

D.M. JAMIL Vice President

Duke Power Catawba Nuclear Station 4800 Concord Rd. / CNO1VP York, SC 29745-9635

803 831 4251 803 831 3221 fax

April 15, 2004

U.S. Nuclear Regulatory Commission ATTENTION: Document Control Desk Washington, D.C. 20555-0001

Subject: Duke Energy Corporation

Catawba Nuclear Station Unit 1 and 2

Docket Nos.: 50-413 and 50-414

Core Operating Limits Report (COLR)

Catawba Unit 1 Cycle 15, Revision 25 and Catawba Unit 2 Cycle 13, Revision 24

Attached, pursuant to Catawba Technical Specification 5.6.5, is an information copy of the Core Operating Limits Report for Catawba Unit 1 Cycle 15, Revision 25 and Catawba Unit 2 Cycle 13, Revision 24.

This letter and attachment do not contain any new commitments.

Please direct any questions or concerns to George Strickland at (803) 831-3585.

Sincerely,

D. M. Jamil

Attachment

4001

U. S. Nuclear Regulatory Commission April 15, 2004 Page 2

xc w/att: L. A. Reyes, Regional, Administrator USNRC, Region II

S. E. Peters, NRR Project Manager (CNS) USNRC, ONRR

E. F. Guthrie Senior Resident Inspector (CNS)

Catawba Unit 1 Cycle 15

Core Operating Limits Report Revision 25

March 2004

Duke Power Company

Date

Prepared By:

Checked By:

Checked By:

Checked By:

Checked By:

Approved By:

Appr

QA Condition 1

The information presented in this report has been prepared and issued in accordance with Catawba Technical Specification 5.6.5.

INSPECTION OF ENGINEERING INSTRUCTIONS

Inspection Waived By: (Spor	stylen C. (defutte	Date:	3/09/200
		<u>CATAWBA</u>		
	Inspection Waived			
MCE (Mechanical & Civil)	×	Inspected By/Date:		
RES (Electrical Only)	×	Inspected By/Date:		
RES (Reactor)	×	Inspected By/Date:		
MOD	×	Inspected By/Date:		
Other ()	: '	Inspected By/Date:		
		OCONEE		
	Inspection Waived			
MCE (Mechanical & Civil)		Inspected By/Date:		
RES (Electrical Only)	!	Inspected By/Date:		· · ·
RES (Reactor)		Inspected By/Date:		
MOD		Inspected By/Date:		
Other ()	*:	Inspected By/Date:		
			· · · · · · · · · · · · · · · · · · ·	
		MCGUIRE		
	Inspection Waived			
MCE (Mechanical & Civil)		Inspected By/Date:		
RES (Electrical Only)	<u> </u>	Inspected By/Date:		
RES (Reactor)	:	Inspected By/Date:		
MOD	!	Inspected By/Date:		
Other ()	i ·	Inspected By/Date:		

IMPLEMENTATION INSTRUCTIONS FOR REVISION 25

Revision 25 of the Catawba Unit 1 COLR can be implemented anytime after Amendment 212 to the Operating License NPF-35 has been implemented. This Technical Specification changes the LTOP temperature from 285 °F to 210 °F.

This COLR revision also removes the note from the bottom of pages 11, 26, 27, 29 which explained that the use of some of the data was contingent upon the implementation of Amendment 210. This amendment has been implemented and the notes are no longer required. Finally, this revision updates the rod position equations shown at the bottom of Figure 3 to be consistent with Unit 2.

REVISION LOG

Revision	EI Date	Pages Affected	COLR
0 - 1	Superceded	N/A	C1C07
2-5	Superceded	N/A	C1C08
6 – 8	Superceded	N/A	C1C09
9 – 11	Superceded	N/A	C1C10
12 - 14	Superceded	N/A	C1C11
15 – 17	Superceded	N/A	C1C12
18 - 21	Superceded	N/A	C1C13
22 - 23	Superceded	N/A	C1C14
24	November 2003	All	C1C15 (Orig. Issue)
25	March 2004	1-34	C1C15 (Revision 1)

INSERTION SHEET FOR REVISION 25

Remove pages

Insert Rev. 25 pages

Pages 1-34

Pages 1-34

^{*} Appendix A contains power distribution monitoring factors used in Technical Specification Surveillance. Appendix A is only included in the COLR copy sent to the NRC.

1.0 Core Operating Limits Report

This Core Operating Limits Report (COLR) has been prepared in accordance with the requirements of Technical Specification 5.6.5. The Technical Specifications that reference this report are listed below:

TS Section	Technical Specifications	COLR Parameter	COLR Section	COLR Page
2.1.1	Reactor Core Safety Limits	RCS Temperature and Pressure Safety Limits	2.1	10
3.1.1	Shutdown Margin	Shutdown Margin	2.2	10
3.1.3	Moderator Temperature Coefficient	MTC	2.3	12
3.1.4	Rod Group Alignment Limits	Shutdown Margin	2.2	10
3.1.5	Shutdown Bank Insertion Limit	Shutdown Margin Rod Insertion Limits	2.2 2.4	10 12
3.1.6	Control Bank Insertion Limit	Shutdown Margin Rod Insertion Limits	2.2 2.5	10 12
3.1.8	Physics Tests Exceptions	Shutdown Margin	2.2	10
3.2.1	Heat Flux Hot Channel Factor	F _Q AFD ΟΤΔΤ	2.6 2.8 2.9 2.6	16 23 26 16
3.2.2	Niveleer Enthalmy Disc Het Channel	Penalty Factors	2.6	22
3.2.2	Nuclear Enthalpy Rise Hot Channel Factor	FAH Panalty Factors	2.7	22
3.2.3	Axial Flux Difference	Penalty Factors AFD	2.7	23
3.3.1	Reactor Trip System Instrumentation	ΟΤΔΤ	2.9	26
3.3.1	Reactor Trip System instrumentation	ΟΙΔΙ	2.9	26
3,3,9	Boron Dilution Mitigation System	Reactor Makeup Water Flow Rate	2.10	28
3.4.1	RCS Pressure, Temperature and Flow limits for DNB	RCS Pressure, Temperature and Flow	2.11	28
3.5.1	Accumulators	Max and Min Boron Conc.	2.12	28
3.5.4	Refueling Water Storage Tank	Max and Min Boron Conc.	2.13	28
3.7.15	Spent Fuel Pool Boron Concentration	Min Boron Concentration	2.14	30
3.9.1	Refueling Operations - Boron Concentration	Min Boron Concentration	2.15	30
3.9.2	Refueling Operations – Nuclear Instrumentation	Reactor Makeup Water Flow Rate	2.16	30
5.6.5	Core Operating Limits Report (COLR)	Analytical Methods	1.1	7

The Selected License Commitments that reference this report are listed below:

SLC Section	Selected Licensing Commitment	COLR Parameter	COLR Section	COLR Page
16.7-9.3	Standby Shutdown System	Standby Makeup Pump Water Supply	2.17	31
16.9-11	Boration Systems – Borated Water Source – Shutdown	Borated Water Volume and Conc. for BAT/RWST	2.18	31
16.9-12	Boration Systems – Borated Water Source – Operating	Borated Water Volume and Conc. for BAT/RWST	2.19	32

1.1 Analytical Methods

The analytical methods used to determine core operating limits for parameters identified in Technical Specifications and previously reviewed and approved by the NRC are as follows.

1. WCAP-9272-P-A, "WESTINGHOUSE RELOAD SAFETY EVALUATION METHODOLOGY," (W Proprietary).

Revision 0

Report Date: July 1985 Not Used for C1C15

2. WCAP-10054-P-A, "Westinghouse Small Break ECCS Evaluation Model using the NOTRUMP Code, " (W Proprietary).

Revision 0

Report Date: August 1985

3. WCAP-10266-P-A, "THE 1981 VERSION OF WESTINGHOUSE EVALUATION MODEL USING BASH CODE", (W Proprietary).

Revision 2

Report Date: March 1987 Not Used for C1C15

4. WCAP-12945-P-A, Volume 1 and Volumes 2-5, "Code Qualification Document for Best-Estimate Loss of Coolant Analysis," (W Proprietary).

Revision: Volume 1 (Revision 2) and Volumes 2-5 (Revision 1)

Report Date: March 1998

5. BAW-10168P-A, "B&W Loss-of-Coolant Accident Evaluation Model for Recirculating Steam Generator Plants," (B&W Proprietary).

Revision 1

SER Date: January 22, 1991

Revision 2

SER Dates: August 22, 1996 and November 26, 1996.

Revision 3

SER Date: June 15, 1994. Not Used for C1C15

1.1 Analytical Methods (continued)

6. DPC-NE-3000PA, "Thermal-Hydraulic Transient Analysis Methodology," (DPC Proprietary).

Revision 3

SER Date: September 24, 2003

7. DPC-NE-3001PA, "Multidimensional Reactor Transients and Safety Analysis Physics Parameter Methodology," (DPC Proprietary).

Revision 0

Report Date: November, 1991, republished December 2000

8. DPC-NE-3002A, "UFSAR Chapter 15 System Transient Analysis Methodology".

Revision 4

SER Date: April 6, 2001

9. DPC-NE-2004P-A, "Duke Power Company McGuire and Catawba Nuclear Stations Core Thermal-Hydraulic Methodology using VIPRE-01," (DPC Proprietary).

Revision 1

SER Date: February 20, 1997

10. DPC-NE-2005P-A, "Thermal Hydraulic Statistical Core Design Methodology," (DPC Proprietary).

Revision 3

SER Date: September 16, 2002

11. DPC-NE-2008P-A, "Fuel Mechanical Reload Analysis Methodology Using TACO3," (DPC Proprietary).

Revision 0

SER Date: April 3, 1995

12. DPC-NE-2009-P-A, "Westinghouse Fuel Transition Report," (DPC Proprietary).

Revision 2

SER Date: December 18, 2002

13. DPC-NE-1004A, "Nuclear Design Methodology Using CASMO-3/SIMULATE-3P."

Revision 1

SER Date: April 26, 1996

1.1 Analytical Methods (continued)

14. DPC-NF-2010A, "Duke Power Company McGuire Nuclear Station Catawba Nuclear Station Nuclear Physics Methodology for Reload Design."

Revision 2

SER Date: June 24, 2003

15. DPC-NE-2011PA, "Duke Power Company Nuclear Design Methodology for Core Operating Limits of Westinghouse Reactors," (DPC Proprietary).

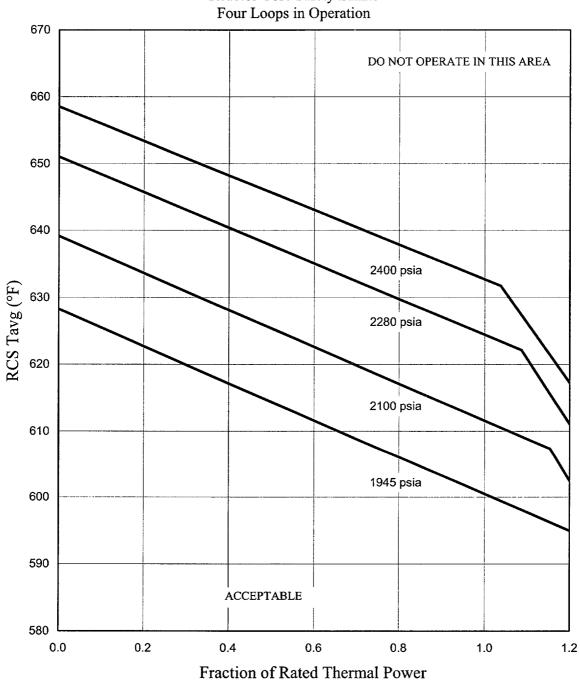
Revision 1

SER Date: October 1, 2002

2.0 Operating Limits

The cycle-specific parameter limits for the specifications listed in Section 1.0 are presented in the following subsections. These limits have been developed using NRC approved methodologies specified in Section 1.1.

2.1 Reactor Core Safety Limits (TS 2.1.1)


The Reactor Core Safety Limits are shown in Figure 1.

2.2 Shutdown Margin - SDM (TS 3.1.1, TS 3.1.4, TS 3.1.5, TS 3.1.6, TS 3.1.8)

- **2.2.1** For TS 3.1.1, shutdown margin shall be greater than or equal to 1.3% Δ K/K in mode 2 with Keff < 1.0 and in modes 3 and 4.
- **2.2.2** For TS 3.1.1, shutdown margin shall be greater than or equal to 1.0% Δ K/K in mode 5.
- **2.2.3** For TS 3.1.4, shutdown margin shall be greater than or equal to 1.3% Δ K/K in mode 1 and mode 2.
- 2.2.4 For TS 3.1.5, shutdown margin shall be greater than or equal to $1.3\% \Delta K/K$ in mode 1 and mode 2 with any control bank not fully inserted.
- 2.2.5 For TS 3.1.6, shutdown margin shall be greater than or equal to 1.3% Δ K/K in mode 1 and mode 2 with Keff \geq 1.0.
- **2.2.6** For TS 3.1.8, shutdown margin shall be greater than or equal to 1.3% ΔK/K in mode 2 during Physics Testing.

