

D.M. JAMIL Vice President

Duke Power Catawba Nuclear Station 4800 Concord Rd. / CN01VP York, SC 29745-9635

803 831 4251 803 831 3221 fax

March 22, 2004

U. S. Nuclear Regulatory Commission Document Control Desk Washington, DC 20555-0001

Subject: Catawba Nuclear Station, Unit 1 Docket No. 50-413 Unit 1 Cycle 15 Startup Report

Catawba Unit 1 Cycle 15 (C1C15) completed its transition to Westinghouse Robust Fuel Assembly (RFA) with the introduction of the third batch of RFAs into the core design. Additionally, C1C15 incorporates eight lead test assemblies which are Westinghouse Next Generation Fuel (NGF) assemblies. Power escalation testing including first flux map at full power was completed on January 6, 2004.

Section 14.3.4, item (3) of the Catawba Updated Final Safety Analysis Report requires a summary report to be submitted within 90 days following resumption of commercial power operation if the fuel has a different design. Accordingly, the Unit 1 Cycle 15 Startup Report dated January 2004 is attached.

There are no regulatory commitments contained in this document. Any questions concerning this report may be directed to Kay Nicholson at 803.831.3237.

Sincerely,

Dhiaa M. Jamil

Attachments

xc: L. A. Reyes Regional Administrator

> S. E. Peters NRR Project Manager

E. F. Guthrie Senior Resident Inspector

J=26

Duke Power Company Catawba Nuclear Station Unit 1 Cycle 15 STARTUP REPORT

•

January 2004

TABLE OF CONTENTS

		Page
List of 7	Fables	ii
List of F	Figures	iii
1.0	Introdu	ction1
2.0	Precriti	cal Testing2
	2.1	Total Core Reloading2
	2.2	Preliminary NIS Calibration2
	2.3	Reactor Coolant System Dilution2
	2.4	Control Rod Drop Timing Test
3.0	Zero Pe	ower Physics Testing
	3.1	1/M Approach to Criticality8
	3.2	Reactivity Computer Checkout 11
	3.3	Point of Nuclear Heat Addition11
	3.4	Dynamic Rod Worth Measurement 12
	3.5	ARO Boron Endpoint Measurement 12
	3.6	ARO Isothermal Temperature Coefficient Measurement12
4.0	Power	Escalation Testing
	4.1	Core Power Distribution
	4.2	One-Point Incore/Excore Calibration
	4.3	Reactor Coolant Loop Delta Temperature Measurement
	4.4	Hot Full Power Critical Boron Concentration Measurement
	4.5	Incore/Excore Calibration
	4.6	Calorimetric Reactor Coolant Flow Measurement22

LIST OF TABLES

	Pac	<u>16</u>
1.	C1C15 Core Design Data	. 1
2.	Cycle 14 and Cycle 15 Rod Drop Timing Results	4
3.	Preliminary NIS Calibration Data	6
4.	Summary of ZPPT Results	9
5.	Reactivity Computer Checkout	11
6.	Nuclear Heat Determination	11
7.	ITC Measurement Results 1	13
8.	Core Power Distribution Results, 18% Power 1	15
9.	Core Power Distribution Results, 50% Power	16
10.	Core Power Distribution Results, 100% Power 1	17
11.	Intermediate Power Level One-Point Incore/Excore Calibration Results 1	18
12.	Reactor Coolant Delta Temperature Data	19
13.	Incore/Excore Calibration Results	21
14.	Calorimetric Reactor Coolant Flow Measurement	22

LIST OF FIGURES

	Page
1.	Core Loading Pattern, Catawba 1 Cycle 15 5
2.	ICRR vs. Demin Water Added During Reactor Coolant System Dilution7
3.	ICRR vs. Control Rod Worth During Approach to Criticality10

l

Page 1 of 22

1.0 INTRODUCTION

C1C15 completes Catawba Unit One's transition to Westinghouse Robust Fuel Assemblies (RFA) with the introduction of its third batch of RFAs. The C1C15 core consists of a feed batch of 69 of these fuel assemblies. The feed batch enrichments are 36 RFAs at 4.32% (w/o U-235) with 6 inch 2.6% (w/o U-235) annular blankets, and 33 F/A's at 4.70% (w/o U-235) with 6 inch 2.6% (w/o U-235) annular blankets.

Additionally, C1C15 incorporates 8 Lead Test Assemblies (LTA). These LTAs are Westinghouse Next Generation Fuel (NGF) assemblies enriched to 4.32% (w/o U-235) with 6 inch 2.6% (w/o U-235) annular blankets.

Burnable absorbers accompanying the feed batch are of two designs: Integral Fuel Burnable Absorber (IFBA) and Wet Annular Burnable Absorber (WABA), both manufactured by Westinghouse.

A total of 16 previously discharged Mark-BW fuel assemblies (8 from 1EOC10 and 8 from 1EOC11) have been reinserted for C1C15.

C1C15 core loading commenced at 1219 on December 2, 2003 and concluded at 1009 on December 4, 2003. Initial criticality for Cycle 15 occurred at 2315 on December 18, 2003. Zero Power Physics Testing was completed at 0600 on December 19, 2003. The unit reached full power at 1900 on January 3, 2004. Power Escalation testing, including first flux map at full power, was completed by 1100 on January 6, 2004.

Table 1 summarizes important characteristics of the Catawba 1 Cycle 15 core design.

