

OMAHA PUBLIC POWER DISTRICT

FORT CALHOUN STATION

RADIOLOGICAL ENVIRONMENTAL OPERATING REPORT

TECHNICAL SPECIFICATION 5.9.4.b

January 01, 2003 – December 31, 2003

Cover design is from a map of the Lewis and Clark Expedition of 1803-1806. This summer the town of Fort Calhoun, Nebraska will be the site of one of the National Signature Events in honor of the Expedition Bicentennial.

This report is submitted in accordance with Section 5.9.4.b of the Technical Specifications of Fort Calhoun Station Unit No. 1, Facility Operating License DPR-40 for the period January 01, 2003 through December 31, 2003.

In addition, this report provides any observations and anomalies that occurred during the monitoring period.

Reviewed by:

 \sim

しし

 \cup

 \cup

 ${ \smile }$

しし

し

1

Supervisor-System Chemistry

Approved by:

Hang ichard, Manager-Chemistry

Annual Radiological Environmental Operating Report

In accordance with Technical Specification 5.9.4.b, herein is the Fort Calhoun Station (FCS) Annual Radiological Environmental Operating Report for year 2003. The data provided is consistent with the objectives as specified in Section 5.2.2 of the Offsite Dose Calculation Manual (ODCM), "Annual Radiological Environmental Operating Report." The report is presented as follows:

- 1) An introductory discussion of the implementation of the Radiological Environmental Monitoring Program (REMP), including program observations and environmental impact relevant to the operation of FCS.
- 2) The sample class, sample collection frequency, number of sample locations, and the number of samples collected this reporting period for each parameter is delineated in Table 1.0.
- 3) A statistical evaluation of REMP data is summarized in Table 2.0, in accordance with Regulatory Guide 4.8, Table 1. For each type of sample media and analysis, Table 2.0 presents data separately for all indicator locations, all control (background) locations, and the location having the highest annual mean result. For each of these classes, Table 2.0 specifies the following:
 - a. The total number of analyses
 - b. The fraction of analyses yielding detectable results (i.e., results above the highest Lower Limit of Detection (LLD) for this period
 - c. The maximum, minimum, and average results
 - d. Locations with the highest mean are specified along with their distance and direction from the center of plant containment
- 4) Table 3.0 is a listing of missed samples and explanations
- 5) Table 4.0 is the Radiological Environmental Sampling Locations and Media
- 6) Review of Environmental Inc. Quality Assurance Program
- 7) Appendix A describes the Interlaboratory Comparison Program
- 8) Appendix B describes the vendor Data Reporting Conventions utilized
- 9) Appendix C reports the information required when primary coolant specific activity has exceeded the limits of Technical Specification 2.1.3
- 10) Appendix D is the Sample Location Maps

INTRODUCTION

Radiological Environmental Monitoring Program (REMP) - 2003

This report gives the results of the Radiological Environmental Monitoring Program (REMP) for the year 2003. The REMP is a requirement of the Fort Calhoun Station (FCS) operating license. It was initiated prior to plant operation in 1973.

The main purpose of the REMP is to ensure public safety by monitoring plant discharges and assessing the effect, if any, of plant operations, on the environment. Samples are collected that would account for various exposure pathways such as ingestion, inhalation, adsorption and direct exposure. Samples collected on a regular basis include: air, water, milk, vegetation, fish, sediment, and food crops. Direct radiation is measured by thermoluminescent dosimeters (TLDs). These samples and TLDs are sent to an independent vendor laboratory for analysis. The vendor uses analytical methods that are sensitive enough to detect a level of activity far below that which would be considered harmful. Locations for sample collection are based on radiological and meteorological data from the Annual Effluent Release Report and information obtained from the Environmental Land Use Survey.

Most samples, particularly indicator samples, are collected in a circular area within a five-mile radius of plant containment. (However, control locations are usually outside of five miles.) This circle is divided into sixteen equal sectors, each assigned an identification letter "A" through "R" (note: letters "I" and "O" are not used, as they may be mistaken for the numbers "1" and "O"). Sector "A" is centered on North or zero degrees. Sectors are also given directional labels such as "West-Southwest" ("WSW"). Sample locations are listed by number along with their respective distances and direction from plant containment, in the Offsite Dose Calculation Manual (ODCM).

When assessing sample results, data from indicator locations (those most likely to be effected by plant operations) are compared to those from control locations (those least or not likely to be effected). Results from an indicator location which were significantly higher than those from a control location, could indicate a plant-attributable effect, and could require additional investigation.

The results of the sample analyses, as required by the FCS Offsite Dose Calculation Manual (ODCM), are presented in the attached statistical tables in accordance with Table 1 of Regulatory Guide 4.8, "Environmental Technical Specifications for Nuclear Power Plants." Sample collection was conducted by plant chemistry/environmental staff. A contract vendor (Environmental Inc., Northbrook, Illinois) performed sample analyses, preparation of monthly reports and the statistical evaluation of sample results. All vendor analysis techniques met the sensitivity requirements as stated in the ODCM. \cup \cup \cup \smile \cup し \cup \cup ${ \cup }$ \sim \sim Ú \cup Ú \cup \cup \cup \cup \cup \cup \cup \cup \cup \cup C し \cup C \cup Ú \cup

Results for 2003 were within expected ranges and compared closely with historical results. The following is a review of specific sample results.

1) Ambient Gamma Radiation

Ambient gamma radiation is measured by thermoluminescent dosimeters (TLDs) provided by the vendor laboratory. These TLDs contain calcium sulfate phosphors, and are processed quarterly. Three indicator locations were added in 2003: OTD-P (Location No. 29) was added in Sector J in March as a result of most recent Land Use Survey results; OTD-Q and OTD-R were added in June to be co-located with possible new air sample locations. (NRC Branch Technical Position requires TLDs to be colocated with air samplers.) Locations Q and R ultimately were not needed for air sampling purposes and the TLDs have been discontinued at the end of first quarter 2004. The highest TLD results for the year were from the fourth quarter at OTD-Q (3.5 mRem per week) and OTD-R (3.7 mRem per week). Although these results are higher than normal, third guarter 2003 results and first quarter 2004 results are within normal ranges. Also, emergency plan TLDs and site TLDs maintained by the Dosimetry Group show no unusual fourth guarter results. This will be documented in a Condition Report. All other TLD results were within historical ranges. No plant-attributable results were seen, therefore, no changes are required in plant systems or operation.

2) <u>Milk/Vegetation</u>

Milk samples are required to be collected every two weeks, from May through September. The indicator samples are collected from a herd of goats located approximately 0.7 miles from the plant in Sector K (SSW), Location No. 33. The control location for milk samples is a commercial dairy herd located approximately 9.9 miles from the plant in Sector J, Location No. 20 (S). These locations are unchanged from the previous year. The milk sample which would have been collected at the indicator location on May 1st was unavailable due to a fire which destroyed the barn on the property where the milk sample was stored in a refrigerator. Pasture grass was collected instead. All results specifically for lodine-131, Cesium, and other gammas were <LLD for both indicator and control locations, as well as the substituted pasture sample. No plant-attributable results were seen. No changes to plant operations are required.

3) <u>Fish</u>

Several fish species, representing the aquatic food chain are collected at a downstream indicator location (River Mile 644-646) and an upstream control location (River Mile 665-667). Results from both locations were <LLD for all gamma analysis, therefore, no plant-related effects are indicated and no changes to plant operation are required.

4) Food Crops

Vegetable gardens were sampled at two locations. The indicator location is the same as that used for milk samples and is 0.7 miles from the plant in Sector K (SSW). The control location is the same as the milk control location, 9.9 miles from the plant in Sector J (S). All results were within historical ranges and <LLD for all gamma isotopes. Therefore, there were no plant-related effects and no changes to plant operations are required.

5) <u>Sediment</u>

River sediment samples are collected twice a year at an upstream control location and a downstream indicator location. All results were <LLD and no plant-related effects were observed and no changes to plant operations are required.

6) <u>Air Monitoring</u>

Three locations were discontinued and one added in March 2003. Those discontinued were: OAP-A (Sector P), OAP-C (Sector G) and OAP-H (Sector L); added was OAP-J (Sector J). These changes were made as a result of the previous Land Use Survey and LADTAP calculations.

All results for 2003 were within historical ranges, however, several Condition Reports (CRs) were written to document out-of-normal conditions:

- a. During the week of January 2-8, the air pump at location OAP-C shut down for approximately six hours. Instrument electricians suggested it may have been due to thermal overload as the pumps tend to run hot. Elapsed time from pump timer was used to calculate total flow, thus making dose results conservative.
- b. On February 22, a natural gas generator was installed at the Blair OPPD office (location OAP-D) requiring the power to be shut off to the yard where the air sampler is located. The time shown on the pump elapsed timer was verified to be correct for the length of the outage.
- c. In April, instrument electricians notified environmental that two air sample pumps showed problems when returned to the shop for routine maintenance. The pump from OAP-A was reading slightly high at 2.23 SCFM when the flow rate was checked (upper calibration limit is 2.2 SCFM). The pump was running within limits when started at the beginning of the week's sample period. To drift slightly high by 0.03 SCFM by the end of the week is not considered to have adversely affected sample results, which were within normal ranges and compared closely with air results from the control

 \cup

location. The second pump, from location OAP-C, pegged high when checked in the shop. A screw was found to be missing from the intake manifold. The screw apparently fell out during transport to the shop, as it was operating normally in the field.

- Instrument electricians notified environmental that the air pump at location OAP-F was out-of-tolerance slightly high when brought to the shop. Flow rate was measured at 2.27 SCFM; upper limit is 2.2 SCFM. Results at this location for the period this pump was in service, are well within historical ranges. The flow rate indicator on the pump itself, though not as accurate as shop measurements, did not show any abnormal performance while the pump was in the field. Calculated results are conservative.
- e. A power outage of approximately 30 hours occurred at the Blair OPPD office (location OAP-D) during the first week in December. The elapsed time from the pump timer was used to calculate total air volume. Sample results met required LLD.
- f. For the week of December 10-17, 2003, the timer on the air pump showed fewer hours than the back up timer. The back up timer showed 164 hours, 49 minutes which agreed with the On/Off times recorded by the technician in the field on December 10 at 1200 hours and December 17 at 0850 hours. The back up timer was used to calculate total volume.

No plant-related effects were observed in air sample results, therefore, no changes to plant operations are required.

7) <u>Water Samples</u>

Detectable tritium results were seen in the first and second quarter of 2003 at the downstream river sample location. Tritium is analyzed on a quarterly frequency. First quarter results were 1876 ± 144 pCi/L, and for the second quarter 1048 ± 122 pCi/L. Both of these quarterly results were well below the reporting level of 20,000 pCi/L for drinking water.

Individual month results for the first quarter were as follows:

January	46 pCi/L
February	3014 pCi/L
March	2167 pCi/L

River water samples were collected during monitor tank releases each month. Tritium concentration calculations at the discharge point were calculated using the mixing value listed in the Off-Site Dose Calculation Manual (ODCM). The calculated concentration at discharge for monitor tank release number 2003013 was 2070 pCi/L and for release number 2003012, 2144 pCi/L. Creating a composite for the quarter using these calculated values and the standard environmental sample volumes during periods of no releases would result in composite values consistent with Environmental Inc. results. The average monitor tank tritium concentration for the quarter was 0.111 μ Ci/mL. A dose calculation using Genie software, quarterly discharge volume, and the above average, yielded a calculated dose of 5.9E-03 mRem. A dose estimate was also performed using the equation listed in the ODCM, the quarterly sample result of 1876 pCi/L, and the adult consumption rate listed in Table 6. That calculation resulted in a dose estimate of 2.05E-02 mRem. The estimated dose represents 0.68% of the annual limit of 3 mRem.

Monthly tritium results for the second quarter were as follows:

April	3019 pCi/L
May	108 pCi/L
June	103 pCi/L

Downstream river water samples were collected during monitor tank releases in April. Using the mixing ratio in the ODCM, tritium concentration at the discharge was calculated to be 4015 pCi/L for release number 2003029. Creating a composite for the guarter using these calculated values and the standard environmental sample volume during periods of no release would result in composite values consistent with Environmental Inc. results. The average monitor tank tritium concentration for the second guarter was 0.164 µCi/mL. A dose calculation using this concentration, the guarterly discharge volume and Genie software, yielded a calculated dose of 7.73E-03 mRem. Dose estimates were also calculated using the equations listed in the ODCM and the sample results from Environmental Inc. For this calculation, an adult was assumed to drink water at 1048 pCi/L for one guarter at the rate listed in Table 6. This resulted in a calculated dose of 1.15E-02 mRem. This calculated dose represents 0.38 percent of the annual limit of 3 mRem.

