OC.WORK PLAN	NO. PROCEDU	RE/WOR	RK PLAN TITLE:	PAGE:	6 of 52
2403.002		UI	NIT II 2D12 PERFORMANCE TEST ELECTRICAL MAINTENANCE	REV: CHANGE:	005 02-1
8.0 <u>INSTRU</u>	JCTIONS				
8.1	PERFORMAN	ICE DI	SCHARGE TEST SET UP.		
	8.1.1	Remo	oval of 2D12 from service:		
		A.	Verify Charger 2D32 is powered up a supplying power for Bus 2D02.	nd	<u>CU1-1</u>
		В.	Obtain assistance from Operations t with the removal of 2D12 from servi		<u>CCLI 1-1</u> <u>R.H. 141</u> 9- <u>R.H. 11-19</u>
		с.	Open the battery disconnect switch,	2D52	R.H. II.A
	g the fuses.		ove the 1800 amp fuses.		<u></u>
11	tery side of g the fuses		WARNING fuse connections are energized. Avoi	id contac	t when
	8.1.3	Remo	ove the pin indicating fuses from 2D4:	2.	R.H. 11-19
	8.1.4		ify that Handswitch AS1 on 2D42 is in RMAL" position.	the	R.H. 1.1-19
			WARNING se connections are energized. Avoid o t load device.	contact w	/hen
Ľ	8.1.5	Bolt	t the cables from the test load device tery side of the 1800 amp fuse connec	e to the	Rit 11-19.

· .

· ·

• . • .

.

2403.002

PROCEDURE/WORK PLAN TITLE:

UNIT II 2D12 PERFORMANCE TEST **ELECTRICAL MAINTENANCE**

NOTE

This section is to determine the condition of battery connections before the performance discharge test. No repair is to be effected if a high resistance reading is noted. This connection or connections must be watched during the discharge test for excessive heating.

OC HOLD

A QC inspector must be present to witness the reading of the battery connection resistances and sign Data Sheet 1 upon completion.

NOTE A Second person shall verify micro-ohm readings as they are being recorded on Data Sheet 1 and sign Data Sheet 1 upon completion.

> Measure the cell-to-cell and terminal connection 8.1.6 resistance to the nearest micro-ohm as directed below:

NOTE The DLRO's battery test meter will indicate the relative state of charge of the DLRO battery.

- Check the DLRO display and measuring Α. , circuit batteries.
- в. IF the DLRO's batteries are low, THEN connect the charger to the unit. IF the batteries are OK. THEN mark this step N/A.
- Separate the two sets of test leads and с. connect the DLRO as follows:
 - Connect the black lead wire of the 1 first set, (marked "C") to the terminal marked "C1".
 - Connect the red lead wire of the first CIII 1-18-9 2. set, (marked "P") to the terminal marked "P1".
 - 3. Connect the black lead wire of the second set, (marked "C") to the terminal marked "C2".
 - Connect the red lead wire of the 4. second set, (Marked "P") to the terminal marked "P2".

Ch 11-18-99 Ch 11-18-99

CG/11-18-94

CU11-184

2403.002

PROCEDURE/WORK PLAN TITLE:

UNIT II 2D12 PERFORMANCE TEST

NOTE

The user should select the lowest range possible on the DLRO that is greater than 150 micro-ohms, this will ensure that they are measuring micro-ohms to the right of the decimal point.

ELECTRICAL MAINTENANCE

D. Set the DLRO to the lowest possible resistance range, that is greater than 150 micro-ohms.

<u>Clas 1-18-99</u> Clas 1-18-99

Turn the ON/OFF switch to the "ON" (lock) Ε. position

8 of 52

005

02-1

NOTE

Each of the two test probes has the letter "P" on one face. This side of each probe should be in the same orientation to one another (i.e., if the "P" on one probe is facing inside, the "P" on the other probe should also face inside.)

CAUTION

The probes should not be placed across a voltage source! The test probes should not be connected to a positive and negative posts of the same cell.

NOTE

In the step below, the statement "connect the test probes to the left most..." is an attempt to explain the measuring technique to you the user. It is not an instruction or limitation implying that you must begin at the left-most cell or that you cannot begin with cell number 1, beginning with the bus cable connection. Connections may be measured in any sequence so long as each connection on Data Sheet 3 is tested.

NOTE

The micro-ohm test for the intercell strap and cable connections should be measured from: battery post to battery post, battery post to terminal plate, and terminal plate to all cable terminal lugs.

> F. Repeat the following steps 1 through 4 for all battery terminal to battery terminal, battery terminal to terminal plate and terminal plate to terminal lugs and record the "As Found" micro-ohm readings on data sheet 1.

ACCEPTANCE CRITERION

IF any recorded "As Found" reading in the following steps exceeds the Technical Specification allowable value of 150 micro-ohms. THEN initiate a Condition Report and have the Cognizant Supervisor and/or the Maintenance Engineer perform an evaluation to determine if it is safe to proceed with the Service Discharge Test.

PROC./WORK PLAN NO.	PROCEDURE/WORK PLAN	PAGE: 9 of 52	
2403.002	UNIT II 2D ELECT	REV: 005 CHANGE: 02-1	
	1.	IF any single "As Found" rea following steps is questiona exceeding 150 micro-ohms), THEN move the "Forward/Rever "Reverse" and average the tw IF average of the two reading THEN proceed with remainder IF average of two readings i THEN initiate a Condition Re Cognizant Supervisor and/or perform an evaluation to det to proceed with the Service	ble (too high se" lever to to readings, gs is acceptable, of test. s still questionabl port and have the Maintenance Engines ermine if it is saf
	2.	For battery terminal to batt connections:	ery terminal
		a. Connect the probes to t post (P1) of one cell a negative post (N1) of t Obtain reading and reco	and the left-most the adjacent cell.
		b. Connect the probes to t positive post (P2) and negative post (N2) of a reading and record on d	to the next left-mo djacent cell. Obta
	3.	For battery terminal to term connections:	inal plate
		plate, <u>THEN</u> connect the most positive pos the terminal plat <u>THEN</u> connect the positive post (P2	probes to the next) of same cell and ce. Obtain reading
		plate, <u>THEN</u> connect the most negative pos the terminal plat <u>THEN</u> connect the negative post (N2	probes to the next) of same cell and ce. Obtain reading
	4 .	For terminal plate to wire to connections, connect the pro- each wire lug connected to to <u>Perform</u> this step for each 1 sheet, obtain readings and r 1.	bes to the plate an he plate. ug listed on data

PROC./WORK PLAN NO.	PROCEDURE/WORK PLAN TITLE:	PAGE:	10 of 52
2403.002	UNIT II 2D12 PERFORMANCE TEST	REV:	005
	ELECTRICAL MAINTENANCE	CHANGE:	02-1

8.2 MEASURING CELL TEMPERATURE

8.2.1 Measure the cell temperature of each individual cell as listed on Attachment 1.

CAUTION Use extreme caution when inserting and removing the thermometer from the sampling tube to avoid breaking the thermometer. If breakage occurs and parts of the thermometer remain in the battery, the Electrical Maintenance Supervisor should be notified as soon as possible.

NOTE

IF the front sample tube is bent or broken, THEN the thermometer may be placed in the rear sample tube.

NOTE A Second Person shall observe, sign and verify after completion, that steps A through C have been completed for all cells listed on Attachment 1 and this value recorded.

NOTE

Repeat steps 8.2.1.A through 8.2.1.C until all of the cells listed on Attachment 1 been measured.

- A. Place the thermometer in the sample tube of the individual cell being measured. Thermometer should rest on the upper sample tube housing.
- B. Leaving the thermometer in the cell being measured for 15 seconds will allow the reading to stabilize.
- C. Record the temperature to the nearest °F for each cell on Attachment 1.

SECOND PERSON VERIFIER

An Second Person Verifier shall verify here and on Attachment 1 that temperature values were properly recorded in step 8.2.1.C for all cells.

1-19-49 Second Person Verifier Date

PROCJWORK PLAN NO. 2403.002	PROCED	PROCEDURE/WORK PLAN TITLE: PAGE UNIT II 2D12 PERFORMANCE TEST REV: ELECTRICAL MAINTENANCE CHAN				
	••••••••	D.	IF any of the monitored cells have broken sample tubes, or broken ther parts in the cell, <u>THEN</u> record the cell number in the provided below, and notify the Elec Maintenance Supervisor; <u>IF NOT</u> , <u>THEN</u> mark this step N/A. Supervisor Remarks:	mometer space		
					NAI	
		E.	IF any cell temperature deviates mon 3°C (5°F) from the other cells during inspection, THEN notify the Electrical Maintenau Supervisor; IF NOT, THEN mark this step N/A.	ng		
			Supervisor Remarks:			
					NAI	
		F.	Calculate and record on Attachment average cell temperature of the mon cells listed on Attachment 1.		R.H. / I.F	
8.3 1	BATTERY	PERFORI	ANCE DISCHARGE TEST			
8	8.3.1	cont	ect any remaining battery load test s rol wiring needed for load monitoring rol.		_R.H.11-1 Clu	
	3.3.2	the Fact obta	rmine and record on Attachment 1 and discharge current correction factor (or) based upon the average cell tempe ined in Step 8.2.1 and the Table on chment 1.	K	Clu 1	
			actor) Discharge Current Correction or: <i>l.000</i>			
	•					

.

ROC./WORK PLAN NO.	PROCEDU	RE/WORK PLAN TITLE:	PAGE: 12 of 52	
2403.002		UNIT II 2D12 PERFORMANCE TEST ELECTRICAL MAINTENANCE	REV: 005 CHANGE: 02-1	
SECOND PERSON V	VERIFIER			
discharge	e current cell temp	erifier shall determine and record be correction factor (K Factor) based u erature obtained in Step 8.2.1 and th	pon the	
		(K Factor) Discharge Current Correct Factor:	tion H-ell	9.9
8	3.3.3	Calculate the actual discharge curr dividing 258 by the K Factor from S	d Person Verifier Data ent by tep 8.3.2.	e
		258 amps ÷ <u>1.000</u> = Rated discharge K Factor A current	258 ctual discharge current	
		$\frac{258 \text{ Amps}}{(K)} = \frac{258}{258} \text{ Amps}$	CW 1+	/ 4 19-1
SECOND PERSON V	ERIFIER		<i>C</i>	-(
A Second dividing	Person Ve 258 by th	erifier is to calculate the actual di ne K Factor from Step 8.3.2 and recor 258 amps ÷ <u>1.000</u> = Rated discharge K Factor A current	d below. 258	
		$\frac{258 \text{ Amps}}{(K)} = \frac{258}{258} \text{ Amps}$	A Hull 1-1 Person Verifier Date	`? <i>¶</i> ¶ ∋
8	.3.4	Set up the load tester to $\frac{25-8}{100}$ and 9 hour discharge.	amps <u>Cluips</u> cs of c	-/-
SECOND PERSON VI	ERIFIER			
A Second I up correct in Step 8.	tly for a	erifier shall verify that the load ter 9 hour discharge at the current value for second	ster is set ue calculated //// Person Verifier Date	-99
8.	.3.5	Cognizant Supervisor shall verify ca are correct and has granted permissi the test.	lculations on to start	
		H A	ognizant Supervisor Date	<u>7</u> -9
		C	Cull-11-	

