

PRA Scope and Quality (PRA S&Q) Initiative

May 2004

Ken Canavan, EPRI John Gaertner, EPRI

Objectives of this Presentation

- Importance of resolving technical issues for PRA S&Q
- Description of the PRA S&Q Initiative
- Details of PRA S&Q effort on "Uncertainty"

Importance of Resolving Technical Issues for PRA S&Q

 Appropriately, significant effort is being expended on development of risk-informed policy issues.

However, another cornerstone of success is resolution of key technical PRA-related issues.

- The industry PRA Standard efforts provide:
 - Guidance on the scope of a PRA used to support risk-informed applications or decision-making.
 - Answers to the question "what to do?" but not "how to do it?"
- Critical "How to do it?" issues remain.
- Limited time and scarce resources dictate that the nuclear PRA community should participate, to the extent practical, on common issue-resolution guidelines.

Description of the PRA S&Q Initiative

- Part of industry effort to answer the questions of what are the scope and quality expectations for a spectrum of risk-informed activities or applications.
 - Coordinated with NEI, who has leadership on NRR interface and policy
 - Diverse industry-wide participation
 - Owners Groups (WOG, BWROG, B&W OG, CANDU OG)
 - Utility sponsors
 - Other contributors invited, including NRC RES
 - NEI
 - Supplemental to PRA Standards
 - Multi-year effort
 - Multi-dimensional project
 - Technical-issue based
 - Application based
 - Interface with other industry activities and EPRI projects such as Owners Groups, NRC RES, EPRI/RES, Fire PRA Steering Committee, Structural Integrity Working Group (SIWG), EPRI Risk & Reliability Users Group, and others.

EPRI will lead some issues and will support others, as appropriate.

The Individual Issue Approach ...

- For example, Treatment of Uncertainty in Risk-Informed
 Applications
- Develop single issue guidance that clearly identifies the industry position on individual PRA S&Q issues.
 - Technical basis
 - Problem Statement
 - Issue resolution(s)
 - Initially developed by the working groups (a small group of experts such as owners group risk committee chairpersons and sponsors)
 - Present to larger technical community
 - Work with NRC where appropriate
 - Incorporate industry comments and publish
 - Eventually collect into position statement

Ideal Process for Resolution of PRA S&Q Technical Issues

Guidelines for Treatment of Uncertainty in Risk-informed Regulatory Applications

Doug True, ERIN Paul Hijeck, Westinghouse/WOG

Copyright © 2003 Electric Power Research Institute, Inc. All rights reserved.

Motivation for Project

- ASME PRA Standard and RG 1.200 Include:
 - 13 High Level Requirements, and
 - 30 Supporting Requirements

Related to the Treatment and Documentation of Key Sources of Uncertainties and/or Key Assumptions

There is No Consistent, Accepted Approach to Identifying
 Uncertainties and Addressing These Requirements

Project Objectives

- Provide Guidelines for Meeting the Requirements of Reg. Guide 1.200 Related to Key Assumptions and Key Sources of Uncertainties.
- Include Evaluating the Impact of Uncertainty in the Application of Quantitative Acceptance Guidelines that are Part of the NRC's Risk-informed Regulatory Processes.

Guidelines are intended to be complete, practical, and robust.

 Goal is to Receive NRC Endorsement for Use in RIR Applications

Types of Uncertainty

- Reg. Guide 1.174 Identifies Three Types of Uncertainty
 - Parametric
 - Modeling
 - Completeness (Scope and Level of Detail)
- Standards and Peer Reviews Help Address Completeness
- Focus of the Project is on Parametric and Modeling Uncertainty

Reg. Guide 1.200 Definitions

- A key source of uncertainty is one that:
 - is related to an issue where there is no consensus approach or model <u>AND</u>
 - where the choice of approach or model is known to have an impact on the PRA results in terms of
 - introducing new accident sequences,
 - changing the relative importance of sequences, or
 - affecting the overall CDF or LERF estimates that might have an impact on the use of the PRA in decision making.
- A *key assumption* is one that is made in response to a key source of uncertainty.

