BWR OWNERS' GROUP ALTERNATIVE SOURCE TERMS

PRESENTATION FOR

NRC MEETING

April 28, 2004

GREG BROADBENT (ENTERGY-Grand Gulf)

Committee Chairman

BWROG AST-NRC Meeting

April 28, 2004

BWROG ALTERNATIVE SOURCE TERMS

- Background on BWROG AST Committee.
- BWROG plans for BWROG Fuel Gap Fraction Licensing Topical Report (LTR) submittal.
- Preliminary review of LTR submittal.
- Collect NRC observations.

April 28, 2004

BWROG AST-NRC Meeting

- Committee Formed: 1995
- Committee Membership: 14 (of 20) BWR Utilities

Committee Objective:

Support generic aspects of BWR plant AST NRC application submittals and develop specific generic products necessary for future BWR AST applications.

April 28, 2004

Past Committee Products:

- "Prediction of the Onset of Fission Gas Release from Fuel in Generic BWR", NEDC-32963, July 1996
 - Submitted as part of Entergy Grand Gulf-Unit 1 AST Submittal (May 1997)
 - NRC issued acceptance SER, September 9, 1999.
- "BWROG Generic Source Terms", NEDC-33043P. June 2001
 - Defined isotopic inventories for bounding BWR fuel design for radio-nuclide groups in NUREG-1465.
 - Designed to assist BWR plants with NRC AST applications.

Current Committee Focus:

- Current NRC-approved fuel gap fractions for non-LOCA events [RG 1.183] are contingent on a maximum linear heat generation rate (LHGR) of 6.3kW/ft peak rod average power for rod burnups exceeding 54 GWd/MTU.
- Many BWRs are projecting rod power levels exceeding this currently-approved requirement.
- The BWROG has recently performed fuel gap fraction analyses based on BWR peak rod power histories that bound anticipated rod powers throughout BWR plant life.

April 28, 2004

Current Committee Focus (Continued):

- A final LTR is planned for NRC submittal. following BWROG approval (~End of May).
- NRC approval will allow BWR licensees to reference the approved LTR/SER and methodology for future AST applications.
- A Review Fee Waiver request is planned on the basis that NRC LTR approval should assist the Staff with a RG 1.183 revision to address high burnup fuel.

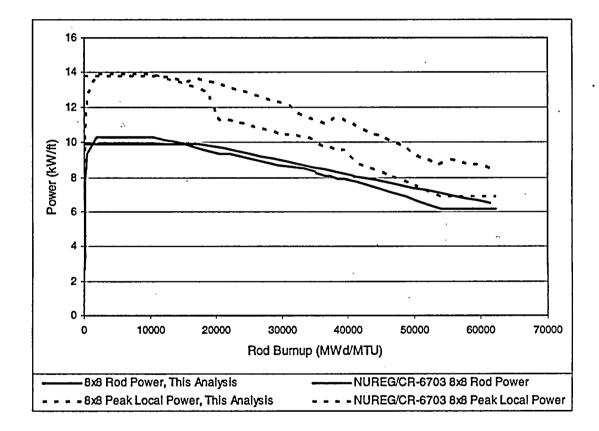
OG AST-NRC Meeting

April 28, 2004

BWROG AST-NRC Meeting

- <u>BWROG Contractors:</u> NISYS Corporation and KW Consulting were contracted to perform high burnup fuel gap fraction analysis for the BWROG.
- <u>Analysis Approach</u>: Identical to the gap fraction approach used to develop the current RG 1.183 values except:

More Fuel Types


BWR Fuel Designs That Span BWR Industry Experience

- GE 8x8
- GE 11/13 (9x9)
- GE 12/14 (10x10)
- Framatome ATRIUM-9 (9x9)
- Framatome ATRIUM-10 (10x10)
- ABB SVEA-96/96+
- ABB SVEA-96 Optima2

Higher Exposure

- Higher Exposure:
 - Current RG 1.183 Gap Fractions
 Applicable up to 62 GWd/MTU
 - New Analysis Applicable to:
 - 65 GWd/MTU for full-length rods
 - 68 GWd/MTU for partial-length rods

