

R. A. JONES Vice President

Duke Power 29672 / Oconee Nuclear Site 7800 Rochester Highway Seneca, SC 29672

864 885 3158

864 885 3564 fax

May 5, 2004

U.S. Nuclear Regulátory Commission Document Control Desk Washington, DC 20555

Subject: Oconee Nuclear Site Docket Nos. 50-269, 50-270 and 50-287 Annual Radiological Environmental Operating Report

Dear Sir:

Pursuant to Oconee Nuclear Station Technical Specification 5.6.2, please find enclosed the Oconee Nuclear Site Annual Radiological Environmental Operating Report for 2003.

Very trul yours, Si Vie President Oconee Nuclear Station

Attachment

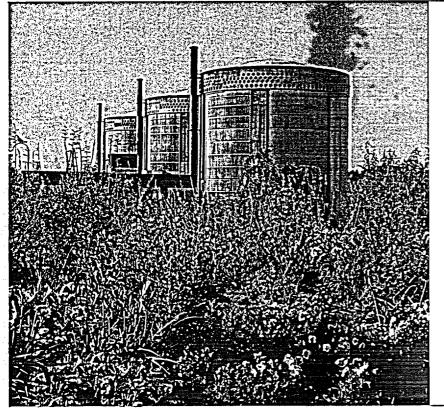
www.duke-energy.com

Document Control Desk May 5, 2004 Page 2

-

÷

xc: Mr. L. A. Reyes Regional Administrator, Region II


> Mr. L. N. Olshan Project Manager Office of Nuclear Reactor Regulation

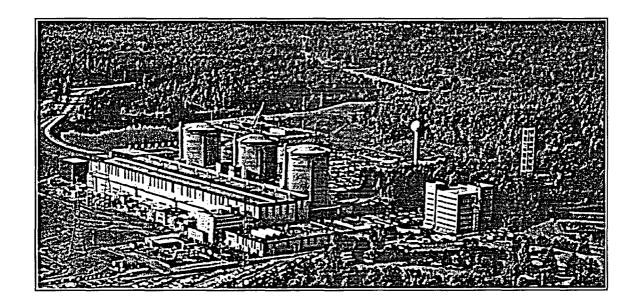
Mr. Mel Shannon Senior Resident Inspector, ONS

American Nuclear Insurers ANI Library Town Center, Suite 300S 29 South Main Street West Hartford, CT 06107-2445

Oconee Nuclear Station Units 1, 2 and 3

AREOR

Annual Radiological Environmental Operating Report 2003



ANNUAL RADIOLOGICAL ENVIRONMENTAL OPERATING REPORT

DUKE POWER COMPANY OCONEE NUCLEAR STATION Units 1, 2, and 3

2003

TABLE OF CONTENTS

1.0 Execu	itive Summary	•	•	•	1-1
2.0 Intro	duction	•			2-1
2.1	Site Description and Sample Locations			•	2-1
2.2	Scope and Requirements of the REMP				2-1
2.3	Statistical and Calculational Methodology				2-2
2.0	2.3.1 Estimation of the Mean Value				2-2
	2.3.2 Lower Level of Detection and Minimum Detectable Act				2-2
		-			
	2.3.3 Trend Identification	•	•	•	2-3
3.0 Inter	pretation of Results				3-1
3.1	Airborne Radioiodine and Particulates	•			3-2
3.2	Drinking Water	•			3-5
3.3	Drinking Water		•		3-7
3.4	Milk	•	•	•	3-10
3.5	Milk Broadleaf Vegetation 	•	•	•	3-12
3.5		•	•	•	3-12
	Fish	•		•	
3.7	Shoreline Sediment </td <td>•</td> <td></td> <td>• •</td> <td>3-17</td>	•		• •	3-17
3.8		•	٠	•	3-20
3.9	Land Use Census	•	•	•	3-22
4.0 Eval	uation of Dose	•			4-1
4.1	Dose from Environmental Measurements				4-1
4.2	Estimated Dose from Releases				4-1
4.3	Comparison of Doses.			•	4-2
-	lity Assurance		•	•	5-1
5.1	Sample Collection	•			5-1
5.2	Sample Analysis				5-1
5.3	Sample Analysis		•		5-1
5.4	Laboratory Equipment Quality Assurance	•	•	•	5-1
	5.4.1 Daily Quality Control	•	•	•	5-1
	5.4.2 Calibration Verification	•	•	•	5-1
	5.4.3 Batch Processing	•			5-1
5.5	-				5-2
5.6	Duke Power Audits				5-2
	U.S. Nuclear Regulatory Commission Inspections	•	-		
	State of South Carolina Intercomparison Program	•	•	•	5-2
	· · · ·	•	•	•	5-3
5.9		•	•	•	5-3
	5.9.1 Nuclear Technology Services Intercomparison Program	•	•	٠	
	5.9.2 State of North Carolina Intercomparison Program .	•	•	•	5-3
	5.9.3 Internal Crosscheck (Duke Power)	•	•	•	5-3
6.0 Refe	erences	•	•	•	6-1
Append	ices				
Annendi	x A: Environmental Sampling and Analysis Procedures .			_	A-1
Production	A 14 DATE Official Camping and I maryors 1 1000ar05	-	-	•	

T					
I.	Change of Sampling Procedures	•	• •	•	•
II.	Description of Analysis Procedures	•	• •	•	•
III.	Change of Analysis Procedures			•	
IV.	Change of Analysis Procedures				
	A.1 Airborne Particulate and Radioiodine .				
	A.2 Drinking Water . . . A.3 Surface Water . . .	_	• •		
	A.3 Surface Water			·	-
	A.4 Milk	•	· ·	•	•
	A.5 Broadleaf Vegetation	•	• •	•	•
		•	• •	•	•
	A.6 Fish	•	• •	•	•
	A.7 Shoreline Sediment	•	• •	•	•
	A.8 Direct Gamma Radiation (TLD)		• •	•	•
	A.9 Annual Land Use Census				•
V.					•
Appendix	B: Radiological Env. Monitoring Program - Summary	of Re	esults.	•	•
	Air Particulate			•	•
	Air Radioiodine			•	
	Drinking Water			•	
	N C*11	•			-
			• •		•
				•	•
			• •	•	-
	Shoreline Sediment	•	• •	•	•
Annandin	C. Sampling Deviations and Unavailable Analysis	•	•••	•	•
Appendix	C: Sampling Deviations and Unavailable Analyses	•		•	•
	C.1 Sampling Deviations	•	• •	•	•
	C.2 Unavailable Analyses	•	• •	•	•
Appendix	D: Analytical Deviations E: Radiological Environmental Monitoring Program I	•	• •	•	•
Appendix	E: Radiological Environmental Monitoring Program F	Result	s.	•	•
LIST OF FI	GURES				
2.1-1	Sampling Locations Map (One Mile Radius) .				
2.1-1	Sampling Locations Map (One Mile Radius)	•	• •	•	•
3.1	Concentration of Gross Beta in Air Particulate .	•	• •	•	•
		•		•	•
3.2	Concentration of Tritium in Drinking Water	•	• •	•	•
3.3	Concentration of Tritium in Surface Water .	•	• •	•	•
3.5	Concentration of Cs-137 in Broadleaf Vegetation	•	• •	•	•
3.6-1	Concentration of Cs-137 in Fish	•		•	•
3.6-2	Concentration of Cs-134 in Fish	•		•	•
3.7-1	Concentration of Cs-137 in Shoreline Sediment .	•		•	•
3.7-2	Concentration of Co-60 in Shoreline Sediment .	•		•	•
3.8	Direct Gamma Radiation (TLD) Results				•
3.9	2003 Land Use Census Map				
		•		•	
	-	•	-	•	
- I IST OF TA	RIES	•		•	
LIST OF TA	BLES	•		•	
		•		-	
2.1-A	Radiological Monitoring Program Sampling Locations				
2.1-A 2.1-B	Radiological Monitoring Program Sampling Locations Radiological Monitoring Program Sampling Locations) Sites)	•	•
2.1-A	Radiological Monitoring Program Sampling Locations Radiological Monitoring Program Sampling Locations Reporting Levels for Radioactivity Concentrations in		 O Sites)	•	•
2.1-A 2.1-B 2.2-A	Radiological Monitoring Program Sampling Locations Radiological Monitoring Program Sampling Locations Reporting Levels for Radioactivity Concentrations in Environmental Samples		 D Sites)		•
2.1-A 2.1-B 2.2-A 2.2-B	Radiological Monitoring Program Sampling Locations Radiological Monitoring Program Sampling Locations Reporting Levels for Radioactivity Concentrations in Environmental Samples REMP Analysis Frequency	s (TLI	• •	•	•
2.1-A 2.1-B 2.2-A	Radiological Monitoring Program Sampling Locations Radiological Monitoring Program Sampling Locations Reporting Levels for Radioactivity Concentrations in Environmental Samples	s (TLI	•••	· · ·	•

A-2 A-2

A-3 A-3 A-3

A-4 A-4 A-4 A-4 A-5

A-5 A-5 A-5 A-6 B-1

B-2 B-3 B-4 B-5 B-6 B-7 B-8

B-9 B-10 C-1 C-2 C-3 D-1 E-1

2-4 2-5 3-4 3-5 3-8

3-12 3-15 3-15 3-18 3-18 3-20 3-23

2-6 2-7

2-8 2-8

2-9 3-3

-6
-9
-11
-13
-16
-19
-21
-22
-3
-6
-4
-9
333334

LIST OF ACRONYMS USED IN THIS TEXT (in alphabetical order)

BW	BiWeekly
С	Control
DEHNR	Department of Environmental Health and Natural Resources
DHEC	Department of Health and Environmental Control
EPA	Environmental Protection Agency
GI-LLI	Gastrointestinal – Lower Large Intestine
GPS	Global Positioning System
LLD	Lower Limit of Detection
M	Monthly
MDA	Minimum Detectable Activity
mrem	Millirem
NIST	National Institute of Standards and Technology
NRC	Nuclear Regulatory Commission
ODCM	Offsite Dose Calculation Manual
ONS	Oconee Nuclear Station
pCi/kg	picocurie per kilogram
pCi/l	picocurie per liter
pCi/m3	picocurie per cubic meter
PIP	Problem Investigation Process
Q	Quarterly
REMP	Radiological Environmental Monitoring Program
SA	Semiannually
SLCs	Selected Licensee Commitments
SM	Semimonthly
TECH SPECs	Technical Specifications
TLD	Thermoluminescent Dosimeter
µCi/ml	microcurie per milliliter
UFSAR	Updated Final Safety Analysis Report
W	Weekly

1.0 EXECUTIVE SUMMARY

This Annual Radiological Environmental Operating Report describes the Oconee Nuclear Station Radiological Environmental Monitoring Program (REMP), and the program results for the calendar year 2003.

Included are the identification of sampling locations, descriptions of environmental sampling and analysis procedures, comparisons of present environmental radioactivity levels and preoperational environmental data, comparisons of doses calculated from environmental measurements and effluent data, analysis of trends in environmental radiological data as potentially affected by station operations, and a summary of environmental radiological sampling results. Quality assurance practices and program changes are also discussed.

Sampling activities were conducted as prescribed by Selected Licensee Commitments (SLC's). Required analyses were performed and detection capabilities were met for all collected samples as required by SLC's. One-thousand fifty-one samples were analyzed comprising 1,505 test results in order to compile data for the 2003 report. Based on the annual land use census, the current number of sampling sites for Oconee Nuclear Station is sufficient.

Concentrations observed in the environment in 2003 for station related radionuclides were within the ranges of concentrations observed in the past. Inspection of data showed that radioactivity concentrations in surface water, shoreline sediment, and fish are higher than the activities reported for samples collected prior to the operation of the station. All positively identified measurements were within limits as specified in SLC's.

 \cup

 \cup

し し

 \cup

 \cup

 \cup

 \cup

 \cup

 \cup

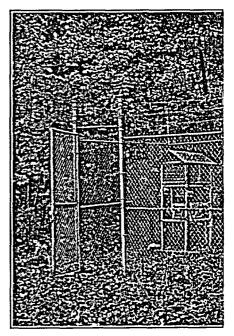
 \cup

C

 \cup

Ć

 \cup


 \cup

 \cup

C

 \cup

Additionally, environmental radiological monitoring data is consistent with effluents introduced into the environment by plant operations. The total body dose estimated to the maximum exposed member of the public as calculated by environmental sampling data, excluding TLD results, was 7.24E-02 mrem for 2003. It is therefore concluded that station operations has had no significant radiological impact on the health and safety of the public or the environment.

Air Sampling at Oconee Nuclear Station

2.0 INTRODUCTION

2.1 SITE DESCRIPTION AND SAMPLE LOCATIONS

Oconee Nuclear Station (ONS) is located in Oconee County, South Carolina, approximately 8 miles northeast of Seneca, South Carolina, on the shore of Lake Keowee. This lake was formed by damming the Keowee and Little Rivers in that location. Immediately to the south is the U.S. Government Hartwell Project. The Keowee Hydroelectric Plant near the station joins Lake Keowee and the upper reaches of Lake Hartwell. To the north, the Jocassee Hydroelectric Plant joins Lake Jocassee and Lake Keowee. Jocassee is a pumped storage plant.

ONS consists of three pressurized water reactors. Each unit has an output of 866 megawatts net. Unit 1 began commercial operation 7/15/1973. Unit 2 began commercial operation 9/09/1974, and Unit 3 on 12/16/1974. An independent spent fuel storage installation is also located at the site.

Figures 2.1-1 and 2.1-2 are maps depicting the Thermoluminescent Dosimeter (TLD) monitoring locations and the sampling locations. The location numbers shown on these maps correspond to those listed in Tables 2.1-A and 2.1-B. Figure 2.1-1 comprises all sample locations within a one mile radius of ONS. Figure 2.1-2 comprises all sample locations within a ten mile radius of ONS.

2.2 SCOPE AND REQUIREMENTS OF THE REMP

An environmental monitoring program has been in effect at Oconee Nuclear Station since 1969, four years prior to operation of Unit 1 in 1973. The preoperational program provides data on the existing environmental radioactivity levels for the site and vicinity which may be used to determine whether increases in environmental levels are attributable to the station. The operational program provides surveillance and backup support of detailed effluent monitoring which is necessary to evaluate the significance, if any, of the contributions to the existing environmental radioactivity levels that result from station operation.

This monitoring program is based on NRC guidance as reflected in the Selected Licensee Commitments Manual, with regard to sample media, sampling locations, sampling frequency, and analytical sensitivity requirements. Indicator and control locations were established for comparison purposes to distinguish radioactivity of station origin from natural or other "manmade" environmental radioactivity. The environmental monitoring program also verifies projected and anticipated radionuclide concentrations in the environment and related exposures from releases of radionuclides from Oconee Nuclear Station. This program satisfies the requirements of Section IV.B.2 of Appendix I to 10CFR50 and 10CFR72.44(d)(2) and provides surveillance of all appropriate critical exposure pathways to man and protects vital interests of the company, public, and state and federal agencies concerned with the environment. Reporting levels for radioactivity found in environmental samples are listed in Table 2.2-A. Table 2.2-B lists the REMP analysis and frequency schedule.

The Annual Land Use Census, required by Selected Licensee Commitments, is performed to ensure that changes in the use of areas at or beyond the site boundary are identified and that modifications to the Radiological Environmental Monitoring Program are made if required by changes in land use. This census satisfies the requirements of Section IV.B.3 of Appendix I to 10CFR50. Results are shown in Table 3.9.

Participation in an interlaboratory comparison program as required by Selected Licensee Commitments provides for independent checks on the precision and accuracy of measurements of radioactive material in REMP sample matrices. Such checks are performed as part of the quality assurance program for environmental monitoring in order to demonstrate that the results are valid for the purposes of Section IV.B.2 of Appendix I to 10CFR50. A summary of the results obtained as part of this comparison program are in Section 5 of this annual report.

2.3 STATISTICAL AND CALCULATIONAL METHODOLOGY

2.3.1 ESTIMATION OF THE MEAN VALUE

There was one (1) basic statistical calculation performed on the raw data resulting from the environmental sample analysis program. The calculation involved the determination of the mean value for the indicator and the control samples for each sample medium. The mean is a widely used statistic. This value was used in the reduction of the data generated by the sampling and analysis of the various media in the Radiological Environmental Monitoring Program. The following equation was used to estimate the mean (reference 6.8):

$$\overline{x} = \frac{\sum_{i=1}^{N} x_i}{N}$$

Where:

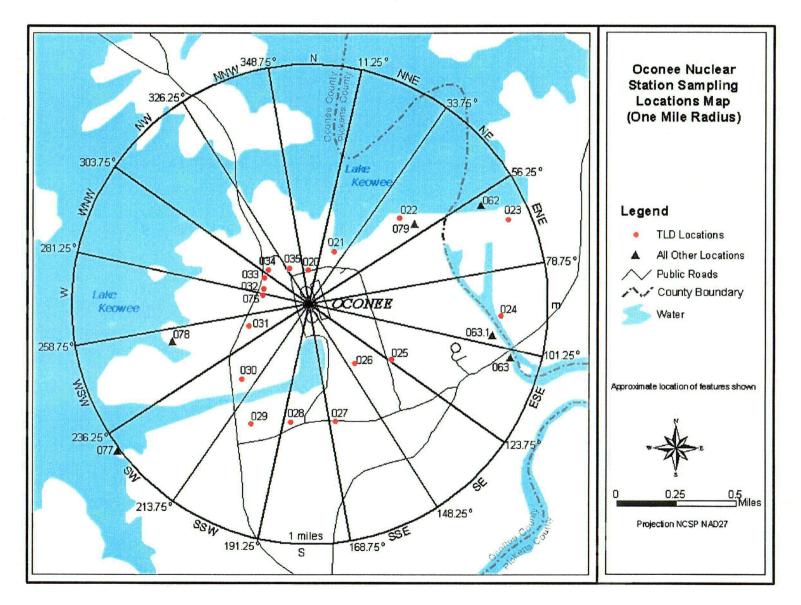
- x = estimate of the mean,
- i = individual sample,
- N = total number of samples with a net activity (or concentration),
- χ_i = net activity (or concentration) for sample i.
- NOTE: "Net activity (or concentration)" is the activity (or concentration) determined to be present in the sample. No "Minimum Detectable Activity", "Lower Limit of Detection", "Less Than Level", or negative activities or concentrations are included in the calculation of the mean.

2.3.2 <u>LOWER LEVEL OF DETECTION AND MINIMUM DETECTABLE</u> <u>ACTIVITY</u>

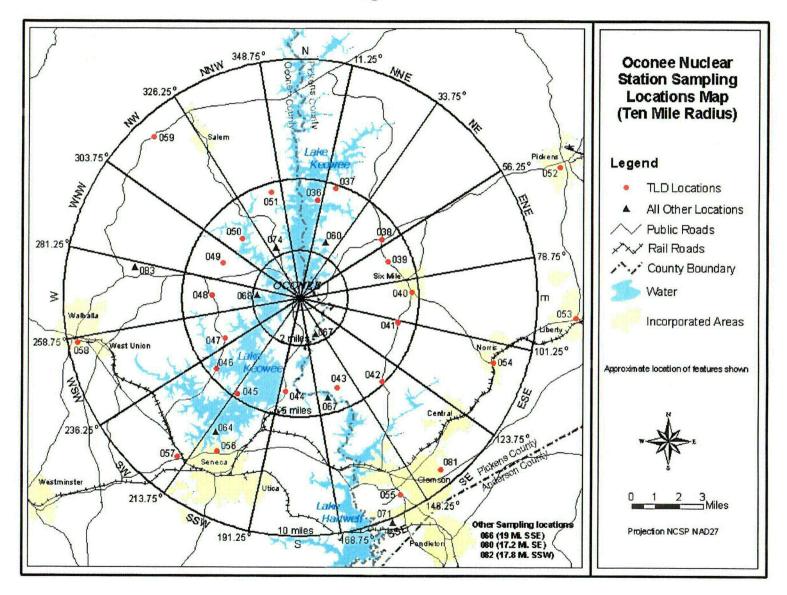
The Lower Level of Detection (LLD) and Minimum Detectable Activity (MDA) are used throughout the Environmental Monitoring Program.

LLD - The LLD, as defined in the Selected Licensee Commitments Manual is the smallest concentration of radioactive material in a sample that will yield a net count, above the system background, that will be detected with 95% probability with only 5% probability of falsely concluding that a blank observation represents a "real" signal. The LLD is an *a priori* lower limit of detection. The actual LLD is dependent upon the standard deviation of the background counting rate, the counting efficiency, the sample size (mass or volume), the radiochemical yield, and the radioactive decay of the sample between sample collection and counting. The "required" LLD's for each sample medium and selected radionuclides are given in the Selected Licensee Commitments and are listed in Table 2.2-C.

MDA - The MDA may be thought of as an "actual" LLD for a particular sample measurement remembering that the MDA is calculated using a sample background instead of a system background.


2.3.3 TREND IDENTIFICATION

One of the purposes of an environmental monitoring program is to determine if there is a buildup of radionuclides in the environment due to the operation of the nuclear station. Visual inspection of tabular or graphical presentations of data (including preoperational) is used to determine if a trend exists. A decrease in a particular radionuclide's concentration in an environmental medium does not indicate that reactor operations are removing radioactivity from the environment but that reactor operations are not adding that radionuclide to the environment in quantities exceeding the preoperational level and that the normal removal processes (radioactive decay, deposition, resuspension, etc.) are influencing the concentration.


