

South Texas Project Electric Generating Station P.O. Box 289 Wadsworth, Texas 77483

April 29, 2004 NOC-AE-04001716 10CFR50.36

^^^^

U. S. Nuclear Regulatory Commission Attention: Document Control Desk One White Flint North 11555 Rockville Pike Rockville, MD 20852

South Texas Project Units 1 & 2 Docket Nos. STN 50-498, STN 50-499 <u>Core Operating Limits Reports</u>

In accordance with Technical Specification 6.9.1.6.d, the attached Core Operating Limits Report is submitted for Unit 2 Cycle 11. This report reflects core design changes made during the 2RE10 refueling outage.

Additionally, Revision 2 for the Core Operating Limits Report for Unit 1 Cycle 12 is attached. This revision corrects a typographical error.

If there are any questions concerning this report, please contact Scott Head at (361) 972-7136 or me at (361) 972-7795.

David A. Leazar // Director, Nuclear Fuel & Analysis

jal

Attachments: 1. Unit 2 Cycle 11 Core Operating Limits Report, Rev. 0 2. Unit 1 Cycle 12 Core Operating Limits Report, Rev. 2

NOC-AE-04001716 Page 2 of 2

cc: (paper copy)

Bruce S. Mallett Regional Administrator, Region IV U. S. Nuclear Regulatory Commission 611 Ryan Plaza Drive, Suite 400 Arlington, Texas 76011-8064

U. S. Nuclear Regulatory Commission Attention: Document Control Desk One White Flint North 11555 Rockville Pike Rockville, MD 20852

Richard A. Ratliff Bureau of Radiation Control Texas Department of Health 1100 West 49th Street Austin, TX 78756-3189

Jeffrey Cruz U. S. Nuclear Regulatory Commission P. O. Box 289, Mail Code: MN116 Wadsworth, TX 77483

C. M. Canady City of Austin Electric Utility Department 721 Barton Springs Road Austin, TX 78704 (electronic copy)

A. H. Gutterman, Esquire Morgan, Lewis & Bockius LLP

L. D. Blaylock City Public Service

Michael K. Webb U. S. Nuclear Regulatory Commission

R. L. Balcom Texas Genco, LP

A. Ramirez City of Austin

C. A. Johnson AEP Texas Central Company

Jon C. Wood Matthews & Branscomb

31733032

SOUTH TEXAS PROJECT UNIT 2 CYCLE 11

CORE OPERATING LIMITS REPORT

REVISION 0

April 2004

1.0 CORE OPERATING LIMITS REPORT

This Core Operating Limits Report for STPEGS Unit 2 Cycle 11 has been prepared in accordance with the requirements of Technical Specification 6.9.1.6. The core operating limits have been developed using the NRC-approved methodologies specified in Technical Specification 6.9.1.6.

The Technical Specifications affected by this report are:

1)	2.1	SAFETY LIMITS
2)	2.2	LIMITING SAFETY SYSTEM SETTINGS
3)	3/4.1.1.1	SHUTDOWN MARGIN
4)	3/4.1.1.3	MODERATOR TEMPERATURE COEFFICIENT LIMITS
5)	3/4.1.3.5	SHUTDOWN ROD INSERTION LIMITS
6)	3/4.1.3.6	CONTROL ROD INSERTION LIMITS
7)	3/4.2.1	AFD LIMITS
8)	3/4.2.2	HEAT FLUX HOT CHANNEL FACTOR
9)	3/4.2.3	NUCLEAR ENTHALPY RISE HOT CHANNEL FACTOR
10)	3/4.2.5	DNB PARAMETERS

2.0 OPERATING LIMITS

The cycle-specific parameter limits for the specifications listed in Section 1.0 are presented below.

- 2.1 SAFETY LIMITS (Specification 2.1):
 - 2.1.1 The combination of THERMAL POWER, pressurizer pressure, and the highest operating loop coolant temperature (T_{avg}) shall not exceed the limits shown in Figure 1.

2.2 LIMITING SAFETY SYSTEM SETTINGS (Specification 2.2):

- 2.2.1 The Loop design flow for Reactor Coolant Flow-Low is 98,000 gpm.
- 2.2.2 The Over-temperature ΔT and Over-power ΔT setpoint parameter values are listed below:

Over-temperature <u>∆</u>T Setpoint Parameter Values

- τ_1 measured reactor vessel ΔT lead/lag time constant, $\tau_1 = 8$ sec
- τ_2 measured reactor vessel ΔT lead/lag time constant, $\tau_2 = 3$ sec
- τ_3 measured reactor vessel ΔT lag time constant, $\tau_3 = 2$ sec
- τ_4 measured reactor vessel average temperature lead/lag time constant, $\tau_4 = 28$ sec
- τ_5 measured reactor vessel average temperature lead/lag time constant, $\tau_5 = 4$ sec
- τ_6 measured reactor vessel average temperature lag time constant, $\tau_6 = 2 \sec \theta$
- K₁ Overtemperature ΔT reactor trip setpoint, K₁ = 1.14
- K₂ Overtemperature ΔT reactor trip setpoint T_{avg} coefficient, K₂ = 0.028/°F
- K₃ Overtemperature ΔT reactor trip setpoint pressure coefficient, K₃ = 0.00143/psig
- T' Nominal full power T_{avg} , T' \leq 592.0 °F
- P' Nominal RCS pressure, P' = 2235 psig
- $f_1(\Delta I)$ is a function of the indicated difference between top and bottom detectors of the power-range neutron ion chambers; with gains to be selected based on measured instrument response during plant startup tests such that:
 - (1) For $q_t q_b$ between -70% and +8%, $f_1(\Delta I) = 0$, where q_t and q_b are percent RATED THERMAL POWER in the top and bottom halves of the core respectively, and $q_t + q_b$ is total THERMAL POWER in percent of RATED THERMAL POWER;
 - (2) For each percent that the magnitude of $q_t q_b$ exceeds -70%, the ΔT Trip Setpoint shall be automatically reduced by 0.0% of its value at RATED THERMAL POWER; and
 - (3) For each percent that the magnitude of $q_1 q_2$ exceeds +8%, the ΔT Trip Setpoint shall be automatically reduced by 2.65% of its value at RATED THERMAL POWER.