More Aggressive Power History

BWROG AST-NRC Meeting

April 28, 2004

Technical Presentation

- Objective
- Gap Release Fraction Analysis Methodology
- Gap Release Fraction Analysis Inputs
- Typical Results
- Conservatisms

BWROG AST-NRC Meeting

Objective

- To extend the gap release fraction analyses described in the NRC High Burnup Environmental Impact Statement (EIS) (NUREG/CR-6703), using the methodology described in the High Burnup EIS, to:
 - Higher rod burnups
 - Higher rod powers at high burnups
 - Complete spectrum of current BWR fuel designs

BWROG ALTERNATIVE SOURCE TERMS BWROG AST PLANNED LTR SUBMITTAL High Burnup EIS Methodology

- FRAPCON-3 fuel rod performance code
- Best estimate fuel rod performance models and nominal fuel rod fabrication parameters
- Normalization of the FRAPCON-3 gap release fraction results
- Gap release fractions for long-lived isotopes (Kr-85, Cs-134 and Cs-137) given by stable fission gas release fractions

Normalization of Gap Release Fraction Results

- FRAPCON-3 has two gas release models:
 - "Massih" model
 - Predicts only stable fission gas release
 - Validated against high burnup stable fission gas release data
 - ANS-5.4 model
 - ANS standard for radioactive isotope gap release fractions
 - Predicts stable fission gas release and radioactive isotope gap release fractions

Normalization of Gap Release Fraction Results (cont'd)

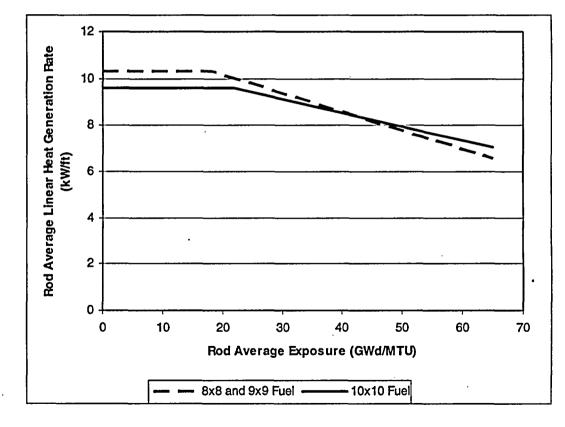
- ANS-5.4 model developed in late 70's, early 80's
 - Not validated against high burnup stable fission gas release data
 - Over-predicts high burnup stable fission gas release
- Compensate for over-prediction by multiplying the gap release fractions by the ratio of the Massih to the ANS-5.4 stable gas release predictions

Additional Code Modifications

- At start of project, PNNL personnel responsible for FRAPCON-3 expressed concerns about the FRAPCON-3 implementation of the ANS-5.4 model
- KW Consulting review found coding errors dating back to the initial ANS-5.4 model implementation for FRAPCON-2
 - Used only the beginning-of-life axial power distribution
 - Did not use fuel pellet radial burnup distribution when calculating the gas diffusion coefficients

Additional Code Modifications (cont'd)

- Gap release fractions calculated using a FRAPCON-3 code version that corrects these errors
 - Code modifications discussed with and evaluated by PNNL personnel
- Also modified gap release fraction output to give results in a more easily used format

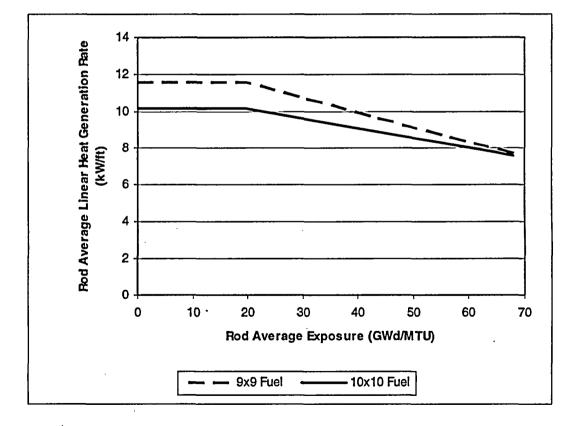

Gap Release Fraction Analysis Inputs

- Fuel rod geometry
 - Provided by the fuel vendors
- Nominal plant operating conditions (coolant temperature, flow rate, reactor coolant system pressure)
- Fuel rod power histories
 - Bounding power histories for both rod average and local powers needed to obtain bounding results for the gap release fractions
 - Bounding rod average power histories provided by the BWROG
 - Bounding local power histories based on the Technical Specification LHGR limits for each fuel design