Substantial increases or decreases in the amount of a particular radionuclide's release from the nuclear plant will greatly affect the resulting environmental levels; therefore, a knowledge of the release of a radionuclide from the nuclear plant is necessary to completely interpret the trends, or lack of trends, determined from the environmental data. Some factors that may affect environmental levels of radionuclides include prevailing weather conditions (periods of drought, solar cycles or heavier than normal precipitation), construction in or around either the nuclear plant or the sampling location, and addition or deletion of other sources of radioactive materials (such as the Chernobyl accident). Some of these factors may be obvious while others are sometimes unknown. Therefore, how trends are identified will include some judgment by plant personnel.

.

Figure 2.1-1

Figure 2.1-2

TABLE 2.1-A

OCONEE RADIOLOGICAL MONITORING PROGRAM SAMPLING LOCATIONS

	Table 2	.1-A Cod	es
W	Weekly	SM	Semimonthly
BW	BiWeekly	Q	Quarterly
М	Monthly	SA	Semiannually
С	Control		

-

Site #	Location Description*	Air Rad. & Particulate	Surface Water	Drinking Water	Shoreline Sediment	Fish	Milk	Broadleaf Vegetation
060	Greenville Water Intake Road (2.58 mi NNE)	W						М
060	Greenville Water Intake Road (3.23 NE)			М				
060 C **	Greenville Water Intake Road (2.28 NE)					SA		
062 C	Lake Keowee Hydro Intake (0.85 mi ENE)		М					
063	Lake Hartwell Hwy 183 Bridge (0.80 mi ESE) [000.7]				SA	SA		
063.1	Lake Hartwell Hwy 183 (0.79 mi E)		М					
064 C	Seneca (6.67 mi SSW) [004.1]			М				
066	Anderson (18.9 mi SSE) [012]			М				
067	Lawrence Ramsey Bridge Hwy 27 (4.34 mi SSE) [005.2]				SA	SA		
068 C	High Falls County Park (1.82 mi W)				SA			
071	Clemson Dairy (10.2 mi SSE) [006.3]						SM	
074	Keowee Key Resort (2.36 mi NNW)	W						
077	Skimmer Wall (1.00 mi SW)	W						М
078	Recreation Site (0.58 mi WSW)	W						
079	Keowee Dam (0.56 mi NE)	W						М
080 C	Martin's Dairy (17.2 mi SE)						SM	
081 C	Clemson Operations Center (9.33 mi SE)	W						М
082	Oakway Dairy (17.8 mi SSW)						SM	
083	Oconee Belle Farm Dairy (7.10 mi W)						SM	

* GPS data reflect approximate accuracy to within 2-5 meters. GPS field measurements were taken as close as possible to the item of interest.

** Control for Fish Only

.

[] Location Numbers prior to 1984

TABLE 2.1-B

OCONEE RADIOLOCICAL MONITORING PROGRAM SAMPLING LOCATIONS

(TLD SITES)

Site #	Location*	Distance	Sector	Site #	Location*	Distance	Sector
020	SITE BOUNDARY	0.16 miles	N	040	MICROWAVE TOWER, SIX MILE	4.74 miles	E
021	SITE BOUNDARY	0.25 miles	NNE	041	JCT HWY 101 & 133	4.25 miles	ESE
022	SITE BOUNDARY	0.53 miles	NE	042	LAWRENCE CHAPEL CHURCH, HWY 133	4.93 miles	SE
023	SITE BOUNDARY	0.93 miles	ENE	043	HWY 291 AT ISSAQUEENA PARK	4.09 miles	SSE
024	SITE BOUNDARY	0.81 miles	Е	044	HWY 130 AT LITTLE RIVER DAM	3.96 miles	S
025	SITE BOUNDARY	0.42 miles	ESE	045	TERMINUS OF HWY 588 AT CROOKED CREEK	4.78 miles	ssw
026	SITE BOUNDARY	0.34 miles	SE	046	HWY 188 AT CROOKED CREEKE	4.61 miles	sw
027	SITE BOUNDARY	0.49 miles	SSE	047	NEW HOPE CHURCH, HWY 188	3.58 miles	wsw
028	SITE BOUNDARY	0.46 miles	S	048	JCT HWY 175 & 188	3.64 miles	w
029	SITE BOUNDARY	0.56 miles	SSW	049	JCT HWY 201 & 92	3.60 miles	WNW
030	SITE BOUNDARY	0.42 miles	sw	050	STAMP CREEK LANDING, END OF HWY 92	3.53 miles	NW
031	SITE BOUNDARY	0.27 miles	wsw	051	HWY 128, 1 MILE N OF HWY 130	4.64 miles	NNW
076	SITE BOUNDARY	0.19 miles	w	052	DPC BRANCH OFFICE SITE - PICKENS	12.4 miles	ENE
032	SITE BOUNDARY	0.19 miles	WNW	053	DPC BRANCH OFFICE SITE - LIBERTY	11.7 miles	Е
033	SITE BOUNDARY	0.21 miles	WNW	054	POST OFFICE - HWY 93 NORRIS	8.60 miles	ESE
034	SITE BOUNDARY	0.22 miles	NW	055	CLEMSON METEOROLOGY PLOT	9.27 miles	SSE
035	SITE BOUNDARY	0.17 miles	NNW	056	WATER TOWER - SENECA	7.30 miles	ssw
036	MILE CREEK LANDING	4.32 miles	N	057	OCONEE MEMORIAL HOSPITAL	8.42 miles	sw
037	KEOWEE CHURCH, HWY 327	4.85 miles	NNE	058 C	BRANCH RD SUBSTATION, WALHALLA	9.39 miles	wsw
038	CONVENIENCE MART, JCT HWY 183 & 133	4.24 miles	NE	059	TAMASSEE DAR SCHOOL	9.20 miles	NW
039	HWY 133, 1 MILE EAST OF JCT HWY 183 & 133	4.02 miles	ENE	081 C	CLEMSON OPERATIONS CENTER	9.33 miles	SE

C = Control

1999 - Alberton Marine 1997 - Alberton Marine 1997 - Alberton Marine

.

1

SI = Special Interest

* GPS data reflect approximate accuracy to within 2-5 meters. GPS field measurements were taken as close as possible to the item of interest.

TABLE 2.2-A

REPORTING LEVELS FOR RADIOACTIVITY CONCENTRATIONS IN ENVIRONMENTAL SAMPLES

Analysis	Water (pCi/liter)	Air Particulates or Gases (pCi/m ³)	Fish (pCi/kg-wet)	Milk (pCi/liter)	Broadleaf Vegetation (pCi/kg-wet)
H-3	20,000 ^(a)				_
Mn-54	1,000		30,000		
Fe-59	400		10,000		
Co-58	1,000		30,000		
Co-60	300		10,000		
Zn-65	300		20,000		
Zr-Nb-95	400				
I-131	2 ^(b)	1		3	100
Cs-134	30	10	1,000	60	1,000
Cs-137	50	20	2,000	70	2,000
Ba-La-140	200			300	

(a) For drinking water samples only. This is 40CFR Part 141 value.

(b) If low-level I-131 analyses are performed.

11 1 2 2 2

TABLE 2.2-B

Sample	Analysis	Gamma	Tritium	Low Level	Gross	TLD
Medium	Schedule	Isotopic		I-131	Beta	
Air Radioiodine	Weekly	x				
Air Particulate	Weekly	x			X	
Direct Radiation	Quarterly					X
Surface	Monthly	X				
Water	Quarterly Composite		X			
Drinking	Monthly	X		(a)	x	
Water	Quarterly Composite		X			
Shoreline Sediment	Semiannually	X				
Milk	Semimonthly	X		X		
Fish	Semiannualy	X				
Broadleaf Vegetation	Monthly	X				

REMP ANALYSIS FREQUENCY

(a) Low level I-131 analysis will be performed if abnormal releases occur which could reasonably result in > 1 pCi/liter of I-131 in drinking water. An LLD of 1 pCi/liter will be required for this analysis.

TABLE 2.2-C

MAXIMUM VALUES FOR THE LOWER LIMITS OF DETECTION

Analysis	Water (pCi/liter)	Air Particulates or Gases (pCi/m ³)	Fish (pCi/kg-wet)	Milk (pCi/liter)	Broadleaf Vegetation (pCi/kg-wet)	Sediment (pCi/kg-dry)
Gross Beta	4	0.01				
H-3	2000					
Mn-54	15		130			
Fe-59	30		260			
Co-58, 60	15		130			
Zn-65	30		260			
Zr-95	30					
Nb-95	15					
I-131	15 ^(a)	0.07		1	60	
Cs-134	15	0.05	130	15	60	150
Cs-137	18	0.06	150	18	80	180
Ba-La-140	15			15		

(a) LLD for low-level I-131 analyses is 1 pCi/liter if performed

- -

3.0 INTERPRETATION OF RESULTS

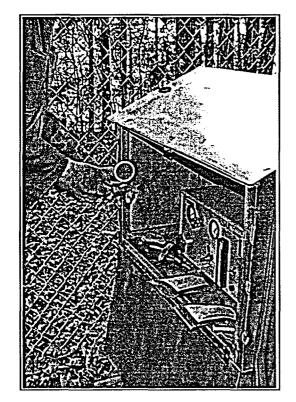
Review of 2003 REMP analysis results was performed to identify changes in environmental levels as a result of station operations. The review is summarized in this section. Data from 2003 was compared to preoperational and historical data. Sample data for some media is not directly comparable to preoperational and earlier operational sample results because of either significant changes in the analysis methods or changes in the reporting of the results.

Evaluation for significant trends was performed for the radionuclides that have required LLDs listed in Selected Licensee Commitment 16.11.6. These radionuclides are collectively referred to as "Selected Licensee Commitments radionuclides" and include H-3, Mn-54, Fe-59, Co-58, Co-60, Zn-65, Zr-95, Nb-95, I-131, Cs-134, Cs-137, Ba-140, and La-140. Drinking water gross beta results are routinely trended. Trending of air particulate gross beta results was initiated in 1996 when the analysis was resumed. Trending is also performed for other radionuclides that are detected and could have been the result of station effluents. Only Selected Licensee Commitment radionuclides were detected in 2003.

Trending was performed by comparing annual mean concentrations of any effluent related detected radionuclide to historical results. Factors evaluated include the frequency of detection and the concentration in terms of the percent of the radionuclide's SLC reporting level (Table 2.2-A). All maximum percent of reporting level values were well below the 100% action level. The highest value reached during 2003 was 3.02% for Cs-137 in a fish sample collected at Location 063.

Changes in sample location, analytical technique, and presentation of results must be considered when reviewing for trends. Calculation of the annual mean concentrations has been performed differently over the history of the REMP. During 1979-1986, all net results (sample minus background), positive and negative, were included in the calculation of the mean. Only positive net activity results were used to calculate the mean for the other years. A change in gamma spectroscopy analysis systems in 1987 ended a period when many measurements yielded detectable low-level activity for both indicator and control location samples. It is thought that the method the previous system used to estimate net activity may have been vulnerable to false-positive results.

Data presented in Sections 3.1 - 3.8 support the conclusion that there were no significant increases in radionuclides in the environment around ONS due to station operations in 2003. Similarly, there was no significant increase in ambient background radiation levels in the surrounding areas.


3.1 AIRBORNE RADIOIODINE AND PARTICULATES

In 2003, 312 radioiodine and particulate samples were analyzed, 260 from five indicator locations and 52 from the control location. Particulate samples were analyzed weekly for gamma and gross beta. Radioiodine samples received a weekly gamma analysis.

There was no detectable I-131 in air samples in 2003. Table 3.1-A gives the highest indicator location annual mean and control location annual mean for I-131 since the preoperational period. The table shows similar concentrations for both the indicator and control locations and the activities decreasing from early in the operational history of the plant. No I-131 has been detected since 1994.

Cs-137 was not detected in air radioiodine samples in 2003. Cs-137 has been detected in cartridges in previous years. A study performed in 1990 determined Cs-137 to be an active constituent of the charcoal. A similar study was performed in 2001 again yielding this conclusion.

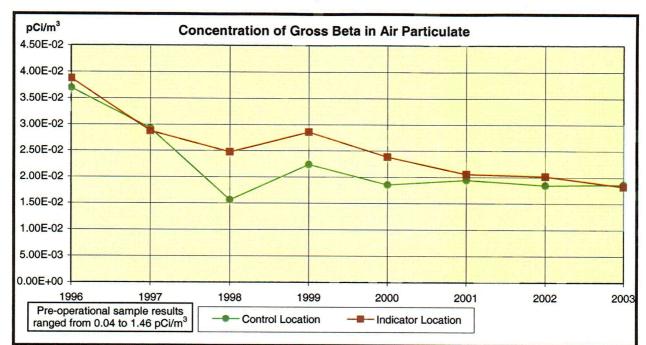
There were no detectable gamma emitting radionuclides detected in air particulate samples in 2003. No gamma emitting particulates have been detected in indicator location samples since the change in gamma spectroscopy analysis systems in 1987.

Oconee Air Monitoring Station

Beta analysis of particulate filters was initiated in March of 1996 and became required by Selected Licensee Commitments in 1998. Gross beta analysis was performed on particulate filters during the preoperational and early operational history of the plant but had not been required since 1984. Figure 3.1 summarizes gross beta results for the indicator location with the highest annual mean and the control location samples. Both the indicator and control location results are similar in concentration and are near the lower range of preoperational gross beta results.

K-40 and Be-7 are the naturally occurring radionuclides that were observed in air samples.

Year	Indicator Location (pCi/m ³)	Control Location (pCi/m ³)
Preoperational 1969-1972	0.00E0	0.00E0
Feb. 1973 - June 1973	0.00E0	0.00E0
July 1973 - Dec. 1973	0.00E0	0.00E0
Jan. 1974 - June 1974	0.00E0	0.00E0
July 1974 - Dec. 1974	2.60E-2	8.00E-3
Jan. 1975 - June 1975	8.65E-2	3.12E-2
July 1975 - Dec. 1975	1.13E-2	9.52E-3
1976	2.76E-2	2.18E-2
1977	3.60E-2	3.60E-2
1978	2.19E-1	1.15E-1
1979	7.54E-3	4.75E-4
1980	3.07E-3	9.67E-4
1981	6.31E-3	5.39E-4
1982	2.87E-3	8.10E-4
1983	1.48E-3	3.05E-4
1984	8.11E-4	-2.30E-5
1985	7.71E-4	4.54E-4
1986	5.02E-3	7.86E-3
1987	4.29E-3	5.19E-3
1988	0.00E0	0.00E0
1989	4.99E-4	0.00E0
1990	0.00E0	0.00E0
1991	0.00E0	0.00E0
1992	0.00E0	0.00E0
1993	0.00E0	0.00E0
1994	1.03E-2	0.00E0
1995	0.00E0	0.00E0
1996	0.00E0	0.00E0
1997	0.00E0	0.00E0
1998	0.00E0	0.00E0
1999	0.00E0	0.00E0
2000	0.00E0	0.00E0
2001	0.00E0	0.00E0
2002	0.00E0	0.00E0
2003	0.00E0	0.00E0


Table 3.1-A Mean Concentration of Air Radioiodine (I-131)

_ _ _ ...

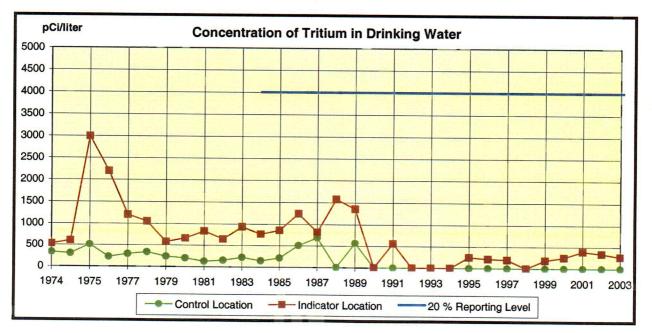
0.00E0 = no detectable measurements 1979 - 1986 mean based on all net activity results

.

There is no reporting level for gross beta in air particulate

Monitoring Period	Indicator Location (pCi/m ³)	Control Location (pCi/m ³)
1996	3.87E-2	3.69E-2
1997	2.87E-2	2.92E-2
1998	2.47E-2	1.56E-2
1999	2.85E-2	2.23E-2
2000	2.38E-2	1.85E-2
2001	2.05E-2	1.94E-2
2002	2.01E-2	1.84E-2
Average (1996 - 2002)	2.64E-2	2.29E-2
2003	1.86E-2	1.82E-2

Table 3.1-B Mean Concentration of Gross Beta in Air Particulate


3.2 DRINKING WATER

Gross beta analysis and gamma spectroscopy were performed on 39 monthly drinking water samples. These samples were composited to form 15 quarterly period samples for Tritium analysis. Two indicator locations and a control location were sampled; however, only one of the indicator locations is downstream of the effluent release point.

Table 3.2 lists the highest indicator location annual mean and control location annual mean for gross beta results since the preoperational period. The indicator location had an average concentration of 1.51 pCi/liter in 2003, and the control location had a concentration of 1.05 pCi/liter. The 2002 indicator mean was 1.61 pCi/liter. The table shows that 2003 gross beta levels in drinking water are slightly lower than preopreational concentrations. The dose for consumption of water was less than one mrem per year, historically and for 2003; therefore low-level iodine analysis is not required.

Tritium was detected in four of the 15 composite samples during 2003. Tritium was detected in five of the 15 composite samples during 2002. The 2003 mean indicator location 066 concentration was 266 pCi/liter, which is 1.33% of the reporting level. Table 3.2 and Figure 3.2 show the highest indicator and control location annual means for Tritium since analysis was initiated early in the operational period. Tritium concentrations have decreased at both the indicator and control locations. The closure of the Clemson water plant in 1989 is one reason for the decrease shown in the table and graph. The Clemson site was typically the high mean location when the plant was in operation.

There were no gamma emitting radionuclides identified in drinking water samples in 2003. Gamma spectroscopy analysis has not detected any activity in the water supplies since 1988. K-40 is the naturally occurring radionuclide that was observed in drinking water samples.

Section 3 - Page 5

·····	Gross Bet	a (pCi/l)	Tritium (pCi/l)		
Year	Indicator		Indicator	Control	
		Location		Location	
Preoperational ending Jan. 1971	3.03	5.90	Analysis no	ot required	
Preoperational ending Jan. 1973	3.58 4.94		Analysis no	Analysis not required	
Feb. 1973 - June 1973	Qualitative results reported		Analysis not required		
June 1973 - Dec. 1973	7.15	21.78	Analysis not required		
Jan. 1974 - June 1974	3.13	6.98	Analysis no	ot required	
July 1974 - Dec. 1974	2.24	2.02	525	330	
Jan. 1975 - June 1975	1.98	1.59	600	300	
July 1975 - Dec. 1975	2.01	1.22	2990	505	
1976	2.38	2.00	2196	224	
1977	2.70	2.30	1200	290	
1978	2.56	2.17	1050	333	
1979	1.83	1.36	576	235	
1980	1.86	1.63	660	200	
1981	1.98	1.88	830	127	
1982	2.04	1.45	643	153	
1983	1.85	1.54	937	220	
1984	1.87	1.08	765	145	
1985	2.14	1.16	856	210	
1986	1.91	1.04	1240	503	
1987	2.00	1.20	815	680	
1988	2.00	1.40	1570	0.00	
1989	2.30	1.80	1350	559	
1990	3.00	2.70	0.00	0.00	
1991	1.80	1.40	558	0.00	
1992	3.20	1.60	0.00	0.00	
1993	2.10	1.90	0.00	0.00	
1994	1.90	2.10	0.00	0.00	
1995	5.10	2.90	248	0.00	
1996	2.07	1.77	214	0.00	
1997	2.52	2.23	194	0.00	
1998	2.48	_1.70	0.00	0.00	
1999	1.73	1.49	185	0.00	
2000	2.07	1.68	251	0.00	
2001	1.75	1.29	390	0.00	
2002	1.61	1.21	338	0.00	
2003	1.51	1.05	266	0.00	

Table 3.2 Mean Concentrations of Radionuclides in Drinking Water

0.00 = no detectable measurements

1989 - Clemson water plant closes; nearest downstream plant is Anderson. 1979 - 1986 mean based on all net activity results

3.3 SURFACE WATER

Gamma spectroscopy was performed on 26 monthly surface water samples. These samples were composited to form 10 quarterly samples for Tritium analysis. One indicator and one control location were sampled. The indicator location is near the liquid effluent release point.

