14	Table 3.	3.1-3: Reflecto	or Reactivity	With 60.96 cm	n Water Backin	g
H/Pu		ke	ff + 2σ For l	Reflectors Exa	mined	i in a stand and Salara
	Nb	Gypsum	Sn	100% Poly	25% Water/ 75% Poly	50% Water/ 50% Poly
500	0.9101	0.9078	0.8946	0.9101	0.9055	0.9062
550	0.9237	0.9217	0.9041	0.9175	0.9140	0.9156
600	0.9327	0.9298	0.9169	0.9257	0.9226	0.9215
650	0.9381	0.9352	0.9263	0.9330	0.9275	0.9265
700	0.9420	0.9380	0.9314	0.9377	0.9321	0.9273
750	0.9454	0.9392	0.9367	0.9372	0.9347	0.9300
800	0.9465	0.9416	0.9390	0.9355	0.9372	0.9377
850	0.9507	0.9412	0.9446	0.9375	0.9365	0.9306
900	0.9505	0.9476	0.9439	0.9396	0.9352	0.9358
950	0.9459	0.9426	0.9441	0.9376	0.9389	0.9368
1000	0.9471	0.9424	0.9433	0.9389	0.9385	0.9341
1050	0.9459	0.9428	0.9410	0.9371	0.9348	0.9329
1100	0.9403	0.9380	0.9392	0.9337	0.9374	0.9320
1150	0.9385	0.9404	0.9366	0.9297	0.9338	0.9251
1200	0.9387	0.9310	0.9385	0.9311	0.9264	0.9267
1250	0.9366	0.9295	0.9378	0.9289	0.9261	0.9240
1300	0.9321	0.9304	0.9299	0.9194	0.9244	0.9210
1350	0.9299	0.9233	0.9299	0.9185	0.9156	0.9157
1400	0.9260	0.9190	0.9234	0.9162	0.9159	0.9121
1450	0.9228	0.9172	0.9212	0.9106	0.9164	0.9134
1500	0.9191	0.9149	0.9181	0.9066	0.9061	0.9078

Figure 3.3.1-3: Reflector Reactivity at 100% Density

SAIC-1322-001 Rev. 1 Page 68 of 108

Tabl	e 3.3.1-4	: Reflect	or Reacti	ivity As a	Functio	n of Thio	ckness at	the Optin	num H/P	'n					
Thickness		$k_{eff} + 2\sigma$ For Reflectors Examined													
(in.)	Be	BeO	C	D ₂ O	MgO	Pb	Ni	Inconel	SS304	Zr					
24	1.1903	1.1900	1.1233	1.0787	1.0468	1.0319	1.0272	1.0233	1.0091	1 0006					
12	1.1823	1.1758	1.1082	1.0548	1.0446	1.0089	1.0244	1.0195	1 0067	0.9886					
6	1.1574	1.1429	1.0727	1.0336	1.0198	0.9804	1 0021	1.0022	0.9835	0.9000					
3	1.0953	1.0866	1.0308	1.0061	0.9996	0.9612	0.9665	0.9686	0.9471	0.0524					
1	0.9991	0.9976	0.9766	0.9641	0.9638	0.9447	0.9088	0.9077	0.8894	0.9324					

Figure 3.3.1-4: Reactivity as a Function of Reflector Thickness and Material

Tab	le 3.3.1-5	S: Reflect	or React	ivity As	a Functio	on of Thi	ckness at th	e Optim	um H/Pu	l		
Thickness		k _{eff} + 2σ For Reflectors Examined										
(in.)	Bi	Cu	Fe	V	Cr	SiO ₂	Concrete	Mo	Co	Mn		
24	0.9959	0.9908	0.9845	0.9781	0.9711	0.9710	0.9648	0.956	0.9533	0.9518		
12	0.9739	0.9851	0.9774	0.976	0.9569	0.9595	0.9590	0.9514	0.9482	0.9450		
6	0.9658	0.9723	0.9614	0.9517	0.9363	0.9496	0.9613	0.9457	0.9345	0.9236		
3	0.9516	0.9435	0.9325	0.9216	0.9084	0.9433	0.9501	0.9237	0.9026	0.9005		
1	0.9376	0.8912	0.8898	0.8796	0.8761	0.9347	0.9378	0.8929	0.8474	0.8581		

Figure 3.3.1-5: Reactivity as a Function of Reflector Thickness and Material

Table	3.3.1-6: Refl	ector Reactivity	As a Functio	on of Thickness	at the Optimur	n H/Pu						
Thickness	k _{eff} + 2σ For Reflectors Examined											
(in)	Nb	Gypsum	Sn	100% Poly	25% Water/ 75% Poly	50% Water/ 50% Poly						
24	0.9507	0.9476	0.9446	0.9396	0.9389	0.9377						
12	0.9500	0.9435	0.9327	0.9412	0.9388	0.9326						
6	0.9366	0.9416	0.9248	0.9413	0.9343	0.9359						
3	0.9193	0.9403	0.9165	0.9407	0.9341	0.9364						
1	0.9090	0.9322	0.9159	0.9336	0.9337	0.9321						

Figure 3.3.1-6: Reactivity as a Function of Reflector Thickness and Material

Table 3.3.1-7: Reflectors Wit Mixture and Equivalent Thic	Table 3.3.1-7: Reflectors With Eigenvalues > than that of 25% Poly/75% WaterMixture and Equivalent Thickness (Reflectors Backed With 60.96 cm of Water)								
Reflector Material	Optimum	$k_{eff} + 2\sigma$	Equivalent						
	H/Pu		Thickness (in.)						
Be	550	1.1903	0.28						
BeO	600	1.1900	0.24						
С	750	1.1237	0.18						
D ₂ O	700	1.0787	0.24						
MgO	800	1.0489	0.26						
Pb	800	1.0319	0.63						
Ni	700	1.0272	1.82						
Inconel	800	1.0233	1.85						
SS304	700	1.0091	2.71						
Zr	950	1.0006	0.76						
Bi	950	0.9959	0.94						
Cu	800	0.9908	2.93						
Fe	850	0.9845	3.62						
V	850	0.9781	4.29						
Cr	800	0.9711	6.24						
SiO ₂	1050	0.9710	2.04						
Concrete (Oak Ridge)	800	0.9648	1.24						
Мо	750	0.9560	4.84						
Со	750	0.9533	8.16						
Mn	850	0.9518	9.37						
Nb	850	0.9507	5.85						
Gypsum	900	0.9476	2.04						
Sn	850	0.9446	18.91						
CH ₂	900	0.9396	5.36						
75% Poly/ 25% Water	950	0.9389	24.00*						
50% Poly/50% Water	800	0.9377	24.00*						
25% Poly/ 75% Water (Ref)	800	0.9370	24.00						

* Histories Increased to 1000000.

3.3.2 Reactivity As a Function of ReflectorVolume Fraction For Non-Fissile Materials

The analyses to this point has assumed that the reflecting material around the fissile mass is geometrically perfect in the sense that it is a tight fitting continuous piece with no holes. However, it is not credible for discrete particles to completely enclose the fissile waste material without some porosity since the maximum achievable packing fraction for any arrangement of particles is approximately 74.048% (face-centered cubic). This maximum packing fraction assumes that all particles are identical in size and are arranged in a perfect face-centered cubic configuration. Typically a tightly packed configuration ranges from 50% (simple cubic is 52.36%) to 70% (body-centered cubic is 68.02%). As the particles sizes vary and randomize in

SAIC-1322-001 Rev. 1 Page 72 of 108

Ľ

their location, the maximum theoretical packing fraction drops to approximately 64%, with a nominal value of 50% generally considered the maximum achievable packing fraction with varying size particles. For example, tap densities of uranium or other powders that are vibrated and/or shaken reach approximately 50% of the theoretical density. To determine the reactivity effect of a reflector composed of discrete particles, a calculation was performed in which the reflector packing fraction was assumed to be at a maximum theoretical achievable limit of 70%. To simulate a water immersion event, the 30% void volume was filled with water and the whole system was backed with 2 ft. of water. Tables 3.3.2-1 through 3.3.2-3 and Figure 3.3.2-1 through 3.3.2-3 illustrate the calculation. In addition, Table 3.3.2-4 tabulates the equivalent thickness of those reflectors whose k_{eff} exceeds that of the reference reflector (25% polyethylene/75% water). It is that noteworthy that many of the metallic reflectors that were more reactive than the reference cases at 100% packing fraction are less reactive than the reference case at 70% packing fraction with intervening water in the void spaces. Physically, the water modifies the neutron spectrum within the reflector so that reflector becomes more parasitic to the neutrons, and thereby reducing the system reactivity.

Table	Table 3.3.2-1: Reflector Reactivity - 70% Packing Fraction; 60.96 cm Water Backing											
H/Pu			k _{ef}	r + 2σ Fo	r Reflect	tors Exai	nined					
7	Be	BeO	C	MgO	D ₂ O	Pb	Bi	Zr	Concrete			
500	1.0466	1.0454	1.0007	0.9670	0.9653	0.9354	0.9267	0.9302	0.9175			
550	1.0578	1.0484	1.0047	0.9797	0.9796	0.9493	0.9363	0.9374	0.9222			
600	1.0601	1.0541	1.0125	0.9812	0.9857	0.9547	0.9471	0.9405	0.9353			
650	1.0583	1.0583	1.0142	0.9836	0.9827	0.9583	0.9485	0.9489	0.9414			
700	1.0611	1.0534	1.0149	0.9866	0.9882	0.9640	0.9555	0.9538	0.9507			
750	1.0626	1.0557	1.0197	0.9943	0.9891	0.9621	0.9591	0.9557	0.9496			
800	1.0579	1.0510	1.0181	0.9966	0.9892	0.9664	0.9594	0.9550	0.9473			
850	1.0510	1.0521	1.0154	0.9956	0.9904	0.9662	0.9616	0.9610	0.9519			
900	1.0526	1.0470	1.0147	0.9926	0.9913	0.9687	0.962	0.9579	0.9501			
950	1.0511	1.0427	1.0152	0.9897	0.9863	0.9670	0.9621	0.9574	0.9510			
1000	1.0450	1.0411	1.0106	0.9856	0.9880	0.9665	0.9587	0.9572	0.9514			
1050	1.0408	1.0417	1.0089	0.9856	0.9814	0.9696	0.9578	0.9538	0.9471			
1100	1.0394	1.0331	1.0039	0.9793	0.9814	0.964	0.9556	0.9532	0.9448			
1150	1.0322	1.0224	0.9985	0.9747	0.9748	0.9556	0.9510	0.9492	0.9445			
1200	1.0255	1.0235	0.9942	0.9743	0.9753	0.9562	0.9504	0.9463	0.9408			
1250	1.0208	1.0226	0.9922	0.9651	0.9699	0.9532	0.9493	0.9438	0.9379			
1300	1.0136	1.0117	0.9869	0.9688	0.9669	0.9532	0.9448	0.9439	0.9338			
1350	1.0104	1.0073	0.9834	0.9649	0.9586	0.9461	0.9446	0.9391	0.9308			
1400	1.0018	1.0019	0.9763	0.9569	0.9564	0.9380	0.9373	0.9306	0.9276			
1450	1.0014	0.9976	0.9710	0.9529	0.9512	0.9385	0.9329	0.9301	0.9243			
1500	0.9944	0.9916	0.9680	0.9517	0.9493	0.9341	0.9306	0.9261	0.9187			

