PSEG Nuclear LLC P.O. Box 236, Hancocks Bridge, New Jersey 08038-0236

APR 2 8 2004

LR-N04-0116

United States Nuclear Regulatory Commission Document Control Desk Washington, DC 20555

2003 ANNUAL RADIOLOGICAL ENVIRONMENTAL OPERATING REPORT SALEM AND HOPE CREEK GENERATING STATIONS DOCKET NOS. 50-272, 50-311 AND 50-354

As required by Section 6.9.1.7 of Appendix A to Facility Operating Licenses DPR-70 and DPR-75 for Salem Generating Station, Unit Nos. 1 and 2, and Section 6.9.1.6 of Appendix A to Facility Operating License NPF-57 for Hope Creek Generating Station, PSEG Nuclear hereby transmits one copy of the 2003 Annual Radiological Environmental Operating Report. This report summarizes the results of the radiological environmental surveillance program for 2003 in the vicinity of the Salem and Hope Creek Generating Stations. The result of this program for 2003 was specifically compared to the result of the pre-operational program.

If you have any questions or comments on this transmittal, please contact Michael Mosier at (856) 339-5434.

Sincerely,

Steven R. Mannon Manager Nuclear Safety and Licensing

Attachment

Document Control Desk LR-N04-0116

2

C Mr. H. Miller, Administrator - Region I U. S. Nuclear Regulatory Commission 475 Allendale Road King of Prussia, PA 19406

USNRC Senior Resident Inspector - Salem (X24)

USNRC Senior Resident Inspector – Hope Creek (X24)

Mr. D. Collins, Project Manager – Hope Creek, Salem U. S. Nuclear Regulatory Commission Mail Stop 08C2 Washington, DC 20555

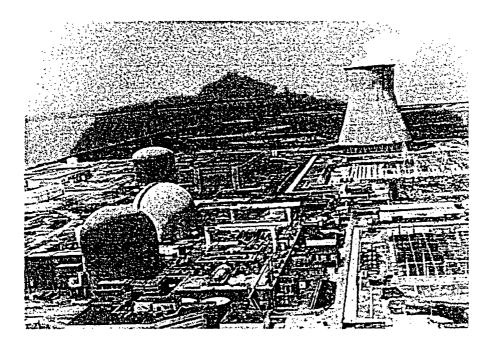
•

Mr. K. Tosch, Manager IV Bureau of Nuclear Engineering P. O. Box 415 Trenton, NJ 08625

Mr. K. Kille Delaware Emergency Management Agency 165 Brick Store Landing Road Smyrna, DE 19977

RADIOLOGICAL ENVIRONMENTAL MONITORING PROGRAM

For


Salem Generating Station, Unit 1: Docket No. 50-272 Salem Generating Station, Unit 2: Docket No. 50-311 Hope Creek Generating Station : Docket No. 50-354

2003 ANNUAL RADIOLOGICAL ENVIRONMENTAL OPERATING REPORT JANUARY 1 TO DECEMBER 31, 2003

Prepared by PSEG SERVICE CORPORATION MAPLEWOOD TESTING SERVICES APRIL 2004

RADIOLOGICAL ENVIRONMENTAL MONITORING PROGRAM

SALEM & HOPE CREEK GENERATING STATIONS

2003 ANNUAL RADIOLOGICAL ENVIRONMENTAL OPERATING REPORT

JANUARY 1 TO DECEMBER 31, 2003

TABLE OF CONTENTS

. • •

	PAGE
SUMMARY	1
THE RADIOLOGICAL ENVIRONMENTAL MONITORING PROGRAM	
Objectives	4
Data Interpretation	5
Quality Assurance Program.	
Program Changes	
Results and Discussion	6
Atmospheric	6
Direct Radiation	8
Terrestrial	
Aquatic	12
Conclusions	16
ner roca characterica de la	26
APPENDIX A - PROGRAM SUMMARY	29
APPENDIX B - SAMPLE DESIGNATION AND LOCATIONS	35
APPENDIX C - DATA TABLES	43
APPENDIX D - SUMMARY OF RESULTS FROM ANALYTICS & ENVIRONME RESOURCE ASSOCIATES INTERLABORATORY COMPARISO PROGRAMS	ON
APPENDIX E - SYNOPSIS OF LAND USE CENSUS	81
APPENDIX F - RADIOLOGICAL IMPACT ON MAN	85

i

LIST OF TABLES

TABLE TABLE DESCRIPTION PAGE 1. Salem and Hope Creek Generating Stations' Radiological Environmental Monitoring Program (Program Overview) 17

۰.

· .	LIST OF FIGURES	
FIGURE		
NUMBER	FIGURE DESCRIPTION	PAGE
1.	Gross Beta Activity in Air Particulate 1983 through 2003 (Quarterly)	20
2.	Ambient Radiation - Off-site vs Control Station 1983 through 2003 (Quarterly)	21
3.	Iodine-131 Activity in Milk 1983 through 2003 (Quarterly)	22
4.	Gross Beta Activity in Surface Water 1983 through 2003 (Quarterly)	23
5.	Tritium Activity in Surface Water 1983 through 2003 (Quarterly)	24
6.	Cesium-137 and Cobqlt-60 Activity in Aquatic Sedimen 1983 through 2003 (Semi-Annual)	t . 25
		· · · ·
:		
		. , .

SUMMARY

· · · .

During normal operations of a nuclear power generating station there are releases of small amounts of radioactive material to the environment. To monitor and determine the effects of these releases a Radiological Environmental Monitoring Program (REMP) has been established for the environment around Artificial Island where the Salem Generating Stations (SGS) and Hope Creek With the Generating Station (HCGS) are located. The results of the REMP are published annually, providing a summary and interpretation of the data collected. The Long terms wild in en la della estatue della della estatue della sacialita della della della della della della della della della d 11

and the second second

PSEG's Maplewood Testing Services (MTS) has been responsible for the collection and analysis of environmental samples during the period of January 1, 2003, through December 31, 2003, and the results are discussed in this report. The REMP for SGS/HCGS was conducted in accordance with the SGS and HCGS Technical Specifications/Offsite Dose Calculation Manual. The Lower Limit of Detection (LLD) values required by the Technical • • Specifications/ODCM were achieved for this reporting period. The objectives of the program were also met during this period. The data collected assists in demonstrating that SGS and HCGS were operated in compliance with Technical Specifications/ODCM.

ار در المعصور بر المراجع المراج المراجع fr 12 1 Most of the radioactive materials noted in this report are normally present in the environment, either naturally, such as potassium-40, or as a result of non-nuclear generating station activity, such as nuclear bomb testing. Measurements made in the vicinity of SGS/HCGS were compared to background or control measurements and the preoperational REMP study performed before Salem Unit 1 became operational. Samples of air particulates; air iodine, milk, surface, ground and drinking water, vegetables, game, fodder crops, fish, crabs, and sediment were collected and analyzed. External radiation dose measurements were also made in the vicinity of SGS/HCGS using thermoluminescent dosimeters.

From the results obtained it can be concluded that the levels and fluctuations of radioactivity in environmental samples were as expected for an estuarine environment. No unusual radiological characteristics were observed in the environs of SGS/HCGS during this reporting period. Since these results were comparable to the results obtained during the preoperational phase of the program, and with historical results collected since commercial operation, we can conclude that the operation of SGS and HCGS had no significant impact on the radiological characteristics of the environs of these stations.

and configurations in a distinct is the factor of the

To demonstrate compliance with Technical Specifications/ODCM (Sections 3/4.12.1 & 6.8.4.h -1,2,3), samples were analyzed for one or more of the following: gamma emitting isotopes, tritium (H-3), iodine-131 (I-131), gross beta and gross alpha.

The results of these analyses were used to assess the environmental impact of SGS and HCGS operations, thereby demonstrating compliance with Technical Specifications/ODCM (Section 3/4.11) and applicable Federal and State regulations, and to verify the adequacy of radioactive effluent control systems.

The results provided in this report are summarized below:

- There were a total of 1206 analyses on 1119 environmental samples during 2003. Direct radiation dose measurements were made using 196 thermoluminescent dosimeters (TLDs).
- In addition to the detection of naturally-occurring isotopes (i.e. Be-7, K-40, Radium and Th-232) trace levels of Cs-137 were also detected. The concentrations of these nuclides were well below the Technical Specification reporting limit.

<u>.</u>

Dose measurements made with quarterly TLDs at 31 offsite locations around the SGS/HCGS site, averaged 49 millirems for the year 2003. The average dose measurements at the control locations (background) was 53 millirems for the year. This was comparable to the preoperational phase of the program which had an average of 55 millirems per year for 1973 to 1976.

During the 2003 year, PSEG Nuclear continued it's investigation into the source and quantity of tritium identified in groundwater at Salem Station. This investigation has been conducted in accordance with a Remedial Investigation Work Plan that was submitted to the New Jersey Department of Environmental Protection Bureau of Nuclear Engineering (NJDEP-BNE) in June, 2003. Several meetings concerning this work have been conducted with the New Jersey Department of Environmental Protection. The results of this investigation will be found in a Remedial Investigation Report, which is anticipated to be submitted to NJDEP-BNE in the first quarter of 2004. There is no evidence that tritium contaminated water above permissible levels has migrated to the station boundary or the Delaware River.

参*行的1000*000 (1993) (1997) (1993) (1993) 111-11月1日1日(1993) (1993) (1993) THE RADIOLOGICAL ENVIRONMENTAL MONITORING PROGRAM

ne portu a viver strategica de Berrera a contrategica de la contrategica. Esta entrategica de seconda entrategica de 1917 - Argunta de La contrategica de la contrategica de la contrateg Lower Alloways Creek Township, Salem County, New Jersey is the site of Salem (SGS) and Hope Creek (HCGS) Generating Stations. SGS consists of two operating pressurized water nuclear power reactors. Salem Unit One has a net rating of 1133 megawatt electric (MWe) and Salem Unit Two has a net rating of 1134 MWe. The licensed core power for both units is 3459 megawatt thermal (MWt). HCGS is a boiling water nuclear power reactor, which has a net rating of 1091 MWe: (3339 MWt) : Figure France Strand Stran

SGS/HCGS are located on a man-made peninsula on the east bank of the Delaware River. It was created by the deposition of hydraulic fill from dredging operations. The environment surrounding SGS/HCGS is characterized mainly by the Delaware River and Bay, extensive tidal marshlands, and low-lying meadowlands. These land types make up approximately 85% of the land area within five miles of the site. Most of the remaining land is used for agriculture [1,2]. More specific information on the demography, hydrology, meteorology, and land use of the area may be found in the Environmental Reports [1,2], Environmental Statements [3,4], and the Updated Final Safety Analysis Reports for SGS and HCGS [5,6],

Since 1968, a radiological environmental monitoring program (REMP) has been conducted at the SGS/HCGS Site. Starting in December, 1972, more extensive radiological monitoring programs were initiated. The operational REMP was initiated in December, 1976, when Salem Unit 1 achieved criticality. PSEG's Maplewood Testing Services (MTS) has been involved in the REMP since its inception. MTS is responsible for the collection of all radiological environmental samples and, from 1973 through June, 1983, conducted a quality assurance program in which duplicates of a portion of those samples analyzed by the primary laboratory were also analyzed by MTS. The definition of the first of the second state of the second

From January, 1973, through June, 1983, Radiation Management Corporation (RMC) had primary responsibility for the analysis of all samples under the SGS/HCGS REMP and annual reporting of results. RMC reports for the preoperational and operational phase of the program are referenced in this report [7-9]. On July 1, 1983, MTS assumed primary responsibility for the analysis of all samples (except TLDs) and the reporting of results. Teledyne Brown Engineering Environmental Services (TBE); assumed responsibility for third-party QA analyses and TLDs. An additional vendor, Controls for 1.1.1 Environmental Pollution Inc. (CEP), was retained to provide thirdparty QA analyses and certain non-routine analyses from May, 1988, until June 1, 1992. Currently, Framatome ANP DE&S Environmental Laboratory (Framatome) is the third party QA vendor and the laboratory which performs the TLD analyses. MTS reports for the operational phase from 1983 to 2002 are referenced in this report. [10].

An overview of the 2003 Program is provided in Table 1. Radioanalytical data from samples collected under this program were . compared with results from the preoperational phase. Differences between these periods were examined statistically to determine the . effects of station operations. This report presents the results from January 1 through December 31, 2003, for the SGS/HCGS REMP.

1

OBJECTIVES

. .

The objectives of the Operational REMP are:

· · · · · · · · ·

- To fulfill the requirements of the Radiological Surveillance sections of the Technical Specifications/ODCM for SGS/HCGS.
- To determine whether any significant increase occurred in the concentration of radionuclides in critical pathways. a manager preserve a second and the second second
- To determine if SGS or HCGS has caused an increase in the radioactive inventory of long-lived radionuclides.

To detect any change in ambient gamma radiation levels.

• •

■ To verify that SGS and HCGS operations have no detrimental effects on the health and safety of the public or on the environment. :

This report, as required by Section 6.9.1.7 of the Salem Technical Specifications/ODCM and Section 6.9.1.6 of the Hope Creek Technical Specifications/ODCM, summarizes the findings of the 2003 REMP. Results of the four-year preoperational program have been summarized for comparison with subsequent operational reports [8].

÷.

In order to meet the objectives, an operational REMP was developed. Samples of various media were selected for monitoring due to the radiological dose impact to human and other organisms. The selection of samples was based on: (1), established critical pathways for the transfer of radionuclides through the environment to man, and, (2), experience gained during the preoperational phase. Sampling locations were determined based on site meteorology, Delaware estuarine hydrology, local demography, and land uses.

Sampling locations were divided into two classes, indicator and control. Indicator stations are those, which are expected to manifest station effects. Control samples are collected at locations which are believed to be unaffected by station operations, usually at 15 to 30 kilometers distance. Fluctuations in the levels of radionuclides and direct radiation at indicator stations are evaluated with respect to analogous fluctuations at control Indicator and control station data are also evaluated stations. relative to preoperational data. Appendix A describes and summarizes, in accordance with Section 6.9.1.7 of the Salem TS and Section 6.9.1.6 of the Hope Creek TS, the operational program as performed in 2003. .

Appendix B describes the coding system which identifies sample type and location. Table B-1 lists the sampling stations and the types of samples collected at each station. These sampling stations are indicated on Maps B-1 and B-2: portlete

A STATE DATA INTERPRETATION AND A STATE OF A

is construction a construction of the second structure and the theory Results of analyses are grouped according to sample type and presented in Appendix C. All results above the Lower Limit of Detection (LLD) are at a confidence level of 2 sigma. This the represents the range of values into which 95% of repeated analyses of the same sample should fall. As defined in Regulatory Guide 4.8, LLD is the smallest concentration of radioactive material in a sample: that will yield a net count (above system background) that will be detected with 95% probability, with only 5% probability of falsely concluding that a blank observation represents a "real signal". LLD is normally calculated as 4.66 times the standard deviation of the background counting rate, or of the blank sample count, as appropriate, divided by counting efficiency, sample size, 2.22 (dpm per picocurie), the radiochemical yield when applicable; the radioactive decay constant and the elapsed time between sample collection and time of counting. The Minimum Detectable and the Concentration (MDC) is defined as the smallest concentration of radioactive material that can be detected at a given confidence level. The MDC differs from the LLD in that the MDC takes into consideration the interference caused by the presence of other clides while the LLD does not. A star start of a start start of the start of the start start start of the sta nuclides while the LLD does not.

The grouped data were averaged and standard deviations calculated in accordance with Appendix B of Reference 16: "Thus, the 2 sigma and the deviations of the averaged data represent sample and not analytical variability. For reporting and calculation of averages, any result occurring at or belows the LLD sist considered to be at that level. When a group of data was composed of 50% or more LLD values, averages were not calculated. The contract of the second s

Grab sampling is a useful and acceptable procedure for taking environmental samples of a medium in which the concentration of radionuclides is expected to vary slowly with time for where the state intermittent sampling is deemed sufficient to establish the as a const radiological characteristics of the medium." This method; however, is only representative of the sampled medium for that specific and location and instant of time. As a result, variation in the radionuclide concentrations of the samples will normally occur. Since these variations will tend to counterbalance one another, averages based upon repetitive grab samples is considered valid.

is goud i davidat det Beniefy indificiency derival for areas portationi i commu TIDE TANDERS AND TO A QUALITY PASSURANCE PROGRAM. SIFE SECTION FROM THE SECTION

MTS has a quality assurance program designed to ensure confidence in the analytical program. Approximately 20% of the total (analytical effort is spent on quality control, including process quality with a

control, instrument quality control, interlaboratory cross-check analyses, and data review.

1

The quality of the results obtained by MTS is ensured by the implementation of the Quality Assurance Program as described in the Maplewood Testing Services Quality Assurance Plan [11] and the Environmental and Chemical Division Procedures Manual. The internal quality control activity of MTS includes the quality control of instrumentation, equipment and reagents; the use of reference standards in calibration, documentation of established procedures and computer programs, and analysis of duplicate samples. The external quality control activity is implemented through participation in both the Analytics and the Environmental Resource Associates Interlaboratory Comparison Programs. The results of these Interlaboratory Comparison Programs are listed in Tables D-1 through D-4 in Appendix D.

PROGRAM CHANGES

· · ·

Due to the tritium contamination of groundwater on the Salem Station site, it was decided to analyze the Delaware River water for tritium on a monthly schedule instead of quarterly as required by Salem and Hope Creek Tech Specs/ODCM.

RESULTS AND DISCUSSION

•

The analytical results of the 2003 REMP samples are divided into categories based on exposure pathways: atmospheric, direct, terrestrial, and aquatic. The analytical results for the 2003 REMP are summarized in Appendix A. The data for individual samples are presented in Appendix C. The data collected demonstrates that the SGS and HCGS REMP was conducted in compliance with the Technical Specifications/ODCM.

The REMP for the SGS/HCGS Site has historically included samples and analyses not specifically required by these Stations' Technical Specifications/ODCM. MTS continues to collect and analyze some of these samples in order to maintain personnel proficiency in performing these non-routine analyses. These analyses are referenced throughout the report as Management Audit samples. The summary tables in this report include these additional samples and analyses.

ATMOSPHERIC

Air particulates were collected on Schleicher-Schuell No. 25 glass fiber filters with low-volume air samplers. Iodine was collected from the air by adsorption on triethylenediamine (TEDA) impregnated charcoal cartridges connected in series after the air particulate filters. Air sample volumes were measured with calibrated dry-gas meters and were corrected to standard temperature and pressure. Air Particulates (Tables C-1, C-2)

Air particulate samples were collected weekly, at 6 locations. Each of the 312 samples collected for the year were analyzed for gross beta. Quarterly composites of the weekly samples from each station were analyzed for specific gamma emitters. Total data recovery for the 6 sampling stations in 2003 was 99.81 percent.

Gross beta activity was detected in all of the indicator station samples at concentrations ranging from 7.6 \times 10⁻³ to 52×10^{-3} pCi/m³ and in all of the control station samples from 8.9 x 10⁻³ to 55 x 10⁻³ pCi/m³. The averages for the indicator and control station samples were 21 and 22 x 10110⁻³ pCi/m³, respectively AThe maximum preoperational level and detected was 920 x 10^{-3} pCi/m³, with an average of 74 x 10^{-3} pCi/m³. Results from 1983 to current year are plotted on Figure lias quarterly averages. Included along with this " plot, for purposes of comparison, is an inset depicting a continuation of this plot from the current year all the un de la companya de way back to 1973. is proportional and approximation states an

Gamma spectroscopy, performed on each of the 24 quarterly composite samples analyzed, indicated the presence of the naturally-occurring radionuclides Be-7 and K-40. All other gamma emitters searched for were below the LLD. unter a parales con complete quiller internation of the first second second second second second second second

O Beryllium-7, attributed to cosmic ray activity in the atmosphere; was detected in all 20 indicator station composites that were analyzed, at concentrations ranging from 44 x 10^{-3} to 68 x 10^{-3} pCi/m³, with an average of 54 x 10^{-3} pCi/m³. It was detected in the 4 control station composites ranging from 44 x 10^{-3} to 56 x 10^{-3} pCi/m³, with an average of 52 x 10^{-3} pCi/m³. The maximum preoperational level detected was 330 x 10^{-3} pCi/m³, with an average of 109 $x 10^{-3} pCi/m^{3}$. Received and the second states with the second s

Potassium-40 activity was detected in 4 of the indicator $\sim 10^{-3}$ station samples, with concentrations ranging from 8 x 10^{-3} to 21×10^{-3} pCi/m³ ; with an average of 13×10^{-3} pCi/m³. K-40 was also detected in 1 control station sample, at a 4 concentration of 9 x 10⁻³ pCi/m³. No preoperational data is available for comparison.

AND FRANK A STRUCT OF A STRUCT

Air Iodine (Table C-3)

Iodine in filtered air samples was collected weekly, at 6 locations. Each of the 312 samples collected for the year was analyzed for I-131. 1

the prove the contract of a firelyna between the sector of · Iodine-131 was not detected in any of the weekly samples analyzed. LLD sensitivities for all the stations, both indicator and control, ranged from <1.0 x 10^{-3} to <15 x 10^{-3} pCi/m³. The maximum preoperational level detected was 42 x 10⁻³ pCi/m³.

DIRECT RADIATION

Ambient radiation levels in the environs were measured with energycompensated CaSO₄ (Tl) thermoluminescent dosimeters (TLDs) supplied. and read by Framatome. Packets containing TLDs for quarterly exposure were placed in the owner-controlled area and around the Site at various distances.

Direct Radiation (Table C-4)

A total of 49 locations were monitored for direct radiation during 2003, including 12 on-site locations, 31 off-site locations within the 10 mile zone, and 6 control locations beyond 10 miles. Effort was made to locate TLDs at schools and population centers in the area.