• • •

ROC./WORK PLAN NO.	PROCED	URE/WORK PLAN TITLE:	PAGE:	13 of 52
2403.002		UNIT II 2D12 PERFORMANCE TEST ELECTRICAL MAINTENANCE	REV: CHANGE:	005 02-1
	8.3.7	Start the discharge test.		Cherry
	8.3.8	Record the Start time on Data Sheet 2 and Attachment 3.		
	8.3.9	Adjust and maintain current throughout th to the calculated value + 1% of setpoint, Amp. (i.e., Displayed Value <u>may</u> vary from setpoint by + 1%, then an additional + 1 i	+1	<u>CU 11-</u> 2
Extra data rate and t	may be t he batte	NOTE taken and attached for the following test. ry voltage should be monitored from start to	The disc stop.	harge
The print accompany	out from the follo	NOTE the Albers unit may be attached to this pro owing step.	cedure to	2
L {	8.3.10	Monitor and record the discharge rate and battery voltage at intervals established i Sheet 2.	the in Data	J
. 8	8.3.11	IF the discharge is stopped for any reasor than a low voltage cell, THEN record the stop and restart times bel IF the discharge cannot be restarted, THEN notify the cognizant supervisor and p to step 8.3.18. IF not, THEN mark this step N/A	low;	<u>R.H. / 1-</u> 2
		Stop time 2210 Restart time N	A	
		Reason for discharge stop <u>Allemeter to Aprus</u> UP MANUALLY to Keep correct within Limits o	F 8.39 A	
8	3.3.12	ALSets MACHINE WOULD NOT FUNCTION AND H AND COULD NOT BE RestarteD. IF an individual cell or cells are approact 1.0 volts, THEN record the cell(s) number below and n the Cognizant Supervisor immediately, cont the test <u>closely</u> monitoring the cell volta verify that no cell goes below 0.75 VDC; IF NOT,	ching Notify	6 64~0
8	.3.12	ALSets MACHINE WOULD NOT FUNCTION AND 4 AND COULD NOT BE RestarteD. IF an individual cell or cells are approact 1.0 volts, THEN record the cell(s) number below and no the Cognizant Supervisor immediately, cont the test <u>closely</u> monitoring the cell volta verify that no cell goes below 0.75 VDC; IF NOT, THEN mark this step N/A:	ching Notify	
8	.3.12	ALSets MACHINE WOULD NOT FUNCTION AND H AND COULD NOT BE RestarteD. IF an individual cell or cells are approact 1.0 volts, THEN record the cell(s) number below and n the Cognizant Supervisor immediately, cont the test <u>closely</u> monitoring the cell volta verify that no cell goes below 0.75 VDC; IF NOT,	ching Notify	6 6~0

.

,

·

ROC./WORK PLAN NO.	PROCEDI	URE/WORK PLAN TITLE:	PAGE:	14 of 52
2403.002		UNIT II 2D12 PERFORMANCE TEST ELECTRICAL MAINTENANCE	REV: CHANGE:	005 02-1
ξ	3.3.13	IF at any time during the test a cell(s) drops below 0.75 VDC, THEN stop the discharge immediately, cont Cognizant Supervisor and record the stop below and on Attachment 3, and go to Atta 2; IF NOT, THEN mark this step N/A:	act the time	
		Discharge Stop Time:		N/A-1
		NOTE need to be rapidly taken as the decaying ov and goes below the 105 VDC voltage level.	verall b	attery
ε	3.3.14	Read the individual cell voltages and bat terminal voltage (rapidly) when the batte approaches 105 VDC, and record below and last column of Data Sheet 2. Final Battery readings recorded: 108.5	ry in the	 R.A 11-2
8	8.3.15	Decrease the test load to "0" when the ov battery voltage is 105 VDC.	erall	NAZA /
8	8.3.16	Turn off test load.		RIH 11-20
8	3.3.17	Record the Stop Time above the last colum Data Sheet 2, and on Attachment 3.	n on	
; 8	8.3.18	Open 2D52 disconnect switch.		R.H / 1-2
8	8.3.19	De-energize load tester.		R.4/1-2
		WARNING		
2D02 side o disconnecti	of fuse ing cabl	connections are energized. Contact should les.	be avoid	ed when
8	3.3.20	Unbolt and remove the load test cables front fuse cabinet.	om the	R. 14 / 1-2
8	8.3.21	Disconnect any remaining battery load tes control or monitoring cables connected to battery.		R.H / 1-2

PROC./WORK PLAN NO. 2403.002	PROCEDURE/WOR	K PLAN TITLE: IIT II 2D12 PERFORMANCE TEST ELECTRICAL MAINTENANCE	PAGE: REV: CHANGE:	15 of 52 005 02-1
8.4	EQUALIZE CHARG	E AND BATTERY RESTORATION	<u></u>	
	the Supe	e the battery on equalize charge by of following methods as directed by Cogr rvision. Supervision to record below od to be used.	nizant	
	Meth	od 1 Method 2 Method 3	<u> </u>	Supervisor
"Method 1	-"A.	Install the pin indicating fuses in	2D42.	/
	В.	Install the 1800 Amp fuses.		/
	Ċ.	Close the 2D52 Disconnect Switch.		
	D.	Verify that the electrical lineup is restored and the charger is working properly.		/
	E.	Record below the charger being used		
		Charger used:		/
-	F.	Place the battery on an equalize charger set point is 135.2 to 138 record below the equalizing start to voltage.	volts)	
		/		/
Step 8.5 ma accomplishe		NOTE 1 at any time after Step 8.4.1.F has	been	
	G.	Record below the equalize voltage at battery after 15 hours from the star equalization.		
		Battery Terminal Voltage:		
		MT&E used:Cal. Due:		/
	н.	WHEN the equalize charge current rea the range of 11-22 amps (end of char current), THEN place the battery on float char	rge	
		Record below the equalizing stop tin date, and voltage.	ne,	

.

PROC./WORK PLAN NO. 2403.002		PLAN TITLE: T II 2D12 PERFORMANCE TEST ELECTRICAL MAINTENANCE	PAGE: REV: CHANGE:	16 of 005 02-1
*Method 2	' A.	Install the pin indicating fuses in	2D42.	
	в.	Install the 1800 Amp fuses.		
	c.	Close the 2D52 Disconnect Switch.		
	D.	Verify that the electrical lineup is restored and the charger is working properly.		- <u></u> .
	E.	Record below the charger being used.		
		Charger used:	-	
	F.	Place the battery on an equalize cha set the equalize voltage to 140 VDC 139 max 140) (maximum allowable sys voltage). Record below the equalizin time and voltage.	(min tem	
		Start time Date Voltage		
Step 8.5 may accomplished			been	
	1.	NOTE	nsure	
	1. G. H.	NOTE at any time after Step 8.4.1.F has b Monitor electrolyte temperature to e it does not exceed 120 deg.F during	nsure the the	
	1. G. H.	NOTE at any time after Step 8.4.1.F has be Monitor electrolyte temperature to e it does not exceed 120 deg.F during high level equalize charge. Record below the equalize voltage at battery after 15 hours from the star	nsure the the t of	
	1. G. H.	NOTE at any time after Step 8.4.1.F has be Monitor electrolyte temperature to e it does not exceed 120 deg.F during high level equalize charge. Record below the equalize voltage at battery after 15 hours from the star equalization.	nsure the the t of VDC	

DC.WORK PLAN NO. 2403.002		N TITLE: 2012 PERFORMANCE TEST CTRICAL MAINTENANCE	PAGE: REV: CHANGE:	17 of 52 005 02-1
"Method 3	* A. Ins	tall the pin indicating fuses i	n 2D42.	R.H. 11.21.
		NOTE		
A Ten	mp. Mod. may be rea	quired to power the spare batter	ry charger.	
	the Mod	t 2-2/C 2/0 AWG cables or great spare 200 Amp battery charger el RCS200 or equal) to the batt the 1800 Amp fuse connector.	(SCI -	<u>R.14 1-</u> 21.
	C. Clo	se the 2D52 Disconnect Switch.	(R. 1+ 11.21-9
		NOTE		······
Charging at more gas and	the higher equali d heat than at the	ze voltage of 144 min 145 ma normal equalize charge of 135.	x. will cre 2 to 138 vo	ate
	equa	ce the battery bank on a high le alize charge of 144 min 145 r ts and perform the following.		
	1.	Record below the equalizing s and voltage. <u>/720</u> / <u>72799</u> 1444. Start time Date Voltage	25	
Step 8.5 may accomplished	y be performed at a	NOTE any time after Step 8.4.1.D.1 h	as been	
	2.	Monitor the current supplied 1 spare battery charger.	by the	
	3.	Maintain charger voltage at 14 145 max.	44 min -	
	4.	Monitor electrolyte temperatur ensure it does not exceed 120°	° F.	
		during the high level equalize	e charge.	
	5.	When the equalize charge currer reaches the range of 20 amps of "open" Disconnect switch 2D52 measure the current by using a Digital Multimeter 8842A across J2 of 2D42. (100mv = 20 amps)	ent or below, and Fluke ss J1 and	

·

·

•

2403.002	D. PROCEDU	PROCEDURE/WORK PLAN TITLE: PA UNIT II 2D12 PERFORMANCE TEST RE ELECTRICAL MAINTENANCE CH			18 of 52 005 E: 02-1
		deenergizi charger) w range of 1 2D42. Rec stop time, reading.	equalize charge () ing the spare bat when the current 1-22 amps as mea cord below the eq date and final n <u>/ /-2/-99</u> Date Mv	tery reaches the sured in ualizing	15
			Step D cor	mplete	JUH 112
		_	connect switch is	- · · · · · · · · · · · · · · · · · · ·	JAR 11-2
			spare battery ch d determinate the r and 2D42.		<u> </u>
		G. Install the 180	0 amp fuses.		<u>444 1 P</u>
	t	H. Close the 2D52	Disconnect switch	1.	<u> 44 1!</u>
		I. Place the batte	ry on float charg	je.	Att 1
		NOT h Spec value (lower l	imit) for a 58 c		
voltage.	However,		imit) for a 58 c age should be 12	7.6 to 130.	5 when
voltage.	However, at the bat	h Spec value (lower 1 he as left float volt ery terminal. Record the float volt	imit) for a 58 c age should be 12	7.6 to 130.	5 when
voltage.	However, at the bat	h Spec value (lower 1 he as left float volt ery terminal. Record the float volt below:	imit) for a 58 cm age should be 12 tage measured at <u>"is not"</u> within trical Supervisor n of the problem. is below 124.7 Votify the Electri	the batter 127.6 to and/or DC, cal	5 when
voltage. measured	However, at the bat 8.4.2	h Spec value (lower 1 he as left float volt ery terminal. Record the float volt below: Voltage <u>129.3</u> <u>IF</u> the float voltage 130.5 volts, <u>THEN notify the Elect</u> S/S for an evaluation <u>IF</u> the float voltage <u>THEN "immediately" notice</u> Supervisor and S/S the	imit) for a 58 cm age should be 12 tage measured at <u>"is not"</u> within trical Supervisor n of the problem. is below 124.7 Votify the Electri	the batter 127.6 to and/or DC, cal	5 when
voltage. measured	However, at the bat 8.4.2	h Spec value (lower 1 he as left float volt ery terminal. Record the float volt below: Voltage <u>129.3</u> <u>IF</u> the float voltage 130.5 volts, <u>THEN</u> notify the Elect S/S for an evaluation <u>IF</u> the float voltage <u>THEN</u> <u>"immediately"</u> no Supervisor and S/S the violation exists.	imit) for a 58 cm age should be 12 tage measured at <u>"is not"</u> within trical Supervisor n of the problem. is below 124.7 W otify the Electri hat a possible Te used, culated T _A from s	the batter 127.6 to and/or DC, cal sch Spec	5 when

2403.002					
		ELECTRICAL M	ORMANCE TEST	CHANGE:	005-03-1
. 8.:	म (t (HEN the time the from data in 8.3		vas stopped racted from	<u>B.1.1 11.57</u> .
			NOTE		
The following 4,8.2.3 E.	g calculat	tions is require	d to comply with "	Tech Spec step	
8.5	f	ollowing equation	pacity of the batt on: $PF = (T_A / T_S) \times 10^{-1}$	•	ng the
		. –			
	Т	A = Actual time	of the test in min	nutes.	
	Т		o specified termi: 8 hrs. or 480 minu		
· .	т		3 x 100 = <u>/</u> minutes	1 62.7 % capac	rity <u>Rild_11.27</u> 9
SECOND PERSON VER	RIFIER				
		fier shall repeation of the bat	at the calculation tery.	ns for	
	Т	$\frac{44}{480}$ minutes) $\frac{44}{480}$	$\frac{33}{\text{minutes}} \times 100 = -$	102 & capaci action of Person Veria	ty <u>/ 1-27-5</u> fier Date
8.5	C		ngineering to eval mine compliance w		
	,		. .	4	2012-2
		р.			

