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Abstract

The objective of the research described in this report is
the development and application of a methodology for
comprehensively assessing the hydrogeologic
uncertainties involved in dose assessment, including
uncertainties associated with conceptual models,
parameters, and scenarios. This report describes and
applies a statistical method, Maximum Likelihood
Bayesian Model Averaging (MLBMA), to
quantitatively estimate the combined uncertainty in
model predictions arising from conceptual model and
parameter uncertainties. The method relies on model
averaging to combine the predictions of a set of
alternative models. Implementation is driven by the
available data. When there is minimal site-specific data
the method can be carried out with prior parameter
estimates based on generic data and subjective prior
model probabilities. For sites with observations of
system behavior (and optionally data characterizing
model parameters), the method uses model calibration
to update the prior parameter estimates and model
probabilities based on the correspondence between
model predictions and site observations. The set of
model alternatives can contain both simplified and
complex models, with the requirement that all models
be based on the same set of data.

MLBMA was applied to the geostatistical modeling of
air permeability at a fractured rock site. Seven
alternative variogram models of log air permeability
were considered to represent data from single-hole
pneumatic injection tests in six boreholes at the site.
Unbiased maximum likelihood estimates of variogram
and drift parameters were obtained for each model.
Standard information criteria provided an ambiguous
ranking of the models, which would not justify
selecting one of them and discarding all others as is
commonly done in practice. Instead, some of the
models were eliminated based on their negligibly small
updated probabilities and the rest were used to project
the measured log permeabilities by kriging onto a rock
volume containing the six boreholes. These four
projections, and associated kriging variances, were
averaged using the posterior model probabilities as
weights. Finally, cross-validation was conducted by
eliminating from consideration all data from one
borehole at a time, repeating the above process, and
comparing the predictive capability of the model-
averaged result with that of each individual model.
Using two quantitative measures of comparison, the
model-averaged result was superior to any individual
geostatistical model of log permeability considered.
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Executive Summary

In its performance assessments of decommissioning
sites and other nuclear facilities, the U.S. Nuclear
Regulatory Commission (NRC) staff uses a risk-
informed, performance-based approach in which
evaluation of risk is an integral part of, but not the sole
basis for, decision making. The risk is, in part,
manifested as uncertainty in estimates of dose. The
importance of assessing uncertainty in dose is made
clear by considering the following:

* long regulatory time frames (e.g., 1000 years),
* complex exposure pathways involving

multiple media,
* relatively small incremental doses, and
* potentially limited site-specific

characterization data.

The objective of the research described in this report is
the development and application of a methodology for
comprehensively assessing the hydrogeologic
uncertainties involved in dose assessment modeling.
For methodological purposes, prediction uncertainty is
classified as being associated with one of three basic
components of dose assessment models:

* the conceptual-mathematical basis of the
model,

* model parameters, or
* the scenario to which the model is applied.

This report describes and applies a method to estimate
the combined uncertainty in model predictions arising
from conceptual model and parameter uncertainties. A
future report will include the analysis of scenario
uncertainty.

The primary steps involved in addressing uncertainty in
model parameters are

* characterization of parameter uncertainty,
* propagation of parameter uncertainty into

model output uncertainty, and
* parameter sensitivity analysis.

Parameter estimation, including the characterization of
parameter uncertainty, is driven by the available data
and information. In the most data-limited case, prior
parameter estimates are based on available information
that does not include site-specific parameter
measurements. These estimates represent the largest
degree of uncertainty. Meyer and Gee (1999) discuss
data sources for characterizing hydrogeologic
parameter uncertainty in the context of dose assessment
modeling for license termination decisions. They

suggest the application of a hierarchy of data from
national-scale databases (referred to as generic
information) to site-specific measurements of
parameter values. Site-specific parameter
measurements, when available, can be used to update
the prior estimates (Meyer et al., 1997), thereby
decreasing parameter uncertainty. A similar
methodology for the characterization of probability
distributions for (adsorption) distribution coefficients is
being developed as part of the research reported here
(see Appendix A).

When observations of system state variables (e.g.,
hydraulic head, radionuclide concentration) are
available at a site, formal calibration methods, using an
inverse model, can be used to improve parameter
estimates and characterize the uncertainty of these
estimates. Calibrated parameter estimates represent the
application of the maximum amount of
datalinformation and yield parameters with the
minimum uncertainty (Wang et al., 2003). Because
they rely on an inverse model, calibrated parameter
estimates are model-dependent. In fact, most
calibration methods assume the model is correct. Errors
thus represent the uncertainty in parameters given that
the model is correct. This will underestimate parameter
uncertainty.

Relying on a single conceptual representation of a
system has two potential pitfalls: the rejection by
omission of valid conceptual model alternatives, and
reliance on an invalid representation by failing to
adequately test it. The potential consequences are
underestimation of uncertainty by under-sampling
model space and biased results by relying on an invalid
model. To obtain realistic risk estimates, effort should
thus be made to evaluate multiple, alternative
conceptualizations of the system being analyzed.

Any approach based on evaluation of a discrete set of
alternative models will only be as good as the set of
alternatives. That is, if the set of alternatives does not
represent the full range of possibilities, conceptual
model uncertainty will be underestimated. In Neuman
and Wierenga's (2003) extensive discussion of
conceptual model uncertainty they provide some
advice on the generation of alternatives, summarized as
follows.

From the assembled database of site-specific
data and other relevant information, consider
alternative representations of space-time
scales, number and type of hydrogeologic
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units, flow and transport property
characterization, system boundaries, initial
conditions, fast flow paths, controlling
transport phenomena, etc.

• Each conceptual model alternative should be
supported by key data.

* Minimize inconsistencies, anomalies, and
ambiguities.

* Apply the principle of Occam's window
according to which one considers only a
relatively small set of the most parsimonious
models among those which, a priori, appear to
be hydrologically most plausible in light of all
knowledge and data relevant to the purpose of
the model and, a posteriori, explain the data in
an acceptable manner.

* Maximize the number of experts involved in
the generation of alternative
conceptualizations.

• Articulate uncertainties associated with each
alternative conceptualization.

Having defined the set of alternatives, the options for
addressing conceptual model uncertainty include the
following.

* Evaluate each alternative and select the best
model, either through an informal comparison
or through evaluation of a formal model
selection criterion.

* Evaluate each alternative and combine the
results using some weighting scheme.

When multiple model conceptualizations are consistent
with the available data, it may not be justifiable to rely
on a single model structure. The method described here
relies on model averaging to combine the predictions
of alternative models. The weights applied to each
model's predictions are estimated model probabilities.

The method uses a Maximum Likelihood
implementation of Bayesian Model Averaging
(MLBMA) described by Neuman (2003). If A is the
predicted quantity (e.g., dose), its posterior distribution
given a set of data D is

p (MA ID)= p(DIMk)P(Mk)K

Zp(DIM,)p(M,)
,=1

(E-2)

The solution of these equations is accomplished by
maximum likelihood estimation of each model's
parameters.

Prior model probabilities in Equation E-2 rp(M&k) and
p(Afl)]are subjective values reflecting a belief about the
relative plausibility of each model based on its
apparent consistency with available knowledge and
data. Posterior model probabilities are modifications of
these subjective values based on an objective
evaluation of each model's consistency with available
data. Hence, the posterior probabilities are valid only in
a comparative, not in an absolute, sense.

The maximum likelihood method can be applied to
complex and simplified models as long as each model
in the set of alternatives is based on the same data (Ye
et al., 2003). It can be applied to deterministic models
and also to stochastic models based on moment
equations (Hernandez et al., 2003). Application of
maximum likelihood also yields parameter sensitivity
information.

Including prior information in the maximum likelihood
calibration is an option, which allows one to condition
the parameter estimates not only on site monitoring
(observational) data but also on site characterization
data, potentially rendering the model a better predictor.

Maximum likelihood allows the statistical parameters
characterizing the parameter and state variable errors to
be estimated. When these statistical parameters are
known (i.e., not estimated), maximum likelihood
reduces to generalized least squares estimation. In this
case, available codes such as PEST and UCODE can
be applied.

Maximum likelihood estimation yields an approximate
covariance matrix for the parameter estimation errors.
Assuming these errors to be Gaussian or log Gaussian,
the probability distribution of model output
[Ip (A IAfk, D) in Equation E- I] can be determined by

Monte Carlo simulation of A through random
perturbation of the parameters. If the model is a
geostatistical model or a stochastic moment model, it
yields the expected value and variance of its output
directly without Monte Carlo simulation.

In the most data-limited application, one in which there
are no system observations with which to calibrate a
model and the only available parameter information is

K

p(AID) = ZP(AIJ|Mk,D)P(AMk ID)
k=I

(E-l)

where M = (M,..., MK) is the set of all models

considered. The posterior probability for model MA is
a function of the prior model probability and the model
likelihood, as given by Bayes' rule,
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that available from generic databases, Equation E-l
reduces to

K
p(A)=zP(AIMf)P(M4).

k=1

That is, model predictions can still be made using prior
parameter estimates and model averaging can still be
carried out, but only with prior model probabilities.
Since the predictions and model probabilities are not
conditioned on state variable observations, however,
the results are expected to be more uncertain and
potentially more biased.

To implement MLBMA the following steps are
followed.

(I) Postulate alternative conceptual-mathematical
models for a site using guidance provided in
Neuman and Wierenga (2003).

(2) Assign a prior probability to each model.

(3) Optionally assign prior probabilities to the
parameters of each model, using, for example,
guidance provided in Meyer and Gee (1999).

(4) Obtain posterior maximum likelihood
parameter estimates, and estimation
covariance, for each model by inversion
(model calibration). In many cases, available
codes such as PEST and UCODE can be
applied to this step.

(5) Calculate a posterior probability for each
model using the model calibration results and
the prior model probabilities.

(6) Predict quantities of interest using each
model.

(7) Assess prediction uncertainty (distribution,
variance) for each model using Monte Carlo
or stochastic moment methods.

(8) Weight predictions and uncertainties by the
corresponding posterior model probabilities.

(9) Sum the results over all models.

To evaluate MLBMA, it was applied to seven
alternative variogram models of log air permeability
data from single-hole pneumatic injection tests in six

boreholes at the Apache Leap Research Site (ALRS) in
central Arizona. Unbiased ML estimates of variogram
and drift parameters were obtained using adjoint state
maximum likelihood cross validation in conjunction
with universal kriging and generalized least squares.
Standard information criteria provided an ambiguous
ranking of the models, which did not justify selecting
one of them and discarding all others as is commonly
done in practice. Instead, three of the models were
eliminated based on their negligibly small posterior
probabilities and the remaining four models were used
to project the measured log permeabilities by kriging
onto a rock volume containing the six boreholes. These
four projections, and associated kriging variances, were
averaged using the posterior probability of each model
as weight.

Finally, the results were cross-validated by eliminating
from consideration all data from one borehole at a
time, repeating the above process, and comparing the
predictive capability of MLBMA with that of each
individual model. The predictive capabilities of the
alternative models and the MLBMA result were
compared through their log scores. The lower the
predictive log score of a model, the smaller the amount
of information lost upon eliminating a borehole's data
from the original dataset (i.e., the higher the probability
that the model based on the reduced dataset would
reproduce the eliminated borehole's data).

Another measure of model performance is its
predictive coverage. This is the percent of
measurements from the eliminated borehole's data that
fall within a given prediction interval generated by
conducting Monte Carlo simulations of log air
permeability conditioned on the data from the
remaining boreholes.

The table below lists the average log score for the three
model alternatives with the highest posterior
probability, as well as the average of corresponding
MLBMA scores. The average predictive log score of
MLBMA is seen to be smaller than that of any
individual model, indicating that MLBMA is a better
predictor than any of the single model alternatives. The
table also shows the predictive coverage of MLBMA,
which is larger than that of any individual model,
attesting once again to its superior performance.

Table E-1. Comparison of MLBMA with individual model alternatives

Model PowO ExpO ExpI MLBMA

Predictive log score 34.1 35.2 34.0 31.4

Predictive coverage (%) 86.5 80.8 83.7 87.5
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Foreword

This technical contractor report was prepared by Pacific Northwest National Laboratory' (PNNL) under their DOE
Interagency Work Order (JCN Y6465) with the U.S. Nuclear Regulatory Commission. This research report
describes an approach for integrating two methodologies developed to assess uncertainties: one for evaluating
hydrologic conceptual model uncertainty as documented in NUREG/CR-6805, and the second for estimating
hydrologic parameter uncertainty as documented in NUREG/CR-6767. This report provides both the logic
developed and examples demonstrating the approach using field data. The detailed input and analyses for the real-
world examples are presented in the report's appendix and may be useful in decommissioning reviews of complex
sites. This report is consistent with the NRC strategic performance goal of making NRC activities and decisions
more effective, efficient, and realistic by identifying and estimating uncertainties.

The report demonstrates, using examples relevant to decommissioning analyses, that sources of uncertainty can be
identified, quantified, and integrated using a comparative model analysis approach. The report illustrates the
effectiveness of the integrated methodology to estimate uncertainty in model predictions arising from both
conceptual and parameter uncertainties. This information will assist NRC licensing staff, Agreement State
regulators, and licensees in their decision making by identifying and quantifying overall uncertainties in
performance assessment models.