<u>Over-power ΔT Setpoint Parameter Values</u>

- τ_1 measured reactor vessel ΔT lead/lag time constant, $\tau_1 = 8$ sec
- τ_2 measured reactor vessel ΔT lead/lag time constant, $\tau_2 = 3$ sec
- τ_3 measured reactor vessel ΔT lag time constant, $\tau_3 = 2$ sec
- τ_6 measured reactor vessel average temperature lag time constant, $\tau_6 = 2$ sec
- Time constant utilized in the rate-lag compensator for T_{avg} , $\tau_7 = 10$ sec
- K4 Overpower ΔT reactor trip setpoint, K4 = 1.08
- K₅ Overpower ΔT reactor trip setpoint T_{avg} rate/lag coefficient, K₅ = 0.02/°F for increasing average temperature, and K₅ = 0 for decreasing average temperature
- K₆ Overpower ΔT reactor trip setpoint T_{avg} heatup coefficient K₆ = 0.002/°F for T > T", and K₆ = 0 for T \leq T"
- T" Indicated full power T_{avg} , T" \leq 592.0 °F
- $f_2(\Delta I) = 0$ for all (ΔI)

2.3 SHUTDOWN MARGIN (Specification 3.1.1.1):

The SHUTDOWN MARGIN shall be:

- 2.3.1 Greater than 1.3% Δp for MODES 1 and 2*
 - * See Special Test Exception 3.10.1
- 2.3.2 Greater than the limits in Figure 2 for MODES 3 and 4.
- 2.3.3 Greater than the limits in Figure 3 for MODE 5.

SOUTH TEXAS UNIT 2 CYCLE 11, REVISION 0

2.4 MODERATOR TEMPERATURE COEFFICIENT (Specification 3.1.1.3):

- 2.4.1 The BOL, ARO, MTC shall be less positive than the limits shown in Figure 4.
- 2.4.2 The EOL, ARO, HFP, MTC shall be less negative than -62.6 pcm/°F.
- 2.4.3 The 300 ppm, ARO, HFP, MTC shall be less negative than -53.6 pcm/°F (300 ppm Surveillance Limit).

Where: BOL stands for Beginning-of-Cycle Life, EOL stands for End-of-Cycle Life, ARO stands for All Rods Out, HFP stands for Hot Full Power (100% RATED THERMAL POWER), HFP vessel average temperature is 592 °F.

2.4.4 The Revised Predicted near-EOL 300 ppm MTC shall be calculated using the algorithm from T.S. 6.9.1.6.b.10:

Revised Predicted MTC = Predicted MTC + AFD Correction - 3 pcm/PF

If the Revised Predicted MTC is less negative than the S.R. 4.1.1.3b limit and all of the benchmark data contained in the surveillance procedure are met, then an MTC measurement in accordance with S.R. 4.1.1.3b is not required.

2.5 ROD INSERTION LIMITS (Specification 3.1.3.5 and 3.1.3.6):

- 2.5.1 All banks shall have the same Full Out Position (FOP) of at least 249 steps withdrawn but not exceeding 259 steps withdrawn.
- 2.5.2 The Control Banks shall be limited in physical insertion as specified in Figure 5.
- 2.5.3 Individual Shutdown bank rods are fully withdrawn when the Bank Demand Indication is at the FOP and the Rod Group Height Limiting Condition for Operation is satisfied (T.S. 3.1.3.1).

2.6 AXIAL FLUX DIFFERENCE (Specification 3.2.1):

- 2.6.1 AFD limits as required by Technical Specification 3.2.1 are determined by CAOC Operations with an AFD target band of +5, -10%.
- 2.6.2 The AFD shall be maintained within the ACCEPTABLE OPERATION portion of Figure 6, as required by Technical Specifications.

SOUTH TEXAS UNIT 2 CYCLE 11, REVISION 0

2.7 HEAT FLUX HOT CHANNEL FACTOR (Specification 3.2.2):

- 2.7.1 $F_{Q}^{RTP} = 2.55$.
- 2.7.2 K(Z) is provided in Figure 7.
- 2.7.3 The F_{XY} limits for RATED THERMAL POWER (F_{XY}^{RTP}) within specific core planes shall be:
 - 2.7.3.1 Less than or equal to 2.102 for all cycle burnups for all core planes containing Bank "D" control rods, and
 - 2.7.3.2 Less than or equal to the appropriate core height-dependent value from Table 1 for all unrodded core planes.
 - 2.7.3.3 $PF_{xy} = 0.2$.

These F_{xy} limits were used to confirm that the heat flux hot channel factor $F_Q(Z)$ will be limited by Technical Specification 3.2.2 assuming the most-limiting axial power distributions expected to result for the insertion and removal of Control Banks C and D during operation, including the accompanying variations in the axial xenon and power distributions, as described in WCAP-8385. Therefore, these F_{xy} limits provide assurance that the initial conditions assumed in the LOCA analysis are met, along with the ECCS acceptance criteria of 10 CFR 50.46.

2.8 ENTHALPY RISE HOT CHANNEL FACTOR (Specification 3.2.3):

- 2.8.1 $F_{\Delta H}^{RTP} = 1.5571$
- 2.8.2 $PF_{\Delta H} = 0.3$

2.9 DNB PARAMETERS (Specification 3.2.5):

- 2.9.1 The following DNB-related parameters shall be maintained within the following limits?
 - a. Reactor Coolant System T_{avg} , $\leq 595 \text{ °F}^3$,
 - b. Pressurizer Pressure, > 2200 psig 4,
 - c. Minimum Measured Reactor Coolant System Flow⁵ > 403,000 gpm.

3.0 REFERENCES

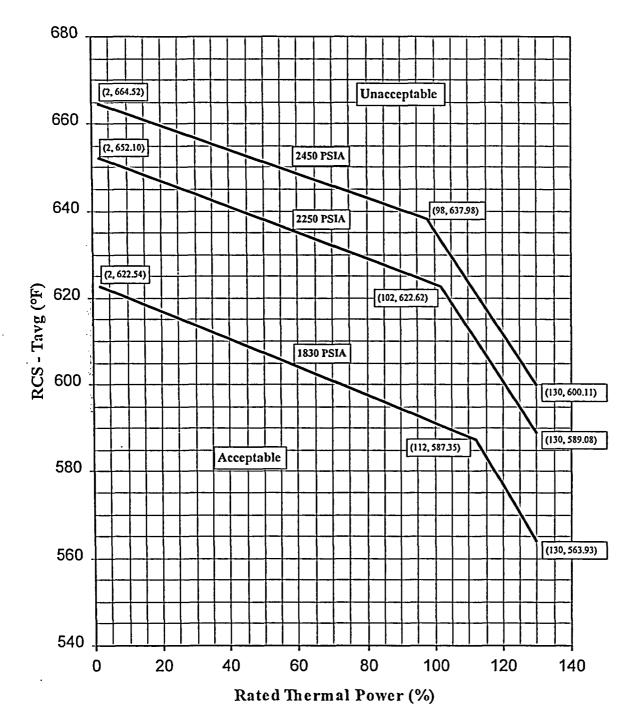
- 3.1 Letter from T. D. Croyle (Westinghouse) to D. F. Hoppes (STPNOC), "Unit 2 Cycle 11 Final Unbound Reload Evaluation," NF-TG-04-29 (ST-UB-NOC-04002469), dated March 19, 2004.
- 3.2 NUREG-1346, Technical Specifications, South Texas Project Unit Nos. 1 and 2.
- **3.3** STPNOC Calculation ZC-7035, Rev. 1, "Loop Uncertainty Calculation for RCS Tavg Instrumentation," dated October 19, 1998.
- 3.4 STPNOC Calculation ZC-7032, Rev. 3, "Loop Uncertainty Calculation for Narrow Range Pressurizer Pressure Monitoring Instrumentation," dated June 27, 2001.
- 3.5 Condition Report Engineering Evaluation 02-13857-9, Revision 1, "Reload Safety Evaluation and Core Operating Limits Report for South Texas Unit 2 Cycle 11 Modes 1, 2, 3, 4, and 5 (from 0 to 535 Effective Full Power Days of Operation)," dated April 14, 2004.

