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ECCS acceptance criteria

@ In order to avoid significant cladding embrittlement
and maintain coolable geometry of reactor core,

maximum cladding temperature (1200°C) and oxidation
(15%) are defined in ECCS acceptance criteria.



Where is boundary for loss of coolable geometry?
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JAERI’s view on criteria for
“significant cladding embrittlement”
to maintain coolable geometry

Survive/fracture boundary under LOCA conditions
can be the criteria with margin.

Because, if cladding survives the quench,

 significant loss of rod geometry and fuel pellet
dispersal should be avoided

- and guarantee coolable geometry of reactor core.



JAERI’s experimental method to determine
conditions for cladding fracture on quenching

Integral thermal shock test
* The tests simulates LOCA conditions and fuel behaviors.

The cladding balloons and ruptures, and is oxidized in
Ssteam and finally quenched by flooding water.

* |t is best for determining boundary condition for cladding
fracture on quenching.

* |t is historically adopted for confirming the safety.

* |t is also best for understanding the whole behaviors under
LOCA conditions.
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ECR (%)

Hydrogen effect on fracture condition
(Results with non-irradiated Zircaloy-4 cladding)
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ECR: Equivalent Cladding Reacted (Fraction of cladding thickness oxidized assuming that all
absorbed oxygen forms stoichiometric ZrO2) calculated by Baker-Just equation.
(Cooperative research with Japanese PWR utilities)



ECR (%)

Influence of restraint load on Fracture conditions
(Results with non-irradiated Zircaloy-4 cladding)
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Sample and test conditions of integral thermal
shock tests with irradiated PWR claddings

(Cooperative research with Japanese PWR utilities)

Test No. 1 2 3
Sample No. A 31 A1-2 BL-3
Rod Average Burn up (GWd/t) 43.9 39.1
Corrosion Layer Thickness 20 25 18
(um)
Fuel Cladding Low tin Zircaloy-4
Oxidation [T g,’gﬂeratu"e (K) 1453 [1180] | 1465[1192] | 1430 [1157]
Oxidation Time (sec) 486 120 200
ECR 30.0 17.9 16.4*
Failed / Survived Failed Survived Survived
Load at Failure (N) [ (kgf) ] 498 [50.8] -- --
Maximum restraint load (N) -- 540 540

o

J

*:Estimeted values by Baker-Just equation taking account of double sided oxidation and wall thinning by ballooning.




Post-test appearance of
irradiated PWR cladding

Hydrogen concentration ﬂ ﬂ ﬂ
1. 781 ppm 123 1cm
2. 780 ppm —_y
3. 850 ppm

 Typical appearance after ballooning and rupture as observed in un-irradiated claddings
 Circumferential increase ranged 14 to 28 %

* Fine axial cracks in corrosion layer

* Increase in hydrogen concentration even at rupture position
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Fracture conditions of irradiated PWR cladding

Restrained on quenching
(Max. axial load limited to 530-540N)
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* Fracture boundary is not remarkably reduced by irradiation for the examined range.

 Fractured condition agrees with results of non-irradiated claddings. "



Post-test appearance of
irradiated PWR cladding
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The cladding fractured near the rupture position with circumferential cracking.

The cladding was embrittled by both oxidation and secondary hydriding. 19



Conclusion

« Coolable geometry of a core should be maintained if
the fuel rods survive the quench under LOCA
conditions.

 JAERI performs integral thermal shock tests
simulating the whole LOCA sequence to determine
survive/fracture boundary condition.

* Fracture boundary of Zircaloy-4 fuel claddings,
irradiated to 39 and 44GWd/t at a PWR was higher
than the limit in the Japanese ECCS acceptance
criterion .
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