April 28, 2004

BWROG AST-NRC Meeting

Bounding Rod Average Power Histories

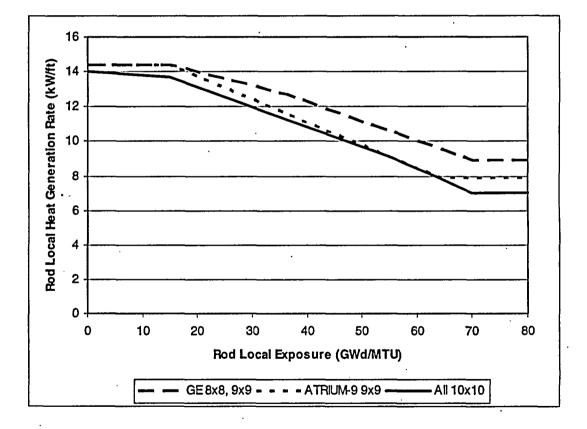


Full Length Rods

April 28, 2004

BWROG AST-NRC Meeting

Bounding Rod Average Power Histories



Part Length Rods

April 28, 2004

BWROG AST-NRC Meeting

Bounding Local Power Histories

April 28, 2004

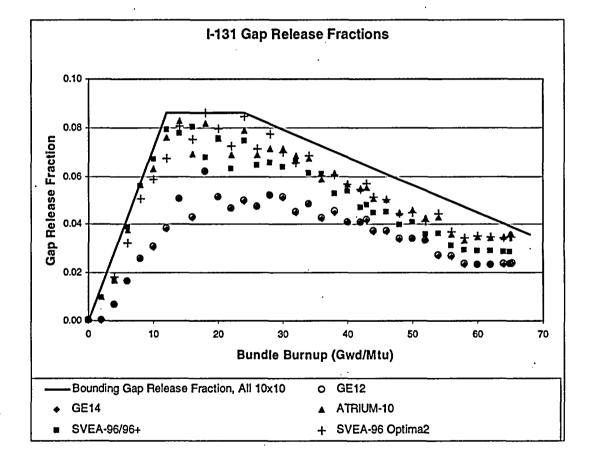
BWROG AST-NRC Meeting

FRAPCON Axial Power Shape Inputs

- Generated from bounding rod average and local power histories
- Cycle from bottom-peaked to mid-peaked to top-peaked through each operating cycle
- Eighteen month cycles assumed
- Assure that rod powers used in the gap release fraction analysis are bounded by both the bounding rod average and local power limits

Gamma Heating

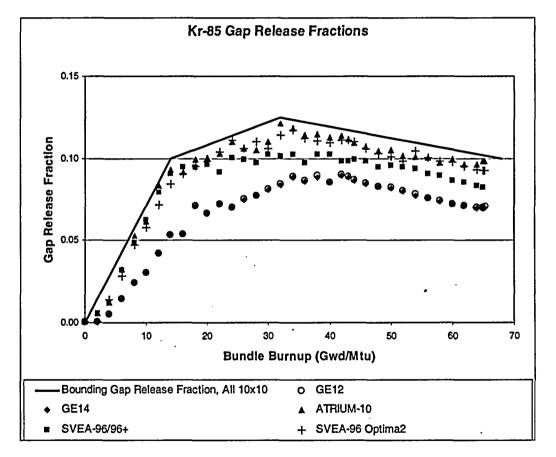
- Bounding power history limits are based on the total heat generation rates
 - Include both energy deposited in the fuel and heat generated by gamma heating of the coolant and core structural components
- FRAPCON power history inputs are the energy deposited in the fuel
- FRAPCON gap release fraction analysis power history inputs adjusted to compensate for gamma heating of the coolant and core structural components


