78E-04
Mo-99	1.14E-01
Ru/Rh-106	2.90E-05
Ru-103	9.10E-05
Te-132	4.51E-02
Zr-95	1.00E-04

Iodine Fra	action	÷
I-131	2.41E-01	
I-132 🗋	6.88E-02	
I-133	4.25E-01	Ĩ
I-134 ·	6.35E-03	·:
I-135	2.59E-01	

SCENARIO INFORMATION	
Exercise Time:	13:00
Interval Since Release Started (hh:mm):	2:30
METEOROLGICAL DATA	
Ground Level Wind Velocity (mph):	· 5.70
Ground Level Direction (degrees):	169
Stability Class:	D-Neutral
A= 0 deg B= 6 deg C= 12 deg	

Particulate Concentration

	mile A (uCi/cc)	B (uCi/cc)	C (uCi/cc)	·· ,		mile	A (uCi/cc)	B (uCi/cc)	C (uCi/cc)
•	0.5 3.25E-04	1.42E-04	1.87E-05	•		0.5	3.77E-03	1.64E-03	2.16E-04
	1.0 1.24E-04	5.13E-05	6.20E-06	•		1.0	1.44E-03	5.95E-04	7.19E-05
	2.0 4.91E-05	1.85E-05	1.89E-06	. •	٠	2.0	5.79E-04	2.17E-04	2.23E-05
	5.0 1.29E-05	4.40E-06	3.48E-07			5.0	1.55E-04	5.27E-05	4.18E-06
	7.5 1.09E-05	3.53E-06	2.35E-07			7.5	1.36E-04	4.38E-05	2.92E-06
÷	10.0 8.54E-06	2.63E-06	1.41E-07			10.0	1.08E-04	3.3 <u>1E-05</u>	1.78E-06
-		-		•					

Particulate	Fraction
Cs-134	5.48E-01
Cs-137	2.92E-01
Ce/Pr-144	7.82E-05
Ce-141	9.81E-05
La-140	5.76E-04
Mo-99	1.13E-01
Ru/Rh-106	2.90E-05
Ru-103	9.10E-05
Te-132	4.50E-02
Zr-95	1.00E-04

Iodine Fraction				
2.45E-01				
6.50E-02				
4.28E-01				
5.30E-03				
2.56E-01				

SCENARIO INFORMATION	
Exercise Time:	13:15
Interval Since Release Started (hh:mm):	2:45
METEOROLGICAL DATA	
Ground Level Wind Velocity (mph):	6.90
Ground Level Direction (degrees):	167
Stability Class:	D-Neutral
A= 0 deg B= 6 deg C= 12 deg	

· ·

mile A (uCi/cc) B (uCi/cc) C (uCi/cc)

0.5 3.44E-03 1.50E-03 1.97E-04 1.0 1.31E-03 5.43E-04 6.56E-05 2.0 5.23E-04 1.96E-04 2.01E-05 5.0 1.43E-04 4.86E-05 3.84E-06 7.5 1.02E-04 3.30E-05 2.20E-06 10.0 8.68E-05 2.67E-05 1.44E-06 2

Particulate Concentration

mile	A (uCi/cc)	B (uCi/cc)	C (uCi/cc)
0.5	3.01E-04	1.31E-04	1.73E-05
1.0	1.15E-04	4.75E-05	5.74E-06
2.0	4.51E-05	1.69E-05	1.73E-06
5.0	1.21E-05	4.12E-06	3.26E-07
7.5	8.37E-06	2.71E-06	1.80E-07
10.0	6.98E-06	2.15E-06	1.16E-07

Particulate	Fraction
Cs-134	5.48E-01
Cs-137	2.92E-01
Ce/Pr-144	7.83E-05
Ce-141	9.81E-05
La-140	5.73E-04
Mo-99	1.13E-01
Ru/Rh-106	2.90E-05
Ru-103	9.11E-05
Te-132	4.50E-02
Zr-95	1.00E-04

	• .
Iodine Fra	action
I-131 ·	2.49E-01
I-132	6.14E-02
I-133	4.31E-01
I-134	4.42E-03
I-135 [·]	2.54E-01

SCENARIO INFORMATION	
Exercise Time:	13:30
Interval Since Release Started (hh:mm):	· 3:00
METEOROLGICAL DATA	
Ground Level Wind Velocity (mph):	8.50
Ground Level Direction (degrees):	167
Stability Class:	D-Neutral
A= 0 deg B= 6 deg C= 12 deg	

۰.

