

-1

CLINTON POWER STATION						
	Job Performance Measu	ure				
Perform the ROD/	e Restoration Section of CPS No. 90 POSITION INDICATION OPERABIL	11.01 CONTROL ITY-Faulted				
	JPM Number: 9011.0102					
	Revision Number: 03					
	Date: 07/15/2003					
Developed By:	<u>T Pickley</u> Instructor	<u>7/15/03</u> Date				
Validated By:	<u>T. Delaney</u> SME or Instructor	<u>10/16/03</u> Date				
Review By:	<u>P. K. Ryan</u> Operations Representative	<u>7/28/03</u> Date				

T.

JOB PERFORMANCE MEASURE VALIDATION CHECKLIST

NOTE: All steps of this checklist should be performed upon initial validation. Prior to JPM usage, revalidate JPM using steps 8 through 11 below.

	1. Task description and number, JPM descridentified.	ription and number are
	2. Knowledge and Abilities (K/A) references	are included.
	3. Performance location specified. (in-plant, simulator)	, control room, or
	4. Initial setup conditions are identified.	
<u> </u>	5. Initiating and terminating cues are proper	ly identified.
	6. Task standards identified and verified by	SME review.
	7. Critical steps meet the criteria for critical with an asterisk (*).	steps and are identified
	8. Verify the procedure referenced by this J current revision of that procedure: Procedure Rev Date	PM matches the most
	 Pilot test the JPM: a. verify cues both verbal and visual are t b. ensure performance time is accurate. 	free of conflict, and
	10. If the JPM cannot be performed as writte responses, then revise the JPM.	n with proper
	11. When JPM is revalidated, SME or Instruct cover page.	ctor sign and date JPM
S	ME/Instructor	Date
S	ME/Instructor	Date
S	ME/Instructor	Date

Revision Record (Summary)

1.	Revision 00,	This is a new RO Administrative JPM
2.	Revision 01,	Add Terminating Cue Update to the current revision of the procedure
3.	Revision 02,	Incorporating NRC validation comments
4.	Revision 03,	Update to the current revision of the procedure

- Operator's Name:
- Job Title: o RO o SRO
- JPM Title: Perform the Restoration Section of CPS No. 9011.01 CONTROL ROD/POSITION INDICATION OPERABILITY-Faulted
- JPM Number: 9011.0102

Task Number and Title:901101.01, Complete control room actions to perform the ControlRod/Position Indication Operability

2.2.12 K/A Number: Importance: 3.0 **Suggested Testing Environment:** Any **Actual Testing Environment:** Simulator Plant o Control Room 0 0 Testing Method: o Simulate Alternate Path / Faulted: n Yes n Perform Time Critical: o Yes n No **Estimated Time to Complete:** 17 minutes **Actual Time Used:** minutes CPS No. 9011.01, CONTROL ROD/POSITION INDICATION OPERABILITY, **References:** Revision 27d

ADMIN JPM JPM NUMBER: <u>9011.0102</u> <u>Rev. 03</u>

EVALUATION SUMMARY:

Were all the Critical Elements performed satisfactorily? o Yes o No

The operator's performance was evaluated against the standards contained in this JPM, and has been determined to be: o Satisfactory o Unsatisfactory

Comments:

Evaluator's Name:

Evaluator's Signature:

Date:

READ TO THE OPERATOR

I will explain the initial conditions, which step(s) to simulate or discuss, and provide the initiating cues. When you complete the task successfully, the objective of this Job Performance Measure will be satisfied.

SIMULATOR SET-UP CONDITIONS:

Not Applicable

TASK STANDARDS:

CPS 9011.01 restoration section has been completed. Misaligned control rod has been identified.

TOOLS, EQUIPMENT, OTHER SPECIAL REQUIREMENTS:

Marked up copy of CPS 9011.01 completed up to step 8.3. Copy of an OD-7 Option 2, OD-7 Option 4 and an Official 3D Case.

PROCEDURAL/REFERENCES:

CPS 9011.01, CONTROL ROD/POSITION INDICATION OPERABILITY, Revision 27d

EVALUATOR INSTRUCTIONS:

Amplifying cues are provided within the JPM steps. Provide initial OD-7 and surveillance after reading the initiating cue.

INITIAL CONDITIONS: 100% Power

INITIATING CUE:

The plant is operating at 100% power. The A RO has completed CPS 9011.01 Control Rod/Position Indication Operability for the weekly surveillance with the exception of the restoration section. You have just relieved the A RO and are directed to complete the restoration section. Report when the task is complete.

START TIME:

PERFORMANCE INFORMATION

Critical steps are denoted with an asterisk (*) to the left of the step number and appear in **BOLDED** letters. Failure to meet the standards for a critical step constitutes failure of the Job Performance Measure. The sequence of steps is assumed unless denoted in the comments section of the JPM.