Five readings for each TLD (ie; 5 elements) at each location were taken in order to obtain a more statistically valid result. For these measurements, the rad is considered equivalent to the rem, in accordance with 10CFR20.1004.

The average dose rate for the 31 quarterly off-site indicator TLDs was 4.1 millirads per standard month, while the on-site average was 4.4 millirads per standard month. The average control rate was 4.4 millirads per standard month. The preoperational average for the quarterly TLD readings was 4.4 millirads per standard month.

In Figure 2, the quarterly average radiation levels of the off-site indicator stations versus the control stations, are plotted for the period 1983 through 2003, with an inset graph depicting the current year back to 1973.

•

• • •

• . . .

an the a

TERRESTRIAL

Milk samples were taken semi-monthly when cows were on pasture and monthly when cows were not grazing on open pasture. Animals are considered on pasture from April to November of each year. Samples were collected in polyethylene containers and transported in ice chests with no preservatives added to the milk.

A well water sample was collected monthly. Separate raw and treated potable water samples were composited daily at the City of Salem water treatment plant. All samples were collected in new polyethylene containers.

Locally grown vegetable and fodder crops were collected at the time of harvest. Such samples were weighed and packed in plastic bags.

Game (muskrat) has been collected annually (time of year dependent on weather conditions, which affect pelt thickness) from local farms after being trapped, stripped of their pelts and gutted. The carcasses were packed in plastic bags and kept chilled in ice chests during transport.

Milk (Table C-5) and the Cost of the Cost

•

Milk samples were collected at 4 local dairy farms (2 farms in NJ and 2 in Delaware) ... Each sample was analyzed for I-131 and gamma emitters. An all NACA WAR is the affected prove of the terms of te

Iodine-131 was not detected in any of the 80 samples analyzed. LLD sensitivities for both the indicator and the control station samples ranged from <0.1 to <1.0 pCi/L: The maximum preoperational level detected was 65 pCi/L which occurred following a period of atmospheric nuclear weapons tests. Results from 1983 to 2003 are plotted on Figure 3, with an inset graph depicting the current year back to 1973. [1] M. S. S. Market M. C. (1993) Reprint Control (1993) 198 (1993).

2.2.1 ■ Gamma spectroscopy performed on each of the 80 samples indicated the presence of the naturally-occurring radionuclide K-40. All other gamma emitters searched for were below the n tes**lill.** Else ver frefacts och ette bånge boung boer ster storeter te villen er storeter te villen etter

O Potassium-40 was detected in all 80 samples. Concentrations for the 60 indicator station samples ranged from 1200 to 1520 pCi/L, with an average of 1360 pCi/L. The 20 control station sample concentrations ranged from 1210 to 1430 pCi/L, with an average of 1320 pCi/L. The maximum preoperational level detected was 2000 pCi/L, with an a saverage of 1437 pCi/Lindgette a strange ter discrete factor goat as a

า และ ของ 11 กรรมที่ 1 มีประการณ์เที่สนุนี้ และสี่งไม่ได้สมสัยประการไม่ประไป การเปรี่ยงขึ้งและไปสาวการ พ.ศ. 2011 มีประเทศสารการการการการการการให้สาวเป็นสนุสรรมการการและสาวการและเป็นการและสี่งได้ มาสัน 5 พิศ. 2013 Well Water (Ground Water) (Tables C-6, C-7)

Although wells in the vicinity of SGS/HCGS are not directly affected by plant operations, water samples were collected monthly from one farm's well during January through December of the year. Each sample was analyzed for gross alpha; gross beta, tritium, and gamma emitters.compared to a light fill of light when the second s

Gross alpha activity was detected in 11 of the well water samples at concentrations ranging from 0.5 to 3.7 pCi/L and an average of 2.1 pCi/L. The maximum preoperational level detected was 9.6 pCi/L. There was no preoperational average determined for this analysis. determined for this analysis. The state of the second of t

·: Gross beta activity was detected in all 12 well water samples. Concentrations for the samples ranged from 8.6 to 11 pCi/L, with an average of 10 pCi/L. The 2003 gross beta results are comparable with the preoperational results which ranged from <2.1 to 38 pCi/L, with an average value of 9 pCi/L...</pre>

PLONED STREAM AND A CONTRACT OF A STREAM Tritium activity was not detected in any of the well water Stranged from: <140; to <180 pCi/L. The maximum preoperational level detected was 380 pCi/L. and same tell conduct editates and state for the state of the second state of the seco Gamma spectroscopy performed on each of the 12 well water samples indicated the presence of the naturally-occurring

to in the two Cash and the second second to the second second

radionuclides K-40 and Radium. All other gamma emitters searched for were below the LLD.

O Radium was detected in all 12 of the well water samples at . concentrations ranging from 56 to 146 pCi/L with an average of 94 pCi/L. The maximum preoperational level detected was 2.0 pCi/L.

_L

These values are similar to those found in the past 14 years. However, as with the 1989 through 2002 results, they are higher than those found in the preoperational program. These results are due to a procedural change for sample preparation. The change results in less removal of radon (and its daughter products) from the sample. It is reasonable to conclude that values currently observed are typical for this region.

O Potassium-40 was detected in 4 of the samples at concentrations ranging from 34 to 87 pCi/L and an average of 56 pCi/L. The maximum preoperational level detected was 30 pCi/L. • · ..

Potable Water (Drinking Water) (Tables C-8, C-9)

· · · .

Both raw and treated potable water samples were collected and composited by Salem water treatment plant personnel. Each sample consisted of daily aliquots composited into a monthly sample. The raw water source for this plant is Laurel Lake and adjacent wells. Each of the 24 individual samples was analyzed for gross alpha, gross beta, tritium, iodine-131 and gamma emitters.

· .

- Gross alpha activity was detected in 9 raw water samples at concentrations of 0.8 to 1.5 pCi/L and in 6 treated water samples ranging from 0.7 to 1.6 pCi/L. The averages for both raw and treated water samples was 1.1 pCi/L. The maximum preoperational level detected was 2.7 pCi/L.
- 2 Gross beta activity was detected in all 24 samples at concentrations ranging from 2.1 to 4.1 pCi/L for both the raw and treated water. The average concentration for both raw and treated was 3.1 pCi/L. The maximum preoperational level detected was 9.0 pCi/L, with an average of 4.2 pCi/L.
- Tritium activity was not detected in any of the raw or treated water samples. LLD sensitivities ranged from <140 to <180. pCi/L. The maximum preoperational level detected was 350 pCi/L, with an average of 179 pCi/L.
- Iodine-131 measurements were performed to a sensitivity of 1.0 pCi/L even though the drinking water supplies are not affected by discharges from the Site since the receiving water body (Delaware River) is brackish and therefore the water is not used for human consumption. Iodine-131 measurements for all 24 samples were below the LLD sensitivities.

These sensitivities ranged from <0.1 to <0.4 pCi/L. There was no preoperational data available for comparison. a, data • gala zang Bilak (* 1997) - a

Sec.

相關的精神法的

神靈的

...

Gamma spectroscopy performed on each of the 24 monthly water samples indicated the presence of the naturally-occurring radionuclide K-40. All other gamma emitters searched for were below the LLD. Construction and the second of the second second second second second

O The radionuclide K-40 was detected in 7 of the raw and treated potable waters at concentrations ranging from 32 to 78 pCi/L. The combined average for both raw and treated positive results was 49 pCi/L. There was no preoperational data available for comparison. a set of the set of the set e se su su stratega strate de la desta de la desta

(a) An interpretation of the second s Second s Second s Second s Second seco Vegetables (Table C-10)

Although vegetables in the region are not irrigated with water into which liquid plant effluents have been discharged, a variety of food products grown in the area for human consumption were sampled at 4 indicator stations (10 samples) and 3 control stations (10 samples). The vegetables collected as management audit samples were analyzed for gamma emitters and included asparagus, cabbage, sweet corn, peppers, spinach and tomatoes: such as the second s

Gamma spectroscopy performed on each of the 20 samples indicated the presence of the naturally-occurring radionuclide K-40. All other

gamma emitters searched for were below the LLD. Potassium-40 was detected in all 20 samples. Concentrations for the 10 indicator station samples ranged from 1710 to 6400 pCi/kgwet and averaged 2590 pCi/kg-wet. Concentrations for the 10 control station samples ranged from 1440 to 2910 pCi/kg-wet, and averaged 2260 pCi/kg-wet. The average concentration detected for all samples, both indicator and control, was 2420 pCi/kg-wet. The maximum preoperational level detected was 4800 pCi/kg-wet, with an average of 2140: pCi/kg-wet. and the sufficiency of the suffic

 $\cdot \gamma$

Although not required by the SGS or HCGS Technical Specifications/ODCM, samples of muskrats inhabiting the marshlands surrounding the Site, are collected. Local residents consume this game. The samples, when available, are collected from 2 locations once a year as management audit samples and analyzed for gamma and a state of the state of t emitters.

Gamma spectroscopy performed on the flesh indicated the presence of the naturally-occurring radionuclide K-40. All other gamma emitters searched for were below the LLD. The rate of the state of the second state of the seco

Potassium-40 was detected in the indicator station sample at a concentration of 2840 pCi/kg-wet and the control station sample at 2670 pCi/kg-wet.

The average for both muskrat samples was 2755 pCi/kg-wet. The maximum preoperational level detected was 27000 pCi/kg-wet, with an average of 4400 pCi/kg-wet.

Fodder Crops (Table C-12)

Although not required by the SGS or HCGS Technical Specifications/ODCM, 6 samples of crops normally used as cattle feed (silage and soybeans) were collected from 2 indicator stations (3 samples) and 2 control station (3 samples). It was determined that these products may be a significant element in the food-chain pathway. Fodder crops are collected as management audit samples and analyzed for gamma emitters. All of the locations from which samples were collected this year are milk sampling stations.

Gamma spectroscopy performed on each of the 6 samples indicated the presence of the naturally-occurring radionuclides Be-7 and K-40. All other gamma emitters searched for were below the LLD.

Beryllium-7, attributed to cosmic ray activity in the atmosphere, was detected in both indicator silage samples at concentrations of 610 and 1030 pCi/kg-wet. It was detected in both the control station silage samples at 890 and 910 pCi/kg-wet. The average for all the silage samples was 860 pCi/kg-wet. The maximum preoperational level detected for silage was 4700 pCi/kg-wet, with an average of 2000 pCi/kg-wet. Be-7 was not detected in either of the indicator nor control station soybean samples. LLD sensitivities for the soybean samples were <27 and <60 pCi/kgwet. The maximum preoperational level detected for soybean samples was 9300 pCi/kg-dry.

Potassium-40 was detected in all 6 samples. Concentrations for the 3 indicator station samples ranged from 4010 to 15300 pCi/kgwet and for the 3 control station samples from 3910 and 15800 pCi/kg-wet. The average concentration detected for the silage samples (both indicator and control) was 4200 pCi/kg-wet. Preoperational results averaged 7000 pci/kg-wet.

Results for the soybean samples (both indicator and control) averaged 15600 pCi/kg-wet which is comparable to preoperational studies when the average wet/dry factor of 1.2 is used. Preoperational soybean results averaged 22000 pCi/kg-dry.

AQUATIC

Environmental Consulting Services, Inc (ECS) collected all aquatic samples (with the exception of 6S2 shoreline sediment). Surface water samples were collected in new polyethylene containers that were rinsed twice with the sample medium prior to collection.

Edible fish and crabs are taken by net and then processed. In processing, the flesh is separated from the bone and shell and

placed in sealed polyethylene containers and frozen before being transported in ice chests.

Sediment samples collected by ECS were taken with a bottom grab sampler and frozen in sealed polyethylene containers before being transported in ice chests. MTS personnel collect location 6S2 shoreline sediment on the beach behind the observation building.

S Press & constraints comparison that is a set of the set of

Surface water samples were collected monthly at 4 indicator stations and one control station in the Delaware estuary.

One location is at the outfall area (which is the area where liquid radioactive effluents from the Salem Station are allowed to be discharged into the Delaware River); another is downstream from the outfall area, and another is directly west of the outfall area at the mouth of the Appoquinimink River: Two upstream locations are in the Delaware River and at the mouth of the Chesapeake and Delaware Canal, the latter being sampled when the flow is from the Canal into the river. Station 12CL, at the mouth of the Appoquinimink River, serves as the operational control. All surface water samples were analyzed monthly for gross beta, tritium and gamma emitters.

■ Gross beta activity was detected in 46 of the indicator station samples ranging from 6.3 to 101 pCi/L, with an average of 38 pCi/L. Beta activity was detected in all 12 of the control station samples with concentrations ranging from 7.7 to 69 pCi/L, with an average of 30 pCi/L. The maximum preoperational level detected was 110 pCi/L, with an average of 32 pCi/L. Quarterly results for all locations are plotted on Figure 4, for the years 1983 to 2003, with an inset graph depicting the current year back to 1973...

Tritium activity was detected in one of the control station samples at a concentration of 185 pCi/L. It was detected in 6 of the indicator station samples at concentrations ranging from 150 to 800 pCi/L with an average of 330 pCi/L. LLD sensitivities for the remaining station samples, both indicator and control, ranged from <140 to <150 pCi/L:: The maximum preoperational level detected was 600 pCi/L: with an average of 210 pCi/L. Positive results from 1983 to 2003 are plotted on Figure 5, with an inset graph depicting the current year back to 1973.

Gamma spectroscopy performed on each of the 48 indicator station and 12 control station surface water samples indicated the presence of the naturally-occurring radionuclide K-40: Aller other gamma emitters searched for were below the LLD. Potassium-40 was detected in 42 samples from the indicator stations fat concentrations franging from 34 to 168 pCi/L and in 9 of the control station samples ranging from 46 to f109 pCi/L. The average for the indicator station locations was 76 pCi/L.

• '

while the average for the control station locations was 74 pCi/L. The maximum preoperational level detected was 200 pCi/L, with an average of 48 pCi/L.

Fish (Table C-16)

Edible species of fish were collected semi-annually at 3 locations and analyzed for gamma emitters in flesh. Samples included catfish, weakfish, white perch and striped bass.

- Gamma spectroscopy performed on each of the 4 indicator station samples and 2 control station samples indicated the presence of the naturally-occurring radionuclide K-40. All other gamma emitters searched for were below the LLD.
 - O Potassium-40 was detected in all 4 samples from the indicator stations at concentrations ranging from 3460 to 4210 pCi/kg-wet for an average of 3750 pCi/kg-wet. K-40 was detected in both samples from the control location at 3680 and 3890 pCi/kg-wet. The average for the control samples was 3785 pCi/kg-wet. The maximum preoperational level detected was 13000 pCi/kq-wet, with an average of 2900 pCi/kg-wet.

Blue Crab (Table C-17)

4

Blue crab samples were collected twice during the season at 2 locations, 1 indicator and 1 control, and the edible portions were analyzed for gamma emitters.

Gamma spectroscopy performed on the flesh of the indicator station samples and the control station samples indicated the presence of the naturally-occurring radionuclide K-40. All other gamma emitters searched for were below the LLD.

Potassium-40 was detected in both indicator station samples at concentrations of 2770 and 2880 pCi/kg-wet. It was detected in the control station samples at 2290 and 2420 pCi/kg-wet. The average for both the indicator and control station samples was 2590 pCi/kg-wet. The maximum preoperational level detected was 12000 pCi/kg-wet, with an average of 2835 pCi/kg-wet.

Sediment (Table C-18)

Sediment samples were collected semi-annually from 7 locations, including 6 indicator stations and 1 control station. (Location 6S2 is the only shoreline sediment and it is directly affected by tidal fluctuations) Each of the 14 samples was analyzed for gamma emitters. Although trace levels of the man-made nuclide, Cs-137, were detected in some sediment samples, these levels were expected and well within the acceptable levels specified in section 3/4.12.1of the Technical Specifications/ODCM.

Gamma spectroscopy was performed on each of the 12 indicator station samples and 2 control station samples. In addition to the detection of Cs-137, the naturally-occurring radionuclides Radium, K-40 and Th-232 were also detected. All other gamma emitters searched for were below the LLD. The set of the sub-sub-sub-sub-set of the set of the set

招望: 143 年月2月

Cesium-137 was detected in 6 indicator station samples at concentrations ranging from 28 to 100 pCi/kg-dry with an average of 49 pCi/kg-dry. It was detected in one of the control station samples at a concentration of 20 pCi/kg-dry. The maximum preoperational level detected was 400 pCi/kg-dry with an average of 150 pCi/kg-dry. Results from 1983 to 2003 are plotted on Figure 6, with an inset graph depicting the current year back to

Cobalt-60 was not detected in any of the sediment samples either indicator or control. LLD sensitivities for the 14 samples, indicator and control, ranged from <4 to <24 pCi/kg-dry. Results of all the positive values from 1983 to 2003 are plotted on Figure 6, with an inset graph depicting the current year back to 1973. There was no preoperational data available for comparison.

contractor in a segue procedure end the contractor example is first for a Potassium-40 was detected in all 12 indicator station samples at concentrations ranging from 1240 to 15400 pCi/kg-dry, with an average of 8970 pCi/kg-dry. Concentrations detected in both of the control station samples were at 14200 and 16400 pCi/kg-dry. The average for both the indicator and control station samples was 9900 pCi/kg-dry. The maximum preoperational level detected was 21000 pCi/kg-dry, with an average of 15000 pCi/kg-dry.

: •

.

Radium was detected in all 12 indicator station samples at concentrations ranging from 86 to 950 pCi/kg-dry, with an average of 570 pCi/kg-dry. Concentrations detected in both of the control station samples were at 630 and 850 pCi/kg-dry, with an average of 740 pCi/kg-dry. The grand average for both the indicator and control station samples was 590 pCi/kg-dry. The maximum preoperational level detected was 1200 pCi/kg-dry, with an average of 760 pCi/kg-dry.

• :

. . .

. . •

·. ·.....

. .

*. •.

Thorium-232 was detected in all 12 indicator station samples at concentrations ranging from 75 to 1230 pCi/kg-dry, with an average of 770 pCi/kg-dry. Concentrations detected in both of the control station samples were at 1040 and 1090 pCi/kg-dry, with an average of 1065 pCi/kg-dry. The grand average for both the indicator and control station samples was 810 pCi/kg-dry. The maximum pre-operational level detected was 1300 pCi/kg-dry, with an average of 840 pCi/kg-dry.

: 15

n 1991 - Martin Standard, ann an Standard († 1990) 1991 - Robert Martin, standard († 1990)

CONCLUSIONS

The Radiological Environmental Monitoring Program for Salem and Hope Creek Generating Stations was conducted during 2003 in accordance with the SGS and HCGS Technical Specifications/ODCM. The LLD values required by the Technical Specifications/ODCM were achieved for this reporting period. The objectives of the program were also met during this period. The data collected assists in demonstrating that SGS and HCGS were operated in compliance with Technical Specifications/ODCM.

From the results obtained, it can be concluded that the levels and fluctuations of radioactivity in environmental samples were as expected for an estuarine environment. No unusual radiological characteristics were observed in the environs of SGS/HCGS during this reporting period. Since these results were comparable to the results obtained during the preoperational phase of the program, which ran from 1973 to 1976, and with historical results collected since commercial operation, we can conclude that the operation of the Salem and Hope Creek Stations had no significant impact on the radiological characteristics of the environs of that area.

TABLE 1

SALEM AND HOPE CREEK GENERATING STATIONS RADIOLOGICAL ENVIRONMENTAL MONITORING PROGRAM

្ព

(PROGRAM OVERVIEW)

. .

.

.

•

.

	STATION CO	DE	COLLECTION		
MEDIUM	INDICATOR	CONTROL	FREQUENCY	TYPE/FREQUENCY* OF ANALYSIS	
. ATMOSPHERIC ENVIRONMENT	· · · · · · · · · · · · · · · · · · ·				
τη () τ ())					
a. Air Particulate	-581 5D1 16E1	14G1	Weekly	Gross beta/weekly	
	1F1 2F6	•		Gamma scan/quarterly	
o. Air Iodine	551 5D1 16B1	. 14G1 ::0	Weekly : Control	Iodine-131/weekly	
L. Willimeiten Anne -	1F1 2F6		Mr. C. March	en active programmer	
		•		•	
I. DIRECT RADIATION	~	• .			
				er eterrete errerete	
a. Thermoluminescent	151 254 351	4S1 3G1	Quarterly	Gamma dose/ quarterly	
Dosimeters	2S2 5D1 2E1	1F1 1G3	 Interpretation of the second seco	nev and the mark of the states	
	5S1 10D1 3E1	2F2 10G1	1		
	6S2 14D1 13E1	2F6 16G1			
	751 1551 1651	4F2 14G1 6F1 3H1		•	
	10S1 16B1 5F1 11S1 7F2 11F1				
•	4D2 9F1 2F5	3F2		STANDOR CO	
	11E2 15D1 12E1	3F3	· · · · · · · · · · · · · · · · · · ·	- 1. 58 pr (1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	
A CONTRACTOR AND A CONTRACTOR	16F2 10F2 12F1				
	13F3 14F2 15F3				
		·		·	
III. Terrestrial Environment	· •		المان الجاري وهذا من فيوالد ما جوالا يموري المان الروالي. الراب الحر	ا میں دیا ہے۔ اور میں میں میں میں میں میں اور میں	
			Monthly	Iodine-131/monthly	
a. Milk	13E3 14F4	2G3 3G1,	(Auen antmars are nor -	Gamma scan/monthly	
			-	Iodine-131/semi-monthly	
				Gamma scan/semi-monthly	

TABLE 1 (cont'd)

SALEM AND HOPE CREEK GENERATING STATIONS RADIOLOGICAL ENVIRONMENTAL MONITORING PROGRAM

(PROGRAM OVERVIEW)

	SI	TATION (CODE		COLLECTION		
MEDIUM	INDICAT	CONTROL		FREQUENCY	•	TYPE/FREQUENCY* OF ANALYSI	
. Well Water	3E1				Monthly		Gross alpha/monthly Gross beta/monthly Tritium/monthly Gamma scan/monthly
	·						
. Potable Water (Raw & Treated)	2F3	3 ·	·		Monthly (composited daily)	344. 3 %	Gross alpha/monthly Gross bata/monthly Tritium/monthly Gamma scan/monthly
· · · · ·	•		• ak :		· · · ·	<u>े</u> देश राज	Iodine-131/monthly
• Vegetables		2F9 L4F3	1G4	2G2 3H5	Anhuallŷ - (at harvest)		Gamma scan/on collection
						•	ang
. Game (Muskrat)	11D1 :	3 E1	- :		Annually	`:	**Gamma scan/on collection
. Fodder Crops	13E3 :			3G1 2G3	Annually		**Gamma scan/on collection
. Soil	652 10D1 16E1	2F9 1	1F3 4F4 ^{-1,1} - 1 11 147 (11) - 12	3 G1 - 1 – ⊮12 - 11 – ⊮12	Every 3 year (2004-2007-2	rs 2010)	Gamma scan/on collection

18

.