⁵ Includes a 2.8% flow measurement uncertainty.

Core Operating Limits Report

¹ Applies to all fuel in the Unit 2 Cycle 11 Core

² A discussion of the processes to be used to take these readings is provided in the basis for Technical Specification 3.2.5


³ Includes a 1.9 °F measurement uncertainty per Reference 3.3.

⁴ Limit not applicable during either a Thermal Power ramp in excess of 5% of RTP per minute or a Thermal Power step in excess of 10% RTP. Includes a 10.7 psi measurement uncertainty as read on QDPS display per Reference 3.4.

Figure 1

Reactor Core Safety Limits - Four Loops in Operation

l

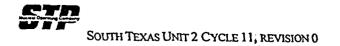
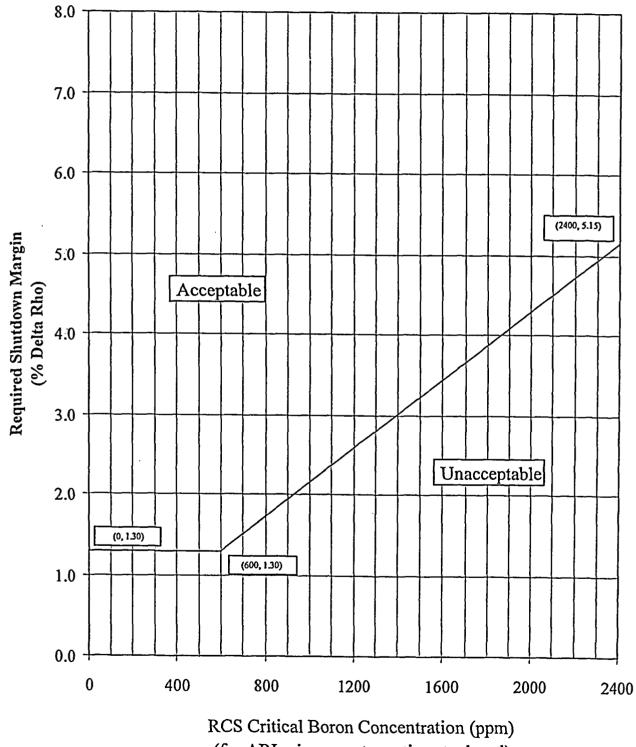
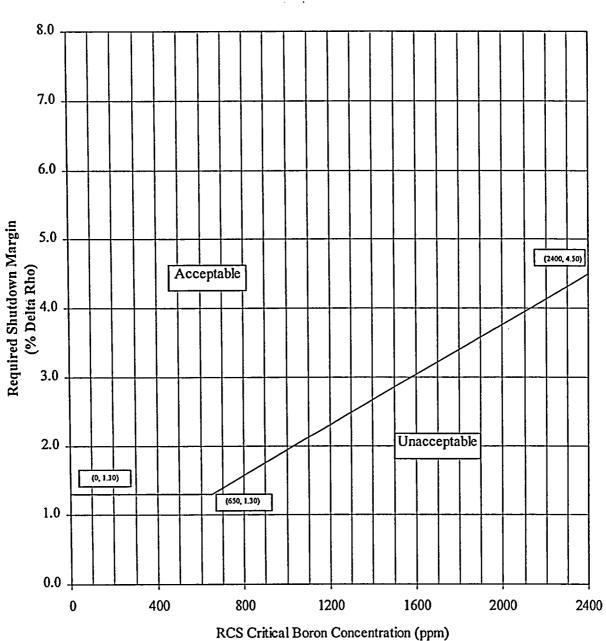



Figure 2

Required Shutdown Margin for Modes 3 & 4


.

APRIL 2004

-- -

Figure 3

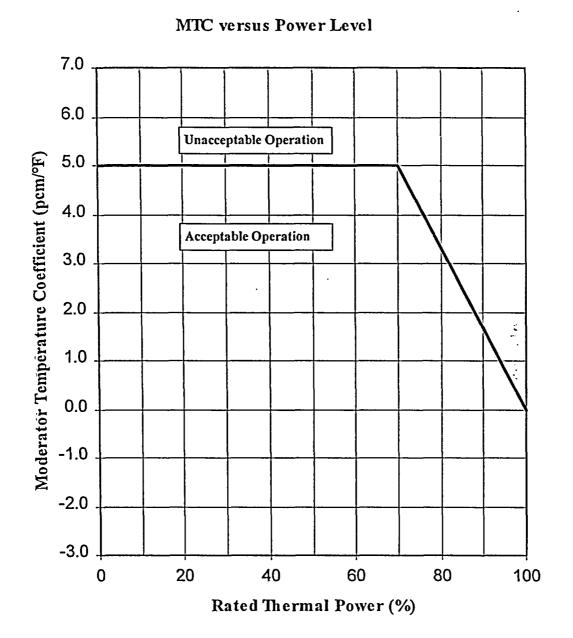
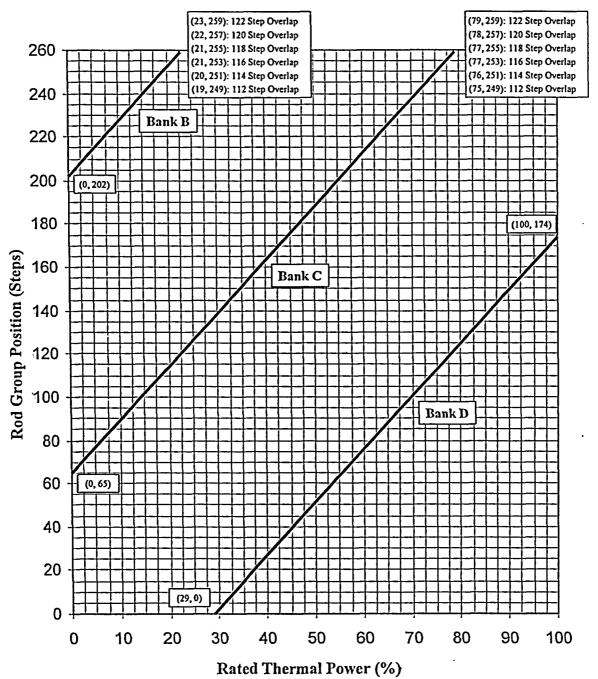
Required Shutdown Margin for Mode 5