Figure 1

Reactor Core Safety Limits

2.3 Moderator Temperature Coefficient - MTC (TS 3.1.3)

2.3.1 The Moderator Temperature Coefficient (MTC) Limits are:

The MTC shall be less positive than the upper limits shown in Figure 2. The BOC, ARO, HZP MTC shall be less positive than $0.7E-04 \Delta K/K/^{\circ}F$.

The EOC, ARO, RTP MTC shall be less negative than the -4.3E-04 Δ K/K/°F lower MTC limit.

2.3.2 The 300 ppm MTC Surveillance Limit is:

The measured 300 PPM ARO, equilibrium RTP MTC shall be less negative than or equal to $-3.65E-04 \Delta K/K/^{\circ}F$.

2.3.3 The 60 PPM MTC Surveillance Limit is:

The 60 PPM ARO, equilibrium RTP MTC shall be less negative than or equal to -4.125E-04 ΔK/K/°F.

Where:

BOC = Beginning of Cycle (burnup corresponding to most

positive MTC)

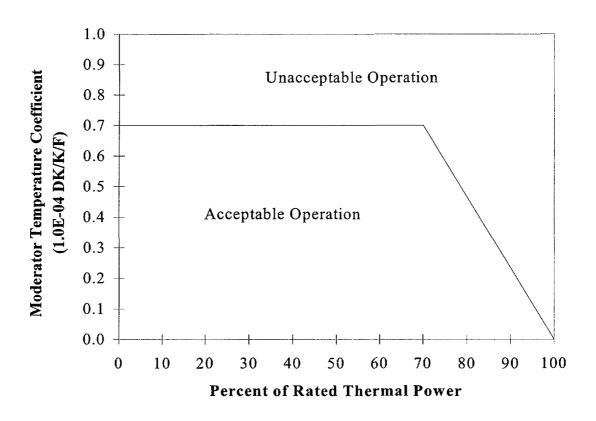
EOC = End of Cycle

ARO = All Rods Out

HZP = Hot Zero Thermal Power RTP = Rated Thermal Power

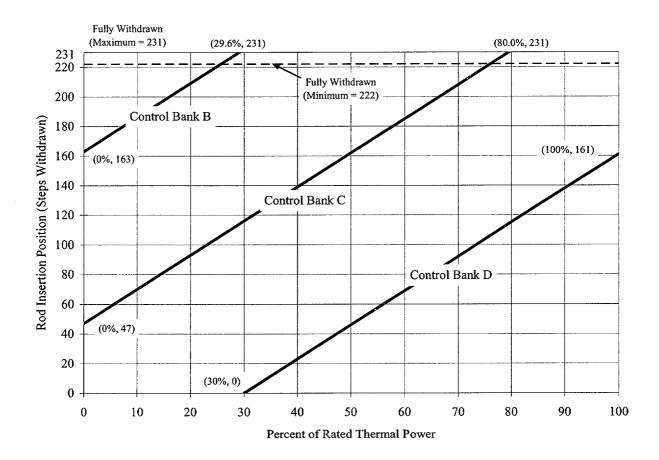
PPM = Parts per million (Boron)

2.4 Shutdown Bank Insertion Limit (TS 3.1.5)


2.4.1 Each shutdown bank shall be withdrawn to at least 222 steps. Shutdown banks are withdrawn in sequence and with no overlap.

2.5 Control Bank Insertion Limits (TS 3.1.6)

2.5.1 Control banks shall be within the insertion, sequence, and overlap limits shown in Figure 3. Specific control bank withdrawal and overlap limits as a function of the fully withdrawn position are shown in Table 1.


Figure 2

Moderator Temperature Coefficient Upper Limit Versus Power Level

NOTE: Compliance with Technical Specification 3.1.3 may require rod withdrawal limits. Refer to the Unit 1 ROD manual for details.

Figure 3
Control Bank Insertion Limits Versus Percent Rated Thermal Power

The Rod Insertion Limits (RIL) for Control Bank D (CD), Control Bank C (CC), and Control Bank B (CB) can be calculated by:

Bank CD RIL =
$$2.3(P) - 69 \{30 \le P \le 100\}$$

Bank CC RIL = $2.3(P) + 47 \{0 \le P \le 80\}$
Bank CB RIL = $2.3(P) + 163 \{0 \le P \le 29.6\}$

where P = %Rated Thermal Power

NOTE: Compliance with Technical Specification 3.1.3 may require rod withdrawal limits. Refer to the Unit 1 ROD manual for details.

Table 1 Control Bank Withdrawal Steps and Sequence

Full	y Withdra	wn at 222 S	Steps	Fu	lly Withdra	wn at 223 S	iteps
Control	Control	Control	Control	Control	Control	Control	Control
Bank A	Bank B	Bank C	Bank D	Bank A	Bank B	Bank C	Bank D
0 Start	0	0	0	0 Start	0	0	0
116	0 Start	0	0	116	0 Start	0	0
222 Stop		0	0	223 Stop		0	0
222 Stop 222	116	0 Start	0	223 Stop 223		0 Start	0
222		0 Start 106	0	223	116		0
	222 Stop		-		223 Stop	107	-
222 222	222	116	0 Start	223 223	223	116	0 Start
222	222	222 Stop	106		223	223 Stop	107
	y Withdray	wn at 224 S	Steps	<u> </u>	lly Withdra	wn at 225 S	teps
Control	Control	Control	Control	Control	Control	Control	Control
Bank A	Bank B	Bank C	Bank D	Bank A	Bank B	Bank C	Bank D
	_						
0 Start	0	0	0	0 Start	0	0	0
116	0 Start	0	0	116	0 Start	0	0
224 Stop	108	0	0	225 Stop	109	0	0
224	116	0 Start	0	225	116	0 Start	0
224	224 Stop	108	0	225	225 Stop	109	0
224	224	116	0 Start	225	225	116	0 Start
224	224	224 Stop	108	225	225	225 Stop	109
Fully	y Withdrav	vn at 226 S	Steps	Fu	lly Withdra	wn at 227 S	teps
Control	Control	Control	Control	Control	Control	Control	Control
Bank A	Bank B	Bank C	Bank D	Bank A	Bank B	Bank C	Bank D
0 Start	0	0	0	0 Start	0	0	0
116	0 Start	0	0	116	0 Start	0	0
226 Stop	110	0	0	227 Stop	111	0	0
226	116	0 Start	0	227	116	0 Start	0
226	226 Stop	110	0	227	227 Stop	111	0
226	226	116	0 Start	227	227	116	0 Start
226	226	226 Stop	110	227	227	227 Stop	111
Falls	y Withdrav	vn at 228 S	itone	Ful	lly Withdra	wn at 220 S	tone
Control	Control	Control	Control	Control	Control	Control	Control
Bank A	Bank B	Bank C	Bank D	Bank A	Bank B	Bank C	Bank D
	Duink B	Danke	Dulk D	Dunk A	Dank D	Dank	Dank
0 Start	0	0	0	0 Start	0	0	0
116	0 Start	0	0	116	0 Start	0	0
228 Stop	112	0	0	229 Stop	113	0	0
228	116	0 Start	0	229	116	0 Start	0
228	228 Stop	112	0	229	229 Stop	113	0
228	228	116	0 Start	229	229	116	0 Start
228	228	228 Stop	112	229	229	229 Stop	113
				•			
	Withdraw				ly Withdra		
Control	Control	Control	Control	Control	Control	Control	Control
Bank A	Bank B	Bank C	Bank D	Bank A	Bank B	Bank C	Bank D
0 Start	0	0	0	0 Start	0	0	0
116	0 Start	0	0	116	0 Start	0	0
230 Stop	114	0	0	231 Stop	115	0	0
230	116	0 Start	0	231 3100	116	0 Start	0
230	230 Stop	114	0	231	231 Stop	115	0
230	230 3100	116	0 Start	231	231 Stop	116	0 Start
230	230	230 Stop	114	231	231	231 Stop	
250	230	230 Stop	117	231	4J I	231 310p	115

- 2.6 Heat Flux Hot Channel Factor $F_0(X,Y,Z)$ (TS 3.2.1)
 - **2.6.1** $F_O(X,Y,Z)$ steady-state limits are defined by the following relationships:

$$F_Q^{RTP} *K(Z)/P$$
 for $P > 0.5$
 $F_Q^{RTP} *K(Z)/0.5$ for $P \le 0.5$

where,

P = (Thermal Power)/(Rated Power)

Note: The measured $F_Q(X,Y,Z)$ shall be increased by 3% to account for manufacturing tolerances and 5% to account for measurement uncertainty when comparing against the LCO limits. The manufacturing tolerance and measurement uncertainty are implicitly included in the F_Q surveillance limits as defined in COLR Sections 2.6.5 and 2.6.6.

- **2.6.2** $F_Q^{RTP} = 2.50 \text{ x K(BU)}$
- **2.6.3** K(Z) is the normalized $F_Q(X,Y,Z)$ as a function of core height. K(Z) for MkBW fuel is provided in Figure 4, and the K(Z) for Westinghouse RFA and NGF fuel is provided in Figure 5.
- **2.6.4** K(BU) is the normalized $F_Q(X,Y,Z)$ as a function of burnup. K(BU) for MkBW, Westinghouse RFA and NGF fuel is 1.0 at all burnups.

The following parameters are required for core monitoring per the Surveillance Requirements of Technical Specification 3.2.1:

2.6.5
$$[F_Q^L(X,Y,Z)]^{OP} = \frac{F_Q^D(X,Y,Z) * M_Q(X,Y,Z)}{UMT * MT * TILT}$$

where:

 $[F_Q^L(X,Y,Z)]^{OP}$ = Cycle dependent maximum allowable design peaking factor that ensures that the $F_Q(X,Y,Z)$ LOCA limit is not exceeded for operation within the AFD, RIL, and QPTR limits. $F_Q^L(X,Y,Z)^{OP}$ includes allowances for calculational and measurement uncertainties.

 $F_{\mathcal{Q}}^{D}(X,Y,Z) = \text{Design power distribution for } F_{\mathcal{Q}}.$ $F_{\mathcal{Q}}^{D}(X,Y,Z)$ is provided in Table 5, Appendix A, for normal operating conditions and in Table 8, Appendix A for power escalation testing during initial startup operation.

 $M_Q(X,Y,Z)$ = Margin remaining in core location X,Y,Z to the LOCA limit in the transient power distribution. $M_Q(X,Y,Z)$ is provided in Table 5, Appendix A for normal operating conditions and in Table 8, Appendix A for power escalation testing during initial startup operation.

UMT = Total Peak Measurement Uncertainty. (UMT = 1.05)

MT = Engineering Hot Channel Factor. (MT = 1.03)

TILT = Peaking penalty that accounts for allowable quadrant power tilt ratio of 1.02. (TILT = 1.035)

2.6.6
$$[F_Q^L(X,Y,Z)]^{RPS} = \frac{F_Q^D(X,Y,Z) * M_C(X,Y,Z)}{UMT * MT * TILT}$$

where:

 $[F_Q^L(X,Y,Z)]^{RPS} = \begin{tabular}{ll} Cycle dependent maximum allowable design peaking factor that ensures that the $F_Q(X,Y,Z)$ Centerline Fuel Melt (CFM) limit is not exceeded for operation within the AFD, RIL, and QPTR limits. <math display="block">[F_Q^L(X,Y,Z)]^{RPS} \begin{tabular}{ll} CYCLE & CYCLE &$

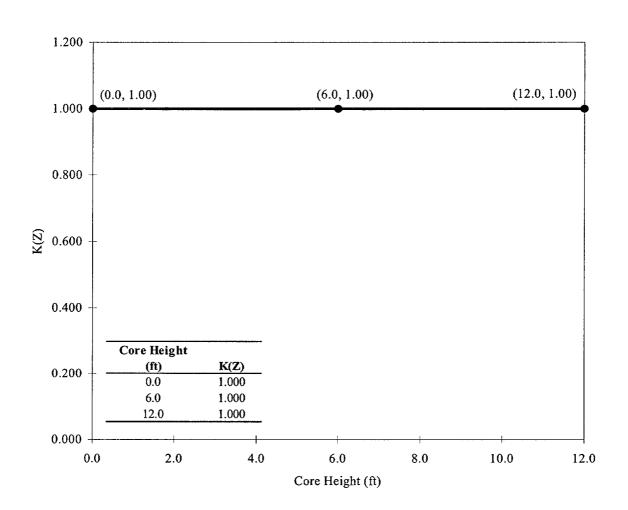
 $F_Q^D(X,Y,Z)$ = Design power distributions for F_Q . $F_Q^D(X,Y,Z)$ is provided in Table 5, Appendix A for normal operating conditions and in Table 8, Appendix A for power escalation testing during initial startup operations.

