

D.M. JAMIL Vice President

Duke Power Catawba Nuclear Station 4800 Concord Rd. / CN01VP York, SC 29745-9635

803 831 4251 803 831 3221 fax

May 10, 2004

U.S. Nuclear Regulatory Commission Attention: Document Control Desk Washington, D.C. 20555

Subject: Catawba Nuclear Station, Units 1 and 2 Docket Nos. 50-413 and 50-414 2003 Annual Radiological Environmental Operating Report

Pursuant to Catawba Nuclear Station Technical Specification 5.6.2 and Selected Licensee Commitment 16.11-16, please find attached the 2003 Annual Radiological Environmental Operating Report. This report covers operation of Catawba Units 1 and 2 during the 2003 calendar year.

There are no commitments contained in this submittal.

Any questions concerning this report should be directed to Kay Nicholson at 803.831.3237.

Sincerely,

Dhiaa M. Jamil

Enclosure

\*\* •

xc: (\* w/o enclosure)

L. A. Reyes, Regional Administrator, Region II

S. E. Peters, NRR Project Manager

\*E. F. Guthrie, Senior Resident Inspector

IE 25



# Catawba Nuclear Station Units 1 and 2



# AREOR

Annual Radiological Environmental Operating Report 2003



Ū

 $\smile$ 

 $\smile$ 

 $\cup$ 

 $\cup$  $\cup$  $\cup$  $\cup$ Ć Ć U ر ب C Ć ں ب ل L Ć ل  $\cup$  $\smile$ 

# ANNUAL RADIOLOGICAL ENVIRONMENTAL OPERATING REPORT

# DUKE POWER COMPANY CATAWBA NUCLEAR STATION Units 1 and 2

2003



# TABLE OF CONTENTS

| 1.0 Execu   | tive Summary                                              | •      | • | • | 1-1      |
|-------------|-----------------------------------------------------------|--------|---|---|----------|
| 2.0 Introd  | luction                                                   |        |   |   | 2-1      |
| 2.1         | Site Description and Sample Locations                     |        |   |   | 2-1      |
| 2.2         | Scope and Requirements of the REMP                        |        |   |   | 2-1      |
| 2.3         | Statistical and Calculational Methodology                 |        |   |   | 2-2      |
| 2.0         | 2.3.1 Estimation of the Mean Value                        |        |   |   | 2-2      |
|             | 2.3.2 Lower Level of Detection and Minimum Detectable Ac  | tivitv |   | • | 2-3      |
|             | 233 Trend Identification                                  |        | • | • | 2-3      |
|             |                                                           | •      | • | • | 2.5      |
| 3.0 Inter   | pretation of Results                                      | •      | • | • | 3-1      |
| 3.1         | Airborne Radioiodine and Particulates                     | •      | • |   | 3-2      |
| 3.2         | Drinking Water                                            | •      | • |   | 3-4      |
| 3.3         | Surface Water                                             | •      | • | • | 3-6      |
| 3.4         | Ground Water                                              |        | • |   | 3-8      |
| 3.5         | Milk                                                      |        |   |   | 3-9      |
| 3.6         | Broadleaf Vegetation.                                     |        | • |   | 3-10     |
| 3.7         | Food Products                                             |        |   |   | 3-12     |
| 3.8         | Fish                                                      |        |   |   | 3-13     |
| 3.9         | Shoreline Sediment                                        |        |   |   | 3-16     |
| 3.10        | Direct Gamma Radiation                                    |        |   |   | 3-18     |
| 3.11        | Land Use Census                                           |        |   |   | 3-20     |
| ••••        |                                                           | -      | - | • |          |
| 4.0 Evalı   | ation of Dose                                             |        | • | • | 4-1      |
| 4.1         | Dose from Environmental Measurements                      | •      | • | • | 4-1      |
| 4.2         | Estimated Dose from Releases                              | •      |   |   | 4-1      |
| 4.3         | Comparison of Doses                                       | •      | • | • | 4-2      |
| 50 Qual     | ty Assurance                                              |        |   |   | 5-1      |
| 5.0 Quai    | Sample Collection                                         | •      | • | • | 5-1      |
| 5.1         | Sample Analysis                                           | •      |   | • | 5-1      |
| 53          | Desimetry Analysis                                        | •      | • | • | 5-1      |
| J.J<br>-5 A | Loboratory Equipment Quality Assurance                    | •      | • | • | 5-1      |
| ·J.4        | Laboratory Equipment Quanty Assurance                     | •      | • | • | 51       |
|             | 5.4.1 Daily Quality Control                               | •      | • | • | 51       |
|             | 5.4.2 Canoration verification                             | •      | • | • | 5-1      |
| ~ ~         | 5.4.3 Batch Processing                                    | •      | • | • | 5-2      |
| 5.5         | Duke Power Intercomparison Program                        | •      | • | • | 5-2      |
| 5.6         | Duke Power Audits                                         | •      | • | • | 5-2      |
| 5.7         | U.S. Nuclear Regulatory Commission Inspections .          | •      | • | • | 5-2      |
| 5.8         | State of South Carolina Intercomparison Program           | •      | • | • | 5-2      |
| 5.9         | TLD Intercomparison Program                               | •      | • | • | 5-3      |
|             | 5.9.1 Nuclear Technology Services Intercomparison Program | •      | • | • | 5-3      |
|             | 5.9.2 State of North Carolina Intercomparison Program .   | •      | • | • | 5-3      |
|             | 5.9.3 Internal Crosscheck (Duke Power)                    | •      | • | • | 5-3      |
|             |                                                           |        |   |   | <u> </u> |
| 6.0 Refe    | rences                                                    | •      | • | • | 0-1      |

#### Appendices

| т          | A: Environmental Sampling and Analysis F  | Procedures | •          | • • | • | A-1  |
|------------|-------------------------------------------|------------|------------|-----|---|------|
| 1.         | Change of Sampling Procedures             |            | • •        | • • | • | A-2  |
| II.        | Description of Analysis Procedures        | •••        | • •        | • • | • | A-2  |
| III.       | Change of Analysis Procedures             | • •        |            | • • | • | A-3  |
| IV.        | Sampling and Analysis Procedures          | • •        |            | • • | • | A-3  |
|            | A.1 Airborne Particulate and Radioiodine  | ;          | • •        | • • | • | A-3  |
|            | A.2 Drinking Water                        |            |            |     | • | A-3  |
|            | A.3 Surface Water                         |            |            |     | • | A-4  |
|            | A.4 Ground Water                          |            | • •        |     | • | A-4  |
|            | A.5 Milk                                  | • •        | • •        |     |   | A-4  |
|            | A.6 Broadleaf Vegetation                  |            | • •        |     |   | A-4  |
|            | A.7 Food Products                         |            | • •        |     |   | A-5  |
|            | A.8 Fish                                  |            | • •        |     | • | A-5  |
|            | A.9 Shoreline Sediment                    |            | • •        |     |   | A-5  |
|            | A.10 Direct Gamma Radiation (TLD) .       |            | • •        |     |   | A-5  |
|            | A.11 Annual Land Use Census               |            |            |     |   | A-6  |
| <b>V</b> . | Global Positioning System (GPS) Analysis. |            |            |     |   | A-6  |
| Appendix   | 3: Radiological Env. Monitoring Program - | Summary    | of Results |     |   | B-1  |
|            | Air Particulate                           |            |            |     |   | B-2  |
|            | Air Radioiodine                           |            |            |     |   | B-3  |
|            | Drinking Water                            |            |            |     |   | B-4  |
|            | Surface Water                             |            |            |     | • | B-5  |
|            | Ground Water                              |            |            |     | • | B-6  |
|            | Milk                                      |            |            |     | • | B-7  |
|            | Broadleaf Vegetation                      |            |            |     |   | B-8  |
|            | Food Products                             |            |            |     |   | B-9  |
|            | Fish                                      |            |            |     |   | B-10 |
|            | Shoreline Sediment                        |            |            |     |   | B-11 |
|            | Direct Gamma Radiation (TLD)              |            |            |     |   | B-12 |
| Appendix   | 2: Sampling Deviations and Unavailable Ar | nalyses .  |            |     |   | C-1  |
| ••         | C.1 Sampling Deviations                   | •          |            |     |   | C-2  |
|            | C.2 Unavailable Analyses                  |            |            |     |   | C-3  |
|            | ): Analytical Deviations                  |            |            |     |   | D-1  |
| Appendix   | · · · · · · · · · · · · · · · · · · ·     |            |            | -   |   |      |

.

| 2.1-1 | Sampling Locations Map (One Mile Radius)        |    |   | • | • |   | • | 2-4  |
|-------|-------------------------------------------------|----|---|---|---|---|---|------|
| 2.1-2 | Sampling Locations Map (Ten Mile Radius)        |    |   | • | • | • | • | 2-5  |
| 3.1   | Concentration of Gross Beta in Air Particulate  | •  | • | • |   | • |   | 3-2  |
| 3.2   | Concentration of Tritium in Drinking Water      |    |   | • |   | • |   | 3-5  |
| 3.3   | Concentration of Tritium in Surface Water.      | •  | • | • | • | • |   | 3-6  |
| 3.6   | Concentration of Cs-137 in Broadleaf Vegetation | on | • | • | • | • | • | 3-10 |
| 3.8-1 | Concentration of Co-58 in Fish                  | •  | • |   |   | • | • | 3-14 |
| 3.8-2 | Concentration of Co-60 in Fish                  |    |   |   | • |   | • | 3-14 |
| 3.9-1 | Concentration of Co-58 in Shoreline Sediment    |    |   | • | • |   |   | 3-16 |
| 3.9-2 | Concentration of Co-60 in Shoreline Sediment    |    | • | • | • |   | • | 3-17 |
| 3.10  | Direct Gamma Radiation (TLD) Results .          |    |   | • |   |   | • | 3-18 |
| 3.11  | 2003 Land Use Census Map                        | •  | • | • | • | • |   | 3-21 |
|       |                                                 |    |   |   |   |   |   |      |

#### LIST OF TABLES

| 2.1-A | Radiological Monitoring Program Sampling Locations .        | •    |   |   | 2-6  |
|-------|-------------------------------------------------------------|------|---|---|------|
| 2.1-B | Radiological Monitoring Program Sampling Locations (TLD Sit | tes) |   |   | 2-7  |
| 2.2-A | Reporting Levels for Radioactivity Concentrations in        |      |   |   |      |
|       | Environmental Samples                                       |      |   | • | 2-8  |
| 2.2-B | REMP Analysis Frequency                                     |      | • | • | 2-8  |
| 2.2-C | Maximum Values for the Lower Limits of Detection            |      |   |   | 2-9  |
| 3.1-A | Mean Concentration of Gross Beta in Air Particulate         |      |   |   | 3-3  |
| 3.1-B | Mean Concentration of Air Radioiodine (I-131)               |      | • | • | 3-3  |
| 3.2   | Mean Concentrations of Radionuclides in Drinking Water .    |      | • |   | 3-5  |
| 3.3   | Mean Concentrations of Radionuclides in Surface Water .     | •    |   |   | 3-7  |
| 3.5   | Mean Concentration of Radionuclides in Milk                 | •    |   |   | 3-9  |
| 3.6   | Mean Concentration of Radionuclides in Broadleaf Vegetation |      |   |   | 3-11 |
| 3.7   | Mean Concentration of Radionuclides in Food Products .      |      |   |   | 3-12 |
| 3.8   | Mean Concentrations of Radionuclides in Fish                | •    |   |   | 3-15 |
| 3.9   | Mean Concentrations of Radionuclides in Shoreline Sediment  |      |   |   | 3-17 |
| 3.10  | Direct Gamma Radiation (TLD) Results                        |      |   |   | 3-19 |
| 3.11  | Land Use Census Results                                     |      |   |   | 3-20 |
| 4.1-A | 2003 Environmental and Effluent Dose Comparison             | •    | • |   | 4-3  |
| 4.1-B | Maximum Individual Dose for 2003 based on Environmental     |      |   |   |      |
|       | Measurements for Catawba Nuclear Station                    |      |   |   | 4-6  |
| 5.0-A | 2003 Cross-Check Results for EnRad Laboratories             |      |   |   | 5-4  |
| 5.0-B | 2003 Environmental Dosimeter Cross-Check Results            |      |   |   | 5-9  |

.

#### LIST OF ACRONYMS USED IN THIS TEXT (in alphabetical order)

| BW         | BiWeekly                                                 |
|------------|----------------------------------------------------------|
| С          | Control                                                  |
| CNS        | Catawba Nuclear Station                                  |
| DEHNR      | Department of Environmental Health and Natural Resources |
| DHEC       | Department of Health and Environmental Control           |
| EPA        | Environmental Protection Agency                          |
| GI-LLI     | Gastrointestinal – Lower Large Intestine                 |
| GPS        | Global Positioning System                                |
| LLD        | Lower Limit of Detection                                 |
| М          | Monthly                                                  |
| MDA        | Minimum Detectable Activity                              |
| mrem       | millirem                                                 |
| NIST       | National Institute of Standards and Technology           |
| NRC        | Nuclear Regulatory Commission                            |
| ODCM       | Offsite Dose Calculation Manual                          |
| pCi/kg     | picocurie per kilogram                                   |
| pCi/l      | picocurie per liter                                      |
| pCi/m3     | picocurie per cubic meter                                |
| PIP        | Problem Investigation Process                            |
| Q          | Quarterly                                                |
| REMP       | Radiological Environmental Monitoring Program            |
| SA         | Semiannually                                             |
| SLCs       | Selected Licensee Commitments                            |
| SM         | Semimonthly                                              |
| TECH SPECs | Technical Specifications                                 |
| TLD        | Thermoluminescent Dosimeter                              |
| µCi/ml     | microcurie per milliliter                                |
| UFSAR      | Updated Final Safety Analysis Report                     |
| W          | Weekly                                                   |

# **1.0 EXECUTIVE SUMMARY**

This Annual Radiological Environmental Operating Report describes the Catawba Nuclear Station Radiological Environmental Monitoring Program (REMP), and the program results for the calendar year 2003.

Included are the identification of sampling locations, descriptions of environmental sampling and analysis procedures, comparisons of present environmental radioactivity levels and preoperational environmental data, comparisons of doses calculated from environmental measurements and effluent data, analysis of trends in environmental radiological data as potentially affected by station operations, and a summary of environmental radiological sampling results. Quality assurance practices, sampling deviations, unavailable samples, and program changes are also discussed.

Sampling activities were conducted as prescribed by Selected Licensee Commitments (SLCs). Required analyses were performed and detection capabilities were met for all collected samples as required by SLCs. Nine-hundred seventeen samples were analyzed comprising 1,275 test results in order to compile data for the 2003 report. Based on the annual land use census, the current number of sampling sites for Catawba Nuclear Station is sufficient.

Concentrations observed in the environment in 2003 for station related radionuclides were generally within the ranges of concentrations observed in the past. Inspection of data showed that radioactivity concentrations in surface water, drinking water, shoreline sediment, and fish are higher than the activities reported for samples collected prior to the operation of the station. Measured concentrations were not higher than expected, and all positively identified measurements were within limits as specified in SLCs.

Additionally, environmental radiological monitoring data is consistent with effluents introduced into the environment by plant operations. The total body dose estimated to the maximum exposed member of the public as calculated by environmental sampling data, excluding TLD results, was 1.95E-01 mrem for 2003. It is therefore concluded that station operations has had no significant radiological impact on the health and safety of the public or the environment.



Shoreline Sediment sampling

# **2.0 INTRODUCTION**

## 2.1 SITE DESCRIPTION AND SAMPLE LOCATIONS

Duke Power Company's Catawba Nuclear Station is a two-unit facility located on the shore of Lake Wylie in York County, South Carolina. Each of the two essentially identical units employs a pressurized water reactor nuclear steam supply system furnished by Westinghouse Electric Corporation. Each generating unit is designed to produce a net electrical output of approximately 1145 MWe. Units 1 and 2 achieved initial criticality on January 7, 1985, and May 8, 1986, respectively.

Condenser cooling is accomplished utilizing a closed system incorporating cooling towers, instead of using lake water directly. Liquid effluents are released into Lake Wylie via the station discharge canal and are not accompanied by the large additional dilution water flow associated with "once-through" condenser cooling. This design results in greater radionuclide concentrations in the discharge canal given comparable liquid effluent source terms.

Figures 2.1-1 and 2.1-2 are maps depicting the Thermoluminescent Dosimeter (TLD) monitoring locations and the sampling locations. The location numbers shown on these maps correspond to those listed in Tables 2.1-A and 2.1-B. Figure 2.1-1 comprises all sample locations within a one mile radius of CNS. Figure 2.1-2 comprises all sample locations within a 10 mile radius of CNS.

### 2.2 SCOPE AND REQUIREMENTS OF THE REMP

An environmental monitoring program has been in effect at Catawba Nuclear Station since 1981, four years prior to operation of Unit 1 in 1985. The preoperational program provides data on the existing environmental radioactivity levels for the site and vicinity which may be used to determine whether increases in environmental levels are attributable to the station. The operational program provides surveillance and backup support of detailed effluent monitoring which is necessary to evaluate the significance, if any, of the contributions to the existing environmental radioactivity levels that result from station operation.

This monitoring program is based on NRC guidance as reflected in the Selected Licensee Commitments Manual, with regard to sample media, sampling locations, sampling frequency and analytical sensitivity requirements. Indicator and control locations were established for comparison purposes to distinguish radioactivity of station origin from natural or other "manmade" environmental radioactivity. The environmental monitoring program also verifies projected and anticipated radionuclide concentrations in the environment and related exposures from releases of radionuclides from Catawba Nuclear Station. This program satisfies the requirements of Section IV.B.2 of Appendix I to 10CFR50 and provides surveillance of all appropriate critical exposure pathways to man and protects vital interests of the company, public and state and federal agencies concerned with the environment. Reporting levels for activity found in environmental samples are listed in Table 2.2-A. Table 2.2-B lists the REMP analysis and frequency schedule.

The Annual Land Use Census, required by Selected Licensee Commitments, is performed to ensure that changes in the use of areas at or beyond the site boundary are identified and that modifications to the REMP are made if required by changes in land use. This census satisfies the requirements of Section IV.B.3 of Appendix I to 10CFR50. Results are shown in Table 3.11.

Participation in an interlaboratory comparison program as required by Selected Licensee Commitments provides for independent checks on the precision and accuracy of measurements of radioactive material in REMP sample matrices. Such checks are performed as part of the quality assurance program for environmental monitoring in order to demonstrate that the results are valid for the purposes of Section IV.B.2 of Appendix I to 10CFR50. A summary of the results obtained as part of this comparison program are in Section 5 of this annual report.

### 2.3 STATISTICAL AND CALCULATIONAL METHODOLOGY

#### 2.3.1 ESTIMATION OF THE MEAN VALUE

There was one (1) basic statistical calculation performed on the raw data resulting from the environmental sample analysis program. The calculation involved the determination of the mean value for the indicator and the control samples for each sample medium. The mean is a widely used statistic. This value was used in the reduction of the data generated by the sampling and analysis of the various media in the REMP. The following equation was used to estimate the mean (Reference 6.8):

$$\overline{x} = \frac{\sum_{i=1}^{N} x_i}{N}$$

Where:

x = estimate of the mean,

i = individual sample,

N = total number of samples with a net activity (or concentration),

 $\chi_i$  = net activity (or concentration) for sample i.

NOTE: "Net activity (or concentration)" is the activity (or concentration) determined to be present in the sample. No "Minimum Detectable Activity", "Lower Limit of Detection", "Less Than Level", or negative activities or concentrations are included in the calculation of the mean.

#### 2.3.2 LOWER LEVEL OF DETECTION AND MINIMUM DETECTABLE ACTIVITY

The Lower Level of Detection (LLD), and Minimum Detectable Activity (MDA) are used throughout the REMP.

**LLD** - The LLD, as defined in the Selected Licensee Commitments Manual is the smallest concentration of radioactive material in a sample that will yield a net count, above the system background, that will be detected with 95% probability with only 5% probability of falsely concluding that a blank observation represents a "real" signal. The LLD is an *a priori* lower limit of detection. The actual LLD is dependent upon the standard deviation of the background counting rate, the counting efficiency, the sample size (mass or volume), the radiochemical yield and the radioactive decay of the sample between sample collection and counting. The "required" LLD's for each sample medium and selected radionuclides are given in the Selected Licensee Commitments and are listed in Table 2.2-C.

**MDA** - The MDA may be thought of as an "actual" LLD for a particular sample measurement remembering that the MDA is calculated using a sample background instead of a system background.

#### 2.3.3 TREND IDENTIFICATION

One of the purposes of an environmental monitoring program is to determine if there is a buildup of radionuclides in the environment due to the operation of the nuclear station. Visual inspection of tabular or graphical presentations of data (including preoperational) is used to determine if a trend exists. A decrease in a particular radionuclide's concentration in an environmental medium does not indicate that reactor operations are removing radioactivity from the environment but that reactor operations are not adding that radionuclide to the environment in quantities exceeding the preoperational level and that the normal removal processes (radioactive decay, deposition, resuspension, etc.) are influencing the concentration.

Substantial increases or decreases in the amount of a particular radionuclide's release from the nuclear plant will greatly affect the resulting environmental levels; therefore, a knowledge of the release of a radionuclide from the nuclear plant is necessary to completely interpret the trends, or lack of trends, determined from the environmental data. Factors that may affect environmental levels of radionuclides include prevailing weather conditions (periods of drought, solar cycles or heavier than normal precipitation), construction in or around either the nuclear plant or the sampling location, and addition or deletion of other sources of radioactive materials (such as the Chernobyl accident). Some of these factors may be obvious while others are sometimes unknown. Therefore, how trends are identified will include some judgment by plant personnel.

Figure 2.1-1



Figure 2.1-2



#### TABLE 2.1-A

#### CATAWBA RADIOLOGICAL MONITORING PROGRAM SAMPLING LOCATIONS

|    | Tabl     | e 2.1-B Co | des          |
|----|----------|------------|--------------|
| W  | Weekly   | SM         | Semimonthly  |
| BW | BiWeekly | Q          | Quarterly    |
| М  | Monthly  | SA         | Semiannually |
| С  | Control  |            |              |

| Site<br># | Location Description*                | Air Rad. &<br>Part. | Surface<br>Water | Drinking<br>Water | Shoreline<br>Sediment | Food<br>Products<br>(a) | Fish | Milk | Broad<br>Leaf<br>Veg. (b) | Ground<br>Water |
|-----------|--------------------------------------|---------------------|------------------|-------------------|-----------------------|-------------------------|------|------|---------------------------|-----------------|
| 200       | Site Boundary (0.63 mi NNE)          | w                   |                  |                   |                       |                         |      |      | М                         |                 |
| 201       | Site Boundary (0.53 mi NE)           | w                   |                  |                   |                       |                         |      |      | M                         |                 |
| 205       | Site Boundary (0.23 mi SW)           | w                   |                  |                   |                       |                         |      |      |                           |                 |
| 208       | Discharge Canal (0.45 mi S)          |                     | М                |                   | SA                    |                         | SA   |      |                           |                 |
| 209       | Dairy (5.96 mi SSW)                  |                     |                  |                   |                       |                         |      | SM   |                           |                 |
| 210       | Ebenezer Access (2.31 mi SE)         |                     |                  |                   | SA                    |                         |      |      |                           |                 |
| 211       | Wylie Dam (4.06 mi ESE)              |                     | М                |                   |                       |                         |      |      |                           |                 |
| 212       | Tega Cay (3.32 mi E)                 | W                   |                  |                   |                       |                         | -    |      |                           |                 |
| 214       | Rock Hill Water Supply (7.30 mi SSE) |                     |                  | М                 |                       |                         |      |      |                           | _               |
| 215 C     | River Pointe - Hwy 49 (4.21 mi NNE)  |                     | M                |                   | SA                    |                         |      |      |                           |                 |
| 216 C     | Hwy 49 Bridge (4.19 mi NNE)          |                     |                  |                   |                       |                         | SA   |      |                           |                 |
| 217 C     | Rock Hill Substation (10.3 mi SSE)   | w                   |                  |                   |                       |                         |      |      | М                         |                 |
| 218 C     | Belmont Water Supply (13.5 mi NNE)   |                     |                  | M                 |                       |                         |      |      |                           |                 |
| 219       | Dairy (5.70 mi SW)                   |                     |                  |                   |                       |                         |      | SM   |                           |                 |
| 221 C     | Dairy (14.5 mi NW)                   |                     |                  |                   |                       |                         |      | SM   |                           |                 |
| 222       | Site Boundary (0.70 mi N)            |                     |                  |                   |                       |                         |      |      | M                         |                 |
| 226       | Site Boundary (0.48 mi S)            |                     |                  |                   |                       |                         |      |      | M                         |                 |
| 252       | Residence (0.64 mi SW)               |                     |                  |                   |                       |                         |      |      |                           | Q               |
| 253       | Irrigated Gardens (1.90 mi SSE)      |                     |                  |                   |                       | M(a)                    |      |      |                           |                 |
| 254       | Residence (0.82 mi N)                |                     |                  |                   |                       |                         |      |      |                           | Q               |

(a) During Harvest Season

(b) When Available

\* GPS data reflect approximate accuracy to within 2-5 meters. GPS field measurements were taken as close as possible to the item of interest.

#### TABLE 2.1-B

#### CATAWBA RADIOLOGICAL MONITORING PROGRAM SAMPLING LOCATIONS

#### (TLD SITES)

| Site<br># | Location*                       | Distance   | Sector      | Site<br># | Location*                             | Distance   | Sector |
|-----------|---------------------------------|------------|-------------|-----------|---------------------------------------|------------|--------|
| 200       | SITE BOUNDARY                   | 0.63 miles | NNE         | 234       | HOME FEDERAL BANK                     | 4.50 miles | Е      |
| 201       | SITE BOUNDARY                   | 0.53 miles | NE          | 235       | LAKE WYLIE DAM                        | 4.07 miles | ESE    |
| 203       | SITE BOUNDARY                   | 0.38 miles | ESE         | 236       | SC WILDLIFE<br>FEDERATION OFFICE      | 4.25 miles | SE     |
| 204       | SITE BOUNDARY                   | 0.48 miles | ssw         | 237       | TWIN LAKES ROAD AND<br>HOMESTEAD ROAD | 4.75 miles | SSE    |
| 205       | SITE BOUNDARY                   | 0.23 miles | SW          | 238       | PENNINGTON ROAD AND<br>WEST OAK ROAD  | 4.02 miles | S      |
| 206       | SITE BOUNDARY                   | 0.67 miles | WNW         | 239       | CARTER LUMBER<br>COMPANY              | 4.49 miles | ssw    |
| 207       | SITE BOUNDARY                   | 0.95 miles | NNW         | 240       | PARAHAM ROAD                          | 4.07 miles | sw     |
| 212 SI    | TEGA CAY AIR SITE               | 3.32 miles | E           | 241       | CAMPBELL ROAD                         | 4.58 miles | wsw    |
| 217 C     | ROCK HILL AIR SITE              | 10.3 miles | SSE         | 242       | TRANSMISSION TOWER<br>ON PARAHAM ROAD | 4.56 miles | w      |
| 222       | SITE BOUNDARY                   | 0.69 miles | N           | 243       | KINGSBERRY ROAD                       | 4.39 miles | WNW    |
| 223       | SITE BOUNDARY                   | 0.57 miles | Е           | 244       | BETHEL<br>ELEMENTARY SCHOOL           | 4.02 miles | NW     |
| 225       | SITE BOUNDARY                   | 0.68 miles | SE          | 245       | CROWDERS CREEK<br>BOAT LANDING        | 4.01 miles | NNW    |
| 226       | SITE BOUNDARY                   | 0.48 miles | S           | 246 SI    | CAROWINDS<br>GUARD HOUSE              | 7.87 miles | ENE    |
| 227       | SITE BOUNDARY                   | 0.52 miles | <u>ws</u> w | 247 C     | FORT MILL                             | 7.33 miles | ESE    |
| 228       | SITE BOUNDARY                   | 0.61 miles | w           | 248 SI    | PIEDMONT<br>MEDICAL CENTER            | 6.54 miles | s      |
| 229       | SITE BOUNDARY                   | 0.84 miles | NW          | 249 SI    | YORK COUNTY<br>OPERATIONS CENTER      | 7.17 miles | S      |
| 230       | RIVER HILLS<br>COMMUNITY CHURCH | 4.37 miles | N           | 250 SI    | YORK<br>DUKE POWER OFFICE             | 10.4 miles | wsw    |
| 231       | RIVER HILLS<br>FRONT ENTRANCE   | 4.21 miles | NNE         | 251 C     | CLOVER                                | 9.72 miles | WNW    |
| 232       | PLEASANT HILL ROAD              | 4.18 miles | NE          | 255       | SITE BOUNDARY                         | 0.61 miles | ENE    |
| 233       | ZOAR ROAD AND<br>THOMAS DRIVE   | 3.95 miles | ENE         | 256       | SITE BOUNDARY                         | 0.58 miles | SSE    |

C = Control

SI = Special Interest

\* GPS data reflect approximate accuracy to within 2-5 meters. GPS field measurements were taken as close as possible to the item of interest.

#### TABLE 2.2-A

#### **REPORTING LEVELS FOR RADIOACTIVITY CONCENTRATIONS IN ENVIRONMENTAL SAMPLES**

| Analysis  | Water<br>(pCi/liter)      | Air Particulates<br>or Gases<br>(pCi/m <sup>3</sup> ) | Fish<br>(pCi/kg-wet) | Milk<br>(pCi/liter) | Food Products<br>(pCi/kg-wet) |
|-----------|---------------------------|-------------------------------------------------------|----------------------|---------------------|-------------------------------|
| H-3       | 20,000 <sup>(a),(b)</sup> |                                                       |                      |                     |                               |
| Mn-54     | 1,000                     |                                                       | 30,000               |                     |                               |
| Fe-59     | 400                       |                                                       | 10,000               |                     |                               |
| Co-58     | 1,000                     |                                                       | 30,000               |                     |                               |
| Co-60     | 300                       |                                                       | 10,000               |                     |                               |
| Zn-65     | 300                       |                                                       | 20,000               |                     |                               |
| Zr-Nb-95  | 400                       |                                                       |                      |                     |                               |
| I-131     | 2                         | 0.9                                                   |                      | 3                   | 100                           |
| Cs-134    | 30                        | 10                                                    | 1,000                | 60                  | 1,000                         |
| Cs-137    | 50                        | 20                                                    | 2,000                | 70                  | 2,000                         |
| Ba-La-140 | 200                       |                                                       |                      | 300                 |                               |

(a) If no drinking water pathway exists, a value of 30,000 pCi/liter may be used.