TABLE 1 C1C15 CORE DESIGN DATA

1. C1C14 end of cycle burnup: 522.7 EFPD

2. C1C15 design length: 509 –10 / +15 EFPD

Region	Fuel Type	Number of Assemblies	Enrichment, w/o U ²³⁵	Loading, MTU*	Cycles Burned
11	Mk-BW	16	3.86	7.2803	3
15A	• <u>W</u> RFA	12	3.92/2.6*		2
15B	<u>W</u> RFA	4	4.47/2.6*	7.3053	2
16A	<u>W</u> RFA	56	4.33/2.6*		1
16B	<u>W</u> RFA	28	4.63/2.6*	38.3835	1
17A	<u>W</u> RFA	36	4.32/2.6*		0
17B	<u>W</u> RFA	33	4.70/2.6*	35.1665	0
17C	<u>W</u> NGF	8	4.32/2.6*		0
Totals		193	(88.1356	

* 2.60% (w/o U-235) enriched annular Uranium blanket, 6 inches top and bottom

2.0 PRECRITICAL TESTING

Precritical testing includes:

- Core Loading
- Preliminary Calibration of Nuclear Instrumentation
- Dilution of Reactor Coolant System to Estimated Critical Boron concentration
- Rod Drop Timing Test

Sections 2.1 through 2.5 describe results of precritical testing for Catawba 1 Cycle 15.

2.1 Total Core Reloading

The Cycle 15 core was loaded under the direction of PT/0/A/4150/22, Total Core Reloading. Plots of Inverse Count Rate Ratio (ICRR) versus number of fuel assemblies loaded were maintained for each applicable Source Range NIS and Boron Dilution Mitigation System (BDMS) channel.

Core loading commenced at 1219 on December 2, 2003 and concluded at 1009 on December 4, 2003. Core loading was verified per PT/0/A/4550/03C, Core Verification, which was completed at 1300 on December 4, 2003.

Figure 1 shows the core loading pattern for Catawba 1 Cycle 15.

2.2 Preliminary NIS Calibration

Periodic test procedure PT/0/A/4600/05E, Preliminary NIS Calibration, is performed before initial criticality for each new fuel cycle. Intermediate Range Reactor Trip and Rod Stop setpoints are adjusted using measured power distribution from the previous fuel cycle and predicted power distribution for the upcoming fuel cycle. Power Range NIS full power currents are similarly adjusted. Intermediate Range (I/R) NIS Rod Stop and Reactor Trip setpoints are checked and revised as necessary for initial power ascension. An added conservatism of 20% is applied procedurally to I/R setpoints.

Table 3 shows the calibration data calculated by PT/0/A/4600/05E. Calculations were performed on November 26, 2003. Calibrations were completed on December 14, 2003.

2.3 Reactor Coolant System Dilution

The reactor coolant system boron concentration was diluted from the refueling boron concentration to the estimated critical boron concentration per PT/0/A/4150/19B, NC System Dilution Following Refueling. ICRR was plotted versus gallons of demineralized water added.

Initial reactor coolant boron concentration was 2,506 ppmB. The Target Boron Concentration for the dilution was calculated to be 1772 ppmB (Minimum Boron Concentration to Maintain Keff < 0.99 with Shutdown Banks Withdrawn + 50 ppmB conservatism). The calculated volume of demineralized water required was 27,673 gallons. This change in boron concentration was expected to decrease ICRR from 1.0 to 0.51.

Reactor coolant system dilution at ~87 GPM was performed from 0339 to 0856 on December 14, 2003. The final reactor coolant system boron concentration, after allowing system to mix, was 1776 ppmB. Figure 2 shows ICRR versus volume of water used.

2.4 Control Rod Drop Timing Test

This testing is performed prior to each post-refueling startup to verify that, when dropped from the fully withdrawn position at Hot, No-load conditions, each Rod Cluster Control Assembly (RCCA) completely inserts and that its drop time is \leq 2.2 seconds (pursuant to Technical Specification Surveillance Requirement 3.1.4.3). The 2.2 second criterion applies to the time measured from beginning of decay of Stationary Gripper coil voltage to Dash Pot entry.

All BOC15 RCCA drop times satisfied the acceptance criterion. Table 2 summarizes not only the BOC15 data, but, for comparison purposes, the BOC14 drop times as well. It should be noted that "Time to DP" is the data to be compared to the 2.2 second criterion. "Time to DP" is a parameter that is measured for the purposes of assessing resistance to the RCCA in the Dash Pot region, which was at one time postulated to be the culprit in increasing drop times industry wide.

Page 4 of 22

 TABLE 2

 CYCLE 14 AND CYCLE 15 ROD DROP TIMING RESULTS

ŕ

:

· 1

Bank Rod ID Time to DP Time to DP Bottom Bank Rod ID CBA H06 1.553 2.014 CBA H06 H10 1.513 1.994 H10 H10 F08 1.553 2.074 F08 K08 1.554 2.075 K08 CBB F02 1.534 2.024 CBB	Time to DP 1.533 1.493 1.553 1.554 1.554 1.614 1.575 1.555	Time to DP Bottom 2.033 1.993 2.073 2.114 2.115 2.095 2.195
CBA H06 1.553 2.014 CBA H06 H10 1.513 1.994 H10 H10 F08 1.553 2.074 F08 H06 K08 1.554 2.075 K08 K08 CBB F02 1.534 2.074 K08 F02	1.533 1.493 1.553 1.554 1.554 1.554 1.614 1.575 1.555	2.033 1.993 2.073 2.114 2.115 2.095 2.195
H10 1.513 1.994 H10 F08 1.553 2.074 F08 K08 1.554 2.075 K08 CBB F02 1.534 2.054 CBB F02	1.493 1.553 1.534 1.554 1.554 1.554 1.614 1.575 1.555	1.993 2.073 2.114 2.115 2.095 2.195
F08 1.553 2.074 F08 K08 1.554 2.075 K08 CBB F02 1.534 2.054 CBB F02	1.553 1.534 1.554 1.554 1.554 1.614 1.575 1.555	2.073 2.114 2.115 2.095 2.195
K08 1.554 2.075 K08 CBB F02 1.534 2.054 CBB F02	1.534 1.554 1.554 1.614 1.575 1.555	2.114 2.115 2.095 2.195
CBB F02 1.534 2.054 CBB F02	1.554 1.554 1.614 1.575 1.555	2.115 2.095 2.195
P10 1 524 0 004	1.554 1.614 1.575 1.555	2.095
ן 1.534 2.034 810	1.614 1.575 1.555	2 195
K14 1.594 2.134 K14	1.575	£.13J
P06 1.555 2.035 P06	1.555	2.076
B06 1.535 1.995 B06		2.056
F14 1.555 2.095 F14	1.595	2.116
P10 1.536 2.016 P10	1.556	2.097
K02 1.536 2.076 K02	1.616	2.177
CBC H02 1.576 2.096 CBC H02	1.556	2.097
B08 1.517 2.037 B08	1.517	2.058
H14 1.517 2.017 H14	1.537	2.058
P08 1.577 2.057 P08	1.557	2.058
F06 1.558 2.038 F06	1.538	2.019
F10 1.558 2.078 F10	1.518	2.019
K10 1.538 2.058 K10	1.538	2.059
K06 1.538 2.038 K06	1.538	2.039
CBD D04 1.539 2.039 CBD D04	1.539	2.060
M12 1.519 2.019 M12	1.519	2.060
D12 1.539 2.039 D12	1.519	2.060
M04 1.540 2.060 M04	1.520	2.061
H08 1.540 2.060 H08	1.520	2.041
SBA D02 1.604 2.124 SBA D02	1.584	2.165
B12 1.544 2.064 B12	1.544	2.085
M14 1.645 2.165 M14	1.605	2.146
P04 1.545 2.065 P04	1.545	2.066
B04 1.585 2.085 B04	1.585	2.086
D14 1.626 2.146 D14	1.626	2.167
P12 1.586 2.086 P12	1.586	2.107
M02 1.606 2.146 M02	1.586	2.147
SBB G03 1.606 2.106 SBB G03	1.586	2.107
C09 1.567 2.067 C09	1.547	2.068
J13 1.547 2.067 J13	1.547	2.048
N07 1.567 2.067 N07	1.527	2.048
C07 1.548 2.068 C07	1.548	2.069
G13 1.588 2.128 G13	1.568	2.109
N09 1.568 2.068 N09	1.568	2.109
J03 1.549 2.049 J03	1.529	2.030
SBC E03 1.569 2.109 SBC E03	1.569	2.070
C11 1.529 2.009 * C11	11529 Real	101. 104 2.030 Role 2
L13 1.570 2.030 - L13	1.570	2.071
N05 1.530 2.030 * N05	1.530 建制度	AMARK 2.091 Mainter
SBD C05 1.550 2.070 SBD C05	11550 mma	2.071
E13 1.550 2.070 E13	1.550	2.071
N11 1.531 2.051 * N11 (174)	115312002	A
L03 1.571 2.051 L03	1.551	2.112
SBE H04 1.531 2.011 SBE H04	1.511	2.032
D08 1.552 2.092 D08	1.552	2.073
H12 1.532 2.052 H12	1.512	2.093
M08 1.552 2.072 M08	1.552	2.093

*NGF Lead Test Assembly locations

Page 5 of 22

.

FIGURE 1					
CORE LOADING PATTERN, CATAWBA 1 CYCLE 15					

4

								180°								
					ZA10	ZC4A	AA71	ZA30	AA41	ZC36	ZA06	ר				
1					PD	PD	PD	PD	PD	PD	PD					
				1 2001	7014	7055	7016	7001	7044	7054	7040	7000	1 4 4 4 0	ו		
2			PD	R320	PD	R346	PD	R325	PD	R327	2D40	R326		1		
*			õ					1	1			1010	õ	1		
		AA61	ZA44	ZD60	ZD20	ZC63	ZC53	ZD06	ZC54	ZC6A	ZD94	ZD66	ZA43	AA18	1	
³		PD	PD	PD	R310	· PD	R333	8W09C	R309	PD	R337	FD	PD	PD	1	
		7014	700	7060	7006	7044	7013	7012	7036	7000	2001	7050	7054	- 7021	1	
4		R350	PD	R330	PD	PD	8W103	R316	8W106	PD	PD	R315	PD	R345	1	
										1						
	ZA22	ZD41	ZD99	ZC94	ZC06	ZD93	ZC49	ZD2A	ZC34	ZD34	ZC03	ZC93	ZDIA	ZD42	ZA36	1
⁵	PD	PD	R340	PD	PD	8W120	PD	8W10C	PD	8W114	PD	PD	R342	PD	PD	
	7025	7064	7001	2042	7015	7024	7010	7013	7012	7010	7007	7041	7660	7056	7024	1
6	PD	R301	SS	PD	8W115	R319	PD	R323	PD	R338	8W119	PD	PD	2050 R306	PD	ł
·				,												
	AA46	ZD4C	ZC50	ZD22	ZC40	ZD13	ZC20	ZC04	ZC2C	ZD14	ZC46	ZD36	ZC52	ZD50	AA28	1
7	PD	PD	R339	8W102	PD	рd	PD	PD	PD	PD	PD	8W116	R343	PD	PD	
90°	7434	71002	7.005	7014	ZD24	7011	2.005	ZD6C	701	2010	2031	7015	2009	2003	7412	
8	PD	R311	8W09A	R308	8W104	R303	PD	R314	PD	R302	8W111	R352	8\\099	R300	PD	2
		_														
· ·	AA69	ZDSI	ZCS6	ZD32	ZC39	ZD15	ZCIC	ZCOA	ZC29	ZDOC	ZCJC	ZD2C	ZCS1	ZD45	AA45	
⁹ ——	10	rD	R344	8W112	טין ן	155	עין ן	I'U	PD	PD	PD	8W109	·R312	PD	PD	
	ZC33	2.063	ZC66	7.099	ZD91	ZC22	ZD16	ZC0C	ZD11	ZC32	ZD30	ZCA3	7.065	ZD64	ZC45	
10	PD	R351	PD	PD	8W11C	R324	PD	R329	ГD	R341	8W110	PD	SS	RJ49	PD	
	ZA24	ZD43	ZD19	ZC6C	ZC02	ZD25	ZC41	ZD29	ZC42	ZD90	ZC09	ZC95	ZU96	ZD39	ZAI4	
···		ľÐ	FO04	עיו	10	011103	гD	0110/	τυ	011 IA	rD	PD	1007	- 10	rD	
	<u> </u>	ZC26	ZD61	ZCSA	ZC90	ZC9A	ZD21	ZC16	ZD33	ZCAO	ZC92	ZC59	ZD62	ZC25		
12		R332	PD	R318	PD	PD	8W101	R321	8W113	PD	PD	R305	PD	R336	1	
			- 7.4.12			70(4	-2011				- 2010	-7060			1	
13		AA30 PD	PD	2059 PD	R322	2004 PD	8334	8W100	R313	- 2002 PD	RIN	PD	PD	PD		
···		õ												o	i	
	`		AA59	ZC24	ZD44	2053	ZD52	Z1)04	ZD49	ZD65	ZD3C	ZC30	AA60		i	
14		1	PD	R347	PD	R335	PD	R348	PD	R328	PD	R317	PD	1	ļ	
	ļ	- [- 1			7410	7041	AA35	7 4 39	-	7041	7 1 16					
15	، ۱	,			PD	PD	PD	PD	PD	PD	PD	1	1		1	
				- _I			0		0			i	i	i	i	
	1	E	1	1								1	t	1	· 1	
	t	1	1	t	1	1	1 I	1	I	t	1	1	1	1	1	
	1	1	I	1	1	1	1	1	t	1	1	I	1	t	1	
	Ŕ	Р	N	м	L	к	J	H	G	F	E	D	С	В	A	
								0"								