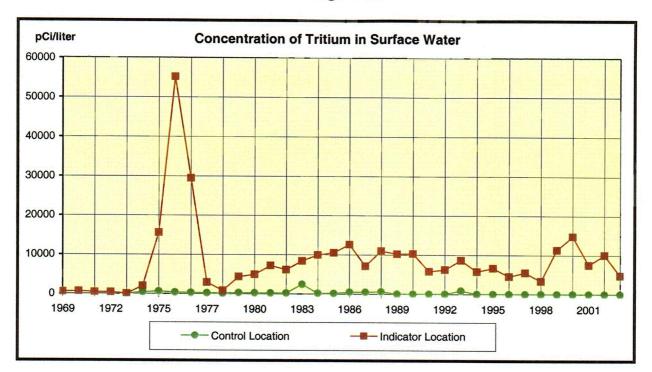

Tritium was detected in the five indicator location samples. The 2003 average concentration was 4,768 pCi/liter. The individual samples ranged from 888 pCi/liter to 10,300 pCi/liter. The 2002 mean concentration was 10,000 pCi/liter. Tritium was not detected in any control surface water samples.

Figure 3.3 shows the indicator and control annual means for Tritium since the preoperational period. Table 3.3 lists the indicator annual means. Tritium in the indicator location was elevated during an extended drought from 1998 through 2002. The average tritium concentration decreased in 2003 with increased rainfall.

Gamma spectroscopy analysis did not detect any activities during 2003. In 1999, gamma spectroscopy analysis detected Co-58 in one indicator sample at 27.2 pCi/liter. Gamma spectroscopy analysis has not detected any other activity in surface water samples since 1992. Table 3.3 summarizes the indicator annual means of radionuclides detected since the change in the gamma spectroscopy analysis system in 1987. Visual inspection of the gamma spectroscopy tabular data covering the early operational period through 2003 did not reveal any increasing trends.

K-40 is the naturally occurring radionuclide observed in surface water samples in 2003.

Figure 3.3

There is no reporting level for Tritium in surface water

C05

Year	Co-58 (pCi/l)	Co-60 (pCi/l)	Nb-95 (pCi/l)	Cs-137 (pCi/l)	H-3 pCi/l)
Preoperational 1969		Qualitative re	sults reported		4.86E2
Preoperational 1970		•	6		5.94E2
Preoperational 1971		•	6		4.01E2
Preoperational 1972		6	6		3.62E2
1973		6	6		0.00E0
1974	0.00E0	1.32E1	0.00E0	1.60E1	1.99E3
Jan. 1975 – June 1975	0.00E0	0.00E0	0.00E0	0.00E0	1.56E4
July 1975 - Dec. 1975	0.00E0	1.34E1	0.00E0	0.00E0	5.52E4
1976	1.08E2	3.30E1	0.00E0	3.50E1	2.95E4
1977	2.60E1	1.80E1	0.00E0	3.10E1	2.90E3
1978	2.96E2	0.00E0	0.00E0	2.22E1	8.00E2
1979	1.33E0	2.60E0	1.78E0	2.82E0	4.37E3
1980	1.56E0	2.30E0	1.22E0	5.40E0	4.93E3
1981	1.10E0	6.10E-1	1.70E0	3.90E0	7.21E3
1982	6.14E-1	1.99E0	2.29E0	4.85E0	6.13E3
1983	6.99E-1	3.02E0	3.91E-1	6.83E-1	8.40E3
1984	9.40E-1	6.30E-1	7.90E-1	4.83E-1	9.90E3
1985	2.15E-1	6.27E-1	4.95E-1	9.90E-1	1.05E4
1986	3.28E0	1.23E0	1.14E0	3.07E-1	1.26E4
1987	5.10E1	3.40E0	4.00E0	0.00E0	7.08E3
1988	6.20E0	5.00E0	2.50E0	3.50E0	1.10E4
1989	5.30E0	3.00E0	0.00E0	3.40E0	1.02E4
1990	1.70E0	1.60E0	0.00E0	0.00E0	1.03E4
1991	5.40E0	0.00E0	0.00E0	0.00E0	5.76E3
1992	2.50E0	0.00E0	0.00E0	0.00E0	6.22E3
1993	0.00E0	0.00E0	0.00E0	0.00E0	8.62E3
1994	0.00E0	0.00E0	0.00E0	0.00E0	5.75E3
1995	0.00E0	0.00E0	0.00E0	0.00E0	6.65E3
1996	0.00E0	0.00E0	0.00E0	0.00E0	4.54E3
1997	0.00E0	0.00E0	0.00E0	0.00E0	5.50E3
1998	0.00E0	0.00E0	0.00E0	0.00E0	3.35E3
1999	2.73E1	0.00E0	0.00E0	0.00E0	1.13E4
2000	0.00E0	0.00E0	0.00E0	0.00E0	1.48E4
2001	0.00E0	0.00E0	0.00E0	0.00E0	7.43E3
2002	0.00E0	0.00E0	0.00E0	0.00E0	1.00E4
2003	0.00E0	0.00E0	0.00E0	0.00E0	4.77E3

Table 3.3 Mean Concentrations of Radionuclides in Surface Water

- -

.

0.00E0 = no detectable measurements

19 **10 10 10 10**

1979-1986 mean based on all net activity results

3.4 <u>MILK</u>

Gamma spectroscopy and low level iodine analysis was performed on 103 milk samples collected in 2003. Three indicator locations and one control location were sampled.

Milk Sampling

There were no gamma emitting radionuclides identified in indicator or control location samples in 2003. Cs-137 is the only radionuclide, other than naturally occurring, reported in milk samples since 1988. Cs-137 in milk is not unusual. It is a constituent of nuclear weapons test fallout and has been observed in samples from indicator and control locations in previous years.

Table 3.4 lists the highest indicator location annual mean and control location annual mean for Cs-137 since the preoperational period. The table shows similar concentrations for both indicator and control locations.

K-40 is a naturally occurring radionuclide observed in milk samples in 2003.

Year	Cs-137 Indicator (pCi/l)	Cs-137 Control (pCi/l)
Preoperational	1.57E1	1.46E1
Feb. 1973 – June 1973	Qualitative results reported	Qualitative results reported
July 1973 - Dec. 1973	5.80E0	66
Jan. 1974 – June 1974	5.30E0	0.00E0
July 1974 - Dec. 1974	1.11E1	0.00E0
Jan. 1975 – June 1975	1.51E1	9.45E0
July 1975 - Dec. 1975	0.00E0	0.00E0
1976	1.80E1	7.47E0
1977	0.00E0	0.00E0
1978	1.33E1	1.33E1
1979	7.25E0	2.52E0
1980	3.58E0	2.63E0
1981	5.52E0	5.51E0
1982	2.71E0	3.25E0
1983	5.04E0	-4.27E-1
1984	2.30E0	2.58E0
1985	2.38E0	1.31E0
1986	2.92E0	2.97E0
1987	4.90E0	4.90E0
1988	3.90E0	3.20E0
1989	4.70E0	2.90E0
1990	6.40E0	0.00E0
1991	5.00E0	0.00E0
1992	6.60E0	0.00E0
1993	0.00E0	0.00E0
1994	0.00E0	1.80E0
1995	2.30E0	2.00E0
1996	0.00E0	4.10E0
1997	0.00E0	0.00E0
1998	0.00E0	0.00E0
1999	0.00E0	0.00E0
2000	0.00E0	0.00E0
2001	0.00E0	0.00E0
2002	0.00E0	0.00E0
2003	0.00E0	0.00E0

Table 3.4 Mean Concentration of Radionuclides in Milk

0.00E0 = no detectable measurements

1.00

1979 - 1986 mean based on all net activity results

3.5 BROADLEAF VEGETATION

Gamma spectroscopy was performed on 48 broadleaf vegetation samples during 2003. Three indicator locations and one control location were sampled. There were no gamma emitting radionuclides identified in indicator or control location samples in 2003. Cs-137 was reported in one indicator sample in 2002.

Sampling of control location 073 (which has historically had measurable Cs-137 concentrations greater than any indicator location) was discontinued early in 1999 due to construction. The new control location, 081, has had no measurable Cs-137 since this location was added to the program in 1998.

Cs-137 is the only radionuclide, other than naturally occurring, reported in indicator location vegetation samples since the change in gamma spectroscopy analysis systems in 1987.

It is not unusual for Cs-137 to be present in vegetation. It is a constituent of nuclear weapons test fallout and has been observed in samples from indicator and control locations in previous years. Table 3.5 lists the highest indicator location annual mean and control location annual mean for Cs-137 since early in the station's operational history. Visual inspection of the tabular data did not reveal any increasing trends. There is no indication that the Cs-137 is due to ONS operations based on the low concentration observed and the absence of other radionuclides.

K-40 and Be-7 are naturally occurring radionuclides that were observed in broadleaf vegetation samples in 2003.

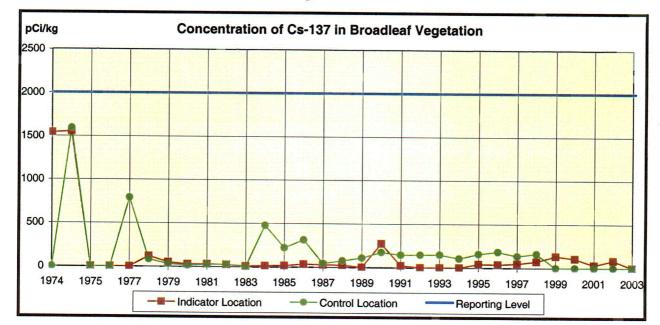


Figure 3.5

Year	Cs-137 Indicator (pCi/kg)	Cs-137 Control (pCi/kg)
July 1974 - Dec. 1974	1.54E3	0.00E0
Jan. 1975 - June 1975	1.55E3	1.59E3
July 1975 - Dec. 1975	0.00E0	0.00E0
1976	0.00E0	0.00E0
1977	0.00E0	7.90E2
1978	1.19E2	8.19E1
1979	5.04E1	2.96E1
1980	2.80E1	1.55E1
1981	2.99E1	2.60E1
1982	2.42E1	2.62E1
1983	7.44E0	5.35E-1
1984	1.37E1	4.74E2
1985	1.62E1	2.20E2
1986	3.28E1	3.12E2
1987	2.70E1	4.20E1
1988	2.40E1	7.50E1
1989	0.00E0	1.08E2
1990	2.73E2	1.74E2
1991	2.20E1	1.45E2
1992	0.00E0	1.46E2
1993	0.00E0	1.49E2
1994	0.00E0	1.06E2
1995	4.30E1	1.58E2
1996	3.79E1	1.83E2
1997	4.73E1	1.35E2
1998	7.28E1	1.61E2
1999	1.34E2	0.00E0
2000	1.06E2	0.00E0
2001	3.19E1	0.00E0
2002	8.44E1	0.00E0
2003	0.00E0	0.00E0

 Table 3.5 Mean Concentration of Radionuclides in Vegetation

0.00E0 = no detectable measurements Only qualitative results reported prior to 1974

Control location changed to 073 in 1984

Control location 081 added in 1998

Control location 073 was removed in 1999

1979 - 1986 mean based on all net activity results

Sector Sector Sector

.

3.6 <u>FISH</u>

In 2003, gamma spectroscopy was performed on 12 fish samples. Two downstream indicator and one control location were sampled. Cs-137 was identified in all eight of the indicator location samples and in one of the four control location samples. Co-58 was identified in one of the eight indicator samples. Co-58 was not identified in any of the four control location samples.

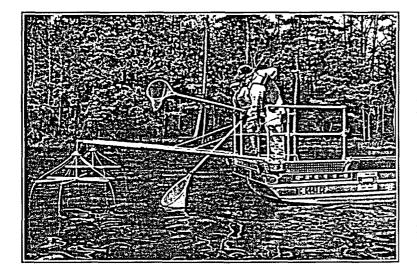
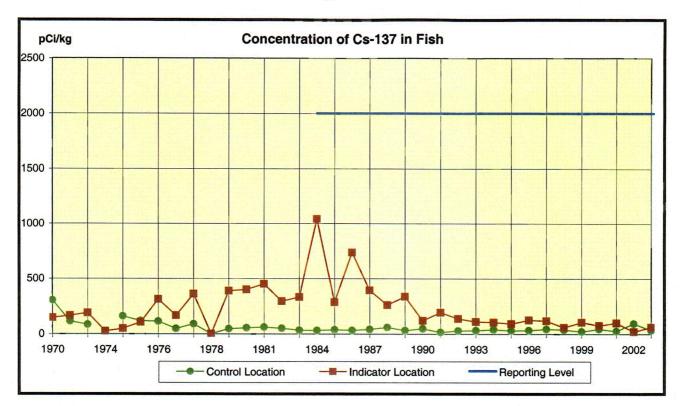
The highest average concentration for Cs-137 was 60.4 pCi/kg (3.02% of reporting level). The highest individual sample concentration for Cs-137 was 97.6 pCi/kg (4.88% of reporting level). The control Cs-137 average concentration was 33.3 pCi/kg. 2002 Cs-137 sample results for all locations were similar.

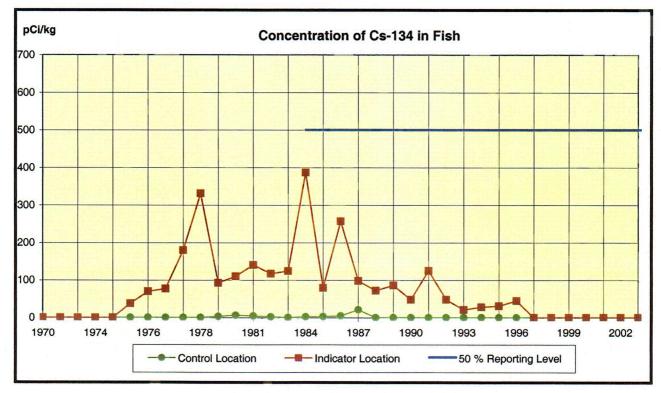
The highest average concentration for Co-58 was 50.2 pCi/kg (0.17% of reporting level). Co-58 was last observed in an indicator sample in 2001.

Figures 3.6-1 and 3.6-2 are graphs displaying the annual means for Cs-137 and Cs-134. Historically, both are major contributors to the calculated dose from liquid effluents from ingestion of fish. Radioactivity concentrations in downstream fish samples are higher than those reported in preoperational fish samples, however, fluctuations in the graphed results are large and no trends are apparent. Based on these graphs, the levels at the two downstream locations do not appear to be increasing.

One factor affecting the trend analysis is a change in sampling locations. In 1984, a second downstream fish location was added. Location 063 is closer to the liquid effluent discharge point and has been the highest mean indicator since it was added.

K-40 was observed in fish samples in addition to the radionuclides discussed above.


Table 3.6 lists the highest indicator location annual means since the preoperational period for radionuclides detected in 2003. Also included in the table are radionuclides that have been identified in this media since the change in analysis systems in 1987. Comparison of data to previous years does not indicate any increases in concentrations.

Fish Sampling

Figure 3.6-1

Figure 3.6-2

Current reporting levels implemented 1984

Year	Co-58 (pCi/kg)	Co-60 (pCi/kg)	Cs-134 (pCi/kg)	Cs-137 (pCi/kg)	
Preop ending Jan. 1971	0.00E0	0.00E0	0.00E0	1.46E2	
Preop ending Jan.1973	0.00E0	0.00E0	0.00E0	1.66E2	
Feb. 1973 - June 1973	Qualitative re	esults reported-no signifi	cant measurements above	ve background	
July 1973 - Dec. 1973	0.00E0	0.00E0	0.00E0	1.89E2	
Jan. 1974 - June 1974	0.00E0	0.00E0	0.00E0	2.47E1	
July 1974 - Dec. 1974	0.00E0	0.00E0	0.00E0	4.85E1	
Jan. 1975 - June 1975	0.00E0	0.00E0	3.81E1	1.05E2	
July 1975 - Dec. 1975	8.50E1	0.00E0	7.00E1	3.13E2	
1976	5.70E1	1.14E2	7.73E1	1.66E2	
1977	0.00E0	0.00E0	1.80E2	3.60E2	
1978	3.27E2	0.00E0	3.31E2	0.00E0	
1979	1.91E0	1.56E1	9.26E1	3.88E2	
1980	1.45E1	1.90E1	1.10E2	3.99E2	
1981	2.25E1	1.49E1	1.40E2	4.51E2	
1982	9.83E-1	8.03E0	1.17E2	2.94E2	
1983	3.35E1	4.53E0	1.24E2	3.32E2	
1984	1.21E2	6.23E1	3.87E2	1.04E3	
1985	1.62E1	1.10E1	7.93E1	2.85E2	
1986	9.56E1	2.59E1	2.57E2	7.36E2	
1987	1.63E2	6.30E1	9.80E1	3.93E2	
1988	9.60E1	0.00E0	7.20E1	2.60E2	
1989	4.30E1	1.50E1	8.60E1	3.36E2	
1990	1.50E1	0.00E0	4.80E1	1.19E2	
1991	4.59E1	0.00E0	1.25E2	1.94E2	
1992	6.10E1	0.00E0	4.80E1	1.36E2	
1993	0.00E0	0.00E0	2.10E1	1.10E2	
1994	0.00E0	0.00E0	2.80E1	1.05E2	
1995	0.00E0	0.00E0	3.10E1	9.20E1	
1996	0.00E0	0.00E0	4.49E1	1.25E2	
1997	0.00E0	0.00E0	0.00E0	1.18E2	
1998	0.00E0	0.00E0	0.00E0	5.79E1	
1999	0.00E0	0.00E0	0.00E0	1.04E2	
2000	0.00E0	0.00E0	0.00E0	7.54E1	
2001	1.72E1	0.00E0	0.00E0	9.92E1	
2002	0.00E0	0.00E0	0.00E0	9.37E1	
2003	5.02E1	0.00E0	0.00E0	6.04E1	

Table 3.6 Mean Concentrations of Radionuclides in Fish

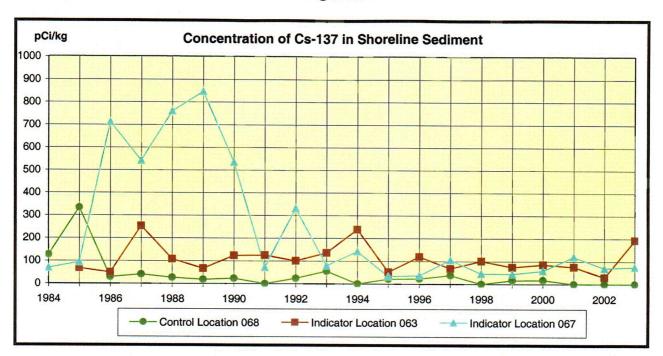
 \smile \cup ل ب

 \cup \cup

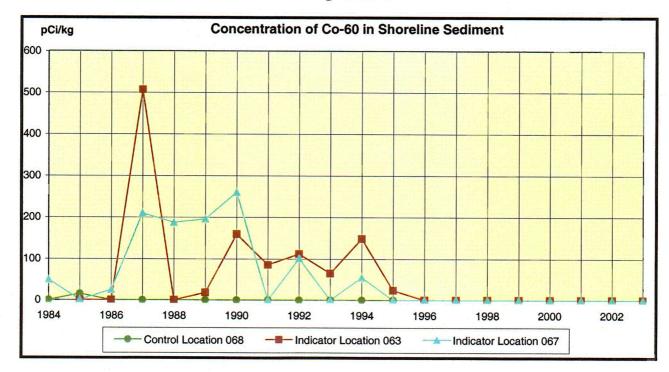
1979 - 1986 mean based on all net activity results

3.7 SHORELINE SEDIMENT

100.00


Gamma spectroscopy was performed on six sediment samples. Two downstream indicator locations and one control location were sampled.

Cs-137 was identified in three of the four indicator location samples. Cs-137 was not observed in any control location samples. The highest 2003 indicator location annual mean was 193 pCi/kg. Releases of Cs-137 in liquid effluents for 2003 were slightly higher than 2002. Table 3.7 lists the highest indicator location annual means since shoreline sediment was initiated in 1984. Included in the table are radionuclides that have been identified in this media since the change in analysis systems in 1987.


Visual inspection of the tabular data did not reveal any trends. Figure 3.7-1 is a graph of the Cs-137 annual means. Figure 3.7-2 is a graph of the Co-60 annual means. Historically, both are major contributors to the calculated dose from liquid effluents from shoreline sediment. Fluctuations in the graphed results are large and no trends are apparent.

K-40 and Be-7 are naturally occurring radionuclides observed in shoreline sediment samples in 2003.