Figure 3.3.2-1: Reflector Reactivity at 70% Packing Fraction

Table 3	.3.2-2: Refl	ector Rea	ctivity - 7()% Packi	ng Fractio	on; 60.96 c	m Water	Backing
H/Pu	l	ana tar	k _{eff} + 2o	For Refl	ectors Ex	amined		
	Gypsum	Ni	Inconel	SS304	Sn	Fe	Cu	Nb
500	0.9084	0.9108	0.9034	0.8893	0.8758	0.8860	0.8793	0.8745
550	0.9174	0.9149	0.9108	0.8986	0.8920	0.9000	0.8891	0.8867
600	0.9272	0.9228	0.9187	0.9060	0.8959	0.9076	0.8969	0.8916
650	0.9277	0.9290	0.9235	0.9114	0.9055	0.9118	0.9065	0.8965
700	0.9343	0.9337	0.9251	0.9218	0.9128	0.9187	0.9136	0.9035
750	0.9364	0.9375	0.9343	0.9209	0.9150	0.9184	0.9131	0.9087
800	0.9357	0.9359	0.9316	0.9241	0.9164	0.9227	0.9122	0.9144
850	0.9399	0.9373	0.9340	0.9252	0.9185	0.9189	0.9185	0.9172
900	0.9430	0.9341	0.9319	0.9236	0.9245	0.9218	0.9200	0.9164
950	0.9379	0.9368	0.9317	0.9275	0.9233	0.9241	0.9187	0.9146
1000	0.9377	0.9352	0.9348	0.9227	0.9193	0.9238	0.9161	0.9164
1050	0.9357	0.9314	0.9287	0.9199	0.9238	0.9218	0.9112	0.9180
1100	0.9359	0.9294	0.9299	0.9174	0.9226	0.9171	0.9113	0.9122
1150	0.9350	0.9263	0.9276	0.9185	0.9198	0.9158	0.9123	0.9132
1200	0.9292	0.9248	0.9200	0.9123	0.9164	0.9156	0.9124	0.9111
1250	0.9270	0.9200	0.9190	0.9132	0.9149	0.9138	0.9044	0.9091
1300	0.9252	0.9130	0.9148	0.9101	0.9111	0.9093	0.9015	0.9086
1350	0.9212	0.9120	0.9156	0.9051	0.9100	0.9061	0.9005	0.9021
1400	0.9169	0.9101	0.9093	0.9023	0.9049	0.9014	0.8985	0.8971
1450	0.9140	0.9070	0.9049	0.8992	0.9057	0.8991	0.8970	0.8927
1500	0.9121	0.8998	0.9024	0.8979	0.8970	0.8920	0.8872	0.8903

Figure 3.3.2-2: Reflector Reactivity at 70% Packing Fraction

H/Pu		$k_{eff} + 2\sigma Fc$	or Reflectors	Examined	
	Mo	Cr	V	Mn	Co
500	0.8696	0.8717	0.8646	0.8346	0.8235
550	0.8796	0.8757	0.8757	0.8507	0.8394
600	0.8837	0.8812	0.8864	0.8615	0.8459
650	0.8943	0.8920	0.8936	0.8647	0.8552
700	0.9011	0.9019	0.8948	0.8715	0.8629
750	0.9018	0.9045	0.9047	0.8722	0.8683
800	0.9097	0.9031	0.9021	0.8813	0.8709
850	0.9054	0.9053	0.9060	0.8842	0.8722
900	0.9077	0.9058	0.9034	0.8810	0.8789
950	0.9085	0.9084	0.9067	0.8861	0.8761
1000	0.9126	0.9096	0.9030	0.8854	0.8770
1050	0.9073	0.9056	0.9043	0.8853	0.8751
1100	0.9094	0.9052	0.9044	0.8863	0.8789
1150	0.9143	0.9061	0.9044	0.8811	0.8769
1200	0.9024	0.9041	0.9003	0.8828	0.8743
1250	0.9006	0.8985	0.8983	0.8834	0.8723
1300	0.8926	0.8970	0.8950	0.8790	0.8743
1350	0.8922	0.8932	0.8919	0.8774	0.8683
1400	0.8928	0.8910	0.8909	0.8718	0.8659
1450	0.8859	0.8839	0.8854	0.8700	0.8650
1500	0.8865	0.8858	0.8794	0.8644	0.8615

Figure 3.3.2-3: Reflector Reactivity at 70% Packing Fraction

Table 3.3.2-4: Equivalen Fraction and	t Thickness For d Backed With 6	Reflectors With 0.96 cm of Wate	70% Packing r
Reflector Material	Optimum H/Pu	k _{eff} + 2σ at 24 in Thickness	Equivalent Thickness (in)
Be	750	1.0626	0.12
BeO	650	1.0583	0.16
С	750	1.0197	0.25
D ₂ O	800	0.9966	0.27
MgO	900	0.9913	0.33
Pb	1050	0.9696	0.72
Bi	950	0.9621	0.86
Zr	850	0.9610	0.87
Concrete (Oak Ridge)	850	0.9519	1.52
SiO ₂	850	0.9512	1.65
Gypsum	900	0.9430	6.97
Ni	900	0.9397	24.00
Reference 25% Poly/ 75% at 100% packing fraction	800	0.9370	24.00

The computational analyses for reflectors composed of discrete pieces has been bounding in that the calculation was performed at the maximum packing fraction limit of 70%. As discussed previously, the waste dunnage will be composed of a myriad of materials sizes ranging from small particles to large chunks packed in a random order, consequently the reflector packing may vary over a wide range of values. Thus it is instructive to determine the effect of the reflector packing fraction on the reactivity of the fissile mass. In this regard, a calculation was performed in which the packing fraction was varied for those reflectors whose system eigenvalues were greater than the 25% polyethylene/ 75% water reference reflector material at the optimal H/Pu ratio. Once again, a flooded contingency was considered, consequently the void volume was filled with water and the system was backed by 2 ft. of water. Tables 3.3.2-5 through 3.3.2-14 and Figure 3.3.2-4 through 3.3.2-13 illustrate the effect of reflector packing fraction on the system reactivity. Furthermore, the reflector equivalent thicknesses are summarized in Tables 3.3.2-15 and 3.3.2-16. Note that the data indicates that the equivalent reflector thickness remains effective constant as the packing fraction decreases until a threshold or transition packing fraction is reached at which time the system reactivity decreases rapidly to that obtained if the reflector were replaced by water. This transition packing fraction is larger for the less reactive concrete, sand, and metallic reflectors than for the more reactive beryllium-based materials, carbon, magnesium oxide, and heavy water thereby providing a natural division between the two classes of highly reactive reflectors. Thus it is concluded that a knowledge of the waste stream will be required to preclude the presence of large amounts and/or excessive thicknesses of highly reflective material, in a form that would allow these materials to tightly surround the fissile mixture, prior to shipment.

Figure 3.3.2-4: Beryllium Reflector Reactivity as a Function of Packing Fraction

	Table	e 3.3.2-5:	Be Refle	ector Rea	ctivity a	s a Funct	tion of Pa	acking F	raction	
H/Pu				k _{eff} at V	arious P	acking F	ractions	0		
	100%	70%	60%	50%	40%	30%	20%	10%	5%	1%
500	1.1886	1.0466	1.0189	0.9984	0.9756	0.9570	0.9360	0.9168	0.9089	0.9016
550	1.1903	1.0578	1.0299	1.0054	0.9821	0.9599	0.9426	0.9251	0.9133	0.9089
600	1.1899	1.0601	1.0324	1.0090	0.9835	0.9660	0.9511	0.9285	0.9213	0.9185
650	1.1870	1.0583	1.0335	1.0131	0.9894	0.9694	0.9513	0.9374	0.9234	0.9207
700	1.1858	1.0611	1.0352	1.0087	0.9901	0.9732	0.9571	0.9410	0.9318	0.9305
750	1.1808	1.0626	1.0363	1.0113	0.9929	0.9746	0.9601	0.9398	0.9325	0.9291
800	1.1797	1.0579	1.0325	1.0106	0.9950	0.9735	0.9586	0.9463	0.9357	0.9283
850	1.1736	1.0510	1.0370	1.0108	0.9948	0.9790	0.9595	0.9455	0.9404	0.9325
900	1.1711	1.0526	1.0325	1.0086	0.9951	0.9745	0.9607	0.9476	0.9396	0.9308
950	1.1597	1.0511	1.0267	1.0093	0.9909	0.9703	0.9561	0.9444	0.9345	0.9307
1000	1.1560	1.0450	1.0247	1.0034	0.9856	0.9719	0.9607	0.9418	0.9363	0.9323
1050	1.1509	1.0408	1.0228	0.9992	0.9823	0.9693	0.9523	0.9412	0.9348	0.9284
1100	1.1449	1.0394	1.0157	0.9927	0.9838	0.9671	0.9463	0.9387	0.9326	0.9254
1150	1.1391	1.0322	1.0112	0.9940	0.9783	0.9637	0.9457	0.9335	0.929	0.9211
1200	1.1273	1.0255	1.0041	0.9883	0.9754	0.9568	0.9416	0.9353	0.9246	0.9247
1250	1.1239	1.0208	1.0012	0.9850	0.9700	0.9557	0.9442	0.9269	0.9270	0.9244
1300	1.1166	1.0136	0.9958	0.9801	0.9647	0.9495	0.9374	0.9295	0.9217	0.9183
1350	1.1069	1.0104	0.9911	0.9755	0.9594	0.9514	0.9324	0.9228	0.9192	0.9176
1400	1.0988	1.0018	0.9852	0.9713	0.9574	0.9394	0.9333	0.9197	0.9144	0.9126
1450	1.0944	1.0014	0.9765	0.9695	0.9476	0.9375	0.9270	0.9113	0.9123	0.9096
1500	1.0869	0.9944	0.9726	0.9595	0.9462	0.9343	0.9208	0.9118	0.9126	0.9016

04-082(doc)/050304

SAIC-1322-001 Rev. 1 Page 78 of 108

Figure 3.3.2-5: Beryllium Oxide Reflector Reactivity as a Function of Packing Fraction

	Table 3.3.2-6: BeO Reflector Reactivity as a Function of Packing Fraction											
H/Pu		47.227		k _{eff} at V	arious P	acking F	ractions	·····		7		
	100%	70%	60%	50%	40%	30%	20%	10%	5%	1%		
500	1.1866	1.0454	1.0166	0.9959	0.9693	0.9484	0.9314	0.9184	0.9076	0.8981		
550	1.1878	1.0484	1.0218	0.9980	0.9776	0.9635	0.9421	0.9177	0.9164	0.9098		
600	1.1900	1.0541	1.0245	1.0041	0.9804	0.9624	0.9474	0.9315	0.9241	0.9161		
650	1.1857	1.0583	1.0275	1.0058	0.9831	0.9673	0.9519	0.9336	0.9270	0.9197		
700	1.1885	1.0534	1.0309	1.0076	0.9901	0.9700	0.9540	0.9388	0.9273	0.9276		
750	1.1853	1.0557	1.0293	1.0102	0.9874	0.9757	0.9578	0.9386	0.9399	0.9265		
800	1.1824	1.0510	1.0318	1.0093	0.9921	0.9743	0.9610	0.9425	0.9372	0.9292		
850	1.1757	1.0521	1.0270	1.0098	0.9898	0.9752	0.9584	0.9446	0.9376	0.9275		
900	1.1741	1.0470	1.0268	1.0087	0.9895	0.9756	0.9587	0.9398	0.9399	0.9289		
950	1.1691	1.0427	1.0228	1.0066	0.9867	0.9716	0.9574	0.9413	0.9366	0.9323		
1000	1.1551	1.0411	1.0183	1.0037	0.9828	0.9698	0.9545	0.9434	0.9384	0.9328		
1050	1.1564	1.0417	1.0187	0.9946	0.9832	0.9647	0.9543	0.9388	0.9335	0.9288		
1100	1.1479	1.0331	1.0123	0.9935	0.9791	0.9632	0.9529	0.9356	0.9351	0.9313		
1150	1.1408	1.0224	1.0077	0.9910	0.9731	0.9606	0.9492	0.9342	0.9322	0.9276		
1200	1.1332	1.0235	1.0016	0.9883	0.9720	0.9568	0.9463	0.9319	0.9269	0.9222		
1250	1.1275	1.0226	0.9995	0.9788	0.9676	0.9556	0.9415	0.9310	0.9249	0.9222		
1300	1.1185	1.0117	0.9952	0.9778	0.9637	0.9488	0.9403	0.9275	0.9253	0.9190		
1350	1.1145	1.0073	0.9901	0.9715	0.9600	0.9465	0.9338	0.9254	0.9170	0.9108		
1400	1.1066	1.0019	0.9831	0.9710	0.9510	0.9409	0.9316	0.9196	0.9155	0.9124		
1450	1.0952	0.9976	0.9805	0.9653	0.9485	0.9372	0.9277	0.9168	0.9090	0.9108		
1500	1.0900	0.9916	0.9700	0.9584	0.9468	0.9384	0.9260	0.9122	0.9092	0.9043		