 $M_C(X,Y,Z)$ = Margin remaining to the CFM limit in core location X,Y,Z from the transient power distribution. $M_C(X,Y,Z)$ is provided in Table 6, Appendix A for normal operating conditions and in Table 9, Appendix A for power escalation testing during initial startup operations.

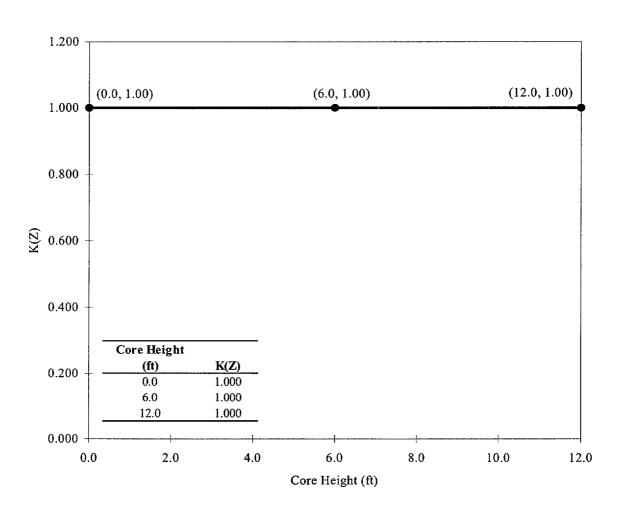
UMT = Measurement Uncertainty (UMT = 1.05)

MT = Engineering Hot Channel Factor (MT = 1.03)

TILT = Peaking penalty that accounts for allowable quadrant power tilt ratio of 1.02. (TILT = 1.035)


2.6.7 KSLOPE = 0.0725

where:


KSLOPE = the adjustment to the K_1 value from OT Δ T trip setpoint required to compensate for each 1% that $F_{\mathcal{Q}}^{M}(X,Y,Z)$ exceeds $F_{\mathcal{Q}}^{L}(X,Y,Z)^{RPS}$.

2.6.8 $F_Q(X,Y,Z)$ Penalty Factors for Technical Specification Surveillances 3.2.1.2 and 3.2.1.3 are provided in Table 2.

 $\label{eq:KZ} Figure \, 4$ $K(Z), \, Normalized \, F_Q(X,Y,Z) \, as \, a \, \, Function \, of \, Core \, Height \, \\ for \, MkBW \, Fuel$

 $\label{eq:KZ} Figure \, 5$ $\label{eq:KZ} K(Z), \, Normalized \, F_Q(X,Y,Z) \, as \, a \, Function \, of \, Core \, Height \, \\ for \, RFA \, and \, NGF \, Fuel$

 $F_Q(X,Y,Z) \ and \ F_{\Delta H}(X,Y) \ Penalty \ Factors$ For Tech Spec Surveillances 3.2.1.2, 3.2.1.3 and 3.2.2.2

Burnup (EFPD)	F _Q (X,Y,Z) Penalty Factor(%)	F _{ΔH} (X,Y) Penalty Factor (%)
4	2.00	2.00
12	2.00	2.00
25	2.52	2.00
50	2.00	2.00
75	2.00	2.00
100	2.00	2.00
125	2.00	2.00
150	2.00	2.00
175	2.00	2.00
200	2.00	2.00
225	2.00	2.00
250	2.00	2.00
275	2.00	2.00
300	2.00	2.00
325	2.00	2.00
350	2.00	2.00
375	2.00	2.00
400	2.00	2.00
425	2.00	2.00
450	2.00	2.00
475	2.00	2.00
480	2.00	2.00
505	2.00	2.00
509	2.00	2.00
524	2.00	2.00

Note: Linear interpolation is adequate for intermediate cycle burnups. All cycle burnups outside the range of the table shall use a 2% penalty factor for both $F_Q(X,Y,Z)$ and $F_{\Delta H}(X,Y)$ for compliance with the Tech Spec Surveillances 3.2.1.2, 3.2.1.3 and 3.2.2.2.

2.7 Nuclear Enthalpy Rise Hot Channel Factor - $F_{AH}(X,Y)$ (TS 3.2.2)

The $F_{\Delta H}$ steady-state limits referred to in Technical Specification 3.2.2 are defined by the following relationship.

2.7.1
$$[F_{\Delta H}^{L}(X,Y)]^{LCO} = MARP(X,Y) * \left[1.0 + \frac{1}{RRH} * (1.0 - P)\right]$$

where:

 $[F_{\Delta H}^{L}(X,Y)]^{LCO}$ is defined as the steady-state, maximum allowed radial peak and includes allowances for calculation/measurement uncertainty.

MARP(X,Y) = Cycle-specific operating limit Maximum Allowable Radial Peaks. MARP(X,Y) radial peaking limits are provided in Table 3.

$$P = \frac{Thermal\ Power}{Rated\ Thermal\ Power}$$

RRH = Thermal Power reduction required to compensate for each 1% that the measured radial peak, $F_{\Delta H}^{M}(X,Y)$, exceeds the limit. (RRH = 3.34, $0.0 < P \le 1.0$)

The following parameters are required for core monitoring per the Surveillance requirements of Technical Specification 3.2.2.

2.7.2
$$[F_{\Delta H}^{L}(X,Y)]^{SURV} = \frac{F_{\Delta H}^{D}(X,Y) * M_{\Delta H}(X,Y)}{UMR * TILT}$$

where:

 $[F_{\Delta H}^{L}(X,Y)]^{SURV} = \quad \text{Cycle dependent maximum allowable design peaking factor} \\ \text{that ensures that the } F_{\Delta H}(X,Y) \text{ limit is not exceeded for} \\ \text{operation within the AFD, RIL, and QPTR limits.} \\ F_{\Delta H}^{L}(X,Y)^{SURV} \text{ includes allowances for calculational and} \\ \text{measurement uncertainty.}$

 $F_{\Delta H}^{D}(X,Y) = Design power distribution for <math>F_{\Delta H}$. $F_{\Delta H}^{D}(X,Y)$ is provided in Table 7, Appendix A for normal operation and in Table 10, Appendix A for power escalation testing during initial startup operation.

- $M_{\Delta H}(X,Y)$ = The margin remaining in core location X,Y relative to the Operational DNB limits in the transient power distribution. $M_{\Delta H}(X,Y)$ is provided in Table 7, Appendix A for normal operation and in Table 10, Appendix A for power escalation testing during initial startup operation.
 - UMR = Uncertainty value for measured radial peaks. UMR is set to 1.0 since a factor of 1.04 is implicitly included in the variable $M_{AH}(X,Y)$.
 - TILT = Peaking penalty that accounts for allowable quadrant power tilt ratio of 1.02. (TILT = 1.035)

2.7.3 RRH = 3.34

where:

RRH = Thermal Power reduction required to compensate for each 1% that the measured radial peak, $F_{\Lambda H}^{M}(X,Y)$ exceeds its limit. $(0 < P \le 1.0)$

2.7.4 TRH = 0.04

where:

- TRH = Reduction in OT Δ T K₁ setpoint required to compensate for each 1% that the measured radial peak, $F_{\Delta H}(X,Y)$ exceeds its limit.
- **2.7.5** $F_{\Delta H}(X,Y)$ Penalty Factors for Technical Specification Surveillance 3.2.2.2 are provided in Table 2.

2.8 Axial Flux Difference – AFD (TS 3.2.3)

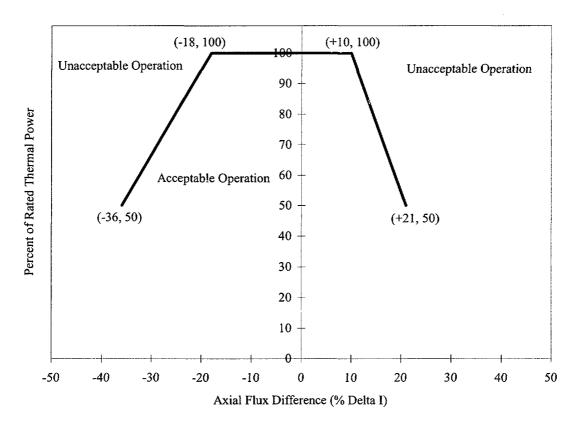
2.8.1 The Axial Flux Difference (AFD) Limits are provided in Figure 6.

Table 3 Maximum Allowable Radial Peaks (MARPS)

RFA Fuel MARPs 100% Full Power

Core													
Height						A	xial Pea	k		_			
(ft)	1.05	1.1	1.2	1.3	1.4	1.5	1.6	1.7	1.8	1.9	2.1	3.0	3.25
0.12	1.847	1.882	1.947	1.992	1.974	2.068	2.090	2.049	1.972	1.900	1.778	1.315	1.246
1.20	1.843	1.879	1.938	1.992	1.974	2.068	2.054	2.012	1.935	1.862	1.785	1.301	1.224
2.40	1.846	1.876	1.931	1.981	1.974	2.068	2.025	1.981	1.903	1.832	1.757	1.468	1.456
3.60	1.843	1.869	1.920	1.964	1.974	2.068	2.005	1.968	1.892	1.820	1.716	1.471	1.431
4.80	1.838	1.868	1.906	1.945	1.974	2.006	1.945	1.925	1.862	1.802	1.725	1.326	1.285
6.00	1.834	1.856	1.891	1.921	1.946	1.934	1.878	1.863	1.802	1.747	1.673	1.384	1.317
7.20	1.828	1.845	1.871	1.893	1.887	1.872	1.809	1.787	1.732	1.681	1.618	1.316	1.277
8.40	1.823	1.829	1.847	1.857	1.816	1.795	1.739	1.722	1.675	1.630	1.551	1.247	1.211
9.60	1.814	1.812	1.809	1.792	1.738	1.724	1.678	1.665	1.621	1.578	1.492	1.191	1.137
10.80	1.798	1.784	1.761	1.738	1.697	1.682	1.626	1.605	1.558	1.512	1.430	1.149	1.097
11.40	1.789	1.765	1.725	1.684	1.632	1.614	1.569	1.557	1.510	1.466	1.392	1.113	1.060

MkBW Fuel MARPs 100% Full Power


Core													
Height						A	xial Pea	k					
(ft)	1.05	1.1	1.2	1.3	1.4	1.5	1.6	1.7	1.8	1.9	2.1	3.0	3.25
0.12	1.678	1.708	1.772	1.829	1.878	1.922	1.852	1.798	1.714	1.636	1.535	1.211	1.147
1.20	1.675	1.706	1.766	1.821	1.867	1.886	1.829	1.806	1.731	1.655	1.540	1.182	1.117
2.40	1.679	1.708	1.763	1.815	1.853	1.841	1.786	1.769	1.711	1.655	1.557	1.168	1.106
3.60	1.682	1.709	1.760	1.804	1.812	1.797	1.743	1.722	1.669	1.619	1.556	1.202	1.131
4.80	1.684	1.708	1.754	1.792	1.766	1.750	1.699	1.681	1.630	1.581	1.516	1.232	1.186
6.00	1.686	1.708	1.745	1.761	1.715	1.703	1.654	1.638	1.590	1.544	1.476	1.206	1.156
7.20	1.686	1.704	1.733	1.714	1.666	1.649	1.603	1.587	1.542	1.503	1.438	1.177	1.127
8.40	1.681	1.692	1.702	1.660	1.612	1.595	1.549	1.537	1.494	1.454	1.387	1.145	1.100
9.60	1.673	1.677	1.651	1.601	1.558	1.544	1.502	1.491	1.450	1.413	1.350	1.121	1.076
10.80	1.662	1.649	1.603	1.550	1.503	1.491	1.448	1.441	1.404	1.369	1.307	1.086	1.043
12.00	1.636	1.608	1.553	1.505	1.456	1.446	1.408	1.403	1.370	1.340	1.286	1.072	1.027

NGF Fuel MARPs 100% Full Power

Core Height			A	axial Pea	k		
(ft)	1.05	1.2	1.4	1.6	1.8	2.1	3.25
0.12	1.771	1.871	1.942	2.086	1.970	1.778	1.246
2.40	1.760	1.853	1.942	2.015	1.892	1.747	1.435
4.80	1.757	1.824	1.891	1.889	1.809	1.699	1.260
7.20	1.745	1.784	1.805	1.736	1.659	1.553	1.227
9.60	1.729	1.723	1.652	1.587	1.527	1.402	1.059
11.40	1.707	1.642	1.550	1.477	1.416	1.304	1.003

Figure 6

Percent of Rated Thermal Power Versus Percent Axial Flux Difference Limits

NOTE: Compliance with Technical Specification 3.2.1 may require more restrictive AFD limits. Refer to the Unit 1 ROD manual for operational AFD limits.

