BMI/ONWI-

ONWI/SUB/84/E512-05000-T14

Hydrogeologic Investigations Based on Drill-Stem Test Data Palo Duro Basin Area Texas and New Mexico

Technical Report

May 1984

E. Scott Bair Timothy P. O'Donnell Larry W. Picking

Stone & Webster Engineering Corporation

Prepared for

Office of Nuclear Waste Isolation Battelle Memorial Institute 505 King Avenue Columbus, OH 43201

38

14

Hydrogeologic Investigations Based on Drill-Stem Test Data Palo Duro Basin Area Texas and New Mexico

Technical Report

May 1984

E. Scott Bair Timothy P. O'Donnell Larry W. Picking

Stone & Webster Engineering Corporation

Prepared for

Office of Nuclear Waste Isolation Battelle Memorial Institute 505 King Avenue Columbus, OH 43201

BMI/ONWI-

ONWI/SUB/84/E512-05000-T14

Hydrogeologic Investigations Based on Drill-Stem Test Data Palo Duro Basin Area Texas and New Mexico

Technical Report

May 1984

E. Scott Bair Timothy P. O'Donnell Larry W. Picking

Stone & Webster Engineering Corporation

Prepared for

Office of Nuclear Waste Isolation Battelle Memorial Institute 505 King Avenue Columbus, OH 43201

ABSTRACT

Drill-stem test (DST) data were compiled from wildcat wells and DOEsponsored wells in the Palo Duro Basin area of Texas and New Mexico. The data were used to construct pressure-depth diagrams and to map regional potentiometric surfaces, based on equivalent freshwater heads calculated from initial shut-in pressures of the Wolfcamp and Pennsylvanian brine aquifers, the two regionally important deep-basin aquifers downgradient of the proposed repository host rock. Eighty percent of the 5,502 DSTs were screeened from the data base containing DST data from various deep-basin geologic units because they did not comply with shut-in time and shut-in pressure agreement criteria. After screening, three sets of pressure-depth diagrams and potentiometric surfaces were constructed, corresponding to three levels of data refinement.

<u>ر</u>

....

,--

1

{`` (

£

1 .

• •

•. r

٠.,

The initial Wolfcamp and Pennsylvanian regional potentiometric surfaces, representing their present configuration, contained several local prominent mounds and depressions with unrealistic variations in flow directions and hydraulic gradients. Evaluation of pressure-depth data and oil and gas production data showed that many of the DSTs were performed in depressured oil and/or gas production zones, where formation pressures were reduced due to extraction of formation fluids. The low shut-in pressures recorded in these tests caused abnormally low heads to be calculated and contoured. Formation pressures recorded in these depressured zones represent local temporal pressures in a regional flow system that is probably steady state. Deletion of depressured DSTs produced potentiometric surfaces of the Wolfcamp and Pennsylvanian aguifers prior to oil and gas production, but still contained a few local prominent mounds and depressions caused by local aberrant DST data. Elimination of local grossly overpressured and grossly underpressured DST data, based on comparison of initial shut-in pressures and heads at a similar depth in the same geologic unit in the same well and/or adjacent wells, further refined the potentiometric surfaces. These surfaces probably closely approximate the regional configuration of the Wolfcamp and Pennsylvanian potentiometric surfaces prior to oil and gas production. Statistical analysis of the culling procedures showed that most of the refinement in the Wolfcamp and Pennsylvanian data sets was due to culling depressured DSTs. Some

i

additional refinement was due to culling local grossly underpressured and grossly overpressured DSTs.

Although almost all the DST data in the study area are underpressured relative to the range of probable hydrostatic pressure gradients, formation pressures measured in wells located on the High Plains are far more underpressured than formation pressures measured in wells located on the Rolling Plains. This probably is due to differences in the depth from the ground surface, across the High Plains/Rolling Plains escarpment, to potentiometric levels in the deep-basin strata. When the Wolfcamp and Pennsylvanian pressure-depth data are normalized to common hypothetical planes that eliminate the effect of measuring depth from varying topographic elevations, the underpressuring of High Plains and Rolling Plains data is similar. Normalizing the data to common planes also makes identification of abnormally pressured data more obvious because differences in topographic elevation are eliminated.

ii

TABLE OF CONTENTS

		Pag
1 EXEC	UTIVE SUMMARY.	1
	Company and the second s	c
		5
-		5
		6
2435		.6
2.4	HYDROGEOLOGIC SETTING	.8
	2.4.1 Regional Geologic Setting	.8
	2.4.2 Hydrostratigraphic Units	.11
2.5	PREVIOUS INVESTIGATIONS	.16
2.6	COMPUTER PROGRAMS	.17
	2.6.1 SURFACE II GRAPHICS SYSTEM	.17
	2.6.2 STATISTICAL ANALYSIS SYSTEM	.19
*	2.6.3 TRENDS	.19
3		.20
\$ 494	MELACCERSCATEN_REGULES	.23
-) arija	wing ter file of the file of the second states of the second states.	
		.23
WOLF	CAMP AND PENNSYLVANIAN POTENTIOMETRIC SURFACES	.26
4.1	GENERAL	.26
4.2	INITIAL WOLFCAMP AND PENNSYLVANIAN POTENTIOMETRIC	
	SURFACES	.28
4.3	PRESSURE-DEPTH DATA	.28
	4.3.1 Theoretical Pressure-Depth Relationships	.28
	4.3.2 Pressure-Depth Diagrams From Counties	
	in Texas and New Mexico	.33
4.4	WOLFCAMP AND PENNSYLVANIAN PRESSURE-DEPTH DATA	.33
4.5	ABNORMAL FORMATION PRESSURES	.36

iii

E

TABLE OF CONTENTS

• . ! •

.

.•.

.

<u>ب</u>

۰. ۱

1

í

1

{ {

۱.,

Page

1	EXEC	UTIVE SUMMARY 1
2	TNTD	
2	TNIK	
	2.1	
	2.2	NETHODS, ASSUMPTIONS, AND LIMITATIONS
	2.3	SOURCES OF DATA
	2.4	HYDROGEOLOGIC SETTING
		2.4.1 Regional Geologic Setting8
		2.4.2 Hydrostratigraphic Units11
	2.5	PREVIOUS INVESTIGATIONS16
	2.6	COMPUTER PROGRAMS
		2.6.1 SURFACE II GRAPHICS SYSTEM
		2.6.2 STATISTICAL ANALYSIS SYSTEM
		2.6.3 TRENDS
3	DRIL	L-STEM TEST CLASSIFICATION AND MASTER FILE
	3.1	PURPOSE OF CLASSIFICATION SCHEME
	3.2	CLASSIFICATION SCHEME
	3.3	CLASSIFICATION RESULTS
	3.4	MASTER FILE OF GEOLOGIC, HYDROLOGIC, AND FORMATION
		PRESSURE DATA
4	WOLF	CAMP AND PENNSYLVANIAN POTENTIOMETRIC SURFACES
۰.	4.1	GENERAL
	4.2	INITIAL WOLFCAMP AND PENNSYLVANIAN POTENTIOMETRIC
		SURFACES
	4.3	PRESSURE-DEPTH DATA
		4.3.1 Theoretical Pressure-Depth Relationships
		4.3.2 Pressure-Depth Diagrams From Counties
		in Texas and New Mexico
	4.4	WOLFCAMP AND PENNSYLVANIAN PRESSURE-DEPTH DATA
	4.5	ABNORMAL FORMATION PRESSURES

TABLE OF CONTENTS (Continued)

...

1

	4.6	WOLFCAMP AND PENNSYLVANIAN POTENTIOMETRIC SURFACES
		AFTER CULLING DEPRESSURED DST DATA
		4.6.1 Culling of Depressured DST Data
		4.6.2 Wolfcamp and Pennsylvanian Potentiometric
		Surfaces After Culling Depressured DST Data
	4.7	WOLFCAMP AND PENNSYLVANIAN POTENTIOMETRIC SURFACES
		AFTER CULLING DEPRESSURED, GROSSLY UNDERPRESSURED, AND
		GROSSLY OVERPRESSURED DST DATA
		4.7.1 Culling of Grossly Underpressured and Grossly
		Overpressured DST Data53
	4.8	STATISTICAL ANALYSIS OF CULLING PROCEDURES
	4.9	SUMMARY AND INTERPRETATION OF POTENTIOMETRIC SURFACES65
	4.10	COMPARISON OF WOLFCAMP AND PENNSYLVANIAN
		POTENTIOMETRIC SURFACES WITH PREVIOUSLY PUBLISHED
		POTENTIOMETRIC SURFACES
		4.10.1 General Comparison of Methods67
		4.10.2 Specific Comparison of Methods and Results
5	PRES	URE-DEPTH ANALYSES
	5.1	HIGH PLAINS/ROLLING PLAINS PRESSURE-DEPTH RELATIONSHIP71
	5.2	PLANAR REGRESSION OF WOLFCAMP AND PENNSYLVANIAN
	•	ISIP DATA
		5.2.1 General
		5.2.2 Hypothetical Wolfcamp Plane
		5.2.3 Hypothetical Pennsylvanian Planes
		5.2.4 Conclusions and Geologic Implications
6	SUMM	RY AND CONCLUSIONS92
	6.1	WOLFCAMP AND PENNSYLVANIAN POTENTIOMETRIC SURFACES
		6.1.1 General

iv

TABLE OF CONTENTS (Continued)

		6.1.2	Wolfcamp Potentiometric Surface94
		6.1.3	Pennsylvanian Potentiometric Surface
	6.2	PRESSU	RE-DEPTH ANALYSES95
		6.2.1	Wolfcamp and Pennsylvanian95
		6.2.2	High Plains/Rolling Plains96
	6.3	ADDITI	ONAL STUDIES
7	REFE	RENCES	

APPENDICES

į.

(**

l

((

1

1

; •---

1

Ά.	SURFACE II COMMANDS USED TO CONSTRUCT POTENTIOMETRIC-
	SURFACE MAPS105
в.	MASTER FILE OF GEOLOGIC, HYDROLOGIC, AND FORMATION
	PRESSURE DATA107
c.	PRESSURE-DEPTH DIAGRAMS CONSTRUCTED FROM CLASS 1, 2,
	AND 3 DST DATA FROM SELECTED COUNTIES IN THE STUDY AREA127
Π.	MATHEMATICAL FORMULATION OF HYPOTHETICAL TOPOGRAPHIC PLANES

LIST OF FIGURES

2-1	Major Tectonic Features and Major Basins in the	
	Study Area	9
2-2	Generalized Hydrostratigraphic Column for the Palo Duro	
	Basin Area of Texas and New Mexico	12
2-3	Generalized Hydrostratigraphic Cross Section of the Study	
	Area Showing the Three Major Hydrostratigraphic Units	13
4-1	Initial Wolfcamp Potentiometric Surface	29
4-2	Initial Pennsylvanian Potentiometric Surface	30
4-3	Generalized Pressure-Depth Diagram Showing the Range of	
	Freshwater and Brine Hydrostatic Pressure Gradients and the	
	Regions of Overpressuring and Underpressuring	32
4-4	Pressure-Depth Diagram and Linear Regression of Wolfcamp	
	DST Data	34
4-5	Pressure-Depth Diagram and Linear Regression of Pennsylvanian	
	DST Data	35
4-6	Location of DST Wells Relative to the Location of Major Oil	
	and Gas Fields in the Study Area	38
4-7	A. Pressure-Depth Diagram and Linear Regression of DST Data,	
	Hockley County, Texas; B. Pressure-Depth Diagram and Linear	
	Regression of DST Data after Culling Depressured Data,	
	Hockley County, Texas	40
4-8	Location and Depth of Depressured and Normally Pressured	
	Pennsylvanian DST Data Relative to the Location and Depth	
	of Major Pennsylvanian Oil Fields, Hockley County,	
	Texas	42
4-9	Pressure-Depth Diagram Showing Four Wells Having Multiple	
	Pennsylvanian DSTs, Hockley County, Texas	45
4-10	Pressure-Depth Diagram and Linear Regression of Wolfcamp	
	DST Data after Culling Depressured Data	47

LIST OF FIGURES (Continued)

4-11	Pressure-Depth Diagram and Linear Regression of Pennsylvanian
	DST Data after Culling Depressured Data
4-12	Wolfcamp Potentiometric Surface after Culling Depressured
	DST Data
4-13	Pennsylvanian Potentiometric Surface after Culling
-	Depressured DST Data
4-14	Equivalent Freshwater Head Values and Locations of Wolfcamp
	DSTs Culled Due to Depressuring
4-15	Equivalent Freshwater Head Values and Locations of
	Pennsylvanian DSTs Culled Due to Depressuring
4-16	Equivalent Freshwater Head Values and Locations of Wolfcamp
	DSTs Culled Due to Gross Underpressuring or Gross
	Overpressuring
4-17	Equivalent Freshwater Head Values and Locations of Pennsylvanian
	DSTs Culled Due to Gross Underpressuring or Gross
	Overpressuring
4-18	Wolfcamp Potentiometric Surface after Culling Depressured,
	Grossly Underpressured, and Grossly Overpressured DST
	Data
4-19	Pennsylvanian Potentiometric Surface after Culling
	Depressured, Grossly Underpressured, and Grossly Overpressured
	DST Data
4-20	Pressure-Depth Diagram and Linear Regression of Wolfcamp
	DST Data after Culling Depressured, Grossly Underpressured,
	and Grossly Overpressured Data
4-21	Pressure-Depth Diagram and Linear Regression of Pennsylvanian
	DST Data after Culling Depressured, Grossly Underpressured,
	and Grossly Overpressured Data

7

vii

LIST OF FIGURES

(Continued)

÷

ł

.

•

i t

- •

5-1	Location of the High Plains and Rolling Plains in the
	Study Area
5-2	A. Pressure-Depth Diagram and Linear Regression of DST Data
	after Culling, Cottle County, Texas (Rolling Plains);
	B. Pressure-Depth Diagram and Linear Regression of DST Data
	after Culling, Hale County, Texas (High Plains) 73
5-3	A. Pressure-Depth Diagram and Linear Regression of DST Data
	after Culling, from Wells Located on the Rolling Plains;
	B. Pressure-Depth Diagram and Linear Regression of DST Data after
	Culling, from Wells Located on the High Plains
5-4	Hypothetical Plane that Maximizes Correlation of Wolfcamp
	ISIP Data after Culling
5-5	Pressure-Depth Diagram and Linear Regression of Wolfcamp DST
	Data after Culling, Normalized to a Hypothetical Plane 79
5-6	Hypothetical Planes that Maximize Correlation of
	Pennsylvanian ISIP Data after Culling
5-7	Pressure-Depth Diagram and Linear Regression of Pennsylvanian
	DST Data after Culling, Normalized to Two Hypothetical
	Planes
5-8	A. Pressure-Depth Diagram and Linear Regression of Wolfcamp
	ISIP Data; B. Pressure-Depth Diagram and Linear Regression
	of Normalized Wolfcamp ISIP Data
5-9	A. Pressure-Depth Diagram and Linear Regression of Wolfcamp
	ISIP after Culling; B. Pressure-Depth Diagram and Linear
	Regression of Normalized Wolfcamp ISIP Data after Culling 86
5-10	A. Pressure-Depth Diagram and Linear Regression of Pennsylvanian
	ISIP Data; B. Pressure-Depth Diagram and Linear Regression
	of Normalized Pennsylvanian ISIP Data

viìi

LIST OF FIGURES (Continued)

5-11	A. Pressure-Depth Diagram and Linear Regression of Pennsylvanian
	ISIP Data after Culling; B. Pressure-Depth Diagram and
	Linear Regression of Normalized Pennsylvanian ISIP Data
	after Culling
5-12	A. Pressure-Depth Diagram and Linear Regression of Wolfcamp
an in the second se	ISIP Data after Culling, from the Rolling Plains and High
	Plains; B. Pressure-Depth Diagram and Linear Regression
	of Normalized Wolfcamp ISIP Data after Culling, from the
	Rolling Plains and High Plains
5-13	A. Pressure-Depth Diagram and Linear Regression of Pennsylvanian
	ISIP Data Located South of the Amarillo Uplift after Culling,
	from the Rolling Plains and High Plains; B. Pressure-Depth
	Diagram and Linear Regression of Normalized Pennsylvanian
	ISIP Data Located South of the Amarillo Uplift after Culling,
	from the Rolling Plains and High Plains

.....

...

ix

LIST OF TABLES

Page

i

i

• • • •

111

....

3-1.	DST Classification Scheme
3-2.	Results of DST Classification
4-1.	Cumulative Crude Oil Production Prior to January 1, 1980,
	Hockley County, Texas
4-2.	Number of Depressured, Grossly Underpressured, Grossly
	Overpressured, and Normally Pressured Wolfcamp and
	Pennsylvanian DSTs
4-3.	Summary Regression Statistics of Wolfcamp and Pennsylvanian
	ISIP Data Showing Changes Due to Culling Depressured,
	Grossly Underpressured, and Grossly Overpressured
	Data
4-4.	Summary of SURFACE II Error Analysis
5-1.	Summary Regression Statistics of High Plains/Rolling Plains
	ISIP Data After Culling, Showing Changes Due to Separating
	Data Sets According to Topographic Setting
5-2.	Summary Regression Statistics of Normalized Wolfcamp and
	Pennsylvanian ISIP Data Before and After Culling 83

x

1 EXECUTIVE SUMMARY

This report presents the methods, results, and interpretations of hydrogeologic investigations based on drill-stem tests (DSTs) performed in the Palo Duro Basin area of Texas and New Mexico. The primary objective is to produce regional potentiometric surfaces of the Wolfcamp Series and the Pennsylvanian System, the two regionally important downgradient aquifers that underlie the proposed repository host rock. The potentiometric surfaces will be used to evaluate flow patterns, to determine flow velocities, to aid in the development of a conceptual hydrodynamic model of the deep-basin flow system, and to serve as a basis for calibration of numerical flow models.

The report covers an area extending westward from the Palo Duro Basin in northern Texas, across the Tucumcari Basin in eastern New Mexico, and into the recharge area of the deep-basin flow system in east-central New Mexico along the eastern flank of the Pedernal Uplift and the Sierra Grande Uplift. In another report, the study area will be extended eastward across north-central Texas into the reported discharge area of the deep-basin flow system in south-central Oklahoma (Levorsen, 1967).

A screening process and classification system were devised and used to evaluate the quality of DST data obtained from wildcat wells and DOEsponsored wells. The purpose of this system was to eliminate dubious data from improperly run tests, incomplete shut-in pressure and shut-in time records, poorly calibrated or malfunctioning equipment, and misreported results. Shut-in time and shut-in pressure agreement criteria were devised and used to delete tests that were run for such a short time that pressure equilibrium probably could not be approached and to delete tests that obviously did not approach pressure equilibrium. Approximately 20 percent of the 5,502 DSTs performed in 1,971 wells were considered usable for the purposes of this hydrogeologic investigation.

The various geologic units were grouped into three major hydrostratigraphic units which maintain their hydrologic importance throughout the region. The shallowest of these units is a freshwater aquifer system primarily developed in the Tertiary Ogallala Formation and the Triassic Dockum Group. The intermediate hydrostatigraphic unit is an Upper Permian shale and evaporite aquitard and separates the shallow

freshwater flow system from the deep-basin hydrostratigraphic unit which consists primarily of the Lower Permian Wolfcamp Series and the Pennsylvanian System, which contain brine aquifers.

Regional potentiometric surfaces of the Wolfcamp and Pennsylvanian aquifers were constructed using equivalent freshwater heads calculated from initial shut-in pressures (ISIPs) from DSTs. Initial potentiometric surfaces were constructed using all the screened Wolfcamp and Pennsylvanian data. These maps represent the present configuration of the Wolfcamp and Pennsylvanian potentiometric surfaces and contain several local prominent mounds and depressions with several thousand feet of relief. On a regional scale, the configuration of these potentiometric surfaces was not considered reasonable due to the dramatic local variations in flow directions and hydraulic gradients.

Consequently, pressure-depth data from DSTs performed in the deep-basin strata were analyzed. This analysis showed that almost all the DSTs are underpressured relative to the range of probable hydrostatic pressure gradients and that many DSTs are grossly underpressured. Heads calculated from the grossly underpressured data produced the depressions on the initial potentiometric surfaces. Further evaluation showed that almost all the grossly underpressured data were obtained from DSTs performed in strata that were depressured due to oil and gas extraction.

1

1

1

Formation pressures recorded in depressured zones are valid pressures but represent local temporal pressures in a regional flow system that is probably steady state. (The term "temporal pressure" is used instead of "transient pressure" because the formation pressure may or may not be transient with respect to the pumping stress.) A method was developed using oil and gas production and field location data to identify DSTs performed in depressured strata. As a result, 23 depressured DSTs were culled from the Wolfcamp data set and 120 depressured DSTs were culled from the Pennsylvanian data set. Deletion of depressured DSTs produced potentiometric surfaces of the Wolfcamp and Pennsylvanian aquifers that represent flow conditions prior to oil and gas extraction. These surfaces contained a few local prominent mounds and depressions caused by local aberrant DST data, which on a regional scale were not considered reasonable.

Further refinement of the potentiometric surfaces to eliminate the local aberrant data was achieved by culling 11 grossly underpressured and 9 grossly overpressured DSTs from the Wolfcamp data set and 10 grossly underpressured and 24 grossly overpressured DSTs from the Pennsylvanian data set. Culling was based on comparison of ISIPs and heads in the same geologic unit at a similar depth in the same well and/or in adjacent wells. Commonly these grossly underpressured and grossly overpressured data produced heads 1,000 to 10,000 feet higher or lower than heads in the same geologic unit in the same well or in adjacent wells at a slightly different depth. The resulting regional potentiometric surfaces lack the local prominent mounds and depressions but still preserve some local variations in flow directions and hydraulic gradients. These maps are regarded as the most reasonable representations of the regional Configurations prior to oil and gas production.

Statistical analysis of the culling procedures, based on linear regression of pressure-depth data and statistical comparisons of original head values versus gridded head values, showed that most of the refinement in the Wolfcamp and Pennsylvanian data sets was due to culling depressured DSTs. Some additional refinement was due to culling a relatively small number of local grossly underpressured and grossly overpressured DSTs.

Pressure-depth data showed that although almost all the deep-basin DST data in the study area are underpressured with respect to the range of probable hydrostatic pressure gradients, data from wells located on the High Plains are far more underpressured than data from wells located on the Rolling Plains. This probably is due to the greater depth from the ground surface to potentiometric levels in the the deep-basin strata beneath the High Plains compared to the Rolling Plains. This interpretation is based on the marked difference between Y-intercepts of linear regression analyses of pressure-depth data from the High Plains versus the Rolling Plains.

Using planar regression, hypothetical best-fit planes were derived for the Wolfcamp and Pennsylvanian pressure-depth data which, when used as the datum for measuring depth, maximized linear correlation between pressure and depth. These planes minimize the scatter in the pressure-depth data caused by variation in ground-surface elevation. The hypothetical plane for Wolfcamp data slopes to the northeast. The hypothetical plane for

Pennsylvanian data south of the Amarillo Uplift also slopes to the northeast but at a slightly steeper gradient. In contrast to the Yintercepts of linear regression lines from the nonnormalized High Plains versus Rolling Plains data which showed a marked difference, the Yintercepts of linear regression lines from normalized High Plains versus Rolling Plains data showed a marked similarity.

3

j.

2 INTRODUCTION

2.1 PURPOSE AND SCOPE

This report presents the methods, results, and interpretations of hydrogeologic investigations based on drill-stem tests (DSTs) performed in the Palo Duro Basin area of Texas and New Mexico. The hydrogeologic investigations are based on analysis of formation pressure data obtained from DSTs performed in wildcat wells and DOE-sponsored wells. The methods and techniques used in the hydrogeologic investigations are presented in detail.

The basic results are in the form of potentiometric surfaces of the Wolfcamp Series and the Pennsylvanian System, pressure-depth diagrams showing formation pressures in various geologic units, and a master file of geologic, hydrologic, and formation pressure data. The primary objective of the study is to produce regional potentiometric surfaces of the Wolfcamp and Pennsylvanian aquifers, the two regionally important downgradient aquifers that underlie the proposed repository host rock. The potentiometric surfaces will be used to evaluate flow patterns, to determine flow velocities, to aid in the development of a conceptual hydrodynamic model of the deep-basin flow system, and to serve as a basis for calibration of numerical flow models. Although some preliminary interpretations are presented, the majority of the interpretation of the regional hydrodynamics of the deep-basin flow system will be contained in later reports.

The portion of the study area described in this report extends westward from the Palo Duro Basin area of northern Texas, across the Tucumcari Basin in eastern New Mexico, and into the recharge area of the deep-basin flow system in east-central New Mexico where the deep-basin strata crop out. In another report, the study area will be extended eastward across northcentral Texas and into the discharge area reported in south-central Oklahoma, where the deep-basin strata also crop out but at a lower elevation (Levorsen, 1967).

2.2 METHODS, ASSUMPTIONS, AND LIMITATIONS

Almost all the formation pressures used to construct pressure-depth diagrams and potentiometric-surface maps are initial shut-in pressures (ISIPs) obtained from DST records, which may not be equivalent to extrapolated formation pressures obtained from Horner plots. Very few extrapolated formation pressures were available.

In order to construct potentiometric surfaces of the Wolfcamp Series and Pennsylvanian System, it was necessary to assume that formation fluids in the various flow systems have a constant, uniform density equal to that of fresh water. Consequently, equipotential data shown on the potentiometric surfaces represent the elevation to which an equivalent freshwater head would rise in a well penetrating to the midpoint depth of the DST. Formation fluid samples from the Palo Duro Basin area show that the density of most formation fluids below the surficial freshwater aquifer on the High Plains have a density greater than that of fresh water. These samples also show that fluid densities vary vertically and laterally across the basin.

7

5

1

1

Although use of equivalent freshwater heads may produce inexact results, it is a method commonly used for representing heads in aquifers containing fluid of varying density. On a regional scale, construction of potentiometric surfaces based on equivalent freshwater heads should present reasonable results for the evaluation of flow directions and hydraulic gradients.

DST data included in this report were obtained from tests performed in wildcat wells prior to mid-1981 and from tests performed in DOE-sponsored wells in 1981, 1982, and 1983. Another report will include more recent DST data from wildcat wells drilled between mid-1981 and early 1983, plus all DST data from Dallam and Sherman Counties, Texas, and from 29 additional counties in north-central Texas and south-central Oklahoma

2.3 SOURCES OF DATA

Almost all the DST data were purchased from Petroleum Information Corporation (PI), Denver, Colorado, and consist of incomplete records of DSTs performed in wildcat wells. The data base was obtained in 1981 and

includes DST data from 43 counties in the Palo Duro Basin area of Texas and New Mexico and date from the 1940s through mid-1981.

Complete DST records generally consist of a continuous record of pressure changes during shut-in and flow periods, the amount of recovery during shut-in periods, and the temperature, density, and chemical characteristics of the formation fluid. Many of these data frequently are not determined or are not recorded. Incomplete DST records, as listed in the PI data base, usually consist of ISIP, initial shut-in time (ISIT), final shut-in pressure (FSIP), and final shut-in time (FSIT), as inscribed on the DST chart and recorded at the well head. Occasionally, recovery data are listed in the PI data base.

The following list summarizes the pertinent types of information usually listed in the PI data base:

- Location latitude, longitude, state, county; block (Texas); township, range, and section (New Mexico)
- API well number
- Operator and lessee
- Completion date
- Elevation ground, Kelly Bushing, derrick floor
- Depths to top and bottom of tested interval
- Geologic unit of tested interval
- Test data ISIP, ISIT, FSIP, and FSIT

Most of this information was included for each well and each DST in the data base. Elevation data occasionally were missing. In these instances, 7 1/2-minute quadrangle maps were used to determine a ground elevation at the well site.

Instead of relying on the well drillers' identification, geophysical logs were used to identify the geologic unit tested. This provided consistent and uniform picks of formation tops and bottoms across the study area. In wells where geophysical logs were not available, the tested geologic unit was determined from interpolation and/or extrapolation of data from nearby wells. In addition, property ownership maps were used to verify the location of the wells listed in the PI data base. The latitude and longitude of a few wells were found to be incorrectly listed in the PI data base.

DSTs were performed in eight wells sponsored by DOE during 1981, 1982, and 1983. Data from these tests were included in the master DST data base and compare favorably with data subsequently obtained from long-term pumping tests performed in the wells. Results from the long-term pumping tests, while used to confirm the results from the DSTs, were not incorporated into the master data base per se. This was done to prevent bias which might result from mixing data obtained from two different testing techniques

Some records from complete DSTs were provided by the Texas Bureau of Economic Geology and were incorporated into the master DST data base.

2.4 HYDROGEOLOGIC SETTING

2.4.1 Regional Geologic Setting

The Palo Duro Basin, along with several other small structural basins, is located within a larger area known in this program as the Permian Basin (Figure 2-1). The Permian Basin comprises that portion of western Texas, eastern New Mexico, western Oklahoma, southwestern Kansas, and southeastern Colorado that is underlain by bedded salt deposits of Permian age (Johnson and Gonzales, 1978). The Palo Duro Basin is a shallow, asymmetric, structural basin lacking surface expression, which measures 90 miles north to south and 165 miles from northwest to southeast. The deepest part of the basin is an elongate trough adjacent and parallel to the Matador Uplift. The trough extends northwestward into Deaf Smith County and contains 10,000 to 11,000 feet of sedimentary rock (Dutton, 1979).

The pre-Permian section can consist of basal Cambrian marine sandstone, Cambro-Ordovician shallow-shelf carbonates, Mississippian carbonates, and Pennsylvanian interlayered clastics and carbonates and can range in thickness from 0 to over 6,000 feet. The Permian section consists of marine clastics, evaporites, and carbonates, totaling approximately 7,000 feet in thickness. The remainder of the section comprises terrestrial deposits of Mesozoic to Holocene age (principally Triassic and Tertiary), ranging in thickness from 500 to 2,200 feet.

The Dalhart Basin lies to the north and contains about 9,000 feet of sedimentary rock. There is no distinct structural boundary between the

Figure 2-1. Najor Tectonic Features and Najor Basins in the Study Area.

Palo Duro and Dalhart Basins. A connecting seaway appears to have been open between the basins from Early Pennsylvanian into Late Permian.

The Palo Duro Basin appears to have been structurally separated from the Tucumcari Basin to the west only during the Early Pennsylvanian. The nature of the boundary is uncertain, but some faults have been reported. To the east, the Palo Duro Basin is separated from the Hollis-Harmon and the Hardeman Basins by a north-south trending basement high and an associated faulted zone. These faults developed in Late Mississippian to Early Pennsylvanian. By Late Pennsylvanian, the basins were stratigraphically continuous.

The Matador Uplift separates the Palo Duro Basin from the Midland Basin to the south. The uplift is approximately 200 miles long with the Milnesand Dome at its western end. It has a Precambrian core and consists of uplifted blocks bounded by faults. The uplift acted as a boundary between the shallow-shelf facies of the Palo Duro Basin and the deep-basin facies of the Midland Basin. Geologic units younger than Pennsylvanian are continuous across the uplift. The Pennsylvanian section is thinner over the uplift and is absent in a few areas.

The Amarillo Uplift structurally separates the Palo Duro Basin from the Anadarko Basin to the northeast. The uplift is the most prominent tectonic feature in the area, with thousands of feet of structural relief with respect to the basins and with considerable internal relief among isolated peaks and saddles. It is bounded by major faults and has a Precambrian core. Geologic units younger than Pennsylvanian are continuous across the uplift. The Wolfcamp section is thinner over the uplift but the upper dolomitic strata are continuous across it. The Pennsylvanian section is not present over the uplift.

Although most of these basins are separated from the Palo Duro Basin by distinct structural features, all the basins except the Anadarko Basin were stratigraphically continuous by Late Pennsylvanian, and by Late Wolfcampian all the basins were stratigraphically continous. As a result, the regional deep-basin flow system is interbasinal with respect to all the basins within the study area.

2.4.2 Hydrostratigraphic Units

2.4.2.1 General

:7

The various geologic units in the Palo Duro Basin area were grouped into three major hydrostratigraphic units, labeled A, B, and C on Figure 2-2, based on stratigraphy and grouped by similar lithologies. These three hydrostratigraphic units maintain regional hydrologic importance throughout the area, as shown on a generalized southwestnortheast cross section (Figure 2-3).

2.4.2.2 Shallow Freshwater Flow System - HSU A

Hydrostratigraphic Unit A (HSU A) is the shallowest of the major hydrostratigraphic units and consists of Holocene fluvial and lacustrine deposits; Quaternary loess, dune sand, and alluvium; the Tertiary Ogallala Formation; the Dakota Group and Fredricksburg and Trinity Formations of Cretaceous age; the Morrison and Exeter Formations of Jurassic age; and the Dockum Group of Triassic age (see Figure 2-2).

The Ogallala Formation and Dockum Group are the most important aquifer materials in HSU A. The Ogallala Formation is a regionally extensive alluvial deposit of sand, gravel, silt, and clay that extends eastward from the Rocky Mountains. The upper part of the Ogallala Formation is cemented with carbonate and forms the caprock of the High Plains. The Ogallala Formation is the major freshwater aquifer in the southern High Plains region of Texas and New Mexico.

The sandstones, conglomerates, and shales of the Dockum Group were deposited in fluvial, alluvial fan, and lacustrine environments. These materials are not as regionally important as the Ogallala Formation but locally furnish significant quantities of water to wells.

Even though confined, semiconfined, and unconfined flow conditions exist locally in HSU A, on a regional scale it comprises a shallow, usually freshwater flow system that is a maximum of 2,200 feet thick beneath the High Plains and generally less than 1,000 feet thick beneath the Rolling Plains and Canadian River Valley (see Figure 2-3).

ERA	SYSTEM	SERIES	GROUP	FORMATION	HYDROSTRATIGRAPHIC UNIT (HSU)
ZOIC	QUATERNARY			RECENT FLUVIAL AND LACUSTRINE DEPOSITS	
N.	TERTIARY			OGALLALA	
l ₂ ∖			DAKOTA		FRESHWATEH
				FREDRICKSBURG	FLOW SYSTEM
0				TRINITY	
l õ				MORRISON	HSU A
ŝ	JURASSIC			EXETER	
X	TRIACEIC		DOCKUM	TRUJILLO	
	INIASSIC		DOCKUM	TECOVAS	
			[DEWEY LAKE	
		UCHUA		ALIBATES	
				SALADO	
1				YATES	
	PERMIAN	GUADALUPE	WHITEHORSE	SEVEN RIVERS	SHALE AND
			WHITEHUNSE	QUEEN/GRAYBURG	EVAPORITE
				SAN ANDRES/BLAINE	AQUITARD
		LEONARD	CLEAR FORK	GLORIETA	
1 '				UPPER CLEAR FORK	HSU B
				TUBB	
0				LOWER CLEAR FORK	
N				RED CAVE	
1			WICHITA		
A A		WOLFCAMP			
		CISCO			
		CANYON]		
	PENNSYLVANIAN	STRAWN		1	DEEP-BASIN
		ATOKA/BEND		}	FLOW SYSTEM
1		MORROW	L		
		CHESTER			HSU C
	MISSISSIPPIAN	MERAMEC] .		
		OSAGE]		
	ORDOVICIAN		ELLENBURGER		
	CAMBRIAN		UNNAMED SAN	DSTONE	l
	PRECAMBRIAN				

LEGEND: UNCONFORMITY ---- SOURCES: HANDFORD AND DUTTON, 1980; PRESLEY, 1980; NICHOLSON, 1960; TAIT ET AL, 1962; TOTTEN, 1956; KELLEY AND TRAUGER, 1972.

•••

۰.

3 . .

:

d,

...

Figure 2-2. Generalized Hydrostratigraphic Column for the Palo Duro Basin Area of Texas and New Mexico.

Figure 2-3. Generalized Hydrostratigraphic Cross Section of the Study Area Showing the Three Najor Hydrostratigraphic Units.

2.4.2.3 Shale and Evaporite Aquitard - HSU B

The Triassic/Permian boundary marks the top of Hydrostratigraphic Unit B (HSU B), which consists of a thick sequence of Upper Permian shales, siltstones, and bedded deposits of halite and anhydrite that grade into shallow marine carbonates to the south in the Midland Basin. HSU B consists of the Dewey Lake, Alibates, Salado, Yates, Seven Rivers, Queen/Grayburg, San Andres/Blaine, Glorieta, Upper Clear Fork, Tubb, Lower Clear Fork, Red Cave, and Wichita Formations (see Figures 2-2 and 2-3). These strata are characterized by extremely low permeability and vertical or nearly vertical flow gradients. They occur at a depth of 500 to 2,200 feet beneath the High Plains and crop out in the Rolling Plains.

On a regional scale, these strata act as a major confining unit impeding flow between the shallow freshwater flow system and the deep-basin flow system. The proposed repository host rock occurs as a thick salt unit within HSU B in the Lower San Andres Formation.

2.4.2.4 Deep-Basin Flow System - HSU C

The bottom of the Wichita Group marks the top of Hydrostratigraphic Unit C (HSU C), the deep-basin flow system. Where the Wichita Group is absent, the bottom of the Red Cave Formation marks the top of HSU C. HSU C can consist of the Lower Permian Wolfcamp Series; the Cisco, Canyon, Strawn, Atoka/Bend, and Morrow Series of Pennsylvanian age; the Chester, Meramec, and Osage Series of Mississippian age; the Ellenburger Group of Ordovician age; and older deposits of Cambrian age (see Figures 2-2 and 2-3). Locally Devonian and Silurian strata may be present and are considered part of HSU C.

HSU C consists predominantly of Pennsylvanian marine-shelf carbonates and fluvial and deltaic arkosic sandstones, locally known as "granite wash," which are interbedded with siltstones and shales. Distribution of the coarse clastic facies was controlled by erosion of faulted granitic and gabbroic Precambrian basement highlands that were uplifted along the boundaries of the Palo Duro Basin during the Early Pennsylvanian. Down dip from the peripheral areas of clastic sedimentation, and intertonguing with them, are shelf carbonates that grade basinward into thicker more

vertically persistent shelf-margin carbonates that border the basin. Geophysical logs show that the Pennsylvanian System is thinner or, in some areas, absent over the Matador Uplift and Milnesand Dome and is completely absent over the Amarillo Uplift.

Directly overlying the Pennsylvanian strata are the Lower Permian carbonates and clastics of the Wolfcamp Series. Geophysical logs show that these materials are continuous across the Palo Duro Basin, Matador Uplift, Bravo Dome, and Amarillo Uplift. The Early Permian (Wolfcampian) was the only portion of the Permian Period that involved further uplift and erosion of the basement highlands. As a result, coarse clastic facies also are found in the Wolfcamp Series materials bordering the Precambrian basement highlands. The top of the Wolfcamp Series marks the top of HSU C. During mid-Permian time, the various sub-basins that make up the Permian Basin filled with sediment, and the subsequent deposition of shelf carbonates, shelf-margin clastics, and evaporites, which form HSU B, occurred through the remainder of the Permian Period.

On a regional scale, HSU C acts as a deep, confined aquifer complex that transmits fluid laterally and probably transmits and accepts small quantities of leakage to and from HSU B. HSU C is underlain by Precambrian crystalline rocks of various lithology, which locally are porous and permeable enough to store and transmit oil and gas, but regionally are assumed to act as a lower confining layer to ground-water flow.

Assuming an accidental or natural release of radionuclides from the proposed repository sites, the permeable clastic and carbonate facies in the Wolfcamp Series and Pennsylvanian System are the two downgradient aquifers capable of laterally transmitting radionuclides away from the proposed sites. Consequently, potentiometric surfaces were constructed for the Wolfcamp Series and Pennsylvanian System. It should be noted that hydraulic heads in the Ogallala/Dockum freshwater flow system are approximately 800 to 2,000 feet greater than equivalent freshwater heads in the deep-basin aquifers (SWEC, 1983). As a result, ground-water movement through the shale and evaporite aquitard will be downgradient to the deepbasin flow system. It also should be noted that at the proposed repository sites approximately 2,000 to 2,500 feet of shales and evaporites lie between the host rock and the top of the Wolfcamp aquifer.

2.5 PREVIOUS INVESTIGATIONS

Whereas numerous hydrogeologic investigations have been performed in the Palo Duro Basin area in HSU A to determine the hydrologic characteristics of the Ogallala Formation and the shallow freshwater flow system, few investigations have been performed to evaluate the hydrologic characteristics of HSU B or HSU C. Even though numerous test holes, wildcat wells, and production wells have been drilled in the oil and gas field areas surrounding the Palo Duro Basin, the wells were neither constructed nor the production zones tested for the specific purpose of obtaining hydrogeologic information. However, some data routinely obtained during pressure testing of oil and gas exploration wells can be used to determine some hydrologic characteristics. As part of the ongoing program to evaluate the Permian Basin as a potential site for a high-level nuclear-waste repository, the Department of Energy (DOE) has drilled eight wells specifically designed to obtain geologic and hydrologic data.

DST data have been used in several hydrogeologic investigations to calculate potentiometric levels and permeability. A description of DST methods, including the mathematical development of appropriate analytical equations, is given in Earlougher (1977). Bredehoeft (1965) and Hackbarth (1978) discuss the use of DST data in hydrogeologic investigations.

j,

j

Several studies using DST data to analyze regional flow patterns have been published in refereed journals. NcNeal (1965) used DST data to evaluate the hydrodynamics of several units in the Permian Basin south of the Matador Uplift and presents potentiometric surfaces for the Ellenburger Group, Devonian System, Mississippian limestone, Strawn Series, Wolfcamp Series, and San Andres Formation. Hanshaw and Hill (1969) used DST data to study the geochemistry and hydrodynamics of the Paradox Basin area. Hitchon (1969a and 1969b) used FSIP data that were believed to represent true formation pressures to evaluate the effects of topography and geology on the flow systems in the western Canada sedimentary basin. Hitchon and Hays (1971) used DST data to evaluate the regional hydrodynamics of the Surat Basin, Australia. Bond (1972) used DST data to evaluate the hydrodynamics of deep-basin aquifers in the Illinois Basin. Toth (1978) used DST data to identify gravity-induced cross-formational flow in the Red Earth region in Alberta, Canada. Bassett and Bentley (1982) used DST data

to construct a very generalized potentiometric surface of the Wolfcamp aquifer for a smaller area in the Palo Duro Basin than described in this report. Toth and Nillar (1983) used DST data to identify what they believed to represent anachronous transient formation pressures that are approaching equilibrium with modern boundary conditions.

Other studies not published in refereed journals but using DST data to evaluate the deep-basin hydrology of the Palo Duro Basin area have been published by Handford (1980), Bentley (1981), Bassett and Bentley (1983), and Devary (1983). Handford (1980) used preliminary DST data to construct potentiometric surfaces of the Wolfcamp and Pennsylvanian strata (excluding granite wash) in selected parts of the Palo Duro Basin area. Bentley (1981) used DST data to construct very generalized regional potentiometric surfaces of the Wolfcamp and Pennsylvanian aquifers for a smaller area in the Palo Duro Basin than described in this report. Bassett and Bentley (1983) used the Bentley (1981) Wolfcamp potentiometric surface in a separate report dealing with the hydrodynamics and geochemistry of the deep-basin aquifers in the Palo Duro Basin. Devary (1983) used almost the same DST data as originally used by Bentley (1981) to construct a regional Wolfcamp potentiometric surface using kriging techniques.