This report, as with the previous reports on individual sources of uncertainty, is not a substitute for NRC regulations,
and compliance is not required. The approaches and/or methods described in this NUREG/CR are provided for
information only. Publication of this report does not necessarily constitute NRC approval or agreement with the
information contained herein. Use of product or trade names is for identification purposes only and does not
constitute endorsement by the NRC or Pacific Northwest National Laboratory.

Cheryl A. Trottier, Chief
Radiation Protection, Environmental Risk and Waste Management Branch
Division of System Analysis and Regulatory Effectiveness
Office of Nuclear Regulatory Research

'Pacific Northwest National Laboratory is operated for the U.S. Department of Energy by Battelle Memorial
Institute under contract DE-AC06-76RLO 1830.
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I Introduction

In its performance assessments of decommissioning
sites and other nuclear facilities, the U.S. Nuclear
Regulatory Commission (NRC) staff uses a risk-
informed, performance-based approach in which
evaluation of risk is an integral part of, but not the sole
basis for, decision making. NRC regulatory criteria are
often written in terms of dose. For example, the
primary regulatory criterion for license termination is a
maximum dose for the period up to 1000 years from
the time of decommissioning (see Table 1-1). One
might argue that risk (such as the risk of premature
death) could be derived from knowledge of exposure to
a particular dose. When, however, estimating that dose
involves predictions of contaminant transport and
exposure via complex contaminant exposure pathways
over a 1 000-year period, then there is an obvious
additional component of uncertainty contributing to
risk. That component is the uncertainty in the estimate
of dose. The importance of assessing uncertainty in
dose is made clear by considering

* the long regulatory time frame,
* complex exposure pathways involving

multiple media,
* the relatively small incremental dose specified

in the regulations, and
* potentially limited site-specific

characterization data.

In the license termination case, the result of a
quantitative assessment of this uncertainty will be an
estimate of the probability distribution of dose to the
average member of the critical group for the 1 000-year
period following decommissioning.

There are numerous sources of uncertainty that are
potentially significant contributors to an estimate of the
probability of dose. This is a consequence of the
multiple potential exposure pathways. The analysis
presented in this report only addresses the pathways
involving transport of radionuclides in water. For
license termination, that includes a residential farmer
scenario in which exposure comes from the use of
contaminated groundwater for home, garden, and farm.
Thus, the uncertainties considered are those related to
transport from a source (typically near the ground
surface) through unsaturated soils and groundwater to
an exposure point via a pumped well or surface water
body. The methods described here are general,
however, and could be applied to other exposure
scenanos.

Although the analysis described here is limited to
hydrogeologic uncertainty, it is comprehensive in the
sense that all types of hydrogeologic uncertainty are
considered. Uncertainty is defined, for the purposes of
this study, as a lack of certainty due to

* incomplete knowledge of the system being
analyzed;

* measurement or sampling error in
characterizing the system's features, events,
and processes;

* variability in the system's properties;
* disparity among the sampling, simulation, and

actual scales of the system's features, events,
and processes; and

* randomness in the system's stresses,
particularly transient external stresses, often in
a short-time context.

Table 1-1. Summary of radiological criteria for license termination (10 CFR Part 20 Subpart E) (from Meyer
and Gee, 1999). (TEDE - Total Effective Dose Equivalent; ALARA - As Low As Reasonably
Achievable)

Unrestricted Release Restricted Release

25 mrem TEDE per year peak 25 mrem TEDE per 100 or 500 mrem TEDE
Dose Criterion annual dose to the average year peak annual dose per year peak annual

member of the critical group to the average member dose to the average
of the critical group member of the critical
while controls are in group upon failure of

place the controls

Time Frame 1000 years 1000 years

Other Requirements ALARA ALARA, financial assurance, public participation

I
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Note that this definition includes uncertainty that can
be reduced with sufficient data (sometimes referred to
as subjective or epistemic uncertainty; see Helton
1996) and uncertainty that is an irreducible
characteristic of the system (sometimes referred to as
stochastic or aleatory uncertainty). An example of the
former is uncertainty about the continuity (thickness)
of a low permeability hydrostratigraphic unit.
Examples of the latter are the annual recharge rate over
the next 1000 years, or the stage of a river
hydraulically connected to a groundwater system. It is
often argued that these two broad types of uncertainty
should be kept separate in the application of
uncertainty analysis methods (Helton, 1994; Ayyub
and McCuen, 2003); this may improve the ability to
draw correct conclusions about the important factors
leading to system success/failure and the value of
additional data. Winkler (1996) suggests that
uncertainties that appear irreducible may, in fact, often
be a function of the available knowledge (i.e.,
subjective). For example, river stage may be inherently
variable, but that variability could, in principle, be
entirely accounted for if a sufficiently detailed
hydrologic model and the associated data were
available. Winkler (1996) argues that distinctions
between types of uncertainty are largely related to
sources of information and that it is more useful to
think in terms of what is needed to accomplish the
modeling task: adequate decomposition of the problem,
combining various sources of information, assessing
the value of additional data, and effectively utilizing
sensitivity analysis. This is the viewpoint adopted in
this report.

Models are generally used to make consistent,
quantitative assessments of future dose required by
criteria such as that given in Table 1-1. Although we do
not strictly distinguish between subjective and
stochastic types of uncertainty, from a methodological
perspective we classify uncertainty as being associated
with one of three basic components of dose assessment
models:

* the conceptual-mathematical basis of the
model,

* model parameters, or
* the scenario to which the model is applied.

The model conceptual basis can be thought of as a
hypothesis about the behavior of the system being
modeled and the relationships between the components
of the system. This conceptualization is typically
represented mathematically to render quantitative
predictions; thus it is appropriate to talk about a
conceptual-mathematical model (sometimes referred to
as model structure). The model parameters are the
quantities required to obtain a solution from the model

(and thus are model-specific). A scenario is defined
here as a future state or condition assumed for a system
that is the result of an event, process, or feature that
was not assumed in the initial base case definition of
the system and diverges significantly from the initial
base case. A scenario may be imposed by humans (e.g.,
irrigation schemes and ground-water extraction) but
may also be natural (e.g., glaciation and flooding).
Scenarios are often considered in a long-time context.
Only hydrologically related aspects of scenario
uncertainty are included in this analysis.

The objective of the research described in this report is
the development and application of a methodology for
comprehensively assessing the uncertainties involved
in dose assessment, including uncertainties associated
with conceptual models, parameters, and scenarios. In
addressing this problem we have generally adopted a
Bayesian viewpoint. The merits of a Bayesian
(subjectivist) approach to probability relative to a
classical (frequentist) approach have been discussed in
many publications (e.g., Martz and Waller, 1988;
Abramson, 1988). Our approach is Bayesian primarily
for practical reasons. Quantification of hydrogeologic
uncertainty for dose assessments must often deal with
very limited observations of site characteristics.
Generic and indirect data can be and generally are used
to infer site properties. For example, geologic
characteristics may be inferred from analysis of
outcrops, hydraulic characteristics may be estimated
from soil-textural information, and radionuclide
adsorption characteristics may be assigned from a
database of values measured at other sites under a
variety of conditions. In addition, the assessment of
conceptual model and scenario probabilities seems
inherently subjective. The Bayesian approach provides
a means to incorporate different types of data and
subjective judgments into the assessment of
uncertainty.

This report describes and applies a method to estimate
the combined uncertainty in model predictions arising
from conceptual model and parameter uncertainties.
The inclusion of scenario uncertainty will be described
in a future report. Chapter 2 provides some background
on the quantification of parameter and conceptual
model uncertainty. A related discussion of an approach
being developed as part of this project for evaluating
uncertainty in the distribution coefficient parameter is
included in Appendix A. Chapter 3 describes the
maximum likelihood Bayesian model averaging
method, a general method for combining quantitative
estimates of conceptual model and parameter
uncertainty. Chapter 4 is an application of this method
to the geostatistical modeling of air permeability at a
fractured rock site. This application was chosen
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because the site is a relatively well-controlled
experimental research site with good characterization
data. In addition the results of past studies at the site
were available to us. Applications that are more
reflective of actual NRC-regulated sites will be the
focus of future efforts.

The developments described here are being
coordinated with other Federal agencies cooperating
under the Interagency Steering Committee on
Multimedia Environmental Models Memorandum of

Understanding (ISCMEM MOU) (see
http://lSCMEM.org). Results reported here have been
discussed with members of the Working Group on
Uncertainty and Parameter Estimation organized under
the steering committee and have been presented at the
International Workshop on Uncertainty, Sensitivity,
and Parameter Estimation for Multimedia
Environmental Modeling, held August 19-21, 2003, at
NRC Headquarters and organized by the Working
Group.
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2 Quantification of Parameter and Conceptual Model Uncertainty

2.1 Parameter Uncertainty

2.1.1 Sources of Parameter Uncertainty

The sources of uncertainty outlined in the previous
chapter that contribute to hydrogeologic parameter
uncertainty can be clearly illustrated with the aid of
Figure 2-1, a photo of a trench face from an excavation
in the 200 Area of the Hanford Site. A large variation
in soil particle size can be seen, ranging from fine silts
to very coarse gravels. The profile shows a layered
structure with evidence of cross-bedding; the scale of
the structures is on the order of a few centimeters. This
variation results in hydraulic and transport properties
that may vary over several orders of magnitude on this

same small scale. Measurements are likely to be made
on a somewhat larger scale, perhaps 10 cm or more.
Exhaustive sampling to determine the exact nature of
the subsurface at this scale will be impossible, thus
requiring interpolation between measurements and
other indirect methods to estimate properties at
unmeasured locations. In addition, the simulation scale
for most practical applications (and thus the scale of
the parameters) is likely to be significantly larger than
the measurement scale, from a few tens of centimeters
to many meters.

The impact of measurement errors on parameter
uncertainty is often felt to be small relative to other
sources of uncertainty and easily quantified. Holt et al.
(2002) provide some evidence that relatively simple

Figure 2-1. Photograph of a trench face from an excavation in the 200 Area of
the Hanford Site, Washington (photograph by John Selker,
Oregon State University).
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measurement errors can introduce significant parameter
uncertainties. They simulated tension infiltrometer
measurements with added pressure transducer error
(observation error) and contact error (inversion error).
They used the simulated measurements to estimate the
variance and correlation length of the parameters of the
Gardner hydraulic conductivity model over a range of
true values representing poorly-sorted to well-sorted
silt to coarse sand. The ratio of estimated to true
parameter values (for the variances and correlation
lengths) ranged from less than 0.5 to more than 2.5.
These are significant errors for parameters representing
the average characteristics of a site. Holt et al. (2002)
also observed that the modeled errors produced
spurious parameter correlations, an effect that has
likely been poorly appreciated in most applications.

An additional source of parameter uncertainty that has
likely not been fully appreciated can be illustrated
using results presented in Zimmerman et al. (1998).
They compared results from seven models calibrated
on the same set of data by different participant groups
using different inverse methods. The ratio of estimated
to true parameter values for the variance and
correlation length of the transmissivity are shown in
Figure 2-2 for each of the inverse methods used. The
true transmissivity field was synthetically generated.

An exponential model was fit to the average empirical
variogram for a set of realizations obtained from each
inverse method. The results shown are for Test
Problem 1, the simplest transmissivity model used (an
isotropic, exponential variogram). Nonetheless, the
parameter errors resulting simply from the use of
different inverse methods (and participants) were
significant.

2.1.2 Analysis of Parameter Uncertainty

The analysis of parameter uncertainty has received
much attention in the literature. Helton (1993) and
McKay (1995) provide discussions of parameter
uncertainty that are particularly relevant to dose
assessment modeling. The primary steps involved in
addressing uncertainty in model parameters are

* characterization of parameter uncertainty,
* propagation of parameter uncertainty into

model output uncertainty, and
* parameter sensitivity analysis.

Parameter estimation, including the characterization of
parameter uncertainty, is driven by the available data
and information. Figure 2-3 is a simple representation
of the parameter estimation process, where it is

Transmissivity Variogram

>2.5
X 2* VarianceI

g 1.5
I-z
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Figure 2-2. Ratio of estimated to true parameter values for variance and correlation length of
transmissivity for seven different inverse methods. Results from Test Problem I of
Zimmerman et al. (1998). (FF=Fast Fourier Transform, FS--Fractal Simulation,
LC=Linearized Cokriging, LS=Linearized Semianalytical, ML=Maximum Likelihood,
PP=Pilot Point, SS=Sequential Self-Calibration)
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Figure 2-3. Use of data/information in parameter estimation

assumed that the process provides not only parameter
estimates, but also some measure of the parameter
uncertainty. This could take the form of bounding
values, variances, or specific distributional forms. At
the lower left are prior parameter estimates based on
available information that does not include site-specific
parameter measurements. This information may
include a compilation of parameter values from
numerous sites, or data from analogous sites. The prior
parameter estimates represent the largest degree of
uncertainty and the least amount of site-specific data.
In the center of Figure 2-3 are updated (posterior)
parameter estimates that are based on the prior
estimates but include the effect of site-specific
parameter measurements. They represent a decrease in
parameter uncertainty from the prior estimates.