70°

---- FUEL ID: AA** = BATCH 11, ZA** = BATCH 15, ZC**=BATCH 16, ZD** = BATCH 17 ---- COMPONENT ID, R***=CONTROL ROD; SS=SECONDARY SOURCE; **W***=BURNABLE POISON; PD = PLUGGING DEVICE (THIMBLE PLUG).

OCycle 11 Reinserts OCycle 10 Reinserts

Page 6 of 22

TABLE 3 PRELIMINARY NIS CALIBRATION DATA

Channel	Ratio (BOC 15 + Cycle 14)	Cycle 14 Reactor Trip Setpoint, Amps	BOC 15 Reactor Trip Setpoint, Amps	BOC 13 Rod Stop Setpoint, μAmps
N35	0.7972	6.851 E-05	5.462 E-05	4.370 E-05
N36	0.7410	7.899 E-05	5.853 E-05	4.682 E-05

Intermediate Range

Power Range

.

	Ratio	Ratio Axial		Full Power	BOC 15 Full Power		
Channel	inel (BOC 15 + Offset, % Cycle 14) Current, μAmps				Current, µAmps		
			Upper	Lower	Upper	Lower	
		+20	293.9	237.1	219.5	177.1	
N41	0.7468	0	254.6	277.3	190.1	207.1	
		· -20	215.2	317.5	160.7	237.1	
		+20	286.0	212.8	208.1	154.9	
N42	0.7277	0	247.0	248.6	179.7	180.9	
	-	<u>-</u> 20	207. 9	284.4	151.3	207.0	
``		+20	283.0	219.3	210.6	163.2	
N43	0.7442	0	246.2	257.9	183.2	191.9	
		-20	209.4	296.5	155.8	220.7	
		+20	226.1	181.2	169.1	135.5	
N44	0.7477	0	195.6	213.1	146.3	159.3	
		-20	165.0	245.1	123.4	183.3	

Page 7 of 22

١

FIGURE 2

3.0 ZERO POWER PHYSICS TESTING

Zero Power Physics Testing (ZPPT) is performed at the beginning of each cycle and is controlled by PT/0/A/4150/01, Controlling Procedure for Startup Physics Testing, and PT/0/A/4150/01A, Zero Power Physics Testing. Test measurements are made below the Point of Nuclear Heat Addition using the output of one Power Range NIS detector connected to a Westinghouse Advanced Digital Reactivity Computer (ADRC). Measurements are compared to predicted data to verify core design. The following tests/measurements are included in the ZPPT program:

- 1/M Approach to Criticality
- Reactivity Computer checkout
- Measurement of Point of Nuclear Heat Addition

: .

- Control Rod Worth Measurements via Dynamic Rod Worth Measurement
- All Rods Out Critical Boron Concentration measurement
- All Rods Out Isothermal Temperature Coefficient measurement

Zero power physics testing for Catawba 1 Cycle 15 began at 2200 on December 18, 2003 commencing with implementation of bucking (gamma compensation) current on the ADRC. ZPPT concluded at 0545 on December 19, 2003 with completion of the ITC Measurement. Table 4 summarizes results from ZPPT. All acceptance criteria were met.

Sections 3.1 through 3.10 describe ZPPT measurements and results.

3.1 1/M Approach to Criticality

Initial criticality for Catawba 1 Cycle 15 was achieved per PT/0/A/4150/19, 1/M Approach to Criticality. In this procedure, Estimated Critical Rod Position (ECP) is calculated based on latest available Reactor Coolant boron concentration. Control rods are withdrawn until BDMS or Source Range (S/R) NIS count rates double. ICRR is plotted for each S/R NIS and BDMS channel. ICRR data is used to project critical rod position. If projected critical rod position is acceptable, rod withdrawal may continue.

The ECP for C1C15 initial criticality was determined to be Control Bank D at 226 SWD. Rod withdrawal for the approach to criticality began at 2220 with Criticality subsequently achieved at 2315 on December 18, 2003 at a control rod position of 188 SWD on Control Bank D.