2.6 COMPUTER PROGRAMS

2.6.1 SURFACE II GRAPHICS SYSTEM

In this study, three sets of potentiometric-surface maps are produced corresponding to successive refinement of the DST data base. In order to campare these maps, it was necessary to use a computer mapping program to assure consistency in contouring the data. The SURFACE II GRAPHICS SYSTEM (Sampson, 1978) was used for this purpose and was progammed to apply the same contouring biases to each set of potentiometric-surface maps. SURFACE II is a computer program qualified for Nuclear Safety Related use under SWEC QA procedures. SURFACE II produces contour maps showing the continuous form of data defined by X, Y, and Z coordinate values. The irregularly spaced potentiometric data (original Z values) calculated from the DST data are transformed to a regular X-Y grid, and the original Z values are used to calculate Z' values at regularly spaced grid nodes. The

Z' values then are contoured to produce potentiometric-surface maps. The density of the regular grid and the manner in which the Z' values are calculated are specified by the program user.

The mathematical procedures used to calculate the Z' values assigned to the grid nodes are discussed in detail in Sampson (1978). In general terms, the slope of the surface at each nearby original Z value is estimated by regression analysis, and the slopes then are projected to the grid nodes. To preserve the integrity of the original potentiometric data, a distance-weighting function of $W = 1/D^6$ was used, where W is the weight assigned to the original Z value at a distance D from a grid node. Using this procedure, Z' values are calculated by a distance-weighted average of slope projections of adjacent original Z values. (A disadvantage of using slope projections is that depressions or mounds may be generated in areas where no original Z values exist.)

SURFACE II contains an error analysis subroutine (ERAN) that is used to evaluate the "goodness of fit" of the Z' values relative to the original Z values. ERAN computes the maximum positive error, maximum negative error, mean error, root-mean-squared error, standard deviation, variance, percent relative error, skewness, kurtosis, and sum-of-squares error of the difference between the Z' values and the original Z values. It also computes the absolute error of many of these statistical measures. In addition, ERAN plots a histogram of the error distribution, a scatter diagram of original Z values versus Z' values, and a scatter diagram of the original Z values versus the difference between original Z values and Z' values. ERAN also lists for each original data point the X value (longitude), Y value (latitude), Z value (original potentiometric value), Z' value (gridded potentiometric value), the difference between Z and Z' values, and the standardized difference between Z and Z' values. Notwithstanding the sophisticated error analysis capability of SURFACE II, the acceptability of all maps was determined by comparing the contoured surface to the original data.

ĩ

1

SURFACE II contains other subroutines that are used to designate contour intervals, label contour lines, smooth contoured surfaces, draw outlines of geographic features, and list the Z' and/or Z values used in constructing contour maps. SURFACE II does not hachure closed depressions unless the entire depression is contained within the borders of the map.

Appendix A lists the specific SURFACE II commands used to construct all the potentiometric-surface maps presented in this report. These commands were selected after testing various combinations of commands because they preserved the integrity of the original potentiometric data and produced a legible, interpretable map.

The Pennsylvanian potentiometric surfaces produced by SURFACE II have been modified to show the outline of the Amarillo Uplift and other areas where Pennsylvanian strata are absent.

2.6.2 STATISTICAL ANALYSIS SYSTEM

The STATISTICAL ANALYSIS SYSTEM (SAS) program (SAS Institute Inc., 1979) was used to calculate all statistical measures referenced in the report. SAS is a non-Nuclear Safety Related program that is generally accepted as an industry standard. It has been installed by over 6,000 users worldwide, including the Nuclear Regulatory Commission.

2.6.3 TRENDS

1

The MULTIPLE REGRESSION AND GEOLOGIC TREND ANALYSIS (TRENDS) program (Esler and others, 1968) was used in the planar regression studies. TRENDS is a Nuclear Safety Related program qualified in accordance with SWEC quality assurance procedures.

3 DRILL-STEM TEST CLASSIFICATION AND MASTER FILE

3.1 PURPOSE OF CLASSIFICATION SCHEME

A screening process and classification system were devised and used to evaluate the quality of the DST data. The purpose of this system was to eliminate dubious data from improperly run tests, incomplete shut-in pressure and shut-in time records, poorly calibrated or malfunctioning equipment, and misreported results.

.)

j

The screening process was based on stringent criteria for the duration of ISIT and FSIT and for agreement of FSIP with ISIP. The time duration criteria were used to screen out tests that were run for such a short time that pressure equilibrium probably could not be approached except in extremely permeable strata. The pressure agreement criterion was used to screen out tests that did not appear to approach pressure equilibrium. Used together, the time duration and pressure agreement criteria should select DSTs that were run for a sufficiently long time that pressure equilibrium was approached or attained.

3.2 CLASSIFICATION SCHEME

Because DST data were used to calculate potentiometric levels based on formation pressures, it was necessary to select those DST data that most nearly represented the formation pressure in the tested geologic unit. Unfortunately, Class 1 data, considered to be the most reliable estimate of formation pressure, were limited to the 27 available DSTs that had complete records of pressure change with time. Horner plots constructed from these data were used to calculate extrapolated formation pressures.

Shut-in time and shut-in pressure data were used to separate DSTs with incomplete records into three classes. Class 2 required ISIT and FSIT to be greater than or equal to 60 minutes and FSIP to agree within ±5 percent of ISIP. Class 2 tests represent the second-best data.

Class 3 required ISIT and FSIT to be greater than or equal to 30 minutes but less than 60 minutes and FSIP to agree within ±5 percent of ISIP. Class 3 tests represent intermediate quality data.

Class 4 tests represent the worst quality data and includes all tests which did not comply with the criteria for Class 1, 2, or 3. Class 4 tests either lacked a value of ISIP, FSIP, ISIT, or FSIT, or did not meet the shut-in time or shut-in pressure agreement criteria for any of the other classes.

Table 3-1 summarizes the DST classification scheme. Only Class 1, 2, and 3 tests were used in the hydrogeologic investigations included in this report. In counties where greater than 25 Class 1 and 2 DSTs were available, no Class 3 DSTs were added to the data base.

ISIP values do not necessarily approximate true formation pressures as closely as extrapolated formation pressure values obtained from Horner plots. In most DSTs where a continuous record of pressure change is recorded, ISIP is greater than FSIP but less than the extrapolated formation pressure. (In the PI data base, ISIP was greater than or equal to FSIP in 82 percent of the Class 2 and 3 DST data.) Consequently, heads calculated from ISIP values will be less than those based on extrapolated formation pressures but greater than those calculated from FSIP values. (In the 17 DSTs where heads based on extrapolated formation pressures can be compared with heads based on ISIPs, heads based on ISIPs were an average of 97 feet less than heads based on extrapolated formation pressures.) It should be noted that 19 Class 1 DSTs have been performed in the Wolfcamp. Most of these tests were performed in DOE-sponsored wells in Deaf Smith, Swisher, Donley, and Randall Counties, Texas. Only one Class 1 DST has been performed in the Pennsylvanian. Instead of using extrapolated formation pressures to calculate heads for these DSTs, whenever possible ISIP values measured from either DST charts or Horner plots were used. This assured that the method used to calculate heads from Class 1 DSTs was consistent with the method used to calculate heads in adjacent wells from Class 2 and 3 DSTs because inclusion of heads based on extrapolated formation pressures produced small mounds in the potentiometric surfaces. This was considered critical to the determination of horizontal hydraulic gradients in the Wolfcamp Series and Pennsylvanian System in the proposed repository site areas because heads based on extrapolated formation pressure when combined with heads in neighboring wells based on ISIP would produce fallacious gradients.

Table 3-1. DST Classification Scheme

....

: : :

	· · · ·
Class	Criteria
1	a. Horner plot
2	a. ISIT and FSIT \geq 60 minutes b. FSIP = ISIP ± (0.05 x ISIP)
3	a. ISIT and FSIT \geq 30 minutes but < 60 minutes b. FSIP = ISIP ± (0.05 x ISIP)
4	a. All other data
3.3 CLASSIFICATION RESULTS

ŗ

For this report, 5,502 DSTs from 1,971 wells in 43 counties in Texas and New Mexico were evaluated, screened, and classified. Class 1 tests comprised less than 0.5 percent of the total. Approximately 12 percent of the tests qualified as Class 2, whereas approximately 7 percent of the tests qualified as Class 3. Class 4 tests comprised nearly 80 percent of the total. Consequently, only 20 percent of the total amount of DST data qualified for use in this hydrogeologic investigation. Table 3-2 summarizes the results of the DST classification on a state and county basis.

3.4 MASTER FILE OF GEOLOGIC, HYDROLOGIC, AND FORMATION PRESSURE DATA

A master file of the DST data used in this report is included as Appendix B. The following data from 841 DSTs were compiled in the master file: well number, test number, classification, latitude, longitude, ground elevation, depth to top of tested interval, depth to bottom of tested interval, midpoint depth and elevation of tested interval, ISIP, FSIP, equivalent freshwater head, tested formation, status, year of test, HSU, and topographic setting. All these categories are defined in the legend included in Appendix B. Many categories are discussed in greater detail later in this report. For Class 1 data, the extrapolated formation pressure is listed under the ISIP heading.

	No.	No.	Class	Class	Class	Class
County	Wells	DSTs	1	2	3	4
Texas			. .			
Armstrong	6	q	0	0	0	a
Railev	6	10	0	õ	0	10
Briscoe	4	10	1	1	2	10
Carson	14	27	1	1	<u> </u>	25
Castro	9	19		2	1	13
Childress	33	48	1	Q 2	2	36
Cochran	41	80	n	7	2	20
Collingeworth	3	5	0	,	5	70 5
Cottle	76	116	0 1 [.]	23	17	5 75
Crochy	28	59	<u>`</u>	23	12	75 77
Deaf Smith	20	15	3	0	12	11
Dickens	33	£0	0	7	1	11
Dickens	13	28	2	1	6	40
Doutey	13	20 52	2	1	5	19
Floyd	23	19	1	0	5	40
Foard	5 / "1	205	0	29	10	220
Gray	47) 21	353	1	20	19	330
Hale	21	20	1	5	10	40
Hall	14	20	1	1	2	24
Hartley	47	138	2	10	4	122
Hemphill	87	236	U	26	18	192
носктей	188	560	0	91	54	415
Hutchinson	41	174	U	6	15	153
King	152	307	U	36	52	219
Lamb	40	84	0	13	. 5	66
Lubbock	78	182	U	22	13	147
Moore	11	28	0	0	1	27
Motley	41	86	0	2	5	79
Oldham	37	123	3	15	0	105
Parmer	1	2	0	0	0	2
Potter	15	4 9	0	0	4	45
Randall	10	33	1	0	2	30
Roberts	267	902	0	59	19	824
Swisher	9	26	6	4	1	15
Wheeler	68	288	0	62	1	225
Subtotal	1,475	4,253	27	456	287	3,483

i

-1

Table 3-2. Results of DST Classification

	No.	No.	Class	Class	Class	Class
County	Wells	DSTs	11	2	3	4
New Mexico						
Chaves	181	457	0	96	33	328
Curry	10	20	0	3	3	14
DeBaca	8	15	0	3	0	12
Guadalupe	4	12	0	· 0	2	10
Harding	3	4	0	1	0	3
Lea	116	330	0	60	35	235
Quay	4	6	0	2	0	4
Roosevelt	160	377	0	56	32	289
San Miguel	10	28	0	0		22
Subtotal	496	1,249	0	221	111	917
Total	1,971	5,502	27	677	398	4,400
Percent		100	0.49	12.30	7.25	79.96
				- <u></u>		

Table 3-2. (Continued)

i

4 WOLFCAMP AND PENNSYLVANIAN POTENTIOMETRIC SURFACES

4.1 GENERAL

Because of their regional extent and position as downgradient regional aquifers beneath the proposed host rock, potentiometric surfaces were constructed for the Wolfcamp Series and Pennsylvanian System. Construction of these maps was based on calculation of equivalent freshwater heads from. ISIP data. In wells where more than one DST was performed in either the Wolfcamp or the Pennsylvanian aquifer, it was necessary to select only one head value per well per aquifer. In wells where there were three or more tests performed in the same aquifer, the head value closest to the average of the head values was selected. In wells where there were two tests in the same aquifer, the head value closest to the head values in adjacent wells was selected.

The following equations were used to calculate equivalent freshwater heads:

$$HH = (ISIP) (C/P)$$

(4-1)

where, HH = Freshwater hydrostatic head above tested interval midpoint (ft),

ISIP = Initial shut-in pressure (psi),

 $C = Constant (144 in^2/ft^2)$, and

P = Unit weight of fresh water (62.4 lb/ft³).

EFWH = ELEV - MDPT + HH

where, EFWH = Equivalent freshwater head

(feet relative to mean sea level),

ELEV = Ground-surface elevation

(feet relative to mean sea level), and MDPT = Midpoint depth of tested interval (feet below ground surface).

MDPT was assumed to be relative to the ground-surface elevation at the well head. However, in many cases the reported depths of tested intervals were measured from the derrick floor or Kelly Bushing, which usually is 10 to 15 feet above ground level. As a result, many of the equivalent freshwater heads used in this report may be 10 to 15 feet too high. Since it is not possible to tell consistently what datum MDPT is relative to, the 10 to 15 foot error (which represents approximately 0.5 percent of the average head value of the Wolfcamp and Pennsylvanian aquifers) was accepted.

The potentiometric-surface maps presented in this report represent composite maps of heads calculated from DSTs performed from 1954 through early 1983. It was necessary to combine DST data from these years because of the spatial and temporal distribution of the data. This approach appears to be valid because the Wolfcamp and Pennsylvanian aquifers probably are steady state except where locally disturbed by oil and/or gas production.

Separate potentiometric surfaces were constructed for the Wolfcamp Series and Pennsylvanian System because the permeable zones in these units commonly are separated by several hundred feet of shale and argillaceous limestone which probably act as a leaky confining layer between the permeable zones. Adjacent to the uplifts, however, permeable zones in these aquifers may be in hydraulic connection where coarse-grained clastics were deposited during both the Pennsylvanian and Wolfcampian. This also may occur in Randall County, Texas, where a reef complex extends from the

27

(4-2)

Pennsylvanian through the Wolfcampian, as well as in other local areas . where Pennsylvanian carbonates are continuous with Wolfcampian carbonates.

Areas where Pennsylvanian strata are absent, as shown on the Pennsylvanian potentiometric surfaces, were delineated using geophysical logs.

4.2 INITIAL WOLFCAMP AND PENNSYLVANIAN POTENTIOMETRIC SURFACES

Regional potentiometric surfaces for the Wolfcamp Series and Pennsylvanian System initially were constructed using head values calculated from all the ISIP data (118 Wolfcamp and 257 Pennsylvanian). As shown on Figure 4-1 for the Wolfcamp and on Figure 4-2 for the Pennsylvanian, these potentiometric surfaces contain many large local mounds and depressions. The configuration of these surfaces was not considered reasonable on a regional scale due to the unrealistic local variations in flow directions and hydraulic gradients created by the mounds and depressions. In many cases, potentiometric levels in adjacent wells differ by 1,000 to 10,000 feet. To better understand the causes of the mounds and depressions, analysis of pressure-depth data from the deep-basin DST data was undertaken.

4.3 PRESSURE-DEPTH DATA

4.3.1 Theoretical Pressure-Depth Relationships

Hydrostatic pressure is caused by the unit weight of fluid and the height of the fluid column above the measurement point. Hydrostatic pressure gradients vary according to the density of fluid. Varying concentrations of dissolved solids and gases, and temperature differences affect hydrostatic pressure gradients. As a result, an increase in the content of dissolved solids increases hydrostatic pressure, whereas an increase in the content of dissolved gases or higher fluid temperatures decreases hydrostatic pressure.

The hydrostatic pressure gradient of fresh water or brackish water (<10,000 mg/l dissolved solids) is 0.433 psi/ft. The hydrostatic pressure

Figure 4-1. Initial Wolfcamp Potentiometric Surface.

المالية الاستثنار لاستان الأسارية الاستخاطينية الاستخاطينية الاستخاطينية الاستخاط الاستكار

1

Figure 4-2. Initial Pennsylvanian Potentiometric Surface.

.

30

. 1

gradient of brine, with approximately 80,000 mg/l dissolved solids, is 0.465 psi/ft (Fertl, 1976).

Formation pressure is the pressure acting on formation fluids in pore spaces of the formation (Fertl, 1976). Normally, formation pressure is equal to the hydrostatic pressure exerted by a column of water extending from its potentiometric level down to the point of measurement. Abnormally high formation pressures, referred to as overpressures, are greater than normal hydrostatic pressures at a given depth. Abnormally low formation pressures, referred to as underpressures, are less than normal hydrostatic pressures at a given depth. Figure 4-3 is a pressure-depth diagram showing a range of hydrostatic pressure gradients for fresh water (0.433 psi/ft) and brine (0.496 psi/ft - approximately 200,000 mg/l dissolved solids) and the regions of overpressuring and underpressuring. Although brines ranging in density from 66.1 to 76.8 lb/ft³ are known to exist in the deep-basin strata, neither the average hydrostatic pressure gradient nor its vertical or lateral variations have yet been determined. (The range of probable hydrostatic pressure gradients shown on the pressure-depth diagrams in this report are for use only as references and are not intended to indicate whether or not pressure-depth data are hydrostatic or hydrodynamic.)

1

Pressure-depth data obtained from DSTs can be plotted on a diagram similar to Figure 4-3 and used to evaluate and interpret pressure-depth relationships in a particular well, geographic region, or geologic unit. The linear regression lines and statistics shown on the pressure-depth diagrams in this report originally were plotted in the standard manner with the independent variable (depth) on the X-axis and the dependent variable (pressure) on the Y-axis. After the regression statistics were obtained, the axes were transformed to put depth on the Y-axis and pressure on the X-axis, the conventional format used by geologists and petroleum engineers. The linear regression lines plotted on many of the pressure-depth diagrams are not intended to be used to identify areas or zones where vertical ground-water movement is occurring. Rather, their intended use is to show statistically the general trend of the data. Identification of areas and zones of vertical ground-water movement will be discussed in another report after basin-specific fluid density data are used to construct basinspecific hydrostatic pressure gradients.

Figure 4-3. Generalized Pressure-Depth Diagram Showing the Range of Freshwater and Brine Hydrostatic Pressure Gradients and the Regions of Overpressuring and Underpressuring.

4.3.2 Pressure-Depth Diagrams From Counties in Texas and New Mexico

Pressure-depth diagrams were constructed, for each county in the study area that contained Class 1, 2, or 3 DST data, by plotting extrapolated formation pressure or ISIP (psi) against the depth of the tested interval midpoint (ft). The geologic unit tested by the DST is coded on the diagrams which are included in Appendix C.

4.4 WOLFCAMP AND PENNSYLVANIAN PRESSURE-DEPTH DATA

Figure 4-4 is a plot of Wolfcamp pressure-depth data. Figure 4-5 is a plot of Pennsylvanian pressure-depth data. These figures show that almost all the Wolfcamp and Pennsylvanian pressure-depth data are underpressured with respect to the range of hydrostatic pressure gradients shown on the diagrams and that some of the data are grossly underpressured. (The terms "grossly underpressured," "grossly overpressured," "abnormally pressured," and "aberrant data" are used in this report as general terms to refer to those data that do not lie along the general trend of the majority of the Wolfcamp and Pennsylvanian data, as shown on Figures 4-4 and 4-5. The term "normally pressured" is used as a general term to refer to those data that lie along the general trend of the majority of the Wolfcamp and Pennsylvanian data, as shown on Figures 4-4 and 4-5. None of these terms has hydrodynamic connotations.)

Heads calculated from grossly overpressured data are responsible for the potentiometric mounds seen on Figures 4-1 and 4-2. Similarly, heads calculated from grossly underpressured data are responsible for the potentiometric depressions seen on these figures. In many cases, these heads are 1,000 to 10,000 feet greater than or less than heads in adjacent wells in the same geologic unit at a similar depth.

Elimination of local exceptionally high and exceptionally low heads would produce more reasonable regional potentiometric surfaces. Elimination of these data could be based on (1) arbitrarily set limits of hydrostatic pressure gradients that reduce the range of acceptable formation pressures, or (2) on statistical analysis of normal and aberrant formation pressures or heads, or (3) on analysis of the hydrodynamics of

Figure 4-4. Pressure-Depth Diagram and Linear Regression of Wolfcamp DST Data.

__i

- 1

١.,

the local flow system around the wells. The third method was chosen to eliminate or select as much data as possible due to the physical relationships controlling the hydrodynamics of the deep-basin flow system, rather than due to compliance or noncompliance with statistical tests or arbitrarily set hydrostatic pressure gradients which ignore the physical mechanisms that relate formation pressures and hydrodynamics, and therefore, may eliminate or select both valid and invalid data.

4.5 ABNORMAL FORMATION PRESSURES

Most literature concerning abnormal formation pressures addresses their relationship to oil and gas reservoirs (Dickey and Cox, 1977; Bradley, 1975), their geologic significance (Harkins and Baugher, 1969; Lewis and Rose, 1970; Magara, 1971; Russell, 1972; Berry, 1973; Dickinson, 1953; Hanshaw and Bredehoeft, 1968; Bredehoeft and Hanshaw, 1968; Sharp, 1983; Neuzil and Pollock, 1983; Koppula, 1983), or their hydrodynamic significance (Toth, 1978; Toth and Millar, 1983). These authors have proposed several theories about the origin of abnormal formation pressures which are listed below:

- (1) Epeirogenic movements with associated erosion and/or deposition
- (2) Tectonic compression
- (3) Sediment compaction
- (4) Temperature changes causing thermal expansion or contraction of fluids
- (5) Osmosis
- (6) Chemical dissolution or precipitation
- (7) Mineral phase changes
- (8) Carbonization of organics
- (9) Buoyancy due to the presence of hydrocarbons
- (10) Ascending or descending gound-water motion
- (11) Withdrawal or injection of fluids

According to these authors, evidence exists to support all these purported causes of abnormal formation pressure. It is very difficult,

however, on a local or well-by-well basis, to determine which cause has affected a particular abnormally pressured DST and not a normally pressured DST in the same geologic unit at a similar depth in the same well or in adjacent wells, especially for the first ten causes listed above. It is possible, however, to determine whether a DST at a particular depth has been affected by the withdrawal or injection of fluids.

The distribution of DST wells relative to the distribution of oil and gas production fields, as shown on Figure 4-6, suggested that some DSTs may have been performed in strata where extraction of formation fluids from production zones may have reduced formation pressures to the extent that formation pressures recorded by the DSTs appear to be grossly underpressured.

4.6 WOLFCAMP AND PENNSYLVANIAN POTENTIOMETRIC SURFACES AFTER CULLING DEPRESSURED DST DATA

4.6.1 Culling of Depressured DST Data

As Figure 4-6 shows, many DSTs were performed in areas that currently produce or historically produced oil and/or gas from strata with sufficient porosity to serve as a reservoir and sufficient permeability to transmit oil or gas to production wells. Depending on the hydrologic characteristics of the reservoir, DSTs performed in these strata subsequent to the commencement of oil or gas extraction might be affected by depressuring of the reservoir. As a result, these DSTs would record abnormally low FSIP and ISIP values that may be valid formation pressures but actually represent temporal pressures in local depressurized zones within a regional flow system that is probably steady state. (The term "temporal pressure" is used instead of "transient pressure" because the recorded formation pressure may or may not be transient with respect to the pumping stress.)

Heads calculated from DSTs performed in a depressurized zone would be abnormally low compared to heads calculated from DSTs in nearby wells in the same geologic unit but not within the depressurized zone. Consequently, identification and deletion of heads calculated from DSTs

:

performed in local depressurized zones in the Wolfcamp Series and Pennsylvanian System are critical to the construction of their regional potentiometric surfaces.

Pressure-depth data from Hockley County, Texas, are shown on Figure 4-7A. Note that almost all the data are underpressured with respect to the range of probable hydrostatic pressure gradients and that some of the Clear Fork data at a depth of 6,800 to 7,300 feet and many of the Pennsylvanian data at a depth of 9,800 to 10,000 feet are grossly underpressured. This suggested that DSTs performed in these zones may be depressured due to the extraction of oil and/or gas. To verify this contention, property ownership maps showing the locations of oil and gas production wells and wildcat wells in a given county were obtained from PI. By determining the locations of DST wells relative to the locations of oil and gas fields, the depth of production zone(s), the depth interval of the DSTs, and the discovery date of the field(s), it was possible to identify DSTs and test intervals where formation pressures were decreased by oil and/or gas production.

۰**۰**,

1.

Oil production from Pennsylvanian strata in Hockley County, Texas, provides an example of this method and how it was used to identify depressured DSTs. Table 4-1 lists the number of oil fields and the cumulative volume of oil production prior to January 1, 1980, from five geologic units in Hockley County. As the table shows, a tremendous volume of oil, 43,677,657 barrels, has been extracted from 21 fields producing from Pennsylvanian strata (Texas Railroad Commission, 1979).

Figure 4-8 shows the outline of the major Pennsylvanian oil fields in Hockley County, the depth to production zone(s) in each field, the locations of many of the DST wells, and the midpoint depth of the DSTs. Seemingly depressured DSTs, as seen on the Hockley County pressure-depth diagram (Figure 4-7A), are marked with a circular dot, whereas normally pressured DSTs are marked with a square dot. (ISIP values for each DST are listed in Appendix B.) Figure 4-8 shows that seemingly depressured DSTs consistently were recorded at depths where oil production was occurring in one or more nearby oil fields and that normally pressured DSTs consistently were recorded at depths above or below the depth(s) of oil production. Figure 4-7A shows that seemingly depressured DSTs occur only at the same

Figure 4-7. A. Pressure-Depth Diagram and Linear Regression of DST Data, Hockley County, Texas; B. Pressure-Depth Diagram and Linear Regression of DST Data after Culling Depressured Data, Hockley County, Texas.

Geologic Unit	Cumulative Production (Barrels)	Number of Fields
San Andres	13,434,078	7
Clear Fork	32,730,542	24
Wichita	518,713	4
Wolfcamp	556,325	12
Pennsylvanian	43,677,657	21
Total	90,687,547	68

Table 4-1. Cumulative Crude Oil Production Prior to

January 1, 1980, Hockley County, Texas*

*Compiled from Texas Railroad Commission, 1979.

!

•--

•

. .

1.

<u>____</u>

ľ.

•

į.

ł

÷ - .

Figure 4-8. Location and Depth of Depressured and Normally Pressured Pennsylvanian DST Data Relative to the Location and Depth of the Major Pennsylvanian Oil Fields, Hockley County, Texas.

depths as grossly underpressured Pennsylvanian DSTs. Deletion of the exceptionally low heads calculated from these depressured DSTs will eliminate the large depression in Hockley County seen on the initial Pennsylvanian potentiometric surface (Figure 4-2).

This method was repeated for production zones in the other geologic units in Hockley County. Figure 4-7B shows the remaining pressure-depth data from Hockley County after deletion of the depressured DSTs. Because of the success of this method in Hockley County, property ownership maps for all the counties in the study area were purchased from PI, and oil and gas production data and production depth data were obtained from various sources (Texas Railroad Commission, 1979; Roswell Geological Society, 1956, 1960, 1977; New Mexico Oil and Gas Engineering Committee, 1981). These data were used to identify DSTs in various geologic units throughout the study area that were depressurized due to oil and/or gas production. In Appendix B, the "STATUS" of these DSTs is listed as "DEPR" which is defined in the legend as "depressurized due to extraction of oil and/or gas in adjacent areas in the same geologic unit at a similar depth." Table 4-2 shows that 23 depressured DSTs were culled from the Wolfcamp data set and 120 depressured DSTs were culled from the Pennsylvanian data set.

It should be noted that some normally pressured DSTs were recorded at depths of oil production in nearby fields. However, these DSTs were performed prior to development of the oil field(s) and, therefore, prior to depressuring of the reservoir. Some normally pressured DSTs also were recorded at depths of oil production after the commencement of development, but apparently either at a distance beyond the depressurized zone or in strata that are discontinuous or separated from the production zone by a confining unit that does not rapidly transmit the pressure reduction.

h . . .

The depressured zones represent localized zones where oil and/or gas extraction have produced temporal formation pressures which do not appear to be transmitted vertically to a great extent. As an example, Figure 4-9 shows four wells in Hockley County where multiple DSTs were performed in Pennsylvanian strata in the same well. In each case, the depressured zone seemingly is very limited vertically; the reduced formation pressure in the depressured zone has not been sufficiently transmitted vertically to affect the overlying DST which is normally pressured. This same relationship was

Geologic Unit	Total No. DSTs	Depres- sured	Grossly Under- pressured	Grossly Over- pressured	Normally Pressured	
Wolfcamp	150	23	11	9	107*	
Pennsylvanian	341	120	10	24	187*	

Table 4-2. Number of Depressured, Grossly Underpressured,Grossly Overpressured, and Normally Pressured Wolfcampand Pennsylvanian DSTs

*Includes multiple normally pressured DSTs in the same well.

Figure 4-9. Pressure-Depth Diagram Showing Four Wells Having Multiple Pennsylvanian DSTs, Hockley County, Texas.

observed in 12 other wells in 7 other counties and may indicate that the strata overlying the production zone acts not only as a flow barrier retarding the flow of fluids but also as a pressure barrier retarding the equalization of pressures.

4.6.2 Wolfcamp and Pennsylvanian Potentiometric Surfaces After Culling Depressured DST Data

Depressured DSTs were culled from the Wolfcamp and Pennsylvanian data sets because the depressured zones are limited in lateral and vertical extent and represent local temporal aberrations in the regional deep-basin flow system. Figures 4-10 and 4-11 show the Wolfcamp and Pennsylvanian pressure-depth data, respectively, after culling depressured DSTs from the data sets.

Figures 4-12 and 4-13 show the Wolfcamp and Pennsylvanian potentiometric surfaces, respectively, after culling head values calculated from depressured DSTs. The Wolfcamp map is based on 99 head values, whereas the Pennsylvanian map is based on 168 head values. Figures 4-14 and 4-15 list the equivalent freshwater head values and the locations of the depressured DSTs culled from the Wolfcamp and Pennsylvanian data sets, respectively. Although these potentiometric surfaces are a marked improvement over those shown on Figures 4-1 and 4-2 because local temporal variations in head have been eliminated, they still contain a few local prominent mounds and depressions with seemingly abnormal heads. Additional data refinement was believed necessary to produce regional potentiometric surfaces.

11

Figure 4-11. Pressure-Depth Diagram and Linear Regression of Pennsylvanian DST Data after Culling Depressured Data.

ţ

Figure 4-12. Wolfcamp Potentiometric Surface after Culling Depressured DST Data.

Figure 4-13. Pennsylvanian Potentiometric Surface after Culling Depressured DST Data.

.

.

.

and the second second

Figure 4-14. Equivalent Freshwater Head Values and Locations of Wolfcamp DSTs Culled Due to Depressuring.

Figure 4-15. Equivalent Freshwater Head Values and Locations of Pennsylvanian DSTs Culled Due to Depressuring.

1

ι...

4.7 WOLFCAMP AND PENNSYLVANIAN POTENTIOMETRIC SURFACES AFTER CULLING DEPRESSURED, GROSSLY UNDERPRESSURED, AND GROSSLY OVERPRESSURED DST DATA

4.7.1 Culling of Grossly Underpressured and Grossly Overpressured DST Data

Because of the difficulty in attributing local abnormally pressured data to a specific cause other than depressuring due to oil or gas extraction, deletion of additional abnormal DST data and subsequent refinement of the Wolfcamp and Pennsylvanian potentiometric surfaces were based on comparison of abnormal ISIPs and heads with normal ISIPs and heads at a similar depth in the same geologic unit in the same well and/or in adjacent wells. Although this method does not take into account local hydrodynamics, it does evaluate local abnormally pressured DSTs with local normally pressured DSTs.

Figures 4-10 and 4-11 show several grossly underpressured DSTs not attributable to depressuring and several grossly overpressured DSTs. Heads calculated from some of these DSTs are as much as 9,000 feet greater than to 4,000 feet less than nearby normally pressured DSTs. This produces the hydrologically improbable cases where some heads are higher than the outcrop elevation of the Wolfcamp and Pennsylvanian strata in the recharge area in east-central New Mexico and some heads are lower than the outcrop elevation of the Wolfcamp and Pennsylvanian strata in the discharge area reported by Levorsen (1967) in south-central Oklahoma. For the construction of regional potentometric-surface maps, the deletion of these local abnormally pressured DSTs is justified, although the cause for their abnormality is problematic. In other cases, where the difference between heads calculated from abnormally pressured DSTs and normally pressured DSTs is less than 1,000 feet, the deletion of these local abnormally pressured DSTs is more subjective.

Reasons for gross overpressuring and gross underpressuring of DSTs are problematic, particularly when other DSTs at a similar depth in the same geologic unit in the same well and/or in adjacent wells are normally pressured, but may be related to one or more of the causes described in Section 4.5. It is possible that some grossly overpressured DSTs are the result of failed packer seals which allowed drilling mud to invade the tested zone and, therefore, caused abnormally high formation pressures to be recorded. Consequently, these tests would appear to be overpressured. It is probable in a large data base that several tests may have failed in this manner and still have satisfied the screening criteria for Class 2 or 3. It also is possible that some grossly underpressured DSTs were performed in strata that are sufficiently impermeable that even though the shut-in time duration and shut-in pressure agreement criteria were satisfied for Class 2 or 3, the tests were not run long enough for pressure equilibrium to be approached. Consequently, these tests would record abnormally low shut-in pressures and would appear to be grossly underpressured. Although the probability is low that these DSTs would satisfy the pressure agreement criterion, in a large data base a few tests with this anomaly would be expected.

Table 4-2 shows that the Wolfcamp data set contained 20 locally aberrant DSTs, 11 grossly underpressured and 9 grossly overpressured, whereas the Pennsylvanian data set contained 34 aberrant DSTs, 10 grossly underpressured and 24 grossly overpressured. Figures 4-16 and 4-17 list the equivalent freshwater head values and show the locations of the local grossly underpressured and grossly overpressured DSTs culled from the Wolfcamp and Pennsylvanian data sets, respectively.

Figure 4-16 shows that the grossly underpressured and grossly overpressured Wolfcamp data are located in the peripheral parts of the Palo Duro Basin. Most of the grossly underpressured Wolfcamp data are located in Donley County, Texas, and in Chaves County, New Mexico, whereas most of the grossly overpressured Wolfcamp data are located in Lamb and Briscoe Counties, Texas. Figure 4-17 shows that the grossly underpressured and grossly overpressured Pennsylvanian data also are located in the peripheral parts of the Palo Duro Basin. Most of the grossly underpressured Pennsylvanian data are located in Cottle and Hartley Counties, Texas, whereas most of the grossly overpressured Pennsylvanian data are located in Chaves County, New Mexico, and in the Anadarko Basin area in Roberts, Wheeler, and Hemphill Counties, Texas.

e e e e e e e e e e e e e e e

•

Figure 4-16. Equivalent Freshwater Head Values and Locations of Wolfcamp DSTs Culled Due to Gross Underpressuring or Gross Overpressuring.

55

•

Figure 4-17. Equivalent Freshwater Head Values and Locations of Pennsylvanian DSTs Culled Due to Gross Underpressuring or Gross Overpressuring.

E U

.....

{

Line in 1

L. L. L.

فسر . ،

56

S 1 221 - 3

- . j

Ĩ

In general, the distribution of grossly underpressured and grossly overpressured DSTs is similar to the distribution of all the DSTs. Comparison of Figures 4-16 and 4-17 with Figure 4-6 shows that most of the grossly underpressured and grossly overpressured DSTs occur in the major oil and gas producing areas where most of the DSTs have been performed. This similarity simply may reflect this sampling bias. Alternatively, it may reflect the greater geologic complexity of the major oil and gas producing areas.

In Appendix B, the "STATUS" of these DSTs is listed either as "UNDE," which is defined in the legend as "grossly underpressured with respect to data in adjacent areas in the same geologic unit at a similar depth but not attributable to oil or gas extraction," or as "OVER," which is defined in the legend as "grossly overpressured with respect to data in adjacent areas in the same geologic unit at a similar depth.

Figures 4-18 and 4-19 show the most refined Wolfcamp and Pennsylvanian potentiometric surfaces, respectively, after culling depressured, grossly underpressured, and grossly overpressured DST data. The Wolfcamp map is based on 82 head values, whereas the Pennsylvanian map is based on 145 head values. Regional and some local variations in flow directions and hydraulic gradients can be seen. The prominent localized mounds and depressions shown on Figures 4-1 and 4-2 and on Figures 4-12 and 4-13 are not present. Figure 4-20 and 4-21 are pressure-depth diagrams of Wolfcamp and Pennsylvanian data, respectively after culling depressured, grossly underpressured, and grossly overpressured DSTs.

The closed depression on Figure 4-18 located in the northeast corner of the map is not an artifact of the computer contouring program. It may be real or it may be the result of not having data in the adjacent counties to the north and east. Expansion of the study area into Oklahoma and incorporation of these data should verify or negate the existence of this closed depression.

Figure 4-18. Wolfcamp Potentiometric Surface after Culling Depressured, Grossly Underpressured, and Grossly Overpressured DST Data.

Figure 4-19. Pennsylvanian Potentiometric Surface after Culling Depressured, Grossly Underpressured, and Grossly Overpressured DST Data.

Figure 4-20. Pressure-Depth Diagram and Linear Regression of Wolfcamp DST Data after Culling Depressured, Grossly Underpressured, and Grossly Overpressured Data.

Figure 4-21. Pressure-Depth Diagram and Linear Regression of Pennsylvanian DST Data after Culling Depressured, Grossly Underpressured, and Grossly Overpressured Data.

4.8 STATISTICAL ANALYSIS OF CULLING PROCEDURES

Comparative analyses of the culling procedures were made using linear regression of pressure-depth data and error analysis of original head values versus gridded head values generated and contoured by SURFACE II.

7

•••

1

.

Table 4-3 summarizes the regression statistics for Wolfcamp and Pennsylvanian ISIP data and shows changes in various statistical measures due to culling depressured, grossly underpressured, and grossly overpressured DST data. As expected, correlation between ISIP and midpoint depth shows a marked improvement as a result of the culling procedures corresponding to elimination of depressured data and local abnormally pressured data. The correlation coefficients shown on Table 4-3 show that most of the refinement in the DST data was due to culling depressured DSTs. The correlation coefficient for Wolfcamp data improved from 0.759 to 0.891, whereas the correlation coefficient for Pennsylvanian data improved from 0.572 to 0.900. Some additional refinement in the DST data was due to culling local grossly underpressured and grossly overpressured DSTs. The correlation coefficient for Wolfcamp data improved to 0.932, whereas the correlation coefficient for Pennsylvanian data improved to 0.959. Comparison of correlation coefficients indicates that most of the refinement of the potentiometric surfaces was based on eliminating DSTs affected by formation pressure reduction due to fluid extraction. (Hydrodynamic interpretations regarding deep-basin recharge and discharge areas and local areas of vertical ground-water movement based on analysis of pressure-depth data have been postponed until fluid density data from the study area are compiled and used to construct basin-specific hydrostatic pressure gradients).

The ERAN subroutine in SURFACE II calculates a variety of statistics for assessing the error in gridded head values versus original head values. Table 4-4 summarizes the error analyses from the head data used to construct the Wolfcamp and Pennsylvanian potentiometric surfaces. As expected, the maximum negative error, mean absolute error, root-meansquared absolute error, and percent relative absolute error dramatically decrease due to culling depressured DSTs. Culling local grossly underpressured and grossly overpressured DSTs produced some minor

eologic nit	No. DSTs	Mean (psi)	Standard Deviation (psi)	Correlation Coefficient	Regression Coefficient (psi/ft)	X-Intercept (psi)	Y-Intercept (ft)
lo I f camp							
1	150	1853	862	0.759	0.346	-142	410
2	127	1862	806	0.891	0.423	-444	1050
3	107	1852	753	0.932	0.413	-384	930
<u>ennsylvanian</u>							
1	341	2726	1176	0.572	0.300	265	-883
2	221	2965	1137	0.900	0.454	-514	1132
3	187	2808	882	0.959	0.409	-216	528

Table 4-3. Summary Statistics of Wolfcamp and Pennsylvanian ISIP Data Showing Changes Due to Culling Depressured, Grossly Underpressured, and Grossly Overpressured Data*

......

*includes multiple DSTs in the same well.

All data (before culling).
 Depressured DST data culled.
 Depressured, grossly underpressured, and grossly overpressured DST data culled.

й	lolfcamp		
	11	2	3
No. Head Values	118	99	82
Maximum Negative Error (ft)	-3560	-356	-88.5
Maximum Positive Error (ft)	1790	574	271
Mean Absolute Error (ft)	128	29.7	12.0
Root-Mean-Squared			
Absolute Error (ft)	. 445	84.2	· 35.7
Percent Relative			
Absolute Error (%)	11.2	0.769	0.307
Penr	nsylvanian		
~	1	2	. 3
No. Head Values	257	168	145
Maximum Negative Error (ft)	-7270	-784	-376
Maximum Positive Error (ft)	6510	1793	607
Mean Absolute Error (ft)	543	84.3	43.1
Root-Mean-Squared			

25.7

221

2.91

91.1

1.35

Table 4-4. Summary of SURFACE II Error Analysis

1 - All data (before culling)

2 - Depressured data culled

Absolute Error (ft)

Absolute Error (%)

Percent Relative

3 - Depressured, grossly underpressured, and grossly overpressured data culled additional reduction in these statistical measures, as well as decreasing the maximum positive error.

As these statistical measures show, most of the improvement in the fit of the original Wolfcamp and Pennsylvanian head data relative to their gridded head data was due to culling those head values calculated from depressured DSTs. Some additional improvement was due to culling head values calculated from local grossly underpressured and grossly overpressured DSTs.

4.9 SUMMARY AND INTERPRETATION OF POTENTIOMETRIC SURFACES

Three sets of Wolfcamp and Pennsylvanian potentiometric surfaces are presented: Figures 4-1 and 4-2, Figures 4-12 and 4-13, and Figures 4-18 and 4-19, respectively. The maps were constructed using equivalent freshwater heads based on ISIP values. To assure consistency in the method used to calculate heads, ISIP values were used from complete DST records (Class 1), whenever possible, and from incomplete DST records (Class 2 and 3). Each set of maps represents a further refinement of the DST data sets based on the culling procedures previously discussed. Each level of data refinement produced potentiometric surfaces with less local variation in flow directions and hydraulic gradients. The potentiometric surfaces shown on Figures 4-1 and 4-2 represent the present configuration of the Wolfcamp and Pennsylvanian potentiometric surfaces, respectively, containing local temporal potentiometric data due to depressured DSTs and local aberrant potentiometric data due to grossly underpressured and grossly overpressured DSTs. The potentiometric surfaces shown on Figures 4-12 and 4-13 represent the present configuration of the Wolfcamp 🗇 and Pennsylvanian potentiometric surfaces, respectively, after local temporal potentiometric data due to depressured DSTs were deleted, but still containing local aberrant potentiometric data due to local grossly underpressured and grossly overpressured DSTs. The potentiometric surfaces shown on Figures 4-18 and 4-19 are the most refined representation of the regional potentiometric surfaces of the Wolfcamp and Pennsylvanian aquifers, respectively, and probably closely approximate their regional configuration prior to oil and gas production.