Meyer and Gee (1999) discuss data sources for
characterizing hydrogeologic parameter uncertainty in
the context of dose assessment modeling for license
termination decisions. They suggest the application of
a hierarchy of data from national-scale databases
(referred to as generic information) to site-specific
measurements of parameter values. Their methodology
is represented schematically in Figure 24. Information
from the national-scale databases is used by Meyer and
Gee (1999) to specify prior parameter distributions that
can be updated subsequently in a Bayesian approach
using site-specific parameter data (Meyer et al., 1997),
which is expected to be sparse or non-existent at many
of the decommissioning sites. In data-limited
applications parameter probability distributions can
also be based on the subjective opinions of one or more

experts. Formal procedures are available to provide
consistency in the elicitation of expert opinions
regarding probabilities (Morgan and Henrion, 1990). A
methodology relying on generic databases, however,
has the advantage of being less expensive and more
easily applied to a wide variety of sites. The
methodology is currently being extended to include the
characterization of probability distributions for
(adsorption) distribution coefficients of selected
radionuclides (see Appendix A).

When observations of state variables (e.g., hydraulic
head, radionuclide concentration) are available at a site,
formal calibration methods can be used to improve
parameter estimates and characterize the uncertainty of
these estimates (Hill, 1998). As shown in the upper
right of Figure 2-3, this involves the application of an
inverse model. These calibrated parameter values may
include the effect of the site-specific parameter
measurements. In this case the updated parameter
estimates shown in Figure 2-3 are referred to as the
prior parameter estimates for the calibration. Calibrated
parameter estimates represent the application of the
maximum amount of data/information and yield
parameters with the minimum uncertainty. An
application to unsaturated flow presented in Wang et
al. (2003) illustrates the relationships between the data
used in parameter estimation and the resulting
prediction uncertainty.

Note that prior and updated parameter estimates may
be independent of a model. As discussed in Meyer and
Gee (1999), however, there must be a correspondence
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Figure 24. Types and uses of data sources and information for characterizing hydrogeologic
parameter uncertainty in dose assessments for license termination decisions (from
Meyer and Gee, 1999). Acronyms refer to various databases.

between the estimates and the parameters assigned
those estimates, e.g., a model that has a single value of
a parameter representing a site must be assigned a
value that represents a mean. Similarly, the uncertainty
in that parameter value must represent uncertainty in
the mean. Because they rely on an inverse model,
calibrated parameter estimates are model-dependent. In
fact, most calibration methods assume the model is
correct. Errors thus represent the uncertainty in
parameters given that the model is correct. This will
underestimate parameter uncertainty.

Zimmerman et al. (1998) evaluated a variety of
calibration methods using a set of hypothetical
(generated) data based on the Waste Isolation Pilot
Plant site. Transmissivity fields for two-dimensional
groundwater flow models were calibrated on four test
problems. One of their conclusions was that the
calibrated models consistently underestimated the
"true" variability in transport. The maximum likelihood
(Carrera and Neuman, 1986a) and sequential self-
calibration (Gomez-Hemandez et al., 1997) methods
were consistently ranked higher than the other
methods. The sequential self-calibration method offers
the advantage of producing spatially variable
transmissivity fields that honor the spatial statistics of
the transmissivity field. A calibrated, stochastic
groundwater simulation can be carried out using a set
of these fields in a Monte Carlo simulation. The
maximum likelihood method is more general, however,
and can be applied to the calibration of a wide variety

of parameters, including statistical parameters.
Maximum likelihood is used in the method and
application described in Chapters 3 and 4.

Computer codes that can be adapted to the calibration
of any simulation model have recently become
available (Poeter and Hill, 1998; Doherty, 2002). One
of these codes, PEST (Doherty, 2002) was used in the
application presented in Chapter 4. A method for
calibrating geostatistically-simulated parameter fields
(similar to the sequential self-calibration method) has
recently been demonstrated using PEST (Doherty,
2003).

A variety of methods for propagating parameter
uncertainty are available, including Monte Carlo
simulation, the first-order, second-moment method
(Kunstmann et al., 2002), the stochastic response
surface method (Isukapalli et al. 1998), and stochastic
moment methods (Dagan and Neuman, 1997; Zhang,
2001). Monte Carlo simulation is the most generally
applicable method and was used in the application
presented in Chapter 4. The stochastic moment
methods are appealing because of their potential
computational advantage over Monte Carlo simulation.
Recent progress in handling conditions that introduce
nonstationarities (Zhang, 2001) have made these
methods more generally applicable.

Uncertainties must be defined on a site-specific basis
and the importance of individual sources may vary site
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by site or even with different objectives at the same
site. Determination of the parameters that are most
important to the prediction uncertainty is the final
element of an assessment of parameter uncertainty.
This is generally carried out through the
implementation of sensitivity analysis (Saltelli et al.,
2000a; Helton, 1993). Meyer and Taira (2001) applied
differential, graphical, and sampling-based methods of
sensitivity analysis to decommissioning problems.
Sensitivity measures may also be obtained during the
calibration procedure (Hill, 1998; Tiedeman et al.,
2003). Global sensitivity methods (Borgonovo et al,
2003; Saltelli et al., 2000b; McKay, 1995) partition the
total prediction variance according to the contribution
of each parameter and also determine the contribution
to prediction variance due to interactions between
parameters. A sensitivity analysis was not conducted
for the application described in Chapter 4.

2.2 Conceptual Model Uncertainty

The sources of uncertainty described in the previous
sections result in multiple valid representations of
parameter values. That is, for a given model structure,
there will be multiple sets of parameter values that
provide valid representations of observed system
behavior. In a similar manner, the same sources of
uncertainty may result in valid alternative model
structures or conceptualizations. WThen multiple model
conceptualizations are consistent with the available
data, it may not be justifiable to rely on a single model
structure. Relying on a single conceptual representation
of a system has two potential pitfalls: the rejection by
omission of valid alternatives, and reliance on an
invalid representation by failing to adequately test it.
The potential consequences are underestimation of
uncertainty by under-sampling model space and biased
results by relying on an invalid model.

When discussing model uncertainty, it is instructive to
view model structure as the combination of a

conceptual model and a mathematical model: a
conceptual-mathematical model (Neuman and
Wierenga, 2003). The conceptual model can be thought
of as a hypothesis about the system behavior and the
relationship between system components. It is
primarily qualitative and comprehensive. The
mathematical model can be thought of as a process to
test the conceptual model hypothesis. It is a
quantitative, possibly simplified implementation of the
conceptual model.

Figure 2-5 illustrates the relationship between
alternative conceptual-mathematical models. Each
conceptual model is based on the available site data
and other relevant information and represents a distinct
conceptualization of system characterization or
behavior. For example, alternative conceptual models
might be represented by the presence and absence of
leakage from an underlying aquifer; or the presence
and absence of matrix-fracture interaction in a
fractured rock. In addition, a single conceptual model
may be implemented in more than one way: for
example, a fractured rock may be represented as an
equivalent porous medium or as a discrete network of
fractures. The process of conceptual-mathematical
model development may be iterative as additional site
data becomes available and conceptual models are
updated.

In this report, "conceptual model uncertainty" should
be interpreted as "conceptual-mathematical model
uncertainty," representing uncertainty in either the
conceptual model or its mathematical implementation.

2.2.1 Analysis of Conceptual Model
Uncertainty

Methods for the quantification of conceptual model
uncertainty are much less well established than those
addressing parameter uncertainty. Mosleh et al. (1994)
provide a good introduction to the issues involved.

hoI
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Figure 2-5. A schematic representation of the relationship between alternative conceptual-mathematical
models
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Neuman and Wierenga (2003) discuss a wide variety of
issues related to hydrogeologic conceptual model
uncertainty, including many instances of its practical
importance.

While it is generally possible to specify a reasonable
probability distribution representing the complete set of
possibilities for the value of a parameter, it is not
generally possible to specify the complete set of
possible conceptual model alternatives. As a result,
conceptual model uncertainty has generally been
represented as a discrete distribution, with a small
number of model alternatives taken as the complete set
of possibilities. In the generic example of Figure 2-5,
the complete set of possibilities consists of three
conceptual-mathematical model alternatives. Having
defined the set of alternatives, the options for
addressing conceptual model uncertainty include the
following.

* Evaluate each alternative and select the best
model. This may be carried out through an
informal comparison (James and Oldenburg,
1997; Cole et al., 2001) or through evaluation
of a formal model selection criterion
(Burnham and Anderson, 2002). As discussed
previously, selection of a single model may
not always be justifiable.

* Evaluate each alternative and combine the
results using some weighting scheme, such as
the likelihood-based weighting of Beven and
Freer (2001), the multimodel ensemble
approach of Krishnamurti et al. (2000), the
model likelihood weighting of Burnham and
Anderson (2002), and the model probability
weighting of Draper (1995).

Neuman (2003) reviews a number of approaches that
have been used to address conceptual model
uncertainty. The method he proposes, a version of the
model averaging method described in Draper (1995),
was used here and is discussed in detail in the
following chapter.

Any approach based on evaluation of a discrete set of
alternative models will only be as good as the set of
alternatives. That is, if the set of alternatives does not
represent the full range of possibilities, conceptual
model uncertainty will be underestimated. In Neuman
and Wierenga's (2003) extensive discussion of
conceptual model uncertainty, they provide some
advice on the generation of alternatives, summarized as
follows.

* From the assembled database of site-specific
data and other relevant information, consider
alternative representations of space-time
scales, number and type of hydrogeologic
units, flow and transport property
characterization, system boundaries, initial
conditions, fast flow paths, controlling
transport phenomena, etc.

• Each conceptual model alternative should be
supported by key data.

* Minimize inconsistencies, anomalies, and
ambiguities.

* Apply the principle of Occam's window
(Jefferys and Berger, 1992; Madigan and
Raftery, 1994) according to which one
considers only a relatively small set of the
most parsimonious models among those
which, a priori, appear to be hydrologically
most plausible in light of all knowledge and
data relevant to the purpose of the model and,
a posteriori, explain the data in an acceptable
manner.

• Maximize the number of experts involved in
the generation of alternative
conceptualizations.

* Articulate uncertainties associated with each
alternative conceptualization.

Because the set of alternative conceptual models is
unlikely to represent the full range of possibilities,
evaluations of model uncertainty should be viewed as
relative comparisons. That is, they may be used to
conclude that one model is better than another for the
intended purpose, but they cannot necessarily be used
to conclude that any model is a good model. In
addition, as stated above, the contribution of model
uncertainty to overall prediction uncertainty will be
underestimated.

Gaganis and Smith (2001) presented a unique analysis
based on Bayes Factors for calculating an absolute
measure of conceptual model uncertainty for a single
model (that is, without comparison to alternative
models). We evaluated this method using two synthetic
examples of groundwater flow in which model
structural errors were introduced through a boundary
flux and a source term error. Parameter uncertainty was
represented by a random field of transmissivity.
Although head and parameter measurements were
error-free and all driving forces other than the specified
model errors were known, the method of Gaganis and
Smith (2001) provided inconsistent estimates of the
(known) model uncertainty. Based on these results, we
feel the method is, at best, not generally applicable.
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3 Combining Parameter and Conceptual Model Uncertainty

This chapter discusses a method to provide an optimal
way of combining the predictions of several alternative
models and assessing theirjoint predictive uncertainty,
with consideration of parameter and conceptual model
uncertainty. This method relies on the specification of a
set of alternative models (with the consequent
limitations discussed in the previous chapter and
below) and weights the alternative model results by a
measure of the model probabilities. The method was
originally proposed by Neuman (2002).

3.1 Bayesian Model Averaging

A formal method of evaluating prediction uncertainty
with full consideration of model uncertainty is
Bayesian Model Averaging (BMA) (Draper, 1995;
Hoeting et al., 1999). Using the notation of Hoeting et
al. (1999), if A is the predicted quantity, its posterior
distribution given a set of data D is

A
p(AID)= Zp(AIAIkD)p(MA ID) (1)

k=I

whereM =((Mf.*--, MK) is the set of all models
considered, at least one of which must be correct. As
discussed in the previous chapter, Neuman and
Wierenga (2003) provide guidance on selecting a set of
models that is small enough to be computationally
feasible yet large enough to represent the breadth of
significant possibilities.

In (1), p (AID) is the average of the posterior

distributions p (A JMk D) under each model, weighted

by their posterior model probabilities p (Mi ID) .The

posterior probability for model MA is given by Bayes'
rule,

Sk is the vector of parameters associated with model

Mk P (Ok IMk) is the prior density of Sk under

model M, , p (D 1DA k A) is the joint likelihood of

model M, and its parameters 0,, and p (MA ) is the

prior probability that MA is the correct model. All
probabilities are implicitly conditional on M.