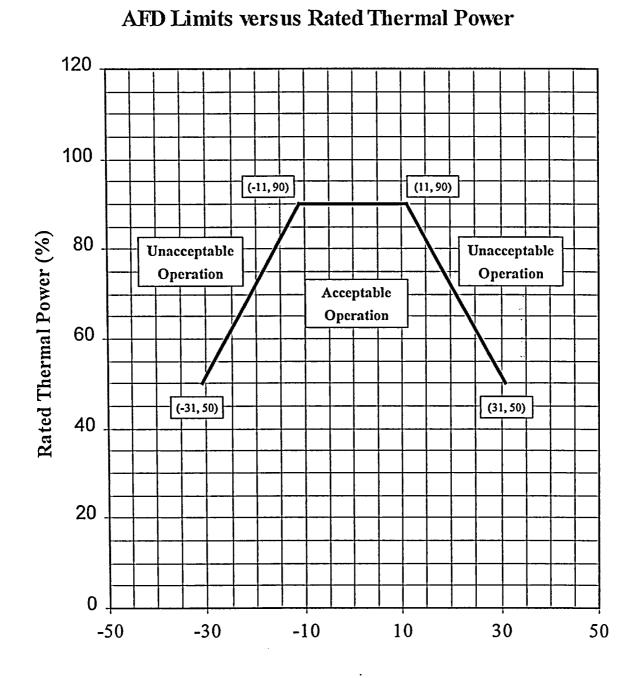
(for ARI minus most reactive stuck rod)

SOUTH TEXAS UNIT 2 CYCLE 11, REVISION 0

Figure 4

.


Figure 5

Control Rod Insertion Limits* versus Power Level

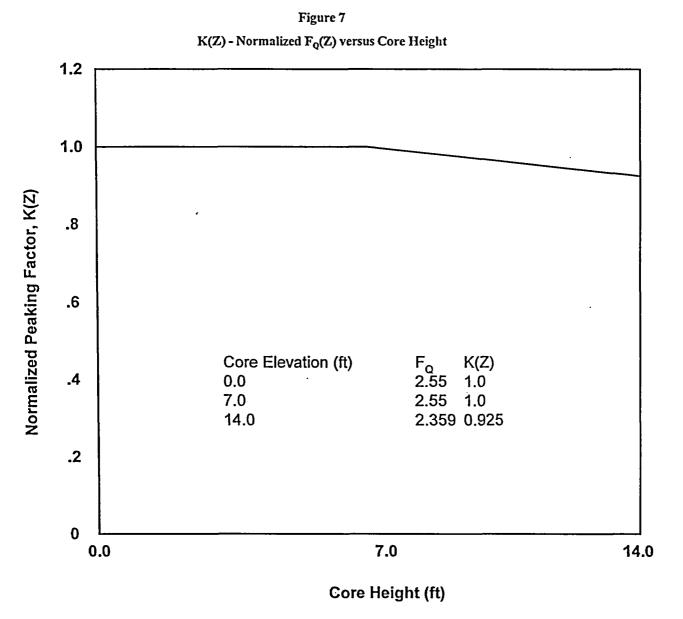

^{*}Control Bank A is already withdrawn to Full Out Position. Fully withdrawn region shall be the condition where shutdown and control banks are at a position within the interval of 249 and ≤ 259 steps withdrawn, inclusive.

Figure 6

Axial Flux Difference (Δ I) %

Table 1 (Part 1 of 2)

Unrodded F_{xy} for Each Core Height

for Cycle Burnups Less Than or Equal to 9000 MWD/MTU

	Core Height	Axial	Unrodded	Core Height	Axial	Unrodded
	(Ft.)	Point	Fxy	(Ft.)	Point	Fxy
-	14.00	1	4.760	6.80	37	2.015
	13.80	2	4.036	6.60	38	2.007
	13.60	3	3.311	6.40	39	2.003
	13.40	4	2.587	6.20	40	1.999
	13.20	5	2.249	6.00	41	1.997
	13.00	6	2.032	5.80	42	1.996
	12.80	7	2.046	5.60	43	1.995
	12.60	8	2.033	5.40	44	1.995
	12.40	9	2.025	5.20	45	1.994
	12.20	10	2.014	5.00	46	1.989
	12.00	11	1.995	4.80	47	1.984
	11.80	12	1.981	4.60	48	1.976
	11.60	13	1.974	4.40	49	1.969
	11.40	14	1.970	4.20	50	1.963
	11.20	15	1.966	4.00	51	1.959
	11.00	· 16	1.963	3.80	52	1.952
	10.80	17	1.962	3.60	53	1.946
	10.60	18	1.964	3.40	54	1.941
	10.40	19	1.966	3.20	55	1.940
	10.20	20	1.972	3.00	56	1.934
	10.00	21	1.977	2.80	57	1.927
	9.80	22	1.981	2.60	58	1.905
	9.60	23	1.989	2.40	59	1.874
	9.40	24	1.998	2.20	60	1.834
	9.20	25	2.008	2.00	61	1.795
	9.00	26	2.019	1.80	62	1.759
	8.80	27	2.030	1.60	63	1.728
	8.60	28	2.042	1.40	64	1.729
	8.40	29	2.054	1.20	65	1.723
•	8.20	30	2.063	1.00	66	1.737
	8.00	31	2.069	0.80	67	1.905
	7.80	32	2.067	0.60	68	2.218
	7.60	33	2.061	0.40	69	2.604
	7.40	34	2.051	0.20	70	2.990
	7.20	35	2.031	0.00	71	3.376
	7.00	36	2.020			

٠

.