Even though reestablishment of normal pressures in oil and gas production zones may take many years, determination of flow patterns and flow velocities, development of a conceptual hydrodynamic model of the deep-basin flow system, and calibration of numerical models using the potentiometric maps shown on Figures 4-18 and 4-19 are believed preferable to using the potentiometric surfaces shown on Figures 4-1 and 4-2 and on Figures 4-12 and 4-13, where local temporal and/or local aberrant potentiometric data severely perturb the regional potentiometric surfaces.

Preliminary permeability and lithologic data indicate that Wolfcamp equipotential patterns, as shown on Figure 4-18, appear to be controlled by transmissivity variations corresponding to facies changes in the Wolfcamp Series. The stacking of the 2,600 to 1,600-foot equipotential lines along the northwest-southeast trend shown on Figure 4-18 appears to correspond to an area where marine siltstones and shales were deposited throughout the Wolfcampian (Dutton, 1979). The lower transmissivity of these materials may contribute to the steepening of the hydraulic gradient in this area. The spreading out of equipotential lines in the southeastern, southwestern, and northeastern parts of the study area, as shown on Figure 4-18, appears to correspond to areas where carbonate shelf and shelf-margin carbonates were deposited and where greater thicknesses of sandstone and granite wash were deposited during the Wolfcampian (Dutton, 1979). The greater transmissivity of these materials may contribute to the flattening of the hydraulic gradient in these areas.

There does not appear to be much topographic control of equipotential patterns, as seen on Figure 4-18. Topographic relief across the High Plains/Rolling Plains escarpment does not appear to influence equipotential patterns in the Wolfcamp. However, the general southwest-northeast flow direction seen in the central part of the study area and the west-east flow direction seen in the southern part of the study area undoubtably are influenced by the location and elevation of the recharge area to the west and the location and elevation of the discharge area to the east.

Interpretation of the factors controlling equipotential patterns for the Pennsylvanian strata, as shown on Figure 4-19, is more difficult because of the poor distribution of the Pennsylvanian potentiometric data. Even though 145 data points were used to construct the Pennsylvanian

potentiometric surface shown on Figure 4-19, compared to the 82 data points used to construct the Wolfcamp potentiometric surface shown on Figure 4-18, the Pennsylvanian data points are not as evenly distributed as the Wolfcamp data points. Most of the Pennsylvanian data are clustered in the Anadarko Basin area north of the Amarillo Uplift and in the Matador Uplift area. Very few data are located in the central part of the study area in the Palo Duro Basin. Hopefully, additional DST data obtained from PI from mid-1981 through early 1983 will improve the distribution of the Pennsylvanian data.

The greater transmissivity of the Pennsylvanian carbonates and the massive deposits of granite wash and sandstone along the margins of the Oldham Nose and Amarillo Uplift is expected to greatly influence equipotential patterns in the Pennsylvanian strata. Topographic relief across the High Plains/Rolling Plains escarpment is not expected to influence local equipotential patterns. However, the general southwestnortheast flow direction seen in the central part of the study area and the west-east flow direction seen in the southern part of the study area undoubtably are influenced by the location and elevation of the recharge area to the west and the location and elevation of the discharge area to the east.

4.10 COMPARISON OF WOLFCAMP AND PENNSYLVANIAN POTENTIOMETRIC SURFACES WITH PREVIOUSLY PUBLISHED POTENTIOMETRIC SURFACES

4.10.1 General Comparison of Methods

1

i i

The authors believe that the potentiometric surfaces shown on Figures 4-18 and 4-19 and the methods used to construct these maps are an improvement over previously constructed potentiometric surfaces of the Wolfcamp and Pennsylvanian aquifers (Handford, 1980; Bentley, 1981; Bassett and Bentley, 1982 and 1983; and Devary, 1983). In these studies, depressured DSTs were not recognized.

Although no data were culled by Handford (1980), in the other studies seemingly abnormal head data were deleted based on a point-by-point comparison of seemingly acceptable heads versus seemingly unacceptable heads, or seemingly abnormal heads were deleted based on the difference

between predicted head values using kriging techniques and original head values. Consequently, the potentiometric surfaces presented in these studies are neither precise representations of the Wolfcamp or Pennsylvanian potentiometric surfaces prior to oil and gas production, nor precise representations of the present Wolfcamp or Pennsylvanian potentiometric surfaces. Rather, the potentiometric surfaces presented in these studies represent an ill-defined combination of the two.

It should be noted that the DST data base used in this report and the DST data base(s) used by Handford (1980), Bentley (1981), Bassett and Bentley (1982 and 1983), and Devary (1983) are different. The data base used in this report contains DST data from the late 1970s and early 1980s and from the DOE-sponsored wells drilled and tested in 1982 and 1983, which the other data base(s) do not include.

Specific comparisons between the Wolfcamp and Pennsylvanian potentiometric surfaces produced by other authors with those included in this report will be made in the following section.

4.10.2 Specific Comparison of Methods and Results

At the proposed repository site areas in Deaf Smith and Swisher Counties, Texas, the potentiometric levels shown on Figures 4-18 and 4-19 are several hundred feet lower than the potentiometric levels shown by Bassett and Bentley (1982 and 1983) and Devary (1983) for the Wolfcamp, and by Bentley (1981) for the Wolfcamp and the Pennsylvanian. Perhaps this occurs because these authors used heads based on extrapolated formation pressures mixed with heads based on ISIP or FSIP.

The flow direction in the Wolfcamp and the Pennsylvanian at the proposed repository site areas, as shown on Figures 4-18 and 4-19, is more toward the north-northeast, toward the Amarillo Uplift (see Figure 2-1), than is shown by Bentley (1981) and Bassett and Bentley (1982 and 1983). This may be due to one or more of the following reasons:

- (1) Inclusion of extrapolated formation pressures,
- (2) Inclusion of depressured DSTs in oil and gas production zones,
- (3) For the Wolfcamp aquifer, assuming no flow over the top of the Amarillo Uplift into the Anadarko Basin, in spite of the fact that

the upper, dolomitic part of the Wolfcamp is continuous across this area (although it is cut by faults), and

(4) Over-smoothing of the contour lines, to the extent that the integrity of the original potentiometric data is not preserved. Heads and flow directions shown on Figure 4-1 for the Wolfcamp aquifer are similar to those shown by Handford (1980) for a smaller area of the Wolfcamp aquifer. In neither map have any head data been culled.
Comparison of heads and flow directions from Figure 4-2 for the Pennsylvanian with those shown by Handford (1980) for the Pennsylvanian (excluding granite wash) is difficult because of the smaller area of Handford's map and the spotty distribution of Handford's contours.

ſ

i.

į

Devary's (1983) potentiometric surfaces of the Wolfcamp Series were based on data obtained from the Texas Bureau of Economic Geology and previously contoured by Handford (1980) and Bentley (1981). Devary's initial Wolfcamp potentiometric surface, produced using point kriging, is similar to that shown on Figure 4-1; it contains local prominent mounds and depressions. Based on a generalized covariance analysis, Devary (1983, p. 15) noted that several head values near the Matador Uplift and Oldham Nose were "statistically significant outliers (i.e., the predicted minus observed head values were over 2.5 x sigma larger than expected)." Figure 4-6 shows that the Matador Uplift and eastern Oldham County are major areas of oil production. No doubt many of the statistical outliers mentioned by Devary (1983) are aberrant because the DSTs were performed in depressured zones. Devary (1983) refined his initial Wolfcamp potentiometric surface by using block kriging over a 5-mile by 5-mile block. This technique produced a potentiometric surface that "is quite smooth and regular" but still contained "the extreme variability of the potentiometric data near [the] Matador Arch and [the] Oldham Nose ..." (Devary, 1983, p. 17). Both of Devary's Wolfcamp potentiometric surfaces (Devary, 1983) had a northeast trending flow direction at the proposed nuclear-waste repository sites.

It should be noted that both of the Wolfcamp potentiometric surfaces produced by Devary (1983) were based on a data set from which 17 head values were deleted because of a lack of conformance between predicted heads based on kriging and observed heads. The data that were deleted had

differences between kriged minus observed heads ranging between 181 to 1,762 feet. Although no deletion criteria were described, the justification given for the deletion of these data was that more reliable data were available from neighboring wells.

McNeal (1965) constructed potentiometric surfaces for seven deep-basin aquifers in the Midland Basin area of Texas, including potentiometric surfaces for the Wolfcamp Series and Strawn Series (a series within the Pennsylvanian System). Although McNeal's maps were constructed from DSTs, and heads calculated from depressured DSTs were deleted, direct comparison between the Wolfcamp and Pennsylvanian potentiometric surfaces presented in this report with those produced by NcNeal (1965) is not made because McNeal's study area borders the study area of this report only along the southernmost row of counties (Cochran, Hockley, Lubbock, Crosby, Dickens, and King Counties, Texas), and in this area McNeal's potentiometric contours are inferred and extrapolated from data further to the south in the Midland Basin. Consequently, direct comparison of the potentiometric maps included in this report with those in McNeal (1965) would be speculative and inconclusive.

5 PRESSURE-DEPTH ANALYSES

5.1 HIGH PLAINS/ROLLING PLAINS PRESSURE-DEPTH RELATIONSHIP

Figure 5-1 is a geographic reference map of the study area showing the locations of the High Plains and Rolling Plains. Figures 5-2A and 5-2B are pressure-depth diagrams of data from Cottle and Hale Counties, Texas, respectively (depressured, grossly underpressured, and grossly overpressured DST data have been deleted). Note that almost all the pressure-depth data from both counties are underpressured with respect to the range of probable hydrostatic pressure gradients. However, data from Hale County, located on the High Plains, are far more underpressured than data from Cottle County, located on the Rolling Plains. This relationship exists for other counties located on the Rolling Plains and High Plains and for individual DSTs within a county that straddles the High Plains and Rolling Plains (Figure 5-1 and Appendix C).

Figures 5-3A and 5-3B are pressure-depth diagrams plotting data from wells located on the Rolling Plains and High Plains, respectively (depressured, grossly underpressured, and grossly overpressured DST data have been deleted). These diagrams were compiled from DST data from all available geologic units in HSU B and HSU C and from "TOPOGRAPHIC SETTING" information listed in Appendix B. Note that, in the same manner as the Hale County/Cottle County example, data from the High Plains are far more underpressured than data from the Rolling Plains.

Pressure-depth data throughout the study area can be separated into two distinct populations, one from the High Plains and one from the Rolling Plains, as shown on Figures 5-3A and 5-3B and on Table 5-1 which summarizes the regression statistics listed on these figures. The cause of these population differences appears to be due to topographic relief across the High Plains/Rolling Plains escarpment which dramatically changes the depth from the ground surface to potentiometric levels in the deep-basin strata. This is manifest by the difference in the Y-intercept values of the regression lines, as listed on Table 5-1. The larger Y-intercept value for High Plains data reflects the greater depth from the ground surface to potentiometric levels in the deep-basin strata, whereas the smaller

Figure 5-1. Location of the High Plains and Rolling Plains in the Study Area.

i Li

فسيستنف

1

· •

1

Lucia Sama Lucia

......

لــــ ـــ ا

72

1

ł

. .

Figure 5-2. A. Pressure-Depth Diagram and Linear Regression of DST Data after Culling, Cottle County, Texas (Rolling Plains); B. Pressure-Depth Diagram and Linear Regression of DST Data after Culling, Hale County, Texas (High Plains).

Figure 5-3. A. Pressure-Depth Diagram and Linear Regression of DST Data after Culling, from Wells Located on the Rolling Plains; B. Pressure-Depth Diagram and Linear Regression of DST Data after Culling, from Wells Located on the High Plains.

الالمان الالمان المنصبة المصب المستكار المصبة المستكار المستكار عارية المستكار عاريه المصب المصبة المراجع والرا

Table 5-1.Summary Regression Statistics of High Plains/RollingPlains ISIP Data After Culling, Showing Changes Due toSeparating Data Sets According to Topographic Setting

Topographic Setting	No. DSTs	Mean (psi)	Stand- ard De~ viation (psi)	Correla- tion Coeffic- ient	Regres- sion Coeffic- ient (psi/ft)	X-Inter- cept (psi)	Y-Inter- cept (ft)
Rolling Plains	218	3011	1686	0.994	0.430	-179	416
High Plains	246	2554	1053	0.985	0.424	-392	925

Y-intercept value for Rolling Plains data reflects the lesser depth from the ground surface to potentiometric levels in the deep basin strata. Consequently, topographic variations (variations in the depth to potentiometric levels) appear to be a control on the location of the data along the Y-axis of a pressure-depth diagram.

5.2 PLANAR REGRESSION OF WOLFCAMP AND PENNSYLVANIAN ISIP DATA

5.2.1 General

Analysis of Wolfcamp and Pennsylvanian pressure-depth data, as described in Section 4.4, showed that after the data were culled an excellent correlation existed between pressure and depth. On further examination of these data and data from other geologic units, it was observed that better correlation was obtained by separating the data according to topographic setting, as described in Section 5.1. This analysis showed that pressure-depth data from the High Plains are far more underpressured than pressure-depth data from the Rolling Plains (see Figure 5-3), possibly due to topographic relief across the High Plains/Rolling Plains escarpment which dramatically changes the depth from the ground surface to potentiometric levels in the deep-basin strata. This lead to the hypothesis that a plane could be determined which would minimize the effect of measuring depth from variable elevations along the topographic surface as well as minimize the difference between the Yintercepts of the High Plains and Rolling Plains regression lines.

A "best-fit" hypothetical plane was calculated for Wolfcamp data and for Pennsylvanian data. These planes were used to "normalize" the pressure-depth data to determine a best-fit plane for each aquifer which would minimize the effect of measuring depth from variable surface elevations and to minimize deviation from a linear pressure-depth relationship. It was assumed that these hypothetical planes were a linear function of longitude and latitude. It also was assumed that pressure was a linear function of depth below the hypothetical plane. Subtracting the elevation of the tested interval from the elevation of the hypothetical plane at the locations of DST wells produced an equation for pressure that depends on longitude, latitude, and the tested elevation of the DST.

A trend surface program (Esler and others, 1968) employing the method of least-mean squares was used to obtain a hypothetical plane for Wolfcamp ISIP data and separate hypothetical planes for Pennsylvanian ISIP data located north and south of the Amarillo Uplift. This was done because the uplift is a major barrier to ground-water flow in the Pennsylvanian System and pressure-depth data and head data on opposite sides of the uplift appear to be slightly different. Input to the program included ISIP as the dependent variable, and longitude, latitude, and elevation of the tested interval midpoint as independent variables. Output included coefficients for longitude, latitude, and elevation of the tested interval midpoint. These coefficients describe the orientation of the planes in a three-dimensional coordinate system. The coefficient for elevation of the tested interval midpoint is equal to the regression coefficient (psi/ft) of the pressure-depth data normalized to the hypothetical plane. Appendix D details the mathematical equations used to obtain the hypothetical planes.

5.2.2 Hypothetical Wolfcamp Plane

The hypothetical Wolfcamp plane is shown on Figure 5-4. The plane dips to the northeast and nowhere is higher than actual ground-surface elevation. When depths of Wolfcamp DSTs are measured from this plane, excellent correlation of pressure versus normalized depth is obtained. Figure 5-5 is a pressure-depth diagram plotting culled Wolfcamp data which have been normalized to the hypothetical plane. As shown on this figure, the regression line intercepts the Y-axis at a depth approximately equal to 0 feet, as expected. The correlation coefficient is 0.992, and the regression coefficient is 0.452 psi/ft.

5.2.3 Hypothetical Pennsylvanian Planes

The hypothetical Pennsylvanian planes are shown on Figure 5-6. The southern plane dips to the northeast at a gradient slightly less than the hypothetical Wolfcamp plane, whereas the northern plane dips very slightly to the northwest. The east-west dip reversal of the two planes across the Amarillo Uplift is not understood, but may be due to the limited study area

ł.

Figure 5-4. Hypothetical Plane that Maximizes Correlation of Wolfcamp ISIP Data after Culling.

1

Pressure-Depth Diagram and Linear Regression of Wolfcamp DST Data after Culling, Normalized to a Hypothetical Plane.

Figure 5-6. Hypothetical Planes that Maximize Correlation of Pennsylvanian ISIP Data after Culling.

i

...

1

· ·

the second constrained to the second

L

08

ī

north of the uplift. Additional study incorporating DST data north and east of the current study area is planned.

The normalized pressure-depth diagram for Pennsylvanian data after culling is shown on Figure 5-7. The correlation coefficient is 0.993 and the regression coefficient is 0.429 psi/ft for the area south of the Amarillo Uplift. The correlation coefficient is 0.996 and the regression coefficient is 0.478 psi/ft for the area north of the Amarillo Uplift. Both regression lines intercept the Y-axis, at a depth appproximately equal to 0 feet.

5.2.4 Conclusions and Geologic Implications

Table 5-2 shows that correlation between pressure and depth for Wolfcamp data and Pennsylvanian data was further improved by normalizing the data to hypothetical topographic planes. This is shown graphically on Figures 5-8 and 5-9 where Wolfcamp data are plotted in nonnormalized and normalized form, respectively. Figures 5-10 and 5-11 show the same relationships for Pennsylvanian data. Note that normalizing exaggerates depressured, grossly underpressured, and grossly overpressured data, as shown on Figures 5-8B and 5-10B, by eliminating variance due to measuring depth from varying elevations along the existing topographic surface. This makes it easier to identify abnormally pressured DSTs. (It should be noted that the hypothetical planes which Figures 5-8B and 5-10B are based on are not shown and contain depressured, grossly underpressured, and grossly overpressured DSTs. Consequently, the normalized depths shown on these figures are significantly different than the normalized depths shown on Figures 5-9B and 5-11B which are based on the hypothetical planes shown on Figures 5-4 and 5-6, respectively, and which are based on culled data.)

Normalization of Wolfcamp and Pennsylvanian data, as shown on Figures 5-12 and 5-13, respectively, nearly eliminated the gap between the Rolling Plains and the High Plains regression lines and the difference between their Y-intercepts. The Y-intercept of the nonnormalized Wolfcamp regression line for High Plains data is 2,234 feet and the Y-intercept of the Rolling Plains regression line is 277 feet (Figure 5-12A). After normalization, the Y-intercept of the High Plains regression line is -40 feet and the Y-intercept of the Rolling Plains regression line is

Figure 5-7. Pressure-Depth Diagram and Linear Regression of Pennsylvanian DST Data after Culling, Normalized to Two Hypothetical Planes.

Table 5-2, Summary Regression Statistics of Normalized Wolfcamp and Pennsylvanian ISIP Data Before and After Culling

.

• • • • • •

. . .

Geologic Unit	No. DSTs#	Mean (psi)	Standard Deviation (psi)	Correla- tion Co- efficient	Regres- sion Co- efficient (psi/ft)	X-inter- cept_(psi)	Y-inter- cept (ft)
Wolfcamp_Data							
Before Culling	150	1853	862	0.759	0.346	-142	410
Before Culling- Normalized	150	1853	862	0.908	0.477	-702	1472
After Culling	107	1853	753	0.932	0.413	-384	930
After Culling- Normalized	107	1853	753	0.992	0.452	-0.300	0.644
<u>Pennsylvanian Data</u> (South of Amaril	io Uplift)			<u> </u>			
Before Culling	236	2605	972	0.400	0.189	1094	-5788
Before Culling- Normalized	236	2605	972	0.402	0.176	-363	2063
After Culling	122	2783	806	0.954	0.382	50	-131
After Culling- Normalized	122	2783	806	0.992	0.428	-0.256	0.598

*includes multiple DSTs in the same well.

 $(x,y) \in \mathcal{K}$

• ;;

• •

.

11

1

•

i

•

.

• •• • •

· ·-- ·

Geologic Unit	No. DSTs#	Mean (psi)	Standard Deviation (psi)	Correia- tion Co- efficient	Regres- sion Co- efficient (psi/ft)	X-Inter- cept (psi)	Y-Inter- cept (ft)
<u>Pennsylvanian Data</u> (North of Amaril	lo Uplift)						
Before Culling	105	2998	1509	0.765	0.451	-884	1960
Before Culling- Normalized	105	2998	1509	0.760	0.483	-529	1095
After Culling	65	2853	1015	0.992	0.477	-879	1843
After Culling- Normalized	65	2853	1015	0.996	0.478	-0.016	0.033

.

*includes multiple DSTs in the same well.

Figure 5-9. A. Pressure-Depth Diagram and Linear Regression of Wolfcamp ISIP after Culling; B. Pressure-Depth Diagram and Linear Regression of Normalized Wolfcamp ISIP Data after Culling.

REG COEF: 0.483 PSI/FT 0.176 PSI/FT COR COEF: 0.760 0.402 X-INT: -528 PSI -363 PSI Y-INT: 1085 FT 2063 FT ·INCLUDES MULTIPLE DSTS IN THE SAME WELL

Figure 5-10. A. Pressure-Depth Diagram and Linear Regression of Pennsylvanian ISIP Data; B. Pressure-Depth Diagram and Linear Regression of Normalized Pennsylvanian ISIP Data.

Figure 5-11. A. Pressure-Depth Diagram and Linear Regression of Pennsylvanian ISIP Data after Culling; B. Pressure-Depth Diagram and Linear Regression of Normalized Pennsylvanian ISIP Data after Culling.

1. •

÷ .

Figure 5-12. A. Pressure-Depth Diagram and Linear Regression of Wolfcamp ISIP Data after Culling, from the Rolling Plains and High Plains; B. Pressure-Depth Diagram and Linear Regression of Normalized Wolfcamp ISIP Data after Culling, from the Rolling Plains and High Plains.

and the second second

-294 feet (Figure 5-12B). Similarly, the Y-intercept of the nonnormalized Pennsylvanian regression line for High Plains data south of the Armarillo Uplift is 2,306 feet and the Y-intercept of the Rolling Plains regression line is 130 feet (Figure 5-13A). After normalization, the Y-intercept of the High Plains regression line is -109 feet and the Y-intercept of the Rolling Plains regression line is 181 feet.

The hypothetical planes represent surfaces which maximize correlation between pressure and depth regardless of current topographic elevations or settings. The geologic implications of these relationships are not fully understood, and these hypothetical planes have not been correlated with any historical geologic features or surfaces.

÷

6 SUMMARY AND CONCLUSIONS

6.1 WOLFCAMP AND PENNSYLVANIAN POTENTIOMETRIC SURFACES

6.1.1 General

In accordance with the primary objective of the study, to produce regional potentiometric surfaces of the Wolfcamp Series and Pennsylvanian System, three sets of potentiometric-surface maps are presented based on three levels of data refinement. The maps were constructed using equivalent freshwater heads based on ISIP values obtained from Class 2 and 3 DSTs. Whenever possible, the few Class 1 DSTs were incorporated into the potentiometric surfaces by calculating equivalent freshwater heads from ISIP values obtained from DST charts or Horner plots. Potentiometric surfaces produced in this manner will be slightly lower than potentiometric surfaces based on extrapolated formation pressures. This procedure was necessitated by the inadequate number of Class 1 DSTs available to construct potentiometric surfaces. Use of this procedure was considered critical to the determination of horizontal hydraulic gradients in the Wolfcamp Series and Pennsylvanian System in the proposed repository site areas because heads based on extrapolated formation pressures when combined with heads based on ISIPs would produce fallacious gradients.

1

1

Figures 4-1 and 4-2 show the present configuration of the Wolfcamp and Pennsylvanian potentiometric surfaces, respectively, containing local temporal potentiometric data due to heads calculated from depressured DSTs and local aberrant potentiometric data due to heads calculated from grossly overpressured and grossly underpressured DSTs. The local temporal and local aberrant potentiometric data create the unrealistic local variations in hydraulic gradients and flow directions seen on these regional potentiometric surfaces. The Wolfcamp potentiometric surface is based on 118 head values whereas the Pennsylvanian potentiometric surface is based on 257 head values.

Figures 4-12 and 4-13 show the configuration of the Wolfcamp and Pennsylvanian potentiometric surfaces, respectively, after local temporal potentiometric data due to heads calculated from depressured DSTs were culled, but still containing local aberrant potentiometric data due to

heads calculated from grossly overpressured and grossly underpressured DSTs. The depressured DSTs were performed in localized zones where oil and/or gas extraction reduced formation pressures and created temporal pressures that are not transmitted vertically to a great extent. DSTs performed in these zones record abnormally low ISIP and FSIP values which may be valid formation pressures but represent temporal pressures in local depressured zones within a regional flow system that is probably steady state. The depressured DSTs were culled according to the procedures described in Section 4.6.1. Twenty-three depressured DSTs were culled from the Wolfcamp data set, whereas 120 depressured DSTs were culled from the Pennsylvanian data set. Deletion of depressured DSTs produced potentiometric surfaces of the Wolfcamp and Pennsylvanian aquifers prior to oil and gas extraction, but still containing some local aberrant potentiometric data which, on a regional scale, produced unrealistic variations in flow directions and hydraulic gradients.

1.

1

÷

1.4

1

Figures 4-18 and 4-19 are the most refined representation of the regional Wolfcamp and Pennsylvanian potentiometric surfaces, respectively, after culling local temporal potentiometric data and local aberrant potentiometric data. The local aberrant potentiometric data were culled according to the procedures described in Section 4.7.1. Nine grossly overpressured and 11 grossly underpressured DSTs were culled from the Wolfcamp data set, whereas 24 grossly overpressured and 10 grossly underpressured DSTs were culled from the Pennsylvanian data set. Deletion of these data eliminated the local potentiometric mounds and depressions seen on Figures 4-12 and 4-13. The occurrence of local grossly overpressured and grossly underpressured Wolfcamp and Pennsylvanian DSTs did not appear to follow any discernible trends. Their distribution is similar to the distribution of all the DSTs. This may reflect the sampling bias that more DSTs are performed around the major oil and gas production areas, or it may reflect the greater geologic complexity of these areas. The potentiometric surfaces shown on Figures 4-18 and 4-19 represent the regional configuration of the Wolfcamp and Pennsylvanian potentiometric surfaces, respectively, prior to oil and gas production.

Statistical analysis of the culling procedures, based on linear regression analysis of pressure-depth data and statistical comparisons of original head values versus SURFACE II gridded head values, as described in

Section 4.8, showed that most of the refinement in the Wolfcamp and Pennsylvanian data sets was due to culling depressured DSTs. Some additional refinement was due to culling local grossly underpressured and grossly overpressured DSTs.

6.1.2 Wolfcamp Potentiometric Surface

The closed depression seen in the extreme northeast corner of Figure 4-18 is not an artifact of the computer contouring program. It may be real and represent a ground-water sink in the Wolfcamp potentiometric surface, or it may be the result of not having data in adjacent counties to the north and east of the current study area. Expansion of the study area to the east into Oklahoma should verify or negate the existence of this closed depression.

Depending on which DSTs are considered to be grossly overpressured or grossly underpressured, the direction of the hydraulic gradient in Hartley County, Texas (latitude 35.8 degrees, longitude 102.5 degrees), can vary from northwest to southeast or southeast to northwest. Because of this uncertainty, additional DST data from Dallam and Sherman Counties, Texas (located due north of Hartley and Moore Counties, Texas), and updated DST data from other counties in Texas from mid-1981 through early 1983 will be included in another topical report. The addition of these data should help clarify the direction of the hydraulic gradient in this area.

19 11 20

Preliminary interpretations indicate that the equipotential patterns shown on Figure 4-18 appear to be controlled by transmissivity variations corresponding to facies changes in the Wolfcampian strata, as described in Section 4.9. Topographic relief across the High Plains/Rolling Plains escarpment does not appear to influence equipotential patterns in the Wolfcamp aquifer. However, the general southwest-northeast flow direction in the Wolfcamp aquifer no doubt is influenced by the general west-east decrease in topographic elevation from its recharge area to the west, to its discharge area to the east.
6.1.3 Pennsylvanian Potentiometric Surface

The Pennsylvanian potentiometric surface, as shown on Figure 4-19, also needs refinement in the area of Hartley County, Texas, and in the area northeast of the Amarillo Uplift in the Anadarko Basin region where the identification of depressured, grossly underpressured, and grossly overpressured DST data was difficult.

Interpretation of the controlling factors influencing the equipotential patterns shown on Figure 4-19 is difficult because of the poor distribution of Pennsylvanian potentiometric data. The greater transmissivity of Pennsylvanian carbonates and granite wash and other coarse-grained clastic materials along the margins of the Oldham Nose and Amarillo Uplift is expected to greatly influence equipotential patterns in the Pennsylvanian aquifer. Topographic relief across the High Plains/Rolling Plains escarpment is not expected to influence local equipotential patterns in the Pennsylvanian aquifer. However, the general west-east flow direction shown on Figure 4-19 is probably influenced by the general west-east decrease in topographic elevation from its recharge area to the west, to its discharge area to the east.

6.2 PRESSURE-DEPTH ANALYSES

6.2.1 Wolfcamp and Pennsylvanian

Figures 4-4 and 4-5 show that almost all the Wolfcamp and Pennsylvanian DST data are underpressured with respect to the range of probable hydrostatic pressure gradients. The pressure-depth diagrams in Appendix C show that this relationship also applies to DST data from HSU B and to DST data from other geologic units in HSU C.

Evaluation of pressure-depth data, and oil and gas field location and production data, showed that many of the DSTs were performed in oil and gas production zones. The abnormally low formation pressures recorded in these DSTs represent temporal pressures in local depressured zones within a regional flow system that is probably steady state. Deletion of these local temporal pressures produced a data base that describes pressure-depth

relationships throughout the deep-basin strata. However, this data base, still contained some local aberrant DST data (Figures 4-12 and 4-13).

Elimination of local aberrant DST data was based on comparison of ISIPs and heads at a similar depth in the same geologic unit in the same well and/or in adjacent wells. Deletion of local grossly overpressured and grossly underpressured data produced a data base that describes regional pressure-depth relationships throughout the deep-basin strata in the study area (Figures 4-20 and 4-21).

6.2.2 High Plains/Rolling Plains

Figures 5-2 and 5-3 show that pressure-depth data from DSTs performed in the deep-basin strata consist of two populations: one from the High Plains and one from the Rolling Plains. The figures show that DST data from wells located on the High Plains are far more underpressured than DST data from wells located on the Rolling Plains. This probably is due to the greater depth from the ground surface to potentiometric levels in the deepbasin strata beneath the High Plains compared to the Rolling Plains. -!

3

. . \$

i

÷

The effect of measuring depth from varying topographic elevations was minimized by normalizing the Wolfcamp and Pennsylvanian DST data to common hypothetical planes. Planar regression of these data produced correlation coefficients greater than 0.99 and integrated the separate populations from the High Plains and Rolling Plains (Figures 5-12 and 5-13). The geologic implications of these hypothetical planes are not fully understood.

6.3 ADDITIONAL STUDIES

Performance of additional studies has been mentioned in several sections of this report. Currently, the following additional studies are planned:

- 1. Extend the study area into north-central Texas and into the reported discharge area in south-central (Levorsen, 1967).
- Further investigate topographic and geologic controls on equipotential patterns.

- 3. Investigate the role of brine density variations on pressure-depth relationships and determine areas and zones of vertical ground-water movement within the deep-basin strata.
- 4. Clarify the direction of hydraulic gradients in the area of Hartley County, Texas.

í .

101

(

Ç

£

- 5. Update the Wolfcamp and Pennsylvanian potentiometric surfaces with additional DST data from mid-1981 through early 1983.
- 6. Evaluate the regional hydrodynamics of the deep-basin flow system.

7 REFERENCES

1

.

. . . . _____

;

Bassett, R. L., and M. E. Bentley, 1982. "Geochemistry and Hydrodynamics of Deep Formation Brines in the Palo Duro and Dalhart Basins, Texas, U.S.A.," Journal of Hydrology, Vol. 59, pp. 331-372.

Bassett, R. L., and M. E. Bentley, 1983. Deep Brine Aquifers in the Palo Duro Basin: Regional Flow and Geochemical Constraints, Report of Investigations No. 130, Texas Bureau of Economic Geology, 59 pp.

Bentley, M. E., 1981. "Regional Hydraulics of Brine Aquifers, Palo Duro and Dalhart Basins, Texas," <u>Geology and Geohydrology of the Palo Duro</u> <u>Basin, Texas Panhandle, a Report on the Progress of Nuclear Waste Isolation</u> <u>Feasibility Studies (1980)</u>, Geological Circular 81-3, Texas Bureau of Economic Geology, pp. 93-107.

Berry, S.A.F., 1973. "High Fluid Potentials in California Coast Ranges and Their Tectonic Significance," <u>American Association of Petroleum Geologists</u> Bulletin, Vol. 57, No. 7, pp. 1,219-1,249.

Bond, D. C., 1972. "Hydrodynamics of Deep Aquifers of the Illinois Basin," Illinois State Geological Survey Circular, No. 470, 72 pp.

Bradley, J. S., 1975. "Abnormal Formation Pressure," <u>American Association</u> of Petroleum Geologists Bulletin, Vol. 59, No. 6, pp. 957-973.

Bredehoeft, J. D., and B. B. Hanshaw, 1968. "On the Maintenance of Anomalous Fluid Pressures: I. Thick Sedimentary Sequences," <u>Geological</u> Society of American Bulletin, Vol. 79, pp. 1,097-1,106.

Devary, J. L., 1983. <u>Permian Potentiometric Analysis</u>, PNL-4738, Battelle Memorial Institute, 31 pp. Dickey, P. A., and W. C. Cox, 1977. "Oil and Gas in Reservoirs with Subnormal Pressures," <u>American Association of Petroleum Geologists</u> Bulletin, Vol. 61, No. 12, pp. 2,134-2,142.

Dickey, P. A., 1981. <u>Petroleum Development Geology</u>, Pennwell Books, Tulsa, OK, 512 pp.

Dickinson, G., 1953. "Geological Aspects of Abnormal Reservoir Pressures in Gulf Coast Louisiana," American Association of Petroleum Geologists Bulletin, Vol. 37, No. 2, pp. 410-432.

ì

ł

Dutton, S. P., 1979. "Basin Structural and Stratigraphic Framework," <u>Geology and Geohydrology of the Palo Duro Basin, Texas Panhandle, a Report</u> <u>on the Progress of Nuclear Waste Isolation Feasibility Studies (1978)</u>, <u>Geological Circular 79-1</u>, Texas Bureau of Economic Geology, pp. 10-13.

Earlougher, R. C., 1977. Advances in Well Test Analysis, SPE Monogram, Society of Petroleum Engineers of AIME, 264 pp.

Esler, J. E., P. F. Smith, and J. C. Davis, 1968. <u>KWIKR8, A FORTRAN IV</u> <u>Program for Multiple Regression and Geologic Trend Analysis</u>, Computer Contribution 28, Kansas State Geological Survey, Lawrence, KS, 31 pp.

Fertl, W. H., 1976. "Abnormal Formation Pressures," <u>Developments in</u> Petroleum Science, 2, Elsevier Scientific Publishing Company, New York, NY.

Foster, R. W., R. M. Frentress, and W. C. Riese, 1972. <u>Subsurface Geology</u> of East-Central New Mexico, Special Publication No. 4, New Mexico Geological Survey, 22 pp.

Hackbarth, D. A., 1978. "Application of the Drill-Stem Test to Hydrogeology," Ground Water, Vol. 16, No. 1, pp. 5-11.

Handford, C. R., 1980. "Preliminary Aspects of Deep-Basin Hydrology," <u>Geology and Geohydrology of the Palo Duro Basin, Texas Panhandle, a Report</u> <u>on the Progress of Nuclear Waste Isolation Feasibility Studies (1979)</u>, Geological Circular 80-7, Texas Bureau of Economic Geology, pp. 47-51.

Handford, C. R., and S. P. Dutton, 1980. "Pennsylvanian-Lower Permian Depositional Systems and Shelf-Margin Evaluation, Palo Duro Basin, Texas," American Association of Petroleum Geologists Bulletin, Vol. 64, pp. 88-106.

- -

- .

Hanshaw, B. B., and J. D. Bredehoeft, 1968. "On the Maintenance of Anomalous Fluid Pressures: II. Source Layer at Depth," <u>Geological Society</u> of America Bulletin, Vol. 79, pp. 1,107-1,122.

Hanshaw, B. B., and G. A. Hill, 1969. "Geochemistry and Hydrodynamics of the Paradox Basin Region, Utah, Colorado, and New Mexico," <u>Chemical</u> Geology, Vol. 4, pp. 263-294.

Harkins, K. L., and J. W. Baugher, 1969. "Geological Significance of Abnormal Formation Pressures," Journal of Petroleum Technology, August, pp. 961-966.

Hitchon, B., 1969a. "Fluid Flow in the Western Canada Sedimentary Basin. 1. Effect of Topography," <u>Water Resources Research</u>, Vol. 5, No. 1, pp. 186-195.

Hitchon, B., 1969b. "Fluid Flow in the Western Canada Sedimentary Basin.
2. Effect of Geology," <u>Water Resources Research</u>, Vol. 5, No. 2, pp. 460-469.

Hitchon, B., and J. Hays, 1972. "Hydrodynamics and Hydrocarbon Occurrences Surat Basin, Queensland, Australia," <u>Water Resources Research</u>, Vol. 7, No. 3, pp. 658-676.

Johnson, K. S., and S. Gonzales, 1978. <u>Salt Deposits in the United States</u> and Regional Characteristics Important for Storage of Radioactive Waste, Y/OWI/SUB-7414, Union Carbide, Nuclear Division, Office of Waste Isolation, 188 pp.

Kelley, V. C., and F. D. Trauger, eds., 1972. <u>Guidebook of East-Central</u> New Mexico, 23rd Field Conference, New Mexico Geological Society, 225 pp.

Koppula, S. D., 1983. "Porewater Pressure Due to Overburden Removal," Journal of Geotechnical Engineering, Vol. 8, pp. 1,099-1,100.

۲-

ł.

Levorsen, A. I., 1967. <u>Geology of Petroleum</u>, W. H. Freeman and Co., San Francisco, CA, p. 411.

Lewis, C. R., and S. C. Rose, 1970. "A Theory Relating High Temperatures and Overpressures," Journal of Petroleum Technology, January, pp. 11-16.

Lloyd, E. R., 1949. "Pre-San Andres Stratigraphy and Oil-Producing Zones in Southeastern New Mexico," <u>New Mexico Bureau of Mines and Mineral</u> Resources Bulletin 29, 87 pp.

Magara, K., 1971. "Permeability Considerations in Generation of Abnormal Pressures," Society of Petroleum Engineers Journal, September, pp. 236-242.

McNeal, R. P., 1965. "Hydrodynamics of the Permian Basin," <u>Fluids in</u> <u>Subsurface Environments</u>, Memoir 4, American Association of Petroleum Geologists, pp. 308-326.

Meyer, R. F., 1966. <u>Geology of Pennsylvanian and Wolfcampian Rocks in</u> <u>Southeast New Mexico</u>, Memoir 17, New Mexico Bureau of Mines and Minerals, 123 pp.

Neuzil, C. E., and D. W. Pollock, 1983. "Erosional Unloading and Fluid Pressures in Hydraulically 'Tight Rocks,'" <u>Journal of Geology</u>, Vol. 91, pp. 179-193. New Mexico Oil and Gas Engineering Committee, 1981. <u>Annual Report</u>, Vol. I-A Southeast New Mexico, Hobbs, NM.

Nicholson, J. H., 1960. "Geology of the Texas Panhandle," <u>Aspects of the</u> <u>Geology of Texas, A Symposium</u>, Publication No. 6017, Texas Bureau of Economic Geology, pp. 51-64.

Petroleum Information Corporation, 1980. <u>Oil & Gas Map of Texas</u> -Including Basins, Uplifts, and Basement Rocks, Denver, CO.

Petroleum Information Corporation, 1982. Deep Anadarko Basin, 360 pp.

Pitt, W. D., 1973. Hydrocarbon Potential of Pre-Pennsylvanian Rocks in Roosevelt County, New Mexico, Circular 130, New Mexico Bureau of Mines and Mineral Resources, 8 pp.

Presley, N. W., 1980. "San Andres Salt Stratigraphy and Salt Purity," Geology and Geohydrology of the Palo Duro Basin, Texas Panhandle, A Report on the Progress of Nuclear Waste Isolation Feasibility Studies (1980), Geological Circular 81-3, Texas Bureau of Economic Geology, pp. 15-16.

Roswell Geological Society, 1956. <u>The Oil and Gas Fields of Southeastern</u> New Mexico - A Symposium, Roswell, NM.

Roswell Geological Society, 1960. <u>The Oil and Gas Field of Southeastern</u> New Mexico - A Symposium - 1960 Supplement, Roswell, NM.

Roswell Geological Survey, 1977. <u>The Oil and Gas Fields of Southeastern</u> New Mexico - A Symposium - 1970 Supplement, Roswell, NM.

Russell, W. L., 1972. "Pressure-Depth Relations in Appalachian Region," American Association of Petroleum Geologists Bulletin, Vol. 56, No. 3, pp. 528-536. .

Sampson, R. J., 1978. SURFACE II GRAPHICS SYSTEM, Kansas Geological Survey, Lawrence, KS.

SAS Institute, Incorporated, 1979. STATISTICAL ANALYSIS SYSTEM, Release 79.5, Cary, NC.

Sharp, J. M., 1983. "Permeability Controls on Aquathermal Pressuring," American Association of Petroleum Geologists Bulletin, Vol. 67, pp. 2,057-2,061.

.

:

Speer, W. R., 1976. "Oil and Gas Exploration in the Raton Basin," <u>Guidebook of Vermejo Park, Northeastern New Mexico: New Mexico Geological</u> Society, 27th Field Conference, pp. 217-226.

Stone & Webster Engineering Corporation, 1983. <u>Ogallala Aquifer Mapping</u> <u>Program</u>, Topical Report, ONWI/SUB/83/E512-05000-T16, Revision 1, Office of Nuclear Waste Isolation, Battelle Memorial Institute, Columbus, OH.

Tait, D. B., J. L. Ahlen, A. Gordon, G. L. Scott, W. S. Motts, and M. E. Spitzer, 1962. "Artesia Group of New Mexico and West Texas," <u>American</u> Association of Petroleum Geologists Bulletin, Vol. 46, pp. 504-517.

Texas Railroad Commission, 1979. Oil and Gas Annual Report, Austin, TX.

Toth, J., 1963. "A Theoretical Analysis of Groundwater Flow in Small Drainage Basins," Journal of Geophysical Research, Vol. 68, No. 16, pp. 4,795-4,812.

Toth, J., 1978. "Gravity-Induced Cross-Formational Flow of Formation Fluids, Red Earth Region, Alberta, Canada: Analysis, Patterns, and Evolution," Water Resources Research, Vol. 14, No. 5, pp. 805-843.

