Pressure Boundary Materials (Non-proprietary Version)

Marc Léger Director, Materials Engineering Presentation to US Nuclear Regulatory Commission Washington DC March 04, 2004

Outline

- Material Selection for Class 1 Boundary
 - Feeders
 - Steam generators
 - Fuel channel materials
- Compliance with regulatory guides where applicable
- Discussion of several issues of potential in-service degradation of components

A

Material Selection

- Feeder material will be austenitic stainless steel SA 312 TP 316N
 - Additional specification to reduce carbon concentration
- Piping and pressure vessels will be ferritic carbon steel meeting Appendix I of Section III of ASME
- Fuel channel materials not specified in ASME code
 - Acceptance to be based on database of material property information and experience in existing CANDU

Feeder Compliance with RG 1.36

- To prevent external stress corrosion cracking (ESCC) any insulation material that will be in contact with the component is tested in accordance with ASTM C 692 and the chemical analysis of the insulation material meets the requirements of ASTM C 795.
- All austenitic stainless steel pipe in contact with insulation is painted with silicone-based Thurmalox 70 paint.

Feeder Compliance with RG 1.44 and RG 1.37

- Austenitic stainless steel components are protected against contaminants that can cause stress corrosion cracking
- Raw austenitic stainless steels material is supplied in solution heat treated condition
- The 'L' grade variant with C < 0.03 wt% of the un-stabilized austenitic stainless steels is specified
- All RCPB austenitic stainless steels are screened in accordance with ASTM A 262 to ensure non-susceptibility to stress corrosion cracking

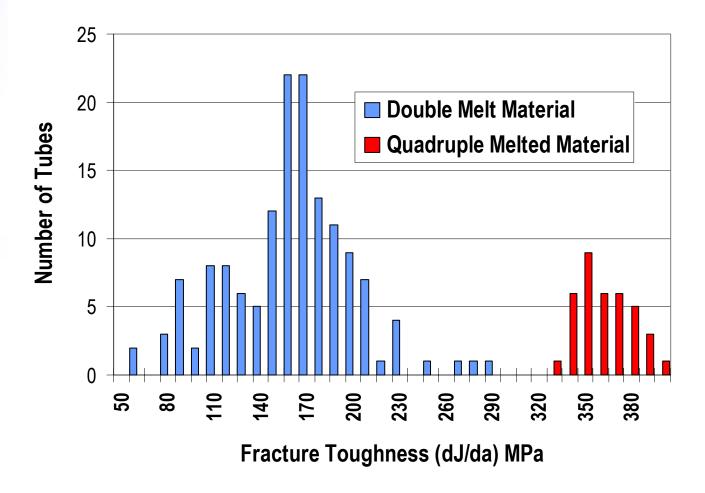
Feeder Compliance with RG 1.31, RG 1.34 and RG 1.71

- All austenitic stainless steel filler metal used for welding of RCPB components meet the requirements of NB-2340 of the ASME BPVC, Section III, Division I
- All welding is performed according to the requirements of Articles NB-2400 and NB-4300 of ASME, Section III, Division I, using low hydrogen filler material only
- Austenitic stainless steel welds and repair welds exposed to system fluid are solution annealed; when impractical, a low heat input welding process with restricted low interpass temperature is used.

A

Steam Generators

- No exceptions to ASME requirements
- Steam generator construction practice and materials will be consistent with the best practices and information available
 - CANDU 6 reactors have ferritic stainless steel support structure and Incoloy 800 tubing
 - Very few problems experienced
- AECL has expertise in SG design, thermal hydraulic analysis, materials and chemistry requirements for long life
- Reference tubing material is Incoloy 800 with Inconel 690 judged acceptable also


A

Fuel Channels

- Pressure tube
 - Pressure tubes are designed to ASME Section III NB3200
 - Tubes meet CAN/CSA Standard N285.6 and additional AECL
 Technical Specifications for material
 - Zr-2.5%Nb is an ASTM Standard B353 (UNS R60901) material
 - ASME type criteria apply for allowable design stress levels
 - Tubes are a consistent, high quality product
 - Current production tubes have improved properties compared to earlier production achieved by improved material specifications and production methods – especially with respect to fracture toughness properties after irradiation – a result of R&D programs in fracture area

Double Melt vs. Quadruple Melted Material

Materials Degradation Issues

- Rolled joint integrity and corrosion
- Garter spring material
- Annulus gas system performance

- Leakage experience of the joint not the pressure tube
 - Leakage rates usually exceptionally low and are not abnormal pressure boundary leaks

• With added oxygen get hydrogen isotope reaction to produce additional water through this reaction:

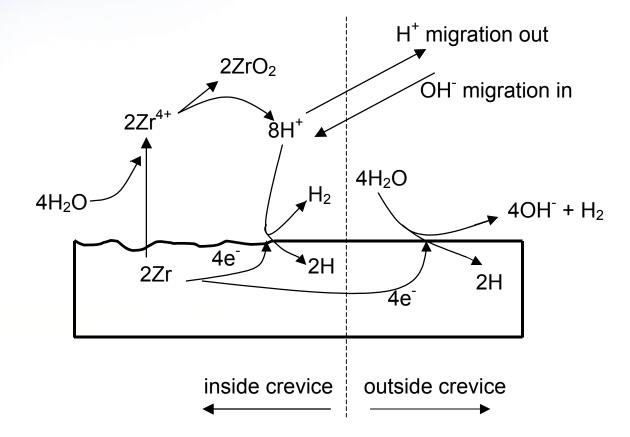
$$CO_2 + H_2 \Leftrightarrow CO + H_2O$$

