

Commissioner Briefing

NRC Delegation Visit to Germany on the Safety Aspects of HTGR Technology

August 22, 2001

イシ

Background to the Visit

Howard Faulkner, OIP

The NRC Delegation

Howard Faulkner - Office of International Programs Stuart Rubin - Advanced Reactors Group, RES **Donald Carlson - Advanced Reactors Group, RES** Amy Cubbage - New Reactor Licensing Project Office, NRR Undine Shoop - Reactor Systems Branch, NRR Alex Murray - Special Projects Branch, NMSS

Meeting Agenda & Arrangements

Arrangements made by OIP and GRS

Agenda based on topics requested by NRC

Briefings involved representatives covering full breadth of German HTGR program:

Julich Research Center Two reactor design/vendor organizations (Framatome ANP & Westinghouse HRB) Standards setting organization (KTA) Two organizations performing technical safety evaluations (TUV) State licensing authority for THTR Utility operating THTR (RWE Energie) A former member of the Reactor Safety Commission (RSK)

Location of Meetings

Two days at GRS in Cologne

Two days at the Julich Research Center

German representatives came from around the country for meetings

Most representatives participated for multiple days

HTGR Design and Technology

Stuart Rubin, RES

HTR Fuel Design, Development, Testing and Experience

- TRISO fuel particle is primary fission product retention boundary
- TRISO particle and pebble fuel element design and manufacture evolved over 30 years to a reference standard for use in German HTGRs
- Defective TRISO particles from manufacture dominates fission product release
 mechanisms during normal and off-normal reactor conditions
- Pebble Fuel element manufacturing process development achieved TRISO fuel particle defect rate specification of 6 X 10⁻⁵
- Irradiation testing of reference fuel for german reactor design conditions showed no additional particle failures & low releases
- Irradiated Pebble fuel accident simulation (heatup) tests demonstrated low fission product release for predicted accident conditions
- Mechanistic Release model used for fission product source term
- Fuel for PBMR & GT-MHR will need to demonstrate equivalent performance

High-Temperature Reactor-Grade Graphite

- Graphite in HTGRs is used to fabricate fuel and core reflector structures
- Graphite functions include: neutron moderator, structural support, heat transfer and heat storage
- Safety issues arise due to irradiation effects graphite properties (e.g., strength, dimensional changes, conductivity, hot gas bypass leakage)
- Graphite development & testing in Germany resulted in suitable grades for German HTGR applications, behavioral predictability & satisfactory performance
- Graphite feed sources for these graphite grades may no longer be available
- New graphite feed sources and grades will need to be developed, irradiated and tested for use in the PBMR and GT-MHR

Pebble Bed Reactor Core Heat Transfer and Fluid Flow

- Fuel maximum steady-state temperature and peak accident temperature must stay within design limits to assure fuel integrity basis
- Experiments and analytical model and methods development were conducted to predict heat transfer and temperature distributions in pebble bed cores (e.g., in coated particles, pebbles, pebble-to-coolant, between pebbles)
- HTR-Modul predicted accident temperatures showed passive reactor shutdown, and effective passive decay heat removal with fuel, vessel wall and reactor support structures within the design envelope.
- Pebble Melt-wire tests conducted at AVR for normal operation indicated that calculated maximum local core temperatures were non-conservative.
- Large scale model tests have been conducted to validate the analytical models and methods that are used to calculate radial and axial core temperature distributions in modular HTRs due to decay heat transfer during accidents.

THTR Core Pebble Flow and Safety Impacts

- Pebble bed reactor fuel pebbles flow slowly down through the core like sand flows down through an hour glass.
- Experiments have been conducted to develop analytical models and methods to predict pebble flow distribution in the core.
- Analysis for THTR operations showed the actual pebble flow distribution was significantly different than predicted distribution.
- Pebble flow distribution errors impacted operational and safety-related core characteristics: core power distribution, core temperature distributions, reactor system mechanical loadings; nuclear shutdown margins.
- PBMR pebble flow distribution prediction will be considered in the PBMR reviews and flow distribution errors would need to factored into design and safety analyses.

Jülich Research Center Experimental Facility Tour

• Tests show graphite pebbles rapidly oxidize in air at accident temperatures

Various silicon carbide protective coatings are being investigated as potential "next generation" pebble fuel designs to prevent exothermic pebble oxidation

 Large scale model tests showed convective air flow through an HTR-Modul core will begin several days after a large RCPB break if no actions are taken

Air-induced oxidation can be limited if break is sealed or confinement structure limits air ingress

ESKOM is evaluating applicability of test results to PBMR design and potential remedial actions

- Radiological source term would be significantly impacted in the event of oxidation and air flow through the PBMR core
- Potential air flow through and oxidation of the core are areas of focus for the PBMR pre-application review.