Figure 3.7-1

Figure 3.7-2

There are no reporting levels for shoreline sediment

Year	Mn-54	Co-58	Co-60	Zn-65	Cs-134	Cs-137	Ag-110m	Sb-125
1984	1.10E1	1.09E1	1.19E1	0.00E0	7.77E1	5.16E1	0.00E0	0.00E0
1985	9.39E0	1.27E0	4.79E0	0.00E0	7.63E1	9.47E1	0.00E0	0.00E0
1986	2.24E1	1.62E1	2.50E1	0.00E0	1.41E2	7.12E2	0.00E0	0.00E0
1987	5.40E1	4.70E2	5.07E2	0.00E0	1.01E2	6.22E2	3.46E2	0.00E0
1988	3.30E1	1.20E2	1.87E2	6.70E1	6.60E1	7.59E2	1.62E2	3.67E2
1989	2.30E1	1.24E2	1.96E2	0.00E0	5.40E1	8.48E2	5.50E1	1.86E2
1990	3.40E1	8.00E1	2.59E2	0.00E0	4.50E1	5.36E2	1.71E2	9.00E1
1991	3.26E1	5.60E1	8.57E1	0.00E0	6.91E1	1.24E2	1.10E2	1.78E2
1992	8.79E1	1.79E2	1.12E2	0.00E0	5.60E1	3.31E2	1.69E2	2.08E2
1993	8.20E1	8.20E1	6.50E1	0.00E0	3.20E1	1.36E2	5.63E1	1.11E2
1994	5.30E1	7.00E1	1.49E2	0.00E0	6.70E1	2.38E2	1.04E2	1.29E2
1995	1.43E2	3.90E1	2.40E1	0.00E0	1.10E1	5.20E1	0.00E0	0.00E0
1996	0.00E0	5.10E1	0.00E0	0.00E0	1.98E1	1.19E2	0.00E0	0.00E0
1997	0.00E0	0.00E0	0.00E0	0.00E0	0.00E0	1.06E2	0.00E0	0.00E0
1998	0.00E0	0.00E0	0.00E0	0.00E0	0.00E0	1.01E2	0.00E0	0.00E0
1999	6.96E1	0.00E0	0.00E0	0.00E0	0.00E0	7.38E1	0.00E0	0.00E0
2000	0.00E0	0.00E0	0.00E0	0.00E0	0.00E0	8.54E1	0.00E0	0.00E0
2001	0.00E0	2.10E1	0.00E0	0.00E0	0.00E0	1.20E2	0.00E0	0.00E0
2002	0.00E0	0.00E0	0.00E0	0.00E0	0.00E0	6.96E1	0.00E0	0.00E0
2003	0.00E0	0.00E0	0.00E0	0.00E0	0.00E0	1.93E2	0.00E0	0.00E0

Table 3.7	Mean	Concentrations	of Radion	uclides in	Shoreline	Sediment (pC	'i/kg)
	1.1.0.0011	Comeener actorio	<u>UI ANGUIUII</u>	achiaco m	OHOI CHINC	beament (pe	

.

0.00E0 = no detectable measurements

1984-1986 mean based on all net activity results

3.8 DIRECT GAMMA RADIATION

In 2003, 168 Thermoluminescent Dosimeters (TLD) were analyzed, 160 at indicator locations, 8 at the two control locations. TLDs are collected and analyzed quarterly. The highest annual mean exposure for an indicator location was 103 milliroentgen. This TLD is located at indicator location 053, 11.7 miles from the station. The annual mean exposure for the control locations was 109 milliroentgen.

Figure 3.8 and Table 3.8 show TLD inner ring (site boundary), outer ring (4-5 miles), and control location annual averages in milliroentgen per year. Data is provided from 1984 when TLD locations were added and arranged in an inner ring and outer ring configuration. Preoperational data is also provided in the table. As shown in the graph, inner and outer ring averages historically compare closely, with control data somewhat higher. Inner and outer ring averages comprise a number of data points with control averages representing only two locations.

The calculated total body dose (from gaseous effluents) for 2003 was 4.08E-2 mrem, which is 0.05% of the average inner ring TLD values. Therefore, it can be concluded that discharges from the plant had very little impact upon the measured TLD values.

The maximum measurement from TLDs at the Independent Spent Fuel Storage Installation (ISFSI) was 931 milliroentgen per standard quarter. This is higher than previous measurements but is expected due continued operations of the ISFSI. TLD measurements in the inner ring (site boundary) have not shown an increase.

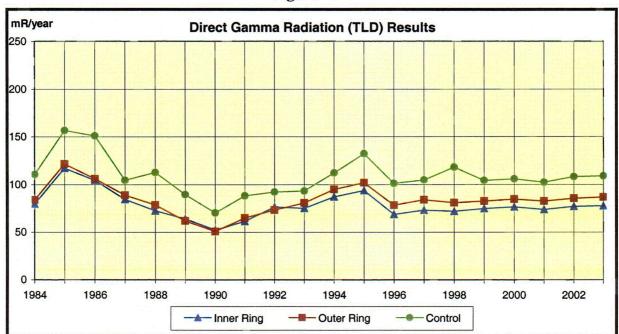


Figure 3.8

There is no reporting level for Direct Radiation (TLD)

Year	Inner Ring Average (mR/yr)	Outer Ring Average (mR/yr)	Control (mR/yr)
Preoperational	113.1	123.9	148.9
1984	79.4	83.8	110.3
1985	116.9	121.5	156.6
1986	104.2	106.0	150.9
1987	84.3	88.8	104.3
1988	72.3	78.6	112.6
1989	63.7	61.7	89.4
1990	52.2	50.7	70.1
1991	61.2	65.0	88.0
1992	76.2	73.2	92.0
1993	74.8	80.6	93.0
1994	86.8	94.7	112.0
1995	93.6	101.7	132.0
1996	68.5	78.3	101.0
1997	72.8	83.8	104.5
1998	71.7	80.8	118.0
1999	74.5	82.5	104
2000	76.2	84.5	105.6
2001	73.6	82.4	102.2
2002	76.6	85.3	108.0
Average (1993 - 2002)	76.9	85.5	108.0
2003	77.4	86.6	108.8

Table 3.8 Direct Gamma Radiation (TLD) Results

.

3.9 LAND USE CENSUS

ana na 🖛

The Land Use Census was conducted during the growing season (5/12 - 5/14/2003) as required by SLC 16.11.6. Table 3.9 summarizes census results. A map indicating identified locations is shown in Figure 3.9. The nearest residence is located in the NW sector at 1.00 miles. No program changes were required based on the results of the census.

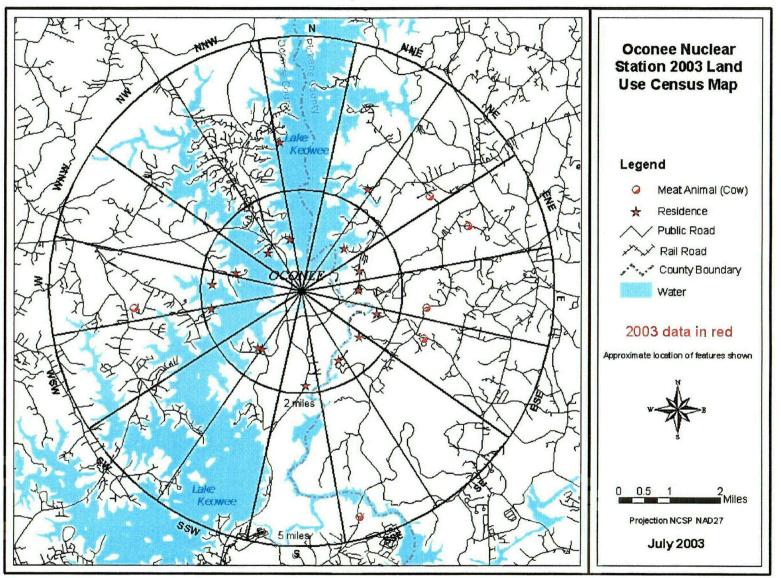

Sector		Distance (Miles)*	Sector		Distance (Miles)*
N	Nearest Residence Nearest Milk Animal Nearest Meat Animal	2.98 - -	S	Nearest Residence Nearest Milk Animal Nearest Meat Animal	1.86 - -
NNE	Nearest Residence Nearest Milk Animal Nearest Meat Animal	2.38 - -	SSW	Nearest Residence Nearest Milk Animal Nearest Meat Animal	1.36 - -
NE	Nearest Residence Nearest Milk Animal Nearest Meat Animal (Cow)	1.20 - 3.15	SW	Nearest Residence Nearest Milk Animal Nearest Meat Animal	1.39 - -
ENE	Nearest Residence Nearest Milk Animal Nearest Meat Animal (Cow)	1.23 - 3.53	wsw	Nearest Residence Nearest Milk Animal Nearest Meat Animal	1.81 - -
E	Nearest Residence Nearest Milk Animal Nearest Meat Animal (Cow)	1.14 - 2.51	W	Nearest Residence Nearest Milk Animal Nearest Meat Animal (Cow)	1.76 - 3.34
ESE	Nearest Residence Nearest Milk Animal Nearest Meat Animal (Cow)	1.57 - 2.60	WNW	Nearest Residence Nearest Milk Animal Nearest Meat Animal	1.35 - -
SE	Nearest Residence Nearest Milk Animal Nearest Meat Animal	1.46 - -	NW	Nearest Residence Nearest Milk Animal Nearest Meat Animal	1.00
SSE	Nearest Residence Nearest Milk Animal Nearest Meat Animal (Cow)	1.54 - 4.57	NNW	Nearest Residence Nearest Milk Animal Nearest Meat Animal	1.06 - -

Table 3.9 Oconee	2003 Land	Use Census Results

"-" indicates no occurrences within the 5 mile radius

* GPS data reflect approximate accuracy to within 2-5 meters. GPS field measurements were taken as close as possible to the item of interest.

Figure 3.9

4.0 EVALUATION OF DOSE

4.1 DOSE FROM ENVIRONMENTAL MEASUREMENTS

Annual doses to maximum exposed individuals were estimated based on measured concentrations of radionuclides in 2003 ONS REMP samples. The primary purpose of estimating doses based on sample results was to allow comparison to effluent program dose estimates. Doses based on sample results were conservatively calculated in a manner as equivalent as possible to effluent-based dose estimates.

Doses based on REMP sample results were calculated using the methodology and data presented in NRC Regulatory Guide 1.109. Measured radionuclide concentrations, averaged over the entire year for a specific radionuclide, indicator location, and sample type, were used to calculate REMP-based doses, after subtracting the applicable average background concentration (as measured at the corresponding control location). Regulatory Guide 1.109 consumption rates for the maximum exposed individual were used in the calculations. A dose factor of zero was assumed when the guide listed "NO DATA" as the dose factor for a given radionuclide and organ.

Maximum dose estimates calculated using drinking water, fish and shoreline sediment results are reported in Table 4.1-A. The individual critical population and pathway dose calculations are contained in Table 4.1-B.

No radionuclides were detected in milk, airborne radioiodine, airborne particulate, or broadleaf vegetation samples other than naturally-occurring K-40 and Be-7. Dose estimates were not calculated for surface water samples because surface water is not considered a potable drinking water source. REMP TLD exposure results are discussed in Section 3.8.

The maximum environmental organ dose estimate for any single sample type (other than direct radiation from gaseous effluents) collected during 2003 was 7.27E-2 mrem to the teen's liver from consuming fish.

4.2 ESTIMATED DOSE FROM RELEASES

Throughout the year, dose estimates were calculated based on actual 2003 liquid and gaseous effluent release data. Effluent-based dose estimates were calculated using the RETDAS computer program which employs methodology and data presented in NRC Regulatory Guide 1.109. The 2003 ONS Annual Radioactive Effluent Release Report (reference 6.6) included calendar year dose estimates for the location with the highest individual organ dose from liquid and gaseous effluent releases. These reported doses are shown in Table 4.1-A along with the corresponding REMP-based dose estimates.

The effluent-based liquid release doses are summations of the dose contributions of the drinking water, fish and shoreline pathways. The effluent-based gaseous release doses report noble gas exposure separately from iodine, particulate, and tritium exposure. For noble gas exposure there is no critical age group; as the maximum exposed individuals are assumed to receive the same doses, regardless of their age group. For iodine, particulate, and tritium exposure the effluent-based gaseous release doses are summations of the dose contributors from ground/plane, milk, inhalation and vegetation pathways.

4.3 <u>COMPARISON OF DOSES</u>

The environmental and release data doses given in Table 4.1-A agree reasonably well. The similarity of the doses indicate that the radioactivity levels in the environment do not differ significantly from those expected based on effluent measurements and modeling of the environmental exposure pathways. This indicates that effluent program dose estimates are both valid and reasonably conservative.

There are some differences in how effluent and environmental doses are calculated that affect the comparison. Doses calculated from environmental data are conservative because they are based on a mean that includes only samples with a net positive activity versus a mean that includes all sample results (i.e. zero results are not included in the mean). Also, airborne tritium is not measured in environmental samples but is used to calculate effluent doses.

In calculations based on liquid release effluent pathways, fish and drinking water were the predominant dose pathways based on environmental and effluent samples. The maximum total organ dose based on 2003 environmental sample results was 9.27E-2 mrem to the child liver. The maximum total organ dose of 5.90E-1 mrem for liquid effluent-based estimates was to the teen liver.

No environmental doses resulted from the gaseous pathway in 2003 because broadleaf vegetation, milk, and airborne radioiodines and particulates indicated no activity. The gaseous effluent dose is due to tritium on broadleaf vegetation.

Noble gas samples are not collected as part of the REMP, preventing an analogous comparison of effluent-based noble gas exposure estimates.

The doses calculated do not exceed the 40CFR190 dose commitment limits for members of the public. Doses to members of the public attributable to the operation of ONS are being maintained well within regulatory limits.

TABLE 4.1-A

OCONEE NUCLEAR STATION 2003 ENVIRONMENTAL AND EFFLUENT DOSE COMPARISON

LIQUID RELEASE PATHWAY

Organ	Environmental or Effluent Data	Critical Age ⁽¹⁾	Critical Pathway ⁽²⁾	Location	Maximum Dose ⁽³⁾ (mrem)
Skin	Environmental	Teen	Shoreline Sediment	063 (0.80 mi. ESE)	5.07E-04
Skin	Effluent	Teen	Shoreline Sediment	1.0 mi. SW	4.77E-03
Bone	Environmental	Child	Fish	063 (0.80 mi. ESE)	6.11E-02
Bone	Effluent	Child	Fish	1.0 mi. SW	5.21E-01
Liver	Environmental	Child	Fish	063 (0.80 mi. ESE)	9.27E-02
Liver	Effluent	Teen	Fish	1.0 mi. SW	5.90E-01
T. Body	Environmental	Adult	Fish	063 (0.80 mi. ESE)	7.24E-02
T. Body	Effluent	Adult	Fish	1.0 mi. SW	3.88E-01
Thyroid	Environmental	Child	Drinking Water	066 (18.9 mi. SSE)	3.35E-02
Thyroid	Effluent	Adult	Fish	1.0 mi. SW	2.32E-02
Kidney	Environmental	Child	Drinking Water	066 (18.9 mi. SSE)	5.26E-02
Kidney	Effluent	Teen	Fish	1.0 mi. SW	2.14E-01
Lung	Environmental	Child	Drinking Water	066 (18.9 mi. SSE)	4.04E-02
Lung	Effluent	Teen	Fish	1.0 mi. SW	9.60E-02
GI-LLI	Environmental	Adult	Fish	063 (0.80 mi. ESE)	4.70E-02
GI-LLI	Effluent	Adult	Fish	1.0 mi. SW	6.96E-02

(1) Critical Age is the highest total dose (all pathways) to an age group.

(2) Critial Pathway is the highest individual dose within the identified Critical Age group.

(3) Maximum dose is a summation of the fish, drinking water and shoreline sediment pathways.

Page 1 of 3

GASEOUS RELEASE PATHWAY

IODINE, PARTICULATE, and TRITIUM

Organ	Environmental or	Critical	Critical	Location	Maximum Dose ⁽³⁾
Organ	Effluent Data	Age (1)	Pathway ⁽²⁾	Location	(mrem)
		-			
Skin	Environmental	-	-	-	0.00E+00
Skin	Effluent	All	Ground Plane	1.0 mi. SW	1.69E-05
Bone	Environmental	-	-	-	0.00E+00
Bone	Effluent	Child	Ground Plane	1.0 mi. SW	2.25E-05
Liver	Environmental	-	-	-	0.00E+00
Liver	Effluent	Child	Vegetation	1.0 mi. SW	4.08E-02
T. Body	Environmental	-	-	-	0.00E+00
T. Body	Effluent	Child	Vegetation	1.0 mi. SW	4.08E-02
Thyroid	Environmental	-	-	-	0.00E+00
Thyroid	Effluent	Child	Vegetation	1.0 mi. SW	4.08E-02
Kidney	Environmental	-	-	-	0.00E+00
Kidney	Effluent	Child	Vegetation	1.0 mi. SW	4.08E-02
Lung	Environmental	-	-	-	0.00E+00
Lung	Effluent	Child	Vegetation	1.0 mi. SW	4.08E-02
GI-LLI	Environmental	-	-	-	0.00E+00
GI-LLI	Effluent	Child ,	Vegetation	1.0 mi. SW	4.08E-02
	<u></u>			· · · · · · · · · · · · · · · · · · ·	•

(1) Critical Age is the highest total dose (all pathways) to an age group.

(2) Critial Pathway is the highest individual dose within the identified Critical Age group.

(3) Maximum dose is a summation of the ground/plane, inhalation, milk and vegetation pathways.

 \cup

Air Dose	Environmental or Effluent Data	Critical Age	Critical Pathway	Location	Maximum Dose (mrad)
Beta	Environmental	-	-	-	Not Sampled
Beta	Effluent	N/A	Noble Gas	1.0 mi. SW	9.26E-04
Gamma	Environmental	-	-	-	Not Sampled
Gamma	Effluent	N/A	Noble Gas	1.0 mi. SW	2.53E-04

NOBLE GAS

.

Page 3 of 3

TABLE 4.1-B

Maximum Individual Dose for 2003 based on Environmental Measurements (mrem) for Oconee Nuclear Station

Age	Sample Medium	Bone	Liver	T. Body	Thyroid	Kidney	Lung	GI-LLI	Skin
Infant	Airborne	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
	Drinking Water	0.00E+00	2.70E-02	2.70E-02	2.70E-02	2.70E-02	2.70E-02	2.70E-02	0.00E+00
	Milk	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
	TOTAL	0.00E+00	2.70E-02	2.70E-02	2.70E-02	2.70E-02	2.70E-02	2.70E-02	0.00E+00
Child	Airborne	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
	Drinking Water	0.00E+00	2.75E-02	2.75E-02	2.75E-02	2.75E-02	2.75E-02	2.75E-02	0.00E+00
	Milk	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
	Broadleaf Vegetation	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
	Fish	6.11E-02	6.52E-02	1.66E-02	6.01E-03	2.51E-02	1.29E-02	1.00E-02	0.00E+00
	Shoreline Sediment	0.00E+00	0.00E+00	9.08E-05	0.00E+00	0.00E+00	0.00E+00	0.00E+00	1.06E-04
	TOTAL	6.11E-02	9.27E-02	4.42E-02	3.35E-02	5.26E-02	4.04E-02	3.75E-02	1.06E-04
	(1) The interpret of the second se Second second s second second sec						n Alfred Antonio Alfred Antonio Alfred Antonio	na an an an Arthur An Arthur an Arthur	a se a deer a se
Teen	Airborne	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
	Drinking Water	0.00E+00	1.44E-02	1.44E-02	1.44E-02	1.44E-02	1.44E-02	1.44E-02	0,00E+00
	Milk	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
	Broadleaf Vegetation	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
	Fish	4.86E-02	7.27E-02	3.16E-02	7.28E-03	2.93E-02	1.58E-02	1.90E-02	0.00E+00
	Shoreline Sediment	0.00E+00	0.00E+00	4.34E-04	0.00E+00	0.00E+00	0.00E+00	0.00E+00	5.07E-04
	TOTAL	4.86E-02	8.71E-02	4.64E-02	2.17E-02	4.37E-02	3.02E-02	3.34E-02	5.07E-04
A .J14	A 1.1	0.0017.00	0.005.00	0.005.00	0.005.00	0.000			0.005.00
Adult	Airborne	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
	Drinking Water	0.00E+00	2.04E-02	2.04E-02	2.04E-02	2.04E-02	2.04E-02	2.04E-02	0.00E+00
	Milk Described Versetation	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
	Broadleaf Vegetation	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
	Fish Sharalina Sadimant	4.54E-02	7.23E-02	5.19E-02	9.46E-03	3.05E-02	1.65E-02	2.66E-02	0.00E+00
	Shoreline Sediment TOTAL	0.00E+00 4.54E-02	0.00E+00	7.78E-05	0.00E+00	0.00E+00	0.00E+00	0.00E+00	9.08E-05
	IUIAL	4.34E-02	9.27E-02	7.24E-02	2.99E-02	5.09E-02	3.69E-02	4.70E-02	9.08E-05

Note: Dose tables are provided for sample media displaying positive nuclide occurrence.