•

.

PROC./WORK PLAN NO.	PROCEDURE/WORK PLAN TITLE:	PAGE:	20 of 52
2403.002	UNIT II 2D12 PERFORMANCE TEST	REV:	005
	ELECTRICAL MAINTENANCE	CHANGE:	02-1

8.6 BATTERY MAINTENANCE

NOTE When tightening the terminal connectors, two insulated wrenches should be used, applying one as counter-torque to prevent damage to the terminal post. If just checking the torque of a 5/16 inch stainless bolt connection that was not disassembled then 125 in/1b is the proper value. If the connection was loosened or disassembled then torque to 165 in/1bs. Step 8.6.1 through 8.6.2 may be accomplished at any time after Step 8.4.6 has been accomplished. Steps 8.6.3 through 8.6.5 may be accomplished after equalize charge current diminishes to a low enough level such that charge current does not affect resistance readings.

- 8.6.1 Verify that all battery connections are tight by torquing each intercell/intertier connection to 125 in/lbs
- 8.6.2 Record below the torque wrench used, calibration due date and the torque values: Torque wrench number: $\underline{TU.107}$ Calibration due date: $\underline{2-1299}$ Torque value: $\underline{12516LRS}$,

QC HOLD

A QC inspector is to be present to witness reading of the battery connection resistance in Steps 8.6.3 through Steps 8.6.7 for procedure compliance and to sign Data Sheet 3 upon completion.

NOTE

The micro-ohm limit is for the intercell straps and cable connections. The cable connections need to be measured from the battery post to terminal lug.

8.6.3 Perform an "As Left" micro-ohm check using step 8.1.6 as a guideline and record the reading in the "As Left" section of Data Sheet 3.

8.6.4 Verify if any intercell micro-ohm reading is greater than 150 micro-ohms and check the appropriate space below:

Yes

ФNо

IF the answer is "yes", THEN proceed to step 8.6.5. IF the answer is "no", THEN mark steps 8.6.5 through 8.6.7 "N/A" and proceed to step 8.6.8.

PROC./WORK PLAN NO.	PROCEDURE/W	ORK PLAN TITLE:	PAGE:	21 of 52
2403.002		UNIT II 2D12 PERFORMANCE TEST ELECTRICAL MAINTENANCE	REV: CHANGE:	005 02-1
5	TH	T the answer to 8.6.4 was "Yes", HEN perform the following; NOT, HEN mark the following steps N/A.		-
	Α.	Open disconnect switch 2D52.		N/A /
	В.	Disassemble the affected connection(s).	N/A /
	c.	Clean and neutralize the affected connections using baking soda and wa then coat the connections per C&D Ma (TM C 173.0010) and reassemble.		N/A/
	D.	Torque the affected connections to 165 in/lbs.	-	_NIA_/_
	E.	Micro-ohm the affected connections.		NA /
	F.	Record the micro-ohm readings of the affected connections on Data Sheet f them as the second "As Left" reading <u>IF</u> the second "As Left" reading <u>IS</u> acceptable, <u>THEN</u> proceed to step 8.6.7. <u>IF</u> the second "As Left" reading is <u>N</u> acceptable, <u>THEN</u> proceed to step 8.6.6.	lagging	<u>NIA_/_</u>
8	TH IF TH	the reading is still unacceptable, EN perform the following. The reading is acceptable, EN mark steps A through F "N/A" and pro- ep 8.6.7.	ceed to	
	Α.	Verify Disconnect Switch 2D52 is ope	n.	NA /
	В.	Replace the affected parts.		NIA /
	C.	Clean and neutralize replacement par coat connections per C&D Manual (TM C 173.0010) and reassemble.	ts and	NIA /
	D.	Torque connections to 165 in/lbs.		NIA /
	E.	Obtain "As Left" resistance readings	•	NIA /
	F.	Record action taken and readings on Left" comments section of Data Sheet		NIA /

.

-

e

2403.002	PROCEDU	RE/WORK PLAN TITLE:	PAGE:	22 of 52
£700.002		UNIT II 2D12 PERFORMANCE TEST ELECTRICAL MAINTENANCE	REV: CHANGE:	005 02-1
	8,6.7	Close Disconnect Switch 2D52.		NA1
	8.6.8	Place the battery bank on Float charge and record the time, date and float voltage be	d elow:	•
		Time and Date <u>1545 [-21-99</u> Float Voltage <u>129.25</u> VDC		R.d. 11-25
	8.6.9	Perform 3 random specific gravity readings the 2D12 battery bank, using procedure 240 as a guide, to determine if stratification these cells exist.	03.023	
		 A. <u>IF</u> stratification of the tested cells electrolyte exists, <u>THEN</u> mix the electrolyte in each cell the battery bank for 30 minutes on eacell, using a variable speed micro powith suction taken from the top of the cells through the flame arrestor hold discharge through the sample tube to bottom of the cells; <u>IF NOT</u>, <u>THEN</u> mark this step N/A. 	l of ach ump, he e, and	<u>Mai</u>
9.0 RESTORATI		B. Perform all sections of Quarterly 240 except the micro-ohm readings, and at it to this procedure.	03.023, 🤇 ttach	-le 11-2
9.0 <u>RESIGRATI</u>	ION AND CH	ndition Reports were issued during the perfo	ormance /	Plat 11-7
1	THEN attac procedure; IF NOT,	ch a copy of the Condition Report to this		<u>~~~</u> ~
9.2	THEN attac procedure; <u>LF NOT</u> , THEN mark	ch a copy of the Condition Report to this		
9.2 X 9.3 X	THEN attac procedure; TF NOT, THEN mark Verify tha peen met.	this step N/A. It the requirements of Housekeeping Level I It the measuring and test equipment have no	I have (<u>U11-24</u> <u>U17-24</u>
9.2 X 9.3 X 9.4 X	THEN attac procedure; <u>IF NOT</u> , <u>THEN mark</u> Jerify that been met. /erify that deficiency /erify wit	this step N/A. It the requirements of Housekeeping Level I It the measuring and test equipment have no	I have (<u>U11-25</u> <u>U11-25</u>
9.2 X 9.3 X 9.4 X	THEN attac procedure; <u>IF NOT</u> , <u>THEN mark</u> Jerify that been met. /erify that deficiency /erify wit	this step N/A. The requirements of Housekeeping Level I: The measuring and test equipment have no the operations that 2D12 has been returned to ration/lineup.	I have (<u>U11-25</u> <u>U11-25</u>
9.2 V 9.3 V 9.4 V 124.7 VDC i voltage. H	THEN attac procedure; <u>THEN mark</u> Verify that been met. Verify that deficiency Verify wit hormal ope	this step N/A. The requirements of Housekeeping Level I the measuring and test equipment have no	I have (known (b its (ank's flo	<u>2011-25</u> <u>2017-</u> 25 <u>2011-25</u>

.

.

PROC./WORK PLAN NO	PROCED	IRE/WORK PLAN TITLE:	PAGE:	23 of 52
2403.002		UNIT II 2012 PERFORMANCE TEST ELECTRICAL MAINTENANCE	REV: CHANGE	005 : 02-1
9.6		hat all cell-to-cell and terminal com n or equal to 150 mocro-ohms.	nections are	<u>Cla 11-25-</u>
9.7		hat the battery log book has been upda the following:	ated to	
	9.7.1	Date this procedure was performed.		Cu 11-25.
	9.7.2	Time this procedure was started.		Clar 11-25.
	9.7.3	Time this procedure was completed.		Ul 11-25
	9.7.4	Any problems encountered and correct taken.	tive action	<u>Clu 11-25</u>
	9.7.5	Performer of this procedure.		<u>Cl/11.25</u>
9.8	Notify t Discharg	ne Unit 2 Operations S/S that 2D12 Per e Test is complete.	rformance	<u>Cla 11-2</u> 5.
9.9	Perform ; and reco	post-test check of torque wrenches on d the following:	Torque Tester	
	Equip. N	. <u>TT-OOH</u> Cal. Due Dat	te <u>9/3/99</u>	
	Equip. N	Cal. Due Dat	te//	<u>Clu 11-25</u>
9.10	checked	pints and tolerances in this procedure and are verified to be within the limit and any exceptions are noted.	e have been its herein utto herein intenance Supe	<u>//-25-</u>
10.0 ATTACHM	ent's and i			
10.1	ATTACHME	TS		
	10.1.1	Attachment 1 - Discharge Current Co Temperature	rrection K Fac	ctor For
	10.1.2	Attachment 2 - Jumpering Low Voltag	e Cells	
	10.1.3	Attachment 3 - Calculation for Tota	l Down Time	
	10.1.4	Data Sheet 1 - "As Found" Resistanc	<u>م</u>	

- 10.1.5 Data Sheet 2 Performance Discharge Test Battery Bank Voltage
- 10.1.6 Data Sheet 3 "As Left" Resistance
- 10.2 FORMS
 - 10.2.1 None

PROCEDURE/WORK PLAN TITLE:

2403.002

UNIT II 2D12 PERFORMANCE TEST

ELECTRICAL MAINTENANCE

PAGE: REV: CHANGE:

24 of 52 005 : 02-1

ATTACHMENT 1

DISCHARGE CURRENT CORRECTION FACTOR K FOR TEMPERATURE

	Temperature	
(F)	-	Factor K
··		
	•	
Cell No. Temp. (F)	Average	_
	Temp. (F)	Factor K
_1	62	1.098
<u> </u>	63	1.098
12 77	64	1.086
<u>18</u> <u></u> <u>17</u>	65	1.080
	66	1.080
30 71	67	1.072
	68	1.054
43 77	69	1.048
48 77	70	
	70 71	1.040
	72	1.034
Temp.	72	1.029
Total for	74	1.023
10 cells = 176		1.017
	75	1.011
	76	1.006
	77	1.000
Temp. Total for 10 cells	78	0.994
= Avg. Temp	. 79	0.987
10	80	0.980
	81	0.976
Average Temp. =	82	0.972
	83	0.968
Req. Factor $K = 1.0$	84	0.964
	85	0.960
	86	0.956
	87	0.952
	88	0.948
	89	0.944
	90	0.940
	91	0.938
	92	0.936
Test Equip. #	Cal. Due: _//-	
Performed By		<u>199</u>
2 August	/ / 4	, 99
Second Person Verifier		

UNIT II 2D12 PERFORMANCE TEST ELECTRICAL MAINTENANCE

PROCEDURE/WORK PLAN TITLE:

ATTACHMENT 2

Page 1 of 5

PERFORMANCE TEST CELL JUMPERING PROCEDURE

NOTE

This attachment provides a method to BY-PASS a low voltage cell.