Toth, J., and R. F. Millar, 1983. "Possible Effects of Erosional Changes of the Topographic Relief on Pore Pressures at Depth," <u>Water Resources</u> Research, Vol. 19, No. 6, pp. 1,585-1,597. Totten, R. B., 1956. "General Geology and Historical Development, Texas and Oklahoma Panhandles," <u>American Association of Petroleum Geologists</u> Bulletin, Vol. 40, pp. 1,945-1,967.

United States Geological Survey and New Mexico Bureau of Mines and Mineral Resources, 1981. <u>Energy Resources Map of New Mexico</u>, New Mexico Bureau of Mines and Mineral Resources I-1327.

2

!

APPENDIX A

SURFACE II COMMANDS USED TO CONSTRUCT POTENTIOMETRIC-SURFACE MAPS

TITLE _____, POTENTIOMETRIC-SURFACE MAP DEVICE 6, ' , EXTREMES -105.5010,-99.9990,33.4490,36.0010,0,0,0,0 ROUT 16,39, '(2F10.5)' IDXY , 18,3,1,2,3,0,0,0,999, '(11X,F10.5,F13.5,F9.1)' BOX 0.25,2,0.25,2,1-105.50,33.50,2,0.12 SIZC 1,15,7.8 POUT GRID 0,100,50,1,4,0,0 NEAR 2,4,1.0,1.5 CINTERVAL 0,0,200,0,1,0.11,0,,5 MSMOOTH 1,1,2,4,4 CONTOUR 1,1,0.03,0,0,,2.0,0.07 POST 0,0,0.11,0.11,1 ECHO PERFORM

1.

{.

APPENDIX B

Master File of Geologic, Hydrologic, and Formation Pressure Data (17 pages)

MASTER FILE LEGEND

GEOLOGIC, HYDROLOGIC, AND FORMATION PRESSURE DATA FROM DRILL-STEM TESTS # = UNITED STATES DEPARTMENT OF ENERGY WELL \$ = DRILL-STEN TEST PROVIDED BY THE TEXAS EUREAU OF ECONOMIC GEOLOGY SWECNO = STONE & WEBSTER WELL NUMBER TN = DRILL-STEM TEST NUMBER CL = CLASSIFICATION 1 = FORMATION PRESSURE DETERMINED FROM HORNER PLOT 2 = FSIP AGREES WITHIN 5 PERCENT OF ISIP, AND ISIT AND FSIT ARE GREATER THAN OR EQUAL TO 60 MINUTES 3 = FSIP AGREES HITHIN 5 PERCENT OF ISIP, AND ISIT AND FSIT ARE GREATER THAN OR EQUAL TO 30 MINUTES BUT LESS THAN 60 MINUTES LATITUDE = LATITUDE (DEGREES AND DECIMAL DEGREES) LONGITUD = LCHGITUDE (DEGREES AND DECIMAL DEGREES) ELEV = ELEVATION OF GROUND SURFACE (FEET - RELATIVE TO MEL) TOP = DEPTH TO TOP OF TESTED INTERVAL (FEET BELOW GROUND SURFACE) BOTTON = DEPTH TO BOTTON OF TESTED INTERVAL (FEET BELCH GROUND SURFACE) HDPT = DEPTH TO HIDFOINT OF TESTED INTERVAL (FEET BELCH GROUND SURFACE) TELEV = ELEVATION OF DRILL-STEM TEST MIDPOINT (FEET - RELATIVE TO MSL) ISIP = INITIAL SHUT-IN PRESSURE (PSI) FOR CL=2 AND CL=3 DATA, AND EXTRAPOLATED FORMATION PRESSURE (PSI) FOR CL=1 DATA FSIP = FINAL SHUT-IN FRESSURE (PSI) EFNH = EQUIVALENT FRESHMATER HEAD (FEET - RELATIVE TO HSL) FORM = GEOLOGIC UNIT TESTED CAUB = CAUBRIAN SYSTEM DEAN = DEAN FORMATION (PERHIAN) ELLE = ELLENBURGER GROUP (CRDOVICIAN) FUSS = FUSSELMAN FORMATION (SILURIAN) GLOR = GLORIETA FORMATION (PERMIAN) HUNT = HUNTCH GROUP (SILURIAN-DEVONIAN) LCF = LCHER CLEAR FORK FORMATION (PERHIAN) LSA = LOHER SAN ANDRES FORMATION (PERMIAN) LSA4 = LOWER SAN ANDRES UNIT #4 DOLOMITE (PERMIAN) LSR = LCHER SEVEN RIVERS FORMATION (PERMIAN) MISS = MISSISSIPPIAN SYSTEM PERN = PENNSYLVANIAN SYSTEM PREC = PRECAMBRIAN ERA QU/G = QUEEN/GRAYBURG FORMATION (PERMIAN) RDCV = RED CAVE FORMATION (PERHIAN) SILU = SILURIAN SYSTEM SINP = SINPSON GROUP (CROOVICIAN) SPRA = SPRAYBERRY FORMATION (PERHIAN) SYLV = SYLVAN FORMATION (CROOVICIAN) TUBB = TUBB FORMATION (PERHIAN) UCF = UPPER CLEAR FORK FORMATION (PERHIAN) USA = UPPER SAN ANDRES FORMATION (PERHIAN) VIOL = VIOLA GROUP (CRDOVICIAN) WICH = WICHITA GROUP (PERHIAN) STATUS = EVALUATION OF DRILL-STEN TEST DATA DEPR = DEPRESSURED DUE TO EXTRACTION OF OIL AND/OR GAS IN ADJACENT AREAS IN THE SAME GEOLOGIC UNIT AT A SIMILAR DEPTH MULT = MULTIPLE TESTS IN THE SAME GEOLOGIC UNIT IN THE SAME WELL, NORMALLY FRESSURED WITH RESPECT TO DATA IN ADJACENT AREAS AT A SIMILAR DEPTH OVER = GROSSLY OVERPRESSURED WITH RESPECT TO DATA IN ADJACENT AREAS IN THE SAME GEOLOGIC UNIT AT A SINTLAR DEPTH UNDE = GROSSLY UNDERPRESSURED WITH RESPECT TO DATA IN ADJACENT AREAS IN THE SAME GEOLOGIC UNIT AT A SIMILAR DEPTH BUT NOT ATTRIBUTABLE TO OIL OR GAS EXTRACTION USED = NORMALLY PRESSURED WITH RESPECT TO DATA IN ADJACENT AREAS IN THE SAME GEOLOGIC UNIT AT A SINILAR DEPTH YR = YEAR OF DRILL-STEN TEST HSU = HYDROSTRATIGRAPHIC UNIT OF THE TESTED INTERVAL B = SHALE AND EVAPORITE AQUITARD C = DEEP-BASIN FLC% SYSTEM TOPO = TOPOGRAPHIC SETTING OF WELL SITE

- CR = CANADIAN RIVER VALLEY
- HP = HIGH FLAINS
- RP = ROLLING PLAINS

.

i.

1 1

American Review Service

L. .

• • •

----- GEOLOGIC, HYDROLOSIC, AND FORMATION PRESSURE DATA FROM DRILL-STEN TESTS -----

085	SHECHO	тн	CL	LATITUDE	LONGITUD	ELEV	TOP	BOTTCM	KOPT	TELEV	ISIP	FSIP	EFIH	FORM	STATUS	¥2	hsu	TOPO
1	891-001	2	τ	34.73282	101.45947	3254	6405	6520	6453	-3209	1922	1922	1225	PERN	LINDE	61	С	1:P
2	BDT_011	5	ž	34.53574	101.00430	2304	5970	6014	5392	-3506	2328	2348	1732	PENN	USED	67	č	8.2
ž	580T_021	,	1	34.30514	101.33902	3265	6744	6411	6378	-3112	2625		2945	L'OL F	CVER	70	č	HЭ
4	BOT_021	2	2	34.34015	101.33902	3266	6340	6411	6375	-3169	2500	2522	2753	KOLF	OVER	70	č	20
5	5C40-078	ĩ	1	35 25760	101.24310	3257	3601	3415	3403	-251	764		1512	DOLE	LULT	74	č	HP
1	CAD-039	÷	•	35 257A0	101 24310	7757	3601	3615	3408	_251	743	713	12.64	KOLF.	ประก	74	č	HP
7	\$CAS_001	i	1	31 72164	102 49157	2012	2002	7053	KOPU	-3071	2437	2435	2753	SIDE F	US70	59	ĉ	HP
Á	\$CAS_007	2	÷.	34.40026	102.02042	3713	5183	5228	5204	_1495	1633	- 130	2747	ROLE	HURT	66	č	НP
	CAS_007	2	2	34.04040 34 64046	102.02042	3711	5038	5630	5599	-2179	1879	1879	2158	HOLF	USED	65	č	HP
10	CAS-009	ĩ	ž	34.64040	102 15479	3731	5330	5619	5000	-2164	3090	3050	4950	KOLE	GVER	62	č	HP
11	\$605-010	2	ĩ	34 51755	102 32345	3055	6762	6792	4777	-2922	2730	3030	2055	ECI F	FRULT	70	č	82
12	CAS_010	2	2	34 51755	102.32545	TASS	4742	4782	6772	-2917	2233	2157	2233	POLE	USED	70	č	LP
17	CHT_020	7	2	34.04510	100 32142	1879	5464	5502	5493	-3614	2.592	2554	2590	PEUN	OVER	75	ē	82
14	CH1-020	÷.	2	74 71487	100.30100	1864	4764	4543	4914	-2024	2015	2920	1723	PEION	USED	62	ē	6.9
15	CH1-052	÷.	2	74 77417	100.37735	1749	4030	4056	4043	-2294	1755	1746	1754	ROLE	USED	70	č	E2
14	CH1-023	÷	7	34 33045	100 34343	1404	7097	5007	8043	-4751	3 (07	3407	1977	MTSS	USED	66	č	RP
17	\$CHT_074	÷	1	34.51005 34.50/CA	100.14105	1465	2433	2443	264A	-043	1155	2007	1702	KOLE.	USED	62	č	62
10	CHT_092	\$	2	34.37070	100.05777	1005	7840	7925	7883	-5017	3393	7700	1935	DENS	ABET	80	č	8P.
10	CHT_092	ž	5	34.43401	100.25723	1694	7475	7740	7499	-5722	3270	3403	2705	62541	OVER	80	Ē	22
20	CHT_002	-	5	34.43401	100 25723	10/14	F035	5150	5093	~3177	2024	2000	1574	67874	USED	20	č	69
21	CHT_002	2	2	34.43901	100.25725	1044	4303	- <u>6</u> 418	4754	-2410	1419	1404	1232	LOLE	LINDE	AD	č	RP
22	CHT_000	ĩ	5	34.43401	100.03723	1449	7447	7070	7507	-4120	7778	3374	1442	DENN	11540	0.3	ž	1.72
	CHI-077	•	5	24 27701	100.04301	1440	7530	7750	7545	-60127	3732	ママルク	1015	35113	ATP T	80	č	23
23	CH1-3085	7	2	74 77119	100.04331	1603	5410	7805 E455	6477	-30.10	2342	2242	1757	DENA	115 20	70	ř	53
24	COCH. A555	-	3	37.33117	102 60007	7073	2310	1023	2033 4780	-5700	1677	1010	2757	LISV.	LISED	73	ă	42
23	COCH-0995	1	2	33.79773	102.07.77	2010	0000	9403	9250	-591	3550	1414	2133	D S HN	11950	42	ĩ	110
27	COCH 0015	•	7	77 50140	103.03520	3700	0010	0570	9430	-5475	3555	32.0	2017	6.2979	10110	42	č	4172
20	COCH-1945	ĩ	3	33.37100	103.03520	3700	11/200	11532	11520	-2204	1073 1077	2923	2202	E E F N	11570	20	ř	113
20	COCH-X01	÷.	5	33.37720	103.02940	3720	10117	10742	11520	-4352	7920	3633	2737	MTES	11350	10	ř	12:0
20		2	5	33.70320	102.00501	7000	10113	10231	10101	-0355	1481	3277	2000	0.03	UTED	20	E E	110
30		~	\$	33.70200	106.74221	3700	9023	9753	9700	-5000	1001	1013	2004	DTHM	USED	49	č	10
31		5	۲. ۵	33.70.00	106.74341	7000	7796	2/76	9166	-5026	3260	7/107	2120	D C N	MINT	20	~	Up .
36	COCH YAM	2	5	33.70200	102.74021	3700	7246	7070	7300	-9700	3912	34.33	9070	LCA	HETO	11	5	1-F UB
33		÷.	2	33.37/00	102.00000	3/65	4030	4007	4000	-10/9 607	1102	1603		LOA	0320	60 81	<u> </u>	417 UD
34	COLN-A09	÷.	2	33.076VL	106.70241	3713	7000	4343	7022	. 4100	1360	2041	1070	EILE	0200	20	С С	60 80
33	tcor 010	÷	2	34.2/431	100.14259	1/32	7969	7934	71722	-0170	34/3	3473	2000	LOLE	LAN T	4.5		87 00
30	+CUI-UIU	1	÷	34.21020	100.43021	1005	3107	21/0	2174	-1305	1442	17/3	1905	LIDEE	HEED	39	r r	67 69
31	COT 013	÷.	2	34.21020	100.45521	1505	2020	21/0	2026	-1307	1347	1347	1074	FULF	HEED	27	č	77 20
30	COT 020	÷	2	34.17300	100.27000	1/17	7828	5011	7975	-0199	2022	3430 7015	1022	NTCO	USED	42	č	50 50
37	COT 029	3	3	34.03020	100.10460	1012	7100	7250	7613	-2300	7213	7010	1027	HITCE HITCE	0325	€3 ∡3	č	nar BD
40	COT 074	7	2	34.05520	100.10400	2007	7430	7040	7500	-5/17	2210	2010	1200	61233 ELLE	LISED	40	č	60 60
41	COT-036	•	2	34.04920	100.30/00	2007	1375	7431	/964 /764	-2417	2710	1004	1100	5666 55-94	0525	10	č	80 20
46	COT 043	4	2	33.97020	100.10500	1004	4720	4/70	4/20	-3134	1000	1000	1000	# 2193 # 25%	DIPR	20	Š	87
43	COT 015	2	2	33.97620	100.10000	1450	4790	4010	4003	-3138	1405	1/07	1112	DELPI	DICAR	C0 (=	5	8 6
44	COT 075	÷.	5	33.95720	100.05580	1023	2012	2042	3032	-2173	1463	1	1110	PEEL	ULFR	60	<u>с</u>	6.7 60
43	COT 001	+	2	33.90250	100.43150	2100	2002	3430	3723	-1020	1200	1200	1777	NOLE	0320	14	2	**
40	COT 001	1	2	33.87790	100.37809	1952	3721	3960	3724	-2002	1610	1010	1/14	LOLF	0329	e2 20		
4/	COT 000	2	Ş	33.0//90	100.3/699	1322	3680	2200	3290	-1230	7020 1050	7900	1241	RULT	FUL I	02	5	50 20
40	COT 003	÷.	2	33.09650	100.25650	1/1/	0728	0702	0/55	-5336	2740	6705	1/01	PEIN	U22U	54	C A	×۲ 00
47	CO1-071	÷	2	33.89900	100.24850	1/14	0333	0750	6879	-5105	27/1	2730	1045	PERM	0320	04	U O	112
50	LUI-UYY	+	2	33.83/00	100.10260	1023	4410	4428	4419	-2/01	1000	1035	1220	PLINI	U320	0/	C A	KP PD
51	LUI-112	÷.	5	35.85090	100.10470	1998	4430	9495	4438	-2559	1920	1320	1/01	FLIG	UCED	62	C	11
52	COT 150	1	3	34.21353	100.29476	1074	2374	5090	2982	-1303	1202	1205	1466	NULP	0520	73	C	λ.Н О.П.
53	CUI-152	2	2	34.20720	100.35440	1748	4587	4625	4505	-2653	1228	1933	1525	PENN	USED	16	C	K7
54	CUI-171	T	3	54.18419	100.40195	1926	4386	4900	4593	-2957	2035	2035	1730	PERM	USED	60	C	ik P

السادينية الأساريانية

أجاسا مرا

110

, **i**

and the second second

----- GECLOGIC, HYDROLOGIC, AND FORMATION PRESSURE DATA FROM DRILL-STEM TESTS -----

085	SHECNO	TN	CL	LATITUDE	LONGITUD	ELEV	TOP	EOTTO I	1:2PT	TELEV	ISIP	FSIP	EFICH	FORI	STATUS	Y۶	esj	TCPC
55	COT-206	1	3	33.95000	100.36540	1854	6869	6335	6912	-4943	2540	2596	514	PETRI	UPDE	62	C	50
56	COT-275	1	3	33.83730	100.16240	1810	4412	4421	4415	-2305	1078	1855	1622	PENH	11250	71	Ē	8 S
57	COT-X03	2	2	33.89470	100.24361	1720	6537	6920	6879	-5159	2975	2925	1705	PERN	1000	Ă.C	r.	69
58	COT-X04	1	2	33.90781	100.42239	2031	3589	3619	3504	-1573	1451	1832	1729	NGLE	1963	44	č	23
59	COT-X07	ĩ	2	33,99001	100.22000	1715	5074	5308	5231	-3575	233A	2300	1610	DEFN	19520	10	ř	2 C
60	COT-X08	ī	2	33.04990	100.10009	1610	5540	5471	EESC	-3776	2774	0207	1702	DISTO	10220	7,	ř	800 1003
61	COT-X09	ī	2	33. A1970	100 14260	1740	2175	4100	2153	-1708	04.37	2202	3400	DETIN	HEED		ž	R.* D.*
62	COT-X10	ī	2	33.89460	100.15420	1755	4779	4300	47/5	-2410	1373	1070	1720	DETIN	LICES	13	ž	
63	COT-X10	2	2	33 84640	100 15470	1755	5435	5445	EK26		10.0	2310	1022	PE103	17 C C C C C C C C C C C C C C C C C C C	-	ž	PL 27
64	COT-X11	,	2	33 91051	100.42020	- 2114	4765	2343	2345	-2203	1710	1710	3473	82223		7-7	~	54° 500
65	COT-X12	ī	2	34.00410	100 39710	2022	LOET	7022	7023	-5003	5.721.	2951	1573	SDEC	11530	7.4	ž	1717 1719
66	COT-X12	,	,	34.00410	100 78710	2022	0,00	4950	ノビビゴ	-2001	1.172	1277	1277	L'OLE	0.20	72	2	F12
47	COT-X13	5		34.00410 34 95461	100.30710	1700	20.30	9257	9055	1121	1021	1073	1030	NOLE	ULED 18077	751	č	8147 1573
49	COT_X13	•	,	TA 25021	100.20109	1704	E703	2035	6710	-1101 2001	1031	1021	10:2	na Er metra	1.00	1	۲. ۲.	5.P
60	COT-X13		5	77 64300	100.20107	1704	5104	5715	5710		1079	1670	1105	PENNI PENNI	0.05	13		N*
70	COT-YIE	-		33.03340	100.15005	1702	1107	4323	4375	-2203	4626	1025	1/040	PEON	1.000	12		N.P.
71	COT_¥14	÷.	5	33.04039	100.10529	1015	2778	4/100	4200		2276	6200	1024	DENN	10510	20	2	118
72	COT-X13	÷	•	33.04037	100.10427	1704	4020	2900	4270		20.0	2/10	1207	PER I	10229	70	2	1511 1819
72	COT-A17	•	, ,	77 01040	100.1000	1075	6770	5270	6230	7020	2010	2010	1273	PC101	0020	13	2	77 F
70	COT-710	1	5	33.71750	100.33437	10/2	2720	2010	2705	-2070 5247	6441	2961 8974	1077	PC.41	1000U	10	2	142
75	COT-A17	ŝ	5	34.00010	100.20773	1017	0117	5707	5005	70.7	2127	1076	1400	PEIN	000g	55	2	<u>к</u> р Ва
74	CD7-002	÷	2	37.1/302	101 00501	1710	2007	3020	2021	-2007	1030	1033	1130	PELAN CMPA	5352PW	23	- L	10 In 10
70	CR0-002	ħ	7	33.00000	101.47541	7100	0703	0030	6720	-2012	7004	2534	24/3	DELA	0520	91 75	2	10
70	CED-002	-	7	77 77510	101.47541	2010	733U	7330	5420	-0300	33220	2027	1000	1.05		21	ن م	107
70	CR0-004	1	7	33.77510	101.10071	2012	577U	5703	0710	4150	6000	2723	1200	LUT	0310	01	0	617 110
90	CR0-0133	•	3	33.33300	101.2/4/0	7001	7603	7622	7619	-0175	4010	4010 6027	2032	1122	00227	66	L	1111
. 00	CR0-014	÷	2	33.00247	101.31/07	3701	3713	5737	DVCL ETOY		0711	0027	0110	COF	0310	12	5	107
01	CR0-0173	•	5	33.31140	101.10000	2/01	3323	2030	0000	-2072	7000	2203	6440	52 KA	0520	41	2	115 115
- 67	CR0-0223	9	3	33.30270	101.50010	3013 2075	7667	7340	7203	-6272	2920	2010	2775	UCE	0210	00	с -	274-3 3.883
03	CR0-791	÷	4	33.07100	101.03071	67/3	4303	9019	4071	-1010	1010	2000	2777	UCF	11558	52	0	PP
04	CK0-701	5	2	33.07100	101.07071	27/3	5160	5155	2146	1707	1713	1240	2637		6320	94		11(* 151:
05	CRU-AU2		~	33.20749	101.13431	2013	4334 E0th	4439	6106	-1/0/	1015	1016	2114	BLUK	10000	91		1024
60	CR0-AU3	÷.	2	33.30239	101.44400	3020	5054 E00E	5310	5102	-2102	1413	1743	0010	ULF THER	0020	0.7	- C	112
01	CRU~X04		6	33.02300	101.25770	3020	5203	5653	5230	-2210	1245	1746	0010	1020	0320	.0	5	67
03	CR0-X04	4	2	33.02300	101.25790	3020	5500	5000	5319	-2209	2269	2100	2007	LLF Frint	03:10	70	0	22.00
07	CRU-AUS	3	2	33.00251	101.42920	2021	0042	0090	0007	-2000	73 77	73	-3463	PENI	01.27	71	.i.	112
90	LRU-AU0	+	2	33.82430	101.54410	2121	4102	4147	4125		2094	2027	3339	CLLR ODDA	U. 21	14	2	642 * 6 * 2 *
71	CR0-208		4	33.5/230	101.42004	2070	0313	0340	0333	-3203	2242	2303	1211	2PRA	USED	17	2	1717 1919
72	CR0-709	÷	2	33.5/310	101.12531	2425	4270	4990	4)74U	-2515	5370	1200	2123	USF	02 20	90	2	RP (199
73	CR0-A10	1	2	33.36101	101.30700	2010	4270	4000	4030	-10-10	1/20	1100	2202		ULCJ	50	5	116
94 05		\$		33.47787	101.09000	2329	4034 E204	4/44	4009	-2300	1541	1041	1242	LUF	0550	21	0	100
75	CRU-A12	÷	2	33.57980	101.07500	6761	1500	2143	2/10	-2607	2140	2203	1033		0000	21 21	5	- 10P
70	UHU-X17	÷	з.	33.55051	101.11050	23//	4009	4000	4000 0/22	-1026	12:4	7433	17/3		USED	11	2	1179
97	HUEA-0325	Ţ	÷.	34.97330	102.21587	3808	2000	2/10	2023	1022	5/5		3403	LONA	0320	60	5	10
98	*U2A-U335	ž	÷	34.93550	102.36510	3077	2/49	2839	2194	1022	1150		3707	LSPA		22	5	110
77	#UEA-0303	2	1	35.05280	102.45000	4010	2039	5909	5//0	-1/24	1122	1207	2043	HULF	11000	0.2	с с	F*
100	#ULA-0363	0	3	35.06280	102.46000	4016	5030	5767	5//0	-1/54	1/15	1021	2200	NOLP	0029	53	5	112
101	010-001	÷	5	33./9460	101.02161	3021	5125	5304	5215	-2174	101/	10/2	1222	NULP	USED	07	5	194
102	010-003	1	5	33.62260	100.77750	2/53	4005	4098	4052	-1299	1920	1220	2371	NITCH	ジンモリ	55	5	NP C
103	010-X01	_Z	3	55.67691	100.73199	2345	3265	3580	3523	-978	85	55	-/79	KUCV	0705	05	3	K2
104	D1C-X01	3	3	53.67641	100.73199	2345	5830	3950	3930	-1595	1517	1519	1450	RULF		66	C	RP
105	01C-X01	4	3	33.67641	100.73199	2343	4010	4025	4048	-1703	1504	1534	1/68	ROLF	NULT	66	C	87
106	01C-X01	7	Z	33.67641	100.73199	2345	5585	5620	5503	-3259	2143	2140	1680	NCLE	UCED	65	C	RP
107	D1C-X02	1	z	33.59420	100.60800	2212	5229	5290	5260	-3048	2103	2103	1906	MCLF	0520	67	C	¥.7
108	DIC+X03	1	Z	33.61324	100.60817	2176	4337	4341	4339	-2163	1666	1625	1682	KOLF	USED	77	C	£F

----- GEOLOGIC, HYDROLOGIC, AND FORMATION PRESSURE DATA FROM ORILL-STEN TESTS -----

08S	SHECNO	TN	CL	LATITUDE	LONSITUD	ELEV	TOP	EOTTON	HOPT	TELEV	ISIP	FSIP	EFIIH	FOTH	STATUS	YR	HSJ	T 67-0
																	•	
109	DIC-X03	3	2	33.61324	100.60817	2176	5317	5325	5321	-3195	2045	2043	1591	KOLF	Fi Ji I	11	<u>i</u> .	×.
110	DIC-X04	1	2	33.64326	100.71040	2192	5040	5050	5045	-2853	2308	2305	2473	1.CLF	CULR	/8	ų.	1999 - 1999 1999 - 1999
111	DIC-X05	- 4	2	33.83057	100.59559	2309	5337	5353	5348	-3339	2202	2202	1743	PE:31	0380	- 19	C C	
112	DIC-X06	4	2	33.60442	100.87611	2447	6938	7000	6994	-4547	2314	2730	1947	FERR	UJED	63	C	£77
113	DIC-X08	1	3	33.50929	100.70560	1990	4462	4510	4496	-2505	1572	1535	1168	NELF	USC E	73	C	365
114	DIC-X09	1	3	33.50160	101.01350	2945	7590	7634	7307	-4662	2015	1933	-12	M195	UNDE	71	<u> </u>	20
115	DCN-027	1	3	34.96623	100.78648	2518	2853	2707	2085	-267	200	200	195	NOLF	UNDE	63	2	Eb
116	DON-027	2	3	34.95623	100.78548	2618	3193	3242	3220	-602	E27	827	1303	HOLF	US 10	53	C	R 🖻
117	\$D0X-031	1	1	34.79401	100.65601	2292	3350	3397	3374	-1052	1215		1722	1:DUF	USED	64	С	2 -
118	DON-036	1	3	34.78533	100.74779	2539	3195	3270	3233	-594	157	157	-332	NOLF	UNCE	23	C	K9
119	DOM-036	3	3	34.78633	100.74779	2539	4570	4711	4691	-2152	1620	1541	1587	FEXN	LULT	3	С	65
120	D0X-036	4	3	34.78533	100.74779	2539	6620	6675	6578	-4109	2520	2673	1707	Penn	USED	69	Ç	<u>89</u>
121	DCN-039	1	3	34.86656	100.00387	2717	3340	3920	3860	-1163	52	52	-1043	NCLF	E::05	5'ł	C	E.F
122	*DCN-076S	1	1	35.00500	100.03310	2590	2950	3123	3037	-447	615		1437	KCLF	HULT	E1	С	RP
123	*DON-0765	1	2	35.00530	100.85310	2590	2950	3120	3035	-445	779	779	1353	NOLF	USED	<u>a</u> 1	С	£÷
124	FLO-001	1	2	34.24300	101.24820	3187	4533	4726	4570	-1423	1502	1530	2214	MICH	USSO	76	E	£.9
125	FLO-004	1	3	34.16440	101.24210	3170	4675	4797	4736	-1555	1523	1452	1949	1:120	USED	64	З	89
126	FLO-004	2	3	34.18440	101.24210	3170	5101	5153	5127	-1957	1640	1611	1628	HOLF	USED	64	С	62
127	FLO-005	2	2	34.18420	101.24500	3191	9135	9153	9147	-5955	3515	3499	2156	HISS	USED	69	¢	1:2
128	FLO-009	1	2	34.12900	101.33380	3268	7609	7783	7596	-4428	2527	2527	1404	PEIN	DEFR	67	С	HP
129	FLO-013	1	2	33.98199	101.32320	3158	8350	8524	6437	-5279	3877	3719	3558	PENN	OVER	69	C	111-
130	FLO-014	3	2	33.92641	101.53160	3224	£432	6516	8524	-5300	3220	3265	2131	PENH	USED	69	С	112
131	FLO-023	5	3	33.90199	101.37740	3162	7924	6050	7587	-4825	2957	2794	1999	MISS	USED	7 ŝ	C	HP
132	FLO-027	3	3	33.83(^)	101.30299	3111	6655	6710	6528	-3577	2400	2403	1962	PENH	USED	65	С	нр
133	FLO-028	2	3	33.87559	101.28371	3105	6356	6590	6573	-3773	2355	2356	1664	PENN	DEPR	65	С	НP
134	\$FLO-0385	2	1	34.30643	101.31654	3258	5500	5531	5541	-2293	1907		2118	NCLF	PULT	77	С	HÐ
135	FLO-0385	2	2	34.30643	101.31654	3258	5500	5581	5541	-2283	1907	1907	2118	NOLF	USED	77	C	HÐ
136	F0A-001S	1	3	34.05399	100.03307	1750	3550	3570	3550	-1810	1532	1532	1725	KOLF	U 92D	63	С	RF
137	F0A-001S	3	3	34.05399	100.03307	1750	4554	4603	4591	-2331	1657	1640	993	F 21 24	DEPR	ć3	С	22
138	F0A-0015	4	3	34.05379	100.03307	1750	4641	4851	4346	-30\$5	1735	1785	1023	PERN	DEPR	63	С	62
139	F0A-0015	5	3	34.05399	100.03307	1750	4900	4938	4919	-3169	1639	1839	1075	PERN	NGET	ć9	С	K.2
140	F02-0015	7	3	34.05399	100.03307	1750	7470	7518	7494	-5744	3257	3267	1795	HISS	USED	€5	С	82
141	FOA-X02	2	3	34.16063	100.01044	16ól	8115	6212	8164	-6203	3335	3705	1026	HICS	UBEU	¢4	С	63
142	GRA-014	3	2	35.58154	100.73601	3108	10951	11101	16976	-7853	4318	4197	2097	PENN	UBRD	70	C	ЧHР
143	GRA-014	- 4	2	35.58154	100.73501	3108	11101	11400	11251	-8143	4359	4559	2379	re129	FULT	70	. C	55
144	GRA-021	4	2	35.60495	100.53848	3005	12434	12731	12533	-9575	5303	5171	2663	HIS3	0360	33	C	HP .
145	GRA-023	3	2	35.59541	100.54455	2943	7336	7865	7851	-4923	2878	2845	1734	FERM	USED	65	С	8.7
146	GRA-024	14	2	35.53846	100.54326	2852	12650	12659	12675	-9223	5213	5213	2203	Hiss	USED	65	C	<u>Bb</u>
147	GRA-026	1	2	35.56937	100.55876	3004	11298	11332	11315	-6311	3304	3394	-479	PENN	DEFS	67	C	KP -
148	GRA-028	5	2	35.52463	100.57120	2876	11700	11335	11793	-8917	4775	4776	2105	MISS	USE0	ć7	С	R.P
149	GRA-029	1	2	35.52744	100.53532	2892	7616	7839	7828	-4936	2835	2300	1607	PERM	HULT	è7	C	Rh
150	GRA-029	2	2	35.52744	100.53582	2692	7954	7990	7972	-5090	2919	2995	1656	PERH	RULT	67	C	RP
151	GRA-029	3	2	35.52744	100.58582	2692	8318	8663	C941	-5949	3379	3183	1849	PEIR	NULT	67	C	£.5
152	GRA-029	4	2	35.52744	160.58582	2892	9242	9266	9254	-6362	3445	3425	1634	PENH	USED	ś7	¢	65
153	GRA-029	8	2	35.52744	100.58592	2892	11449	11518	11404	-8592	4775	4776	2430	ELLE	U530	ó7	C	R ^D
154	5RA-029	9	2	35.52744	100.58F82	2592	11520	11520	11550	-8658	4776	4776	2354	ELLE	USED	67	С	25
155	GRA-029	10	2	35.52744	100.58582	2892	11532	11734	11659	-8765	4936	4918	2625	ELLE	USED	67	C	6F
156	GRA-029	11	2	35.52744	100.58582	2692	11762	11882	11822	-8930	4834	4760	2225	ELLE	USED	67	С	85
157	GRA-029	12	2	35.52744	100.53532	2692	11893	11942	11913	-9021	4352	4834	2176	ELLE	USED	67	С	89
158	GRA-029	13	2	35.52744	100.58582	2692	11942	12061	12002	-9110	4951	4957	2316	ELLE	USED	67	С	RP
159	GRA-033	5	2	35.53985	100.66367	3028	11550	11700	11625	-8597	4705	4705	2261	ELLE	USED	67	C	Eb
160	GRA-037	2	2	35.54924	101.03651	3271	4050	4052	4055	-785	1035	1035	1606	RCLF	USED	70	С	HP
161	GRA-043	6	2	35.46124	100.66115	2705	11430	11451	11441	-8736	4923	4837	2663	\$IH2	USED	65	С	EP.
162	GRA-043	19	2	35.46124	100.63115	2705	12934	13203	13069	~10364	5424	5393	2153	ELLE	USED	65	С	RP

112

.

÷

a A. Ana na Anna ana i

the same that have and the set will be a set

1-1-1-1

÷

----- GEOLOSIC, HYDROLOGIC, AND FORMATION FRESSURE DATA FROM DRILL-STEM TESTS -----

OBS	SHECHO	TN	CL.	LATITUDE	LONGITUD	ELEV	T07	BOTTOM	HOPT	TELEV	ISIP	FSIP	EFILA	FORH	STATUS	YZ	RSU	Tono
163	GRA-045	2	2	35.50600	100.62402	2839	6402	6509	6459	-7440	2155	2187	1403	078.1	1.4 20	70	~	60
164	GRA-045	5	2	35.50600	100.62002	2A39	11327	11457	11322	_0577	Ana C	1520	2033	MICS	herm	77	2	15.0- Petry
165	GRA-045	7	2	35.50300	100.62002	2413	13021	33200	13121	-10762	F100	2722	1710	64313	0000	16		
166	GRA-045	ė	. 2	35.50400	100.42402	2970	17571	17533	17544	-10725	5113	5004	2714	61 1 E	02.10	12	2	5.0°
147	GPA-NAA	á	2	TE 47070	100.00400	2740	19504	10200	19234	-10725	5722	2430 E171	2647	ELLE UTC	0560	10	L S	13.2° 1545
149	604-040	2	5	33.77767	100.54025	2107	16347	12007	123/9	-1210	2121	2737	2021	VIUL BERNIS	0220	17	C	112
140	CRA 047	د ۲	د •	- 33,40271 - 75 h/h71	100.55097	2033	11445	11407	11400	-2030	1637	2597 -	-2015	PERM	0.25	(9	ç	8.2
107	CDA 047		2	33.43271	100.53997	2033	12400	12452	12451	-9593	5249	5105	2520	VICE	U310	55	C	337
170	C3A 037	~	~	33.402/1	100.53900	2030	13095	13217	12122	-10320	2239	5545	2557	ELLE	USED	Ú Ö	C	222
170	GRA-047	~	~	33.40271	100.55703	2338	13410	13620	13230	-10292	5715	5003	2453	ELLE	Case	63	C	2.2
176	CDA 003		2	33.432/1	100.559.3	2033	12004	12012	13040	-10892	5/15	5503	2397	ELLE	0.3:0	13	Ç	EP.
173	GRA-071	÷.	~	33.32303	100.50914	2764	6009	8021	6(11	-5037	2537	2974	1591	PERE	HEEF	68	C	6.F
1/4	CRA-UYI	2	2	35.51155	100.53914	2924	8735	8767	8761	-5537	3263	-3210	1737	PETAL	UCED	5B	С	EL
1/5	GXA-UYI	3	ž	35.52556	100.53914	2924	6854	8290	6377	-5953	3374	3355	1633	PENA	HLLT	58	C	<u>11</u> 2
1/0	GRA-100	1	z	35.53701	100.62585	3046	12241	12343	12442	-9356	4975	4032	1854	VICL	US10	79	С	N.P
1//	GIA-113	1	2	35.45804	100.65711	2764	10572	10255	10764	-8030	4424	4424	2210	VIOL	USED	77	· C	K.2
1/8	GRA-115	2	2	35.45504	100.66711	2764	12414	12715	12565	-9231	5127	4791	2031	ELLE	USEC	79	С	6.5
1/9	G.4A-132	1	z	35.42702	100.53711	2719	12622	12355	12639	-9920	5255	5011	1733	VIOL	USED	77	C	37
180	SHALE-006	1	Ï	34.11000	101.69300	3444	7664	C035	7950	-4506	3190		2593	HCLF	NULT	67	0	85
181	HALE-UVO	1	5	34.11000	101.69300	3444	7854	8035	7950	-4506	3662	2979	2561	LICL F	USED	67	C	105
182	HALE-014	1	- 3	33.99510	102.06630	3492	6400.	6510	6455	-2963	2330	2350	2529	HICH	CEED	61	в	- 82
183	HALE-014	z	3	33.99510	102.06630	3492	7255	7301	7273	-3735	2750	2750	2530	NCLF	USED	61	C	HP
184	HALE-014	5	3	33.99510	102.06630	3492	9445	9473	9439	-5:47	3675	3693	2560	HISS	USED	-51	C	85
185	HALE-033	1	3	33.84690	101.73599	3280	8282	8306	8294	-5014	72	72	-4843	FE164	DEDS	72	С	5:2
186	HALE-034	4	Z	33.99529	101.75050	3319	7992	8073	8033	-4714	2535	2605	1293	F2194	DEFR	62	С	E1-
187	HALE-041	z	3	33.84599	101.83369	3343	6630	6635	6658	-3315	2440	2440	2316	RICH	UCER	61	3	1 P
169	HALE-041	3	3	33.84599	101.83369	3343	9123	9149	9133	-5795	3200	3450	2232	PERN	USEC	51	Ċ	HP.
189	HALE-042	1	3	33.83270	101.85430	3344	6510	6535	6523	-3179	24:0	2499	2952	HICH	UCED	59	6	112
190	HALE-042	4	3	33.83270	101.65460	3344	9165	9165	9176	-5832	3535	3535	2395	PEIC	USED	59	C	112
191	HALE-042	8	3	33.83270	101.85460	3344	11299	11345	11322	-7979	4335	4385	2075	11255	USED	<i>2</i> 9	С	HP
192	HALE-049	1	2	33.84270	102.03880	3415	6590	6703	6697	-3281	2524	2593	2547	RCLF	USED	64	С	1417
193	HALE-050	1	2	33.69960	102.04111	3427	7290	7350	7320	-3893	2721	2637	2735	ROLF	USED	72	C	HP
194	HALE-071S	1	2	33.89760	102.03810	3336	6815	6844	6830	-3494	2554	2515	2430	KOLF	USED	76	C	92
195	HALE-XOZ	6	2	33.91299	101.93300	3409	\$203	976B	\$936	-6523	3309	3733	2253	FERRE	USED	70	0	HP
196	HALL-019	1	3	34.36874	100.69503	2081	5015	5030	5023	-2942	2054	2000	1799	PERH	USED	32	C	25
197	HALL-0415	3	3	34.33302	100.41923	1695	4014	4032	4623	-2923	1934	1934	153E	PETN	USEO	79	C	Re
198	\$HALL-0635	1	1	34.55715	100.89093	2208	3365	3390	3378	-1170	1350		1969	HOLF	FULT	72	С	SP
199	HALL-C63S	1	2	34.55715	100.89093	2208	3365	3390	3378	-1173	1253	1268	1757	HOLF	USED	72	С	25
200	HART-010	1	2	35.98828	102.22638	3833	3495	3600	3548	235	570	570	1501	HICH	USED	77	ß	EP
201	\$HART-013	7	1	35.94876	102.19234	3832	4396	4540	4518	-1095	1155		1522	HOLF	USED	57	С	HP
202	\$HART+016	1	1	35.96111	102.42262	3921	3916	3957	3937	-16	1313		3015	ROLF	OVER	56	Ç	HP
203	HART-020	1	3	35.95491	102.89333	4273	5578	5739	5714	-1491	1797	1684	2499	PEIN	USID	33	C	НP
204	HART-026	1	2	35.90353	102.59322	3902	4218	4268	4243	-341	829	791	1572	NICH	USTD	70	Ð	CR
205	HART-026	3	2	35.90353	102.53322	3902	6692	6712	6702	-2000	1050	1350	1492	FERN	HULT	70	С	23
206	HART-026	4	2	35,90353	102.59322	3902	7472	7524	7438	-3596	2270	2226	1542	PENN	USEO	70	С	23
207	HART-029	1	2	35.90208	102.33855	3591	6478	6511	6495	-2304	65	65	-2454	PETIN	UIDE	74	С	Ha.
208	HART-029	3	2	35.90208	102.33065	3691	6732	6903	6770	-2879	2302	2302	2433	PERN	USED	74	С	87
209	HART-029	4	2	35.90208	102.33865	3891	4319	4391	4355	-454	792	750	1354	KCLF	USED	74	c	HF
210	HART-0325	1	2	35.89317	102.50732	3937	6298	6410	6354	-2417	1766	1756	1659	PENN	USED	63	c	CR
211	HART-034S	1	2	35.78799	102.40602	3830	7190	7218	7204	-3374	1934	1955	1039	PENN	UNDE	72	č	CR.
212	HART-0535	ī	2	35.80508	102.69313	3941	6700	6731	6716	-2775	1900	1872	1510	PEIRA	US29	50	Ē	KP.
213	HART-056S	2	3	35.70642	102.60633	3897	2620	3893	3872	25	897	853	2015	HICH	OVER	65	8	CR
214	HART-056S	3	3	35.70642	102.68633	3897	4014	4044	4029	-132	603	809	1735	HOLF	USED	65	ċ	63
215	HART-0565	4	3	35.70442	102.68633	3897	4060	4030	4070	-173	919	627	1548	HOLF	HULT	65	č	CR
216	HEM-043	3	2	35.92944	100,44853	2907	17852	18225	16039	-15132	7611	7554	2432	HUNT	USED	70	ē	R2