2.9 Reactor Trip System Instrumentation Setpoints (TS 3.3.1) Table 3.3.1-1

2.9.1 Overtemperature ΔT Setpoint Parameter Values

<u>Parameter</u>	Nominal Value
Nominal Tavg at RTP	T' ≤ 585.1 °F
Nominal RCS Operating Pressure	P' = 2235 psig
Overtemperature ΔT reactor trip setpoint	$K_1 = 1.1978$
Overtemperature ΔT reactor trip heatup setpoint penalty coefficient	$K_2 = 0.03340/{}^{\circ}F$
Overtemperature ΔT reactor trip depressurization setpoint penalty coefficient	$K_3 = 0.001601/psi$
Time constants utilized in the lead-lag compensator for ΔT	$\tau_1 = 8 \text{ sec.}$ $\tau_2 = 3 \text{ sec.}$
Time constant utilized in the lag compensator for ΔT	$\tau_3 = 0$ sec.
Time constants utilized in the lead-lag compensator for T_{avg}	$\tau_4 = 22 \text{ sec.}$ $\tau_5 = 4 \text{ sec.}$
Time constant utilized in the measured T_{avg} lag compensator	$\tau_6 = 0$ sec.
$f_1(\Delta I)$ "positive" breakpoint	$= 19.0 \% \Delta I$
$f_1(\Delta I)$ "negative" breakpoint	= N/A*
$f_1(\Delta I)$ "positive" slope	$= 1.769 \% \Delta T_0 / \% \Delta I$
$f_1(\Delta I)$ "negative" slope	= N/A*

^{*} The $f_1(\Delta I)$ negative breakpoints and slopes for OT ΔT are less restrictive than the OP ΔT $f_2(\Delta I)$ negative breakpoint and slope. Therefore, during a transient which challenges the negative imbalance limits the OP ΔT $f_2(\Delta I)$ limits will result in a reactor trip before the OT ΔT $f_1(\Delta I)$ limits are reached. This makes implementation of an OT ΔT $f_1(\Delta I)$ negative breakpoint and slope unnecessary.

2.9.2 Overpower ΔT Setpoint Parameter Values

<u>Parameter</u>	Nominal Value
Nominal Tavg at RTP	T" ≤ 585.1 °F
Overpower ΔT reactor trip setpoint	$K_4 = 1.0864$
Overpower ΔT reactor trip penalty	$K_5 = 0.02$ / °F for increasing Tavg $K_5 = 0.00$ / °F for decreasing Tavg
Overpower ΔT reactor trip heatup setpoint penalty coefficient (for T>T")	$K_6 = 0.001179/{}^{\circ}F \text{ for } T > T''$ $K_6 = 0.0 / {}^{\circ}F \text{ for } T \le T''$
Time constants utilized in the lead-lag	$\tau_1 = 8 \text{ sec.}$
compensator for ΔT	$\tau_2 = 3 \text{ sec.}$
Time constant utilized in the lag compensator for ΔT	$\tau_3 = 0$ sec.
Time constant utilized in the measured T_{avg} lag compensator	$\tau_6 = 0$ sec.
Time constant utilized in the rate-lag controller for $T_{\rm avg}$	$\tau_7 = 10 \text{ sec.}$
$f_2(\Delta I)$ "positive" breakpoint	$= 35.0 \% \Delta I$
$f_2(\Delta I)$ "negative" breakpoint	= -35.0 %ΔI
$f_2(\Delta I)$ "positive" slope	$=7.0 \%\Delta T_0 / \%\Delta I$
$f_2(\Delta I)$ "negative" slope	$=7.0 \%\Delta T_0 / \%\Delta I$

2.10 Boron Dilution Mitigation System (TS 3.3.9)

2.10.1 Reactor Makeup Water Pump flow rate limits:

Applicable Mode	<u>Limit</u>
Mode 3	≤150 gpm
Mode 4 or 5	< 70 gpm

2.11 RCS Pressure, Temperature and Flow Limits for DNB (TS 3.4.1)

The RCS pressure, temperature and flow limits for DNB are shown in Table 4.

2.12 Accumulators (TS 3.5.1)

2.12.1 Boron concentration limits during modes 1 and 2, and mode 3 with RCS pressure >1000 psi:

<u>Parameter</u>	<u>Limi</u>	<u>.t</u>
Cold Leg Accumulator minimum boron	concentration. 2,500 p	pm
Cold Leg Accumulator maximum boron	concentration. 2,975 p	pm

2.13 Refueling Water Storage Tank - RWST (TS 3.5.4)

2.13.1 Boron concentration limits during modes 1, 2, 3, and 4:

<u>Parameter</u>	<u>Limit</u>
Refueling Water Storage Tank minimum boron concentration.	2,700 ppm
Refueling Water Storage Tank maximum boron concentration.	2,975 ppm

Table 4

Reactor Coolant System DNB Parameters

PARAMETER	INDICATION	No. Operable CHANNELS	LIMITS
1. Indicated RCS Average Temperature	meter	4	< 587.2 °F
1. Indicated Res Average Temperature	meter	3	≤ 586.9 °F
	computer	4	< 587.7 °F
	computer	3	≤ 587.5 °F
2. Indicated Pressurizer Pressure	meter	4	≥ 2219.8 psig
2, 3,44,44,44	meter	3	≥ 2222.1 psig
	computer	4	≥ 2215.8 psig
	computer	3	\geq 2217.5 psig
3. RCS Total Flow Rate			≥ 388,000 gpm

2.14 Spent Fuel Pool Boron Concentration (TS 3.7.15)

2.14.1 Minimum boron concentration limit for the spent fuel pool. Applicable when fuel assemblies are stored in the spent fuel pool.

<u>Parameter</u> <u>Limit</u>
Spent fuel pool minimum boron concentration. 2,700 ppm

2.15 Refueling Operations - Boron Concentration (TS 3.9.1)

2.15.1 Minimum boron concentration limit for the filled portions of the Reactor Coolant System, refueling canal, and refueling cavity for mode 6 conditions. The minimum boron concentration limit and plant refueling procedures ensure that the Keff of the core will remain within the mode 6 reactivity requirement of Keff ≤ 0.95.

<u>Parameter</u>	<u>Limit</u>
Minimum Boron concentration of the Reactor Coolant	2,700 ppm
System, the refueling canal, and the refueling cavity.	

- 2.16 Refueling Operations Instrumentation (TS 3.9.2)
 - **2.16.1** Reactor Makeup Water Pump Flow rate Limit:

Applicable Mode Limit

Mode 6 \leq 70 gpm

2.17 Standby Shutdown System - Standby Makeup Pump Water Supply - (SLC-16.7-9.3)

2.17.1 Minimum boron concentration limit for the spent fuel pool. Applicable for modes 1, 2, and 3.

<u>Parameter</u>	<u>Limit</u>
Spent fuel pool minimum boron concentration for surveillance SLC-16.7-9.3.	2,700 ppm

2.18 Borated Water Source – Shutdown (SLC 16.9-11)

2.18.1 Volume and boron concentrations for the Boric Acid Tank (BAT) and the Refueling Water Storage Tank (RWST) during Mode 4 with any RCS cold leg temperature $\leq 210^{\circ}$ F, and Modes 5 and 6.

<u>Parameter</u>	<u>Limit</u>
Boric Acid Tank minimum boron concentration	7,000 ppm
Volume of 7,000 ppm boric acid solution required to maintain SDM at 68°F	2000 gallons
Boric Acid Tank Minimum Shutdown Volume (Includes the additional volumes listed in SLC 16.9-11)	13,086 gallons (14.9%)

NOTE: When cycle burnup is > 454 EFPD, Figure 7 may be used to determine the required Boric Acid Tank Minimum Level.

Refueling Water Storage Tank minimum boron concentration	2,700 ppm
Volume of 2,700 ppm boric acid solution required to maintain SDM at 68 °F	7,000 gallons
Refueling Water Storage Tank Minimum Shutdown Volume (Includes the additional volumes listed in SLC 16.9-11)	48,500 gallons (8.7%)

2.19 Borated Water Source - Operating (SLC 16.9-12)

2.19.1 Volume and boron concentrations for the Boric Acid Tank (BAT) and the Refueling Water Storage Tank (RWST) during Modes 1, 2, and 3 and Mode 4 with all RCS cold leg temperatures > 210°F.

<u>Parameter</u>	<u>Limit</u>
Boric Acid Tank minimum boron concentration	7,000 ppm
Volume of 7,000 ppm boric acid solution required to maintain SDM at 210°F	13,500 gallons
Boric Acid Tank Minimum Shutdown Volume (Includes the additional volumes listed in SLC 16.9-12)	25,200 gallons (45.8%)

NOTE: When cycle burnup is > 454 EFPD, Figure 7 may be used to determine the required Boric Acid Tank Minimum Level.

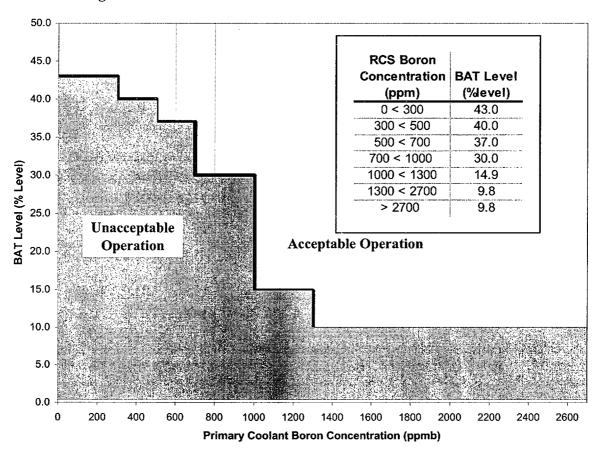

Refueling Water Storage Tank minimum boron concentration	2,700 ppm
Volume of 2,700 ppm boric acid solution required to maintain SDM at 210 °F	57,107 gallons
Refueling Water Storage Tank Minimum Shutdown Volume (Includes the additional volumes listed in SLC 16.9-12)	98,607 gallons (22.0%)

Figure 7

Boric Acid Storage Tank Indicated Level Versus
Primary Coolant Boron Concentration

(Valid When Cycle Burnup is > 454 EFPD)

This figure includes additional volumes listed in SLC 16.9-11 and 16.9-12

Appendix A

Power Distribution Monitoring Factors

Appendix A contains power distribution monitoring factors used in Technical Specification Surveillance. Due to the size of the monitoring factor data, Appendix A is controlled electronically within Duke and is not included in the Duke internal copies of the COLR. The Catawba Reactor and Electrical Systems Engineering Section controls this information via computer files and should be contacted if there is a need to access this information.

Appendix A is included in the COLR copy transmitted to the NRC.

Catawba Unit 2 Cycle 13

Core Operating Limits Report Revision 24

March 2004

Duke Power Company

QA Condition 1

The information presented in this report has been prepared and issued in accordance with Catawba Technical Specification 5.6.5.

INSPECTION OF ENGINEERING INSTRUCTIONS

Inspection Waived By: (Spor	Athle P.	Schutz	Date: 3/09/200
		CATAWBA	
	Inspection		
	Waived		
MCE (Mechanical & Civil)	× × ×	Inspected By/Date:	
RES (Electrical Only)	×	Inspected By/Date:	
RES (Reactor)	×	Inspected By/Date:	
MOD	×	Inspected By/Date:	
Other ()	1	Inspected By/Date:	
		OCONEE	
	Inspection Waived		
MCE (Mechanical & Civil)		Inspected By/Date:	
RES (Electrical Only)		Inspected By/Date:	
RES (Reactor)		Inspected By/Date:	
MOD	F 4	Inspected By/Date:	
Other ()		Inspected By/Date:	
		MCGUIRE	
	Inspection Waived		
MCE (Mechanical & Civil)		Inspected By/Date:	
RES (Electrical Only)		Inchested Du/Date:	
RES (Reactor)		Inspected Bu/Dates	
MOD			
Other (Inspected By/Date:	

IMPLEMENTATION INSTRUCTIONS FOR REVISION 24

Revision 24 of the Catawba Unit 2 COLR must be implemented concurrent with the implementation of Amendment No. 206 to Operating License NPF-52. This Technical Specification changes the LTOP temperature from 285 °F to 210 °F.

REVISION LOG

Revision	Effective Date	Pages Affected	<u>COLR</u>
Revisions 1-13	N/A	N/A	C2C06 - C2C09
Revision 14	August 1998	N/A	C2C10 COLR
Revision 15	October 1998	N/A	C2C10 COLR rev 1
Revision 16	December 1998	N/A	C2C10 COLR rev 2
Revision 17	February 2000	N/A	C2C11 COLR
Revision 18	February 2001	N/A	C2C11 COLR rev 1
Revision 19	September 2001	N/A	C2C12 COLR
Revision 20	September 2001	N/A	C2C12 COLR rev 1
Revision 21	July 2002	N/A	C2C12 COLR rev 2
Revision 22	February 2003	N/A	C2C13 COLR
Revision 23	January 2004	All (except Appendix A)	C2C13 COLR rev 1
Revision 24	March 2004	All (except Appendix A)	C2C13 COLR rev 2

INSERTION SHEET FOR REVISION 24

Remove pages

Insert Rev. 24 pages

Pages 1-34

Pages 1-34

^{*} Appendix A contains power distribution monitoring factors used in Technical Specification Surveillance. Appendix A is only included in the COLR copy sent to the NRC.