Section 4 - Page 6

Oconee Nuclear Station Dose from Drinking Water Pathway for 2003 Data Maximum Exposed Infant

Highest Annual

Infant Dose from Drinking Water Pathway (mrem) = Usage (l) x Dose Factor (mrem/pCi ingested) x Concentration (pCi/l)

Usage (intake in one year) = 330 1

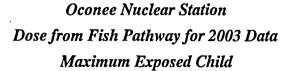
								Net M	lean							
				Ingestio	n Dose Fa	actor		Concent	tration Water				Dose (m	<u>rem)</u>		
Radionuclide	Bone	Liver	T. Body	Thyroid	Kidney	Lung	GI-LLI	Location	(pCI/I)	Bone	Liver	T. Body	Thyroid	Kidney	Lung	GI-LLI
Mn-54	NO DATA	1.99E-05	4.51E-06	NO DATA	4.41E-06	NO DATA	7.31E-06	ALL	0.00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
Co-58	NO DATA	3.60E-06	8.98E-06	NO DATA	NO DATA	NO DATA	8.97E-06	ALL	0.00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
Fe-59	3.08E-05	5.38E-05	2.12E-05	NO DATA	NO DATA	1.59E-05	2.57E-05	ALL	0.00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
Co-60	NO DATA	1.08E-05	2.55E-05	NO DATA	NO DATA	NO DATA	2.57E-05	ALL	0.00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
Zn-65	1.84E-05	6.31E-05	2.91E-05	NO DATA	3.06E-05	NO DATA	5.33E-05	ALL	0.00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
Nb-95	4.20E-08	1.73E-08	1.00E-08	NO DATA	1.24E-08	NO DATA	1.46E-05	ALL	0.00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
Zr-95	2.06E-07	5.02E-08	3.56E-08	NO DATA	5.41E-08	NO DATA	2.50E-05	ALL	0.00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
I-131	3.59E-05	4.23E-05	1.86E-05	1.39E-02	4.94E-05	NO DATA	1.51E-06	ALL	0.00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
Cs-134	3.77E-04	7.03E-04	7.10E-05	NO DATA	1.81E-04	7.42E-05	1.91E-06	ALL	0.00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
Cs-137	5.22E-04	6.11E-04	4.33E-05	NO DATA	1.64E-04	6.64E-05	1.91E-06	ALL	0.00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
BaLa-140	1.71E-04	1.71E-07	8.81E-06	NO DATA	4.06E-08	1.05E-07	4.20E-05	ALL	0.00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
Н-3	NO DATA	3.08E-07	3.08E-07	3.08E-07	3.08E-07	3.08E-07	3.08E-07	066	266	0.00E+00	2.70E-02	2.70E-02	2.70E-02	2.70E-02	2.70E-02	2.70E-02

Dose Commitment (mrem) =

0.00E+00 2.70E-02 2.70E-02 2.70E-02 2.70E-02 2.70E-02 2.70E-02

Oconee Nuclear Station Dose from Drinking Water Pathway for 2003 Data Maximum Exposed Child

Child Dose from Drinking Water Pathway (mrem) = Usage (1) x Dose Factor (mrem/pCi ingested) x Concentration (pCi/l)


Usage (intake in one year)= 510 1

								Net M								
				Ingestion	n Dose F	'actor		Concent					Dose (m	<u>rem)</u>		
Radionuclide	Bone	Liver	T. Body	Thyrold	Kidney	Lung	GI-LLI	Indicator Location	Water (pCI/I)	Bone	Liver	T. Body	Thyroid	Kidney	Lung	GI-LLI
Mn-54	NO DATA	1.07E-05	2.85E-06	NO DATA	3.00E-06	NO DATA	8.98E-06	ALL	0.00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
Co-58	NO DATA	1.80E-06	5.51E-06	NO DATA	NO DATA	NO DATA	1.05E-05	ALL	0.00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
Fe-59	1.65E-05	2.67E-05	1.33E-05	NO DATA	NO DATA	7.74E-06	2.78E-05	ALL	0.00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
C0-60	NO DATA	5.29E-06	1.56E-05	NO DATA	NO DATA	NO DATA	2.93E-05	ALL	0.00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
Zn-65	1.37E-05	3.65E-05	2.27E-05	NO DATA	2.30E-05	NO DATA	6.41E-06	ALL	0.00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
Nb-95	2.25E-08	8.76E-09	6.26E-09	NO DATA	8.23E-09	NO DATA	1.62E-05	ALL	0.00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
Zr-95	1.16E-07	2.55E-08	2.27E-08	NO DATA	3.65E-08	NO DATA	2.66E-05	ALL	0.00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
I-131	1.72E-05	1.73E-05	9.83E-06	5.72E-03	2.84E-05	NO DATA	1.54E-06	ALL	0.00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
Cs-134	2.34E-04	3.84E-04	8.10E-05	NO DATA	1.19E-04	4.27E-05	2.07E-06	ALL	0.00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
Cs-137	3.27E-04	3.13E-04	4.62E-05	NO DATA	1.02E-04	3.67E-05	1.96E-06	ALL	0.00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
BaLa-140	8.31E-05	7.28E-08	4.85E-06	NO DATA	2.37E-08	4.34E-08	4.21E-05	ALL	0.00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
H-3	NO DATA	2.03E-07	2.03E-07	2.03E-07	2.03E-07	2.03E-07	2.03E-07	066	266	0.00E+00	2.75E-02	2.75E-02	2.75E-02	2.75E-02	2.75E-02	2.75E-02

Highest Annual

Dose Commitment (mrem) =

0.00E+00 2.75E-02 2.75E-02 2.75E-02 2.75E-02 2.75E-02 2.75E-02

Child Dose from Fish Pathway (mrem) = Usage (kg) x Dose Factor (mrem/pCi ingested) x Concentration (pCi/kg) H-3 Concentration in Fish = Surface Water pCi/l x Bioaccumulation Factor 0.9 pCi/kg per pCi/l = 4768 pCi/l x 0.9 = 4291 pCi/kg Usage (intake in one year) = 6.9 kg

.

Highest Annual	
Net Mean	

.

				Ingestio	n Dose Fa	actor		<u>Concer</u> Indicator	tration Fish				Dose (m	<u>rem)</u>		
Radionuclide	Bone	Liver	T. Body	Thyroid	Kidney	Lung	GI-LLI	Location	(pCl/kg)	Bone	Liver	T. Body	Thyroid	Kidney	Lung	GI-LLI
Mn-54	NO DATA	1.07E-05	2.85E-06	NO DATA	3.00E-06	NO DATA	8.98E-06	ALL	0.00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
Co-58	NO DATA	1.80E-06	5.51E-06	NO DATA	NO DATA	NO DATA	1.05E-05	063	50.2	0.00E+00	6.23E-04	1.91E-03	0.00E+00	0.00E+00	0.00E+00	3.64E-03
Fe-59	1.65E-05	2.67E-05	1.33E-05	NO DATA	NO DATA	7.74E-06	2.78E-05	ALL	0.00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
C0-60	NO DATA	5.29E-06	1.56E-05	NO DATA	NO DATA	NO DATA	2.93E-05	ALL	0.00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
Zn-65	1.37E-05	3.65E-05	2.27E-05	NO DATA	2.30E-05	NO DATA	6.41E-06	ALL	0.00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
Cs-134	2.34E-04	3.84E-04	8.10E-05	NO DATA	1.19E-04	4.27E-05	2.07E-06	ALL	0.00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
Cs-137	3.27E-04	3.13E-04	4.62E-05	NO DATA	1.02E-04	3.67E-05	1.96E-06	063	27.1	6.11E-02	5.85E-02	8.64E-03	0.00E+00	1.91E-02	6.86E-03	3.67E-04
н-з	NO DATA	2.03E-07	2.03E-07	2.03E-07	2.03E-07	2.03E-07	2.03E-07	063.1	4291	0.00E+00	6.01E-03	6.01E-03	6.01E-03	6.01E-03	6.01E-03	6.01E-03

Dose Commitment (mrem) = 6.11E-02 6.52E-02 1.66E-02 6.01E-03 2.51E-02 1.29E-02 1.00E-02

.

Oconee Nuclear Station Dose from Shoreline Sediment Pathway for 2003 Data Maximum Exposed Child

Shoreline Recreation =	14	hr (in one year)
Shore Width Factor =	0.2	
Sediment Surface Mass =	40	kg/m ²

Child Dose from Shoreline Sediment Pathway (mrem) = Shoreline Recreation (hr) x External Dose Factor (mrem/hr per pCi/m²) x Shore Width Factor x Sediment Surface Mass (kg/m²) x Sediment Concentration (pCi/kg)

	External Dose Factor Standing on Contaminated Ground			nnual Net	Dose		
Radionuclide	(mrem/hr T. Body	per pCi/m²) Skin	Indicator Location	Sediment (pCi/kg)	(m T. Body	rem) Skin	
Cs-134	1.20E-08	1.40E-08	ALL	0.00	0.00E+00	0.00E+00	
Cs-137	4.20E-09	4.90E-09	063	193	9.08E-05	1.06E-04	
		Dose Commitme	ent (mrem) =		9.08E-05	1.06E-04	

Oconee Nuclear Station Dose from Drinking Water Pathway for 2003 Data Maximum Exposed Teen

Highest Amunol

Teen Dose from Drinking Water Pathway (mrem) = Usage (I) x Dose Factor (mrem/pCi ingested) x Concentration (pCi/l)

Usage (intake in one year)= 510 1

								Highest . Net N								
				Ingestio	<u>n Dose F</u>	<u>actor</u>		<u>Concent</u> Indicator			<u>Dose (mrem)</u>					
Radionuclide	Bone	Liver	T. Body	Thyroid	Kidney	Lung	GI-LLI	Location	(pCI/I)	Bone	Liver	T. Body	Thyroid	Kidney	Lung	GI-LLI
Mn-54	NO DATA	5.90E-06	1.17E-06	NO DATA	1.76E-06	NO DATA	1.21E-05	ALL	0.00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
Co-58	NO DATA	9.72E-07	2.24E-06	NO DATA	NO DATA	NO DATA	1.34E-05	ALL	0.00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
Fe-59	5.87E-06	1.37E-05	5.29E-06	NO DATA	NO DATA	4.32E-06	3.24E-05	ALL	0.00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
Co-60	NO DATA	2.81E-06	6.33E-06	NO DATA	NO DATA	NO DATA	3.66E-05	ALL	0.00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
Zn-65	5.76E-06	2.00E-05	9.33E-06	NO DATA	1.28E-05	NO DATA	8.47E-06	ALL	0.00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
Nb-95	8.22E-09	4.56E-09	2.51E-09	NO DATA	4.42E-09	NO DATA	1.95E-05	ALL	0.00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
Zr-95	4.12E-08	1.30E-08	8.94E-09	NO DATA	1.91E-08	NO DATA	3.00E-05	ALL	0.00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
I-131	5.85E-06	8.19E-06	4.40E-06	2.39E-03	1.41E-05	NO DATA	1.62E-06	ALL	0.00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
Cs-134	8.37E-05	1.97E-04	9.14E-05	NO DATA	6.26E-05	2.39E-05	2.45E-06	ALL	0.00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
Cs-137	1.12E-04	1.49E-04	5.19E-05	NO DATA	5.07E-05	1.97E-05	2.12E-06	ALL	0.00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
BaLa-140	2.84E-05	3.48E-08	1.83E-06	NO DATA	1.18E-08	2.34E-08	4.38E-05	ALL	0.00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
Н-3	NO DATA	1.06E-07	1.06E-07	1.06E-07	1.06E-07	1.06E-07	1.06E-07	066	266	0.00E+00	1.44E-02	1.44E-02	1.44E-02	1.44E-02	1.44E-02	1.44E-02

0.00E+00 1.44E-02 1.44E-02 1.44E-02 1.44E-02 1.44E-02 1.44E-02

Section 4 - Page 11

Dose Commitment (mrem)=

Oconee Nuclear Station Dose from Fish Pathway for 2003 Data Maximum Exposed Teen

Teen Dose from Fish Pathway (mrem) = Usage (kg) x Dose Factor (mrem/pCi ingested) x Concentration (pCi/kg) H-3 Concentration in Fish = Surface Water pCi/l x Bioaccumulation Factor 0.9 pCi/kg per pCi/l = 4768 pCi/l x 0.9 = 4291 pCi/kg Usage (intake in one year) = 16 kg

Highest Annual																
				Ingestio	n_Dose Fa	actor		Net N	lean		Dose (mrem)					
								Concer	tration							
Radionuclide	Bone	Liver	T. Body	Thyroid	Kidney	Lung	GI-LLI	Location	(pCi/kg)	Bone	Liver	T. Body	Thyroid	Kidney	Lung	GI-LLI
Mn-54	NO DATA	5.90E-06	1.17E-06	NO DATA	1.76E-06	NO DATA	1.21E-05	ALL	0.00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
Co-58	NO DATA	9.72E-07	2.24E-06	NO DATA	NO DATA	NO DATA	1.34E-05	063	50.2	0.00E+00	7.81E-04	1.80E-03	0.00E+00	0.00E+00	0.00E+00	1.08E-02
Fe-59	5.87E-06	1.37E-05	5.29E-06	NO DATA	NO DATA	4.32E-06	3.24E-05	ALL	0.00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
Co-60	NO DATA	2.81E-06	6.33E-06	NO DATA	NO DATA	NO DATA	3.66E-05	ALL	0.00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
Zn-65	5.76E-06	2.00E-05	9.33E-06	NO DATA	1.28E-05	NO DATA	8.47E-06	ALL	0.00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
Cs-134	8.37E-05	1.97E-04	9.14E-05	NO DATA	6.26E-05	2.39E-05	2.45E-06	ALL	0.00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
Cs-137	1.12E-04	1.49E-04	5.19E-05	NO DATA	5.07E-05	1.97E-05	2.12E-06	063	27.1	4.86E-02	6.46E-02	2.25E-02	0.00E+00	2.20E-02	8.54E-03	9.19E-04
Н-3	NO DATA	1.06E-07	1.06E-07	1.06E-07	1.06E-07	1.06E-07	1.06E-07	063.1	4291	0.00E+00	7.28E-03	7.28E-03	7.28E-03	7.28E-03	7.28E-03	7.28E-03
						Dose Comm	itment (mr	em) =		4.86E-02	7.27E-02	3.16E-02	7.28E-03	2.93E-02	1.58E-02	1.90E-02

Oconee Nuclear Station Dose from Shoreline Sediment Pathway for 2003 Data Maximum Exposed Teen

Shoreline Recreation =	67	hr (in one year)
Shore Width Factor =	0.2	
Sediment Surface Mass =	40	kg/m ²

Teen Dose from Shoreline Sediment Pathway (mrem) = Shoreline Recreation (hr) x External Dose Factor (mrem/hr per pCi/m²) x Shore Width Factor x Sediment Surface Mass (kg/m²) x Sediment Concentration (pCi/kg)

External	Dose Factor	r Standing	Highest A	nnual Net	Dose				
on_Cont	aminated G	round	<u>Mean Con</u>	<u>centration</u>					
(mre	m/hr per pC	Ci/m²)	Indicator	Sediment	(mi	rem)			
Radionuclide	T. Body	Skin	Location	(pCi/kg)	T. Body	Skin			
Cs-134	1.20E-08	1.40E-08	ALL	0.00	0.00E+00	0.00E+00			
Cs-137	4.20E-09	4.90E-09	063	193	4.34E-04	5.07E-04			
	Dose Comn	nitment (mre	m) =		4.34E-04	5.07E-04			

Oconee Nuclear Station Dose from Drinking Water Pathway for 2003 Data Maximum Exposed Adult

Highest Annual

Adult Dose from Drinking Water Pathway (mrem) = Usage (1) x Dose Factor (mrem/pCi ingested) x Concentration (pCi/l)

Usage (intake in one year) = 730 1

								Net M	lean							
				Ingestion	n Dose Fa	actor		<u>Concent</u>					Dose (m	<u>rem)</u>		
Radionuclide	Bone	Liver	T. Body	Thyroid	Kidney	Lung	GI-LLI	Indicator Location	Water (pCI/I)	Bone	Liver	T. Body	Thyroid	Kidney	Lung	GI-LLI
Mn-54	NO DATA	4.57E-06	8.72E-07	NO DATA	1.36E-06	NO DATA	1.40E-05	ALL	0.00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
Co-58	NO DATA	7.45E-07	1.67E-06	NO DATA	NO DATA	NO DATA	1.51E-05	ALL	0.00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
Fe-59	4.34E-06	1.02E-05	3.91E-06	NO DATA	NO DATA	2.85E-06	3.40E-05	ALL	0.00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
Co-60	NO DATA	2.14E-06	4.72E-06	NO DATA	NO DATA	NO DATA	4.02E-05	ALL	0.00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
Zn-65	4.84E-06	1.54E-05	6.96E-06	NO DATA	1.03E-05	NO DATA	9.70E-06	ALL	0.00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
Nb-95	6.22E-09	3.46E-09	1.86E-09	NO DATA	3.42E-09	NO DATA	2.10E-05	ALL	0.00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
Zr-95	3.04E-08	9.75E-09	6.60E-09	NÓ DÁTA	1.53E-08	NO DATA	3.09E-05	ALL	0.00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
I-131	4.16E-06	5.95E-06	3.41E-06	1.95E-03	1.02E-05	NO DATA	1.57E-06	ALL	0.00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
Cs-134	6.22E-05	1.48E-04	1.21E-04	NO DATA	4.79E-05	1.59E-05	2.59E-06	ALL	0.00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
Cs-137	7.97E-05	1.09E-04	7.14 E-05	NO DATA	3.70E-05	1.23E-05	2.11E-06	ALL	0.00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
BaLa-140	2.03E-05	2.55E-08	1.33E-06	NO DATA	8.67E-09	1.46E-08	4.18E-05	ALL	0.00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
H-3	NO DATA	1.05E-07	1.05E-07	1.05E-07	1.05E-07	1.05E-07	1.05E-07	066	266	0.00E+00	2.04E-02	2.04E-02	2.04E-02	2.04E-02	2.04E-02	2.04E-02

Dose Commitment (mrem) =

0.00E+00 2.04E-02 2.04E-02 2.04E-02 2.04E-02 2.04E-02 2.04E-02

Oconee Nuclear Station Dose from Fish Pathway for 2003 Data Maximum Exposed Adult

Adult Dose from Fish Pathway (mrem) = Usage (kg) x Dose Factor (mrem/pCi ingested) x Concentration (pCi/kg) H-3 Concentration in Fish = Surface Water pCi/l x Bioaccumulation Factor 0.9 pCi/kg per pCi/l = 4768 pCi/l x 0.9 = 4291 pCi/kg Usage (intake in one year) = 21 kg

.

Highest Annual Net Mean

	Ingestion Dose Factor					Concentration				<u>Dose (mrem)</u>						
Radionuclide	Bone	Liver	T. Body	Thyroid	Kidney	Lung	GI-LLI	Location	(pCi/kg)	Bone	Liver	T. Body	Thyroid	Kidney	Lung	GI-LLI
Mn-54	NO DATA	4.57E-06	8.72E-07	NO DATA	1.36E-06	NO DATA	1.40E-05	ALL	0.00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
Co-58	NO DATA	7.45E-07	1.67E-06	NO DATA	NO DATA	NO DATA	1.51E-05	063	50.2	0.00E+00	7.85E-04	1.76E-03	0.00E+00	0.00E+00	0.00E+00	1.59E-02
Fe-59	4.34E-06	1.02E-05	3.91E-06	NO DATA	NO DATA	2.85E-06	3.40E-05	ALL	0.00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
Co-60	NO DATA	2.14E-06	4.72E-06	NO DATA	NO DATA	NO DATA	4.02E-05	ALL	0.00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
Zn-65	4.84E-06	1.54E-05	6.96E-06	NO DATA	1.03E-05	NO DATA	9.70E-06	ALL	0.00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
Cs-134	6.22E-05	1.48E-04	1.21E-04	NO DATA	4.79E-05	1.59E-05	2.59E-06	ALL	0.00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
Cs-137	7.97E-05	1.09E-04	7.14E-05	NO DATA	3.70E-05	1.23E-05	2.11E-06	063	27.1	4.54E-02	6.20E-02	4.06E-02	0.00E+00	2.11E-02	7.00E-03	1.20E-03
Н-3	NO DATA	1.05E-07	1.05E-07	1.05E-07	1.05E-07	1.05E-07	1.05E-07	063.1	4291	0.00E+00	9.46E-03	9.46E-03	9.46E-03	9.46E-03	9.46E-03	9.46E-03

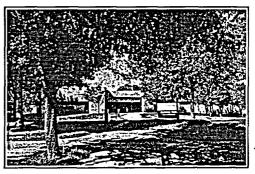
 Dose Commitment (mrem) =
 4.54E-02
 7.23E-02
 5.19E-02
 9.46E-03
 3.05E-02
 1.65E-02
 2.66E-02

Oconee Nuclear Station Dose from Shoreline Sediment Pathway for 2003 Data Maximum Exposed Adult

Shoreline Recreation =	12	hr (in one year)
Shore Width Factor =	0.2	
Sediment Surface Mass =	40	kg/m ²

Adult Dose from Shoreline Sediment Pathway (mrem) = Shoreline Recreation (hr) x External Dose Factor (mrem/hr per pCi/m²) x Shore Width Factor x Sediment Surface Mass (kg/m²) x Sediment Concentration (pCi/kg)

	External Dose Factor Standing on Contaminated Ground			nnual Net centration	Dose			
·	(mrem/hr p	er pCi/m²)	Indicator	Sediment	(m	rem)		
Radionuclide	T. Body	Skin	Location	(pCi/kg)	T. Body	Skin		
Cs-134	1.20E-08	1.40E-08	ALL	0.00	0.00E+00	0.00E+00		
Cs-137	4.20E-09	4.90E-09	063	193	7.78E-05	9.08E-05		
	Dose Comn	nitment (mren	n) =		7.78E-05	9.08E-05		


5.0 QUALITY ASSURANCE

5.1 SAMPLE COLLECTION

EnRad Laboratories, Fisheries, and Aquatic Ecology performed the environmental sample collections as specified by approved sample collection procedures.