113

----- GEOLOGIC, HYDROLOGIC, AND FORMATION PRESSURE DATA FROM CRILL-STEM TESTS -----

CBS	SWECNO	TN	CL	LATITUDE	LONGITUD	ELEV	TCP	BOTTOM	TSCH	TELEV	ISIP	FSIP	ерыя	FCRH	STATUS	YR	FSU	TOCO
217	HEN-323	3	2	35.62505	100.51138	2952	14075	14225	14150	-11169	E442	5559	1032	HERT	Uspa	72	c	Ē.P
218	HEH-323	4	2	35.62505	100.51132	2932	15575	15732	15354	-12692	6003	6354	2201	FLEE	USED	77	č	6.5
219	HEH-328	3	2	35.84411	100.22273	2275	17840	17973	17010	-15324	797A	7.378	2534	10.041	CYER	71	č	93
220	HEM-3295	10	2	35.81020	100.46025	2581	11232	11372	11303	-2147	4475	4535	2143	DENI	11312	20	ž	22
221	HEH-3295	11	2	35.01020	100.44095	2491	10902	11050	10074	_2135	0770	2630	2717	DENN	0.000	3.0	ž	52
222	HEM-3435	-1	2	35.70354	100.29559	2414	11227	11337	11307	_0133	4273	4010	2470	DENN	0703	75	~	8.5
223	HEH-X02	ā	2	35.92023	103.22931	2700	14916	14020	16097	-14507	7041	7043	2010	HTCS	CVEN	2.3	~	014 014
224	HEH_XOX		2	35.70023	100.22032	2454	12346	12070	10237	-10514	1121	1731	4104	110.00	0.20	20	2	- CA
225	HEN-X05	13	2	35.49205	100 52074	2555	13402	13454	13900	_10349	6330 6710	6533	1074	HIGE	HELE	75	ř	50
226	HEH_X07	-,	2	25.0702	100 52034	2849	4235	4515	4500	-1431	1202	1921	1774	11200	HELD	2:	~	
227	HEN-X07	÷	2	35.70782	103 52034	2249	6255	8614	A520	-6021	2020	7104	1400	C TAM	115 23	77	ž	- 66 100
228	HEH-X09	ī	2	35.94101	100.02000	2030	5239	5344	EPT:	-3002	2002	2002	1400	e de cara	NEED	70	ž	52
229	HEH_X10	ī	2	35 77532	100.20402	2828	10070	39390	10105	-0347	NCTL	1721	1004	LITCO.	USEB		5	53
230	HEH_X11	Ē	2	35 AC144	100.45676	2323	16000	12070	17177	14775	7026	7271	7700	NTCO	0210	10	2	- 6.7 120
231	HEH_X12	1	2	35.73039	100.07555	2520	7205	17455	2002	-14775	7203	1001	2009	0200	Dien	72	с 2	877 1203
232	HEHLYIS	•	2	35.75700 35 A07AT	100.27555	2479	10140	10577	10761	-3303	-299	100	-2122	10.517	Dar X		2	87 673
233	KEH_X14	ž	2	75 A2074	100.41743	2015	17107	47333	47331	-10012	0131	0137	6023	DE SU	0220	ور. ريم		117
274	HEN_YIA	้า	2	35 44762	100.07945	2103	15955	7313	7466	-1677	¥33	924 5077	-2007	PE:41	LEFK	11	Ľ	207
235	HEN_X17	÷	2	35.04352	100 10021	2535	10624	10170	107/8	-16131	6033	2712	1131	DIN	0.120	77	с ~	N.C. 197
236	HEH_X17	4	2	35 9445A	100.14021	2533	13334	11775	110/15	6712	7194	7155	3229	1754-14 1754-14	0.23	70	č	K- 07
237	HEH-X1A	1	2	35.77255	100 32035	5425	10042	11375	11010	-9717	9150	5253	-1423	DETNA	JINK	75	с г	10.51
233	HEM_X19	12	2	35 01995	100.32003	2020	11002	11404	11205	-0374	4000	4303	10143	FE-81	0320		č	5 F
239	HEH_X20	7	2	35 40549	100.07502	2746	11177	11393	111073	47133	0000	6333	10101	F 61 61	UVER Upper	64	5	KP 5 7
240	HEN-X20	7	2	35.63583	100.50350	2725	3151A	115/0	11221	-0372	5973	4336	2072	0211	0310	ين ت ج د	Č	- 10 10
241	HEH_X20	12	2	35 68589	100 50458	2745	10465	14775	10700	318:0	1073	4700	2976	NTO	0724	63	L 2	*/* ***
242	HOC-004	-,	2	33.74541	102 12000	7747	0702	10070	6070	4617	0.001	0677	2773	DENT	0101	40		
243	HGC-012	5	2	02678.77	102.12000	3357	AGIS	70/7	7730	-3553	2220	9020	2720	1.62	USER	63	د ع	616° 4.229
244	NOC-012	2	5	DOLTA TT	102 24100	3430	0772	0072	0017	-3037	3720	7727	2372	DENN	DECO	0 2.2	6	11/2
245	H0C-019	ī	2	33.53399	102.23460	2422	9709	9757	5770	-4340	3709	2742	1 2 2 3 0	DENN	DEPR	47	č	120
245	HCC-019	3	2	33.59399	102.234.50	7477	10040	10072	10046	-4433	2124	2103	1019	DETAX	DEPR DEPR	57	č	- 017 120
247	HOC-021	ī	2	33.55499	102.12421	3370	59.59	6137	16000	-00000	0304	2027	2405	175	USER		5	101
249	HOC-0445	ī	2	33.80780	102.35240	3487	7050	7140	7115	-3408	2730	2530	2000	NTCH	11520	27	5	110 110
249	HOC-0455	2	2	33.77843	102.29764	3470	9044	9116	9020	-5400	3197	3163	10/5	REN	5560	6.7	ž	5.0
250	HOC-0465	ž	2	33.80969	102.23940	3464	6830	7006	6048	_3362	2230	2695	7116	LCE	CUTD	77	а В	5.3
251	HOC-0915	ī	2	33.73933	102.21765	3430	7032	7072	2052	-3422	2543	2223	2222	NTCH	Hean	: 7	8	1:0
252	HOC-0915	2	2	33.73933	102.21765	3430	9243	9304	9274	-5324	3450	7453	2200	DEVN	USER	50	ž	110
253	HOC-1215	ĩ	2	33.69780	102.23981	3411	9350	9375	9747	-5952	3702	7411	2(30	R Ft St	11550	25	ř	100
254	HOC-1215	2	2	33.69780	102.23981	3411	9930	10070	5985	-6574	1374	1376	_7730	DETON	DECO	26	ž	11/3
255	HOC-1225	1	2	33.72380	102.20917	3440	7235	7326	7081	-3641	45	45	-3/01	LCE	7620	70	ě	112
256	HOC-1315	1	2	33.64900	102.27901	3483	6850	6933	6992	-3409	132	132	-3104	LCE	rt27	27	8	Na
257	HOC-1315	2	2	33.64900	102.27901	3483	7030	7110	7070	-3567	2510	2423	2205	LCE	USED	77	B	112
259	HOC-1375	1	2	33.62640	102.37830	3539	7005	7080	7043	-3504	52	52	-3334	LCF	0522	71	č	147
259	HOC-1375	5	2	33.62640	102.37830	3539	8930	8791	8911	-5372	3535	3535	2786	PENM	11750	71	ř	44
260	HOC-1375	7	2	33.62640	102.37830	3539	10055	10083	10069	-6530	34	34	-6452	PENN	DEPA	71	č	110
261	HOC-1375	10	2	33.62640	102.37830	3539	8715	8775	8755	-5216	3443	3443	2729	LOLE	USED	23	č	82
262	HOC-1395	1	2	33.69735	102.44128	3567	4665	4774	4720	-1133	1449	1420	2009	LSA	USED	77	Ř	12
263	HOC-1525	3	2	33.66449	102.22279	3430	9990	10038	10014	-6584	3330	3330	1301	PENN	סהשם	61	ō	122
264	HOC-1555	2	2	33.67251	102.14709	3391	9785	9806	9756	-6405	3944	3740	2701	P5:34	DESO	57	č	Htt
265	HOC-1605	1	2	33.63029	102.57210	3654	11131	11162	11147	-7493	4332	4332	2504	MISS	U3#5	72	ř	13
266	HOC-1825	3	2	33.64726	102.27707	3470	9649	2664	9657	-6187	84	54	-5993	PELIN	0777	24	č	60
267	HOC-1985	1	2	33.57620	102.41960	3522	9424	9484	9454	-5932	3715	3535	2543	PERN	USED	62	č	ųэ
268	HCC-2045	1	2	33.56323	102.34200	3501	8130	8220	6175	-4474	3024	3024	2304	LCF	10575	78	Ř	1.12
269	HCC-2045	2	2	33.56323	102.34200	3501	10075	10181	10128	-6627	113	109	-6365	PENN	DCER	70	5	39
270	HOC-2385	4	2	33.54491	102.40849	3519	8081	8319	6200	-4691	3227	3202	2766	KOLF	USED	72	č	н£

÷

.

....

1.....

- L

And the second second

. المعدد - -

. 1

. . . İ

----- GEOLOGIC, HYDROLOGIC, AND FORMATION PRESSURE DATA FROM DRILL-STEM TESTS -----

035	SHECHO	TH	CL	LATITUDE	LONGITUD	ELEV	TOP	BOTTCM	NDPT	TELEV	ISIP	FSIP	EFIGH	FORH	STATUS	YR	FSU	1070
271	HOC-2385	5	2	33.54491	102.40849	3519	9169	9327	9248	-5729	3725	3726	2249	PEIN	ELLT	72	c	117
272	HCC-2385	7	2	33.54491	102.40839	3519	9755	9330	9793	-6274	3779	3779	2447	PETRI	1.570	22	č	110
273	HOC-2485	3	2	33.53390	102.37460	3493	7935	6065	7925	-4502	0005	2920	2042	LCS	110.50	20	ě	NO.
274	HOC-2565	Ť	2	33.54543	102.31467	7400	A176	8575	6501	-5011	7717	127=	5200	105	HETD	20	Е	111
275	HOC-2500	ĩ	-	77 5/010	102 24810	2029	4979	4715	4963		27.11	3970	0541		110-10	72	5	5
974	NOC-2573	-		77 64910	102.20010	3.36	0272	4707	0234	-2012	6799	2230	6332	005		10	2	
270	NOC 2408	ь т		33.34010	102.20010	3432	0310	0304	0331	-2079	2372	2330	2001		P.C. I	76	5	
277		÷	<u> </u>	33.30232		2423	8263	0140	6174	-45/6	3032	2240	2321	ICCB	0585	19	9	1 F FF
2/0	HUC-2025	1	ž	33.55385	102.22693	3450	6250	6555	6407	-2957	2470	2470	2744	UCF	USED	77	B	Ka
219	HUC-2715	1	2	33.53/20	102.128.0	3349	6035	6150	6393	-2144	2240	2202	2925	UCF	U3ED	71	Ð	62
280	HOC-2715	2	2	33.53720	102.12840	3349	7724	7808	7765	-4417	1510	1374	-932	DEAN	DLFR	71	в	H5
281	H0C-271S	3	z	33.53720	102.12640	3349	10037	10100	10204	-6735	2535	2535	-835	FELH	DEFR	71	Ċ	ЧР
28Z	HOC-2825	1	Z	33.50943	102.43745	3518	7562	7732	7657	-4139	2206	2228	952	KCLF	ESFR	77	C	HP
283	HOC-2825	Z	Z	33.50943	102.43745	3518	7729	7650	7795	-4277	2202	2193	805	RCLE	DEFR	77	C	115
284	HOC-3845	5	2	33.71683	102.19580	3418	9295	9545	9420	-6002	3582	3580	2495	PEIN	LOEC	71	C	Hb
285	HOC-384S	6	2	33.71690	102.19530	3418	9765	10100	10033	-6315	2439	2469	-917	PEIRI	DEPR	71	C	НP
286	HCC-X04	3	2	33.52319	102.20330	3409	10141	10167	10154	-6745	2750	2750	-399	FENN	DEPR	63	C	НЭ
287	HOC-X04	3	2	33.52319	102.20330	3409	11495	11596	11545	-8137	435C	4950	2055	PENH	USED	€5	С	Hb
298	HCC-X06	1	2	33.E0380	102.32539	3403	8725	8053	8737	-5366	3390	3252	2437	NOLF	DEPR	5.5	С	67
289	HOC-X07	1	2	33.64261	102.24220	3442	9995	10052	10024	-6582	2555	2400	-625	PENI	DEDR	65	С	82
290	HOC-X08	2	2	33.51660	102.25320	3425	8550	6584	8537	-5142	3823	3775	3637	LCF	OVER	67	в	HP
291	HOC-X08	4	2 -	33.51660	102.25320	3425	5743	6003	5973	-2543	2161	2050	2439	EFCS	USED	61	Э	98
292	HOC-X10	1	2	33.60119	192.27119	3454	8335	8433	6334	-4720	3435	3553	3515	LCF	CVER	67	Ē	нр
293	HOC-X11	1	2	33.72800	102.17760	3408	7871	7920	7695	-4429	3495	3435	3373	LCF	OVER	67	6	27
294	HCC-X11	3	2	33,72800	102.17760	3403	\$\$45	9930	\$763	-6555	2313	2313	-1217	PELO	DEC 2	67	ř	HP
295	HCC-X12	ĩ	2	33.66690	102.31383	3394	9353	9378	9342	-5970	3425	3405	2007	DENN	הבתיו	47	ř	UB
296	HCC-X13	7	2	33.66760	102.24200	3044	6920	4975	492A	-3030	2547	2201	2540	1175	11350	47	a a	1173
- 297	HCC-X13	÷	,	33 44740	162 24200	7000	10030	10040	. 10025	-6601	2100	2147	_1570	EENN	rea	47	č	107
208	NCC_X13	2	2	33.00700	102.24200	3777 7888	10030	10049	10045	-4623	21.33	21/17	-1477	02193	DEPR	27	~ ~ ·	5 4" 6."D
200	NOC-Y14		,	77 44740	102.24200	7/149	10004 4008	4070	10007	-7027	014J	6462	-1077	PELA	UPEA	35	с в	117
277	NOC-714		<u>د</u>	33.03300	102.25140	3432	8010	0730	0717	1070	2073	2003	202		0.720	00	5	110
200	NOC VIE	ŝ	~	33.00390	102,25140	3406	0010	0130	0070	1070	2220	3020	2013	1020	UVER	6.0	5	112
301	NOC-A15	÷	2	33.72900	102.53819	3034	4000	4/23	4705	-1015	1031-	1243	2012	LEA	UEFR	63	5	nP MP
302	HUC-X10	Ţ	2	33.72900	102.34940	3487	6032	6120	8101	-4014	5105	2029	2/30	NUCP	USED	67	C	HP
303	HUC-XI7	1	2	33.75500	102.23621	3418	6530	0391	6601	-3993	5221	2452	2537	UCF	0220	69	В	2P
304	HOC-X18	1	z	33.65900	102.28860	3492	7422	7459	7441	-3959	2816	2302	2540	LCF	USID	67	8	БP
305	HOC-X18	Z	Z	33.65700	102.28850	3482	8390	8121	8105	-9624	2955	2935	2195	KCLF	HULT	- 29	C	ХP
306	HDC-X18	3	2	33.65900	102.28350	3482	8175	8205	8190	-4769	3094	3054	2432	NGLF	USID	65	Ç	HP
307	HOC-X18	4	2	33.65900	102.28930	3492	8205	e225	8215	-4733	3624	3034	2338	KCLF	HULT	69	C	Ho
308	H0C-X18	5	Ś	33.65900	102.28850	3492	9038	9048	9043	-5561	3361	3477	2195	PEIN	USED	69	C	
309	HOC-X18	8	2	33.65900	102.28830	3482	10001	10160	10121	-6539	2057	2057	-1092	PENN	DEFR	69	С	HP
310	HCC-X19	1	2	33.59000	102.25160	3456	10089	10075	10092	-6636	2137	2149	-1579	E ENSY	DEFR	63	С	HP
311	HOC-X20	1 -	2	33.57060	102.34350	3502	9564	9578	\$571	-6039	3570	3670	2400	PENH	USED	70	ε	1iP
312	H0C-X21	1	2	33.60159	102.43159	3554	8596	8628	6585	-5022	3378	3357	2773	PEIN	USED	71	С	문문
-313	HOC-X27	2	2	33.54649	102.35651	3502	10153	10173	10163	-6656	1239	1255	-3712	PERM	DEFR	72	С	Чä
314	HOC-X28	3	2	33.59520	102.27960	3464	9800	9850	9825	-6351	3661	3711	2097	FERN	DEPR	74	С	HP
315	HCC-X28	4	2	33.59620	102.27960	3464	10070	10104	10097	-6623	2654	2530	-406	FEIN	DEPR	74	С	85
316	HOC-X29	i	2	33.59171	102.28799	3455	8445	8692	6599	-5939	3752	3752	3570	KCLF	GVER	73	ē	HP
317	HOC-X30	2	2	33,72090	102.30310	3444	10445	10304	10535	-7073	4265	4273	2772	PENN	USED	74	Ē	HP.
318	HOC-X31	2	2	33, 58540	102.35609	7030	70.00	7400	7530	-0001	2702	255A	2207	LCF	USED	75	ā	HP.
310	R0C-171	÷	2	37 EAELO	102.25404	7020	7525	7450	7497	_0120	2025	2721	2704	I CF	588 T	75	E E	ho
320	HOC-737	ĩ		77 77400	102.32007	マッファ	4674	400E	1000	-4764	10(1	1842	1074	1.05	01001	78	p	117
701	100-033	+	5	33.1370J 77 24464	100-10000	3430	10004	10700	10141	-3420	1701	7003	377-	DENN	DEDO	70	~	115
361	100-A40	÷.	4	33.34478	105.10040	3378	10055	10300	10101	-0/05	コンリア	3309	1222	1005	UEPK	11	L 0	67 100
322	NOC-743	2	~	33.33410	102.25008	2441	0312	0300	0330	-2015	24/5	2323	2017		0380	10	5	5167
325	NUL-743	5	2	33.59418	102.25008	5441	9750	9770	9/CU	-0213	30/1	20/1	2155	PEIN	UEFR	13	9	1:F
524	HUC-X43	4	2	33.59418	102.25008	5441	10055	10082	TGC2A	-0625	3055	3070	T90A	PERM	ULFR	18	C	n

----- GEOLOGIC, HYDROLOGIC, AND FORMATION PRESSURE DATA FROM DRILL-STEN TESTS -----

OBS	SWECNO	TH	CL	LATITUDE	LONGITUD	ELEV	TOP	EOTTOM	KOPT	TELEV	ISIP	FSIP	еғкн	FCRH	STATUS	YR	hsu	теро
325	HOC-X45	1	2	33.57442	102.34209	3510	10029	10135	10062	-6572	168	165	-6194	PENN	DEZR	75	С	62
324	HOC_X47	÷.	2	77 70701	102 35244	3345	ASCA	8250	6173	-4709	3032	3075	2004	PENN	11350	79	ē	5473
727	HCC. YEA	â		33.53072	102 30200	7000	1078	8420	5408	-5110	3171	3115	2216	L'OLE	6.775	6.0	ř	50
361	HOC-ASU	-	2	33.51703	102.34703	7/107	10224	10750	10000	-3117	31/3	7127	1010	DOM	0110	20	č	113
320	HOC-ASU	2	5	33.51703	102.34703	3407	10220	10350	E177	-0/99	31.14	1000	400	164	LICED	60	Ē	N2
329	100-751	+	č	33.50293	102.40440	3477	2020	9294	2131	-1339	1761	1795	2733	LOA	0100		5	120
330	HUC-X52	Ŧ	ž	33.035/3	102.24554	3425	9728	9745	9/3/	-0312	3045	2027 2027	5100	P2741		01		10.7
331	HUC-X52	2	2	33.035/5	102.24554	3425	10027	10050	10054	-6029	\$131	3727	2005	PEIG	LIFR	01	<u>د</u>	E are Line
332	HOC-X53	2	2	33.84117	102.12801	3383	11315	11530	11425	-80-10	4921	4/45	3005	PERG	0550	51	ц.	107
333	HUT-023	1	2	35.93967	101.43996	3343	3640	3727	3564	-341	542	542	910	FGTF	DEFR	72	C	195
334	HUT-031	1	2	35.93559	101.10135	2701	8022	8355	6189	-5488	655	645	-3975	PERN	USPE	74	C	C.4
335	HUT-048	Z	3	35.65050	101.30714	3076	3295	3343	3319	-243	433	453	637	HOLF	C:DE	69	C	Сн
336	HUT-048	4	3	35.65050	101.30714	3076	3412	3430	3421	-345	453	469	707	PEIG	DEPR	65	C	CR
337	KUT-049	5	3	35.65050	101.30714	3076	3300	3330	3515	-739	671	635	603	PENN	CEPR	5 ?	Ç	CS
338	HUT-048	6	3	35.65050	101.30714	3076	5012	5030	5046	-1970	1525	1539	1552	ELLE	USED	63	Ľ	CS
339	HUT-048	7	3	35.65050	101.30714	3076	4740	4720	4760	-1684	1446	1459	1653	VIOL	USED	69	С	CR
340	HUT-128	1	2	35.66576	101.12592	2994	6154	6240	6197	-3213	2037	2067	1557	PEIN	USED	73	С	CR
341	HUT-146S	1	2	35.90041	101.21147	2918	9225	9452	9339	-6921	3630	3330	1957	ELLE	USED	38	C	C 7
342	HUT-1475	7	3	35.68958	101.19276	3049	5222	5235	5229	-2180	1430	1430	1121	RIER	UCED	60	C	C2
343	HUT-1485	1	2	35.94795	101.46632	3320	3760	3791	3776	-456	641	619	1004	ROLF	USED	73	C	HP
344	HUT-X05	1	2	35.64778	101.11283	3260	7975	8032	6004	-4744	2739	2739	1577	HISS	USED	75	С	CR
345	HUT-X05	2	3	35.64778	101.11288	3006	4795	4645	4620	-1514	1304	1304	1195	PENN	0330	59	C	ÇR
346	HUT-X06	1	3	35.80241	101.20595	2727	4725	4766	4746	-2019	1475	1435	1305	PETCH	USED	61	С	CR
347	HUT-X10	2	3	35.68703	101.18256	3039	5410	5435	5423	-2334	1500	1500	1078	PEMN	USED	63	С	CR
348	HUT-X12	ī	3	35.96103	101.09531	2798	5278	5314	5295	-2498	1673	1679	1354	F2121	USED	34	Ċ	CD.
349	HUT-X12	3	3	35,98103	101.09531	2798	6255	8296	8276	-5478	3021	2914	1494	PETEN	HET	64	ē	63
350	HUT-X13	5	3	35.75259	101.26900	2930	6838	6931	6855	-3046	2405	2400	1405	PENN	HSED	F.)	č	60
351	HUT-X14	ŭ	ž	35.99049	101 25633	32.01	4922	4237	4952	-1751	1770	1237	1160	PENN	LISED	57	ō	CP.
352	HUT_X15	1	ž	35 47403	101 15:34	3007	4722	4702	4054	-1647	1711	1311	1076	DENSI	0200	47	č	č3
352	HUT-X15	2	ž	35 47403	101.15234	3007	50(2	5001	5077		10(6	1000	1770	DEXM	USTO	47	ř	67
322	NTN-0038			33.07003	100 10400	1075	2005	4110	1107	-2770	1000	2700	1201	HTES	0520	24	ž	20
755	KIN-0045	•	5	33.71000	100.10040	1464	4632	0110	0103	7124	1900	1000	1327	DEPH1	11050	25	~	20
764	NIN-0313	-	5	33.30070	100.10040	1004	9336	4017	4010	-3120	1000	10000	1700	NTEE	0000	75	2	81 ⁻
330	NIN-0373	4	4	33.93940	100.00930	1/35	5-100 7045	2423	2414	-30/7	2200	1200	1349	05.91	USER	76	с С	67
331	KTU-0202	÷.	4	33.81200	100.22500	1915	3945	3752	3949	-2131	1702	1/02	1/71	PEIGE	0510	13	L C	NP NP
358	R1N-0425	1	Z	33.79359	100.28180	1631	4220	4267	4245	-2302	1/4/	1/4/	10/0	Pana	USLU	14	L A	82 00
354	RIN-0435	2	2	33.78380	100.01780	1020	5900	5990	5945	-4519	2511	2365	1476	H122	0550	00	5	6.P
300	KIN-XUL	1	2	33.74319	100.02759	1740	5000	5595	5661	-3741	2405	2375	1009	1135	0520	59	Ç	Kr
201	K1N-X02	1	2	33.83141	100.19160	1840	4454	4460	4457	-2017	1830	1630	1605	PELIK	UJED	68	C C	EP
362	R1N-X04	3	2	33.53540	100.19040	1810	5455	5465	5450	-3350	2120	2120	1242	MISS	DEFR	70	5	FP TT
303	KTH-202	2	2	33.55740	100.19100	1810	5250	5293	5275	-3965	2149	2149	1454	MISS	DEFR	69	C	RP
364	RIN-XCS	3	2	33.53329	100.16930	1810	5440	5458	5449	-3639	2164	2075	1401	HISS	DEFR	71	C	62
365	KIN-X07	1	Z	33.54250	100.19620	1825	5230	5238	5234	-3409	2170	2160	1579	PEIN	USED	70	C	КP
366	KIN-X07	3	2	33.54250	100.19320	1625	5328	5348	5338	-3513	2190	2150	1541	RISS	DEFR	70	С	25
367	KIN-X08	1	2	33.50851	100.03320	1705	5177	5198	5189	-3433	2075	2040	1352	PECH	HULT	71	С	RP
368	KIN-X08	3	2	33.50851	100.06320	1705	5388	5401	5395	-3920	2300	2250	1618	PEIN	HULT	71	C	85
369	KIN-XCS	4	2	33.50861	100.06320	1705	5416	5426	5421	-3716	2295	2265	1580	PE124	USED	71	C	82
370	KIN-X08	5	2	33.50861	100.05320	1705	5433	5440	5437	-3732	2340	2270	1565	PEICH	LULT	71	Ç	RP
371	KIN-X09	2	2	33.53481	100.17500	1870	5425	5450	5438	-3558	2019	2019	1091	HISS	DEPR	71	C	82
372	KIN-X09	3	2	33.53481	100.17500	1870	5450	5450	5455	-3555	1828	1355	633	Hiss	DEFR	71	2	RP
373	KIH-X10	1	2	33.59261	100.18430	1750	5246	5262	5254	-3504	2180	2150	1527	HISS	USED	71	C	FP
374	KIN-X12	1	2	33.72970	100.24699	1795	4069	4099	4054	-2289	1690	1690	1611	ROLF	US1D	72	С	RP
375	KIN-X12	2	2	33.72990	100.24599	1795	4379	4393	4329	-2594	1858	1659	1694	PENN	USED	72	Ċ	Ro
376	KIN-X13	1	2	33.72960	100.24040	1775	4053	4075	4034	-2289	1663	1663	1543	HOLF	USID	72	Č	62
377	KIN-X15	2	2	33.83470	100.14030	1713	6058	6150	6119	-4405	2625	2646	1654	HISS	DEFR	74	Ē	R2
378	KIN-X17	3	2	33.59320	100.11050	1652	5786	5796	5791	-4139	2200	2200	939	HISS	UNDE	75	Ĉ	RP
																	-	

▲ 1.1 1.1

1

A LA ELAND A LA ELAND AL AND

ببارية سينتخف أسترباريها

يت الأن بي

. . . .

----- GEOLOGIC, HYDROLOGIC, AND FORMATION PRESSURE DATA FROM DRILL-STEM TESTS -----

035	SHECNO	TN	CL	LATITUDE	LONGITUD	ELEV	TOP	BOTTCH	HOPT	TELEV	ISIP	FSIP	EFKH	FORM	STATUS	YR	#5U	topo
379	KIN-X20	a	2	33,50920	100.08000	1823	5236	5320	5308	-3065	2159	21FA	1005	Detra	11575	75	r	99
380	HTN-X21	i	2	33.57103	100.13225	1855	54/3	5476	5472	-3617	2105	2105	1281	MTSS	1100E	77	, č	20
381	KTN_X21	2	2	33.57103	100 13:45	1455	5514	5574	5520	-2445	2230	2270	1031	11200	11253	77	ř	50
702	WTN_¥22	ĩ	5	33 57200	100 04054	1.05	4209	4710	//200	-2(13	1601	1001	15/22	02211	USED	73	ř	20
707	HTN-727	÷	5	33.53200	100.00420	1033	6200	4310	4677	-2014	704	777	1010	NTCC	0570	75	2	80 80
303 70h	NIN-ACJ	3	2	33.54070	100.10733	1033	2447	5107	5437 E107	-3964	763	2012	1707	11233 11233	01. 7	73	۰ ۲	50
204	NTN 705	-	2	33.21431	100.05365	1005	51/7	5175	5100	-2221	2000	2030	1120	PCIN	02.46	13	<u>ر</u>	85
385	K1N-X25	1	2	33.00204	100.25945	12//	5530	5343	5340	-3005	2094	2054	1170	n	DEFR	56	5	1.12
363	K1N-X20	Ţ	ž	33./3/59	100.35098	1945	4120	4140	4150	-2135	1955	1555	1654	FLIN	USLU	89	C	879
387	R1H-X27	1	2	33.69110	100.20697	1730	4300	4134	4067	-2337	1702	1704	1591	1/CLF	USED	50	C	68
398	R1H-X27	5	2	33.69110	108.20697	1730	5325	5397	5351	-3631	2439	2930	2092	FEIM	OVEP	çç	C	5.7
389	KIN-X27	4	Z	33.69110	100.20697	1730	5509	5591	5550	-3820	2349	2347	1601	PERM	Usea	23	- Ç	55
390	LAN-001	1	2	34.25350	102.57683	3741	E429	e 537	8504	-4763	3159	3163	2548	RISS	USED	71	С	HP.
391	LA11-024	1	3	33.97210	102.18140	3530	6265	6350	6309	-2778	2293	2030	2528	HICH	USED	65	В	5.7
392	LAH-024	z	3	33.99210	102.15149	3530	8105	8150	8123	-4578	3103	3683	2563	PENN	USED	65	C	£2
393	LAH-027	z	3	34.03999	102.23640	3593	3783	3820	3815	-232	1271	1195	2701	LSA	UJED	67	Ð	H.a
394	LAH-098	1	2	33.83659	102.30540	3485	6691	6762	6727	-3241	2001	2773	3223	KOLF	CVER	65	С	K2
395	LAN-105	1	2	33.83230	102.24899	3453	6705	6770	6733	-3285	2354	2329	2240	HOLF	HULT	71	С	62
395	LAH-105	2	3	33.86230	102.24879	3453	8260	8335	8258	-4045	3253	3253	2552	HOLF	HULT	71	C	HP
397	LAM-105	3	3	33.65230	102.24399	3453	6990	8122	8105	-4553	3117	3117	2540	KOLF	- USED	71	С	HP
393	LAN-116	2	2	33.85800	102.11510	3452	6250	6315	6283	-2831	2730	2636	3470	ICLF	OVER	71	C	HP
399	LAH-116	3	2	33.85300	102.11510	3452	8070	e100	e085	-4533	3111	3111	25%5	FERCE	いらこり	70	C	HP.
400	LAM-116	4	2	33.65890	102.11510	3452	8385	8502	e\$54	-5002	3300	3300	2514	PENCH	RULT	70	С	SP
401	LAH-116	5	2	33.85600	102.11510	3452	8730	8815	8788	-5336	3412	3345	2533	PENDI	FULT	70	C	HP
402	LAH-1345	1	2	33.6:542	102.31545	3465	6685	6743	6714	-3249	2427	2437	2352	ROLF	UCED	63	Ċ	RF.
403	LAH-1435	1	2	33.83701	102.31520	3481	6630	6747	6714	-3233	2353	2301	2232	KOLF	HULT	77	Ċ	12
404	LAH-1435	2	2	33.83701	102.31520	3461	7352	7404	7378	-3397	2784	2784	2528	LOLF	UEED	77	ċ	HT
405	LAH-1435	3	2	33.83701	102.31520	3481	7753	7800	7774	-4273	2057	2859	2305	HCLF	HUL T	77	č	HP
406	1.41-1435	ä	2	33.63701	102.31520	3481	7795	7950	7873	-4352	3053	3054	2656	HOL F	MIT T	77	č	HP
407	1 411-1559	ì	2	33.96222	102.17224	3535	6356	6522	62.00	-2054	2394	2343	2575	KOL F	11970	80	č	58
408	113-0045	2	2	33.76500	101.09200	3313	10038	10052	10350	-6737	8053	8079	2428	print	11350	76	č	HP
400	108-0055	2	2	33.75937	101.07787	7744	7129	7313	7221	-3977	2762	2722	2251	5275	11570	77	R	1:5
410	1118-0055	E	5	77 75077	101 63747	スマルタ	4007	4350	1252	-2073	102%	1075	1622	1 CE	0320	77	2	107
411	119-0076	2	2	33.13737	101 75900	2005	0290	0705	0717	-4010	4727 80	2703	-5375	CEIN	0550	77	ř	12
711		6 7	5	33.75000	101.75740	フレロジ	6240	7363	5233	-0010	703	700	ーンション	DENN	0228	77	ž	10
416	103-0075	3	2	33.13000	101.73740	3603	7200	4570	9430 1574	7005	0700	366	-9432 0070	CODA	UZER	73	ь Б	กค
412	LUD-0005	÷.	4	33.74020	101.70401	2647 7971	0470	0710	0707	-3203	2370	6446	2230	SCKA CENU	LICED	77	5	110
414	LUB-0095	÷.	2	33.73400	101.03900	3437	7630	2014 2014	7303	-0030	3014	2041	4633	PEINT	0250	12		117
415	F02-0102	+	2	33.00750	102.05050	2220	4200	4475	4421	-1023	103	105	~220	LEA	ULUE	53	0	0.7
410	LU3-0285	1	2	33.54030	101.70239	3110	5/80	5510	5/35	-20//	2225	2137	2953		0523	20	8	117
417	L03-X01	1	2	33.74425	101.95341	3338	7103	/185	7144	-3800	2014	2652	2272	SYRA	0320	18	5	1117
418	L03-X01	z	2	33.74425	101.95341	3338	9654	9925	9510	-6572	3753	3804	2089	FENN	0550	75	C n	K.9
419	LUB-X02	1	Z	33.68744	101.94050	3319	7029	7074	7052	-3733	2722	2643	2539	SFRA	0520	73	В	EP
420	LU3-X03	2	z	33.71442	101.74454	3239	6570	6650	6630	-3391	2514	2471	2411	SFRA	USED	77	8	HP
421	LU3-X04	1	2	33.62344	101.65224	3140	5369	5550	5450	-2320	2031	2008	2437	UCF	USED	03	5	54
422	LUB-X05	3	2	33.72986	101.70950	3239	9255	9320	2559	-6047	3490	3424	2005	PEIN	DEPR	77	C	112
423	LU3-X05	1	2	33.63820	102.02380	3295	9675	\$942	9719	-6624	3633	3601	2221	PENN	DEFR	65	C	HP
424	LUB-X07	2	2	33.70540	101.75459	3250	9276	9311	9294	-6044	3673	3724	2433	PENN	USED	67	C	HP
425	LUB-X08	3	2	33.73462	101.95801	3318	7510	7556	7533	-4215	2633	2053	2359	DEAN	USED	60	0	EP
426	LU3-X09	1	2	33.56441	102.05740	3321	9995	10047	10021	-6700	3843	3809	2181	PENNI	DEFR	65	C	KP
427	LUB-X10	2	2	33.67000	102.02921	3320	6412	6657	6535	-3215	2494	2434	2518	LCF	LISED	67	₿	HP
428	LUB-X10	3	2	33.67000	102.02921	3320	5361	5836	5749	-2429	2051	1976	2327	LCF	USED	67	6	HP
429	LUB-X11	1	2	33.72060	101.73000	3246	5550	5395	55 \$ 8	-2322	2165	2000	2675	UCF	USED	67	B	62
430	LUB-X12	ĩ	2	33.53540	102.07660	3319	6035	6150	6093	-2774	2347	2319	2542	LCF	USED	63	B	HP
431	LU8-X13	ī	2	33.61920	102.07060	3337	5508	5894	5351	-2514	2114	2045	2371	UCF	USID	67	6	KP
432	LU3-X14	ī	3	33.79630	101.92020	3356	6230	6350	6290	-2934	2207	2099	2160	LCF	DEPR	75	B	HP

----- GEOLOGIC, HYDROLOGIC, AND FORMATION PRESSURE DATA FROM DRILL-STEN TESTS -----

085	SHECNO	TN	CL	LATITUDE	LONGITUD	ELEV	TOP	BOTTOM	HDPT	TELEV	ISIP	FSIP	SEVA	FCRM	STATUS	YR	HSU	TOPO
		-	-						42.42						0		•	
435	LUB-X15	1	3	33.82200	101.86700	3340	6287	6320	6303	-2955	2935	2925	3912	LCr	OVER	67	5	112
434	LUB-X15	3	3	33.82200	101.85700	3340	8763	9003	8933	-5643	1611	1661	-1925	PERN	DEPR	59	C	EP
435	L03-X15	4	3	33.82200	101.85700	3340	11222	11282	11232	-7872	4697	4550	2547	HIES	USED	69	ç	EP
436	LUB-X13	1	3	33.65160	101.65550	3231	5070	5140	5105	-1374	E0	£3	-1639	ETC3	DEFR	57	B	1:P
437	LUS-X17	2	3	33.72580	101.82020	3295	6050	6163	6106	-2811	2225	2255	2162	LCF	USED	59	B	He
438	LU3-X18	2	3	33.67670	101.77170	3230	9328	9368	\$348	-6118	3552	3652	2310	PERH	USED	62	Ċ	89
439	LUB-X19	4	3	33.67670	101.77170	3230	9975	10020	\$9 9 7	-6767	4052	4352	2554	FECH	HULT	95	С	11 2
440	LUB-X19	1	3	33.68050	101.79760	3260	7455	7526	7491	-4231	2730	2672	2545	HOLF	USED	53	C	EP
441	LU3-X20	1	3	33.54820	101.61170	3106	4524	4522	4573	-1457	1671	1532	2339	67239	DEFR	67	B	112
442	LU3-X21	2	3	33.54960	102.06760	3300	6008	6119	6053	-2758	2394	2327	2767	UCF	DEFR	67	6	H2
443 '	1:00-042	1	3	35.68931	101.83229	3451	3246	3406	3326	125	203	273	685	NOLF	DEFR	69	С	CR
444	HOT-001	1	3	34.23810	100.91769	2301	8914	8094	8354	-5753	3139	3100	1470	PERM	LUDE	57	С	RP
445	NOT-039	1	3	33.87570	100.92550	2757	4770	4790	4730	-2023	1630	1630	1739	NOLF	USED	61	С	RP
446	NOT-048	1	2	33.97421	100.63761	2237	5274	5355	5315	-3078	2105	2106	1732	PEIM	USED	73	C	62
447	NOT-048	2	2	33.87421	100.68761	2237	5249	5274	5261	-3024	2071	2644	1755	PETH	ELL T	73	Ĉ	82
448	MOT-0895	ī	3	33.59349	100.73900	2529	4248	4295	4272	-1743	75.0	790	81	LICLE	REER	62	ā	RC
449	HOT-0395	3	3	33.69349	100.78900	2529	4345	4330	4353	-1834	1510	1520	1874	NO: F	11950	22	ē	52
450	HOT-0945	ī	3	33.62561	100.78900	2535	4281	4331	4305	-1770	1360	1202	1773	KOLE	DEET	75	č	20
451	\$01 B_004	ī	ī	35.59621	102.65120	3553	3004	3471	3253	-1 C.1	792	1101	1001	NOLE	57 T	41	ř	ra -
452	01 0-004	ĩ	÷	35 56.121	102.65120	3553	スセンム	3171	7259	Ch.	773	795	14(5		11227	41	ř	62 62
457	501 0-048	-	ĩ	35 60704	102 33453	7400	5720	57/1	5753	-1753	1500	1	3.000	1.71 6	11550	40	ž	CR
054	01 0-043	÷	,	35.30704	102.34033	3300 700E	2210	2337	2002	-1/22	2162	2004	1570	LOLE	11250	20	ž	08
425	010-003		5	75 74501	102.37707	3703	1210	1316	4725	-3307	6126	2023	13/7	110 L.T	1320	67	2	
722	OLD-1035	2	5	33.33331	102.3355.9	2000	714	7070	71/5	-2010	26.53	2203	2233	76.41	4323		<u>د</u>	6.7
420	0.0 1110	<u> </u>	2	35.23301	102.90025	3747	1120	7210	1103	-3110	0200	6411	2343	P 443	0515	00		E.F.
457	ULD-1115	2	~	35.25001	102.400.5	3747	8314	8343	2227	-4302	2039	2112	2303	E 2131	11.000	50	С —	142
453	ULD-1115	*	4	35.25361	102.40025	3747	7646	11/0	7703	-3/27	2552	2502	2155	PLAN		20	G	rii#
459	ULU-1115	2	2	35.25:51	102.40025	3949	7090	7202	7145	-3197	2267	2237	2035	Para	F.L.T	63	C	117
460	0LD-1125	1	2	35.19295	102.33081	3588	7319	7334	7326	-3350	2419	2419	2222	PEIN	USED	63	C	62
461	OLD-1125	Z	Z	35.19295	102.33081	3935	7035	7145	7091	-3125	2217	2053	1992	PETH	HULT	80	C	K2
452	OLD-1165	Z	Z	35.36050	102.42150	3630	6172	6227	6200	-2370	2015	2015	2203	KCLF	USEO	- 51	C	CR
463	OLD-1175	1	Z	35.33220	102.44275	3984	6630	6550	6545	-2751	1970	1875	1735	13139	DEFR	81	C	CR
464	old-1185	1	2	35.32747	102.22202	3544	7000	7028	7014	-3470	2354	2394	1952	PEUN	EULT	<u> </u>	C	CR
465	CLD-1185	2	2	35.32747	102.22202	3544	7125	7175	7150	-3962	2554	2516	2288	PEXH	USED	61	C	CR
456	*0LD-121S	1	1	35.39750	102.39330	3687	4830	4996	4098	-1211	1322		1040	HOLF	HULT	82	С	C7
467	*CLD-1215	1	2 -	35.39750	102.39630	3667	4309	4995	4876	-1211	1292	1298	1771	RCLF	USED	ε2	C	CR
468	*0LD-121S	6	2	35.39750	102.39630	3657	6612	6530	6625	-2539	2216	2217	2175	PETCH	DEFR	32	С	CS
469	*0LD-121S	7	2	35.39750	102.39630	3687	4812	4240	4026	-1139	1375	1351	2037	SIGLE	HULT	32	С	CR
470	POT-026	1	3	35.42839	101.62508	3540	3600	3646	3623	-83	71	71	81	ICLF -	DEPR	64	С	53
471	POT-026	2	3	35.42639	101.62508	3540	3907	4050	3979	-439	600	603	1408	TOLF	UGED	64	Ċ	68
472	FOT-C26	3	3	35.42839	101.62508	3540	5352	5710	5581	-2141	1834	1612	1330	PENN	USED	64	C	CR
473	POT-039	2	3	35.24370	101.86406	3577	4047	4077	4062	-403	372	872	1527	H21 F	USED	60	ē	65
474	*RAN-0485	1	1	34.77700	101.65700	3624	1718	1764	1741	1833	693		3459	GU.'B	15.7 T	53	P	Pa -
475	*RAN-0485	1	3	34.77700	101.65700	3624	1718	1764	1741	1693	637	673	3420	01/8	11570	5.3	ē	10
476	RAN-X01	ī	3	34.97224	102.14590	3777	5340	5331	5351	-1574	1570	1550	2003	KOLE	11570	×1.	ř	51D
477	R03-034	ī	2	35,77917	100.81905	2862	7259	7524	7492	-0630	2683	2633	1552	25121	HIRED	22	ř	C3
478	R03-1055	3	2	35.85722	100.60100	2840	AGAS	7055	7020	_4150	2320	2346	1127	EE.M.	11350	72	2	C.2
479	F03-1055	5	2	35.65722	100 60100	2800	11047	12043	11007	-9157	5207	5337	3597	023/04	0313	16	с .	617 (17
090	RCB_127	2	2	35 95090	100 45054	2527	9122	Chra	0200	-7100	002L	コンシイ	3363 N772	22441 22444		16	с С	LK
200	DC3_197	ž	5	35.75307 35 65688	100.03233	4331	7333	2017 2017	7707 0505	-7012	1000	-1264 カウラウ	4333	rziui Deriki	OV LR	20	5	- Cirk
	R03-167		2	JJ.73007 TE 66884	100.00400	6175	7903	723/	7203	-1045	***	4616	2351	PENN	UVER	68	ü	62
706	R00-150	2	6 9	J5.00004	100.90000	2475	2400	5022	2211.	-035	705	705	1303	FULF	USED	72	C	CR
703	RUD-198	4	<u>د</u>	33.00054	100.93333	20/5	5570	2013	2270	-2725	1692	1661	1331	PERM	USED	72	C	CR
404	RCD-158	2	4	35.65654	100.98526	20/5	0323	0907	0375	-4223	2564	2364	1233	PENN	HULT	72	C	CS
485	KU3-153	0	2	35.83584	100.59885	2675	7958	8030	7994	-5319	2936	2509	1435	PENN	HULT	72	С	68
486	KC3-158	8	z	35.89884	100.99986	2675	10590	10660	10625	-7950	4475	4209	2377	HISS	USED	72	C .	C2