Core Height	Axial	Unrodded	Core Height	Axial	Unrodded
(Ft.)	Point	Fxy	(Ft.)	Point	Fxy .
14.00	1	4.051	6.80	37	2.103
13.80	2	3.653	6.60	38	2.093
13.60	3	3.185	6.40	39	2.082
13.40	4	2.683	6.20	40	2.071
13.20	5	2.377	6.00	41	2.059
13.00	6	2.127	5.80	42	2.048
12.80	7	2.114	5.60	43	2.037
12.60	8	2.082	5.40	44	2.029
12.40	9	2.060	5.20	45	2.021
12.20	10	2.038	5.00	46	2.014
12.00	11	2.018	4.80	47	2.005
11.80	12	2.003	4.60	48	1.996
11.60	13	2.000	4.40	49	1.986
11.40	14	2.009	4.20	50	1.977
11.20	15	2.016	4.00	51	1.967
11.00	16	2.021	3.80	52	1.957
10.80	17	2.024	3.60	53	1.948
10.60	18	2.025	3.40	54	1.939
10.40	19	2.027	3.20	55	1.931
10.20	20	2.032	3.00	56	1.923
10.00	21	2.035	2.80	57	1.915
9.80	22	2.038	2.60	58	1.898
9.60	23 ·	2.041	2.40	59	1.879
9.40	24	2.044	2.20	60	1.854
9.20	25	2.049	2.00	61	1.844
9.00	26	2.056	1.80	62	1.835
8.80	27	2.063	1.60	63	1.829
8.60	28	2.071	1.40	64	1.839
8.40	29	2.079	1.20	65	1.839
8.20	30	2.087	1.00	66	1.851
8.00	31	2.096	0.80	67	1.993
7.80	32	2.105	0.60	68	2.249
7.60	33	2.113	0.40	69	2.541
7.40	34	2.118	0.20	70	2.764
7.20	35	2.119	0.00	71	2.796
7.00	36	2.112			

Table 1 (Part 2 of 2)Unrodded Fxy for Each Core Heightfor Cycle Burnups Greater Than 9000 MWD/MTU

;

SOUTH TEXAS PROJECT UNIT 1 CYCLE 12

CORE OPERATING LIMITS REPORT

Revision 2

April 2004

SOUTH TEXAS UNIT 1 CYCLE 12 REV. 2

1.0 CORE OPERATING LIMITS REPORT

This Core Operating Limits Report for STPEGS Unit 1 Cycle 12 has been prepared in accordance with the requirements of Technical Specification 6.9.1.6. The core operating limits have been developed using the NRC-approved methodologies specified in Technical Specification 6.9.1.6.

The Technical Specifications affected by this report are:

1)	2.1	SAFETY LIMITS
2)	2.2	LIMITING SAFETY SYSTEM SETTINGS
3)	3/4.1.1.1	SHUTDOWN MARGIN
4)	3/4.1.1.3	MODERATOR TEMPERATURE COEFFICIENT LIMITS
5)	3/4.1.3.5	SHUTDOWN ROD INSERTION LIMITS
6)	3/4.1.3.6	CONTROL ROD INSERTION LIMITS
7)	3/4.2.1	AFD LIMITS
8)	3/4.2.2	HEAT FLUX HOT CHANNEL FACTOR
9)	3/4.2.3	NUCLEAR ENTHALPY RISE HOT CHANNEL FACTOR
10)	3/4.2.5	DNB PARAMETERS

2.0 OPERATING LIMITS

The cycle-specific parameter limits for the specifications listed in Section 1.0 are presented below.

- 2.1 **SAFETY LIMITS** (Specification 2.1):
 - 2.1.1 The combination of THERMAL POWER, pressurizer pressure, and the highest operating loop coolant temperature (T_{avg}) shall not exceed the limits shown in Figure 1.

2.2 LIMITING SAFETY SYSTEM SETTINGS (Specification 2.2):

2.2.1 The Loop design flow for Reactor Coolant Flow-Low is 98,000 gpm.

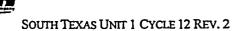
2.2.2 The Over-temperature ΔT and Over-power ΔT setpoint parameter values are listed below:

SOUTH TEXAS UNIT 1 CYCLE 12 REV. 2

APRIL 2004

<u>Over-temperature & T Setpoint Parameter Values</u>

- τ_1 measured reactor vessel ΔT lead/lag time constant, $\tau_1 = 8$ sec
- τ_2 measured reactor vessel ΔT lead/lag time constant, $\tau_2 = 3$ sec
- τ_3 measured reactor vessel ΔT lag time constant, $\tau_3 = 0$ sec
- τ_4 measured reactor vessel average temperature lead/lag time constant, $\tau_4 = 28$ sec
- τ_5 measured reactor vessel average temperature lead/lag time constant, $\tau_5 = 4$ sec
- τ_6 measured reactor vessel average temperature lag time constant, $\tau_6 = 0$ sec
- K₁ Overtemperature ΔT reactor trip setpoint, K₁ = 1.14
- K₂ Overtemperature ΔT reactor trip setpoint T_{avg} coefficient, K₂ = 0.028/°F
- K₃ Overtemperature ΔT reactor trip setpoint pressure coefficient, K₃ = 0.00143/psig
- T' Nominal full power T_{avg} , T' \leq 592.0 °F
- P' Nominal RCS pressure, P' = 2235 psig
- $f_1(\Delta I)$ is a function of the indicated difference between top and bottom detectors of the power-range neutron ion chambers; with gains to be selected based on measured instrument response during plant startup tests such that:
 - For q_i q_b between -70% and +8%, f_i(ΔI) = 0, where q_i and q_b are percent RATED THERMAL POWER in the top and bottom halves of the core respectively, and q_t + q_b is total THERMAL POWER in percent of RATED THERMAL POWER;
 - (2) For each percent that the magnitude of $q_t q_b$ exceeds -70%, the ΔT Trip Setpoint shall be automatically reduced by 0.0% of its value at RATED THERMAL POWER.
 - (3) For each percent that the magnitude of $q_t q_b$ exceeds +8%, the ΔT Trip Setpoint shall be automatically reduced by 2.65% of its value at RATED THERMAL POWER.


<u>Over-power ΔT Setpoint Parameter Values</u>

- τ_1 measured reactor vessel ΔT lead/lag time constant, $\tau_1 = 8$ sec
- τ_2 measured reactor vessel ΔT lead/lag time constant, $\tau_2 = 3$ sec
- τ_3 measured reactor vessel ΔT lag time constant, $\tau_3 = 0$ sec
- τ_6 measured reactor vessel average temperature lag time constant, $\tau_6 = 0$ sec
- τ_7 Time constant utilized in the rate-lag compensator for T_{avg} , $\tau_7 = 10$ sec
- K₄ Overpower ΔT reactor trip setpoint, K₄ = 1.08
- K₅ Overpower ΔT reactor trip setpoint T_{avg} rate/lag coefficient, K₅ = 0.02/°F for increasing average temperature, and K₅ = 0 for decreasing average temperature
- K₆ Overpower ΔT reactor trip setpoint T_{avg} heatup coefficient K₆ = 0.002/°F for T > T" and, K₆ = 0 for T \leq T"
- T" Indicated full power T_{avg} , T" \leq 592.0 °F
- $f_2(\Delta I) = 0$ for all (ΔI)

2.3 SHUTDOWN MARGIN (Specification 3.1.1.1):

The SHUTDOWN MARGIN shall be:

- 2.3.1 Greater than 1.3% Δρ for MODES 1 and 2*
 * See Special Test Exception 3.10.1
- 2.3.2 Greater than the limits in Figure 2 for MODES 3 and 4.
- 2.3.3 Greater than the limits in Figure 3 for MODE 5.