5.2 <u>SAMPLE ANALYSIS</u>

EnRad Laboratories performed the environmental sample analyses as specified by approved analysis procedures. EnRad Laboratories is located in Huntersville, North Carolina, at Duke Power Company's Environmental Center.

5.3 DOSIMETRY ANALYSIS

Duke Power Company's Environmental Center

The Radiation Dosimetry and Records group performed environmental dosimetry measurements as specified by approved dosimetry analysis procedures.

5.4 LABORATORY EQUIPMENT QUALITY ASSURANCE

5.4.1 DAILY QUALITY CONTROL

EnRad Laboratories has an internal quality assurance program which monitors each type of instrumentation for reliability and accuracy. Daily quality control checks ensure that instruments are in proper working order and these checks are used to monitor instrument performance.

5.4.2 CALIBRATION VERIFICATION

National Institute of Standards and Technology (NIST) standards that represent counting geometries are analyzed as unknowns at various frequencies ranging from weekly to annually to verify that efficiency calibrations are valid. The frequency is dependent upon instrument use and performance. Investigations are performed and documented should calibration verification data fall out of limits.

5.4.3 BATCH PROCESSING

Method quality control samples are analyzed with sample analyses that are processed in batches. These include gross beta in drinking water and all tritium analyses.

5.5 DUKE POWER INTERCOMPARISON PROGRAM

EnRad Laboratories participated in the Duke Power Nuclear Generation Department Intercomparison Program during 2003. Interlaboratory cross-check standards, including, Marinelli beakers, air filters, air cartridges, gross beta on smears, and tritium in water samples were analyzed at various times of the year by the four counting laboratories in Duke Power Company for this program. A summary of these Intercomparison Reports for 2003 is documented in Table 5.0-A.

5.6 DUKE POWER AUDITS

The Oconee Radiation Protection Section was not audited by the Quality Assurance Group in 2003. A Quality Assurance audit was performed in February of 2002. There were no findings as a result of this 2002 audit.

EnRad Laboratories was not audited by the Quality Assurance Group in 2003. A Quality Assurance audit was performed in June of 2002. Laboratory practices and procedures were reviewed. No significant problems were identified as a result of this 2002 audit.

5.7 U.S. NUCLEAR REGULATORY COMMISSION INSPECTIONS

The Oconee Nuclear Station Radiological Environmental Monitoring Program was not audited by the NRC 2003. The Oconee Nuclear Station Radiological Environmental Monitoring Program was audited by the NRC in November of 2002 (reference 6.12). The 2001 AREOR was reviewed. Air, broadleaf vegetation, and milk collections were inspected. No findings of significance were noted in the report.

EnRad Laboratories was audited by the NRC in January of 2003 (reference 6.13). There were no findings of significance as a result of the audit. There were some inspector recommendations as a result of the 2003 audit which are described in PIPs G-03-00014 and G-03-00016.

5.8 STATE OF SOUTH CAROLINA INTERCOMPARISON PROGRAM

Oconee Nuclear Station routinely participates with the Bureau of Radiological Health of the State's Department of Health and Environmental Control (DHEC) in an intercomparison program. Water, milk, vegetation, sediment, and fish samples collected by EnRad Laboratories are routinely split with DHEC for intercomparison analysis. DHEC collects air samples near two of the locations sampled for air by ONS. Results of the analyses performed on split and duplicate samples are sent to DHEC.

5.9 TLD INTERCOMPARISON PROGRAM

5.9.1 NUCLEAR TECHNOLOGY SERVICES INTERCOMPARISON PROGRAM

Radiation Dosimetry and Records participates in a quarterly TLD intercomparison program administered by Nuclear Technology Services, Inc. of Roswell, GA. Nuclear Technology Services irradiates environmental dosimeters quarterly and sends them to the Radiation Dosimetry and Records group for analysis of the unknown estimated delivered exposure. A summary of the Nuclear Technology Services Intercomparison Report is documented in Table 5.0-B.

5.9.2 STATE OF NORTH CAROLINA INTERCOMPARISON PROGRAM

Radiation Dosimetry and Records routinely participates in a TLD intercomparison program. The State of North Carolina Radiation Protection Section irradiates environmental dosimeters and sends them to the Radiation Dosimetry and Records group for analysis of the unknown estimated delivered exposure. A summary of the State of North Carolina Environmental Dosimetry Intercomparison Report for 2003 is documented in Table 5.0-B.

5.9.3 INTERNAL CROSSCHECK (DUKE POWER)

Radiation Dosimetry and Records participates in a quarterly TLD intracomparison program administered internally by the Dosimetry Lab. The Dosimetry Lab Staff irradiates environmental dosimeters quarterly and submits them for analysis of the unknown estimated delivered exposure. A summary of the Internal Cross Check (Duke Power) Result is documented in Table 5.0-B.

TABLE 5.0-ADUKE POWER COMPANYINTERLABORATORY COMPARISON PROGRAM

2003 CROSS-CHECK RESULTS FOR ENRAD LABORATORIES

Cross-Check samples are normally analyzed a minimum of three times. A status of "3 Pass" indicates that all three analyses yielded results within the designated acceptance range. A status of "1 Pass" indicates that one analysis of the cross-check was performed.

Footnote explanations are included following this data table.

Gamma in	Water	3.5	liters
----------	-------	-----	--------

Reference	Sample I.D.	Nuclide	Acceptance	Reference	Mean Reported	Cross Check
Date	Date		Range	Value	Value	Status
			.pCi/l	pCi/l	pCi/I	
5/21/2003	Q032GWS	Cr-51	1.32 - 2.35 E5	1.76 E5	1.79 E5	3 Pass
	Ι Γ.	Mn-54	6.23 - 11.05 E4	8.31 E4	8.62 E4	3 Pass
	1 [Co-58	3.68 - 6.53 E4	4.91 E4	4.95 E4	3 Pass
		Fe-59	4.46 - 7.91 E4	5.95 E4	6.15 E4	3 Pass
		Co-60	4.27 - 7.56 E4	5.69 E4	5.87 E4	3 Pass
		Zn-65	6.17 - 10.94 E4	8.23 E4	8.62 E4	3 Pass
	Γ.	Cs-134	3.38 - 5.99 E4	4.50 E4	4.18 E4	3 Pass
		Cs-137	7.37 - 13.07 E4	9.83 E4	9.51 E4	3 Pass
	ו ב	Ce-141	1.45 - 2.56 E5	1.93 E5	1.95 E5	3 Pass
		Co-57	0.00 - 0.00 E0	0.00 E0	5.90 E2	3 Pass ⁽¹⁾
		Ce-139	0.00 - 0.00 E0	0.00 E0	8.20 E2	3 Pass ⁽¹⁾
	·		e e e e e e e e e e e e e e e e e e e			
12/23/2003	Q034GWR	Cr-51	2.32 - 4.11 E3	3.09 E3	3.21 E3	3 Pass
		Mn-54	1.88 - 3.34 E3	2.51 E3	2.58 E3	3 Pass
		Co-58	1.10 - 1.95 E3	1.47 E3	1.50 E3	3 Pass
		Fe-59	0.95 - 1.68 E3	1.26 E3	1.39 E3	3 Pass
	i -	Co-60	1.72 - 3.05 E3	2.29 E3	2.28 E3	3 Pass
		Zn-65	2.13 - 3.78 E3	2.84 E3	2.95 E3	3 Pass
	I F	Cs-134	1.50 - 2.66 E3	2.00 E3	1.92 E3	3 Pass
		Cs-137	1.44 - 2.56 E3	1.93 E3	1.84 E3	3 Pass
	[Ce-141	1.74 - 3.09 E3	2.33 E3	2.36 E3	3 Pass
		Co-57	0.00 - 0.00 E0	0.00 E0	9.78 E1	3 Pass ⁽¹⁾
	I 1-	Ce-139	0.00 - 0.00 E0	0.00 E0	3.52 E1	3 Pass ⁽¹⁾

Gamma	in	Water	1.	0	liter
-------	----	-------	----	---	-------

Reference	Sample I.D.	Nuclide	Acceptance	Reference	Mean Reported	Cross Check
Date			Range	Value	Value	Status
	1 1		pCi/l	pCi/l	pCi/l	
5/21/2003	Q032GWS	Cr-51	1.32 - 2.35 E5	1.76 E5	1.79 E5	3 Pass
) r	Mn-54	6.23 - 11.05 E4	8.31 E4	8.61 E4	3 Pass
	[Co-58	3.68 - 6.53 E4	4.91 E4	4.91 E4	3 Pass
		Fe-59	4.46 - 7.91 E4	5.95 E4	6.26 E4	3 Pass
	Ι Γ	Co-60	4.27 - 7.56 E4	5.69 E4	5.91 E4	3 Pass
	[Zn-65	6.17 - 10.94 E4	8.23 E4	8.85 E4	3 Pass
	1 [-	Cs-134	3.38 - 5.99 E4	4.50 E4	3.95 E4	3 Pass
		Cs-137	7.37 - 13.07 E4	9.83 E4	9.36 E4	3 Pass
		Ce-141	1.45 - 2.56 E5	1.93 E5	1.94 E5	3 Pass
		Co-57	0.00 - 0.00 E0	0.00 E0	5.19 E2	3 Pass ⁽¹⁾
		Ce-139	0.00 - 0.00 E0	0.00 E0	8.83 E2	3 Pass ⁽¹⁾

Gamma in Water 1.0 liter, continued

Reference	Sample I.D.	Nuclide	Acceptance	Reference	Mean Reported	Cross Check
Date			Range	Value	Value	Status
			pCi/l	pCi/I	pCi/l	
12/23/2003	Q034GWR	Cr-51	2.32 - 4.11 E3	3.09 E3	3.19 E3	3 Pass
		Mn-54	1.88 - 3.34 E3	2.51 E3	2.65 E3	3 Pass
		Co-58	1.10 - 1.95 E3	1.47 E3	1.55 E3	3 Pass
		Fe-59	0.95 - 1.68 E3	1.26 E3	1.42 E3	3 Pass
		Co-60	1.72 - 3.05 E3	2.29 E3	2.35 E3	3 Pass
	Ι [Zn-65	2.13 - 3.78 E3	2.84 E3	2.97 E3	3 Pass
		Cs-134	1.50 - 2.66 E3	2.00 E3	1.81 E3	3 Pass
		Cs-137	1.44 - 2.56 E3	1.93 E3	1.87 E3	3 Pass
		Ce-141	1.74 - 3.09 E3	2.33 E3	2.38 E3	3 Pass
		Co-57	0.00 - 0.00 E0	0.00 E0	8.90 E1	3 Pass ⁽¹⁾
		Ce-139	0.00 - 0.00 E0	0.00 E0	3.57 E1	3 Pass ⁽¹⁾

Gamma in Water 0.5 liter

Reference	Sample I.D.	Nuclide	Acceptance	Reference	Mean Reported	Cross Check
Date			Range	Value	Value	Status
1		· ·	pCi/l	pCi/l	pCi/l	
5/21/2003	Q032GWS	Cr-51	1.32 - 2.35 E5	1.76 E5	1.75 E5	3 Pass
		Mn-54	6.23 - 11.05 E4	8.31 E4	8.72 E4	3 Pass
	l C	Co-58	3.68 - 6.53 E4	4.91 E4	4.95 E4	3 Pass
		Fe-59	4.46 - 7.91 E4	5.95 E4	6.35 E4	3 Pass
		Co-60	4.27 - 7.56 E4	5.69 E4	5.87 E4	3 Pass
		Zn-65	6.17 - 10.94 E4	8.23 E4	8.96 E4	3 Pass
	Ι [.	Cs-134	3.38 - 5.99 E4	4.50 E4	3.93 E4	3 Pass
		Cs-137	7.37 - 13.07 E4	9.83 E4	9.51 E4	3 Pass
		Ce-141	1.45 - 2.56 E5	1.93 E5	1.94 E5	3 Pass
	I ſ	Co-57	0.00 - 0.00 E0	0.00 E0	6.42 E2	3 Pass ⁽¹⁾
		Ce-139	0.00 - 0.00 E0	0.00 E0	8.19 E2	3 Pass ⁽¹⁾
			1			
12/23/2003	Q034GWR	Cr-51	2.32 - 4.11 E3	3.09 E3	3.24 E3	3 Pass
		Mn-54	1.88 - 3.34 E3	2.51 E3	2.64 E3	3 Pass
		Co-58	1.10 - 1.95 E3	1.47 E3	1.52 E3	3 Pass
		Fe-59	0.95 - 1.68 E3	1.26 E3	1.41 E3	3 Pass
		Co-60	1.72 - 3.05 E3	2.29 E3	2.33 E3	3 Pass
		Zn-65	2.13 - 3.78 E3	2.84 E3	3.00 E3	3 Pass
		Cs-134	1.50 - 2.66 E3	2.00 E3	1.75 E3	3 Pass
		Cs-137	1.44 - 2.56 E3	1.93 E3	1.84 E3	3 Pass
		Ce-141	1.74 - 3.09 E3	2.33 E3	2.35 E3	3 Pass
		Co-57	0.00 - 0.00 E0	0.00 E0	8.72 E1	3 Pass ⁽¹⁾
				· · · · · · · · · · · · · · · · · · ·		

Gamma in Water 0.25 liter

Reference	Sample I.D.	Nuclide	Acceptance	Reference	Mean Reported	Cross Check
Date		Range	Value	Value	Status	
			pCi/l	pCi/l	pCi/I	
5/21/2003	Q032GWS	Cr-51	1.32 - 2.35 E5	1.76 E5	1.79 E5	3 Pass
		Mn-54	6.23 - 11.05 E4	8.31 E4	8.80 E4	3 Pass
	[Co-58	3.68 - 6.53 E4	4.91 E4	5.01 E4	3 Pass
	I T	Fe-59	4.46 - 7.91 E4	5.95 E4	6.50 E4	3 Pass
		Co-60	4.27 - 7.56 E4	5.69 E4	5.99 E4	3 Pass
	Ι Γ	Zn-65	6.17 - 10.94 E4	8.23 E4	9.08 E4	3 Pass
		Cs-134	3.38 - 5.99 E4	4.50 E4	4.01 E4	3 Pass
		Cs-137	7.37 - 13.07 E4	9.83 E4	9.58 E4	3 Pass
	1 [Ce-141	1.45 - 2.56 E5	1.93 E5	1.97 E5	3 Pass
		Co-57	0.00 - 0.00 E0	0.00 E0	5.83 E2	3 Pass ⁽¹⁾
		Ce-139	0.00 - 0.00 E0	0.00 E0	7.90 E2	3 Pass ⁽¹⁾

Gamma in Water 0.25 liter, continued

Reference	Sample I.D.	Nuclide	Acceptance	Reference	Mean Reported	Cross Check
Date			Range	Value	Value	Status
			pCi/l	pCi/l	pCi/l	
12/23/2003	Q034GWR	Cr-51	2.32 - 4.11 E3	3.09 E3	3.33 E3	3 Pass
		Mn-54	1.88 - 3.34 E3	2.51 E3	2.59 E3	3 Pass
		Co-58	1.10 - 1.95 E3	1.47 E3	1.55 E3	3 Pass
		Fe-59	0.95 - 1.68 E3	1.26 E3	1.39 E3	3 Pass
		Co-60	1.72 - 3.05 E3	2.29 E3	2.33 E3	3 Pass
		Zn-65	2.13 - 3.78 E3	2.84 E3	3.15 E3	3 Pass
		Cs-134	1.50 - 2.66 E3	2.00 E3	1.76 E3	3 Pass
		Cs-137	1.44 - 2.56 E3	1.93 E3	1.86 E3	3 Pass
		Ce-141	1.74 - 3.09 E3	2.33 E3	2.35 E3	3 Pass
		Co-57	0.00 - 0.00 E0	0.00 E0	1.12 E3	3 Pass ⁽¹⁾
		Ce-139	0.00 - 0.00 E0	0.00 E0	3.49 E1	3 Pass ⁽¹⁾

Gamma in Filter

19 A.S.

Reference	Sample I.D.	Nuclide	Acceptance	Reference	Mean Reported	Cross Check
Date			Range	Value	Value	Status
			pCi/total	pCi/total	pCi/total	
12/11/2003	E4020-37	Cr-51	1.39 - 2.53 E2	1.87 E2	1.88 E2	3 Pass
		Mn-54	0.86 - 1.53 E2	1.15 E2	1.19 E2	3 Pass
		Co-58	5.56 - 9.86 E1	7.41 E1	7.61 E1	3 Pass
1		Fe-59	5.12 - 9.08 E1	6.83 El	6.63 E1	3 Pass
		Co-60	0.78 - 1.38 E2	1.03 E2	1.07 E2	3 Pass
		Zn-65	1.20 - 2.14 E2	1.60 E2	1.25 E2	3 Pass ⁽²⁾
	Г	Cs-134	6.80 - 12.06 E1	9.07 El	9.09 E1	3 Pass
		Cs-137	6.44 - 11.42 E1	8.58 E1	8.11 E1	3 Pass
		Ce-141	1.01 - 1.79 E2	1.35 E2	1.37 E2	3 Pass
		Co-57	0.00 - 0.00 E0	0.00 E0	3.48 E0	3 Pass ⁽²⁾

Iodine in Water

Reference	Sample I.D.	Nuclide	Acceptance	Reference	Mean Reported	Cross Check
Date			Range	Value	Value	Status
	1		pCi/I	pCi/l	pCi/l	
1/10/2003	Q031LIW1	I-131	3.64 - 6.46 E2	4.86 E2	5.40 E2	3 Pass
			an ba tha s			
1/10/2003	Q031LIW2	I-131	1.22 - 4.90 E0	2.45 E0	2.53 E0	3 Pass
				a e <mark>a constant</mark> a		
1/10/2003	Q031LIW3	I-131	4.91 - 8.71 E1	6.55 E1	5.64 E1	3 Pass
	6 - 4		e de la seconda de la secon	4 M		
7/1/2003	Q033LIW1 ·	I-131	6.65 - 11.78 E2	8.86 E2	10.10 E2	3 Pass
				· ·	-	
7/1/2003	Q033LIW2	I-131	3.56 - 6.87 E0	4.94 E0	6.82 E0	1/3 High ⁽³⁾
			nd a	1		
7/1/2003	Q033LIW3	I-131	1.68 - 2.97 E2	2.23 E2	2.51 E2	3 Pass
			a de la			

Iodine in Milk

Reference Date	Sample I.D.	Nuclide	Acceptance Range pCi/l	Reference Value pCi/l	Mean Reported Value pCi/l	Cross Check Status
5/21/2003	Q032LIM1	I-131	4.63 - 8.22 E2	6.18 E2	6.07 E2	3 Pass
		·	<u> </u>			
5/21/2003	Q032LIM2	I-131	1.97 - 3.49 E2	2.63 E2	2.52 E2	3 Pass
			a second a se			
5/21/2003	Q032LIM3	I-131	0.00 - 0.00 E0	0.00 E0	0.00 E0	3 Pass

Iodine in Milk, continued

Reference Date	Sample I.D.	Nuclide	Acceptance Range pCi/I	Reference Value pCi/l	Mean Reported Value pCi/l	Cross Check Status
11/18/2003	Q034LIM1	I-131	4.10 - 7.27 E2	5.47 E2	6.10 E2	3 Pass
			and the second second	a etter i i i	····	
11/18/2003	Q034LIM2	I-131	0.00 - 0.00 E0	0.00 E0	0.00 E0	3 Pass
			فالمحاج والمراجع والمحاج			
11/18/2003	Q034LIM3	I-131	1.92 - 3.40 E1	2.56 E1	2.65 E1	3 Pass
			n an the state			

Iodine Cartridge

Reference	Sample I.D.	Nuclide	Acceptance	Reference	Mean Reported	Cross Check
Date			Range	Value	Value	Status
			pCi	pCi	pCi	
6/12/2003	E3678-37	I-131	4.65 - 8.25 E1	6.20 E1	8.14 E1	3 Pass
		Cs-137	0.00 - 0.00 E0	0.00 E0	58.77 E0	3 Pass ⁽⁴⁾
			and the first states of	1993		
12/11/2003	E4021-37	I-131	5.97 - 10.58 El	7.96 E1	9.33 E1	3 Pass
			a taka a daga j			

Beta in Water

Date		Range pCi/l	Value pCi/l	Value pCi/l	Status
9/18/2003 E38	49-37 Gross Be	ta 1.85 - 3.27 E2	2.46 E2	2.26 E2	3 Pass

Beta Smear

Reference Date	Sample I.D.	Nuclide	Acceptance Range dpm	Reference Value dpm	Mean Reported Value dpm	Cross Check Status
5/16/2003	A16754-37	Gross Beta	7.09 - 12.58 E3	9.46 E3	9.20 E3	3 Pass
•			The second se			

Tritium in Water

Reference Date	Sample I.D.	Nuclide	Acceptance Range - pCi/l	Reference Value pCi/l	Mean Reported Value pCi/l	Cross Check Status
5/21/2003	Q032TWS1	H-3	0.00 - 0.00 E0	0.00 E0	0.00 E0	3 Pass
	• .	an <u>an</u> 16	a Andrea and a	,		
5/21/2003	Q032TWS2	H-3	5.83 - 10.35 E4	7.78 E4	6.89 E4	3 Pass
			a se	Maria		1
12/23/2003	Q034TWR1	H-3	1.37 - 4.07 E2	2.37 E2	3.19 E2	3 Pass
			्र राष्ट्रमध्य विराहणाः स			.
12/23/2003	Q034TWR2	H-3	0.00 - 0.00 EO	0.00 E0	0.00 E0	3 Pass
			and a state of the state of the		· · · · ·	
12/23/2003	Q034TWR3	H-3	0.97 - 1.73 E3	1.30 E3	1.31 E3	3 Pass

 Gamma in Water, Sample ID Q032GWS, Reference Date 5/21/2003: 3.5 L Marinelli, 1.0 L Marinelli, 0.5 L Marinelli, 0.25 L Marinelli

Gamma in Water, Sample ID Q034GWR, Reference Date 12/23/2003: 3.5 L Marinelli, 1.0 L Marinelli, 0.5 L Marinelli, 0.25 L Marinelli

Co-57 and Ce-139 were observed in cross-checks and was attributed to a contaminant arriving with the source. The nuclides were determined to be present, but there was no reference activity applicable to the results. Ce-139 was not detected in the Q034GWR, Reference Date 12/23/2003 0.5 L Marinelli analysis.