PERFORMANCE STEPS

1.	Obtain final PMS Control Rod Position printout: OD-7 Option 2, OD-7 Option 4, or Official 3D Case.						
Standard	Printout demanded.						
CUE	Give operator the OD-7 Option 2, OD-7 Option 4, or Official 3D Case when						
Comments							
	SAT UNSAT Comment Number						
*2.	Compare the initial and final Control Rod Position printouts to verify proper rod positions.						
Standard	Operator performs review and identifies that rod 36-29 is at position 6 instead of position 4.						
CUE Comments							
	SAT UNSAT Comment Number						
*3.	Notify the SMngt that rod 36-29 is at position 6 instead of position 4.						
Standard	SMngt is notified						
CUE	• Acknowledge entificationaliveiseneritions beentent ceps 4007.02						
Comments	May state that entry into Inadvertent Rod Movement CPS 4007.02 is required						
	SAT UNSAT Comment Number						

Terminating Cue: 9011.01, Restoration section has been completed and Shift Management has been notified of mispositioned control rod.

STOP TIME:

K/A REFERENCE NUMBERS

		Importan	ce Rating
<u>K/A SYSTEM NUMBER</u>	<u>K/A NUMBER</u>	<u>RO</u>	<u>SRO</u>
GENERIC	2.2.12	3.0	3.4

SYSTEM JPM

JPM NUMBER 9011.0102

Rev. 03

INITIATING CUE

The plant is operating at 100% power. The A RO has completed CPS 9011.01 Control Rod/Position Indication Operability for the weekly surveillance with the exception of the restoration section. You have just relieved the A RO and are directed to complete the restoration section.

Report when the task is complete.

CONTROL ROD/POSITION INDICATION OPERABILITY

SCOPE OF REVISION:

- Incorporated PAC 0407-97: Editorial typo. Rev marks not retained.
- Format/Organizational title updates, placekeeping aid enhancements, section 5.1 updated to include annunciator impact per 1005.01.
- CR1-98-02-110 (MLSR Project): Incorporated performance criteria and credit for ITS SR 3.9.5.1 MODE 5 control rod position checks.
- Documentation content of canceled CPS 9011.01C001, Control Rod Operability Checklist incorporated into body of this procedure.
- Incorporated PAC 0502-99, PDRs 99-0906 and 00-0298.
- 2 Added flags for critical steps.
- Updates format, revised to make consistent with Limitations in CPS 3304.01, Control Rod Hydraulic & Control (RD).
- Specific rev 27d [Sheffield]: CR 130905: Added to review control rod database prior to movement of a single rod at elevated drive water pressure to establish what seal conditions are.

CONTINUOUS USE

ORIGINATOR Thomas J. Landin

:

ITR: K. Zipprich

CLASS CODE: SNNN

APPROVAL *SEP 16 1998* DATE:

CURI	RENT CHANGES	TO GENERAL	REVISION
0	27a	02/21/01	1, 4, 6, 7
0	27b	08/13/01	1, 3, 6
6	27c	01/02/02	1, 4
4	27d	02/05/03	1 and 7
0			

c 1.0 <u>PURPOSE</u>

Provide instructions for verifying control rod insertion capability by inserting each applicable PARTIALLY or FULLY withdrawn control rod one notch and observing that the control rod moves, thereby ensuring the control rod is not stuck and is free to insert on a SCRAM.

Instructions are also provided to return the control rods to their original positions to verify each applicable control rod is operable and that the position indication for each applicable control rod is operable.

This surveillance satisfies ITS SR requirements:

3.1.3.2, Insert each FULLY withdrawn control rod one notch (7 days)

3.1.3.3, Insert each PARTIALLY withdrawn control rod one notch (31 days)

3.9.5.1, Insert each withdrawn control rod one notch (7 days - MODE 5)

2.0 **DISCUSSION/DEFINITIONS**

- 2.1 <u>FREQUENCY</u> «LBD-1»
- 2.1.1 Normal Frequency (MODEs 1, 2):
 - 7 Days for FULLY withdrawn control rods with THERMAL POWER > LPSP of the RPCS
 - 31 Days for PARTIALLY withdrawn control rods with THERMAL POWER > LPSP of the RPCS

2.1.2 Other Triggers:

٢

Rev. 27d

- a) Within 24 hours from discovery of any withdrawn control rod that is stuck (will not insert by either CRD drive water or scram pressure) for all control rods either PARTIALLY or FULLY withdrawn, concurrent with THERMAL Power > the LPSP of the RPCS.
- MODE 5 when control rod withdrawn triggered via CPS 9000.01D002, Control Room Operator Surveillance Log - MODE 4,5 DATA SHEET (7 day frequency).
- 2.2 Individual sections or an individual step or individual steps within a section of this procedure may be performed independently for PMT or other maintenance activities. Those steps within a section that are not performed should be marked N/A. When only parts of a section are performed, it is the responsibility of the SMngt and the performer to ensure that all necessary prerequisites, precautions and limitations are met for those steps that will be performed. Additionally, the impact of NOT performing the remaining steps must also be understood.

2.0 DISCUSSION/DEFINITIONS (cont'd)

2.3 All applicable control rods (control rods not required to have their directional control valves disarmed electrically or hydraulically) will be moved at least one notch to verify proper rod motion and position indication response. Control rod exercising should be performed by a single notch insertion and single notch withdrawal, in as short a time as possible.