Maintenance Engineering shall review Attachment 2 if attachment is required for procedure completion.

NOTE

A Second Person Verifier shall verify the content of steps 10, 11, and 15.

NOTE Two - 250 mcm cables with 3/8 - 1/2 lug, cables approximate length is 10 feet will be needed for the cell jumpering. These are available in the Maintenance Facility Battery Storage Room.

- 1. Record the number of the cell(s) at or below 0.75 VDC, the Stop Time, the Cell Voltage and the Bank Voltage below and on Attachment 3.
 - Cell Number:_____ Cell Voltage:_____ Stop Time:_____ Bank Voltage:_____
 - Cell Number:_____ Cell Voltage:_____ Stop Time:_____ Bank Voltage:_____

Cell Number:_____ Cell Voltage:_____ Stop Time:_____ Bank Voltage:_____

Cell Number:_____ Cell Voltage:_____ Stop Time:_____ Bank Voltage:_____

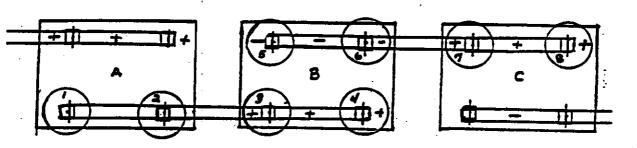
NOTE

At this time the Cognizant Supervisor shall make the judgement to determine if the cell(s) should be jumpered or to continue the test with the cell(s) installed. This judgement should be based on Total Test Time, overall Bank Voltage, and the number of cells at or below 0.75 volts.

2. IF the Cognizant Supervisor's judgement is to continue the test with the cell(s) installed,

THEN restart the discharge at the calculated current and record the restart time below and on Attachment 3. Continue recording data on Data Sheet 2 and discharge the bank until the bank voltage approaches 105 vdc, N/A Steps 3 through 11 of this attachment and continue with Step 12.

IF the Cognizant Supervisor's judgement is to jumper the cell(s), THEN mark "Restart Time" below N/A and continue with Step 3.

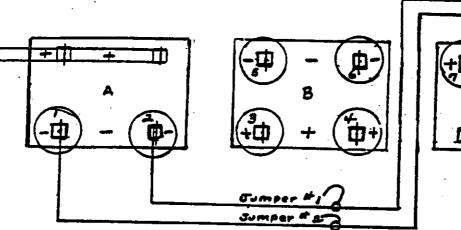

Restart Time:_____

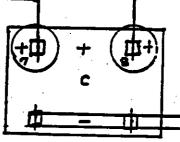
Cognizant Supervisor Date

ATTACHMENT 2

Page 2 of 5

3. Open 2D52 Disconnect Switch.


Figure 1


WARNING Jumpering, shorting or connecting the positive and negative lugs of a single cell may cause equipment damage or personnel injury.

Jumpering of end cell may be accomplished by using the inter-tier or interbank cables.

4. Using Figure 1 as a guide only and presuming "B" is the affected cell then remove bolts and intercell connection straps from the low voltage cell and its adjacent cell terminals.

NOTE Based on which is the low cell you may be jumpering the negative of A to the positive of C. As shown below in figure 2.

	ORK PLAN NO. 103.002	PROCEDURE/WORK PLAN TITLE: UNIT II 2D12 PERFORMANCE TEST ELECTRICAL MAINTENANCE	PAGE: REV: CHANGE:	27 of 52 005 02-1
		ATTACHMENT 2	Page 3 of	£ 5
5.	to the le	50 mcm) jumper from the left negative Battery ft positive Battery C terminal, using the same used in the intercell connection straps.		/
6.	terminal	her (250 mcm) jumper from the right negative F to the right positive Battery C terminal, usir bolts as used in the intercell connection str	ng the same	/
7.		rminal bolts to 165 in/lbs and record below th the recal date:	le torque	
	Torque wr	ench number:		
	Torque va	lue:		
	Recal Dat	e:		/
8.	Discharge	the battery to a new voltage of		
	1	05 - (1.81 x # of Cells Jumpered) - new voltage	ge	
		Example:		
		$105 - (1.81 \times 1 \text{ cell}) = 103.19$	VDC	
		$105 - (1.81 \times 2 \text{ cells}) = 101.38$	VDC	
		105 - (1.81 ×)	_ New Discharg	re Volta
				/
SECO	ND PERSON V	ERIFIER	-	
		Person Verifier shall verify the "New Discharg is correct.	ge Voltage"	/
		Seco	nd Person Veri	fier Da
9.	Close 2D5	2 Disconnect Switch.		/
Γ		CAUTION	·····	
	While d	ischarging, continue to watch for cells fallin	ng below .75 V	DC.
10.	Restart d	ischarge at the new calculated current.		/
		······································		

_'

,

PROC./WORK PLAN NO. 2403.002		PROCEDURE/WORK PLAN TITLE: UNIT II 2D12 PERFORMANCE TEST	PAGE: REV:	28 of 52 005
.=		ELECTRICAL MAINTENANCE	CHANGE:	02-1
·		ATTACHMENT 2	Page 4 of	£ 5
11.		e restart time (below and on Attachment 3), and voltage after the load is applied:	battery	
	Discharge	started at Amps		
	Time rest	arted:		
	Overall b	attery terminal voltage VDC		/
SECO:	ND PERSON V	ERIFIER		
	A Second completed	Person Verifier shall verify step 11 was correc	tly	
		Second	d Person Veri	/
12.	battery o	record in the last column of Data Sheet 2, the verall bank voltage and cell voltages in the fi e minimum calculated voltage is reached.		
13.		test and de-energize the test equipment. Recor ttachment 3, on Data Sheet 2 and below:	d the Stop	
	Stop Time	:		/
14.	Open 2D52	disconnect switch.		/
15.	figure th		below to	
	old T _A	Down Time = New T _A		,
6700			•	/
SECO	ND PERSON V			
	A Second correct.	Person Verifier shall verify the "New TA" in st	ep 15 is	/
		Second	d Person Veri	fier Da

•

•

.

	ORK PLAN NO.	PROCEDURE/WORK PLAN TITLE: UNIT II 2D12 PERFORMANCE TEST	PAGE: REV:	29 of 52 005
			CHANGE:	02-1
		ATTACHMENT 2	Page 5 of	5 5
16.	THEN Engi an evalua	were jumpered due to low voltage, neering and the Cognizant Supervisor must be noti tion made of cell condition prior to re-assembly connections.		/
17.		were jumpered, ore battery connections as follows:		
		Clean and neutralize the affected connections usin soda and water.	g baking	
		Coat the connections per C&D Manual (TM C 173.0010 reassemble.) and -	/
18.	THEN torg	were jumpered, we the connections to 165 in/lbs and record below lue used and the recal date of the torque wrench w		
	Torque wr	ench number:		
	Torque va	lue:		
	Calibrati	on due date:	-	
19.	THEN micro	were jumpered, o-ohm the affected connections and record the affe ns on Data Sheet, flagging them as the second "As	ected - Left [®]	/
20.	Mark Step	s 8.3.13 through 8.3.19 N/A and proceed with Step	8.3.20 _	/
		NOTE		

Maintenance Engineering Date

2403.002		W TITLE: 2D12 PERFORMANCE TEST CTRICAL MAINTENANCE	PAGE: REV: CHANGE	30 of 52 005 E: 02-1
	,	ATTACHMENT 3		
	CALCU	LATION FOR TOTAL DOWN TIME		
1. Start Tim	ne, Stop Time	Rilligg		
(A) Star	t Time: <u>135</u> 2	(B) Stop Time:	2210	Rit 11-2
(C) Star	t Time:	(D) Stop Time: _		
(E) Star	t Time:	(F) Stop Time: _		
(G) Star	t Time:	(H) Stop Time: _		/
SECOND PERSON V	ERIFIER			<u></u>
A Second	Person Verifier s	hall verify the "Start, St	op" time in	
step 1 is	correct.	74	Roug	/1-21-
		() S	econd Person Ve	
	n Time (in minutes	(B) = (C - B) + (E - D) + (C - D)	G - F)	
Total Down				
(in minuto	es) = (',	· + () =	
) + () + () =	/
SECOND PERSON V	ERIFIER			/
SECOND PERSON V	<u>ERIFIER</u> Person Verifier sł	<pre>h + () + () hall verify the *Start, St</pre>		
SECOND PERSON VI	<u>ERIFIER</u> Person Verifier sł	hall verify the "Start, St		//
SECOND PERSON VI	<u>ERIFIER</u> Person Verifier sh correct.	hall verify the "Start, St	op" time in	/ rifier Date
SECOND PERSON VI A Second D step 1 is 3. Old T _A Cal	<u>ERIFIER</u> Person Verifier sh correct.	hall verify the "Start, St Se	op" time in	/ rifier Date
SECOND PERSON VI A Second D step 1 is 3. Old T _A Cal Old T _A = (ERIFIER Person Verifier sh correct. culation	nall verify the "Start, St Se Time)	op" time in	/rifier Date
SECOND PERSON VI A Second D step 1 is 3. Old T _A Cal Old T _A = (ERIFIER Person Verifier sh correct. .culation A) - (Final Stop	nall verify the "Start, St Se Time)	op" time in	/
SECOND PERSON VI A Second J step 1 is 3. Old T_A Cal Old $T_A = ($ Old $T_A =$ SECOND PERSON VE	ERIFIER Person Verifier sh correct. .culation A) - (Final Stop ERIFIER	nall verify the "Start, St Se Time)	op" time in cond Person Ver	/rifier Date
SECOND PERSON VI A Second 1 step 1 is 3. Old T_A Cal Old $T_A = ($ Old $T_A =$ SECOND PERSON VE A Second F	ERIFIER Person Verifier sh correct. .culation A) - (Final Stop ERIFIER	all verify the "Start, St Se Time) all verify calculations a:	op" time in cond Person Ver	/
SECOND PERSON VI A Second 1 step 1 is 3. Old T_A Cal Old $T_A = ($ Old $T_A =$ SECOND PERSON VE A Second F	ERIFIER Person Verifier sh correct. .culation A) - (Final Stop ERIFIER	all verify the "Start, St Se Time) all verify calculations a:	op" time in cond Person Ver	/

,

PROCEDURE/WORK PLAN TITLE:

2403.002

UNIT II 2D12 PERFORMANCE TEST ELECTRICAL MAINTENANCE

PAGE: 31 of 52 REV: 005 CHANGE: 02-1

DATA SHEET 1

Page 1 of 9

"AS FOUND"

BATTERY BANK __2D12___

BATTERY RACK	RECORD R	ESISTANCE	
CELL TO CELL			
CONNECTIONS		ONNECTIONS	
	1N1-2P1	1N2-2P2	
1 - 2	23	19	
	2N1-3P1	2N2-3P2	
2 - 3	24	24	
	<u>3N1-4P1</u>	<u>3N2~4P2</u>	
3 - 4	32	18	
	<u>4N1-5P1</u>	4N2-5P2	
4 - 5	22	27	
	5N1-6P1	5N2-6P2	
5 - 6	22	27	
	6N1-7P1	/6N2~7P2	
6 - 7	26	20	
	7N1-8P1	7N2-8P2	
7 - 8	23	22	
	8N1-9P1	8N2-9P2	
8 - 9	23	2/	
	9N1-10P1	9N2-10P2	
9 - 10	21	19	
	_11N1-12P1	11N2-12P2	
11 - 12	28	28	
	_12N1-13P1	12N2-13P2	
12 - 13	24	24	
	<u>_13N1-14P1</u>	13N2-14P2	
13 - 14	24	22	
	_14N1-15P1	14N2-15P2	
14 - 15	21	24	
	_15N1-16P1	15N2-16P2	
15 - 16	27	27	

BATTERY RACK			
CELL TO CELL			
CONNECTIONS		DNNECTIONS	
16 17	<u>_16N1-17P1</u>	16N2-17P2	
16 - 17	26	27	
	<u>17N1-18P1</u>	17N2-18P2	
17 - 18	26	24	
	<u>_18N1-19P1</u>	18N2-19P2	
18 - 19	22	28	
	_19N1-20P1	19N2-20P2	
19 - 20	26	25	
	_21N1-22P1	21N2-22P2	
21 - 22	23	27	
	_22N1-23P1	22N2-23P2	
22 - 23	25	25	
	_23N1-24P1	23N2-24P2	
23 - 24	23	25	
	_24N1-25P1	24N2-25P2	
24 - 25	27	25	
	_25N1-26P1	25N2-26P2	
25 - 26	24	23	
	_26N1-27P1	26N2-27P2	
26 - 27	28	25	
	_27N1-28P1	27N2-28P2	
27 - 28	- 42	21	
	_28N1-29P1	28N2-29P2	
28 - 29	27	26	
	_29N1-30P1	29N2-30P2	
29 - 30	22	23	

PROC./WORK PLAN NO. 2403.002 -

DATA SHEET 1 *AS FOUND*

Page 2 of 9

BATTERY BANK ___2D12___

.

CELL TO CELL IN MICRO-OHMS FOR _CONNECTIONS	BATTERY RACK	RECORD RE	STANCE
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			i
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			3
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	31 - 32	28	2.8
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		_32N1-33P1	32N2-33P2
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	32 - 33	37	29
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		_33N1-34P1	33N2-34P2
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	33 - 34	27	30
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		_34N1-35P1	34N2-35P2
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	34 - 35	27	26
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		_35N1-36P1	35N2-36P2
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	35 - 36	22	23
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		_36N1-37P1	36N2-37P2
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	36 - 37		23
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		_37N1-38P1	37N2-38P2
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	37 - 38		22
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		_38N1-39P1	38N2-39P2
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	38 - 39	21	.19
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		_39N1-40P1	39N2-40P2
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	39 - 40	22	23
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		_41N1-42P1	41N2-42P2
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	41 - 42	28	28
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		_42N1-43P1	42N2-43P2
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	42 - 43	1	22
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		_43N1-44P1	43N2-44P2
44 - 45 <u>26</u> <u>28</u> <u>45N1-46P1</u> <u>45N2-46P2</u>	43 - 44	27	
44 - 45 <u>26</u> <u>28</u> <u>45N1-46P1</u> <u>45N2-46P2</u>	I	44N1-45P1	44N2-45P2
	44 - 45	_	
		_45N1-46P1	45N2-46P2
73 22	45 - 46	23	22

		<u> </u>			
BATTERY RACK	RECORD RE				
CELL TO CELL	IN MICRO-OHMS FOR				
_CONNECTIONS		NNECTIONS			
	<u>_46N1-47P1</u>	46N2-47P2			
46 - 47	23	33			
	_47N1-48P1	47N2-48P2			
47 - 48	28	30			
	_48N1-49P1	48N2-49P2			
48 - 49	28	30			
	_49N1-50P1	49N2-50P2			
49 - 50	27	25			
	51N1-52P1	51N2-52P2			
51 - 52	26	26			
	52N1-53P1	52N2-53P2			
52 - 53	25	26			
	53N1-54P1	53N2-54P2			
53 - 54	20	21			
	_54N1-55P1	54N2-55P2			
54 - 55	28	30			
<u></u>	_55N1-56P1	55N2-56P2			
55 - 56 .	27	23			
	56N1-57P1	56N2-57P2			
56 - 57	22	21			
	57N1-58P1	57N2-58P2			
57 - 58	23	24			

UNIT II 2D12 PERFORMANCE TEST

•

DATA SHEET 1 "AS FOUND"

Page 3 of 9

BATTERY BANK __2D12__

BATTERY RACK CELL TO TERMINAL	
PLATE AND TERMINAL PLATE TO	MICRO OHMS FOR LISTED
CABLE CONNECTIONS	CONNECTIONS
· · · · · · · · · · · · · · · · · · ·	_1P1-TERM. PLT.
TERMINAL PLATE TO	5
CELL # 1	_1P2-TERM. PLT.
	12
	16
TERMINAL PLATE TO	
INCOMING 250 MCM	
CABLE LUGS CELL # 1	/2
	_TERM. PLTLUG#3
	12
	_10N1-TERM. PLT.
TERMINAL PLATE TO	12
CELL # 10	_10N2-TERM. PLT.
	12
	_TERM. PLTLUG#1
	14
	_TERM. PLTLUG#2
	9
	_TERM. PLTLUG#3
TERMINAL PLATE ON CELL # 10	10
TO INTERTIER 4/0 CABLE LUGS	_TERM. PLTLUG#4
	12
	_TERM. PLTLUG#5
	TERM. PLTLUG#6

PROCEDURE/WORK PLAN TITLE:

•

UNIT II 2D12 PERFORMANCE TEST ELECTRICAL MAINTENANCE

DATA SHEET 1

"AS FOUND"

Page 4 of 9

BATTERY BANK __2D12__

	·
BATTERY RACK CELL TO TERMINAL	
PLATE AND TERMINAL PLATE TO	MICRO OHMS FOR LISTED
CABLE CONNECTIONS	CONNECTIONS
	_11P1-TERM. PLT.
TERMINAL PLATE TO	12
CELL # 11	11P2-TERM. PLT.
	_TERM. PLTLUG#1
	15
	_TERM. PLTLUG#2
	15
	_TERM. PLTLUG#3
TERMINAL PLATE ON CELL # 11	12
TO INTERTIER 4/0 CABLE LUGS	_TERM. PLTLUG#4
	1.4
	_TERM. PLTLUG#5
	13
	TERM. PLTLUG#6
	13
	_20N1-TERM. PLT.
TERMINAL PLATE TO	2
CELL # 20	_20N2-TERM. PLT.
	9
	TERM. PLTLUG#1
	14
TERMINAL PLATE ON CELL # 20	TERM. PLTLUG#2
TO INTERTIER 4/0 CABLE LUGS	11
	TERM. PLTLUG#3
	//

. -.

UNIT II 2D12 PERFORMANCE TEST ELECTRICAL MAINTENANCE

DATA SHEET 1 "AS FOUND"

Page 5 of 9

BATTERY BANK <u>2D12</u>

BATTERY RACK CELL TO TERMINAL	RECORD RESISTANCE IN
PLATE AND TERMINAL PLATE TO	MICRO OHMS FOR LISTED
CABLE CONNECTIONS	CONNECTIONS
	_TERM. PLTLUG#4
]/
TERMINAL PLATE ON CELL # 20	TERM. PLTLUG#5
TO INTERTIER 4/0 CABLE LUGS	9
	_TERM. PLTLUG#6
	12
	_21P1-TERM. PLT.
TERMINAL PLATE TO	//
CELL # 21	_21P2-TERM. PLT.
	11
	_TERM. PLTLUG#1
	16
	_TERM. PLTLUG#2
	14
	_TERM. PLTLUG#3
TERMINAL PLATE ON CELL # 21	13
TO INTERTIER 4/0 CABLE LUGS	_TERM. PLTLUG#4
	15
	TERM. PLTLUG#5
	13
	_TERM. PLTLUG#6
)0
	_30N1-TERM. PLT.
TERMINAL PLATE TO)/
CELL # 30	_30N2-TERM. PLT.
	14

2403.002

UNIT II 2D12 PERFORMANCE TEST ELECTRICAL MAINTENANCE

DATA SHEET 1

Page 6 of 9

"AS FOUND"

BATTERY BANK 2012

BATTERY RACK CELL TO TERMINAL	PECOPD PECTODANCE IN
	MICRO OHMS FOR LISTED
PLATE AND TERMINAL PLATE TO	
CABLE CONNECTIONS	CONNECTIONS
	_TERM. PLTLUG#1
TERMINAL PLATE TO	_TERM. PLTLUG#2
OUTGOING 250 MCM CABLE LUGS CELL # 30	14
	_TERM. PLTLUG#3
	14
TERMINAL PLATE TO	19
CELL # 31	
	- 8
	TERM. PLTLUG#1
	18
I TERMINAL PLATE TO	
INCOMING 250 MCM	
CABLE LUGS CELL # 31	19
	_TERM. PLTLUG#3
	16
	_40N1-TERM. PLT.
TERMINAL PLATE TO	12
CELL # 40	_40N2-TERM. PLT.
·	7
	_TERM. PLTLUG#1
· · ·	10
	_TERM. PLTLUG#2
TERMINAL PLATE ON CELL # 40	8
TO INTERTIER 4/0 CABLE LUGS	_TERM. PLTLUG#3
	7
	_TERM. PLTLUG#4
	//

UNIT II 2D12 PERFORMANCE TEST ELECTRICAL MAINTENANCE

DATA SHEET 1 "AS FOUND"

Page 7 of 9

Ŋ.