(b) H-3 Reporting level not applicable to surface water

#### TABLE 2.2-B

#### **REMP ANALYSIS FREQUENCY**

| Sample               | Analysis               | Gamma    | Tritium  | Low   | Gross | TLD |
|----------------------|------------------------|----------|----------|-------|-------|-----|
| Medium               | Schedule               | Isotopic |          | Level | Beta  |     |
|                      |                        |          |          | I-131 |       |     |
| Air Radioiodine      | Weekly                 | X        |          |       |       |     |
| Air Particulate      | Weekly                 | x        |          |       | X     |     |
| Direct Radiation     | Quarterly              |          |          |       |       | X   |
| Surface              | Monthly Composite      | X        |          |       |       |     |
| Water                | Quarterly Composite    |          | X        |       |       |     |
| Drinking             | Monthly Composite      | X        |          | (a)   | X     |     |
| Water                | Quarterly Composite    |          | X        |       |       |     |
| Ground Water         | Quarterly              | X        | <u>x</u> |       |       |     |
| Shoreline Sediment   | Semiannually           | X        |          |       |       |     |
| Milk                 | Semimonthly            | X        |          | X     |       |     |
| Fish                 | Semiannually           | X        |          |       |       |     |
| Broadleaf Vegetation | Monthly <sup>(b)</sup> | x        |          |       |       |     |
| Food Products        | Monthly <sup>®)</sup>  | x        |          |       |       |     |

(a) Low-level I-131 analysis will be performed if the dose calculated for the consumption of drinking water is > 1 mrem per year. An LLD of 1 pCi/liter will be required for this analysis.

(b) When Available

Ć

#### TABLE 2.2-C

| Analysis   | Water<br>(pCi/liter) | Air Particulates<br>or Gases<br>(pCi/m <sup>3</sup> ) | Fish<br>(pCi/kg-wet) | Milk<br>(pCi/liter) | Food Products<br>(pCi/kg-wet) | Sediment<br>(pCi/kg-dry) |
|------------|----------------------|-------------------------------------------------------|----------------------|---------------------|-------------------------------|--------------------------|
| Gross Beta | 4                    | 0.01                                                  |                      |                     |                               |                          |
| H-3        | 2000 <sup>(a)</sup>  |                                                       |                      |                     |                               |                          |
| Mn-54      | 15                   |                                                       | 130                  |                     |                               |                          |
| Fe-59      | 30                   |                                                       | 260                  |                     |                               |                          |
| Co-58, 60  | 15                   |                                                       | 130                  |                     |                               |                          |
| Zn-65      | 30                   |                                                       | 260                  |                     |                               |                          |
| Zr-Nb-95   | 15                   |                                                       |                      |                     |                               |                          |
| I-131      | 1(6)                 | 0.07                                                  |                      | 1                   | 60                            |                          |
| Cs-134     | 15                   | 0.05                                                  | 130                  | 15                  | 60                            | 150                      |
| Cs-137     | 18                   | 0.06                                                  | 150                  | 18                  | 80                            | 180                      |
| Ba-La-140  | 15                   |                                                       |                      | 15                  |                               |                          |

#### MAXIMUM VALUES FOR THE LOWER LIMIT OF DETECTION

(a) If no drinking water pathway exists, a value of 3000 pCi/liter may be used.

• .

(b) If no drinking water pathway exists, the LLD of gamma isotopic analysis may be used.

# **3.0 INTERPRETATION OF RESULTS**

Review of all 2003 REMP analysis results was performed to identify changes in environmental levels as a result of station operations. The following section depicts and explains the review of these results. Sample data for 2003 was compared to preoperational and historical data. Over the years of operation, analysis and collection changes have taken place that do not allow direct comparisons for some data collected from 1984 (preoperational) through 2003. Summary tables containing 2003 information required by Technical Specification Administrative Control 5.6.2 are located in Appendix B.

Evaluation for significant trends was performed for radionuclides that are listed as required within Selected Licensee Commitments 16.11-13. The radionuclides include: H-3, Mn-54, Fe-59, Co-58, Co-60, Zn-65, Zr-95, Nb-95, I-131, Cs-134, Cs-137, Ba-140 and La-140. Gross beta analysis results were trended for drinking water and gross beta trending for air particulates was initiated in 1996. Other radionuclides detected that are the result of plant operation, but not required for reporting, are trended.

A comparison of annual mean concentrations of effluent-based detected radionuclides to historical results provided trending bases. Frequency of detection and concentrations related to SLC reporting levels (Table 2.2-A) were used as criteria for trending conclusions. All 2003 maximum percentages of reporting levels were well below the 100% action level. The highest value noted during 2003 was 5.25% for tritium in drinking water collected at the Rock Hill Water Supply, Location 214.

Selected Licensee Commitment section 16.11-13 addresses actions to be taken if radionuclides other than those required are detected in samples collected. The occurrences of these radionuclides are the result of CNS liquid effluents which contained the radionuclides.

During 1979-1986, all net activity results (sample minus background), both positive and negative were included in calculation of sample mean. A change in the EnRad gamma spectroscopy system on September 1, 1987, decreased the number of measurements yielding detectable low-level activity for indicator and control location samples. It was thought that the method used by the previous system was vulnerable to false-positive results.

All 2003 sample analysis results were reviewed to detect and identify any significant trends. Tables and graphs are used throughout this section to display data from effluent-based radionuclides identified since the system change in late 1987. All negative concentration values were replaced with zero for calculation purposes. Any zero concentrations used in tables or graphs represent activity measurements less than detectable levels.

Review of all 2003 data presented in this section supports the conclusion that there were no significant changes in environmental sample radionuclide concentrations of samples collected and analyzed from CNS site and surrounding areas that were attributable to plant operations.

#### 3.1 **AIRBORNE RADIOIODINE AND PARTICULATES**

In 2003, 260 radioiodine and particulate samples were analyzed, 208 from four indicator locations and 52 at the control location. Particulate samples were analyzed weekly for gamma and gross beta. Radioiodine samples received a weekly gamma analysis.

Figure 3.1 shows individual sample gross beta results for the indicator location with highest annual mean and the control location samples during 2003. The two sample locations' results are similar in concentration and have varied negligibly since preoperational periods.

There were no detectable gamma emitters identified for particulate filters analyzed during 2003. Table 3.1-A shows the highest indicator annual mean and control location annual mean for gross beta in air particulate.

There was no detectable I-131 in air radioiodine samples analyzed in 2003. Table 3.1-B shows the highest indicator annual mean and control location annual mean for I-131 since 1984 (preoperational period).



K-40 and Be-7 that occur naturally were routinely detected in charcoal cartridges collected during the year. Cs-137 activity was not detected on any cartridges in 2003. Cs-137 detection on the charcoal cartridge was determined in 1990 to be an active constituent of the charcoal. A similar study was performed in 2001 again yielding this conclusion. Therefore, any Cs-137 activities were not used in any dose calculations in Section 4.0 of this report.



There is no reporting level for gross beta in air particulate

C03

| Year                  | Indicator Location (pCi/m <sup>3</sup> ) | Control Location (pCi/m <sup>3</sup> ) |
|-----------------------|------------------------------------------|----------------------------------------|
| 1984                  | 2.25E-2                                  | 1.82E-2                                |
| 1985                  | 2.12E-2                                  | 1.53E-2                                |
| 1986                  | 3.62E-2                                  | 3.41E-2                                |
| 1987                  | 2.67E-2                                  | 2.32E-2                                |
| 1988                  | 2.29E-2                                  | 2.30E-2                                |
| 1989                  | 2.11E-2                                  | 2.13E-2                                |
| 1990                  | 2.39E-2                                  | 2.72E-2                                |
| 1991                  | 2.19E-2                                  | 2.51E-2                                |
| 1992                  | 1.90E-2                                  | 2.01E-2                                |
| 1993                  | 1.87E-2                                  | 1.94E-2                                |
| 1994                  | 2.03E-2                                  | 2.03E-2                                |
| 1995                  | 4.88E-2                                  | 3.23E-2                                |
| 1996                  | 3.49E-2                                  | 2.60E-2                                |
| 1997                  | 2.83E-2                                  | 2.28E-2                                |
| 1998                  | 2.69E-2                                  | 2.12E-2                                |
| 1999                  | 2.53E-2                                  | 2.04E-2                                |
| 2000                  | 2.28E-2                                  | 1.86E-2                                |
| 2001                  | 1.76E-2                                  | 1.78E-2                                |
| 2002                  | 1.60E-2                                  | 1.57E-2                                |
| Average (1993 - 2002) | 2.60E-2                                  | 2.15E-2                                |
| 2003                  | 1.54E-2                                  | 1.42E-2                                |

# Table 3.1-A Mean Concentration of Gross Beta in Air Particulate

#### Table 3.1-B Mean Concentration of Air Radioiodine (I-131)

| Year | Indicator Location (pCi/m <sup>3</sup> ) | Control Location (pCi/m <sup>3</sup> ) |
|------|------------------------------------------|----------------------------------------|
| 1984 | 1.30E-3                                  | 1.46E-2                                |
| 1985 | 4.75E-3                                  | 2.38E-2                                |
| 1986 | 1.43E-2                                  | 1.02E-2                                |
| 1987 | 1.38E-2                                  | 0.00E0                                 |
| 1988 | 0.00E0                                   | 0.00E0                                 |
| 1989 | 0.00E0                                   | 0.00E0                                 |
| 1990 | 0.00E0                                   | 0.00E0                                 |
| 1991 | 0.00E0                                   | 0.00E0                                 |
| 1992 | 0.00E0                                   | 0.00E0                                 |
| 1993 | 0.00E0                                   | 0.00E0                                 |
| 1994 | 0.00E0                                   | 0.00E0                                 |
| 1995 | 0.00E0                                   | 0.00E0                                 |
| 1996 | 0.00E0                                   | 0.00E0                                 |
| 1997 | 0.00E0                                   | 0.00E0                                 |
| 1998 | 0.00E0                                   | 0.00E0                                 |
| 1999 | 0.00E0                                   | 0.00E0                                 |
| 2000 | 0.00E0                                   | 0.00E0                                 |
| 2001 | 0.00E0                                   | 0.00E0                                 |
| 2002 | 0.00E0                                   | 0.00E0                                 |
| 2003 | 0.00E0                                   | 0.00E0                                 |

0.00E0 = no detectable measurements

### 3.2 DRINKING WATER

Gross beta and gamma spectroscopy were performed on 26 drinking water samples. The samples were composited to create 8 quarterly samples that were analyzed for tritium. One indicator location was sampled, along with one control location.

Tritium was detected at low levels in the four indicator samples and three of the four control samples during 2003. The mean indicator tritium concentration for 2003 was 636 pCi/l, 3.18% of reporting level. The mean control tritium concentration for 2003 was 288 pCi/l, 1.44% of reporting level. Figure 3.2 and Table 3.2 display the highest indicator and control location annual mean concentrations for tritium since 1984.

The dose for consumption of water was less than one mrem per year, historically and for 2003; therefore low-level iodine analysis is not required.

Table 3.2 shows highest annual mean gross beta concentrations for the indicator location and control location since preoperation. The indicator location (downstream of the plant effluent release point) average concentration was 2.27 pCi/l in 2003 and the control location concentration was 2.02 pCi/l. The 2002 indicator mean was 3.44 pCi/l. The table shows that current gross beta levels are not statistically different from preoperational concentrations.

No gamma emitting radionuclides were identified in 2003 drinking water samples. There have been no gamma emitting radionuclides identified in drinking water samples since 1988.

The region experienced a severe drought over a four year period (1999 to 2002). Rainfall in the area was substantially below normal (approximately 40 inches below normal) for this four year period. The reduced rainfall resulted in reduced flow in the Catawba River. The increase in drinking water Tritium up to 2002 is considered to be a result of the decreased river flow.





#### Table 3.2 Mean Concentration of Radionuclides in Drinking Water

|      | Gross Be              | ta (pCi/l)          | Tritiun               | n (pCi/l)           |
|------|-----------------------|---------------------|-----------------------|---------------------|
| YEAR | Indicator<br>Location | Control<br>Location | Indicator<br>Location | Control<br>Location |
| 1984 | 4.72                  | 1.83                | 3.10E-2               | 3.10E-2             |
| 1985 | 2.70                  | 2.24                | 4.13E2                | 4.00E2              |
| 1986 | 3.11                  | 2.26                | 7.23E2                | 7.33E2              |
| 1987 | 3.10                  | 2.40                | 7.80E2                | 4.80E2              |
| 1988 | 3.60                  | 2.60                | 6.64E2                | 0.00E0              |
| 1989 | 3.60                  | 2.90                | 8.91E2                | 5.72E2              |
| 1990 | 4.50                  | 3.20                | 7.03E2                | 0.00E0              |
| 1991 | 3.70                  | 2.20                | 7.04E2                | 0.00E0              |
| 1992 | 3.20                  | 2.40                | 7.65E2                | 5.38E2              |
| 1993 | 3.50                  | 2.50                | 7.06E2                | 0.00E0              |
| 1994 | 3.30                  | 2.70                | 0.00E0                | 0.00E0              |
| 1995 | 4.80 4.50             |                     | 4.28E2                | 2.21E2              |
| 1996 | 3.08                  | 3.14                | 3.71E2                | 3.27E2              |
| 1997 | 3.74                  | 3.15                | 3.54E2                | 2.28E2              |
| 1998 | 2.51                  | 2.44                | 5.07E2                | 1.83E2              |
| 1999 | 3.55                  | 2.48                | 6.71E2                | 2.70E2              |
| 2000 | 3.04                  | 2.27                | 5.87E2                | 3.26E2              |
| 2001 | 3.49                  | 2.30                | 8.66E2                | 4.50E2              |
| 2002 | 3.44                  | 2.36                | 1.22E3                | 4.11E2              |
| 2003 | 2.27                  | 2.02                | 6.36E2                | 2.88E2              |

0.00E0 = no detectable measurements

1984 - 1986 mean based on all net activity

### 3.3 SURFACE WATER

A total of 39 monthly surface water samples was analyzed for gamma emitting radionuclides. The samples were composited to create 12 quarterly samples for tritium analysis. Two indicator locations and one control location were sampled. One indicator location (208) is located near the liquid effluent discharge point.

Tritium was the only radionuclide identified in surface water samples collected during 2003. All indicator location samples contained tritium with an average concentration of 6897 pCi/l. Indicator Location 208 (Discharge Canal) showed a range of activities from 8260 to 19500 pCi/l which had the highest mean concentration of 13140 pCi/l. Tritium was detected in two of the four control samples during 2003 with an average concentration of 237 pCi/l.

Figure 3.3 displays the indicator and control annual means for tritium since 1984. Table 3.3 lists indicator annual means.

Tritium in surface water in 2003 was higher than usual due to the one-time draining of approximately 40,000 gallons of water on 9/8 and 9/9/03 from the Recycle Holdup Tanks following the Unit 1 outage. The Recycle Holdup Tanks contain evaporator distillate water containing tritium. Other surface water samples during the year were normal and did not indicate a trend. The release of the Recycle Holdup Tanks is documented in PIP C-03-5726.



Figure 3.3

There is no reporting level for tritium in surface water

.

| YEAR   | Co-58   | Co-60    | Nb-95   | Cs-137  | H-3 Indicator | H-3 Control |
|--------|---------|----------|---------|---------|---------------|-------------|
| 1984   | 4.59E-1 | 5.71E-1  | 6.48E-1 | 9.08E-1 | 3.35E2        | 3.18E2      |
| 1985   | 3.46E0  | 4.83E-2  | 2.70E0  | 8.19E-1 | 1.19E3        | 5.05E2      |
| 1986   | 3.10E-1 | -4.12E-2 | 2.05E0  | 4.85E-1 | 2.34E3        | 5.05E2      |
| 1987   | 0.00E0  | 3.10E0   | 4.30E0  | 9.90E0  | 4.17E3        | 6.20E2      |
| 1988   | 9.20E0  | 0.00E0   | 0.00E0  | 0.00E0  | 6.03E3        | 6.07E2      |
| 1989   | 0.00E0  | 0.00E0   | 0.00E0  | 0.00E0  | 5.27E3        | 0.00E0      |
| 1990   | 6.50E0  | 0.00E0   | 0.00E0  | 0.00E0  | 3.98E3        | 7.73E2      |
| 1991   | 0.00E0  | 0.00E0   | 0.00E0  | 0.00E0  | 4.87E3        | 0.00E0      |
| 1992   | 0.00E0  | 0.00E0   | 0.00E0  | 0.00E0  | 6.91E3        | 6.64E2      |
| 1993   | 4.70E0  | 1.80E0   | 0.00E0  | 0.00E0  | 5.98E3        | 0.00E0      |
| 1994   | 0.00E0  | 0.00E0   | 0.00E0  | 0.00E0  | 8.42E3        | 0.00E0      |
| 1995   | 0.00E0  | 0.00E0   | 0.00E0  | 0.00E0  | 5.13E3        | 2.89E2      |
| 1996   | 0.00E0  | 0.00E0   | 0.00E0  | 0.00E0  | 7.36E3        | 2.61E2      |
| 1997   | 0.00E0  | 0.00E0   | 0.00E0  | 0.00E0  | 7.77E3        | 2.20E2      |
| 1998   | 0.00E0  | 0.00E0   | 0.00E0  | 0.00E0  | 6.61E3        | 0.00E0      |
| 1999   | 0.00E0  | 0.00E0   | 0.00E0  | 0.00E0  | 8.13E3        | 2.41E2      |
| 2000   | 0.00E0  | 0.00E0   | 0.00E0  | 0.00E0  | 7.19E3        | 2.56E2      |
| 2001   | 0.00E0  | 0.00E0   | 0.00E0  | 0.00E0  | 7.13E3        | 3.28E2      |
| . 2002 | 0.00E0  | 0.00E0   | 0.00E0  | 0.00E0  | 1.00E4        | 3.80E2      |
| 2003   | 0.00E0  | 0.00E0   | 0.00E0  | 0.00E0  | 1.31E4        | 2.37E2      |

.

•

Table 3.3 Mean Concentrations of Radionuclides in Surface Water (pCi/l)

0.00E0 = no detectable measurements

1984 - 1986 mean based on all net activity

# 3.4 GROUND WATER

し し

 $\cup$ 

し し

 $\cup$  $\cup$  $\cup$  $\smile$  $\cup$  $\cup$  $\cup$ رب  $\cup$  $\cup$  $\cup$  $\cup$  $\cup$  $\cup$  $\cup$  $\cup$ Ć  $\cup$  $\cup$ Ć  $\cup$ Ć

ιιιι

し し A total of eight ground water samples was collected and analyzed for gamma emitters. There are two indicator locations and no control locations. Naturally occurring K-40 was the only radionuclide identified during 2003.

There have been no radionuclides identified in ground water samples since 1988. Only naturally occurring K-40 and Be-7 were noted.

٠

# 3.5 <u>MILK</u>

A total of 72 milk samples was analyzed by gamma spectroscopy and low level iodine during 2003. There were two indicator locations and one control location sampled. Two indicator dairies ceased operation in December, 2003 leaving the one control location. No indicator replacement dairies were available.

There were no gamma emitting radionuclides identified in milk during 2003. Airborne Cs-137 has not been released from the plant since 1992.

Cs-137 was last detected in an indicator sample during 1996. The occurrence of Cs-137 in milk samples has been noted several times since 1984. During 1995 there was also one sample analyzed in which Cs-137 was identified with a concentration of 8.6 pCi/l. Cs-137 attributable to past nuclear weapons testing is known to exist in many environmental media at low, highly variable levels.

Table 3.5 lists highest indicator location annual mean and control location annual mean for Cs-137 since the preoperational period. Concentrations are similar for the two sample types. Cs-137 is the only radionuclide, other than K-40 and Be-7, reported in milk samples since 1988.

| YEAR                  | Cs-137 Indicator (pCi/l) | Cs-137 Control (pCi/l) |
|-----------------------|--------------------------|------------------------|
| 1984                  | 2.95E0                   | 2.98E0                 |
| 1985                  | 2.11E0                   | 2.12E0                 |
| 1986                  | 3.76E0                   | 4.54E0                 |
| 1987                  | 5.00E0                   | 5.50E0                 |
| 1988                  | 3.20E0                   | 3.80E0                 |
| 1989                  | 0.00E0                   | 0.00E0                 |
| 1990                  | 8.00E0                   | 6.70E0                 |
| 1991                  | 0.00E0                   | 0.00E0                 |
| 1992                  | 3.40E0                   | 5.00E0                 |
| 1993                  | 5.00E0                   | 0.00E0                 |
| 1994                  | 2.80E0                   | 0.00E0                 |
| 1995                  | 8.60E0                   | 0.00E0                 |
| 1996                  | 6.05E0                   | 0.00E0                 |
| 1997                  | 0.00E0                   | 0.00E0                 |
| 1998                  | 0.00E0                   | 0.00E0                 |
| 1999                  | 0.00E0                   | 0.00E0                 |
| 2000                  | 0.00E0                   | 0.00E0                 |
| 2001                  | 0.00E0                   | 0.00E0                 |
| 2002                  | 0.00E0                   | 0.00E0                 |
| - 2 <b>003</b> - 2114 | 0.00E0                   | 0.00E0                 |

| Table 3.5 | Mean | Concentration | n of Radion | uclides in Milk |
|-----------|------|---------------|-------------|-----------------|
|           |      |               |             |                 |

0.00E0 = no detectable measurements

1984 - 1986 mean based on all net activity

# 3.6 BROADLEAF VEGETATION

Gamma spectroscopy was performed on 40 broadleaf vegetation samples during 2003. Four indicator locations and one control location were sampled.

Three of the thirty-two samples collected at indicator locations contained detectable Cs-137 activity. Cs-137 was detected in two of the eight samples collected at Location 226. The highest concentration detected at Location 226 was 54.1 pCi/kg which is 2.71% of the reporting level. Cs-137 was detected in one of the eight control location samples.

Figure 3.6 shows indicator and control annual means for Cs-137 in vegetation since 1984. Table 3.6 lists indicator and annual means. Values shown from 1984 to 2003 show a stable trend for Cs-137 in vegetation.

No airborne Cs-137 has been released from the plant since 1992. Cs-137 attributable to past nuclear weapons testing is known to exist in many environmental media at low and highly variable levels.



K-40 and Be-7 were observed in broadleaf vegetation samples.



Figure 3.6

| YEAR | Cs-137 Indicator (pCi/kg) | Cs-137 Control (pCi/kg) |
|------|---------------------------|-------------------------|
| 1984 | 3.76E1                    | 1.30E1                  |
| 1985 | 5.48E1                    | 4.16E1                  |
| 1986 | 7.42E1                    | 2.22E1                  |
| 1987 | 6.10E1                    | 5.10E1                  |
| 1988 | 9.10E1                    | 7.40E1                  |
| 1989 | 1.00E2                    | 4.80E1                  |
| 1990 | 7.70E1                    | 5.80E1                  |
| 1991 | 1.98E2                    | 8.60E1                  |
| 1992 | 9.70E1                    | 0.00E0                  |
| 1993 | 1.13E2                    | 3.20E1                  |
| 1994 | 7.00E1                    | 0.00E0                  |
| 1995 | 3.60E1                    | 0.00E0                  |
| 1996 | 2.23E2                    | 6.22E1                  |
| 1997 | 7.57E1                    | 0.00E0                  |
| 1998 | 6.53E1                    | 0.00E0                  |
| 1999 | 1.08E2                    | 0.00E0                  |
| 2000 | 1.04E2                    | 0.00E0                  |
| 2001 | 3.76E1                    | 0.00E0                  |
| 2002 | 7.02E1                    | 0.00E0                  |
| 2003 | 4.96E1                    | 2.40E1                  |

#### Table 3.6 Mean Concentration of Radionuclides in Broadleaf Vegetation

0.00E0 = no detectable measurements

1984 - 1986 mean based on all net activity

### 3.7 FOOD PRODUCTS

Collection of food product samples (crops) from an irrigated garden began in 1989. The garden is located on Lake Wylie downstream from CNS, Location 253. During the 2003 growing season, six samples were collected and analyzed for gamma radionuclides. There is no control location for this media type.

Table 3.7 shows Cs-137 indicator location highest annual mean concentrations since 1989.

| YEAR | Cs-137 Indicator (pCi/kg) |
|------|---------------------------|
| 1989 | 0.00E0                    |
| 1990 | 0.00E0                    |
| 1991 | 0.00E0                    |
| 1992 | 0.00E0                    |
| 1993 | 2.50E1                    |
| 1994 | 0.00E0                    |
| 1995 | 0.00E0                    |
| 1996 | 0.00E0                    |
| 1997 | 0.00E0                    |
| 1998 | 0.00E0                    |
| 1999 | 0.00E0                    |
| 2000 | 0.00E0                    |
| 2001 | 0.00E0                    |
| 2002 | 0.00E0                    |
| 2003 | 0.00E0                    |

#### **Table 3.7 Mean Concentration of Radionuclides in Food Products**

0.00E0 = no detectable measurements

# 3.8 <u>FISH</u>

Gamma spectroscopy was performed on 12 fish samples collected during 2003. One downstream indicator location and one control location were sampled.

Co-58, Co-60, and Cs-137 were the predominant radionuclides identified in fish samples. One of the six indicator location samples contained Co-58. One of the six indicator location samples contained Co-60. One of the six indicator location samples contained Cs-137. Co-58, Co-60, and Cs-137 were not detected in any control location samples.

The highest average concentration for Co-58 in indicator location samples was 143 pCi/kg which represents 0.48% of the reporting level. The highest average concentration for Co-60 in indicator location samples was 26.1 pCi/kg which represents 0.26% of the reporting level. The highest average concentration for Cs-137 in indicator location samples was 11.9 pCi/kg which represents 0.60% of the reporting level.

Sample results for fish collected at indicator Location 208 were reviewed by type of fish. Results show that all radionuclide detection frequencies and concentrations are slightly higher for forager fish than for predator and bottom feeding fish. Similar results have been noted from 1990 through 2002.

Figures 3.8-1 and 3.8-2 are graphs displaying annual mean concentrations for Co-58 and Co-60. Table 3.8 depicts the highest indicator location annual mean for radionuclides detected. In addition, radionuclides identified in fish samples since 1988 have been included in the table. Overall, radionuclides have not shown a significant trend or accumulation.

K-40 was observed in fish samples collected during 2003.



Figure 3.8-1



**Figure 3.8-2** 



07

| ·    |               |        |         |         |        |         |        |        |        |
|------|---------------|--------|---------|---------|--------|---------|--------|--------|--------|
| Year | Mn-54         | Co-58  | Co-60   | Cs-134  | Cs-137 | Nb-95   | Fe-59  | Sb-122 | Sb-125 |
| 1984 | 3.07E0        | 3.00E0 | 6.11E-1 | -5.32E0 | 1.83E0 | 0.00E0  | 0.00E0 | 0.00E0 | 0.00E0 |
| 1985 | 7.68E-1       | 3.40E1 | 9.11E0  | 3.22E0  | 1.28E1 | 5.07E0  | 0.00E0 | 0.00E0 | 0.00E0 |
| 1986 | 2.01E1        | 1.86E2 | 4.01E1  | 3.51E1  | 9.29E1 | 0.00E0  | 7.30E0 | 0.00E0 | 0.00E0 |
| 1987 | 7.24E0        | 7.57E1 | 4.81E1  | 3.83E0  | 4.27E1 | 5.40E0  | 0.00E0 | 0.00E0 | 0.00E0 |
| 1988 | 2.85E1        | 1.40E2 | 9.70E1  | 1.67E1  | 8.24E1 | 0.00E0  | 0.00E0 | 0.00E0 | 0.00E0 |
| 1989 | 8.28E0        | 1.33E2 | 3.83E1  | 1.47E1  | 4.37E1 | 8.58E-1 | 0.00E0 | 0.00E0 | 0.00E0 |
| 1990 | 2.51E1        | 1.75E2 | 7.77E1  | 1.32E1  | 4.66E1 | 3.33E0  | 0.00E0 | 7.00E0 | 9.25E0 |
| 1991 | 3.15E1        | 1.46E2 | 1.29E2  | 1.03E1  | 4.60E1 | 7.90E-1 | 2.30E0 | 0.00E0 | 7.45E0 |
| 1992 | <u>1.34E1</u> | 9.02E1 | 6.20E1  | 1.27E1  | 4.61E1 | 0.00E0  | 0.00E0 | 0.00E0 | 0.00E0 |
| 1993 | 2.14E1        | 3.58E2 | 1.21E2  | 2.73E0  | 2.56E1 | 0.00E0  | 0.00E0 | 0.00E0 | 0.00E0 |
| 1994 | 1.91E0        | 4.75E1 | 1.81E1  | 0.00E0  | 1.75E1 | 0.00E0  | 0.00E0 | 0.00E0 | 1.45E1 |
| 1995 | 5.65E1        | 8.90E2 | 2.66E2  | 0.00E0  | 6.77E1 | 1.38E1  | 0.00E0 | 0.00E0 | 0.00E0 |
| 1996 | 0.00E0        | 5.95E1 | 6.68E1  | 0.00E0  | 3.02E1 | 0.00E0  | 0.00E0 | 0.00E0 | 0.00E0 |
| 1997 | 0.00E0        | 4.93E1 | 9.88E0  | 0.00E0  | 2.74E1 | 0.00E0  | 0.00E0 | 0.00E0 | 0.00E0 |
| 1998 | 0.00E0        | 6.44E1 | 2.86E1  | 0.00E0  | 1.58E1 | 0.00E0  | 0.00E0 | 0.00E0 | 0.00E0 |
| 1999 | 0.00E0        | 3.12E1 | 2.71E1  | 0.00E0  | 1.87E1 | 0.00E0  | 0.00E0 | 0.00E0 | 0.00E0 |
| 2000 | 0.00E0        | 2.13E2 | 2.69E2  | 0.00E0  | 1.52E1 | 0.00E0  | 0.00E0 | 0.00E0 | 0.00E0 |
| 2001 | 0.00E0        | 4.66E1 | 0.00E0  | 0.00E0  | 2.08E1 | 0.00E0  | 0.00E0 | 0.00E0 | 0.00E0 |
| 2002 | 0.00E0        | 5.23E1 | 7.00E1  | 0.00E0  | 1.73E1 | 0.00E0  | 0.00E0 | 0.00E0 | 0.00E0 |
| 2003 | 0.00E0        | 1.43E2 | 2.61E1  | 0.00E0  | 1.19E1 | 0.00E0  | 0.00E0 | 0.00E0 | 0.00E0 |

Table 3.8 Mean Concentrations of Radionuclides in Fish (pCi/kg)

0.00E0 = no detectable measurements

し し

# 3.9 SHORELINE SEDIMENT

During 2003, a total of 6 shoreline sediment samples was analyzed, four from two indicator locations and two from the control location.

Mn-54, Co-58, Co-60, and Cs-137 were identified in samples collected from indicator location 208-1S, which is closest to the plant's liquid effluent release point. Naturally occurring K-40 was identified in many of the indicator and control locations. Activity released in plant effluents has decreased since 1996 and as a result decreased activity has been measured in the environment.

The shoreline sediment location with the highest annual mean for all detectable radionuclides was location 208-1S. Cs-137 was identified at location 208-1S with an annual mean concentration of 26.9 pCi/kg. Other radionuclides identified during 2003 at shoreline sediment location 208-1S included Mn-54 with an annual mean of 21.7 pCi/kg, Co-58 with an annual mean of 87.5 pCi/kg, and Co-60 with an annual mean of 108 pCi/kg. Naturally occurring K-40 and Be-7 were also identified in samples from this location.