÷ł

ž. :

.

· Particulate Concentration

mile	A (uCi/cc)	B (uCi/cc)	C (uCi/cc)
0.5	2.73E-04	1.19E-04	1.57E-05
1.0	1.04E-04	4.31E-05	5.20E-06
2.0	4.18E-05	1.57E-05	1.61E-06
5.0	1.11E-05	3.78E-06	3.00E-07
7.5	6.84E-06	2.21E-06	1.47E-07
10.0	5.36E-06	1.65E-06	8.87E-08

Particulate	Fraction
Cs-134	5.48E-01
Cs-137	2.93E-01
Ce/Pr-144	7.82E-05
Ce-141	9.79E-05
La-140	5.71E-04
Mo-99	1.13E-01
Ru/Rh-106	2.90E-05
Ru-103	9.10E-05
Te-132	4.48E-02
Zr-95	1.00E-04

mile	A (uCi/cc)	B (uCi/cc)	C (uCi/cc)
0.5	3.06E-03	1.33E-03	1.76E-04
1.0	1.17E-03	4.83E-04	5.84E-05
2.0	4.77E-04	1.79E-04	1.83E-05
5.0	1.29E-04	4.39E-05	3.47E-06
7.5	8.20E-05	2.65E-05	1.77E-06
10.0	6.54E-05	2.01E-05	1.08E-06
	•		

Iodine Fraction			
I-131	2.53E-01	·	
I-132	5.81E-02		
I-133	4.34E-01		•
1-134	3.68E-03	•	
I-135	2.52E-01		

SCENARIO INFORMATION	
Exercise Time:	13:45
Interval Since Release Started (hh:mm):	3:15
METEOROLGICAL DATA	
Ground Level Wind Velocity (mph):	6.00
Ground Level Direction (degrees):	173
Stability Class:	D-Neutral
An Orden Dr. 6 den Or 40 des	-

A= 0 deg B= 6 deg C= 12 deg

mile A (uCi/cc) B (uCi/cc) C (uCi/cc)

2.04.25E-041.60E-041.63E-055.01.18E-044.00E-053.17E-067.57.55E-052.44E-051.63E-0610.05.25E-051.61E-058.69E-07

1.0 BKG. BKG. BKG.

BKG. BKG.

Iodine Concentration

0.5 BKG.

mile	A (uCi/cc)	B (uCi/cc)	C (uCi/cc)
0.5	BKG.	BKG.	BKG.
1.0	BKG.	BKG.	BKG.
2.0	3.79E-05	1.42E-05	1.46E-06
5.0	1.03E-05	3.51E-06	2.77E-07
7.5	6.41E-06	2.07E-06	1.38E-07
10.0	4.38E-06	1.35E-06	7.25E-08

•	Particulate	Fraction
	Cs-134	5.48E-01
	Cs-137	2.93E-01
	Ce/Pr-144	7.82E-05
	Ce-141	9.79E-05
	La-140	5.71E-04
	Mo-99	1.13E-01
	Ru/Rh-106	2.90E-05
	Ru-103	9.10E-05
	Te-132	4.48E-02
	Zr-95 ′	1.00E-04

Particulate Concentration

•			
lodine F	raction	÷ŗ	
I-131	2.53E-01		
I-132	5.81E-02	•	·
1-133	4.34E-01		
I-134	3.68E-03		
I-135	2.52E-01		

.

	SCENARIO INFORMATION				
۰.,	Exercise Time:	14:00			
j	Interval Since Release Started (hh:mm):	3:30		•	
	METEOROLGICAL DATA				
	Ground Level Wind Velocity (mph):	7.00	-		
•	Ground Level Direction (degrees):	174			
	Stability Class:	C-Slightly Unstable		•	

A= 0 deg B= 6 deg C= 12 deg

:.