• Additional reactions a result of radiation

- Dewpoint rate of rise without any abnormal system leaks corresponds to water ingress from all joints combined at the rate of the order of 0.1 g/hr (grams per hour)
 - Much of the moisture may come from hydrogen isotope permeation through the end fitting material

A

- Leakage experience of the joint not the pressure tube
 - Extremely rare experience of abnormal leakage
 - In approximately 400 years of reactor experience there has been one joint removed due to excessive leakage
 - Leak rate increased over a period of months to 4 g/hr
 - Channel located within an annulus gas "string"
 - Channel inspection found individual leaking channel
 - Examination after removal showed that leak was caused by a scratch on the outside surface of the pressure tube that was likely formed during assembly but oxidized over time and finally led to leak
- Such small leakage cannot result in any component damage and none was observed


A

- ACR rolled joints must be shown by qualification testing to have similar very low, normal leakage
 - Virtually leak tight
- Developmental program is currently underway

- Galvanic corrosion effects in rolled joint lead to hydrogen ingress but total amount of corrosion is small
- Rolled joint corrosion not considered to be an integrity issue

Note: Amount of corrosion-freed hydrogen entering metal is not to scale.

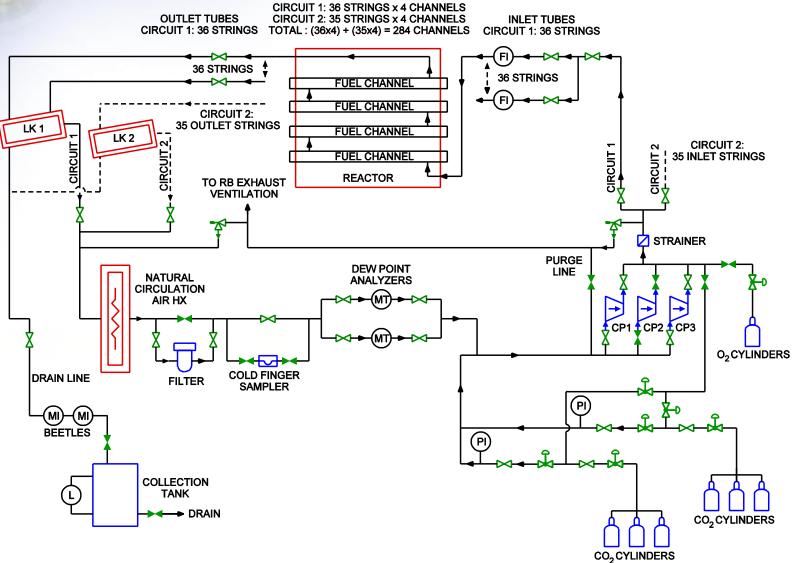
End Fitting

Pressure Tube

Inlet Rolled Joint After ~ 100,000 hrs of operation

Degradation of Components in Annulus System due to Moisture

- Annulus gas system is maintained dry during operation
- No opportunity for SCC under normal circumstances
 - No electrolyte can be present unless annulus becomes wet



Annulus Gas Pigtails

- Plugging of pigtails occurred in only a few units
- Some units operating without oxygen addition do not observe any annulus flow blockages
- Plants that had blockages and added oxygen no longer experience blockages
- Blockages detected by checks of flow rotameters
- Consequence of blocked pigtail is longer detection time for leaks into the system. For a pressure tube leak, blockage would be cleared by increasing pressure as coolant enters the system.

Annulus Gas Flowsheet

Predictions from Scattered Data

- In component design, for issues likely to affect the plant life, predictions of performance are based upon bounding (95%) rates – sometimes with additional margin
- Some coupled effects
 - E.g. wall thinning must account for irradiation deformation and corrosion
 - Upper bounds used for each separately
 - Strength used based on S_m in calculations

Data Outside Correlations

 Data that falls outside correlations would generally only be removed if it could be demonstrated, with some confidence, to be not valid.

Environmental Effects Testing

- No evidence from pressure tube inspection or examination of surveillance pressure tubes that environmental effects are significant - except insofar as the environment causes hydrogen ingress
- Creep and growth tests have been carried out in water at high temperature in NRU - no effect of the environment on creep rates noted
- Very little pressure tube fatigue testing has been carried out in the coolant environment
- Tests of irradiated materials removed from surveillance tubes have been exposed to the environment but are not generally tested in the environment

Differences between Light and Heavy Water

- Light and heavy water are chemically very similar
- Kinetics of reactions may be slightly different
- Corrosion behavior of pressure tube material and hydrogen isotope uptake during corrosion are very similar in two media
- Solubilities of hydrogen isotopes in pressure tube material are similar
- Diffusion kinetics and DHC velocities should differ by a factor of 1.4, but this small factor is difficult to determine in such tests

Pressure Tube Temperature at the Garter Spring Contact

- Temperature will be calculated by conservative analysis not yet done for ACR
 - Factor in gamma heating of components
- Temperature gradient at the garter spring should not be large enough to cause accumulation of hydride at the contact point at operating conditions even at the end-of-life
- Garter spring contact point changes continuously with time of operation due to pressure tube elongation