1. L

بالسبية المشت

1

السما المسا

ment in the second

. 1

----- GEOLOGIC, HYDROLOGIC, AND FORMATICN FRESSURE DATA FROM DRILL-STEM TESTS -----

OBS	SWECNO	TN	CL	LATITUDE	LONGITUD	ELEV	TOP	BOTTCH	HEPT	TELEV	ISIP	FSIP	EFICH	FOUH	STATUS	ŶŔ	Ren	7079
487	R08-158	9	2	35.88984	100.99366	2675	10912	11119	11016	-8341	4475	4475	1985	HUNT	0540	72	ť	C':
489	R03-153	11	2	35.88594	100.78035	2675	11343	11575	11432	-8737	4507	4587	1779	VICL	10577	7.5	C	53
489	R0B-158	12	2	35.89284	100.90296	2675	11776	12040	11909	-9234	4059	4059	1279	SLLE	U LED	72	C	CH
490	R09-158	13	2	35,69884	100.98885	2675	11135	11205	11170	-6935	4311	62.0%	1923	SYLV	USE	70	č	C.)
407	PCB-195	- 7	2	35.63.03	100.78278	2897	79/19	A119	2054	-51 =7	2213	2244	1252	DE: N	11-0-1	-22	Ē	07
402	P09-207	ī	,	35.79111	100.94924	2975	3877	3025	2024	_012	837	653	1030	1271 F	1.21.0	77	- E	60
407	E09-288	ī	2	35 49774	100 42023	2782	17445	14174	12021	_11179	Elen	RETA	1073	FILE	11770	7.3	- F	en. en
473	DOB-200	•	5	76 40774	100 42027	0720	10417	10455	10/5/	-11137	0107	0202	1000	CCCC CCCN	11300	20	č	- C.L.
465	D02-200	-		7= 49774	100 42927	0760	10013	10075	10024	115/12	2110	E005	2033	2112	Desn		č	CD CD
473	RCD-200	1	5	7E 47000	100.02723	7105	17114	19336	14221	-1477	3249	3033	1200	00101	2.111	7.0	ž	
499	RUD-270	-	۲ •	75 47000	101.02202	3143	4074	7010	4010	-1073	1670	1000	1562	17 2000 A	1.000		~	~ 3
477	RCD-270	<u>د</u>	5	35.03007	101.00000	5165	30037	10013	10017	-3020	C217	6270	4477	HTEE	C 80	4.7	~	10
470	RCS-ACI	2	<u>د</u>	35.75/03	100.57330	2476	10317	10017	10017	-/2.9	7/50	4130	2017	1"_00	1.07127	- 04 2 4	č	515
477	RU3-AU2	1	2	33.72070	100.03739	2102	3430	7471	7491	-0353	2636	2310	2070	P2DRT MTCC	0.70			E 1 2019
500	RU3-RU3	~	č	35.83091	100.051/9	2032	11000	11056	11032	-0201	2022	5025	3371	1112.5	0.00			СR сп
501	KUB-XU4	2	ž	35.7/355	100.76872	2400	3993	3920	2912	-1442	1220	1553	1334	FICUP .	03:03	C Y	ر د	62
502	RU3-XU4		Z	35.9/355	100.76592	2466	11012	12140	118/0	-\$010	4512	4911	1923	11222	05:0	67	<u> </u>	64
503	R05-X05	1	2	35.95131	100.72549	2548	9494	9555	\$525	-6977	29-35	2959	-179	FEIN	REFE	70	ç	UN
504	RCB-X07	1	2	35.92477	100.77266	2710	6165	6228	6197	-3497	2005	1936	1139	PEIGE	USED	71	C	61
505	R09-X08	1	2	35.76905	100.75944	3045	0603	8120	0703	-50-15	2913	2915	1482	PERR	LOLD	79	C	UR
506	RC9-X08	z	Z	35.76906	100.75944	3045	10245	10705	10375	-7530	4335	4244	2174	HISS	0393	76	C	CR
507	R05-X08	3	2	35.76906	100.75344	3045	12750	13000	12875	-9330	5357	5301	2753	SYLV	5.VER	- 70	Ę	CK
508	R08-X98	4	2	35.76906	100.75644	3045	5313	5350	5332	-2237	1007	1607	1422	PENN	HULT	79	C	53
509	RC3-X09	3	2	35.90337	100.77220	2679	5867	5578	5833	-3204	2617	2217	1451	F2657	USED	72	2	Çit
510	RC3-X09	5	2	35.90337	100.77220	2679	6094	6103	6131	-3422	1832	1852	875	PENH	3558	72	C	22
511	R05-X10	3	2	35.90668	100.60910	2627	12011	12140	12976	-9449	5397	£652	3436	NISS	CVER	72	C	CR
512	RC3-X13	1	2	35.87206	100.74159	2922	6125	6136	€156	-3279	1731	1931	1293	PEIGH	UC ED	72	C	C3
513	RC3-X14	3	2	35.71185	100.73759	3020	6432	6455	6449	-3429	1343	1626	353	FERN	DEFR	72	C	CR
514	RC3-X15	1	2	35.74036	100.56653	2635	4031	4095	4003	~1453	1123	1123	1139	нісн	DEPR	75	8	CR
515	R03-X15	2	2	35.74036	100.54653	2535	6181	6235	6208	-3573	104	132	-3333	FERM	DEPR	75	С	CR
516	R08-X17	2	2	35.74315	100.73907	3129	6428	6472	6450	-3321	1849	1772	944	PENN	DELK	75	Ç	CS
517	RCB-X17	3	2	35.74315	100.73807	3129	4259	4283	4276	-1147	\$43	\$55	1030	KCLF	USED	- 75	С	CA
518	R03-X18	2	2	35.76507	100.70032	3013	4004	4820	4047	-1834	1233	1259	1092	FOLE	USED	75	C	CR
519	R08-X19	1	2	35.94345	100.60339	2498	9631	9562	9647	-7149	3162	3199	148	PERN	DEER	75	С	ÇR
520	R03-X21	2	2	35.80820	109.72243	2976	8991	9095	9043	-6067	3113	2957	1117	PENN	USED	75	C	65
521	RCB-X22	1	2	35.74333	100.76569	3057	6270	6200	6385	-3328	1777	1759	773	PENN	DEPR	77	С	Eb
522	R03-X23	3	2	35.88347	100.73007	2690	9598	9636	ç617	-6527	3222	3195	509	PENCI	DEPR	78	C	CZ
523	ROB-X24	1	2	35.78105	100.68777	2984	9712	5963	8338	-6854	3727	3772	1747	FE.AN	U359	75	С	C73
524	R0B-X25	1	2	35.94574	100.62715	2560	5069	5138	5113	-2553	1917	1774	1640	Perm	OBEE	73	C	CR
525	RCB-X26	1	2	35.65013	100,93552	3211	9219	9239	9209	-6018	2187	2167	-971	PERM	C1-DE	73	С	99
526	R03-X27	1	2	35.96790	100.92705	2538	8630	8892	8361	-6323	3267	3092	1215	PENN	UGED	60	C	Cit
527	R08-X28	1	2	35.88043	100.99301	2733	7664	7830	7747	-5014	2676	2781	1151	PERM	17.9.T	S0	C	CR
528	R03-X28	2	2	35.88043	100.99301	2733	8105	8135	e 121	-5328	2374	2008	1245	PERM	USID	60	C	CR
529	R03-X29	2	2	35.86687	100.94113	2900	7870	7097	7834	-4984	2742	2770	1394	Penn	6325	٤0	C	C.3
530	RC8-X29	3	2	35.86687	100.94113	2900	8069	6103	8039	-5169	2532	2954	1600	FENH	HULT	ел	C	C R
531	RC9-X30	1	2	35.87158	100.93640	2874	6040	8112	8976	-5202	2992	2925	1495	F2167	USCO	80	C	CR
532	RCB-X30	3	2	35.87158	100.93640	2874	3745	3775	3760	-836	897	620	1161	NOLF	USED	6Ú	С	63
533	R08-X32	1	2	35.93207	100.89613	2660	4325	4355	4340	-1690	1341	1323	1415	NOLF	0050	65	C	CIP
534	ROB-X34	2	2	35.92055	100.72594	2653	9280	9505	9393	-6730	305	305	-6026	PERM	DEFR	68	С	CR
535	R08-X34	3	2	35.52054	100.72594	2663	9540	9656	9598	-6935	3024	3119	182	FENN	CEPR	63	С	63
536	\$5HI-008	1	ī	34.55617	101.90129	3591	5765	5776	5731	-2190	1545		2300	NCLE	USED	61	С	HP
537	*SHI-0255	5	ī	34,53120	101.65000	3405	2927	2972	2950	455	1253		3340	LSA4	TLESS	62	E	НP
538	*S/I-0255	5	2	34.53120	101.68000	3405	2927	2972	2950	455	1260	1189	3363	LSA4	USED	23	Ð	អក
539	*SHI-0255	6	ī	34.531.3	101.68000	3405	5365	5542	5453	-2043	1875		2279	NO'LF	PULT	ô2	С.	Чp
540	*SHI-0255	6	3	34.53120	101.68000	3405	5365	5542	5453	-2048	1057	1941	2238	HOLF	USED	62	C	HP

----- GEOLOGIC, HYDROLOGIC, AND FORMATION PRESSURE DATA FROM DRILL-STEH TESTS -----

035	SHECHO	TN	CL	LATITUDE	LONGITUD	ELEV	TCP	BOTTOM	HOPT	TELEV	ISIP	FSIP	EFICH	FORM	STATUS	1R	HSU	1020
541	*SWT_0255	7	1	74 57120	101 43000	3405	-7156	7225	17104	-3791	2559		2124	P5151	ar r	5.2	c	40
542	*3NT_0255	÷	2	74 53120	101.68000	3405	7144	7025	7154	-3781	2515	2492	2026	PETRI	12:20	37		22
543	*SUT_024S	÷.	ĩ	34.65000	101 60900	3505	2840	2005	2073	452	1203		3000	1 524	HE T	2.2	· 14	HE
540	*SUT_0265	ŝ	,	34 65000	101 80900	3505	2340	2304	2973	452	1122	1127	3260	15:2	1150.0	5.77	Ē	NE
545	+SUT-0265	,	7	34.65000	101.60900	3525	2830	3030	2940	EPR	1315		3620	1.524	N. T		ธ	113
544	*SUT_0265	2	2	34 65000	101.60900	3325	2330	3050	2020	505	1252	1000	3079	1514	PERT	42	Ē	1,3
547	HHE-OCA	ī	2	35.59551	100.11754	2524	11026	11139	13032	-6535	2349	2717	-3115	25511	DEER	72	č	6.72
548	101E-008	3	2	35.52551	100.11754	2536	13835	13219	13862	-11316	2005	1051	-(600	PENN	DESR	72	ē	SP
539	NHE-023	5	2	35.57947	100.51733	2816	10494	10710	10702	-7825	4032	4070	1419	PE:01	17.1.T	72	ē	87
550	1315-023		2	35.57947	100.51733	2616	11254	11226	11267	-8351	3439	3353	-515	PEN	DEPS	72	Ċ	32
551	EHE-023	7	2	35.57947	100.51733	2816	11690	11758	11724	-0903	0379	4551	2351	FENN	67.19	72	ĉ	5, 2
552	10HE-023	9	2	35.57947	100.51733	2616	12175	12250	12212	-9396	E162	5102	2378	HISS	USLD	72	c	59
553	10HE-023	10	2	35.57947	100.51733	2816	13428	13592	13510	-10394	5332	5138	1841	ELLE	LCED	22	č	9 2
554	KHE-023	ii	2	35.57947	100.51733	- 2816	13592	132.54	13728	-16912	5336	5197	2553	SILE	0295	72	ċ	22
555	MHE-023	12	2	35.57947	100.51733	2815	6295	6330	6312	-3496	2134	2097	1422	PENN	USED	72	č	- 20
554	NHE-026	2	2	35, 53531	100.50392	2694	6560	6521	6501	-3237	2352	2352	1522	PETN	ELLT	27	ā	53
557	HHE-026	4	2	35.53531	100.50892	2694	7580	7562	7591	-4237	2795	2795	1555	25121	15.1 T	77	č	67
558	HIE-026	6	2	35.53531	100.50592	2694	11337	11365	11352	-6353	6679	4457	1679	FERM	LIED	77	ē	EP
559	HE-026	8	2	35.53531	100.50392	2694	11894	11914	11904	-9210	5017	5917	2359	PERM	0758	77	č	E.D
560	HHE-025	10	2	35,53531	100.50892	2694	12301	12376	12339	-93:5	5207	5145	2371	HT55	4573	77	ē	EP.
561	KHE-031	3	2	35.51397	100.43633	2618	9148	9375	9261	-6543	3361	3661	1352	PENN	UCED	65	ē	59
562	KHE-031	4	2	35.51397	100.43633	2618	10985	11057	11021	-6003	4557	4453	2113	PEIRI	FUR T	5.ć	ē	50
563	KHE-031	6	2	35.51397	100.43633	2618	11795	11693	11204	-9725	5703	5303	3012	HTSS	0.15.5	65	- č	CD .
554	HHE-031	. 7	2	35.51397	100.43633	2618	11500	11991	11745	-9127	5203	5293	3065	HISS	0753	8.5	ē	27
565	NHE-069	i	2	35.32969	100.21597	2251	4514	4579	4545	-2295	1505	1403	13.15	PENE	ビミデウ	51	č	52
566	MHE-069	3	2	35.32969	100.21597	2251	5482	5492	5487	-3236	1938	1874	1235	PENNI	HST.T	71	č	ga
567	HE-1275	2	2	35.48-95	100.39745	2595	12975	13025	13000	-10-05	2955	5356	1030	HTSS	INTE	71	č	rp.
568	WHE-1275	5	2	35,48495	100.34745	2595	13387	13468	13429	-10533	5523	5743	2293	HIJS	0220	71	ē	pp
559	KHE-X01	3	2	35.53262	100.46143	2673	6925	8445	8445	-5772	3303	3331	1550	FRICE	USED	12	č	52
570	NHE-X01	12	2	35.53252	100.46143	2673	12664	12914	12759	-10035	5223	5225	2110	HISS	USED	67	č	52
571	NHE-X04	2	2	35.43512	100.34637	2590	13765	13986	13576	-11285	3253	5718	2334	HISS	USED	70	č	82
572	KHE-X05	ī	2	35.47086	100.33160	2563	13555	13597	13577	-11014	5594	5625	1895	HISS	USZO	70	÷ ē	RP
573	HHE-X06	2	2	35.56960	100.35445	2656	15250	15345	15298	+12542	6332	6112	1971	SYLV	บระอ	73	č	55
574	HHE-X07	8	2	35.50414	100.39673	2603	12535	12300	12693	-10000	5158	5193	1926	HIS3	USED	67	č	82
575	HE-XOS	2	2	35.59605	100.44012	2766	14990	15040	15025	-12259	6306	6505	2755	VICL	UZED	71	č	EP.
576	HIE-X12	ī	2	35.35797	100.07336	2155	21037	21195	21115	-15961	9374	9825	3825	ELLE	USER	72	č	C 2
577	HHE-X13	2	2	35.42747	100.40070	2613	3600	3334	3617	-1004	895	025	1035	LOLE	Usra	72	č	62
578	HHE-X13	3	2	35.42747	100.46090	2613	11315	11342	11329	-2716	4573	4527	1949	FEIN	USZD	72	č	E.F.
579	KHE-X13	8	2	35,42747	100.48090	2613	12325	12345	12335	-9722	5297	5297	2502	SYLV	USED	72	č	25
580	KHE-X14	1 ¹	2.	35,59444	100.10442	2539	13424	13725	13575	-11005	2153	2025	-6073	PENN	DETR	73	ē	RP -
561	HHE-X14	2	2	35.59444	100.10442	2559	15350	15516	15423	-12914	7073	6702	3354	PEID	D', ER	73	č	55
582	HHE-X15	1	2	35.30991	100.13992	2148	4012	4053	4038	-1670	1396	1319	1352	KOLF	USED	73	č	22
583	HHE-X16	2	2	35.37693	100.18655	2483	15135	15199	15183	-12700	7643	7643	4950	HUNT	DI-ER	74	Č	22
584	HHE-X17	ĩ	2	35.45497	100.26651	2462	16640	16690	15655	-14203	7401	7401	2376	HISS	มรรอ	74	ē	E9
585	WHE-X13	ī	2	35.32327	100.00600	2050	12430	12552	12491	-16441	4734	4573	533	HISS	UDE	75	č	12P
586	KHE-X19	2	2	35,45242	100.23116	2445	11275	11355	11315	-6970	2229	2314	-3583	PENN	CETR	76	č	20
587	HHE-X20	- ī	2	35.53724	100.28415	2538	13939	14016	13973	-11410	5042	9842	\$472	HISS	CVER	76	ē	RP
588	WHE-X20	4	2	35.53726	100.28915	2568	16032	18330	18241	-15673	E374	5355	-2118	MISS	UNCE	76	ē	K9
589	HHE-X21	2	2	35.55492	100.24595	2592	14585	14752	14569	-12037	9201	\$932	10759	MISS	CV'ER	73	č	62
590	KHE-X23	4	2	35.52150	100.50870	2748	13270	13500	13355	-10537	4203	4595	449	SINP	LYCOF	77	ē	80
591	WHE-X24	2	2	35.61787	100.53794	2995	11928	11290	11854	-8959	4708	4300	2004	HISS	USEO	77	č	pp
592	KHE-X24	3	2	35.61787	100.53794	2995	11892	12037	11965	-8970	4785	4745	1930	HISS	LISED	77	č	PP
593	NE-X25	ĩ	2	35.58630	100.52435	2795	11558	11632	11610	-8315	4822	4222	2313	PEICH	USED	7A	č	65
594	HHE-X26	2	2	35.43626	100.50969	2755	11910	12001	11955	-9201	5040	5003	2430	HUNT	USED	77	č	25

120

1

i

÷.

himmer hannes

Andrea Konstant K

الد مدر و

.....

....

....

.

......

. .

.

. . .

----- GEOLOGIC, HYDROLOGIC, AND FORMATION PRESSURE DATA FROM DRILL-STEM TESTS -----

OBS	SWECNO	TN	CL	LATITUDE	Lonsitud	ELEV	TOP	BOTTOM	10PT	TELEV	ISIP	FSIP	EFIH	FORM	STATUS	YR	Hođ	ACE.D
595	HHF-X27	3	2	35,44241	100.42941	2505	12756	12308	12775	-10130	5733	6233	1896	MTES	U.Fo	73	c	22
594	KHE-X28	2	-	35 41853	100 01788	2045	14489	19200	17015	-15730	11197	11723	10110	HILES	0.10	70	ř	
207	HUE. YOO		÷	75 713/4	100.01700	2148	10997	4/50	11343	-13720	1//5	1423	30223	0-01	11253	10	~	
377	NUE VIA		2	33.31143	100.17123	6177	4340	4007	4520	-6271	1004	1004	1346	E 6 4 10	0300	17	È	107
576	NIE-730	1	2	35.37100	100.33508	2433	13345	13231	13451	-11018	5/14	5//4	2597	CLLE	0210	17	с С	8°17 1910
599	WHE-KSU	z	2	35.39166	100.33508	2433	9230	9310	9295	-6232	3190	3215	500	F1776	94 R	12	C	2
600	KHE-X31	1	2	35.49629	100.15791	2333	10682	10245	10754	-6431	4757	4737	2347	FEIN	CVER	63	С	10 F
601	KHE-X32	2	2	35.56996	100.53238	2935	13435	13600	13219	-10203	5404	5354	2073	ELLE	USED	50	С	X 2
602	HHE-X32	3	2	35.53996	100.53238	2935	13526	14000	13793	-10933	5611	5518	2030	ELLE	0510	30	C	5 P
603	HHE-X33	1	2	35.47087	100.41722	2356	12809	12879	12210	-19174	5261	5275	2013	HISS	UJ20	ÊŨ	C	EP .
694	KHE-X34	3	2	35.59505	100.53806	2976	11792	11730	11716	-8743	4574	4574	2045	PENI	U350	16	С	AP .
605	KHE-X35	4	2	35.59537	100.39046	2686	11860	11863	11052	-9175	5300	5300	3055	FE.3H	over	65	C	<u>i i i i i i i i i i i i i i i i i i i </u>
606	WHE-X35	8	2	35.59537	100.39046	2635	13707	13825	13767	-11031	6271	6271	3371	MISS	0.128	65	с	-75°
607	HHE-X35	11	2	35.59537	100.39046	2695	16002	16081	16042	-13356	6969	6941	2727	VICL	UEED	66	C	7.P
608	HHE-X35	1	2	35.47211	100.40294	2577	6787	6560	6824	-4247	2520	2571	1559	PEIL	U!: 20	66	2	82
609	CHA-0015	2	2	33.62416	103.65916	4433	0239	9856	9609	-5454	3007	3181	2039	PE'N	DIFE	80	č	EP
610	CHA-0015	Ŧ	2	33 62416	103.65916	0033	11020	11050	11040	-6605	1097	4091	2335	MTS3	17:35	20	Ē	82
611	CHA-0055	ĩ	2	33 97841	103.94149	0212	7290	7320	7365	-3063	2553	2326	2759	HTRA	0762	80	č	113
612	CHA_0083	,	2	33.97072	104 14310	TAST	6050	4126	x ret	-20070	2411	2774	3735	PEND	0270	77	č	07
417	CUA_0396		5	33.95520	102 14710	TRET	4200	4272	4274	. 2707	90°22	2707	4124	DEXM	HT : T		č	20
410	CUA 0116		5	77 65320	104.10310	3333	5707	E947	5010		9710	247	4224	DEP-14	01/28	72	2	50
416	CHA-0113	<u>د</u>	\$	33.03+/1	104.53100	3723 6121	5173	5343	2010	1171	207	2073	714	TUCE	0.1X	12	р	56
012	CHA-0103	÷	~	33.77137	103.94000	4131	2633	5520		-1131	061	040	270	NTEE	500FR 8/19-7		ç	8.C 1919
010	CHA-0235	5	2	33.70370	104.23180	3040	6030	0075	0.00	-2222	2000	2000	3/50	P1150	10.61	, ć 70	5	11 C 11 C
017	CHA-0235	0	2	33.10370	104.23180	3840	60/5	0210	0143	-2303	2292	2515	3333	1/7.22	0010	12		P. 5"
618	CHA-0245	z	Z	33.65479	104.21330	4029	2430	2500	2490	1559	1149	1149	4191	6103	UVER	14	8	KP
619	CHA-0245	3	Z	33.66479	104.21330	4029	6000	6064	603Z	-2003	2470	2470	3697	FERR	UCEO	1.5	C .	i.e
620	CHA-0245	8	2	33.66479	104.21330	4029	6700	6723	6712	-2683	2575	2575	3260	MI53	USED	74	C	62
621	CHA-024S	9	2	33.66479	104.21330	4029	6725	6765	6745	-2716	2575	2575	3225	MISS	FULT	74	C	F?
622	CHA~031S	- 3	2	33.66920	103.87000	4099	7475	7600	7539	-3439	3261	3261	4237	FERR	OVER	69	С	RP
623	CHA-0385	1	2	33.59030	103.83211	4176	9072	9173	9125	-4949	3019	3137	2477	FEIR	DETR	75	C	£Р
624	CHA-038S	3	2	33.59030	103.06211	4176	9125	\$520	9323	-5147	3752	3597	3528	PENN	UBED	75	C	25
625	CHA-038S	- 4	2	33.59030	103.86211	4176	9050	9100	9030	-4904	3249	3234	2591	FERN	DEPR	75	С	EP
626	CHA-0365	6	2	33.59030	103.86211	4176	6360	6440	6400	-2224	CE6	241	-1ć33	LCF	DELB	75	Ð	ED.
627	CHA-0535	1	2	33.51305	103.89709	4075	7302	7380	7341	-3255	2259	2215	1947	NOLF	DEPR	77	C	RP
628	CHA-054S	1	2	33.55759	103.76181	4278	3850	3909	3935	393	1263	1221	3308	LSA	USED	77	5	EP
629	CHA-0359	2	2	33.55099	103.76199	4294	6544	8705	8575	-4301	3419	3525	3510	NOLF	USFD	77	С	HP
630	CHA-0555	4	2	33.55099	103.76199	4294	10050	10160	10120	-5826	3426	3289	2036	PERM	DIPR	77	С	ЧP
631	CHA-0559	5	2	33.55099	103.76199	4294	10225	10320	10273	-5779	3642	3419	2425	PENH	DECR	77	С	Чэ
632	CHA-0585	ī	2	33.67360	104.05341	4070	2487	2592	2540	1530	\$20	933	3792	LSA.	USED	73	อ	R.2
633	CHA-0505	2	2	33.67360	104.05341	4070	6703	6750	6729	-2659	2033	2156	2143	HOLF	UNCE	73	С	GF
634	CHA-0585	4	2	33.67360	104.05341	4070	6708	6795	6752	-2682	2245	2284	2499	HOLF	UNDE	73	Ċ	82
635	CH4-0595	1	2	33 73050	104.14799	0020	2532	2637	2565	1462	\$63	e 43	3637	LSA	0210	77	Ē	82
474	CHA_0595	Ē	2	33 73080	104 14799	4043	6607	6.592	6350	-2603	2209	2422	2959	HTF	UNDE	77	č	122
437	CHA_¥02	7	2	33 70200	104 20041	4050	4210	6236	6003	-2173	2609	2704	3078	MTSS	USED	71	ē	52
470	CHA-YOZ	1	,	33,77240	104 18781	4110	E044	5057	5013	-1009	2374	2267	3675	DESIN	USTO		ē	22
470	CHA VOT	÷.	5	33.77620	104.10701	4110	227/	2736	2510	-1000	0013	2052	4785	MTCC	ONED	77	ř	60
037	CHA~AU3	2	~	33.79020	104.10/01	7070	6374 E471	0430 E7/8	8467 8707	1977	0075	2740	7705	BENN	1.0 * 1	7/1	ř	r 5
4040	CHA-AV4	÷.	2	33.11407	104.63100	3010	2041	2/02	5103	-1699	6E21	6/107	7765	DEN	HOUN	7/1	ž	0.0 0.0
041	UNA-XU4	\$	2	33.77409	104.52100	30/0	37/3	0007	2773	-6163	6300	4400	2177 1100	PENN DOM:N	0320	74	5	87
642	CHA-304	4	2	35.77409	104.23100	3870	6043	6122	0033	-2213	6748	6193	4127	P C L P	U+EA 11075	74	с С	87 33
643	CHA-X05	Z	2	55,77800	104.20050	4150	5080	5959	5920	-1//0	2370	2309	5/45	PERM	0520	70	د م	R/ 57
644	CHA-X06	4	Z	33.76340	104.20061	3932	6150	6224	6187	-2255	3026	3926	4728	N155	OVER	/1	C	K.*
645	CHA-X07	1	2	33.77060	104.20061	4048	5730	5850	5790	-1742	2365	2306	3718	PEIM	UEED	71	C	KP
646	CHA-X09	3	2	33.76041	103.92799	4166	7990	8055	e023	-3857	2995	2792	3054	HISS	DEFR	65	C	62
647	CHA-X10	1	2	33.77216	104.01302	4147	2700	2777	2739	1408	549	\$49	3599	USA	USED	83	3	77
643	CHA-X11	1	2	33.77640	103.71899	4532	4050	4100	4075	457	1374	1395	3628	GLCR	USED	67	8	112

.

----- GEOLOGIC, HYDROLOGIC, AND FORMATION FRESSURE DATA FROM DRILL-STEM TESTS -----

055	SHECNO	TN	CL	LATITUDE	LONGITUD	ELEV	TOP	BOTTCI	HOPT	TELEV	ISIP	F312	EFIM	FOSH	STATUE	Ya	123	7223
		-	_															
649	CHA-K1Z	1	z	33.67261	104,15179	3955	6780	6812	6795	-2331	2597	2524	3152	HI95	0220	72	C .	E P
650	CHA-X13	I	Z	33.67174	104.22153	4039	1835	1972	1927	2110	730	\$75	3775	LSA	C315		3	23
651	CHA-X13	Z	2.	33.67174	104.22153	4039	6515	6673	6577	-2559	2300	2200	2005	HI55	0.212	75	· C	
652	CHA-X15	3	Z	33.73116	103.87093	4235	3650	3765	3713	522	1405	1329	3735	LCA	0220	77	5	
653	CHA-X16	1	2	33.68060	103.90540	4143	3235	3310	3273	875	937	<u>942</u>	3000	LSA	65250	37	- D	X2
654	CHA-X18	1	2	33.65540	104.36440	3613	655	976	921	2572	347	247	3- 23	res	_0050	63	B	E.C.
655	CHA-X19	1	2	33.61870	104.28210	3320	15:3	165)	1607	2253	615	507	3372	USA	U/29	63	a	2.P
656	CHA-X20	2	2	33.57480	104.11320	3955	2352	2451	2402	1253	377	245	3577	LSA	USED	\$7	E	Rr
657	CHA-X20	3	2	33.57499	104.11320	3535	2432	2455	2454	1491	833	628	3425	LSA	11.5. T	67	3	5 5
658	CHA-X21	1	Z	33.59589	103.95859	3991	1628	1934	1851	2100	42	42	2197	LST	DESS	73	ß	E.
659	CHA-X21	2	Z -	33.59509	103.95359	3931	2955	3039	3002	979	1653	1076	3439	<u>L</u> SA	0020	73	<u>,</u> 2	R.2
660	CHA-X22	1	Z	33.65531	103.73260	4380	3960	4125	4043	337	1345	1345	2344	U34	US68	76	₽	1.5
661	CHA-X22	4	2	33.65591	103.73260	4330	10384	•• 10647	10636	-6226	3973	3787	2652	RISS	0.05	75	C	19
662	CHA-X23	1	2	33.64150	103.73920	4234	4020	4382	4051	233	1255	1229	3129	LEA	DEFR	77	Ð	32
653	CHA-X24	1	Z	33.61639	103.72000	4405	4000	4005	4043	362	1275	1276	3207	LSA	DEPR	29	5	11 2
664	CHA-X25	2	2.	33.61574	103.73656	4278	4027	4070	4047	229	1133	1107	2044	LEA	DEFR	77	E	Hə
665	CHA-X26	S	Z	33.62656	103.74767	4328	3954	3592	3978	350	1253	12E3	3053	UCA	USED	72	8	H2
666	CHA-X17	1.	Z	33.60430	103.74541	4305	3378	3943	3923	332	1216	1196	3193	USA.	0320	¢4	5	112
657	CHA-X28	1	Z	33.60300	103.72000	4397	4000	4102	4051	343	1309	2334	3259	LS4	67222	67	₿	H P
668	CHA-X29	1	2	33.59720	103.81760	4209	3350	3759	3530	519	1195	1195	3277	lsa	ປະແຫ	64	5	1:P
. 669.	CHA-X30	1	Z	33.57323	103.77521	4280	3800	3910	3635	425	1310	1233	3449	USA	0200	53	3	1,6
670	CHA-X30	2	2	33.57320	103.77521	4230	6510	8571	8541	-4251	.3421	3277	3311	FERR	USED	53	C	11 ¹ 1
6/1	CHA-X30	5	2	33.57520	103.77521	4220	9065	9145	9107	-4327	92	52	-4215	PINI	CE2S	63	C	HÞ
072	CHA-X59	0	z	33.57320	103.77521	4280	-10592	10512	10402	-0322	4063	4111	3632	11135	USIC	63	C	82
675	CHA-X31	1	2	33,57981	133.74921	4320	3370	3985	3928	392	1273	1261	3275	UZA	LEID	39	5	₽ .₽.
0/4	CHA-X32	1	ž	33.65051	103.61639	4450	4282	4235	4157	291	192	181	734	L34	GEPR	-56	З	HP
0/5	CHA-X32	2.	2	33.65581	103.61639	4450	4242	4365	4304	146	1331	1285	3219	LSA	DEPR	ć 5	5	EP
2/0	CHA-KSS	2	2	33.64100	103.60350	4490	10544	10885	10555	-6375	4167	4167	3241	NISS	USED	67	C	82
470		Ť	2	33.00201	103.68021	4344	4050	4025	4029	276	1155	1123	3013	152	DEPR	55	5	H2
470	CUA-X30	2	2	33.57001	103.01090	4375	8964	8995	6990	-4575	2515	2875	2270	NOLP	DEFR	- E5	C	He
400	CHA-AST	<u>.</u>	5	33.5/200	103.32909	4409	9000	AT22	9101	-4375	2978	2847	2177	1 CLF	DELK	47	C	13
600	CUA-X33	2	2	33:04031	103.55119	4365	8/30	8910	8545	-4450	5013	2915	2475	RCLF	DZFR	67	C	H3
4001	CUA 740		6	33.3/010	103.00320	4327	9070	5250	. ATOD	-4/15	2022	2830	1009	F.L.F.	9293	75	<u>с</u>	Ea
002	CHA-X40	÷.	~	33.53900	104.30000	3/05	1478	1575	1248	2217	010	610	3625	LSA	0520	69	5	K.P
603	CHA-A40		6	33,53700	104.30030	3/63	2413	8000	2771	-2172	2219	2315	3237	Patist Line T	USED	57	C	82
405	CHA-A41	2	<u>د</u>	33,33341.	104.04220	2244	7020	7123	7077	-2122	155	125	-2/33	RULF	UL#A	71	C	10 A
202	CHA-442	1	5	33,55/40	103.94117	4010	3103	3100	3133		740	200	3233	USA	02:0	01 	5	1. J
447	CHA-A43	£ .		33,34001	103.74000	4019 0015	8175	1193	1734	+3/19	0710	5282	3609	F25w1	0928	11		K."
460 460	CHA-A43	- 3 '	5	33,340UL	103.74500	4015	00/4	0173	0710	-9250	2/13	2/16	15/3	PEFUI	02: 8	11	C A	R14 700
440	CHA-A43	7	5	33,94301	103.74000	4013	0744	0//2	6777	-4/73	2147	2142	2364	n123 671 H	DEPA	11	L C	77
400	CHA-643	\$	5	33.34001	103.94300	4013	7550	9309	9515	-5250	2240	3340	1243	SILU	DC72		L D	67' 30
401	CHA-A44	2	5	33.52020	103.03500	413U 4170	10710	7301	9960 10915	-2320	433	433	-4332	P 2151	ULFR Hoto	63	6	N
492	CHA-X45	1	5	33.52020	103.03500	4130	7/20	10720	7510	-0.000	4222	4323	2003	Parki	Uscu	30	С В	82
407	CHA-A43	•	5	33,50977	103.03337	4073	3400	3999	2210	2/2	1100	1271	2-1/1	LSA	0520	65	÷	82
40A	CHA-445	;	5	33.55700	103.00700	4202	3030	3770	2010	437	10:0	223	2237	1124	07-92	37	5	167
40E	CHA-YAQ	2	2	33.54300	103.75200	-1203	2070	- DIAU	2010	373	1404	1772	3532	1024	0550	60 4 >	0	69 10
XOX	CHA-YED	ĩ	2	22 21144	107 75000	リムコム	11070	4160	11620	101	1415	1310	3443	E2A BEUM	0329	03	5	F.H
670	CHA-450	,	5	JJ.J1140 11 70074	103./374U	7101	0100	710/1	11020	-1010 2011	N972	4372	3210	F 5 1 6 1	0320	20	C	67 66
4077	CHA-ADI	۲ ۲	5	33,76770	107.22430	2070 710/	6230	6361	6613	1421	770	740	3725	LDA	0200	15	8	<u>к</u> у го
670 Kaa	CHA-AST	2	2	JJ.107/U ZZ 76878	104.26430	3370	2703	0104	4/27	-2339	2928	2220	3470	PULP	0529	/5	C A	1.2
700	CHA-ASI	1	2	33.7077U TT 4194	104.36450	3070	- 043C	6420	0423 8870	-6/00	2117	2119	3333	Pant	0529	15	C e	N.2
701	CHA-YEZ	÷	2	JJ.09120 77 88194	104 10249	3737	9000 4717	2270	22/0 1725	-1027	2010	1042	2344	RELL	0577	81	2	KP Ne
702	CHA-YEA	ĩ	ĩ	22 XUQIV	107 014747 107 01474	3737	2120	7770	7500	-2137	2439	1070	2735	PERM	ULPR	81	5	5 1 1
	Ten-net	٠	-	22100030	TAS. 17010	4055	3120	2220	コビッリ	013	TION	1039	2252	LJA	ບອະນ	04	Ð	1. M

till this has the

.i

122

i .

i. .