2.4 MODERATOR TEMPERATURE COEFFICIENT (Specification 3.1.1.3):

- 2.4.1 The BOL, ARO, MTC shall be less positive than the limits shown in Figure 4.
- 2.4.2 The EOL, ARO, HFP, MTC shall be less negative than -62.72 pcm/°F.
- 2.4.3 The 300 ppm, ARO, HFP, MTC shall be less negative than -53.72 pcm/°F (300 ppm Surveillance Limit).
- Where: BOL stands for Beginning-of-Cycle Life,
 EOL stands for End-of-Cycle Life,
 ARO stands for All Rods Out,
 HFP stands for Hot Full Power (100% RATED THERMAL POWER),
 HFP vessel average temperature is 592 °F.
- 2.4.4 The Revised Predicted near-EOL 300 ppm MTC shall be calculated using the algorithm from T.S. 6.9.1.6.b.10:

Revised Predicted MTC = Predicted MTC + AFD Correction - 3 pcm/°F

If the Revised Predicted MTC is less negative than the S.R. 4.1.1.3b limit and all of the benchmark data contained in the surveillance procedure are met, then an MTC measurement in accordance with S.R. 4.1.1.3b is not required.

2.5 ROD INSERTION LIMITS (Specification 3.1.3.5 and 3.1.3.6):

- 2.5.1 All banks shall have the same Full Out Position (FOP) of at least 249 steps withdrawn but not exceeding 259 steps withdrawn.
- 2.5.2 The Control Banks shall be limited in physical insertion as specified in Figure 5.
- 2.5.3 Individual Shutdown bank rods are fully withdrawn when the Bank Demand Indication is at the FOP and the Rod Group Height Limiting Condition for Operation is satisfied (T.S. 3.1.3.1).

2.6 AXIAL FLUX DIFFERENCE (Specification 3.2.1):

- 2.6.1 AFD limits as required by Technical Specification 3.2.1 are determined by CAOC Operations with an AFD target band of +5, -10%.
- 2.6.2 The AFD shall be maintained within the ACCEPTABLE OPERATION portion of Figure 6, as required by Technical Specifications.

2.7 HEAT FLUX HOT CHANNEL FACTOR (Specification 3.2.2):

- 2.7.1 $F_0^{RTP} = 2.55$.
- 2.7.2 K(Z) is provided in Figure 7.
- 2.7.3 The F_{xy} limits for RATED THERMAL POWER (F_{xy}) within specific core planes shall be:
 - 2.7.3.1 Less than or equal to 1.903 for cycle burnups less than or equal to 10500 MWD/MTU, and less than or equal to 2.102 for cycle burnups greater than 10500 MWD/MTU, for all core planes containing Bank "D" control rods, and
 - 2.7.3.2 Less than or equal to the appropriate core height-dependent value from Table 1 for all unrodded core planes.
 - 2.7.3.3 $PF_{XY} = 0.2$.

These F_{xy} limits were used to confirm that the heat flux hot channel factor $F_Q(Z)$ will be limited by Technical Specification 3.2.2 assuming the most-limiting axial power distributions expected to result for the insertion and removal of Control Banks C and D during operation, including the accompanying variations in the axial xenon and power distributions, as described in WCAP-8385. Therefore, these F_{xy} limits provide assurance that the initial conditions assumed in the LOCA analysis are met, along with the ECCS acceptance criteria of 10 CFR 50.46.

2.8 ENTHALPY RISE HOT CHANNEL FACTOR (Specification 3.2.3):

- 2.8.1 $F_{\Delta H}^{RTP} = 1.5571$
- 2.8.2 $PF_{\Delta H} = 0.3$

2.9 DNB PARAMETERS (Specification 3.2.5):

- 2.9.1 The following DNB-related parameters shall be maintained within the following limits?
 - a. Reactor Coolant System T_{avg} , $\leq 595 \, {}^{\circ}F^3$,
 - b. Pressurizer Pressure, > 2200 psig⁴,
 - c. Minimum Measured Reactor Coolant System Flow \geq 403,000 gpm⁵.

3.0 REFERENCES

- 3.1 Letter from T. D. Croyle (Westinghouse) to D. F. Hoppes (STPNOC), "Unit 1 Cycle 12 Redesign Final Unbound Reload Evaluation," NF-TG-03-76 (ST-UB-NOC-03002399), July 7, 2003.
- 3.2 NUREG-1346, Technical Specifications, South Texas Project Unit Nos. 1 and 2.
- 3.3 STPNOC Calculation ZC-7035, Rev. 1, "Loop Uncertainty Calculation for RCS Tavg Instrumentation," October 19, 1998.
- 3.4 STPNOC Calculation ZC-7032, Rev. 3, "Loop Uncertainty Calculation for Narrow Range Pressurizer Pressure Monitoring Instrumentation," June 27, 2001.

Core Operating Limits Report

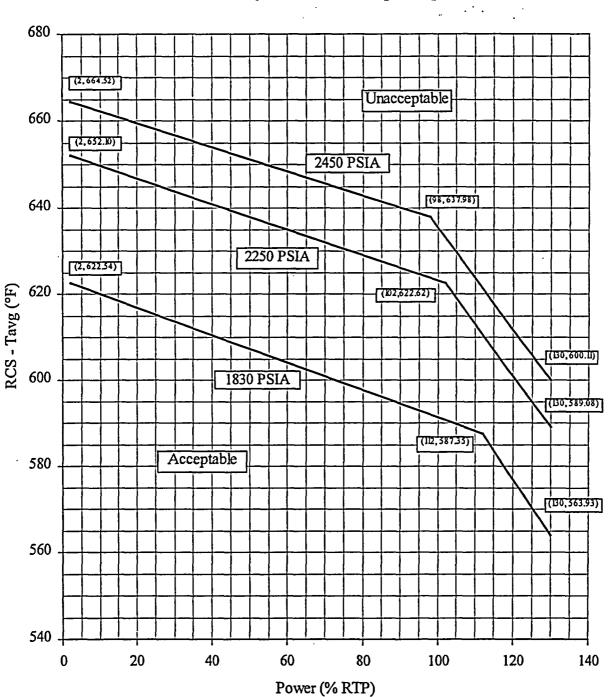
¹ Applies to all fuel in the Unit 1 Cycle 12 core.

² A discussion of the processes to be used to take these readings is provided in the basis for Technical Specification 3.2.5.

³ Includes a 1.9 °F measurement uncertainty per Reference 3.3.

⁴ Limit not applicable during either a Thermal Power ramp in excess of 5% of RTP per minute or a Thermal Power step in excess of 10% RTP. Includes a 10.7 psi measurement uncertainty as read on the QDPS display per Reference 3.4.

⁵ Includes a 2.8% flow measurement uncertainty.



SOUTH TEXAS UNIT 1 CYCLE 12 REV. 2

.