3.0 **RESPONSIBILITY**

Operations Department Head is responsible for the implementation of this procedure.

4.0 **PRECAUTIONS**

- 4.1 Plant evolutions which may result in reactivity changes should be avoided during performance of this surveillance.
- 4.2 Document control rod movement per CPS 9000.09, CPS Control Rod Manipulation Logs.

INITIAL

5.0 **PREREQUISITES**

- 9 5.1 This procedure contains critical steps. A Critical Step is "Any action that, when performed improperly, will lead to an unintentional change that adversely impacts plant, system, or personnel". Performance of this procedure requires screening for a High Risk/High Production Risk/Risk Sensitive activity IAW WC-AA-104 and any existing requirements for Command and Control Standards. Critical steps are indicated by a {Cs} in the left margin."
 - 5.2 In conjunction with the SMngt, review the following impact statements to determine required plant status to perform this test:

OPERABILITY IMPACT:

ITS LCO 3.1.3 - Control Rod Operability

SYSTEMS AFFECTED:

AFFECTED ANNUNCIATORS AND COMPUTER POINTS: None <u>RPS TRIP</u>: N/A <u>CRVICS ISOLATION</u>: N/A

REQUIRED OPERABLE CHANNELS: N/A

PLANT/SYSTEM CONDITIONS REQUIRED TO CONDUCT TEST

When in MODEs 1, 2: Power > low power set point (LPSP) of the Rod Pattern Control System (RPCS).

When in MODEs 1, 2: For control rods <u>not</u> FULLY withdrawn, MAPRAT \pounds 0.96. If MAPRAT > 0.96 a power reduction will be required prior to testing control rods that are <u>not</u> FULLY withdrawn.

COINCIDENT CHANNELS TO PREVENT ACTUATION: N/A

			<u>SM /</u>	DL	
			SMngt	Test Performer	
<	5.3	MODE 1, 2: Reactor power (> LPSP). [N/A when in MODE 5.]	-	<u>_90</u> %	DL
Œ SMr	5.4 Igt	SM/CRS permission to perform this surv	veillance.		<i>SM</i>

XX:XX / XX/XX/XX Time/Date

۲

۲

6.0 **LIMITATIONS**

٢

- 6.1 **IF** a control rod (or gang) is found out of sequence, **THEN** enter CPS 4007.02, Inadvertent Rod Movement.
- 6.2 In the event of accidental insertion of more than one notch, withdrawal should be by single notch to avoid any possible over-notching on the withdrawal.
- 6.3 MODEs 1, 2: MAPRAT shall be £ 0.96 when exercising PARTIALLY withdrawn control rods. This limitation does not apply to FULLY withdrawn control rods.
- **CEO** 6.4 The Rod Withdraw Limiter (RWL) function of the Rod Control and Information system establishes a 4 notch withdraw limit when reactor power is between the Low Power Set Point (LPSP) and the High Power Set Point (HPSP), and a 2 notch withdraw limit when power is above the HPSP. The purpose of the RWL is to prevent fuel damage, caused by rod withdrawal which would uncover fuel that has been operating at a relatively low power level. The limit is set at 2 or 4 notches (as applicable) from the position of the control rod, the first time a Withdraw signal is applied after the rod is selected.

IF a control rod is inserted with the intent of leaving the rod at the new inserted position, **OR** power condition have changed significantly (RR flow changes or Xenon transient) since the control rod was inserted, **THEN** prior to withdrawing that control rod, deselect and reselect the control rod, to establish the RWL notch limits.

IF a control rod is inserted with the intent of returning the control rod to its original position for notch testing, **THEN** withdrawing the control rod to its original position in the continuous withdraw mode is permitted, **AND** is within the design basis of the RWL as long as power condition have not changed significantly.

Control rods should be deselected, any time that MCR personnel are **NOT** actively engaged in control rod movement activities. *«CM-1»*

7.0 **MATERIALS/TEST EQUIPMENT** - None

	8.0	PROCEDURE	<u>Initial</u>
Œ	8.1	Obtain a Plant Monitoring System (PMS) Control Rod Position printout, using either: OD-7 Option 2, OD-7 Option 4, or Official 3D Case.	DL
Œ	8.1.1	From the OD-7 edit or Official 3D Case, determine which control rods are not required to be tested because they are not withdrawn.	DL
	8.1.2	Identify any control rods which are disarmed.	DL
	8.1.3	Identify any control rods which are PARTIALLY withdrawn.	DL

<u>NOTE</u>

When exercising PARTIALLY withdrawn rods during the monthly test, a "P/" should be used before initials to differentiate between partially withdrawn and fully withdrawn rods.

In this manner, the MODE 1, 2 requirement to limit MAPRAT £ 0.96 can be more readily determined.