Figure 3 shows the S/R NIS ICRR behavior during the approach to criticality. All acceptance criteria of PT/0/A/4150/19 were met.

Page 9 of 22

TABLE 4 SUMMARY OF ZPPT RESULTS

ł

Ì

.

		PREDICTED VALUE OR	
PARAMETER	MEASURED VALUE	ACCEPTANCE CRITERIA	
Nuclear Heat	6.174 × 10 ⁻⁷ amps (N41)	N/A	
ZPPT Test Limit	5.557 x 10 ⁻⁷ amps (N41)	N/A	
ARO Critical Boron	1879 ppmB	1845 ± 50 ppmB	
ARO ITC	-4.26 pcm/°F	-4.04 ± 2 pcm/°F	
ARO MTC	-2.60 pcm/°F	-2.38 pcm/°F	
Control Bank D Worth	750.3 pcm	689 ± 103.4 pcm	
Control Bank C Worth	822.8 pcm	816 ± 122.4 pcm	
Control Bank B Worth	635.4 pcm	659 ± 100 pcm	
Control Bank A Worth	367.7 pcm	349 ± 100 pcm	
Shutdown Bank E Worth	397.9 pcm	418 ± 100 pcm	
Shutdown Bank D Worth	456.3 pcm	445 ± 100 pcm	
Shutdown Bank C Worth	437.7 pcm	442 ± 100 pcm	
Shutdown Bank B Worth	813.2 pcm	855 ± 128.3 pcm	
Shutdown Bank A Worth	220.0 pcm	224 ± 100 pcm	
Total Rod Worth	4901.3 pcm	4897 ± 391.8 pcm	

3.2 Reactivity Computer Checkout

The reactivity computer checkout was performed per PT/0/A/4150/01A, Zero Power Physics Testing, to verify that the Power Range channel connected to the reactivity computer can provide reliable reactivity data. A Reactivity Insertion of between +25 and +40 pcm via control rod withdrawal is used to establish a slow, stable startup rate over which determination of Reactor Period is performed by the ADRC. The resulting Period is then used by the ADRC to determine the corresponding Theoretical Reactivity. Measured Reactivity is compared to the Theoretical Reactivity and verified to be within 4.0% or 1.0 pcm (whichever is greater). This evolution is repeated as necessary to ensure compliance with acceptance criterion.

The checkout was performed for Cycle 15 on December 19, 2003. Results are summarized in Table 5.

Period	Theoretical	Measured	Absolute Error	Percent Error
(seconds)	Reactivity (pcm)	Reactivity (pcm)	(pcm)	(%)
199.7	31.0	30.3	0.7	-2.27

TABLE 5 REACTIVITY COMPUTER CHECKOUT

3.3 **Point of Nuclear Heat Addition**

The Point of Nuclear Heat Addition is measured by trending Reactor Coolant System temperature, Pressurizer level, flux level, and reactivity while slowly increasing reactor power. A slow, constant startup rate is initiated by rod withdrawal. An increase in Reactor Coolant System temperature and/or Pressurizer level accompanied by a change in reactivity and/or rate of flux increase indicates the addition of Nuclear Heat.

For Cycle 15, the Point of Nuclear Heat Addition was determined per PT/0/A/4150/01A, Zero Power Physics Testing, on December 19, 2003. Table 6 summarizes the data obtained.

The Zero Power Physics Test Limit was set at 7.11 x 10^{-7} amps on Power Range channel N41 (connected to reactivity computer). This test limit provides 10% margin to Nuclear Heat for performance of Dynamic Rod Worth Measurement.

Reactivity Computer (N41),	Intermediate Range Channel	Intermediate Range Channel		
amps	N35, amps	N36, amps		
7.90 × 10 ⁻⁷	6.174 × 10 ^{.7}	6.947 × 10 ⁻⁷		

TABLE 6 NUCLEAR HEAT DETERMINATION

3.4 Dynamic Rod Worth Measurement

Using the Westinghouse Advanced Digital Reactivity Computer (ADRC), the reactivity worth of each RCCA Bank is measured using Dynamic Rod Worth Measurement (DRWM) technique as follows:

- Control Bank D is withdrawn (in MANUAL) to fully withdrawn position
- Flux level is allowed to increase to just below ZPPT Test Limit
- First RCCA Bank to be measured is inserted in Bank Select Mode in one continuous motion to a Step Demand Counter indication of ~ 2 Steps Wd
- Once the ADRC has signaled that it has acquired sufficient data for measurement, the RCCA Bank is returned to fully withdrawn position
- The next Bank to be tested is then selected and, once flux level has recovered to just below ZPPT Test Limit, the measurement process is repeated
- This test sequence is repeated until all Control and Shutdown Banks have been measured

The measured worth of each RCCA Bank is verified to be within 15% or 100 pcm (whichever criteria is greater) of predicted worth. The sum of the worths of all banks is verified to be within 8% of the sum of predicted worths. This sum is also verified to be \geq 90% of the predicted total.

The Beginning of Cycle 15 rod worth measurements via DRWM were performed on December 19, 2003 per PT/0/A/4150/01A, Zero Power Physics Testing. Results are summarized in Table 4. All acceptance criteria were met.

3.5 ARO Boron Endpoint Measurement

This test is performed at the beginning of each cycle to verify that measured and predicted total core reactivity are consistent. The test is performed in conjunction with DRWM. Reactor Coolant System boron samples are obtained at 30 minute intervals during DRWM. The reactivity difference from criticality to the all rods out (ARO) configuration is measured 9 times over the course of DRWM. These reactivities are averaged to determine the amount of control rod insertion at just critical core conditions. This reactivity is converted to equivalent boron (using the predicted differential boron worth) and added to the average of the boron samples obtained during DRWM to obtain the ARO critical boron concentration.