(2) Gamma in Filter, Sample ID E4020-37, Reference Date 12/11/2003

Cross-check was vendor-prepared. Zn-65 activities for this cross-check were consistently low. The source was analyzed at Catawba and similar results were observed. Co-57 was an unintended contaminant in the sample. General Office PIP G-04-00047 was written to record investigative actions.

Gamma in Filter, Sample ID E3677A-37, Reference Date 6/12/2003 was a vendor-prepared cross-check. A uniform overestimation of about 72% for all nuclides was consistently observed in each analysis. The source or its calibration certificate was determined to be in error. Data for this cross-check was not included in the Annual Radiological Environmental Operating Report. General Office PIP G-04-00039 was written to record investigative actions.

(3) Iodine in Water, Sample ID Q033LIW2, Reference Date 7/1/2003

Three results for low-level I-131 [364.48 keV] analysis were reported, with one being above acceptance limit. General Office PIP G-04-00146 was written to record investigative actions.

(4) Iodine Cartridge, Sample ID E3678-37, Reference Date 6/12/2003

Cs-137 is a known contaminant of the charcoal media and was detected in all reported analyses. The nuclide was determined to be present, but there was no reference activity applicable to the results.

TABLE 5.0-B2003 ENVIRONMENTAL DOSIMETER
CROSS-CHECK RESULTS

				Nucle	ar Techn	ology Sei	rvices				
1st Quart	er 2003					2nd Quar	ter 2003				-
TLD	Delivered	Reported	Bias	Pass/Fail		TLD	Delivered	Reported	Bias	Pass/Fail	
Number	(mrem)	(mrem)	(% diff)	Criteria	Pass/Fail	Number	(mrem)	(mrem)	(% diff)	Criteria	Pass/Fail
101327	89	95.2	6.97	<+/-15%	Pass	101196	70	71.9	2.71	<+/-15%	Pass
101200	89	97.0	8.99	<+/-15%	Pass	101149	70	74.8	6.86	<+/-15%	Pass
101166	89	95.7	7.53	<+/-15%	Pass ·	101152	70	71.8	2.57	<+/-15%	Pass
101102	89	96.6	8.54	<+/-15%	Pass	101188	70	76.4	9.14	<+/-15%	Pass
101274	89	94.7	6.40	<+/-15%	Pass	101151	70	72.7	3.86	<+/-15%	Pass
	Avera	ge Bias (B)	7.69				Avera	ge Bias (B)	5.03		
ĺ	Standard Deviation (S)		1.07				Standard De	eviation (S)	2.87		
Mea	sure Perforn	nance B+S	8.76	<15%	Pass	Mea	sure Perforn	nance B +S	7.90	<15%	Pass
3rd Quar	ter 2003				1.1.1	4th Quart	er 2003				
TLD	Delivered	Reported	Bias	Pass/Fail		TLD	Delivered	Reported	Bias	Pass/Fail	
Number	(mrem)	(mrem)	(% diff)	Criteria	Pass/Fail	Number	(mrem)	(mrem)	(% diff)	Criteria	Pass/Fail
100113	90	93.8	4.22	<+/-15%	Pass	100075	76.4	81.7	6.94	<+/-15%	Pass
100215	90	94.4	4.89	<+/-15%	Pass	100397	76.4	83.2	8.90	<+/-15%	Pass
100138	90	94.4	4.89	<+/-15%	Pass	100335	76.4	82.7	8.25	<+/-15%	Pass
100380	90	93.5	3.89	<+/-15%	Pass	100050	76.4	82.0	7.33	<+/-15%	Pass
100126	90	93.7	4.11	<+/-15%	Pass	100030	76.4	83.8	9.69	<+/-15%	Pass
	Avera	ge Bias (B)	4.40				Avera	ge Bias (B)	8.22		
	Standard De	eviation (S)	0.46				Standard De	eviation (S)	1.12		
Mea	sure Perforn	nance B +S	4.86	<15%	Pass	Mea	sure Perform	nance B+S	9.34	<15%	Pass

State of North Carolina, Division of Radiation Protection

Spring 20	03					Fall 2003					
TLD	Delivered	Reported	Bias	Pass/Fail		TLD	Delivered	Reported	Bias	Pass/Fail	
Number	(mrem)	(mrem)	(% diff)	Criteria	Pass/Fail	Number	(mrem)	(mrem)	(% diff)	Criteria	Pass/Fail
100964	65	70.0	7.69	<+/-15%	Pass	100940	59.4	63.1	6.23	<+/-15%	Pass
100159	65	72.2	11.08	<+/-15%	Pass	100723	59.4	58.8	-1.01	<+/-15%	Pass
100815	65	69.1	6.31	<+/-15%	Pass	100747	59.4	61.2	3.03	<+/-15%	Pass
100759	65	70.5	8.46	<+/-15%	Pass	101020	59.4	59.0	-0.67	<+/-15%	Pass
100150	65	72.3	11.23	<+/-15%	Pass	100080	59.4	60.8	2.36	<+/-15%	Pass
100823	65	72.2	11.08	<+/-15%	Pass	100356	59.4	60.7	2.19	<+/-15%	Pass
100169	65	67.9	4.46	<+/-15%	Pass	100818	59.4	59.6	0.34	<+/-15%	Pass
100921	65	71.1	9.38	<+/-15%	Pass	101122	59.4	59.4	0.00	<+/-15%	Pass
	Avera	ge Bias (B)	8.71				Avera	ge Bias (B)	1.56		
	Standard Do	eviation (S)	2.48				Standard De	eviation (S)	2.41		
Mea	sure Perforn	nance B +S	11.19	<15%	Pass	Meas	sure Perforn	nance B +S	3.96	<15%	Pass

 \subseteq

1st Quart	er 2003	· •••				2nd Quar	ter 2003				· · · · ·
TLD	Delivered	Reported	Bias	Pass/Fail		TLD	Delivered	Reported	Bias	Pass/Fail	
Number	(mrem)	(mrem)	(% diff)	Criteria	Pass/Fail	Number	(mrem)	(mrem)	(% diff)	Criteria	Pass/Fail
100050	39	37.5	-3.85	<+/-15%	Pass	100155	65	63.0	-3.08	<+/-15%	Pass
100030	39	37.3	-4.36	<+/-15%	Pass	100792	65	64.7	-0.46	<+/-15%	Pass
100008	39	36.3	-6.92	<+/-15%	Pass	100769	65	64.4	-0.92	<+/-15%	Pass
100140	39	39.3	0.77	<+/-15%	Pass	100061	65	64.7	-0.46	<+/-15%	Pass
100007	39	36.7	-5.90	<+/-15%	Pass	100799	65	63.4	-2.46	<+/-15%	Pass
100957	39	38.1	-2.31	<+/-15%	Pass	100117	65	63.7	-2.00	<+/-15%	Pass
100996	39	37.5	-3.85	<+/-15%	Pass	100012	65	63.8	-1.85	<+/-15%	Pass
100940	39	38.9	-0.26	<+/-15%	Pass	100114	65	65.0	0.00	<+/-15%	Pass
100954	39	37.0	-5.13	<+/-15%	Pass	100366	65	64.8	-0.31	<+/-15%	Pass
100955	39	38.0	-2.56	<+/-15%	Pass	100314	65	63.9	-1.69	<+/-15%	Pass
	Avera	ge Bias (B)	-3.44				Avera	ge Bias (B)	-1.32		
	Standard De	eviation (S)	2.41				Standard De	eviation (S)	1.04		
	sure Perforn	nance B +S	5.84	<15%	Pass	Mea	sure Perform	nance B +S	2.36	<15%	Pass
3rd Quar	ter 2003					4th Quart	er 2003				
TLD	Delivered	Reported	Bias	Pass/Fail		TLD	Delivered	Reported	Bias	Pass/Fail	
Number	(mrem)	(mrem)	(% diff)	Criteria	Pass/Fail	Number	(mrem)	(mrem)	(% diff)	Criteria	Pass/Fail
100511	26	25.8	-0.77	<+/-15%	Pass	100085	39	37.9	-2.82	<+/-15%	Pass
100552	26	25.9	-0.38	<+/-15%	Pass	100976	39	38.5	-1.28	<+/-15%	Pass
100590	26	26.0	0.00	<+/-15%	Pass	101413	39	37.2	-4.62	<+/-15%	Pass
100470	26	25.8	-0.77	<+/-15%	Pass	101397	39	37.0	-5.13	<+/-15%	Pass
100481	26	25.8	-0.77	<+/-15%	Pass	100260	39	39.0	0.00	<+/-15%	Pass
101201	26	24.4	-6.15	<+/-15%	Pass	100584	39	38.2	-2.05	<+/-15%	Pass
101204	26	25.6	-1.54	<+/-15%	Pass	100343	39	38.4	-1.54.	<+/-15%	Pass
101205	26	25.0	-3.85	<+/-15%	Pass	100158	39	37.2	-4.62	<+/-15%	Pass
101207	26	25.4	-2.31	<+/-15%	Pass	100225	39	41.7	6.92	<+/-15%	Pass
101208	26	25.6	-1.54	<+/-15%	Pass	100112	39	37.7	-3.33	<+/-15%	Pass
		ge Bias (B)	-1.81					ge Bias (B)	-1.85		
	Standard De	• • •	1.88				Standard De		3.50		
Mea	sure Perforn	nance B +S	3.69	<15%	Pass	Meas	sure Perform	ance B+S	5.34	<15%	Pass

.

•

•

6.0 REFERENCES

- 6.1 Oconee Selected License Commitments
- 6.2 Oconee Technical Specifications
- 6.3 Oconee Updated Final Safety Analysis Report
- 6.4 Duke Power Company Offsite Dose Calculation Manual
- 6.5 Oconee Annual Radiological Environmental Operating Report 1969-2002
- 6.6 Oconee Annual Radioactive Effluent Release Report 2003
- 6.7 Probability and Statistics in Engineering and Management Science, Hines and Montgomery, 1969, pages 287-293.
- 6.8 Practical Statistics for the Physical Sciences, Havilcek and Crain, 1988, pages 83-93.
- 6.9 Nuclear Regulatory Commission Regulatory Guide 1.109, Calculation of Annual Doses to Man from Routine Releases of Reactor Effluents for the Purposes of Evaluating Compliance with 10CFR50, Appendix I.
- 6.10 EnRad Laboratories Operating Procedures
- 6.11 RETDAS, Radiological Effluent Tracking and Dose Assessment Software, Canberra Version 3.5.1, DPC Revision #4.0
- 6.12 NRC Integrated Inspection Report 50-269/02-05, 50-270/02-05, 50-287/02-05
- 6.13 NRC Integrated Inspection Report 50-269/03-02, 50-270/03-02, 50-287/03-02
- 6.14 Duke Power Company EnRad Laboratory Charcoal Cartridge Study, performed 2001

APPENDIX A

ιιιι

 \cup

U U

 \cup L \cup \cup \cup L \cup \cup \cup \cup \cup C C L \cup L ر

し し

ENVIRONMENTAL SAMPLING & ANALYSIS PROCEDURES

APPENDIX A

ENVIRONMENTAL SAMPLING AND ANALYSIS PROCEDURES

Adherence to established procedures for sampling and analysis of all environmental media at Oconee Nuclear Station is required to ensure compliance with Station Selected Licensee Commitments. Analytical procedures were employed to ensure that Selected Licensee Commitments detection capabilities were achieved.

Environmental sampling and analyses were performed by EnRad Laboratories, Dosimetry and Records, and Fisheries and Aquatic Ecology.

Section IV of this appendix describes the environmental sampling frequencies and analysis procedures by media type.

I. <u>CHANGE OF SAMPLING PROCEDURES</u>

A new milk site, 083 (7.10 miles W) was added to the REMP in January, 2003. The new site began milking operations in late 2002 and was added to the REMP since it is the closest known operating dairy to the Oconee site. No milk locations were deleted.

Location 027 (Site Boundary TLD) was determined to be in the S sector at 0.36 miles following 2003 GPS measurement. Previous documentation listed the location as SSE sector at 0.4 miles. The TLD was relocated in the SSE sector at 0.49 miles.

Location 036 (TLD at Mile Creek Landing) was determined to be in the NNE sector at 4.32 miles following 2003 GPS measurement. Previous documentation listed the location as N sector at 4.0 miles. The TLD was relocated in the N sector at 4.32 miles.

Location 041 (TLD at Jct Hwy 101 & 133) was determined to be in the E sector at 4.3 miles following 2003 GPS measurement. Previous documentation listed the location as ESE sector at 4.0 miles. The TLD was relocated in the ESE sector at 4.25 miles.

II. DESCRIPTION OF ANALYSIS PROCEDURES

Gamma spectroscopy analyses are performed using high purity germanium gamma detectors and Canberra analytical software. Designated sample volumes are transferred to appropriate counting geometries and analyzed by gamma spectroscopy.

Perishable samples such as fish and broadleaf vegetation are ground to achieve a homogeneous mixture. Soils and sediments are dried, sifted to remove foreign objects (rocks, clams, glass, etc.) then transferred to appropriate counting geometry.

Low-level iodine analyses are performed by passing a designated sample aliquot through a pre-weighed amount of ion exchange resin to remove and concentrate any iodine in the aqueous sample (milk). The resin is then dried, mixed thoroughly, and a net resin weight determined before being transferred to appropriate counting geometry and analyzed by gamma spectroscopy.

Tritium analyses are performed quarterly by using low-level environmental liquid scintillation analysis technique on a Packard 2550 liquid scintillation system. Tritium samples are batch processed with a tritium spike to verify instrument performance and sample preparation technique are acceptable.

Gross beta analysis is performed by concentrating a designated aliquot of sample precipitate and analyzing by gas-flow proportional counters. Samples are batch processed with a blank to ensure sample contamination has not occurred.

III. CHANGE OF ANALYSIS PROCEDURES

No analysis procedures were changed during 2003.

IV. SAMPLING AND ANALYSIS PROCEDURES

A.1 AIRBORNE PARTICULATE AND RADIOIODINE

Airborne particulate and radioiodine samples at each of six locations were composited continuously by means of continuous air samplers. Air particulates were collected on a particulate filter and radioiodines were collected in a charcoal cartridge positioned behind the filter in the sampler. The samplers are designed to operate at a constant flow rate (in order to compensate for any filter loading) and are set to sample approximately 2 cubic feet per minute. Filters and cartridges were collected weekly. A separate weekly gamma analysis was performed on each charcoal cartridge and air particulate. A weekly gross beta analysis was performed on each filter. The continuous composite samples were collected from the locations listed below.

Location 060	=	Greenville Water Intake Rd. (2.58 mi. NNE)
Location 074	=	Keowee Key Resort (2.36 mi. NNW)
Location 077	=	Skimmer Wall (1.00 mi. SW)
Location 078	=	Recreation Site (0.58 mi. WSW)
Location 079	=	Keowee Dam (0.56 mi. NE)
Location 081	=	Clemson Operations Center (9.33 mi. SE)

A.2 DRINKING WATER

Monthly composite samplers were operated to collect an aliquot at least every two hours. Gross beta and gamma analysis was performed on the monthly composites. Tritium analysis was performed on the quarterly composites. The composites were collected monthly from the locations listed below.

Location 060	=	Greenville Water Intake Rd. (3.23 mi. NE)
Location 064	=	Seneca (6.67 mi. SSW)
Location 066	=	Anderson (18.9 mi SSE)

A.3 SURFACE WATER

Monthly composite samplers were operated to collect an aliquot at least every two hours. Gamma analysis was performed on the monthly composites. Tritium analysis was performed on the quarterly composites sample. The composites were collected monthly from the locations listed below.

Location 062	Ξ	Lake Keowee Hydro Intake (0.85 mi. ENE)
Location 063.1	=	Lake Hartwell Hwy 183 Bridge (0.79 mi. E)

A.4 MILK

Semimonthly grab samples were collected at each dairy. A gamma and lowlevel Iodine-131 analysis was performed on each sample. The semimonthly grab samples were collected from the locations listed below.

Location 071	=	Clemson Dairy (10.2 mi. SSE)
Location 080	=	Martin's Dairy (17.2 mi. SE)
Location 082	=	Oakway Dairy (17.8 mi. SSW)
Location 083	=	Oconee Belle Farm Dairy (7.10 mi. W)

A.5 **BROADLEAF VEGETATION**

Monthly samples were collected and a gamma analysis was performed on each sample. The samples were collected from the locations listed below.

Location 060	=	Greenville Water Intake Rd. (2.58 mi. NNE)
Location 077	=	Skimmer Wall (1.00 mi. SW)
Location 079	=	Keowee Dam (0.56 mi. NE)
Location 081	=	Clemson Operations Center (9.33 mi. SE)

١ L Ĺ

 \mathbf{L} \cup

A.6 <u>FISH</u>

Semiannual samples were collected and a gamma analysis was performed on the edible portions of each sample. The samples were collected from the locations listed below.

Location 060	=	Greenville Water Intake Rd. (2.28 mi. NE)
Location 063	=	Lake Hartwell Hwy 183 Bridge (0.80 mi. ESE)
Location 067	=	Lawrence Ramsey Bridge Hwy 27 (4.34 mi. SSE)

A.7 SHORELINE SEDIMENT

Semiannual samples were collected and a gamma analysis was performed on each sample following the drying and removal of rocks and clams. The samples were collected from the locations listed below.

Location 063	=	Lake Hartwell Hwy 183 Bridge (0.80 mi. ESE)
Location 067	=	Lawrence Ramsey Bridge Hwy 27 (4.34 mi. SSE)
Location 068	=	High Falls County Park (1.82 mi. W)

A.8 DIRECT GAMMA RADIATION (TLD)

Thermoluminescent dosimeters (TLD) were collected quarterly at forty-two locations. A gamma exposure rate was determined for each TLD. The TLDs were placed as indicated below.

- * An inner ring of 17 TLDs, one in each meteorological sector in the general area of the site boundary.
- * An outer ring of 16 TLDs, one in each meteorological sector in the 6 to 8 kilometer range.
- * The remaining TLDs were placed in special interest areas such as population centers, residential areas, schools, and control locations.

TLD Locations are listed in Table 2.1-B.

A.9 ANNUAL LAND USE CENSUS

An annual Land Use Census was conducted to identify within a distance of 8 kilometers (5.0 miles) from the station, the following locations in each of the sixteen meteorological sectors:

* The Nearest Residence

- * The Nearest Meat Animal
- * The Nearest Milk-giving Animal (cow, goat, etc.) where milk is used for human consumption

The census was conducted during the growing season from 5/12 to 5/14/2003. Results are shown in Table 3.9. No changes were made to the sampling procedures during 2003 as a result of the 2003 census.

V. GLOBAL POSITIONING SYSTEM (GPS) ANALYSIS

Oconee Nuclear Station Radiological Environmental Monitoring Program (REMP) locations were verified using global positioning system (GPS) technology during the summer of 2003. Most GPS measurements were taken during May, 2003 through July, 2003. All current REMP sample locations were measured. Historical locations (i.e. no longer in service) were not measured during this evaluation.

Additionally, all 2003 Oconee land use census items of interest were measured. GPS equipment was utilized to determine the distance and sector from the Oconee site centerline to the nearest residence, milk animal, and meat animal in each of the sixteen meteorological sectors.

Prior to this evaluation, PIP O-02-06264 was generated as the result of an NRC (Nuclear Regulatory Commission) inspection which included the use of a GPS unit by the NRC inspector. The inspector measured a TLD site (site 056) and a discrepancy was observed. The PIP generated required that all locations be measured using standard GPS parameters and methodologies.

The Oconee site centerline used for all GPS measurements was referenced from the Oconee Nuclear Station Updated Final Safety Analysis Report (UFSAR), section 2.1.1.1, Specification of Location. Waypoint coordinates used for ONS GPS measurements were latitude 34°-47'-38.2"N and longitude 82°-53'-55.4"W. Maps and tables were generated using North American Datum (NAD) 27. Data normally reflect accuracy to within 2 to 5 meters from point of measurement. All GPS field measurements were taken as close as possible to the item of interest. Distances for the locations are displayed using three significant figures.