. . .

.

TABLE 1 (cont'd)

SALEM AND HOPE CREEK GENERATING STATIONS RADIOLOGICAL ENVIRONMENTAL MONITORING PROGRAM (PROGRAM OVERVIEW)

MEDIUM	STATION CODE INDICATOR	CONTROL	COLLECTION FREQUENCY	TYPE/FREQUENCY* OF ANALYSIS
IV. AQUATIC ENVIRONMENT a. Surface Water	11A1 7E1 1F2 16F1	12C1	Monthly	Gross beta/monthly Gamma scan/monthly Tritium/monthly***
b. Edible Fish	11A1 7E1	12C1	Semi- annually	Gamma scan (flesh)/on collection
c. Blue Crabs	1171	12C1	Semi- annually	Gamma scan (flesh)/on collection
d. Sediment	11A1 6S2 7E1 15A1 16F1 _ 16A1	12C1	Semi- annually	Gamma scan/on collection
· · ·				Salara Director Maria
· * ·			· · · · · · ·	· · · · ·

19

* Except for TLDs, the quarterly analysis is performed on a composite of individual samples collected during the quarter.

** Management audit analyses, not required by Technical Specifications or by specific commitments to local officials.

*** Tech Specs/ODCM require quarterly analysis but due to the tritium leak at Salem, it was decided to analyze surface waters on a monthly basis for tritium.

and the second secon

. . .

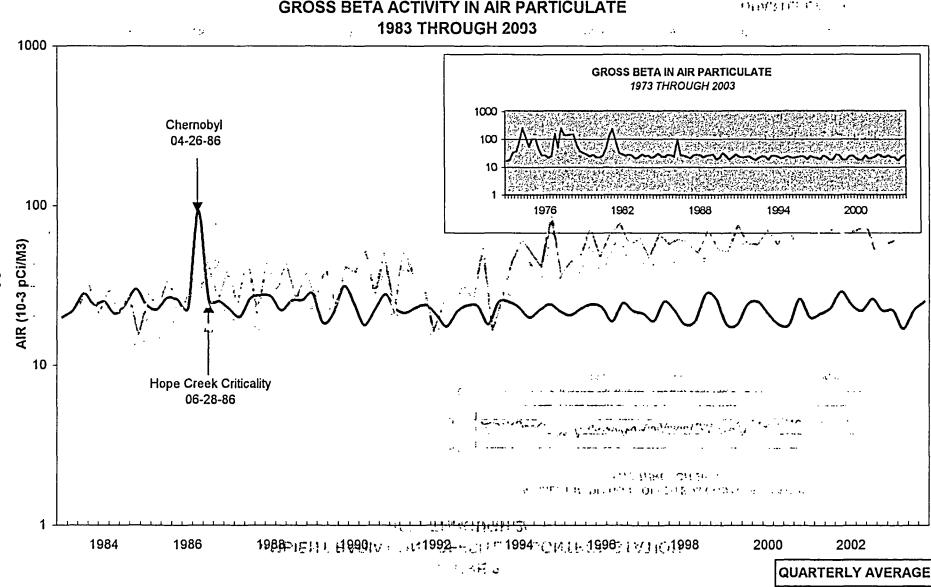
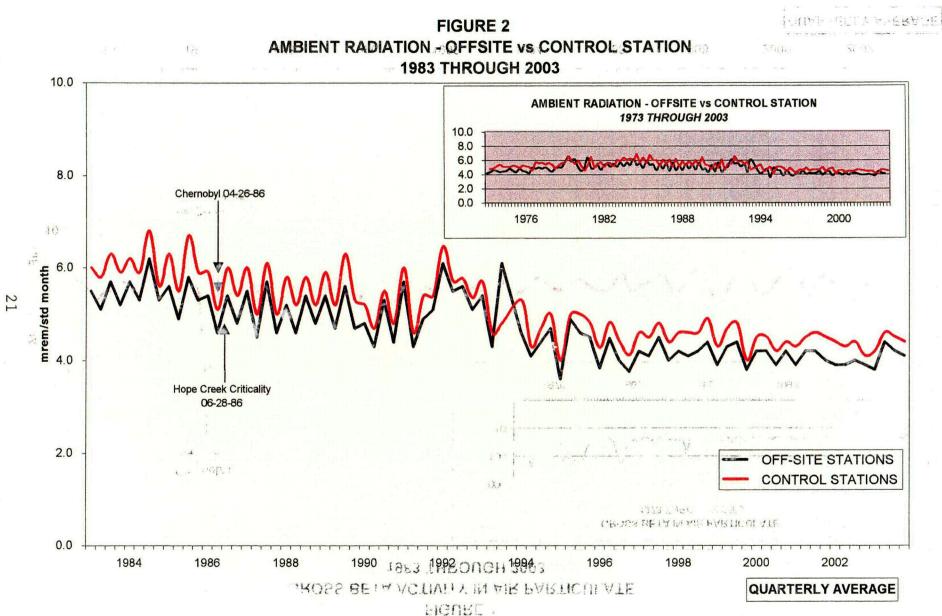
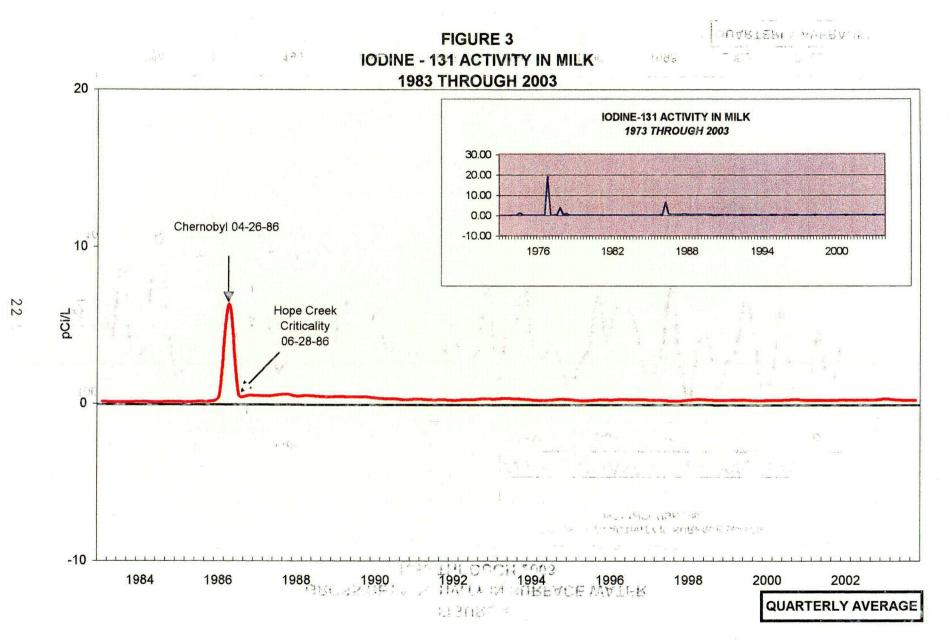
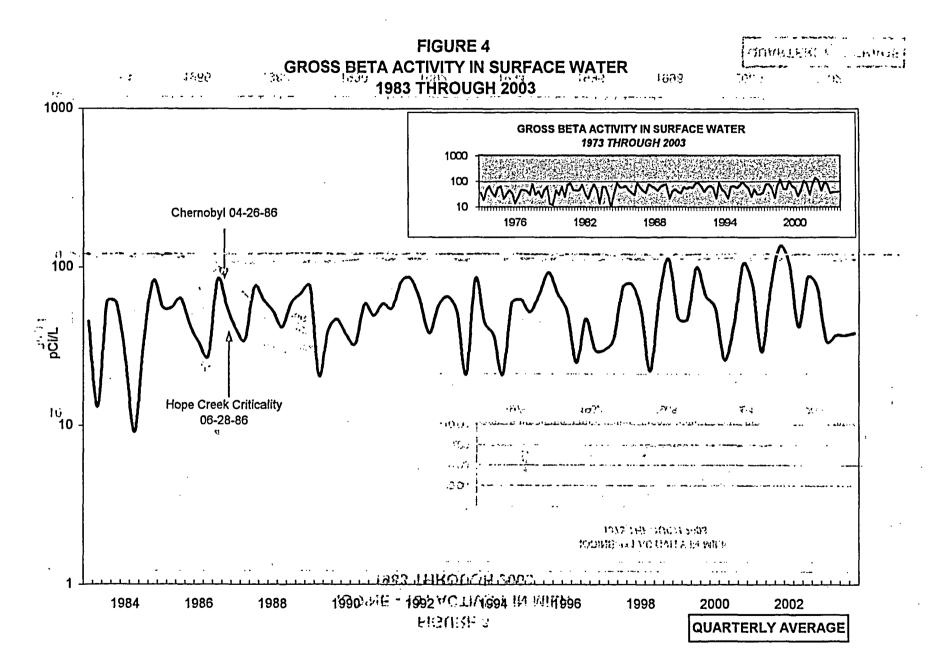
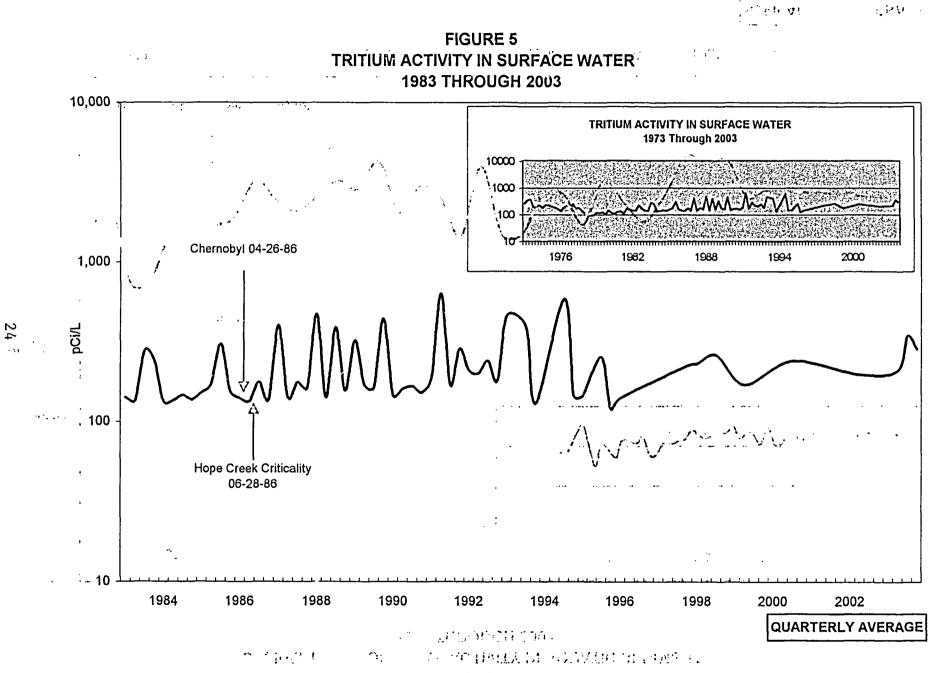
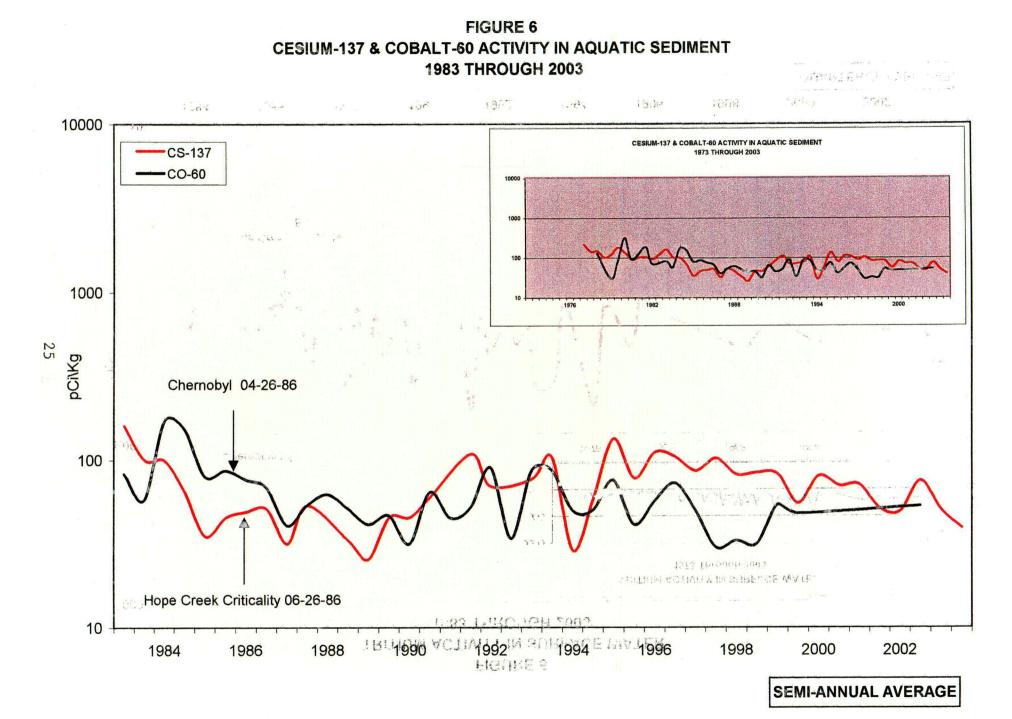




FIGURE 1 **GROSS BETA ACTIVITY IN AIR PARTICULATE**


NUMBER OF STREET


20



COZ

1. B.

REFERENCES

LL

- [1] Public Service Enterprise Group . "Environmental Report, Operating License Stage - Salem Nuclear Generating Station Units 1 and 2". 1971.
- [2] Public Service Enterprise Group . "Environmental Report, Operating License Stage - Hope Creek Generating Station". 1983.
- [3] United States Atomic Energy Commission. "Final Environmental Statement -Salem Nuclear Generating Station, Units 1 and 2". Docket No. 50-272 and 50-311. 1973.
- [4] United States Atomic Energy Commission. "Final Environmental Statement -Hope Creek Generating Station, Docket No. 50-354. 1983.
- [5] Public Service Enterprise Group . "Updated Final Safety Analysis Report - Salem Nuclear Generating Station, Units 1 and 2". 1982.
- [6] Public Service Enterprise Group . "Updated Final Safety Analysis Report - Hope Creek Generating Station.
- [7] Radiation Management Corporation. "Artificial Island Radiological Environmental Monitoring Program - Annual Reports 1973 through 1982".
- [8] Radiation Management Corporation. "Artificial Island Radiological Environmental Monitoring Program - Preoperation Summary - 1973 through 1976". RMC-TR-77-03, 1978.
- [9] Radiation Management Corporation. "Artificial Island Radiological Environmental Monitoring Program - December 11 to December 31, 1976". RMC-TR-77-02, 1977.
- [10] Maplewood Testing Services. "Salem and Hope Creek Generating Stations' Radiological Environmental Monitoring Program - Annual Reports 1983 through 2002".
- [11] Maplewood Testing Services. "Quality Assurance Plan." February, 2004
- [12] Public Service Enterprise Group . "Salem Nuclear Generating Station Technical Specifications", Appendix A to Operating License No. DPR-70, 1976, Sections 6.8.4.h - 1,2,3 and 6.9.1.7.
- [13] Public Service Enterprise Group . "Hope Creek Generating Station Technical Specifications", Appendix A to Facility Operating License No. NPF-57, 1986, Sections 6.8.4.h - 1,2,3 and 6.9.1.6.
- [14] Public Service Enterprise Group . "Offsite Dose Calculation Manual" - Salem Generating Station.

26

REFERENCES (cont'd)

÷

- [15] Public Service Enterprise Group . "Offsite Dose Calculation Manual" - Hope Creek Generating Station.
- [16] U.S. Environmental Protection Agency. "Prescribed Procedures for Measurement of Radioactivity in Drinking Water." EPA-600/4-80-032, August, 1980.
- [17] U.S. Nuclear Regulatory Commission. "Environmental Technical Specifications For Nuclear Power Plants." Regulatory Guide 4.8, December, 1975.
 - na ang sana Ing sana ang sana ang
 - n sense and the sense of the sense The sense of the sense
 - (1) And a set of the set of t

.

- ¹ Construction of the second s
- n services and there are no solar to the track of the track The track of the trac The track of the track
 - and and the second s Statements and second second

 - n an 2 an 1 ann an Air An A An Air An Air
 - (a) A set of a s
 - 1. The second second

APPENDIX A

PROGRAM SUMMARY

. . .

.

.

.

RADIOLOGICAL ENVIRONMENTAL MONITORING PROGRAM

.

SALEM GENERATING STATION HOPE CREEK GENERATING STATION

.

DOCKET 50-272/-311 DOCKET NO. 50-354 <u>`</u>,

د ۲۰ شند و. ۳۰ میلاد ا

SALEM COUNTY, NEW JERSEY JANUARY 1, 2003 to DECEMBER 31, 2003

				and a second		· · · · · · · · · · · · · · · · · · ·	1 1 1 14	
MEDIUM OR PATHWAY SAMPLE (UNIT OF MEASUREMENT)	Analysis Total Nu of Anal Perforr	mber yses	Lower Limit of Detection (LLD)*	All Indicator Locations Mean (Range) **	Location with Highest Mean Name Distance and Direction	Mean (Range)	Control Location Mean (Range)	Number of Nonroutine Reported Measurements
AIRBORNE		~ ,	· ,•				•• ••	
Air Particulates (10 ⁻³ pCI/m ³)	Beta	312	6.0	21 (260 /260) (8-52)	14G1 11.8 mi WNW	22 (52/52) (9-55)	22 (52/52) (9-55)	0
					1F1 5.8 mi N	22 (52 /52) (9-52)		0
				946 (149) 93 (125) 127 (1 106 917	2F6 7.3 mi NNE	22 (52/52) (9-51)		0
	Gamma Be7	24	6.7	54 (20 /20) (44-68)	16E1 4.1 mi NNW	59 (4 /4) (52-68)	52 (4 /4) (44-56)	0
	К-40	24	11	13 (4 /20)	16E1 4.1 mi NNW	18 (2 /4)	9 (1 /4)	, O
		19- 19-		(8-21)		(15-21)	(9-9)	
Air Iodine (10 ⁻³ pCl/m ³)	I-131	312	15	- , <lld< td=""><td>4</td><td><lld< td=""><td><lld< td=""><td>0</td></lld<></td></lld<></td></lld<>	4	<lld< td=""><td><lld< td=""><td>0</td></lld<></td></lld<>	<lld< td=""><td>0</td></lld<>	0
,	ام د است. موجود در در این است	a tinan	, .	ر می موجعه در در از مراجع از رود در م در می موجعه می از در از مراجع از رود در م	يحاج العادية المعام الالتما عدورين والمولين	and the second	وه کې په په درې	na ser an se
I DIRECT			• • • •					
Direct Radiation (mrad/std. month)	Quarterly Badges		tina ∎ina. Nationalista	4.2 (172/172)	2S2 0.4 mi NNE	6.5 (4 /4)	4.4 (24 /24) (3.4-5.6)	Ο.