Gadolinia Fuel Rods

- Operate at lower power and attain lower burnups than nongadolinia fuel rods
- Recent field observations show that gap release fractions of gadolinia rods are less than half those of near-by non-gadolinia rods
- Very little qualification of FRAPCON-3 for gadolinia fuel
- Conservatively assumed that the gadolinia fuel rod gap release fractions are the same as the non-gadolinia fuel rod gap release fractions

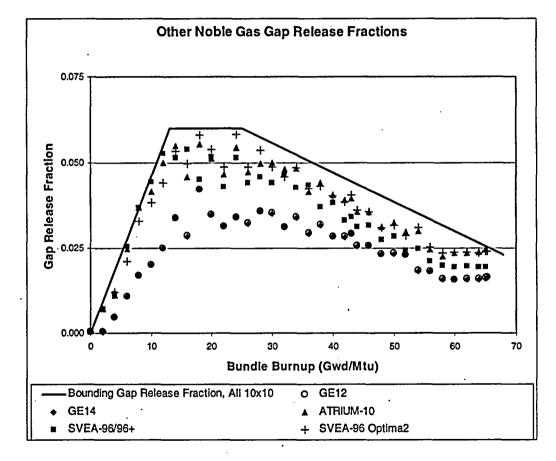
Gap Release Fraction Results

- Bundle average gap release fractions calculated from Beginning-of-Life to End-of-Life
 - Bundle average conservatively assumes all rods in the bundle are at the lead rod burnup
 - Contribution of part-length rods are weighted by their relative fuel mass


Gap Release Fraction Results for 10x10 Fuel

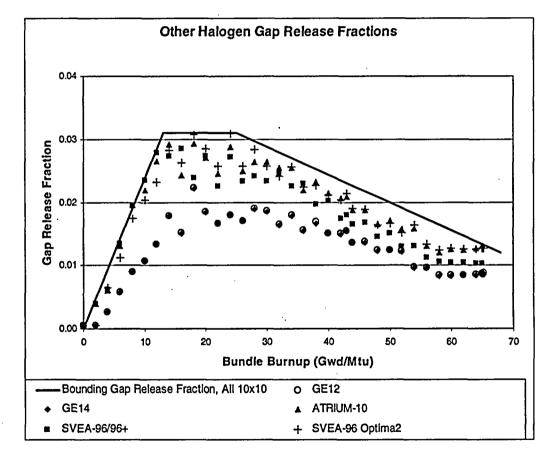
April 28, 2004

BWROG AST-NRC Meeting


Gap Release Fraction Results for 10x10 Fuel

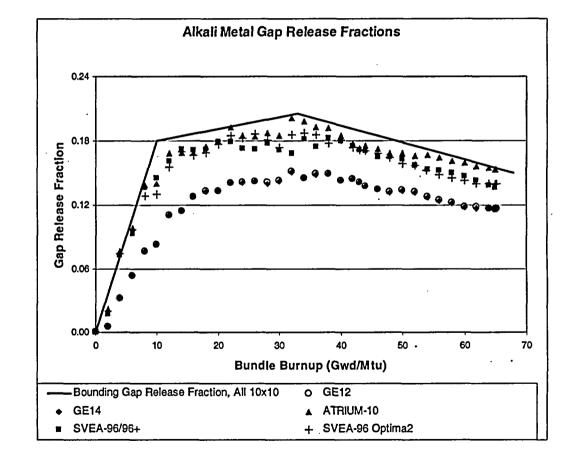
April 28, 2004

BWROG AST-NRC Meeting


Gap Release Fraction Results for 10x10 Fuel

April 28, 2004

BWROG AST-NRC Meeting


Gap Release Fraction Results for 10x10 Fuel

April 28, 2004

BWROG AST-NRC Meeting

Gap Release Fraction Results for 10x10 Fuel

April 28, 2004

BWROG AST-NRC Meeting

Gap Release Fraction Results

• Typical behavior as a function of burnup consistent with the gas diffusion constant used in the gas release models

 $D \propto 100^{Bu_{local}/Bu_{const}} e^{-Q/RT}$

D: diffusion constant

Bu_{local}: local burnup

Bu_{const}: model constant

Q: activation energy

R: gas constant

T: absolute temperature

Gap Release Fraction Results (cont'd)