1.0 Core Operating Limits Report

This Core Operating Limits Report (COLR) has been prepared in accordance with the requirements of Technical Specification 5.6.5. The Technical Specifications that reference this report are listed below:

TS Section	Technical Specifications	COLR Parameter	COLR Section	COL R Page
2.1.1	Reactor Core Safety Limits	RCS Temperature and Pressure Safety Limits	2.1	10
3.1.1	Shutdown Margin	Shutdown Margin	2.2	10
3.1.3	Moderator Temperature Coefficient	MTC	2.3	12
3.1.4	Rod Group Alignment Limits	Shutdown Margin	2.2	10
3.1.5	Shutdown Bank Insertion Limit	Shutdown Margin Rod Insertion Limits	2.2 2.4	10 12
3.1.6	Control Bank Insertion Limit	Shutdown Margin Rod Insertion Limits	2.2 2.5	10 12
3.1.8	Physics Tests Exceptions	Shutdown Margin	2.2	10
3.2.1	Heat Flux Hot Channel Factor	F _Q AFD	2.6 2.8	16 23
		OTΔT Penalty Factors	2.9 2.6	26 16
3.2.2	Nuclear Enthalpy Rise Hot Channel Factor	FΔH Penalty Factors	2.7 2.7	22 22
3.2.3	Axial Flux Difference	AFD	2.8	23
3.3.1	Reactor Trip System Instrumentation	ΟΤΔΤ ΟΡΔΤ	2.9 2.9	26 26
3.3.9	Boron Dilution Mitigation System	Reactor Makeup Water Flow Rate	2.10	28
3.4.1	RCS Pressure, Temperature and Flow limits for DNB	RCS Pressure, Temperature and Flow	2.11	28
3.5.1	Accumulators	Max and Min Boron Conc.	2.12	28
3.5.4	Refueling Water Storage Tank	Max and Min Boron Conc.	2.13	28
3.7.15	Spent Fuel Pool Boron Concentration	Min Boron Concentration	2.14	30
3.9.1	Refueling Operations - Boron Concentration	Min Boron Concentration	2.15	30
3.9.2	Refueling Operations – Nuclear Instrumentation	Reactor Makeup Water Flow Rate	2.16	30
5.6.5	Core Operating Limits Report (COLR)	Analytical Methods	1.1	7

The Selected License Commitments that reference this report are listed below:

SLC Section	Selected Licensing Commitment	COLR Parameter	COLR Section	COLR Page
16.7-9.3	Standby Shutdown System	Standby Makeup Pump Water Supply	2.17	31
16.9-11	Boration Systems – Borated Water Source – Shutdown	Borated Water Volume and Conc. for BAT/RWST	2.18	31
16.9-12	Boration Systems – Borated Water Source – Operating	Borated Water Volume and Conc. for BAT/RWST	2.19	32

1.1 Analytical Methods

The analytical methods used to determine core operating limits for parameters identified in Technical Specifications and previously reviewed and approved by the NRC are as follows.

1. WCAP-9272-P-A, "WESTINGHOUSE RELOAD SAFETY EVALUATION METHODOLOGY," (W Proprietary).

Revision 0

Report Date: July 1985
Not Used for C2C13

2. WCAP-10054-P-A, "Westinghouse Small Break ECCS Evaluation Model using the NOTRUMP Code, " (W Proprietary).

Revision 0

Report Date: August 1985

3. WCAP-10266-P-A, "THE 1981 VERSION OF WESTINGHOUSE EVALUATION MODEL USING BASH CODE", (W Proprietary).

Revision 2

Report Date: March 1987 Not Used for C2C13

4. WCAP-12945-P-A, Volume 1 and Volumes 2-5, "Code Qualification Document for Best-Estimate Loss of Coolant Analysis," (W Proprietary).

Revision: Volume 1 (Revision 2) and Volumes 2-5 (Revision 1)

Report Date: March 1998

5. BAW-10168P-A, "B&W Loss-of-Coolant Accident Evaluation Model for Recirculating Steam Generator Plants," (B&W Proprietary).

Revision 1

SER Date: January 22, 1991

Revision 2

SER Dates: August 22, 1996 and November 26, 1996.

Revision 3

SER Date: June 15, 1994. Not Used for C2C13

1.1 Analytical Methods (continued)

6. DPC-NE-3000PA, "Thermal-Hydraulic Transient Analysis Methodology," (DPC Proprietary).

Revision 3

SER Date: September 24, 2003

7. DPC-NE-3001PA, "Multidimensional Reactor Transients and Safety Analysis Physics Parameter Methodology," (DPC Proprietary).

Revision 0

Report Date: November, 1991, republished December 2000

8. DPC-NE-3002A, "UFSAR Chapter 15 System Transient Analysis Methodology".

Revision 4

SER Date: April 6, 2001

9. DPC-NE-2004P-A, "Duke Power Company McGuire and Catawba Nuclear Stations Core Thermal-Hydraulic Methodology using VIPRE-01," (DPC Proprietary).

Revision 1

SER Date: February 20, 1997

10. DPC-NE-2005P-A, "Thermal Hydraulic Statistical Core Design Methodology," (DPC Proprietary).

Revision 3

SER Date: September 16, 2002

11. DPC-NE-2008P-A, "Fuel Mechanical Reload Analysis Methodology Using TACO3," (DPC Proprietary).

Revision 0

SER Date: April 3, 1995

12. DPC-NE-2009-P-A, "Westinghouse Fuel Transition Report," (DPC Proprietary).

Revision 2

SER Date: December 18, 2002

13. DPC-NE-1004A, "Nuclear Design Methodology Using CASMO-3/SIMULATE-3P."

Revision 1

SER Date: April 26, 1996

1.1 Analytical Methods (continued)

14. DPC-NF-2010A, "Duke Power Company McGuire Nuclear Station Catawba Nuclear Station Nuclear Physics Methodology for Reload Design."

Revision 2

SER Date: June 24, 2003

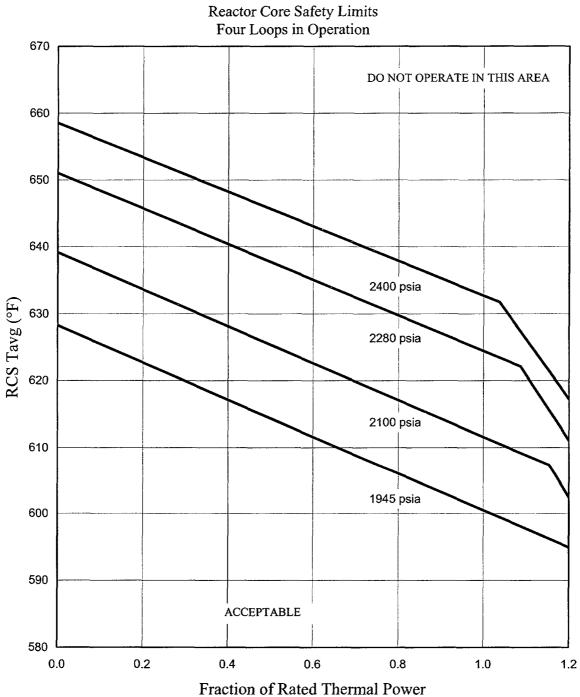
15. DPC-NE-2011PA, "Duke Power Company Nuclear Design Methodology for Core Operating Limits of Westinghouse Reactors," (DPC Proprietary).

Revision 1

SER Date: October 1, 2002

2.0 Operating Limits

The cycle-specific parameter limits for the specifications listed in Section 1.0 are presented in the following subsections. These limits have been developed using NRC approved methodologies specified in Section 1.1.


2.1 Reactor Core Safety Limits (TS 2.1.1)

The Reactor Core Safety Limits are shown in Figure 1.

2.2 Shutdown Margin - SDM (TS 3.1.1, TS 3.1.4, TS 3.1.5, TS 3.1.6, TS 3.1.8)

- **2.2.1** For TS 3.1.1, shutdown margin shall be greater than or equal to 1.3% Δ K/K in mode 2 with Keff < 1.0 and in modes 3 and 4.
- **2.2.2** For TS 3.1.1, shutdown margin shall be greater than or equal to 1.0% Δ K/K in mode 5.
- **2.2.3** For TS 3.1.4, shutdown margin shall be greater than or equal to 1.3% Δ K/K in mode 1 and mode 2.
- **2.2.4** For TS 3.1.5, shutdown margin shall be greater than or equal to 1.3% Δ K/K in mode 1 and mode 2 with any control bank not fully inserted.
- 2.2.5 For TS 3.1.6, shutdown margin shall be greater than or equal to 1.3% Δ K/K in mode 1 and mode 2 with Keff \geq 1.0.
- **2.2.6** For TS 3.1.8, shutdown margin shall be greater than or equal to 1.3% Δ K/K in mode 2 during Physics Testing.

Figure 1

2.3 Moderator Temperature Coefficient - MTC (TS 3.1.3)

2.3.1 The Moderator Temperature Coefficient (MTC) Limits are:

The MTC shall be less positive than the upper limits shown in Figure 2. The BOC, ARO, HZP MTC shall be less positive than $0.7E-04 \Delta K/K/^{\circ}F$.

The EOC, ARO, RTP MTC shall be less negative than the -4.1E-04 Δ K/K/°F lower MTC limit.

2.3.2 The 300 ppm MTC Surveillance Limit is:

The measured 300 PPM ARO, equilibrium RTP MTC shall be less negative than or equal to $-3.2E-04 \Delta K/K/^{\circ}F$.

2.3.3 The 60 PPM MTC Surveillance Limit is:

The 60 PPM ARO, equilibrium RTP MTC shall be less negative than or equal to $-3.85E-04 \Delta K/K/^{\circ}F$.

Where:

BOC = Beginning of Cycle (burnup corresponding to most

positive MTC)

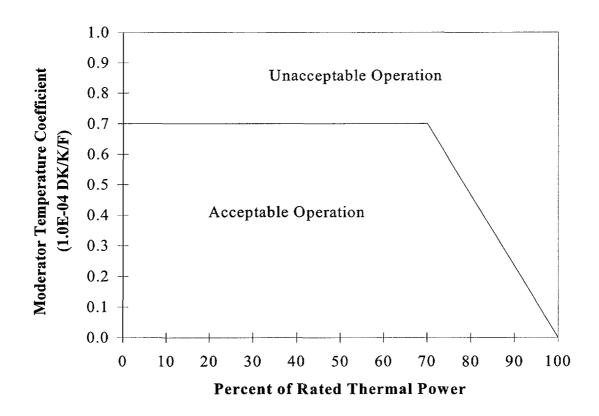
EOC = End of Cycle

ARO = All Rods Out

HZP = Hot Zero Thermal Power RTP = Rated Thermal Power

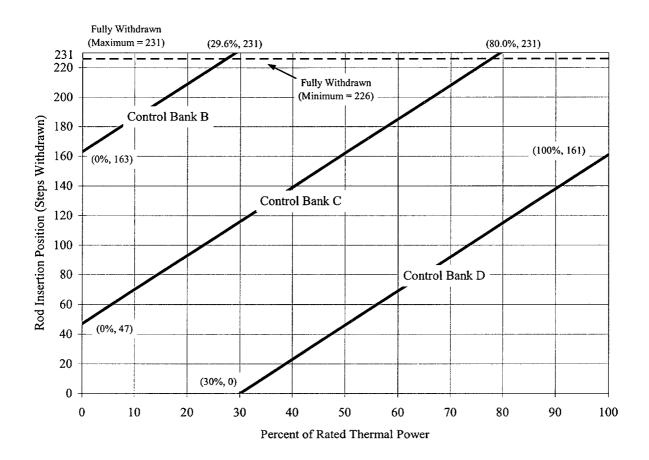
PPM = Parts per million (Boron)

2.4 Shutdown Bank Insertion Limit (TS 3.1.5)


2.4.1 Each shutdown bank shall be withdrawn to at least 226 steps. Shutdown banks are withdrawn in sequence and with no overlap.

2.5 Control Bank Insertion Limits (TS 3.1.6)

2.5.1 Control banks shall be within the insertion, sequence, and overlap limits shown in Figure 3. Specific control bank withdrawal and overlap limits as a function of the fully withdrawn position are shown in Table 1.


Figure 2

Moderator Temperature Coefficient Upper Limit Versus Power Level

NOTE: Compliance with Technical Specification 3.1.3 may require rod withdrawal limits. Refer to the Unit 2 ROD manual for details.