III TERRESTRIAL Milk	I-131	80	1.0	<pre></pre>	•	<lld< th=""><th><lld< th=""><th>0</th></lld<></th></lld<>	<lld< th=""><th>0</th></lld<>	0
(pCi/L)	Gamma							
	K-40	80	50	1360 (60 /60)	13E3 4.9 mi W	1400 (20/20)	• • •	ο
			1.5 - 1.7 -	(1200-1520)	ter ar esta en l	(1330-1520)	(1210-1430)	

31 ::

RADIOLOGICAL ENVIRONMENTAL MONITORING PROGRAM

SALEM GENERATING STATION HOPE CREEK GENERATING STATION DOCKET 50-272/-311 DOCKET NO. 50-354 .•

SALEM COUNTY, NEW JERSEY

JANUARY 1, 2003 to DECEMBER 31, 2003

MEDIUM OR PATHWAY SAMPLE (UNIT OF MEASUREMENT)	Total Number L of Analyses D		Lower Limit of Detection (LLD)*	All Indicator Locations Mean (Range)	Location with Highest Mean Name Distance and Direction	Mean (Range)	Control Location Mean (Range)	Number of Nonroutine Reported Measurements
III TERRESTRIAL Well Water	Alpha	12	2.9	2.1 (11/12) (0.5-3.7)	3E1 4.1 mi NE	2.1 (11 /12) (0.5-3.7)	No Control Location	ο
(pCi/L)	Beta	12	1.0***	(0.5-3.7) 10 (12 /12) (8.6-11)	3E1 4.1 mi NE	(0.5-3.7) 10 (12/12) (8.6-11)	No Control Location	0
	H-3	12	180	<lld< td=""><td>-</td><td><lld< td=""><td>No Control Location</td><td>0</td></lld<></td></lld<>	-	<lld< td=""><td>No Control Location</td><td>0</td></lld<>	No Control Location	0
	Gamma							
	K-40	12	58	56 (4/12) (34-87)	3E1 4.1mi NE	56 (4 /12) (34-87)	No Control Location	0
	RA-NAT	12	6.9	94 (12/12) (56-146)	3E1 4.1mi NE	94 (12/12) (56-146)	No Control Location	0
Potable Water (pCi/L)	Alpha	24	1.5	1.1 (15 /24) (0.7-1.6)	2F3 8.0 mi NNE	1.1 (15 /24) (0.7-1.6)	No Control Location	0
	Beta	24	1.0***	3.1 (24 /24) (2.1-4.1)	2F3 8.0 mi NNE	(0.7-1.0) 3.1 (24 /24) (2.1-4.1)	No Control Location	0
	Н-З	. 24	180	<lld< td=""><td>-</td><td><lld< td=""><td>No Control Location</td><td>0</td></lld<></td></lld<>	-	<lld< td=""><td>No Control Location</td><td>0</td></lld<>	No Control Location	0
	Gamma				· *			
	К-40	24	58	49 (7 /24) (32-78)	2F3 8.0 mi NNE	49(7/24) (32-78)	No Control Location	0
	I-131	24	0.4	<lld< td=""><td>-</td><td><lld< td=""><td>No Control Location</td><td>0</td></lld<></td></lld<>	-	<lld< td=""><td>No Control Location</td><td>0</td></lld<>	No Control Location	0
	RA•NAT	24	6.9	<lld< td=""><td>-</td><td><lld< td=""><td>No Control Location</td><td>0</td></lld<></td></lld<>	-	<lld< td=""><td>No Control Location</td><td>0</td></lld<>	No Control Location	0

.

RADIOLOGICAL ENVIRONMENTAL MONITORING PROGRAM

٠

SALEM GENERATING STATION DOCKET 50-272/-311 HOPE CREEK GENERATING STATION DOCKET NO. 50-354

•

0-354

• • •

· •

SALEM COUNTY, NEW JERSEY JANUARY 1, 2003 to DECEMBER 31, 2003

-	•.

MEDIUM OR PATHWAY SAMPLE (UNIT OF MEASUREMENT)	Analysis Total Nu of Analy Perforn	mber _a /ses	Lower Limit of Detection (LLD)*	All Indicator Locations Mean (Range)	Location with Highest Mean Name Distance and Direction	, Mean , , , (Range)	Control Location Mean (Range)	Number of Nonroutine Reported Measurements
III TERRESTRIAL Fruit &	Gamma K-40	20	70	259Ő (10)/1Ó)	2F9 7.5 ml NNE	s 200450 3170 (4 /4)	2260 (10/10)	o
Vegetables (pCi/Kg-wet)	RÁ-NAT	20	17	(1710-6400) <lld< td=""><td>÷</td><td>(1740-6400) <lld< td=""><td>(1440-2910) <lld< td=""><td>ö</td></lld<></td></lld<></td></lld<>	÷	(1740-6400) <lld< td=""><td>(1440-2910) <lld< td=""><td>ö</td></lld<></td></lld<>	(1440-2910) <lld< td=""><td>ö</td></lld<>	ö
	17.1.2	· ••	^·;	and the			74.03	
Game (pCi/Kg-wet)	Gamma K-40	2	70	2840 (1./1) (2840)	3E1, 4, 1, mi. NE	2840 (1 /1) (2840)	2670 (1./1)	0
and the set	n an	.) î	<u> చిని</u> జ	(2040)		(2840)	(2670)	2
Fodder Crops (pCl/Kg-wet)	Gamma Be-7	6	60	820 (2 /3) (610-1030)	14F4 7.6 mi WNW	1030 (1 /2)	900 (2/3)	0
nter gange	K-40	6	7Ò	7830 (3 /3) (4010-15300)	3G1 17 mi NE	(1030) 10200 (2 /2) (4680-15800)	(890-910) 8130 (3 /3) (3910-15800)	Ô
	RA-NAT	6	23	<lld< td=""><td>• •</td><td><lld< td=""><td><lld< td=""><td>0</td></lld<></td></lld<></td></lld<>	• •	<lld< td=""><td><lld< td=""><td>0</td></lld<></td></lld<>	<lld< td=""><td>0</td></lld<>	0
VAQUATIC	ي مهم د اور و در المع مراجع . در المع المع المع المع المع المع المع المع	هه ^{باری} مو و ر	•••. ••••• 1 834		an Afrika (al an an an an Afrika (al an	tali (no talina) A	t i stradi i	· · · · · · · · · · · · · · · · · · ·
Surface Water	Beta	60	,7.0	38 (46 /48) 	7E1 4,5 mi SE	65 (12 /12) (35-101)	30 (12/12) (7.7-69)	, 0
(pCi/L)	H-3	60	150	330 (6/48)	7E1 4.5 mi SE	445 (3/12)	185 (1/12)	0
اين اليوادية لوي الأيامة الإيتوادي الوالعلول له . الا اليوادية لوي	Gamma		ييە يەركى قايچە ھەتەر 1	······································	an ang an an ang tanjangkan ginang panèn si papapah anja kangkonton a	(210-800)	```(185-185)```	ha
	K-40	60		, 76. (42 /48) (34-168)	7E1 4.5 mi SE	, 100 (12 /12) (44-168)	74 (9 /12) (46-109)	0.
IV AQUATIC Blue Crabs	Gamma			دى يومىيى كې يونىيە ھېتىرىكى يەر <u>لەر يەر ئارىرى</u>	 A strategy to strategy A strategy to strategy A strategy to strategy 			
(pCi/kg-wet)	K-40	4	70	2820 (2 /2) (2770-2880)	11A1 0.2 mi SW	2820 (2 /2) (2770-2880)	2360 (2 /2) (2290-2420)	. 0

RADIOLOGICAL ENVIRONMENTAL MONITORING PROGRAM

SALEM GENERATING STATION DOCKET 50-272/-311 HOPE CREEK GENERATING STATION

DOCKET NO. 50-354

SALEM COUNTY, NEW JERSEY

JANUARY 1, 2003 to DECEMBER 31, 2003

MEDIUM OR PATHWAY SAMPLE (UNIT OF MEASUREMENT)	Analysis Total Nu of Analy Perforn	mber /ses	Lower Limit of Detection (LLD)*	All Indicator Locations Mean (Range)	Location with Highest Mean Name Distance and Direction	Mean (Range)	Control Location Mean (Range)	Number of Nonroutine Reported Measurements
Edible Fish (pCi/kg-wet)	Gamma K-40	6	70	3750 (4 /4) (3460-4210)	7E1 4.5 mi SE	3840 (2/2) (3460-4210)	3780 (2 /2) (3680-3890)	0
Sediment (pCi/kg-dry)	Gamma Be-7	14	238	<lld< td=""><td>•</td><td></td><td><lld< td=""><td>0</td></lld<></td></lld<>	•		<lld< td=""><td>0</td></lld<>	0
	К-40	14	70	8960 (12/12) (1240-15400)	12C1 2.5 mi WSW	15300 (2/2) (14200-16400)	15300 (2 /2) (14200-16400)	0
	Co-60	14	24	<lld< td=""><td>-</td><td></td><td><lld< td=""><td>0</td></lld<></td></lld<>	-		<lld< td=""><td>0</td></lld<>	0
	Cs-134	14	16	<lld< td=""><td></td><td>** Þ 4</td><td><lld< td=""><td>0</td></lld<></td></lld<>		** Þ 4	<lld< td=""><td>0</td></lld<>	0
	Cs-137	14	13	49 (6 /12) (28-100)	15A1 0.3 mi NW	64 (2 /2) (28-100)	20 (1 /2) (20-20)	0
	RA-NAT	14	45	570 (12/12) (86-895)	11A1 0.2 mi SW	870 (2 /2) (848-895)	740 (2 /2) (628-849)	0
	Th-232	14	50	770 (12/12) (75-1230)	11A1 0.2 mi SW	1150 (2/2) (1080-1220)	1060 (2/2) (1040-1090)	0

• LLD listed is the lower limit of detection which we endeavored to achieve during this reporting period. In some instances nuclides were detected at concentrations above the LLD values shown.

** Mean calculated using values above LLD only. Fraction of measurements above LLD are in parentheses.

*** Typical LLD values.

APPENDIX B

÷.

 $\left\{ \right\}$

SAMPLE DESIGNATION

AND

LOCATIONS

. 7

2	·	·
		:
		·.

÷.,

• •

;

35

.....

ł

APPENDIX B

SAMPLE DESIGNATION

The PSEG's Maplewood Testing Services identifies samples by a three part code. The first two letters are the program identification code. Because of the proximity of the Salem and Hope Creek Stations a common environmental surveillance program is being conducted. The identification code, "SA", has been applied to Salem and Hope Creek stations. The next three letters are for the media sampled.

		Air Iodine		
Ļ	APT =	Air Particulate	MLK =	Milk
	ECH =	Hard Shell Blue Crab	PWR =	Potable Water (Raw)
	ESF =	Edible Fish	PWT =	Potable Water (Treated)
	ESS =	Sediment	SOL =	Soil
		Green Leafy Vegetables		
:	FPV =	Vegetables (Various)	VGT =	Fodder Crops (Various)
	GAM =	Game (Muskrat) 😒 🕾 🕄 🏌	WWA =	Well Water

The last four symbols are a location code based on direction and distance from a standard reference point. Of these, the first two represent each of the sixteen angular sectors of 22.5 degrees centered about the reactor site. Sector one is divided evenly by the north axis and other sectors are numbered in a clockwise direction; e.g., 2=NNE, 3=NE, 4=ENE, etc. The next digit is a letter which represents the radial distance from the reference point:

	ST 15 G	
S = On-site location		
A = 0-1 miles off-site	$\mathbf{u} \in \{\mathbf{r}, \mathbf{r}\}$	5-10 miles off-site
B = 1-2 miles off-site	₽. 0 (G =	10-20 miles off-site
C = 2-3 miles off-site	H =	>20 miles off-site
D = 3-4 miles off-site	· · · ·	

The last number is the station numerical designation within each sector and zone; e.g., 1,2,3,... For example, the designation SA-WWA-3E1 would indicate a sample in the Salem and Hope Creek program (SA), consisting of well water (WWA), which had been collected in sector number 3, centered at 45° (north east) with respect to the reactor site at a radial distance of 4 to 5 miles off-site, (therefore, radial distance E). The number 1 indicates that this is sampling station #1 in that particular sector.

37

TABLE B-1 SAMPLING LOCATIONS

Specific information about the individual sampling locations are given in Table B-1. Maps B-1 and B-2 show the locations of sampling stations with respect to the Site. A Portable Global Positioning System (GPS) was used to provide the coordinates of sampling locations. The Datem used was WGS 84.

	STATION CODE	STATION LOCATION	LATITUDINAL	LONGITUDINAL	SAMPLE TYPE
	151	0.55mi. N of vent	DEG. MIN. SEC 39 - 28 - 16	DEG. MIN. SEC 75 - 32 - 13	IDM
	252	0.4 mi. NNE of vent; Lamp Pole 65 Near HC Switch Yard	39 - 28 - 07	75 - 32 - 00	IDM
	254	0.59 mi. NNE of vent	39 - 28 - 16	75 - 31 - 55	IDM
	351	0.58 mi. NE of vent	39 - 28 - 08	75 - 31 - 41	IDM
	4S1	0.60 mi. ENE of vent	39 - 28 - 02	75 - 31 - 33	IDM
	551	1.0 mi. E of vent; site access road	39 - 27 - 38	75 - 31 - 08	AIO, APT, IDM
ა	6S2	0.2 mi. ESE of vent; observation building	39 - 27 - 43	75 - 31 - 55	IDM, SOL, ESS
0	751	0.12 mi. SE of vent; station personnel gate	39 - 27 - 44	75 - 32 - 03	IDM
	1051	0.14 mi. SSW of vent; inlet cooling water bldg.	39 - 27 - 41	75 - 32 - 10	IDM
	1151	0.09 mi. SW of vent; service water inlet bldg.	39 - 27 [.] - 43	75 - 32 - 12	IDM
	1551	0.57 mi. NW of vent	39 - 28 - 10	75 - 32 - 32	IDM
	1651	0.54 mi. NNW of vent	39 - 28 - 13	75 - 32 - 26	IDM
	11A1	0.2 mi. SW of vent; outfall area	39 - 27 - 59	75 - 32 - 25	ECH, ESF, ESS, SWA
	15A1	0.3 mi. NW of vent; cooling tower blowdown discharge line outfall	39 - 27 - 67	75 - 32 - 19	ESS
	16A1	0.7 mi. NNW of vent; south storm drain discharge line	39 - 28 - 24	75 - 32 - 58	ESS
	12C1	2.5 mi. WSW of vent; west bank of Delaware River	39 - 27 - 22	75 - 34 - 08	ECH, ESF, ESS, SWA
	4D2	3.7 mi. ENE of vent; Alloway Creek Neck Road	39 - 29 - 18	75 - 32 - 11	IDM
	5D1	3.5 mi. E of vent; local farm	39 - 28 - 24	75 - 28 - 22	AIO, APT, IDM
	10D1	3.9 mi. SSW of vent; Taylor's Bridge Spur	39 - 24 - 37	75 - 33 - 44	IDM, SOL
	11D1	3.5 mi. SW of vent	39 - 24 - 49	75 - 34 - 26	GAM
	14D1	3.4 mi. WNW of vent; Bay View, Delaware	39 - 29 - 02	75 - 35 - 31	IDM
	15D1	3.8 mi. NW of vent; Rt. 9, Augustine Beach	39 - 30 - 08	75 - 35 - 02	IDM
	2E1	4.4 mi. NNE of vent; local farm	39 - 31 - 23	75 - 30 - 26	IDM
	3E1	4.1 mi. NE of vent; local farm	39 - 30 - 07	75 - 28 - 41	GAM, IDM, VGT, WWA, FPV

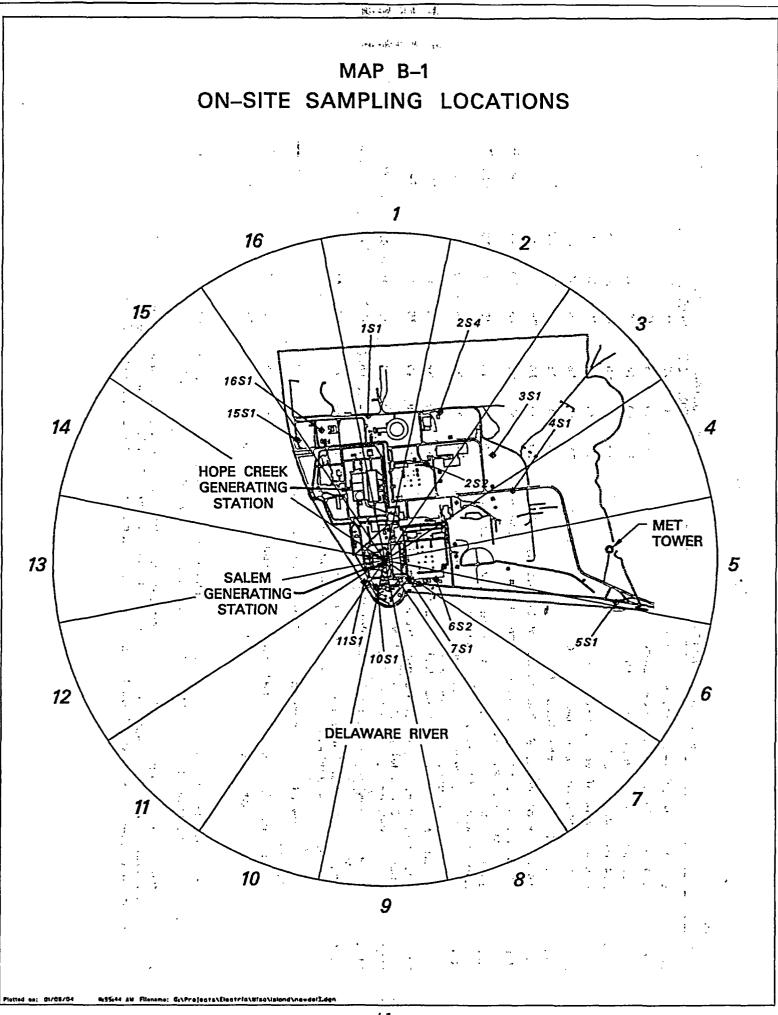
TABLE B-1 (cont'd)