Table 3.9 lists highest indicator location annual mean since 1984. Included in the table are radionuclides that have been identified in shoreline sediment samples since 1988.

Figure 3.9-1 graphically depicts Co-58 annual mean concentrations. Figure 3.9-2 depicts Co-60 annual mean concentrations.



**Figure 3.9-1** 

There is no reporting level for Co-58 in Shoreline Sediment

**Figure 3.9-2** 



There is no reporting level for Co-60 in Shoreline Sediment

#### Table 3.9 Mean Concentrations of Radionuclides in Shoreline Sediment (pCi/kg)

| Year | Mn-54   | Co-58  | Co-60   | Nb-95  | Zr-95  | Cs-134 | Cs-137 | Co-57   | Sb-125 |
|------|---------|--------|---------|--------|--------|--------|--------|---------|--------|
| 1984 | 1.03E0  | 4.40E0 | -2.34E0 | 0.00E0 | 0.00E0 | 3.19E1 | 1.07E2 | 0.00E0  | 0.00E0 |
| 1985 | -3.12E0 | 1.16E2 | 5.18E0  | 0.00E0 | 0.00E0 | 2.11E2 | 2.97E2 | 0.00E0  | 0.00E0 |
| 1986 | 1.09E2  | 3.79E2 | 2.05E2  | 0.00E0 | 3.96E1 | 6.50E1 | 1.61E2 | 0.00E0  | 0.00E0 |
| 1987 | 8.83E1  | 4.08E2 | 1.61E2  | 4.22E1 | 0.00E0 | 6.08E1 | 1.26E2 | 0.00E0  | 0.00E0 |
| 1988 | 1.07E2  | 3.29E2 | 2.63E2  | 2.28E1 | 7.54E0 | 2.59E1 | 1.07E2 | 7.65E-1 | 3.68E0 |
| 1989 | 4.58E1  | 1.94E2 | 1.21E2  | 5.02E0 | 0.00E0 | 1.65E1 | 5.77E1 | 0.00E0  | 1.57E1 |
| 1990 | 5.39E1  | 2.08E2 | 1.77E2  | 0.00E0 | 0.00E0 | 1.66E1 | 8.18E1 | 0.00E0  | 7.15E0 |
| 1991 | 8.50E1  | 3.70E2 | 4.19E2  | 5.30E0 | 0.00E0 | 1.82E1 | 8.33E1 | 1.20E0  | 1.50E1 |
| 1992 | 1.17E2  | 1.13E3 | 5.80E2  | 3.50E0 | 0.00E0 | 1.69E1 | 1.07E2 | 3.00E0  | 2.70E1 |
| 1993 | 1.33E2  | 1.07E3 | 1.04E3  | 0.00E0 | 0.00E0 | 2.80E1 | 1.26E2 | 2.47E1  | 2.16E2 |
| 1994 | 4.93E1  | 7.98E2 | 5.73E2  | 0.00E0 | 0.00E0 | 5.67E0 | 1.07E2 | 4.38E0  | 4.60E1 |
| 1995 | 1.02E2  | 1.33E3 | 8.65E2  | 1.13E2 | 0.00E0 | 0.00E0 | 8.50E1 | 3.69E1  | 1.49E2 |
| 1996 | 8.73E1  | 3.39E2 | 5.81E2  | 0.00E0 | 0.00E0 | 0.00E0 | 8.30E1 | 0.00E0  | 1.96E2 |
| 1997 | 6.96E1  | 5.90E2 | 7.64E2  | 0.00E0 | 0.00E0 | 0.00E0 | 1.43E2 | 0.00E0  | 1.76E2 |
| 1998 | 3.07E1  | 1.88E2 | 2.30E2  | 0.00E0 | 0.00E0 | 0.00E0 | 7.11E1 | 0.00E0  | 0.00E0 |
| 1999 | 7.28E1  | 2.29E2 | 4.39E2  | 0.00E0 | 0.00E0 | 0.00E0 | 9.42E1 | 0.00E0  | 1.40E2 |
| 2000 | 0.00E0  | 3.90E1 | 1.03E2  | 0.00E0 | 0.00E0 | 0.00E0 | 4.96E1 | 0.00E0  | 0.00E0 |
| 2001 | 3.86E1  | 8.27E1 | 3.29E2  | 0.00E0 | 0.00E0 | 0.00E0 | 5.58E1 | 0.00E0  | 0.00E0 |
| 2002 | 3.51E1  | 2.41E2 | 2.22E2  | 0.00E0 | 0.00E0 | 0.00E0 | 8.83E1 | 0.00E0  | 0.00E0 |
| 2003 | 2.17E1  | 8.75E1 | 1.08E2  | 0.00E0 | 0.00E0 | 0.00E0 | 2.69E1 | 0.00E0  | 0.00E0 |

0.00E0 = no detectable measurements 1984 - 1986 mean based on all net activity

Negative values are calculated as zeroes

# 3.10 DIRECT GAMMA RADIATION

In 2003, 160 TLDs were analyzed, 148 at indicator locations and 12 at control locations. TLDs are collected and analyzed quarterly. The highest annual mean exposure for an indicator location was 100 milliroentgen. The annual mean exposure for the control locations was 56.0 milliroentgen.

Figure 3.10 and Table 3.10 show TLD inner ring (site boundary), outer ring (4-5 miles), and control location annual averages in milliroentgen per year. Preoperational data and rolling ten year operational data averages are also given. As shown in the graph, inner ring, outer ring, and control data averages historically compare closely. Inner and outer ring averages comprise a number of data points with control averages representing only three locations.

The calculated total body dose (from gaseous effluents) for 2003 was 1.01 mrem, which is 1.24% of the average inner ring TLD values. Therefore, it can be concluded that discharges from the plant had very little impact upon the measured TLD values.



#### Figure 3.10

There is no reporting level for Direct Radiation (TLD)

| Year                  | Inner Ring Average<br>(mR/yr) | Outer Ring Average<br>(mR/yr) | Control Average<br>(mR/yr) |
|-----------------------|-------------------------------|-------------------------------|----------------------------|
| 1984*                 | 87.5                          | 82.6                          | 79.3                       |
| 1985                  | 116.9                         | 108.7                         | 108.9                      |
| 1986                  | 104.3                         | 98.5                          | 94.4                       |
| 1987                  | 97.0                          | 87.4                          | 84.7                       |
| 1988                  | 74.6                          | 70.3                          | 67.1                       |
| 1989                  | 67.1                          | 60.8                          | 60.0                       |
| 1990                  | 52.0                          | 44.5                          | 39.1                       |
| 1991                  | 62.0                          | 54.1                          | 46.7                       |
| 1992                  | 80.4                          | 72.5                          | 64.5                       |
| 1993                  | 70.3                          | 60.9                          | 53.6                       |
| 1994                  | 76.3                          | 69.3                          | 63.9                       |
| 1995                  | 99.6                          | 89.7                          | 80.8                       |
| 1996                  | 84.3                          | 73.9                          | 63.6                       |
| 1997                  | 82.4                          | 71.9                          | 57.4                       |
| 1998                  | 85.3                          | 74.2                          | 64.6                       |
| 1999                  | 80.0                          | 68.1                          | 57.8                       |
| 2000                  | 75.0                          | 63.0                          | 52.4                       |
| 2001                  | 81.0                          | 70.5                          | 55.2                       |
| 2002                  | 78.8                          | 69.5                          | 55.2                       |
| Average (1993 – 2002) | 81.3 State Barter and         | 71.1                          | 60.5                       |
| 2003                  | 81.7                          | 72.6                          | 56.0                       |

#### Table 3.10 Direct Gamma Radiation (TLD) Results

\* Preoperational Data

# 3.11 LAND USE CENSUS

The 2003 Annual Land Use Census was conducted July 7 - July 10, 2003 and August 19, 2003 as required by SLC 16.11-14. Table 3.11 summarizes census results. A map indicating identified locations is shown in Figure 3.11.

During the 2003 census, no new or closer irrigated gardens were identified. The nearest residence is located in the NE sector at 0.56 miles. No program changes were required as a result of the 2003 land use census.

| Sector |                                                                                                     | Distance<br>(Miles)       | Sector   |                                                                                                     | Distance<br>(Miles)       |
|--------|-----------------------------------------------------------------------------------------------------|---------------------------|----------|-----------------------------------------------------------------------------------------------------|---------------------------|
| N      | Nearest Residence<br>Nearest Garden<br>Nearest Milk Animal<br>Nearest Meat Animal                   | 0.63<br>0.93              | S        | Nearest Residence<br>Nearest Garden (Irrigated)<br>Nearest Milk Animal<br>Nearest Meat Animal (Cow) | 0.63<br>1.26<br>-<br>4.11 |
| NNE    | Nearest Residence<br>Nearest Garden<br>Nearest Milk Animal<br>Nearest Meat Animal                   | 0.66<br>2.53<br>-         | SSW      | Nearest Residence<br>Nearest Garden (Irrigated)<br>Nearest Milk Animal<br>Nearest Meat Animal (Cow) | 0.78<br>0.96<br>-<br>3.31 |
| NE     | Nearest Residence<br>Nearest Garden<br>Nearest Milk Animal<br>Nearest Meat Animal                   | 0.56<br>0.65<br>-<br>-    | SW       | Nearest Residence<br>Nearest Garden<br>Nearest Milk Animal<br>Nearest Meat Animal (Cow)             | 0.66<br>2.32<br>-<br>3.86 |
| ENE    | Nearest Residence<br>Nearest Garden (Irrigated)<br>Nearest Milk Animal<br>Nearest Meat Animal (Cow) | 0.61<br>0.61<br>-<br>4.54 | WSW      | Nearest Residence<br>Nearest Garden<br>Nearest Milk Animal<br>Nearest Meat Animal (Cow)             | 0.78<br>2.04<br>-<br>2.87 |
| E      | Nearest Residence<br>Nearest Garden<br>Nearest Milk Animal<br>Nearest Meat Animal (Cow)             | 0.65<br>0.84<br>-<br>4.35 | <b>W</b> | Nearest Residence<br>Nearest Garden<br>Nearest Milk Animal<br>Nearest Meat Animal                   | 0.97<br>0.96<br>-<br>-    |
| ESE    | Nearest Residence<br>Nearest Garden<br>Nearest Milk Animal<br>Nearest Meat Animal                   | 0.84<br>1.23<br>-<br>-    | WNW      | Nearest Residence<br>Nearest Garden<br>Nearest Milk Animal<br>Nearest Meat Animal                   | 1.10<br>1.19<br>-<br>-    |
| SE     | Nearest Residence<br>Nearest Garden<br>Nearest Milk Animal<br>Nearest Meat Animal (Cow)             | 0.97<br>1.70<br>-<br>4.20 | NW       | Nearest Residence<br>Nearest Garden<br>Nearest Milk Animal<br>Nearest Meat Animal (Cow)             | 1.39<br>1.54<br>-<br>1.39 |
| SSE    | Nearest Residence<br>Nearest Garden<br>Nearest Milk Animal<br>Nearest Meat Animal                   | 0.74<br>1.69<br>-<br>-    | NNW      | Nearest Residence<br>Nearest Garden<br>Nearest Milk Animal<br>Nearest Meat Animal                   | 1.06<br>2.64<br>-<br>-    |

#### Table 3.11 Catawba 2003 Land Use Census Results

"-" indicates no occurrences within the 5 mile radius

,
Figure 3.11



# **4.0 EVALUATION OF DOSE**

## 4.1 DOSE FROM ENVIRONMENTAL MEASUREMENTS

Annual doses to maximum exposed individuals were estimated based on measured concentrations of radionuclides in 2003 CNS REMP samples. The primary purpose of estimating doses based on sample results is to allow comparison to effluent program dose estimates.

Doses based on sample results were calculated using the methodology and data presented in NRC Regulatory Guide 1.109. Measured radionuclide concentrations, averaged over the entire year for a specific radionuclide, indicator location and sample type, were used to calculate REMP-based doses. Where applicable, average background concentration at the corresponding control location was subtracted. Regulatory Guide 1.109 consumption rates for the maximum exposed individual were used in the calculations. When the guide listed "NO DATA" as the dose factor for a given radionuclide and organ, a dose factor of zero was assumed.

Maximum dose estimates (Highest Annual Mean Concentration) based on drinking water, broadleaf vegetation, fish, and shoreline sediment sample results are reported in Table 4.1-A. The individual critical population and pathway dose calculations are reported in Table 4.1-B.

REMP-based dose estimates are not reported for airborne radioiodine, airborne particulate, milk, or ground water sample types because no radionuclides other than naturally occurring K-40 and Be-7 were detected in the samples. Dose estimates are not reported for surface water because sampled surface water is not considered to be a potable drinking water source. Exposure estimates based upon REMP TLD results are discussed in Section 3.10.

The maximum environmental organ dose estimate for any single sample type (other than direct radiation from gaseous effluents) collected during 2003 was 2.18E-1 mrem to the maximum exposed child bone from consuming broadleaf vegetation.

## 4.2 ESTIMATED DOSE FROM RELEASES

Throughout the year, dose estimates were calculated based on actual 2003 liquid and gaseous effluent release data. Effluent-based dose estimates were calculated using the RETDAS computer program which employs methodology and data presented in NRC Regulatory Guide 1.109. The 2003 CNS Annual Radioactive Effluent Release Report (Reference 6.6) included calendar year dose estimates for the location with the highest individual organ dose from liquid and gaseous effluent releases. These reported doses are shown in Table 4.1-A along with the corresponding REMP-based dose estimates.

The effluent-based liquid release doses are summations of the dose contributions from the drinking water, fish, and shoreline pathways. The effluent-based gaseous release doses report noble gas exposure separately from iodine, particulate, and tritium exposure. For noble gas exposure there is no critical age group; as the maximum exposed individuals are assumed to receive the same doses, regardless of their age group. For iodine, particulate, and tritium exposure there is no critical age group; as the maximum exposed individuals are assumed to receive the same doses, regardless of their age group. For iodine, particulate, and tritium exposure the effluent-based gaseous release doses are summations of the dose contributors from ground/plane, inhalation, milk and vegetation pathways.

## 4.3 <u>COMPARISON OF DOSES</u>

The gaseous environmental and effluent dose estimates given in Table 4.1-A agree reasonably well. The calculated environmental doses for liquid pathways are slightly higher than liquid effluent doses. Effluent models are based on historical averages. The region experienced a severe drought from 1999 to 2002 which has resulted in differences in the actual river flow versus the historical values used in the model. Drought conditions lessened during 2003.

There are some differences in how effluent and environmental doses are calculated that affect the comparison. Doses calculated from environmental data are conservative because they are based on a mean that includes only samples with a net positive activity versus a mean that includes all sample results (i.e. zero results are not included in the mean). Also, airborne tritium is not measured in environmental samples but is used to calculate effluent doses.

In calculations based on liquid release pathways, fish, drinking water, and shoreline sediment were the predominant dose pathways based on environmental and effluent data. The maximum total organ dose based on 2003 environmental sample results was 1.20E-1 mrem to the adult GI-LLI. The maximum total organ dose of 1.14E-1 mrem for liquid effluent-based estimates was to the adult GI-LLI.

In calculations based on gaseous release pathways, vegetation was the predominant dose pathway for effluent samples. The maximum total organ dose for gaseous effluent estimates was 1.01E0 mrem to the child's liver, total body, thyroid, kidney, lung, and GI-LLI. Vegetation was the predominant dose pathway for environmental samples. The maximum total organ dose for gaseous environmental estimates was 2.18E-1 mrem to the child bone.

Noble gas samples are not collected as part of the REMP, preventing an analogous comparison of effluent-based noble gas exposure estimates.

The doses calculated do not exceed the 40CFR190 dose commitment limits for members of the public. Doses to members of the public attributable to the operation of CNS are being maintained well within regulatory limits.

## TABLE 4.1-A

Page 1 of 3

## CATAWBA NUCLEAR STATION 2003 ENVIRONMENTAL AND EFFLUENT DOSE COMPARISON

## LIQUID RELEASE PATHWAY

| Organ   | Environmental or<br>Effluent Data | Critical<br>Age <sup>(1)</sup> | Critical<br>Pathway <sup>(2)</sup> | Location           | Maximum Dose <sup>(3)</sup><br>(mrem) |
|---------|-----------------------------------|--------------------------------|------------------------------------|--------------------|---------------------------------------|
|         |                                   |                                |                                    |                    |                                       |
| Skin    | Environmental                     | Teen                           | Shoreline Sediment                 | 208 (0.45 mi. S)   | 1.69E-03                              |
| Skin    | Effluent                          | Teen                           | Shoreline Sediment                 | 0.5 mi. S          | 1.30E-02                              |
| Bone    | Environmental                     | Child                          | Fish                               | 208 (0.45 mi. S)   | 2.68E-02                              |
| Bone    | Effluent                          | Teen                           | Fish                               | 0.5 mi. S          | 2.47E-02                              |
| Liver   | Environmental                     | Adult                          | Fish                               | 208 (0.45 mi. S)   | 8.30E-02                              |
| Liver   | Effluent                          | Child                          | Drinking Water                     | 0.5 mi. S          | 1.12E-01                              |
| T. Body | Environmental                     | Adult                          | Fish                               | 208 (0.45 mi. S)   | 7.81E-02                              |
| T. Body | Effluent                          | Adult                          | Drinking Water                     | 0.5 mi. S          | 9.93E-02                              |
| Thyroid | Environmental                     | Child                          | Drinking Water                     | 214 (7.30 mi. SSE) | 5.23E-02                              |
| Thyroid | Effluent                          | Child                          | Drinking Water                     | 0.5 mi. S          | 9.44E-02                              |
| Kidney  | Environmental                     | Adult                          | Fish                               | 208 (0.45 mi. S)   | 6.16E-02                              |
| Kidney  | Effluent                          | Child                          | Drinking Water                     | 0.5 mi. S          | 9.98E-02                              |
| Lung    | Environmental                     | Adult                          | Fish                               | 208 (0.45 mi. S)   | 5.54E-02                              |
| Lung    | Effluent                          | Child                          | Drinking Water                     | 0.5 mi. S          | 9.63E-02                              |
| GI-LLI  | Environmental                     | Adult                          | Fish                               | 208 (0.45 mi. S)   | 1.20E-01                              |
| GI-LLI  | Effluent                          | Adult                          | Fish                               | 0.5 mi. S          | 1.14E-01                              |

(1) Critical Age is the highest total dose (all pathways) to an age group.

(2) Critial Pathway is the highest individual dose within the identified Critical Age group.

(3) Maximum dose is a summation of the fish, drinking water and shoreline sediment pathways.

## GASEOUS RELEASE PATHWAY

## IODINE, PARTICULATE, and TRITIUM

| Organ        | Environmental or<br>Effluent Data | Critical<br>Age <sup>(1)</sup> | Critical<br>Pathway <sup>(2)</sup>                                                                                                                    | Location                      | Maximum Dose <sup>(3)</sup><br>(mrem) |
|--------------|-----------------------------------|--------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|---------------------------------------|
|              |                                   |                                |                                                                                                                                                       |                               |                                       |
| Skin         | Environmental                     | -                              | -                                                                                                                                                     | -                             | 0.00E+00                              |
| Skin         | Effluent                          | -                              | -                                                                                                                                                     | -                             | 0.00E+00                              |
| Bone         | Environmental                     | Child                          | Vegetation                                                                                                                                            | 226 (0.48 mi. S)              | 2.18E-01                              |
| Bone         | Effluent                          | -                              | -                                                                                                                                                     | -                             | 0.00E+00                              |
| Liver        | Environmental                     | Child                          | Vegetation                                                                                                                                            | 226 (0.48 mi. S)              | 2.08E-01                              |
| Liver        | Effluent                          | Child                          | Vegetation                                                                                                                                            | 0.5 mi. N                     | 1.01E+00                              |
| T. Body      | Environmental                     | Adult                          | Vegetation                                                                                                                                            | 226 (0.48 mi, S)              | 1.17E-01                              |
| T. Body      | Effluent                          | Child                          | Vegetation                                                                                                                                            | 0.5 mi. N                     | 1.01E+00                              |
| Thyroid      | Environmental                     | -                              |                                                                                                                                                       | -                             | 0.00E+00                              |
| Thyroid      | Effluent                          | Child                          | Vegetation                                                                                                                                            | 0.5 mi. N                     | 1.01E+00                              |
| Vide er      | Device and al                     | CL:14                          |                                                                                                                                                       | 226 (0.48; 5)                 | 6 70E 02                              |
| Kidney       | Environmental                     | Child                          | Vegetation                                                                                                                                            | 0.5 mi. N                     | 0.79E-02<br>1.01E+00                  |
|              |                                   | 01111                          | ana<br>Maria di Kabupatén Kabupatén<br>Maria di Kabupatén K |                               | 0.445-00                              |
| Lung<br>Lung | Environmental                     | Child<br>Child                 | Vegetation                                                                                                                                            | 226 (0.48 mi. S)<br>0.5 mi. N | 2.44E-02<br>1.01E+00                  |
| 20115        | Linwont                           |                                | · · · · · · · · · · · · · · · · · · ·                                                                                                                 | 0.5 mil 1 v                   |                                       |
| GI-LLI       | Environmental                     | Adult                          | Vegetation                                                                                                                                            | 226 (0.48 mi. S)              | 3.46E-03                              |
| GI-LLI       | Effluent                          | Child                          | Vegetation                                                                                                                                            | 0.5 mi. N                     | 1.01E+00                              |

(1) Critical Age is the highest total dose (all pathways) to an age group.

 $\cup$ 

L

ررر

L L L L L L L C L Ĺ L L Ĺ C L ١  $\cup$ 

ر

ر ر

ر ر

(2) Critial Pathway is the highest individual dose within the identified Critical Age group.

(3) Maximum dose is a summation of the ground/plane, inhalation, milk and vegetation pathways.

## NOBLE GAS

.

| Air   | Environmental or | Critical | Critical  | Location    | Maximum Dose |
|-------|------------------|----------|-----------|-------------|--------------|
| Dose  | Effluent Data    | Age      | Pathway   |             | (mrad)       |
| Beta  | Environmental    | -        | -         | 0.5 mi. NNE | Not Sampled  |
| Beta  | Effluent         | N/A      | Noble Gas |             | 1.60E-02     |
| Gamma | Environmental    | -        | -         | -           | Not Sampled  |
| Gamma | Effluent         | N/A      | Noble Gas | 0.5 mi. NNE | 2.15E-02     |

. .

## TABLE 4.1-B

Maximum Individual Dose for 2003 based on Environmental Measurements (mrem) for Catawba Nuclear Station

| Age                                                                                                                                                                                                                                 | Sample Medium               | Bone      | Liver                                                                 | T. Body      | Thyroid  | Kidney   | Lung      | <b>GI-LLI</b> | Skin     |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|-----------|-----------------------------------------------------------------------|--------------|----------|----------|-----------|---------------|----------|
| Infant                                                                                                                                                                                                                              | Airborne                    | 0.00E+00  | 0.00E+00                                                              | 0.00E+00     | 0.00E+00 | 0.00E+00 | 0.00E+00  | 0.00E+00      | 0.00E+00 |
|                                                                                                                                                                                                                                     | Drinking Water              | 0.00E+00  | 3.54E-02                                                              | 3.54E-02     | 3.54E-02 | 3.54E-02 | 3.54E-02  | 3.54E-02      | 0.00E+00 |
|                                                                                                                                                                                                                                     | Milk                        | 0.00E+00  | 0.00E+00                                                              | 0.00E+00     | 0.00E+00 | 0.00E+00 | 0.00E+00  | 0.00E+00      | 0.00E+00 |
|                                                                                                                                                                                                                                     | TOTAL                       | 0.00E+00  | 3.54E-02                                                              | 3.54E-02     | 3.54E-02 | 3.54E-02 | 3.54E-02  | 3.54E-02      | 0.00E+00 |
|                                                                                                                                                                                                                                     | W.                          |           | 1                                                                     |              | ·        |          |           |               |          |
| Child                                                                                                                                                                                                                               | Airborne                    | 0.00E+00  | 0.00E+00                                                              | 0.00E+00     | 0.00E+00 | 0.00E+00 | 0.00E+00  | 0.00E+00      | 0.00E+00 |
|                                                                                                                                                                                                                                     | Drinking Water              | 0.00E+00  | 3.60E-02                                                              | 3.60E-02     | 3.60E-02 | 3.60E-02 | 3.60E-02  | 3.60E-02      | 0.00E+00 |
|                                                                                                                                                                                                                                     | Milk                        | 0.00E+00  | 0.00E+00                                                              | 0.00E+00     | 0.00E+00 | 0.00E+00 | 0.00E+00  | 0.00E+00      | 0.00E+00 |
|                                                                                                                                                                                                                                     | <b>Broadleaf Vegetation</b> | 0.00E+00  | 0.00E+00                                                              | 0.00E+00     | 0.00E+00 | 0.00E+00 | 0.00E+00  | 0.00E+00      | 0.00E+00 |
|                                                                                                                                                                                                                                     | Fish                        | 2.68E-02  | 4.47E-02                                                              | 2.83E-02     | 1.63E-02 | 2.46E-02 | 1.93E-02  | 3.21E-02      | 0.00E+00 |
|                                                                                                                                                                                                                                     | Shoreline Sediment          | 0.00E+00  | 0.00E+00                                                              | 3.01E-04     | 0.00E+00 | 0.00E+00 | 0.00E+00  | 0.00E+00      | 3.54E-04 |
|                                                                                                                                                                                                                                     | TOTAL                       | 2.68E-02  | 8.07E-02                                                              | 6.46E-02     | 5.23E-02 | 6.06E-02 | 5.53E-02  | 6.81E-02      | 3.54E-04 |
| la de grade de la composición de la com<br>La composición de la c |                             |           | rrian (n. 1993)<br>Taite teach agus (n. 19<br>Taite teach agus (n. 19 | in the state |          |          | - 11 - 14 |               |          |
| Teen                                                                                                                                                                                                                                | Airborne                    | 0.00E+00  | 0.00E+00                                                              | 0.00E+00     | 0.00E+00 | 0.00E+00 | 0.00E+00  | 0.00E+00      | 0.00E+00 |
|                                                                                                                                                                                                                                     | Drinking Water              | 0.00E+00  | 1.88E-02                                                              | 1.88E-02     | 1.88E-02 | 1.88E-02 | 1.88E-02  | 1.88E-02      | 0.00E+00 |
|                                                                                                                                                                                                                                     | Milk                        | 0.00E+00  | 0.00E+00                                                              | 0.00E+00     | 0.00E+00 | 0.00E+00 | 0.00E+00  | 0.00E+00      | 0.00E+00 |
|                                                                                                                                                                                                                                     | <b>Broadleaf Vegetation</b> | 0.00E+00  | 0.00E+00                                                              | 0.00E+00     | 0.00E+00 | 0.00E+00 | 0.00E+00  | 0.00E+00      | 0.00E+00 |
|                                                                                                                                                                                                                                     | Fish                        | 2.13E-02  | 5.15E-02                                                              | 3.73E-02     | 1.97E-02 | 2.93E-02 | 2.34E-02  | 6.60E-02      | 0.00E+00 |
|                                                                                                                                                                                                                                     | Shoreline Sediment          | 0.00E+00  | 0.00E+00                                                              | 1.44E-03     | 0.00E+00 | 0.00E+00 | 0.00E+00  | 0.00E+00      | 1.69E-03 |
|                                                                                                                                                                                                                                     | TOTAL                       | 2.13E-02  | 7.03E-02                                                              | 5.75E-02     | 3.85E-02 | 4.81E-02 | 4.22E-02  | 8.48E-02      | 1.69E-03 |
|                                                                                                                                                                                                                                     |                             | 0.0017.00 | 0.000                                                                 | 0.000.00     | 0.005.00 |          | 0.000     | 0.000         | 0.000.00 |
| Adult                                                                                                                                                                                                                               | Airborne                    | 0.00E+00  | 0.00E+00                                                              | 0.00E+00     | 0.00E+00 | 0.00E+00 | 0.00E+00  | 0.00E+00      | 0.00E+00 |
|                                                                                                                                                                                                                                     | Drinking Water              | 0.00E+00  | 2.6/E-02                                                              | 2.6/E-02     | 2.67E-02 | 2.6/E-02 | 2.67E-02  | 2.67E-02      | 0.00E+00 |
|                                                                                                                                                                                                                                     | Milk                        | 0.00E+00  | 0.00E+00                                                              | 0.00E+00     | 0.00E+00 | 0.00E+00 | 0.00E+00  | 0.00E+00      | 0.00E+00 |
|                                                                                                                                                                                                                                     | Broadleaf Vegetation        | 0.00E+00  | 0.00E+00                                                              | 0.00E+00     | 0.00E+00 | 0.00E+00 | 0.00E+00  | 0.00E+00      | 0.00E+00 |
|                                                                                                                                                                                                                                     | Fish                        | 1.99E-02  | 5.63E-02                                                              | 5.11E-02     | 2.56E-02 | 3.49E-02 | 2.87E-02  | 9.35E-02      | 0.00E+00 |
|                                                                                                                                                                                                                                     | Shoreline Sediment          | 0.00E+00  | 0.00E+00                                                              | 2.58E-04     | 0.00E+00 | 0.00E+00 | 0.00E+00  | 0.00E+00      | 3.03E-04 |
|                                                                                                                                                                                                                                     | TOTAL                       | 1.99E-02  | 8.30E-02                                                              | 7.81E-02     | 5.23E-02 | 6.16E-02 | 5.54E-02  | 1.20E-01      | 3.03E-04 |

Note: Dose tables are provided for sample media displaying positive nuclide occurrence.