Figure 3
Control Bank Insertion Limits Versus Percent Rated Thermal Power

The Rod Insertion Limits (RIL) for Control Bank D (CD), Control Bank C (CC), and Control Bank B (CB) can be calculated by:

Bank CD RIL =
$$2.3(P) - 69 \{30 \le P \le 100\}$$

Bank CC RIL = $2.3(P) + 47 \{0 \le P \le 80\}$
Bank CB RIL = $2.3(P) + 163 \{0 \le P \le 29.6\}$

where P = %Rated Thermal Power

NOTE: Compliance with Technical Specification 3.1.3 may require rod withdrawal limits. Refer to the Unit 2 ROD manual for details.

Table 1
Control Bank Withdrawal Steps and Sequence

Description Control Control Bank A Bank B Bank C Bank D	Full	y Withdray	wn at 222 S	Steps		Ful	ly Withdra	wn at 223 S	teps
O Start	Control	Control	Control	Control		Control	Control	Control	Control
116	Bank A	Bank B	Bank C	Bank D		Bank A	Bank B	Bank C	Bank D
116									
222 116									
222 116									
222 222 Stop 106	-		-			•			-
The image				-					
Part	_	•		-			•		-
Fully Withdrawn at 224 Steps									
Control Bank A Bank B Bank C Bank D Bank A Bank B Bank C Bank D	222	222	222 Stop	106	,	223	223	223 Stop	107
Control Bank A Bank B Bank C Bank D Bank A Bank B Bank C Bank D	Full	y Withdray	wn at 224 S	Steps		Ful	ly Withdra	wn at 225 S	teps
O Start O O O O O O O O O	Control	Control	Control	Control	'	Control	Control	Control	Control
116	Bank A	Bank B	Bank C	Bank D		Bank A	Bank B	Bank C	Bank D
116				******					
224 Stop	0 Start	0	0	0		0 Start	0	0	0
224	116	0 Start	0	0		116	0 Start	0	0
224 224 Stop 108 0 225 225 Stop 109 0	224 Stop	108	0	0		225 Stop	109	0	0
224 224 224 224 224 Stop 108 225 225 225 225 Stop 109	224	116	0 Start	0		225	116	0 Start	0
Pully Withdrawn at 226 Steps	224	224 Stop	108	0		225	225 Stop	109	0
Fully Withdrawn at 226 Steps	224	224	116	0 Start		225	225	116	0 Start
Control Control Control Control Bank A Bank B Bank C Bank D	224	224	224 Stop	108		225	225	225 Stop	109
Control Control Control Control Bank A Bank B Bank C Bank D	Fulls	v Withdray	un at 226 S	itens		Full	lv Withdra	wn at 227 S	tens
Start O									
O Start O									
116	Dank A	Dank D	Dalla	DAIRD		Dalik A	DAIRD	Dank	Dank
116	0 Start	0	0	0		0 Start	0	0	0
226 Stop 110 0 0 227 Stop 111 0 0 226 116 0 Start 0 227 116 0 Start 0 226 226 Stop 110 0 227 227 Stop 111 0 226 226 116 0 Start 227 227 227 Stop 111 Fully Withdrawr at 228 Steps Fully Withdrawr at 228 Steps Control Control Control Control Control Bank A Bank B Bank C Bank D Control C		0 Start							
226 116 0 Start 0 227 116 0 Start 0 226 226 Stop 110 0 227 227 Stop 111 0 226 226 116 0 Start 227 227 116 0 Start 226 226 226 Stop 110 227 227 227 Stop 111 Fully Withdrawn at 228 Steps Fully Withdrawn at 229 Steps Control Control Control Control Bank A Bank B Bank C Bank D Control Control Control Bank A Bank B Bank C Bank D O 0 0 Start 0 0 0 228 Stop 112 0 0 229 Stop 113 0 0 228 228 Stop 112 0 229 229 Stop 113 0 228 228 Stop 112 0 229 229 Stop 113 0 Control C			_						
226 226 Stop 226 110 0 Start 226 227 227 227 27 27 116 0 Start 227 0 Start 227 227 227 116 0 Start 227 0 Start 227 116 0 Start 227 0 Start 227 116 0 Start 227 111 0 Start 227 116 0 Start 227 117 0 Start 227 117 0 Start 227 118 0 Start 227 127 Start 227 127 Start 227 118 0 Start 227 128 Start 228 Start 228 Start 228 Start 228 Start 248 116 0 Start 229 Start 248 116 0 Start 248 116 0 Start 248 116 0 Start 229 Start 229 117 Start 228 117 Start 228 118 Start 229 119 Start 229 110 O Start	•			_		-			
The color of the									
Pully Withdrawn at 228 Steps		-		-			•		
Fully Withdrawn at 228 Steps Fully Withdrawn at 229 Steps Control Bank A Control Bank B Control Bank C Control Bank A Control Bank B Control Bank C Control Bank B Control Bank B <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>									
Control Control Control Bank A Bank B Bank C Bank D									
Control Control Control Bank A Bank B Bank C Bank D	Full	v Withdray	vn at 228 S	iteps		Full	lv Withdra	wn at 229 S	teps
Bank A Bank B Bank C Bank D Bank A Bank B Bank C Bank D 0 Start 0 0 0 Start 0 0 0 116 0 Start 0 0 116 0 Start 0 0 228 Stop 112 0 0 229 Stop 113 0 0 228 116 0 Start 0 229 Stop 113 0 0 228 228 Stop 112 0 229 Stop 113 0 0 228 228 Stop 112 0 229 Stop 113 0 0 228 228 Stop 112 229 Stop 229 Stop 113 0 0 0 113 0 0 0 0 0 113 0 </th <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th>									
0 Start 0 0 0 0 Start 0 0 0 116 0 Start 0 0 116 0 Start 0 0 228 Stop 112 0 0 229 Stop 113 0 0 228 116 0 Start 0 229 116 0 Start 0 228 228 Stop 112 0 229 229 Stop 113 0 228 228 116 0 Start 229 229 Stop 113 0 228 228 116 0 Start 229 229 116 0 Start 228 228 Stop 112 229 229 229 Stop 113 Fully Withdrawn at 230 Steps Fully Withdrawn at 231 Steps Fully Withdrawn at 231 Steps Fully Withdrawn at 231 Steps Bank A Bank B Bank C Bank D Bank A Bank B Bank C Bank D Bank A Bank B Bank C Bank D									
116 0 Start 0 0 116 0 Start 0 0 228 Stop 112 0 0 229 Stop 113 0 0 228 116 0 Start 0 229 116 0 Start 0 228 228 Stop 112 0 229 229 Stop 113 0 228 228 116 0 Start 229 229 Stop 113 0 228 228 116 0 Start 229 229 219 Stop 113 Fully Withdraw at 230 Steps Fully Withdraw at 231 Steps Fully Withdraw at 231 Steps Fully Withdraw at 231 Steps Control Control Control Control Bank A Bank B Bank C Bank D Bank A Bank B Bank C Bank D Bank A Bank B Bank C Bank D O Start 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>									
228 Stop 112 0 0 229 Stop 113 0 0 228 116 0 Start 0 229 116 0 Start 0 228 228 Stop 112 0 229 229 Stop 113 0 228 228 116 0 Start 229 229 116 0 Start 228 228 228 Stop 112 229 229 229 Stop 113 Fully Withdraw at 230 Steps Fully Withdraw at 231 Steps Fully Withdraw at 231 Steps Fully Withdraw at 231 Steps Control Control Control Control Bank A Bank B Bank C Bank D Bank A Bank B Bank C Bank D Bank A Bank B Bank C Bank D O Start 0 0 0 Start 0	0 Start	0	0	0		0 Start	0	0	0
228 116 0 Start 0 229 116 0 Start 0 228 228 Stop 112 0 229 229 Stop 113 0 228 228 116 0 Start 229 229 116 0 Start 228 228 228 Stop 112 229 229 229 Stop 113 Fully Withdrawn at 230 Steps Fully Withdrawn at 231 Steps Control Control Control Control Bank A Bank B Bank C Bank D Control Control Control Control Bank A Bank B Bank C Bank D 0 Start 0 0 0 Start 0 0 0 116 0 Start 0 0 116 0 Start 0 0 230 Stop 114 0 0 231 116 0 Start 0 230 230 Stop 114 0 231 231 Stop 115 0 230 230 116 0 Start 231 231 Stop 115 0	116	0 Start	0	0		116	0 Start	0	0
228 116 0 Start 0 229 116 0 Start 0 228 228 Stop 112 0 229 229 Stop 113 0 228 228 116 0 Start 229 229 116 0 Start 228 228 228 Stop 112 229 229 229 Stop 113 Fully Withdrawn at 230 Steps Fully Withdrawn at 231 Steps Control Control Control Control Bank A Bank B Bank C Bank D Control Control Control Control Bank A Bank B Bank C Bank D 0 Start 0 0 0 Start 0 0 0 116 0 Start 0 0 116 0 Start 0 0 230 Stop 114 0 0 231 116 0 Start 0 230 230 Stop 114 0 231 231 Stop 115 0 230 230 116 0 Start 231 231 Stop 115 0	228 Stop	112	0	0		229 Stop	113	0	0
228 228 Stop 112 0 229 229 Stop 113 0 228 228 116 0 Start 229 229 229 116 0 Start 0 Start 228 228 228 Stop 112 229 229 229 229 Stop 113 Fully Withdrawn at 230 Steps Fully Withdrawn at 231 Steps Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control	•	116	0 Start	0		•	116	0 Start	0
228 228 116 0 Start 229 229 116 0 Start Fully Withdrawn at 230 Steps Fully Withdrawn at 231 Steps Control Control Control Bank A Bank B Bank C Bank D Control Control Control Control Bank A Bank B Bank C Bank D 0 Start 0 0 0 0 0 Start 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		228 Stop	112					113	0
Fully Withdrawn at 230 Steps Fully Withdrawn at 231 Steps	228	228	116	0 Start		229	•	116	0 Start
Fully Withdrawn at 230 Steps Fully Withdrawn at 231 Steps	228	228	228 Stop	112		229	229	229 Stop	113
Control Bank A Control Bank B Control Bank C Control Bank A Control Bank B Control Bank C Control Bank B Control								<u>-</u>	
Bank A Bank B Bank C Bank D Bank A Bank B Bank C Bank D 0 Start 0 0 0 Start 0 0 0 116 0 Start 0 0 116 0 Start 0 0 230 Stop 114 0 0 231 Stop 115 0 0 230 116 0 Start 0 231 116 0 Start 0 230 230 Stop 114 0 231 231 Stop 115 0 230 230 116 0 Start 231 231 116 0 Start			-						
0 Start 0 0 0 Start 0 0 0 116 0 Start 0 0 116 0 Start 0 0 230 Stop 114 0 0 231 Stop 115 0 0 230 116 0 Start 0 231 116 0 Start 0 230 230 Stop 114 0 231 231 Stop 115 0 230 230 116 0 Start 231 231 116 0 Start									
116 0 Start 0 0 116 0 Start 0 0 230 Stop 114 0 0 231 Stop 115 0 0 230 116 0 Start 0 231 116 0 Start 0 230 230 Stop 114 0 231 231 Stop 115 0 230 230 116 0 Start 231 231 116 0 Start	Bank A	Rank R	Bank C	Bank D		Bank A	Bank B	Bank C	Bank D
116 0 Start 0 0 116 0 Start 0 0 230 Stop 114 0 0 231 Stop 115 0 0 230 116 0 Start 0 231 116 0 Start 0 230 230 Stop 114 0 231 231 Stop 115 0 230 230 116 0 Start 231 231 116 0 Start	0 Stort	n	0	0		A Stort	0	n	0
230 Stop 114 0 0 231 Stop 115 0 0 230 116 0 Start 0 231 116 0 Start 0 230 230 Stop 114 0 231 231 Stop 115 0 230 230 116 0 Start 231 231 116 0 Start									
230 116 0 Start 0 231 116 0 Start 0 230 230 Stop 114 0 231 231 Stop 115 0 230 230 116 0 Start 231 231 116 0 Start									
230 230 Stop 114 0 231 231 Stop 115 0 230 230 116 0 Start 231 231 116 0 Start	_					-			
230 230 116 0 Start 231 231 116 0 Start									
		-					-		
230 230 Stop 114 231 231 Stop 115									
	230	230	230 Stop	114		231	231	231 Stop	115

- 2.6 Heat Flux Hot Channel Factor $F_0(X,Y,Z)$ (TS 3.2.1)
 - **2.6.1** $F_O(X,Y,Z)$ steady-state limits are defined by the following relationships:

$$F_Q^{RTP} *K(Z)/P$$
 for $P > 0.5$
 $F_Q^{RTP} *K(Z)/0.5$ for $P \le 0.5$

where,

P = (Thermal Power)/(Rated Power)

Note: The measured $F_Q(X,Y,Z)$ shall be increased by 3% to account for manufacturing tolerances and 5% to account for measurement uncertainty when comparing against the LCO limits. The manufacturing tolerance and measurement uncertainty are implicitly included in the F_Q surveillance limits as defined in COLR Sections 2.6.5 and 2.6.6.