The Cycle 15 beginning of cycle, hot zero power, all rods out, critical boron concentration was measured on December 19, 2003 per PT/0/A/4150/01A, Zero Power Physics Testing. The ARO, HZP boron concentration was measured to be 1879 ppmB. Predicted ARO critical boron concentration was 1845 ppmB. The acceptance criterion (measured boron within 50 ppmB of predicted) was therefore met.

3.6 ARO Isothermal Temperature Coefficient Measurement

The ARO Isothermal Temperature Coefficient (ITC) is measured at the beginning of each cycle to verify consistency with predicted value. In addition, the Moderator Temperature Coefficient (MTC) is obtained by subtracting the Doppler Temperature Coefficient from the ITC. The MTC is used to ensure compliance with Technical Specification limits.

The Isothermal Temperature Coefficient of Reactivity is measured as follows:

- A cooldown at ~10 °F/hour is initiated.
- Once a constant cooldown rate is established, data gathering on the reactivity computer is initiated.
- After at least 1.1 °F of data is obtained and the error analysis performed by the reactivity computer indicates < 0.1, the cooldown is halted.
- A heatup at ~10 °F/hour back to 557 °F is then initiated. Once a constant heat-up rate is established, data gathering on reactivity computer is initiated and subsequently halted when measurement criteria are satisfied.

Control rod motion is limited to that required to maintain flux below the testing limit. The cooldown/heatup cycle is repeated if additional data is required.

The Beginning of Cycle 15 ITC was measured per PT/0/A/4150/01A, Zero Power Physics Testing, December 19, 2003. No additional cooldown/heatup cycles were required due to good agreement between initial heatup and cooldown results (difference between the measurements \leq 1.0 pcm/°F). Table 7 summarizes the data obtained during the measurement.

Average ITC was determined to be -4.26 pcm/°F. Predicted ITC was -4.04 pcm/°F. Measured ITC was therefore within acceptance criterion of predicted ITC ± 2 pcm/°F.

The MTC was determined to be -2.60 pcm/°F. Since the MTC was measured to be negative, compliance with Tech Spec 3.1.3 and SR 3.1.3.1 was ensured without performance of procedure PT/0/A/4150/21, Temporary Rod Withdrawal Limits Determination. Performance of this procedure was waived per PT/0/A/4150/01, Controlling Procedure for Startup Physics Testing.

	Average Temp	ITC
	(°F)	(pcm/°F)
Cooldown	556.3	-4.22
Heatup	556.6	-4.29
Average	556.5	-4.26

TABLE 7 ITC MEASUREMENT RESULTS

4.0 POWER ESCALATION TESTING

Power Escalation Testing is performed during the initial power ascension to full power for each cycle and is controlled by PT/0/A/4150/01, Controlling Procedure for Startup Physics Testing. Tests are performed from 0% through 100% power with major testing plateaus at ~18%,~50%, and 100% power.

Significant tests performed during C1C15 Power Escalation were:

•

- Core Power Distribution (at ~18, ~50, and 100% power)
- One-Point Incore/Excore Calibration (at ~50% power)
- Reactor Coolant Delta Temperature Measurement (at 74% and 100% power)
- Hot Full Power Critical Boron Concentration Measurement (at 100% power)
- Incore/Excore Calibration (at 100% power)
- Calorimetric Reactor Coolant Flow Measurement (at 100% power, This test is not under the control of PT/0/A/4150/01)
- Evaluation of Intermediate Range NIS Rod Stop and Rx Trip Setpoints

In addition to the tests listed above, PT/0/A/4150/01 performs evaluations of the Movable Incore Detector System, and on-line (OAC) Thermal Power program. The results of these are not included in this report.

Although ZPPT for Catawba 1 Cycle 15 was completed on December 19, 2003, Power Escalation Testing was not commenced until December 31, 2003. During this interval, Reactor Power was limited to 10% Full Power (F.P.) due to unavailability of the Main Generator (due to Hydrogen Cooler seal leakage). Full power was reached on January 3, 2004. Full power testing was completed on January 8, 2004. Sections 4.1 through 4.7 describe the significant tests performed during power escalation and their results.

4.1 Core Power Distribution

Core power distribution measurements are performed during power escalation at Low Power (< 40% F.P.), Intermediate Power (between 40% F.P. and 80% F.P.), and High Power (> 90% F.P.). Measurements are made to verify flux symmetry and to verify core peaking factors are within limits. Data obtained during this test are also used to check calibration of Power Range NIS channels and to calibrate them if required (see Sections 4.2 and 4.6). Measurements are made using the Moveable Incore Detector System and analyzed using Duke Power's COMET code (evolved from Shanstrom Nuclear Associates' CORE package and FCF's MONITOR code, respectively).

The Catawba 1 Cycle 15 Core Power Distribution measurements were performed on December 31, 2003 (18% power), January 1, 2004 (50% power), and January 6, 2004 (100% power). Tables 8 through 10 summarize the results. All acceptance criteria were met.

Page 15 of 22

TABLE 8CORE POWER DISTRIBUTION RESULTS18% POWER

.

5

Plant Data						
, Map ID:	FCM/1/15/001					
Date of Map:	December 31, 2003					
Cycle Burnup:	1.091 EFPD					
Power Level:	17.698% F.P.					
Control Rod Position:	Control Bank D at 210 Steps Wd					
Reactor Coolant System Boron Concentration:	1707 ppmB					

COMET Results

Core Average Axial Offset:	26.929%
Tilt Ratios for Entire Core Height: Quadrant 1:	1.01743
Quadrant 2:	1.00553
Quadrant 3:	0.99935
Quadrant 4:	0.97769
Maximum F _Q (nuclear):	2.358
Maximum F _{ΔH} (nuclear):	1.517
Maximum Error between Pred. and Meas $F_{\Delta H}$:	8.99%
Average Error between Pred. and Meas. $F_{\Delta H}$:	2.99%
Maximum Error between Expected and Measured Detector Response:	9.17%
RMS of Errors between Expected and Measured Detector Response:	3.87%
Minimum Fo Operational Margin:	25.80%
Minimum F _o RPS Margin:	4.89%
Minimum Fo Steady State Margin:	49.00%
Minimum F _{AH} Surveillance Margin:	24.09%
Minimum F _{AH} Steady State Margin:	21.25%

Page 16 of 22

TABLE 9 CORE POWER DISTRIBUTION RESULTS 50% POWER

. .