## Catawba Nuclear Station Dose from Drinking Water Pathway for 2003 Data Maximum Exposed Infant

**Highest Annual** 

#### Infant Dose from Drinking Water Pathway (mrem) = Usage (I) x Dose Factor (mrem/pCi ingested) x Concentration (pCi/l)

Usage (intake in one year) = 330 1

|              | Net Mean |          |          |           |           |          |          |                       |                  |          |          |          |          |             |          |          |
|--------------|----------|----------|----------|-----------|-----------|----------|----------|-----------------------|------------------|----------|----------|----------|----------|-------------|----------|----------|
|              |          |          |          | Ingestion | n Dose Fa | actor    |          | <u>Concen</u>         | <u>tration</u>   |          |          |          | Dose (m  | <u>rem)</u> |          |          |
| Radionuclide | Bone     | Liver    | T. Body  | Thyroid   | Kidney    | Lung     | GI-LLI   | Indicator<br>Location | Water<br>(pCi/l) | Bone     | Liver    | T. Body  | Thyroid  | Kidney      | Lung     | GI-LLI   |
| Mn-54        | NO DATA  | 1.99E-05 | 4.51E-06 | NO DATA   | 4.41E-06  | NO DATA  | 7.31E-06 | ALL                   | 0.00             | 0.00E+00 | 0.00E+00 | 0.00E+00 | 0.00E+00 | 0.00E+00    | 0.00E+00 | 0.00E+00 |
| Co-58        | NO DATA  | 3.60E-06 | 8.98E-06 | NO DATA   | NO DATA   | NO DATA  | 8.97E-06 | ALL                   | 0.00             | 0.00E+00 | 0.00E+00 | 0.00E+00 | 0.00E+00 | 0.00E+00    | 0.00E+00 | 0.00E+00 |
| Fe-59        | 3.08E-05 | 5.38E-05 | 2.12E-05 | NO DATA   | NO DATA   | 1.59E-05 | 2.57E-05 | ALL                   | 0.00             | 0.00E+00 | 0.00E+00 | 0.00E+00 | 0.00E+00 | 0.00E+00    | 0.00E+00 | 0.00E+00 |
| Co-60        | NO DATA  | 1.08E-05 | 2.55E-05 | NO DATA   | NO DATA   | NO DATA  | 2.57E-05 | ALL                   | 0.00             | 0.00E+00 | 0.00E+00 | 0.00E+00 | 0.00E+00 | 0.00E+00    | 0.00E+00 | 0.00E+00 |
| Zn-65        | 1.84E-05 | 6.31E-05 | 2.91E-05 | NO DATA   | 3.06E-05  | NO DATA  | 5.33E-05 | ALL                   | 0.00             | 0.00E+00 | 0.00E+00 | 0.00E+00 | 0.00E+00 | 0.00E+00    | 0.00E+00 | 0.00E+00 |
| Nb-95        | 4.20E-08 | 1.73E-08 | 1.00E-08 | NO DATA   | 1.24E-08  | NO DATA  | 1.46E-05 | ALL                   | 0.00             | 0.00E+00 | 0.00E+00 | 0.00E+00 | 0.00E+00 | 0.00E+00    | 0.00E+00 | 0.00E+00 |
| Zr-95        | 2.06E-07 | 5.02E-08 | 3.56E-08 | NO DATA   | 5.41E-08  | NO DATA  | 2.50E-05 | ALL                   | 0.00             | 0.00E+00 | 0.00E+00 | 0.00E+00 | 0.00E+00 | 0.00E+00    | 0.00E+00 | 0.00E+00 |
| I-131        | 3.59E-05 | 4.23E-05 | 1.86E-05 | 1.39E-02  | 4.94E-05  | NO DATA  | 1.51E-06 | ALL                   | 0.00             | 0.00E+00 | 0.00E+00 | 0.00E+00 | 0.00E+00 | 0.00E+00    | 0.00E+00 | 0.00E+00 |
| Cs-134       | 3.77E-04 | 7.03E-04 | 7.10E-05 | NO DATA   | 1.81E-04  | 7.42E-05 | 1.91E-06 | ALL                   | 0.00             | 0.00E+00 | 0.00E+00 | 0.00E+00 | 0.00E+00 | 0.00E+00    | 0.00E+00 | 0.00E+00 |
| Cs-137       | 5.22E-04 | 6.11E-04 | 4.33E-05 | NO DATA   | 1.64E-04  | 6.64E-05 | 1.91E-06 | ALL                   | 0.00             | 0.00E+00 | 0.00E+00 | 0.00E+00 | 0.00E+00 | 0.00E+00    | 0.00E+00 | 0.00E+00 |
| BaLa-140     | 1.71E-04 | 1.71E-07 | 8.81E-06 | NO DATA   | 4.06E-08  | 1.05E-07 | 4.20E-05 | ALL                   | 0.00             | 0.00E+00 | 0.00E+00 | 0.00E+00 | 0.00E+00 | 0.00E+00    | 0.00E+00 | 0.00E+00 |
| Н-3          | NO DATA  | 3.08E-07 | 3.08E-07 | 3.08E-07  | 3.08E-07  | 3.08E-07 | 3.08E-07 | 214                   | 348.00           | 0.00E+00 | 3.54E-02 | 3.54E-02 | 3.54E-02 | 3.54E-02    | 3.54E-02 | 3.54E-02 |

0.00E+00 3.54E-02 3.54E-02 3.54E-02 3.54E-02 3.54E-02 3.54E-02

Dose Commitment (mrem) =

## Catawba Nuclear Station Dose from Drinking Water Pathway for 2003 Data Maximum Exposed Child

#### Child Dose from Drinking Water Pathway (mrem) = Usage (I) x Dose Factor (mrem/pCi ingested) x Concentration (pCi/l)

Usage (intake in one year)= 510 l

|              |          | Highest Annual |          |          |                 |               |          |           |         |          |          |          |          |             |          |          |
|--------------|----------|----------------|----------|----------|-----------------|---------------|----------|-----------|---------|----------|----------|----------|----------|-------------|----------|----------|
|              |          |                |          |          |                 |               |          | Net N     | fean    |          |          |          |          |             |          |          |
|              |          |                |          | Ingestio | <u>n Dose F</u> | <u>'actor</u> |          | Concent   | tration |          |          |          | Dose (m  | <u>rem)</u> |          |          |
| Dedianualida | Bone     | Theor          | T Rody   | Thuroid  | Kidney          | Lung          | CLUU     | Indicator | Water   | Rone     | î iver   | T Body   | Thyroid  | Kidney      | Tuna     | CLUU     |
| Nationachite | Done     | LATCI          | 111000   | Inyloid  | Muncy           | Dung          | GI-LLI   | Location  | (pewi)  | Done     | 131701   | 1. Doug  | Ingrota  | Runcy       | Lung     | 01-12121 |
| Mn-54        | NO DATA  | 1.07E-05       | 2.85E-06 | NO DATA  | 3.00E-06        | NO DATA       | 8.98E-06 | ALL       | 0.00    | 0.00E+00 | 0.00E+00 | 0.00E+00 | 0.00E+00 | 0.00E+00    | 0.00E+00 | 0.00E+00 |
| Co-58        | NO DATA  | 1.80E-06       | 5.51E-06 | NO DATA  | NO DATA         | NO DATA       | 1.05E-05 | ALL       | 0.00    | 0.00E+00 | 0.00E+00 | 0.00E+00 | 0.00E+00 | 0.00E+00    | 0.00E+00 | 0.00E+00 |
| Fe-59        | 1.65E-05 | 2.67E-05       | 1.33E-05 | NO DATA  | NO DATA         | 7.74E-06      | 2.78E-05 | ALL       | 0.00    | 0.00E+00 | 0.00E+00 | 0.00E+00 | 0.00E+00 | 0.00E+00    | 0.00E+00 | 0.00E+00 |
| C0-60        | NO DATA  | 5.29E-06       | 1.56E-05 | NO DATA  | NO DATA         | NO DATA       | 2.93E-05 | ALL       | 0.00    | 0.00E+00 | 0.00E+00 | 0.00E+00 | 0.00E+00 | 0.00E+00    | 0.00E+00 | 0.00E+00 |
| Zn-65        | 1.37E-05 | 3.65E-05       | 2.27E-05 | NO DATA  | 2.30E-05        | NO DATA       | 6.41E-06 | ALL       | 0.00    | 0.00E+00 | 0.00E+00 | 0.00E+00 | 0.00E+00 | 0.00E+00    | 0.00E+00 | 0.00E+00 |
| Nb-95        | 2.25E-08 | 8.76E-09       | 6.26E-09 | NO DATA  | 8.23E-09        | NO DATA       | 1.62E-05 | ALL       | 0.00    | 0.00E+00 | 0.00E+00 | 0.00E+00 | 0.00E+00 | 0.00E+00    | 0.00E+00 | 0.00E+00 |
| Zr-95        | 1.16E-07 | 2.55E-08       | 2.27E-08 | NO DATA  | 3.65E-08        | NO DATA       | 2.66E-05 | ALL       | 0.00    | 0.00E+00 | 0.00E+00 | 0.00E+00 | 0.00E+00 | 0.00E+00    | 0.00E+00 | 0.00E+00 |
| I-131        | 1.72E-05 | 1.73E-05       | 9.83E-06 | 5.72E-03 | 2.84E-05        | NO DATA       | 1.54E-06 | ALL       | 0.00    | 0.00E+00 | 0.00E+00 | 0.00E+00 | 0.00E+00 | 0.00E+00    | 0.00E+00 | 0.00E+00 |
| Cs-134       | 2.34E-04 | 3.84E-04       | 8.10E-05 | NO DATA  | 1.19E-04        | 4.27E-05      | 2.07E-06 | ALL       | 0.00    | 0.00E+00 | 0.00E+00 | 0.00E+00 | 0.00E+00 | 0.00E+00    | 0.00E+00 | 0.00E+00 |
| Cs-137       | 3.27E-04 | 3.13E-04       | 4.62E-05 | NO DATA  | 1.02E-04        | 3.67E-05      | 1.96E-06 | ALL       | 0.00    | 0.00E+00 | 0.00E+00 | 0.00E+00 | 0.00E+00 | 0.00E+00    | 0.00E+00 | 0.00E+00 |
| BaLa-140     | 8.31E-05 | 7.28E-08       | 4.85E-06 | NO DATA  | 2.37E-08        | 4.34E-08      | 4.21E-05 | ALL       | 0.00    | 0.00E+00 | 0.00E+00 | 0.00E+00 | 0.00E+00 | 0.00E+00    | 0.00E+00 | 0.00E+00 |
| н-3          | NO DATA  | 2.03E-07       | 2.03E-07 | 2.03E-07 | 2.03E-07        | 2.03E-07      | 2.03E-07 | 214       | 348.00  | 0.00E+00 | 3.60E-02 | 3.60E-02 | 3.60E-02 | 3.60E-02    | 3.60E-02 | 3.60E-02 |

0.00E+00 3.60E-02 3.60E-02 3.60E-02 3.60E-02 3.60E-02 3.60E-02

Dose Commitment (mrem) =

## Catawba Nuclear Station Dose from Broadleaf Vegetation Pathway for 2003 Data Maximum Exposed Child

#### Child Dose from Vegetation Pathway (mrem) = Usage (kg) x Dose Factor (mrem/pCi ingested) x Concentration (pCi/kg)

Usage (intake in one year)= 26 kg

|          |                                          |                                                                                                                                | Ingestio                                                                                                                                                                                          | <u>n Dose F</u>                                                                                                                                                                                                                                                                        | <u>actor</u>                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                    | <u>Concen</u><br>Indicator                                                                                                                                                                                                         | <u>tration</u><br>Food                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                | Dose (mi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <u>rem)</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|----------|------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Bone     | Liver                                    | T. Body                                                                                                                        | Thyroid                                                                                                                                                                                           | Kidney                                                                                                                                                                                                                                                                                 | Lung                                                                                                                                                                                                                                                                                                                                 | GI-LLI                                                                                                                                                                                             | Location                                                                                                                                                                                                                           | (pCi/kg)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Bone                                                                                                                                                                                                                                                                                                   | Liver                                                                                                                                                                                                                                                                                                                              | T. Body                                                                                                                                                                                                                                                                                                                                        | Thyroid                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Kidney                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Lung                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | GI-LLI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 1.72E-05 | 1.73E-05                                 | 9.83E-06                                                                                                                       | 5.72E-03                                                                                                                                                                                          | 2.84E-05                                                                                                                                                                                                                                                                               | NO DATA                                                                                                                                                                                                                                                                                                                              | 1.54E-06                                                                                                                                                                                           | ALL                                                                                                                                                                                                                                | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.00E+00                                                                                                                                                                                                                                                                                               | 0.00E+00                                                                                                                                                                                                                                                                                                                           | 0.00E+00                                                                                                                                                                                                                                                                                                                                       | 0.00E+00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.00E+00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.00E+00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.00E+00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 2.34E-04 | 3.84E-04                                 | 8.10E-05                                                                                                                       | NO DATA                                                                                                                                                                                           | 1.19E-04                                                                                                                                                                                                                                                                               | 4.27E-05                                                                                                                                                                                                                                                                                                                             | 2.07E-06                                                                                                                                                                                           | ALL                                                                                                                                                                                                                                | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.00E+00                                                                                                                                                                                                                                                                                               | 0.00E+00                                                                                                                                                                                                                                                                                                                           | 0.00E+00                                                                                                                                                                                                                                                                                                                                       | 0.00E+00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.00E+00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.00E+00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.00E+00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 3.27E-04 | 3.13E-04                                 | 4.62E-05                                                                                                                       | NO DATA                                                                                                                                                                                           | 1.02E-04                                                                                                                                                                                                                                                                               | 3.67E-05                                                                                                                                                                                                                                                                                                                             | 1.96E-06                                                                                                                                                                                           | 226                                                                                                                                                                                                                                | 25.60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2.18E-01                                                                                                                                                                                                                                                                                               | 2.08E-01                                                                                                                                                                                                                                                                                                                           | 3.08E-02                                                                                                                                                                                                                                                                                                                                       | 0.00E+00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 6.79E-02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2.44E-02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.30E-03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|          | Bone<br>1.72E-05<br>2.34E-04<br>3.27E-04 | Bone         Liver           1.72E-05         1.73E-05           2.34E-04         3.84E-04           3.27E-04         3.13E-04 | Bone         Liver         T. Body           1.72E-05         1.73E-05         9.83E-06           2.34E-04         3.84E-04         8.10E-05           3.27E-04         3.13E-04         4.62E-05 | Ingestion           Bone         Liver         T. Body         Thyrold           1.72E-05         1.73E-05         9.83E-06         5.72E-03           2.34E-04         3.84E-04         8.10E-05         NO DATA           3.27E-04         3.13E-04         4.62E-05         NO DATA | Bone         Liver         T. Body         Thyroid         Kidney           1.72E-05         1.73E-05         9.83E-06         5.72E-03         2.84E-05           2.34E-04         3.84E-04         8.10E-05         NO DATA         1.19E-04           3.27E-04         3.13E-04         4.62E-05         NO DATA         1.02E-04 | Ingesti- Dose F-ctorBoneLiverT. BodyThyroldKidneyLung1.72E-051.73E-059.83E-065.72E-032.84E-05NO DATA2.34E-043.84E-048.10E-05NO DATA1.19E-044.27E-053.27E-043.13E-044.62E-05NO DATA1.02E-043.67E-05 | Ingesti-Dose FormationBoneLiverT. BodyThyroldKidneyLungGI-LLI1.72E-051.73E-059.83E-065.72E-032.84E-05NO DATA1.54E-062.34E-043.84E-048.10E-05NO DATA1.19E-044.27E-052.07E-063.27E-043.13E-044.62E-05NO DATA1.02E-043.67E-051.96E-06 | Highest         Inversion Dose Factor       Highest Net N         Bone       Liver       T. Body       Thyrold       Kidney       Lung       GI-LLI       Location         1.72E-05       1.73E-05       9.83E-06       5.72E-03       2.84E-05       NO DATA       1.54E-06       ALL         2.34E-04       3.84E-04       8.10E-05       NO DATA       1.19E-04       4.27E-05       2.07E-06       ALL         3.27E-04       3.13E-04       4.62E-05       NO DATA       1.02E-04       3.67E-05       1.96E-06       226 | Highest Annual<br>Net MeanBoneLiverT. BodyThyroldKidneyLungGI-LLIConcentration<br>IndicatorFood<br>(pCI/kg)1.72E-051.73E-059.83E-065.72E-032.84E-05NO DATA1.54E-06ALL0.002.34E-043.84E-048.10E-05NO DATA1.19E-044.27E-052.07E-06ALL0.003.27E-043.13E-044.62E-05NO DATA1.02E-043.67E-051.96E-0622625.60 | Highest Annual<br>Net WeanBoneLiverT. BodyThyroldKidneyLungGI-LLIConcentration<br>IndicatorFood<br>(pCl/kg)Bone1.72E-051.73E-059.83E-065.72E-032.84E-05NO DATA1.54E-06ALL0.000.00E+002.34E-043.84E-048.10E-05NO DATA1.19E-044.27E-052.07E-06ALL0.000.00E+003.27E-043.13E-044.62E-05NO DATA1.02E-043.67E-051.96E-0622625.602.18E-01 | Highest Annual<br>Net WeanBoneLiverT. BodyThyroidKidneyLungGI-LLIConcentration<br>LocationBoneLiver1.72E-051.73E-059.83E-065.72E-032.84E-05NO DATA1.54E-06ALL0.000.00E+000.00E+002.34E-043.84E-048.10E-05NO DATA1.19E-044.27E-052.07E-06ALL0.000.00E+000.00E+003.27E-043.13E-044.62E-05NO DATA1.02E-043.67E-051.96E-0622625.602.18E-012.08E-01 | Highest Annual<br>Net Wean         Net Wean         Bone       Liver       T.Body       Thyrold       Kidney       Lung       GI-LLI       Concent ration<br>Indicator       Bone       Liver       Liver       T.Body         1.72E-05       1.73E-05       9.83E-06       5.72E-03       2.84E-05       NO DATA       1.54E-06       ALL       0.00       0.00E+00       0.00E+00 <td< td=""><td>Highest Annual<br/>Net Wean         Highest Annual<br/>Net Wean         Bone       Liver       T.Body       Thyrold       Kidney       Lung       GI-LLI       Concent Tailon<br/>Indicator       Food<br/>Pool       Bone       Liver       T.Body       Thyrold       Map         1.72E-05       1.73E-05       9.83E-06       5.72E-03       2.84E-05       NO DATA       1.54E-06       ALL       0.00       0.00E+00       0.00E+00<!--</td--><td>Highest Annual<br/>Net Wean         Highest Annual<br/>Net Wean         Highest Annual<br/>Net Wean         Bone       Liver       Dose (mr/model)       Dose (mr/model)         Bone       Liver       T.Body       Midney       Lung       GI-LLI       ALL       Bone       Liver       T.Body       Thyroid       Kidney         1.72E-05       1.73E-05       9.83E-06       5.72E-03       2.84E-05       NO DATA       1.54E-06       ALL       0.00       0.00E+00       0.00</td><td>Highest Annual<br/>Net Wean         Highest Annual<br/>Net Wean         Index James Annual<br/>Net Wean         Bone       Liver       Ingestion Dose Factor       Concentration<br/>Indicator       Food       Bone       Liver       T.Body       Kidney       Lung       GI-LLI       Actator       Food       Bone       Liver       T.Body       Thyroid       Kidney       Lung         1.72E-05       1.73E-05       9.83E-06       5.72E-03       2.84E-05       NO DATA       1.54E-06       ALL       0.00       0.00E+00       0.00E+00</td></td></td<> | Highest Annual<br>Net Wean         Highest Annual<br>Net Wean         Bone       Liver       T.Body       Thyrold       Kidney       Lung       GI-LLI       Concent Tailon<br>Indicator       Food<br>Pool       Bone       Liver       T.Body       Thyrold       Map         1.72E-05       1.73E-05       9.83E-06       5.72E-03       2.84E-05       NO DATA       1.54E-06       ALL       0.00       0.00E+00       0.00E+00 </td <td>Highest Annual<br/>Net Wean         Highest Annual<br/>Net Wean         Highest Annual<br/>Net Wean         Bone       Liver       Dose (mr/model)       Dose (mr/model)         Bone       Liver       T.Body       Midney       Lung       GI-LLI       ALL       Bone       Liver       T.Body       Thyroid       Kidney         1.72E-05       1.73E-05       9.83E-06       5.72E-03       2.84E-05       NO DATA       1.54E-06       ALL       0.00       0.00E+00       0.00</td> <td>Highest Annual<br/>Net Wean         Highest Annual<br/>Net Wean         Index James Annual<br/>Net Wean         Bone       Liver       Ingestion Dose Factor       Concentration<br/>Indicator       Food       Bone       Liver       T.Body       Kidney       Lung       GI-LLI       Actator       Food       Bone       Liver       T.Body       Thyroid       Kidney       Lung         1.72E-05       1.73E-05       9.83E-06       5.72E-03       2.84E-05       NO DATA       1.54E-06       ALL       0.00       0.00E+00       0.00E+00</td> | Highest Annual<br>Net Wean         Highest Annual<br>Net Wean         Highest Annual<br>Net Wean         Bone       Liver       Dose (mr/model)       Dose (mr/model)         Bone       Liver       T.Body       Midney       Lung       GI-LLI       ALL       Bone       Liver       T.Body       Thyroid       Kidney         1.72E-05       1.73E-05       9.83E-06       5.72E-03       2.84E-05       NO DATA       1.54E-06       ALL       0.00       0.00E+00       0.00 | Highest Annual<br>Net Wean         Highest Annual<br>Net Wean         Index James Annual<br>Net Wean         Bone       Liver       Ingestion Dose Factor       Concentration<br>Indicator       Food       Bone       Liver       T.Body       Kidney       Lung       GI-LLI       Actator       Food       Bone       Liver       T.Body       Thyroid       Kidney       Lung         1.72E-05       1.73E-05       9.83E-06       5.72E-03       2.84E-05       NO DATA       1.54E-06       ALL       0.00       0.00E+00       0.00E+00 |

Dose Commitment (mrem) =

2.18E-01 2.08E-01 3.08E-02 0.00E+00 6.79E-02 2.44E-02 1.30E-03

Catawba Nuclear Station Dose from Fish Pathway for 2003 Data Maximum Exposed Child

Child Dose from Fish Pathway (mrem) = Usage (kg) x Dose Factor (mrem/pCi ingested) x Concentration (pCi/kg)

H-3 Concentration in Fish = Surface Water pCi/l x Bioaccumulation Factor 0.9 pCi/kg per pCi/l = 12903 pCi/l x 0.9 = 11613 pCi/kg Usage (intake in one year) = 6.9 kg

#### Highest Annual Net Mean

|              |          |          |          | Ingestio | n Dose F | <u>'actor</u> |          | Concer   | ntration<br>Fish |          |          |          | <u>Dose (m</u> | <u>rem)</u> |          |          |
|--------------|----------|----------|----------|----------|----------|---------------|----------|----------|------------------|----------|----------|----------|----------------|-------------|----------|----------|
| Radionuclide | Bone     | Liver    | T. Body  | Thyroid  | Kidney   | Lung          | GI-LLI   | Location | (pCi/kg)         | Bone     | Liver    | T. Body  | Thyroid        | Kidney      | Lung     | GI-LLI   |
| Mn-54        | NO DATA  | 1.07E-05 | 2.85E-06 | NO DATA  | 3.00E-06 | NO DATA       | 8.98E-06 | ALL      | 0.00             | 0.00E+00 | 0.00E+00 | 0.00E+00 | 0.00E+00       | 0.00E+00    | 0.00E+00 | 0.00E+00 |
| Co-58        | NO DATA  | 1.80E-06 | 5.51E-06 | NO DATA  | NO DATA  | NO DATA       | 1.05E-05 | 208      | 143.00           | 0.00E+00 | 1.78E-03 | 5.44E-03 | 0.00E+00       | 0.00E+00    | 0.00E+00 | 1.04E-02 |
| Fe-59        | 1.65E-05 | 2.67E-05 | 1.33E-05 | NO DATA  | NO DATA  | 7.74E-06      | 2.78E-05 | ALL      | 0.00             | 0.00E+00 | 0.00E+00 | 0.00E+00 | 0.00E+00       | 0.00E+00    | 0.00E+00 | 0.00E+00 |
| C0-60        | NO DATA  | 5.29E-06 | 1.56E-05 | NO DATA  | NO DATA  | NO DATA       | 2.93E-05 | 208      | 26.10            | 0.00E+00 | 9.53E-04 | 2.81E-03 | 0.00E+00       | 0.00E+00    | 0.00E+00 | 5.28E-03 |
| Zn-65        | 1.37E-05 | 3.65E-05 | 2.27E-05 | NO DATA  | 2.30E-05 | NO DATA       | 6.41E-06 | ALL      | 0.00             | 0.00E+00 | 0.00E+00 | 0.00E+00 | 0.00E+00       | 0.00E+00    | 0.00E+00 | 0.00E+00 |
| Cs-134       | 2.34E-04 | 3.84E-04 | 8.10E-05 | NO DATA  | 1.19E-04 | 4.27E-05      | 2.07E-06 | ALL      | 0.00             | 0.00E+00 | 0.00E+00 | 0.00E+00 | 0.00E+00       | 0.00E+00    | 0.00E+00 | 0.00E+00 |
| Cs-137       | 3.27E-04 | 3.13E-04 | 4.62E-05 | NO DATA  | 1.02E-04 | 3.67E-05      | 1.96E-06 | 208      | 11.90            | 2.68E-02 | 2.57E-02 | 3.79E-03 | 0.00E+00       | 8.38E-03    | 3.01E-03 | 1.61E-04 |
| н-з          | NO DATA  | 2.03E-07 | 2.03E-07 | 2.03E-07 | 2.03E-07 | 2.03E-07      | 2.03E-07 | 208      | 11613.00         | 0.00E+00 | 1.63E-02 | 1.63E-02 | 1.63E-02       | 1.63E-02    | 1.63E-02 | 1.63E-02 |
|              |          |          |          |          |          |               |          |          |                  |          |          |          |                |             |          |          |

Dose Commitment (mrem) = 2.68E-02 4.47E-02 2.83E-02 1.63E-02 2.46E-02 1.93E-02 3.21E-02

## Catawba Nuclear Station Dose from Shoreline Sediment Pathway for 2003 Data Maximum Exposed Child

| Shoreline Recreation =  | 14  | hr (in one year) |
|-------------------------|-----|------------------|
| Shore Width Factor =    | 0.2 |                  |
| Sediment Surface Mass = | 40  | kg/m²            |

Child Dose from Shoreline Sediment Pathway (mrem) = Shoreline Recreation (hr) x External Dose Factor (mrem/hr per pCi/m<sup>2</sup>) x Shore Width Factor x Sediment Surface Mass (kg/n<sup>2</sup>) x Sediment Concentration (pCi/kg)

| Externa<br>on Con | l Dose Fac<br><u>taminatec</u> | ctor Standing<br><u>I Ground</u> | Highest A<br><u>Mean Co</u> i | nnual Net<br>ncentration | <u>Dose</u> |            |  |  |
|-------------------|--------------------------------|----------------------------------|-------------------------------|--------------------------|-------------|------------|--|--|
|                   | (mrem                          | /hr per pCi/m²)                  | Indicator                     | Sediment                 | (m          | rem)       |  |  |
| Radionuclide      | T. Body                        | Skin                             | Location                      | (pCi/kg)                 | T. Body     | Skin       |  |  |
| Mn-54             | 5.80E-09                       | 6.80E-09                         | 208-1S                        | 21.70                    | 1.41E-05    | 1.65E-05   |  |  |
| Co-58             | 7.00E-09                       | 8.20E-09                         | 208-1S                        | 87.50                    | 6.86E-05    | 8.04E-05   |  |  |
| Co-60             | 1.70E-08                       | 2.00E-08                         | 208-1S                        | 108.00                   | 2.06E-04    | 4 2.42E-04 |  |  |
| Cs-134            | 1.20E-08                       | 1.40E-08                         | ALL                           | 0.00                     | 0.00E+00    | 0.00E+00   |  |  |
| Cs-137            | 4.20E-09                       | 4.90E-09                         | 208-1S                        | 26.90                    | 1.27E-05    | 1.48E-05   |  |  |
|                   |                                | Dose Commitme                    | ent (mrem) =                  |                          | 3.01E-04    | 3.54E-04   |  |  |

## Catawba Nuclear Station Dose from Drinking Water Pathway for 2003 Data Maximum Exposed Teen

#### Teen Dose from Drinking Water Pathway (mrem) = Usage (I) x Dose Factor (mrem/pCi ingested) x Concentration (pCi/l)

Usage (intake in one year)= 510 l

|              | Highest Annual |          |          |          |          |               |          |           |                |          |          |          |          |             |          |          |
|--------------|----------------|----------|----------|----------|----------|---------------|----------|-----------|----------------|----------|----------|----------|----------|-------------|----------|----------|
|              |                |          |          |          |          |               |          | Net N     | Iean           |          |          |          |          |             |          |          |
|              |                |          |          | Ingestio | n Dose F | <u>'actor</u> |          | Concent   | <u>tration</u> |          |          |          | Dose (m  | <u>rem)</u> |          |          |
|              |                |          |          |          |          |               |          | Indicator | Water          |          |          |          |          |             |          |          |
| Radionuclide | Bone           | Liver    | T. Body  | Thyroid  | Kidney   | Lung          | GI-LLI   | Location  | (pCi/I)        | Bone     | Liver    | T. Body  | Thyroid  | Kidney      | Lung     | GI-LLI   |
| Mn-54        | NO DATA        | 5.90E-06 | 1.17E-06 | NO DATA  | 1.76E-06 | NO DATA       | 1.21E-05 | ALL       | 0.00           | 0.00E+00 | 0.00E+00 | 0.00E+00 | 0.00E+00 | 0.00E+00    | 0.00E+00 | 0.00E+00 |
| Co-58        | NO DATA        | 9.72E-07 | 2.24E-06 | NO DATA  | NO DATA  | NO DATA       | 1.34E-05 | ALL       | 0.00           | 0.00E+00 | 0.00E+00 | 0.00E+00 | 0.00E+00 | 0.00E+00    | 0.00E+00 | 0.00E+00 |
| Fe-59        | 5.87E-06       | 1.37E-05 | 5.29E-06 | NO DATA  | NO DATA  | 4.32E-06      | 3.24E-05 | ALL       | 0.00           | 0.00E+00 | 0.00E+00 | 0.00E+00 | 0.00E+00 | 0.00E+00    | 0.00E+00 | 0.00E+00 |
| Co-60        | NO DATA        | 2.81E-06 | 6.33E-06 | NO DATA  | NO DATA  | NO DATA       | 3.66E-05 | ALL       | 0.00           | 0.00E+00 | 0.00E+00 | 0.00E+00 | 0.00E+00 | 0.00E+00    | 0.00E+00 | 0.00E+00 |
| Zn-65        | 5.76E-06       | 2.00E-05 | 9.33E-06 | NO DATA  | 1.28E-05 | NO DATA       | 8.47E-06 | ALL       | 0.00           | 0.00E+00 | 0.00E+00 | 0.00E+00 | 0.00E+00 | 0.00E+00    | 0.00E+00 | 0.00E+00 |
| Nb-95        | 8.22E-09       | 4.56E-09 | 2.51E-09 | NO DATA  | 4.42E-09 | NO DATA       | 1.95E-05 | ALL       | 0.00           | 0.00E+00 | 0.00E+00 | 0.00E+00 | 0.00E+00 | 0.00E+00    | 0.00E+00 | 0.00E+00 |
| Zr-95        | 4.12E-08       | 1.30E-08 | 8.94E-09 | NO DATA  | 1.91E-08 | NO DATA       | 3.00E-05 | ALL       | 0.00           | 0.00E+00 | 0.00E+00 | 0.00E+00 | 0.00E+00 | 0.00E+00    | 0.00E+00 | 0.00E+00 |
| I-131        | 5.85E-06       | 8.19E-06 | 4.40E-06 | 2.39E-03 | 1.41E-05 | NO DATA       | 1.62E-06 | ALL       | 0.00           | 0.00E+00 | 0.00E+00 | 0.00E+00 | 0.00E+00 | 0.00E+00    | 0.00E+00 | 0.00E+00 |
| Cs-134       | 8.37E-05       | 1.97E-04 | 9.14E-05 | NO DATA  | 6.26E-05 | 2.39E-05      | 2.45E-06 | ALL       | 0.00           | 0.00E+00 | 0.00E+00 | 0.00E+00 | 0.00E+00 | 0.00E+00    | 0.00E+00 | 0.00E+00 |
| Cs-137       | 1.12E-04       | 1.49E-04 | 5.19E-05 | NO DATA  | 5.07E-05 | 1.97E-05      | 2.12E-06 | ALL       | 0.00           | 0.00E+00 | 0.00E+00 | 0.00E+00 | 0.00E+00 | 0.00E+00    | 0.00E+00 | 0.00E+00 |
| BaLa-140     | 2.84E-05       | 3.48E-08 | 1.83E-06 | NO DATA  | 1.18E-08 | 2.34E-08      | 4.38E-05 | ALL       | 0.00           | 0.00E+00 | 0.00E+00 | 0.00E+00 | 0.00E+00 | 0.00E+00    | 0.00E+00 | 0.00E+00 |
| Н-3          | NO DATA        | 1.06E-07 | 1.06E-07 | 1.06E-07 | 1.06E-07 | 1.06E-07      | 1.06E-07 | 214       | 348.00         | 0.00E+00 | 1.88E-02 | 1.88E-02 | 1.88E-02 | 1.88E-02    | 1.88E-02 | 1.88E-02 |