Particulate Concentration

	0.5 1.0	A (uCi/cc) BKG. BKG. BKG. 9.33E-06 5.88E-06 4.10E-06	1.90E-06	BKG. BKG. BKG. 2.51E-07 1.27E-07	• • •		0.5 1.0	BKG. BKG.	BKG.	C (uCi/cc) BKG. BKG. 2.82E-06 1.47E-06 8.00E-07
		•								-
•	Particulate					lodine	e Frac		<u>ن</u>	1
	Cs-134	5.48E-01				I-131	•	2.53E-01		••
	Cs-137	2.93E-01				I-132		5.81E-02		·
	Ce/Pr-144	7.82E-05				l-133	:	4.34E-01	2	;
	Ce-141	9.79E-05			•	I-134		3.68E-03		: '
	La-140	5.71E-04				I-135		2.52E-01	•	
/	Mo-99	1.13E-01								-
	Ru/Rh-106	2.90E-05		-						.**
	Ru-103	9.10E-05							2	•
	Te-132	4.48E-02			•					1
	Zr-95	1.00E-04								:

· An O dog Dr 6 dog Cr 42 do	~	$\Lambda = \Omega doo$		C= 12 doa
Stability Class:	C-Slightly Unstable	•		
Ground Level Direction (degrees):	173	•	\$	
Ground Level Wind Velocity (mph):	6.00		<i>4</i>	
METEOROLGICAL DATA			· ·	•
Interval Since Release Started (hh:mm):	3:45		ł	
Exercise Time:	14:15		• •	
SCENARIO INFORMATION				

 $A = 0 \text{ deg} \quad B = 6 \text{ deg} \quad C = 12 \text{ deg}$

sî,

ч. .:

Particulate Concentration

15

	mile A (uCi/cc)	B (uCi/cc)	C (uCi/cc)		mile	A (uCi/cc)	B (uCi/cc)	C (uCi/cc)
	0.5 BKG.	BKG.	BKG.	-	0.5	BKG.	BKG.	BKG.
	1.0 BKG.	BKG.	BKG.		1.0	BKG.	BKG.	BKG.
	2.0 BKG.	BKG.	BKG.		2.0	BKG.	BKG.	BKG.
4	5.0 BKG.	BKG.	BKG.	·	5.0	BKG.	BKG.	BKG.
	7.5 5.45E-06	1.76E-06	1.17E-07		7.5	6.22E-05	2.01E-05	1.34E-06
• :	10.0 3.77E-06	1.16E-06	6.24E-08		10.0	4.37E-05	1.34E-05	7.23E-07
				-				

	Particulate Fraction							
	Cs-134	5.48E-01						
	Cs-137	2.93E-01						
	Ce/Pr-144	7.82E-05						
	Ce-141	9,79E-05						
•	La-140	5.71E-04						
/	Mo-99	1.13E-01						
	Ru/Rh-106	2.90E-05						
	Ru-103	9.10E-05						
	Te-132	4.48E-02						
	Zr-95 .	1.00E-04						

lodine Fr	action	
I-131	2.53E-01	
I-132	5.81E-02	
I-133	4.34E-01	
1-134	3.68E-03	
I-135	2.52E-01	

 · · · ·							· · ·
• • •							•.
SCENARIO INFORMATION Exercise Time: Interval Since Release Started (hh:mm): METEOROLGICAL DATA Ground Level Wind Velocity (mph): Ground Level Direction (degrees): Stability Class: A= 0 deg B= 6 deg C= 12	7.00 173.60 C-Slightly)) Unstable	A= 0 deg	B= 6 deg	C= 12 deg		•
Particulate Concentration		Iodine Con	centration		· .	• •	
mile A (uCi/cc) B (uCi/cc) C (uCi 0.5 BKG. BKG. BKG. 1.0 BKG. BKG. BKG. 2.0 BKG. BKG. BKG. 5.0 BKG. BKG. BKG. 7.5 4.94E-06 1.60E-06 1.06E 10.0 3.49E-06 1.07E-06 5.78E	<u> </u>	0.5 1.0 2.0 5.0 7.5	BKG. BKG. BKG. 5.54E-05	B (uCi/cc) BKG. BKG. BKG. BKG. 1.79E-05 1.23E-05	BKG. BKG. BKG. BKG. 1.19E-06	· . · · .	· · ·
Particulate FractionCs-1345.48E-01Cs-1372.93E-01Ce/Pr-1447.82E-05Ce-1419.79E-05La-1405.71E-04Mo-991.13E-01Ru/Rh-1062.90E-05Ru-1039.10E-05Te-1324.48E-02Zr-951.00E-04		Iodine Frac I-131 I-132 I-133 I-134 I-135	tion 2.53E-01 5.81E-02 4.34E-01 3.68E-03 2.52E-01				
• · ·				•			

. : .

.

.

•

.

1

.