In summation, no changes are needed to the FCS effluent process due to these positive results. The dose attributed to the positive result is consistent with that estimated by LADTAP software. The level of this positive sample is well below the reporting level of 20,000 pCi/L for drinking water. There was no change in the level or volume of release, but there had been changes in how releases were conducted. FCS had recently changed to 12 hour shifts. Monitor tanks were sampled on one shift and released on another. The present shift schedule will have every tank sampled on nights being released during the day. This increases the likelihood that a monitor tank release will occur during the time an environmental sample is being collected. The tritium levels or volume of tank releases have not changed.

Sample Class	Collection Frequency	Number of Sample Locations	Number of Samples Collected This Period
Background Radiation (TLDs)	Quarterly	18	67
Air Particulates	Weekly	9	341
Airborne Iodine	Weekly	9	341
Milk Pasture Grass (milk substitute)	Bi-weekly	2 2	21 1
Water	Monthly	3	36
Fish	Annually	2	5
Sediment	Semiannually	2	4
Food Crops	Annually	3	7

TOTAL

823

 \smile

Table 2.0 Radiological Environmental Monitoring Program Summary

Reporting Period

January-December, 2003

Name o	f Facility		Fort Call	oun Nuclear Power	Docket N	lo. <u>50-285</u>		
Location	n of Facility	· .	Washing	ton, Nebraska				
				(County,	State)			
				Indicator	Location with H	lighest	Control	Number
Sample	Type and			Locations	Annual Me	an	Locations	Non-
Туре	Number	rof	LLD	Mean (F) ^c		Mean (F)°	Mean (F) ^c	Routine
(Units)	Analyse	es		Range	Location	Range	Range	Results
Background	Commo	67	0.5	1.5 (59/50)		24(2(2)	1 / (9/9)	0
Radiation	Gamma	01	0.5	(10-37)	No of Caty Rd P37	(1 0-3 7)	(11-17)	0
	1			(1.0-0.1)	1.18 mi @ 261°	(1.0-0.7)	(1.1-1.17)	
(mR/week)								
Airborne	GB	341	0.005	0.028 (289/289)	OAP-A-(I), 110m	0.034 (14 /14)	0.029 (52/52)	0
Particulates				(0.011-0.056)	Weather Tower	(0.022-0.055)	(0.013-0.058)	
(pCi/m3)					0.53 mi. @ 293°			
	<u></u>	20						
	Cs-134	29	0.003	<11.0	-		<110	n
	Cs-137	j	0.002	<11D	-	-		0
	Other Gar	nmas	0.002	<lld< td=""><td>-</td><td>-</td><td><lld< td=""><td>0</td></lld<></td></lld<>	-	-	<lld< td=""><td>0</td></lld<>	0
Airborne	I-131	341	0.07	< LLD	-	-	< LLD	0
lodine								
(pCi/m3)							1	
A dille	1 1 2 1	- 21	0.5					0
	1-131	21	0.5		-	-		U
(po#2)	GS	21						
	K-40		150	1693 (10/10)	OFM-F-(I)	1693 (10/10)	1303 (11/11)	0
				(1541-1762)	Bansen Farm	(1541-1762)	(1196-1375)	
					0.7 mi. @ 207°			
	Cs-134		15	<lld< td=""><td>-</td><td>-</td><td>< LLD</td><td>0</td></lld<>	-	-	< LLD	0
	Cs-137	1	15	< LLD	-	-	< LLD	0
	Other Gar	nmas	15	< LLD		-	< LLD	0
Pasture Grass	GS	1						
(milk substitute)	Mn-54		0.022	< LLD	-	-	< LLD	0
pCi/g wet	Co-58		0.021	< LLD	-	-	< LLD	0
	Co-60		0.016	< LLD	-	-	< LLD	0
	Fe-59		0.044	< LLD	-	-	< LLD	0.
	Zn-65		0.038	< LLD	-	-	< LLD	0
	Zr-Nb-9	95	0.016	<lld< td=""><td>-</td><td>- </td><td>< LLD</td><td>0</td></lld<>	-	-	< LLD	0
	I-131		0.038	< LLD	-	-	< LLD	0
	Cs-134		0.028	<lld< td=""><td>•</td><td>-</td><td><lld< td=""><td>0</td></lld<></td></lld<>	•	-	<lld< td=""><td>0</td></lld<>	0
	CS-137		0.022		-	-		
	Da-La-	140	0.013					U

 \cup

Tab

ole 2.0 Radiol	ogical Environ	mer	ntal Monito	oring Program Sur	nmary	Reporting Period	January-Dec	ember, 2003
Name	of Facility		Fort Call	oun Nuclear Powe	er Station - Unit 1	Docket N	o. <u>50-285</u>	
Locatio	on of Facility		Washing	ton, Nebraska				
				(County	, State)			
	Τ			Indicator	Location with H	lighest	Control	Number
Sample	Type and	t		Locations	Annual Me	an	Locations	Non-
Туре	Number o	of	LLD	Mean (F) ^c		Mean (F) ^c	Mean (F) ^c	Routine
(Units)	Analyses	1		Range	Location ^d	: Range ^c	Range ^c	Results
10/0400		20		· · · · · ·				· ·
water	65	30	4.5					
(pure)	CS-134		15		•	-		
	US-137		15		•	-		
	Other Gamn	nas	15	< LLD	-	-		0
	НЗ	12	300	1462 (2/8)	OSW-B-(I), Downstream	1462 (2/4)	< LLD	0
					0.5 mi. @ 106*			
Fish	GS	5		- <u> </u>			·····	
(nCi/a wet)	Mn-54	Ŭ	0 024	<110	-		<110	
(porg 1101)	Co-58		0.019			.		ň
	Co-60		0.017				<110	
	Ee-59		0.071					
	70-65		0.071					
	Ru-103		0.020					
	Cc-134		0.000			-		
	Cs-137		0.015	<lld< td=""><td>-</td><td></td><td>< LLD</td><td>0</td></lld<>	-		< LLD	0
				· · · · · ·			· · · · · · · · · · · · · · · · · · ·	
Seament	GS	4						
pCi/g ary	Mn-54		0.030	< LLD	-	-	< [[]	
	Co-58		0.028	<[[]]	-		< LLD	0
	Co-60		0.028	<110	-		< LLD	
	Fe-59		0.076	<lld< td=""><td>-</td><td>•</td><td>< LLD</td><td></td></lld<>	-	•	< LLD	
	Zn-65		0.076	<11D	-	•	< LLD	0
	Cs-134		0.053	< LLD	-	•	< LLD	
	Cs-137		0.035	< LLD				
Food Crops	GS	7	1 1					
(pCi/g wet)	Mn-54		0.010	< LLD	-	•	< LLD	0
	Co-58		0.009	< LLD	-	-	< LLD	0
	Co-60		0.009	< LLD	•	-	< LLD	0
	Fe-59		0.027	< LLD	•	-	< LLD	0
	Zn-65		0.029	< LLD	-	•	< LLD	0
	Zr-Nb-95		0.017	< LLD		•	< LLD	0
	Cs-134		0.012	< LLD	-	-	< LLD	0
	Cs-137		0.008	< LLD	•	-	< LLD	0
	Ba-La-14	0	0.040	<lld< td=""><td></td><td></td><td>< LLD</td><td>0</td></lld<>			< LLD	0

[•] GB = gross beta, GS = gamma scan.

^bLLD = nominal lower limit of detection based on a 95% confidence level.

^eMean and range are based on detectable measurements only (i.e., >LLD) Fraction of detectable measurements at specified locations is indicated in parentheses (F).

^d Locations are specified: (1) by code, (2) by name, and (3) by distance and direction relative to the Reactor Containment Building.

* Non-routine results are those which exceed ten times the control station value. If no control station value is available, the result is considered non-routine if it exceeds the typical pre-operational value for the medium or location.

Page 9 of 15

Table 3.0 Listing of Missed Samples (samples scheduled but not collected)

Sample Type	Date	Location	·	Reason
			·	

All required samples for the REMP were collected as scheduled for 2003.

Table 4.0	Radiological	Environmental	Sampling	Locations and	Media
-----------	--------------	---------------	----------	---------------	-------

Sample	Approximate Collection	Approximate Distance from	Approximate Direction	Contar	Air Monitoring		TID		B.4311.	Cadimant	Fieb	Vegetables
No.	Sites	Sites Center of (degrees Containment from true (miles) north)	Sector	Airborne Particulate	Airborne Iodine	TLD	vvaler	IVIIIK	Sealment	rish	Products	
1	Onsite Station, 110-meter weather tower	0.53	293°/WNW	Ρ	x	×	x					
2	Onsite Station, adjacent to old plant access road	0.59	207°/SSW	к	х	x	x			•		
3	Offsite Station, Intersection of Hwy. 75 and farm access road	0.94	145°/SE	G	x	x	x					
4	Blair OPPD office	2.86	305°/NW	Q	х	Х	Х					
5 ¹	EOF Building, North Omaha Power Station	14.9	153°/SSE	Н								
6	Fort Calhoun, NE City Hall	5.18	150°/SSE	Н			х					
7	Fence around intake gate, Desoto Wildlife Refuge	2.07	102°/ESE	F			x					·
8	Onsite Station, entrance to Plant Site from Hwy. 75	0.55	191°/S	J			x					
9	Onsite Station, NW of Plant	0.68	305°/NW	Q			x			:		

Table 4.0 Radiological Environmental Sampling Locations and Media

Sample	Approximate Collection Content of		Castar	Air Monitoring		TID	Water	L 4:11.	Ordinart	C'-L	Vegetables	
No.	Sites	Containment (miles)	from true north)	Sector	Airborne Particulate	Airborne Iodine		vvater	IVIIIK	Seament	FISN	Products
10	Onsite Station, WSW of Plant	0.61	242°/WSW	М			x					
11	Offsite Station, SE of Plant	1.07	139°/SE	G			x					
12	Metropolitan Utilities Dist., Florence Treatment Plant North Omaha, NE	14.3	154°/SSE	н				x		•		
13	West bank Missouri River, downstream from Plant discharge	0.45	108°/ESE	F				x		х		
14	Upstream from Intake Bldg, west bank of river	0.09	4°/N	A				х		х		
15 ¹												
16 ¹												
171	·											
18 ¹												
19 ¹												
20	Mohr Dairy	9.86	186°/S	J					X ²			X
21 ¹												
22	Fish Sampling Area, Missouri River	0.08 (R.M. 645.0)	6°/N	А						:	х	

Table 4.0 Radiological Environmental Sampling Locations and Media

Sample	Approximate Collection	Approximate Distance from	Approximate Direction	Sector	Air Mon	itoring	TID	TLD Water	B A UL	Sediment	Fich	Vegetables
No.	Sites	Containment (miles)	from true north)	Secior	Airborne Particulate	Airborne Iodine		vvater	IVIIIK	Sediment	FISH	Products
23	Fish Sampling Area, Missouri River	17.9 (R.M. 666.0)	358°/N	A							x	
24 ¹												
25 ¹												
261												
271												
28 ³	Alvin Pechnik Farm	0.94	163°/SSE	Н	Х	Х	Х					
29	Ellis Acreage	0.74	182°/S	J	Х	X	Х					
30 ¹												
31'												
32	Valley Substation #902	19.6	221°/SW	L	Х	Х	Х					
33 ³	Bansen Farm	0.7	203°/SSW	к					X ²			Х
34 ¹										•• ;		
35	Onsite Farm Field	0.52	118°/ESE	F								Х
36	Offsite Station Intersection Hwy 75/Co. Rd. P37	0.75	227°/SW	L	x	x	x					
37 ³	Offsite Station Desoto Township	1.57	144°/SE	G	х	x	х					

Table 4.0 Radiological Environmental Sampling Locations and Media

Sample Approximate Collection	Approximate Distance from	Approximate Direction	Sector	Air Monitoring		TID Molec	Milk	Sadimant	Fish	Vegetables		
No.	Station Sites No.	Containment (miles)	(degrees Sec from true north)	Sector	Airborne Particulate	Airborne Iodine	ILD	vvater	WIIK	Sediment		Products
38	Offsite Station Intersection Hwy 75/Desoto Lane	0.93	248°/WSW	М			x					
39	Offsite Station Hwy 75 North of Co. Rd. P37	1.18	261°/W	N			x					

NOTES:

(3)

(1) Location is either not in use or currently discontinued and is documented in the table for reference only.