The posterior mean and variance of A are (Draper,
1995)

E[AID]=ZE[AIDMk]P(MA ID)
A.,

(4)

Var[AID] = ZVar[AID,M ]p(Mk ID)+
k-I

Z(E[AJD,M,]-E[AID])2 p(Mk ID) (5)

In (5), the first term on the right-hand side represents
within-model variance; the second term represents
between-model variance. Note that the predictive
probabilities (1) and leading moments (4) - (5) are
weighted by the posterior probabilities of the individual
models.

3.1.1 Interpretation of Model Probability

Philosophical difficulties with the BMA approach have
been discussed by Winkler (1993) and center on the
interpretation of p (MA ) as the probability that M, is
the correct model and the method's requirement that
one of the M, is in fact the correct model. Winkler
(1993) argues that, although this interpretation is
intuitively appealing, the existence of a "correct"
model is questionable since all models are
approximations of reality.

p(Mk ID)= p (DIA )P(MA )

Zp(DJM,)p(M,)
1=1

where

p(DlMk) = fp(DIOk,Mk)p(OkI Mk)dOk

is the integrated likelihood of model Mk,

One approach to these philosophical difficulties is to
(2) interpret model probability in relative terms (e.g., Zio

and Apostolakis, 1996), where the model with the
greatest probability is the "best" model (and all model
probabilities sum to one). Winkler (1993) suggests that
this means p (A IMA, D) must be interpreted as being

conditional to the "best" model, and asks whether there
is utility in that interpretation if the "best" model is not
very good. As discussed in the previous chapter, basing
the analysis on a set of model alternatives that do not
encompass all possibilities implies a relative
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comparison between models. We thus interpret prior
model probabilities to be subjective values reflecting
the analyst's belief about the relative plausibility of
each model based on its apparent (qualitative, a priori)
consistency with available knowledge and data.

Whereas prior model probabilities must in our view
remain subjective, the posterior model probabilities are
modifications of these subjective values based on an
objective evaluation of each model's consistency with
available data. Hence, the posterior probabilities are
valid only in a comparative, not in an absolute, sense.
They are conditional on the choice of models (in
addition to being conditional on the data) and may be
sensitive to the choice of prior model probabilities (as
demonstrated later by example). This sensitivity is
expected to diminish with increased level of
conditioning on data.

3.1.2 Specifying Prior Model Probability

Given a set of alternative models, M, one formally
assumes that their prior probabilities sum up to one,

prior probabilities assigned to models that are deemed
closely related. We explore this idea through an
example in the following chapter.

3.2 Maximum Likelihood Bayesian
Model Averaging (MLBMA)

Computational difficulties in the BMA approach
include the calculation of p (A IAf , D) in (I) and

p (D IMi ) in (3), which may require exhaustive

Monte Carlo simulations of the prior parameter space
0k for each model. This may be computationally and
hydrologically very demanding. Approximating

p(AIM^,D) by p(AI11fl,O ,D) , where 0, is the

maximum likelihood (ML) estimate of 0
S based on the

likelihood p(DOk,MA?, ), was suggested by Taplin

(1993) and was shown to be useful in the BMA context
by Draper (1995), Raftery et al. (1996) and Volinsky et
al. (1997).

K

Z p (Af)=l. (6)

This implies that all possible models of relevance are
included in H (the set is collectively exhaustive), and
that all models in M differ from each other sufficiently
to be considered mutually exclusive (the joint
probability of any two models is zero), at the outset.
Mutually exclusive models are not redundant; they
produce different results for the same set of inputs. In
practice, it may be impossible to demonstrate that the
set of models is collectively exhaustive. In this case,
model uncertainty may be underestimated, a condition
implied by the fact that all probabilities computed
using B13MA are conditional on M, as stated previously.

With regard to prior model probability, when there is
insufficient prior reason to prefer one model over
another, a "reasonable 'neutral' choice" (Hoeting et al.,
1999) is to assume that all models are a priori equally
likely. Draper (1995) and George (1999) express
concern that if two models are near equivalent as
regards predictions (i.e., redundant), treating them as
separate equally likely models amounts to giving
double weight to a single model of which there are two
slightly different versions, thereby "diluting" the
predictive power of BMA. One way to minimize this
effect is to eliminate at the outset models that are
deemed potentially inferior. Another is to retain only
models that are structurally distinct and non-collinear.
Otherwise, one should consider reducing (diluting) the

Neuman (2002, 2003) proposed evaluating the
posterior model probability, p(AfR ID), based on a

result due to Kashyap (1982) and referred to the
resulting method as Maximum Likelihood BMA
(MLBMIA). Kashyap derived an expression for
p(,M ID) by expanding the terms in the integrand of

(3) in a Taylor series about 0k. A related approach
based on Laplace approximations has been used in the
BMA context by Draper (1995) and Kass and Raftery
(1995). Kashyap's expression can be written (Ye et al.,
2003) as

p(M I) -eX(p IAKICk P(kexpH--AKIC, )p (Mk )
P(V, ID) = 2

E exp (_ 2KICt ) p(,Vf,)

(7)

where

AKICA KICk - KIC.., (8)

KIC, =NLL, +N. ln (iJ+ln Fk ( Dnlo6k f&)| (9)

KICk is the so-called Kashyap information criterion for
model M,, KICCmIn is its minimum value over all
candidate models, and
NLLk =-21np(D6k1,Mk)-2lnP(6kIfk) the

negative log likelihood of Mh evaluated at 0 I Here
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N. is the dimension of 0 , (number of parameters

associated with model M, ), N is the dimension of D

(number of discrete data points), and F. is the
normalized (by N) observed (as opposed to ensemble
mean) Fisher information matrix having components

I a 2 Inp(DIoNA )) (10)

'J N aSj §k =6k

In the absence of prior information about the
parameters, one simply drops the term

-2 In p (o, IMf ) from NLL, . This reflects common
practice in model calibration.

Increasing the number of parameters NA allows
-In p (D I, Af, ) to decrease and N, In N to
increase. When NA is large, the rate of decrease does
not compensate for the rate of increase and KJCk grows
while p (Al, ID) diminishes. This means that a more
parsimonious model with fewer parameters is ranked
higher and assigned a higher posterior probability. On
the other hand, - In p (D Jo,, M, ) diminishes with N at
a rate higher than linear so that as the latter grows,
there may be an advantage to a more complex model
with larger NA.

The last term in (9) reflects the information content of
the available data. It thus enables consideration of
models of growing complexity as the data base
improves in quantity and quality. As illustrated by
Carrera and Neuman (1986b), KICk recognizes that
when the data base is limited and/or of poor quality,
one has little justification for selecting an elaborate
model with numerous parameters. Instead, one should
prefer a simpler model with fewer parameters, which
nevertheless reflects adequately the underlying
hydrologic structure and regime of the system. Stated
otherwise, KICk may cause one to prefer a simpler
model that leads to a poorer fit with the data over a
more complex model that fits the data better.

As shown in Ye et al. (2003), alternative models can
have different types and numbers of parameters, but the
latter must be estimated and the models compared
considering a single data set D. For a comparison of
two- and three-dimensional models, data distributed in
three-dimensional space may need to be projected onto
a two-dimensional plane as done by Ando et al. (2003)
or averaged in the third dimension as suggested by
Neuman and Wierenga (2003, Appendix B).

3.2.1 A Few Words About KIC

Previously, KICA has been used (e.g., Carrera and
Neuman, 1986a,b; Samper and Neuman, 1989a,b) as an
optimum decision rule for the ranking of competing
models. The highest-ranking model is that
corresponding to KICK . Note that KIC has no
intrinsic meaning; it is only the differences between
KIC values that have meaning. Thus the use of
AKIC in (7) reflects the interpretation of p (Afk ID) as

a relative probability suitable for comparing the models
within the set M.

The Fisher information matrix term in (9) tends to a
constant as N becomes large, so that KIC, becomes
asymptotically equivalent to the Bayes information
criterion

BIC, = NLL, + N. In N (I I)

derived on the basis of other considerations by Akaike
(1977), Rissanen (1978) and Schwarz (1978). Raftery
(1993) proposed adopting the asymptotic BIC
approximation, without the prior information term

-2 In p (Ok JM, ), for BMA (see also Raftery et al.
1996; Volinsky et al. 1997; Hoeting et al. 1999). From
(11) it follows that (7) tends asymptotically to

p(AfM (12)

1..

where

ABIC, = BIC, -BIC- (13)

and BIC . is the smallest value of BICk over all

candidate models (see also Burnham and Anderson,
2002, pp. 297).

Since hydrologic models are often data limited, the
asymptotic expression (12) is less general than the
nonasymptotic expression (7) that is at the heart of
MLBMA. Indeed, Carrera and Neuman (1986a,b) and
Samper and Neuman (1989a,b) found KICk to provide
more reliable rankings of alternative groundwater flow
and geostatistical models than do BICk or two other
commonly used information criteria:
AIC, = NLLA + 2N, (Akaike, 1974) and

HIC, = NLL5 + 2N In (In N) (Hannan, 1980).
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For a recent overview of various information criteria
the reader is referred to Burnham and Anderson (2002,
p. 284).

3.2.2 Applicability of MLBMA

Using the maximum likelihood method has several
advantages. It can be applied to both complex and
simplified models. It can be applied to deterministic
models as described by Carrera and Neuman (1986a,b)
and Carrera et al. (1997) and also to stochastic models
based on moment equations as demonstrated by
Hernandez et a]. (2002, 2003). Application of
maximum likelihood also yields parameter sensitivity
information.

Including prior information in the maximum likelihood
calibration is an option that allows one to condition the
parameter estimates not only on site monitoring
(observational) data but also on site characterization
data, from which prior parameter estimates are usually
derived. WVhen both sets of data are considered to be
statistically meaningful, the posterior parameter
estimates are compatible with a wider array of
measurements than they would be otherwise and are
therefore better constrained (potentially rendering the
model a better predictor).

Maximum likelihood yields a negative log likelihood
criterion NLL, that includes two weighted square
residual terms: a generalized sum of squared
differences between simulated and observed state
variables arising from -2In p(DI 1°',M), and a

generalized sum of squared differences between
posterior and prior parameter estimates arising from
-2 In p (0, JA11, ) .The first is weighted by a matrix

proportional to the inverse covariance matrix of state
observation errors. The second is weighted by a matrix
proportional to the inverse covariance matrix of prior
parameter estimation errors. Maximum likelihood
allows the statistical parameters of the errors to be
estimated. When these statistical parameters are known
(i.e., not estimated), maximum likelihood reduces to
generalized least squares estimation. In this case,
available codes such as PEST (Doherty, 2002) and
UCODE (Poeter and Hill, 1998) can be applied.

Maximum likelihood estimation yields an approximate
covariance matrix for the estimation errors of 0, .

Upon considering the parameter estimation errors of a
calibrated deterministic model M, to be Gaussian or

log Gaussian, one easily determines p (AIM,, O, D)

by Monte Carlo simulation of A through random
perturbation of the parameters. The simulation also
yields corresponding approximations E[AjM, ,, D]
of E[AIM.,D],and Var[AIAI,,6,,D] of

Var [A IM, D], in (4) and (5). If M, is a geostatistical
model (as in the example below) or a stochastic
moment model (of the kind considered by Hernandez
et al. (2002, 2003), it yields E[AIAt, ,0, D] and

Var[AIAfM, 6,D] directly without Monte Carlo

simulation.

One final point regarding the applicability of MLBMA.
In the most data-limited application, one in which there
are no system observations with which to calibrate a
model and the only available parameter information is
that available from generic databases, Equation I
reduces to

K

p(A) = Zp(AIfM )p( f).
k-1

That is, model predictions can still be made using prior
(or updated) parameter estimates (see Figure 2-3) and
model averaging can still be carried out, but only with
prior model probabilities. Since the predictions and
model probabilities are not conditioned on state
variable observations, however, the results are
expected to be more uncertain and potentially more
biased.

3.3 Summary of MLBNIA

To implement MLBMA the following steps are
followed.

(I) Postulate alternative conceptual-mathematical
models for a site using guidance provided in
Neuman and Wierenga (2003).

(2) Assign a prior probability to each model.

(3) Optionally assign prior probabilities to the
parameters of each model, using, for example,
guidance provided in Meyer and Gee (1999).

(4) Obtain posterior maximum likelihood
parameter estimates, and estimation
covariance, for each model by inversion
(model calibration). In many cases, available
codes such as PEST (Doherty, 2002) and
UCODE (Poeter and Hill, 1998) can be
applied to this step.

14



(5) Calculate a posterior probability for each
model using the model calibration results and
the prior model probabilities as expressed in
Equations 7 to 9.

(6) Predict quantities of interest using each
model.

(7) Assess prediction uncertainty (distribution,
variance) for each model using Monte Carlo
or stochastic moment methods.

(8) Weight predictions and uncertainties by the
corresponding posterior model probabilities.

(9) Sum the results over all models.

A flowchart illustrating the MLBMA approach to
combined estimation of conceptual model and
parameter uncertainty is shown in Figure 3-1. Numbers
in parentheses above the boxes refer to the numbered
steps above.