- **2.6.2** $F_Q^{RTP} = 2.50 \text{ x K(BU)}$
- **2.6.3** K(Z) is the normalized $F_Q(X,Y,Z)$ as a function of core height. K(Z) for MkBW fuel is provided in Figure 4, and the K(Z) for Westinghouse RFA fuel is provided in Figure 5.
- **2.6.4** K(BU) is the normalized $F_Q(X,Y,Z)$ as a function of burnup. K(BU) for MkBW, Westinghouse RFA and NGF fuel is 1.0 at all burnups.

The following parameters are required for core monitoring per the Surveillance Requirements of Technical Specification 3.2.1:

2.6.5
$$[F_Q^L(X,Y,Z)]^{OP} = \frac{F_Q^D(X,Y,Z) * M_Q(X,Y,Z)}{UMT * MT * TILT}$$

where:

 $[F_Q^L(X,Y,Z)]^{OP}$ = Cycle dependent maximum allowable design peaking factor that ensures that the $F_Q(X,Y,Z)$ LOCA limit is not exceeded for operation within the AFD, RIL, and QPTR limits. $[F_Q^L(X,Y,Z)]^{OP}$ includes allowances for calculational and measurement uncertainties.

 $F_Q^D(X,Y,Z)$ = Design power distribution for F_Q . $F_Q^D(X,Y,Z)$ is provided in Table 4, Appendix A, for normal operating conditions and in Table 7, Appendix A for power escalation testing during initial startup operation.

 $M_Q(X,Y,Z)$ = Margin remaining in core location X,Y,Z to the LOCA limit in the transient power distribution. $M_Q(X,Y,Z)$ is provided in Table 4, Appendix A for normal operating conditions and in Table 7, Appendix A for power escalation testing during initial startup operation.

UMT = Total Peak Measurement Uncertainty. (UMT = 1.05)

MT = Engineering Hot Channel Factor. (MT = 1.03)

TILT = Peaking penalty that accounts for allowable quadrant power tilt ratio of 1.02. (TILT = 1.035)

2.6.6
$$[F_Q^L(X,Y,Z)]^{RPS} = \frac{F_Q^D(X,Y,Z) * M_C(X,Y,Z)}{UMT * MT * TILT}$$

where:

 $[F_Q^L(X,Y,Z)]^{RPS} = \begin{tabular}{ll} Cycle dependent maximum allowable design peaking factor that ensures that the $F_Q(X,Y,Z)$ Centerline Fuel Melt (CFM) limit is not exceeded for operation within the AFD, RIL, and QPTR limits. $[F_Q^L(X,Y,Z)]^{RPS}$ includes allowances for calculational and measurement uncertainties.$

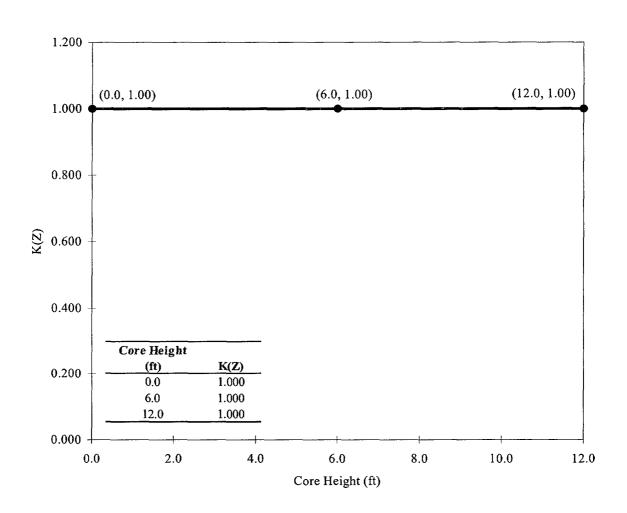
 $F_Q^D(X,Y,Z)$ = Design power distributions for F_Q . $F_Q^D(X,Y,Z)$ is provided in Table 4, Appendix A for normal operating conditions and in Table 7, Appendix A for power escalation testing during initial startup operations.

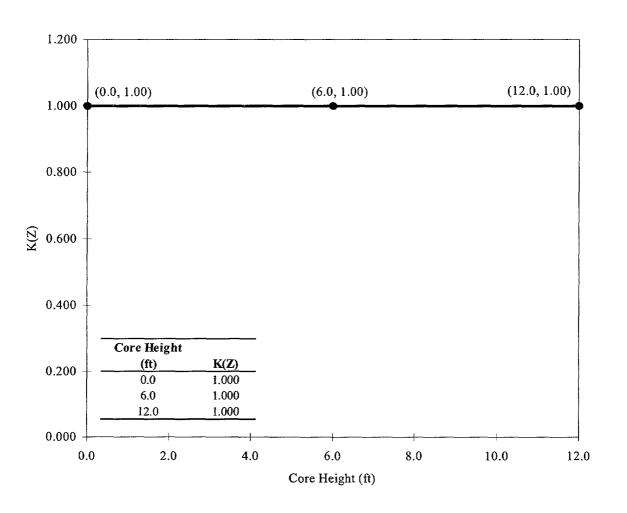
 $M_C(X,Y,Z)$ = Margin remaining to the CFM limit in core location X,Y,Z from the transient power distribution. $M_C(X,Y,Z)$ is provided in Table 5, Appendix A for normal operating conditions and in Table 8, Appendix A for power escalation testing during initial startup operations.

UMT = Measurement Uncertainty (UMT = 1.05)

MT = Engineering Hot Channel Factor (MT = 1.03)

TILT = Peaking penalty that accounts for allowable quadrant power tilt ratio of 1.02. (TILT = 1.035)


2.6.7 KSLOPE = 0.0725


where:

KSLOPE = the adjustment to the K_1 value from OT Δ T trip setpoint required to compensate for each 1% that $F_{\mathcal{Q}}^{M}(X,Y,Z)$ exceeds $[F_{\mathcal{Q}}^{L}(X,Y,Z)]^{RPS}$.

2.6.8 $F_Q(X,Y,Z)$ Penalty Factors for Technical Specification Surveillances 3.2.1.2 and 3.2.1.3 are provided in Table 2.

 $\label{eq:KZ} Figure \, 4$ $K(Z), \, Normalized \, F_Q(X,Y,Z) \, as \, a \, \, Function \, of \, Core \, Height \, \\ for \, MkBW \, Fuel$

 $F_Q(X,Y,Z) \ and \ F_{\Delta H}(X,Y) \ Penalty \ Factors$ For Tech Spec Surveillances 3.2.1.2, 3.2.1.3 and 3.2.2.2

Burnup (EFPD)	F _Q (X,Y,Z) Penalty Factor(%)	F _{ΔH} (X,Y) Penalty Factor (%)
4	2.00	2.00
12	2.00	2.00
25	2.00	2.00
50	2.00	2.00
75	2.00	2.00
100	2.00	2.00
125	2.00	2.00
150	2.00	2.00
175	2.00	2.00
200	2.00	2.00
225	2.00	2.00
250	2.00	2.00
275	2.00	2.00
300	2.00	2.00
325	2.00	2.00
350	2.00	2.00
375	2.00	2.00
400	2.00	2.00
425	2.00	2.00
450	2.00	2.00
475	2.00	2.00
500	2.00	2.00
509	2.00	2.00
524	2.00	2.00
534	2.00	2.00

Note: Linear interpolation is adequate for intermediate cycle burnups. All cycle burnups outside the range of the table shall use a 2% penalty factor for both $F_Q(X,Y,Z)$ and $F_{\Delta H}(X,Y)$ for compliance with the Tech Spec Surveillances 3.2.1.2, 3.2.1.3 and 3.2.2.2.

2.7 Nuclear Enthalpy Rise Hot Channel Factor - $F_{\Delta H}(X,Y)$ (TS 3.2.2)

The $F_{\Delta H}$ steady-state limits referred to in Technical Specification 3.2.2 are defined by the following relationship.

2.7.1
$$[F_{\Delta H}^{L}(X,Y)]^{LCO} = MARP(X,Y) * \left[1.0 + \frac{1}{RRH} * (1.0 - P) \right]$$

where:

 $[F_{\Delta H}^{L}(X,Y)]^{LCO}$ is defined as the steady-state, maximum allowed radial peak and includes allowances for calculation/measurement uncertainty.

MARP(X,Y) = Cycle-specific operating limit Maximum Allowable Radial Peaks. MARP(X,Y) radial peaking limits are provided in Table 3.

$$P = \frac{Thermal\ Power}{Rated\ Thermal\ Power}$$

RRH = Thermal Power reduction required to compensate for each 1% that the measured radial peak, $F_{\Delta H}^{M}(X,Y)$, exceeds the limit. (RRH = 3.34, $0.0 < P \le 1.0$)

The following parameters are required for core monitoring per the Surveillance requirements of Technical Specification 3.2.2.

2.7.2
$$[F_{\Delta H}^{L}(X,Y)]^{SURV} = \frac{F_{\Delta H}^{D}(X,Y) * M_{\Delta H}(X,Y)}{UMR * TILT}$$

where:

 $[F_{\Delta H}^{L}(X,Y)]^{SURV} = \quad \text{Cycle dependent maximum allowable design peaking factor} \\ \text{that ensures that the } F_{\Delta H}(X,Y) \text{ limit is not exceeded for} \\ \text{operation within the AFD, RIL, and QPTR limits.} \\ F_{\Delta H}^{L}(X,Y)^{SURV} \text{ includes allowances for calculational and} \\ \text{measurement uncertainty.}$

 $F_{\Delta H}^{D}(X,Y) = Design power distribution for <math>F_{\Delta H}$. $F_{\Delta H}^{D}(X,Y)$ is provided in Table 6, Appendix A for normal operation and in Table 9, Appendix A for power escalation testing during initial startup operation.

- $M_{\Delta H}(X,Y)$ = The margin remaining in core location X,Y relative to the Operational DNB limits in the transient power distribution. $M_{\Delta H}(X,Y)$ is provided in Table 6, Appendix A for normal operation and in Table 9, Appendix A for power escalation testing during initial startup operation.
 - UMR = Uncertainty value for measured radial peaks. UMR is set to 1.0 since a factor of 1.04 is implicitly included in the variable $M_{AH}(X,Y)$.
 - TILT = Peaking penalty that accounts for allowable quadrant power tilt ratio of 1.02. (TILT = 1.035)

2.7.3 RRH = 3.34

where:

RRH = Thermal Power reduction required to compensate for each 1% that the measured radial peak, $F_{\Lambda H}^{M}(X,Y)$ exceeds its limit. $(0 < P \le 1.0)$

2.7.4 TRH = 0.04

where:

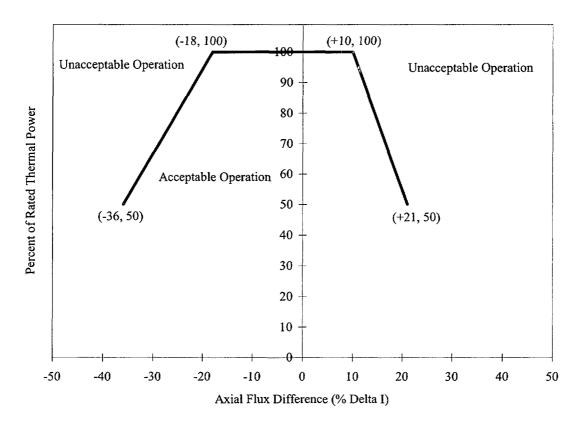
- TRH = Reduction in OT Δ T K₁ setpoint required to compensate for each 1% that the measured radial peak, $F_{\Delta H}(X,Y)$ exceeds its limit.
- **2.7.5** $F_{\Delta H}(X,Y)$ Penalty Factors for Technical Specification Surveillance 3.2.2.2 are provided in Table 2.