(2) When a milk sample is not available at a location, a broad leaf (pasture grass) vegetation sample will be collected at that location as a substitute.

Locations represent highest potential exposure pathways as determined by the biennial Land Use Survey, performed in accordance with Part 1, Section 6.3.2, and are monitored as such.

Review of Environmental Inc., Quality Assurance Program

Fort Calhoun Station contracts with Environmental Inc., Midwest Laboratory (vendor) to perform radioanalysis of environmental samples. Environmental Inc. participates in interlaboratory comparison (crosscheck) programs, as part of its quality control program. These programs are operated by agencies such as the Department of Energy which supply blind-spike environmental type samples such as milk or water containing concentrations of radionuclides unknown to the testing laboratory. This type of program provides an independent check of the testing laboratory's procedures and processes, and provides indication of possible weaknesses. In addition, Environmental Inc. has its own in-house QA program of blind-spike and duplicate analyses.

The vendor's 2003 QA results were all performed satisfactorily. There were no outstanding items.

Environmental, hc. Mdw est Laboratory an Alegheny Technologies Co.

700 Landwehr Road + Nothbrook, IL 80062.2 * (847) 564-0700 fax (847) 564-4517

APPENDIX A

INTERLABORATORY COMPARISON PROGRAM RESULTS

NOTE: Environmental Inc., Midwest Laboratory participates in Intercomparison studies administered by Environmental Resources Associates, and serves as a replacement for studies conducted previously by the U.S. EPA Environmental Monitoring Systems Laboratory, Las Vegas, Nevada. Results are reported in Appendix A. TLD Intercomparison results, in-house spikes, blanks, duplicates and mixed analyte performance evaluation program results are also reported. Appendix A is updated four times a year; the complete Appendix is included in March, June, September and December monthly progress reports only.

January, 2003 through December, 2003

Appendix A

Interlaboratory Comparison Program Results

Environmental, Inc., Midwest Laboratory, formerly Teledyne Brown Engineering Environmental Services Midwest Laboratory has participated in interlaboratory comparison (crosscheck) programs since the formulation of it's quality control program in December 1971. These programs are operated by agencies which supply environmental type samples containing concentrations of radionuclides known to the issuing agency but not to participant laboratories. The purpose of such a program is to provide an independent check on a laboratory's analytical procedures and to alert it of any possible problems.

Participant laboratories measure the concentration of specified radionuclides and report them to the issuing agency. Several months later, the agency reports the known values to the participant laboratories and specifies control limits. Results consistently higher or lower than the known values or outside the control limits indicate a need to check the instruments or procedures used.

Results in Table A-1 were obtained through participation in the environmental sample crosscheck program administered by Environmental Resources Associates, serving as a replacement for studies conducted previously by the U.S. EPA Environmental Monitoring Systems Laboratory, Las Vegas, Nevada.

The results in Table A-2 were obtained for Thermoluminescent Dosimeters (TLDs), via International Intercomparison of Environmental Dosimeters under the sponsorships listed in Table A-2. Results of internal laboratory testing is also listed.

Table A-3 lists results of the analyses on in-house "spiked" samples for the past twelve months. All samples are prepared using NIST traceable sources. Data for previous years available upon request.

Table A-4 lists results of the analyses on in-house "blank" samples for the past twelve months. Data for previous years available upon request.

Table A-5 list results of the in-house "duplicate" program for the past twelve months. Acceptance is based on the difference of the results being less than the sum of the errors. Data for previous years available upon request.

The results in Table A-6 were obtained through participation in the Mixed Analyte Performance Evaluation Program.

The results in Table A-7 were obtained through participation in the Environmental Measurement Laboratory Quality Assessment Program.

Attachment A lists acceptance criteria for "spiked" samples.

Out-of-limit results are explained directly below the result.

_ __ _ . ..

ACCEPTANCE CRITERIA FOR "SPIKED" SAMPLES

LABORATORY PRECISION: ONE STANDARD DEVIATION VALUES FOR VARIOUS ANALYSES^a

A1 - 1		One standard deviation
Analysis	Level	for single determination
Gamma Emitters	5 to 100 pCi/liter or kg > 100 pCi/liter or kg	5.0 pCi/liter 5% of known value
Strontium-89 ^b	5 to 50 pCi/liter or kg > 50 pCi/liter or kg	5.0 pCi/liter 10% of known value
Strontium-90 ^b	2 to 30 pCi/liter or kg > 30 pCi/liter or kg	5.0 pCi/liter 10% of known value
Potassium-40	> 0.1 g/liter or kg	5% of known value
Gross alpha	20 pCi/liter > 20 pCi/liter	5.0 pCi/liter 25% of known value
Gross beta	100 pCi/liter > 100 pCi/liter	5.0 pCi/liter 5% of known value
Tritium	4,000 pCi/liter	1s = (pCi/liter) = 169.85 x (known) ^{0.0933}
	> 4,000 pCi/liter	10% of known value
Radium-226,-228	0.1 pCi/liter	15% of known value
Plutonium	0.1 pCi/liter, gram, or sample	10% of known value
lodine-131,	55 pCi/liter	6.0 pCi/liter
lodine-129*	> 55 pCi/liter	10% of known value
Uranium-238,	35 pCi/liter	6.0 pCi/liter
Nickel-63° Technetium-99 ⁶	> 35 pCi/liter	15% of known value
Iron-55 ^b	50 to 100 pCi/liter > 100 pCi/liter	10 pCi/liter 10% of known value
Others ^b		20% of known value

* From EPA publication, *Environmental Radioactivity Laboratory Intercomparison Studies

Program, Fiscal Year, 1981-1982, EPA-600/4-81-004.

Laboratory limit.

しし

Concentration (pCi/L) Control ERA Lab Code Date Analysis Laboratory Result^c Limits **Result**[▶] 7.2 - 24.6 15.9 ± 5.0 STW-973 02/17/03 Sr-89 17.0 ± 0.5 0.4 - 17.7 STW-973 02/17/03 Sr-90 8.9 ± 0.3 9.0 ± 5.0 10.8 - 28.2 STW-974 02/17/03 Ba-133 14.5 ± 0.9 19.5 ± 5.0 37.4 ± 5.0 28.7 - 46.1 STW-974 02/17/03 Co-60 37.5 ± 0.9 9.1 - 26.5 STW-974 02/17/03 Cs-134 18.2 ± 0.6 17.8 ± 5.0 42.7 ± 1.0 44.2 ± 5.0 35.5 - 52.9 STW-974 02/17/03 Cs-137 Zn-65 60.3 ± 6.0 49.9 - 70.7 STW-974 02/17/03 56.8 ± 2.2 STW-975 02/17/03 37.6 ± 9.4 21.3 - 53.9 Gr. Alpha 18.4 ± 0.3 8.6 ± 5.0 0.0 - 17.2 STW-975 02/17/03 Gr. Beta 11.7 ± 0.5 3.5 - 6.0 4.7 ± 0.7 STW-976 02/17/03 Ra-226 4.1 ± 0.1 6.5 ± 1.6 3.7 - 9.3 STW-976 02/17/03 Ra-228 7.6 ± 0.5 52.9 ± 1.9 53.7 ± 5.4 44.4 - 63.0 STW-976 02/17/03 Uranium 678.0 - 1820.0 1290.0 ± 25.0 1250.0 ± 331.0 STW-983 05/19/03 H-3 STW-984 19.7 ± 1.3 20.8 ± 3.0 15.6 - 26.0 05/19/03 1-131 39.9 - 101.0 70.3 ± 17.6 STW-985 05/19/03 Gr. Alpha 54.4 ± 3.0 12.2 - 20.8 STW-985 05/19/03 Ra-226 14.9 ± 0.2 16.5 ± 2.5 10.3 ± 2.6 5.8 - 14.8 STW-985 05/19/03 Ra-228 13.1 ± 0.6 9.9 - 20.3 15.1 ± 3.0 STW-985 05/19/03 Uranium 14.5 ± 0.4 55.1 - 72.5 56.9 ± 8.6 63.8 ± 5.0 STW-986 05/19/03 Co-60 STW-986 * 05/19/03 61.6 ± 6.6 75.7 ± 5.0 67.0 - 84.4 Cs-134 137.0 - 163.0 STW-986 143.0 ± 1.2 150.0 ± 7.5 05/19/03 Cs-137 269.0 - 457.0 STW-986 05/19/03 309.0 ± 2.7 363.0 ± 54.5 Gr. Beta STW-986 05/19/03 Sr-89 33.1 ± 0.2 31.3 ± 5.0 22.6 - 40.0 18.7 - 36.1 Sr-90 28.8 ± 1.3 27.4 ± 5.0 STW-986 05/19/03 STW-988 08/18/03 Ra-226 13.3 ± 1.1 13.4 ± 2.0 9.9 - 16.9 7.1 - 17.9 12.5 ± 3.1 STW-988 08/18/03 Ra-228 11.5 ± 1.0 11.4 ± 3.0 6.2 - 16.6 STW-988 08/18/03 Uranium 12.3 ± 0.4 12.0 - 29.4 STW-989 08/18/03 Ba-133 18.1 ± 1.9 20.7 ± 5.0 35.9 ± 1.3 37.4 ± 5.0 28.7 - 46.1 STW-989 08/18/03 Co-60 23.9 - 41.3 32.6 ± 1.8 32.6 ± 5.0 STW-989 08/18/03 Cs-134 35.6 - 53.0 STW-989 08/18/03 Cs-137 48.3 ± 0.6 44.3 ± 5.0 49.8 - 70.6 STW-989 Zn-65 60.2 ± 6.0 08/18/03 58.9 ± 2.1 56.2 ± 16.3 36.9 - 93.3 STW-990 08/18/03 41.8 ± 3.4 Gr. Alpha STW-990' 08/18/03 51.3 ± 3.0 31.6 ± 5.0 22.9 - 40.3 Gr. Beta 50.1 - 67.5 STW-991 Sr-89 58.8 ± 5.0 08/18/03 57.2 ± 4.3 11.9 - 29.3 20.6 ± 5.0 STW-991 08/18/03 Sr-90 21.2 ± 0.9

TABLE A-1. Interlaboratory Comparison Crosscheck program, Environmental Resource Associates (ERA)³.

		Concentration (pCi/L)							
Lab Code	Date	Analysis	Laboratory	ERA	Control				
			Result ^b	Result ^c	Limits				
				······································	-				
STW-997	11/18/03	Gr. Alpha	37.0 ± 2.0	29.5 ± 7.4	16.7 - 42.3				
STW-997	11/18/03	Gr. Beta	26.5 ± 0.8	26.3 ± 5.0	17.6 - 35.0				
STW-998	11/18/03	I-131	14.8 ± 0.3	16.5 ± 3.0	11.3 - 21.7				
STW-999	11/18/03	Ra-226	17.2 ± 1.1	17.8 ± 2.7	13.2 - 22.4				
STW-999	11/18/03	Ra-228	6.6 ± 0.3	6.8 ± 1.7	3.8 - 9.7				
STW-999	11/18/03	Uranium	11.7 ± 0.3	11.7 ± 3.0	6.5 - 16.9				
STW-1000	11/18/03	H-3	15900.0 ± 174.0	14300.0 ± 1430.0	11800.0 - 16800.0				
STW-1001	11/18/03	Gr. Alpha	32.9 ± 0.3	54.2 ± 3.0	30.7 - 77.7				
STW-1001	11/18/03	Ra-226	16.5 ± 0.9	16.1 ± 2.4	11.9 - 20.3				
STW-1001	11/18/03	Ra-228	6.2 ± 0.5	5.5 ± 1.4	3.1 - 7.9				
STW-1001	11/18/03	Uranium	9.7 ± 1.5	9.3 ± 13.6	4.1 - 14.5				
STW-1002	11/18/03	Co-60	27.7 ± 1.9	27.7 ± 5.0	19.0 - 36.4				
STW-1002	11/18/03	Cs-134	21.5 ± 1.1	23.4 ± 5.0	17.6 - 29.2				
STW-1002	11/18/03	Cs-137	66.3 ± 2.8	64.2 ± 5.0	55.5 - 72.9				
STW-1002	11/18/03	Gr. Beta	159.0 ± 2.5	168.0 ± 5.0	124.0 - 212.0				
STW-1002	11/18/03	Sr-89	48.5 ± 0.4	50.4 ± 5.0	41.7 - 59.1				
STW-1002	11/18/03	Sr-90	10.1 ± 3.0	10.2 ± 25.2	1.5 - 18.9				

TABLE A-1. Interlaboratory Comparison Crosscheck program, Environmental Resource Associates (ERA)^a.