The following chapter provides an example application
of MLBMA and an evaluation of its performance and
suitability.
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Figure 3-1. Maximum Likelihood Bayesian Model Averaging (MILBMIA) approach to combined
estimation of model and parameter uncertainty
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4 Example Application

4.1 Implementation of MLBMA

To demonstrate the application of MLBMA and to
evaluate the results, we apply it to alternative
geostatistical models of log air permeability variations
in unsaturated fractured tuff at the Apache Leap
Research Site (ALRS) in central Arizona. This site was
chosen for an initial application of MLBMA because it
is a relatively well-controlled experimental research
site with good characterization data. The results of past
studies at the site were available to us as well, which
facilitated the application of MLBMA. In addition, the
models considered (geostatistical models of
permeability) are relatively simple, thus reducing the
computational effort required to complete the
application. We recognize that an example considering
groundwater flow and transport would better reflect
NRC-regulated sites. However, we see no fundamental
barrier in applying MLBMA to the more complex
models required in such applications. Any difficulties
in applying MLBMA to groundwater flow and
transport applications will be explored in a case-study
using actual field data that is the focus of future efforts.

4.2 ALRS Data and Previous
Efforts

Spatially distributed log air permeability data were
obtained by Guzman et al. (1994, 1996) based on a

30

steady state interpretation of 184 pneumatic injection
tests in 1-m-length intervals along 6 vertical and
inclined (at 45°) boreholes at the site (Figure 4-1). Five
of the boreholes (V2, W2A, X2, Y2, Z2) are 30-m long
and one (Y3) has a length of 45 m; five (W2A, X2, Y2,
Y3, Z2) are inclined at 450 and one (V2) is vertical.

Figure 4-2 shows an omni-directional sample
variogram of corresponding log,, k data. Chen et al.
(2000) fitted three variogram models to these and some
3-m-scale data using an adjoint state maximum
likelihood cross-validation (ASMLCV) method
developed for this purpose by Samper and Neuman
(1989a,b), coupled with a generalized least squares
(GLS) drift removal approach due to Neuman and
Jacobson (1984). The three models included (I) power
(characteristic of a random fractal), (2) exponential
with a linear drift, and (3) exponential with a quadratic
drift. The data did not support accounting for
directional effects by considering the variograms to be
anisotropic.

The authors found that whereas the exponential
variogram model with a quadratic drift provided a best
fit to the data (as measured and implied by the smallest
negative log-likelihood model fit criterion, NLL), four
model discrimination criteria (AIC, BIC, HIC, KIC)
consistently ranked the power model as best, and the
former model as least acceptable. The reason was that

Figure 4-1 Spatial locations of 184 1-m-scale logloh- data at ALRS
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Figure 4-2. Omni-directional sample variogram of 1-m-scale logl 0k data at the ALRS and numbers of
data pairs

whereas all three models provided an almost equally
good fit to the data, the power model was most
parsimonious with only two parameters, and the
exponential variogram model with second-order drift
was least parsimonious with twelve parameters. They
therefore adopted the power model and discarded all
other variogram models from further consideration.

loglok measurements into a deterministic drift vector p
and a random residual vector R,

D = [t+ R (14)

P(X) = ± g& (x)a, = Ga
kso

(15)

4.2.1 Alternative Models and Maximum
Likelihood Parameter Estimation

For purposes of MLBMA we expand the range of
variogram models postulated for 1-m-scale loglo k at

the ALRS to seven: (1) Power (PonwO), (2) exponential
without a drift (ExpO), (3) exponential with a linear
drift (Erpl), (4) exponential with a quadratic drift
(Erp2), (5) spherical without a drift (SphO), (6)
spherical with a linear drift (Sphl), and (7) spherical
with a quadratic drift (Sph2).

To estimate the parameter vector P of drift-free
variogram models (Pow-O, E.xpO, SphO) we use
ASMLCV as described in Ye et al. (2003),
implemented in a computer code slightly modified after
Samper (1998, personal communication). To do the
same for models with drift (Erpl, Exp2, Sphl, Sph2),
we decompose the N-dimensional data vector D of

where a = (a,, al,..., ap) is a vector ofp+ I drift

coefficients and G is a N x (p + I) matrix of linearly
independent monomial functions g, (x) evaluated at

the data points x,,, n = 1, 2,..., N .

Assuming that D is multivariate Gaussian with mean li
and covariance matrix CR (Vesselinov 2000 has shown
that the data pass the Kolmogorof-Smirnov test of
univariate Gaussianity at a significance level of 0.05),
the joint negative log likelihood function of drift and
variogram parameters takes the form

NLL(a, P I D) = -2 In p(D I a,A)

= N In 2ir + In ICR (P)I + (D - Ga)r C,' (p)(D - Ga) (16)

Minimizing (16) jointly with respect to a and f yields
biased estimates of the variogram parameters, a
problem that can be remedied through the use of a
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restricted ML (RML) approach (Hoeksema and
Kitanidis, 1985; Kitanidis and Lane, 1985; Cressie,
1991, p. 92). We solve the problem differently by
formally decoupling the ML estimations of a and 1.
First, we obtain unbiased ML estimates 1 of the
variogram parameters using ASMLCV in conjunction
with universal kriging (ASMLCV-UK, Samper 1998,
personal comm.), which does not require knowledge of
the drift coefficients (Ye et al., 2003). Next, we
compute corresponding unbiased ML estimates a of
the drift coefficients through minimization of

NLL(a,J I D)

= N In 2,r + In IC, (p)! + (D - Ga)r C-'(p)(D - Ga) (17)

with respect to a by generalized least squares, a task we
accomplish using PEST-ASP (Doherty, 2002). Our
optimum NLL is then given by

NLL(i, p I D)

Nln 2g + In IC,(p)I + (D -Gi)TC-'(p)(D - G) .(18)

Figure 4-3 depicts profiles of NLL(a, P I D) in (16)
versus each parameter of model Expl when the
remaining parameters are fixed. It clearly demonstrates

that I (the marked values of sill and integral scale [m)
does not correspond to the minimum of NLL(a, p l D),
which would therefore yield biased estimates of
variogram parameters.

The estimation covariance matrix of 0 = (a, , is
generally represented by its asymptotic lower or
Cramer-Rao bound, given by the inverse Fisher
information matrix (e.g., Carrera et al., 1997).
Components of the observed Fisher information matrix
(10) are proportional to those of the Hessian matrix H
which, in turn, can be approximated as (Kitanidis and
Lane, 1985)

= 2 Inp(DI0kMk)
HkU - o, =,

1 1(aC OC1 aC 8 RT . 1 R
-Tr C -+-C - (19)
2 80, R ao,) ace 80 o= a 6

This approximation obviates the need to calculate
second-order derivatives of the log likelihood function,
which would be computationally more demanding than
computing first-order derivatives of C, and R. In our

case, the latter are easy to obtain analytically as done
for exponential and spherical variogram models with
drift (Ye, et al., 2003). An alternative, which in our
case yields very similar results, is to compute the
observed Fisher information matrix numerically using
methods such as the Ridder algorithm (Press et al.,
1992, pp. 180).

4.2.2 Posterior Model Probabilities

Table 4-1 confirms that increasing the number of
parameters associated with a given class of variogram
model (exponential or spherical) brings about an
improvement in model fit, as indicated by a reduction
in the negative log likelihood criterion NLL. Whereas
the exponential variogram model with a quadratic drift
(Exp2) fits the data best (ranks first in terms of fit due
to its smallest NLL value), it is ranked second by AIC
and sixth by BIC and KIC. Whereas the power model
(PoVO) shows a relatively poor fit with the data (rating
fifth), it is ranked highly (first through third) by all
three information criteria. The reason is that the
difference in fit between the two models is not enough
to compensate for the much more parsimonious nature
of PoivO (with 2 parameters) than that of Erp2 (with 12
parameters).

The rankings of the seven models by AIC, BIC and KIC
are not entirely consistent. None of these information
criteria provide justification for retaining one model
while discarding all other models as is commonly done
in practice. Nor do they provide clearjustification for
retaining some models while discarding the rest. We
therefore consider all seven models to be valid initial
candidates for MLBMA.

Upon assigning an equal prior probability of I/7 to
each model, we find on the basis ofKIC via (7) that the
first three models (PowvO, ExpO, Expl) have much
higher posterior probabilities than do the rest. Three of
the models (Exp2, SphO, Sph2) have zero probabilities
(to three significant figures) and can therefore be
eliminated (considering the low posterior probability of
Sphl, there is almost equal justification for eliminating
it too, but we retain it at this stage for the sake of
illustration). Doing so and assigning an equal prior
probability of 1/4 to each of the retained models is seen
to have no impact on their posterior probabilities. In
both cases the posterior probabilities are markedly
different from their prior values, reflecting the strong
impact of conditioning on data.

4.2.2.1 Sensitivity to Prior Model Probabilities

To investigate the influence of prior probability
selection on the outcome, consider assigning an equal
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probability of 1/3 to each of the three classes of models
(power, exponential and spherical) and also assigning
equal probability to models within each class. This
results in a prior probability of 1/3 for PowO and of 1/9
for each of the other six models. Though this brings
about a marked increase in the posterior probability of
PowvO and a decrease in those of ExpO and Expl, once
again the posterior probabilities of Exp2, SphO and
Sph2 are zero while that of Sphl is very close to zero.
Eliminating the three models with zero posterior
probability and redistributing the prior probabilities
among the remaining models as shown in the next-to-

last row of Table 4-1 brings about a decrease in the
posterior probability of PowO and an increase in the
posterior probabilities of ExpO and Expl. We conclude
that posterior model probabilities exhibit some degree
of sensitivity to the choice of prior probabilities but
expect this sensitivity to diminish with improved
conditioning.

4.2.3 Kriging Results

We continue our analysis by retaining four (PowO,
ExpO, Erpl, Sphl) of the seven models (with the
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Figure 4-3. Negative log likelihood functions (OVL) as function of each variogram parameter and drift
coefficient for exponential model with linear drift (Expl). Vertical lines indicate unbiased AML
estimates.
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Table 4-1. Quality criteria, rankings and prior/posterior probabilities associated with alternative
geostatistical models of loglok at the ALRS

Model PowO ExpO ExpI Exp2 SphO Sphl Sph2

Number of
parameters 2 2 6 12 2 6 12

Sill/Coefficient 0.286 0.718 0.514 0.501 0.749 0.664 0.662

Correlation/Power 0.460 1.840 1.240 1.198 3.184 2.849 2.835

NLL 352.2 361.0 341.6 330.4 379.1 349.6 338.8

Rank 5 6 3 1 7 4 2

AIC 356.2 365.0 353.6 354.4 383.1 361.6 362.8

Rank 3 6 1 2 7 5 4

BIC 362.6 371.4 372.9 392.9 389.5 380.9 401.4

Rank 1 2 3 6 5 4 7

KIC 369.6 370.1 369.5 416.7 390.5 378.1 424.6

Rank 2 3 1 6 5 4 7

p(AM) 1/7 1/7 1/7 1/7 1/7 1/7 1/7

p(MkID)(%) 35.3 26.6 37.6 0 0 0.5 0

p(MA) 1/4 1/4 1/4 - - 1/4 -

p(MiID)(%) 35.3 26.6 37.6 - - 0.5 -

p(AMi) 1/3 1/9 1/9 1/9 1/9 1/9 1/9

p(MkID)(%) 62.1 15.6 22.0 0 0 0.3 0

p(WD) 1/3 1/6 1/6 - - 1/3 -

p(MkID)(%) 52.0 19.6 27.7 - - 0.7 -

corresponding ML parameter estimates) and assigning
to each of them an equal prior probability of 1/4. Using
each of these models, we project the available loglok
data by ordinary (in the case of drift-free models) or
universal (otherwise) kriging onto a grid of 50 x 40 x
30 1-m3 cubes contained within the coordinate ranges
-l10x•40 m, -lOy•30 mand -30szsO min
Figure 4- 1.

If one thinks of A as a random value of loglok in a
given grid block then our kriging estimates represent
E [A 1M , 0,, D] and their variances stand for

Var [AIAt,,O,,D], the ML approximations of

E [AIM, D] and Var [A IMk, D] in (4) and (5),
respectively.

Figure 4-4 to Figure 4-7 show the kriged estimates and
variances of loglok on a vertical plane y = 6.5 m for the
four models. Conditioning on borehole data is evident
to a lesser degree in the images of loglok estimates than
in those of their variances. Averaging the kriging
results across all models using an ML approximation of
(4) and (5) yields corresponding MLBMA estimates
and variances of the kind depicted fory = 6.5 m in
Figure 4-8. Figure 4-9 shows a decomposition of the
MLBMA estimation variance in Figure 4-8b into its
within- and between-model components. The largest
values of these two components throughout the three-
dimensional grid are 1.1 and 0.38, respectively.
Whereas the within-model MLBMA variance in Figure
4-9a reflects conditioning on borehole measurements, it
is difficult to discern such conditioning in the image of
between-model variance (Figure 4-9b) due to the faint
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reflection of such conditioning in the underlying
images of loglok estimates.

Figure 4-10 shows univariate cumulative
distributions of kriging estimates corresponding
to each of the four models and MLBMA. The
distributions are seen to be sensitive to the choice
of model with MLBMA providing a weighted
compromise. The same is reflected in the
variances of these kriged estimates, listed in
Table 4-2.