0.00E+00 1.88E-02 1.88E-02 1.88E-02 1.88E-02 1.88E-02 1.88E-02

Dose Commitment (mrem)≠

Catawba Nuclear Station Dose from Broadleaf Vegetation Pathway for 2003 Data Maximum Exposed Teen

#### Teen Dose from Vegetation Pathway (mrem) = Usage (kg) x Dose Factor (mrem/pCi ingested) x Concentration (pCi/kg)

Usage (intake in one year) = 42 kg

| -            |          |          | _        |          |                 |               |          | Highest<br>Net N      | Annual<br>⁄Iean  |          |          |          |          |             |          |          |
|--------------|----------|----------|----------|----------|-----------------|---------------|----------|-----------------------|------------------|----------|----------|----------|----------|-------------|----------|----------|
|              |          |          |          | Ingestio | <u>n Dose F</u> | <u>factor</u> |          | Concen                | tration          |          |          |          | Dose (m  | <u>rem)</u> |          |          |
| Radionuclide | Bone     | Liver    | T. Body  | Thyroid  | Kidney          | Lung          | GI-LLI   | Indicator<br>Location | Food<br>(pCi/kg) | Bone     | Liver    | T. Body  | Thyroid  | Kidney      | Lung     | GI-LLI   |
| I-131        | 5.85E-06 | 8.19E-06 | 4.40E-06 | 2.39E-03 | 1.41E-05        | NO DATA       | 1.62E-06 | ALL                   | 0.00             | 0.00E+00 | 0.00E+00 | 0.00E+00 | 0.00E+00 | 0.00E+00    | 0.00E+00 | 0.00E+00 |
| Cs-134       | 8.37E-05 | 1.97E-04 | 9.14E-05 | NO DATA  | 6.26E-05        | 2.39E-05      | 2.45E-06 | ALL                   | 0.00             | 0.00E+00 | 0.00E+00 | 0.00E+00 | 0.00E+00 | 0.00E+00    | 0.00E+00 | 0.00E+00 |
| Cs-137       | 1.12E-04 | 1.49E-04 | 5.19E-05 | NO DATA  | 5.07E-05        | 1.97E-05      | 2.12E-06 | 226                   | 25.60            | 1.20E-01 | 1.60E-01 | 5.58E-02 | 0.00E+00 | 5.45E-02    | 2.12E-02 | 2.28E-03 |

Dose Commitment (mrem) =

1.20E-01 1.60E-01 5.58E-02 0.00E+00 5.45E-02 2.12E-02 2.28E-03

Catawba Nuclear Station Dose from Fish Pathway for 2003 Data Maximum Exposed Teen

Teen Dose from Fish Pathway (mrem) = Usage (kg) x Dose Factor (mrem/pCi ingested) x Concentration (pCi/kg) H-3 Concentration in Fish = Surface Water pCi/l x Bioaccumulation Factor 0.9 pCi/kg per pCi/l = 12903 pCi/l x 0.9 = 11613 pCi/kg Usage (intake in one year) = 16 kg

|              |          |          |          | Highest Annua |          |           |             | Annual   |          |          |          |          |                |             |          |          |  |
|--------------|----------|----------|----------|---------------|----------|-----------|-------------|----------|----------|----------|----------|----------|----------------|-------------|----------|----------|--|
|              |          |          |          | Ingestio      | n Dose F | actor     |             | Net ]    | Mean     |          |          |          | <u>Dose (m</u> | <u>rem)</u> |          |          |  |
|              |          |          |          |               |          |           |             | Concer   | ntration |          |          |          |                |             |          |          |  |
| Radionuclide | Bone     | Liver    | T. Body  | Thyroid       | Kidney   | Lung      | GI-LLI      | Location | (pCi/kg) | Bone     | Liver    | T. Body  | Thyroid        | Kidney      | Lung     | GI-LLI   |  |
| Mn-54        | NO DATA  | 5.90E-06 | 1.17E-06 | NO DATA       | 1.76E-06 | NO DATA   | 1.21E-05    | ALL      | 0.00     | 0.00E+00 | 0.00E+00 | 0.00E+00 | 0.00E+00       | 0.00E+00    | 0.00E+00 | 0.00E+00 |  |
| Co-58        | NO DATA  | 9.72E-07 | 2.24E-06 | NO DATA       | NO DATA  | NO DATA   | 1.34E-05    | 208      | 143.00   | 0.00E+00 | 2.22E-03 | 5.13E-03 | 0.00E+00       | 0.00E+00    | 0.00E+00 | 3.07E-02 |  |
| Fe-59        | 5.87E-06 | 1.37E-05 | 5.29E-06 | NO DATA       | NO DATA  | 4.32E-06  | 3.24E-05    | ALL      | 0.00     | 0.00E+00 | 0.00E+00 | 0.00E+00 | 0.00E+00       | 0.00E+00    | 0.00E+00 | 0.00E+00 |  |
| Co-60        | NO DATA  | 2.81E-06 | 6.33E-06 | NO DATA       | NO DATA  | NO DATA   | 3.66E-05    | 208      | 26.10    | 0.00E+00 | 1.17E-03 | 2.64E-03 | 0.00E+00       | 0.00E+00    | 0.00E+00 | 1.53E-02 |  |
| Zn-65        | 5.76E-06 | 2.00E-05 | 9.33E-06 | NO DATA       | 1.28E-05 | NO DATA   | 8.47E-06    | ALL      | 0.00     | 0.00E+00 | 0.00E+00 | 0.00E+00 | 0.00E+00       | 0.00E+00    | 0.00E+00 | 0.00E+00 |  |
| Cs-134       | 8.37E-05 | 1.97E-04 | 9.14E-05 | NO DATA       | 6.26E-05 | 2.39E-05  | 2.45E-06    | ALL      | 0.00     | 0.00E+00 | 0.00E+00 | 0.00E+00 | 0.00E+00       | 0.00E+00    | 0.00E+00 | 0.00E+00 |  |
| Cs-137       | 1.12E-04 | 1.49E-04 | 5.19E-05 | NO DATA       | 5.07E-05 | 1.97E-05  | 2.12E-06    | 208      | 11.90    | 2.13E-02 | 2.84E-02 | 9.88E-03 | 0.00E+00       | 9.65E-03    | 3.75E-03 | 4.04E-04 |  |
| H-3          | NO DATA  | 1.06E-07 | 1.06E-07 | 1.06E-07      | 1.06E-07 | 1.06E-07  | 1.06E-07    | 208      | 11613.00 | 0.00E+00 | 1.97E-02 | 1.97E-02 | 1.97E-02       | 1.97E-02    | 1.97E-02 | 1.97E-02 |  |
|              |          |          |          |               |          |           |             |          |          |          |          |          |                |             |          |          |  |
|              |          |          |          |               |          | Dose Comm | nitment (mr | em) =    |          | 2.13E-02 | 5.15E-02 | 3.73E-02 | 1.97E-02       | 2.93E-02    | 2.34E-02 | 6.60E-02 |  |

.

## Catawba Nuclear Station Dose from Shoreline Sediment Pathway for 2003 Data Maximum Exposed Teen

Shoreline Recreation = Shore Width Factor = Sediment Surface Mass = 67 hr (in one year) 0.2 40 kg/m<sup>2</sup>

Teen Dose from Shoreline Sediment Pathway (mrem) = Shoreline Recreation (hr) x External Dose Factor (mrem/hr per pCl/m2) x Shore Width Factor x Sediment Surface Mass  $(kg/n^2)$  x Sediment Concentration (pCl/kg)

| Exter<br>on C | mal Dose Fac<br>Contaminated | tor Standing<br><u>Ground</u> | Highest Aı<br><u>Mean Cone</u> | nnual Net<br>centration | Dose     |          |  |  |
|---------------|------------------------------|-------------------------------|--------------------------------|-------------------------|----------|----------|--|--|
|               | (mrem/hr p                   | er pCi/nł)                    | Indicator                      | Sediment                | (mi      | ·em)     |  |  |
| Radionuclide  | T. Body                      | Skin                          | Location                       | (pCi/kg)                | T. Body  | Skin     |  |  |
| Mn-54         | 5.80E-09                     | 6.80E-09                      | 208-1S                         | 21.70                   | 6.75E-05 | 7.91E-05 |  |  |
| Co-58         | 7.00E-09                     | 8.20E-09                      | 208-1S                         | 87.50                   | 3.28E-04 | 3.85E-04 |  |  |
| Co-60         | 1.70E-08                     | 2.00E-08                      | 208-15                         | 108.00                  | 9.84E-04 | 1.16E-03 |  |  |
| Cs-134        | 1.20E-08                     | 1.40E-08                      | ALL                            | 0.00                    | 0.00E+00 | 0.00E+00 |  |  |
| Cs-137        | 4.20E-09                     | 4.90E-09                      | 208-1S                         | 26.90                   | 6.06E-05 | 7.07E-05 |  |  |
|               | Dose Commi                   | tment (mrem) =                |                                |                         | 1.44E-03 | 1.69E-03 |  |  |

## Catawba Nuclear Station Dose from Drinking Water Pathway for 2003 Data Maximum Exposed Adult

**Highest Annual** 

#### Adult Dose from Drinking Water Pathway (mrem) = Usage (I) x Dose Factor (mrem/pCi ingested) x Concentration (pCi/l)

Usage (intake in one year) = 730 1

|              |          |          |          |          |           |          |          | Net N                 | fean             |          |          |          |          |             |          |          |
|--------------|----------|----------|----------|----------|-----------|----------|----------|-----------------------|------------------|----------|----------|----------|----------|-------------|----------|----------|
|              |          |          |          | Ingestio | n Dose Fa | actor    |          | <u>Concen</u>         | tration          |          |          |          | Dose (m  | <u>rem)</u> |          |          |
| Radionuclide | Bone     | Liver    | T. Body  | Thyroid  | Kidney    | Lung     | GI-LLI   | Indicator<br>Location | Water<br>(pCi/I) | Bone     | Liver    | T. Body  | Thyroid  | Kidney      | Lung     | GI-LLI   |
| Mn-54        | NO DATA  | 4.57E-06 | 8.72E-07 | NO DATA  | 1.36E-06  | NO DATA  | 1.40E-05 | ALL                   | 0.00             | 0.00E+00 | 0.00E+00 | 0.00E+00 | 0.00E+00 | 0.00E+00    | 0.00E+00 | 0.00E+00 |
| Co-58        | NO DATA  | 7.45E-07 | 1.67E-06 | NO DATA  | NO DATA   | NO DATA  | 1.51E-05 | ALL                   | 0.00             | 0.00E+00 | 0.00E+00 | 0.00E+00 | 0.00E+00 | 0.00E+00    | 0.00E+00 | 0.00E+00 |
| Fe-59        | 4.34E-06 | 1.02E-05 | 3.91E-06 | NO DATA  | NO DATA   | 2.85E-06 | 3.40E-05 | ALL                   | 0.00             | 0.00E+00 | 0.00E+00 | 0.00E+00 | 0.00E+00 | 0.00E+00    | 0.00E+00 | 0.00E+00 |
| Co-60        | NO DATA  | 2.14E-06 | 4.72E-06 | NO DATA  | NO DATA   | NO DATA  | 4.02E-05 | ALL                   | 0.00             | 0.00E+00 | 0.00E+00 | 0.00E+00 | 0.00E+00 | 0.00E+00    | 0.00E+00 | 0.00E+00 |
| Zn-65        | 4.84E-06 | 1.54E-05 | 6.96E-06 | NO DATA  | 1.03E-05  | NO DATA  | 9.70E-06 | ALL                   | 0.00             | 0.00E+00 | 0.00E+00 | 0.00E+00 | 0.00E+00 | 0.00E+00    | 0.00E+00 | 0.00E+00 |
| Nb-95        | 6.22E-09 | 3.46E-09 | 1.86E-09 | NO DATA  | 3.42E-09  | NO DATA  | 2.10E-05 | ALL                   | 0.00             | 0.00E+00 | 0.00E+00 | 0.00E+00 | 0.00E+00 | 0.00E+00    | 0.00E+00 | 0.00E+00 |
| Zr-95        | 3.04E-08 | 9.75E-09 | 6.60E-09 | NO DATA  | 1.53E-08  | NO DATA  | 3.09E-05 | ALL                   | 0.00             | 0.00E+00 | 0.00E+00 | 0.00E+00 | 0.00E+00 | 0.00E+00    | 0.00E+00 | 0.00E+00 |
| I-131        | 4.16E-06 | 5.95E-06 | 3.41E-06 | 1.95E-03 | 1.02E-05  | NO DATA  | 1.57E-06 | ALL                   | 0.00             | 0.00E+00 | 0.00E+00 | 0.00E+00 | 0.00E+00 | 0.00E+00    | 0.00E+00 | 0.00E+00 |
| Cs-134       | 6.22E-05 | 1.48E-04 | 1.21E-04 | NO DATA  | 4.79E-05  | 1.59E-05 | 2.59E-06 | ALL                   | 0.00             | 0.00E+00 | 0.00E+00 | 0.00E+00 | 0.00E+00 | 0.00E+00    | 0.00E+00 | 0.00E+00 |
| Cs-137       | 7.97E-05 | 1.09E-04 | 7.14E-05 | NO DATA  | 3.70E-05  | 1.23E-05 | 2.11E-06 | ALL                   | 0.00             | 0.00E+00 | 0.00E+00 | 0.00E+00 | 0.00E+00 | 0.00E+00    | 0.00E+00 | 0.00E+00 |
| BaLa-140     | 2.03E-05 | 2.55E-08 | 1.33E-06 | NO DATA  | 8.67E-09  | 1.46E-08 | 4.18E-05 | ALL                   | 0.00             | 0.00E+00 | 0.00E+00 | 0.00E+00 | 0.00E+00 | 0.00E+00    | 0.00E+00 | 0.00E+00 |
| Н-3          | NO DATA  | 1.05E-07 | 1.05E-07 | 1.05E-07 | 1.05E-07  | 1.05E-07 | 1.05E-07 | 214                   | 348.00           | 0.00E+00 | 2.67E-02 | 2.67E-02 | 2.67E-02 | 2.67E-02    | 2.67E-02 | 2.67E-02 |

Dose Commitment (mrem) =

0.00E+00 2.67E-02 2.67E-02 2.67E-02 2.67E-02 2.67E-02 2.67E-02

Catawba Nuclear Station Dose from Broadleaf Vegetation Pathway for 2003 Data Maximum Exposed Adult

#### Adult Dose from Vegetation (mrem) = Usage (kg) x Dose Factor (mrem/pCi ingested) x Concentration (pCi/kg)

Usage (intake in one year) = 64 kg

|              |          |          |          |          |                 |          |          | Highest       | Annual   |          |          |          |          |             |          |          |
|--------------|----------|----------|----------|----------|-----------------|----------|----------|---------------|----------|----------|----------|----------|----------|-------------|----------|----------|
|              |          |          |          |          |                 |          |          | Net N         | /Iean    |          |          |          |          |             |          |          |
|              |          |          |          | Ingestio | <u>n Dose F</u> | 'actor   |          | <u>Concen</u> | tration  |          |          |          | Dose (m  | <u>rem)</u> |          |          |
|              |          |          |          |          |                 |          |          | Indicator     | Food     |          |          |          |          |             |          |          |
| Radionuclide | Bone     | Liver    | T. Body  | Thyroid  | Kidney          | Lung     | GI-LLI   | Location      | (pCi/kg) | Bone     | Liver    | T. Body  | Thyroid  | Kidney      | Lung     | GI-LLI   |
| I-131        | 4.16E-06 | 5.95E-06 | 3.41E-06 | 1.95E-03 | 1.02E-05        | NO DATA  | 1.57E-06 | ALL           | 0.00     | 0.00E+00 | 0.00E+00 | 0.00E+00 | 0.00E+00 | 0.00E+00    | 0.00E+00 | 0.00E+00 |
| Cs-134       | 6.22E-05 | 1.48E-04 | 1.21E-04 | NO DATA  | 4.79E-05        | 1.59E-05 | 2.59E-06 | ALL           | 0.00     | 0.00E+00 | 0.00E+00 | 0.00E+00 | 0.00E+00 | 0.00E+00    | 0.00E+00 | 0.00E+00 |
| Cs-137       | 7.97E-05 | 1.09E-04 | 7.14E-05 | NO DATA  | 3.70E-05        | 1.23E-05 | 2.11E-06 | 226           | 25.60    | 1.31E-01 | 1.79E-01 | 1.17E-01 | 0.00E+00 | 6.06E-02    | 2.02E-02 | 3.46E-03 |

Dose Commitment (mrem) =

1.31E-01 1.79E-01 1.17E-01 0.00E+00 6.06E-02 2.02E-02 3.46E-03

Catawba Nuclear Station Dose from Fish Pathway for 2003 Data Maximum Exposed Adult

Adult Dose from Fish Pathway (mrem) = Usage (kg) x Dose Factor (mrem/pCi ingested) x Concentration (pCi/kg)

H-3 Concentration in Fish = Surface Water pCi/l x Bioaccumulation Factor 0.9 pCi/kg per pCi/l = 12903 pCi/l x 0.9 = 11613 pCi/kg

Usage (intake in one year) = 21 kg

#### Highest Annual Net Mean

|              |          | Ingestion Dose Factor |          |          |          |          |          | <u>Concer</u> | nt <u>ration</u> |          |          | Dose (mrem) |          |          |          |          |
|--------------|----------|-----------------------|----------|----------|----------|----------|----------|---------------|------------------|----------|----------|-------------|----------|----------|----------|----------|
| Radionuclide | Bone     | Liver                 | T. Body  | Thyroid  | Kidney   | Lung     | GI-LLI   | Location      | (pCi/kg)         | Bone     | Liver    | T. Body     | Thyroid  | Kidney   | Lung     | GI-LLI   |
| Mn-54        | NO DATA  | 4.57E-06              | 8.72E-07 | NO DATA  | 1.36E-06 | NO DATA  | 1.40E-05 | ALL           | 0.00             | 0.00E+00 | 0.00E+00 | 0.00E+00    | 0.00E+00 | 0.00E+00 | 0.00E+00 | 0.00E+00 |
| Co-58        | NO DATA  | 7.45E-07              | 1.67E-06 | NO DATA  | NO DATA  | NO DATA  | 1.51E-05 | 208           | 143.00           | 0.00E+00 | 2.24E-03 | 5.02E-03    | 0.00E+00 | 0.00E+00 | 0.00E+00 | 4.53E-02 |
| Fe-59        | 4.34E-06 | 1.02E-05              | 3.91E-06 | NO DATA  | NO DATA  | 2.85E-06 | 3.40E-05 | ALL           | 0.00             | 0.00E+00 | 0.00E+00 | 0.00E+00    | 0.00E+00 | 0.00E+00 | 0.00E+00 | 0.00E+00 |
| Co-60        | NO DATA  | 2.14E-06              | 4.72E-06 | NO DATA  | NO DATA  | NO DATA  | 4.02E-05 | 208           | 26.10            | 0.00E+00 | 1.17E-03 | 2.59E-03    | 0.00E+00 | 0.00E+00 | 0.00E+00 | 2.20E-02 |
| Zn-65        | 4.84E-06 | 1.54E-05              | 6.96E-06 | NO DATA  | 1.03E-05 | NO DATA  | 9.70E-06 | ALL           | 0.00             | 0.00E+00 | 0.00E+00 | 0.00E+00    | 0.00E+00 | 0.00E+00 | 0.00E+00 | 0.00E+00 |
| Cs-134       | 6.22E-05 | 1.48E-04              | 1.21E-04 | NO DATA  | 4.79E-05 | 1.59E-05 | 2.59E-06 | ALL           | 0.00             | 0.00E+00 | 0.00E+00 | 0.00E+00    | 0.00E+00 | 0.00E+00 | 0.00E+00 | 0.00E+00 |
| Cs-137       | 7.97E-05 | 1.09E-04              | 7.14E-05 | NO DATA  | 3.70E-05 | 1.23E-05 | 2.11E-06 | 208           | 11.90            | 1.99E-02 | 2.72E-02 | 1.78E-02    | 0.00E+00 | 9.25E-03 | 3.07E-03 | 5.27E-04 |
| Н-3          | NO DATA  | 1.05E-07              | 1.05E-07 | 1.05E-07 | 1.05E-07 | 1.05E-07 | 1.05E-07 | 208           | 11613.00         | 0.00E+00 | 2.56E-02 | 2.56E-02    | 2.56E-02 | 2.56E-02 | 2.56E-02 | 2.56E-02 |
|              |          |                       |          |          |          |          |          |               |                  |          |          |             |          |          |          |          |

 Dose Commitment (mrem) =
 1.99E-02
 5.63E-02
 5.11E-02
 2.56E-02
 3.49E-02
 2.87E-02
 9.35E-02

## Catawba Nuclear Station Dose from Shoreline Sediment Pathway for 2003 Data Maximum Exposed Adult

| Shoreline Recreation =  | 12  | hr (in one year)  |
|-------------------------|-----|-------------------|
| Shore Width Factor =    | 0.2 |                   |
| Sediment Surface Mass = | 40  | kg/m <sup>2</sup> |

Adult Dose from Shoreline Sediment Pathway (mrem) = Shoreline Recreation (hr) x External Dose Factor (mrem/hr per pCi/m2) x Shore Width Factor x Sediment Surface Mass  $(kg/n^2)$  x Sediment Concentration (pCi/kg)

| External Do     | se Factor S | Standing                | Highest Ar      | nnual Net         | Dose     |          |  |  |
|-----------------|-------------|-------------------------|-----------------|-------------------|----------|----------|--|--|
| <u>on Conta</u> | aminated (  | Ground                  | <u>Mean Con</u> | <u>centration</u> | ÷        |          |  |  |
|                 | (mrem/hr p  | er pCi/m <sup>2</sup> ) | Indicator       | Sediment          | (mrem)   |          |  |  |
| Radionuclide    | T. Body     | Skin                    | Location        | (pCi/kg)          | T. Body  | Skin     |  |  |
| Mn-54           | 5.80E-09    | 6.80E-09                | 208-15          | 21.70             | 1.21E-05 | 1.42E-05 |  |  |
| Co-58           | 7.00E-09    | 8.20E-09                | 208-1S          | 87.50             | 5.88E-05 | 6.89E-05 |  |  |
| Co-60           | 1.70E-08    | 2.00E-08                | 208-1S          | 108.00            | 1.76E-04 | 2.07E-04 |  |  |
| Cs-134          | 1.20E-08    | 1.40E-08                | ALL             | 0.00              | 0.00E+00 | 0.00E+00 |  |  |
| Cs-137          | 4.20E-09    | 4.90E-09                | 208-1S          | 26.90             | 1.08E-05 | 1.27E-05 |  |  |
|                 | Dose Comm   | nitment (mrei           | n) =            |                   | 2.58E-04 | 3.03E-04 |  |  |

# **5.0 QUALITY ASSURANCE**

## 5.1 SAMPLE COLLECTION

EnRad Laboratories, Fisheries, and Aquatic Ecology performed the environmental sample collections as specified by approved sample collection procedures.

## 5.2 <u>SAMPLE ANALYSIS</u>

EnRad Laboratories performed the environmental sample analyses as specified by approved analysis procedures. EnRad Laboratories is located in Huntersville, North Carolina, at Duke Power Company's Environmental Center.



## 5.3 DOSIMETRY ANALYSIS

Duke Power Company's Environmental Center

The Radiation Dosimetry and Records group performed environmental dosimetry measurements as specified by approved dosimetry analysis procedures.

## 5.4 LABORATORY EQUIPMENT QUALITY ASSURANCE

## 5.4.1 DAILY QUALITY CONTROL

EnRad Laboratories has an internal quality assurance program which monitors each type of instrumentation for reliability and accuracy. Daily quality control checks ensure that instruments are in proper working order and these checks are used to monitor instrument performance.

## 5.4.2 CALIBRATION VERIFICATION

National Institute of Standards and Technology (NIST) standards that represent counting geometries are analyzed as unknowns at various frequencies ranging from weekly to annually to verify that efficiency calibrations are valid. The frequency is dependent upon instrument use and performance. Investigations are performed and documented should calibration verification data fall out of limits. Method quality control samples are analyzed with sample analyses that are processed in batches. These include gross beta in drinking water and tritium analyses.

## 5.5 DUKE POWER INTERCOMPARISON PROGRAM

EnRad Laboratories participated in the Duke Power Nuclear Generation Department Intercomparison Program during 2003. Interlaboratory cross-check standards, including, Marinelli beakers, air filters, air cartridges, gross beta on smears, and tritium in water samples were analyzed at various times of the year by the four counting laboratories in Duke Power Company for this program. A summary of these Intercomparison Reports for 2003 is documented in Table 5.0-A.

## 5.6 DUKE POWER AUDITS

The Catawba Radiation Protection Section was not audited by the Quality Assurance Group in 2003. A Quality Assurance audit was performed in January of 2002. Two examples were identified where personnel failed to complete procedures documenting review of radiological environmental monitoring data that occurred during 2001. All SLC testing requirements were satisfied and there were no situations which would have required the generation of a Special Report or an update to the ODCM.

EnRad Laboratories was not audited by the Quality Assurance Group in 2003. A Quality Assurance audit was performed in June of 2002. Laboratory practices and procedures were reviewed. No significant problems were identified as a result of this 2002 audit.

## 5.7 U.S. NUCLEAR REGULATORY COMMISSION INSPECTIONS

The Catawba Nuclear Station Radiological Environmental Monitoring Program was audited by the NRC in June 2003 (Reference 6.12). There were no findings or issues identified by the audit.

EnRad Laboratories was audited by the NRC in January of 2003. There were no findings of significance as a result of the audit. There were some inspector recommendations as a result of the 2003 audit which are described in PIPs G-03-00014 and G-03-00016.

## 5.8 STATE OF SOUTH CAROLINA INTERCOMPARISON PROGRAM

EnRad Laboratories routinely participates with the Bureau of Radiological Health of the State's Department of Health and Environmental Control (DHEC) in an

intercomparison program. EnRad Laboratories sends air, water, milk, vegetation, sediment, and fish samples which have been collected to the State of South Carolina DHEC Laboratory for intercomparison analysis.

## 5.9 <u>TLD INTERCOMPARISON PROGRAM</u>

### 5.9.1 NUCLEAR TECHNOLOGY SERVICES INTERCOMPARISON PROGRAM

Radiation Dosimetry and Records participates in a quarterly TLD intercomparison program administered by Nuclear Technology Services, Inc. of Roswell, GA. Nuclear Technology Services irradiates environmental dosimeters quarterly and sends them to the Radiation Dosimetry and Records group for analysis of the unknown estimated delivered exposure. A summary of the Nuclear Technology Services Intercomparison Report is documented in Table 5.0-B.

### 5.9.2 STATE OF NORTH CAROLINA INTERCOMPARISON PROGRAM

Radiation Dosimetry and Records routinely participates in a TLD intercomparison program. The State of North Carolina Radiation Protection Section irradiates environmental dosimeters and sends them to the Radiation Dosimetry and Records group for analysis of the unknown estimated delivered exposure. A summary of the State of North Carolina Environmental Dosimetry Intercomparison Report for 2003 is documented in Table 5.0-B.

### 5.9.3 INTERNAL CROSSCHECK (DUKE POWER)

Radiation Dosimetry and Records participates in a quarterly TLD intracomparison program administered internally by the Dosimetry Lab. The Dosimetry Lab Staff irradiates environmental dosimeters quarterly and submits them for analysis of the unknown estimated delivered exposure. A summary of the Internal Cross Check (Duke Power) Result is documented in Table 5.0-B.

#### 2003 CROSS-CHECK RESULTS FOR ENRAD LABORATORIES

Cross-Check samples are normally analyzed a minimum of three times. A status of "3 Pass" indicates that all three analyses yielded results within the designated acceptance range. A status of "1 Pass" indicates that one analysis of the cross-check was performed.