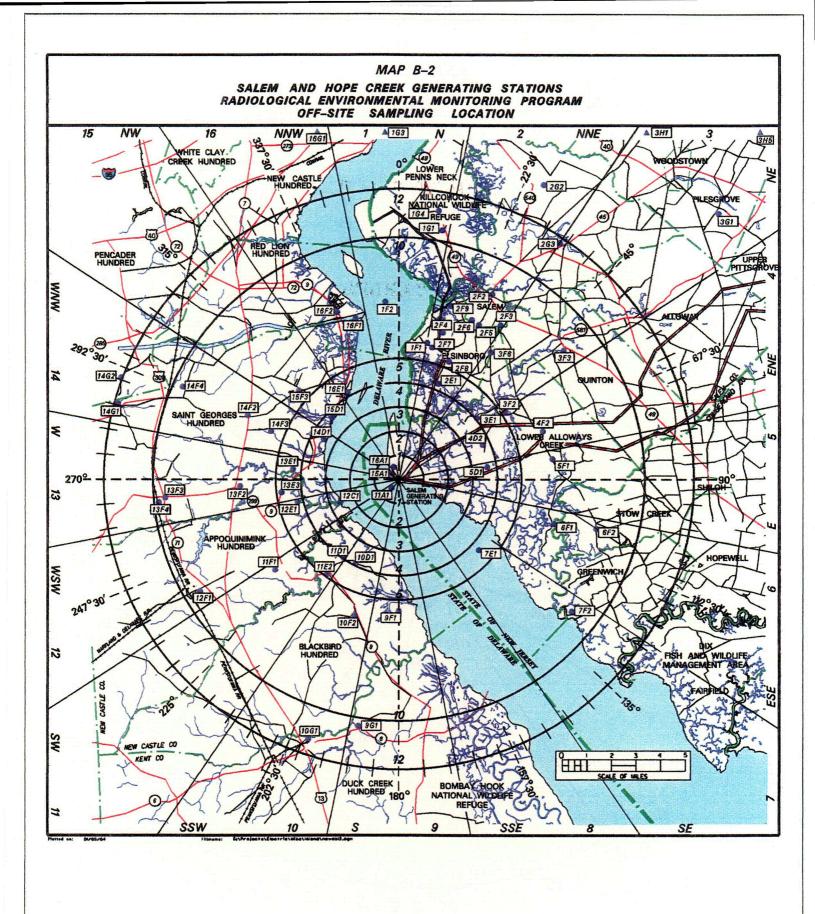
•

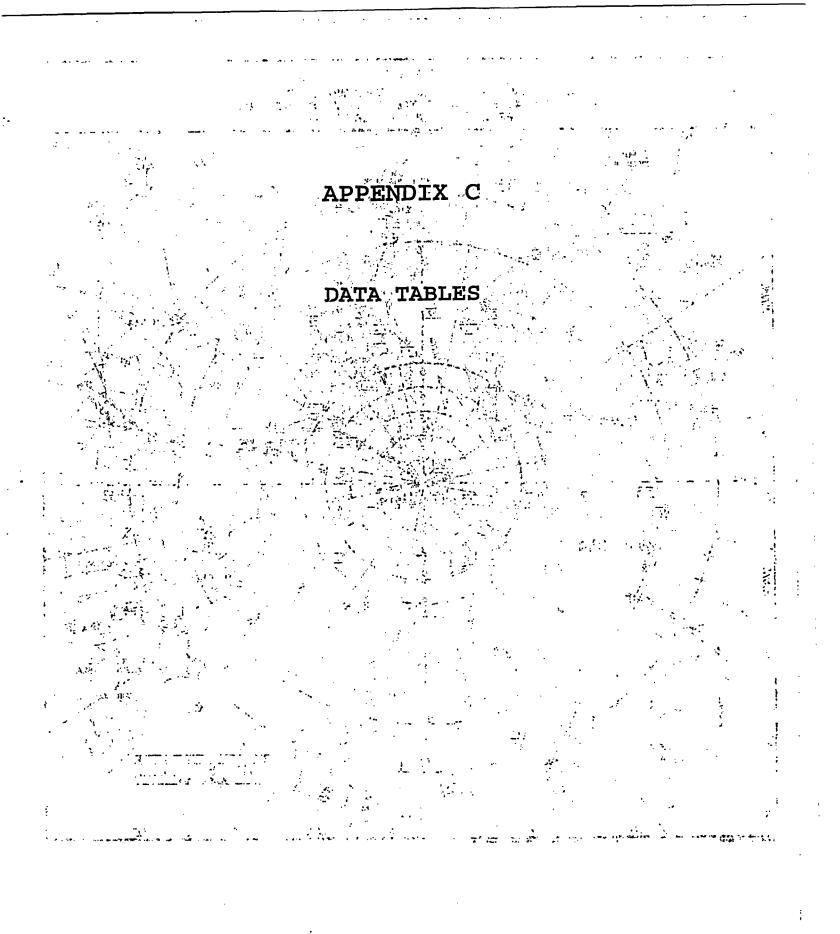
•••

• •

STATION CODE	STATION LOCATION	LATITUDINAL	LONGITUDINAL	SAMPLE TYPE
7E1	4.5 mi. SE of vent; 1 mi. W of Mad Horse Creek	DEG. MIN. SEC 39 - 25 - 08	DEG. MIN. SEC 75 - 28 - 64	ESF, ESS, SWA
11E2	5.0 mi. SW of vent; Rt. 9	39 - 24 - 20	75 - 35 - 33	IDM
12E1	· 중 아님, Hen I 에 슈퍼 및 그 사이가 이 것 이 가지 않는 사람이 가지 않는 것 같아요. 이 가지 않는 것 같아요.	.39 - 26 - 52	75 - 36 - 59	IDM
13E1	4.2 mi. W of vent; Diehl House Lab	39 - 27 - 59	75 - 36 - 44	IDM
13E3	4.9 mi. W of vent; Joseph Vari, Odessa, DE	39 - 27 - 17	75 - 37 - 30	MLK, FPV, VGT
16E1	4.1 mi. NNW of vent; Port Penn	39 - 30 - 47	75 - 34 - 34	AIO, APT, IDM, SOL
1F1	5.8 mi. N of vent; Fort Elfsborg	39 - 32 - 45	75 - 31 - 06	AIO, APT, IDM
1F2	7.1 mi. N of vent; midpoint of Delaware River	39 - 33 - 08	75 - 32 - 54	SWA
2F2	8.7 mi. NNE of vent; Corner of 5 th & Howell, Salem =	39 - 34 - 38	75 - 28 - 04	in IDM
2F3 : *	8.0 mi. NNE of vent; Salem Water Company states at a set	39' - 33 (- 140 🤇	75 - 27 - 18	· PWR, PWT
2F4	6.3 mi. NNE of vent; local farm	39 - 33 - 21	75 - 30 - 33	FPV, FPL
2F5 ₀	7.4 mi. NNE of vent; Salem High School	39; - 33 327 ;	75 - 28 - 31	. IDM
2F6	7.3 mi. NNE of vent; Southern Training Center	39 - 33 - 43	75 - 28 - 48	AIO, APT, IDM
2F7	5.7 ml. NNE of vent; local farm	39 - 32 - 40	75 - 30 - 53	SOL .
2F8	.5.3 mi. NNE OF, vent; local farm	39 - 31 - 54	75 - 29 - 18	FPV .
2F9 🔨	7.5 mi. NNE of vent; Tilbury Farms 7, 45 S.	39) - 33) - 55) t		L FPV, FPL, SOL 🛶 🗛
3F2	Tilbury Rd, Salem 5.1 mi. NE of vent; Hancocks Bridge Municipal Bld	39 - 30 - 25	75 - 27 - 36	IDM
3F3	8.6 mi. NE of vent; Quinton Township School	39 - 32 - 38	75 - 24 - 45	IDM '
3F6	6.5 mi. NE of vent; #324 Salem/Hancocks Bridge Road	39 - 32 - 03	75 - 28 - 00	FPV
4F2	6.0 mi. ENE of vent; Mays Lane, Harmersville	39 - 29 - 58	75 - 26 - 03	IDM
5F1	6.5 mi. E of vent; Canton	39 - 28 - 22	75 - 24 - 59	IDM, SOL
6F1	6.4 mi. ESE of vent; Stow Neck Road	39 - 26 - 24	75 - 25 - 09	IDM
6F2	8.2 mi. ESE of vent; RD#3 Box 160 Bridgeton, NJ	39 - 26 - 04	75 - 23 - 09	FPV, FPL
7F2	9.1 mi. SE of vent; Bayside, New Jersey	39 - 22 - 56	75 - 24 - 17	IDM
9F1	5.3 mi. S of vent; D.P.A.L. 48912-30217	39 - 23 - 03	75 - 32 - 32	. IDM
10F2	5.8 mi. SSW of vent; Rt. 9	39 - 23 - 01	75 - 34 - 09	IDM
11F1 .	6.2 mi. SW of vent; Taylor's Bridge Delaware	39 - 24 - 44	75 - 37 - 37	IDM
12F1		39 - 23 - 47	75 - 41 - 18	IDM
13F2	6.5 mi. W of vent; Odessa, Delaware	39 - 27 - 18	75 - 39 - 21	IDM
13F3	9.3 mi. W of vent; Redding Middle School,	39 - 27 - 14	75 - 42 - 32	IDM
141 15	Middletown, Delaware			•
13F4	9.8 mi. W of vent; Middletown, Delaware and the second	39 - 26 - 51	75 - 43 - 07	IDM .


39 .


TABLE B-1 (cont'd)


STATION CODE	STATION LOCATION	LATITUDINAL DEG. MIN. SEC	LONGITUDINAL DEG. MIN. SEC	SAMPLE TYPE
14F2	6.6 mi. WNW of vent; Boyds Corner	39 - 30 - 00		IDM
14F3	5.4 mi. WNW of vent; local farm	39 - 29 - 33	75 - 37 - 55	FPV,FPL
14F4	7.6 mi. WNW of vent; local farm	39 - 30 - 44	75 - 40 - 52	MLK, VGT, SOL
15F3	5.4 mi. NW of vent	39 - 30 - 58	75 - 36 - 36	IDM
16F1	6.9 mi. NNW of vent; C&D Canal	39 - 33 - 55	75 - 34 - 25	ESS,SWA
16F2	8.1 mi. NNW of vent; Delaware City Public School	39 - 34 - 18	75 - 35 - 25	IDM
1G1	10.3 mi. N of vent; local farm	39 - 36 - 31	75 - 29 - 59	FPV, FPL
1G3	19 mi. N of vent; N. Church St. Wilmington, Del	39 - 44 - 16	[,] 75 - 32 - 31	IDM
1G4	10.8 mi. N of vent; (Dads Produce) Rte. 49, South Broadway, Pennsville	39 - 37 - 55	75 - 30 - 44	FPV .
2G2	13.5 mi. NNE of vent; Moore's Market; 324 Pointers Auburn Road (Rt. 540), Salem, NJ 08079		75 - 26 - 10	FPV
2G3	12 mi. NNE of vent; Asa Caldwallader, Waldac Farms, Corner of Routes 540 & 45, Mannington, NJ	39 - 36 - 21	75 - 24 - 53	MLK, FPV, VGT
3G1	17 mi. NE of vent; Mr. Lee Williams Farm	39 - 35 - 56	75 - 16 - 47	IDM, MLK, VGT, SOL
9G1	10.3 mi. S of Vent; Mr. Goldsburrough, 1784 Woodland Beach Rd., Smyrna, Delaware		75 - 33 - 50	FPV
10G1 .'	12 mi. SSW of vent; Smyrna, Delaware	39 - 18 - 13	75 - 36 - 05	IDM
14G1	11.8 mi. WNW of vent; Rte. 286; Bethel Church Road; Delaware	39 - 31 - 18	75 - 46 - 30	AIO, APT, IDM
14G2	12.1 mi. WNW of vent; Locust Grove Farm & Garden Center; 1084 Bethel Church Road; Middletown, DE 19709	39 - 31 - 21	75 - 44 - 57	FPV
16G1	15 mi. NNW of vent; Across from Greater Wilmington Airport		75 - 35 - 35	IDM
3H1	32 mi. NE of vent; National Park, New Jersey	39 - 51 - 36	75 - 11 - 06	IDM
3H5	25 mi. NE of vent; Sorbello Girl's Market	39 - 41 - 02	75 - 12 - 23	FPL, FPV

NOTE: All station locations are referenced to the midpoint of the two Salem Units' Vents. The coordinates of this location are: Latitude N 39° - 27' - 45.3" and Longitude W 75° - 32' - 09.7".

All Game (GAM), Vegetables(FPV & FPL) and Vegetation (VGT), are management audit samples. They are not required by the Salem & Hope Creek Stations' Tech Specs nor listed in the Station's ODCM. Vegetable samples are not always collected in consecutive years from the same farmer since they rotate the type of crop they grow.

- 10 20 20 20 CM

APPENDIX C

DATA TABLES

Appendix C presents the analytical results of the 2003 Radiological Environmental Monitoring Program for the period of January 1 to December 31, 2003.

۰.

TABLE	TABLE OF CONTENTS					
<u>NO.</u>	TABLE DESCRIPTION	PAGE				
•,	e and the second s					
	ATMOSPHERIC ENVIRONMENT	. ·				
	AIR PARTICULATES					
C-1	2003 Concentrations of Gamma Emitters in Quarterly Composites of Air Particulates	49				
C-2	2003 Concentrations of Gross Beta Emitters in Air Particulates.	50				
· :	AIR IODINE					
C-3	2003 Concentrations of Iodine-131 in Filtered Air	-52				

DIRECT RADIATION

THERMOLUMINESCENT DOSIMETERS

C-4	2003 Direct Radiation Measurements - Quarterly TLD Results	54
	n en	٤
	TERRESTRIAL ENVIRONMENT	, t ^{- 1}
:	<pre>mask weiling a set over a conject set set spin a set a set a final set a set a</pre>	;
C-5	2003 Concentrations of Iodine-131 and Gamma Emitters in Milk	55
	WELL WATER TO A COMPACT FURTHER DE LE BHAN FORMANTE COMPACTATION AND A SUCCESSION ADD.	
C-6	2003 Concentrations of Gross Alpha and Gross Beta Emitters, and Tritium in Well Water	57

DATA TABLES (cont'd.)

___**L**

TABLE NO TABLE DESCRIPTION PAGE TERRESTRIAL ENVIRONMENT (cont'd) C-7 POTABLE WATER C-8 2003 Concentrations of Gross Alpha and Gross Beta Emitters, and Tritium in Raw and Treated Potable Waters..... 59 C-9 2003 Concentrations of Iodine 131 and Gamma Emitters in Raw and Treated Potable Water..... 60 . . . FOOD PRODUCTS C-10 2003 Concentrations of Gamma Emitters in Vegetables..... 61 C-11 2003 Concentrations of Gamma Emitters in Game..... 62 FODDER CROPS

AQUATIC ENVIRONMENT

SURFACE WATER

۰.

C-13	2003 Concentrations of Gross Beta Emitters in Surface Water	64
C-14	2003 Concentrations of Gamma Emitters in Surface Water	65
C-15	2003 Concentrations of Tritium in Quarterly Composites of Surface Water	67

EDIBLE FISH

C-16	2003 Concentrations of Strontium-89, Strontium-90 and Gamma	
	Emitters in Edible Fish	. 68

DATA	TABLES	(cont'	d.)
------	--------	--------	-----

<u>o.</u>	TABLE DESCRIPTION	PAGE
	BLUE CRABS	
-17	2003 Concentrations of Gamma Emitters in Crabs	69
	SEDIMENT	
-18	2003 Concentrations of Gamma Emitters in Sediment	70
	SPECIAL TABLES	
	<pre>bit de set de finite au la section de la satélie de transmission de la section de la section de la section LLDs</pre>	•
-19	2003 PSE&G Maplewood Testing Services' LLDs for Gamma Spectroscopy	71
	(1) A second se second second se second second s second second s second second se	·.
	an a	
	en en son a ser an en	•
:	u a transformation a state of the	
	en e	
		:
	n an	
	and for a second second and the second s Second second	
	47	

Table C-1

2003 CONCENTRATIONS OF GAMMA EMITTERS* IN QUARTERLY COMPOSITES OF AIR PARTICULATES

÷.,

Results in Units of 10⁻³ pCi/m³ +/- 2 sigma

STATION	Sampling	Period	: Samma E ح	< Gamma Emitters>		
1D	Start	Stop	Be-7	K-40		
		4, 2, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,				
SA-APT-5S1	12/30/2002 to	03/31/2003	55 ± 4	<3		
SA-APT-1F1	12/30/2002 to	03/31/2003	51 ± 4	<5		
SA-APT-2F6	12/30/2002 to	03/31/2003	54±4	<5		
SA-APT-5D1	12/30/2002 to	03/31/2003	46±3	<3		
SA-APT-16E1	12/30/2002 to		60±6	21 ± 4		
SA-APT-14G1(C)	12/30/2002 to	-	44 ± 4	9±2		
SA-APT-5S1	03/31/2003 to	06/30/2003	53±4	<3		
SA-APT-151	03/31/2003 to	06/30/2003	53 ± 4 54 ± 4	<3		
SA-APT-2F6	03/31/2003 to	06/30/2003	54±4	<4		
SA-APT-5D1	03/31/2003 to	06/30/2003	51±4	<3		
SA-APT-16E1	03/31/2003 to	06/30/2003	55±4	<3		
SA-APT-14G1(C)	03/31/2003 to	06/30/2003	51±4	<4		
	00/01/2000 10	00/00/2000	0.24			
SA-APT-5S1	06/30/2003 to	09/29/2003	65 ± 4	8±2		
SA-APT-1F1	06/30/2003 to 06/30/2003 to	09/29/2003	58±4	<3		
SA-APT-2F6	06/30/2003 to		53±4	· <3 . · <9		
SA-APT-5D1	06/30/2003 to	09/29/2003	53±4	9±2		
SA-APT-16E1	06/30/2003 to	09/30/2003	68 ± 4	15±3		
SA-APT-16E1	06/30/2003 to	09/30/2003	56±4	: <3		
5A-Al 1-1461(6)	00/00/2003 (0	03/30/2003				
SA-APT-5S1	09/29/2003 to	12/29/2003	44±3	<3		
SA-APT-151	09/29/2003 to 09/29/2003 to		44±3 45±4	< <3		
SA-APT-2F6	.09/29/2003 to		49±3	<3		
SA-APT-5D1	09/29/2003 to	12/29/2003	52±3	<3		
SA-APT-16E1	09/30/2003 to	12/20/2003	52±0	<6		
SA-APT-14G1(C)	09/30/2003 to	12/30/2003	55 ± 4	<4		
	50,00,2000 (0					
				,		
AVERAGE	an an the second se		53 ± 11			
AVENAGE	and the contract of			•		

* All other gamma emitters searched for were <LLD; typical LLDs are given in Table C-19. (C) Control Station 2.

2003 CONCENTRATIONS OF GROSS BETA EMITTERS IN AIR PARTICULATES Results in Units of 10⁻³ pCi/m³ +/- 2 sigma

<		STATION ID		>			
MONTH	Control SA-APT-14G1	SA-APT-16E1	SA-APT-1F1	SA-APT-2F6	SA-APT-5D1	SA-APT-5S1	AVERAGE
January	22 ± 2	19 ± 2	16±2	19±2	19 ± 2	20 ± 2	19±3
	16 ± 2	20 ± 2	22 ± 2	22±2	24 ± 2	19 ± 2	20 ± 6
	29 ± 2	28 ± 2	28 ± 2	31 ± 2	26 ± 2	34 ± 3	29 ± 5
	26 ± 2	25 ± 2	23 ± 2	27±2	23 ± 2	23 ± 2	25 ± 3
	18 ± 2	27 ± 2	24 ± 2	28 ± 2	19 ± 2	21 ± 2	23 ± 8
February	27 ± 2	25 ± 2	26 ± 3	28 ± 3	25 ± 2	25 ± 2	26 ± 2
-	19 ± 1	19 ± 2	18 ± 2	16 ± 2	14 ± 2	16 ± 2	17 ± 4
	16 ± 2	17 ± 2	17±2	16 ± 2	13 ± 2	16 ± 2	16 ± 3
	22 ± 2	30 ± 2	27 ± 3	26 ± 3	23 ± 2	28 ± 2	26 ± 6
March	27 ± 3	29 ± 3	26 ± 2	25 ± 2	27 ± 3	28 ± 3	27 ± 3
•. •• -	26 ± 3	25 ± 2	22 ± 2	30 ± 2	17 ± 2	24 ± 2	24 ± 9
	16 ± 2	14 ± 2	18 ± 2	15 ± 2	15 ± 2	14 ± 2	15 ± 3
	17 ± 2	15 ± 2	16 ± 2	17±2	12 ± 2	14 ± 2	15 ± 4
April	19±2	19 ± 2	18 ± 2	17±2	15 ± 2	17±2	18 ± 3
	19 ± 2	18 ± 2	17±2	18±2	14 ± 2	20 ± 2	18 ± 4
	33 ± 3	27 ± 2	27±2	29 ± 2	20 ± 2	25 ± 2	27±8
	17 ± 2	17±2	14 ± 2	17±2	15 ± 2	20 ± 2	17 ± 4
	24 ± 3	22 ± 2	27 ± 3	24 ± 2	22 ± 2	21±2	23 ± 5
May	18 ± 2	14 ± 2	15 ± 2	15 ± 2	13 ± 2	15 ± 2	15 ± 3
	9±2	10 ± 2	10 ± 2	9±2	13 ± 2	12 ± 2	11±3
	10 ± 2	11 ± 2	10 ± 2	11 ± 2	8±2	10±2	10 ± 2
	13 ± 2	12 ± 2	15 ± 2	12 ± 2	13 ± 2	14 ± 2	13 ± 2
June	9±2	10±2	9±2	10 ± 2	10 ± 2	11 ± 2	10±2
	21±2	19 ± 2	16 ± 2	18 ± 2	17 ± 2	15 ± 2	18 ± 4
	12 ± 2	12 ± 2	14 ± 2	11 ± 2	12 ± 2	11 ± 2	12 ± 2
	39±3	36 ± 3	35 ± 3	35 ± 3	33 ± 3	32 ± 3	35 ± 5

.

2003 CONCENTRATIONS OF GROSS BETA EMITTERS IN AIR PARTICULATES

		Resu	Its in Units of 10 ⁴	³ pCi/m ³ +/-	2 sigma		
<	Control SA-APT-14G1	SA-APT-16E1	SA-APT-1F1	SA-APT-2F	> 6 SA-APT-5	D1 SA-APT-5S1	AVERAGE
July	23±2	20±2	25±3	24±2	24±2	25±2	23±3
Udiy	19±2 °	21±2	21±2	17±2	13±2	20 ± 2	19±6
	24±22	23±2	21±2	24 ± 2	21±2	21±2	22±3
$1 \le 2N$	29±2	20±2	27±3	25 ± 2	30±3	29±3	26±7
	19±2	16±2	17±2	16±2	15±2	18±2	17±3
August	16±2	13±2 .	12±2	12±2	16±2	15±2	14±4
5	26±3 55	24±3	30±3 - 19	28±3	22±3	26±3	26±5
-्येम ्	26±2 3 5	28±3	29±3 🗇	27±3	28±3	S ≥ 27±3	27±2
	29±2	25±2	30±2	28±2	27±2	28±2	28 ± 4
			10.0	45 . 0			
September	16±2 0 0	12±2: (**)	15±2 < 12	15±2	<pre>431 15±2</pre>	15±2	15±3
sia telli	14±2 (***	18±2; 201	16±2 < ***	17±2	- 3 16±2	17±2	16±3
2457	28±2 25±2	23±2 ⁻ 2+	25±2 <₩ 30±3	26±2 32±3	21±2 32±3	19±2	24±7
	25±2	27±2	30±3	32±3	32±3	33±3	,30±6
October	20 ± 2	18±2	18±2	19±2	17±2	19±2	19±2
•	55±3	47±3	52±3	51:±3	47±3	43±3	49 ± 8
	19±2 -	23±3	23±2		26±2	27±2	23±5
	26±2	25 ± 2	22±3	22 ± 2	22±2		23 ± 4
	33±3	23±2	28±3	25 ± 2	28±2	23±2	27±8
November	23±2	23±2	23±2	24±2	21±2	۰.	23±2
11 Jan	25±2	25±3	24±2	25 ± 2	22±2		24±2
ا میں اور	······ 04 ± 3 • • • •	33±3			~~29±3	29±3	
and a second	27±2	25±2	25±2	26±2	23±2	23±2	-25 ± 3
_					and the second		
December .	19±2			. 18±2.			· 18±1
i the strength of the With	18±2	22±2	22±2	4	17±2		19±4
	26±2	25±2	26±2			25 ± 2	24 ± 5
	28 ± 2	24±2	24±2	24±2	23±2		25 ± 4
AVERAGE	22 ± 16	21 ± 14	22±15	22 ± 15	20 ± 14	21±13	
					GRAND AVE	RAGE	22 ± 14

.

.....