8.1.4 On the CORE MAP (page 7):

•	Mark disarmed control rods with "DA".	DL
	Mark FULLY inserted control rods with "N/A".	DL
	Mark partially withdrawn control rods with "P/" (if exercising PARTIALLY inserted rods).	DL
•	Mark partially withdrawn control rods with "N/A" (if <u>not</u> exercising PARTIALLY inserted rods).	N/A

NOTE

Drives with new seals should not be moved per single notch with elevated drive water pressure, due to increase potential for double-notching. Consult control rod database for seal condition

<u>MODE 1 or 2</u>:

Individual and/or ganged rod movement may be used to perform this surveillance.

FULLY withdrawn control rods are not required to be performed until 8 days 18 hours after the control rod is fully withdrawn and THERMAL POWER is > LPSP of the RPCS.

Rods at position 46 for cooling shall be considered FULLY withdrawn and subject to the 7 day frequency. These rods may be required to be returned to position 48 first to perform the surveillance.

PARTIALLY withdrawn control rods are not required to be performed until 38 days 18 hours after the control rod is withdrawn and THERMAL POWER > LPSP of the RPCS.

<u>MODE 5</u>:

Individual rod movement shall be used to perform this surveillance.

Withdrawn control rods are not required to be performed until 7 days after the control rod is withdrawn.

	8.2	<u>Exercise of FULLY (PARTIALLY)</u> <u>Withdrawn Control Rods</u>	Initial
<	8.2.1	MODEs 1, 2 PARTIALLY withdrawn rods only (N/A for FULLY withdrawn rods or MODE 5):	
		Verify MAPRAT £ 0.96	DL
		If MAPRAT > 0.96, then a power reduction shall be required to achieve MAPRAT \pounds 0.96 prior to testing any PARTIALLY withdrawn control rods.	
@{CS}	8.2.2	Select and insert the desired rod(s) one notch, noting proper position indication tracking.	X Place Keeping Aid
@ {CS}	8.2.3	Withdraw the selected rod(s) one notch to original position.	X Place Keeping Aid
		a) Observe proper rod position indication tracking to the original rod position.	X Place Keeping Aid
		b) Check off the selected rod(s) after the rod(s) is tested by initialing the rod(s).[Document on CORE MAP]	<u> </u>

¢**(**)

	8.2.4	Repeat steps 8.2.2 and 8.2.3 for each FULLY (PARTIALLY) withdrawn control rod.	X Place Keeping Aid
	8.3	RESTORATION	<u>Initial</u>
Œ	8.3.1	Obtain a PMS Control Rod Position printout: OD-7 Option 2, OD-7 Option 4, or Official 3D Case.	
	8.3.2	Compare the initial and final Control Rod Position printouts to verify propositions.	per rod
Œ	8.3.3	Notify the SMngt of the completion of this test.	
		/	

Time/Date

9.0 <u>ACCEPTANCE CRITERIA</u>

- 9.1 <u>Operability Requirements</u> Failure to meet the Acceptance Criteria shall constitute a failure to comply with the applicable LCO. ITS should be immediately reviewed to identify Action Statements needed for implementation. Refer to Supplemental Review Sheet for applicable LCOs.
- 9.1.1 All withdrawn control rods not required to have their directional control valves disarmed electrically or hydraulically are inserted at least 1 notch.
- 9.1.2 The indicated control rod position changes during movement of the Control Rod Drive.
- 9.2 <u>Other Requirements</u> None

10.0 FINAL CONDITIONS

The control rods are returned to their original positions.

11.0 **<u>REFERENCES</u>**

- 11.1 CPS 4007.02, Inadvertent Rod Movement
- 11.2 CPS 9000.01D002, Control Room Operator Surveillance Log - MODE 4,5 Data Sheet
- 11.3 CPS 9000.09, CPS Control Rod Manipulation Logs
- 11.4 LBD-1: ITS SR 3.1.3.2, SR 3.1.3.3, SR 3.9.5.1
- 11.5 USAR 3.1.2.3.2.1, 4.6.3.1.1.5
- 11.6 GE Control Rod Drive Design Spec Data Sheet 22A5395 AE
- 11.7 GE Letter GGJ-88-100 dated 7-29-88
- **Œ** 11.8 CM-1: CR 1-99-04-097
 - 12.0 <u>APPENDICES</u> None
- 4 13.0 <u>DOCUMENTS</u> None