2.8 Axial Flux Difference – AFD (TS 3.2.3)

2.8.1 The Axial Flux Difference (AFD) Limits are provided in Figure 6.

Table 3 Maximum Allowable Radial Peaks (MARPS)

MkBW Fuel MARPs 100% Full Power


Core													
Height						A	xial Pea	k_					
(ft)	1.05	1.1	1.2	1.3	1.4	1.5	1.6	1.7	1.8	1.9	2.1	3.0	3.25
0.12	1.678	1.708	1.772	1.829	1.878	1.922	1.852	1.798	1.714	1.636	1.535	1.211	1.147
1.20	1.675	1.706	1.766	1.821	1.867	1.886	1.829	1.806	1.731	1.655	1.540	1.182	1.117
2.40	1.679	1.708	1.763	1.815	1.853	1.841	1.786	1.769	1.711	1.655	1.557	1.168	1.106
3.60	1.682	1.709	1.760	1.804	1.812	1.797	1.743	1.722	1.669	1.619	1.556	1.202	1.131
4.80	1.684	1.708	1.754	1.792	1.766	1.750	1.699	1.681	1.630	1.581	1.516	1.232	1.186
6.00	1.686	1.708	1.745	1.761	1.715	1.703	1.654	1.638	1.590	1.544	1.476	1.206	1.156
7.20	1.686	1.704	1.733	1.714	1.666	1.649	1.603	1.587	1.542	1.503	1.438	1.177	1.127
8.40	1.681	1.692	1.702	1.660	1.612	1.595	1.549	1.537	1.494	1.454	1.387	1.145	1.100
9.60	1.673	1.677	1.651	1.601	1.558	1.544	1.502	1.491	1.450	1.413	1.350	1.121	1.076
10.80	1.662	1.649	1.603	1.550	1.503	1.491	1.448	1.441	1.404	1.369	1.307	1.086	1.043
12.00	1.636	1.608	1.553	1.505	1.456	1.446	1.408	1.403	1.370	1.340	1.286	1.072	1.027

RFA Fuel MARPs 100% Full Power

Core													
Height						A	xial Pea	k_					
(ft)	1.05	1.1	1.2	1.3	1.4	1.5	1.6	1.7	1.8	1.9	2.1	3.0	3.25
0.12	1.847	1.882	1.947	1.992	1.974	2.068	2.090	2.049	1.972	1.900	1.778	1.315	1.246
1.20	1.843	1.879	1.938	1.992	1.974	2.068	2.054	2.012	1.935	1.862	1.785	1.301	1.224
2.40	1.846	1.876	1.931	1.981	1.974	2.068	2.025	1.981	1.903	1.832	1.757	1.468	1.456
3.60	1.843	1.869	1.920	1.964	1.974	2.068	2.005	1.968	1.892	1.820	1.716	1.471	1.431
4.80	1.838	1.868	1.906	1.945	1.974	2.006	1.945	1.925	1.862	1.802	1.725	1.326	1.285
6.00	1.834	1.856	1.891	1.921	1.946	1.934	1.878	1.863	1.802	1.747	1.673	1.384	1.317
7.20	1.828	1.845	1.871	1.893	1.887	1.872	1.809	1.787	1.732	1.681	1.618	1.316	1.277
8.40	1.823	1.829	1.847	1.857	1.816	1.795	1.739	1.722	1.675	1.630	1.551	1.247	1.211
9.60	1.814	1.812	1.809	1.792	1.738	1.724	1.678	1.665	1.621	1.578	1.492	1.191	1.137
10.80	1.798	1.784	1.761	1.738	1.697	1.682	1.626	1.605	1.558	1.512	1.430	1.149	1.097
11.40	1.789	1.765	1.725	1.684	1.632	1.614	1.569	1.557	1.510	1.466	1.392	1.113	1.060

Figure 6

Percent of Rated Thermal Power Versus Percent Axial Flux Difference Limits

NOTE: Compliance with Technical Specification 3.2.1 may require more restrictive AFD limits. Refer to the Unit 2 ROD manual for operational AFD limits.

2.9 Reactor Trip System Instrumentation Setpoints (TS 3.3.1) Table 3.3.1-1

2.9.1 Overtemperature ΔT Setpoint Parameter Values

<u>Parameter</u>	Nominal Value
Nominal Tavg at RTP	T' ≤ 590.8 °F
Nominal RCS Operating Pressure	P' = 2235 psig
Overtemperature ΔT reactor trip setpoint	$K_1 = 1.1953$
Overtemperature ΔT reactor trip heatup setpoint penalty coefficient	$K_2 = 0.03163/{}^{\circ}F$
Overtemperature ΔT reactor trip depressurization setpoint penalty coefficient	$K_3 = 0.001414/psi$
Time constants utilized in the lead-lag compensator for ΔT	$\tau_1 = 8 \text{ sec.}$ $\tau_2 = 3 \text{ sec.}$
Time constant utilized in the lag compensator for ΔT	$\tau_3 = 0$ sec.
Time constants utilized in the lead-lag compensator for T_{avg}	$\tau_4 = 22 \text{ sec.}$ $\tau_5 = 4 \text{ sec.}$
Time constant utilized in the measured T_{avg} lag compensator	$\tau_6 = 0$ sec.
$f_{1}(\Delta I)$ "positive" breakpoint	$=3.0\%\Delta I$
$f_1(\Delta I)$ "negative" breakpoint	= -39.9%ΔI
$f_1(\Delta I)$ "positive" slope	$= 1.525 \% \Delta T_0 / \% \Delta I$
$f_1(\Delta I)$ "negative" slope	$= 3.910\%\Delta T_0/\%\Delta I$

2.9.2 Overpower ΔT Setpoint Parameter Values

<u>Parameter</u>	Nominal Value
Nominal Tavg at RTP	T" ≤ 590.8 °F
Overpower ΔT reactor trip setpoint	$K_4 = 1.0819$
Overpower ΔT reactor trip penalty	$K_5 = 0.02$ / °F for increasing Tavg $K_5 = 0.00$ / °F for decreasing Tavg
Overpower ΔT reactor trip heatup setpoint penalty coefficient	$K_6 = 0.001291/^{\circ}F \text{ for } T > T''$ $K_6 = 0.0 /^{\circ}F \text{ for } T \le T''$
Time constants utilized in the lead-lag	$\tau_1 = 8 \text{ sec.}$
compensator for ΔT	$\tau_2 = 3 \text{ sec.}$
Time constant utilized in the lag compensator for ΔT	$\tau_3 = 0$ sec.
Time constant utilized in the measured T_{avg} lag compensator	$\tau_6 = 0$ sec.
Time constant utilized in the rate-lag controller for T_{avg}	$\tau_7 = 10 \text{ sec.}$
$f_2(\Delta I)$ "positive" breakpoint	$= 35.0 \% \Delta I$
$f_2(\Delta I)$ "negative" breakpoint	= -35.0 %ΔI
$f_2(\Delta I)$ "positive" slope	$=7.0 \%\Delta T_0 / \%\Delta I$
$f_2(\Delta I)$ "negative" slope	$=7.0 \%\Delta T_0 / \%\Delta I$

2.10 Boron Dilution Mitigation System (TS 3.3.9)

2.10.1 Reactor Makeup Water Pump flow rate limits:

Applicable Mode	<u>Limit</u>
Mode 3	≤ 150 gpm
Mode 4 or 5	≤ 70 gpm

2.11 RCS Pressure, Temperature and Flow Limits for DNB (TS 3.4.1)

The RCS pressure, temperature and flow limits for DNB are shown in Table 4.

2.12 Accumulators (TS 3.5.1)

2.12.1 Boron concentration limits during modes 1 and 2, and mode 3 with RCS pressure >1000 psi:

<u>Parameter</u>	<u>Limit</u>
Cold Leg Accumulator minimum boron concentration.	2,500 ppm
Cold Leg Accumulator maximum boron concentration.	3,075 ppm

2.13 Refueling Water Storage Tank - RWST (TS 3.5.4)

2.13.1 Boron concentration limits during modes 1, 2, 3, and 4:

<u>Parameter</u>	<u>Limit</u>
Refueling Water Storage Tank minimum boron concentration.	2,700 ppm
Refueling Water Storage Tank maximum boron concentration.	3,075 ppm

Table 4

Reactor Coolant System DNB Parameters

		No. Operable	
PARAMETER	INDICATION	CHANNELS	LIMITS
1 I. dicated DCC Assessed Towns and the		4	< 500 0 °E
1. Indicated RCS Average Temperature	meter	4	≤ 592.9 °F
	meter	3	≤ 592.6 °F
	computer	4	≤ 593.4 °F
	computer	3	≤ 593.2 °F
2. Indicated Pressurizer Pressure	meter	4	≥ 2219.8 psig
	meter	3	\geq 2222.1 psig
	computer	4	≥ 2215.8 psig
	computer	3	\geq 2217.5 psig
3. RCS Total Flow Rate			≥ 390,000 gpm

2.14.1 Minimum boron concentration limit for the spent fuel pool. Applicable when fuel assemblies are stored in the spent fuel pool.

<u>Parameter</u> <u>Limit</u>
Spent fuel pool minimum boron concentration. 2,700 ppm

2.15 Refueling Operations - Boron Concentration (TS 3.9.1)

2.15.1 Minimum boron concentration limit for the filled portions of the Reactor Coolant System, refueling canal, and refueling cavity for mode 6 conditions. The minimum boron concentration limit and plant refueling procedures ensure that the Keff of the core will remain within the mode 6 reactivity requirement of Keff ≤ 0.95.

<u>Parameter</u>	<u>Limit</u>
Minimum Boron concentration of the Reactor Coolant System, the refueling canal, and the refueling cavity.	2,700 ppm

2.16 Refueling Operations - Instrumentation (TS 3.9.2)

2.16.1 Reactor Makeup Water Pump Flow rate Limit:

Applicable Mode Limit

Mode 6 \leq 70 gpm

2.17 Standby Shutdown System - Standby Makeup Pump Water Supply - (SLC-16.7-9.3)

2.17.1 Minimum boron concentration limit for the spent fuel pool. Applicable for modes 1, 2, and 3.

<u>Parameter</u>	<u>Limit</u>
Spent fuel pool minimum boron concentration for surveillance SLC-16.7-9.3.	2,700 ppm

2.18 Borated Water Source - Shutdown (SLC 16.9-11)

2.18.1 Volume and boron concentrations for the Boric Acid Tank (BAT) and the Refueling Water Storage Tank (RWST) during Mode 4 with any RCS cold leg temperature ≤ 210°F, and Modes 5 and 6.

<u>Parameter</u>	<u>Limit</u>
Boric Acid Tank minimum boron concentration	7,000 ppm
Volume of 7,000 ppm boric acid solution required to maintain SDM at 68°F	2000 gallons
Boric Acid Tank Minimum Shutdown Volume (Includes the additional volumes listed in SLC 16.9-11)	13,086 gallons (14.9%)

NOTE: When cycle burnup is > 450 EFPD, Figure 7 may be used to determine the required Boric Acid Tank Minimum Level.

Refueling Water Storage Tank minimum boron concentration	2,700 ppm
Volume of 2,700 ppm boric acid solution required to maintain SDM at 68 °F	7,000 gallons
Refueling Water Storage Tank Minimum Shutdown Volume (Includes the additional volumes listed in SLC 16.9-11)	48,500 gallons (8.7%)

2.19 Borated Water Source - Operating (SLC 16.9-12)

2.19.1 Volume and boron concentrations for the Boric Acid Tank (BAT) and the Refueling Water Storage Tank (RWST) during Modes 1, 2, and 3 and Mode 4 with all RCS cold leg temperatures > 210°F.

<u>Parameter</u>	<u>Limit</u>
Boric Acid Tank minimum boron concentration	7,000 ppm
Volume of 7,000 ppm boric acid solution required to maintain SDM at 210°F	13,500 gallons
Boric Acid Tank Minimum Shutdown Volume (Includes the additional volumes listed in SLC 16.9-12)	25,200 gallons (45.8%)

NOTE: When cycle burnup is > 450 EFPD, Figure 7 may be used to determine the required Boric Acid Tank Minimum Level.

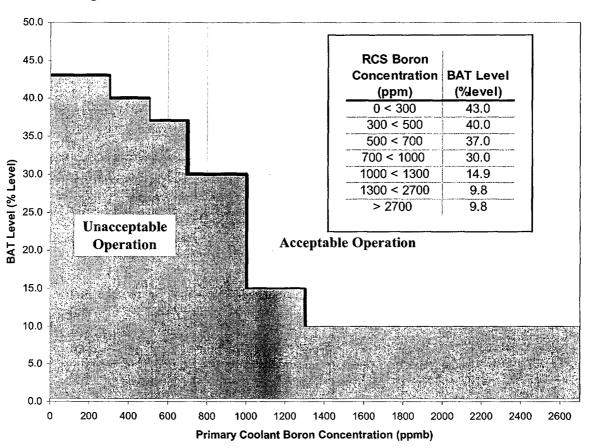

Refueling Water Storage Tank minimum boron concentration	2,700 ppm
Volume of 2,700 ppm boric acid solution required to maintain SDM at 210°F	57,107 gallons
Refueling Water Storage Tank Minimum Shutdown Volume (Includes the additional volumes listed in SLC 16.9-12)	98,607 gallons (22.0%)

Figure 7

Boric Acid Storage Tank Indicated Level Versus
Primary Coolant Boron Concentration

(Valid When Cycle Burnup is > 450 EFPD)

This figure includes additional volumes listed in SLC 16.9-11 and 16.9-12

Appendix A

Power Distribution Monitoring Factors

Appendix A contains power distribution monitoring factors used in Technical Specification Surveillance. Due to the size of the monitoring factor data, Appendix A is controlled electronically within Duke and is not included in the Duke internal copies of the COLR. The Catawba Reactor and Electrical Systems Engineering Section controls this information via computer files and should be contacted if there is a need to access this information.

Appendix A is included in the COLR copy transmitted to the NRC.