ì

2003 CONCENTRATIONS OF IODINE-131* IN FILTERED AIR

Results in Units of 10⁻³ pCi/m³

	<			>		
MONTH	Control SA-AIO-14G1	SA-AIO-16E1	SA-AIO-1F1	SA-AIO-2F6	SA-AIO-5D1	SA-AIO-5S
January	<1.7	< 2.1	<3.2	< 1.2	<3.4	<3.3
-	<8.4	<1.9	<2.3	<1.8	<3	<3.7
	<2.4	<2	<1.1	<1.8	<2.5	<3
	<2.9	<2.5	<3.3	<2.5	<3.2	<2
	<2.9	<4.6	<1.8	<5	<2.4	<1
February	<2.5	<2.5	<3.1	<2.3	<4.1	<2.1
	<1.9	<1.3	<2.7	<2.2	<2.3	<2
	<2.5	< 1.8	<1.9	<2.9	<2.6	<3.3
•	<6.3	<2.7	<5	<3	<2.5	<1.3
March	< 4.4	<2.4	<2.7	<3.8	<1.6	<2
	<1.5	< 5.9	<3.3	<3.1	<2.8	<3.8
	< 5.5	<3.8	<5.1	<3.1	<2.1	<3.8
	<1.5	< 2.1	<5.9	<2.3	<7.5	<3.5
April	<3.8		<2.3	<1.6	<3.2	<2.4
	<2.2	<5	<2	< 5.5	<3.4	<2.9
	<2	<3.2	<2.1	<2	<1.8	<2.1
	<1.7	<4.1	<3.7	<3.8	<2.2	<6.8
May	<4.7	<2.1	<2.2	<2.7	<3.3	<1.3
	<5.5	<4.3	<1.8	<3.4	<3.9	< 5.6
	<4.6	< 3.2	<3.3	<2.1	<2	<2.3
	< 3	<3.7	<3.1	<2.6	<3.3	<2.6
	<3.5	<2.7	<2.5	< 5.4	<1.4	<1.9
June	<3.8	<3.6	<3.4	<4.6	<2.3	<3.9
	<2	<2.2	<4.7	<3.5	<1.2	<1.9
	. <2.3	< 2.8	<2.6	· <2.3	· <1.4	<3.9
	<4.2	<7.7	<3	<5.5	<7.4	<4.4

2003 CONCENTRATIONS OF IODINE-131* IN FILTERED AIR

Results	in	Units	of	10 ⁻³	pCi/m ³	
nesults	IU	Units	01	10	pu/m	•

		,		sults in Units of 10 ⁴	³ pCi/m ³	· · · · · · · · · · · ·	
		<		STA1	ION ID		····>
	MONTH	Control SA-AIO-14G1	SA-AIO-16E1	SA-AIO-1F1	SA-AIO-2F6	SA-AIO-5D1	SA-AIO-5S1
	July	<1.8	<2.4	<6.2	<2.7	<3.7	<3.6
	·	<1.7	<2.1	<15	<1.9	<3.6	<2.3
	و از این می و میرود. مراجع بود در مانی از ا	<5.7	<3	<5.5	<2.9	<1.8	<3
		<3.4	<2.1	<1.7	<2.7	<7.4	<2.2
្ន		<3.5	<5.2	<1.8	<2.5	<2.6	3.2
:	August	<1.9	<4.6	€ <2.1	<1.8	<6.3	<1.9
	Ū	<4.9	<4.7	<1.8	<1.4	<2.4	<2.6
		<2		<3.2	<4.5	<3.4	<2.8
		<2.3	, <6.8	., . <1.9	<3.4	<3	<1
	September	≪2 . 2	<3.4	<4.5	<1.5	<1.6	<4.1
	Sehrenner	<2.7	<2.3	<1.9	<1.2	<2.2	<1.4
		<2.9	<2.2	<6.1	<1.2	<1.7	<1.4
		₹ 2.5	<3	<2.9	<2.5	4.5	<3.6
			an tha an	ا به او کر سر کر او از در از ۲۰۰۰ از سر سر او از در از د			
	October	<2.3	<1.8	<2.7	<1.7	<2.9	<2.4
		<3.6	<3	<2.6	<2.5	<2.2	<2.9
		<7.4	<3.3	<1.8	<3.8	<3.7	<1.6
	•••	<2.9	<1.4	<7.1	<3.5	<4.3	<4
	ner de la composition	<2.2	<3.2	 3.4	<4.2	≥	<2.5
					<2.3	<2.3	-10
	November	<4.4	<4.7	<2.2			<4.3
		<3.4	<4.1	<1.4	<3.6	<3.7	<3.8
		< 1.3	< 6.6	<4.5	<2	<2.9	<3.8
	· · · ·	, <7.9	<4.6	<1.4	<3.4	<2.8	<3.8
	December	<3.5	< 5.2 **	<5.9	<2.7	<3.6	<3.3
		<1.6	<7.1	<2	<6.7	<2.1	<2.2
		<3.2	_ <3.4		<2.8	<3.6	<2.4
		<2.8	<3.5	<3.9	<2.6	<4.1	<2.8

• . . .

* I-131 results are corrected for decay to sample stop date.

H C C PAR

., 1 ٦.

.

. . . .

1

່ ເກັ

2003 DIRECT RADIATION MEASUREMENTS - QUARTERLY TLD RESULTS

Results in mrad/standard month* +/- 2 sigma					
					**
	JAN	APR	JUL	OCT	QTR
STATION	to	to	to	to	ELEMENTS
ID	MAR	JUN	SEP	DEC	AVG
SA-IDM-2S2	6.2±0.8	6.2±0.5	7.3±0.7	6.4 ± 0.8	6.5 ± 1.1
SA-IDM-5S1	3.3 ± 0.5	4.0 ± 0.3	3.9 ± 0.3	3.6±0.5	3.7 ± 0.6
SA-IDM-6S2	4.7 ± 0.6	5.3 ± 0.5	5.2 ± 0.4	4.9 ± 0.8	5.1±0.5
SA-IDM-7S1	5.2 ± 0.6	6.1 ± 0.4	6.1 ± 0.5	5.7±0.7	5.8 ± 0.9
SA-IDM-10S1	4.0 ± 0.6	4.7±0,5	4.5 ± 0.4	4.1 ± 0.7	4.3 ± 0.6
SA-IDM-11S1	3.6 ± 0.4	3.9 ± 0.3	3.9±0.4	3.4 ± 0.6	3.7±0.5
SA-IDM-4D2	3.9 ± 0.4	4.7±0.4	4.5 ± 0.5	4.3 ± 0.7	4.3 ± 0.7
SA-IDM-5D1	3.6 ± 0.4	4.1 ± 0.4	4.2 ± 0.4	3.8 ± 0.9	3.9 ± 0.6
SA-IDM-10D1	4.0 ± 0.5	5.0±0.6	4.7 ± 0.5	• 4.5±0.5	4.5 ± 0.8
SA-IDM-14D1	3.6 ± 0.5	4.3 ± 0.5	4.1±0.3	3.9 ± 0.9	4.0 ± 0.6
SA-IDM-15D1	4.3 ± 0.5	4.8 ± 0.5	4.7±0.3	4.7±0.7	4.6 ± 0.4
SA-IDM-2E1	3.7 ± 0.5	4.7±0.6	4.3±0.4	4.2±0.6	4.2 ± 0.8
SA-IDM-3E1	3.3 ± 0.4	3.8±0.4	3.2 ± 0.3	3.4±0.5	3.5 ± 0.5
SA-IDM-9F1	4.1 ± 0.5	4.9±0.6	4.8 ± 0.6	4.6 ± 0.5	4.6 ± 0.7
SA-IDM-11E2	4.2 ± 0.6	4.7 ± 0.4	4.7±0.5	4.6 ± 0.6	4.6 ± 0.5
SA-IDM-12E1	4.2 ± 0.6	5.0±0.4	4.9 ± 0.4	4.6 ± 0.6	4.7 ± 0.7
SA-IDM-13E1	3.3 ± 0.4	3.9 ± 0.3	' 3.7±0.3	3.7 ± 0.5	3.6 ± 0.5
SA-IDM-16E1	3.8 ± 0.7	4.5 ± 0.5	4.4 ± 0.4	4.5 ± 0.6	4.3 ± 0.6
SA-IDM-1F1	3.8 ± 0.7	4.5 ± 0.5	4.9±1.1	4.1 ± 0.6	4.3±0.9
SA-IDM-2F2	3.3 ± 0.4	3.8±0.6	3.7 ± 0.4	3.5 ± 0.6	3.6 ± 0.5
SA-IDM-2F5	3.9 ± 0.6	4.6±0.4 ·	4.4 ± 0.3	4.4 ± 0.6	4.3 ± 0.6
SA-IDM-2F6	3.7±0.5	4.2 ± 0.5	4.0±0.3	4.0 ± 0.5	4.0 ± 0.4
SA-IDM-3F2	3.5 ± 1.2	4.0 ± 0.4	3.8 ± 0.4	3.8 ± 0.5	3.8 ± 0.3
SA-IDM-3F3	3.4 ± 0.5	4.0 ± 0.6	3.8 ± 0.3	3.6 ± 0.5	3.7 ± 0.5
SA-IDM-4F2	3.4 ± 0.4	3.7±0.4	3.7±0.5	3.5 ± 0.5	3.6 ± 0.3
SA-IDM-5F1	3.6 ± 0.5	4.1 ± 0.4	3.9±0.3	3.7 ± 0.5	3.8 ± 0.4
SA-IDM-6F1	3.2 ± 0.4	3.4 ± 0.4	3.3 ± 0.3	3.1 ± 0.5	3.3 ± 0.2
SA-IDM-7F2	2.9 ± 0.5	3.2±0.5	2.9 ± 0.4	2.9 ± 0.5	3.0 ± 0.3
SA-IDM-10F2	4.2 ± 0.4	4.8±0.4	4.7 ± 0.5	4.4 ± 0.7	4.5 ± 0.5
SA-IDM-11F1	4.3 ± 0.6	4.9±0.5	4.8±0.5	4.6 ± 0.7	4.6 ± 0.5
SA-IDM-12F1	4.0 ± 0.5	4.6 ± 0.4	4.4 ± 0.4	4.3 ± 0.6	4.3 ± 0.5
SA-IDM-13F2	4.0 ± 0.4	4.5 ± 0.8	4.3 ± 0.4	4.2 ± 0.5	4.2 ± 0.4
SA-IDM-13F3	. 3.9±0.4	4.4 ± 0.4	4.2±0.3	4.2 ± 0.6	4.2 ± 0.5
SA-IDM-13F4	4.0 ± 0.5	4.3 ± 0.4	4.2 ± 0.3	4.2±0.6	4.2 ± 0.3
SA-IDM-14F2	4.3 ± 0.5	4.9 ± 0.6	4.6 ± 0.4	4.6 ± 0.6	4.6 ± 0.5
SA-IDM-15F3	4.5 ± 0.5	5.1±0.7	4.9±0.4	4.7 ± 0.7	4.8±0.5
SA-IDM-16F2	3.6 ± 0.5	4.1 ± 0.6	4.0 ± 0.3	3.8 ± 0.5	3.9 ± 0.4
SA-IDM-1G3 (C)	5.0 ± 0.5	5.6 ± 0.6	5.3 ± 0.4	5.2 ± 0.6	5.3 ± 0.5
SA-IDM-3G1 (C)	: 4.1±0.4	4.7 ± 0.4	4.6 ± 0.5	4.5 ± 0.6	4.5±0.5
SA-IDM-10G1(C)	· 4.3±0.8	4.6 ± 0.6	4.5 ± 0.4	4.5 ± 0.7	4.5 ± 0.3
SA-IDM-16G1(C)	4.0 ± 0.4	4.4 ± 0.6	4.2 ± 0.5	4.2±0.7	4.2 ± 0.3
SA-IDM-3H1 (C)	3.4 ± 0.4	3.8±0.4	3.6 ± 0.4	3.6 ± 0.5	3.6 ± 0.3
SA-IDM-1S1	4.2 ± 0.5	4.7 ± 0.4	5.0±0.7	4.5 ± 0.6	4.6 ± 0.6
SA-IDM-3S1	3.2 ± 0.4	3.6 ± 0.5	3.4 ± 0.3	3.3±0.5	3.4 ± 0.3
SA-IDM-2S4	3.4 ± 0.5	4.0 ± 0.5	3.7 ± 0.4	3.6±0.5	3.7 ± 0.5
SA-IDM-4S1	3.7 ± 0.5	4.3 ± 0.3	4.2 ± 0.6	4.1 ± 0.5	4.1 ± 0.5
SA-IDM-15S1	3.5 ± 0.5	3.9 ± 0.4	3.7 ± 0.3	3.6±0.5	3.7±0.4
SA-IDM-16S1	4.1 ± 0.6	4.6±0.4	4.6 ± 0.6	4.3 ± 0.6	4.4 ± 0.5
SA-IDM-14G1(C)	• 4.1±0.6	4.7±0.5	4.7 ± 0.3	4.4 ± 0.7	4.5 ± 0.5
AVERAGE	3.9 ± 1.1	4.5±1.2	4.3±1.5	4.2±1.3	

mrad/etandard month* + /- 2 sigma ulte in

The standard month = 30.4 days.
Quarterly Element TLD results by Framatome ANP.
(C) Control Station

GRAND AVG

 4.2 ± 1.3

2003 CONCENTRATIONS OF IODINE-131* AND GAMMA EMITTERS** IN MILK

<u>.</u>-

Results in Units of pCi/L + /- 2 sigma

يوني الحالي مراجع المحالي

		na attenta i na na antenta en entre		
	SAMPLING	PERIOD	GΔ	MMA EMITTERS
STATION ID	START "	STOP	r I-131.	K-40
	• • • •		1	
SA-MLK-2G3 / 🦡	01/05/2003 🦯	01/06/2003	<1	1410 ±70
SA-MLK-13E3	01/05/2003	01/06/2003	<0.2	1340 ±80
SA-MLK-14F4	01/06/2003	01/07/2003	<0.2	1480 ±90 -
SA-MLK-3G1 (C)	01/05/2003	01/06/2003	<0.2	1290 ±70
SA-MLK-2G3	02/02/2003	02/03/2003	.<0.2	1370 ±70
SA-MLK-13E3	02/02/2003	02/03/2003	<0.1	1510 ±90
SA-MLK-14F4	02/03/2003	02/04/2003	<0.2	1400 ±80 MADA
SA-MLK-3G1 (C)	02/02/2003	02/03/2003	<0.2	1300 ±80
SA-MLK-2G3	03/02/2003	03/03/2003	<0.3	1290 ±80
SA-MLK-13E3	03/02/2003	03/03/2003	`<0.2	1410 ±70
SA-MLK-14F4	03/03/2003	03/04/2003	< 0.2	1380 ±70
SA-MLK-3G1 (C)	03/02/2003	03/03/2003	< 0.3	1300 ±90
the state of the s	, A.A.B.			
SA-MLK-2G3	04/07/2003	04/08/2003	<0.2 3.3 · · ·	1400 ±80
SA-MLK-13E3	04/06/2003	04/07/2003	<0.2	1370 ±70
SA-MLK-14F4	04/06/2003	04/07/2003	<0.2	1400 ±70
SA-MLK-3G1 (C)	04/06/2003	.04/07/2003	<0.3	1340 ±70
SA-MLK-2G3	04/21/2003	04/22/2003	<0.2	1380 ±80
SA-MLK-13E3	04/20/2003	04/21/2003	<0.2	1370 ±70
SA-MLK-14F4	04/20/2003	04/21/2003	<0.3 March	1310 ±70
SA-MLK-3G1 (C)	04/20/2003	04/21/2003	<0.2	1310 ±70
SA-MLK-2G3	05/04/2003	05/05/2003	<0.2	1350 ±80
SA-MLK-13E3	- 05/04/2003	05/05/2003	< 0.3	1340 ±70
SA-MLK-14F4	05/04/2003	05/05/2003	<0.2	1200 ±70
SA-MLK-3G1 (C)	05/04/2003	05/05/2003	<0.2	1310 ±80
SA-MLK-2G3	05/19/2003	05/20/2003	<0.2	1350 ±80 :
SA-MLK-13E3	05/19/2003	05/20/2003	<0.2	1380 ±70
SA-MLK-14F4	05/18/2003	05/19/2003	<0.2	1260 ±70
SA-MLK-3G1 (C)	05/18/2003	05/19/2003	<0.3	1310 ± 70
	•	والمتهم والمعالي المحمول	· · · · · · · · · · · · · · · · · · ·	
SA-MLK-2G3	06/02/2003	06/03/2003	<0.2	1320 ±70
SA-MLK-13E3	06/01/2003	06/02/2003	<0.2	1330 ±70
SA-MLK-14F4 SA-MLK-3G1 (C)	06/01/2003 06/01/2003	06/02/2003	<0.2 <0.2	1280 ±80
	00/01/2003	00/02/2003		1290 ±80
SA-MLK-2G3	06/16/2003	06/17/2003	<0.3	1310 ±80
SA-MLK-13E3	06/15/2003	:06/16/2003	<0.2	1400 ±70
SA-MLK-14F4	06/15/2003	06/16/2003	<0.2	1270 ±70
SA-MLK-3G1 (C)	06/15/2003	06/16/2003	<0.1	1210 ±80
SA-MLK-2G3	07/06/2003	07/07/2003	<0.1	1310 ±90 :
SA-MLK-13E3	07/07/2003	07/08/2003	<0.2	1460 ±70
SA-MLK-14F4	07/07/2003	07/08/2003	< 0.2	1310 ±70
SA-MLK-3G1 (C)	07/06/2003	07/07/2003	<0.3	1320 ±70
SA MIK-262		07/21/2003	-0.2	1220 + 80
SA-MLK-2G3 SA-MLK-13E3	07/20/2003	07/21/2003	<0.2 <0.2	1320 ±80 1420 ±90
SA-MLK-14F4	07/20/2003	07/21/2003		1420 ± 30 1320 ± 70
SA-MLK-3G1 (C)	07/20/2003	07/21/2003	<0.2	1290 ±70

ે**55** દ

2003 CONCENTRATIONS OF IODINE-131* AND GAMMA EMITTERS** IN MILK

Results in Units of pCi/L +/- 2 sigma							
STATION ID	SAMPLING PERIOD START	STOP	I-131	GAMMA EMITTERS K-40			
SA-MLK-2G3	08/03/2003	08/04/2003	<0.2	1340 ±70			
SA-MLK-13E3	08/04/2003	08/05/2003	< 0.3	1370 ±70			
SA-MLK-14F4	08/03/2003	08/04/2003	< 0.2	1260 ±80			
SA-MLK-3G1 (C)	08/03/2003	08/04/2003	<0.2	1430 ±70			
SA-MLK-2G3	08/17/2003	08/18/2003	<0.1	1420 ± 60			
SA-MLK-13E3	08/18/2003	08/19/2003	<0.1	1380 ± 80			
SA-MLK-14F4	08/17/2003	08/18/2003	<0.2	1310 ± 70			
SA-MLK-3G1 (C)	08/17/2003	08/18/2003	<0.3	1350 ± 70			
SA-MLK-2G3	09/02/2003	09/03/2003	<0.2	1350 ± 70			
SA-MLK-13E3	09/02/2003	09/03/2003	<0.1	1380 ±80			
SA-MLK-14F4	09/01/2003	09/02/2003	<0.2	1300 ±70			
SA-MLK-3G1 (C)	09/01/2003	09/02/2003	<0.2	1390 ± 80			
SA-MLK-2G3	09/14/2003	09/15/2003	<0.2	1270 ±80			
SA-MLK-13E3	09/15/2003	09/16/2003	<0.2	1520 ± 80			
SA-MLK-14F4	09/15/2003	09/16/2003	<0.2	1260 ± 70			
SA-MLK-3G1 (C)	09/14/2003	09/15/2003	<0.1	1350 ± 80			
SA-MLK-2G3	10/06/2003	10/07/2003	<0.1	1260 ±80			
SA-MLK-13E3	10/07/2003	10/08/2003	<0.2	1400 ± 80			
SA-MLK-14F4	10/07/2003	10/08/2003	< 0.3	1360 ± 80			
SA-MLK-3G1 (C)	10/06/2003	10/07/2003	<0.2	1390 ± 70			
SA-MLK-2G3	10/20/2003	10/21/2003	<0.2	1370 ±80			
SA-MLK-13E3	10/19/2003	10/20/2003	< 0.3	1380 ±70			
SA-MLK-14F4	10/19/2003	10/20/2003	< 0.2	1240 ± 80			
SA-MLK-3G1 (C)	10/19/2003	10/20/2003	<0.2	1310 ± 70			
SA-MLK-2G3	11/03/2003	11/04/2003	<0.2	1330 ±80			
SA-MLK-13E3	11/03/2003	11/04/2003	<0.1	1420 ± 70			
SA-MLK-14F4	11/02/2003	11/03/2003	<0.3	1330 ± 90			
SA-MLK-3G1 (C)	11/02/2003	11/03/2003	<0.2	1340 ±70			
SA-MLK-2G3	11/17/2003	11/18/2003	<0.1	1410 ±90			
SA-MLK-13E3	11/16/2003	11/17/2003	<0.2	1440 ± 80			
SA-MLK-14F4	11/16/2003	11/17/2003	< 0.1	1310 ±70			
SA-MLK-3G1 (C)	11/17/2003	11/18/2003	<0.2	1370 ± 70			
SA-MLK-2G3	12/01/2003	12/02/2003	<0.2	1410 ±80			
SA-MLK-13E3	11/30/2003	12/01/2003	<0.3	1390 ±80			
SA-MLK-14F4	11/30/2003	12/01/2003	<0.2	1340 ± 80			
SA-MLK-3G1 (C)	11/30/2003	12/01/2003	<0.2	1220 ± 80			

AVERAGE

 1350 ± 130

l. L

* lodine-131 results are corrected for decay to midpoint of collection period & analyzed to a sensitivity of 1.0 pCi/L.

** All other gamma emitters searched for were <LLD; typical LLDs are given in Table C-19.

*** Monthly sample collected during Jan., Feb., March and Dec., when animals are not on pasture (C) Control Station

44, 1 - **3** TABLE C-6

. .

2003 CONCENTRATIONS OF GROSS ALPHA AND GROSS BETA EMITTERS, AND TRITIUM IN WELL WATER

Results in Units of pCi/L +/- 2 sigma × 11

STATION ID	SAMPLING - DATE	GROSS ALPHA	GROSS BETA	TRITIUM
SA-WWA-3E1	02/04/2003	1.7±1.3	11±0.8	<180
SA-WWA-3E1	02/25/2003	€): 2∦ 3±1:2 -	10±0.8	<140
SA-WWA-3E1	03/31/2003	<pre>2.7±1.3</pre>	_10±0.8	<140
SA-WWA-3E1	04/28/2003	3.7±1:3	10±0.8	<140
SA-WWA-3E1	05/27/2003	1.9±1.2	11 ±0.8	<150
SA-WWA-3E1	06/30/2003	2±1.3	11±0.8	<140
SA-WWA-3E1	07/28/2003	∴ 1.7±1.1	11±0.8	<140
SA-WWA-3E1	08/25/2003	²⁷⁷ 1.8±1.2	11±0.8	<140
SA-WWA-3E1	09/29/2003	0.7±0.4	8.6±0.7	<140
SA-WWA-3E1	10/27/2003	0.5±0.3	9.3±0.8	<150
SA-WWA-SE1	11/24/2003	3.7±1.3	10±0.8	<150
SA-WWA-3E1	12/29/2003	<2.9	10±1.2	<150
	·· •	· · · · · · · · · · · · · · · · · · ·		1997 - 19
	••	٤		
AVERAGE		, 2.2±2.1	10±1	

· ·· 4 , · · 4 • . .