----- GEOLOGIC, HYDROLOGIC, AND FORMATION PRESSURE DATA FROM CRILL-STEN TESTS -----

085	SHECHO	HT.	CL	LATITUDE	LONGITUD	ELEV	TOP	EOTTON	TSON	TELEV	ISIP	FSIP	EFIR	FORM	STATUS	۲R	H3U	1020
703	CHA-X54	2	,	33.53382	103 34245	3812	4055	6140	4008	-2284	2305	2325	3079	25711	11550	6.7	~	5.5
704	CH0-X56	ž	2	33.53382	104.34245	3012	A155	6190	6173	-2331	2253	2205	2853	11155	140 1	60	ř	t 0
705	CHA-X56	ā	2	33.53382	104.34245	3812	8350	4305	4748	-2554	222	40	-20243	MICS	11178	9.4	ř	87
704	CH2-0135	र	ž	34.67016	103.29985	4411	4552	6412	4502	-2171	2045	2045	2513	SCH F	11257	75	ř	
707	CUD_0179	6	,	TA 47A14	107 20965	4411	4075	7044	4542	-2551	2003	2030	2003	DENN	HEED	75	č	1.10
708	CUR-0105	2	ž	34.07010	103 42027	8698	2800	7045	0302	1408	1175	1170	5007	LCA	Derp	75	6	110
709	CUR_0145	ž	÷	30 45227	103 45927	6427	4259	6700	4779	_1454	1014	1944	2420	NOLE	HEER	77	ř	107
710	CIR-0225	ĩ	,	70 51180	103 55771	4523	1115	0000	2203	1305	1220	1101	4207	I SA	11275	42		1.5
711	CUR-0225		5	Ta 51190	103 55771	4555	450A	4534	4507	.1974	1057	102		LOLE	lieta	25	ž	115
712	DEB_0049	2	5	Th E1979	103.33771	4555	4500	6343 4/79	4400	-2193	2223	4766	7271	1225 2	10000	7.1	2	1.0
717	DE0-0005	2	2	74 74214	104.10737	44.75	40.50	4097	4074	-2007	2751	7/10	0737	02.11	01.23	7/4	č	100
714	DEB-0115	5	5	TA 28715	101 05000	2275	4702	477a	4778	-2001	2514	2017	7573	1912 M 10	USED	71	ř	5.0
715	GUA_0075	2	ž	35 17007	100 25944	4017	1417	1474	1427	7200	572	5775	2237 2227	CI C3	USED	47	8	C9
715	GUA-V01	1	7	33.27077	104 82291	7711	1975	1353	1710	3034	220	0.40	A983	1 54	Hein	77	, in the second	- ca - rr
717	807-701 807-701	,	2	35 90227	107.52863	8770	1927	2100	1030	2001	647	851	- 3410	61 C2	Harn	71	Ē	- ca
718	154-001	2	2	77 E1880	103 43723	ATTE	2907	EC05	E346	-1001	7147	7163	Fack	61.03	0.159	145	5	100
710	1 64-0403	•	5	33.51000	103.03341	4335	0500	5045		-255	3477	7535	2000	1124	1.520	72	5	110
720	1 EA_0379			33.33700	101 57070	4340	9510	9530	9575	-6220	2031	2167	-102	DENN	0000	70	ř	127
720	LEA-0473	۲ ۱	5	33.53700	103.33030	4340	0740	7220 Ca20	0700	-5405	5203	2203	212	DENN	011 K		ž	10
700	LEA-0473	1	د ب	33.55720	103.30740	4165	11420	11403	11667	-2003	2019	1211 1204	1192	DEMM	DEC-R	77	ř	618° 1229
797	164-0503	÷.	5	33.53417	107 09740	7012	11205	11097	11014	-7010	リリエピ	5000 8863	2203	FLICE	11257	40	ř	100
763	LEA-0515	<u>د</u>		33.51500 77 E1E00	103.03/00	7647	11000	11767	11075	-7007	7373	4704 8270	2004	51108	11.5	45	č	. 115
764	LEA-0313	3	<u>د</u>	33.51500	103.00700	2741	11700	11730	11724	-1707	3757	1776	7717	1033	10-0	10		117
763	1 54 700	;	5	33.33300 77 551/1	103.03341	4430 hhhE	7207	574	A221	- 11/1	1757	1277	7076	LOA	Hesp	41	5	117
720	LEA-AU4	· 🕇	2	33,53141	103.04220	4443	4670	4204	- 4321 60//h	. #217	1333	1202	3633	LOA	0520	7/1	~	177 129
767	LEA-AUS		~	33.32470	102.03301	4331	0733	0120	0344	-4010	73	73	-4230		0227	47		56* 12*5
720	LEA-AUG		2	33.51400	103.62100	4305	7043	9120	9024	-4379	2350	1000	7550	1123	USPR	37	5	107 107
729	LEA-XU7	1	ž	22.21103	103.02500	4350	4220	4205	4233	¥/	1473	1403	3347	UDA	DECO	07	5	110
730	LEA-XU7	2	2	33.51100	103.02500	4350	9041 9041	9045	9059	+400+	371	3777	7751	HEN	UEFR	77 71	L B	117
731	LEA-XU9	Ž	2	33.54440	103.5/200	4385	4435	4520	4478	-73	1450	1431	2234	05.4	0520	11	0	11
732	LEA-XUY	5	z	55.54440	103.5/200	4305	0373	C034	0724	-4239	1001	1021	-544	THE PARTY	DEPR	11	5	110
733	LEA-X09	4	2	33.54440	105.57200	4385	A212	9350	7333	-4743	2250	2302	331	PEint	DEAR	11	L A	8167
734	LEA-XII	Z	Z	33.52940	103.52460	4337	5648	9062	9555	~5518	2540	2520	543	PEICE	DEPR	67	<u> </u>	81.00 1.100
735	LEA-XIZ	1	Z	33.53259	103.58130	4370	9239	9265	9262	-45/2	2300	2327	-1705	PERN	DEFX	. 35	C A	tir'
736	LEA-X13	1	Z	33.51520	103.55240	4366	9645	9654	7550	-5234	2930	2520	. 1593	FEAT	DEPR	0.5	C	1.17
737	LEA-X14	1	z	33.52599	103.52049	4325	9652	9675	9564	-5559	2256	2258	-41	PETUS	0263	10	<u> </u>	, RF
738	LEA-X15	1	Z	33.50760	103.52499	4312	9540	9700	9570	-5353	2121	2121	-433	PERN	DEPR	69	C	122
739	LEA-X16	1	Z	33.50060	103.52960	4303	9650	9750	9700	-5397	2170	2170	-389	FERR	DEFI	69	C	52
740	LEA-X17	1	2	33.50819	103.53349	4317	9635	9655	9660	-5343	1741	1941	-664	FENH	DEFR	70	C	HP
741	LEA-X18	1	2	33.55420	103.46899	4273	9535	9640	9338	-5365	2357	2408	74	FEIN	DEFR	62	C	EP
742	LEA-X18	2	2	33.55920	103.46899	4273	9685	9720	9703	-5430	1911	1910	+1020	PERN	DEPR	67	C	58
743	LEA-X19	1	2	33.54460	103.47321	4275	9678	9740	9709	-5434	2836	2005	1041	PERM	DEPR	63	C	80
744	LEA-X20	1	2	33.54100	103.40770	4200	9749	9820	9765	-5585	1836	1035	-1348	FENN	DEZZ	70	C	Hb
745	LEA-X21	1	2	33.53740	103.45530	4250	9715	9775	9745	-5495	2262	2632	1110	PEICK	DEFR	63	ç	KP
746	LEA-X22	2	2	33.52960	103.54900	4312	9615	9675	9645	-5333	2335	2336	58	PENN	DEPR	71	C	HP
747	LEA-X23	1	2	33.51950	103.46330	4187	9804	9814	9809	-5322	3450	3444	2340	PEIN	DEPR	63	С	82
748	LEA-X24	2	2	33.51900	103.44790	4225	9789	9347	9818	-5593	1351	1361	-2452	PERM	DEPR	69	C	HP
749	LEA-X25	1	2	33.55920	103.34801	4170	9760	9830	9755	-5625	2592	2532	33%	PENN	DEPR	67	C	HP
750	LEA-X26	4	2	33.56830	103.36960	4190	9745	9770	9753	-5568	2779	2779	875	FENN	DEFR	66	С	62
751	LEA-X28	1	2	33.54900	103.40401	4203	9770	9856	9313	-5610	2507	2493	175	PEIN	DEPR	67	C	, RF
752	LEA-X27	1	2	33.51190	103.45100	4230	4729	4795	4762	-532	1630	1601	3330	LSA	UJED	67	e	Fb
753	LEA-X27	5	2	33.51190	103.45100	4230	9942	9859	9351	-5621	2537	2533	233	PEIM	DEPR	67	C	НЪ
754	LEA-X29	1	2	33.55540	103.37840	4190	\$804	9867	8936	-5646	2720	2700	565	FEMN	DEPR	6 3	С	HF
755	LEA-X30	1	2	33.54920	103.38580	4190	9760	9835	9798	-5603	2553	2537	284	FENH	DEFR	69	С	КÞ
756	LFA-X31	1	2	33.53503	103.31641	4112	9522	9578	9550	-5430	2804	2761	1033	PENN	DEFR	65	С	HF

----- GEOLOGIC, HYDROLOGIC, AND FORMATION PRESSURE DATA FROM DRILL-STEM TESTS -----

CES	SHECNO	TN	CL	LATITUDE	LONGITUD	ELEV	TCP	BOTTOM	HEPT	TELEV	ISIP	FSIP	EFUN	FCRH	STATUS	YR	REJ.	1090
757	LFA-X31	2	2	33.53500	103.31641	4112	11902	11913	11903	-7795	4465	4414	2553	PEIN	0528	55	c	EB
754	1 FA_X31	ž	2	33.53500	103.31641	4112	11040	11001	11945	-7853	45.4	8503	2519	DENIA	0792	45	ē	1.2
759	1 FA-X32	ĩ	2	33,53380	103.35201	4163	9754	9916	9735	-5432	2015	0000	-247	FEIDE	0523	59	ē	1.3
740	LEA-X33	ī	2	33.54020	103 3/940	4125	9740	9850 -	2315	-7500	2330	2412	463	EFTN	0492	¥9	č	12
763	1 64-234	î	2	33 52522	103 37347	41.5	4722	4030	4771	-606	004	797	1253	151	0	31	Ē	123
742		2	2	77 51302	103.37347	4145	0772	0723	6777	-5513	£3	175	-6374	CENN	o ana	61	č	1
702	LEATAJT	2	\$	33.32072	107 77747	4100	12400	10405	12617	-3553	21	114	-9400	1170-2	0770	5-		1.2
703	LEA-AJ4	<u>,</u>	<u>د</u>	33.52074	103.37347	4195	10416	12010	10407	0727	17F 4754	4703	-0000 5533	11233	DEDO	63	ž	142
704	LEA-A34	7	\$	33.30376	103.3/34/	4103	12013	12337	16961	-5-3C	4760	4763	4201	61200	0500	- 2	č	14.=
700	LEA-AJJ	3	4	33.56310	103.30703	4120	7/13	7/10	アノリン	+2103	1050	1253		17726	LICER		ž	1167
740	LEA-AJD	7	5	33.24310	103.30703	4150	12055	12070	10//7	+3315	4750 F000	4720	2009	HICO HTCC	0323	- 70 - 33	ž	117
707	LEA-733	2	5	33.25310	103.33703	4120	16655	12374	12003	-6305	30.0	1210	2033	1233	11050	70	с с	10
700	LEA-AJO	÷	2	33.5207V 77 E0E31	103.34/01	4140	4/70	4701	4643	-330	1000	1203	20017	Lan	USED	10	<i>ب</i> م	1.7
707	LEA-AJ/	÷.	~	33.505/1	103.33139	4140	4014	4014	40.43	-113	7314	1202	6921	LC 3	02.20	23	6	- 407 1970
770	LEA-A3/	3	4	33.505/0	103.35134	4120	9031	9070	9351	-5765	4233	4217	4270	# 21.13		22		1.17
770	LEA~330	*	4	33.37213	103-35340	4192	9700	9/04	7/33	-22/2	37.33	2222	2010	- 15 G N	0.029	°!		810 ⁻⁰
772	LEA-839	4	2	33.50560	103.21001	4047	9/70	9636	2012	-5/00	2.3/	3237	3204	P2Ful	USED	14	Б	104
113	LEA-340	÷.	2	33.50000	103.27080	4035	4500	4913	4357	-772	1/11	1/11	21/5	LUA	0520	0/	В	2.6
774	LCA~A41		~	33.50231	103.27450	4095	9770	98-1U	- 9859 #075	-5/14	2363	2417	-210	PENN	UERR	С. ()		ni* 110
112	LEA-843	1	2	33.59100	103.24800	4057	4200	4950	40/5	-810	1/31	1724	3252	LEA	0220	4.5	, D	110
779	LEA-843	2	2	33.54100	103.24800	4057	7825	20004	¥355	-2211	4055	4319	3223	PLIN	0529	07		112
777	LEA-344	2	2	33.51221	103.20950	4012	12244	12234	12004	-8252	4743	4/25	2734	N122	USED	10	C N	82
770			2	35.0/10/	103-10213	4201	1140	1260	1200	2021	122	132	33/3	LSA	0120	11		Gif Co
7/9	Q0A-01/5	Ţ	2	34.9/953	103.77400	4173	5054	5323	5207	-1013	2430	2930	4001	NULF	UVER	17	С С	6.12 1.15
700	RUU-UU6	č,	2	34.10040	103.50240	9005	1255	1320	1291	-3200	2007	2235	2011	HULP .	0520	72	ц. Г	F124
701	KUJ-UII	+	č	34.11050	103.30/50	3993	0504	0/12	6348	-2555	2.33	2225	2493	STOR -	02.19		ن -	199
182	R0J~012	1	2	34.02/55	103.20359	4160	/12/	/1/0	7149	-2739	2477	2425	2728	N.L.F	USED		C	11.9
783	R00-014	2	ž	34.01891	103.74600	4376	7628	7770	7659	-3323	2759	2541	3135	SICLE.	USED	/3	C	HP
784	R00-028	1	2	33.67000	103.53931	4383	8671	8375	8333	-4300	2797	2711	2157	TICLE	DIFR	71	C	112 112
785	RCU-028	2	Z	33.0/000	103.53931	4535	8/57	8310	8/14	-6371	2997	3100	2525	LCC2	DEFR	- 71	С -	1.2
786	800-028	5	z	33.67000	103.53931	4395	9530	9660	5620	-5237	92	92	-5025	PENN	057.8	71	C	199
787	RC0-028	6	2	33.67030	103.53931	4393	9684	\$600	9742	-5359	2554	Z665	535	FERN	DEFR	71	C	HP
785	R00-0345	1	Z	34.22760	103.69940	4314	6452	6772	6317	-2303	2213	2179	2604	HICH	USED	72	B	112
769	R00-0375	Z	Z	34.01260	103.51630	4301	7400	7510	7455	-3154	574	1019	-859	HOLF	UNCE	74	C	1 P
790	R00-0415	1	Z	33.95350	103.37370	4220	7390	7558	7474	-3274	2525	2366	2553	NCLF	USED	72	С	Hb
791	R00-0445	3	Z	33.65409	103.79120	4485	4122	4155	4139	345	1972	1972	4397	GLCR	OVER	72	5	EP .
792	R00-0455	2	Z	33.97759	103.59821	4444	8150	8249	8200	-3755	2397	23E4	1775	HI3S	DEF.2	75	C	R5
793	RCO-0575	1	2	33.76199	103.32410	4205	4317	4397	4357	-152	1477	1427	3056	LSA	USED	71	6	HP
794	RC0-0625	3	2	33.79120	103.52499	4355	7539	7697	7573	-3218	353	659	-1704	XCLF	DEPR	67	С	-iP
795	R00-0715	3	2	33.73180	103.54810	4379	9330	9437	9409	-2030	3477	3477	2954	FUSS	USED	55	В	EP
796	R00-0735	1	2	33.69540	103.54810	4388	8497	8344	8521	-4133	2903	2903	2537	PERM	DEFR	63	C	HP
797	RCO-0775	1	2	33.74319	103.22380	4127	8343	9012	esce	-4001	3334	3371	2093	Hiss	USED	71	C	415
798	R00-0945	1	2	33.77277	103.06757	3954	4223	4097	4255	-301	1410	1410	2953	LSA	USED	78	5	H2
799	R00-X02	1	2	34.02950	103.53365	4323	6820	6838	6344	-2521	2217	2196	2595	RICH	USED	79	3	нэ
600	R00-X04	1	2	34.07494	103.45959	4294	7254	7350	7302	-3063	2516	2452	2793	KCLF	USED	80	С	115
801	R0D-X05	1	2	33.91740	103.65450	4362	7075	7200	7138	-2776	2359	2369	2691	HOLF	USED	76	С	HP
802	R00-X06	2	2	33.91060	103.26421	4235	4209	4450	4330	-95	1473	1047	3 31ó	LSA	USED	67	B	HP
803	R00-X07	1	2	33.92470	103.18970	4190	4100	4190	4145	45	1397	1397	3269	LSA	USED	79	8	K2
804	R00-X08	1	2	33.88519	103.74760	4555	3635	3750	3693	862	93	93	1077	LSA	UNDE	ć7	2	H3
805	R00-X08	2	2	33.88519	103.74760	4555	4101	4132	4117	433	1491	1441	3856	GLOR	USED	67	e	Η.œ
805	R00-X10	1	2	33.87720	103.61760	4480	3778	3820	3799	681	1135	1123	3418	LSA	USED	63	B	HP
807	R00-X11	1	2	33.75752	103.64127	4446	4230	4330	4230	166	1390	1311	3374	CLC3.	USED	3 6	В	HP
808	800-X12	3	2	33.79840	103.53840	4387	3895	4010	3953	434	1207	1185	3219	LSA	USED	67	B	XP
809	R00-X13	2	2	33.75981	103.44060	4293	4225	4400	4313	-20	1413	1407	3241	LSA	USED	70	9	HP
810	RCO-X14	3	2	33.75037	103.44905	4311	4342	4397	4370	~59	1749	1692	3978	LSA	OVER	78	8	HP

124

4

÷

• A second of the second se

----- GECLOGIC, HYDROLOGIC, AND FORMATION PRESSURE DATA FRCH DRILL-STEH TESTS -----

· ···· ; 🦿

...

035	SHECNO	TN	CL	LATITUDE	LONGITUD	ELEV	TOP	BOTTCH	TRCH	TELEV	isi?	FSIP	EFIR	FCTH	STATUS	YR	hsu	TOPO
811	RC9-X16	1	2	33.80190	103.05200	3930	4165	4230	4208	-273	1967	1397	3107	LSA	USED	73	B	82
812	R00-X18	1	2	33.68500	103.66520	4969	4230	4275	4253	216	1225	1175	3043	LSA	DIPR	66	8	ыP
813	R00-X19	1	2	33.67400	103.70216	4437	4065	4133	4099	339	132	135	643	LSA	DEPR	77	B	MP
814	R00-X20	2	2	33.65721	103.64550	4460	8705	8357	8761	-4301	2723	2730	1990	NOLE	U	65	C	11P
815	R00-X21	1	2	33.53420	103.29510	4114	9756	9805	9801	-5537	2530	2930	1075	FREC	ປະວະ	52	С	82
816	R00-X23	3	2	33.68829	103.53940	4350	9425	9525	\$475	-5125	3472	3972	2337	FUSS	USED	62	Ð	112
817	RCO-X24	2	2	33.66650	103.58240	4424	4298	4350	4324	100	1350	1318	3036	LSA	USED	65	6	HP.
818	RCO-X25	5	2	33.82599	103.52264	4414	7820	7250	7835	-3421	2739	2002	2945	HOLF	USED	78	C	82
819	RCO-X26	3	2	33.67600	103.10250	4027	4732	4795	4754	-737	1829	1633	3140	LSA	USED	55	8	НÞ
620	R00-X27	1	2	33.67551	103.15430	4050	4500	4670	4335	-525	1670	1575	3329	LSA	USED	73	5	11P
821	R00-X27	2	2	33.67551	103.15430	4060	<u> 6112</u>	£223	8163	-4108	1670	1575	-254	KOLF	DELL	75	С	82
822	R00-X28	2	2	33.58730	103.43331	4245	4575	4695	4646	-491	1508	1523	3264	USA	USED	63	Э	HP
623	R00-X29	2	2	33.57300	103.40900	4215	5090	5173	5134	-918	1603	1793	3427	LSA	USED	69	B	HP .
824	R00-X30	1	2	33.63161	103.30600	4150	4552	4950	4921	-771	1675	1513	3094	GLCR	DEFR	67	З.	HP
825	R00-X31	1	2	33.57290	103.30920	4129	9319	9050	9835	-5703	2831	3051	1031	PEICH	DEFR	61	С	КP
826	RCO-X32	2	2	33.64600	103.23199	4095	4056	4900	4378	-783	1622	1622	2520	LSA	DEFR	ć5	3	KP
827	R00-X33	3	2	33.63991	103.25780	4105	13040	13065	13053	-8948	4901	4501	2332	FREC	USCD	66	. C	1:2
828	RCO-X34	1	2	33.62440	103.26241	4104	4770	4378	4824	-729	150	150	-373	LSA	DEPR	69	5	НP
829	RCO-X34	5	2	33.62430	103.26241	4104	13623	13139	13111	9007	4959	4939	2469	FREC	USED	63	С	HP
830	R00-X37	1	2	33.57680	103.28799	4110	9305	9000	9843	-5733	2366	2326	-227	FENGA	DEFR	68	C	HP
831	R00-X39	2	2	33.59540	103.21300	4045	4936	4965	4551	-905	1749	1745	3110	LSA	DEPR	67	З	82
832	R00-X39	1	2	33.58771	103.05360	3965	9527	9577	9537	-5572	3979	3979	3610	PREC	OVER	72	C	HP
633	rcj-x39	2	2	33.58771	203.05360	3965	4766	4932	4349	-834	1611	1544	2834	LSA	DEFA	72	5	HP .
834	R00-X40	7	2	33.50411	103.07201	3970	11344	11379	11362	-7392	4733	4738	3542	HISS	CVER	64	С	БP
835	R00-X40	9	2	33.59411	103.07201	3970	11407	11449	11428	-7433	4305	4375	2769	HISS	DEFR	64	С	Ha
836	SAN-0025	1	3	35.66637	105.19508	6531	4657	4781	4724	1907	1758	1703	5934	PREC	USED	ć8	Ç	CR
837	SAN-0065	2	3	35.64655	104.14369	4765	1616	1637	1627	3339	115	115	3603	GLCS	USED	67	B	CR
838	SAN-0105	3	3	35.56931	104.34196	4550	1 04 9	1396	1223	3427	431	484	4574	CLO.	USED	67	5	CR
839	SAN-0105	4	3	35.56931	104.34196	4550	1538	1558	1593	3102	15	15	3137	UCF	UNDE	67	8	CS
830	SAN-010S	7	3	35.56931	104.34196	4350	1785	1650	1818	2932	745	743	4E52	TU35	USED	67	в	CR
841	SAN-010S	8	3	35.56931	104.34196	4650	1650	2252	2051	2579	782	782	4404	PREC	USED	67	С	CR

APPENDIX C

Pressure-Depth Diagrams Constructed From Class 1, 2, and 3 DST Data From Selected Counties in the Study Area (39 pages)

1

[

÷

1

1..

L

.

i...

i.

<u>.</u>

i . •

5

ł

i L.

1...

134

;

ţ

۰,

į . .

ſ

. (

ł

ł

1

.

i

٦

ł

. 1

· · · · · · · · · · · · · · ·

i

1...

ſ

i

ł

....

. . .

:

1

3

1

-1

ł

:

: :

تعسر

j

: 1 1.

. .

;

• •

:

1.

APPENDIX D

Mathematical Formulation of Hypothetical Topographic Planes

TABLE OF CONTENTS

Page

Mathematica	l Formulation	of l	Hypothet	ical 1	Fopogr	aphic	Plan	es	•	٠	•	•	•	171
Table D-1.	Coefficients	From	Planar	Regres	ssion	Analys	is .	•	•	•	•	•	•	172

Appendix D. Mathematical Formulation of Hypothetical Topographic Planes

The hypothetical topographic planes described in Section 5.2 were calculated by assuming that the hypothetical land surface elevation (z) was a linear function of longitude (x) and latitude (y), such that

 $z = a_1 x + a_2 y + a_3$ D-1

where a_1 , a_2 , and a_3 are coefficients describing the plane. It also was assumed that pressure (p) was a linear function of tested depth below the surface of the hypothetical plane, such that

$$\mathbf{p} = \mathbf{m}(\mathbf{z} + [\mathbf{d} - \mathbf{h}])$$

where d is the midpoint of the tested depth interval, h is the actual land surface elevation, and m is the fluid pressure gradient.

Solving for z in equation D-2, the following equation is obtained:

z = p/m - (d - h)

Equating D-1 and D-3 and solving for p, the following equation is obtained:

$$p = a_1 m x + a_2 m y + m(d - h) + a_2 m$$

Treating pressure (ISIP) as the dependent variable and x, y, and (d - h) as the independent variables, the coefficients a_1 , a_2 , and a_3 and the fluid pressure gradient, m, are solved for by linear regression. Table D-1 is a summary of the results obtained.

D-4

D-3

D-2

		Coeffi	•	Correlation	
	a,	ā2	a	m	Coefficient
Wolfcamp					
Before Culling	70.03	56.41	-7678.8	0.4811	0.810
After Culling	161.48	-141.38	-10705.8	0.4518	0.992
Pennsylvanian (S	South of Am	arillo Upli:	ft)		
Before Culling	231.65	36.24	-19348.1	0.2536	0.434
After Culling	205.20	-145.08	-14946.8	0.4288	0.992
Pennsylvanian (N	lorth of Am	arillo Upli:	<u>ft)</u>		
Before Culling	648.21	272.72	-74314.4	0.4605	0.763
After Culling	-40.23	-101.25	8122.3	0.4783	0.996

Table D-1.	Coefficients	from	Planar	Regression	Analysis
------------	--------------	------	--------	------------	----------

1 1 1

U.S. DEPARTMENT OF ENERGY

SALT REPOSITORY PROJECT OFFICE

· · · · · · · · ·

DEPARTMENT OF ENERGY NUCLEAR REGULATORY COMMISSION

QUALITY ASSURANCE MEETING

DECEMBER 18-19, 1984 COLUMBUS, OHIO

AGENDA

DOE/NRC QUALITY ASSURANCE MEETING SALT REPOSITORY PROJECT OFFICE December 18-19, 1984

Location: Holiday Inn on the Lane 328 West Lane Avenue Columbus, Ohio General Custer Room, Ground Floor

December 18, 1984

ι.

[

.

7:30 a.m.	COFFEE	
8:00 a.m.	DOE INTRODUCTION AND WELCOME DOE/Contractor Staffs Goals of Meeting Agenda Discussion/Changes	J. Neff
8:15 a.m.	NRC INTRODUCTION NRC Staff Goals of Meeting NRC Standard Review Plan	J. Kennedy
9:15 a.m.	QUESTIONS FROM PUBLIC	
9:30 a.m.	DOE/SRPO PROGRAM Organization History of SRPO QA QA Philosophy and Procedures Objective Planning (COFFEE BREAK WHEN APPROPRIATE)	J. Neff R. Lahoti J. Reese R. Wunderlich
12:00 Noon	LUNCH	
1:00 p.m.	DOE/SRPO PROGRAM, Continued Peer Reviews Procurement Document Control Review of Technical Documents Audits	R. Wunderlich J. England P. Van Loan T. Taylor R. Lahoti J. Sherwin J. Reese
	QA Near Term Planning (COFFEE BREAK WHEN APPROPRIATE)	J. Reese
4:00 p.m.	CLOSING REMARKS AND QUESTIONS FROM PUBLIC	J. Neff

..

AGENDA Page 2

December 1	19, 1984	
7:30 a.m.	COFFEE	
8:00 a.m.	INTRODUCTION/AGENDA	J. Reese
8:10 a.m.	CONTRACTOR PRESENTATION Review of BPMD Organization Review of ONWI Organization National Labs/Government Agencies BPMD Contractors BPMD QA Program for SRPO QA Implementation Procedures	N. Carter W. Carbiener W. Carbiener W. Carbiener C. Williams, Jr C. Knudsen D. Clark M. Balmert
	(COFFEE BREAK WHEN APPROPRIATE)	A. PUNK
12:00 Noor	LUNCH	
1:00 p.m.	SUB-CONTRACTOR PRESENTATION QA Program Controls Field QA Procedures (Rock Coring/Log Preparation) Field QA Procedures (Pump Testing/Fluid Sampling)	I. Levy C. Foster C. Foster
2:00 p.m.	CLOSING/QUESTIONS/PUBLIC COMMENTS	J. Reese
2:15 p.m.	EXIT MEETING PREPARATION Participants caucus to prepare for exit meeting	
3:30 p.m.	EXIT MEETING Discussion of meeting results and conclusions Preparation of meeting minutes (COFFEE BREAK WHEN APPROPRIATE)	
5:00 p.m.	ADJOURN	

SRP THEMES

- TECHNICAL EXCELLENCE
 - EXPERIENCED TECHNICAL PERSONNEL IN DOE, DOE CONTRACTORS AND SUBCONTRACTORS
 - MAXIMUM USE OF FEDERAL/STATE/LOCAL EXPERTISE
 - USE OF PEER REVIEWS
- MANAGEMENT EXCELLENCE
 - CLEAR STATEMENT OF OBJECTIVES, PRIORITIES, RESPONSIBILITIES AND AUTHORITIES
 - REALISTIC AND WELL DEVELOPED PLANS "OWNED" BY TECHNICAL PERSONNEL
 - EFFICIENT, EFFECTIVE MANAGEMENT INFORMATION SYSTEM WITH USER ORIENTATION
 - AUDIT SYSTEMS TO ALLOW REVIEW, EVALUATION AND MODIFI-CATION OF INEFFICIENT AND INEFFECTIVE ACTIVITIES

OBJECTIVES

NEAR TERM

• COMPLETE DRAFT/FINAL EAs

- DEVELOP REALISTIC WORK PLAN AND COST PROJECTIONS FOR FY 1985 AND OUTYEARS
- INTEGRATE ALL NEW PERSONNEL INTO OFFICE STRUCTURE

LONG TERM (1-5 YRS.)

- DEPLOY SITE OFFICE NEAR RECOMMENDED SITE
- RESOLVE PERMITTING ISSUES FOR PROCEEDING AT RECOMMENDED SITES
- DETERMINE IF RECOMMENDED SALT SITE IS QUALIFIED AS A POTENTIAL REPOSITORY SITE

CHICAGO OPERATIONS OFFICE

.

SALT REPOSITORY PROJECT OFFICE CHICAGO OPERATIONS OFFICE

. . . .

SRPO POLICY ON QA

.... Quality assurance is a multidisciplinary system of management controls which addresses environmental protection, safety, reliability, maintainability, operability, performance, and other technical concerns. Quality assurance shall not be regarded as the sole domain of the SRPO Quality Assurance Manager; rather, line organizations should look to this person as an advisory resource in performing their quality assurance activities.

from SRPO QA Manual

QA MANAGER DUTIES

- INTERPRET DOE/HQ POLICY ON QA
- MAINTAIN LIAISON WITH HQ AND CH QA PEOPLE
- PROVIDE EVALUATIONS AND RECOMMENDATIONS ON QA
- DIRECT AUDITS OF SRPO CONTRACTORS
- NOTIFY MANAGEMENT RE. UNSATISFACTORY WORK (STOP WORK WITH MANAGER'S APPROVAL)
- PROVIDE QA GUIDANCE TO SRPO STAFF
- MAINTAIN THE SRPO QA MANUAL
- COORDINATE THE ANNUAL QA REVIEW

BPMD/ONWI QA

• • • • •

 PRINCIPLE AGENTS FOR DOE/SRPO
 DOCUMENTED IN ONWI QA MANUAL APPROVED BY DOE/SRPO VERIFIED THROUGH AUDIT (10/84)
 BASED UPON ANSI/ASME NQA-1-1983

— MORE TOMORROW

PARSONS REDPATH QA

- EXPLORATORY SHAFT FACILITY
- DOCUMENTED IN PR QA MANUAL APPROVED BY DOE/SRPO VERIFIED THROUGH ANNUAL AUDIT (11/84)
- BASED UPON ANSI/ASME NOA-1-1983
- RESIDENT QA MANAGER IN COLUMBUS TO WORK WITH STAFF OF ABOUT 16

FLUOR QA

- REPOSITORY CONCEPTUAL DESIGN
- DOCUMENTED IN FLUOR QA MANUAL APPROVED BY DOE/SRPO VERIFIED THROUGH ANNUAL AUDIT (7/84)
- BASED UPON ANSI/ASME NOA-1-1983
- ONE LOCAL REPRESENTATIVE
- QA MANAGER IN IRVINE, CAL. WITH FLUOR SALT PROJECT TEAM
- OTHERS UNDER FLUOR INCLUDE: MORRISON-KNUDSEN CO. ENGINEERED SYSTEMS DEVELOPMENT CORP. SCIENCE APPLICATIONS, INC. WOODWARD-CLYDE CONSULTANTS

OTHER DOE CONTRACTORS

- **TBEG** Texas Bureau of Economic Geology
- BFEC Bendix Field Engineering Corporation
- BNL Brookhaven National Laboratory
- ORNL Oak Ridge National Laboratory
- LLL/LBL Lawrence Livermore/Berkeley Laboratories
- PNL Pacific Northwest Laboratories
- USGS U.S. Geological Survey

- WES/COE Waterways Exper. Station, Corps of Engineers
- ANL Argonne National Laboratory

HISTORY OF SRPO QA

18 BASIC REQUIREMENTS

••••••

DOE FUNCTION TODAY

1. ORGANIZATION

2. PROGRAM

3. DESIGN CONTROL

4. PROCUREMENT DOCUMENT CONTROL

5. INSTRUCTIONS, PROCEDURES, AND DRAWINGS

6. DOCUMENT CONTROL

7. PURCHASED ITEMS AND SERVICES

15. NONCONFORMING MATERIAL

16. CORRECTIVE ACTION

17. QA RECORDS

18. AUDITS

OUALITY ASSURANCE ROLES

QA DIRECTION

DOENRCOrder 5700.6A—Quality Assurance10CFR60Order CH 5700.6A—Quality Assurance10CFR50, Appendix BNQA-1-1983Standard Review Plan

OGR QA Plan

NRC-14

and the second second			IANUAL			
		alt Renository Project Office	(SRRO)			
CHIII			QAP No.	Page 1 of 2		
Salt Repo	ository Project		Rev. 2	Issuea 7/27/84		
TITLE	ABLE OF CONTENTS					
SRPO MAN	AGER	QA MANAGER	PREPARED 8	Y		
	<u></u>					
1.0	ORGANIZATION					
2.0	QUALITY ASSURANCE PR	OGRAM				
	2.1 OBJECTIVE PLAN	NING				
	2.2 QUALITY ASSURA	NCE TRAINING				
3.0	PROJECT DESIGN CONTR	OL				
	3.1 RESEARCH AND D	EVELOPMENT CONTROLS				
	3.2 VERIFICATION O	F TECHNICAL WORK				
	3.3 SRPO-CONDUCTED DESIGN REVIEWS					
4.0	PROCUREMENT DOCUMENT CONTROL					
5.0	INSTRUCTIONS, PROCEDURES, AND DRAWINGS					
6.0	DOCUMENT CONTROL					
7.0	CONTROL OF PURCHASED	ITEMS AND SERVICES				
	7.1 REVIEW OF CONT	RACTOR TECHNICAL DOCUMENTS	5			
	7.2 CONTRACTOR PER	FORMANCE EVALUATION				
8.0	IDENTIFICATION AND C	ONTROL OF MATERIALS				
9.0	CONTROL OF SPECIAL PROCESSES					
10.0	INSPECTION					
11.0	TEST CONTROL					
12.0	CONTROL OF MEASURING	AND TEST EQUIPMENT		- · · ···		
13.0	HANDLING, STORAGE AN	D SHIPPING				
		•				

cedure No	TABL	E OF CONTENTS	Rev 2	Issued 7/27/84	Page _2_ of _2_	
14.0	INSPE	CTION, TEST, AND OF	PERATING STATUS			
15.0	NONCO	NFORMING MATERIAL				
16.0	CORRE	CTIVE ACTION			•	
17.0	RECORDS					
18.0	AUDIT	S				
	18.1	AUDITOR QUALIFICAT	TION			
	18.2	INTERNAL AUDITS				
	18.3	EXTERNAL AUDITS				
GLOSS	ARY					

NRC-15 Page 2

OBJECTIVE PLANNING

OAP 2.1

TO PROVIDE FOR—

- LONG-RANGE PLANNING FOR THE SALT REPOSITORY EFFORT
- A CLEAR DEFINITION OF THE CONTRIBUTIONS OF THE VARIOUS PARTIES
- A SYSTEMATIC ANNUAL EXAMINATION OF SRPO AND CONTRACTOR CONTRIBUTIONS TO THE PROJECT

OBJECTIVE PLANNING

STATUS

FIRST USE OF THIS PROCEDURE
HQ BUDGET AND GUIDANCE MEETING 11/84
HQ DIRECTION EXPECTED 12/84
FIRST PLANS PREPARED 1/85
PLANS ASSEMBLED AND ISSUED 2/85

OBJECTIVE PLANNING

.

FORMAT

1. OVERALL NATIONAL OBJECTIVE AND TIMING

2. CURRENT FY PLANNING

- GOALS

- CONTRACTOR CONTRIBUTION

- SRPO CONTRIBUTION

3. OUTYEAR PLANNING

- GOALS

- CONTRACTORS

- DELIVERABLES

4. APPROVALS

PEER REVIEWS

PURPOSE

TO VERIFY THE TECHNICAL WORK DONE BY CONTRACTORS

REQUIRED WHEN

- UNIQUE APPLICATION OF AN ESTABLISHED OR STANDARD PRACTICE
- WORK GOES BEYOND THE STATE OF THE ART
- NEW OR UNUSUAL EXPERIMENTAL TECHNIQUES USED BY A CONTRACTOR
- MAJOR CHANGES BEING MADE IN A GEOLOGIC INVESTIGATION OR REPOSITORY DESIGN
- **REPORTS OF SIGNIFICANCE**
- CORRECTIVE ACTIONS OF MAJOR IMPACT

PROCESS FOR PEER REVIEW

- **1. Develop List of Program Milestones**
- 2. Select Documents Requiring Peer Review
- 3. Schedule Timing for Peer Review
- 4. Develop Guidance for Review (Identify Areas Requiring Review)
- 5. Select Review Team Members
- 6. Conduct Peer Review
- 7. Document Peer Review Recommendations and Comments
- 8. Provide Peer Review Report to Author and Resolve Comments and Recommendations
- 9. Perform Follow-up to Ensure Changes Are Incorporated
- **10.** Approve or Reject Documents for Printing

CONTRACTING

- BPMD/ONWI
- PARSONS REDPATH
- UNIVERSITY OF TEXAS (BUREAU OF ECONOMIC GEOLOGY)
- FLUOR
- U.S. GEOLOGICAL SURVEY
- WATERWAYS EXPERIMENT STATION
- BUREAU OF MINES (PROPOSED)

TO: Addresses Listed Below

FROM: Contract & Administration

SUBJECT: Contractual Document (s) For Review, Comments and Initialing

The document (s) listed below (is) (are) forwarded for your review, comments initials. Upon completion of your review, <u>please attach your comments</u>, if any, and forward to next in line. Expeditious handling of this matter will be appreciated.

(Synopsis of Action for Review)

Return To:

Contract & Administration

DATE:

BUDGET

Brookhaven—Chicago Operations Pacific Northwest Labs—Richland Operations Bendix—Idaho Operations/Grand Junction Area Oak Ridge National Lab—Oak Ridge Operations Lawrence Livermore—San Francisco Operations Lawrence Berkeley—San Francisco Operations

TECHNICAL REVIEWS—SEIR

TYPICAL DOCUMENT TYPES

- CONTRACTOR SOCIOECONOMIC PROGRAM ACTIVITY PLAN
- SUBCONTRACTOR SOCIOECONOMIC DATA BASE REPORTS
- SUBCONTRACTOR COMPUTER MODEL DOCUMENTATION REPORTS
- CONTRACTOR REPORTS OF RESPONSES TO COMMENTS MADE IN PUBLIC HEARINGS
- CONTRACTOR REPORTS IDENTIFYING EXPRESSED PUBLIC ISSUES FOR INCORPORATION INTO STATUTORY ENVIRONMENTAL ASSESSMENTS
- CONTRACTOR AND SUBCONTRACTOR REPORTS ON ENVIRONMENTAL STUDIES

NRC-24

Procedure	No 7.1	Rev 2	Issuea 7/27/84	Page <u>5</u> of <u>5</u>		
ATTACHMENT B REVIEW OF CONTRACTOR DOCUMENTS						
Docu	Document Title: I.D. No:					
Cont	ractor:			·		
(1)	REVIEW					
	Reviewer:	• 	Date:			
	Comments (continue on addi form):	itional sheets if r	necessary and attac	ch to this		
(2)	RESOLUTION OF COMMENTS					
	Date Comments Sent to Cont (Attach copy of contractor	tractor: 's response)	Date of Response:			
	Actions Required (continue to this form).	e on additional she	ets if necessary a	ind attach		
	• •					
	All Actions Completed:	iewer	Date:_			
				· ·		

TECHNICAL REVIEW—ENGINEERING

TYPICAL DOCUMENTS

•

- ONWI ESF RECOMMENDATION FOR 2ND SHAFT
- ONWI FUNCTIONAL DESIGN CRITERIA
- BOREHOLE SEALING TEST IN SALT
- LARGE-SCALE LAB PERMEABILITY TESTING
- DEVELOPMENT OF CEMENTITIOUS MATERIAL FOR REPOSITORY SEALING

TECHNICAL REVIEW—ENGINEERING

CHECKLIST FROM QA MANUAL

A. TECHNICAL CONCERNS

- APPROACH
- ASSUMPTIONS/LIMITATIONS
- SPECULATIVE STATEMENTS IDENTIFIED
- FIGURES, TABLES, MAPS APPROPRIATE
- CONCLUSIONS SUPPORTED BY DATA
- METHODS IDENTIFIED
- DISCUSSION IS SOUND
- CONCLUSIONS VALID AND MEET WORK OBJECTIVE
- REPORT IS SUITABLE AND APPROPRIATE
- QUALITY ASSURANCE PROGRAM ADEQUATE

B. EDITORIAL CONCERNS

- TITLE IS CLEAR
- PURPOSE IS CLEAR
- WELL ORGANIZED
- CLEARLY WRITTEN
- ABSTRACT INCLUDED

TECHNICAL REVIEW PROCEDURE

DOCUMENTATION STEP

			· · · · · · · · · · · · · · · · · · ·
Procedure No 7.1	Rev 2	lasued 7/27/84	Page <u>3</u> of <u>5</u>
		<u>},</u>	L
	ATTACHMENT	<u>4</u>	
CHECKLI	ST FOR REVIEW O	F DOCUMENTS	
A. TECHNICAL CONCERNS			
1. Approach is correct.			•. •
2. Assumptions and limit	ations are ade	quately stated.	
3. Speculative statement	s are clearly t	identified as such.	
4. Figures, tables, and	maps are approp	priate and useful.	
5. Data support interpre	tations and con	nclustons.	
Reasoning by which in given adequately and	terpretations a clearly.	and conclusions are r	eached is
7. Technical discussions	are sound.		
8. Conclusions are sound	(valid) and me	et the work objectiv	e.
9. Report is suitable an	d'appropriate d	or its intended use.	
10. Report has been prepa desirable to request the checks performed	red under a sub documentation f on the report.	table QA program. I from the contractor s	t may be pecific to
11. If the QA program that perform the following	t was applied t	to the document is in	doubt,
(a) Verify mathemati	cs:		
 mathematica computation results are 	1 expressions a s are correct clearly and co	re accurate prrectly stated	
(b) Verify tables, f	igures, and map		
 agree with are consist maps all locatio described 	sources ent with text a ns in text are	ind other tables, fig shown on maps or are	ures, and adequately
(c) Verify reference	s:		
- agree with - available t	sources o the public		

NRC-28-A

Procedure	No 7.	.1	Rev 2	issued 7/2	27/84 Page	4_of _5_
Β.	EDI.	TORIAL CONCERNS				
	1.	Title clearly indica	Title clearly indicates subject.			
	2.	Purpose of report is clearly and fully discussed. Report is well organized.				
	3.					
	 Report is clearly written: proper grammer, sentence structure, word usage, and spelling. 					re, word
	5.	Appropriate style gu	ides have been	used.		

NRC-28-B

6. A clear and understandable abstract is included.

Procedure	No 7.1	Rev 2	lssued 7/27/84	Page <u>5</u> of <u>5</u>
		ATTACHMENT B		
	REVIEW	OF CONTRACTOR D	DCUMENTS	
Docu	ment Title:		I.D. No:	 .
Cont	ractor:			
(1)	REVIEW			
	Reviewer:		Date:	
	Comments (continue on addi form):	tional sheets if	necessary and attac	ch to this
(2)	RESOLUTION OF COMMENTS		•	
	Date Comments Sent to Cont (Attach copy of contractor	ractor: 's response)	Date of Response:	
	Actions Required (continue to this form).	on additional sh	eets if necessary a	nd attach
	All Actions Completed:		Dates	
	Rev	lewer		
	-			

NRC-28-C
AUDITS

• EXTERNAL

÷

- INTERNAL
- PERFORMED ON SRPO BY OTHERS

AUDITS

NRC-30

AUDITS OF DOE-DIRECT CONTRACTORS (1983 and 1984)

Audited Organization	Location	Date Conducted	Conducted by (ONWI or DOE)
TBEG	Austin TX	3-/29-30/83	ONWI
ONWI	Columbus OH	6/21-24/83	DOE (SRPO)
PNL	Richland WA	8/8-10/83	ONWI
LBL	Berkeley CA	11/30/83	DOE (SAN)
LLNL	Livermore CA	11/29-30/83	DOE (SAN)
Parsons-Redpath	Columbus OH	11/28-29/83	ONW
ONWI	Columbus OH	12/6-8/83	DOE (SRPO)
TBEG	Austin TX	3/29-30/84	DOE (SRPO)
USGS	Denver CO	4/5-6/84	DOE SRPO)
Bendix	Grand Junction CO	5/15-17/84	ONWI
PNL	Richland WA	7/18-20/84	ONWI
COE (WES)	Vicksburg MS	8/7-8/84	ONWI
ONWI	Columbus OH	10/30-11/2/84	DOE (SRPO)
Parsons-Redpath	Columbus OH	11/19-20/84	DOE (SRPO)

NRC-31

AUDITS

• •

AUDITS OF SRPO BY OTHERS:

- AUGUST 1983 BY HEDL

- DECEMBER 1984 BY CHICAGO AND HQ

AUDITS

GENERIC PROBLEMS UNCOVERED:

- QA REQUIREMENTS TO DOERS
- LACK OF PROCEDURES
- INADEQUATE RECORDS
- APPROPRIATE QA FOR RESEARCH

LICENSING COORDINATING GROUP

Member

Organization

Charles Head, Chairperson Carl Newton Dick Baker Ken Yates Leslie Casey **David Dawson** Larry Fitch Jim Mecca Jerry Szymanski **Joe LaRue** Mike Glora **Bill Griffin Robert Rihs** Hank Bermanis

DOE/HQS **CRPO OCRD**/Battelle SRPO **ONWI** RHO **RL/BWIP** DOE/Nevada SAI/Nevada SAI/Nevada **Fluor Engineers** Parsons/Redpath Weston

PRELIMINARY STUDIES ADDRESSING SAFETY DESIGNATIONS

 Guidance for Determining Safety-Related Features of Geologic Repositories

- Anticipated ONWI Publication Date: 5/85

 Structures, Systems, and Components Classification System Definitions

- Anticipated Fluor Publication Date: 5/85

FUTURE QA ACTIONS

• QA MANUAL REVISION-START IN JANUARY 85

and the second sec

- INCORPORATE COMMENTS TO DATE
- DEVELOP NEW PROCEDURES FOR CONSTRUCTION-TYPE ACTIVITIES
- INCORPORATE APPLICABLE PARTS OF NRC REVIEW PLAN
- REVIEW AND ANALYSIS OF SRP—START IN JANUARY 85
- **REGULARLY SCHEDULED INTERNAL AUDITS**
- START WORK ON "QA CHAPTER" FOR SALT SITE CHARACTERIZATION PLAN

I. BPMD ORGANIZATION

e 243

BATTELLE MEMORIAL INSTITUTE ORGANIZATION

*An association: S. L. Fawcett and R. S. Paul, Chairman and Vice Chairman, respectively. *Wholly owned subsidiaries.