German HTR Codes and Standards

- KTA Codes and Standards were prepared in final form and in many cases draft form for use in German HTGR design and safety reviews.
- Many design aspects are addressed such as: high temperature metals, reactor core nuclear design, graphite components, pebble heat transfer, helium use.
- Most were never endorsed by regulatory authorities due to decline in German HTGR nuclear power program funding
- HTR-Modul safety assessment used the KTA codes and standards for identifying HTGR-specific safety requirements where LWR safety requirements did not apply.
- Germany no longer supports HTGR codes and standards development
- KTA HTGR codes and standards will be translated and distributed for technology reference and potential use in identifying design-specific requirements for the PBMR and the GT-MHR designs

AVR Operating Experience, Lessons Learned

Donald Carlson, RES

AVR Operation, Testing, Lessons Learned

AVR: Pebble-Bed Test Reactor, 15 MWe, Operated 1967-1988

AVR Operating Experience and Events - Highlights

- Fuel Handling System Required Modification to Address Frequent Maintenance
- Graphite Dust Accumulation due to Abrasion of Pebbles

Ex. 5

Ex.5

- Water Ingress from Steam Generator Leak, No Fuel Damage
- Coolant Activity Monitoring for Performance of Developmental Fuels
- Graphite Reflector Structures in Good Condition after 21 Years Operation

AVR Operation, Testing, Lessons Learned (Continued)

AVR Testing Program Highlights

Melt-Wire Experiments Showed Unpredicted Core Hot Spots at Power:

- Ongoing Re-Analysis by Jülich Research Center:
 - Implications for code validation/correction in predicting maximum fuel operating temperatures
 - Implications for similar measurements needed in future reactors

Demonstration of Modular HTR Safety Principles:

 Simulation of Pressurized & Depressurized Loss of Forced Cooling Without Scram

AVR Provided Large-Scale Irradiation Testing of Pebble Fuels, including the HTR-Modul TRISO Fuel Design

£x.5

German HTR Safety Assessments and THTR Operating Experience

Amy Cubbage, RES

HTR-MODUL Safety Assessment

80 MWe Modular Pebble Bed Reactor Design - Similar in concept to PBMR

- 1971 THTR Construction Started Technical Rules and Guidelines did not Exist for THTR Concept
- 1977 Safety Criteria Went Into Effect for all Reactor Types HTR Specific Characteristics were not Considered
- 1978 Reactor Specific Interpretation of Safety Criteria was Developed ("THTR-Planning Basis")

1980 HTR Safety Criteria Developed Which Provided More Precise Technical Requirements

- External Impact (Aircraft, Pressure Wave, Earthquake, Etc.)
- Internal Impact (Pine Whin Etc.)

HTR-MODUL Safety Assessment

80 MWe Modular Pebble Bed Reactor Design - Similar in concept to PBMR

Application for Site-Independent Concept License submitted by HTR GmbH in 1987

LWR Technical Rules and Guidelines and Limited HTR Codes and Standards were Available for the Design and Safety Assessment

Comprehensive and Consistent set of Design and Evaluation Criteria developed by screening Existing LWR Requirements and Adding Concept Specific Requirements

TÜV Performed Traditional Deterministic Review Against Basic Safety Criteria:

- Shutdown (Diverse Systems)
- Decay Heat Removal (Passive Core Heat Removal)
- Fission Product Retention (Fuel Elements and Vented Confinement)

Licensing Basis Events (LBEs) were Screened for Completeness and HTR-Modul Specific Scenarios were Added

Know-How Transfer From Germany to ESKOM

and

Overall Conclusions

Stuart Rubin, RES

Know-How Transfer From Germany to ESKOM

- German organizations with a core of HTR technical expertise have archives of technical documents on German pebble bed reactor R&D, design, testing, operation, SARs and SERs.
- Julich Research Center, HTR GmbH, TUV-Hanover and NUKEM have signed agreements with ESKOM to provide their technical information and selected assistance to support PBMR licensing in South Africa.
- NRC cooperation with the involved organizations in support of PBMR review in these technical areas would likely create a conflict of interest for the organizations
- Agreements prohibit ESKOM (or the other involved receiving organizations) from providing the technical information to third parties (e.g., NRC)
- Some of the German organizations have indicated that the technical information provided to ESKOM and PBMR, Pty., as well as technical support, could be provided to NRC under separate agreements.