Figure 3.3.2-6: Carbon Reflector Reactivity as a Function of Packing Fraction

e.	Table 3.3.2-7: Carbon Reflector Reactivity as a Function of Packing Fraction											
H/Pu		a sina sina. Ana sina sina sina sina sina sina sina si		k _{eff} at V	arious P	acking F	ractions					
	100%	70%	60%	50%	40%	30%	20%	10%	5%	1%		
500	1.1101	1.0007	0.9778	0.962	0.9446	0.9357	0.9238	0.9128	0.9068	0.9015		
550	1.1105	1.0047	0.9877	0.9703	0.9538	0.9411	0.9293	0.9177	0.9174	0.9100		
600	1.1166	1.0125	0.9928	0.9776	0.9658	0.9517	0.9346	0.9320	0.9212	0.9170		
650	1.1211	1.0142	0.9957	0.9805	0.9664	0.9512	0.9408	0.9343	0.9310	0.9207		
700	1.1230	1.0149	0.9994	0.9852	0.9695	0.9543	0.9456	0.9331	0.9254	0.9269		
750	1.1237	1.0197	1.0008	0.9842	0.9689	0.9578	0.9468	0.9378	0.9334	0.9325		
800	1.1214	1.0181	1.0062	0.9851	0.9768	0.9604	0.9473	0.9419	0.9386	0.9310		
850	1.1192	1.0154	1.0010	0.9843	0.9725	0.9613	0.9495	0.9410	0.9346	0.9313		
900	1.1155	1.0147	0.9975	0.9849	0.9713	0.9599	0.9522	0.9382	0.9351	0.9315		
950	1.1128	1.0152	0.9968	0.9820	0.9652	0.9607	0.9496	0.9398	0.9354	0.9324		
1000	1.1059	1.0106	0.9955	0.9789	0.9707	0.9518	0.9439	0.9398	0.9368	0.9293		
1050	1.1020	1.0089	0.9904	0.9755	0.9668	0.9589	0.9467	0.9371	0.9317	0.9327		
1100	1.0992	1.0039	0.9881	0.9798	0.9672	0.9518	0.9424	0.9360	0.9327	0.9295		
1150	1.0910	0.9985	0.9863	0.9721	0.9616	0.9498	0.9416	0.9352	0.9292	0.9268		
1200	1.0837	0.9942	0.9824	0.9689	0.9579	0.9493	0.9361	0.9319	0.9209	0.922		
1250	1.0796	0.9922	0.9762	0.9638	0.9536	0.9435	0.9324	0.9293	0.9227	0.9205		
1300	1.0713	0.9869	0.9754	0.9629	0.9496	0.9372	0.9307	0.9235	0.9201	0.9170		
1350	1.0708	0.9834	0.9653	0.9572	0.9486	0.9366	0.9275	0.9186	0.9138	0.9167		
1400	1.0662	0.9763	0.9623	0.9552	0.9402	0.9337	0.9246	0.9160	0.9109	0.9095		
1450	1.0544	0.9710	0.9593	0.9513	0.9405	0.9296	0.9223	0.9117	0.9086	0.9111		
1500	1.0499	0.9680	0.9506	0.9431	0.9345	0.9207	0.9164	0.9119	0.9036	0.9050		

SAIC-1322-001 Rev. 1 Page 80 of 108

Figure 3.3.2-7: Magnesium Oxide Reflector Reactivity as a Function of Packing Fraction

	Table 3.3.2-8: MgO Reflector Reactivity as a Function of Packing Fraction									
H/Pu		÷	n fre tra	keff at V	arious P	acking F	ractions			
	100%	70%	60%	50%	40%	30%	20%	10%	5%	1%
500	1.0268	0.9670	0.9559	0.9444	0.9348	0.9248	0.9168	0.9071	0.9023	0.8987
550	1.0378	0.9797	0.9645	0.9568	0.9453	0.9329	0.9232	0.9184	0.9087	0.9101
600	1.0408	0.9812	0.9692	0.9592	0.9482	0.9421	0.9342	0.9256	0.9178	0.9170
650	1.0424	0.9836	0.9756	0.9650	0.9520	0.9441	0.9379	0.9254	0.9216	0.9224
700	1.0450	0.9866	0.9799	0.9680	0.9562	0.9509	0.9449	0.9352	0.9294	0.9240
750	1.0468	0.9943	0.9852	0.9707	0.9590	0.9507	0.9454	0.9365	0.9319	0.9301
800	1.0489	0.9966	0.9838	0.9721	0.9608	0.9499	0.9463	0.9360	0.9317	0.9296
850	1.0452	0.9956	0.9829	0.9681	0.9620	0.9520	0.9423	0.9366	0.9349	0.9341
900	1.0428	0.9926	0.9815	0.9723	0.9611	0.9576	0.9429	0.9394	0.9380	0.9302
950	1.0401	0.9897	0.9819	0.9702	0.9608	0.9541	0.9429	0.9343	0.9379	0.9316
1000	1.0390	0.9856	0.9784	0.9715	0.9641	0.9515	0.9464	0.9368	0.9358	0.9311
1050	1.0379	0.9856	0.9742	0.9674	0.9588	0.9522	0.9426	0.9348	0.9356	0.9320
1100	1.0340	0.9793	0.9729	0.9649	0.9560	0.9492	0.9387	0.9345	0.9278	0.9288
1150	1.0280	0.9747	0.9717	0.9601	0.9550	0.9464	0.9353	0.9314	0.9263	0.9247
1200	1.0284	0.9743	0.9667	0.9564	0.9516	0.9391	0.9356	0.9286	0.9268	0.9219
1250	1.0200	0.9651	0.9635	0.9548	0.9472	0.9409	0.9323	0.9227	0.9239	0.9175
1300	1.0132	0.9688	0.9580	0.9479	0.9429	0.9350	0.9285	0.9228	0.9205	0.9175
1350	1.0113	0.9649	0.9564	0.9449	0.9338	0.9288	0.9245	0.9190	0.9161	0.9177
1400	1.0011	0.9569	0.9516	0.9413	0.9353	0.9269	0.9221	0.9173	0.9147	0.9109
1450	1.0007	0.9529	0.9446	0.9407	0.9287	0.9267	0.9191	0.9131	0.9086	0.9075
1500	0.9956	0.9517	0.9433	0.9330	0.9242	0.9189	0.9112	0.9064	0.9057	0.8986

C40

Figure 3.3.2-8: Heavy Water Reflector Reactivity as a Function of Packing Fraction

Та	ble 3.3.2-9	: D ₂ O Re	flector Re	activity a	s a Functi	on of Pacl	king Fract	tion				
H/Pu	1	k _{eff} at Various Packing Fractions										
	100%	70%	60%	50%	40%	30%	20%	10%				
500	1.0595	0.9653	0.9569	0.942	0.9353	0.9212	0.9170	0.9061				
550	1.0697	0.9796	0.9634	0.9528	0.9371	0.9270	0.9235	0.9153				
600	1.0697	0.9857	0.9701	0.9569	0.9488	0.9375	0.9354	0.9206				
650	1.0739	0.9827	0.9756	0.9612	0.9517	0.9399	0.9386	0.9245				
700	1.0787	0.9882	0.9756	0.9630	0.9546	0.9462	0.9389	0.9321				
750	1.0766	0.9891	0.9803	0.9659	0.9580	0.9502	0.9411	0.9345				
800	1.0747	0.9892	0.9764	0.9651	0.9578	0.9531	0.9416	0.9341				
850	1.0723	0.9904	0.9806	0.9652	0.9611	0.9496	0.9422	0.9348				
900	1.0666	0.9913	0.9766	0.9602	0.9594	0.9541	0.9419	0.9365				
950	1.0678	0.9863	0.9779	0.9680	0.9568	0.9495	0.9435	0.9370				
1000	1.0654	0.9880	0.9761	0.9680	0.9550	0.9473	0.9378	0.9353				
1050	1.0614	0.9814	0.9682	0.9627	0.9525	0.9467	0.9424	0.9357				
1100	1.0561	0.9814	0.9699	0.9604	0.9487	0.9465	0.9373	0.9310				
1150	1.0551	0.9748	0.9698	0.9595	0.9535	0.9412	0.9376	0.9314				
1200	1.0499	0.9753	0.9614	0.9548	0.9426	0.9401	0.9348	0.9282				
1250	1.0405	0.9699	0.9591	0.9477	0.9419	0.9342	0.9268	0.9241				
1300	1.0357	0.9669	0.9568	0.9445	0.9399	0.9321	0.9274	0.9210				
1350	1.0311	0.9586	0.9498	0.9441	0.9354	0.9299	0.9208	0.9203				
1400	1.0276	0.9564	0.9443	0.9359	0.9327	0.9236	0.9152	0.9164				
1450	1.0254	0.9512	0.9378	0.9351	0.9274	0.9213	0.9132	0.9109				
1500	1.0158	0.9493	0.9368	0.9314	0.9233	0.9182	0.9124	0.9067				

Figure 3.3.2-9: Lead Reflector Reactivity as a Function of Packing Fraction

Tab	ole 3.3.2-1	0: Lead R	eflector R	eactivity a	as a Funct	ion of Pac	king Fra	ction
H/Pu			k _{eff} at '	Various P	acking Fr	actions		
	100%	70%	60%	50%	40%	30%	20%	10%
500	0.9966	0.9354	0.9266	0.9231	0.9184	0.9123	0.9071	0.9050
550	1.0035	0.9493	0.9397	0.9351	0.9286	0.9191	0.9143	0.9101
600	1.0149	0.9547	0.9456	0.9397	0.9341	0.9300	0.9205	0.9187
650	1.0220	0.9583	0.9488	0.9447	0.9419	0.9388	0.9291	0.9251
700	1.0276	0.9640	0.954	0.9475	0.9442	0.9359	0.9332	0.9319
750	1.0304	0.9621	0.9589	0.9477	0.9454	0.9432	0.9372	0.9361
800	1.0319	0.9664	0.9612	0.9566	0.9498	0.9409	0.9396	0.9328
850	1.0300	0.9662	0.9603	0.9574	0.9493	0.9457	0.9385	0.9364
900	1.0280	0.9687	0.9638	0.9534	0.9463	0.9429	0.9437	0.9357
950	1.0299	0.9670	0.9610	0.9494	0.9497	0.9402	0.9423	0.9333
1000	1.0311	0.9665	0.9606	0.9568	0.9498	0.9445	0.9413	0.9332
1050	1.0264	0.9696	0.9542	0.9508	0.9473	0.9368	0.9364	0.9319
1100	1.0211	0.9640	0.9520	0.9518	0.9369	0.9357	0.9382	0.9281
1150	1.0193	0.9556	0.9505	0.9432	0.9403	0.9364	0.9295	0.9297
1200	1.0137	0.9562	0.9498	0.9442	0.9406	0.9378	0.9305	0.9246
1250	1.0085	0.9532	0.9458	0.9431	0.9385	0.9309	0.9291	0.9223
1300	1.0110	0.9532	0.9451	0.9392	0.9317	0.9307	0.9231	0.9197
1350	1.0029	0.9461	0.9381	0.9368	0.9306	0.9267	0.9209	0.9153
1400	0.9977	0.9380	0.9381	0.9294	0.9262	0.9201	0.9134	0.9127
1450	0.9940	0.9385	0.9308	0.9274	0.9204	0.9183	0.9151	0.9086
1500	0.9853	0.9341	0.9256	0.9219	0.9194	0.9123	0.9071	0.9058

SAIC-1322-001 Rev. 1 Page 83 of 108

Figure 3.3.2-10: Zirconium Reflector Reactivity as a Function of Packing Fraction