Ref. Reg. Guide 1.200, Footnotes 3 & 4, Page 1.200-9

 $\label{eq:copyright} @ 2003 \ Electric \ Power \ Research \ Institute, \ Inc. \ All \ rights \ reserved.$

Considerations in Addressing Parametric Uncertainty

- Many PRA Calculations are Based on Point Estimate Analyses. All importance Measures are Based on Point Estimate Results.
- In Some Cases, Point Estimates May Not Be A Good Estimate of the True Mean Value
- Previous EPRI report (TR-1008905) on Uncertainty Impacts on 50.69 Categorization Provides a Starting Point
- Need for Additional Guidance on:
 - The use of Point Estimate Calculations for mean value comparisons
 - Treatment of the "State of Knowledge" Correlation

Considerations in Addressing Modeling Uncertainty and Key Assumptions

- Modeling Uncertainty Can Impact Any Aspect Of a PRA
- Rigorous Treatment of All Uncertainty Contributions is not achievable.
- Need for Guidance on:
 - Identification of "key sources of modeling uncertainty" and "key assumptions"
 - Methods for treating different types and sources of modeling uncertainty
- An on-going WOG effort is an important basis for this part of the guidelines

WOG Project - Methodology for Assessment of Modeling Uncertainty

- Project focuses on ACRS/NRC concerns regarding modeling (epistemic) uncertainties in PSAs
- Specific Project Objectives
 - Establish methodology for assessment of Modeling Uncertainties
 - Develop Modeling Uncertainties for Focused Set of Events as a Trial Application
 - * LOCA Initiating Event
 - * LOOP Initiating Event
 - Expand to Generic Process

WOG Project - Identification of Sources of Uncertainty

- Uncertainties arise from the existence of assumptions inherent within the PSA Model. Many assumptions captured in PSA documentation, but not all.
- Assumptions identified via decomposition of key elements in event sequences
 - Thermal-hydraulics and phenomenology (embedded assumptions impacting timing, success, event description, process assumptions)
 - Operator / Plant Actions (procedural guidance, errors of commission, assumption with respect to recovery, etc.)
 - Origin and applicability of PSA model input data
 - PSA specific modeling assumptions / simplifications
- Basis for issue status/assumption identified, appropriate documents referenced.

WOG Project - Categorization of Uncertainties and Prioritization of Risk Impact

- Process for categorizing and prioritizing based on Columbia Generating Station Ranking Report for EDG Applications
- Uncertainty Categorization Elements
 - Lack of knowledge
 - Degree of realism
 - Plant specificity (use of generic information)
 - Level of detail
- Impact Prioritization
 - Treatment Strategies (Consensus model, sensitivity studies, etc.)
 - Significance (High, medium, low, application dependent and unknown)

WOG Project – Guidance for PRA Key Assumptions

Related WOG Project

- Develop Guideline on Key PRA Assumptions
 - Voluntary Recommended Practice Format
 - Suggested process for identifying and evaluating impacts of Key Assumptions
- Focus on assumptions for which reasonable alternatives would affect PRA insights for riskinformed decisions, or substantially affect CDF/LERF
- Provide examples of categories of key assumptions
- Develop a "running" compendium of specific examples of key assumptions by PRA element

Examples of Potential Modeling Uncertainties

- Human Reliability Model Applied
- Common Cause Failure Model Applied
- Functional Success Criteria
- Screening/Grouping Of Events
- RCP Seal LOCA Model
- Raw Data Analysis Methods
- Accident Sequence Phenomena

Additional Considerations

- PRA Mean Values Represent High Percentile Values. Generally, Higher Uncertainty Leads to Higher Percentiles.
- Existing Quantitative Guidelines Set Conservatively to Account for Uncertainty.
- Well Chosen Sensitivity Studies Can Characterize Modeling
 Uncertainty
- Defense-in-depth and Safety Margins Are Antidotes To Uncertainty, But Criteria Do Not Exist.
- Quantification of Total Uncertainty is not Required in Current Guidance Documents (RGs 1.174 & 1.200).

High-Level Process for Addressing Uncertainty

Copyright © 2003 Electric Power Research Institute, Inc. All rights reserved.

20

Key Project Milestones

•	Draft High-level Framework	May
•	Revised High-level Framework	July
•	Draft Technical Reports on Parametric & Modeling Uncertainty	September
•	Draft Treatment Guidelines	October
•	Final Reports & Guidelines	December

Conclusions for Uncertainty Project

- Project Aimed at Supporting Implementation of RG 1.200 and the ASME Standard
- Input from WOG and RG 1.200 Pilots will be critical
- Coordination with NRC Activities Warranted and Desired
- Further Interactions Will be Scheduled as Work Products are Developed
- Schedule Established to Support Next Revision of RG 1.200
 & Staff Plan on PRA Quality
- Endorsement by NRC Considered an Essential Element