. • : : .

Plant Data					
Map ID:	FCM/1/13/002				
Date of Map:	January 1, 2004				
Cycle Burnup:	1.369 EFPD				
Power Level:	49.39% F.P.				
Control Rod Position:	Control Bank D at 215 Steps Wd				
Reactor Coolant System Boron Concentration:	1618 ppmB				

COMET Results						
Core Average Axial Offset:	9.133%					
Tilt Ratios for Entire Core Height: Quadrant 1:	1.01417					
Quadrant 2:	1.00171					
Quadrant 3:	1.00064					
Quadrant 4:	0.98349					
Maximum F _o (nuclear):	1.905					
Maximum F _{∆H} (nuclear):	1.498					
Maximum Error between Pred. and Meas $F_{\Delta H}$:	9.58%					
Average Error between Pred. and Meas. $F_{\Delta H}$:	3.31%					
Maximum Error between Expected and Measured Detector Response:	10.50% *					
RMS of Errors between Expected and Measured Detector Response:	4.20%					
Minimum F _Q Operational Margin:	23.48%					
Minimum F _Q RPS Margin:	9.5%					
Minimum Fo Steady State Margin:	58.80%					
Minimum F _{AH} Surveillance Margin:	23.78%					
Minimum $F_{\Delta H}$ Steady State Margin:	27.28%					

* Nuclear Design and Reactor Support (NDRS) reviewed the 50% flux map, with particular attention to errors which challenged the UFSAR Section 14.3.3 acceptance criteria for Flux Symmetry check. Errors determined to be attributable to unanalyzed Shutdown Cooling (Pu build-in) sustained by Mark-BW reinsert assemblies during extended period in Spent Fuel Pool. Based on NDRS recommendation, power ascension continued to allow evaluation of core power distribution at Full Power. NDRS evaluation is documented in PT/0/A/4150/001.

Page 17 of 22

TABLE 10 CORE POWER DISTRIBUTION RESULTS 100% POWER

: : ·

.

Plant Data					
Map ID:	FCM/1/15/003				
Date of Map:	January 6, 2004				
Cycle Burnup:	5.377 EFPD				
Power Level:	99.854% F.P.				
Control Rod Position:	Control Bank D at 215 Steps Wd				
Reactor Coolant System Boron Concentration:	1230 ppmB				

COMET Results

Core Average Axial Offset:	-1.391%
Tilt Ratios for Entire Core Height: Quadrant 1:	1.01316
Quadrant 2:	0.99808
Quadrant 3:	0.99531
Quadrant 4:	0.99345
Maximum F _Q (nuclear):	1.728
• Maximum F _{۵H} (nuclear):	.1.512
Maximum Error between Pred. and Meas $F_{\Delta H}$:	7.76%
Average Error between Pred. and Meas. $F_{\Delta H}$:	3.01%
Maximum Error between Expected and Measured Detector Response:	8.15% *
RMS of Errors between Expected and Measured Detector Response:	3.79%
Minimum F _o Operational Margin:	0.17%
Minimum F _Q RPS Margin:	8.12%
Minimum Fo Steady State Margin:	25.28%
Minimum F _{AH} Surveillance Margin:	11.96%
Minimum F _{AH} Steady State Margin:	19.43%

* Reaction Rate Error in excess of 10% noted at 50% F.P. now within UFSAR Section 14.3.3 Flux Symmetry check criteria due to depletion of excess plutonium in Mark-BW reinsert assemblies.

4.2 One-Point Incore/Excore Calibration

.

PT/0/A/4600/05D, One-Point Incore/Excore Calibration, is performed as necessary using results of Power Range (P/R) NIS data taken during power ascension flux maps and measured incore axial offset obtained from them. Calibration of the P/R NIS is necessary if difference between indicated excore and measured incore AFD exceeds 2%. For C1C15 Startup, no calibration was necessary for Low Power Flux Map. However, calibration was required by the Intermediate Power Level Flux Map (obtained at 50% F.P.). Power Range channel calibration was required to be completed prior to exceeding 90% in order to have valid indications of Axial Flux Difference and Quadrant Power Tilt Ratio for subsequent power ascension.

Data for the Intermediate Power Level calibration was obtained on January 1, 2004 and all P/R NIS calibrations were completed on January 2, 2004. Results are presented in Table 11. All acceptance criteria were met.

TABLE 11 INTERMEDIATE POWER LEVEL ONE-POINT INCORE/EXCORE CALIBRATION RESULTS

Reactor Power = 49.39%

Axial Offset = 9.133%

Measured Power Range Currents, μAmps							
N41 N42 N43 N44							
Upper	78.1	81.4	77.0	61.2			
Lower	75.0	73.8	70.7	60.5			

Ratio, Extrapolated (from measured) Currents to "Expected" (from last calibration) Currents

	N41	N42	N43	N44
Upper	0.6409	0.6927	0.6671	0.6748
Lower	0.6497	0.7176	0.6665	0.6996

New Calibration Currents, µAmps

Axial Offset, %	N41		N	42	N	43	N	44
	Upper	Lower	Upper	Lower	Upper	Lower	Upper	Lower
+20	170.5	139.1	178.0	136.9	167.8	130.6	133.7	111.8
0	147.7	162.7	153.7	160.0	146.0	153.6	115.7	131.5
-20	124.8	186.3	129.4	183.0	124.1	176.6	97.6	151.3

4.3 Reactor Coolant Loop Delta Temperature Measurement

Reactor Coolant System Hot Leg and Cold Leg temperature data is obtained at a stable power level between 75% F.P. and 95% F.P.; and then subsequently at 100% F.P. per PT/0/A/4600/26, NC Temperature Calibration, to ensure that full power delta temperature constants (ΔT_0) are valid. ΔT_0 is used in the Overpower and Overtemperature Delta Temperature reactor protection functions.