Table	Table 3.3.2-11: Zirconium Reflector Reactivity as a Function of Packing Fraction										
H/Pu			k _{eff} at \	Various P	acking Fr	actions					
	100%	70%	60%	50%	40%	30%	20%	10%			
500	0.9617	0.9302	0.9221	0.9191	0.9150	0.9109	0.9066	0.9025			
550	0.9770	0.9374	0.9295	0.9242	0.9245	0.9122	0.9162	0.9102			
600	0.9857	0.9405	0.9410	0.9370	0.9281	0.9252	0.9211	0.9155			
650	0.9872	0.9489	0.9429	0.9384	0.9365	0.9297	0.9292	0.9233			
700	0.9924	0.9538	0.9472	0.9454	0.9388	0.9326	0.9326	0.9275			
750	0.9979	0.9557	0.9530	0.9470	0.9436	0.9399	0.9366	0.9302			
800	1.0002	0.9550	0.9516	0.9471	0.9485	0.9369	0.9369	0.9337			
850	0.9999	0.9610	0.956	0.9497	0.9508	0.9428	0.9369	0.9328			
900	1.0000	0.9579	0.9535	0.9534	0.9474	0.9417	0.9411	0.9324			
950	1.0006	0.9574	0.9493	0.9439	0.9444	0.9401	0.9359	0.9368			
1000	0.9976	0.9572	0.9509	0.9480	0.9432	0.9390	0.9381	0.9333			
1050	0.9949	0.9538	0.9502	0.9491	0.9433	0.9391	0.9360	0.9320			
1100	0.9937	0.9532	0.9467	0.9440	0.9441	0.9362	0.9371	0.9313			
1150	0.9905	0.9492	0.9479	0.9429	0.9377	0.9340	0.9311	0.9286			
1200	0.9845	0.9463	0.9451	0.9375	0.9352	0.9312	0.9293	0.9273			
1250	0.9803	0.9438	0.9382	0.9355	0.9316	0.9344	0.9232	0.9214			
1300	0.9782	0.9439	0.9373	0.9305	0.9288	0.9271	0.9228	0.9183			
1350	0.9786	0.9391	0.9319	0.9299	0.9299	0.9229	0.9188	0.9167			
1400	0.9715	0.9306	0.9287	0.9252	0.9241	0.9184	0.9170	0.9143			
1450	0.9681	0.9301	0.9223	0.9223	0.9188	0.9164	0.9108	0.9099			
1500	0.9617	0.9261	0.9201	0.9183	0.9156	0.9144	0.9094	0.9040			

versione Romain Romain Romain Romain Romain

SAIC-1322-001 Rev. 1 Page 84 of 108

Figure 3.3.2-11: Bismuth Reflector Reactivity as a Function of Packing Fraction

Table	3.3.2-12:	Bismuth	Reflector	Reactivity	as a Fun	ction of P	acking Fr	action
H/Pu			k _{eff} at V	Various P	acking Fr	actions		
	100%	70%	60%	50%	40%	30%	20%	10%
500	0.9400	0.9267	0.9217	0.9155	0.9109	0.9046	0.9039	0.900
550	0.9568	0.9363	0.9333	0.9283	0.9225	0.9166	0.9155	0.908
600	0.9652	0.9471	0.9357	0.9345	0.9291	0.9241	0.9146	0.922
650	0.9738	0.9485	0.9475	0.9376	0.9342	0.9288	0.9305	0.924
700	0.9885	0.9555	0.9466	0.9459	0.9397	0.9348	0.9323	0.924
750	0.9884	0.9591	0.9526	0.9458	0.9453	0.9381	0.9328	0.931
800	0.9883	0.9594	0.9533	0.9514	0.9430	0.9383	0.9316	0.933
850	0.9919	0.9616	0.9537	0.9492	0.9410	0.9420	0.9360	0.933
900	0.9923	0.9620	0.9562	0.9450	0.9474	0.9434	0.9404	0.93
950	0.9959	0.9621	0.9512	0.9452	0.9412	0.9379	0.9388	0.934
1000	0.9931	0.9587	0.9495	0.9494	0.9457	0.9391	0.9324	0.93
1050	0.9923	0.9578	0.9498	0.9466	0.9404	0.9390	0.9316	0.93
1100	0.992	0.9556	0.9513	0.9441	0.9384	0.9358	0.9303	0.92
1150	0.9884	0.9510	0.9474	0.9449	0.9415	0.9347	0.9277	0.923
1200	0.9846	0.9504	0.9426	0.9361	0.9403	0.9324	0.9288	0.923
1250	0.9816	0.9493	0.9413	0.9350	0.9321	0.9262	0.9247	0.920
1300	0.9778	0.9448	0.9414	0.9350	0.9314	0.9290	0.9218	0.92
1350	0.9743	0.9446	0.9377	0.9289	0.9296	0.9223	0.9160	0.91
1400	0.9705	0.9373	0.9307	0.9273	0.9218	0.9208	0.9169	0.914
1450	0.9681	0.9329	0.9246	0.9261	0.9209	0.9155	0.9134	0.909
1500	0.9617	0.9306	0.9251	0.9153	0.9134	0.9136	0.9074	0.903

Figure 3.3.2-12: Wet Sand Reflector Reactivity as a Function of Packing Fraction

Table	3.3.2-13:	Wet Sand	Reflector	Reactivit	y as a Fui	nction of H	Packing Fi	raction
H/Pu	ter i t	11 (S. S. 11)	k _{eff} at	Various P	acking Fr	actions	* 1 T	
.: :	100%	70%	60%	50%	40%	30%	20%	10%
500	0.9245	0.9117	0.9091	0.9107	0.9062	0.9037	0.8997	0.9011
550	0.9415	0.9228	0.9255	0.9200	0.9169	0.9142	0.9101	0.9096
600	0.9448	0.9343	0.9256	0.9286	0.9234	0.9219	0.9193	0.9195
650	0.9560	0.9383	0.9362	0.9332	0.9304	0.9298	0.9240	0.9246
700	0.9625	0.9443	0.9396	0.9390	0.9361	0.9319	0.9298	0.9280
750	0.9648	0.9490	0.9469	0.9429	0.9380	0.9373	0.9325	0.9307
800	0.9702	0.9495	0.9438	0.9415	0.9401	0.9378	0.9341	0.9316
850	0.9676	0.9512	0.9490	0.9430	0.9436	0.9415	0.9338	0.9339
900	0.9658	0.9506	0.9470	0.9447	0.9398	0.9391	0.9377	0.9306
950	0.9667	0.9482	0.9487	0.9481	0.9397	0.9389	0.9349	0.9333
1000	0.9680	0.9499	0.9465	0.9430	0.9417	0.9402	0.9358	0.9320
1050	0.9710	0.9451	0.9461	0.9387	0.9369	0.9389	0.9357	0.9297
1100	0.9700	0.9478	0.9389	0.9397	0.9368	0.9335	0.9278	0.9283
1150	0.9646	0.9463	0.9409	0.9388	0.9341	0.9351	0.9316	0.9283
1200	0.9606	0.9441	0.9383	0.9334	0.9328	0.9308	0.9282	0.9233
1250	0.9579	0.9398	0.9343	0.9306	0.9295	0.9249	0.9233	0.9216
1300	0.9528	0.9347	0.9343	0.9295	0.9248	0.9223	0.9235	0.9177
1350	0.9512	0.9316	0.9271	0.9283	0.9264	0.9205	0.9184	0.9160
1400	0.9483	0.9283	0.9276	0.9226	0.9200	0.9176	0.9142	0.9111
1450	0.9423	0.9287	0.9192	0.9180	0.9168	0.9147	0.9102	0.9082
1500	0.9368	0.9232	0.9160	0.9160	0.9096	0.9103	0.9104	0.9014

SAIC-1322-001 Rev. 1 Page 86 of 108

Figure 3.3.2-13: Concrete Reflector Reactivity as a Function of Packing Fraction

H/Pu			keff at	Various P	acking Fr	actions		
	100%	70%	60%	50%	40%	30%	20%	10%
500	0.9285	0.9175	0.9151	0.9113	0.9114	0.9079	0.9026	0.8979
550	0.9377	0.9222	0.9194	0.9204	0.9189	0.9165	0.9104	0.9098
600	0.9461	0.9353	0.9284	0.9256	0.9257	0.9176	0.9163	0.9177
650	0.9523	0.9414	0.9405	0.9367	0.9352	0.9283	0.9283	0.9206
700	0.9602	0.9507	0.9427	0.9361	0.9394	0.9301	0.9329	0.9285
750	0.9597	0.9496	0.9437	0.9418	0.9372	0.9376	0.9350	0.9326
800	0.9648	0.9473	0.9468	0.9419	0.9396	0.9360	0.9321	0.9339
850	0.9645	0.9519	0.9521	0.9447	0.9392	0.9375	0.9360	0.9309
900	0.9639	0.9501	0.9488	0.9423	0.9424	0.9408	0.9366	0.9337
950	0.9635	0.9510	0.9473	0.9447	0.9395	0.9390	0.9350	0.9328
1000	0.9616	0.9514	0.9470	0.9441	0.9428	0.9419	0.9346	0.9340
1050	0.9610	0.9471	0.9469	0.9442	0.9397	0.9351	0.9340	0.9292
1100	0.9608	0.9448	0.9425	0.9398	0.9397	0.9332	0.9352	0.9302
1150	0.9567	0.9445	0.9392	0.9427	0.9366	0.9309	0.9248	0.9256
1200	0.9517	0.9408	0.9371	0.9356	0.9345	0.9299	0.9271	0.9256
1250	0.9502	0.9379	0.9341	0.9293	0.9285	0.9270	0.9211	0.9236
1300	0.9454	0.9338	0.9276	0.9299	0.9247	0.9229	0.9184	0.9175
1350	0.9425	0.9308	0.9272	0.9257	0.9211	0.9195	0.9159	0.9138
1400	0.9392	0.9276	0.9258	0.9222	0.9193	0.9168	0.9143	0.9107
1450	0.9350	0.9243	0.9231	0.9185	0.9159	0.9137	0.9136	0.9080
1500	0.9338	0.9187	0.9146	0.9150	0.9118	0.9103	0.9083	0.9024

046

Table 3.3.	Table 3.3.2-15: Reflector Equivalent Thicknesses as a Function of Packing Fraction										
Reflector	E	quivalent	Thicknes	ss at Vario	ous Packi	ng Fractio	ons (inche	es)			
ļ	60%	50%	40%	30%	20%	10%	5%	1%			
Be	0.13	0.18	0.22	0.29	0.48	1.12*	> 24	> 24			
BeO	0.17	0.23	0.27	0.38	0.54	1.22*	> 24	> 24			
C	0.27	0.35	0.43	0.58	0.73	5.15*	> 24	> 24			
D ₂ O	0.32	0.38	0.47	0.64	1.09*	> 24	> 24	> 24			
MgO	0.37	0.40	0.48	0.70	1.40*	> 24	> 24	> 24			
Pb	0.74	1.10	1.26	1.78*	> 24	> 24	> 24	> 24			
Zr	0.92	1.21	1.53	1.85*	> 24	> 24	> 24	> 24			
Bi	1.04	1.45	1.75	2.03*	> 24	> 24	> 24	> 24			
Wet Sand	1.75	1.80	3.32*	> 24	> 24	> 24	> 24	> 24			
Concrete	1.76	1.84	3.39*	> 24	> 24	> 24	> 24	> 24			

* Transition packing fraction (equivalent thickness = 24" between this packing fraction and the next lower one)

Table 3.3.2-16: Packing Fractions Wh Those Reflectors With Eigenvalues	ich Give an Equivalent Thickness of 24" for > that of 25% Poly/75% Water Mixture
Reflector Material	Packing Fraction (Nearest Percent)
Be	7
BeO	7
С	9
D ₂ O	14
MgO	15
Pb	21
Zr	24
Bi	26
SiO ₂ (Wet Sand)	33
Concrete (Oak Ridge)	34

3.3.3 Reactivity As a Function of ReflectorVolume Fraction For Depleted Uranium

Since depleted uranium is a very good shield material that may be used in the TRUPACT-II package, it is important to determine the reactivity of the system as a function of reflector packing fraction for various ²³⁵U enrichments in a depleted uranium reflector. Following suit with the analyses performed in the previous sections for non-fissile reflectors, the system eigenvalue will be determined for a series of packing fractions ranging from 100% to 1%, where appropriate. For each packing fraction under consideration, the ²³⁵U content in the depleted uranium reflector was varied from natural to 0.1 wt.%. To simulate flooded conditions, the reflector void volume was filled with water and the system was backed by 2 ft. of water. Tables 3.3.3-1 through 3.3.3-9 and Figure 3.3.3-1 through 3.3.3-9 illustrate the effect of reflector packing fraction on the system reactivity for the selected enrichments. Furthermore, the reflector equivalent thickness is summarized in Table 3.3.3-10. The results of the analyses

SAIC-1322-001 Rev. 1 Page 88 of 108 L

suggest that utilization of depleted uranium tails as a shield material in the TRUPACT-II package should be limited to 235 U enrichments of less than 0.3% or the fissile mass limit reduced.