91. 4. 1. S. S. 16 -21

. : '

έć

2003 CONCENTRATIONS OF GAMMA EMITTERS* IN WELL WATER

	· · · · ·	•	
	SAMPLING	<gamma e<="" th=""><th>MITTERS></th></gamma>	MITTERS>
STATION ID	DATE	K-40	RA-NAT
SA-WWA-3E1	02/04/2003	<25	146±5
SA-WWA-3E1	02/25/2003	<58	123 ± 4
SA-WWA-3E1	03/31/2003	87±22	73±4
SA-WWA-3E1	04/28/2003	41±12	80±4
SA-WWA-3E1	05/27/2003	<36	128 ± 4
SA-WWA-3E1	06/30/2003	<17	66 ± 4
SA-WWA-3E1	07/28/2003	60±23	139 ± 6
SA-WWA-3E1	08/25/2003	34 ± 13	72±4
SA-WWA-3E1	09/29/2003	<18	65±3
SA-WWA-3E1	10/27/2003	<53	121 ± 4
SA-WWA-3E1	11/24/2003	<52	56 ± 3
SA-WWA-3E1	12/29/2003	<30	64 ± 4

Results in Units of pCi/L +/- 2 sigma

AVERAGE

 94 ± 68

LL.

* All other gamma emitters searched for were <LLD; typical LLDs are given in Table C-19.

۰.

2003 CONCENTRATIONS OF GROSS ALPHA AND GROSS BETA EMITTERS AND TRITIUM IN RAW AND TREATED POTABLE WATER

44

· · · · · · · ·	SAMPLING	GROSS	GROSS	and the arts of the
TYPE	PERIOD	ALPHA	BETA	TRITIUM
RAW.	1/1-31/2003	<0.9	3.1±0.5	<180
TREATED	1/1-31/2003	<1.1 200		<180
RAW	2/1-28/2003	1.2±0.6	3.5±0.5	<140
TREATED	2/1-28/2003	· · · ·	3.3±0.5	<140
RAW	3/1-31/2003	0.8±0.6	3±0.5	<140
TREATED	3/1-31/2003	0.9±0.7	2.7±0.5	<140
RAW	4/1-30/2003	1.2±0.5	2.8±0.5	<140
TREATED	4/1-30/2003	0.7±0.5	;	<140
RAW	5/1-31/2003	1±0.6	3±0.5	<150
TREATED	5/1-31/2003	<0.8	2.8±0.5	<140
RAW	6/1-30/2003	1.3±0.8		<150
TREATED	6/1-30/2003	<0.9	2.5±0.5	<140
RAW	7/1-31/2003	1.5±0.7	3.3±0.5	<140
TREATED	7/1-31/2003	1.1±0.8 ···	2.7±0.5	<140
RAW	8/1-31/2003	0.9±0.6	3.5±0.5	<140
TREATED	8/1-31/2003	<1.1	3.4 ± 0.5	<140
RAW	9/1-30/2003	<0.8	3±0.5	<140
TREATED	9/1-30/2003	<1.3	2.7 ± 0.5	<140
RAW	10/1-31/2003	1±0.6		<140
TREATED	10/1-31/2003	1±0.7	3.4±0.5	<140
RAW	11/1-30/2003	1.2±0.6 (0.2)		<150
TREATED	11/1-30/2003	0.9±0.5	<u>.</u> ,	<150
RAW	12/1-31/2003	<1.3		<150
TREATED	12/1-31/2003	<1.5	3.1 ± 0.8	<140
AVERAGE	-			· · · · ·
RAW		1.1 ± 0.4	3.3 ± 0.7	
TREATED		1.1 ± 0.6	3±1	-
GRAND AVERAGI	E	1.1 ± 0.5	3.1±0.9	-

Besults in Units of pCi/l +/- 2 sigma

ಗಳ ಗೊಂಡಾಗಿ ಬಿಂಬು ಕಾರ್ಗಿಕ್ಕೆ ಮಾಡಿದ್ದಾರೆ. ೧೯೯೫ರ ಗೋಡಿ ಮಾಡಿತ ಕಾರ್ಯಕ್ರಿಗಳ ಗೋಡಿ ಬಿಂಬು ಕಾರ್ಗಿಟ್ ಮಾಡಿಗಳು ಗೊಂಡಿದ್ದ ಕ್ಷೇತ್ರ ಸಂಗೋಧಿ ಮಾಡಿದೆ. ಗ

2003 CONCENTRATIONS OF IODINE-131* AND GAMMA EMITTERS** IN RAW AND TREATED POTABLE WATER

TYPE	SAMPLING PERIOD	I-131	GAMMA EMITTERS K-40
RAW	1/1-31/2003	<0.4	<43
TREATED	1/1-31/2003	< 0.4	40 ± 14
RAW	2/1-28/2003	<0.3	<20
TREATED	2/1-28/2003	<0.3	41 ± 13
RAW	3/1-31/2003	<0.2	<2í
TREATED	3/1-31/2003	<0.1	<16
RAW	4/1-30/2003	<0.4	<46
TREATED	4/1-30/2003	<0.2	<16
RAW	5/1-31/2003	<0.3	<20
FREATED	5/1-31/2003	<0.3	<15
WAR	6/1-30/2003	<0.2	<16
FREATED	6/1-30/2003	<0.2	78 ± 19
WAR	7/1-31/2003	<0.2	<15
TREATED	7/1-31/2003	<0.3	<38
RAW	8/1-31/2003	<0.3	<24
TREATED	8/1-31/2003	< 0.3	52 ± 10
RAW	9/1-30/2003	<0.2	<15
TREATED	9/1-30/2003	<0.2	<44
WAR	10/1-31/2003	<0.3	<29
TREATED	10/1-31/2003	<0.3	53 ± 14
WAR	11/1-30/2003	<0.2	48±13
TREATED	11/1-30/2003	<0.3	32 ± 11
RAW	12/1-31/2003	< 0.2	<18
TREATED	12/1-31/2003	<0.1	<20
AVERAGES			
RAW		-	-
TREATED		-	-
GRAND AVERAGE		-	•

Results in Units of pCi/L +/- 2 sigma

* lodine-131 analyzed to a sensitivity of 1.0 pCi/L.

** All other gamma emitters searched for were <LLD; typical LLDs are given in Table C-19.

2003 CONCENTRATIONS OF GAMMA EMITTERS* IN VEGETABLES Results in Units of pCi/kg (Wet) +/- 2 sigma

5

	SAMPLING		GAMMA EMITTERS
STATION ID	DATE	SAMPLE TYPE	К-40
SA-FPV-2G2 (C)	05/06/2003	Asparagus	2910±110
SA-FPV-2F9	05/12/2003	Asparagus	2730±220
AVERAGE			2820±250
SA-FPL-2F9	05/12/2003	Spinach	6400±290
SA-FPL-3H5 (C)	07/21/2003	Cabbage	2860±150
SA-FPL-6F2	07/22/2003	Cabbage	2450±130
SA-FPL-14F3	08/12/2003	Cabbage 🔅 📜	1960 ± 160
AVERAGE		The store to re-	3420±4040
SA-FPV-2G2 (C)	07/21/2003	Corn	2500±100 🦿
SA-FPV-3H5 (C)	07/21/2003	Corn	2600 ± 210
SA-FPV-2F4	07/28/2003	Corn	2710±230
SA-FPV-2F9	08/12/2003	Corn	1740±160
SA-FPV-14F3	08/12/2003	Corn	2350 ± 160
SA-FPV-1G4 (C)	08/19/2003 ,	Corn	2220±180
AVERAGE			2350±690
SA-FPV-6F2	07/22/2003	Peppers	1710±170
SA-FPV-2G2 (C)	07/23/2003	Peppers	1440 ± 160
SA-FPV-1G4 (C)	08/19/2003	Peppers	1720 ± 150
AVERAGE	· .		1620±320
	07/01/0000	.	2540 - 150
SA-FPV-3H5 (C)	07/21/2003 07/21/2003	Tomatoes Tomatoes	2540 ± 150 1960 ± 140
SA-FPV-2G2(C) SA-FPV-14F3	08/12/2003		1980 ± 140 2030 ± 150
SA-FPV-14FS	08/19/2003	Tomatoes	1820±130
SA-FPV-2F9	08/12/2003	Tomatoes	1820±70
		i Unidioos	
	•		• •
AVERAGE			2030±590
GRAND AVERAGE			2420±2070

all and the second

í

* All other gamma emitters searched for were <LLD; typical LLDs are given in Table C-19 (C) Control Station

2003 CONCENTRATIONS OF GAMMA EMITTERS* IN GAME

Results in Units of pCi/kg (wet) +/- 2 sigma

STATION ID	SAMPLING DATE	SAMPLE TYPE	GAMMA EMITTERS K-40
SA-GAM-3E1	02/24/2003	Muskrat	2840 ± 170
SA-GAM-11D1 (C)	03/16/2003	Muskrat	2670 ± 190
AVERAGE		Muskrat	2755 ± 240

. :

*All other gamma emitters searched for were <LLD; typical LLDs are given in Table C-19

.

ċ. •./ 2003 CONCENTRATIONS OF GAMMA EMITTERS* IN FODDER CROPS

Résults in Units of pCi/kg (wet) +/- 2 sigma ÷ t -

ĩ

STATION	ID'		SAM D/		G	SA	MPL	ΈŤΫ	PE		<0	SAMI 7	MA	EMI	TTERS-	
SA-VGT-2G3 (SA-VGT-3G1 (SA-VGT-13E3 SA-VGT-14F4 AVERAGE	C) C) C)		10/04 10/03 10/03 10/04	1/200 3/200 3/200	3 3		Sila Sila	age age age		i	910 = 890 ± 610 = 1030 = 860 ±	100 100 130 130			3910± 4680± 4180± 4010± 4200±	260 220 240
SA-VGT-3G1 (SA-VGT-14F4 AVERAGE	C)	- 		3/2003 3/2003			-	eans eans			<6		erten ander ander ander		15800 ± 15300 ±	±270 ±700
	1. 1. 1. 1.	00 		1) (12									and the second of the second sec			
		•••	A 17 17 17	T ko Kas												

* All other gamma emitters searched for were <LLD; typical LLDs are given in Table C-19.

-

2003 CONCENTRATIONS OF GROSS BETA EMITTERS IN SURFACE WATER

		Results in	Units of $pCi/L + /-$	2 sigma		
SAMPLING DATE	< SA-SWA-11A1	SA-SWA-12C1 (Control)	SA-SWA-16F1	SA-SWA-1F2	SA-SWA-7E1	AVERAGE
January	36±6	18 ± 5	10 ± 5	11±5	54±7	26 ± 38
February	52±7	46±7	36 ± 6	29 ± 6	82±8	49 ± 41
March	45 ± 7	16 ± 5	16 ± 5	10 ± 5	59±7	29 ± 43
April	71 ± 8	40 ± 6	33 ± 6	19 ± 5	82±8	49 ± 54
Мау	50 ± 7	30 ± 6	26 ± 5	17 ± 5	74 ± 8	39 ± 46
June	23 ± 6	12 ± 5	<7	7 ± 5	40 ± 7	20±29
July	35 ± 6	21±5	17 ± 5	.7±4	59 ± 7	28 ± 40
August	33±6	27±6	11±5	19 ± 5	58±7	30 ± 36
September	64 ± 8	53 ± 7	44 ± 7	27 ± 6	79±8	54 ± 39
October	42 ± 6	25 ± 5	16 ± 5	11 ± 4	59 ± 7	30 ± 40
November	13±3	8±3	6 ± 2	<3	35 ± 4	15 ± 26
December	89±6	69 ± 5	46 ± 4	21±3	101 ± 7	65 ± 65
AVERAGE	46 ± 42	30 ± 36	22 ± 28	15 ± 16	65 ± 38	
				GRAND AVERAGE		36 ± 49

÷

2003 CONCENTRATIONS OF GAMMA EMITTERS* IN SURFACE WATER

. :-

Results in Units of $pCi/L^2 + 1/2$ sigma

GAMMA EMITTERS SAMPLING STATION ID DATE K-40 SA-SWA-1F2 $.69 \pm 20$ 01/10/2003 104 ± 20 SA-SWA-7E1 01/10/2003 ÷ $^{\prime}$ 83 ± 22 SA-SWA-11A1 01/10/2003 SA-SWA-12C1(C) 01/10/2003 54 ± 15 1973 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 48 ± 16 SA-SWA-16F1 01/10/2003 21.2 SA-SWA-1F2 02/24/2003 56 ± 14 21.012.01 SA-SWA-7E1 02/24/2003 $.128 \pm 27$ SCO NO DE M -48 ± 16 SA-SWA-11A1 02/24/2003 .46±20 SA-SWA-12C1(C) 02/24/2003 * . 1.50 (¹), 1¹ 52 ± 22 SA-SWA-16F1 02/24/2003 SA-SWA-1F2 03/04/2003 64 ± 11 et et între e . SA-SWA-7E1 03/04/2003 101 ± 16 4.1 J C.3 77±21 ..03/04/2003 SA-SWA-11A1 1, CO. 1946 - CO. SA-SWA-12C1(C) 03/04/2003 65 ± 23 E 03/04/2003 34 ± 18 SA-SWA-16F1 SA-SWA-1F2 04/13/2003 <16 $p \in T \subseteq \mathbb{C}^{n \times n} \subset \mathbb{C}^{n}$ SA-SWA-7E1 04/13/2003 $168 \pm 4!$ · .- 101 ± 19 SA-SWA-11A1 04/13/2003 · · · · · . <43 . SA-SWA-12C1(C) 04/13/2003 SA-SWA-16F1 04/13/2003 $:63 \pm 14$. . · · · · SA-SWA-1F2 05/06/2003 93 ± 23 2012 8 2014 SA-SWA-7E1 05/06/2003 121 ± 22 En la Coler SA-SWA-11A1 05/06/2003 49 ± 18 SA-SWA-12C1(C) <21 05/06/2003 7.00. (* 3. vi SA-SWA-16F1 05/06/2003 61 ± 17 2020/42/1 SA-SWA-1F2 . · 39±17 06/06/2003 SA-SWA-7E1 06/06/2003 44 ± 17 06/06/2003 $39 \pm 12^{\circ}$ SA-SWA-11A1 52 ± 12 SA-SWA-12C1(C) 06/06/2003 SA-SWA-16F1 06/06/2003 <15 07/08/2003 <16 SA-SWA-1F2 SA-SWA-7E1 07/08/2003 88 ± 15 SA-SWA-11A1 07/08/2003 84 ± 17 07/08/2003 SA-SWA-12C1(C) 105 ± 23 07/08/2003 75 ± 20

:

SA-SWA-16F1

2003 CONCENTRATIONS OF GAMMA EMITTERS* IN SURFACE WATER

	SAMPLING	GAMMA EMITTERS	
STATION ID	DATE	K-40	
A-SWA-1F2	08/04/2003	59±17	
A-SWA-7E1	08/04/2003	128 ± 22	
A-SWA-11A1	08/04/2003	75±22	
A-SWA-12C1(C)	08/04/2003	69 ± 17	
A-SWA-16F1	08/04/2003	<42	
A-SWA-1F2	09/05/2003	91 ± 27	
A-SWA-7E1	09/05/2003	116±20	
A-SWA-11A1	09/05/2003	102±21	
A-SWA-12C1(C)	09/05/2003	106 ± 14	
A-SWA-16F1	09/05/2003	70±16	
A-SWA-1F2	10/07/2003	67±22	
A-SWA-7E1	10/07/2003	59±14	
A-SWA-11A1	10/07/2003	58±18	
A-SWA-12C1(C)	10/07/2003	57±13	
A-SWA-16F1	10/07/2003	50 ± 18	
A-SWA-1F2	11/06/2003	<18	
A-SWA-7E1	11/06/2003	63 ± 15	
A-SWA-11A1	11/06/2003	41 ± 17	
A-SWA-12C1(C)	11/06/2003	<12	
A-SWA-16F1	11/06/2003	<21	
A-SWA-1F2	12/09/2003	58±23	
A-SWA-7E1	12/09/2003	81±24	
A-SWA-11A1	12/09/2003	121±19	
A-SWA-12C1(C)	12/09/2003	109 ± 22	
A-SWA-16F1	12/09/2003	76±20	

Results in Units of pCi/L +/- 2 sigma

AVERAGE

 68 ± 66

* All other gamma emitters searched for were <LLD; typical LLDs are given in Table C-19. C) Control Station

•

•

1.5

٠

.'

		Results in Un	its of pCi/L +/- 2 s	igma	í.		
2			S , S. S.		;	-	
· ·	<>			TION ID			>
SAMPLING PERIOD	SA-SWA-11A1	SA-SWA-12C1 (Control)	SA-SWA-16F1	SA-SWA-1F2	SA-SWA-7E	1	
January .	<150	<140	<150	<150	<150	· .	-
February	<140	<140	<150	<150	<150		-
March	<140	<140	<140	<140	<140	•	
April	<140	<140	<140	<140	<140		
Мау	<140	<140	<140	~ 140	210±90		
une	<140	<140	<140	<140	<140		
luly	· <150	<150	<150	<150	800±100	•	-
August	<140	<140	150±90	<140	<140	: ; ;	-
September	230 ± 85	180±90	<140	<140	<140		•
Dctober	240 ± 90	<150	<150	<150	``320±90		-
November '::	<140	[,] <140	<140	< 140	<140		•
December 🦾	<150	: <140 🕁	<140	<150	<150		• •

..

_

-- - - ----

٠.

.

•

___L **L**

2003 CONCENTRATIONS OF GAMMA EMITTERS** IN EDIBLE FISH

.

		GAMMA EMITTERS (FLESH)
	SAMPLING	• •
STATION ID	PERIOD	К-40
A-ESF-7E1	5/3-6/2003	3460 ± 210
A-ESF-11A1	5/3-6/2003	3740 ± 210
A-ESF-12C1 (C)	5/3-6/2003	3680 ± 110
VERAGE	· .	3630 ± 290
A-ESF-7E1	9/22-10/31/2003	4210 ± 210
A-ESF-11A1	9/22-10/31/2003	3600 ± 210
A-ESF-12C1 (C)	9/22-10/31/2003	3890 ± 210
VERAGE		3900 ± 610
RAND AVERAGE		3760 ± 520

** All other gamma emitters searched for were <LLD; typical LLDs are given in Table C-19 (C) Control Station

していた ビビー 広告 おやくひち 一次 しけいたけよう からい

2003 CONCENTRATIONS OF GAMMA EMITTERS* IN CRABS

regulation of programma and a set of the

والأمار والأمرية الأصطار والمعارية الراقي المراري والتركي والمحادث والمحادثان والأراب والمحاد والمعاري والأراب

Results in Units of pCi/kg (wet) +/- 2 sigma

					1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		
	-STATION ID		AMPLING PERIOD	GAN	1MA EMITTER (FLESH) K-40		
SA-ECH	-11A1 -12C1 (C)	08	e federation -	2	770±180 290±180		
AVERAC SA-ECH SA-ECH	SE	800 809 10	/25/2003 /01/2003	2 1. (1957) 2 2 2	2530±680 880±210 420±160		
AVERAG GRAND	SE AVERAGE	さよう。 くら (注)を注 (注)の注 (1)の注 (1)の注 (1)の注		1000 x 20 2000 x 20	650 ± 650 590 ± 560		
			a texatoria. Nabita tatar		emoria de 1923 - Maria Districtoria 1935 - Marine El Status		

.

(2) Such a manual of the construction (course) and a second course of the course of

* All other gamma emitters searched for were <LLD; Typical LLDs are given in Table C-19.

(C) Control Station

|**L**

2003 CONCENTRATIONS OF GAMMA EMITTERS* IN SEDIMENT

	SAMPLING					
STATION ID	DATE	K-40	Co-60	Cs-137	RA NAT	Th-232
SA-ESS-6S2	05/20/2003	1240 ± 50	<4	<3	86 ± 4	75 ± 8
SA-ESS-11A1	05/15/2003	4750 ± 280	<8	<9	895 ± 30	1220 ± 60
SA-ESS-15A1	05/15/2003	13100 ± 430	<10	100 ± 20	498 ± 30	814 ± 80
SA-ESS-16A1	05/15/2003	13200 ± 400	<24	35 ± 10	510 ± 20	763 ± 65
SA-ESS-12C1(C)	05/15/2003	14200 ± 400	<16	20 ± 8	849 ± 35	1090 ± 60
SA-ESS-7E1	05/15/2003	13400 ± 360	<9	<11	838 ± 20	1030 ± 60
SA-ESS-16F1	05/15/2003	14100 ± 420	<20	43 ± 9	569 ± 20	828 ± 60
AVERAGE		10600 ± 10600	-	32 ± 67	610 ± 570	830 ± 750
SA-ESS-6S2	11/10/2003	1980 ± 140	<4	<5	117 ± 10	88 ± 30
SA-ESS-11A1	11/21/2003	4460 ± 240	<8	<8	848 ± 20	1080 ± 50
SA-ESS-15A1	11/21/2003	6650 ± 260	<6	28 ± 11	601 ± 30	787 ± 50
SA-ESS-16A1	11/21/2003	6600 ± 230	<11	<7	523 ± 15	562 ± 50
SA-ESS-12C1(C)	11/21/2003	16400 ± 530	<16	<13	628 ± 40	1040 ± 80
SA-ESS-7E1	11/21/2003	15400 ± 430	<10	43 ± 9	712 ± 30	1140 ± 110
SA-ESS-16F1	11/21/2003	12700 ± 400	<10	45 ± 12	583 ± 30	877±70
AVERAGE		9200 ± 11300	•	-	570 ± 450	800 ± 740
GRAND AVERAGE		9900 ± 10600	-	-	590 ± 500	810 ± 710

Results in Units of pCi/kg (dry) +/- 2 sigma

* All other gamma emitters searched for were <LLD; typical LLDs are given in Table C-19 (C) Control Station

• . . . •

2003 MAPLEWOOD TESTING SERVICES

LLDS FOR GAMMA SPECTROSCOPY

. . .