CPS <u>9011.01</u>

CORE MAP

			<u>_&/</u> 16-53	<u></u> 20-53	<u> </u>	<u></u> 28-53	<u>گ/</u> 32-53	<u>))</u> 36-53	<u>گ/</u> 40-53			
		<u>)</u> 12-49	<u></u> 16-49	<u></u> 20-49	<u></u> 24-49	<u>گ/</u> 28-49	<u></u> 32-49	<u>گ/</u> 36-49	<u>%</u> 40-49	<u>گ/</u> 44-49		
	<u> </u>	<u>گل</u> 12-45	<u>گل</u> 16-45	<u>_&L</u> 20-45	<u></u> 24-45	<u></u> 28-45	<u>گ/</u> 32-45	<u>گ/</u> 36-45	<u>گ/</u> 40-45	<u>گ/</u> 44-45	<u>گ/</u> 48-45	
<u>»</u> 04-41	<u>_&/</u> 08-41	<u>»)</u> 12-41	<u></u> 16-41	<u>»)</u> 20-41	<u></u> 24-41	<u> </u>	<u></u> 32-41	<u></u> 36-41	<u></u> 40-41	<u></u> 44-41	<u></u> 48-41	<u>%</u> 52-41
<u>D</u> 04-37	<u>)</u> 08-37	<u>»)</u> 12-37	<u>_ DL</u> 16-37	<u>P/ گ/</u> 20-37	<u>»)</u> 24-37	<u>P/ ½</u> 28-37	<u>)</u> 32-37	<u>P/ ½</u> 36-37	<u> 多</u> 40-37	<u>DL</u> 44-37	<u>»)</u> 48-37	<u>)</u> 52-37
<u> </u>	<u>&/</u> 08-33	<u></u> 12-33	<u>_}/</u> 16-33	<u> </u>	<u></u> 24-33	<u>DL</u> 28-33	<u>DL</u> 32-33	<u>»)</u> 36-33	<u>D</u> 40-33	<u> </u>	<u>»)</u> 48-33	<u>گ/</u> 52-33
<u>》</u> 04-29	<u> ふ</u> 08-29	<u></u> 12-29	<u>»)</u> 16-29	<u>P/ ½</u> 20-29	<u></u> 24-29	<u></u> 28-29	<u>》</u> 32-29	<u>P/ ½</u> 36-29	<u> 》</u> 40-29	<u>»</u> 44-29	<u>》</u> 48-29	<u></u> 52-29
<u>&/</u> 04-25	<u> </u>	<u>»)</u> 12-25	<u>&/</u> 16-25	<u> ふ</u> 20-25	<u>DL</u> 24-25	<u>DL</u> 28-25	<u>DL</u> 32-25	<u>ル</u> 36-25	<u>メル</u> 40-25	<u>DL</u> 44-25	<u>&/</u> 48-25	<u>)</u> 52-25
<u>گلا</u> 04-21	<u>»)</u> 08-21	<u>})</u> 12-21	<u>%</u> 16-21	<u>P/ گ/</u> 20-21	<u>%</u> 24-21	<u>P/ ½/</u> 28-21	<u>DL</u> 32-21	<u>P/ ½/</u> 36-21	<u>&/</u> 40-21	<u>>>/</u> 44-21	<u>ル</u> 48-21	<u>»</u> 52-21
<u>&/</u> 04-17	<u>DL</u> 08-17	<u>))</u> 12-17	<u>》</u> 16-17	<u>DL</u> 20-17	<u>»</u> 24-17	<u>DL</u> 28-17	<u>》</u> 32-17	<u>گل</u> 36-17	<u> ふ</u> 40-17	<u> </u>	<u>DL</u> 48-17	<u> 多</u> 52-17
	<u> %</u> 08-13	<u>))</u> 12-13	<u>_}/</u> 16-13	<u>»)</u> 20-13	<u>»)</u> 24-13	<u>))</u> 28-13	<u>))</u> 32-13	<u> </u>	<u>گل</u> 40-13	<u>»)</u> 44-13	<u>D</u> 48-13	
		<u>&/</u> 12-09	<u>»%</u> 16-09	<u>گلا</u> 20-09	<u>නි</u> 24-09	<u> </u>	<u>DL</u> 32-09	<u>BL</u> 36-09	<u>&/</u> 40-09	<u>BL</u> 44-09		
			<u>DL</u> 16-05	<u>&/</u> 20-05	<u>)</u> 24-05	<u>_}</u> 28-05	<u>گلا</u> 32-05	<u></u>	<u></u> 40-05			

Rev. <u>27d</u>

CPS <u>9011.01</u>

CONTROL ROD OPERABILITY CHECKLIST

<u>CORRI</u>	ECTIVE ACT	TION TAKEN	
<u>9.1</u>	ACCEPTANC	CE CRITERIA	<u> </u>
	ITS LCOs:	<u>3.1.3</u>	3.9.5
	ORM ORs:	None	
	ODCM ORs:	None	
	As applic	cable: Initiated	Condition Report (yes/no)
		Initiated	Maintenance Request (MR) No
9.2	ACCEPTANO	<u>CE CRITERIA</u>	<u>A</u>
	As applic	cable: Initiated	Condition Report
		Initiated	Maintenance Request (MR) No.
<u>REVII</u> Surve	EW AND API	PROVAL Coordinato	r(Signature) (Date)