* Results obtained by Environmental, Inc., Midwest Laboratory as a participant in the environmental samples crosscheck program operated by Environmental Resources Associates (ERA).

^b Unless otherwise indicated, the laboratory result is given as the mean ± standard deviation for three determinations.

^c Results are presented as the known values, expected laboratory precision (1 sigma, 1 determination) and control limits as provided by ERA.

^d Recount of the original sample still low. The ERA blank was spiked in the lab;

known value of 20.1 pCi/L, measured 21.5 ± 1.1 pCi/L. No explanation for ERA test failure.

• Lower bias observed for gamma spectroscopic analysis. The undiluted sample was reanalyzed; Results of reanalysis, Co-60: 62.3 pCi/L., Cs-134: 69.2 pCi/L., Cs-137: 152.3 pCi/L.

Reason for deviation unknown. A recount of the original planchets averaged 43.4 pCi/L.

Cs-137activity by gamma spectroscopy; 28.3 pCi/L. Result of reanalysis; 29.3 pCi/L.

TABLE A-2. Crosscheck program results; Thermoluminescent Dosimetry, (TLDs).

.

				mR			
Lab Code	TLD Type	Date		Known	Lab Result	Control	
- <u></u>			Description	Value	± 2 sigma	Limits	
					:		
Environme	ntal, Inc.		•				
2003-1	CaSO4: Dy Cards	8/8/2003	Reader 1, 120	4.69	4.74 ± 0.54	3.28 - 6.10	
2003-1	CaSO4: Dy Cards	8/8/2003	Reader 1, 150	3.00	3.02 ± 0.20	2.10 - 3.90	
2003-1	CaSO4: Dy Cards	8/8/2003	Reader 1, 180	2.08	1.89 ± 0.45	1.46 - 2.70	
2003-1	CaSO4: Dy Cards	8/8/2003	Reader 1, 180	2.08	2.11 ± 0.22	1.46 - 2.70	
2003-1	CaSO4: Dy Cards	8/8/2003	Reader 1, 30	75.00	84.40 ± 4.87	52.50 - 97.50	
2003-1	CaSO4: Dy Cards	8/8/2003	Reader 1, 60	18.75	19.11 ± 1.86	13.13 - 24.38	
2003-1	CaSO4: Dy Cards	8/8/2003	Reader 1, 60	18.75	22.82 ± 5.41	13.13 - 24.38	
2003-1	CaSO4: Dy Cards	8/8/2003	Reader 1, 90	8.33	9.05 ± 1.17	5.83 - 10.83	
2003-1	CaSO4: Dy Cards	8/8/2003	Reader 1, 90	8.33	7.60 ± 1.08	5.83 - 10.83	
Environme	ntal, Inc.						
2003-2	CaSO4: Dy Cards	1/12/2004	Reader 1, 30	61.96	73.50 ± 2.58	43.37 - 80.55	
2003-2	CaSO4: Dy Cards	1/12/2004	Reader 1, 60	15.49	19.70 ± 0.51	10.84 - 20.14	
2003-2	CaSO4: Dy Cards	1/12/2004	Reader 1, 60	15.49	16.93 ± 1.37	10.84 - 20.14	
2003-2	CaSO4: Dy Cards	1/12/2004	Reader 1, 90	6.88	8.06 ± 0.60	4.82 - 8.94	
2003-2	CaSO4: Dy Cards	1/12/2004	Reader 1, 90	6.88	6.64 ± 0.58	4.82 - 8.94	
2003-2	CaSO4: Dy Cards	1/12/2004	Reader 1, 120	3.87	4.39 ± 0.17	2.71 - 5.03	
2003-2	CaSO4: Dy Cards	1/12/2004	Reader 1, 150	2.48	2.34 ± 0.18	1.74 - 3.22	
2003-2	CaSO4: Dy Cards	1/12/2004	Reader 1, 150	2.48	2.51 ± 0.16	1.74 - 3.22	
2003-2	CaSO4: Dy Cards	1/12/2004	Reader 1, 180	1.72	2.01 ± 0.13	1.20 - 2.24	

:

TABLE A-3. In-House "Spike" Samples

 \cup \cup \cup \cup \cup U \cup \smile \cup \cup \cup \smile \cup \cup \smile \smile Ú \cup \bigcirc \cup \cup Ú \cup \cup \cup -ں C \cup Ú U U \cup \smile \bigcirc \smile \bigcirc \cup \cup \cup

			Concentration (pCi/L) ^a				
Lab Code	Sample	Date	Analysis	Laboratory results	Known	Control	
	Type			2s. n=1 ^b	Activity	Limits ^c	
• • • • • • • • • • • • •			······		-		
SPW-356	water	1/2/2003	Sr-90	34.04 ± 1.57	30.93	24.74 - 37.12	
W-10303	water	1/3/2003	Gr. Beta	63.24 ± 1.20	63.90	53.90 - 73.90	
W-11303	water	1/13/2003	Gr. Beta	59.75 ± 1.10	63.90	53.90 - 73.90	
W-12103	water	1/21/2003	Gr. Beta	61.56 ± 1.59	63.99	53.99 - 73.99	
SPAP-446	Air Filter	1/31/2003	Gr. Beta	1.49 ± 0.02	1.52	-8.48 - 11.52	
SPW-468	water	1/31/2003	H-3	95982.00 ± 865.00	89607.00	71685.60 - 107528.40	
W-20703	water	2/7/2003	Fe-55	9095.00 + 114.00	10587.00	8469.60 - 12704.40	
SPU-1347	Urine	3/1/2003	H-3	1724 00 + 412 00	1784.33	1101.27 - 2467.39	
DW-30303	water	3/3/2003	Gr Beta	65 44 + 0 59	63.90	53.90 - 73.90	
SPCH-964	Charcoal	3/8/2003	1-131(G)	73 37 + 0 28	69.45	59.45 - 79.45	
SPMI-1086	Milk	3/13/2003	Cs-137	57 18 + 8 03	49.50	39.50 - 59.50	
SPMI-1086	Milk	3/13/2003	L-131	75 13 + 12 01	67.60	54.08 - 81.12	
SPMI-1086	Milk	3/13/2003	I-131(G)	65 81 + 1 06	67.56	57.56 - 77.56	
SPW-1088	water	3/13/2003	Co-60	27 16 + 4 79	28.20	18.20 - 38.20	
SPW-1088	water	3/13/2003	Cs-137	51 74 + 9 15	49 50	39.50 - 59.50	
SPW-1088	water	3/13/2003	L131(G)	68 14 + 12 92	67.60	57 60 - 77 60	
SPW-1088	water	3/13/2003	1-101(0)	76 94 + 1 13	67.56	54 05 - 81 07	
SPVE-1110	Venetation	3/14/2003	L131(G)	122 80 + 16 80	124.00	111 60 - 136 40	
SPW-1194	water	3/21/2003	Co-60	31.00 ± 6.28	28.15	18 15 - 38 15	
SPW-1194	water	3/21/2003	Ce-137	55 11 + 0 13	49 50	39 50 • 59 50	
SPW-1194	water	3/21/2003	I-131(G)	66 17 + 9 15	67.60	57.60 - 77.60	
W-32103	water	3/21/2003	C-14	5201.00 + 16.60	4966.00	2979.60 - 6952.40	
SPCH-1429	Charcoal	4/1/2003	I-131(G)	8.83 + 0.11	9.18	-0.82 - 19.18	
W-40103	water	4/1/2003	Gr. Beta	67.74 ± 0.52	63.39	53.39 - 73.39	
SPF-1407	Fish	4/2/2003	Cs-134	0.58 ± 0.03	0.59	0.35 - 0.83	
SPE-1407	Fish	4/2/2003	Cs-137	1.29 ± 0.06	1.32	0.79 - 1.85	
SPAP-1409	Air Filter	4/2/2003	Gr. Beta	1 44 + 0 02	1.51	-8.49 - 11.51	
SPU-41203	Urine	4/12/2003	H-3	1798 50 + 409 30	1784.33	1101.27 - 2467.39	
SPU-41703	Urine	4/17/2003	H-3	1625.10 ± 401.30	1784.33	1101.27 - 2467.39	
SPW-2022	water	4/25/2003	H-3	89007.00 + 798.00	88463.00	70770.40 - 106155.60	
SPW-2053	water	4/28/2003	Cs-137	45.70 ± 9.44	49.35	39.35 - 59.35	
SPW-2053	water	4/28/2003	Sr-90	47.51 + 1.87	44.47	35.58 - 53.36	
SPMI-2055	Milk	4/28/2003	Cs-137	61 65 + 7 17	65.80	55.80 - 75.80	
SPMI-2055	Milk	4/28/2003	Sr-90	38 45 + 1 59	44 74	35 79 - 53.69	
W-50603	water	5/6/2003	Gr Beta	70 95 + 0 53	63.39	53 39 - 73 39	
W-60303	water	6/3/2003	Gr. Beta	63 00 + 0 51	65 73	55 73 - 75 73	
SPW-3960	water	7/15/2003	H.3	88700 00 + 822 00	87360 00	69895 20 - 104842 80	
SPMLA010	Mile	7/18/2003	Ce-137	17 + 7 22	AQ 11	30 11 - 50 11	
SPML4019	NAUL	7/18/2003	Sr-80	40.05 ± 4.88	49.11	39 49 - 59 49	
SPMI 4010	A A A A A A A A A A A A A A A A A A A	7/18/2003	St-03	40.95 ± 4.00	45.45	· 35 30 - 53 00	
SFIVII-4019	IVUIK	7/10/2003	SI-90	45.30 I 1.73	44.24	30.44 50.44	
SF 11-4023	water	7/10/2003	US-13/	D1,92 ± 0.24	49.11	33.11 - 33.11	
SEVV-4023	water	7/10/2003	01-03 01-03	42.49 ± 10.23	49.49	33.43 - 33.43 95.90 - 59.00	
SEVV-4UZ3	water	110/2003	SI-90	49.09 ± 3.04	94.24	33.33 + 33.03 7464 00 - 44406 00	
5-11-4310	water	0/0/2003	re-33	0170.00 ± 107.00	3330.00	1404.00 - 11190.00	

•

TABLE A-3. In-House "Spike" Samples

			Concentration (pCi/L)				
Lab Code	Sample	Date	Analysis	Laboratory results	Known	Control	
<u></u>	Type		· · ·	<u>2s, n=1^b</u>	_ Activity	Limits	
SPW-6197	water	10/16/2003	Tc-99	540.14 + 54.00	539.73	377.81 - 701.65	
SPAP-3958	Air Filter	10/28/2003	Gr. Beta	1.45 ± 0.02	1.50	-8.50 - 11.50	
SPW-6401	water	10/28/2003	H-3	84867.00 ± 826.00	85984.00	68787.20 - 103180.80	
SPAP-6403	Air Filter	10/28/2003	Gr. Beta	1.71 ± 0.02	1.49	-8.51 - 11.49	
SPF-6418	Fish	10/28/2003	Cs-134	0.50 ± 0.02	0.49	0.29 - 0.69	
SPF-6418	Fish	10/28/2003	Cs-137	1.37 ± 0.05	1.30	0.78 - 1.82	
SPW-6421	water	10/28/2003	Fe-55	104.18 ± 1.26	88.18	68.18 - 108.18	
SPMI-7459	Milk	12/12/2003	Cs-134	41.06 ± 2.45	41.88	31.88 - 51.88	
SPMI-7459	Milk	12/12/2003	Cs-137	48.48 ± 4.99	48.64	38.64 - 58.64	
SPMI-7459	Milk	12/12/2003	Sr-89	55.94 ± 4.12	65.80	52.64 - 78.96	
SPMI-7459	Milk	12/12/2003	Sr-90	41.86 ± 1.57	43.80	35.04 - 52.56	
SPW-7461	water	12/12/2003	Cs-134	44.07 ± 1.49	41.88	31.88 - 51.88	
SPW-7461	water	12/12/2003	Cs-137	50.26 ± 2.67	48.64	38.64 - 58.64	
SPW-7461	water	12/12/2003	Sr-89	56.41 ± 4.87	65.80	52.64 - 78.96	
SPW-7461	water	12/12/2003	Sr-90	48.44 ± 1.84	43.80	35.04 - 52.56	

^c Control limits are based on Attachment A, Page A2 of this report.

NOTE: For fish, Jello is used for the Spike matrix. For Vegetation, cabbage is used for the Spike matrix.

-

.