Table 4-2. Variance of kriged estimates across the
grid obtained with alternative models and
NILBAIA

Model Variance

Pon-O 0.334

ExpO

Expi

SphJ

0.134

0.467

0.404

MLBMA 0.405
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(a) Kriged estimate
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Figure 4-4. Kriged (a) estimate and (b) variance of loglok aty = 6.5 mn obtained using the power model
(PowO)
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(a) Kriged estimate
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(b) Kriged variance
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Figure 4-5. Kriged (a) estimate and (b) variance of loglok aty = 6.5 m obtained using the exponential model
without drift (ExpO)
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(a) Kriged estimate
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Figure 4-6. Kriged (a) estimate and (b) variance of loglok aty = 6.5 m obtained using the exponential model
with first-order drift (Expl)
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(a) Kriged estimate
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Figure 4-7. Kriged (a) estimate and (b) variance of loglok aty = 6.5 m obtained using the spherical model with
first-order drift (Sphl)
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(a) Kriged estimate
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(b) Kriged variance
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Figure 4-8. Kriged (a) estimate and (b) variance of loglok aty = 6.5 m obtained using MLBMA
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(a) Within-model variance
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Figure 4-9. (a) Within- and (b) between-model variance of MLBMA loglok estimates aty = 6.5 m
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4.3 Assessment of Predictive
Performance

Table 4-3. Number of loglok data in DA of each
cross validation case and their
percentage of the entire data set.

To assess the predictive performance of MLBMA, we
cross-validate the above results by (1) splitting the data
D into two parts, DA and D@; (2) obtaining ML
estimates of model parameters and posterior
probabilities conditional on DA; (3) using these to
render MLBMA predictions Da of D8; and (4)
assessing the quality of the predictions. We do so by
eliminating from consideration all logl0k data from one
borehole at a time and predicting them with models
conditioned on the remaining data. The number and
corresponding percentage of data in DA for each cross
validation case are listed in Table 4-3. As Sphl has a
very small posterior probability in comparison to
PowO, ExpO, and Expi (Table 4-1), we limit the cross-
validation to the latter three geostatistical models and
recalculate their posterior probabilities by assigning to
each of them a prior probability of 1/3.

Figure 4-11 shows that eliminating data from one
borehole at a time may, but need not, have a significant
impact on the omni-directional sample variogram of
loglok. The impact that such elimination has on
parameter estimates and model quality criteria
associated with PonO is indicated in Figure 4-12.
Figure 4-13 demonstrates that posterior model
probability is sensitive to the choice of conditioning
data. This sensitivity is greater when posterior
probability is computed using KSC in (7) than BIC in
(12). This illustrates that the non-asymptotic criterion
KIC is more informative than the asymptotic criterion

Well Number Percentage (%)
V2 163 89.1
X2 154 83.7
Y2 156 84.8
Y3 144 78.3
Z2 156 84.8

W2A 147 79.9

BIC, supporting the choice of the former as the basis
for MLBMA (Neuman, 2002, 2003).

4.3.1 Predictive Log Score

One way to compare the predictive capabilities of
alternative models is through their log scores,
- In p(DB I M,, DA) (Good, 1952; Volinsky et al.,

1997). The lower the predictive log score of model

M, based on data DA, the smaller the amount of

information lost upon eliminating Ds from the original
dataset D (i.e., the higher the probability that M, based

on DA would reproduce the lost data, Da ). The
predictive log score associated with BMA is
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-In p(D5 I DA )

= -In p(DhIMKD A)P(1\f, ID")
A.,

(20)

Approximating p(D8 I M,, DA) by

p(D' I M, 0,, DA), and computing p(M I D4) via

(7) after replacing D by DA, yields a corresponding log
score for MLBMA.

Let D6 be kriged estimates of loglok data Ds along a
borehole obtained using variogram model Mk with

ML parameters 0, based on loglok data DA in other
boreholes. Then the ML log score for drift-free models
PoivO and ExpO is (Ye et al., 2003)

-In p(D5 IM6,,O5,D')

N21 ( 2 )! 2  B _D )2 (21)
= 4 ' n(2;r) + 1 al + D,_D

2 2,., 2 ,., a,

where Nd is the dimension of D', D," are its

components, and o i2 is given in Ye et al. (2003,
Equation B5). In analogy to (17), the ML log score for
EXpi is

-In p(D" MI, 0,, D') =-Nln(2,r) +-In(l C, (I, ) I)
2 2

+-(D - Ghah) TC_'()(D` -Gha) (22)
2

Predictive log scores were obtained for each model
upon eliminating data from one of six boreholes at a
time. Table 4-4 lists the average of these six scores for
each model, as well as the average of corresponding
MLBMA scores (20). The average predictive log score
of MLBMA is seen to be lower than that of any

Table 4-4. Average predictive log score and
predictive coverage of individual
models and NILBIA

individual model, indicating that MLBMA is a better
predictor than any of these models.

4.3.2 Predictive Coverage

Another measure of model performance is its
predictive coverage (Hoeting et al., 1999). This is the
percent of measurements D,` that fall within a given

prediction interval about D,' . In our case, this interval
was generated by conducting Monte Carlo simulations
of logok conditioned on DA . We used a simulated
annealing code (Deutsch and Journel, 1998, p. 183) to
allow generation of statistically nonhomogeneous
random fields characterized by a power variogram.
Figure 4-14a-c show 90% prediction intervals (dashed)
defining the 5% and 95% limits of 500 simulations
along borehole X2 using individual models with ML
parameter estimates conditioned on measurements in
the remaining five boreholes. Figure 4-14d shows
averages of these intervals over the three models,
weighted by their posterior probabilities. The percent
of measurements (triangles) lying within these and
similar intervals, associated with all six boreholes,
defines predictive coverage as listed in Table 4-4. The
predictive coverage of MLBMA is larger than that of
any individual model, attesting once again to its
superior performance.

Figure 4-15 depicts the cumulative distributions of
simulated values at two measurement locations in
boreholes V2 and Y3 obtained using individual models
and MLBMA, while eliminating data from the
corresponding boreholes. The measured values are
indicated by vertical lines. In both cases the MLBMA
distribution is strongly influenced by that of PoivO and
weakly affected by Expl. Figure 4-16 shows sample
predictive variances obtained using individual models
and MLBMA at measurement points along each of the
two boreholes. Along V2, PoivO with a posterior
probability of about 83% exerts an ovenvhelming
influence on the predictive variance of MLBMA,
which is however lower (closer to those of ErpO and
Expl). Along Y3, individual models tend to be
associated with a somewhat lower predictive variance
than MLBMA.

Overall, MLBMA is a more reliable predictor than any
individual model, as indicated by its relatively small
predictive log score and large predictive coverage.

Model Predictive Predictive
Log Score Coverage (%)

PowvO 34.1 86.5

ExpO 35.2 80.8

Expl 34.0 83.7

MLBMA 31.4 87.5
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5 Conclusions

The objective of the research described in this report is
the development and application of a methodology for
comprehensively assessing the hydrogeologic
uncertainties involved in dose assessment modeling.
For methodological purposes, uncertainty is classified
as being associated with the conceptual-mathematical
basis of the model, model parameters, or the scenario
to which the model is applied.

This report describes and applies a method to estimate
the joint uncertainty in model predictions arising from
conceptual model and parameter uncertainties.
Analyses of model uncertainty based on a single
hydrologic concept are prone to statistical bias (by
potential reliance on an invalid model) and
underestimation of uncertainty (by under-sampling of
the relevant model space). Bias and uncertainty
resulting from an inadequate model structure
(conceptualization) are often more detrimental to a
model's predictive reliability than are suboptimal
model parameters.

Bayesian Model Averaging (BMA) provides an
optimal but computationally demanding way of
combining the predictions of several competing models
and assessing theirjoint predictive uncertainty. The
Maximum Likelihood version (MLBMA) of BMA
proposed by Neuman (2002, 2003), and described and
applied in this report, renders the approach
computationally feasible and applicable to real-world
hydrologic problems. It applies to deterministic and
stochastic models, to complex and simplified models.

Whereas BMA requires specifying a prior distribution
for model parameters, MLBMA accepts but does not
require such prior information. This is so because,
contrary to BMA, MLBMA relies on maximum
likelihood model calibration against observational data.

In the most data-limited application, one in which there
are no system observations with which to calibrate a
model and the only available parameter information is
that available from generic databases, model
predictions can still be made using prior parameter
estimates and model averaging can still be carried out,
but only with prior model probabilities. Since the
predictions and model probabilities are not conditioned
on state variable observations, however, the results are
expected to be more uncertain and potentially more
biased.

A further benefit of the use of maximum likelihood is
that the optimization can yield parameter sensitivity

information. In addition, when the statistical
parameters characterizing the parameter and state
variable errors are known (i.e., not estimated),
maximum likelihood reduces to generalized least
squares estimation. In this case, available codes such as
PEST and UCODE can be applied.

Prior model probabilities are subjective values
reflecting a belief about the relative plausibility of each
model based on its apparent consistency with available
knowledge and data. Posterior model probabilities are
modifications of these subjective values based on an
objective evaluation of each model's consistency with
available data. Hence, the posterior probabilities are
valid only in a comparative, not in an absolute, sense.

MLBMA is based on Kashyap's (1982) information
criterion, KIC, more commonly used as an optimum
decision rule for the ranking of competing models.
Like KIC, MLBMA favors models which, among a
given set of alternatives, are least likely to be incorrect.
It honors the principle of parsimony by favoring the
least complex among models which, otherwise, fit
observational data equally well. Among models of
equal complexity, MLBMA favors those exhibiting the
best fit. It additionally contains an information term
which allows one to consider models of growing
complexity as the dataset improves in quantity and
quality. Stated otherwise, MLBMA recognizes that
when the dataset is limited and/or of poor quality, one
should assign relatively low weights to elaborate
models with numerous parameters. One should weigh
more heavily simpler models with fewer parameters
that nevertheless reflect adequately the underlying
hydrologic structure and phenomena.

The example application confirms that the non-
asymptotic criterion AC is more informative than its
asymptotic limit BIC, supporting the choice of the
former as the basis for MLBMA.

Models considered in MLBMA may have different
types and numbers of parameters, but the latter must be
estimated and the models weighted based on a single
dataset. As an example, to analyze jointly two- and
three-dimensional models via MLBMA, a given set of
three-dimensional data must be used and either
projected onto a two-dimensional plane or averaged in
the third dimension for inclusion in the two-
dimensional model(s).

Application of MLBMA to alternative geostatistical
models of log air permeability variations in unsaturated
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fractured tuff has shown it to be a better predictor of
spatial variability than any individual model.

To implement MLBMA the following steps are
followed.

(1) Postulate alternative conceptual-mathematical
models for a site using guidance provided in
Neuman and Wierenga (2003).

(2) Assign a prior probability to each model.

(3) Optionally assign prior probabilities to the
parameters of each model, using, for example,
guidance provided in Meyer and Gee (1999).

(4) Obtain posterior maximum likelihood
parameter estimates, and estimation
covariance, for each model by inversion
(model calibration). In many cases, available

codes such as PEST and UCODE can be
applied to this step.

(5) Calculate a posterior probability for each
model using the model calibration results and
the prior model probabilities.

(6) Predict quantities of interest using each
model.

(7) Assess prediction uncertainty (distribution,
variance) for each model using Monte Carlo
or stochastic moment methods.

(8) Weight predictions and uncertainties by the
corresponding posterior model probabilities.

(9) Sum the results over all models.
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Appendix A. Distribution Coefficients, K d, and Associated Uncertainty in
Dose Assessment Modeling for Decommissioning Analyses

A.1 Introduction chemistry, and heterogeneities in the physical
properties of the aquifer materials.

Preliminary or screening dose assessments conducted
as part of decommissioning analyses are typically
conducted using generic input parameter values. Three
examples of codes that are used for this purpose are
DandD, RESRAD and MEPAS (Meyer and Gee,
1999). In a recent study, a hypothetical
decommissioning test case was used to conduct an
uncertainty analysis for two of these codes (DandD v.
1.0 and RESRAD v. 6.0) (Meyer and Taira, 2001).
Uranium was used as one of the contaminants of
interest. In this case, it was determined that the
distribution coefficient was one of the most critical
parameters for determining dose.

Because the distribution coefficient is an important
source of uncertainty in dose assessment modeling, it is
important to have a good understanding of what
contributes to uncertainty in the distribution coefficient
itself. The distribution coefficient or Kd is an empirical
model for the description of partitioning of a
contaminant between the soillsediment and the solution
in contact with the soil/sediment and is defined as
follows:

Kd = CadC., (A-l)

A.2 Background

A.1.1 Contaminant Adsorption onto
Natural Mineral Surfaces

Adsorption, accumulation at the solid-water interface,
is one of the primary processes controlling the
transport of dissolved contaminants in the vadose zone
and groundwater. Adsorption occurs as atoms,
molecules, and ions exert forces on each other at this
solid-water interface. Adsorption reactions are
discussed primarily in terms of intermolecular
interactions that occur between the solutes and solid
phases (Stumm and Morgan 1996). These interactions
include:

1) Surface complexation reactions (surface
hydrolysis and the formation of coordinative
bonds at the surface between metal cations,
anions, and surface binding sites).