Footnote explanations are included following this data table.

| Gamma in | Water | 3.5 | liters |
|----------|-------|-----|--------|
|----------|-------|-----|--------|

| Reference  | Sample I.D. | Nuclide | Acceptance      | Reference       | Mean Reported | Cross Check           |
|------------|-------------|---------|-----------------|-----------------|---------------|-----------------------|
| Date       |             |         | Range           | Value           | Value         | Status                |
| l          |             |         | pCi/l           | pCi/I           | pCi/l         |                       |
| 5/21/2003  | Q032GWS     | Cr-51   | 1.32 - 2.35 E5  | 1.76 E5         | 1.79 E5       | 3 Pass                |
|            |             | Mn-54   | 6.23 - 11.05 E4 | 8.31 E4         | 8.62 E4       | 3 Pass                |
|            |             | Co-58   | 3.68 - 6.53 E4  | 4.91 E4         | 4.95 E4       | 3 Pass                |
|            |             | Fe-59   | 4.46 - 7.91 E4  | 5.95 E4         | 6.15 E4       | 3 Pass                |
|            |             | Co-60   | 4.27 - 7.56 E4  | 5.69 E4         | 5.87 E4       | 3 Pass                |
|            | (           | Zn-65   | 6.17 - 10.94 E4 | 8.23 E4         | 8.62 E4       | 3 Pass                |
|            |             | Cs-134  | 3.38 - 5.99 E4  | 4.50 E4         | 4.18 E4       | 3 Pass                |
|            |             | Cs-137  | 7.37 - 13.07 E4 | 9.83 E4         | 9.51 E4       | 3 Pass                |
|            |             | Ce-141  | 1.45 - 2.56 E5  | 1.93 E5         | 1.95 E5       | 3 Pass                |
|            | ]           | Co-57   | 0.00 - 0.00 E0  | 0.00 E0         | 5.90 E2       | 3 Pass <sup>(1)</sup> |
|            |             | Ce-139  | 0.00 - 0.00 E0  | 0.00 E0         | 8.20 E2       | 3 Pass <sup>(1)</sup> |
|            |             |         | in the second   | and<br>An an an |               |                       |
| 12/23/2003 | Q034GWR     | Cr-51   | 2.32 - 4.11 E3  | 3.09 E3         | 3.21 E3       | 3 Pass                |
| 1          | 1           | Mn-54   | 1.88 - 3.34 E3  | 2.51 E3         | 2.58 E3       | 3 Pass                |
| 1          | 1           | Co-58   | 1.10 - 1.95 E3  | 1.47 E3         | 1.50 E3       | 3 Pass                |
|            |             | Fe-59   | 0.95 - 1.68 E3  | 1.26 E3         | 1.39 E3       | 3 Pass                |
|            |             | Co-60   | 1.72 - 3.05 E3  | 2.29 E3         | 2.28 E3       | 3 Pass                |
|            |             | Zn-65   | 2.13 - 3.78 E3  | 2.84 E3         | 2.95 E3       | 3 Pass                |
|            |             | Cs-134  | 1.50 - 2.66 E3  | 2.00 E3         | 1.92 E3       | 3 Pass                |
|            |             | Cs-137  | 1.44 - 2.56 E3  | 1.93 E3         | 1.84 E3       | 3 Pass                |
|            |             | Ce-141  | 1.74 - 3.09 E3  | 2.33 E3         | 2.36 E3       | 3 Pass                |
|            |             | Co-57   | 0.00 - 0.00 E0  | 0.00 E0         | 9.78 E1       | 3 Pass <sup>(1)</sup> |
|            |             | Ce-139  | 0.00 - 0.00 E0  | 0.00 E0         | 3.52 E1       | 3 Pass <sup>(1)</sup> |
|            |             |         |                 |                 |               |                       |

#### Gamma in Water 1.0 liter

| Reference | Sample I.D. | Nuclide | Acceptance      | Reference | Mean Reported | Cross Check           |
|-----------|-------------|---------|-----------------|-----------|---------------|-----------------------|
| Date      | · · ·       |         | Range           | Value     | Value         | Status                |
|           |             |         | pCi/l           | pCi/l     | pCi/1         |                       |
| 5/21/2003 | Q032GWS     | Cr-51   | 1.32 - 2.35 E5  | 1.76_E5   | 1.79 E5       | 3 Pass                |
|           |             | Mn-54   | 6.23 - 11.05 E4 | 8.31 E4   | 8.61 E4       | 3 Pass                |
|           |             | Co-58   | 3.68 - 6.53 E4  | 4.91 E4   | 4.91 E4       | 3 Pass                |
|           |             | Fe-59   | 4.46 - 7.91 E4  | 5.95 E4   | 6.26 E4       | 3 Pass                |
|           |             | Co-60   | 4.27 - 7.56 E4  | 5.69 E4   | 5.91 E4       | 3 Pass                |
|           |             | Zn-65   | 6.17 - 10.94 E4 | 8.23 E4   | 8.85 E4       | 3 Pass                |
|           |             | Cs-134  | 3.38 - 5.99 E4  | 4.50 E4   | 3.95 E4       | 3 Pass                |
| 1         |             | Cs-137  | 7.37 - 13.07 E4 | 9.83 E4   | 9.36 E4       | 3 Pass                |
|           |             | Ce-141  | 1.45 - 2.56 E5  | 1.93 E5   | 1.94 E5       | 3 Pass                |
|           |             | Co-57   | 0.00 - 0.00 E0  | 0.00 E0   | 5.19 E2       | 3 Pass <sup>(1)</sup> |
|           |             | Ce-139  | 0.00 - 0.00 E0  | 0.00 E0   | 8.83 E2       | 3 Pass <sup>(1)</sup> |
|           |             |         |                 |           |               | •                     |

.

#### Gamma in Water 1.0 liter, continued

| Reference  | Sample I.D. | Nuclide | Acceptance     | Reference | Mean Reported | Cross Check           |
|------------|-------------|---------|----------------|-----------|---------------|-----------------------|
| Date       |             |         | Range          | Value     | Value         | Status                |
|            |             |         | pCi/l          | pCi/l     | pCi/l         |                       |
| 12/23/2003 | Q034GWR     | Cr-51   | 2.32 - 4.11 E3 | 3.09 E3   | 3.19 E3       | 3 Pass                |
|            |             | Mn-54   | 1.88 - 3.34 E3 | 2.51 E3   | 2.65 E3       | 3 Pass                |
|            |             | Co-58   | 1.10 - 1.95 E3 | 1.47 E3   | 1.55 E3       | 3 Pass                |
|            | [ [         | Fe-59   | 0.95 - 1.68 E3 | 1.26 E3   | 1.42 E3       | 3 Pass                |
|            |             | Co-60   | 1.72 - 3.05 E3 | 2.29 E3   | 2.35 E3       | 3 Pass                |
|            |             | Zn-65   | 2.13 - 3.78 E3 | 2.84 E3   | 2.97 E3       | 3 Pass                |
|            | [ [         | Cs-134  | 1.50 - 2.66 E3 | 2.00 E3   | 1.81 E3       | 3 Pass                |
|            | [           | Cs-137  | 1.44 - 2.56 E3 | 1.93 E3   | 1.87 E3       | 3 Pass                |
|            |             | Ce-141  | 1.74 - 3.09 E3 | 2.33 E3   | 2.38 E3       | 3 Pass                |
|            |             | Co-57   | 0.00 - 0.00 E0 | 0.00 E0   | 8.90 E1       | 3 Pass <sup>(1)</sup> |
|            |             | Ce-139  | 0.00 - 0.00 E0 | 0.00 E0   | 3.57 E1       | 3 Pass <sup>(1)</sup> |
|            |             |         |                | 14 T      |               |                       |

#### Gamma in Water 0.5 liter

| Reference  | Sample I.D. | Nuclide | Acceptance      | Reference | Mean Reported | Cross Check           |
|------------|-------------|---------|-----------------|-----------|---------------|-----------------------|
| Date       |             |         | Range           | Value     | Value         | Status                |
|            |             |         | pCi/l           | pCi/l     | pCi/l         |                       |
| 5/21/2003  | Q032GWS     | Cr-51   | 1.32 - 2.35 E5  | 1.76 E5   | 1.75 E5       | 3 Pass                |
|            |             | Mn-54   | 6.23 - 11.05 E4 | 8.31 E4   | 8.72 E4       | 3 Pass                |
|            |             | _Co-58  | 3.68 - 6.53 E4  | 4.91 E4   | 4.95 E4       | 3 Pass                |
|            | ]           | Fe-59   | 4.46 - 7.91 E4  | 5.95 E4   | 6.35 E4       | 3 Pass                |
|            |             | Co-60   | 4.27 - 7.56 E4  | 5.69 E4   | 5.87 E4       | 3 Pass                |
|            |             | Zn-65   | 6.17 - 10.94 E4 | 8.23 E4   | 8.96 E4       | 3 Pass                |
|            |             | Cs-134  | 3.38 - 5.99 E4  | 4.50 E4   | _3.93 E4_     | 3 Pass                |
| Ì          |             | Cs-137  | 7.37 - 13.07 E4 | 9.83 E4   | 9.51 E4       | 3 Pass                |
|            |             | Ce-141  | 1.45 - 2.56 E5  | 1.93 E5   | 1.94 E5       | 3 Pass                |
|            |             | Co-57   | 0.00 - 0.00 E0  | 0.00 E0   | 6.42 E2       | 3 Pass <sup>(1)</sup> |
|            |             | Ce-139  | 0.00 - 0.00 E0  | 0.00 E0   | 8.19 E2       | 3 Pass <sup>(1)</sup> |
|            |             |         |                 | · · ·     |               |                       |
| 12/23/2003 | Q034GWR     | Cr-51   | 2.32 - 4.11 E3  | 3.09 E3   | 3.24 E3       | 3 Pass                |
|            |             | Mn-54   | 1.88 - 3.34 E3  | 2.51 E3   | 2.64 E3       | 3 Pass                |
|            |             | Co-58   | 1.10 - 1.95 E3  | 1.47 E3   | 1.52 E3       | 3 Pass                |
|            |             | Fe-59   | 0.95 - 1.68 E3  | 1.26 E3   | 1.41 E3       | 3 Pass                |
|            |             | Co-60   | 1.72 - 3.05 E3  | 2.29 E3   | 2.33 E3       | 3 Pass                |
|            |             | Zn-65   | 2.13 - 3.78 E3  | 2.84 E3   | 3.00 E3       | 3 Pass                |
|            |             | Cs-134  | 1.50 - 2.66 E3  | 2.00 E3   | 1.75 E3       | 3 Pass                |
|            |             | Cs-137  | 1.44 - 2.56 E3  | 1.93 E3   | 1.84 E3       | 3 Pass                |
|            | 1           | Ce-141  | 1.74 - 3.09 E3  | 2.33 E3   | 2.35 E3       | 3 Pass                |
|            |             | Co-57   | 0.00 - 0.00 E0  | 0.00 E0   | 8.72 E1       | 3 Pass <sup>(1)</sup> |
|            |             |         |                 |           | :             |                       |

| Gamma | in | Water | 0.25 | liter |
|-------|----|-------|------|-------|
|-------|----|-------|------|-------|

| Reference | Sample I.D. | Nuclide | Acceptance      | Reference | Mean Reported | Cross Check           |
|-----------|-------------|---------|-----------------|-----------|---------------|-----------------------|
| Date      |             |         | Range           | Value     | Value         | Status                |
|           |             |         | pCi/l           | pCi/l     | pCi/l         |                       |
| 5/21/2003 | Q032GWS     | Cr-51   | 1.32 - 2.35 E5  | 1.76 E5   | 1.79 E5       | 3 Pass                |
|           |             | Mn-54   | 6.23 - 11.05 E4 | 8.31 E4   | 8.80 E4       | 3 Pass                |
|           |             | Co-58   | 3.68 - 6.53 E4  | 4.91 E4   | 5.01 E4       | 3 Pass                |
|           |             | Fe-59   | 4.46 - 7.91 E4  | 5.95 E4   | 6.50 E4       | 3 Pass                |
|           |             | Co-60   | 4.27 - 7.56 E4  | 5.69 E4   | 5.99 E4       | 3 Pass                |
|           |             | Zn-65   | 6.17 - 10.94 E4 | 8.23 E4   | 9.08 E4       | 3 Pass_               |
|           |             | Cs-134  | 3.38 - 5.99 E4  | 4.50 E4   | 4.01 E4       | 3 Pass                |
|           |             | Cs-137  | 7.37 - 13.07 E4 | 9.83 E4   | 9.58 E4       | 3 Pass                |
|           |             | Ce-141  | 1.45 - 2.56 E5  | 1.93 E5   | 1.97 E5       | 3 Pass                |
|           |             | Co-57   | 0.00 - 0.00 E0  | 0.00 E0   | 5.83 E2       | 3 Pass <sup>(1)</sup> |
|           |             | Ce-139  | 0.00 - 0.00 E0  | 0.00 E0   | 7.90 E2       | 3 Pass <sup>(1)</sup> |
|           |             |         |                 |           |               |                       |

| Reference  | Sample I.D. | Nuclide | Acceptance     | Reference             | Mean Reported | Cross Check           |
|------------|-------------|---------|----------------|-----------------------|---------------|-----------------------|
| Date       | -           |         | Range          | Value                 | Value         | Status                |
| · ·        |             |         | pCi/l          | pCi/l                 | pCi/l         |                       |
| 12/23/2003 | Q034GWR     | Cr-51   | 2.32 - 4.11 E3 | 3.09 E3               | 3.33 E3       | 3 Pass                |
|            |             | Mn-54   | 1.88 - 3.34 E3 | 2.51 E3               | 2.59 E3       | 3 Pass                |
|            |             | Co-58   | 1.10 - 1.95 E3 | 1.47 E3               | 1.55 E3       | 3 Pass                |
|            |             | Fe-59   | 0.95 - 1.68 E3 | 1.26 E3               | 1.39 E3       | 3 Pass                |
|            |             | Co-60   | 1.72 - 3.05 E3 | 2.29 E3               | 2.33 E3       | 3 Pass                |
|            |             | Zn-65   | 2.13 - 3.78 E3 | 2.84 E3               | 3.15 E3       | 3 Pass                |
|            |             | Cs-134  | 1.50 - 2.66 E3 | 2.00 E3               | 1.76 E3       | 3 Pass                |
|            |             | Cs-137  | 1.44 - 2.56 E3 | 1.93 E3               | 1.86 E3       | 3 Pass                |
|            |             | Ce-141  | 1.74 - 3.09 E3 | 2.33 E3               | 2.35 E3       | 3 Pass                |
|            |             | Co-57   | 0.00 - 0.00 E0 | 0.00 E0               | 1.12 E3       | 3 Pass <sup>(1)</sup> |
|            |             | Ce-139  | 0.00 - 0.00 E0 | 0.00 E0               | 3.49 E1       | 3 Pass <sup>(1)</sup> |
|            |             |         | 1              | an est parte a second | ·             |                       |

#### Gamma in Water 0.25 liter, continued

#### Gamma in Filter

| Reference  | Sample I.D. | Nuclide      | Acceptance                                         | Reference | Mean Reported | Cross Check           |
|------------|-------------|--------------|----------------------------------------------------|-----------|---------------|-----------------------|
| Date       |             |              | Range                                              | Value     | Value         | Status                |
|            |             |              | pCi/total                                          | pCi/total | pCi/total     |                       |
| 12/11/2003 | E4020-37    | Cr-51        | 1.39 - 2.53 E2                                     | 1.87 E2   | 1.88 E2       | 3 Pass                |
|            |             | <u>Mn-54</u> | 0.86 - 1.53 E2                                     | 1.15 E2   | 1.19 E2       | 3 Pass                |
|            | 1           | Co-58        | 5.56 - 9.86 E1                                     | 7.41 El   | 7.61 E1       | 3 Pass                |
|            | !           | Fe-59        | 5.12 - 9.08 E1                                     | 6.83 E1   | 6.63 E1       | 3 Pass                |
|            | 1 1         | Co-60        | 0.78 - 1.38 E2                                     | 1.03 E2   | 1.07 E2       | 3 Pass                |
|            |             | Zn-65        | 1.20 - 2.14 E2                                     | 1.60 E2   | 1.25 E2       | 3 Pass <sup>(2)</sup> |
|            |             | Cs-134       | 6.80 - 12.06 E1                                    | 9.07 E1   | 9.09 E1       | 3 Pass                |
|            | !           | Cs-137       | 6.44 - 11.42 E1                                    | 8.58 E1   | 8.11 El       | 3 Pass                |
|            | 1           | Ce-141       | 1.01 - 1.79 E2                                     | 1.35 E2   | 1.37 E2       | 3 Pass                |
|            |             | Co-57        | 0.00 - 0.00 E0                                     | 0.00 E0   | 3.48 E0       | 3 Pass <sup>(2)</sup> |
|            |             |              | n égyen szereletetetetetetetetetetetetetetetetetet | 1 A 14    |               | 11 A.                 |

#### Iodine in Water

| Reference | Sample I.D. | Nuclide | Acceptance                                                                                                      | Reference | Mean Reported         | Cross Check             |
|-----------|-------------|---------|-----------------------------------------------------------------------------------------------------------------|-----------|-----------------------|-------------------------|
| Date      | 1           |         | Range                                                                                                           | Value     | Value                 | Status                  |
|           |             |         | FpCi/I                                                                                                          | pCi/l     | pCi/l                 |                         |
| 1/10/2003 | Q031LIW1    | I-131   | 3.64 - 6.46 E2                                                                                                  | 4.86 E2   | 5.40 E2               | 3 Pass                  |
|           |             |         |                                                                                                                 |           |                       |                         |
| 1/10/2003 | Q031LIW2    | I-131   | 1.22 - 4.90 E0                                                                                                  | 2.45 E0   | 2.53 E0               | 3 Pass                  |
|           |             |         | يەر بەر بەر ئەتلەر ئەتلەر «ئەتلەر» بەر                                                                          |           |                       |                         |
| 1/10/2003 | Q031LIW3    | I-131   | 4.91 - 8.71 E1                                                                                                  | 6.55 El   | 5.64 <u>E</u> 1       | 3 Pass                  |
|           |             |         | 1                                                                                                               |           | and the second second |                         |
| 7/1/2003  | Q033LIW1    | I-131   | 6.65 - 11.78 E2                                                                                                 | 8.86 E2   | 10.10 E2              | 3 Pass                  |
|           |             |         | in the second | 121 - A   |                       |                         |
| 7/1/2003  | Q033LIW2    | I-131   | 3.56 - 6.87 E0                                                                                                  | 4.94 E0   | 6.82 E0               | 1/3 High <sup>(3)</sup> |
|           | ·           |         | and the state of the set                                                                                        | ·         |                       |                         |
| 7/1/2003  | Q033LIW3    | I-131   | 1.68 - 2.97 E2                                                                                                  | 2.23 E2   | 2.51 E2               | 3 Pass                  |
| (         | · · ·       |         |                                                                                                                 |           |                       |                         |

#### Iodine in Milk

| Reference<br>Date | Sample J.D. | Nuclide | Acceptance<br>Range | Reference<br>Value<br>pCi/l | Mean Reported<br>Value<br>pCi/l | Cross Check<br>Status                 |
|-------------------|-------------|---------|---------------------|-----------------------------|---------------------------------|---------------------------------------|
| 5/21/2003         | Q032LIM1    | I-131   | 4.63 - 8.22 E2      | 6.18 E2                     | 6.07 E2                         | 3 Pass                                |
|                   | 1. 1. A.    |         | . Meretickers       |                             | a and Mat                       |                                       |
| 5/21/2003         | Q032LIM2    | I-131   | 1.97 - 3.49 E2      | 2.63 E2                     | 2.52 E2                         | 3 Pass                                |
|                   |             |         | a content de la     |                             |                                 | · · · · · · · · · · · · · · · · · · · |
| 5/21/2003         | Q032LIM3    | I-131   | 0.00 - 0.00 E0      | 0.00 E0                     | 0.00 E0                         | 3 Pass                                |
|                   |             |         | a sustained and     |                             | ::                              |                                       |

#### Iodine in Milk, continued

| Reference<br>Date | Sample I.D. | Nuclide | Acceptance<br>Range<br>pCi/l                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Reference<br>Value<br>pCi/l | Mean Reported<br>Value<br>pCi/l | Cross Check<br>Status |
|-------------------|-------------|---------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|---------------------------------|-----------------------|
| 11/18/2003        | Q034LIM1    | I-131   | 4.10 - 7.27 E2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 5.47 E2                     | 6.10 E2                         | 3 Pass                |
|                   |             |         | the state of the second s | .:                          |                                 |                       |
| 11/18/2003        | Q034LIM2    | I-131   | 0.00 - 0.00 E0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.00 E0                     | 0.00 E0                         | 3 Pass                |
|                   | _           |         | - 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 111-1                       |                                 |                       |
| 11/18/2003        | Q034LIM3    | I-131   | 1.92 - 3.40 E1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2.56 E1                     | 2.65 E1                         | 3 Pass                |
|                   |             |         | 1. 2. 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | · · .                       |                                 |                       |

\_\_\_\_

#### Iodine Cartridge

| Reference<br>Date | Sample I.D.                           | Nuclide       | Acceptance<br>Range   | Reference<br>Value | Mean Reported<br>Value | Cross Check<br>Status |
|-------------------|---------------------------------------|---------------|-----------------------|--------------------|------------------------|-----------------------|
| 6/12/2002         | E2679 27                              | T 121         | A 65 9 25 E1          | < 20 E1            |                        | 2 Dece                |
| 0/12/2005         | L L L L L L L L L L L L L L L L L L L | 1-151         | 4.03 - 8.23 EI        | 0.20 EI            | 0.14 EI                | <u> </u>              |
| L                 |                                       | <u>Cs-137</u> | 0.00 - 0.00 E0        | 0.00 E0            | 58.77 E0               | 3 Pass <sup>(4)</sup> |
|                   | -                                     |               | a data a s            |                    |                        | ·                     |
| 12/11/2003        | E4021-37                              | I-131         | 5.97 - 10.58 E1       | 7.96 El            | 9.33 E1                | 3 Pass                |
|                   |                                       |               | a tan <sup>1</sup> an | ·                  | _                      |                       |

#### Beta in Water

| Reference | Sample I.D. | Nuclide    | Acceptance                               | Reference | Mean Reported | Cross Check |
|-----------|-------------|------------|------------------------------------------|-----------|---------------|-------------|
| Date      |             |            | Range                                    | Value     | Value         | Status      |
| l         |             |            | pCi/l                                    | pCi/l     | pCi/l         |             |
| 9/18/2003 | E3849-37    | Gross Beta | 1.85 - 3.27 E2                           | 2.46 E2   | 2.26 E2       | 3 Pass      |
|           |             |            | 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1 | 15. E     |               | 5           |

#### Beta Smear

| Reference<br>Date | Sample I.D. | Nuclide    | Acceptance<br>Range<br>dpm | Reference<br>Value<br>dpm | Mean Reported<br>Value<br>dpm | Cross Check<br>Status |
|-------------------|-------------|------------|----------------------------|---------------------------|-------------------------------|-----------------------|
| 5/16/2003         | A16754-37   | Gross Beta | 7.09 - 12.58 E3            | 9.46 E3                   | 9.20 E3                       | 3 Pass                |
|                   |             |            |                            |                           |                               |                       |

#### Tritium in Water

| Reference  | Sample I.D.        | Nuclide                               | Acceptance                   | Reference | Mean Reported                              | Cross Check           |
|------------|--------------------|---------------------------------------|------------------------------|-----------|--------------------------------------------|-----------------------|
| Date       |                    |                                       | Range                        | Value     | Value                                      | Status                |
|            |                    |                                       | pCi/l                        | pCi/I     | pCi/l                                      | ····                  |
| 5/21/2003  | Q032TWS1           | H-3                                   | 0.00 - 0.00 E0               | 0.00 E0   | 0.00 E0                                    | 3 Pass                |
|            | · · ·              | a sa sa                               |                              |           | ••••••••••••••••••••••••••••••••••••••     | till the second       |
| 5/21/2003  | Q032TWS2           | H-3                                   | 5.83 - 10.35 E4              | 7.78 E4   | 6.89 E4                                    | 3 Pass                |
| a state    |                    |                                       | and the second states of the | · · ·     |                                            |                       |
| 12/23/2003 | Q034TWR1           | H-3                                   | 1.37 - 4.07 E2               | 2.37 E2   | 3.19 E2                                    | 3 Pass                |
|            | a an an guileachta |                                       | an the multiple              |           | eren en e | •• ••••               |
| 12/23/2003 | Q034TWR2           | H-3                                   | 0.00 - 0.00 E0               | 0.00 E0   | 0.00 E0                                    | 3 Pass                |
|            | di stati           | · · · · · · · · · · · · · · · · · · · | the tensor and               |           | uti siny s                                 | and the second of the |
| 12/23/2003 | Q034TWR3           | H-3                                   | 0.97 - 1.73 E3               | 1.30 E3   | 1.31 E3                                    | 3 Pass                |
|            |                    |                                       |                              |           | 4. N. 11                                   | Second Second         |

#### Table 5.0-A Footnote Explanations

 Gamma in Water, Sample ID Q032GWS, Reference Date 5/21/2003: 3.5 L Marinelli, 1.0 L Marinelli, 0.5 L Marinelli, 0.25 L Marinelli

Gamma in Water, Sample ID Q034GWR, Reference Date 12/23/2003: 3.5 L Marinelli, 1.0 L Marinelli, 0.5 L Marinelli, 0.25 L Marinelli

Co-57 and Ce-139 were observed in cross-checks and was attributed to a contaminant arriving with the source. The nuclides were determined to be present, but there was no reference activity applicable to the results. Ce-139 was not detected in the Q034GWR, Reference Date 12/23/2003 0.5 L Marinelli analysis.

(2) Gamma in Filter, Sample ID E4020-37, Reference Date 12/11/2003

Cross-check was vendor-prepared. Zn-65 activities for this cross-check were consistently low. The source was analyzed at Catawba and similar results were observed. Co-57 was an unintended contaminant in the sample. General Office PIP G-04-00047 was written to record investigative actions.

Gamma in Filter, Sample ID E3677A-37, Reference Date 6/12/2003 was a vendor-prepared cross-check. A uniform overestimation of about 72% for all nuclides was consistently observed in each analysis. The source or its calibration certificate was determined to be in error. Data for this cross-check was not included in the Annual Radiological Environmental Operating Report. General Office PIP G-04-00039 was written to record investigative actions.

(3) Iodine in Water, Sample ID Q033LIW2, Reference Date 7/1/2003

Three results for low-level I-131 [364.48 keV] analysis were reported, with one being above acceptance limit. General Office PIP G-04-00146 was written to record investigative actions.

(4) Iodine Cartridge, Sample ID E3678-37, Reference Date 6/12/2003

Cs-137 is a known contaminant of the charcoal media and was detected in all reported analyses. The nuclide was determined to be present, but there was no reference activity applicable to the results.

# TABLE 5.0-B2003 ENVIRONMENTAL DOSIMETERCROSS-CHECK RESULTS

|                           | Nuclear Technology Services |              |          |           |           |                        |              |              |          |           |           |
|---------------------------|-----------------------------|--------------|----------|-----------|-----------|------------------------|--------------|--------------|----------|-----------|-----------|
| 1st Quart                 | ter 2003                    |              |          |           |           | 2nd Quar               | ter 2003     |              |          |           |           |
| TLD                       | Delivered                   | Reported     | Bias     | Pass/Fail |           | TLD                    | Delivered    | Reported     | Bias     | Pass/Fail |           |
| Number                    | (mrem)                      | (mrem)       | (% diff) | Criteria  | Pass/Fail | Number                 | (mrem)       | (mrem)       | (% diff) | Criteria  | Pass/Fail |
| 101327                    | 89                          | 95.2         | 6.97     | <+/-15%   | Pass      | 101196                 | 70           | 71.9         | 2.71     | <+/-15%   | Pass      |
| 101200                    | 89                          | 97.0         | 8.99     | <+/-15%   | Pass      | 101149                 | 70           | 74.8         | 6.86     | <+/-15%   | Pass      |
| 101166                    | 89                          | 95.7         | 7.53     | <+/-15%   | Pass      | 101152                 | 70           | 71.8         | 2.57     | <+/-15%   | Pass      |
| 101102                    | 89                          | 96.6         | 8.54     | <+/-15%   | Pass      | 101188                 | 70           | 76.4         | 9.14     | <+/-15%   | Pass      |
| 101274                    | 89                          | 94.7         | 6.40     | <+/-15%   | Pass      | 101151                 | 70           | 72.7         | 3.86     | <+/-15%   | Pass      |
|                           | Avera                       | ge Bias (B)  | 7.69     |           |           | Average Bias (B)       |              | 5.03         |          |           |           |
|                           | Standard D                  | eviation (S) | 1.07     |           |           |                        | Standard De  | eviation (S) | 2.87     |           |           |
| Measure Performance  B +S |                             | 8.76         | <15%     | Pass      | Mea       | sure Perform           | nance  B +S  | 7.90         | <15%     | Pass      |           |
| 3rd Quar                  | ter 2003                    |              |          |           |           | 4th Quart              | er 2003      |              |          |           |           |
| TLD                       | Delivered                   | Reported     | Bias     | Pass/Fail |           | TLD                    | Delivered    | Reported     | Bias     | Pass/Fail |           |
| Number                    | (mrem)                      | (mrem)       | (% diff) | Criteria  | Pass/Fail | Number                 | (mrem)       | (mrem)       | (% diff) | Criteria  | Pass/Fail |
| 100113                    | 90                          | 93.8         | 4.22     | <+/-15%   | Pass      | 100075                 | 76.4         | 81.7         | 6.94     | <+/-15%   | Pass      |
| 100215                    | 90                          | 94.4         | 4.89     | <+/-15%   | Pass      | 100397                 | 76.4         | 83.2         | 8.90     | <+/-15%   | Pass      |
| 100138                    | 90                          | 94.4         | 4.89     | <+/-15%   | Pass      | 100335                 | 76.4         | 82.7         | 8.25     | <+/-15%   | Pass      |
| 100380                    | 90                          | 93.5         | 3.89     | <+/-15%   | Pass      | 100050                 | 76.4         | 82.0         | 7.33     | <+/-15%   | Pass      |
| 100126                    | 90                          | 93.7         | 4.11     | <+/-15%   | Pass      | 100030                 | 76.4         | 83.8         | 9.69     | <+/-15%   | Pass      |
|                           | Avera                       | ge Bias (B)  | 4.40     |           |           |                        | Avera        | ge Bias (B)  | 8.22     |           |           |
|                           | Standard De                 | eviation (S) | 0.46     |           |           | Standard Deviation (S) |              |              | 1.12     |           |           |
| Mea                       | sure Perforn                | nance B+S    | 4.86     | <15%      | Pass      | Mea                    | sure Perform | nance  B +S  | 9,34     | <15%      | Pass      |

## State of North Carolina, Division of Radiation Protection

| Spring 20              | 003          |             |          |           | :         | Fall 2003   |              |             |          |           |           |
|------------------------|--------------|-------------|----------|-----------|-----------|-------------|--------------|-------------|----------|-----------|-----------|
| TLD                    | Delivered    | Reported    | Bias     | Pass/Fail |           | TLD         | Delivered    | Reported    | Bias     | Pass/Fail |           |
| Number                 | (mrem)       | (mrem)      | (% diff) | Criteria  | Pass/Fail | Number      | (mrem)       | (mrem)      | (% diff) | Criteria  | Pass/Fail |
| 100964                 | 65           | 70.0        | 7.69     | <+/-15%   | Pass      | 100940      | 59.4         | 63.1        | 6.23     | <+/-15%   | Pass      |
| 100159                 | 65           | 72.2        | 11.08    | <+/-15%   | Pass      | 100723      | 59.4         | 58.8        | -1.01    | <+/-15%   | Pass      |
| 100815                 | 65           | 69.1        | 6.31     | <+/-15%   | Pass      | 100747      | 59.4         | 61.2        | 3.03     | <+/-15%   | Pass      |
| 100759                 | 65           | 70.5        | 8.46     | <+/-15%   | Pass      | 101020      | 59.4         | 59.0        | -0.67    | <+/-15%   | Pass      |
| 100150                 | 65           | 72.3        | 11.23    | <+/-15%   | Pass      | 100080      | 59.4         | 60.8        | 2.36     | <+/-15%   | Pass      |
| 100823                 | 65           | 72.2        | 11.08    | <+/-15%   | Pass      | 100356      | 59.4         | 60.7        | 2.19     | <+/-15%   | Pass      |
| 100169                 | 65           | 67.9        | 4.46     | <+/-15%   | Pass      | 100818      | 59.4         | 59.6        | 0.34     | <+/-15%   | Pass      |
| 100921                 | 65           | 71.1        | 9.38     | <+/-15%   | Pass      | 101122      | 59.4         | 59.4        | 0.00     | <+/-15%   | Pass      |
|                        | Avera        | ge Bias (B) | 8.71     |           |           |             | Avera        | ge Bias (B) | 1.56     |           |           |
| Standard Deviation (S) |              | 2.48        |          |           |           | Standard De | eviation (S) | 2.41        |          |           |           |
| Mea                    | sure Perforn | nance  B +S | 11.19    | <15%      | Pass      | Meas        | sure Perforn | nance B+S   | 3.96     | <15%      | Pass      |