TABLE A-4. In-House "Blank" Samples

					Concentration (pCi/L)	a
Lab Code	Sample	Date	Analysis	Laborato	ry results (4.66o)	Acceptance
·	Туре			LLD	Activity ^b	Criteria (4.66 σ)
SDW-357	water	1/2/2003	Sr.00	Ó 50	0.12 ± 0.25	4
3FW-337	water	1/2/2003	Gr Bota	0.50	0.12 ± 0.23	30
W-10303	water	1/13/2003	Gr. Deta	0.12	0.022 ± 0.10	3.2
W-11303	water	1/13/2003	Gr. Dela	0.14	0.035 ± 0.10	3.2
8040 447	Air Eiltor	1/21/2003	Gr. Deta	0.12	0.029 ± 0.09	3.2
SPAP-441	All Filler	1/3//2003	Gr. Dela	0.00	-0.0034 ± 0.00	3.2
31-11-409	water	1/3//2003	rr-S Gr. Roto	160.20	19.3 ± 00.30	200
W-20103	water	2/11/2003	Gr. Deta	0.17	0.0 ± 0.12	3.2
W-20703	water	2/1/2003	re-oo	002.00	149 ± 496.00	1000
DW-30303	Characal Ca	3/3/2003		0.15	0.007 ± 0.11	3.2
SPUH-903	Charcoal Cal	ni: 3/8/2003	1-131(G)	0.01		9.0
SPMI-1087		3/13/2003	CS-134	7.49		10
SPMI-1087	Mik	3/13/2003	CS-137	7.90		10
SPMI-1087	Milk	3/13/2003	1-131	0.33	-0.013 ± 0.18	0.5
SPMI-1087	Milk	3/13/2003	I-131(G)	7.76		20
SPW-1089	water	3/13/2003	Co-60	4.48		10
SPW-1089	water	3/13/2003	Cs-134	5.60		10
SPW-1089	water	3/13/2003	Cs-137	4.32		10
SPW-1089	water	3/13/2003	1-131	0.29	-0.050 ± 0.16	0.5
SPVE-1111	Vegetation	3/14/2003	l-131(G)	7.53		20
W-32103	water	3/21/2003	C-14	17.50	-0.4 ± 9.200	200
SPCH-1430	Charcoal Ca	ni: 4/1/2003	l-131(G)	0.01		9.6
W-40103	water	4/1/2003	Gr. Beta	0.14	-0.11 ± 0.100	3.2
SPF-1408	Fish	4/2/2003	Cs-134	0.01		100
SPF-1408	Fish	4/2/2003	Cs-137	0.01		100
SPAP-1410	Air Filter	4/2/2003	Gr. Beta	0.00	-0.0029 ± 0.002	3.2
SPU-41203	Urine	4/12/2003	H-3	653.99	542.28 ± 364.780	200
SPU-41703	Urine	4/17/2003	H-3	648.35	100.1 ± 344.800	200
SPW-2054	water	4/28/2003	Cs-137	3.16		10
SPW-2054	water	4/28/2003	Sr-89	0.55	0.45 ± 0.50	5
SPW-2054	water	4/28/2003	Sr-90	0.55	0.072 ± 0.260	1
SPMI-2056 *	Milk	4/28/2003	Sr-90	0.77	0.66 ± 0.430	1
SPMI-2056	Milk	4/28/2003	Cs-137	2.74		10
SPMI-2056	Milk	4/28/2003	l-131(G)	3.54		20
W-50603	water	5/6/2003	Gr. Beta	0.12	0 ± 0.090	3.2
W-60303	water	6/3/2003	Gr. Beta	0.14	-0.035 ± 0.095	3.2
SPW-3960	water	7/15/2003	H-3	156.60	53.4 ± 80.200	200
SPMI-4018	Milk	7/18/2003	Cs-137	4.10		10
SPMI-4018	Milk	7/18/2003	Sr-89	0.73	0.39 ± 0.880	5
SPMI-4018 °	Milk	7/18/2003	Sr-90	0.51	0.93 ± 0.340	1
SPW-4024	water	7/18/2003	Sr-89	0.83	0.21 ± 0.730	· 5
SPW-4024	water	7/18/2003	Sr-90	0.62	0.09 ± 0.300	1
SPW-4519	water	8/8/2003	Fe-55	527.00	87 ± 369.000	1000
SPW-6401	water	10/28/2003	H-3	163.80	-23.8 ± 85.000	200
-						

.

TABLE A-4. In-House "Blank" Samples

.

					Concentration (pCi/L) ⁸		
Lab Code	Sample	Date	Analysis	Laborator	Laboratory results (4.66o) Acceptant		
	Туре			LLD	Activity ^b	Criteria (4.66 σ)	
						•	
SPAP-6404	Air Filter	10/28/2003	Gr. Beta	0.87	-0.99 ± 0.440	3.2	
SPF-6419	Fish	10/28/2003	Cs-134	0.01		100	
SPF-6419	Fish	10/28/2003	Cs-137	0.01		100	
SPMI-7460	Milk	12/12/2003	Cs-134	4.52		10	
SPMI-7460	Milk	12/12/2003	Cs-137	5.77		10	
SPMI-7460°	Milk	12/12/2003	Sr-90	0.50	1.26 ± 0.370	1	

Liquid sample results are reported in pCi/Liter, air filters(pCi/filter), charcoal (pCi/charcoal canister), and solid samples (pCi/kg).
 The activity reported is the net activity result.

The activity reported is the net activity result.
 ^c Low levels of Sr-90 are still detected in the environment. A concentration of (1-5 pCi/L) in milk is not unusual.

TABLE A-5. In-House "Duplicate" Samples

	<u> </u>			Concentration (pCi/L) ^a	
		•		·····	Averaged
Lab Code	Date	Analysis	First Result	Second Result	Result
MI-24, 25	1/2/2003	K-40	1362.00 ± 117.00	1377.00 ± 188.00	1369.50 ± 110.72
MI-24, 25	1/2/2003	Sr-90	1.45 ± 0.40	2.21 ± 0.50	1.83 ± 0.32
CF-47, 48	1/2/2003	Gr. Beta	2.72 ± 0.10	2.84 ± 0.10	2.78 ± 0.07
CF-47, 48	1/2/2003	K-40	2.61 ± 0.31	2.32 ± 0.12	2.47 ± 0.17
AP-8827, 8828	1/2/2003	Be-7	0.06 ± 0.01	0.05 ± 0.02	0.05 ± 0.01
AP-8869, 8870	1/2/2003	Be-7	0.04 ± 0.02	0.05 ± 0.02	0.05 ± 0.01
MI-119, 120	1/8/2003	K-40	1351.90 ± 116.10	1234.70 ± 108.70	1293.30 ± 79.52
MI-119, 120	1/8/2003	Sr-90	2.22 ± 0.43	1.88 ± 0.40	2.05 ± 0.30
MI-213, 214	1/14/2003	K-40	1372.30 ± 104.80	1303.80 ± 109.10	1338.05 ± 75.64
MI-213, 214	1/14/2003	Sr-90	1.81 ± 0.41	2.29 ± 0.45	2.05 ± 0.31
MI-262, 263	1/15/2003	K-40	1399.20 ± 200.70	1347.70 ± 126.40	1373.45 ± 118.59
S-696, 697	1/29/2003	Gr. Alpha	24.70 ± 4.89	23.23 ± 4.64	23.97 ± 3.37
S-696, 697	1/29/2003	Gr. Beta	22.89 ± 2.67	22.71 ± 2.73	22.80 ± 1.91
MI-448, 449	2/3/2003	K-40	1159.70 ± 157.90	1396.40 ± 106.20	1278.05 ± 95.15
SW-470, 471	2/3/2003	Gr. Beta	13.62 ± 1.23	15.21 ± 1.21	14.42 ± 0.86
SW-470, 471	2/3/2003	K-40 (ICP)	5.10 ± 0.51	5.20 ± 0.52	5.15 ± 0.36
SW-470, 471	2/3/2003	K-40	5.80 ± 0.51	5.90 ± 0.52	5.85 ± 0.36
MI-517, 518	2/4/2003	K-40	1437.70 ± 125.50	1357.70 ± 188.00	1397.70 ± 113.02
MI-541, 542	2/5/2003	K-40	1443.00 ± 194.80	1385.20 ± 190.10	1414.10 ± 136.09
MI-620, 621	2/11/2003	K-40	1294.70 ± 115.10	1234.10 ± 165.10	1264.40 ± 100.63
DW-922, 923	3/4/2003	I-131	0.67 ± 0.16	0.79 ± 0.16	0.73 ± 0.11
CF-1048, 1049 b	3/10/2003	K-40	3.09 ± 0.12	2.67 ± 0.07	2.88 ± 0.07
LW-1152, 1153	3/13/2003	H-3	1147.26 ± 122.56	1094.42 ± 120.92	1120.84 ± 86.09
F-1120, 1121	3/14/2003	Cs-137	0.04 ± 0.02	0.05 ± 0.01	0.05 ± 0.01
F-1120, 1121	3/14/2003	Gr. Beta	2.04 ± 0.06	2.11 ± 0.06	2.08 ± 0.04
F-1120, 1121	3/14/2003	K-40	1.93 ± 0.38	1.89 ± 0.25	1.91 ± 0.23
DW-1278, 1279	3/25/2003	I-131	0.37 ± 0.22	0.34 ± 0.29	0.36 ± 0.18
SO-1380, 1381	3/25/2003	Gr. Beta	18.60 ± 2.68	20.53 ± 2.83	19.57 ± 1.95
LW-1299, 1300	3/27/2003	Gr. Beta	2.35 ± 0.55	2.48 ± 0.56	2.42 ± 0.39
LW-1320, 1321	3/27/2003	H-3	487.12 ± 104.43	422.00 ± 102.00	454.56 ± 72.99
W-1403, 1404	3/31/2003	Sr-90	0.96 ± 0.32	1.10 ± 0.42	1.03 ± 0.26
AP-2019, 2020	3/31/2003	Be-7	0.07 ± 0.01	0.08 ± 0.01	0.07 ± 0.01
MI-1422, 1423	4/1/2003	K-40	1410.00 ± 176.00	1340.00 ± 114.00	1375.00 ± 104.85
MI-2170, 2171	4/1/2003	K-40	1452.30 ± 129.10	1472.50 ± 191.00	1462.40 ± 115.27
MI-1422, 1423	4/2/2003	Sr-90	1.84 ± 0.42	1.15 ± 0.39	1.50 ± 0.29
AP-1633, 1634	4/2/2003	Be-7	0.05 ± 0.01	0.06 ± 0.01	0.06 ± 0.01
AP-1871, 1872	4/2/2003	Be-7	0.07 ± 0.01	0.07 ± 0.01	0.07 ± 0.01
AP-1974, 1975	4/2/2003	Be-7	0.08 ± 0.02	0.07 ± 0.02	0.08 ± 0.01
LW-1828, 1829	4/11/2003	Gr. Beta	2.49 ± 0.58	3.42 ± 0.63	2.96 ± 0.43
S-1544, 1545	4/15/2003	K-40	15.84 ± 2.36	15.41 ± 2.02	15.63 ± 1.55
DW-1913, 1914	4/15/2003	I-131	0.29 ± 0.21	0.42 ± 0.19	0.36 ± 0.14
MI-1996, 1997	4/21/2003	Sr-90	2.05 + 0.74	3.25 + 0.91	2.65 ± 0.58
MI-1996, 1997	4/22/2003	K-40	1580.20 ± 118.90	1602.10 ± 120.40	1591.15 ± 84.61