· April 2004

- ...

Required Shutdown Margin for Modes 3 & 4

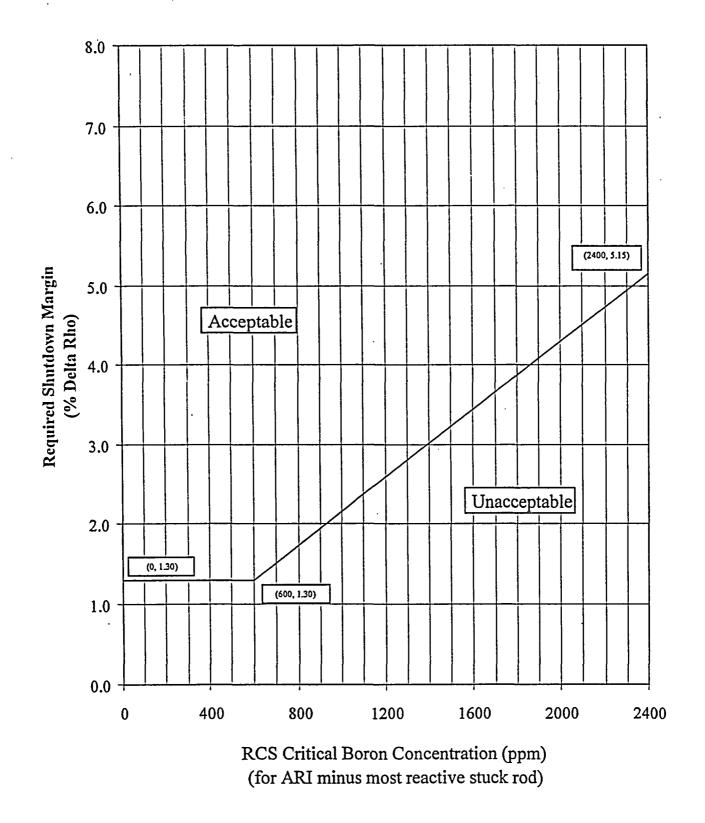
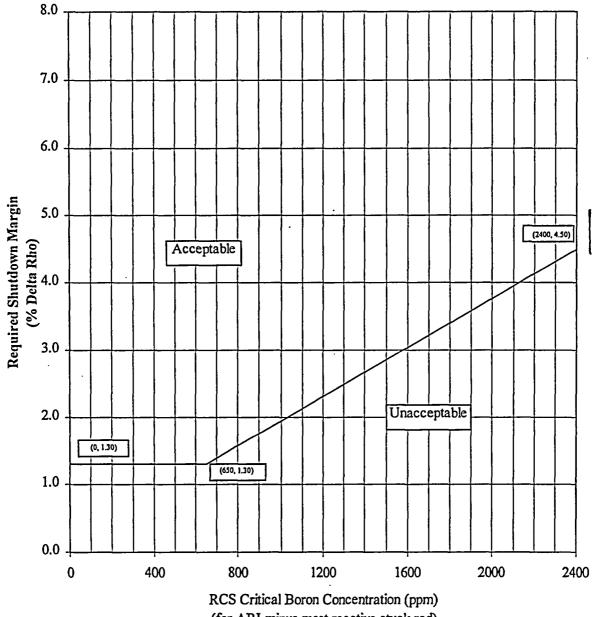
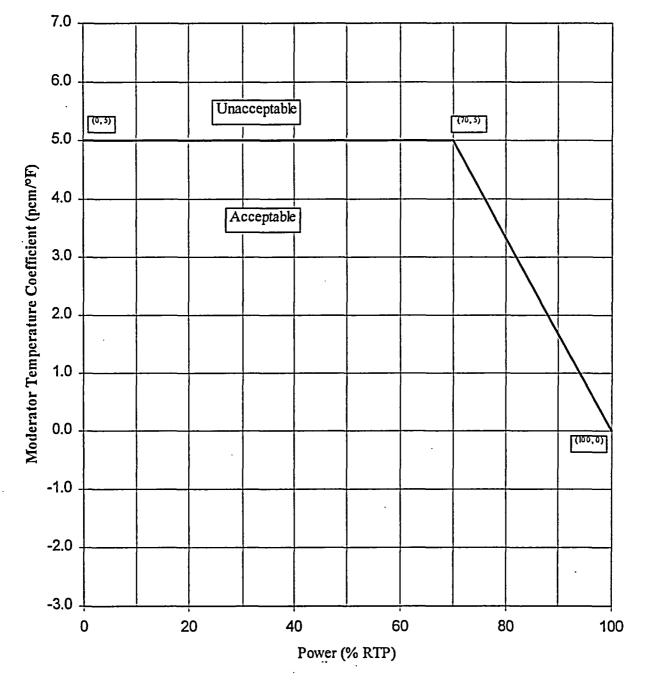
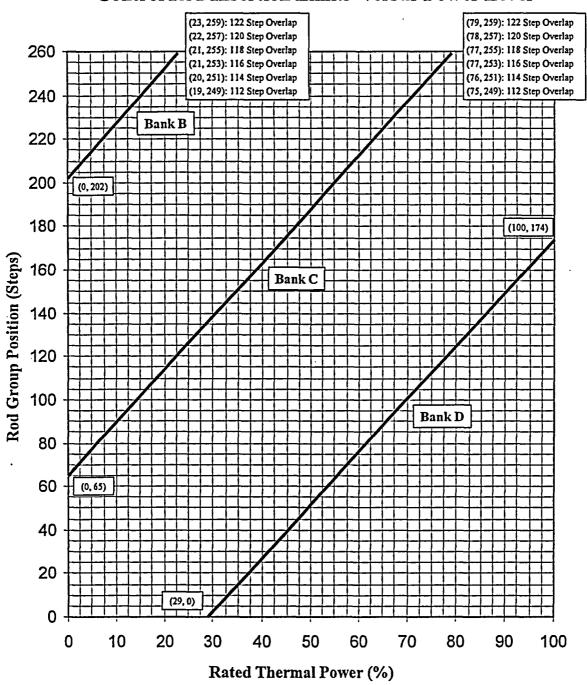



Figure 3

Required Shutdown Margin for Mode 5


(for ARI minus most reactive stuck rod)