APPENDIX B

RADIOLOGICAL ENVIRONMENTAL MONITORING PROGRAM

SUMMARY OF RESULTS

2003

Facility: Oconee Nuclear Station Docket No. 50-269,270,287 Location: Oconee County, South Carolina Report Period: 01-JAN-2003 to 31-DEC-2003

Medium or Pathway Sampled	Type Tot Num of	al ber	Lower Limit of Detection	I All indicator Locations	Annı	with Highest ual Mean ance, Direction	Control Location	No. of Non- Routine Report Meas.
Unit of Measurement	Analy Perfor		(LLD)	Mean (Fraction) Range	Location Code	Mean (Fraction) Range	Mean (Fraction) Range	
Air Particulate (pCi/m3)							081 (9.33 mi SE)	
	BETA	312	1.00E-02	1.77E-2 (260/260)	074	1.86E-2 (52/52)	1.82E-2 (52/52)	0
				6.48E-3 - 3.08E-2	(2.36 mi NNW)	9.36E-3 - 3.08E-2	7.68E-3 - 3.06E-2	
	CS-134	312	5.00E-02	0.00 (0/260)		0.00 (0/52)	0.00 (0/52)	0
				0.00 - 0.00		0.00 - 0.00	0.00 - 0.00	
	CS-137	312	6.00E-02	0.00 (0/260)		0.00 (0/52)	0.00 (0/52)	0
				0.00 - 0.00		0.00 - 0.00	0.00 - 0.00	
	I-131	312	7.00E-02	0.00 (0/260)		0.00 (0/52)	0.00 (0/52)	0
				0.00 - 0.00		0.00 - 0.00	0.00 - 0.00	

Mean and range based upon detectable measurements only

Fraction of detectable measurements at specified locations is indicated in parentheses, (Fraction)

Facility: Oconee Nuclear Station

Docket No. 50-269,270,287

Location: Oconee County, South Carolina

Report Period: 01-JAN-2003 to 31-DEC-2003

Medium or Pathway Sampled	Type and Tota Number of	Lower Limit of Detection	All Indicator Locations	An	n with Highest nual Mean stance, Direction	Control Location	No. of Non- Routine Report Meas.
Unit of Measurement	Analyses Performed	(LLD)	Mean (Fraction) Range	Location Code	Mean (Fraction) Range	Mean (Fraction) Range	
Air Radioiodine (pCi/m3)						081 (9.33 mi SE)	
	CS-134 312	5.00E-02	0.00 (0/260)		0.00 (0/52)	0.00 (0/52)	0
			0.00 - 0.00		0.00 - 0.00	0.00 - 0.00	
	CS-137 312	6.00E-02	0.00 (0/260)		0.00 (0/52)	0.00 (0/52)	0
	-		0.00 - 0.00		0.00 - 0.00	0.00 - 0.00	
	I-131 312	7.00E-02	0.00 (0/260)		0.00 (0/52)	0.00 (0/52)	0
			0.00 - 0.00		0.00 - 0.00	0.00 - 0.00	

Mean and range based upon detectable measurements only

Fraction of detectable measurements at specified locations is indicated in parentheses, (Fraction)

Zero range indicates no detectable activity measurements

Report Generated @ 4/19/2004 2:37 PM Appendix B - Page 3

Facility: Oconee Nuclear Station

Docket No. 50-269,270,287

Location: Oconee County, South Carolina

Report Period: 01-JAN-2003 to 31-DEC-2003

Medium or Pathway Sampled Unit of	Type and T Number of Analyse	r ×s	Lower Limit of Detection (LLD)	All Indicator Locations Mean (Fraction)	Annu Name, Dista Location	with Highest al Mean ance, Direction Mean (Fraction)	Control Location Mean (Fraction)	No. of Non- Routine Report Meas.
Measurement	Performe	bd		Range	Code	Range	Range .	
Drinking Water (pCi/liter)							064 (6.67 mi SSW)	
	BALA-140	39	15	0.00 (0/26)		0.00 (0/13)	0.00 (0/13)	0
	Dittar 140			0.00 - 0.00		0.00 - 0.00	0.00 - 0.00	
	BETA	39	4	1.31 (24/26)	066	1.51 (13/13)	1.05 (11/13)	0
				0.76 - 2.21	(18.9 mi SSE)	0.85 - 2.21	0.67 - 1.46	
	CO-58	39	15	0.00 (0/26)	,	0.00 (0/13)	0.00 (0/13)	0
				0.00 - 0.00		0.00 - 0.00	0.00 - 0.00	
	CO-60	39	15	0.00 (0/26)		0.00 (0/13)	0.00 (0/13)	0
			<u> </u>	0.00 - 0.00		0.00 - 0.00	0.00 - 0.00	
	CS-134	39	15	0.00 (0/26)		0.00 (0/13)	0.00 (0/13)	0
			<u> </u>	0.00 - 0.00		0.00 - 0.00	0.00 - 0.00	
	CS-137	39	18	0.00 (0/26)		0.00 (0/13)	0.00 (0/13)	0
	· · · · · · · · · · · · · · · · · · ·		5 Tra	0.00 - 0.00	·	0.00 - 0.00	0.00 - 0.00	
	FE-59	39	- 30	0.00 (0/26)		0.00 (0/13)	0.00 (0/13)	0
				0.00 - 0.00		0.00 - 0.00	0.00 - 0.00	
	Н-3	15	2000	266 (4/10)	066	266 (4/5)	0.00 (0/5)	0
				237 - 298	(18.9 mi SSE)	237 - 298	0.00 - 0.00	
	I-131	39	15	0.00 (0/26)		0.00 (0/13)	0.00 (0/13)	0
	<u></u>			0.00 - 0.00		0.00 - 0.00	0.00 - 0.00	
	MN-54	39	15	0.00 (0/26)		0.00 (0/13)	0.00 (0/13)	0
				0.00 - 0.00		0.00 - 0.00	0.00 - 0.00	
	NB-95	39	15	0.00 (0/26)		0.00 (0/13)	0.00 (0/13)	0
				0.00 - 0.00		0.00 - 0.00	0.00 - 0.00	
	ZN-65	39	30	0.00 (0/26)		0.00 (0/13)	0.00 (0/13)	0
				0.00 - 0.00		0.00 - 0.00	0.00 - 0.00	
	ZR-95	39	30	0.00 (0/26)		0.00 (0/13)	0.00 (0/13)	0
				0.00 - 0.00		0.00 - 0.00	0.00 - 0.00	

Mean and range based upon detectable measurements only

Fraction of detectable measurements at specified locations is indicated in parentheses, (Fraction)

Zero range indicates no detectable activity measurements

Facility: Oconee Nuclear Station

Docket No. 50-269,270,287

Location: Oconee County, South Carolina

Report Period: 01-JAN-2003 to 31-DEC-2003

Medium or Pathway Sampled	Type and T Numbe of		Lower Limit of Detection	All Indicator Locations	Ann	with Highest ual Mean tance, Direction	Control Location	No. of Non- Routine Report Meas.
Unit of Measurement	Analyse Performe		(LLD)	Mean (Fraction) Range	Location Code	Mean (Fraction) Range	Mean (Fraction) Range	
Surface Water (pCi/liter)							062 (0.85 mi ENE)	
	BALA-140	26	15	0.00 (0/13)		0.00 (0/13)	0.00 (0/13)	0
			••••	0.00 - 0.00		0.00 - 0.00	0.00 - 0.00	
	CO-58	26	15	0.00 (0/13)		0.00 (0/13)	0.00 (0/13)	0
				0.00 - 0.00		0.00 - 0.00	0.00 - 0.00	
i	CO-60	26	15	0.00 (0/13)		0.00 (0/13)	0.00 (0/13)	0
				0.00 - 0.00		0.00 - 0.00	0.00 - 0.00	
	CS-134	26	15	0.00 (0/13)		0.00 (0/13)	0.00 (0/13)	0
				0.00 - 0.00		0.00 - 0.00	0.00 - 0.00	
	CS-137	26	18	0.00 (0/13)		0.00 (0/13)	0.00 (0/13)	0
				0.00 - 0.00		0.00 - 0.00	0.00 - 0.00	
	FE-59	26	30	0.00 (0/13)		0.00 (0/13)	0.00 (0/13)	0
				0.00 - 0.00		0.00 - 0.00	0.00 - 0.00	
	H-3	10	2000	4768 (5/5)	063.1	4768 (5/5)	0.00 (0/5)	0
	-			888 - 10300	(0.79 mi E)	888 - 10300	0.00 - 0.00	
	I-131	26	15	0.00 (0/13)		0.00 (0/13)	0.00 (0/13)	0
				0.00 - 0.00		0.00 - 0.00	0.00 - 0.00	
	MN-54	26	15	0.00 (0/13)		0.00 (0/13)	0.00 (0/13)	0
	<u></u>			0.00 - 0.00		0.00 - 0.00	0.00 - 0.00	
	<u>NB-95</u>	26	15	0.00 (0/13)		0.00 (0/13)	0.00 (0/13)	0
				0.00 - 0.00		0.00 - 0.00	0.00 - 0.00	
	ZN-65	26	30	0.00 (0/13)		0.00 (0/13)	0.00 (0/13)	0
				0.00 - 0.00		0.00 - 0.00	0.00 - 0.00	
	ZR-95	26	30	0.00 (0/13)		0.00 (0/13)	0.00 (0/13)	0
				0.00 - 0.00		0.00 - 0.00	0.00 - 0.00	

Mean and range based upon detectable measurements only

Fraction of detectable measurements at specified locations is indicated in parentheses, (Fraction)

Facility: Oconee Nuclear Station

し し

Docket No. 50-269, 270, 287

Location: Oconee County, South Carolina

Report Period: 01-JAN-2003 to 31-DEC-2003

Medium or Pathway Sampled	Type and T Numbe of		Lower Limit of Detection	All Indicator Locations	Ann	with Highest ual Mean tance, Direction	Control Location	No. of Non- Routine Report Meas.
Unit of Measurement	Analyse Performe		(LLD)	Mean (Fraction) Range	Location Code	Mean (Fraction) Range	Mean (Fraction) Range	
Milk (pCi/liter)							080 (17.2 mi SE)	
	BALA-140	103	15	0.00 (0/77)		0.00 (0/26)	0.00 (0/26)	0
				0.00 - 0.00		0.00 - 0.00	0.00 - 0.00	
	CS-134	103	15	0.00 (0/77)		0.00 (0/26)	0.00 (0/26)	0
				0.00 - 0.00	-	0.00 - 0.00	0.00 - 0.00	
1	CS-137	103	18	0.00 (0/77)		0.00 (0/26)	0.00 (0/26)	0
1				0.00 - 0.00		0.00 - 0.00	0.00 - 0.00	
	I-131	103	15	0.00 (0/77)		0.00 (0/26)	0.00 (0/26)	0
				0.00 - 0.00		0.00 - 0.00	0.00 - 0.00	
	LLI-131	103	1	0.00 (0/77)		0.00 (0/26)	0.00 (0/26)	0
				0.00 - 0.00		0.00 - 0.00	0.00 - 0.00	
				·····				

Mean and range based upon detectable measurements only

Fraction of detectable measurements at specified locations is indicated in parentheses, (Fraction)

Facility: Oconee Nuclear Station

Docket No. 50-269,270,287

Location: Oconee County, South Carolina

Report Period: 01-JAN-2003 to 31-DEC-2003

Medium or Pathway Sampled	Type and Total Number of	Lower Limit of Detection	All Indicator Locations	Ann	with Highest ual Mean tance, Direction	Control Location	No. of Non- Routine Report Meas.
Unit of Measurement	Analyses Performed	(LLD)	Mean (Fraction) Range	Location Code	Mean (Fraction) Range	Mean (Fraction) Range	
Broadleaf Vegetation (pCi/kg-wet)	.		L	······································		081 (9.33 mi SE)	
	<u>CS-134</u> 48	60	0.00 (0/36)	•	0.00 (0/12)	0.00 (0/12)	0
			0.00 - 0.00		0.00 - 0.00	0.00 - 0.00	
	CS-137 48	80	0.00 (0/36)		0.00 (0/12)	0.00 (0/12)	0
			0.00 - 0.00		0.00 - 0.00	0.00 - 0.00	
	I-131 48	60	0.00 (0/36)		0.00 (0/12)	0.00 (0/12)	0
			0.00 - 0.00		0.00 - 0.00	0.00 - 0.00	

Mean and range based upon detectable measurements only

Fraction of detectable measurements at specified locations is indicated in parentheses, (Fraction)

Zero range indicates no detectable activity measurements

(

Facility: Oconee Nuclear Station

Docket No. 50-269,270,287

Report Period: 01-JAN-2003 to 31-DEC-2003

Location: Oconee County, South Carolina

No. of Non-Type and Total Medium or Lower Location with Highest Routine All Indicator Control Pathway Number Limit of Annual Mean Location Report Locations Sampled of Detection Name, Distance, Direction Meas. Unit of Analyses Mean (Fraction) Location Mean (Fraction) Mean (Fraction) (LLD) Measurement Performed Code Range Range Range Fish 060 (pCi/kg-wet) (2.28mi NE) 0.00 (0/4) 0 12 130 50.2 (1/8) 063 50.2 (1/4) CO-58 50.2 - 50.2 (0.80 mi ESE) 50.2 - 50.2 0.00 - 0.00 CO-60 12 130 0.00 (0/4) 0.00 (0/4) 0 0.00 (0/8) 0.00 - 0.00 0.00 - 0.00 0.00 - 0.00 CS-134 12 130 0.00 (0/4) 0.00 (0/4) 0 0.00 (0/8) 0.00 - 0.00 0.00 - 0.00 0.00 - 0.00 12 150 063 60.4 (4/4) 33.3 (1/4) 0 CS-137 45.2 (8/8) 12.1 - 97.6 (0.80 mi ESE) 33.1 - 97.6 33.3 - 33.3 0 0.00 (0/4) FE-59 12 260 0.00 (0/8) 0.00 (0/4) 0.00 - 0.00 0.00 - 0.00 0.00 - 0.00 0 MN-54 130 0.00 (0/4) 0.00 (0/4) 12 0.00 (0/8) 0.00 - 0.00 0.00 - 0.00 0.00 - 0.00 12 260 0.00 (0/4) 0.00 (0/4) 0 ZN-65 0.00 (0/8) 0.00 - 0.00 0.00 - 0.00 0.00 - 0.00

Mean and range based upon detectable measurements only

Fraction of detectable measurements at specified locations is indicated in parentheses, (Fraction)

L

Facility: Oconee Nuclear Station

Docket No. 50-269,270,287

Location: Oconee County, South Carolina

Report Period: 01-JAN-2003 to 31-DEC-2003

Medium or Pathway Sampled	Type and Total Number of	Lower Limit of Detection	All Indicator Locations	Annu	with Highest al Mean ance, Direction	Control Location	No. of Non- Routine Report Meas.
Unit of Measurement	Analyses Performed	(LLD)	Mean (Fraction) Range	Location Code	Mean (Fraction) Range	Mean (Fraction) Range	
Shoreline Sediment (pCi/kg-dry)						068 (1.82 mi W)	
	<u>CS-134</u> 6	150	0.00 (0/4)		0.00 (0/2)	0.00 (0/2)	0
			0.00 - 0.00		0.00 - 0.00	0.00 - 0.00	
	CS-137 6	180	154 (3/4)	063	193 (2/2)	0.00 (0/2)	0
			51.9 - 335	(0.80 mi ESE)	51.9 - 335	0.00 - 0.00	

Mean and range based upon detectable measurements only

Fraction of detectable measurements at specified locations is indicated in parentheses, (Fraction)

Facility: Oconee Nuclear Station

Docket No. 50-269,270,287

Location: Oconee County, South Carolina

Report Period: 01-JAN-2003 to 31-DEC-2003

Medium or Pathway Sampled	Type and Total Number of	Lower Limit of Detection	• • • • • • • • • • • • • • • • • • • •	Ann	with Highest ual Mean tance, Direction	Control Location	No. of Nor Routine Report Meas.
Unit of Measurement	Analyses Performed	(LLD)	Mean (Fraction) Range	Location Code	Mean (Fraction) Range	Mean (Fraction) Range	
Direct Radiation TLD (mR/standard quarter)						058 (9.39 mi WSW) 081 (9.33 mi SE)	
	168	0.00E+00	20.6 (160/160)	053 (11.7 mi E)	<u>25.7 (4/4)</u> 23.3 - 27.9	27.2 (8/8)	0

Mean and range based upon detectable measurements only

Fraction of detectable measurements at specified locations is indicated in parentheses, (Fraction)

Zero range indicates no detectable activity measurements

L

APPENDIX C

.

SAMPLING DEVIATIONS & UNAVAILABLE ANALYSES

APPENDIX C

OCONEE NUCLEAR STATION SAMPLING DEVIATIONS & UNAVAILABLE ANALYSES

	DEVIATION & UNAVAILABLE REASON CODES								
BF	Blown Fuse	PO	Power Outage						
FZ	Sample Frozen	PS	Pump out of service / Undergoing Repair						
IW	Inclement Weather	SL	Sample Loss/Lost due to Lab Accident						
LC	Line Clog to Sampler	SM	Motor / Rotor Seized						
OT	Other	TF	Torn Filter						
PI	Power Interrupt	VN	Vandalism						
PM	Preventive Maintenance								

C.1 SAMPLING DEVIATIONS

Air Particulate and Air Radioiodines

Location	Scheduled Collection Dates	Actual Collection Dates	Reason Code	Corrective Action
077	5/19 - 5/27/03	5/19 - 5/27/03	PI	Power to sampling equipment was interrupted due to a planned outage by Oconee Maintenance personnel for implementation of Retail Power up-grade. Estimated power outage was 2.44 hours based upon sampler clock.
078	5/19 - 5/27/03	5/19 - 5/27/03	PI	Power to sampling equipment was interrupted due to a planned outage by Oconee Maintenance personnel for implementation of Retail Power up-grade. Estimated power outage was 3.09 hours based upon sampler clock.

Drinking Water

Location	Scheduled Collection Dates	Actual Collection Dates	Reason Code	Corrective Action
				Sampler tubing came loose during composite period causing water treatment personnel to turn off water supply valve to reduce leakage. A grab sample was taken on 9/29/03. Tubing was replaced, secured, and water flow was restored.
066	9/2 - 9/29/03	9/29 - 9/29/03	OT	Normal sampling resumed on 9/29/03.

·	Scheduled	Actual	Reason	· · · · · · · · · · · · · · · · · · ·
Location	Collection Dates	Collection Dates	Code	Corrective Action
063.1	1/20 - 2/17/03	1/20 - 2/17/03	LC	Intake line clogged, stopping water flow to sampling equipment. Work request 3001322 was written. Grab samples were taken 1/20 and 1/21/03. Normal sampling resumed 1/21/03.
063.1	4/14 - 5/12/03	4/14 - 5/12/03	PS	Reservoir pump lost prime causing interruption of water flow to sampling equipment. Work request 3008975 was written. Grab samples were taken 5/6 and 5/7/03. Normal sampling resumed 5/7/03
063.1	5/12 - 6/9/03	5/12 - 6/9/03	РО	Power to sampling equipment was interrupted due to a planned outage by Oconee Maintenance personnel for implementation of Retail Power up-grade Power was restored after an estimated three hours. The power interruption caused the reservoir pump to lose prime. Site services contacted to prime reservoir pump. Normal sampling was resumed 5/21/03 13:00 after an estimated unavailability of 31 hours.
063.1	9/2 - 9/29/03	9/2 - 9/29/03	PS	Reservoir pump lost prime causing interruption of water flow to sampling equipment. Work request 3018745 was written. A grab sample was collected on 9/29/03. Normal sampling resumed 9/29/03.
063.1	9/29 - 10/27/03	9/29 - 10/27/03	PS	Reservoir pump lost prime causing interruption of water flow to sampling equipment. Work request 3020428 was written. Normal sampling resumed 10/29/03.
063.1	10/27 - 11/25/03	10/27 - 11/25/03	PS	Reservoir pump lost prime causing interruption of water flow to sampling equipment. Work request 3022007 was written.
063.1	11/26 - 12/22/03	11/26 - 12/22/03	PS	Reservoir pump under repair at composit start time. Reservoir pump lost prime causing interruption of water flow to sampling equipment. Daily grab samples were taken on 11/26, 11/27, 11/28, 11/29 11/30, 12/1, 12/2, and 12/3/03. Normal sampling was resumed on 12/3/04.

Surface Water

C.2 UNAVAILABLE ANALYSES

There were no unavailable analyses for the 2003 REMP.

APPENDIX D

ίιιι

 \cup

 \cup Ú \cup \cup L \cup \cup C

しし

ANALYTICAL DEVIATIONS

No Analytical deviations were incurred for the 2003 Radiological Environmental Monitoring Program

APPENDIX E

ιιιιι

 \cup

し し

ιιιι

し い

RADIOLOGICAL ENVIRONMENTAL MONITORING PROGRAM RESULTS

This appendix includes all of the sample analysis reports generated from each sample medium for 2003. Appendix E is located separately from this report and is permanently archived at Duke Power Company's Environmental Center radiological environmental master file, located at the McGuire Nuclear Station Site in Huntersville, North Carolina.