TABLE A-5. In-House "Duplicate" Samples

•

******_				Concentration (pCi/L) ^a	
					Averaged
Lab Code	Date	Analysis	First Result	Second Result	Result
111/ 2022 2024	410010000				
LVV-2003, 2004	4/28/2003	Gr. Beta	2.33 ± 0.66	2.68 ± 0.60	2.51 ± 0.45
SWU-2275, 2276	4/28/2003	Gr. Beta	3.62 ± 0.67	4.60 ± 0.71	4.11 ± 0.49
G-2149, 2150	4/30/2003	Be-7	0.71 ± 0.19	0.69 ± 0.20	0.70 ± 0.14
1D-2339, 2340	5/1/2003	H-3	221.00 ± 91.00	161.00 ± 88.00	191.00 ± 63.29
SO-2381, 2382	5/1/2003	Cs-137	0.11 ± 0.03	0.10 ± 0.02	0.10 ± 0.02
SO-2381, 2382	5/1/2003	Gr. Alpha	11.14 ± 5.15	10.39 ± 5.60	10.77 ± 3.80
SO-2381, 2382	5/1/2003	Gr. Beta	35.18 ± 4.69	39.66 ± 5.24	37.42 ± 3.52
SO-2381, 2382	5/1/2003	K-40	18.29 ± 0.84	17.83 ± 0.84	18.06 ± 0.59
SO-2381, 2382	5/1/2003	Sr-90	0.06 ± 0.02	0.10 ± 0.02	0.08 ± 0.01
DW-2317, 2318	5/6/2003	I-131	1.77 ± 0.27	1.47 ± 0.26	1.62 ± 0.19
BS-2595, 2596	5/6/2003	Cs-137	0.06 ± 0.02	0.06 ± 0.02	0.06 ± 0.02
BS-2595, 2596	5/6/2003	K-40	13.74 ± 0.62	14.10 ± 0.73	13.92 ± 0.48
U-2484, 2485	5/9/2003	H-3	512.00 ± 100.00	370.00 ± 95.00	441.00 ± 68.97
SO-2645, 2646	5/14/2003	Be-7	1.18 ± 0.42	1.21 ± 0.35	1.19 ± 0.27
SO-2645, 2646	5/14/2003	Cs-137	0.11 ± 0.04	0.09 ± 0.05	0.10 ± 0.03
SO-2645, 2646	5/14/2003	K-40	16.50 ± 1.13	15.33 ± 1.09	15.91 ± 0.79
MI-2696, 2697	5/19/2003	K-40	1320.40 ± 124.50	1394.10 ± 113.00	1357.25 ± 84.07
MI-2696, 2697	5/19/2003	Sr-90	1.49 ± 0.47	2.01 ± 0.45	1.75 ± 0.32
SO-2787, 2788	5/28/2003	Cs-137	0.27 ± 0.04	0.23 ± 0.04	0.25 ± 0.03
SO-2787, 2788	5/28/2003	Gr. Beta	19.62 ± 1.73	20.81 ± 1.72	20.21 ± 1.22
SO-2787, 2788	5/28/2003	K-40	14.77 ± 1.02	14.41 ± 1.00	14.59 ± 0.71
MI-2840, 2841	5/28/2003	K-40	1179.50 ± 167.80	1401.70 ± 120.20	1290.60 ± 103.20
SWU-2864, 2865	5/28/2003	Gr. Beta	3.39 ± 0.59	3.41 ± 0.64	3.40 ± 0.43
BS-2888, 2889	5/29/2003	Cs-137	0.05 ± 0.02	0.07 ± 0.04	0.06 ± 0.02
BS-2888, 2889	5/29/2003	K-40	9.70 ± 0.83	10.17 ± 0.87	9.93 ± 0.60
W-3230, 3231	5/30/2003	Gr. Beta	4.33 ± 1.00	3.28 ± 1.22	3.81 ± 0.79
TD-3036, 3037	6/2/2003	H-3	529.50 ± 100.00	585.50 ± 102.00	557.50 ± 71.42
SL-2909, 2910 b	6/3/2003	Gr. Beta	7.10 ± 0.15	7.60 ± 0.16	7.35 ± 0.11
SL-2909, 2910	6/3/2003	K-40	3.90 ± 0.67	3.49 ± 0.52	3.70 ± 0.42
SW-3080, 3081	6/10/2003	Gr. Alpha	4.63 ± 1.90	4.47 ± 1.71	4.55 ± 1.28
SW-3080, 3081	6/10/2003	Gr. Beta	9.07 ± 1.29	8.98 ± 1.28	9.02 ± 0.91
VE-3172, 3173	6/11/2003	K-40	2.62 ± 0.35	3.17 ± 0.58	2.90 ± 0.34
F-3742, 3743	6/11/2003	Gr. Beta	3.47 ± 0.13	3.71 ± 0.14	3.59 ± 0.10
F-3742, 3743	6/11/2003	K-40	2.94 ± 0.39	2.70 ± 0.40	2.82 ± 0.28
SO-3325, 3326	6/13/2003	Gr. Beta	20.95 ± 1.88	19.97 ± 2.01	20.46 ± 1.38
MI-3253, 3254	6/17/2003	K-40	1329.40 ± 121.80	1417.60 ± 130.90	1373.50 ± 89.40
MI-3297, 3298	6/17/2003	Sr-90	2.14 ± 0.57	2.27 ± 0.50	2.21 ± 0.38
WW-3380, 3381	6/23/2003	Gr. Beta	5.58 ± 0.69	5.03 ± 0.69	5.31 ± 0.49
SWT-3403, 3404	6/24/2003	Gr. Beta	2.80 ± 0.56	2.63 ± 0.55	2.72 ± 0.39
MI-3424, 3425	6/24/2003	K-40	1422.80 ± 185.40	1216.20 ± 170.10	1319.50 ± 125.80
SW-3862. 3863	6/24/2003	Gr. Beta	3.66 + 1.18	3.70 + 1.22	3.68 + 0.85
G-3479, 3480	6/25/2003	Be-7	1.52 + 0.25	1.43 + 0.28	1.47 ± 0.19
G-3479, 3480	6/25/2003	K-40	5 02 + 0 45	5.10 + 0.48	5.06 + 0.33
LW-3809 3810	6/30/2003	Gr. Beta	2 12 + 0 76	2 39 4 0 72	2.25 + 0.52
	3.00.2000			£.00 £ 0,1£	

_

TABLE A-5. In-House "Duplicate" Samples

٠

				Concentration (pCi/L) ^a	
			•••• <u>•••</u> •••••••••••••••••••••••••••••		Averaged
Lab Code	Date	Analysis	First Result	Second Result	Result
					······································
LW-3809, 3810	6/30/2003	H-3	2814.09 ± 167.99	2812.17 ± 167.94	2813.13 ± 118.77
AP-4105, 4106	6/30/2003	Be-7	· 0.07 ± 0.01	0.07 ± 0.01	0.07 ± 0.01
G-3572, 3573	7/1/2003	Be-7	0.91 ± 0.24	0.81 ± 0.28	0.86 ± 0.18
G-3572, 3573	7/1/2003	Gr. Beta	6.35 ± 0.15	6.35 ± 0.15	6.35 ± 0.11
G-3572, 3573	7/1/2003	K-40	5.44 ± 0.55	5.68 ± 0.28	5.56 ± 0.31
G-3572, 3573	7/1/2003	Sr-90	0.01 ± 0.00	0.02 ± 0.00	0.01 ± 0.00
MI-3601, 3602	7/1/2003	K-40	1318.60 ± 117.40	1435.10 ± 117.80	1376.85 ± 83.16
MI-3601, 3602	7/1/2003	Sr-90	0.86 ± 0.51	1.74 ± 0.60	1.30 ± 0.39
AP-3933, 3934	7/1/2003	Be-7	0.07 ± 0.01	0.07 ± 0.01	0.07 ± 0.01
AP-4061, 4062	7/2/2003	Be-7	0.07 ± 0.01	0.08 ± 0.01	0.08 ± 0.01
AP-4147, 4148	7/2/2003	Be-7	0.08 ± 0.01	0.07 ± 0.01	0.07 ± 0.01
AP-4084, 4085	7/3/2003	Be-7	0.09 ± 0.02	0.08 ± 0.02	0.08 ± 0.01
LW-3786, 3787	7/9/2003	Gr. Beta	2.13 ± 0.56	2.93 ± 0.62	2.53 ± 0.42
WW-4168, 4169	7/11/2003	Gr. Beta	3.79 ± 1.87	4.48 ± 1.98	4.14 ± 1.36
CF-3975, 3976	7/14/2003	Be-7	1.64 ± 0.81	1.66 ± 0.57	1.65 ± 0.50
CF-3975, 3976	7/14/2003	K-40	6.54 ± 0.75	6.19 ± 0.50	6.36 ± 0.45
MI-4020, 4021	7/16/2003	K-40	1350.90 ± 174.90	1199.80 ± 153.20	1275.35 ± 116.25
DW-4272, 4273	7/29/2003	Gr. Beta	2.35 ± 0.92	2.29 ± 0.89	2.32 ± 0.64
SWU-4461, 4462	7/30/2003	Gr. Beta	2.28 ± 0.44	1.93 ± 0.43	2.10 ± 0.31
SL-4398, 4399	8/4/2003	Be-7	4.55 ± 1.05	4.50 ± 1.10	4.53 ± 0.76
SL-4398, 4399 b	8/4/2003	Gr. Beta	3.41 ± 0.12	3.12 ± 0.11	3.27 ± 0.08
SL-4398, 4399	8/4/2003	K-40	2.47 ± 0.67	2.44 ± 0.87	2.46 ± 0.55
G-4419, 4420	8/4/2003	Be-7	3.98 ± 0.63	3.93 ± 0.57	3.96 ± 0.42
G-4419, 4420	8/4/2003	Gr. Beta	5.38 ± 0.14	5.35 ± 0.16	5.37 ± 0.11
G-4419, 4420	8/4/2003	K-40	4.42 ± 0.66	4.32 ± 0.74	4.37 ± 0.50
TD-4550, 4551	8/4/2003	H-3	327.30 ± 95.10	390.20 ± 92.10	358.75 ± 66.19
MI-4482, 4483	8/6/2003	K-40	1301.40 ± 115.20	1370.30 ± 116.80	1335.85 ± 82.03
MI-4482, 4483	8/6/2003	Sr-90	0.81 ± 0.30	0.85 ± 0.31	0.83 ± 0.21
G-4526, 4527	8/6/2003	Be-7	1.47 ± 0.29	1.42 ± 0.28	1.45 ± 0.20
G-4526, 4527	8/6/2003	K-40	5.42 ± 0.56	5.21 ± 0.63	5.31 ± 0.42
SWU-4609, 4610	8/6/2003	Gr. Beta	3.22 ± 0.63	2.67 ± 0.64	2.95 ± 0.45
CW-4694, 4695	8/6/2003	Gr. Beta	1.48 ± 0.34	1.09 ± 0.34	1.29 ± 0.24
CW-4694, 4695	8/6/2003	H-3	22776.41 ± 428.73	21831.75 ± 420.10	22304.08 ± 300.12
LW-4673, 4674	8/13/2003	Gr. Beta	2.86 ± 0.65	3.75 ± 0.71	3.30 ± 0.48
MI-4735, 4736	8/19/2003	K-40	1396.30 ± 127.90	1410.10 ± 120.20	1403.20 ± 87.76
MI-4756, 4757	8/19/2003	Sr-90	1.66 ± 0.47	1.53 ± 0.44	1.60 ± 0.32
VE-4832, 4833	8/20/2003	K-40	1.96 ± 0.50	1.43 ± 0.47	1.70 ± 0.34
MI-4860, 4861	8/26/2003	K-40	1312.10 ± 191.80	1307.80 ± 109.30	1309.95 ± 110.38
SO-5082, 5083	8/28/2003	Cs-137	0.01 ± 0.00	0.01 ± 0.00	0.01 ± 0.00
SO-5082, 5083	8/28/2003	Gr. Beta	20.02 ± 1.84	20.92 ± 2.03	20.47 ± 1.37
CW-5349, 5350	8/31/2003	Gr. Beta	1.45 ± 0.39	1.55 ± 0.45	1.50 ± 0.30
CW-5349, 5350	8/31/2003	H-3	24429.50 ± 444.42	24744.25 ± 447.18	24586.88 ± 315.23
ME-4968, 4969	9/2/2003	Gr. Beta	4.90 ± 0.23	5.18 ± 0.24	5.04 ± 0.17
ME-4968, 4969	9/2/2003	K-40	2.46 ± 0.41	2.68 ± 0.37	2.57 ± 0.28

A5-3

_

.