Table 3.3.3-1: Depleted Uranium Reflector -100% Packing Fraction; 60.96 cm Water Backing										
H/Pu		6 ⁵ 1. 161 1	k _{eff}	$+ 2\sigma$ For ²	³⁵ U Enrich	ments Exa	amined			
	U(Nat)	U(0.6%)	U(0.5%)	U(0.4%)	U(0.3%)	U(0.2%)	U(0.1%)	U(0.05%)	U(0.01%)	
500	1.0040	0.9967	0.9875	0.9805	0.9743	0.9670	0.9525	0.9501	0.9392	
550	1.0153	1.0085	1.0032	0.9923	0.9852	0.9750	0.9618	0.9564	0.9523	
600	1.0229	1.0110	1.0075	1.0012	0.9928	0.9855	0.9734	0.9654	0.9572	
650	1.0298	1.0238	1.0160	1.0061	0.9987	0.9860	0.9754	0.9680	0.9656	
700	1.0316	1.0290	1.0177	1.0086	1.0038	0.9923	0.9841	0.9728	0.9669	
750	1.0374	1.0256	1.0272	1.0149	1.0061	0.9958	0.9842	0.9755	0.9721	
800	1.0414	1.0319	1.0241	1.0171	1.0078	0.9973	0.9877	0.9772	0.9715	
850	1.0411	1.0313	1.0223	1.0184	1.0132	0.9979	0.9865	0.9782	0.9689	
900	1.0457	1.0367	1.0286	1.0189	1.0072	1.0009	0.9838	0.9745	0.9707	
950	1.0403	1.0353	1.0283	1.0137	1.0080	0.9985	0.9847	0.9755	0.9692	
1000	1.0418	1.0332	1.0264	1.0192	1.0072	0.9979	0.9838	0.9771	0.9632	
1050	1.0383	1.0281	1.0286	1.0135	1.0064	0.9928	0.9807	0.9733	0.9631	
1100	1.0383	1.0313	1.0214	1.0160	1.0056	0.9947	0.9783	0.9714	0.9641	
1150	1.0320	1.0283	1.0210	1.0128	1.0064	0.9903	0.9793	0.9736	0.9610	
1200	1.0284	1.0267	1.0223	1.0072	1.0002	0.9836	0.9801	0.9620	0.9569	
1250	1.0312	1.0199	1.0160	1.0051	0.9989	0.9818	0.9705	0.9609	0.9555	
1300	1.0322	1.0200	1.0136	1.0017	0.9922	0.9815	0.9678	0.9575	0.9526	
1350	1.0266	1.0162	1.0080	1.0014	0.9868	0.9766	0.9631	0.9535	0.9420	
1400	1.0211	1.0123	1.0030	0.9937	0.9871	0.9744	0.9600	0.9511	0.9447	
1450	1.0149	1.0115	0.9994	0.9921	0.9811	0.9690	0.9535	0.9447	0.9412	
1500	1.0138	1.0036	0.9974	0.9904	0.9818	0.9681	0.9529	0.9420	0.9343	

Figure 3.3.3-1: Depleted Uranium Reflector at 100% Density

SAIC-1322-001 Rev. 1 Page 90 of 108

T	Table 3.3.3-2: Depleted Uranium Reflector -70% Packing Fraction; 60.96 cm Water Backing											
H/Pu		12 Q. P.	k _{eff}	$+2\sigma$ For ²	³⁵ U Enrich	ments Ex	amined					
	U(Nat)	U(0.6%)	U(0.5%)	U(0.4%)	U(0.3%)	U(0.2%)	U(0.1%)	U(0.05%)	U(0.01%)			
500	0.9886	0.9727	0.9651	0.9522	0.9403	0.9211	0.9057	0.8875	0.8830			
550	0.9909	0.9855	0.9765	0.9602	0.9489	0.9340	0.9106	0.9049	0.8912			
600	1.0036	0.9902	0.9773	0.9699	0.9589	0.9387	0.9166	0.9102	0.9013			
650	1.0097	0.9954	0.9820	0.9773	0.9599	0.9425	0.9268	0.9190	0.9086			
700	1.0155	1.0015	0.9899	0.9812	0.9682	0.9470	0.9311	0.9231	0.9128			
750	1.0175	1.0016	0.9887	0.9848	0.9684	0.9549	0.9329	0.9261	0.9163			
800	1.0132	1.0140	0.9970	0.9873	0.9691	0.9593	0.9451	0.9263	0.9168			
850	1.0122	1.0087	0.9987	0.9929	0.9773	0.9569	0.9365	0.9236	0.9199			
900	1.0189	1.0071	0.9993	0.9858	0.9766	0.9647	0.9383	0.9326	0.9218			
950	1.0203	1.0083	0.9992	0.9845	0.9740	0.9631	0.9386	0.9314	0.9204			
1000	1.0163	1.0073	1.0006	0.9886	0.9778	0.9601	0.9448	0.9312	0.9215			
1050	1.0164	1.0065	0.9986	0.9799	0.9728	0.9579	0.9396	0.9311	0.9209			
1100	1.0146	1.0133	0.9977	0.9771	0.9700	0.9588	0.9361	0.9272	0.9182			
1150	1.0077	1.0043	0.9951	0.9838	0.9671	0.9565	0.9344	0.9226	0.9183			
1200	1.0118	1.0047	0.9960	0.9733	0.9684	0.9515	0.9329	0.9262	0.9150			
1250	1.0088	1.0023	0.9969	0.9783	0.9695	0.9493	0.9314	0.9210	0.9142			
1300	1.0070	0.9987	0.9865	0.9771	0.9619	0.9499	0.9307	0.9164	0.9097			
1350	1.0068	0.9922	0.9852	0.9739	0.9617	0.9439	0.9256	0.9146	0.9069			
1400	1.0036	0.9862	0.9813	0.9652	0.9574	0.9417	0.9184	0.9147	0.9015			
1450	1.0010	0.9919	0.9788	0.9645	0.9494	0.9357	0.9166	0.9086	0.9033			
1500	0.9927	0.9848	0.9729	0.9658	0.9469	0.9304	0.9146	0.9048	0.8968			

Figure 3.3.3-2: Depleted Uranium Reflector at 70% Packing Fraction

	Table 3.3.3-3: U _{Nat} Reflector Reactivity as a Function of Packing Fraction										
H/Pu		Prip.k		keff at V	arious P	acking F	ractions				
	100%	70%	60%	50%	40%	30%	20%	10%	5%	1%	
500	1.0040	0.9886	0.9857	0.9914	1.0042	0.9958	1.0037	0.9651	0.9421	0.9071	
550	1.0153	0.9909	0.9964	1.0088	1.0127	1.0071	0.9982	0.9731	0.9455	0.9167	
600	1.0229	1.0036	1.0046	1.0094	1.0154	1.0130	1.0028	0.9837	0.953	0.9265	
650	1.0298	1.0097	1.0076	1.0163	1.0231	1.0242	1.0144	0.9861	0.9598	0.9275	
700	1.0316	1.0155	1.0156	1.0208	1.0237	1.0225	1.0128	0.9858	0.9674	0.9307	
750	1.0374	1.0175	1.0172	1.0238	1.0238	1.0239	1.0224	0.9879	0.9695	0.9354	
800	1.0414	1.0132	1.0203	1.0217	1.0280	1.0290	1.0241	0.9948	0.9670	0.9356	
850	1.0411	1.0122	1.0173	1.0218	1.0325	1.0248	1.0223	0.9975	0.9641	0.9341	
900	1.0457	1.0189	1.0234	1.0229	1.029	1.0345	1.0233	0.9952	0.9718	0.9341	
950	1.0403	1.0203	1.0213	1.0286	1.0356	1.0304	1.0223	0.9929	0.9644	0.9359	
1000	1.0418	1.0163	1.0219	1.0246	1.0339	1.0363	1.0259	1.0004	0.9695	0.9363	
1050	1.0383	1.0164	1.0205	1.0272	1.0265	1.0280	1.0174	0.9905	0.9627	0.9384	
1100	1.0383	1.0146	1.0201	1.0266	1.0231	1.0259	1.0170	0.9925	0.9671	0.9326	
1150	1.032	1.0077	1.0160	1.0206	1.0184	1.0190	1.0068	0.9856	0.9616	0.9328	
1200	1.0284	1.0118	1.0154	1.0147	1.0214	1.0194	1.0166	0.9833	0.9601	0.9299	
1250	1.0312	1.0088	1.0116	1.0161	1.0124	1.0199	1.0091	0.9806	0.9572	0.9254	
1300	1.0322	1.0070	1.0064	1.0132	1.0082	1.0204	1.0128	0.9787	0.9514	0.9239	
1350	1.0266	1.0068	1.0078	1.0144	1.0148	1.0153	0.9984	0.9734	0.9512	0.9182	
1400	1.0211	1.0036	1.0047	1.0146	1.0129	1.0095	0.9995	0.9725	0.9440	0.9152	
1450	1.0149	1.0010	0.9977	1.0069	1.0106	1.0067	1.0045	0.9684	0.9456	0.9136	
1500	1.0138	0.9927	1.0010	1.0013	1.0024	1.0097	0.995	0.9688	0.9396	0.9094	

Figure 3.3.3-3: U_{Nat} Reflector Reactivity as a Function of Packing Fraction

SAIC-1322-001 Rev. 1 Page 92 of 108

1. A. A.	Table 3.3.3-4: 0.6% ²³⁵ U Reflector Reactivity as a Function of Packing Fraction										
H/Pu		k _{eff} at Various Packing Fractions									
	100%	70%	60%	50%	40%	30%	20%	10%	5%	1%	
500	0.9967	0.9727	0.9744	0.9778	0.9726	0.9783	0.9766	0.9464	0.9262	0.9024	
550	1.0085	0.9855	0.9817	0.9842	0.9959	0.9923	0.9819	0.9612	0.9357	0.9129	
600	1.0110	0.9902	0.9900	0.9935	0.9939	0.9998	0.9975	0.9716	0.9471	0.9195	
650	1.0238	0.9954	1.0026	1.0017	1.0036	1.0051	0.9899	0.9738	0.9508	0.9236	
700	1.0290	1.0015	1.0058	1.0080	1.0057	1.0059	0.9998	0.9719	0.9519	0.9287	
750	1.0256	1.0016	1.0078	1.0093	1.0120	1.0056	0.9897	0.9784	0.9580	0.9340	
800	1.0319	1.0140	1.0091	1.0067	1.0136	1.0131	1.0021	0.9782	0.9586	0.9333	
850	1.0313	1.0087	1.0035	1.0156	1.0063	1.0065	1.0014	0.9822	0.9571	0.9335	
900	1.0367	1.0071	1.0142	1.0115	1.0120	1.0023	1.0072	0.9807	0.9580	0.9347	
950	1.0353	1.0083	1.0089	1.0137	1.0104	1.0078	1.0036	0.9817	0.9631	0.9334	
1000	1.0332	1.0073	1.0069	1.0124	1.0134	1.0093	1.0008	0.9781	0.9580	0.9363	
1050	1.0281	1.0065	1.0052	1.0091	1.0066	1.0118	1.0019	0.9814	0.9538	0.9309	
1100	1.0313	1.0133	1.0115	1.0092	1.0102	1.0075	1.0031	0.9744	0.9541	0.9299	
1150	1.0283	1.0043	1.0069	1.0078	1.0101	1.0079	1.0013	0.9702	0.9567	0.9309	
1200	1.0267	1.0047	1.0070	1.0061	1.0025	1.0067	0.9993	0.9722	0.9496	0.9285	
1250	1.0199	1.0023	1.0018	1.0082	1.0025	0.9962	0.9914	0.9676	0.9498	0.9255	
1300	1.0200	0.9987	1.0005	1.0011	1.0078	1.0026	0.9878	0.9655	0.9438	0.9223	
1350	1.0162	0.9922	0.9941	0.9962	0.9983	0.9990	0.9881	0.9642	0.9407	0.9177	
1400	1.0123	0.9862	0.9989	0.9907	0.9977	0.9927	0.9850	0.9617	0.9346	0.9123	
1450	1.0115	0.9919	0.9904	1.0014	0.9900	0.9845	0.9816	0.9580	0.9366	0.9113	
1500	1.0036	0.9848	0.9842	0.9870	0.9864	0.9840	0.9734	0.9553	0.9350	0.9064	