BATTERY BANK __2D12__

BATTERY RACK CELL TO TERMINAL	RECORD RESISTANCE IN
PLATE AND TERMINAL PLATE TO	MICRO OHMS FOR LISTED
CABLE CONNECTIONS	CONNECTIONS
	_TERM. PLTLUG#5
TERMINAL PLATE ON CELL # 40	10
TO INTERTIER 4/0 CABLE LUGS	_TERM. PLTLUG#6
	_41P1-TERM. PLT.
TERMINAL PLATE TO	8
CELL # 41	_41P2-TERM. PLT.
	15
	TERM. PLTLUG#1
	18 -
	_TERM. PLTLUG#2
	17
	TERM. PLTLUG#3
TERMINAL PLATE ON CELL # 41	13
TO INTERTIER 4/0 CABLE LUGS	_TERM. PLTLUG#4
	18
,	TERM. PLTLUG#5
	17
	_TERM. PLTLUG#6
	13
	_50N1-TERM. PLT.
TERMINAL PLATE TO	18
CELL # 50	_50N2-TERM. PLT.
	14
	_TERM. PLTLUG#1
TERMINAL PLATE CELL # 50	17
INTERTIER 4/0 CABLE LUGS	_TERM. PLTLUG#2
	11
	//

PROC./WORK PLAN NO. 2403.002

PROCEDURE/WORK PLAN TITLE:

UNIT II 2D12 PERFORMANCE TEST ELECTRICAL MAINTENANCE

DATA SHEET 1

"AS FOUND"

.Page 8 of 9

BATTERY BANK __2D12__

BATTERY RACK CELL TO TERMINAL	
PLATE AND TERMINAL PLATE TO	
CABLE CONNECTIONS	MICRO OHMS FOR LISTED
CABLE CONNECTIONS	CONNECTIONS
	_TERM. PLTLUG#3
	<u> //</u>
	_TERM. PLTLUG#4
TERMINAL PLATE ON CELL # 50	14
TO INTERTIER 4/0 CABLE LUGS	_TERM. PLTLUG#5
	9
· ·	/ TERM. PLTLUG#6
	15
	15
TERMINAL PLATE TO CELL # 51	
	15
	_TERM. PLTLUG#1
	_TERM. PLTLUG#2
	_TERM. PLTLUG#3
TERMINAL PLATE ON CELL # 51	11
TO INTERTIER 4/0 CABLE LUGS	_TERM. PLTLUG#4
	15
	_TERM. PLTLUG#5
	10
•	_TERM. PLTLUG#6
	9
TERMINAL PLATE TO	13
CELL # 58	_58N2-TERM. PLT.
	15
	I

PROC./WORK PLAN NO.	PROCEDURE/WORK PLAN TITLE:	PAGE:	39 of 52
2403.002	UNIT II 2D12 PERFORMANCE TEST	REV:	005
	ELECTRICAL MAINTENANCE	CHANGE:	02-1

DATA SHEET 1

Page 9 of 9

.

"AS FOUND"

BATTERY BANK __2D12___

BATTERY RACK CELL TO TERMINAL	RECORD RESISTANCE IN
PLATE AND TERMINAL PLATE TO	MICRO OHMS FOR LISTED
CABLE CONNECTIONS	CONNECTIONS
	_TERM. PLTLUG#1
	17
TERMINAL PLATE TO	_TERM. PLTLUG#2
OUTGOING 250 MCM CABLE LUGS CELL #58	16
	_TERM. PLTLUG#3
	17

.

COMMENTS: ___

1-18-99 Performed by:.... Date Second Person Verifier facto 99 QC Witnessed by:...(. Date - 1

PROCEDURE/WORK PLAN TITLE:

UNIT II 2D12 PERFORMANCE TEST ELECTRICAL MAINTENANCE

DATA SHEET 2

Page 1 of 4

Performance Discharge Test Battery Bank and Cell Voltages

Battery Bank 2D12 Start Time _____357

.

Cel1			1 Hour		2 Hours	1	3 Hours		4 Hours
_No.	30 Min.	1 Hour	30 Min.	2 Hours		3 Hours	30 Min.	4 Hours	
1	198	197	1.91	1.96	1.96	1.95	1.94	1.94	1.93
2	1.98	1.97	194	196	1.96	1.95	1.44	194	1.93
3	1.98	1.48	191	1.96	1.96	1.95	195	1.9404	
4	1.98	1.98	1.98	1.97	1.91	1.96	1.95	1.935	1.94
5	199	1.98	1.98	1.97	1.97	196	1.96	1.95	199
6	198	1.98	1.97	1.92	1.96	1.95	1.95	1.94	1.93
7	1.98	198	1.98	1.97	1.96	1.9%	1.95	1.95	1.94
8	1.98	199	1.98	1.97	1.96	1.96	1.95	1.95	1.94
9	1.99	1.99	1.98	1.97	1.97	196	1.96	1.95	1.99
10	1.98	1.98	1.97	1.96	1.96	1.95	1.94	1.94	1.93
	1.98	1.98	1.98	1.97	1.97	1.96	1.95	1.95	1.94
_12	1.99	1.98	1.98	1.97	1.91	1.96	1.95	1.95	1.94
13	1.99	1.99	1.98	1.98	1.97	1.96	1.96	1.95	1.95
14	1.99	1.99	1.98	1.98	1.97	1.96	7.96	1.95	1.95
_15	1.99	1.98	1.98	1.97	1.97	1.96	1.95	1.95	1.94
_16	1.98	1.98	1.98	1.97	1.96	1.96	1.95	1.94	1.94
17	1.99	1.99	1.98	1.98	1.97	1.9.6	1.96	1.95	1.94
18	1.98	1.98	1.98	1.97	1.91	1.96	1:25	1.95	1.94
_19	1.98	1.98	1.98	1.97	1.96	1.96	1.95	1.94	1.94
_20	198	1.98	1.98	1.97	1,97	1.96	1.95	1.95	1.94
21	1.99	1.99	1.98	1.97	1.97	1.96	1.96	1.95	1.94
_22 _	199	1.98	1.98	1.97	1:97	1.96	1.96	1.95	1.94
23	1.98	1.98	1.97	1.97	1.96	1.96	1.95	1.94	1.93
24	1,99	1.99	1.98	1.98	1.97	1.96	1.96	1.95	1.94
_25	198	1.98	1.97	1.91	1.96	1.96	1.95	1.95	1.94
_26	198	1.98	1.97	1.91	1.96	1.95	1.95	1.94	1.93
_27	198	1.98	1.97	1.97	1.96	1.96	1.95	1.94	1.93
28	198	198	1.97	1.96	1.96	1.95	1.95	1.94	1.93
_29	1.98	198	1.97	1.97	1.96	1,96	1.95	1.94	1.94
_30	1.99	1.99	1.98	1.98	1.97	1.96	1,96	1.95	1.95
31	1.99	1.98	1.98	1.97	1.97	1.96	1.96	1.95	1.94
32	1.98	1.98	1.98	1.97	1.97	1.96	1.95	1.95	1.94
Bank	//ŝ, /	114.9	114.7	1/4.3	114.0	1121	113.3	ina	
_Volts	110, 1	112.4	117. /	11:5	1/7.0	113.6	113.3	112.9	112.5

Performed by

<u>Pick / fall</u> Signature

Date

1 1-20-99

÷

PROCEDURE/WORK PLAN TITLE:

2403.002

UNIT II 2D12 PERFORMANCE TEST ELECTRICAL MAINTENANCE

DATA SHEET 2

Page 2 of 4

Performance Discharge Test Battery Bank and Cell Voltages

Battery Bank 2D12

Cell	l	1	1 Hour		2 Hours	<u></u>	3 Hours	 I	14 TIONNE	ı
No.	30 Min.	1 Hour	1	2 Hours	30 Min.	3 Hours	1	4 Hours	4 Hours	
33	199	1.98	198	191	197	1.96	1.95	1.95	1.94	
34	1.98	1.98	1.97	1.97	1.96	1.95	1.95	1.94	1.93	
35	1.98	1.99	1.98	1.98	1.97	197	196	1.95	1.95	ł
36	1.99	1.97	1.9875		1.96	1.95	1.95	1.94	1.93	!
	1.98	1.98	1.93	197	1.96	1.96	1.95	1.94	294	ł
38	1.98	1.98	7.97	197	1.96	1.96	1.95	1.94	1.94	}
39	1.98	198	1.98	197	1.96	1.96	1.95	1.94	1.94	
40	1.99	1.98	1.97	1.97	1.96	1.95	1.95	7.94	1.93	
41	1.99	198	1.98	1.97	1.96	1.96	1.95	1.95	1.94	ł
42	1.98	1.98	1.97	1.97	1.96	196	195	194	1,93	ĺ
43	1.99	1.98	1.98	1.97	197	196	1.96	1.95	1.94	Į.
44	1.98	1.98	198	1.97	1.96	1.96	1.95	1.94	1.94	i i
45	198	1.98	1.9.673	7.96	1.96	1.95	1.95	1.94	1.93	
46	1.99	1.98	178	1.97	1.97	1.96	1.95	1.95	1.94	
47	1.98	1.98	1.9 8	1.97	1.96	1.96	1.95	1.94	194	İ.
	1.99	1.99	1.98	1.98	1.97	1.96	1.96	1.95	7.94	
49	1.98	1.98	1.98	1.97	1.97	1.96	1.95	1.95	1.94	
_50	129	1.99	1.98	1.98	1.97	1.96	1.96	1.95	1.94	ĺ
51	198	1.98	1.92	1.97	1.96	196 T	1.95	1.94	1.93	
_52	1.98	1.98	1.97	1.97	1.96	1.95	1.95	1.94	1.93	
_53	199	1.98	1.98	1.97	1.96	1.96	1.95	1.94	1.9.4	ĺ
54	1.98	1.98	1.98	1.97	1.96	1.96	1.95	1.94	1.94	
_55	1.98	1.98	197	1.97	1.96	1.95	1.95	1.94	1.93	
56	1.98	1.98	1.97	1.97	1.96	1.96	1.95	1.94	193	
57	129	198	1.98	1.97	1.97	1.96	1.95	1.95	1.94	I
<u>_58</u>	7.98	1.48	1.97	1.97	1.96	1.95	1.95	1.94	1.93	i
Disch		A A	~ ~ ^	_	259					
Rate	259	259	258	260	295	258	258	257	256	
(Amps)					R.H 1-209			_		
				.			RU	1.01	/	
				Perf	ormed by		Teste/	ar		·7

Performed by .

Signature

Date

Test Equip: BCT-003

Cal. Due: 1-19-00

1

0. PROCEDURE/WORK PLAN TITLE:

, ·

2403.002

UNIT II 2D12 PERFORMANCE TEST ELECTRICAL MAINTENANCE

 PAGE:
 42 of 52

 REV:
 005

 CHANGE:
 02-1

DATA SHEET 2

Page 3 of 4

Performance Discharge Test Battery Bank and Cell Voltages

Battery Bank 2D12

Cell	1	5 Hours		6 Hours	·	7 Hours	· · _ · _ · _ · · · · ·	8 Hours	
_No.	5 Hours		6 Hours	30 Min.	7 Hours		8 Hours	30 Min.	9 HOURS
1	1.92	1.91	1.90	189	1.88	7.87	1.86	<u>50 mm</u> .	J HOUIS
2	1.92	1.91	1.90	1.89	1 88	1.82	1.85		
3	192	1.91	1.91	1.90	1.88	1.87	186		······
4	1.93	1.92	1.91	1.90	189	1.88	1.81		
5	193	1.92	1.92	1.91	100	189	1.87		
6	1.93	192	1.9	1.90	189	1.88	1.87		
7	1.93	1.92	7.91	1.91	1.90	1.88	1.87		
8	1.93	1.92	1.91	1.90	1.89	1.88	1.87		
9	1.94	1.93	1.92	1.91	190	1.89	1.88		
10	1.92	1.91	1.90	1.89	1.88	1.87	1.85		
	1.93	192	1.91	1.91	1.90	1.88	1.87		
12	1.93	1.92	691	1.90	1.89	1.88	1.87		
13	1.94	1.93	1.92	1.91	1.90	1.89	1.88		
14	1.94	1.93	1.92	1.91	1,90	1.89	1.88		
15	1.43	1.92		1.91	1.95	1.89	1.87		
16	1.43	1.92	1.91	,.90	1.89	1.88	1.87		
17	1.94	1.93	1.92	1.91	1.90	1.89	1.88		
<u>18</u>	1.93	1.92	1.92	1.91	1.90	1.89	1.87		
19	1.93	1.92	1.91	190	1.89	1.88	1.87		
	1.93	1.92	1.91	1.90	1.89	1.8.8	1.87		
$\frac{21}{22}$	1.94	1.93	1.92	191	1.90	1.89	1.88		
22	1.93	1.93	1.42	1.91	1,90	1.89	1.87		
23	1.93	1.92	1.91	190	1.89	187	1,86		
24	1.94	1.93	1.92	1.91	1.90	1.89	1.88		
25	1.93	1.92	1.91	1.90	1.89	1.88	1.87	·	
<u>26</u> 27	1.92	1.92	1.91	190	1.89	1.87	1.86		
27	1.93	191	1.91	1.90	1.89	1.88	1.86	···	
29	1.93	192	1.91	190	1.89	1.87	1.86		
	1.93	1.43	1.91	1.90	1.89	1.88	1.87		
Bank			1.92	1.91	1.90	1.89	1.88		Ì
_Volts	112.0	111.5	111.0	110.4	109.8	109.2	10B.5		l

Performed by

1-21-99

Signature

Date

NOTE

Terminal voltage of 105 volts may be reached before a hour or ½ hour reading can be taken. Indicate the number of minutes past the hour or half hour above the column where the last reading was taken at test completion.