TABLE A-5. In-House "Duplicate" Samples

				Concentration (pCi/L) ²	
			• <u>.</u>		Averaged
Lab Code	Date	Analysis	First Result	Second Result	Result
DW-4989, 4990	9/2/2003	Gr. Beta	2.20 ± 1.04	3.19 ± 1.14	2.70 ± 0.77
MI-5154, 5155	9/8/2003	K-40	1365.50 ± 116.70	1456.70 ± 119.10	1411.10 ± 83.37
MI-5154, 5155	9/8/2003	Sr-90	1.19 ± 0.39	1.39 ± 0.39	1.29 ± 0.28
AP-6177, 6178	9/29/2003	Be-7	0.07 ± 0.01	0.06 ± 0.01	0.06 ± 0.01
SWU-5773, 5774	9/30/2003	Gr. Beta	2.55 ± 0.63	2.83 ± 0.60	2.69 ± 0.44
AP-6102, 6103	9/30/2003	Be-7	0.07 ± 0.01	0.05 ± 0.01	0.06 ± 0.01
G-5631, 5632	10/1/2003	Be-7	1.88 ± 0.48	2.21 ± 0.40	2.05 ± 0.31
G-5631, 5632	10/1/2003	Gr. Beta	5.87 ± 0.09	5.85 ± 0.08	5.86 ± 0.06
G-5631, 5632	10/1/2003	K-40	5.24 ± 0.77	5.26 ± 0.58	5.25 ± 0.48
SO-5660, 5661	10/1/2003	Cs-137	0.15 ± 0.04	0.16 ± 0.05	0.16 ± 0.03
SO-5660, 5661	10/1/2003	Gr. Alpha	12.72 ± 3.72	14.86 ± 3.88	13.79 ± 2.69
SO-5660, 5661	10/1/2003	Gr. Beta	32.42 ± 3.09	33.60 ± 3.04	33.01 ± 2.17
SO-5660, 5661	10/1/2003	K-40	18.93 ± 0.87	18.25 ± 1.19	18.59 ± 0.74
SO-5660, 5661	10/1/2003	Sr-90	0.03 ± 0.01	0.03 ± 0.01	0.03 ± 0.01
AP-6334, 6335	10/1/2003	Be-7	0.06 ± 0.01	0.06 ± 0.01	0.06 ± 0.01
AP-6363, 6364	10/2/2003	Be-7	0.07 ± 0.02	0.07 ± 0.02	0.07 ± 0.01
MI-5794, 5795	10/6/2003	Sr-90	1.37 ± 0.37	1.02 ± 0.37	1.19 ± 0.26
MI-5838, 5839	10/8/2003	К-40	1364.30 + 124.10	1414.40 ± 110.40	1389.35 ± 83.05
MI-5838, 5839	10/8/2003	Sr-90	0.76 ± 0.30	1.00 ± 0.34	0.88 ± 0.23
BS-5938, 5939	10/8/2003	Cs-137	0.18 ± 0.03	0.20 ± 0.05	0.19 ± 0.03
BS-5938, 5939	10/8/2003	K-40	15.59 ± 0.70	16.69 ± 0.80	16.14 ± 0.53
SS-5959, 5960	10/13/2003	K-40	7.49 + 0.42	7.29 + 0.63	7.39 ± 0.38
MI-6011, 6012	10/13/2003	К-40	1165.20 ± 118.70	1191.20 ± 99.50	1178.20 ± 77.44
MI-6034, 6035	10/14/2003	Sr-90	0.86 ± 0.33	0.90 ± 0.34	0.88 ± 0.24
VE-6055, 6056	10/15/2003	Gr. Beta	5.18 ± 0.18	5.33 ± 0.18	5.25 ± 0.13
VE-6055, 6056	10/15/2003	K-40	5.31 ± 0.57	4.52 ± 0.51	4.92 ± 0.38
MI-6291, 6292	10/21/2003	K-40	1935.60 ± 147.70	1936.10 ± 116.50	1935.85 ± 94.06
MI-6291, 6292	10/21/2003	Sr-90	1.22 ± 0.39	1.41 ± 0.37	1.31 ± 0.27
SS-6435, 6436	10/21/2003	Cs-137	0.05 ± 0.02	0.05 ± 0.03	0.05 ± 0.02
SS-6435, 6436	10/21/2003	K-40	14.08 ± 0.54	14.28 ± 0.80	14.18 ± 0.48
CF-6313, 6314	10/22/2003	K-40	14.56 ± 0.45	14.70 ± 0.95	14.63 ± 0.53
SO-6528, 6529	10/22/2003	Cs-137	0.15 ± 0.03	0.16 ± 0.05	0.16 ± 0.03
SO-6528, 6529	10/22/2003	K-40	17.46 ± 0.69	17.90 ± 1.05	17.68 ± 0.63
SO-6393, 6394	10/25/2003	Cs-137	0.09 ± 0.03	0.10 ± 0.04	0.10 ± 0.03
SO-6393, 6394	10/25/2003	Gr. Beta	23.21 ± 1.98	21.76 ± 1.91	22.48 ± 1.38
SO-6393, 6394	10/25/2003	K-40	13.98 ± 0.80	14.57 ± 0.86	14.27 ± 0.59
SWT-6507, 6508	10/28/2003	Gr. Beta	2.64 ± 0.52	2.63 ± 0.53	2.63 ± 0.37
DW-6647.6648	10/31/2003	I-131	0.46 ± 0.27	0.61 ± 0.31	0.53 ± 0.21
BS-6603.6604	11/3/2003	Cs-137	9.03 ± 0.82	8.60 ± 1.13	8.82 ± 0.70
BS-6603 6604	11/3/2003	Gr. Beta	26.83 ± 1.94	27.18 ± 1.95	27.01 ± 1.38
SQ-6670 6671	11/5/2003	Cs-137	0.15 ± 0.04	0.13 ± 0.04	0.14 ± 0.03
SO-6670 6671	11/5/2003	K-40	12.96 + 0.66	12.95 + 0.72	12.96 ± 0.49
S-7067, 7068	11/10/2003	Cs-137	0.21 ± 0.05	0 19 + 0 08	0.20 ± 0.05
				4700 40 4 440 00	4700 4E ± 06 E6

____· · · ·

TABLE A-5. In-House "Duplicate" Samples

·				Concentration (pCi/L) ^a	
			••••••••••••••••••••••••••••••••••••••		Averaged
Lab Code	Date	Analysis	First Result	Second Result	Result
					•
Ml-6818, 6819	11/11/2003.	Sr-90	2.01 ± 0.41	1.59 ± 0.39	1.80 ± 0.28
WL-6987, 6988	11/17/2003	Fe-55	603.49 ± 53.32	619.65 ± 53.97	611.57 ± 37.93 ·
SO-7156, 7157	11/21/2003	Cs-137	0.74 ± 0.08	0.77 ± 0.07	0.76 ± 0.06
SO-7156, 7157	11/21/2003	Gr. Alpha	14.90 ± 4.24	19.25 ± 4.45	17.07 ± 3.07
SO-7156, 7157	11/21/2003	Gr. Beta	22.97 ± 3.12	25.51 ± 2.98	24.24 ± 2.16
SO-7156, 7157	11/21/2003	K-40	12.51 ± 1.06	12.94 ± 1.07	12.73 ± 0.75
S-7281, 7282	11/24/2003	Cs-137	0.82 ± 0.15	1.16 ± 0.20	0.99 ± 0.12
SWU-7198, 7199	11/25/2003	Gr. Beta	2.60 ± 0.53	2.54 ± 0.55	2.57 ± 0.38
DW-7221, 7222	11/25/2003	Gr. Beta	12.32 ± 1.40	12.38 ± 1.43	12.35 ± 1.00
SW-7133, 7134	12/1/2003	Gr. Beta	2.10 ± 0.23	2.46 ± 0.23	2.28 ± 0.16
SW-7133, 7134	12/1/2003	K-40	1.50 ± 0.15	1.40 ± 0.14	1.45 ± 0.10
W-7519, 7520	12/1/2003	Fe-55	3.03 ± 0.65	3.12 ± 0.64	3.08 ± 0.46
SW-7805, 7806	12/1/2003	Sr-90	0.59 ± 0.32	0.56 ± 0.33	0.58 ± 0.23
VE-7399, 7400	12/9/2003	Gr. Beta	4.99 ± 0.15	5.24 ± 0.15	5.11 ± 0.11
VE-7399, 7400	12/9/2003	K-40	5.04 ± 0.46	5.34 ± 0.74	5.19 ± 0.43
SW-7540, 7541	12/9/2003	Gr. Alpha	2.64 ± 1.36	2.10 ± 1.19	2.37 ± 0.91
SW-7540, 7541	12/9/2003	Gr. Beta	6.62 ± 1.22	5.89 ± 1.35	6.25 ± 0.91
LW-7736, 7737	12/26/2003	Gr. Beta	2.62 ± 0.54	2.83 ± 0.56	2.73 ± 0.39
AP-7868, 7869	12/30/2003	Be-7	0.05 ± 0.01	0.04 ± 0.01	0.04 ± 0.01
AP-7952, 7953	12/30/2003	Be-7	0.04 ± 0.01	0.04 ± 0.01	0.04 ± 0.01
AP-7994, 7995	12/31/2003	Be-7	0.05 ± 0.02	0.05 ± 0.01	0.05 ± 0.01

Note: Duplicate analyses are performed on every twentieth sample received in-house. Results are not listed for those analyses with activities that measure below the LLD.

* Results are reported in units of pCi/L, except for air filters (pCi/Filter), food products, vegetation, soil, sediment (pCi/g).

.

^b 200 minute count time or longer, resulting in lower error.

<u></u>			Concentration ^b					
					Known	Control		
Lab Code	Туре	Date	Analysis	Laboratory result	Activity	Limits ^c		
					14 -	· · ·		
STW-972	water	12/01/02	Am-241	0.56 ± 0.06	0.58 ± 0.09	0.40 - 0.75		
STW-972	water	12/01/02	Co-57	57.10 ± 1.90	57.00 ± 5.70	39.90 - 74.10		
STW-972	water	12/01/02	Co-60	38.30 ± 0.60	38.20 ± 3.82	26.74 - 49.66		
STW-972	water	12/01/02	Cs-134	395.30 ± 10.10	421.00 ± 42.10	294.70 - 547.30		
STW-972	water	12/01/02	Cs-137	316.40 ± 5.30	329.00 ± 32.90	230.30 - 427.70		
STW-972	water	12/01/02	Fe-55	94.90 ± 24.50	96.00 ± 9.60	67.20 - 124.80		
STW-972	water	12/01/02	Mn-54	33.40 ± 0.10	32.90 ± 3.29	23.03 - 42.77		
STW-972	water	12/01/02	Ni-63	123.80 ± 5.50	136.50 ± 13.70	95.55 - 177.45		
STW-972	water	12/01/02	Pu-238	0.66 ± 0.06	0.83 ± 0.08	0.58 - 1.08		
STW-972	water	12/01/02	Pu-239/40	0.001 ± 0.001	0.000 ± 0.000	0.000 - 0.005		
STW-972	water	12/01/02	Sr-90	13.80 ± 1.00	12.31 ± 1.23	8.62 - 16.00		
STW-972	water	12/01/02	Tc-99	128.10 ± 3.80	132.00 ± 13.20	92.40 - 171.60		
STW-972	water	12/01/02	U-233/4	1.60 ± 0.09	1.54 ± 0.15	1.08 - 2.00		
STW-972	water	12/01/02	U-238	1.64 ± 0.09	1.60 ± 0.16	1.12 - 2.08		
STW-972	water	12/01/02	Zn-65	540.40 ± 9.90	516.00 ± 51.60	361.20 - 670.80		
STSO-987	soil	01/01/03	Co-57	534 36 + 2 61	530.00 + 53.00	371 00 - 689 00		
STSO-987	soil	01/01/03	Co-60	AA2 16 + 2 31	A20 00 + A2 00	294 00 - 546 00		
STSO-987	soil	01/01/03	Cs-134	$211 00 \pm 2.01$	238.00 + 23.80	166 60 - 309 40		
STSO-987	soil	01/01/03	Cs-137	849.50 + 3.30	832.00 + 83.20	582.40 - 1081.60		
STSO-987	soil	01/01/03	K-40	716.50 ± 12.80	652.00 ± 65.20	456.40 - 847.60		
STSO-987	soil	·01/01/03	Mn-54	148.76 ± 2.84	137.00 ± 13.70	95.90 - 178.10		
STSO-987	soil	01/01/03	Ni-63	597.10 ± 23.50	770.00 ± 77.00	539.00 - 1001.00		
STSO-987	soil	01/01/03	Pu-238	67.05 ± 3.10	66.90 ± 6.70	46.83 - 86.97		
STSO-987	soil	01/01/03	Pu-239/40	52.80 ± 3.60	52.70 ± 5.30	36.90 - 68.50		
STSO-987	soil	01/01/03	Sr-90	609.50 ± 9.80	714.00 ± 71.40	499.80 - 928.20		
STSO-987	soil	01/01/03	U-233/4	99.50 ± 7.60	89.00 ± 8.90	62.30 - 115.70		
STSO-987	soil	01/01/03	U-238	508.60 ± 42.20	421.00 ± 42.10	294.70 - 547.30		
STSO-987	soil	01/01/03	Zn-65	492.70 ± 28.10	490.00 ± 49.00	343.00 - 637.00		

TABLE A-6. Department of Energy's Mixed Analyte Performance Evaluation Program (MAPEP)^a.