CPS <u>9011.01</u>

PAGE	1,	INITIAL								
					_	CLINTON CY	YCLE 6	SEQUENCE	NO 23	
		CORE PARAM	IETERS	21.05	3D MONI	CORE	today-	2xxx xx:x	x CALCUI	LATED
		POWER MW	M.T.	3125 1062	PERIO	DIC LOG	CASE	Y-ZXXX XX3 10 EMID10	XX PRIN	TED
		FI.OW MI	LB/HR	75 844	CALC RI	27,11125	RESTA	עבעשיים עד פיר דאו. מפורח די	50708202	845
		FPAPDR		0.82	24		LPRM	I SHAPE -	FULL COF	RE
			SUB	C BTU/	'LB 2	3.49 Kef	E£	1.0000		
		PR	PSIa	10	27.9 XE	WORTH %	-2.52 L	OAD LINE S	SUMMARY	
		CORE M	WD/sT	20850.8	3 XE/RAT	ED 1.0	0 CORE	POWER	89.	.98
		CYCLE M	WD/sT	8741.6			CORE	FLOW	89.	.8%
		MCPR		1.208	5		LOAD	LINE	100.	.05
		COR	RECTION 1	FACTOR:	MFLCPR=	1.000 MFI	LPD= 1.000	MAPRAT=	0.999	
		OPT	ION: ART	'S	DUAL LOOI	P MAN	UAL FLOW	MCPRLIM=	1.240	
					MOST LI	MITING LOC	ATIONS (NO	N-SYMMETRI	IC)	
		MFLCPR	LOC	MFLPD	LOC	MAPRA	T LOC	PCRAT		C
		0.978	37-28	0.912	1/-22-18 7 20 F	0.821	15 20 16	0.798	41-28-	-16 16
		0.970	41-28	0.912	41-28-16	0.817	11-22-13	0.798	7-28-	- 5
		0.973	11-28	0.902	19 - 28 - 16	0.816	19-26-16	0.791	39-22-	-20
		0.940	13-32	0.896	15-38-18	0.813	19-30-15	0.782	9-22-	-13
		0.939	9-26	0.895	21-26-16	0.803	7-26-12	0.779	11-20-	-13
		0.937	11-20	0.893	17-26-16	0.802	9-36-13	0.779	17-26-	-16
		0.930	39-22	0.889	9-22-13	0.798	11-30-11	0.777	11-28-	-15
		0.927	7-28	0.889	11 - 20 - 13 12 22 16	0.796	9-26-5	0.776	13-32-	-10 10
		0.925	9-22	0.000	13-32-10	0.795	39-22-20	0.774	4/-20-	-12
		SEQ. B-2	C=MFL	CPR D=M	FLPD M=MA	PRAT P=PCR	AT *=MULTI	PLE COF	RE AVE A	XIAL
		53						NOTCH	REL PW	LOC
		10						00	0.238	25
		49 T.						02	0.440	24 23
		45						04	0.963	22
		10						08	1.056	21
		41			P			10	1.158	20
		L						12	1.191	19
		37		18	C4	18		14	1.163	18
		22						16 10	1.182	16
		зз т.						20	1.220 1.215	15
		29		4		4		22	1.187	14
								24	1.212	13
		25						26	1.207	12
		L						28	1.181	11
		21		18	4	18		30	1.170	10
		17		Л				32	⊥.⊥66 1 121	09
		⊥ / Т.		D				34	1 085	08
		13						38	1.072	06
		20						40	1.050	05
		09						42	0.998	04
		L			М			44	0.920	03
		05 L	L	L	L	L	L	46	0.749	02
		04 08	12 16	20 24	⊾ ∠8 32	30 40 4	±4 48 52	48	0.23/	UΤ
				CORE AV	VERAGE RAD	IAL POWER	DISTRIBUTI	ON		
			RING #	1	2	3 4	5	6	7	
			REL PW	0.890	1.084 1.	113 1.102	1.155	1.145 0.72	7	

Job Performance Measure (JPM)

PAGE 2
CLINTON CYCLE 6 INSTRUMENT READINGS/STATUS SEQUENCE NO 23 CALIBRATED LPRM READINGS 8-JUL-1995 20:58 CALCULATED CALIBRATED LPRM READINGS today-2xxx xx:xx CALCULATED
47D 40.1 49.8 55.7 45.9 30.2 CASE ID FMLD1950708205855 C 57.0 59.8 60.3 64.5 43.0 LPRM SHAPE - FULL CORE
A 51.1 54.9 49.5 63.0 27.7 # OF TIPS REJECTED: 1
39D 35.4 51.3 58.4 61.1 57.5 46.0 FAILED SENSORS: C 55.8 62.7 60.3 59.6 66.5 67.9 LPRM (2 SIGNAL FAILED) B 60.0 65.2 60.7 57.0 66.7 70.2 615A 3815D A 52.7 61.1 50.4 44.4 54.7 63.8 LPRM (0 PANACEA REJECTED OTHER SENSORS (0 TOTAL)
31D 39.9 51.6 55.8 56.0C 55.7 48.5 SUB RODS C 63.7 71.1 68.3 63.1 72.6P 70.4 NONE B 69.6 71.2 66.7 59.2 72.9 73.4 A 67.6M 69.0 61.1 45.4 71.1 71.8 T = TIP RUN RECOMMENDED
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$
15D 28.5 46.2 55.5 57.2 0.0 39.4 C 42.4 63.6 62.8 59.1 65.4 59.1 B 43.2 68.6 61.9 57.4 67.6 62.2 A 0.0 61.7 49.9 44.3 64.3 50.4
07D 29.1 39.3 40.7 36.6 C 41.4 58.6 56.6 54.5 B 42.3 64.8 61.8 58.3 A 31.2 57.2 55.6 48.4
06 14 22 30 38 46
CORE SUMMARYCORE POWER 89.9%CALC SUB FLOW 91.3% DP MEAS PSI15.52CORE FLOW 89.8%OPER SUB FLOW -1.2% DP CALC PSI20.52LOAD LINE100.0%FLOW BASISMEASFEEDWTR FLOW MLB/HR13.5
APRM CALIBRATION A B C D READING 100.4 100.6 100.2 100.2 AGAF 0.994 0.992 0.997 0.997
TIP RUNS RECOMMENDED STRINGS: NONE