Figure 3.3.3-4: 0.6% ²³⁵U Reflector Reactivity as a Function of Packing Fraction

7	Table 3.3.3-5: 0.5% ²³⁵ U Reflector Reactivity as a Function of Packing Fraction									
H/Pu		k _{eff} at Various Packing Fractions								
	100%	70%	60%	50%	40%	30%	20%	10%	5%	1%
500	0.9875	0.9651	0.9619	0.9634	0.9697	0.9642	0.9603	0.9323	0.9147	0.8983
550	1.0032	0.9765	0.9721	0.9730	0.9705	0.9763	0.9634	0.9408	0.9284	0.9087
600	1.0075	0.9773	0.9744	0.9808	0.9843	0.9834	0.9726	0.9525	0.9333	0.9169
650	1.0160	0.9820	0.9899	0.9903	0.9830	0.9873	0.9770	0.9628	0.9443	0.9230
700	1.0177	0.9899	0.9887	0.9944	0.9956	0.9902	0.9825	0.9618	0.9481	0.9221
750	1.0272	0.9887	0.9902	0.9920	0.9961	0.9912	0.9820	0.9668	0.9444	0.9321
800	1.0241	0.9970	0.9978	0.9968	0.9944	0.9996	0.9850	0.9665	0.9510	0.9350
850	1.0223	0.9987	0.9983	0.9972	0.9992	0.9898	0.9860	0.9670	0.9456	0.9310
900	1.0286	0.9993	0.9960	0.9977	0.9970	0.9960	0.9913	0.9703	0.9503	0.9361
950	1.0283	0.9992	0.9997	0.9953	0.9970	0.9957	0.9872	0.9677	0.9510	0.9309
1000	1.0264	1.0006	0.9960	0.9998	1.0034	0.9894	0.9860	0.9695	0.9538	0.9340
1050	1.0286	0.9986	0.9957	0.9985	0.9937	0.9957	0.9814	0.9676	0.9450	0.9352
1100	1.0214	0.9977	1.0012	0.9943	0.9890	0.9916	0.9874	0.9687	0.9462	0.9298
1150	1.0210	0.9951	0.9948	0.9921	0.9856	0.9915	0.9787	0.9588	0.9432	0.9228
1200	1.0223	0.9960	0.9920	0.9899	0.9914	0.9885	0.9767	0.9592	0.9399	0.9213
1250	1.0160	0.9969	0.9902	0.986	0.9908	0.9844	0.9824	0.9611	0.9428	0.9256
1300	1.0136	0.9865	0.9836	0.9878	0.9835	0.9784	0.9756	0.9526	0.9335	0.9216
1350	1.0080	0.9852	0.9829	0.9847	0.9817	0.9743	0.9754	0.9561	0.9354	0.9141
1400	1.0030	0.9813	0.9816	0.9810	0.977	0.9774	0.9703	0.9457	0.9294	0.9133
1450	0.9994	0.9788	0.9808	0.9761	0.9749	0.9712	0.9598	0.9475	0.9306	0.9122
1500	0.9974	0.9729	0.9753	0.9744	0.9771	0.9664	0.9591	0.9413	0.9227	0.9089

Figure 3.3.3-5: 0.5% ²³⁵U Reflector Reactivity as a Function of Packing Fraction

SAIC-1322-001 Rev. 1 Page 94 of 108

	Table 3.3.3-6: 0.4% ²³⁵ U Reflector Reactivity as a Function of Packing Fraction									
H/Pu		keff at Various Packing Fractions								
	100%	70%	60%	50%	40%	30%	20%	10%	5%	1%
500	0.9805	0.9522	0.9546	0.9495	0.9488	0.9472	0.9401	0.9220	0.9132	0.8976
550	0.9923	0.9602	0.9587	0.9582	0.9576	0.9546	0.9405	0.9371	0.9191	0.9040
600	1.0012	0.9699	0.9686	0.9691	0.9662	0.9607	0.9539	0.9454	0.9222	0.9164
650	1.0061	0.9773	0.9759	0.9701	0.9678	0.9675	0.9621	0.9443	0.9329	0.9181
700	1.0086	0.9812	0.9762	0.9770	0.9737	0.9717	0.9632	0.9510	0.9357	0.9285
750	1.0149	0.9848	0.9858	0.9775	0.9749	0.9702	0.9679	0.9541	0.9456	0.9294
800	1.0171	0.9873	0.9843	0.9814	0.9776	0.9768	0.9719	0.9535	0.9418	0.9291
850	1.0184	0.9929	0.9837	0.9832	0.9805	0.9776	0.9728	0.9550	0.9455	0.9334
900	1.0189	0.9858	0.9840	0.9840	0.9832	0.9770	0.9687	0.9552	0.9455	0.9288
950	1.0137	0.9845	0.9843	0.9813	0.9814	0.9772	0.9635	0.9558	0.9402	0.9292
1000	1.0192	0.9886	0.9812	0.9791	0.9828	0.9763	0.9678	0.9565	0.9458	0.9315
1050	1.0135	0.9799	0.9840	0.9836	0.9810	0.9745	0.9661	0.9556	0.9410	0.9320
1100	1.0160	0.9771	0.9776	0.9825	0.9775	0.9775	0.9672	0.9553	0.9447	0.9270
1150	1.0128	0.9838	0.9853	0.9750	0.9785	0.9694	0.9670	0.9505	0.9392	0.9248
1200	1.0072	0.9733	0.9797	0.9794	0.9775	0.9686	0.9661	0.9459	0.9358	0.9232
1250	1.0051	0.9783	0.9757	0.9694	0.9710	0.9656	0.9578	0.9426	0.9269	0.9183
1300	1.0017	0.9771	0.9733	0.9701	0.9665	0.9652	0.9607	0.9393	0.9294	0.9178
1350	1.0014	0.9739	0.9697	0.9743	0.9694	0.9619	0.9542	0.9414	0.9273	0.9208
1400	0.9937	0.9652	0.9706	0.9642	0.9648	0.9591	0.9525	0.9340	0.9254	0.9135
1450	0.9921	0.9645	0.9615	0.9666	0.9585	0.9581	0.9478	0.9330	0.9249	0.9063
1500	0.9904	0.9658	0.9640	0.9571	0.9587	0.9553	0.9404	0.9296	0.9163	0.9050

Figure 3.3.3-6: 0.4% ²³⁵U Reflector Reactivity as a Function of Packing Fraction

	Table 3.3.3-7: 0.3% ²³⁵ U Reflector Reactivity as a Function of Packing Fraction									
H/Pu		k _{eff} at Various Packing Fractions								
	100%	70%	60%	50%	40%	30%	20%	10%	5%	1%
500	0.9743	0.9403	0.9312	0.9362	0.9277	0.9256	0.9213	0.9107	0.9049	0.8966
550	0.9852	0.9489	0.9337	0.9401	0.9419	0.9391	0.9311	0.9227	0.9122	0.9061
600	0.9928	0.9589	0.9472	0.9494	0.9476	0.9411	0.9336	0.9273	0.9171	0.9134
650	0.9987	0.9599	0.9556	0.9507	0.9519	0.9449	0.9399	0.9372	0.9251	0.9151
700	1.0038	0.9682	0.9598	0.9604	0.9551	0.9527	0.9440	0.9364	0.9285	0.9257
750	1.0061	0.9684	0.9665	0.9603	0.9577	0.9528	0.9474	0.9405	0.9352	0.9300
800	1.0078	0.9691	0.9672	0.9618	0.9634	0.9607	0.9526	0.9428	0.9351	0.9291
850	1.0132	0.9773	0.9679	0.9699	0.9630	0.9593	0.9501	0.9440	0.9372	0.9317
900	1.0072	0.9766	0.9691	0.9664	0.9654	0.9587	0.9529	0.9442	0.9367	0.9274
950	1.0080	0.9740	0.9693	0.9676	0.9617	0.9585	0.9545	0.9469	0.9353	0.9325
1000	1.0072	0.9778	0.9693	0.9677	0.9611	0.9626	0.9566	0.9448	0.9372	0.9302
1050	1.0064	0.9728	0.9667	0.9678	0.9618	0.9591	0.9548	0.9410	0.9374	0.9261
1100	1.0056	0.9700	0.9700	0.9633	0.9594	0.9627	0.9504	0.9395	0.9324	0.9315
1150	1.0064	0.9671	0.9706	0.9670	0.9607	0.9504	0.9433	0.9344	0.9300	0.9265
1200	1.0002	0.9684	0.9633	0.9584	0.9523	0.9540	0.9501	0.9374	0.9302	0.9245
1250	0.9989	0.9695	0.9607	0.9563	0.9547	0.9524	0.9420	0.9386	0.9258	0.9176
1300	0.9922	0.9619	0.9567	0.9543	0.9532	0.9527	0.9398	0.9314	0.9202	0.9172
1350	0.9868	0.9617	0.9622	0.9489	0.9490	0.9490	0.9401	0.9251	0.9221	0.9148
1400	0.9871	0.9574	0.9540	0.9499	0.9464	0.9473	0.9395	0.9268	0.9217	0.9101
1450	0.9811	0.9494	0.9496	0.9472	0.9456	0.9441	0.9321	0.9235	0.9133	0.9078
1500	0.9818	0.9469	0.9457	0.9452	0.9395	0.9344	0.9295	0.9185	0.9103	0.9000

Figure 3.3.3-7: 0.3% ²³⁵U Reflector Reactivity as a Function of Packing Fraction

04-082(doc)/050304

SAIC-1322-001 Rev. 1 Page 96 of 108

Table 3.3.3-8: 0.2% ²³⁵ U Reflector Reactivity as a Function of Packing Fraction										
H/Pu		k _{eff} at Various Packing Fractions								
	100%	70%	60%	50%	40%	30%	20%	10%		
500	0.9670	0.9211	0.9201	0.9135	0.9090	0.9044	0.9011	0.8958		
550	0.9750	0.9340	0.9254	0.9201	0.9142	0.9109	0.9074	0.9085		
600	0.9855	0.9387	0.9350	0.9291	0.9211	0.9220	0.9195	0.9089		
650	0.9860	0.9425	0.9378	0.9322	0.9277	0.9286	0.9273	0.9244		
700	0.9923	0.9470	0.9415	0.9397	0.9342	0.9337	0.9292	0.9238		
750	0.9958	0.9549	0.9445	0.9476	0.9438	0.9370	0.9319	0.9331		
800	0.9973	0.9593	0.9522	0.9433	0.9445	0.9397	0.9316	0.9309		
850	0.9979	0.9569	0.9518	0.9510	0.9407	0.9400	0.9356	0.9279		
900	1.0009	0.9647	0.9503	0.9465	0.9420	0.9374	0.9364	0.9327		
950	0.9985	0.9631	0.9560	0.9528	0.9458	0.9385	0.9390	0.9362		
1000	0.9979	0.9601	0.9522	0.9495	0.9435	0.9386	0.9408	0.9339		
1050	0.9928	0.9579	0.9512	0.9490	0.9438	0.9409	0.9365	0.9277		
1100	0.9947	0.9588	0.9539	0.9447	0.9502	0.9399	0.9365	0.9297		
1150	0.9903	0.9565	0.9538	0.9431	0.9402	0.9372	0.9315	0.9230		
1200	0.9836	0.9515	0.9422	0.9420	0.9356	0.9320	0.9327	0.9251		
1250	0.9818	0.9493	0.9445	0.9409	0.9311	0.9355	0.9276	0.9235		
1300	0.9815	0.9499	0.9428	0.9427	0.9325	0.9297	0.9210	0.9213		
1350	0.9766	0.9439	0.9380	0.9353	0.9316	0.9275	0.9217	0.9179		
1400	0.9744	0.9417	0.9349	0.9303	0.9273	0.9249	0.9212	0.9157		
1450	0.9690	0.9357	0.9353	0.9299	0.9246	0.9232	0.9193	0.9103		
1500	0.9681	0.9304	0.9284	0.9268	0.9182	0.9229	0.9096	0.9068		