· 11 +

In the case of C1C15, power ascension was halted at 94% F.P. on January 3, 2004, to allow evaluation of the four pre-existing loop ΔT_0 's. All four channel constants were found to be unacceptable (calculated ΔT_0 constants exceeding existing constants by more than 0.6°F). New ΔT_0 constants were generated per PT/0/A/4600/026. Upon completion of ΔT Process Channel calibrations, power ascension was resumed. At 100% F.P., on January 5, 2004, ΔT_0 's were re-evaluated, and all were found to be acceptable. Table 12 summarizes the test results.

TABLE 12 REACTOR COOLANT DELTA TEMPERATURE DATA

	Loop A	Loop B	Loop C	Loop D
Meas. T _{HOT} , °F	611.7	607.9	613.2	609.8
Meas. T _{COLD} , °F	552.0	551.8	551.7	552.7
Calc. ∆h, BTU/lb	80.55820	75.08170	83.16302	76.79067
Calc. ∆h₀, BTU/lb	85.51390	79.70100	88.27895	81.51460
Calc. ∆T₀, °F	63.1	59.2	64.9	60.3
Current ∆T₀, °F	61.7	58.0	63.7	59.5
Difference, °F	+1.4	+1.2	+1.2	+0.8

Reactor Power = 94.2048%

4.4 Hot Full Power Critical Boron Concentration Measurement

The Hot Full Power critical boron concentration is measured using PT/0/A/4150/04, Reactivity Anomaly Calculation. Reactor Coolant boron concentration is measured (average of three samples) with reactor at essentially all rods out, Hot Full Power, equilibrium xenon conditions. The measured boron is corrected for any off-reference condition (e.g. inserted rod worth, temperature error, difference from equilibrium xenon) and compared to predicted value.

A simple assessment of the accuracy of the predicted excess reactivity of the new core is performed by comparing the difference between predicted Beginning of Life HZP and HFP critical boron concentrations with the difference between measured BOL HZP and HFP critical boron concentrations. Acceptance criteria is met by verifying that Measured Δ Boron is within ±50 ppmB of Predicted Δ Boron.

For Catawba 1 Cycle 15, the Hot Full Power critical boron concentration was measured on January 5, 2004. The measured HFP, ARO critical boron concentration was 1234 ppmB. Predicted HFP critical boron concentration was 1219 ppmB. The ARO Boron Endpoint Measurement during ZPPT yielded a measured HZP Boron Concentration of 1879 ppmB (prediction being 1845 ppmB). The Predicted Δ Boron was therefore 626 ppmB, while the Measured Δ Boron was 645 ppmB. The difference of 19 ppmB between these two parameters satisfied the acceptance criterion.

4.5 Incore/Excore Calibration

Excore NIS Power Range channels are calibrated at full power per PT/0/A/4600/05A, Incore/Excore Calibration. Incore data (flux maps) and P/R NIS currents are obtained at various axial power distributions. A least squares fit of the output of each detector (upper and lower chambers) as a function of measured incore axial offset is determined. The slopes and intercepts of the fit for the upper and lower chamber for each channel are used to determine calibration data for that channel.

This test was performed for Catawba 1 Cycle 15 on January 6, 7 and 8, 2004. All Power Range NIS calibrations were completed on January 8. Nine flux maps, with axial offsets ranging from -12.007% to +6.006% were used. Table 13 summarizes the results. All acceptance criteria were met.

Page 21 of 22

TABLE 13 INCORE/EXCORE CALIBRATION RESULTS

ł

Axial Offset, %	N	41	N42		N43		N44	
	Upper	Lower	Upper	Lower	Upper	Lower	Upper	Lower
+20%	185.6	146.4	190.9	142.7	179.2	136.2	142.8	116.1
.0%	161.4	172.4	166.3	167.9	156.7	160.7	124.8	137.7
-20%	137.2	198.4	141.7	193.1	134.2	185.2 _.	106.8	159.3

Full Power Currents, Microamps

Correction (M_J) Factors

N41	N42	N43	N44
1.328	1.342	1.351	1.327

Page 22 of 22

4.6 Calorimetric Reactor Coolant Flow Measurement

With clean Main Feedwater Flow venturis, PT/1/A/4150/13B, Calorimetric Reactor Coolant Flow Measurement is performed to validate the Operator Aid Computer's calculations of Reactor Thermal Power and Reactor Coolant Flowrate.

4

en e d

The results of this test, performed for C1C15 on January 29, 2004, are summarized in Table 14. The test was not performed at Full Power due to reduction to 99% F.P. imposed by Digital Feedwater Control System malfunction. However, performance of this test at any power level > 97% F.P. is permissible. All acceptance criteria were met and adequate margin to Technical Specification Minimum Reactor Coolant Flow limit of 388,000 GPM was demonstrated.

Run Number	Total Calculated Reactor Coolant Flow (GPM)	Percent Tech Spec Flow (%)	Calculated Thermal Power Level (%)
1	391,354	100.864	98.776
2	391,413	100.880	98.816
3	391,543	100.913	98.753
Average	391,437	100.886	98.782

TABLE 14 CALORIMETRIC REACTOR COOLANT FLOW MEASUREMENT