UNIT 1, PAGE 1 OF 1

INITIAL

Positions

OD-7, CONTROL ROD NOTCH POSITIONS, NEW SCAN $\ensuremath{\text{OPTION}}\xspace 2$

53	48	48	48	48	48	48	48

Job Performance Measure (JPM)

49			48	48	48	48	48	48	48	48	48		
45		48	48	48	48	48	48	48	48	48	48	48	
41	48	48	48	48	48	48	48	48	48	48	48	48	48
37	48	48	48	48	18	48	4	48	18	48	48	48	48
33	48	48	48	48	48	48	48	48	48	48	48	48	48
29	48	48	48	48	4	48	48	48	4	48	48	48	48
25	48	48	48	48	48	48	48	48	48	48	48	48	48
21	48	48	48	48	18	48	4	48	18	48	48	48	48
17	48	48	48	48	48	48	48	48	48	48	48	48	48
13		48	48	48	48	48	48	48	48	48	48	48	
9			48	48	48	48	48	48	48	48	48		
5				48	48	48	48	48	48	48			
	4	8	12	16	20	24	28	32	36	40	44	48	52

Job Performance Measure (JPM)

PAGE	1,	FINAL												
CORE PA POWER POWER FLOW FPAPDR	ARAI MW MW ML	METERS T E B/HR	312 105 75.84 0.82	25 52 14 24	CLINTO 3D MOI PERIO	ON C NICC DIC ESUI	CYCLE DRE LOG LTS	6	(SEQUE toda toda CASE RESTA LPRM	ENCE NO ay-2xxx ay-2xxx ID FML ART FML SHAPE	23 xx:x D1950 D1950 - FUI	x CALCU x PRINT 7082058 7081958 L CORE	LATED ED 55 45
SUBC PR CORE CYCLE MCPR	BT PS MW MW	U/LB Ia D/sT D/sT	23.4 1027. 20850. 8741. 1.26	9 9 8 6 8	Keff XE WOR' XE/RAT	TH % ED	1 * -2 1	.0000 .52 .00)	LOAD CORE CORE LOAD	LINE S POWER FLOW LINE	UMMAF	89.9 89.9 89.8 100.0	০০ ০০
CORRECT OPTION MFLCPR 0.978 0.976 0.975 0.973 0.940 0.939	TIO 3 3 4 1 1	N FACT(ARTS LOC 7-28 9-26 1-28 1-28 3-32 9-26	DR: MFI DUA MOST MFLPD 0.912 0.912 0.912 0.912 0.902 0.896 0.895	CPR= L LC LIMI 17- 7- 41- 19- 15- 21-	1.000 DOP TING Lo 22-18 28-5 28-16 28-16 38-18 26-16	MF MZ DCAT 0 0 0 0 0 0 0	FLPD= ANUAL FIONS MAPRA 0.821 0.817 0.817 0.816 0.813 0.803	1.00 FLOW (NON T 15 11 19 19 7	10 I-S I-2 -2 -2 -2 -2 -2 -2 -2	MAPF MCPF YMMET C 8- 5 0-16 2-13 6-16 0-15 6-12	RAT= 0. RLIM= 1 TRIC) PCR 0.7 0.7 0.7 0.7 0.7 0.7 0.7	999 .240 AT 98 98 97 91 82 79	LOC 41-28-1 19-28-1 7-28- 39-22-2 9-22-1 11-20-1	6 6 5 0 3 3
0.937 0.930 0.927 0.923	1 3	1-20 9-22 7-28 9-22	0.893 0.889 0.889 0.889 0.888	17- 9- 11- 13-	26-16 22-13 20-13 32-16).802).798).796).795	9 11 9 39	-3 -3 -2 -2	6-13 0-11 6- 5 2-20	0.7 0.7 0.7 0.7	79 77 76 74	17-26-1 11-28-1 13-32-1 47-26-1	6 5 6 2
SEQ. B- 53 49 L 45	-2	C=1	IFLCPR I)=MFL	PD M=M	APRA	AT P=:	PCRAT	*	=MULJ	CIPLE N	COF OTCH 00 02 04 06	RE AVE A REL PW 0.238 0.446 0.804 0.963	XIAL LOC 25 24 23 22
41 L 37			18		P C4	1	8					08 10 12 14	1.056 1.158 1.191 1.163	21 20 19 18
33 L			10		01	-	-					16 18 20	1.182 1.220 1.215	17 16 15
29 25 L			4				6					22 24 26 28	1.187 1.212 1.207 1.181	14 13 12 11
21 17 13			18 I)	4	1	18					30 32 34 36 38	1.170 1.166 1.131 1.085 1.072	10 09 08 07 06
09 1 05 1 04	L 08	L 12 2	I 16 20	24	M L 28 32	36	L 5 40	44	L 4	8 52	2	40 42 44 46 48	1.050 0.998 0.920 0.749 0.237	05 04 03 02 01
CORE AV RING # REL PW	VER. (AGE RAI 1).890	DIAL POW 2 1.084	IER D 3 1.113	ISTRIB 4 1.102	JTIC	0N 5 1.155	6 1.14	; 45	0.72	7 27			