- Low burnup: rod powers and fuel temperatures approximately constant, gap release fractions increase with increasing burnup
- Moderate burnups: rod powers and fuel temperatures decrease, compensating for increasing burnup, and gap release fractions plateau and then decrease
- High burnups: peak local burnups exceed the maximum value for the LHGR limits, local powers and fuel temperatures are approximately constant, and gap release fractions plateau or increase

April 28, 2004

Peak Gap Release Fractions, All Rod Designs

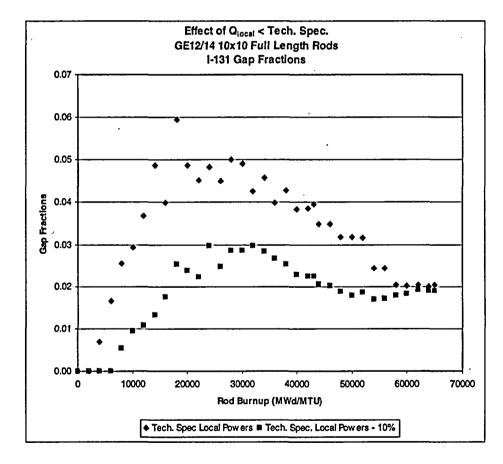
Fuel Design	Gap Release Fractions				
			Other	Other	Alkali
	I-131	Kr-85	Nobles	Halogens	Metals
GE 8x8	0.100	0.173	0.097	0.051	0.217
GE11 9x9	0.092	.0.167	0.081	0.043	0.217
GE13 9x9	0.093	0.167	0.081	0.043	0.218
ATRIUM-9	0.106	0.146	0.076	0.040	0.220
GE12 10x10	0.062	0.090	0.042	0.022	0.152
GE14 10x10	0.062	0.090	0.042	0.022	0.151
ATRIUM-10	0.083	0.121	0.055	0.029	0.201
SVEA-96/96+	0.080	0.103	0.054	0.029	0.183
SVEA-96 Optima 2	0.086	0.117	0.058	0.031	0.187
RG 1.183, Table 3	0.08	0.10	0.05	0.05	0.12

April 28, 2004

BWROG AST-NRC Meeting

Changes from Reg. Guide 1.183

- Inclusion of precursor effects effectively doubles the Other Noble Gases gap release fractions
 - After accounting for precursor effects, gap release fractions for the short-lived isotopes (I-131, Other Noble Gases and Other Halogens) are comparable
- Increased gap release fractions for the long-lived isotopes (Kr-85 and Alkali Metals) reflect the use of more aggressive power histories
- Comparable gap release fractions for the short-lived isotopes reflect the corrections to the FRAPCON-3 implementation of the ANS-5.4 model

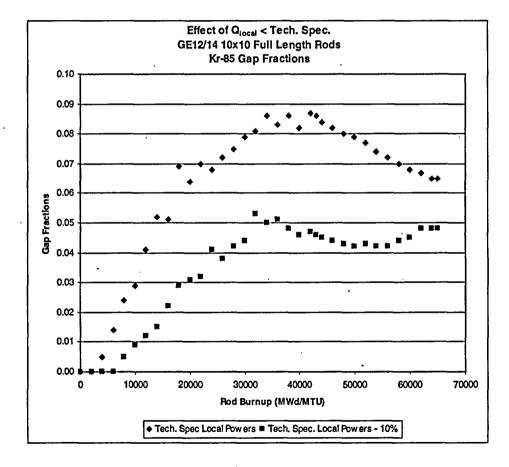

Shutdown Pressures

- Calculated at a coolant temperature of 200 °F, reactor coolant pressure of 35 psia and decay heat after 24 hours of cooldown = 0.6% of rod power at operating conditions
- End-of-Life rod pressures at shutdown conditions are less than 905 psig
- Bounding value for all earlier times in life