 $\cup$ 

| ر        |           |              |              |          | Internal  | Crossche  | ck (Duk   | e Power)     |              |          |           |           |
|----------|-----------|--------------|--------------|----------|-----------|-----------|-----------|--------------|--------------|----------|-----------|-----------|
| ן ר      | 1st Quart | er 2003      |              |          | · .       |           | 2nd Quar  | ter 2003     |              |          | *         |           |
| ,        | TLD       | Delivered    | Reported     | Bias     | Pass/Fail |           | TLD       | Delivered    | Reported     | Bias .   | Pass/Fail |           |
| -        | Number    | (mrem)       | (mrem)       | (% diff) | Criteria  | Pass/Fail | Number    | (mrem)       | (mrem)       | (% diff) | Criteria  | Pass/Fail |
|          | 100050    | 39           | 37.5         | -3.85    | <+/-15%   | Pass      | 100155    | 65           | 63.0         | -3.08    | <+/-15%   | Pass      |
| )        | 100030    | 39           | 37.3         | -4.36    | <+/-15%   | Pass      | 100792    | 65           | 64.7         | -0.46    | <+/-15%   | Pass      |
| 1        | 100008    | 39           | 36.3         | -6.92    | <+/-15%   | Pass      | 100769    | 65           | 64.4         | -0.92    | <+/-15%   | Pass      |
|          | 100140    | 39           | 39.3         | 0.77     | <+/-15%   | Pass      | 100061    | 65           | 64.7         | -0.46    | <+/-15%   | Pass      |
| ノ        | 100007    | 39           | 36.7         | -5.90    | <+/-15%   | Pass      | 100799    | 65           | 63.4         | -2.46    | <+/-15%   | Pass      |
| ,        | 100957    | 39           | 38.1         | -2.31    | <+/-15%   | Pass      | 100117    | 65           | 63.7         | -2.00    | <+/-15%   | Pass      |
| ~        | 100996    | 39           | 37.5         | -3.85    | <+/-15%   | Pass      | 100012    | 65           | 63.8         | -1.85    | <+/-15%   | Pass      |
| 7        | 100940    | 39           | 38.9         | -0.26    | <+/-15%   | Pass      | 100114    | 65           | 65.0         | 0.00     | <+/-15%   | Pass      |
| )        | 100954    | 39           | 37.0         | -5.13    | <+/-15%   | Pass      | 100366    | 65           | 64.8         | -0.31    | <+/-15%   | Pass      |
|          | 100955    | 39           | 38.0         | -2.56    | <+/-15%   | Pass      | 100314    | 65           | 63.9         | -1.69    | <+/-15%   | Pass      |
| -        |           | Avera        | ige Bias (B) | -3.44    |           |           |           | Avera        | ge Bias (B)  | -1.32    |           |           |
| )        |           | Standard De  | eviation (S) | 2.41     |           |           |           | Standard De  | eviation (S) | 1.04     |           | :         |
| ,        | Mea       | sure Perforn | nance  B +S  | 5.84     | <15%      | Pass      | Mea       | sure Perform | nance  B +S  | 2.36     | <15%      | Pass      |
|          | 3rd Quar  | ter 2003     |              |          |           |           | 4th Quart | er 2003      |              | •        |           |           |
| ノ        | TLD       | Delivered    | Reported     | Bias     | Pass/Fail |           | TLD       | Delivered    | Reported     | Bias     | Pass/Fail |           |
| ,        | Number    | (mrem)       | (mrem)       | (% diff) | Criteria  | Pass/Fail | Number    | (mrem)       | (mrem)       | (% diff) | Criteria  | Pass/Fail |
|          | 100511    | 26           | 25.8         | -0.77    | <+/-15%   | Pass      | 100085    | 39           | 37.9         | -2.82    | <+/-15%   | Pass      |
| )        | 100552    | 26           | 25.9         | -0.38    | <+/-15%   | Pass      | 100976    | 39           | 38.5         | -1.28    | <+/-15%   | Pass      |
| )        | 100590    | 26           | 26.0         | 0.00     | <+/-15%   | Pass      | 101413    | 39           | 37.2         | -4.62    | <+/-15%   | Pass      |
|          | 100470    | 26           | 25.8         | -0.77    | <+/-15%   | Pass      | 101397    | 39           | 37.0         | -5.13    | <+/-15%   | Pass      |
| <i>,</i> | 100481    | 26           | 25.8         | -0.77    | <+/-15%   | Pass      | 100260    | 39           | 39.0         | 0.00     | <+/-15%   | Pass      |
| )        | 101201    | 26           | 24.4         | -6.15    | <+/-15%   | Pass      | 100584    | 39           | 38.2         | -2.05    | <+/-15%   | Pass      |
| ,        | 101204    | 26           | 25.6         | -1.54    | <+/-15%   | Pass      | 100343    | 39           | 38.4         | -1.54    | <+/-15%   | Pass      |
|          | 101205    | 26           | 25.0         | -3.85    | <+/-15%   | Pass      | 100158    | 39           | 37.2         | -4.62    | <+/-15%   | Pass      |
| ו        | 101207    | 26           | 25.4         | -2.31    | <+/-15%   | Pass      | 100225    | 39           | 41.7         | 6.92     | <+/-15%   | Pass      |
| <u> </u> | 101208    | 26           | 25.6         | -1.54    | <+/-15%   | Pass      | 100112    | 39           | 37.7         | -3.33    | <+/-15%   | Pass      |
| -        |           | Avera        | ige Bias (B) | -1.81    |           |           |           | Avera        | ge Bias (B)  | -1.85    |           |           |
| )        |           | Standard D   | eviation (S) | 1.88     | 150       | 7         |           | Standard De  | eviation (S) | 3.50     | 150       | Deen      |
| )        | Mea       | sure Perforn | nance  B +S  | 3.69     | <15%      | Pass      | Mea       | sure Periorn | iance  B +S  | 5.54     | <13%      | Pass      |

 $\cup$ 

# 6.0 REFERENCES

- 6.1 Catawba Selected License Commitments
- 6.2 Catawba Technical Specifications
- 6.3 Catawba Updated Final Safety Analysis Review
- 6.4 Catawba Offsite Dose Calculation Manual
- 6.5 Catawba Annual Environmental Operating Report 1985 2002
- 6.6 Catawba Annual Effluent Report 1985 2003
- 6.7 Probability and Statistics in Engineering and Management Science, Hines and Montgomery, 1969, pages 287-293.
- 6.8 Practical Statistics for the Physical Sciences, Havilcek and Crain, 1988, pages 83-93.
- 6.9 Nuclear Regulatory Commission Regulatory Guide 1.109, Calculation of Annual Doses to Man from Routine Releases of Reactor Effluents for the Purposes of Evaluating Compliance with 10CFR50, Appendix I.
- 6.10 EnRad Laboratories Operating Procedures
- 6.11 RETDAS, Radiological Effluent Tracking and Dose Assessment Software, Canberra Version 3.5.1, DPC Revision #4.0
- 6.12 NRC Integrated Inspection Report 03-03
- 6.13 Duke Power Company EnRad Laboratory Charcoal Cartridge Study, performed 2001

# **APPENDIX** A

# ENVIRONMENTAL SAMPLING & ANALYSIS PROCEDURES

# **APPENDIX A**

## ENVIRONMENTAL SAMPLING AND ANALYSIS PROCEDURES

Adherence to established procedures for sampling and analysis of all environmental media at Catawba Nuclear Station was required to ensure compliance with Station Selected Licensee Commitments. Analytical procedures were employed to ensure that Selected Licensee Commitments detection capabilities were achieved.

Environmental sampling and analyses were performed by EnRad Laboratories, Dosimetry and Records, Fisheries and Aquatic Ecology.

This appendix describes the environmental sampling frequencies and analysis procedures by media type.

## I. CHANGE OF SAMPLING PROCEDURES

The indicator dairies at locations 209 (5.96 mi SSW) and 219 (5.70 mi SW) discontinued operation. Changes to the milk sampling program were implemented effective 12/2/2003. No replacement dairies were available.

Location 214 (Rock Hill Water Supply) was determined to be in the SSE sector at 7.30 miles following 2003 GPS measurement. Previous documentation listed the location as in the SE sector at 7.30 miles. No site relocation or modifications were necessary as a result of the change.

## II. DESCRIPTION OF ANALYSIS PROCEDURES

Gamma spectroscopy analyses are performed using high purity germanium gamma detectors and Canberra analytical software. Designated sample volumes are transferred to appropriate counting geometries and analyzed by gamma spectroscopy. Perishable samples such as fish and broadleaf vegetation are ground to achieve a homogeneous mixture. Soils and sediments are dried, sifted to remove foreign objects (rocks, clams, glass, etc.) then transferred to appropriate counting geometry. Ten percent of samples receiving gamma analysis are analyzed as duplicate analyses.

Low-level iodine analyses are performed by passing a designated sample aliquot through a pre-weighed amount of ion exchange resin to remove and concentrate any iodine in the aqueous sample (milk). The resin is then dried, mixed thoroughly, and a net resin weight determined before being transferred to appropriate counting geometry and analyzed by gamma spectroscopy. Tritium analyses are performed quarterly by using low-level environmental liquid scintillation analysis technique on a Packard 2550 liquid scintillation system. Tritium samples are batch processed with a tritium spike to verify instrument performance and sample preparation technique are acceptable.

Gross beta analysis is performed by concentrating a designated aliquot of sample precipitate and analyzing by gas-flow proportional counters. Samples are batch processed with a blank to ensure sample contamination has not occurred.

## III. CHANGE OF ANALYSIS PROCEDURES

No analysis procedures were changed during 2003.

## IV. SAMPLING AND ANALYSIS PROCEDURES

#### A.1 AIRBORNE PARTICULATE AND RADIOIODINE

Airborne particulate and radioiodine samples at each of six locations were composited continuously by means of continuous air samplers. Air particulates were collected on a particulate filter and radioiodines were collected in a charcoal cartridge positioned behind the filter in the sampler. The samplers are designed to operate at a constant flow rate (in order to compensate for any filter loading) and are set to sample approximately 2 cubic feet per minute. Filters and cartridges were collected weekly. A separate weekly gamma analysis was performed on each charcoal cartridge and air particulate. A weekly gross beta analysis was performed on each filter. The continuous composite samples were collected from the locations listed below.

| Location 200 | = | Site Boundary (0.63 mi. NNE)        |
|--------------|---|-------------------------------------|
| Location 201 | = | Site Boundary (0.53 mi. NE)         |
| Location 205 | = | Site Boundary (0.23 mi. SW)         |
| Location 212 | = | Tega Cay (3.32 mi. E)               |
| Location 217 | Ξ | Rock Hill Substation (10.3 mi. SSE) |
|              |   |                                     |

#### A.2 DRINKING WATER

Monthly composite drinking water samples were collected at each of two locations. A gross beta and gamma analysis was performed on monthly composites. Tritium analysis was performed on the quarterly composites. The composites were collected biweekly from the locations listed below.

| Location 214 | = | Rock Hill Water Supply (7.30 mi. SSE) |
|--------------|---|---------------------------------------|
| Location 218 | = | Belmont Water Supply (13.5 mi. NNE)   |

#### A.3 SURFACE WATER

Monthly composite samples were collected at each of three locations. A gamma analysis was performed on the monthly composites. Tritium analysis was performed on the quarterly composites. The composites were collected biweekly from the locations listed below.

| Location 208 | = | Discharge Canal (0.45 mi. S)         |
|--------------|---|--------------------------------------|
| Location 211 | = | Wylie Dam (4.06 mi. ESE)             |
| Location 215 | = | River Pointe - Hwy 49 (4.21 mi. NNE) |

#### A.4 GROUND WATER

Grab samples were collected quarterly from residential wells at each of two locations. A gamma analysis and tritium analysis were performed on each sample. The samples were collected from the locations listed below.

| Location 252 | = | Residence (0.64 mi. SW) |
|--------------|---|-------------------------|
| Location 254 | = | Residence (0.82 mi. N)  |

#### A.5 <u>MILK</u>

Biweekly grab samples were collected at each of three locations. A gamma and low-level Iodine-131 analysis was performed on each sample. The biweekly grab samples were collected from the locations listed below.

| Location 209 | = | Dairy - (5.96 mi. SSW) |
|--------------|---|------------------------|
| Location 219 | = | Dairy - (5.70 mi. SW)  |
| Location 221 | = | Dairy - (14.5 mi. NW)  |

#### A.6 BROADLEAF VEGETATION

Monthly samples were collected as available at each of five locations. A gamma analysis was performed on each sample. The samples were collected from the locations listed below.

| Location 200 | = | Site Boundary (0.63 mi. NNE)        |
|--------------|---|-------------------------------------|
| Location 201 | = | Site Boundary (0.53 mi. NE)         |
| Location 217 | = | Rock Hill Substation (10.3 mi. SSE) |
| Location 222 | = | Site Boundary (0.70 mi. N)          |
| Location 226 | = | Site Boundary (0.48 mi. S)          |

#### A.7 FOOD PRODUCTS

Monthly samples were collected when available during the harvest season at one location. A gamma analysis was performed on each sample. The samples were collected from the location listed below.

Location 253 = Irrigated Gardens (1.90 mi. SSE)

#### A.8 <u>FISH</u>

Semiannual samples were collected at each of two locations. A gamma analysis was performed on the edible portions of each sample. Boney fish (i.e. Sunfish) were prepared whole minus the head and tail portions. The samples were collected from the locations listed below.

| Location 208 | Ξ | Discharge Canal (0.45 mi. S) |
|--------------|---|------------------------------|
| Location 216 | = | Hwy 49 Bridge (4.19 mi. NNE) |

#### A.9 SHORELINE SEDIMENT

Semiannual samples were collected at each of three locations. A gamma analysis was performed on each sample following the drying and removal of rocks and clams. The samples were collected from the locations listed below.

| Location 208 | = | Discharge Canal (0.45 mi. S)         |
|--------------|---|--------------------------------------|
| Location 210 | = | Ebenezer Access (2.31 mi. SE)        |
| Location 215 | = | River Pointe - Hwy 49 (4.21 mi. NNE) |

#### A.10 DIRECT GAMMA RADIATION (TLD)

Thermoluminescent dosimeters (TLD) were collected quarterly at forty locations. A gamma exposure rate was determined for each TLD. TLD locations are listed in Table 2.1-B. The TLDs were placed as indicated below.

- \* An inner ring of 16 TLDs, one in each meteorological sector in the general area of the site boundary.
- \* An outer ring of 16 TLDs, one in each meteorological sector in the 6 to 8 kilometer range.
- \* The remaining TLDs were placed in special interest areas such as population centers, residential areas, schools, and at three control locations.
#### A.11 ANNUAL LAND USE CENSUS

An Annual Land Use Census was conducted to identify within a distance of 8 kilometers (5.0 miles) from the station, the nearest location from the site boundary in each of the sixteen meteorological sectors, the following:

- \* The Nearest Residence
- \* The Nearest Meat Animal
- \* The Nearest Garden greater than 50 square meters or 500 square feet
- \* The Nearest Milk-giving Animal (cow, goat, etc.)

The census was conducted during the growing season from 7/7 to 7/10/2003, and 8/19/2003. Results are shown in Table 3.11. No changes were made to the sampling procedures during 2003 as a result of the 2003 census.

#### V. <u>GLOBAL POSITIONING SYSTEM (GPS) ANALYSIS</u>

Catawba Nuclear station Radiological Environmental Monitoring Program (REMP) locations were verified using global positioning system (GPS) technology during the summer of 2003. Most GPS measurements were taken during June, 2003 through July, 2003. All current REMP sample locations were measured. Historical locations (i.e. no longer in service) were not measured during this evaluation.

Additionally, all 2003 Catawba land use census items of interest were measured. GPS equipment was utilized to determine the distance and sector from the Catawba site centerline to the nearest residence, milk animal, meat animal, and garden in each of the sixteen meteorological sectors.

Prior to this evaluation, PIP O-02-06264 was generated as the result of an NRC (Nuclear Regulatory Commission) inspection which included the use of a GPS unit by the NRC inspector. The inspector measured a TLD site (Oconee site 056) and a discrepancy was observed. The PIP generated required that all locations be measured using standard GPS parameters and methodologies.

The Catawba site centerline used for all GPS measurements was referenced from the Catawba Nuclear Station Updated Final Safety Analysis Report (UFSAR), section 2.1.1.1, Specification of Location. Waypoint coordinates used for CNS GPS measurements were latitude 35°-3'-5"N and longitude 81°-4'-10"W. Maps and tables were generated using North American Datum (NAD) 27. Data normally reflect accuracy to within 2 to 5 meters from point of measurement. All GPS field measurements were taken as close as possible to the item of interest. Distances for the locations are displayed using three significant figures.

.

ιιι

# **APPENDIX B**

# RADIOLOGICAL ENVIRONMENTAL MONITORING PROGRAM

# **SUMMARY OF RESULTS**

2003

#### Facility: Catawba Nuclear Station

し し し

 $\smile$ 

ιιιι

Docket No. 50-413,414

Location: York County, South Carolina

Report Period: 01-JAN-2003 to 31-DEC-2003

|                                                                                                                                        | Meas. |
|----------------------------------------------------------------------------------------------------------------------------------------|-------|
| Unit of<br>MeasurementAnalyses<br>Performed(LLD)Mean (Fraction)Location<br>RangeMean (Fraction)Mean (Fraction)RangeCodeRangeRangeRange |       |
| Air Particulate217(pCi/m3)(10.3 mi SSE)                                                                                                |       |
| BETA 260 1.00E-02 1.43E-2 (208/208) 205 1.54E-2 (52/52) 1.42E-2 (52/52)                                                                | 0     |
| 5.79E-3 - 2.69E-2 (0.23 mi SW) 5.79E-3 - 2.69E-2 6.94E-3 - 2.41E-2                                                                     |       |
| CS-134 260 5.00E-02 0.00 (0/208) 0.00 (0/52) 0.00 (0/52)                                                                               | 0     |
| 0.00 - 0.00 0.00 - 0.00 0.00 - 0.00                                                                                                    |       |
| CS-137 260 6.00E-02 0.00 (0/208) 0.00 (0/52) 0.00 (0/52)                                                                               | 0     |
| 0.00 - 0.00 0.00 - 0.00 0.00 - 0.00                                                                                                    |       |
| I-131 260 7.00E-02 0.00 (0/208) 0.00 (0/52) 0.00 (0/52)                                                                                | 0     |
| 0.00 - 0.00 0.00 - 0.00 0.00 - 0.00                                                                                                    |       |

Mean and range based upon detectable measurements only

Fraction of detectable measurements at specified locations is indicated in parentheses, (Fraction)

Zero range indicates no detectable activity measurements

•. !

#### Facility: Catawba Nuclear Station

Docket No. 50-413,414

Location: York County, South Carolina

Report Period: 01-JAN-2003 to 31-DEC-2003

| Medium or<br>Pathway<br>Sampled | Type a<br>Tota<br>Numi<br>of | and<br>al<br>ber | Lower<br>Limit of<br>Detection | All Indicator<br>Locations | Location<br>Anr<br>Name, Dis | n with Highest<br>nual Mean<br>stance, Direction | Control<br>Location  | No. of Non-<br>Routine<br>Report Meas. |
|---------------------------------|------------------------------|------------------|--------------------------------|----------------------------|------------------------------|--------------------------------------------------|----------------------|----------------------------------------|
| Unit of                         | Analy                        | rses             |                                | Mean (Fraction)            | Location                     | Mean (Fraction)                                  | Mean (Fraction)      |                                        |
| Measurement                     | Perfor                       | med              | (LLD)                          | Range                      | Code                         | Range                                            | Range                |                                        |
| Air Radioiodine<br>(pCi/m3)     |                              |                  |                                |                            |                              |                                                  | 217<br>(10.3 mi SSE) |                                        |
|                                 | CS-134                       | 260              | 5.00E-02                       | 0.00 (0/208)               |                              | 0.00 (0/52)                                      | 0.00 (0/52)          | 0                                      |
|                                 |                              |                  |                                | 0.00 - 0.00                |                              | 0.00 - 0.00                                      | 0.00 - 0.00          |                                        |
|                                 | CS-137                       | 260              | 6.00E-02                       | 0.00 (0/208)               |                              | 0.00 (0/52)                                      | 0.00 (0/52)          | 0                                      |
| ·                               |                              |                  |                                | 0.00 - 0.00                |                              | 0.00 - 0.00                                      | 0.00 - 0.00          |                                        |
|                                 | I-131                        | 260              | 7.00E-02                       | 0.00 (0/208)               |                              | 0.00 (0/52)                                      | 0.00 (0/52)          | 0                                      |
|                                 |                              |                  |                                | 0.00 - 0.00                |                              | 0.00 - 0.00                                      | 0.00 - 0.00          |                                        |
|                                 |                              |                  |                                |                            |                              |                                                  |                      | l                                      |

Mean and range based upon detectable measurements only

Fraction of detectable measurements at specified locations is indicated in parentheses, (Fraction)

Zero range indicates no detectable activity measurements

Facility: Catawba Nuclear Station

Docket No. 50-413,414

Location: York County, South Carolina

Report Period: 01-JAN-2003 to 31-DEC-2003

| Unit of<br>Measurement Analyses<br>Performed (LD) Mean (Fraction)<br>Range Location<br>Code Mean (Fraction)<br>Range Mean (Fraction)<br>Range   Drinking Water<br>(pCi/liter) 218 218 (13.5 mi NNE)   BALA-140 26 15 0.00 (0/13) 0.00 (0/14) 0.00 (0/13) 0   BETA 26 4 2.27 (13/13) 2.14 2.27 (13/13) 2.00 (13/13) 0   BETA 26 4 2.27 (13/13) 2.14 2.27 (13/13) 2.00 (13/13) 0   CO-58 26 15 0.00 (0/13) 0.00 (0/13) 0 0   CO-60 26 15 0.00 (0/13) 0.00 (0/14) 0.00 (0/13) 0   CO-56 26 15 0.00 (0/13) 0.00 (0/14) 0.00 (0/13) 0   CS-134 26 15 0.00 (0/13) 0.00 (0/14) 0.00 (0/13) 0   CS-137 26 18 0.00 (0/13) 0.00 (0/14) 0.00 (0/13) 0   FE-59 26 30 0.00 (0/13)                                                         | Medium or<br>Pathway<br>Sampled | Type and T<br>Number<br>of | 'otal   | Lower<br>Limit of<br>Detection | All Indicator<br>Locations | Location<br>Annu<br>Name, Dista | with Highest<br>al Mean<br>ance, Direction | Control<br>Location      | No. of Non-<br>Routine<br>Report<br>Meas. |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|----------------------------|---------|--------------------------------|----------------------------|---------------------------------|--------------------------------------------|--------------------------|-------------------------------------------|
| Drinking Water<br>(pCi/liter) 218<br>(13.5 mi NNE)   BALA-140 26 15 0.00 (0/13) 0.00 (0/14) 0.000 (0/13) 0   BETA 26 4 2.27 (13/13) 2.14 2.27 (13/13) 0.00 (0/13) 0   CO-58 26 15 0.000 (0/13) 0.000 (0/14) 0.000 (0/13) 0   CO-60 26 15 0.000 (0/13) 0.000 (0/14) 0.000 (0/13) 0   CO-60 26 15 0.000 (0/13) 0.000 (0/14) 0.000 (0/13) 0   CO-60 26 15 0.000 (0/13) 0.000 (0/13) 0 0   CO-60 26 15 0.000 (0/13) 0.000 (0/13) 0 0   CO-60 26 15 0.000 (0/13) 0.000 (0/13) 0 0   CS-137 26 18 0.000 (0/13) 0.000 (0/14) 0.000 (0/13) 0   FE-59 26 30 0.000 (0/13) 0.00 0.00 0.00 0.00 0.00                                                                                                                                     | Unit of<br>Measurement          | Analyse<br>Performe        | s<br>×d | (LLD)                          | Mean (Fraction)<br>Range   | Location<br>Code                | Mean (Fraction)<br>Range                   | Mean (Fraction)<br>Range |                                           |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Drinking Water<br>(pCi/liter)   |                            |         |                                |                            |                                 |                                            | 218<br>(13.5 mi NNE)     |                                           |
| Internet Interne Internet Internet |                                 | BALA-140                   | 26      | 15                             | 0.00 (0/13)                |                                 | 0.00 (0/14)                                | 0.00 (0/13)              | 0                                         |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                 | <u>Dilli 140</u>           |         |                                | 0.00 - 0.00                |                                 | 0.00 - 0.00                                | 0.00 - 0.00              |                                           |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                 | BETA                       | 26      | 4                              | 2.27 (13/13)               | 214                             | 2.27 (13/13)                               | 2.02 (13/13)             | 0                                         |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                 |                            |         | <u>`</u>                       | 1.35 - 2.98                | (7.30 mi SSE)                   | 1.35 - 2.98                                | 1.12 - 3.25              |                                           |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                 | CO-58                      | 26      | 15                             | 0.00 (0/13)                |                                 | 0.00 (0/14)                                | 0.00 (0/13)              | 0                                         |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                 |                            |         |                                | 0.00 - 0.00                |                                 | 0.00 - 0.00                                | 0.00 - 0.00              |                                           |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                 | CO-60                      | 26      | 15                             | 0.00 (0/13)                |                                 | 0.00 (0/14)                                | 0.00 (0/13)              | 0                                         |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                 |                            |         |                                | 0.00 - 0.00                |                                 | 0.00 - 0.00                                | 0.00 - 0.00              |                                           |
| $\begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                 | CS-134                     | 26      | 15                             | 0.00 (0/13)                |                                 | 0.00 (0/14)                                | 0.00 (0/13)              | 0                                         |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                 |                            |         |                                | 0.00 - 0.00                |                                 | 0.00 - 0.00                                | 0.00 - 0.00              |                                           |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                 | CS-137                     | 26      | 18                             | 0.00 (0/13)                |                                 | 0.00 (0/14)                                | 0.00 (0/13)              | 0                                         |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                 |                            |         |                                | 0.00 - 0.00                |                                 | 0.00 - 0.00                                | 0.00 - 0.00              |                                           |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                 | FE-59                      | 26      | 30                             | 0.00 (0/13)                |                                 | 0.00 (0/14)                                | 0.00 (0/13)              | 0                                         |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                 |                            |         |                                | 0.00 - 0.00                |                                 | 0.00 - 0.00                                | 0.00 - 0.00              |                                           |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                 | H-3                        | 8       | 2000                           | 636 (4/4)                  | 214                             | 636 (4/4)                                  | 288 (3/4)                | 0                                         |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                 |                            |         |                                | 283 - 1050                 | (7.30 mi SSE)                   | 283 - 1050                                 | 189 - 433                |                                           |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                 | I-131                      | 26      | 15                             | 0.00 (0/13)                |                                 | 0.00 (0/14)                                | 0.00 (0/13)              | 0                                         |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                 | • <u></u>                  |         |                                | 0.00 - 0.00                |                                 | 0.00 - 0.00                                | 0.00 - 0.00              |                                           |
| 0.00 - 0.00 0.00 - 0.00 0.00 - 0.00   NB-95 26 15 0.00 (0/13) 0.00 (0/14) 0.00 (0/13) 0   2N-65 26 30 0.00 (0/13) 0.00 (0/14) 0.00 (0/13) 0   ZN-65 26 30 0.00 (0/13) 0.00 (0/14) 0.00 (0/13) 0   ZR-95 26 15 0.00 (0/13) 0.00 (0/14) 0.00 (0/13) 0   ZR-95 26 15 0.00 (0/13) 0.00 (0/14) 0.00 (0/13) 0                                                                                                                                                                                                                                                                                                                                                                                                                      |                                 | MN-54                      | 26      | 15                             | 0.00 (0/13)                |                                 | 0.00 (0/14)                                | 0.00 (0/13)              | 0                                         |
| NB-95 26 15 0.00 (0/13) 0.00 (0/14) 0.00 (0/13) 0   0.00 - 0.00 0.00 - 0.00 0.00 - 0.00 0.00 - 0.00 0.00 - 0.00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 <td< td=""><td></td><td></td><td>-</td><td>-<u></u><u></u></td><td>0.00 - 0.00</td><td><u>.</u></td><td>0.00 - 0.00</td><td>0.00 - 0.00</td><td></td></td<>                                                                                                                                                                                                                                                                |                                 |                            | -       | - <u></u> <u></u>              | 0.00 - 0.00                | <u>.</u>                        | 0.00 - 0.00                                | 0.00 - 0.00              |                                           |
| 0.00 - 0.00 0.00 - 0.00 0.00 - 0.00   ZN-65 26 30 0.00 (0/13) 0.00 (0/14) 0.00 (0/13) 0   0.00 - 0.00 0.00 - 0.00 0.00 - 0.00 0.00 - 0.00 0.00 - 0.00   ZR-95 26 15 0.00 (0/13) 0.00 (0/14) 0.00 (0/13) 0   0.00 - 0.00 0.00 - 0.00 0.00 - 0.00 0.00 - 0.00 0.00 - 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                 | NB-95                      | 26      | 15                             | 0.00 (0/13)                |                                 | 0.00 (0/14)                                | 0.00 (0/13)              | 0                                         |
| ZN-65 26 30 0.00 (0/13) 0.00 (0/14) 0.00 (0/13) 0   0.00 - 0.00 0.00 - 0.00 0.00 - 0.00 0.00 - 0.00 0.00 - 0.00 0   ZR-95 26 15 0.00 (0/13) 0.00 (0/14) 0.00 (0/13) 0   0.00 - 0.00 0.00 - 0.00 0.00 - 0.00 0.00 - 0.00 0.00 - 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                 |                            |         |                                | 0.00 - 0.00                |                                 | 0.00 - 0.00                                | 0.00 - 0.00              |                                           |
| 0.00 - 0.00 0.00 - 0.00 0.00 - 0.00   ZR-95 26 15 0.00 (0/13) 0.00 (0/14) 0.00 (0/13) 0   0.00 - 0.00 0.00 - 0.00 0.00 - 0.00 0.00 - 0.00 0.00 - 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                 | ZN-65                      | 26      | 30                             | 0.00 (0/13)                |                                 | 0.00 (0/14)                                | 0.00 (0/13)              | 0                                         |
| ZR-95 26 15 0.00 (0/13) 0.00 (0/14) 0.00 (0/13) 0   0.00 - 0.00 0.00 - 0.00 0.00 - 0.00 0.00 - 0.00 0.00 - 0.00 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                 |                            |         |                                | 0.00 - 0.00                |                                 | 0.00 - 0.00                                | 0.00 - 0.00              |                                           |
| 0.00 - 0.00 0.00 - 0.00 0.00 - 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                 | ZR-95                      | 26      | 15                             | 0.00 (0/13)                | *                               | 0.00 (0/14)                                | 0.00 (0/13)              | 0                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                 |                            |         |                                | 0.00 - 0.00                |                                 | 0.00 - 0.00                                | 0.00 - 0.00              |                                           |

Mean and range based upon detectable measurements only

Fraction of detectable measurements at specified locations is indicated in parentheses, (Fraction) Zero range indicates no detectable activity measurements

.