Job Performance Measure (JPM)

PAGE CLINTON	2 CYCLE 6	5	INSTRUN CALIBRA CALIBRA	MENT R ATED L ATED L	EADI PRM PRM	NGS REA REA	S/STATUS ADINGS ADINGS	5 SEQ 8-J toda	UENCE I UL-199 ay-2xx	NO 23 5 20:58 x xx:xx	CALCU	JLATED JLATED		
47D C B A		40.1 57.0 61.2 51.1	49.8 59.8 63.6 54.9	55.7 60.3 60.9 49.5	45. 64. 69. 63.	9 5 2 0	30.2 43.0 41.9 27.7	CASE LPRM	ID FMI SHAPE OF TI	LD19507 - FULL PS REJE	CTED:	1		
39D C B A	35.4 55.8 60.0 52.7	51.3 62.7 65.2 61.1	58.4 60.3 60.7 50.4	61.1 59.6 57.0 44.4	57. 66. 66. 54.	5 5 7 7	46.0 67.9 70.2 63.8	F. L: L:	AILED : PRM (615A PRM (SENSORS 2 SIGN 3815D 0 PANA	: AL FAI CEA RI	- ILED) EJECTED)		
31D C B A	39.9 63.7 69.6 67.6M	51.6 71.1 71.2 69.0	55.8 68.3 66.7 61.1	56.0C 63.1 59.2 45.4	55. 72. 72. 71.	7 6P 9 1	48.5 70.4 73.4 71.8	O' ST T	THER SI UB ROD: NONE = TIP	ENSORS S RUN RE	(0 :	FOTAL) NDED		
23D C B A	40.0 62.2 67.1 66.5	54.3 67.31 67.1 58.6	58.1 63.7 61.4 48.7	57.9 59.2 56.9 44.2	59. 66. 66. 55.	5 8 6 6	48.0 69.0 71.1 66.1	M D P *	C = MFLCPR LOCATION M = MAPRAT LOCATION D = MFLPD LOCATION P = PCRAT LOCATION * = MULTIPLE LIMIT					
15D C B A	28.5 42.4 43.2 0.0	46.2 63.6 68.6 61.7	55.5 62.8 61.9 49.9	57.2 59.1 57.4 44.3	0. 65. 67. 64.	0 4 6 3	39.4 59.1 62.2 50.4							
07D C B A		29.1 41.4 42.3 31.2	39.3 58.6 64.8 57.2	40.7 56.6 61.8 55.6	36. 54. 58. 48.	6 5 3 4								
	06	14	22	30	38		46							
CORE CORE POW CORE FLO LOAD LIN	E SUMMAR VER 89 DW 89 VE 100	RY 9.9% 9.8%).0%	CALC S OPER S FLOW E	SUB FL SUB FL BASIS	OW OW	- - P	91.3% -1.2% MEAS	DP MEA DP CAL FEEDWT	S PSI C PSI R FLOW	MLB/HR		15.52 20.52 13.5		
APRN READING AGAF	4 CALIB A 100.4 0.994	RATION B 100 0.9	0.6 10 992 0.	C)0.2 .997	D 100 0.9	.2 97								
TIP STRINGS:	RUNS RI	ECOMME NONE	INDED I											
UNIT 2	1, PAC	GE 1	OF 1		Fi	na si	1 tions							
OD-7, OPTIO	CONTF 1 2	ROL I	ROD NO	DTCH	POS	SI	FIONS,	NEW	SCAN					
53					4	8	48	48	48	48	48	48		
49				48	4	8	48	48	48	48	48	48		

48

Job Performance Measure (JPM)

45		48	48	48	48	48	48	48	48	48	48	48	
41	48	48	48	48	48	48	48	48	48	48	48	48	48
37	48	48	48	48	18	48	4	48	18	48	48	48	48
33	48	48	48	48	48	48	48	48	48	48	48	48	48
29	48	48	48	48	4	48	48	48	6	48	48	48	48
25	48	48	48	48	48	48	48	48	48	48	48	48	48
21	48	48	48	48	18	48	4	48	18	48	48	48	48
17	48	48	48	48	48	48	48	48	48	48	48	48	48
13		48	48	48	48	48	48	48	48	48	48	48	
9			48	48	48	48	48	48	48	48	48		
5				48	48	48	48	48	48	48			
	4	8	12	16	20	24	28	32	36	40	44	48	52

(Signature) (Date)