.

,	<>		en e			
SAMPLE TYPE:			<water< th=""><th colspan="2">·> <milk></milk></th></water<>		·> <milk></milk>	
ACTIVITY: GEOMETRY:	10-3 pCi/m ³ 10 ⁻	RTICULATES ⁹ pCi/m ³ FILTERS	GAMMA SCAN pCi/L 3.5 LITER	IODINE pCi/L 100 ML	GAMMA SCAN pCi/L 3.5 LITER	DODINE PCI/L 100 ML
COUNT TIME: DELAY TO COUNT:		500 MINS	1000 MIN	1000 MINS	500 MINS 2 DAYS	1000 MINS 2 Days
NUCLIDES	· · · · · · · · · · · · · · · · · · ·	·,· ·	<u>ang ang </u>		· · · · · · · · · · · · · · · · · · ·	• • •
BE-7	.	6.7	18	-	- 18	_
NA-22	•	0.5	4.9	-	at 6.7	
K-40	· _ · .	11	58	-	50 ···	· • · · ·
CR-51	-	2.5	20.4	49 L S	17	
MN-54	_	0.72	1.3	_	2.7	-
CO-58	·	0.23	3.4	$-\frac{1}{t}$,	2.0	-
FE-59 ,		0.64	5.8	. :	7.9	-
CO-60	- :	0.40	2.9		4.3	
ZN-65	-	0.60	3.8		9.5	•
ZRNB-95	–	0.46	3.0	-	:: 8.1 ··	-
MO-99	5	17	118	-	47	. .
RU-103	- .	0.24	2.6	-	1.8	
RU-106	-	2.5	28	-	- 30	• • • • • • • • •
AG-110M	_ .	0.41	3.0	-	5.7	ti sevi
SB-125	- ,	0.52	3.3	-	5.0	. –
TE-129M	- .:	8.5 _{0.1}	81 (s.	-	89	=23, 8 ° °
I-131	15	0.40	3.0	0.4	3.4.	1.0
TE-132	- .	0.98 _{.Z}	13.6	-	3.0	
BA-133		0.46	3.0	-	2.8	- 199
CS-134	- 21	0.34	1.7	-	1.9	
CS-136	- • • •	0.51	4.2	-	·, 6.0	
CS-137 BALA-140	-	0.39	3.0 eg	-	- 5.5	· · · · · · · · · · · · · · · · · · ·
BALA-140 CE-141		1.2 ₀₁₁		-	12.0 2.9	t 1-01
CE-141 CE-144	•	0.30; 0.73;	4.0 <u>24</u> 14 gg	-	12	=, t +÷ D -= -
RA-NAT	•	0.58	6.9	-	11.0	
TH-232	-	2.4	16.7	_	22	≣* 2 ≤ €. -
10-232	-	2.7	10.1	-	<i>LL</i>	

. 71

TABLE C-19 (Cont'd)

_

_

. . . ._

_

۰.

.___LL

2003 MAPLEWOOD TESTING SERVICES LLDs FOR GAMMA SPECTROSCOPY

SAMPLE TYPE: ACTIVITY: GEOMETRY: COUNT TIME: DELAY TO COUNT:	FOOD PRODUCTS pCi/kg WET 500 ml 500 MINS 3 DAYS	VEGETATION pCi/kg WET 3.5 LIFER 500 MINS 7 DAYS	GAME pCi/kg WET 500 ml 500 MINS 5 DAYS	FISH & SHELLFISH pCi/kg WET 500 ml 500 MINS , 5 DAYS	SEDIMENT & SOIL pCi/kg DRY 500 ml 500 MINS 30 DAYS
NUCLIDES					
BE-7	175	60	. 30	36-	238
NA-22	13	32	10	9.8	12
K-40	70	70	70	70	70
CR-51	45	36	28	37	186
MN-54	8.9	6.0	7.0	14	34
CO-58	6.7	5.5	4.0	6.3	26
FE-59	21	21	11	20	73
CO-60	9.5	12	7.5	7.9	24
ZN-65	17	14	9.4	19	24
ZRNB-95	15	17	12	9.4	35
MO-99	80	50	174	1280	51500
RU-103	11	5.6	3.7	5.4	14
RU-106	62	46	36	93	95
AG-110M	15	22	4.3	9.6	25
SB-125	32	14	9.8	14	24
TE-129M	192	195	93	280	450
I-131	6.2	7.0	4.0	10	125
TE-132	11	15	15	15	7200
BA-133	6.1	5.0	3.9	4.3	11
CS-134	5.9	5.2	2.8	6.5	16
CS-136	14	8.0	5.3	10	50
CS-137	12	8.8	6.5	10	13
BALA-140	35	29	22	22	160
CE-141	10	6.4	4.3	6.0	21
CE-144	43	25	18	20	45
RA-NAT	17	23	8.0	23	45
TH-232	40	68	19	30	50

APPENDIX D

SUMMARY OF RESULTS FROM ANALYTICS AND ENVIRONMENTAL RESOURCE ASSOCIATES INTERLABORATORY COMPARISON PROGRAMS

APPENDIX D

SUMMARY OF RESULTS FOR ANALYTICS AND ENVIRONMENTAL RESOURCE ASSOCIATES INTERLABORATORY COMPARISON PROGRAM

Appendix D presents a summary of the analytical results for the 2003 Analytics and Environmental Resource Associates (ERA) Interlaboratory Comparison Program.

· · .

TABLE OF CONTENTS

NO.	TABLE DESCRIPTION	PAGE
D-1	Gross Alpha and Gross Beta Emitters in Water	77
D-2	Gamma Emitters in Water and Milk	78
D-3	Gamma Emitters in Air and Soil	79
D-4	Tritium Analysis in Water and Iodine Analysis in Air and Water	80

RESULTS FOR ANALYTICS AND ERA INTERLABORATORY COMPARISON PROGRAM

.....

÷

Gross Alpha and Gross Beta Emitters In Water (pCi/L)

	DATE IM-YY	PSEG SAMPLE CODE	MEDIUM (A	ANALYSIS	* PSEG Mean ± s.d.	•	NALYTICS ERA Known	ANALYTI Accept Crite Lower & Limit	tance eria Upper
c		ANL-WAT-AB570	Water	Alpha Beta	280 <u>+</u> 6	֥ ,	-49 268	39 214	59 322
0	8-2003	ERA-WAT-AB574	Water	Alpha Beta Dep	. 70±3		65 32	37 23	93 40
	<u>e</u> 5			<u>L</u> = f =	:				
0	9-2003	ANL-WAT-AB580	Water	Alpha Beta	278±8		36 246	30 198	42 294
1	2-2003								
1	2-2003	ANL-WAT-AB585	Water	Alpha Beta	37±3	 7 .	51 141	39	63
	:	* *		Bela	164±2		141	117	165
	·* .		z = 104	 All (1) 	·.				
		÷ .		1 N					
					••				
		• •	- 12	t				,	
		1997 N							
	2	÷	• 12 29 1 1 1 1	$\mathbb{E}_{\mathbf{k}} \left[\mathbf{f}_{\mathbf{k}} \right]$					
	<i>.</i> .		· · ·		· •				
		`	9 <u>.</u>			•••••		617	
		• •	- \$1 M	i i i i i i i i i i i i i i i i i i i					
	' <u> </u>	· · ·	F 6551	10.5					
	•	::							
		-3.Ž.)							
	- ;: ·		1	12-1		1311	7 81 BLF	2 · · · · · · · ·	
	- · ;;			£ 0, − 0					
	ť	· .		10 C					
	•	22.1	1.57.61						
	· · ·		1 ·	62.40					
		_ ; ,		í.t-					
	•			<u>ر ۲</u> ۲ ۲ ۲ ۲ ۲					
	' .	-		· · · · · · · · · · · · · · · · · · ·					
	5. c	, 		111-0					
	'	• •		80 ··					

* s.d. - one standard deviation of three individual analytical results

_

-

۰.

 \Box

RESULTS FOR ANALYTICS AND ERA INTERLABORATORY COMPARISON PROGRAM

	· · ·			<u></u>		ANALYTI	
				*	ANALYTICS		teria
DATE	PSEG.			PSEG	ERA		& Upper
MM-YY	SAMPLE CODE	MEDIUM	ANALYSIS	Mean \pm s.d.	Known	Limit	Limit
03-2003	ANL-WAT-G565	Water	Cr-51	261±14	238	190	286
			Mn-54	71±6	63	51	75
			Fe-59	59±4	46	34	58
			Co-60	159±5	157	127	187
			Zn-65	113±4	90	72	108
		•	I-131	76±4	70	58	82
			Cs-134	82±2	88	70	106
			Cs-137	203±6	195	153	237
			Ce-141	179 <u>+</u> 1	168	132	204
03-2003	ANL-MLK-G567	Milk	Cr-51	282±9	246	198	294
			Mn-54	78±1	64	52	76
			Fe-59	68±3	47	35	59
			Co-60	176±5	162	132	192
			Zn-65	117±5	93	75	111
			I-131	82±4	74	62	86
			Cs-134	87±3	90	72	108
	·		Cs-137	212±3	200	158	242
	·		Ce-141	188±1	173	137	209
02-2003	ERA-WAT-G569	Water	Ba-133	18±0.4	20	11	28
			Co-60	39±0.9	37	29	46
			Cs-134	18±0.7	18	9	26
			Cs-137	47±0.4	44	36	53
			Zn-65	65±0.9	60	50	71
12-2003	ANL-WAT-G582	Water	Cr-51	245±13	262	208	316
			Mn-54	171±3	162	132	192
			Fe-59	117±5	96	78	114
			Co-60	146±4	145	115	175
			Zn-65	190±10	184	148	220
			I-131	71±8	61	49	73
			Cs-134	119±4	127	103	151
			Cs-137	125±3	121	97	145
			Ce-141	188±6	189	153	225
			Co-58	106±3	104	86	122

Gamma Emitters In Water and Milk (pCi/L)

* s.d. - one standard deviation of three individual analytical results

RESULTS OF ANALYTICS AND ERA INTERLABORATORY COMPARISON PROGRAM

۰.

Gamma Emitters In Soil (pCi/Kg-dry)

and Air Particulate Samples (pCi/m³)

. .

		<u>.</u>	ï.	1	1		•	÷ .	~	1	12		•	•	÷	
--	--	----------	----	---	---	--	---	-----	---	---	----	--	---	---	---	--

03-2003 AI	PSEG SAMPLE CODE NL-SOL-G566	200 ya 200 1977 - 1977 - 1977 - 1976 - 1976 - 1	Cr-51 538±27 Mn-54 143±5 Fe-59 116±1 Co-60 336±11 Zn-65 193±4		Criter Lower & U Limit I 406 109 80 269	Jpper Limit 610 157 116
MM-YY 3	SAMPLE CODE	Soil	ANALYSIS Mean ± s.d. Cr-51 538±27 Mn-54 143±5 Fe-59 116±1 Co-60 336±11 Zn-65 193±4	Known 508 133 98 335	Limit I 406 109 80	610 157 116
03-2003 AI	NL-SOL-G566	Soil	Cr-51 538±27 Mn-54 143±5 Fe-59 116±1 Co-60 336±11 Zn-65 193±4	508 133 98 335	406 109 80	610 157 116
New grant		2014-200 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4	Cr-51 538±27 Mn-54 143±5 Fe-59 116±1 Co-60 336±11 Zn-65 193±4	133 98 335	109 80	157 116
New grant		2014-200 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4	Mn-54 143±5 Fe-59 116±1 Co-60 336±11 Zn-65 113±4	133 98 335	109 80	157 116
Den Nor Maria			Fe-59 02-00.116±1 Co-60 100 336±11 Zn-65 110 193±4	98 6 - 335	80	116
		i garan Historia Rokonsta	Co-60 336±11 Zn-65 193±4	335		
		ent Romonist	Zn-65 : 193±4		269	407
		8.1×2×5.5.5		192		
					156	228
06-2003 AI			Cs-137 #RE-#1533±9	497		
06-2003 AI	•	•	Ce-141 354±9	358	286	430
06-2003 AI		<u> </u>	141-40 TO 10			
	NL-APT-G572	APT		175	139	211
	· · ·	an an an t	Mn-54 345±3			
	:		Co-60 36 96±2	97	79	115
see to a		î : ` !	Fe-59 Cereb 79±3 Cereb	73		85
		•	Zn-65	133	109	157
			Cs-134 20001 62±1 243	76	58	
		÷	Cs-137 177±4	169	133	205
Y = -2		 a Contraction 	Co-58 68±1	68	56	80
•		-	Ce-141 213±6	208	166	250
09-2003 A	NL-SOL-G577	Soil	Cr-51		417	633
09-2003 A	11-201-0277	5011	Mn-54 228±7	209	167	251
			Fe-59 200±12	178	142	
·• :			Fe-59 200±12 Co-58 221±7	222	180	264
			Co-60 296±4	278	224	332
•		_ ` *	Zn-65 408±4	395	317	473
			a	. 305	245	365
				193	157	229
:			Ce-141 195±10 Cs-134 257±7			

* s.d. - one standard deviation of three individual analytical results

(79

۰.

. ____**L_ L**_

RESULTS OF ANALYTICS AND ERA INTERLABORATORY COMPARISON PROGRAM

Tritium Analysis In Water (pCi/L) Iodine-131 Analysis In Water (pCi/L) And Iodine In Air Samples (pCi/m³)

						ANALYTI	CS/ERA
						Acce	ptance
				*	ANALYTICS	Crit	eria
DATE	PSEG			PSEG	ERA	Lower &	Upper
MM-YY	SAMPLE CODE	MEDIUM	ANALYSIS	Mean ± s.d.	Known	Limit	Limit
03-2003	ANL-WAT-H564	Water	H-3	4634±107	4463	3569	5357
03-2003	ANL-AIO-1568	AIO	I-131	77 <u>+</u> 4	74	62	86
05-2003 ,	ERA-WAT-H575	Water	H-3	1239±33	1250	677	1823
05-2003	ERA-WAT-1579	Water	I-131	20±0.6	21	16	26
06-2003	ANL-AIO-1571	AIO	I-131	67±2	62	50	74
06-2003	ANL-WAT-H573	Water	H-3	11653±30	11953	9565	14341
09-2003	ANL-AIO-1576	OIA	I-131	86 <u>+</u> 1	86	68	104
09-2003	ANL-WAT-H578	Water	H-3	8062±109	8000	6200	9800
11-2003	ERA-WAT-1584	Water	I-131	27±3	28	23	33
12-2003	ANL-WAT-1581	AIO	I-131	84±1	78	60	96
12-2003	ANL-WAT-H583	Water	H-3	2238±40	2290	490	4090

* s.d. - one standard deviation of three individual analytical results

APPENDIX E

SYNOPSIS OF LAND USE CENSUS

· ţ e. . 2312 - 11 121 - C 711 14134 12 -7 : : :: ÷ ; , iii ŧ ۰ و · -£ . 14 121 7 94 7 . ' ÷ . _ ! : • 2-1 ••••• : . · · ·

APPENDIX E

SYNOPSIS OF 2003 LAND USE CENSUS

A land use census was conducted to identify, within a distance of 8 km (5 miles), the location of the nearest milk animal, the nearest residence, and the nearest garden of greater than $50m^2$ ($500ft^2$) producing broad leaf vegetation, in each of the 16 meteorological sectors.

Tabulated below are the results of these surveys:

	Milk Animal	Nearest Residence	Vegetable Garden
Meteorological	July, 2003	July, 2003	July, 2003
Sector	km (miles)	km (miles)	km (miles)
N	None	None	None
NNE	None	None	None
NE	None	6.4 (4.0)	None
ENE -	None	5.8 (3.6)	None
E	None	8.7 (5.4)	None
ESE	None	None	None
SE	None	None	None
SSE	None	None	None
S	None	None	None
SSW ·	None	5.5 (3.4)	None
SW	None	6.9 (4.3)	7.7 (4.8)
WSW	None	7.1 (4.4)	None
W	7.8 (4.9)	6.5 (4.0)	None
WNW	None	5.5 (3.4)	None
NW	None	5.9 (3.7)	None
NNW	None	6.8 (4.2)	None

APPENDIX F

RADIOLOGICAL IMPACT ON MAN

APPENDIX F

RADIOLOGICAL IMPACT ON MAN

The calculated individual doses in this section are based on the controlling dose pathways and age groups as described below. The estimated dose represents the maximum radiation dose that could be received by a member of the general public. The population dose impact is based on the evaluation year site-specific data (i.e., food production, milk production, feed for milk animals and seafood production).

The doses were calculated using methods described in Regulatory Guide 1.109 and represent calculations for the 12-month reporting interval. Individual doses from batch and continuous releases were calculated using the annual average historic meteorological dispersion factors as described in the respective Offsite Dose Calculation Manual. Population doses were calculated using the meteorological dispersion coefficients for the twelve month reporting interval.

	Liquid Pa	athways	
Туре	Age Group	Location	Pathway
Total Body	Adult	Site Boundary Site Boundary	Seafood Ingestion
Salem Unit 1 Type	Dose	e it to describe a frequencies. A	Limit
Total Body Organ Dose (GI-LI)			3 mrem 10 mrem
<u>Salem Unit 2</u> Type	u u nun ur die griese	Bengan da estra da rasi 1945 - Star Bartonia	· · · · ·
Total Body Organ Dose (GI-LI)	5.73E-3 " mrem 1.29E-2 mrem	ueles de l'upersone d'uperes 1921 - Alfredd an l'Alfredd an 19 Derrous - Alfredd an lub an 2010	3 mrem 10 mrem
Hope Creek Type	Dose the prime	an the state of the state	Limit
Total Body Organ Dose (GI-LLI)	6.76E-5 mrem 5.29E-4 mrem	n an	3 mrem 10 mrem
Site Population (Total) Population (Average)	4.59E-03 persor	z c. čet vytrazti or Secondržavato se a obaž Strone v Sakona a stro Strone se Sakona a stro	Limit N/A N/A

87

Air Pathways

Type	Age Group	Location	Pathway
Total Body Skin Organ	All All Infant	Site Boundary Site Boundary 4.9 mi. W.	Direct Exposure Direct Exposure Milk, Ground Plane, Inhalation
Salem Units 1&2	۰.		
Туре	Dose		Limit
Total Body	1.72E-02 mre	•	500 mrem
Skin Organ Dose (Thyroid)	4.92E-02 mre 1.18E-01 mre		3000 mrem 15 mrem
Hope Creek			
Туре	Dose	 .	Limit
Total Body	3.29E-04 mre	•	500 mrem
Skin Organ Dose (Thyroid)	6.43E-04 mre 3.97E-02 mre		3000 mrem 15 mrem
		• • • •	
Site	Dose		Limit
Population(Total) Population (Average)	-		N/A N/A

Direct Radiation

Direct radiation may be estimated by thermoluminescent dosimetric (TLD) measurements. One method for comparing TLD measurements is by comparison with pre-operational data. It should be noted that the TLDs measure direct radiation from both the Salem and Hope Creek Generating Stations at Artificial Island, and natural background radiation.

TLD data for the twelve-month reporting period is given below:

TLD	Location	Measurement
1S-1	0.4 mile NNE	4.63 mrad/std. month
55-1	1.0 mile E	3.81 mrad/std. month

These values are interpreted to represent natural background, since the values are within the statistical variation associated with the preoperational program results which are 3.7 mrad/standard month for TLD 1S-1 and 4.2 mrad/standard month for TLD 5S-1. _ ...LL

Total Dose

40CFR190 limits the total dose to members of the public due to radioactivity and radiation from uranium fuel 'cycle sources to:

<25 mrem total body or any organ and;

<75 mrem thyroid for a calendar year.

For Artificial Island, the major sources of dose are from liquid and gaseous effluents from the Hope Creek and Salem plants.

The following doses to a "hypothetical maximum exposed individual" have been calculated for the twelve-month reporting period. They are the sum of gaseous and liquid pathway doses for the Salem 1 and 2 and Hope Creek plants:

	•	1.66E-02	mrem	Total Body
	• • •	3.79E-02	mrem	Organ (GI-LLI)
· ·	÷	1.49E-01	mrem	Thyroid
				「「長」の「「「「「」」」

Dose to members of the public due to activities inside the site Boundary

112⁻¹ 112

Dose to members of the public is limited to 100 mrem total effective dose equivalent (TEDE) in a year in accordance with 10CFR20.1301. The definition of members of the public changed on September 11, 2001. The various food vendors that have previously comprised the maximally exposed group are no longer allowed on site. For this reporting period, the definition of the members of the public are the members of the New Jersey National Guard to augment the security force at the site. Their typical patrol spans: the site, and the following locations 16S1; CA8 and CA15 (Hope Creek Barge Slip, Dredge Spoils and Baseball Field) are averaged to estimate their dose. In accordance with the requirements of ODCM 6.9.1.8 (SGS) and 6.9.1.7 (HCGS), the dose to members of the public inside the site boundary has been calculated based on the following assumptions:

a. The National Guard works a 40 hour week, therefore all doses are multiplied by 0.25 to assess their dose.

For the 12-month reporting period, January 1, 2003 to December 31, 2003 the calculated doses are:

2.13E-01 mrem TEDE Total Body 1.97E-02 mrem TEDE Organ (Lung): 1. 3.12E-02 mrem TEDE Thyrold