Figure 3.3.3-8: 0.2% ²³⁵U Reflector Reactivity as a Function of Packing Fraction

H/Pu			k _{eff} at V	Various P	acking Fr	actions	ili. z siędowa i	
	100%	70%	60%	50%	40%	30%	20%	10%
500	0.9525	0.9057	0.8905	0.8875	0.8832	0.8832	0.8797	0.8816
550	0.9618	0.9106	0.9055	0.8954	0.8899	0.8900	0.8885	0.8965
600	0.9734	0.9166	0.9155	0.9056	0.9028	0.9009	0.8974	0.9044
650	0.9754	0.9268	0.9225	0.9175	0.9149	0.9069	0.9047	0.9098
700	0.9841	0.9311	0.9264	0.9194	0.9159	0.9129	0.9169	0.9099
750	0.9842	0.9329	0.9304	0.9210	0.9239	0.9194	0.9161	0.9175
800	0.9877	0.9451	0.9340	0.9215	0.9242	0.9196	0.9202	0.9140
850	0.9865	0.9365	0.9308	0.9263	0.9255	0.9236	0.9199	0.9202
900	0.9838	0.9383	0.9363	0.9318	0.9219	0.9180	0.9220	0.9206
950	0.9847	0.9386	0.9350	0.9295	0.9230	0.9218	0.9226	0.9246
1000	0.9838	0.9448	0.9359	0.9269	0.9229	0.9220	0.9187	0.9227
1050	0.9807	0.9396	0.9312	0.9274	0.9230	0.9211	0.9189	0.9217
1100	0.9783	0.9361	0.9319	0.9266	0.9216	0.9169	0.9214	0.9224
1150	0.9793	0.9344	0.9333	0.9230	0.9232	0.9155	0.9150	0.9124
1200	0.9801	0.9329	0.9253	0.9243	0.9177	0.9158	0.9110	0.9102
1250	0.9705	0.9314	0.9269	0.9177	0.9245	0.9126	0.9157	0.9107
1300	0.9678	0.9307	0.9203	0.9199	0.9156	0.9105	0.9112	0.9139
1350	0.9631	0.9256	0.9179	0.9202	0.9114	0.9114	0.9077	0.9107
1400	0.9600	0.9184	0.9154	0.9154	0.9100	0.9022	0.9022	0.9014
1450	0.9535	0.9166	0.9172	0.9049	0.9066	0.9048	0.9012	0.9027
1500	0.9529	0.9146	0.9108	0.9051	0.9000	0.9016	0.8970	0.8969

Figure 3.3.3-9: 0.1% ²³⁵U Reflector Reactivity as a Function of Packing Fraction

SAIC-1322-001 Rev. 1 Page 98 of 108

Table 3.3.3-10: Depleted Uranium Reflector Equivalent Parameters							
Enrichment in	Equivalent T	`hickness (in.)	Equivalent Packing				
Depleted Uranium	100% Packing	70% Packing	Fraction at 24"				
	Fraction	Fraction	Reflector				
U(Natural)	0.08	0.10	1				
U(0.6% ²³⁵ U)	0.14	0.18	1				
U(0.5% ²³⁵ U)	0.18	0.28	2				
U(0.4% ²³⁵ U)	0.33	0.51	3				
U(0.3% ²³⁵ U)	0.56	0.73	5				
U(0.2% ²³⁵ U)	0.98	1.50	34				
U(0.1% ²³⁵ U)	1.62	20.00	68				
U(0.05 % ²³⁵ U)	2.01	> 24	N/A				
U(0.01 % ²³⁵ U)	2.81	> 24	N/A				

3.4 Neutron Reflector Study Conclusion

The results of the preceding analyses indicate that the reactivity state for an optimally moderated fissile system containing 325 g of ²³⁹Pu moderated with a polyethylene-water mixture is highly influenced by the material surrounding the fissile sphere. In particular, it is well known that beryllium oxide, beryllium, carbon and D_2O have very high reflection coefficients and must be considered when setting a fissile mass limit on a waste container. However, other materials, most notability metals such as chromium, manganese, iron, cobalt, nickel, copper, zirconium, niobium, molybdenum, lead, bismuth, vanadium, inconel, steel, etc., have relatively large reflection coefficients and therefore a large reactivity effect on the moderated fissile system. In addition, numerous compounds, such as concrete, sand, and gypsum have high reflection coefficients that increase the reactivity state of an optimally moderated fissile mixture. Finally, depleted uranium is a very reactive reflector, and must be considered when assessing the reactivity effect of various materials common to nuclear processing and operation facilities.

It is noteworthy, however, that the materials evaluated as reflectors in this study are bounded by beryllium when considering their reactivity effect on a ²³⁹Pu-bearing system. Furthermore, when realistic packing fractions are taken into account for the reflector geometric configuration, the reactivity effect of most metallic reflectors as well as many of the construction materials (such as gypsum) diminishes considerably. As a result, only a few materials, namely beryllium, beryllium-based compounds, carbon, heavy water, depleted uranium at enrichments $\geq 0.3\%$ ²³⁵U, and magnesium oxide, are classified as special reflectors. The FGE limit in the TRUPACT-II package must be reduced below 325 when significant quantities of these special reflector materials are present in a form that would allow these materials to tightly surround the fissile mixture.

4. References

- 1. J. R. Lamarsh, *Introduction to Nuclear Reactor Theory*, Addison-Wesley, Reading, Mass. (1966).
- 2. J. J. Duderstadt and L. J. Hamilton, *Nuclear Reactor Analysis*, John Wiley & Sons, Inc. New York (1976).
- 3. C. A. Harper, Handbook of Plastics and Elastomers, McGraw-Hill, New York (1975).
- 4. R. H. Perry and D. W. Green, *Perry's Chemical Engineer's Handbook*, Sixth Edition, McGraw-Hill, New York (1984).
- 5. R. C. Weast, *Handbook of Chemistry and Physics*, 49th Edition, Chemical Rubber Company, Cleveland, Ohio (1968).
- 6. Oak Ridge National Laboratory (ORNL), SCALE 4.4: Modular Code System for Performing Standardized Computer Analyses for Licensing Evaluation for Workstations and Personal Computers, ORNL/NUREG/CSD-2/R6, March 2000.
- 7. L.M. Petrie, P.B. Fox and K. Lucius, *Standard Composition Library*, ORNL/NUREG/CSD-2/V3/R6, Volume 3, Section M8, March 2000.
- 8. D.K. Smith, C.F. Cline and S.B. Austerman, *The Crystal Structure of Beta Beryllia*, Journal of Nuclear Materials, <u>14</u>, 237 238 (1964).
- H.C. Paxton and N.L. Pruvost, Criticality Dimensions of Systems Containing ²³⁵U, ²³⁹Pu, and ²³³U, 1986 Revision, LA-10860-MS, July 1987, Los Alamos National Laboratory, Los Alamos, New Mexico.

APPENDIX A Methodology For Calculating Mixture Parameters

Consider a fissile mixture containing 239 Pu and a moderator containing x atoms of hydrogen per molecule of moderator. By definition, the H/Pu ratio is

$$\frac{\mathbf{n}_{\mathrm{H}}}{\mathbf{n}_{\mathrm{Pu}}} = \left(\frac{\mathbf{x}\mathbf{N}_{\mathrm{Mod}}}{\mathbf{N}_{\mathrm{Pu}}}\right) = \left(\frac{\frac{\mathbf{x}\mathbf{C}_{\mathrm{Mod}}}{\mathbf{M}_{\mathrm{Mod}}}}{\frac{\mathbf{C}_{\mathrm{Pu}}}{\mathbf{M}_{\mathrm{Pu}}}}\right)$$

where

eq.(A-1)

$$\begin{array}{ll} \mathbf{n}_{\alpha} &= \text{Number density for } \alpha = \text{Mod, Pu} \\ \mathbf{N}_{\alpha} &= \text{Number of moles for } \alpha = \text{Mod, Pu} \\ \mathbf{C}_{\alpha} &= \text{Concentration (g/cc mixture) for } \alpha = \text{Mod, Pu} \end{array}$$

 \mathbf{M}_{α} = Molecular weight for α = Mod, Pu

Noting that

$$\mathbf{C}_{\text{Mod}} = \rho_{\text{Mod}} \left(1 - \frac{\mathbf{C}_{\text{Pu}}}{\rho_{\text{Pu}}} - \sum_{j} \frac{\mathbf{C}_{j}}{\rho_{j}} \right)$$
eq.(A-2)

then

$$\frac{\mathbf{n}_{\mathrm{H}}}{\mathbf{n}_{\mathrm{Pu}}} = \left(\frac{\frac{x\rho_{\mathrm{Mod}}}{M_{\mathrm{Mod}}} \left(1 - \frac{\mathbf{C}_{\mathrm{Pu}}}{\rho_{\mathrm{Pu}}} - \sum_{j} \frac{\mathbf{C}_{j}}{\rho_{j}}\right)}{\frac{\mathbf{C}_{\mathrm{Pu}}}{M_{\mathrm{Pu}}}}\right)$$

eq.(A-3)

Here ρ_{α} and C_{α} for $\alpha = Mod$, Pu, j are material densities and concentration respectively, and the jth material refers to non-hydrogenous additives to the mixture. Solving for the plutonium concentration gives

$$\mathbf{C}_{\mathbf{Pu}} = \left(\frac{\mathbf{x}\mathbf{M}_{\mathbf{Pu}}\left(\frac{\rho_{\mathrm{Mod}}}{\mathbf{M}_{\mathrm{Mod}}}\right)\left(1-\sum_{j}\frac{\mathbf{C}_{j}}{\rho_{j}}\right)}{\frac{\mathbf{n}_{\mathrm{H}}}{\mathbf{n}_{\mathrm{Pu}}}+\mathbf{x}\left(\frac{\mathbf{M}_{\mathbf{Pu}}}{\rho_{\mathrm{Pu}}}\right)\left(\frac{\rho_{\mathrm{Mod}}}{\mathbf{M}_{\mathrm{Mod}}}\right)}\right)$$

04-082(doc)/050304

SAIC-1322-001 Rev. 1 Page 102 of 108 eq.(A-4) The total mixture concentration then becomes $C_{Mix} = C_{Pu} + C_{Mod}$

1_

T

eq.(A-5)

The weight fractions of the ²³⁹Pu and moderator in the mixture is

$$WF_{Pu} = \frac{C_{Pu}}{C_{Mix}}$$
eq.(A-6)

$$WF_{Mod} = \frac{C_{Mod}}{C_{Mix}} = \frac{\rho_{Mod}}{C_{Mix}} \left(1 - \frac{C_{Pu}}{\rho_{Pu}} - \sum_{j} \frac{C_{j}}{\rho_{j}} \right)$$
eq(A-7)