2) Electrostatic interactions at the surfaces,
extending over longer distances than chemical
forces.

3) Hydrophobic expulsion of hydrophobic
substances (this includes nonpolar organic
solutes), which are usually only sparingly
soluble in water and tend to reduce their
contact with water and seek relatively
nonpolar environments, thus accumulating on
solid surfaces and becoming adsorbed on
organic sorbents.

4) Adsorption ofsurfactants (molecules that
contain both a hydrophobic and a hydrophilic
moiety). Interfacial tension and adsorption are
intimately related through the Gibbs
adsorption law. In simple terms, this law
indicates that substances that reduce surface
tension will tend to adsorb at interfaces.

5) Adsorption ofpolymners and of
polyelectrolytes (humic substances and
proteins in particular). This is a rather general
phenomenon in natural waters and soil
systems that has far-reaching consequences
for the interaction of particles with each other

where C.& is the concentration of the contaminant of
interest adsorbed to the solid phase (moles/g) and Caq is
the concentration of the contaminant in the aqueous
phase (moles/mL). This model assumes that the
partitioning of the contaminant between the two phases
is in equilibrium and is linear. A significant advantage
of the Kd model is its simplicity both for its numerical
application in transport codes as well as the relative
ease of its experimental measurement. For these
reasons, the Kd model is the most widely used
adsorption model in hydrologic transport codes for risk
assessment calculations. This simplicity and ease of
use also make this approach one of the most widely
misused models for describing contaminant adsorption.
This is particularly true for systems that have highly
variable geochemical conditions. Some of the primary
factors that can lead to large variation in Kd values
include non-linear adsorption, solidlaqueous
partitioning conditions that are controlled or influenced
by solubility and/or redox conditions, slow reaction
kinetics, spatial variability in the solution chemistry or
solid phase mineralogy, temporal changes in solution
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and on the attachments of colloids (and
bacteria) to surfaces.

The process in which chemicals become associated
with solid phases is often referred to as sorption,

especially when one is not sure whether one is dealing
with adsorption (onto a two-dimensional surface) or
absorption into a three-dimensional matrix.

In addition to the nature of the solid phase, the
chemical properties of the solution in contact with the
solid phase will have a substantial effect on its
adsorption characteristics. For example, pH will have a
major influence on the degree of surface hydrolysis,
which in turn affects the nature and extent of surface
charge. Ionic strength will affect the electrostatic
nature of the surface and therefore the electrostatic
interactions that can occur. In addition to these effects,
the adsorption process itself will change the nature of
the surfaces of the solid phase and will influence
further adsorption.

The chemical properties of the solution in contact with
the solid phase will also affect adsorption as a result of
interactions between dissolved species. For example,
many metal ions form complexes with major anions in
solution. The formation of these complex species can
have a major influence on the charge and geometry of
the original ion and as a result, significantly alter the
sorptive properties of the species of interest. A special
case of complex formation is hydrolysis. Hydrolysis is
the formation of complexes with hydroxide ion and is a
strong function of pH. Ionic strength can be an
important factor that affects the activity of all dissolved
ions, and as a result, the extent of complex formation.
Eh can also have a large influence on adsorption by
altering the oxidation state of the contaminant and/or
the adsorbent.

A.1.2 Empirical Approaches to
Adsorption Modeling

As indicated previously, the linear equilibrium
adsorption isotherm or Kd model is an empirical
approach that assumes the adsorption of a solute
increases linearly with increasing concentration of a
solute. As a result of the empirical nature of the Kd
model, it cannot represent the individual contributions
of different uptake mechanisms. In addition, the Kd
model cannot recognize a maximum sorption limit. In
actuality, there are a finite number of sorption sites
and, as a result, sorption will reach a practical upper
limit.

Despite the shortcomings of the Kd model, it can
provide an accurate description of adsorption under

certain conditions. The Kd model generally works well
for trace concentrations of un-ionized hydrophobic
organic compounds; however, application to ionic
inorganic contaminants is more limited. Appropriate
use of the Kd approach for modeling adsorption of
ionic species is generally limited to species that have
very simple chemistry and site conditions where the
groundwater solution chemistry and mineralogy of the
aquifer material are quite constant and homogeneous.
This is generally an unusual occurrence, particularly at
contaminated waste sites.

In addition to the linear equilibrium adsorption
isotherm, several other more complex empirical
adsorption models are available. The Freundlich
isotherm (Freundlich, 1926) is a nonlinear equilibrium
adsorption model defined by the relationship:

Cads = KFr(Caq)n (A-2)

where Cd,, and Cq are defined as in Eq. (A-I) and KF,

and n are empirical coefficients. For the special case
where n = 1, Eqs. A- I and A-2 are identical. A plot of
log Cad, versus log Cnq should result in a straight line
with a slope of n and an intercept of log KRFr As with
the linear adsorption isotherm model, an adsorption
maximum cannot be represented with the Freundlich
isotherm.

An empirical adsorption model that accounts for an
upper limit to adsorption is the Langmuir isotherm
(Langmuir, 1918). This model was developed for
adsorption of gases onto solid surfaces and assumes
that all sorption sites are energetically equal. The
general form of the Langmuir isotherm (as adapted for
adsorption from solution) is:

Cads = KubCaqf( I + Ku aq) (A-3)

Where b is the maximum adsorption capacity of the
substrate (g solutelg adsorbent), and Ku( is a constant
that represents the strength of adsorption of the solute
onto the solid (mLimoles). Values for b can be
determined for a given data set by plotting C1,WCad,
versus Cad,. This should yield a straight line with a
slope of l/b and an intercept of I/Kub.

A.1.3 Surface Complexation Approach to
Adsorption Modeling

Surface complexation models (SCMs) are chemical
models that provide a molecular level mechanistic
description of adsorption. Analogous to solution
complexation, surface complexation models define
surface species, chemical reactions, equilibrium
constants, mass balances and charge balances that are
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based on an equilibrium thermodynamic approach.
Surface complexation models constitute a family of
models that have many common characteristics and
adjustable parameters. The models differ in the
structural representation of the solid-solution interface
(location of the adsorbing ions and resulting charge).
The primary advantage of surface complexation
models over empirical models is the ability to account
for variable physical-chemical conditions. This is in
stark contrast to empirical models, which generally
ignore the chemical complexity of the sorption
processes and aqueous complexation.

Although surface complexation models are often
incorporated directly into complex reactive transport
codes, the advantages of the surface complexation
models can be exploited using simpler hydrologic dose
assessment codes as well. This has important
implications because it is these simpler codes that are
most frequently used for regulatory decision-making
purposes. In most hydrologic dose assessment codes
the complex geologic conceptual model is simplified to
a relatively simple geologic conceptual representation
(Meyer and Gee, 1999). These simplified conceptual
models are typically composed of layers or zones of
materials that have distinct and homogenous physical
(hydrologic), mineralogical, and chemical properties.
By making certain assumptions regarding the average
or typical chemical and mineralogical characteristics
within these different layers or zones, surface
complexation models can be used to calculate
individual Kd values appropriate for each layer or zone
within the conceptual model.

As indicated above, surface complexation models
constitute a family of models that have many common
characteristics and adjustable parameters. The most
frequently used surface complexation models include
the Diffuse Layer Model (DLM), the Constant
Capacitance Model (CCM), the Triple Layer Model
(TLM), and non-electrostatic SCMs. The three surface
complexation models (DLM, CCM, and TLM) will be
discussed briefly below and the non-electrostatic SCMs
will be discussed in the next section.

The DLM is the simplest of the electrostatic SCMs. In
the DLM, protonation/deprotonation and adsorption
occur in one plane at the surface/solution interface and
only those ions specifically adsorbed in this inner "o-
plane" contribute to the total surface charge (a, = a.).
Dzombak and Morel (1990) have provided a detailed
evaluation of the DLM, including the development of a
strong site/weak site conceptual model for the mineral
surface. The analysis of Dzombak and Morel (1990)
also provides parameters for its application to the

sorption of a number of cationic and anionic species on
ferrihydrate.

The CCM model (Schindler et al., 1976) is
conceptually similar to the DLM. In contrast to the
DLM, the CCM assumes that the charged surface is
isolated from the bulk solution by a plane with a
constant capacitance Cl (Farads/m2), resulting in a
linear potential gradient from the charged substrate to
the bulk solution. The CCM approached is generally
limited to a specific ionic strength because changes in
ionic strength require recalculation of C1. The constant
capacitance term is not measureable and as a result is
typically applied as an empirical parameter and fit to
the data. This has the advantage of providing a better
fit to the experimental data, but at the expense of
theoretical rigor.

The TLM (Davis et al., 1978; Davis and Leckie, 1978;
1980) is conceptually similar to both the DLM and the
CCM. In the TLM; however, the charge/potential
relationships of the mineral-water interface are divided
into three layers. The TLM approach provides more
flexibility to simulate ionic strength effects by
representing sorption of background electrolytes and
permitting the formation of both inner- and outer-
sphere complexes. As a result of its construction, the
TLM requires additional parameters beyond those
needed for the DLM and CCM. Additional parameters
include equilibrium constants KC.t and KAn for
background electrolyte sorption, and capacitances Cl
and C2 associated with the areas between the o- and f-
planes and f3- and d-planes, respectively.

A.1.4 Non-Electrostatic Surface
Complexation Models

Although SCM is the most theoretically rigorous
approach to modeling contaminant adsorption onto
mineral surfaces, application to natural materials
remains problematic. SCM adsorption data are
generally determined using well-characterized single-
phase minerals whose surface properties, such as
surface area, site density, and electrostatic correction
terms, are readily measured. For most natural soils and
sediments, measurement of the site density and
electrostatic correction terms of the individual
contributing minerals is impractical if not impossible.
Natural mineral surfaces in sediments/soils are
typically coated with poorly crystalline secondary
mineral coatings (Penn et al. 2001, Coston et al., 1995).
In general, these coatings make it extremely difficult to
quantitatively assess the electrostatic contribution to
the free energy of adsorption.
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Davis et al. (1998, 2002) recently demonstrated two
approaches for modeling adsorption onto natural
heterogeneous materials. The two approaches are the
Component Additivity approach and the Generalized
Composite approach. The Component Additivity
approach is based on summing the adsorption of the
individual mineral components of the soil or sediment
to get the total adsorption of the mixture. Because this
modeling approach is based on summing the results
from models already calibrated with pure mineral
phases, the Component Additivity approach is
predictive and does not involve fitting the adsorption
data of the natural materials.

In the Generalized Composite modeling approach, the
surface of the mineral assemblage is considered too
complex to be quantified in terms of the contributions
of individual phases to adsorption. Instead the
electrostatic terms are omitted and the mass action
expressions are described in terms of "generic" surface
function groups. The stoichiometry and formation
constants for each reaction are evaluated based on their
simplicity and goodness of fit to the experimental
adsorption data (Davis et al., 2002; Davis et al., 1998).
The generic surface sites represent average properties
of the sediment/soil rather than specific minerals.
Experimental data for site-specific natural materials
must be collected over the range of chemical
conditions that can be expected in the field. Because of
the semi-empirical nature of this approach, the
resulting model parameters are not likely to be
transferable to other field sites.

These two modeling approaches were compared for
U(VI) adsorption by sediments from the Koongarra
natural analog site in northwest Australia (Davis et al.,
2002, Waite et al., 2000). The Component Additivity
approach required eight reactions and used a diffuse
double layer electrostatic model. The Generalized
Composite approach only needed four surface reactions
and did not include an electrostatic model. The model
fit to the experimental adsorption data for both
approaches was nearly the same, even though the
Generalized Composite model had seven model
parameters and the Component Additivity model had
eleven.

A.2 Sources of Kd Value
Uncertainty

The uncertainty associated with any particular Kd value
used in a risk assessment can be placed into three
major categories:

I) Experimental uncertainty
2) Sorption process chemistry uncertainty

a) variation in solution chemistry
- complexation
- competitive adsorption
- alteration of the adsorption-site chemistry

b) variation in surface adsorption sites
- mineralogy
- surface coatings and fracture fillings

3) Uncertainty resulting from scaling of K(d
measurements determined in the laboratory to
intact sediments/soil in the field
c) effective surface area

- surface sites in hydrologic contact with
moving radionuclides

- diffusion

The experimental uncertainty is the sum of the errors
resulting from measurement errors that occur during
the Kd value measurement. This is generally the most
easily quantifiable component of the uncertainty and
can be determined using statistical methods. Both the
uncertainty in the Kd value that results from variation
in the sorption process chemistry, and the uncertainty
resulting from the scaling of laboratory Kd values to
intact sediments/soil in the field, could be considered to
be conceptual model uncertainties. This is because, for
a particular Kd value, the solution chemistry,
sediment/soil mineralogy and surface area per unit
weight of the laboratory sample used for the Kd value
determination is assumed to be identical to that of the
site (or portion of the site) that is being modeled with
the reactive transport code. If any of these parameters
vary significantly such that they can result in a
significant change in the Kd value, then the conceptual
model would have to be considered as
unrepresentative.