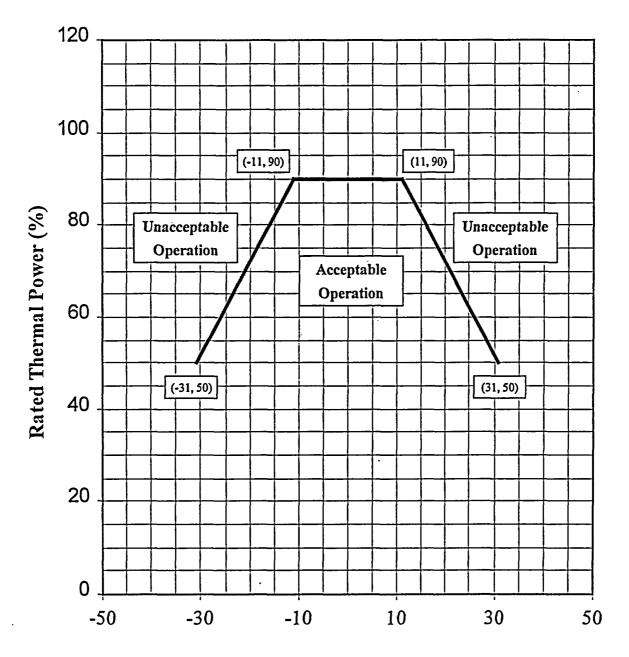
-


Figure 4

MTC versus Power Level

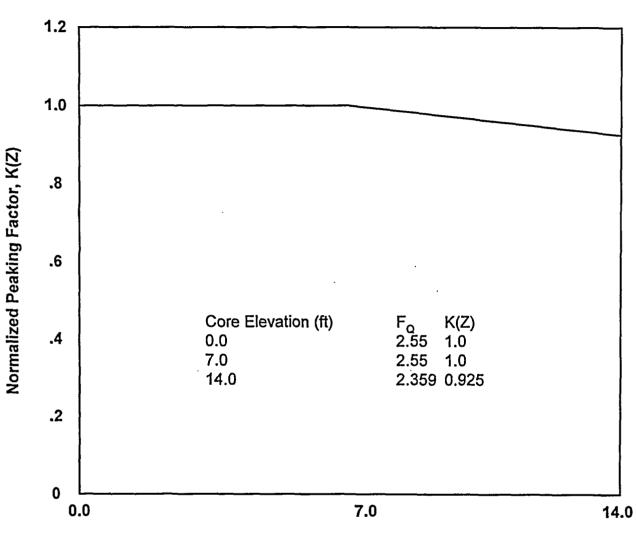
Control Rod Insertion Limits* versus Power Level

^{*}Control Bank A is already withdrawn to Full Out Position. Fully withdrawn region shall be the condition where shutdown and control banks are at a position within the interval of 249 and \leq 259 steps withdrawn, inclusive.



SOUTH TEXAS UNIT 1 CYCLE 12 REV. 2

APRIL 2004


Figure 6

AFD Limits versus Rated Thermal Power

Axial Flux Difference (ΔI) %

Figure 7

K(Z) – Normalized $F_Q(Z)$ versus Core Height

Core Height (ft)

Table 1 (Part 1 of 2)

Unrodded F_{xy} for Each Core Height For Cycle Burnups Less Than or Equal to 10500 MWD/MTU

Core Height	Axial	Unrodded	Core Height	Axial	Unrodded
(Ft.)	Point	F _{xy}	(Ft.)	Point	F _{xy}
 14.0	1	4.122	6.8	37	1.942
13.8	2	3.613	6.6	38	1.932
13.6	3	3.104	6.4	39	1.923
13.4	4	2.594	6.2	40	1.916
13.2	5	2.290	6.0	41	1.908
13.0	6	2.049	5.8	42	1.902
12.8	7	2.053	5.6	43	1.897
12.6	8	2.038	5.4	44	1.894
12.4	9	2.022	5.2	45	1.893
12.2	10	1.995	5.0	46	1.895
12.0	11	1.974	4.8	47	1.896
11.8	12	1.962	· 4.6	48	1.897
11.6	13	1.959	4.4	49	1.893
11.4	14	1.959	4.2	50	1.887
11.2	15	1.956	· 4.0	51	1.889
11.0	16 ⁻	1.951	3.8	52	1.890 🗤
10.8	17	1.946	3.6	53	1.892
10.6	18 [.]	1.944	3.4	54	1.898
10.4	19	1.942	3.2	55	1.905
10.2	20	1.947	3.0	56	1.910
10.0	21	1.952	2.8	57	1.913
9.8	22	1.957	2.6	58	1.890
9.6	23	1.965	2.4	59	1.862
9.4	24	1.972	2.2	60	1.831
9.2	25	1.980	2.0	61	1.826
9.0	26	1.989	1.8	62	1.833
8.8	27	2.000	1.6	63	1.849
8.6	28	2.011	1.4	· 64	1.857
8.4	29	2.021	1.2	65	1.874
8.2	30	2.030	1.0	66	1.913
8.0	31	2.034	· 0.8	67	2.046
7.8	32	2.024	0.6	68	2.292
7.6	33	2.005	0.4	69	2.593
7.4	34	1.986	0.2	70	2.895
7.2	35	1.964	0.0	71	3.197
7.0	36	1.952			
			-		

-

.

Table 1 (Part 2 of 2)

Unrodded F_{xy} for Each Core Height For Cycle Burnups Greater Than 10500 MWD/MTU

Core Height	Axial	Unrodded	Core Height	Axial	Unrodded
(Ft.)	Point	F_{xy}	(Ft:)	Point	F _{xy}
14.0	1	4.784	6.8	37	2.137
13.8	2	4.133	6.6	38	2.131
13.6	3	3.481	6.4	. 39	2.117
13.4	4	2.829	6.2	40	2.103
13.2	5	2.436	6.0	41	2.089
13.0	6	2.124	5.8	42	2.078
12.8	7	2.107	5.6	43	2.068
12.6	8	2.080	5.4	44	2.059
12.4	9	2.054	5.2	45	2.050
12.2	10	2.028	5.0	46	2.041
12.0	11	1.998	4.8	47	2.032
11.8	12	1.996	4.6	48	2.021
11.6	13	2.001	4.4	49	2.009
11.4	14	2.008	4.2	50	1.997
11.2	15	2.015	4.0	51	1.983
11.0	16	2.020	3.8	52	1.970
10.8	17	2.025	3.6	53	1.957
10.6	18	2.027	3.4	54	. 1.945
10.4	19	2.029	3.2 ·	55	1.934
10.2	20	2.033	3.0	56	1.918
10.0	21	2.039	2.8	57	1.896
9.8	22	2.045	2.6	58	1.871
9.6	23	2.052	2.4	· 59	1.856
9.4	24	2.059	2.2	60	1.838
9.2	25	2.066	2.0	61	1.835
9.0	26	2.071	1.8	62	1.834
8.8	27	2.074	1.6	63	1.840
8.6	28	2.078	1.4	64	1.859
8.4	29	2.082	1.2	65	1.915
8.2	30	2.088	1.0	66	2.011
8.0	31	2.095	0.8	67	2.212
7.8	32	2.105	0.6	68	2.528
7.6	33	2.116	0.4	69	2.903
7.4	34	2.127	0.2	70	3.277
7.2	35	2.136	0.0	71	3.651
7.0	36	2.139	1		