O. PROCEDURE/WORK PLAN TITLE:

2403.002

UNIT II 2D12 PERFORMANCE TEST ELECTRICAL MAINTENANCE

 PAGE:
 43 of 52

 REV:
 005

 CHANGE:
 02-1

DATA SHEET 2

Page 4 of 4

Performance Discharge Test Battery Bank and Cell Voltages

Battery Bank 2D12

Bank Voltage: <u>/08.5</u> Start Time: <u>1357</u> Stop Time: <u>2210</u>

Cell	·····	5 Hours		6 Hours		7 Hours		8 Hours	ī I
No.	5 Hours	30 Min.	6 Hours	30 Min.	7 Hours	30 Min.	8 Hours		9 Hours
31	1.93	1.92	1.91	190	1.89	1.88	1,87		
32	1.93	1.92	1.91	1.90	1.89	1.88	1.87		
33	1.93	1.92	1.92	1.91	1.90	1.89	1,87	 -	
34	1.93	1.92	1.91	1.90	1.89	1.88	1,86		i
35	1.94	1.93	1.92	1.91	1.90	1.89	1.87	[[i
36	1.92	1.92	1.91	1.90	1.89	1.88	1.86		
37	1.93	1.97	1.91	1.90	1.89	1.88	1,87		
38	1.93	192	1.91	1.90	1.90	1.88	1.87		
39	1.93	1.92	1.91	190	1.89	1.88	1.87		
40	1,93	1.92	1.91	1.90	1.89	1.88	1.86		
41	1.93	1.92	1.91	1.90	1.89	1.88	1.87		
42	1.93	1.92	1.91	1.90	1,89	1.88	1.86		
43	1.93	1.93	1.92	1.91	1.90	1.89	1.88		
44	1.93	1.72	1.91	1.90	1.99	188	1.87		
45	192	1.91	1.90	1.89	1.88	1.87	1.86		
46	1.93	1.92	1.91	1.91	1.90	1.88	1.87		
47	1.93	1.92	1.91	1.90	1.89	1.88	1.87		
48	1.93	1.93	1.92	191	1.90	1.89	1.88		
49	1.93	1.92	1.91	190	1.89	1.88	1.87		[
50	1.94	1.93	1.92	1.91	190	1.82	.88		
51	1.93	1.92	7.91	1.90	1.89	1.88	1.87		
52	1.92	1.92	1.91	1.90	1.89	1.88	1.96		
53	1.93	1.92	1.91	1.90	1.89	1.88	1.87		
54	1.93	1.92	1.21	190	1.89	1.88	1.87		
<u> </u>	1.92	1.92	1.91	1.90	1.89	1.88	1.86		
56	193	1.92	191	190	1.89	188	1.86		[
57	1.93	1.42	1.91	1.90	1.89	1.88	1.87		
<u>58</u>	1.93	1.92	1.91	1.90	1.89	1.88	1.86	ŀ	
Disch	~~~~	200	2-0	257	255	0-11	0		
Rate	258	257	250	275- R.d 1-2049	255	254	252		
(Amps)				K.A 1-20-99	· · · · · · · · · · · · · · · · · · ·	·····		701	L]

Performed by

Teste Hell) Signature

Time

NOTE

Terminal voltage of 105 volts may be reached before a hour or % hour reading can be taken. Indicate the number of minutes past the hour or half hour above the column where the last reading was taken at test completion.

PROCJWORK PLAN NO. PROCEDURE/WORK PLAN TITLE: '44 of 52 PAGE: 005 2403.002 **REV:** UNIT II 2D12 PERFORMANCE TEST ı. ELECTRICAL MAINTENANCE CHANGE: 02-1

Page 1 of 9

DATA SHEET 3

"AS LEFT"

BATTERY BANK __2D12__

CELL TO CELL CONNECTIONS IN MICRO-OHMS FOR LISTED CONNECTIONS $1 - 2$ $2H$ $2H$ $1 - 2$ $2H$ $2H$ $2 - 3$ $2H$ $2H$ $2 - 3$ $2H$ $2H$ $3 - 4$ $2H$ $2H$ $4 - 5$ $2R$ $3S$ $5 - 6$ $2R$ $3S$ $5 - 6$ $3R$ $2S$ $5 - 6$ $3R$ $2S$ $5 - 6$ $3R$ $2S$ $6 - 7$ $2I$ $2S$ $7 - 8$ $4O$ $2G$ $8 - 9$ 32 9 $9 - 10$ $2Q$ $2S$ $11 - 12$ $2Q$ $2S$ $12 - 13$ $2I$ $2I$ $13 -$					
$\begin{array}{c c} \underline{\text{CONNECTIONS}} & \underline{\text{LISTED CONNECTIONS}} \\ \underline{1 - 2} & \underline{2 + 3} \\ 2 - 3 & \underline{2 + 2} \\ 2 - 3 & \underline{2 + 2} \\ 2 - 3 & \underline{2 + 2} \\ 2 & \underline{2 + 3} \\ 3 - 4 & \underline{2 + 2} \\ 2 & \underline{2 + 2} \\ 4 - 5 & \underline{2 + 2} \\ 2 & \underline{2 + 2} $	BATTERY RACK				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		IN MICRO-OHMS FOR			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	_CONNECTIONS				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1 0	1N1-2P1	<u>1N2-2P2</u>		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1 - 2	24	24		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		<u>2N1-3P1</u>	2N2-3P2		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	2 - 3	24	23		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		3N1-4P1	3N2-4P2		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	3 - 4	24	24		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		4N1-5P1	4N2-5P2		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	4 - 5	28	23		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		5N1-6P1	5N2-6P2		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	5 - 6	23	22		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		6N1-7P1			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	б 7	<u> </u>	$\overline{)}$		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		7N1-8P1	7N2-8P2		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	7 - 8	40	26		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		8N1-9P1	8N2-9P2		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	8 - 9	22	19		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		9N1-10P1	9N2-10P2		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	9 - 10	22	22		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		_11N1-12P1	11N2-12P2		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	11 - 12	ລວ			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		12N1-13P1			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	12 - 13		<u> </u>		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	İ	<u></u>	23		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		_13N1-14P1	13N2-14P2		
14 - 15 20 18	13 - 14	21	21		
14 - 15 20 18		_14N1-15P1	14N2-15P2		
	14 - 15	20	18		
15N1-16P1 15N2-16P2		_15N1-16P1	15N2-16P2		
15 - 16 23 24	15 - 16	\sim	74		

BATTERY RACK		ESISTANCE	
CELL TO CELL			
_CONNECTIONS		ONNECTIONS	
1 10 10	_16N1-17P1	16N2-17P2	
16 - 17	22	24_	
	<u>_17N1-18P1</u>	<u>17N2-18P2</u>	
17 - 18	23	19	
_	_18N1-19P1	18N2-19P2	
18 - 19	20	22	
	_19N1~20P1	19N2-20P2	
19 - 20	18	20	
	_21N1-22P1	21N2-22P2	
21 - 22	24	23	
	_22N1~23P1	22N2-23P2	
22 - 23	19	24	
	_23N1-24P1	23N2-24P2	
23 - 24	26	00	
24 - 25	_24N1~25P1	24N2-25P2	
	<u>24</u>	22	
	<u>_25N1-26P1</u>	25N2-26P2	
25 - 26	24 24	21	
	_26N1-27P1	26N2-27P2	
26 - 27	24	25	
	_27N1-28P1	27N2-28P2	
27 - 28	39	21	
,	_28N1-29P1	28N2-29P2	
28 - 29	22	26	
j	_29N1-30P1	29N2-30P2	
29 - 30			
	_22	23	

2403.002

PROCEDURE/WORK PLAN TITLE:

2

UNIT II 2D12 PERFORMANCE TEST ELECTRICAL MAINTENANCE

.

DATA SHEET 3

"AS LEFT"

Page 2 of 9

BATTERY BANK ____2D12____

BATTERY RACK	RECORD RESISTANCE		
CELL TO CELL	IN MICRO-OHMS FOR LISTED CONNECTIONS		
_CONNECTIONS	<u></u>		
31 - 32	<u>-31M1-32F1</u>	<u>- 5162 - 5212</u>	
2C - 1C	26	26_1	
	_32N1-33P1	32N2-33P2	
32 - 33	26	$\overline{)}$	
	<u> </u>	$-\alpha$	
	<u>_33N1-34P1</u>	33N2-34P2	
33 - 34	24	32	
	34N1-35P1	34N2-35P2	
34 - 35	_24MT_22LT		
24 - 22	30	21_	
	_35N1-36P1	35N2-36P2	
35 - 36	2 W	$\overline{)}$	
Ì	<u></u>	<u> </u>	
	<u>_36N1-37P1</u>	36N2-37P2	
36 - 37	26	25	
		37N2-38P2	
37 - 38			
	25	26	
	_38N1-39P1	38N2-39P2	
38 - 39	25	$\cap 2$	
		$-\alpha$	
	_39N1-40P1	39N2-40P2	
39 - 40	l as	29	
	_41N1-42P1	41N2-42P2	
41 - 42	0.0	$\overline{)}$	
	<u>_25</u> _	a k	
	_42N1-43P1	42N2-43P2	
42 - 43	120	19	
	_43N1-44P1	43N2-44P2	
43 - 44			
40 - 44	1 23	23	
	44N1-45P1	44N2-45P2	
44 - 45	120	100	
	$\underline{a0}$	dd_	
ļ .	_45N1-46P1	45N2-46P2	
45 - 46	21	122	