In order to quantify the uncertainty of a reactive
transport model resulting from uncertainty in the Kd
value, the uncertainties resulting from the sorption
process chemistry and the uncertainty from scaling
must be quantified.

Quantification of the sorption process chemistry
uncertainty can be broken down into two major parts.
The first part is quantification of the variation in the
solution chemistry and sediment/soil mineralogy within
the site being modeled. This is a site characterization
task that must be conducted with expert guidance to
ensure that measurements of all geochemical
parameters that could potentially influence adsorption
of the contaminant of interest are made. In addition to
the geochemical parameter measurements, spatial
frequency of the sample collection is of critical
importance for quantification of the geochemical
parameter variation.
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The second component of the sorption process
chemistry uncertainty required to quantify Kd value
uncertainty is quantification of the variation in the Kd
value as a function of the important geochemical
parameters. This must be conducted in the laboratory
over the range of values for each important
geochemical parameter that occurs within the site of
interest.

The uncertainties that result from scaling issues are
largely the result of differences in the amount of
adsorption sites that are in hydrologic contact with the
mobile aqueous phase within the field site, versus that
which are accessible to the aqueous phase in the
laboratory Kd value determinations. Because the
adsorbed phase concentration (Cd, in Eq. A-I) of the
Kd is given in terms of unit mass, as opposed to unit
surface area, any difference between the surface area
per unit weight of soil/sediment that occurs in-situ
versus that in the laboratory system will result in error.

A.3 Variability in Kd Values and the
Impact on Transport
Calculations

As indicated earlier Kd values are empirical constants
and as a result can be applied with confidence only to
conditions that are the same as those under which the
value was measured. If the sediment/soil mineralogy or
physical properties, solution chemistry, or contaminant
loading of the system to be modeled are significantly
different than that for which the }Cd value was
determined, significant error in the estimated transport
rates could result. This is because many factors can
affect the degree to which a particular contaminant
adsorbs to a particular sediment or soil (as discussed
above). These factors include: sediment mineralogy
and surface area, major ion concentration in solution
(complexation and competitive adsorption), pH of the
solution, and the concentration of the adsorbent in
solution and on the adsorbate. Careful application of
expert geochemical knowledge can often significantly
reduce the number of significant variables that must be
considered for evaluating Kd values. For example, some
radionuclides may have a low tendency to form
complexes with other major ions in solution or do not
interact significantly with certain mineral surfaces.

In the hypothetical test case conducted by Meyer and
Taira (2001), a Kd value of 15 was used for uranium.
This value is a geometric mean value for loam taken
from the compilation by Sheppard and Thibault (1990).
A major problem with using mean Kd values from this
and similar literature compilations of Kd values for
conducting screening calculations is the inherently

large variation in the Kd values. For example, Sheppard
and Thibault (1990) report a range in Kd values for
uranium of 0.03 to 2200 ml/gm. The reason for this
large degree of variability in Kd values is due largely to
differences in solution chemistry and soil properties
used in the various Kd value determinations included in
the compilation. Because no control is placed on these
variables during the statistical analysis of the Kd values,
the individual impact of these variables is ignored,
resulting in the large overall variation observed.

To better illustrate the impact of these values on the
calculated mobility of uranium, these Kd values will be
converted to retardation factors. The retardation factor
is a measure of the ratio of the average linear velocity
of water divided by the average linear velocity of the
contaminant. The retardation factor can be calculated
using the following equation:

Rf= I + (Kd pb)/ 0 (A-4)

where, the retardation factor is Rf (unitless), Pb (kg/iM3)
is the bulk density, and 0 (m3/m3) is the volumetric
water content. By assuming a bulk density of 1.86
kg/im3 and a volumetric water content of 0.30 m3/m3,
equation I can be simplified to:

R= I + 6.2Kd (A-5)

Using the range of Kdvalues for uranium reported by
Sheppard and Thibault (1990), the range in retardation
factors is calculated to be 1.2 to 14,000. This range in
retardation factors illustrates that, for the reported
range of Kd values, uranium has the potential to vary
from being essentially unretarded (Rr = I indicates the
contaminant moves with the water or no adsorption
occurs) to being essentially immobile (strongly
adsorbed), depending upon the conditions encountered.

There are several factors that account for this large
variation in adsorption potential. These factors include
the highly variable adsorption potential of different
minerals for uranium, and the strong influence of pH
and carbonate concentration of uranium adsorption. For
example, Turner et al. (2002) illustrate uranium Kd data
for silica, montmorillonite, and clinoptilolite as a
function of pH (in equilibrium with atmospheric C02).
From this data, it can be seen that for silica at pH 8 the
typical Kd value is 5 ml/gm. As the pH decreases to
between 6.5 and 6.0, the Kd for silica peaks at 50. As
the pH decreases further to pH 4 the Kd decreases to
about 0.3. In contrast, Kdvalues for montmorillonite
are much higher. At pH 8 the Kd is approximately 300.
As the pH decreases to between 6.5 and 6.0 the Kd for
montmorillonite peaks at 10,000. As the pH decreases
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further to pH 4 the Kd decreases to about 300. These
relationships are illustrated in Figure A- I.

It is clear from these illustrations that the variability in
Kd values as a result of large heterogeneities in site-
specific mineralogy and solution chemistry could result
in highly variable adsorption behavior that could
potentially result in significant error when compared to
modeling results determined with a single generic Kd
value.

The magnitude of variation illustrated for uranium Kd
values could also be expected for other radionuclides
commonly encountered at NRC decommissioning sites.
Specific examples are C-14 and possibly Tc-99 and Sr-
90. Most of the other radionuclides commonly
encountered at NRC decommissioning sites (Cs-137,
Co-60, Ni-63, Am-241, Pu-238,-239,-241, Eu-152, Nb-
94, and Cm-243) are strongly adsorbing under typical
conditions and even large variability in their Kd values
is not likely to result in large differences in dose
uncertainty. H-3 is not adsorbing with a Kd value of
zero with little uncertainty. This suggests that the
greatest degree of uncertainty in dose models results
from uncertainty of Kd values for a limited number of
radionuclides.

A.4 Determination of Kd Values and
Associated Uncertainly

Experimental determination of site-specific Kd values
is likely to remain the most common method for

characterizing adsorption in risk assessment models at
most sites in the near term. Geochemical reasoning and
thermodynamic modeling can provide valuable
guidance and support for the experimental
determination of Kd values and how they vary with
solution chemistry and mineralogy. In some cases,
surface complexation models can be used to estimate
Kid values as a function of solution chemistry and
mineralogy. This approach has been demonstrated by a
number of researchers to support performance
assessments at major radioactive waste disposal sites
that have significant resources to devote to such efforts
(Davis et al., 2002; Turner et al., 2002). This approach
is currently gaining acceptance as the best compromise
between comprehensive scientific defensibility and
practical application. It is expected that this approach
for determining input sorption parameters for more
routine risk and performance assessment modeling
efforts will become increasingly utilized as the
database of thermodynamic sorption models increases.
This approach typically requires a significant amount
of site-specific geochemical characterization.

A.4.1 Systematic Approach for
Determination of Kd Values and
Associated Uncertainty

A systematic approach for determining Kd values and
associated uncertainty for use in dose assessment
modeling at specific sites is outlined below in general
terms. The first step in this approach is to collect all
site-specific characterization data that is available that

[-Silica - M/ntmorillonite - Clinoptilolitej

10000

1000

100
1 0-

1

0.1 I I I I I I

3 4 5 6 7 8 9

pH

Figure A-I. Variability in uranium Kd as a function of mineral and pH. Based on data from
Turner et al. (2002)
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may be useful for estimating adsorption of the
contaminants of interest. This could include aqueous
phase chemical data (contaminant concentrations,
major ion data, Eb, and pH), aquifer material
mineralogy, mineral surface coatings, stratigraphy, and
spatial and temporal variability of these geochemical
parameters. This information can be used to guide the
selection of Kd values from generic compilations of Kd
values or from other adsorption data available in the
literature that could be used to calculate Kd values
(such as surface complexation model data). If the
uncertainty of the Kd value estimates determined in this
process is acceptable, no further Kdvalue refinement is
necessary. If the uncertainty of the Kdvalue estimates
determined in this process is too high or if the available
characterization data and/or available adsorption data
for the contaminants of concern is not adequate, then a
more detailed geochemical analysis must be conducted.
As part of the geochemical analysis, site-specific
characterization needs would be determined and the
requirements and scope of an adsorption study to
develop site-specific Kd values as a function of
important geochemical parameters would be outlined.
The site-specific characterization work may involve an
iterative process where early characterization results
can be used to determine and guide further
characterization needs.

A.4.2 Determination of Uranium Kd
Values and Associated Uncertainty
wvith Iterative Refinement to
Maximize Cost Effectiveness

A brief outline will be provided here to illustrate how
this methodology can be applied to a specific
contaminant. In this case, uranium has been selected
for illustrative purposes because it is a major
contaminant of concern for a number of
decommissioning sites and uranium has complex
adsorptive behavior that ranges from non-adsorbing to
highly adsorbing, depending on geochemical
conditions.

The first step to estimating a site-specific Kdvalue is to
compile any available site characterization data that
would be useful from a geochemical perspective. This
would include solution chemistry data (major cation
and anion concentrations, alkalinity measurements, pH,
Eh and contaminant concentrations), and mineralogy
(texture, major mineral components, clay mineralogy
and hydrous metal oxide content). The geochemistry of
the contaminant of interest will determine which
geochemical parameters are most critical for
determination of the Kdvalue. In the case of uranium,
the carbonate concentration has a very large effect on

the adsorption of uranium due to strong complex
formation with carbonate. For example, Kd values for
uranium (VI) adsorption on ferrihydrite at pH 8 have
been shown to decrease by four orders of magnitude as
the partial pressure of carbon dioxide gas, pCO2,
increases from its value in air (0.032%) to 1% (Davis et
al., 2002). This is an important variation to understand,
because pCO2 in aquifers commonly reaches values of
1-5%, while most laboratory determined Kd values
have been determined in equilibrium with air. The
carbonate concentration (or pCO2) can be determined
from measurements of pH and alkalinity. So in general,
the two most important solution parameters to know
for estimating Kd values are pH and alkalinity. Other
major ions are of secondary importance, but can
influence the speciation of the carbonate system.

After the solution parameters, pH and alkalinity, the
next most important geochemical parameter to know
for uranium Kd estimation is the mineralogy. The
mineralogical information can range from very general
descriptions (sand, silt, clay, calcarious, etc.), to very
specific such as a complete quantitative mineralogical
characterization. This would include the percentages of
the major minerals present, clay mineralogy and
hydrous metal oxide content. In between these two
extremes, one could obtain a semi-quantitative XRD
scan that would provide characterization of the major
crystalline minerals present.

Once the characterization data have been assembled,
this information would be used to find Kdvalues in the
literature or from Kd compilations that best match site
conditions. Alternatively, adsorption data determined
for pure minerals could be used to calculate Kd values.
This could involve the use of surface complexation
models and geochemical equilibrium codes combined
,with adsorption site densities estimated from site
characterization data to estimate Kd values for specific
geochemical conditions.

Depending on the nature of the site and the adsorption
data available in the literature, it may be determined
that some limited additional characterization data may
significantly reduce the uncertainty of the current Kd
estimates. For example, if uranium adsorption data are
available in the literature for ferrihydrite and
montmorillonite at various pH values and carbonate
(pCO2) concentrations and it is determined that these
two minerals are significant components of the aquifer
material and are likely to be controlling uranium
adsorption, it may then be worthwhile to conduct
quantitative measurements of these components on
available samples from the site. An additional step that
could be taken to narrow Kd value uncertainty even
further, would be to conduct an adsorption study using
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site aquifer material over a range of parameters
appropriate to site conditions. This iterative approach
to narrowing the uncertainty of the Kd value may be a
sensible approach for addressing dose assessment
modeling at sites that initially have little
characterization data available. It will also provide a
means to balance the contrasting needs of reducing Kd
value uncertainty and producing a cost effective
performance assessment.

The methodology outlined above for determining a Kd
value for uranium can also be used to determine the
spatial and temporal variation in the Kd value; however,
the spatial and temporal variation in the indicated
critical parameters must be known or estimated. In the
case of pCO2, values can increase in groundwater
recharge as a result of transport through organic rich
horizons where significant decomposition is occurring.
This can lead to significant spatial and temporal
variation in pCO2 and therefore uranium retardation.

Significant complications that have not been addressed
in this discussion are the fact that Kd values are
generally given in units based on adsorption per unit
mass. Because adsorption is actually related to the site
density of the adsorbent, significant differences in
surface area per unit mass of the material used in the
adsorption measurements the site material can result in
error. For example, Turner et al. (2002) have shown
that uranium adsorption onto montmorillonite,
clinoptilolite, a-alumina, and quartz have similar K,
values on a specific surface area basis (mL/m2);
however, for Kd values on a mass basis (mL/g), the
difference between Kd values for montmorillonite and
quartz is about three orders of magnitude at near
neutral pH values.
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