Conservatisms in This Analysis

- Primary conservatism is the assumption that the lead fuel operates at the bounding rod average and local powers throughout life
 - Gap release fraction results are very sensitive to fuel temperatures
 - Typically, cores are designed with ~10% margin to the LHGR limits to preclude Licensee Event Reports due to small power transients or small differences between predicted and actual core performance
- 10% reduction in local power limits gives a 40-50% reduction in the peak gap release fractions

Conservatisms in This Analysis



BWROG AST-NRC Meeting

April 28, 2004

37

Conservatisms in This Analysis

April 28, 2004

BWROG AST-NRC Meeting

38

Additional Conservatisms

- All rods in the bundle are assumed to operate at the bounding rod average and local power limits
 - Typically, peak rod-to-bundle peaking factors are more than 10% at the peak gap fraction burnup
- No credit is taken for the reduced gap release fractions of the gadolinia rods
- Recent evaluations indicate that the ANS-5.4 model over-predicts
 I-131 gap release fractions by as much as a factor of 10
 - Scaling by the ratio of the Massih to ANS-5.4 stable gas release values only partially compensates for this conservatism of the ANS-5.4 model

Additional Conservatisms

- 10x10 analyses use a conservative application of the bounding rod average and local power limit curves
 - Due to the axial burnup distribution in the rod, at high burnups the bounding rod average power is greater than that allowed by the local power limit
 - At these burnups, the gap release fraction analysis used the rod average power and an unrealistic, but conservative, flat axial power shape

BWROG intends to request:

- <u>Extension</u> of current RG 1.183 gap fractions to higher BWR burnups and more aggressive power histories
- Approval of this methodology for use with new fuel designs and/or revised design inputs
- Benefits:
 - Validation of existing RG 1.183 gap fractions
 - No requirements for re-analysis
 - No increased consequences under 50.59
 - No new submittals

- Current bounding analyses predict slightly higher gap fractions than RG 1.183 Table 3
- However, conservatisms in the calculations (previously described) more than bound these small increases based:

- Iodine-131
 - 8% per Table 3 of RG 1.183
 - 6.2-10% per BWROG analysis
- Disposition
 - 8x8 and ATRIUM-9 fuel are no longer being reloaded and are well past the exposure of peak gap fraction
 - Remaining 9x9 and 10x10 designs are no more than 1% greater than the 8% RG value
 - More than bounded by the conservatisms in the analysis
 - ~40 50% margin with 10% lower peak LHGR
 - Another ~40% margin considering rod-to-bundle peaking of 10% or more

- Other Halogens
 - 5% per Table 3 of RG 1.183
 - 2.2-5.1% per BWROG analysis
- Disposition
 - BWROG analysis calculates the same 5% fraction or less

• Kr-85

- 10% per RG 1.183
- 9-17% per BWROG analysis
- Disposition
 - FHA analysis is insensitive to this isotope
 - Kr-85 contrib. to GGNS FHA Control Dose = 5E-4%
 - Larger BWROG results are offset by the conservatisms in the analysis
 - ~40 50% margin with 10% lower peak LHGR
 - Another ~40% margin considering rod-tobundle peaking of 10% or more

Other Noble Gases

- 5% per RG 1.183
- 4.2-9.7% per BWROG analysis
- Disposition
 - FHA analysis is insensitive to these isotopes
 - noble gas contrib. to GGNS FHA Control Dose = <2%
 - Larger BWROG results are offset by the conservatisms in the analysis
 - ~40 50% margin with 10% lower peak LHGR
 - Another ~40% margin considering rod-tobundle peaking of 10% or more

Alkali Metals

- 12% per RG 1.183
- 15.1-21.7% per BWROG analysis

Disposition

- FHA analysis is completely insensitive to particulate isotopes since they are completely scrubbed by the fuel pool water
 - infinite decontamination factor per RG 1.183, App. B, Section 3

April 28, 2004

BWROG ALTERNATIVE SOURCE TERMS SUMMARY

- The BWROG has/is assisting BWR licensees with AST applications.
- RG 1.183 is currently limiting for high burnup fuel.
- Currently-planned LTR will request NRC review and approval (SER) for extension of current values in Table 3 of RG 1.183 to more aggressive power histories and burnups
- To address future fuel types, LTR will request NRC approval of defined methodology for developing non-LOCA fuel isotopic inventories.