* Results obtained by Environmental, Inc. ,Midwest Laboratory as a participant in the Department of Energy's Mixed Analyte Performance Evaluation Program, Idaho Operations office, Idaho Falls, Idaho

^b All results are in Bq/kg or Bq/L as requested by the Department of Energy.

^c MAPEP results are presented as the known values and expected laboratory precision (1 sigma, 1 determination) and control limits as defined by the MAPEP.

 \cup

-

•

TABLE A-7. Environmental Measurements Laboratory Quality Assessment Program (EML)

			Concentration				
				•	EML	Control	
Lab Code	Туре	Date	Analysis	Laboratory results	Result [®]	Limits ^c	
STW-977	water	03/01/03	Gr. Alpha	304.30 ± 53.10	- 377.50	0.58 - 1.29	
STW-977	water	03/01/03	Gr. Beta	615.80 ± 14.70	627.50	0.61 - 1.43	
STW-978	water	03/01/03	Am-241	2.00 ± 0.10	2.13	0.79 - 1.41	
STW-978	water 1	03/01/03	Co-60	221.30 ± 1.20	234.00	0.80 - 1.20	
STW-978 °	water	03/01/03	Cs-134	23.30 ± 1.10	30.50	0.80 - 1.30	
STW-978	water	03/01/03	Cs-137	61.40 ± 0.60	63.80	0.80 - 1.22	
STW-978 °	water	03/01/03	Н-З	341.90 ± 22.70	390.00	0.78 - 2.45	
STW-978	water	03/01/03	Pu-238	3.70 ± 0.20	3.33	0.74 - 1.20	
STW-978	water	03/01/03	Pu-239/40	4.40 ± 0.10	3.92	0.79 - 1.20	
STW-978	water	03/01/03	Sr-90	4.60 ± 0.30	4.34	0.69 - 1.34	
STW-978	water	03/01/03	Uranium	5.10 ± 0.60	4.29	0.75 - 1.33	
STSO-979	soil	03/01/03	Ac-228	55.60 ± 2.50	57.60	0.80 - 1.38	
STSO-979	soil	03/01/03	Am-241	12.42 ± 0.90	15.60	0.65 - 2.28	
STSO-979	soil	03/01/03	Bi-212	57.70 ± 3.20	60.60	0.50 - 1.34	
STSO-979	soil	03/01/03	Bi-214	60.40 ± 3.20	67.00	0.78 - 1.42	
STSO-979	soil	03/01/03	Cs-137	1416.80 ± 70.00	1450.00	0.80 - 1.25	
STSO-979	soil	03/01/03	K-40	653.80 ± 11.90	636.00	0.80 - 1.32	
STSO-979	soil	03/01/03	Pb-212	51.10 ± 5.20	57.90	0.78 - 1.32	
STSO-979	soil	03/01/03	Pb-214	64.70 ± 5.10	71.10	0.76 - 1.46	
STSO-979	soil	03/01/03	Pu-239/40	24.40 ± 0.30	23.40	0.71 - 1.30	
STSO-979	soil	03/01/03	Sr-90	54.50 ± 2.60	64.40	· 0.67 - 2.90	
STSO-979	soil	03/01/03	Uranium	245.00 ± 1.50	249.00	0.71 - 1.32	
	Vegetation	02/04/02	A- 244	240 4000	2 54	0.72 0.02	
STVE-900	Vegetation	03/01/03	Am-241	3.10 ± 0.20	3.51	0.73 = 2.02	
STVE-980	Vegetation	03/01/03	Cm-244	1.40 ± 0.50	2.01	0.01 - 1.59	
STVE-980	Vegetation	03/01/03	Co-60	12.60 ± 0.40	12.10	0.80 - 1.44	
STVE-980	Vegetation	03/01/03	CS-137	449.70 ± 6.20	444.00	0.80 - 1.31	
STVE-980	Vegetation	03/01/03	K-40	1159.00 ± 38.60	1120.00	0.79 - 1.39	
STVE-980	Vegetation	03/01/03	Pu-239/40	4.80 ± 0.40	5.17	0.69 - 1.31	
STVE-980	Vegetation	03/01/03	Sr-90	659.70 ± 50.40	650.00	0.55 - 1.21	
STAP-981	Air Filter	03/01/03	Am-241	0.27 ± 0.10	0.34	0.70 - 2.34	
STAP-981	Air Filter	03/01/03	Co-60	30.20 ± 0.30	33.50	0.80 - 1.26	
STAP-981	Air Filter	03/01/03	Cs-137	90.30 ± 1.30	99.70	0.80 - 1.32	
STAP-981	Air Filter	03/01/03	Mn-54	41.80 ± 0.60	43.80	0.80 - 1.35	
STAP-981	Air Filter	03/01/03	Pu-238	0.52 ± 0.10	0.52	0.67 - 1.33	
STAP-981	Air Filter	03/01/03	Pu-239/40	0.35 ± 0.10	0.33	0.73 - 1.26	
STAP-981	Air Filter	03/01/03	Sr-90	2.50 ± 0.10	2.80	0.53 - 1.84	
STAP-981	Air Filter	03/01/03	Uranium	0.51 ± 0.10	0.50	0.79 - 2.10	
STAP-982	Air Filter	03/01/03	Gr. Alpha	0.90 ± 0.10	1.17	0.73 - 1.43	
STAP-982	Air Filter	03/01/03	Gr. Beta	1.50 ± 0.10	1.50	0.76 - 1.36	
					••••		

<u>.</u>		······································	Concentration								
					EML	Control					
Lab Code	Туре	Date	Analysis	Laboratory results	Result ^b	Limits ^e					
STW-992	water	09/02/03	Am-241	9 78 + 0 32	··· 876	079 - 141					
The Sentember 2003 results are preliminary. Control limits used were taken from the March 2003 date											
Control limits may vary slightly when the final study is published.											
STW-992	water	09/02/03	Co-60	468.30 ± 4.10	513.00	0.80 - 1.20					
STW-992	water	09/02/03	Cs-134	53.90 ± 0.80	63.00	0.80 - 1.30					
STW-992	water	09/02/03	Cs-137	76.10 ± 1.40	80.30	0.80 - 1.22					
STW-992	water	09/02/03	H-3	355.20 ± 12.80	446.30	0.78 - 2.45					
STW-992	water	09/02/03	Pu-238	1.71 ± 0.07	2.07	0.74 - 1.20					
STW-992	water	09/02/03	Pu-239/40	4.24 ± 0.01	4,99	0.79 - 1.20					
STW-992	water	09/02/03	Sr-90	6.70 ± 0.50	7.04	0.69 - 1.34					
STW-992	water	09/02/03	Uranium	5.10 ± 0.60	5.69	0.75 - 1.33					
STW-993	water	09/02/03	Gr. Aloha	688.00 ± 7.60	622.00	0.58 - 1.29					
STW-993	water	09/02/03	Gr. Beta	1985.00 ± 111.00	1948.00	0.61 - 1.43					
STSO-994	soil	09/02/03	Am-241	19.70 ± 1.50	18.40	0.65 - 2.28					
STSO-994	soil	09/02/03	Cs-137	1928.00 ± 19.00	1973.00	0.80 - 1.25					
STSO-994	soil	09/02/03	K-40	533.00 ± 79.00	488.00	0.80 - 1.32					
STSO-994	soil	09/02/03	Pu-238	15.30 ± 0.80	14.60	0.59 - 2.88					
STSO-994	soil	09/02/03	Pu-239/40	32.50 ± 2.30	30.40	0.71 - 1.30					
STSO-994	soil	09/02/03	Sr-90 ⁻	69.80 ± 2.30	80.30	0.67 - 2.90					
STSO-994	soil	09/02/03	Uranium	228.30 ± 17.10	259.30	0.71 - 1.32					
STAP-995	Air Filter	09/02/03	Am-241	0.64 ± 0.05	0.44	0.70 - 2.34					
STAP-995	Air Filter	09/02/03	Co-60	48.50 ± 0.40	55.10	0.80 - 1.26					
STAP-995	Air Filter	09/02/03	Cs-137	51.20 ± 1.10	54.80	0.80 - 1.32					
STAP-995	Air Filter	09/02/03	Mn-54	53.70 ± 1.10	58.00	0.80 - 1.35					
STAP-995	Air Filter	09/02/03	Pu-238	0.24 ± 0.05	0.23	0.67 - 1.33					
STAP-995	Air Filter	09/02/03	Pu-239/40	0.41 ± 0.10	0.40	0.73 - 1.26					
STAP-995	Air Filter	09/02/03	Sr-90	1.90 ± 0.10	2.06	0.53 - 1.84					
STAP-995	Air Filter	09/02/03	Uranium	0.80 ± 0.06	0.82	0.79 - 2.10					
STAP-996	Air Filter	09/02/03	Gr. Alpha	3.23 ± 0.07	3.11	0.73 - 1.43					
STAP-996	Air Filter	09/02/03	Gr. Beta	4.18 ± 0.03	3.89	0.76 - 1.36					

TABLE A-7. Environmental Measurements Laboratory Quality Assessment Program (EML)

* Results are reported in Bq/L. with the following exceptions: Air Filters (Bq/Filter), Soil and Vegetation (Bq/kg).

^b The EML result listed is the mean of replicate determinations for each nuclide ± the standard error of the mean.

^c Control limits are reported by EML as the ratio of Reported Value / EML value.

^d A low bias for Cs-134 activity has been observed in the past. No errors have been found in the library or efficiency. Additional spike analyses will be performed and a correction factored into the calculation.

Reporting error.

.

____

APPENDIX B

-

 \cup

 \cup

 \cup

DATA REPORTING CONVENTIONS

\cup \smile C

Data Reporting Conventions

1.0. All activities, except gross alpha and gross beta, are decay corrected to collection time or the end of the collection period.

2.0. Single Measurements

Each single measurement is reported as follows: $x \pm s$ where: x = value of the measurement;

s = 2s counting uncertainty (corresponding to the 95% confidence level).

In cases where the activity is less than the lower limit of detection L, it is reported as: <L, where L = the lower limit of detection based on 4.66s uncertainty for a background sample.

3.0. <u>Duplicate analyses</u>

- 3.1 <u>Individual results:</u> For two analysis results; $x_1 \pm s_1$ and $x_2 \pm s_2$ <u>Reported result:</u> $x \pm s$; where $x = (1/2)(x_1 + x_2)$ and $s = (1/2)\sqrt{s_1^2 + s_2^2}$
- 3.2. <u>Individual results:</u> $<L_1$, $<L_2$ <u>Reported result:</u> <L, where L = lower of L₁ and L₂
- 3.3. Individual results: $x \pm s$, <L Reported result: $x \pm s$ if $x \ge L$; <L otherwise.

4.0. Computation of Averages and Standard Deviations

4.1 Averages and standard deviations listed in the tables are computed from all of the individual measurements over the period averaged; for example, an annual standard deviation would not be the average of quarterly standard deviations. The average \bar{x} and standard deviation s of a set of n numbers $x_1, x_2 \dots x_n$ are defined as follows:

$$\overline{\mathbf{x}} = \frac{1}{n} \sum \mathbf{x}$$
 $\mathbf{s} = \sqrt{\frac{\sum (\mathbf{x} - \mathbf{x})^2}{n-1}}$

- 4.2 Values below the highest lower limit of detection are not included in the average.
- 4.3 If all values in the averaging group are less than the highest LLD, the highest LLD is reported.
- 4.4 If all but one of the values are less than the highest LLD, the single value x and associated two sigma error is reported.
- 4.5 In rounding off, the following rules are followed:
 - 4.5.1. If the figure following those to be retained is less than 5, the figure is dropped, and the retained figures are kept unchanged. As an example, 11.443 is rounded off to 11.44.
 - 4.5.2. If the figure following those to be retained is equal to or greater than 5, the figure is dropped and the last retained figure is raised by 1. As an example, 11.445 is rounded off to 11.45.
- 4.6 Composite samples which overlap the next month or year are reported for the month or year in which most of the sample is collected.

APPENDIX C

.

----- ~ .

.

• •• •

TECHNICAL SPECIFICATION 2.1.3

REACTOR COOLANT DOSE EQUIVALENT IODINE ABOVE TECHNICAL SPECIFICATION LIMIT

•

_

During the 2003 reporting period, radioactivity of primary coolant did not exceed limits of Technical Specification 2.1.3.

•. •

APPENDIX D

.

.

.

SAMPLE LOCATION MAPS

* Locations currently discontinued are not illustrated.

 \cup

 \cup

 $\bigcup_{i=1}^{i}$

 \cup

 \cup

しし

 \cup

Sample locations within Site Boundary/Owner Controlled Area