CONNECTIONSLISTED CONNECTIONS46 - 47 2 2 $46 - 47$ 2 2 $47 - 48$ 2 2 $47 - 48$ 2 2 $48 - 49$ 49 47 $49 - 50$ 2 48 $49 - 50$ 2 48 $51 - 52$ 2 49 $51 - 52$ 2 $51 - 52$ 2 $51 - 52$ 2 $51 - 52$ 2 $51 - 52$ 2 $51 - 52$ 2 $51 - 52$ 2 $51 - 52$ 2 $51 - 52$ 2 $51 - 52$ 2 $51 - 52$ 2 $52 - 53$ 2 2 2 $53 - 54$ 2 2 2 $55 - 56$ 2 2 3 $56 - 57$ 2 3 2 $56 - 57$ 2 3 2 $57N1 - 58P1$ $57N2 - 58P2$	BATTERY RACK	RECORD RESISTANCE		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	CELL TO CELL			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	_CONNECTIONS			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		_46N1-47P1	<u>46N2-47P2</u>	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	46 - 47	22	25	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		47N1-48P1	47N2-48P2	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	47 - 48	23	22	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		48N1-49P1	48N2-49P2	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	48 - 49	19	23	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	<u></u>	49N1-50P1	49N2-50P2	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	49 - 50	24	25	
51 - 52 $31 - 52$ $52 - 53$ $32 - 53$ $53 - 54$ $53 - 54$ $54 - 55$ $54 - 55$ $55 - 56$ $55 - 56$ $56 - 57$ $57 - 56$ $57 -$		51N1-52P1	51N2-52P2	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	51 - 52	21	26	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		52N1-53P1	52N2-53P2	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	52 - 53	22	22	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		53N1-54P1	53N2-54P2	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	53 - 54	23	23	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$,	54N1-55P1	54N2-55P2	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	54 - 55	22	30	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		55N1-56P1	55N2-56P2	
56 - 57	55 - 56	28	20	
56 - 57 <u>2</u> <u>57N1-58P1</u> <u>57N2-58P2</u>	1	56N1-57P1	56N2-57P2	
	56 - 57	21	25	
		57N1-58P1	57N2-58P2	
	57 - 58	20	24	

LAN NO. PROCEDURE/WORK PLAN TITLE:

2403.002

UNIT II 2D12 PERFORMANCE TEST ELECTRICAL MAINTENANCE

DATA SHEET 3

Page 3 of 9

"AS LEFT"

۱

!

BATTERY BANK 2D12_

BATTERY RACK CELL TO TERMINAL	RECORD RESISTANCE IN
PLATE AND TERMINAL PLATE TO	MICRO OHMS FOR LISTED
CABLE CONNECTIONS	CONNECTIONS
	_1P1-TERM. PLT.
	6
TERMINAL PLATE TO	102 0000
CELL # 1	_1P2-TERM. PLT.
	1 1
	_TERM. PLTLUG#1
	15
TERMINAL PLATE TO	_TERM. PLTLUG#2
INCOMING 250 MCM	
CABLE LUGS CELL # 1	1.1
	_TERM. PLTLUG#3
	14
· · · · · · · · · · · · · · · · · · ·	_10N1-TERM. PLT.
TERMINAL PLATE TO	9
CELL # 10	_10N2-TERM. PLT.
	11
	_TERM. PLTLUG#1
	20
	_TERM. PLTLUG#2
	0
	9
Ň	_TERM. PLTLUG#3
	16
TERMINAL PLATE ON CELL # 10 TO INTERTIER 4/0 CABLE LUGS	TERM. PLTLUG#4
TO INTERTIER 4/0 CABLE LOGS	
	1 24
	_TERM. PLTLUG#5
	16
	TERM. PLTLUG#6
	1 /8

PROCJWORK PLAN NO. 2403.002

PROCEDURE/WORK PLAN TITLE: UNIT II 2D12 PERFORMANCE TEST ELECTRICAL MAINTENANCE

DATA SHEET 3

Page 4 of 9

"AS LEFT"

BATTERY BANK _______

	DECORD RECTORNOR IN
BATTERY RACK CELL TO TERMINAL	RECORD RESISTANCE IN MICRO OHMS FOR LISTED
PLATE AND TERMINAL PLATE TO	CONNECTIONS
CABLE CONNECTIONS	_11P1-TERM. PLT.
TERMINAL PLATE TO	35
CELL # 11	_11P2-TERM. PLT.
{	_TERM. PLTLUG#1
,	1
-	TERM. PLTLUG#2
	TERM. PLTLUG#2
	/8
· · ·	_TERM. PLTLUG#3
TERMINAL PLATE ON CELL # 11	18
TO INTERTIER 4/0 CABLE LUGS	TERM. PLTLUG#4
	5 M
	<u> 3' </u>
	_TERM. PLTLUG#5
	20
	_TERM. PLTLUG#6
<u></u>	
	_20N1-TERM. PLT.
	8
TERMINAL PLATE TO CELL # 20	20N2-TERM. PLT.
	_TERM. PLTLUG#1
	9
TERMINAL PLATE ON CELL # 20	TERM. PLTLUG#2
TO INTERTIER 4/0 CABLE LUGS	Q
	_TERM. PLTLUG#3
	10
۱ <u> </u>	-1

.

.

.

PROCEDURE/WORK PLAN TITLE:

DATA SHEET 3

Page 5 of 9

"AS LEFT"

BATTERY BANK __2D12__

	and the second second second second second second second second second second second second second second second
BATTERY RACK CELL TO TERMINAL	RECORD RESISTANCE IN
PLATE AND TERMINAL PLATE TO	MICRO OHMS FOR LISTED
CABLE CONNECTIONS	CONNECTIONS
	_TERM. PLTLUG#4
	14
TERMINAL PLATE ON CELL # 20	_TERM. PLTLUG#5
TO INTERTIER 4/0 CABLE LUGS	<u> </u>
	0
	_TERM. PLTLUG#6
	21P1-TERM. PLT.
· · · · · · · · · · · · · · · · · · ·	H
TERMINAL PLATE TO	
CELL # 21	
	2
	_TERM. PLTLUG#1
	8
	_TERM. PLTLUG#2
	M
	_TERM. PLTLUG#3
TERMINAL PLATE ON CELL # 21	
TO INTERTIER 4/0 CABLE LUGS	_TERM. PLTLUG#4
	6
	_TERM. PLTLUG#5
	H
	TERM. PLTLUG#6
	1
I	_30N1-TERM. PLT.
TERMINAL PLATE TO CELL # 30	_30N2-TERM. PLT.
	1.2
	/ 3

PROCJWORK PLAN NO. 2403.002

DATA SHEET 3

"AS LEFT"

Page 6 of 9

BATTERY BANK __2D12__

BATTERY RACK CELL TO TERMINAL	RECORD RESISTANCE IN
PLATE AND TERMINAL PLATE TO	MICRO OHMS FOR LISTED
CABLE CONNECTIONS	CONNECTIONS
CABLE CONNECTIONS	_TERM. PLTLUG#1
	1 7
TERMINAL PLATE TO	_TERM. PLTLUG#2
OUTGOING 250 MCM	
CABLE LUGS CELL # 30	1 7
	TERM. PLTLUG#3
	11
	_31P1-TERM. PLT.
	- O
TERMINAL PLATE TO	
CELL # 31	_31P2-TERM. PLT.
· · · · · · · · · · · · · · · · · · ·	
	_TERM. PLTLUG#1
	9
	1
TERMINAL PLATE TO	_TERM. PLTLUG#2
INCOMING 250 MCM	1 16
CABLE LUGS CELL # 31	/ 0
	_TERM. PLTLUG#3
	1 6
	40N1-TERM. PLT.
	8
TERMINAL PLATE TO	_40N2-TERM. PLT.
CELL # 40	
· · · · · · · · · · · · · · · · · · ·	_TERM. PLTLUG#1
	14
	_TERM. PLTLUG#2
	12
TERMINAL PLATE ON CELL # 40	/3
TO INTERTIER 4/0 CABLE LUGS	_TERM. PLTLUG#3
	10
	12
İ	_TERM. PLTLUG#4
	10
	i la

PROC./WORK PLAN NO. 2403.002

PROCEDURE/WORK PLAN TITLE: UNIT II 2D12 PERFORMANCE TEST

DATA SHEET 3

ELECTRICAL MAINTENANCE

Page 7 of 9

·

"AS LEFT"

BATTERY BANK <u>2D12</u>

BATTERY RACK CELL TO TERMINAL	• ·
PLATE AND TERMINAL PLATE TO	MICRO OHMS FOR LISTED
CABLE CONNECTIONS	CONNECTIONS
	_TERM. PLTLUG#5
	1 1/
TERMINAL PLATE ON CELL # 40	
TO INTERTIER 4/0 CABLE LUGS	TERM. PLTLUG#6
	10
	41P1-TERM. PLT.
TERMINAL PLATE TO	1 5
CELL $\#$ 41	41P2-TERM. PLT.
	3
	_TERM. PLTLUG#1
	<i></i>
	TERM. PLTLUG#2
	1 a
	_TERM. PLTLUG#3
TERMINAL PLATE ON CELL # 41	
TO INTERTIER 4/0 CABLE LUGS	_TERM. PLTLUG#4
)/
	_TERM. PLTLUG#5
	8
	_TERM. PLTLUG#6
	12
	_50N1-TERM. PLT.
TERMINAL PLATE TO	<u> </u>
CELL # 50	_50N2-TERM. PLT.
	5
	O
,	_TERM. PLTLUG#1
	1 13
TERMINAL PLATE CELL # 50	
INTERTIER 4/0 CABLE LUGS	_TERM. PLTLUG#2
	<i>A</i>

. +

PROC./WORK PLAN NO. 2403.002

UNIT II 2D12 PERFORMANCE TEST ELECTRICAL MAINTENANCE

DATA SHEET 3

"AS LEFT"

Page 8 of 9

BATTERY BANK ____2D12___

BATTERY RACK CELL TO TERMINAL	,
PLATE AND TERMINAL PLATE TO CABLE CONNECTIONS	MICRO OHMS FOR LISTED CONNECTIONS
	_TERM. PLTLUG#3
	TERM. PLTLUG#4
TERMINAL PLATE ON CELL # 50	8
TO INTERTIER 4/0 CABLE LUGS	TERM. PLTLUG#5
	9
	_TERM. PLTLUG#6
	8
	_51P1-TERM. PLT.
TERMINAL PLATE TO	6
CELL # 51	_51P2-TERM. PLT.
	5
	_TERM. PLTLUG#1
	15
	/2
	_TERM. PLTLUG#3
TERMINAL PLATE ON CELL # 51	<i>//</i>
TO INTERTIER 4/0 CABLE LUGS	_TERM. PLTLUG#4
	10
	_TERM. PLTLUG#5
	9
	_TERM. PLTLUG#6
	16
TERMINAL PLATE TO	8
CELL # 58	

PROC.WORK PLAN NO. 2403.002

UNIT II 2D12 PERFORMANCE TEST ELECTRICAL MAINTENANCE

DATA SHEET 3

"AS LEFT"

BATTERY BANK __2D12__

BATTERY RACK CELL TO TERMINAL	RECORD RESISTANCE IN
PLATE AND TERMINAL PLATE TO	MICRO OHMS FOR LISTED
CABLE CONNECTIONS	CONNECTIONS
TERMINAL PLATE TO OUTGOING 250 MCM CABLE LUGS CELL #58	TERM. PLTLUG#1

PROCEDURE/WORK PLAN TITLE:

COMMENTS: ____