Conclusions from the Trip to Germany

- The German nuclear power industry believes they have demonstrated that HTRs can be successfully designed, constructed and licensed, and operated with acceptable safety performance.
- German safety and regulatory authorities believe that the HTR-Modul design (a modular pebble bed reactor similar tp the PBMR) would be able to meet the safety criteria for licensing in Germany.
- German HTGR operating experience shows that startup problems with new HTGR plant designs can be expected.
- German experiments, plant operations and tests show that important HTGR design, technology and safety analysis issues exist and will need to be investigated and resolved before licensing an HTGR in the US.
- German HTGR information, expertise and experience will be valuable in supporting NRC HTGR infrastructure development for HTGR safety reviews.

Heute besteht der AVR-Kern zu 50% aus Brennelementen mit niedrig angereichertem Uran und hohem Plutoniumanteil. Das transiente Verhalten ist unverändert gut (Abb. 5). Eine Vielzahl von statischen und dynamischen Experimenten wurde durchgeführt und erfolgreich nachgerechnet. Exemplarisch seien hier die Versuche mit ausgewählten LEU-Brennelementen erwähnt, die wohldefiniert einmal den zentralen Kern durchliefen und deren Spaltstoffzusammensetzung dann in Seibersdorf analysiert wurde. Die Vorausrechnungen mit AVR-adäquaten Rechenprogrammen wiesen selbst bei den Plutonium-Isotopen nur Abweichungen von weniger als 5% auf.

Für die Erprobung der Programme zur Thermohydraulik war der AVR-Kern ebenfalls gut geeignet. Es gelang dabei auch, die Kopplung zwischen den reaktorphysikalischen und thermohydraulischen Vorgängen gut zu simulieren und zu überprüfen. Besonders mit dem Rechenprogramm TINTE können die dynamischen Experimente bei verschiedenen HEU/LEU-Verhältnissen, ausgelöst durch Stabfahren oder Änderung des Kühlgasmassenstromes, zweidimensional gut berechnet werden. Auch die beobachteten, z.T. sehr hohen Maximaltemperaturen im Kern können mit den Rechenmodellen weitgehend erklärt werden. Hier sind allerdings noch detaillierte Untersuchungen erforderlich.

4.3.3 Meßtechnik

Im Rahmen des Versuchsprogramms bis Ende 1988 wurden große Anstrengungen unternommen, Temperaturen und Neutronenflüsse im und am Reaktorkern besser zu erfassen:

- Durch das Mannloch des äußeren Reaktordruckbehälters wurden auf Corehöhe im Sperrspalt 60 Thermoelemente installiert, die während des Versuch zum Kühlmittelverlust zulässige Temperaturen nachwiesen.
- Kombinierte Thermoelement/Rauschthermometrie in einer Lanze verbesserte die Informationen im Deckenrefelektorbereich. Dieses System wurde am AVR inclusive einer Datenfernübertragung für den betrieblichen Einsatz handhabbar gemacht und erprobt.
- Japanische Spaltkammern mit Einsatztemperaturen bis zu 850°C wurden in das stillgelegte Dampferzeugertragrohr abgelassen. Die damit gewonnenen thermischen Neutronenflüsse liegen zum Teil erheblich über

from: "AVR-20 Jahre Betrieb," VDI Berichte 729, VDI Verlag (1989)

Abb. 6: Temperaturmeßkugeln (oben) mit 20 Schmelzdrähten (Ausschnitt aus Röntgenaufnahme, Mitte) zeigten teilweise unerwartet hohe Temperaturen (unten).

Pebble Bed Modular Reactor

- 1 = reactor vessel 4 =fuel 7 = radiation shield 10 = reactor pit cooling 13 = turbo comp. no 216 = precooler19 = snubbers
- 22 = generator

- 2 = reactor vessel support
- 5 = defuelling devise
- 8 = seismic support
- 11 = main connection manifold
- 14 = power turbine
- 17 = intercooler
- 20 = helium storage tanks (9)
- 23 = main carrier beam

- 3 = control rod drive mechanisms
- 6 = spent fuel storage vessels(7)
- 9 = heat removal skirt
- 12 = turbine comp. No 1
- 15 = recuperator
- 18 = power conversion unit enclosures
- 21 = generator coupling
 - 24 = main overhead crane

Ex.5

Ex. 5

* Nozzles above surface
* Must have sufficient drop height for spheres to harden

* Particles must age - ADU reactions - before drying

* Dimensions continually decrease

Aging mass of kernels at bottom of reservoir

August 2001

CALCINED

* LHS - fuel core Note striations for better adhesion

* RHS - fuel pebble; fuel core with fuel free graphite layer added (smooth)

* Isostatic ("even") pressing in silicone rubber moulds