04-082(doc)/050304

SAIC-1322-001 Rev. 1 Page 103 of 108

APPENDIX B Sample Input Files

1. Bounding Moderation States With Polyethylene/Water Mixture

```
#CSAS25
        PARM=SIZE=2000000
BASECASE WITH 40% WATER 60% POLY
238GROUPNDF5
INFHOMMEDIUM
ARBMBKGD 0.98259 5 0 0 1 1001 12.63324 8016 36.03079
6012 48.18131 4309 0.00000 94239 3.15466 1 1.0 293 END
H2O
      2
                                              1.0 293 END
END COMPOSITION
BASECASE WITH 40% WATER 60% POLY
READ PARAMETERS NSK=50 GEN=250
END PARAMETERS
READ GEOMETRY
UNIT 1
SPHERE
          1 1 13.57761
SPHERE 2 1 74.53761
END GEOMETRY
END DATA
END
```

2. Hydrocarbon Based Moderators – Paraffin at H/Pu = 850

```
#CSAS25
         PARM=SIZE=2000000
HYDROCARBONS - PARAFFIN
238GROUPNDF5
INFHOMMEDIUM
ARBMBKGD 0.93559 5 0 0 1 6012 81.73847 1001 14.27698
      0.00000 7014 0.00000 94239 3.98455 1 1.0 293 END
8016
H2O
      2
                                             1.0 293 END
END COMPOSITION
HYDROCARBONS - PARAFFIN
READ PARAMETERS NSK=50 GEN=250
END PARAMETERS
READ GEOMETRY
UNIT 1
          1 1 12.76763
SPHERE
SPHERE 2 1 73.72763
END GEOMETRY
END DATA
END
```

3. Hydrocarbon Based Moderators – Fissile Sphere with 31 Pu Spheres at H/X = 900

```
#CSAS25 PARM=SIZE=2000000
HETROGENOUS PU-POLY-WATER SYSTEM; 325 GM PU; 25% POLY PACKING FRACTION;
SPHERICAL CHUNKS.
238GROUPNDF5
INFHOMMEDIUM
ARBMPUH20 1.07596 3 0 0 1 1001 10.34124 8016 82.04850
94239 7.61026 1 1.0 293 END
POLY(H20) 2 DEN=0.923 1.0 293 END
```

SAIC-1322-001 Rev. 1 Page 104 of 108 L

H2O	٦	DE	N=0 9981		1.0 293 END	
END COMPOS		N				
HETROGENOI		- 00	I.V-WATER SV	STEM. 325 GM	PUL 25% POLY PACKING FI	RACTION
COUEDTCAL	CHIM	re re	DI MAILA DI	0160, 525 00		1012011,
SPREKICAL	LUUN	кз. c	NGK-50 GEN-	250		
END DADAM	TELER	3	NSK-JU GEN-	200		
END PARAMI						
READ GEOM	SIRI					
UNIT I	~	-				
SPHERE	2	T	3.12002			
UNIT 2	~	-				
SPHERE	2	T	2.11317			
GLOBAL						
UNIT 3						
SPHERE	1	1	10.80677			
HOLE	1		0.00000	0.00000	0.00000	
HOLE	2		8.59360	0.00000	0.00000	
HOLE	2		-8.59360	0.00000	0.00000	
HOLE	2		0.00000	8.59360	0.00000	
HOLE	2		0.00000	-8.59360	0.00000	
HOLE	2		0.00000	0.00000	8.59360	
HOLE	2		0.00000	0.00000	-8.59360	
HOLE	2		7.44228	4.29680	0.00000	
HOLE	2		4.29680	7.44228	0.00000	
HOLE	2		-7.44228	4.29680	0.00000	
HOLE	2		-4.29680	7.44228	0.00000	
HOLE	2		-7.44228	-4.29680	0.00000	
HOLE	2		-4.29680	-7.44228	0.00000	
HOLE	2		7.44228	-4.29680	0.00000	
HOLE	2		4.29680	-7.44228	0.00000	
HOLE	2		7.44228	0.00000	4.29680	
HOLE	2		4.29680	0.00000	7.44228	
HOLE	2		-7.44228	0.00000	4.29680	
HOLE	2		-4.29680	0.00000	7.44228	
HOLE	2		-7.44228	0.00000	-4.29680	
HOLE	2		-4.29680	0.00000	-7.44228	
HOLE	2		7.44228	0.00000	-4.29680	
HOLE	2		4.29680	0.00000	-7.44228	
HOLE	2		0.00000	7.44228	4.29680	
HOLE	2		0.00000	4.29680	7.44228	
HOLE	2		0.00000	-7.44228	4.29680	
HOLE	2		0.00000	-4.29680	7.44228	
HOLE	2		0.00000	-7.44228	-4.29680	
HOLE	2		0.00000	-4.29680	-7.44228	
HOLE	2		0.00000	7.44228	-4.29680	
HOLE	2		0.00000	4.29680	-7.44228	
SPHERE	3	1	71.76677			
END GEOME	TRY	-				
END DATA						

- END
- 4. Hydrocarbon Based Moderators 23x23x23 Cubic Model with 12,167 Pu Spheres at H/X = 900 =csas25 parm=size=700000 25% Packing Fraction, 23x23x23 cube of spheres, H/X=900

```
238group infhommedium
```

```
'Pu-water mixture
```

SAIC-1322-001 Rev. 1 Page 105 of 108

```
arbm-puh2o 1.037 3 1 0 0 94239 3.956
            1001 10.747
                               8016 85.297 1 end
'CH2 for poly spheres - default density of 0.93 g/cm3
            2
poly(h2o)
                                 end
'Water at 0.9982 g/cm3 for reflector
h2o
             3
                                 end
end comp
25% Packing Fraction, 23x23x23 cube of spheres, H/X=900
read param nsk=50 gen=250 tme=300
end param
read geom
unit 1
com="unit cell of poly sphere surrounded by Pu/water"
sphere 2 1 0.37282
cuboid 1 1 6p0 4759
           11
cuboid
                     6p0.47698
global unit 2
com="array of unit cells"
array 1 0 0 0
'Water reflector t =
                      24
                             inches
reflector 3 1 6r60.96 1
end geom
read array
ara=1 nux=23 nuy=23 nuz=23 fill f1 end fill
end array
end data
end
```

5. Inorganic Moderators – 5% Be Addition to Optimal Mixture

```
#CSAS25
            PARM=SIZE=2000000
BERYLLIUM ADDED AT 5%
238GROUPNDF5
INFHOMMEDIUM
ARBMPUWP 1.05073 5 0 0 1 1001 10.55995 8016 60.01816
6012 17.83507 4309 8.80338 94239 2.78344 1 1.0 293 END
                                                              1.0 293 END
H2O
        2
END COMPOSITION
BERYLLIUM ADDED AT 5%
READ PARAMETERS NSK=50 GEN=250
END PARAMETERS
READ GEOMETRY
UNIT 1

        SPHERE
        1
        1
        13.84332

        SPHERE
        2
        1
        74.80332

END GEOMETRY
END DATA
END
```

6. Hydrides – ZrH_2 At H/Pu = 750

#CSAS25 PARM=SIZE=2000000 PU-239 MIXED WITH ZRH2 238GROUPNDF5 INFHOMMEDIUM ARBMBKGD 5.63746 5 0 0 1 1001 2.14695 40000 97.17397 6012 0.00000 4309 0.00000 94239 0.67908 1 1.0 293 END

SAIC-1322-001 Rev. 1 Page 106 of 108 1.0 293 END

```
H2O 2
END COMPOSITION
PU-239 MIXED WITH ZRH2
READ PARAMETERS NSK=50 GEN=250
END PARAMETERS
READ GEOMETRY
UNIT 1
SPHERE 1 1 12.65503
SPHERE 2 1 73.61503
END GEOMETRY
END DATA
END
```

7. Reflector Materials – 60.96 cm Thick Nickel Reflector

```
#CSAS25
            PARM=SIZE=2000000
NICKEL REFLECTOR
238GROUPNDF5
INFHOMMEDIUM
ARBMBKGD 1.01451 5 0 0 1 1001 11.50907 8016 65.41253
6012 19.43807 4309 0.00000 94239 3.64033 1 1.0 293 END
NI
        2
                                                            1.0 293 END
END COMPOSITION
NICKEL REFLECTOR
READ PARAMETERS NSK=50 GEN=250
END PARAMETERS
READ GEOMETRY
UNIT 1

        SPHERE
        1
        1
        12.80755

        SPHERE
        2
        1
        73.76755

END GEOMETRY
END DATA
END
```

SAIC-1322-001 Rev. 1 Page 107 of 108

APPENDIX C Material Densities

Table C-1: Densities	Table C-1: Densities of Elements Used in the Moderator and Reflector Reactivity Study*								
Element	Density (g/cc)	Element	Density (g/cc)						
Lithium (Li)	0.534	Palladium (Pd)	12.020						
Beryllium (Be)	1.850	Silver (Ag)	10.500						
Boron (B)	2.370	Cadmium (Cd)	8.642						
Carbon (C)	2.100	Indium (In)	7.300						
Sodium (Na)	0.970	Tin (Sn)	7.310						
Magnesium (Mg)	1.740	Antimony (Sb)	6.684						
Aluminium (Al)	2.702	Tellurium (Te)	6.250						
Silicon (Si)	2.330	Iodine (I)	4.930						
Phosphorus (P)	1.820	Cesium (Cs)	1.879						
Surfur (S)	2.070	Barium (Ba)	3.510						
Potassium (K)	0.860	Lanthanum (La)	6.145						
Calcium (Ca)	1.550	Hafnium (Hf)	13.310						
Titanium (Ti)	4.500	Tantalum (Ta)	16.600						
Vanadium (V)	5.960	Tungsten (W)	19.350						
Chromium (Cr)	7.200	Rhenium (Re)	20.530						
Manganese (Mn)	7.200	Gold (Au)	18.880						
Iron (Fe)	7.860	Lead (Pb)	11.344						
Cobalt (Co)	8.900	Bismuth (Bi)	9.800						
Nickel (Ni)	8.900	Cerium (Ce)	6.657						
Copper (Cu)	8.920	Praseodymium (Pr)	6.773						
Gallium (Ga)	5.904	Neodymium (Nd)	6.800						
Germanium (Ge)	5.350	Samarium (Sm)	7.520						
Arsenic (As)	5.730	Europium (Eu)	5.243						
Selenium (Se)	4.810	Gadolinium (Gd)	7.900						
Rubidium (Rb)	1.532	Terbium (Tb)	8.229						
Strontium (Sr)	2.600	Dysprosium (Dy)	8.550						
Yttrium (Y)	4.469	Holmium (Ho)	8.795						
Zirconium (Zr)	6.490	Erbium (Er)	9.006						
Niobium (Nb)	8.570	Lutetium (Lu)	9.840						
Molybdenium (Mo)	10.200	Thorium (Th)	11.700						
Ruthenium (Ru)	12.300	Uranium (U)	19.050						
Rhodium (Rh)	12.400	Plutonium (²³⁹ Pu)	19.840						

* Element densities used in the analyses are taken from the *SCALE* Standard Composition Library [7]

SAIC-1322-001 Rev. 1 Page 108 of 108

- - --

1_

Table C-2: Densities of Compounds Used in the Moderator and Reflector Reactivity Study						
Compound	Density (g/cc)					
Calcium Hydride (CaH ₂)	1.7000					
Barium Hydride (BaH ₂)	4.1600					
Magnesium Hydride (MgH ₂)	1.4500					
Titanium Hydride (TiH ₂)	3.7500					
Yttrium Hydride (YH ₂)	4.4300					
Zirconium Hydride (ZrH ₂)	5.6100					
Heavy Water (D ₂ O)	1.1054					
Beryllium Oxide (β-Beryllia: BeO)	2.6900*					
Silicon Rubber ([OSi(CH ₃) ₂] _n)	1.0185					
Gypsum (CaSO ₄ •2H ₂ O)	2.3200					
Magnesium Oxide (MgO)	3.2200					
Silicon Dioxide (SiO ₂)	2.3200					
Salt (NaCl)	2.1650					
Oak Ridge Concrete	2.2994					
Inconel	8.3000					
Stainless Steel 304	7.9400					
Polyethylene (CH ₂)	0.9230					
Water (H ₂ O)	0.9982					

* β-BeO Tetragonal [8,9]