Facility: Catawba Nuclear Station

Docket No. 50-413,414

Location: York County, South Carolina

Report Period: 01-JAN-2003 to 31-DEC-2003

| Medium or<br>Pathway<br>Sampled | Type and T<br>Number<br>of | 'otal<br>r | Lower<br>Limit of<br>Detection        | All Indicator<br>Locations | Locatior<br>Ann<br>Name, Dis | a with Highest<br>ual Mean<br>tance, Direction | Control<br>Location      | No. of Non-<br>Routine<br>Report<br>Meas. |
|---------------------------------|----------------------------|------------|---------------------------------------|----------------------------|------------------------------|------------------------------------------------|--------------------------|-------------------------------------------|
| Unit of<br>Measurement          | Analyse<br>Performe        | s<br>ed    | (LLD)                                 | Mean (Fraction)<br>Range   | Location<br>Code             | Mean (Fraction)<br>Range                       | Mean (Fraction)<br>Range |                                           |
| Surface Water<br>(pCi/liter)    | •                          |            |                                       |                            |                              | ······                                         | 215<br>(4.21 mi NNE)     |                                           |
|                                 | BALA-140                   | 39         | 15                                    | 0.00 (0/26)                |                              | 0.00 (0/13)                                    | 0.00 (0/13)              | 0                                         |
|                                 |                            |            | · · · · · · · · · · · · · · · · · · · | 0.00 - 0.00                | ······                       | 0.00 - 0.00                                    | 0.00 - 0.00              |                                           |
|                                 | CO-58                      | 39         | 15                                    | 0.00 (0/26)                |                              | 0.00 (0/13)                                    | 0.00 (0/13)              | 0                                         |
|                                 |                            |            |                                       | 0.00 - 0.00                |                              | 0.00 - 0.00                                    | 0.00 - 0.00              |                                           |
|                                 | CO-60                      | 39         | 15                                    | 0.00 (0/26)                | ······                       | 0.00 (0/13)                                    | 0.00 (0/13)              | 0                                         |
|                                 |                            |            |                                       | 0.00 - 0.00                |                              | 0.00 - 0.00                                    | 0.00 - 0.00              |                                           |
|                                 | CS-134                     | 39         | 15                                    | 0.00 (0/26)                |                              | 0.00 (0/13)                                    | 0.00 (0/13)              | 0                                         |
|                                 |                            |            |                                       | 0.00 - 0.00                |                              | 0.00 - 0.00                                    | 0.00 - 0.00              |                                           |
|                                 | CS-137                     | 39         | 18                                    | 0.00 (0/26)                |                              | 0.00 (0/13)                                    | 0.00 (0/13)              | 0                                         |
|                                 |                            |            |                                       | 0.00 - 0.00                |                              | 0.00 - 0.00                                    | 0.00 - 0.00              |                                           |
|                                 | FE-59                      | 39         | 30                                    | 0.00 (0/26)                |                              | 0.00 (0/13)                                    | 0.00 (0/13)              | 0                                         |
|                                 |                            |            |                                       | 0.00 - 0.00                |                              | 0.00 - 0.00                                    | 0.00 - 0.00              |                                           |
|                                 | H-3                        | 12         | 2000                                  | 6897 (8/8)                 | 208                          | 13140 (4/4)                                    | 237 (2/4)                | 0                                         |
|                                 |                            |            |                                       | 249 - 19500                | (0.45 mi S)                  | 8260 - 19500                                   | 220 - 254                |                                           |
|                                 | I-131                      | 39         | 15                                    | 0.00 (0/26)                |                              | 0.00 (0/13)                                    | 0.00 (0/13)              | 0                                         |
|                                 |                            |            |                                       | 0.00 - 0.00                |                              | 0.00 - 0.00                                    | 0.00 - 0.00              |                                           |
|                                 | MN-54                      | 39         | 15                                    | 0.00 (0/26)                |                              | 0.00 (0/13)                                    | 0.00 (0/13)              | 0                                         |
|                                 |                            |            |                                       | 0.00 - 0.00                |                              | 0.00 - 0.00                                    | 0.00 - 0.00              |                                           |
|                                 | NB-95                      | 39         | 15                                    | 0.00 (0/26)                |                              | 0.00 (0/13)                                    | 0.00 (0/13)              | 0                                         |
|                                 |                            |            |                                       | 0.00 - 0.00                |                              | 0.00 - 0.00                                    | 0.00 - 0.00              |                                           |
|                                 | ZN-65                      | 39         | 30                                    | 0.00 (0/26)                |                              | 0.00 (0/13)                                    | 0.00 (0/13)              | 0                                         |
|                                 |                            |            |                                       | 0.00 - 0.00                |                              | 0.00 - 0.00                                    | 0.00 - 0.00              |                                           |
|                                 | ZR-95                      | 39         | 15                                    | 0.00 (0/26)                |                              | 0.00 (0/13)                                    | 0.00 (0/13)              | 0                                         |
|                                 |                            | _          |                                       | 0.00 - 0.00                |                              | 0.00 - 0.00                                    | 0.00 - 0.00              |                                           |
|                                 |                            |            |                                       |                            |                              |                                                |                          |                                           |

Mean and range based upon detectable measurements only

Fraction of detectable measurements at specified locations is indicated in parentheses, (Fraction) Zero range indicates no detectable activity measurements

Facility: Catawba Nuclear Station

Docket No. 50-413,414

Location: York County, South Carolina

Report Period: 01-JAN-2003 to 31-DEC-2003

|                                 |                              |     |                                |                                           |                              | بالمستخذين المستخذفين المستخذف               |                          | · · · · · · · · · · · · · · · · · · ·     |
|---------------------------------|------------------------------|-----|--------------------------------|-------------------------------------------|------------------------------|----------------------------------------------|--------------------------|-------------------------------------------|
| Medium or<br>Pathway<br>Sampled | Type and Tot<br>Number<br>of | tal | Lower<br>Limit of<br>Detection | All Indicator<br>Locations                | Location<br>Ann<br>Name, Dis | with Highest<br>ual Mean<br>tance, Direction | Control<br>Location      | No. of Non-<br>Routine<br>Report<br>Meas. |
| Unit of<br>Measurement          | Analyses<br>Performed        |     | (LLD)                          | Mean (Fraction)<br>Range                  | Location<br>Code             | Mean (Fraction)<br>Range                     | Mean (Fraction)<br>Range |                                           |
|                                 |                              | لب  | L                              | <b>0</b> ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, |                              |                                              |                          |                                           |
| Ground Water<br>(pCi/liter)     |                              |     |                                |                                           |                              |                                              | NO CONTROL<br>LOCATION   |                                           |
|                                 | BALA-140                     | 8   | 15                             | 0.00 (0/8)                                |                              | 0.00 (0/8)                                   | 0.00 (0/0)               | 0                                         |
|                                 |                              |     |                                | 0.00 - 0.00                               |                              | 0.00 - 0.00                                  | 0.00 - 0.00              |                                           |
|                                 | CO-58                        | 8   | 15                             | 0.00 (0/8)                                |                              | 0.00 (0/8)                                   | 0.00 (0/0)               | 0                                         |
|                                 |                              |     |                                | 0.00 - 0.00                               |                              | 0.00 - 0.00                                  | 0.00 - 0.00              |                                           |
|                                 | CO-60                        | 8   | 15                             | 0.00 (0/8)                                |                              | 0.00 (0/8)                                   | 0.00 (0/0)               | 0                                         |
|                                 |                              |     |                                | 0.00 - 0.00                               |                              | 0.00 - 0.00                                  | 0.00 - 0.00              |                                           |
|                                 | CS-134                       | 8   | 15                             | 0.00 (0/8)                                |                              | 0.00 (0/8)                                   | 0.00 (0/0)               | 0                                         |
|                                 | <u> </u>                     |     |                                | 0.00 - 0.00                               |                              | 0.00 - 0.00                                  | 0.00 - 0.00              |                                           |
|                                 | CS-137                       | 8   | 18                             | 0.00 (0/8)                                |                              | 0.00 (0/8)                                   | 0.00 (0/0)               | · 0                                       |
|                                 | <u></u>                      |     |                                | 0.00 - 0.00                               |                              | 0.00 - 0.00                                  | 0.00 - 0.00              |                                           |
|                                 | FE-59                        | 8   | 30                             | 0.00 (0/8)                                |                              | 0.00 (0/8)                                   | 0.00 (0/0)               | 0                                         |
|                                 | , ·                          |     |                                | 0.00 - 0.00                               | <u></u>                      | 0.00 - 0.00                                  | 0.00 - 0.00              |                                           |
|                                 | H-3                          | 8   | 2000                           | 0.00 (0/8)                                |                              | 0.00 (0/8)                                   | 0.00 (0/0)               | 0                                         |
|                                 |                              |     |                                | 0.00 - 0.00                               | <u> </u>                     | 0.00 - 0.00                                  | 0.00 - 0.00              |                                           |
|                                 | I-131                        | 8   | 15                             | 0.00 (0/8)                                |                              | 0.00 (0/8)                                   | 0.00 (0/0)               | 0                                         |
|                                 |                              |     | <u></u>                        | 0.00 - 0.00                               |                              | 0.00 - 0.00                                  | 0.00 - 0.00              |                                           |
|                                 | MN-54                        | 8   | 15                             | 0.00 (0/8)                                | <u> </u>                     | 0:00 (0/8)                                   | 0.00 (0/0)               | 0                                         |
|                                 |                              |     |                                | 0.00 - 0.00                               |                              | 0.00 - 0.00                                  | 0.00 - 0.00              |                                           |
|                                 | NB-95                        | 8   | 15                             | 0.00 (0/8)                                |                              | 0.00 (0/8)                                   | 0.00 (0/0)               | 0                                         |
|                                 |                              |     |                                | 0.00 - 0.00                               |                              | 0.00 - 0.00                                  | 0.00 - 0.00              |                                           |
|                                 | ZN-65                        | 8   | 30                             | 0.00 (0/8)                                |                              | 0.00 (0/8)                                   | 0.00 (0/0)               | 0                                         |
|                                 |                              |     |                                | 0.00 - 0.00                               |                              | 0.00 - 0.00                                  | 0.00 - 0.00              |                                           |
|                                 | ZR-95                        | 8   | 15                             | 0.00 (0/8)                                |                              | 0.00 (0/8)                                   | 0.00 (0/0)               | 0                                         |
|                                 |                              |     |                                | 0.00 - 0.00                               | · · · · · ·                  | 0.00 - 0.00                                  | 0.00 - 0.00              |                                           |
|                                 | <u></u>                      |     |                                |                                           |                              |                                              |                          |                                           |

Mean and range based upon detectable measurements only

Fraction of detectable measurements at specified locations is indicated in parentheses, (Fraction)

Zero range indicates no detectable activity measurements

C

 $\cup$ 

Facility: Catawba Nuclear Station

Docket No. 50-413,414

Location: York County, South Carolina

Report Period: 01-JAN-2003 to 31-DEC-2003

| Medium or<br>Pathway<br>Sampled | Type and T<br>Number<br>of | 'otal<br>r | Lower<br>Limit of<br>Detection | All Indicator<br>Locations | Location<br>Annı<br>Name, Dist | with Highest<br>ual Mean<br>ance, Direction | Control<br>Location      | No. of Non-<br>Routine<br>Report<br>Meas. |
|---------------------------------|----------------------------|------------|--------------------------------|----------------------------|--------------------------------|---------------------------------------------|--------------------------|-------------------------------------------|
| Unit of<br>Measurement          | Analyse<br>Performe        | s<br>ed    | (LLD)                          | Mean (Fraction)<br>Range   | Location<br>Code               | Mean (Fraction)<br>Range                    | Mean (Fraction)<br>Range |                                           |
| Milk<br>(pCi/liter)             |                            |            |                                |                            |                                |                                             | 221<br>(14.5 mi NW)      |                                           |
|                                 | BALA-140                   | 72         | 15                             | 0.00 (0/46)                |                                | 0.00 (0/26)                                 | 0.00 (0/26)              | 0                                         |
|                                 |                            |            |                                | 0.00 - 0.00                |                                | 0.00 - 0.00                                 | 0.00 - 0.00              |                                           |
|                                 | CS-134                     | 72         | 15                             | 0.00 (0/46)                |                                | 0.00 (0/26)                                 | 0.00 (0/26)              | 0                                         |
|                                 |                            |            |                                | 0.00 - 0.00                |                                | 0.00 - 0.00                                 | 0.00 - 0.00              |                                           |
|                                 | CS-137                     | 72         | 18                             | 0.00 (0/46)                |                                | 0.00 (0/26)                                 | 0.00 (0/26)              | 0                                         |
|                                 |                            |            |                                | 0.00 - 0.00                |                                | 0.00 - 0.00                                 | 0.00 - 0.00              |                                           |
|                                 | I-131                      | 72         | 15                             | 0.00 (0/46)                |                                | 0.00 (0/26)                                 | 0.00 (0/26)              | 0                                         |
|                                 |                            |            |                                | 0.00 - 0.00                |                                | 0.00 - 0.00                                 | 0.00 - 0.00              |                                           |
|                                 | LLI-131                    | 72         | 1                              | 0.00 (0/46)                | <u> </u>                       | 0.00 (0/26)                                 | 0.00 (0/26)              | 0                                         |
|                                 |                            |            |                                | 0.00 - 0.00                |                                | 0.00 - 0.00                                 | 0.00 - 0.00              |                                           |
|                                 |                            |            | <u> </u>                       |                            |                                |                                             |                          |                                           |

Mean and range based upon detectable measurements only

Fraction of detectable measurements at specified locations is indicated in parentheses, (Fraction)

Zero range indicates no detectable activity measurements

Facility: Catawba Nuclear Station

し し

Ĺ

Docket No. 50-413,414

Location: York County, South Carolina

Report Period: 01-JAN-2003 to 31-DEC-2003

| Medium or<br>Pathway<br>Sampled | Type and Tot<br>Number<br>of | al Low<br>Limi<br>Detec | ver<br>t of<br>tion Locations | Location<br>Ann<br>Name, Dis | n with Highest<br>nual Mean<br>stance, Direction | Control<br>Location      | No. of Non-<br>Routine<br>Report<br>Meas. |
|---------------------------------|------------------------------|-------------------------|-------------------------------|------------------------------|--------------------------------------------------|--------------------------|-------------------------------------------|
| Unit of<br>Measurement          | Analyses<br>Performed        | (LL                     | D) Mean (Fraction)<br>Range   | Location<br>Code             | Mean (Fraction)<br>Range                         | Mean (Fraction)<br>Range | :                                         |
| Broadleaf<br>Vegetation         |                              |                         |                               |                              |                                                  | 217<br>(10.3 mi SSE)     |                                           |
| (pend-wei)                      | CS-134                       | 40 60                   | 0.00 (0/32)                   |                              | 0.00 (0/8)                                       | 0.00 (0/8)               | 0                                         |
|                                 |                              |                         | 0.00 - 0.00                   |                              | 0.00 - 0.00                                      | 0.00 - 0.00              |                                           |
|                                 | CS-137                       | 40 80                   | 39.0 (3/32)                   | 226                          | 49.6 (2/8)                                       | 24.0 (1/8)               | 0                                         |
|                                 |                              |                         | 17.9 - 54.1                   | (0.48 mi S)                  | 45.1 - 54.1                                      | 24.0 - 24.0              |                                           |
|                                 | I-131                        | 40 60                   | 0.00 (0/32)                   |                              | 0.00 (0/8)                                       | 0.00 (0/8)               | 0                                         |
|                                 |                              |                         | 0.00 - 0.00                   |                              | 0.00 - 0.00                                      | 0.00 - 0.00              |                                           |

Mean and range based upon detectable measurements only

Fraction of detectable measurements at specified locations is indicated in parentheses, (Fraction)

Zero range indicates no detectable activity measurements

Facility: Catawba Nuclear Station

Docket No. 50-413,414

Location: York County, South Carolina

Report Period: 01-JAN-2003 to 31-DEC-2003

| Medium or<br>Pathway<br>Sampled | Type and Tot<br>Number<br>of | tal    | Lower<br>Limit of<br>Detection         | All Indicator<br>Locations | Location<br>Ann<br>Name, Dist | with Highest<br>ual Mean<br>tance, Direction | Control<br>Location      | No. of Non-<br>Routine<br>Report<br>Meas. |
|---------------------------------|------------------------------|--------|----------------------------------------|----------------------------|-------------------------------|----------------------------------------------|--------------------------|-------------------------------------------|
| Unit of<br>Measurement          | Analyses<br>Performed        | L      | (LLD)                                  | Mean (Fraction)<br>Range   | Location<br>Code              | Mean (Fraction)<br>Range                     | Mean (Fraction)<br>Range |                                           |
| Food Products<br>(pCi/kg-wet)   |                              | لمحموت | L <u></u>                              |                            |                               |                                              | NO CONTROL<br>LOCATION   |                                           |
|                                 | <u>CS-134</u>                | 6      | 60                                     | 0.00 (0/6)                 |                               | 0.00 (0/6)                                   | 0.00 (0/0)               | 0                                         |
|                                 |                              |        |                                        | 0.00 - 0.00                |                               | 0.00 - 0.00                                  | 0.00 - 0.00              |                                           |
|                                 | CS-137                       | 6      | 80                                     | 0.00 (0/6)                 |                               | 0.00 (0/6)                                   | 0.00 (0/0)               | 0                                         |
|                                 |                              |        |                                        | 0.00 - 0.00                |                               | 0.00 - 0.00                                  | 0.00 - 0.00              |                                           |
|                                 | I-131                        | 6      | 60                                     | 0.00 (0/6)                 |                               | 0.00 (0/6)                                   | 0.00 (0/0)               | 0                                         |
|                                 |                              |        |                                        | 0.00 - 0.00                |                               | 0.00 - 0.00                                  | 0.00 - 0.00              |                                           |
|                                 |                              |        | ······································ | ·····                      |                               |                                              |                          |                                           |

Mean and range based upon detectable measurements only

Fraction of detectable measurements at specified locations is indicated in parentheses, (Fraction)

Zero range indicates no detectable activity measurements

#### Facility: Catawba Nuclear Station

Docket No. 50-413,414

Location: York County, South Carolina

Report Period: 01-JAN-2003 to 31-DEC-2003

| Medium or<br>Pathway<br>Sampled | Type and To<br>Number<br>of | tal | Lower<br>Limit of<br>Detection | All Indicator<br>Locations | Location<br>Annu<br>Name, Dist | with Highest<br>ual Mean<br>tance, Direction | Control<br>Location      | No. of Non-<br>Routine<br>Report<br>Meas. |
|---------------------------------|-----------------------------|-----|--------------------------------|----------------------------|--------------------------------|----------------------------------------------|--------------------------|-------------------------------------------|
| Unit of<br>Measurement          | Analyses<br>Performed       | 1   | (LLD)                          | Mean (Fraction)<br>Range   | Location<br>Code               | Mean (Fraction)<br>Range                     | Mean (Fraction)<br>Range |                                           |
| Fish<br>(pCi/kg-wet)            |                             |     |                                |                            |                                |                                              | 216<br>(4.19 mi NNE)     |                                           |
|                                 | CO-58                       | 12  | 130                            | 143 (1/6)                  | 208                            | 143 (1/6)                                    | 0.00 (0/6)               | 0                                         |
|                                 |                             |     |                                | 143 - 143                  | (0.45 mi S)                    | 143 - 143                                    | 0.00 - 0.00              |                                           |
|                                 | CO-60                       | 12  | 130                            | 26.1 (1/6)                 | 208                            | 26.1 (1/6)                                   | 0.00 (0/6)               | 0                                         |
|                                 |                             |     |                                | 26.1 - 26.1                | (0.45 mi S)                    | 26.1 - 26.1                                  | 0.00 - 0.00              |                                           |
|                                 | CS-134                      | 12  | 130                            | 0.00 (0/6)                 |                                | 0.00 (0/6)                                   | 0.00 (0/6)               | 0                                         |
|                                 |                             |     |                                | 0.00 - 0.00                |                                | 0.00 - 0.00                                  | 0.00 - 0.00              |                                           |
|                                 | CS-137                      | 12  | 150                            | 11.9 (1/6)                 | 208                            | 11.9 (1/6)                                   | 0.00 (0/6)               | 0                                         |
|                                 |                             |     |                                | 11.9 - 11.9                | (0.45 mi S)                    | 11.9 - 11.9                                  | 0.00 - 0.00              |                                           |
|                                 | FE-59                       | 12  | 260                            | 0.00 (0/6)                 |                                | 0.00 (0/6)                                   | 0.00 (0/6)               | 0                                         |
|                                 |                             |     |                                | 0.00 - 0.00                |                                | 0.00 - 0.00                                  | 0.00 - 0.00              |                                           |
|                                 | MN-54                       | 12  | 130                            | 0.00 (0/6)                 |                                | 0.00 (0/6)                                   | 0.00 (0/6)               | 0                                         |
|                                 |                             |     |                                | 0.00 - 0.00                |                                | 0.00 - 0.00                                  | 0.00 - 0.00              |                                           |
|                                 | ZN-65                       | 12  | 260                            | 0.00 (0/6)                 |                                | 0.00 (0/6)                                   | 0.00 (0/6)               | 0                                         |
|                                 |                             |     |                                | 0.00 - 0.00                |                                | 0.00 - 0.00                                  | 0.00 - 0.00              |                                           |
|                                 |                             |     |                                |                            |                                |                                              |                          |                                           |

Mean and range based upon detectable measurements only

Fraction of detectable measurements at specified locations is indicated in parentheses, (Fraction) Zero range indicates no detectable activity measurements

 $\cup$ 

Facility: Catawba Nuclear Station

Docket No. 50-413,414

Location: York County, South Carolina

Report Period: 01-JAN-2003 to 31-DEC-2003

| Medium or<br>Pathway<br>Sampled       | Type and T<br>Numbe<br>of | Total<br>r | Lower<br>Limit of<br>Detection | All Indicator<br>Locations | Location<br>Ann<br>Name, Dist | with Highest<br>all Mean<br>ance, Direction | Control<br>Location  | No. of Non-<br>Routine<br>Report<br>Meas. |
|---------------------------------------|---------------------------|------------|--------------------------------|----------------------------|-------------------------------|---------------------------------------------|----------------------|-------------------------------------------|
| Unit of                               | Analyse                   | s          |                                | Mean (Fraction)            | Location                      | Mean (Fraction)                             | Mean (Fraction)      | н<br>Т                                    |
| Measurement                           | Performe                  | ed         | (LLD)                          | Range                      | Code                          | Range                                       | Range                |                                           |
| Shoreline<br>Sediment<br>(pCi/kg-dry) |                           | _          |                                |                            |                               |                                             | 215<br>(4.21 mi NNE) |                                           |
| (1 ) /                                | MN-54                     | 6          | 0                              | 21.7 (1/4)                 | 208-1S                        | 21.7 (1/2)                                  | 0.00 (0/2)           |                                           |
|                                       |                           |            |                                | 21.7 - 21.7                | (0.45 mi S)                   | 21.7 - 21.7                                 | 0.00 - 0.00          |                                           |
|                                       | CO-58                     | 6          | 0                              | 87.5 (1/4)                 | 208-1S                        | 87.5 (1/2)                                  | 0.00 (0/2)           | 0                                         |
|                                       |                           | _          |                                | 87.5 - 87.5                | (0.45 mi S)                   | 87.5 - 87.5                                 | 0.00 - 0.00          |                                           |
|                                       | CO-60                     | 6          | 0                              | 108 (1/4)                  | 208-1S                        | 108 (1/2)                                   | 0.00 (0/2)           | 0                                         |
|                                       |                           | -          |                                | 108 - 108                  | (0.45 mi S)                   | 108 - 108                                   | 0.00 - 0.00          |                                           |
|                                       | CS-134                    | 6          | 150                            | 0.00 (0/4)                 |                               | 0.00 (0/2)                                  | 0.00 (0/2)           | 0                                         |
|                                       |                           |            |                                | 0.00 - 0.00                |                               | 0.00 - 0.00                                 | 0.00 - 0.00          |                                           |
|                                       | CS-137                    | 6          | 180                            | 26.9 (2/4)                 | 208-1S                        | 26.9 (2/2)                                  | 0.00 (0/2)           | 0                                         |
|                                       |                           |            |                                | 13.9 - 39.9                | (0.45 mi S)                   | 13.9 - 39.9                                 | 0.00 - 0.00          |                                           |
|                                       |                           |            |                                |                            |                               |                                             |                      |                                           |

Mean and range based upon detectable measurements only

Fraction of detectable measurements at specified locations is indicated in parentheses, (Fraction)

Zero range indicates no detectable activity measurements

If LLD is equal to 0.00, then the LLD is not required by Selected Licensee Commitments

# Facility: Catawba Nuclear Station

Docket No. 50-413,414

``

Location: York County, South Carolina

Report Period: 01-JAN-2003 to 31-DEC-2003

| Medium or<br>Pathway Sampled                     | Type and<br>Total<br>Number<br>of | Lower<br>Limit of<br>Detection | All Indicator<br>Locations | Location<br>Annı<br>Name, Dist | with Highest<br>ual Mean<br>tance, Direction | Control<br>Location                                         | No. of Non-<br>Routine<br>Report<br>Meas. |
|--------------------------------------------------|-----------------------------------|--------------------------------|----------------------------|--------------------------------|----------------------------------------------|-------------------------------------------------------------|-------------------------------------------|
| Unit of Measurement                              | Analyses<br>Performed             | (LLD)                          | Mean (Fraction)<br>Range   | Location<br>Code               | Mean (Fraction)<br>Range                     | Mean (Fraction)<br>Range                                    | -                                         |
| Direct Radiation<br>TLD<br>(mR/standard quarter) |                                   |                                |                            |                                |                                              | 217 (10.3 mi SSE)<br>247 (7.33 mi ESE)<br>251 (9.72 mi WNW) |                                           |
|                                                  | 160                               | 0.00E+00                       | 18.9 (148/148)             | 229                            | 25.0 (4/4)                                   | 14.0 (12/12)                                                | 0                                         |
|                                                  |                                   |                                | 11.1 - 29.6                | (0.84 mi NW)                   | 21.1 - 28.2                                  | 10.1 - 18.0                                                 |                                           |

Mean and range based upon detectable measurements only

Fraction of detectable measurements at specified locations is indicated in parentheses, (Fraction)

Zero range indicates no detectable activity measurements

Ĺ

# $\smile$ $\cup$ $\cup$ $\cup$ Ú $\cup$ $\cup$ $\cup$ $\cup$ $\cup$ $\cup$ $\smile$ $\cup$ $\cup$ $\cup$ $\smile$ $\cup$ $\cup$ $\cup$ **UNAVAILABLE ANALYSES** $\cup$ ں ا $\cup$ $\cup$ U $\cup$ $\cup$ $\cup$ Ć $\cup$ $\cup$ $\cup$ $\cup$

**APPENDIX C** 

SAMPLING DEVIATIONS

&

# **APPENDIX C**

# CATAWBA NUCLEAR STATION SAMPLING DEVIATIONS & UNAVAILABLE ANALYSES

|    | DEVIATION & UNAVAILABLE REASON CODES |    |                                         |  |  |  |  |  |
|----|--------------------------------------|----|-----------------------------------------|--|--|--|--|--|
| BF | Blown Fuse                           | PO | Power Outage                            |  |  |  |  |  |
| FZ | Sample Frozen                        | PS | Pump out of service / Undergoing Repair |  |  |  |  |  |
| IW | Inclement Weather                    | SL | Sample Loss/Lost due to Lab Accident    |  |  |  |  |  |
| LC | Line Clog to Sampler                 | SM | Motor / Rotor Seized                    |  |  |  |  |  |
| OT | Other                                | TF | Torn Filter                             |  |  |  |  |  |
| PI | Power Interrupt                      | VN | Vandalism                               |  |  |  |  |  |
| PM | Preventive Maintenance               |    |                                         |  |  |  |  |  |

# C.1 SAMPLING DEVIATIONS

# Air Particulate and Air Radioiodines

| Location | Scheduled<br>Collection Dates | Actual<br>Collection Dates | Reason<br>Code | Corrective Action                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|----------|-------------------------------|----------------------------|----------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|          | 7/8 - 7/15/03                 | 7/12 - 7/15/03             | PI             | Power to the air sampler was interrupted,<br>presumably by a severe storm during the<br>composite period. The clock on the<br>operative air sampler (sampler 00298)<br>indicated 78.01 hours of run time.<br>Sampler 00298 was operating at the time<br>the collector arrived at the air station,<br>which was 7/15/2003 10:44. The backup<br>sampler (sampler 00311) was not<br>operative at the time of collection and the<br>clock indicator was blank. The<br>composite period was determined by<br>subtracting the run time of 78.01 hours<br>(3.25 days) from the end date of the<br>composite period. This yielded a<br>composite period of 7/12/2003 04:44 to<br>7/15/2003 16:49 |
|          | //8 - //15/03                 | //12 - //15/03             | PI             | //13/2003 10:49.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |

## Surface Water

| Location | Scheduled<br>Collection Dates | Actual<br>Collection Dates | Reason<br>Code | Corrective Action                                                                                                                                                 |
|----------|-------------------------------|----------------------------|----------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|          |                               |                            |                | Intake line clogged, stopping water flow.<br>Work request 98270547 was written. A<br>grab sample was taken. Temporary water<br>sampling equipment was placed into |

L

# Surface Water, continued

| Location | Scheduled<br>Collection Dates | Actual Collection Dates | Reason<br>Code | Corrective Action                                                                                                                                                                                                                                                                                                                                              |
|----------|-------------------------------|-------------------------|----------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|          |                               |                         |                | The pier at this site which houses the<br>submersible pump for water sampling was<br>replaced. Power to sampling equipment<br>was interrupted for maintenance<br>personnel to remove and replace the old<br>pier structure. A grab sample was<br>collected on 6/10/2003 and normal<br>sampling was resumed. PIP C-02-01903<br>and C-03-00387 document the pier |
| 215      | 5/13 - 6/10/03                | 6/10 - 6/10/03          | PO             | replacement.                                                                                                                                                                                                                                                                                                                                                   |

# C.2 UNAVAILABLE ANALYSES

There no unavailable analyses for the 2003 REMP.

# **APPENDIX D**

\_\_\_\_\_

# **ANALYTICAL DEVIATIONS**

No Analytical deviations were incurred for the 2003 Radiological Environmental Monitoring Program

\_\_\_\_\_

# **APPENDIX E**

し し

Ć

ں

Ć

し

# RADIOLOGICAL ENVIRONMENTAL MONITORING PROGRAM RESULTS

This appendix includes all of the sample analysis reports generated from each sample medium for 2003. Appendix E is located separately from this report and is permanently archived at Duke Power Company's Environmental Center radiological environmental master file, located at the McGuire Nuclear Station Site in Huntersville, North Carolina.