BAITELLE PROJECT MANAGEMENT DIVISION

BPMD QA ORGANIZATIONAL STRUCTURE AND STAFFING

..... Communication and Support

----- Lines of Authority

* Dual Assignment

BPMD QUALITY ASSURANCE— A TEAM EFFORT

PEER/TECHNICAL REVIEWS

VERIFICATION AND VAUDATION

TECHNICAL REPORT
TECHNICAL STUDIES
COMPUTER PROGRAM

 QA TRAINING FOR SUPPORT STAFF

II. ONWI ORGANIZATION

-

in a sina a

and the second second

• • • • • •

1

III. WORK PERFORMED BY NATIONAL LABS AND GOVERNMENT AGENCIES IN SUPPORT OF SALT PROJECT

OVERVIEW OF WORK SCOPES OF NATIONAL LABORATORIES AND GOVERNMENT AGENCIES SUPPORTING THE SALT PROJECT

Laboratory or Agency

Texas Bureau of Economic Geology

Bendix Field Engineering

Brookhaven National Laboratory

Scope of Work

West Texas Palo Duro Basin Project, Geologic and Hydrologic Studies, Core Custodian

Geochemical Assistance Project Geochemical Analyses Related to Selection and Characterization of the Repository Sites, Engineering Design, Performance Demonstration

Salt Radiation Effects Project Characterize Radiation Damage in Rocks and Other Materials

OVERVIEW OF WORK SCOPES OF NATIONAL LABORATORIES AND GOVERNMENT AGENCIES SUPPORTING THE SALT PROJECT

(Continued)

Laboratory or Agency	Scope of Work	
U.S. Geological Survey	Provide Independent Objective Technical Review and Evaluation of DOE-Contractor Hydrologic Models and Model Results, Applied to the Characterization of Salt Dome and Bedded Salt Potential Repository Sites	
Waterways Experiment	Laboratory Services and Analytical and	
Station	Evaluation Services on Materials That May	
Corps of Engineers	Be Used in Repository Sealing	
Argonne National	Provide Technical Assistance for Environ-	
Laboratory	mental Assessment and Licensing Activities	

NATIONAL LABORATORY AND GOVERNMENT AGENCIES SUPPORTING THE SALT PROJECT (Continued)

Oak Ridge National Laboratory

Lawrence Livermore/Berkeley Labs

Pacific Northwest Labs

Computer Technology and Environmental Assessment

Computer Code Development Laboratory Thermal Mechanical Properties Tests

Laboratory Experiments to Simulate and Measure Hydraulic Fracturing Stess in Rock Salt

Development and Application of Performance Assessment Models

Waste Package Program Perform Shielding Calculations Laboratory Testing of Waste Forms and Package Materials

METHODS USED TO ESTABLISH WORK SCOPES

General statement of work, objectives, and required deliverables provided by SRPO/BPMD technical staff to contractor. Specifics for accomplishment provided by contractor for SRPO/BPMD review and approval in field task proposal agreement. Finalized FTPA, deliverables, and QA specification provided to contractor with fiscal year funding.

METHODS USED BY SRPO/BPMD TO CONTROL WORK ACTIVITIES

- SAFETY CLASSIFICATION DETERMINED BY TECHNICAL STAFF WITH QA CONCURRENCE (PMP-19)
- QUALITY ASSURANCE SPECIFICATIONS PREPARED BY BPMD JOINTLY BY TECHNICAL AND QA STAFFS USING GRADED APPROACH, SUBMITTED TO DOE/SRPO FOR REVIEW AND APPROVAL, TRANSMITTED TO LAB/AGENCY WITH FY FUNDING
- LAB/AGENCY QA PLANS, ACTIVITY PLANS, TECHNICAL PROCEDURES AND TECHNICAL DELIVERABLES SUBMITTED TO SRPO/BPMD FOR REVIEW AND APPROVAL
- LAB/AGENCY QA ADMINISTRATIVE PROCEDURES SUBMITTED FOR INFORMATION
- ANNUAL SRPO/BPMD QA AUDITS SUPPLEMENTED BY TECHNICAL AND QUALITY ASSURANCE VISITS

IV. WORK PERFORMED BY BPMD CONTRACTORS IN SUPPORT OF SALT PROJECT

OVERVIEW OF WORK SCOPES OF MAJOR BPMD/ONWI CONTRACTORS SUPPORTING THE SALT PROJECT

Contractor	Scope of Work
Stone-Webster	Geologic Project Manager for the Permian Basin— Field Geologic Investigations
Woodward-Clyde	Geologic Project Manager for the Paradox Basin— Field Geologic Investigations
NUS Corporation	Regulatory Project Manager for the Permian Basin—Environmental Field Studies
Earth Technology	Geologic Project Manager for the Southern Region Salt—Field Geologic Investigations

NRC-IV-1 Page 1

OVERVIEW OF WORK SCOPES OF MAJOR BPMD/ONWI CONTRACTORS SUPPORTING THE SALT PROJECT

(Continued)

Contractor	Scope of Work
Parsons-Brinckerhoff	Design of the Exploratory Shaft Facility and Technical Support Activities
Bechtel National	Regulatory Project Manager for the Gulf Interior Region and Paradox Basin—Environmental Field Studies
Intera Technologies	Performance Assessment Model Development and Application
RE/SPEC, Inc.	An Integrated Computational and Laboratory Effort to Predict the Response of the Host Rock

OVERVIEW OF WORK SCOPES OF MAJOR BPMD/ONWI CONTRACTORS SUPPORTING THE SALT PROJECT

(Continued)

Contractor	Scope of Work
Ebasco Services	Licensing Project Manager—Responsible for Licensing Activity Support
Golder Associates	Design and Conduct In Situ Tests to Provide Site Characterization Data

NRC-IV-1 Page 3

1

METHODS USED TO CONTROL CONTRACTOR WORK ACTIVITIES

- STATEMENTS OF WORK PREPARED BY TECHNICAL STAFF, REVIEWED AND APPROVED BY QA
- SAFETY CLASSIFICATION DETERMINED BY TECHNICAL STAFF WITH QA CONCURRENCE (PMP-19)
- CONTRACTOR SELECTION, EVALUATION, AND CONTRACT AWARD MADE IN ACCORDANCE WITH BPMD'S APPROVED PROCUREMENT SYSTEM
- QA SPECIFICATION PREPARED JOINTLY BY TECHNICAL AND QA STAFFS USING GRADED APPROACH
- CONTRACTOR QA PLANS, ACTIVITY PLANS, TECHNICAL PROCEDURES AND TECHNICAL DELIVERABLES SUBMITTED TO BPMD FOR REVIEW AND APPROVAL
- CONTRACTOR QA ADMINISTRATIVE PROCEDURES SUBMITTED FOR INFORMATION
- MAJOR BPMD CONTRACTORS AUDITED ANNUALLY BY QA, SUPPLEMENTED BY TECHNICAL AND QUALITY ASSURANCE VISITS
- OTHER BPMD CONTRACTORS ARE AUDITED PERIODICALLY AS DETERMINED BY PERFORMANCE AND IMPORTANCE/COMPLEXITY OF WORK, SUPPLEMENTED BY TECHNICAL AND QUALITY ASSURANCE VISITS

V. BPMD'S QA PROGRAM FOR THE SALT PROJECT

4.

<u>, - . . .</u>

BPMD QA ORGANIZATIONAL STRUCTURE AND STAFFING

*Dual Assignment

ONWI QUALITY ASSURANCE PROGRAM

- - - -

A CARACTER AND A CARACTER

- THE ONWI QUALITY ASSURANCE MANUAL COVERS THE 18 CRITERIA OF 10CFR50 APPENDIX B AND ANSI/ASME NOA-1-1983
- THE ONWI QUALITY ASSURANCE MANUAL, REV 6, HAS BEEN APPROVED BY DOE/SRPO
- THE ONWI QUALITY ASSURANCE MANUAL REQUIREMENTS ARE IMPLEMENTED BY:
 - PROJECT MANAGEMENT PROCEDURES
 - PROJECT TECHNICAL PROCEDURES
 - BPMD OPERATING GUIDE PROCEDURES
 - DIVISION DEPARTMENT PROCEDURES

NRC-V-2 Page 1

ONWI QUALITY ASSURANCE MANUAL

the second second second

ONWI QA Manual Section

1. Organization

2. Quality Assurance Program

• Describes BPMD and ONWI Organizational Structure

Key Features

ی درمان که منتخب میکند. ۱

- Describes Organizational Responsibilities for the ONWI QA Program
- Describes the QAD's Interfaces With BPMD and ONWI
- Describes the Development, Implementation, Maintenance and Evaluation of the ONWI QA Program
- Describes BPMD's Approach for Graded Application of QA Requirements
- Describes QA Indoctrination and Training Requirements
- Makes Provisions for Annual QA Program Assessments
- Establishes Authority for Stop Work Orders

ONWI QUALITY ASSURANCE MANUAL (Continued)

· · · · · · · · · · · ·

ONWI QA Manual Section

المتعي المراجع المراجع

3. Control of Design, Site Selection, and Site Characterization Activities

Key Features

- Establishes Requirements for the Control of:
 - Design Activities

- Activities Performed in Support of Site Selection and Site Characterization (e.g., Geotechnical Field and Laboratory Activities)
- Describes Requirements for Interface Control
- Describes Requirements for Verification and Validation, Including:
 - Management Review
 - Design Review
 - Peer Review
 - Technical Review
- Establishes Change Control Requirements

ONWI QUALITY ASSURANCE MANUAL (Continued)

ONWI QA Manual Section

4. Procurement Document Control

5. Instructions, Procedures, and Drawings

6. Document Control

• Establishes Requirements for the Inclusion of Quality Assurance Requirements in Procurement Documents

Key Features

- Establishes Requirements for Quality Assurance Review and Approval of Procurement Documents
- Describes Requirements for the Development and Implementation of Instructions, Procedures, and Drawings for Quality-Related Activities
- Establishes Requirement for the QAD to Monitor the Implementation of These Procedures
- Establishes Requirements for Controlling Documents That Specify or Prescribe Requirements for ONWI Activities Affecting Quality
- Describes Requirements for QAD Review and Approval of These Documents Including any Changes Thereto Prior to Issuance

ONWI QUALITY ASSURANCE MANUAL

(Continued)

ONWI QA Manual Section

7. Control of Purchased Services and Items

8. Identification and Control of Items

• Describes Measures for:

- Procurement Planning

 Evaluation and Selection of Procurement Sources

Key Features

- Evaluation of Contractor Performance
- Verification of Purchased Services and Items
- Control of Deficiencies
- Establishes Requirements for QAD:
 - To Participate in Source Selection
 - To Monitor Contractor Performance and Acceptance
 - To Participate in the Review and Acceptance of Contractor Deliverables
- Establishes Requirements for Identifying and Controlling Items to Assure That Only Accepted Items Are Used in Performing ONWI Quality-Related Activities

ONWI QUALITY ASSURANCE MANUAL (Continued)

ONWI QA Manual Section

9. Control of Processes

10. Inspection

11. Test Control

• Describes Requirements for Controlling Processes That Affect the Quality of ONWI Services and Items

Key Features

- Provides Requirements for QAD to Monitor Necessary Qualification of Personnel, Procedures, and/or Equipment
- Establishes Requirements for the Inspection or Verification of ONWI Services and Items
- Provides for QAD Participation in Inspection/ Verification Processes
- Includes Provisions for Inspection Planning, Identifying Mandatory Hold Points, Inspection Personnel Qualifications, and Inspection Records
- Describes Requirements for the Planning and Control of ONWI Test Activities
- Includes Provisions for Developing and Documenting Test Requirements in Approved Test Plans, Procedures, or Specifications; Documenting and Verifying Test Results, and Test Records

ONWI QUALITY ASSURANCE MANUAL (Continued)

ONWI QA Manual Section

- 12. Control of Measuring and Test Equipment
- 13. Handling, Storage, and Shipping
- 14. Inspection, Test, and Operating Status
- 15. Nonconformances, Incidents, and Unusual Occurrences

Key Features

- Describes Requirements for the Calibration and Control of Measuring and Test Equipment Used for ONWI Quality-Related Activities
- Provides Requirements for Assuring Proper Physical Care of ONWI Items During Handling, Shipping, and Storage
- Describes Requirements for Identifying the Inspection, Test, or Operating Status of ONWI Items
- Establishes Requirements for the Identification, Control, Evaluation, and Disposition of Nonconformances, Incidents, and Unusual Occurrences

NRC-V-2 Page 7

ONWI QUALITY ASSURANCE MANUAL

(Continued)

ONWI QA Manual Section

15. Nonconformances, Incidents, and Unusual Occurrences (Continued)

16. Corrective Action

Incident and Unusual Occurrence Reporting Are Required by DOE Orders 5484.1 and 5484.2

Key Features

- Describes QAD Responsibilities for the Control of Nonconforming Items
- Describes QAD Participation in the Evaluation of Incidents and Unusual Occurrences
- Establishes Requirements for Identifying, Documenting, and Reporting Conditions Adverse to Quality; Determining and Implementing Corrective Action; and Verifying Satisfactory Resolution of These Problems
- Describes QAD Responsibilities for Implementing a System to Identify and Obtain Resolution for Conditions Adverse to Quality

NRC-V-2 Page 8
ONWI QUALITY ASSURANCE MANUAL (Continued)

ONWI QA Manual Section

17. Quality Assurance Records

18. Audits

- Key Features
 Describes Requirements for the Specification, Preparation, Storage, Maintenance, and Retrieval of QA Records
 Includes Provisions for Safekeeping, Controlled Access, and Preservation of These Records
 Establishes Requirements for the QAD's Performance of Quality Audits of ONWI Activities Affecting Quality, Both Internally at BPMD and Externally at Contractor Facilities/
 - Sites, to Evaluate the Effectiveness and Adequacy of Implementation of the ONWI QA Program.
 - Includes Provisions for the Qualification and Certification of Auditors; Preparation of Audit Schedules, Plans, and Checklists; and Documentation, Followup, and Close-out of Audit Results and Deficiencies

ISSUED QA ADMINISTRATIVE PROCEDURES BY 10CFR50 APPENDIX B CRITERIA

Criteria	Procedure Number				
1	—				
2	PMP-11, PMP-15, PMP-19, ENG-02, ENG-06, GEO-01, GEO-02, GEO-03, SCP-07, SCP-09				
3	PMP-05, PMP-06, PMP-17, PMP-21, EAO-05, EAO-06, EAO-07, ENG-08, ENG-09, ENG-11, ENG-17, GEO-12, SCP-10, SCP-11, SCP-12, SYS-02, SYS-14				
4	CP-02, FIN-02, PMS, C&P-1, C&P-2				
5	PMP-01, OG-01, EAO-01, ENG-01, GEO-05, GEO-06, GEO-07, GEO-10, SCP-01, SCP-02				
6	ADM-4, ADM-14, ADM-43, ADM-52, ADM-53, ADM-54, QAD-03, QAD-04, GEO-09, SCP-06				
7	CP-2, PMP-16, QAD-06, EAO-03, SYS-13				
8	CUR-02				
9	SAO-02, SAO-03, SAO-04, ENG-02				
10	GEO-08				
11	ENG-19				
12					
13	CUR-01, CUR-03				
14	•				
15	PMP-08, PMP-10, QAD-09				
16	PMP-09, PMP-13				
17	PMP-02, PMP-04, C&P-1, QAD-10, ADM-6, ADM-8, ADM-9, ADM-10, ADM-11, ADM-12, ADM-13, ADM-20, ADM-44, EAO-02, EAO-04, ENG-04, ENG-04, ENG-05, ENG-07, ENG-10, ENG-18, GEO-04, SCP-08, SYS-12				
18	QAD-01, QAD-02, QAD-12				

PLANNED QA ADMINISTRATIVE PROCEDURES BY 10CFR50, APPENDIX B CRITERIA

Criteria	Procedure Number					
1						
2						
3	PMP-12, PMP-20, PMP-24, PMP-25, PMP-26, PMP-28, PMP-29, PMP-31, PMP-33, PMP-38					
4	PMP-22, C&P-03, C&P-04, C&P-05					
5	PMP-30, PMP-35					
6	PMP-27					
7	IMS-01, C&P-06, C&P-07, C&P-08, C&P-09, C&P-10, C&P-11					
8						
9						
10						
11						
12	PMP-36					
13	PMP-37					
14	_					
15						
16						
17	`					
18						

NRC-V-4

FUTURE QA PROGRAM ACTIONS

- UPGRADING OF ONWI PROJECT QA PLAN AND QA ADMINISTRATIVE PROCEDURES TO FULLY MEET NRC REVIEW PLAN
- TRAINING FOR REVISED AND NEW PROCEDURES
- UPGRADING OF CONTRACTOR QA SPECIFICATIONS TO FULLY MEET NRC REVIEW PLAN
- IN-HOUSE SURVEILLANCE PROGRAM TO BE FORMALIZED AND STRENGTHENED

VI. DISCUSS SEVERAL EXAMPLES OF QA ADMINISTRATIVE PROCEDURES

PMP-04—QUALITY RECORDS FOR EXTERNAL PROJECTS

Purpose: Provides Detailed Requirements for the Identification, Maintenance, and Turnover of Quality Records for External BPMD Projects

Key Provisions:

Inclusion of QA Records Requirements in BPMD Procurement/Agreement Documents

Review of External Project Records List (PRL)

Monitoring of Contractor's Records System

Submittal of Contractor Records Turnover Package (RTPs)

BPMD Review of RTPs for Acceptability

RTP Sent to Information Systems Services (ISS) for Entry Into ONWI Files

Inclusion of QA Records Requirements in BPMD Procurement/Agreement Documents

- QA Records Requirements Are Included in the QA Specification for Each Project. The QA Specification Is Prepared by the Project Manager/QA Specialist and Then Approved by the QAD Manager.
- Submittal Requirements for the PRL, Interim and Final RTPs, and QA Program Documents (QA Manual, Plan, Procedures) Appear on the Deliverable Data and Reporting Requirements (DD&RR) Form in the BPMD Procurement/ Agreement Documents.

Review of External Project Records List (PRL)

- PRL Is a Subject-Oriented Listing of Types of Project Records To Be Generated and Maintained Throughout Duration of the Project.
- A Master File Index Specifying the Location of the Records Is Maintained by the Contractor.
- Initial PRL and any Updates Are Submitted to BPMD for Review and Approval in Accordance With Procedure PMP-16.

يربيه ومحمد منع ومحمد مرجع

• • • • •

Monitoring of Contractor's Records System

- QA Specification Requires Contractor To Establish Controlled Filing System Ensuring That Records Are Legible, Identifiable, Retrievable, Authentic, and Preserved/Safeguarded To Preclude Damage, Loss or Deterioration.
- System is Formally Evaluated During BPMD QA Audits/ Surveillances
- System is Informally Evaluated During Visits From BPMD Technical and QA Personnel

ي د م الدي الم المعادية

Submittal of Contractor Records Turnover Packages (RTPs)

- BPMD Project Manager Provides Contractor With "Declaration of Authenticity" Form To Be Completed and Guidelines for Packing, Handling and Shipping the RTP to BPMD.
- Contractor is Required to Submit an RTP at the Completion of a Project or at Specified Intervals (Not to Exceed 2 Years).
- The RTP is to Include the PRL, File Index, Completed "Declaration of Authenticity" Form, and the Project Records.

BPMD Review for Acceptability

- Upon Receipt of the RTP, the Project Manager
 - Reviews the RTP for Completeness, Order, Correctness, and Clarity
 - Adds Any Internal Records Pertaining to the Project That Have Not Previously Been Sent to ONWI Files
 - Requests QA to Review the RTP for Concurrence
- The QA Specialist
 - Reviews a Sample of the RTP as Above
 - Adds Any Internal QA Records Pertaining to the Project That Have Not Previously Been Sent to ONWI Files
 - Documents Concurrence
- When an RTP is Deficient, Project Manager Transmits Letter Identifying Deficiency and Requiring Contractor to Take Corrective Action

RTP Sent to Information Systems Services (ISS) for Entry Into ONWI Files

- After RTP Has Been Found To Be Acceptable, the QA Specialist Forwards it to ISS
- All of the Contained Records Can Be Retrieved by BPMD Personnel After the RTP Has Been Entered Into ONWI Files

PMP-05 DESIGN REVIEW

TYPE OF REVIEW

- Project Manager (Manager Approval)
 - responsible to determine type of review
 - PMP-16 review of contractor technical submittals

: . .

- Design Review Application
 - conceptual
 - preliminary (Title I)
 - detail design (Title II)
 - construction (Title III)

PURPOSE OF DESIGN REVIEWS

- Review and Verify
 - criteria, specification, requirements, etc.
 - design conformance to criteria
 - interim stage

PMP-05 DESIGN REVIEW (Continued)

م الم الم الم الم الم الم الم الم الم

REVIEW PROCESS

- Design Review Plan (Project Manager/ EFM Approval/QAD Concur)
 - scope
 - objectives
 - documents
- Design Review Committee (EFM)
 - adequate representation
 - QA participation
 - excluded members
- Meeting Notice (Chairman/EFM Approval)
 - plan
 - committee membership
 - agenda
 - technical checklist
 - QA concurrence
- Meeting Preparation
 - review design report
 - prepare technical checklist

PMP-05 DESIGN REVIEW (Continued)

NRC-VI-2 Page 3

REVIEW PROCESS (Continued)

- Review Meeting (Chairman)
 - presentations
 - deliberations
- Findings Report (Chairman/EFM Approval)
 - minutes
 - recommendations
 - member reviews
- Completion Report (Chairman/DM, FM, QAD, Approval/Legal Review)
 - resolutions
 - documentation
 - closing statement
 - reviews and concurrence

PMP-05 DESIGN REVIEW (Continued)

REVIEW PROCESS (Continued)

- Review Documentation
 - review plan, meeting notice, findings,

• • • • •

- and completion reports
- file PM, QAD, ONWI, others
- process monitored by QAD

PMP-06 PEER REVIEW

PURPOSE

. .

- Establishes Requirements for Performing Peer Review to Assure:
 - completeness
 - adequacy
 - accuracy
 - traceability of data and information

• • • • • • •

DETERMINATION OF NEED

- Responsible Manager Determines When a Peer Review Is Required
- Occasions When Need for Peer Review May Be Determined
 - planning of internal work or procurements
 - receipt of contractor technical submittal
 - completion of internally developed technical document

. ..

PLANNING, SCHEDULING, AND SELECTION OF PERSONNEL

- Responsible Manager Prepares Peer Review Request Form That Identifies:
 - review chairman
 - document to be reviewed
 - type of review
 - objectives, requirements, and guidelines of review
 - schedule of review
 - qualified review personnel
 - specific sections of document to be reviewed by participants

PERFORMANCE OF PEER REVIEW

- Reviewers Document Comments
 - comment/resolution form
- Comments Are Resolved by Review Chairperson
 - agreement on disposition of comments reached between reviewer and chairperson
 - accepted comments
 - modified comments
 - comments that cannot be resolved are elevated to responsible manager for decision
 - disposition of comments and rationale are documented
- Chairperson Assures That All Accepted Comments Are Incorporated Into Final Version of Document

and the second
PERFORMANCE OF PEER REVIEW (Continued)

- Peer Review Report
 - peer review request form
 - completed comment/resolution forms
 - completed checklist
 - meeting minutes
 - personnel qualifications
 - other supporting material
 - submitted to responsible manager for review and approval
- Participation in Review Process by OA Staff
 - participates in reviews
 - evaluates and approves peer review process for adequacy and compliance with ONWI QA program requirements

PMP-16 REVIEW OF CONTRACTOR TECHNICAL SUBMITTALS

Purpose: Establishes Methods for Reviewing Contractor Technical Submittals

Key Provisions:

- Receipt of Contractor Technical Submittals
 - Performance of Management Review Upon Receipt of Technical Submittal
 - Project Manager to Review for Completeness, Correctness, Availability/Appropriateness of References, and Conformance With Contractual Requirements
 - Project Manager to Document Determination of Acceptability on Review Form
 - Project Manager to Determine Need for Additional Review (Peer, Design, Independent Technical), List Proposed Reviewers, and Obtain Approval of Responsible Manager for Type of Review Selected
 - Contractor Submittal and Review Form Forwarded to QAD for Review and Concurrence
 - Types of Additional Review
 - PMP-05 to Perform Design Review
 - PMP-06 to Perform Peer Review
 - PMP-16 to Perform Independent Technical Review

PMP-16 REVIEW OF CONTRACTOR TECHNICAL SUBMITTALS (Continued)

Key Provisions: (Continued)

Independent Technical Review

- Project Manager Responsible for Planning, Scheduling, and Selecting Qualified Personnel to Perform Technical Review
 - Initiate Review Process by Preparing Review Package—Contractor Technical Submittal, Review/Comment Forms, and Review Instructions

• Review Package Transmitted to Designated Review Personnel

Review Performance and Documentation of Results

- Designated Reviewers to Perform Technical Review in Accordance With Review Instructions and PMP-16 Requirements
- Review Comments and Rationale Documented on Review/ Comment Form
- Review Results Returned to Project Manager
- Evaluation and Resolution of Technical Review Comments
 - Project Manager to Evaluate Review Comments and Provide Disposition
 - Comments Designated as Mandatory Required to Be Incorporated or Resolved Between Project Manager and Reviewer, and Reviewer's Concurrence for Comment Resolution Documented
 - When Mandatory Review Comments Cannot Be Resolved, the Unresolved Comment to Be Transmitted to the ONWI Program Manager for Resolution
- Upon Resolution of All Comments, Project Manager to Complete and Submit Completed Review Forms to the Responsible Manager for Review and Concurrence

PMP-16 REVIEW OF CONTRACTOR TECHNICAL SUBMITTALS (Continued)

Key Provisions: (Continued)

- Monitoring the Review Process
 - QA Specialist to Review Completed Review Package to Assure Disposition and Resolution of All Comments, and Document Concurrence
- Technical Review Results

 $\hat{\rho}$

- Project Manager to Notify Contractor of Actions to Be Taken for Revision and Resubmittal of the Document Resulting From the Technical Review
- Upon Resubmittal of the Revised Document, Project Manager to Perform Review to Assure Incorporation/Compliance With Review Comments and to Document This Determination (e.g., Requires Additional Review/Return to Contractor, Final Acceptance)
- Project Manager to Transmit Completed Review Package and Review Forms to CDMS (Contractor Data Management System) to Input Into the ONWI Records File

VII. REVIEW EXAMPLES OF TECHNICAL PROCEDURE PREPARATION AND IMPLEMENTATION CONTROLS

GEOLOGIC PROJECT MANAGER - PERMIAN BASIN PROJECT

OFFICE OF NUCLEAR WASTE ISOLATION

BATTELLE MEMORIAL INSTITUTE, PROJECT MANAGEMENT DIVISION

STONE & WEBSTER ENGINEERING CORPORATION

NRC-VII-7 Page 1

PRESENTATION

PROJECT QUALITY ASSURANCE
 PROGRAM OVERVIEW

I.A. LEVY - PROJECT QUALITY ASSURANCE MANAGER

• CORING SERVICES AND CORE LOGGING AT THE J. FRIEMEL NO. 1 WELL

C.A. FOSTER – ASST. PROJECT MANAGER

• PUMP TESTING AND FLUID SAMPLING AT THE J. FRIEMEL NO. 1 WELL C.A. FOSTER – ASST. PROJECT MANAGER

QA PROGRAM

,...

المراجع المراجع المحمد من محمد المراجع

NRC-VII-7 Page 3

۰.

STONE & WEBSTER ENGINEERING CORPORATION **PROJECT ORGANIZATION** PERMIAN BASIN GPM NRC-VII-7 JUNE 1984 Page 4

- --- PROGRAM COORDINATION

NRC-VII-7 Page 5

ACTIVITY CONTROL DOCUMENTS

NRC-VII-7 Page 6

IMPLEMENTING DOCUMENTS⁽¹⁾

REVIEW AND APPROVAL

DOCUMENT	TECHNICAL	QA	INDEPENDENT TECHNICAL	PROJECT Management
QA PLAN (3)		X		X
PROJECT PROCEDURE (PP)		χ (2)		x
ACTIVITY PLAN (AP)	X	X	X	X
PROJECT TECHNICAL PROCEDURE (PTP)	X	X	X	X
ENGINEERING SERVICE SCOPE OF WORK (ESSOW)	X ·	X	X	X
PURCHASE REQUISITION (PR)	. X	X	X	X

(1) INVOKES APPLICABLE SWEC STANDARD PROCEDURES AND REQUIREMENTS.

(2) FOR THOSE PROCEDURES AFFECTING QUALITY.

(3) ALSO REVIEWED/APPROVED BY EA CHIEF ENGINEER AND QA VICE PRESIDENT.

PROCUREMENT CONTROL

NRC-VII-7 Page 8

•

and the second second

INSPECTION FUNCTIONS

INSPECTOR

PERFORM INSPECTIONS DESIGNATED IN ESSOWS & POS

DOCUMENTS INSPECTION

- O TEST, INSPECTION AND DOCUMENTATION REPORT (TID)
- O MATERIAL AND EQUIPMENT RECEIVING REPORT (MRR)
- INITIATES NONCONFORMANCE AND DISPOSITION REPORTS (N&D)

REINSPECTS TO VERIFY N&D CORRECTIVE ACTION

INITIATES INCIDENT REPORTS

REPORTS OCCURRENCES TO PQAM THAT MAY RESULT IN A N&D, INCIDENT REPORT AND/OR STOP WORK ORDER.

PARTICIPATES IN EVALUATION MEETINGS

QUALIFIED TO ANSI N45.2.6 FROM GEOTECHNICAL DIVISION

PROJECT_QA_MANAGER

DIRECTS INSPECTION FUNCTION

REVIEWS AND CLOSES TIDS

MONITORS MRRs

APPROVES INITIATION

CLOSES N&DS

ISSUES INCIDENT REPORTS

EVALUATES OCCURRENCES AND DIRECTS INSPECTOR TO ISSUE N&D, INCIDENT REPORT OR STOP WORK.

PARTICIPATES IN EVALUATION MEETINGS

NRC-VII-7 Page 11
ONWI – PERMIAN BASIN PROJECT GEOLOGIC PROJECT MANAGER

FIELD TESTING PROGRAM - DATA ACQUISITION

TYPICAL EXAMPLES:

J. FRIEMEL NO. 1 WELL

• CORING SERVICES AND CORE LOGGING

• PUMP TESTING AND FLUID SAMPLING

· •

PROJECT CONTROL DOCUMENTS

CORING SERVICES & CORE LOGGING

NRC-VII-8 Page 3

NRC-VII-8 Page 4

c-1369752-1b

09/30/32

85

AP - 9 HYDROLOGIC TEST WELL - J. FRIEMEL NO. 1

TABLE OF CONTENTS

1.7

	Section	Title	Page	1.10
	1.0	INTRODUCTION	1	1.12
	2.0	OBJECTIVES	1	1.14
	3.0	PARTICIPANTS	2	1.16
	4.0	DRILLING AND TESTING PROCEDURES AND EQUIPMENT	3	1.18
	4.1	Drilling	4	1.19
	4.2	Rock Coring	4	1.20
•	4.3	Mud Program	5	1.21
	4.4	Mud Logging Services	5	1.22
	4.5	Well Logging and Perforation Services	5	1.23
	4.6	Drill Stem Tests	6	1.24
	4.7	Pump Tests and Fluid Sampling	6	1.25
	4.8	Distribution of Field Test Data and Samples	6	1.26
	5.0	QUALITY ASSURANCE	7	1.28
	5.1	Calibration of Test Equipment	8	1.29
	6.0	EVALUATION OF TEST PROGRAM	8	1.31
	7.0	REPORTS	9	1.33
	7.1	Weekly Progress Report	9	1.34
	7.2	Well Completion Report	10	1.35
	8.0	SCHEDULE	11	1.37
	9.0	ATTACHMENTS	11	1.39

c-1369752-1d

09/30/82

AP - 9 HYDROLOGIC TEST WELL J. FRIEMEL NO. 1 ATTACHMENT 4-0 1.19 1.20 HYDROLOGIC TEST WELL SWEC SUBCONTRACTORS 1.22 1.25 Contract 1.26 ESSOW or P.O. No. 1.27 General Description Name G103Å Drill Rig & Crew 1.29 Baker & Taylor Geophysical Logging & G103B 1.31 Schlumberger 1.32 Perforating Services G103C 1.34 Rock Coring Equipment & Hycalog 1.35 Coring Engineer G103D 1.37 Mud Program - Drilling Dresser-Maccobar Fluids & Mud Engineer 1.38 1.40 Cementing Supplies & Field Call-out 1.41 Services 1.43 Casing and Tubing Field Call-out Drill Stem Testing G103G 1.45 Johnston - Macco FMC Well Head Assembly G103H 1.47 Casing Installation Crew * 1.49 Field Call-out 1.51 Field Call-out Fuel-Drill Rig, 1.52 Other Onsite Equipment 1.54 * Water for Drilling Field Call-out G103Q 1.56 Mud Logging Services Exploration Logging 2.1 G112A Drilling Consultant John Nicholson 2.2 Amarillo, Texas Petroleum Geologist 2.6 G112F Consultant-Petroleum P. Cameron, Jr, Inc. 2.7 Engineer. Drill Rig 2.8 Engineers G112D 2.11 Mud Tracer Consultant Glen Thompson 2.12 Tucson, Arizona

*Field Purchase Orders

c-1369752-1e

09/30/82

NRC-VII-8 Page 6

AP - 9 HYDROLOGIC TEST WELL - J. FRIEMEL NO. 1

		ATTACHMENT 5-0 Hydrologic test wells	1.7 1.8
		SWEC PROJECT TECHNICAL PROCEDURES (PTPs) AND PROJECT PROCEDURES (PPs)	1.10 1.11
	Number	Title/Description	1.14
	PTP 13697-7	Cementing and Casing Installation	1.17
	PTP 13697-8	Logging, Packaging, and Transport of Core	1.19
 >	PTP 13697-11	Transport, Logging, Photographing, and Storage of Core at SWEC Field Office	1.21 1.22
	PP 9-1	Responsibilities of SWEC Site Geologist	1.24
	PP 9-2	Receiving Equipment and Materials	1.25

AP - 9 - HYDROLOGIC TEST WELL - J. FRIEMEL NO. 1 ACTIVITIES SCHEDULE

۰.

NRC-VII-8 Page 7

ESSOW G103C - ROCK CORING EQUIPMENT & SERVICES

TABLE OF CONTENTS

٩.		2
-	٠	σ.

		Page	1.9
1.0	SCOPE	1-1	1.11
2.0 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 9	REQUIREMENTS Definitions Equipment Services Procedures Furnished by Contractor Furnished by Purchaser Documentation by Contractor Documentation by Purchaser Attachments	2-1 2-1 2-2 2-2 2-5 2-5 2-5 2-6 2-6 2-7	1.13 1.14 1.15 1.16 1.17 1.18 1.19 1.20 1.21 1.22
3.0 3.1 3.2 3.3 3.4 3.5 3.6	QUALITY ASSURANCE Quality Assurance Program Tests Inspection Performance Audit Deviations, Nonconformances; and Changes Unusual Occurrences	3-1 3-1 3-1 3-2 3-2 3-3	1.24 1.25 1.26 1.27 1.28 1.29 1.30

c-1369711-46b

١

083

ATTACEMENT 40	α
---------------	---

•

FLD 1.1.D. REPORT FOR _ROCK	Car	<u>dn</u>	ع ا	Equ	ipment at	<u>nd Servic</u>	<u>e5</u>		
1040.468 (GCD-101)	RT N	0			. E FINA	L REPORT	SHE	ET0	f
Ext Rattelle Memorial Institute						LG. NO. 1369	7	MARK NO	
			~			ORDER NO	<u> </u>	ITEM NO.	
NATIONAL WASTE STOTARE PTORTEM		_				GLUS			
									!
ISSUPPLIER OR SUSCONTRACTOR					1	Shop NO.			
ISCRIPTION					1	SELLER OR CONTR	ACTOR'S IDE	TIPCATION	
FRANCE BRAWINGIS									
& W SPECIFICATION NAME							TL 1	ADDENDA THRU	NO
ESSOW G103C - Rock Coring Equip	. &	Se	IV	100	S				
		1	1	10	CERTIFI	ED***	-	DEVIATION	
ner, ingredium, and Nocimentation decord	1			N.	BY		A	UTHORIZATIO	•
		E.	I	Ē	(Signature)	DATE	TYPE	OR NAME	DATE
quipment & Materials (at start)	11	;	1	1		1		1	:
Equipment (Primary)	11	i X	1		í			1	<u>.</u>
Equipment (Backup)	1	: X	<u>.</u>					<u></u>	<u>.</u>
Materials	11	<u> </u>		<u> </u>	i				<u></u>
Dally FIDERESS REPORT (FORMAL)	11		1	1					
Equipment	1	1	IX		}	} 1	1		1
Materials	11		12	:		1		1	i
Procedures	11	1	x	1	<u> </u>				
ocumentation			 ;	<u> </u>			 		<u> </u>
Daily Progress Reports	12	X		<u> </u>	t 			_ <u></u>	<u>.</u>
	<u>+</u>	$\frac{1}{1}$		1	!				;
	1	1	;	1	1	1 . 1		1	1
	i	i	i	L				1	1
		1		!	<u> </u>	· · · · ·		<u> </u>	<u></u>
		<u> </u>	<u>.</u>	!	 				<u>.</u>
	1	<u>.</u> 1	I	1	 I				1
	1	Ī	1	Ĺ	l			1	i !
· · · · · · · · · · · · · · · · · · ·		1	Ĩ						1
	•	<u> </u>	<u> </u>	1	<u> </u>		l	- <u> </u>	<u> </u>
	+		i 1	<u> </u>	<u> </u>				<u> </u>
	+-	<u>.</u>	1		i				<u>i</u>
POR INSTRUCTIONS. SEE THIS NUMBER IN THE INSPECTION S ■BY S & W INSPECTOR IF FILLED IN "X" (PUTCHASET VERIFIED — PERSONAL OBSERVATION OF DATA APPLICABLE WITNESSED — PERSONAL OBSERVATION WHILE THE MANUFA PERFORMED — PERSONAL PERFORMANCE OF THE TASK ■AS IN CONFORMANCE WITH THE SPECIFICATION OR WITH TH	UBSET B E TO TH CTUR E DEV	ER P	Nd ORK PERFO	Rej DRMS	PTEBEILLEL 5 THE TASK. DRIZATION INDIC	ive) 21TED.			
							•		
·									
	1								

...

, í

i

.

ſ

ĺ

[...

[]

ſ

[....

i.

ί.,

с-1369711-52Ъ

ĺ.

[] [

į

[

[.

.

[...

 04/21/83

CONTENTS

081

PTP 13697-11-2 May 2, 1983

1.0	GENERAL	Page 1	1.10 1.11
2.0	APPLICABLE DOCUMENTS	1	1.13
3.0	DEFINITIONS	1	1.15
4.0 4.1 4.2 4.3 4.4 4.5	PROCEDURES Facilities and Equipment Transport of Core Handling and Logging Core Photographing Core Packaging and Storage of Core	1 2 2 3 4	1.17 1.18 1.19 1.20 1.21 1.22
5.0	DISTRIBUTION OF CORE	5	1.24
6.0 6.1 6.2 6.3 6.4	QUALITY ASSURANCE Quality Assurance Program Requirements Documentation Requirements Changes to Procedure Control and Disposition of Records	6 6 7 7 7	1.26 1.27 1.28 1.29 1.30
7.0	ATTACHMENTS	7	1.32

NRC-VII-8 Page 10

1.7

PTP 13697-11-2 Page 6 of 7 May 2, 1983

The Logging Geologist is responsible for distributing data as Indicated below:

Item	SWEC Project Exploration Geologist	TBEG Project <u>Manager</u>	ONWI Project <u>Manager</u>	SWEC Field Office <u>Manager</u>
Rock Core		I (Pe:	rmanent)	X (Temporary)
Rock Core Logs				
Original	Σ			
Copies	X	X	I	X
Photographs				
Negatives	Σ			
Prints	I (2 set	:s) X	X	Σ.
Slides	Σ		X	

In addition, complete sets of prints will be sent to the following persons:

M.E. Steiner Parsons Brinkerhoff/PB-KBB 11767 Katy Freeway Houston, TX 77079

G.P. Callahan RE/Spec, Inc. P.O. Box 725 Rapid City, S.D. 57709

The remaining three sets will be kept at the Amarillo Field

ATTACHMENT - 1 PTP 13697-11 -2

())	DNWI -	- E	ANO	TE: Na_	LLE	MEMORIAL INSTITUTE - PERMIAN BASIN PROJECT
Ē	LEVATI	ONI	KEL GRO	LY E	IUSH: SUR	INGFT. PLATFORM ELEVATIONFT. FACEFT.
	OGGED Ate [,] S	BY_ TAR	T/F1	NISH		CONTRACTOR/TOOL PUSHER
	RILLING	is ne	THO	0		
	UD PRO	GRA	.M			
Di Hi	EPTH T OLE SI	0 81 Ze_	EDR) 		FT. TOTAL DEPTH DRILLEDFT.
0 0	ORE SI	ZE RECO	RD_			
S	PECIAL	TES	TIN	g or	INS	TRUMENTATION
R	EMARKS	 5				
-						
ATION ET	ΞΞ	5.1M	re g	RV 01	901 3	
	32	Ĩ	NO4	ACON RCOV	GHAPI	
			-			
		'				ROCK IDENTIFICATION MANUAL"
•	- 1 -					
						A STONE & WERSTER ENG. CORP LABORATE LOATE
	·					

.

.

[[_

ſ

į.

T L NRC-VII-8 Page 12

١

CORE	STORAG	E LOG	- AMAR	ILLO F	ield of	FICE				A	TACHMEN	r - 3	
STONE	a wei	BSTER	ENGINEE	ring co	RPORAT	ION				P	TP 13697-1	11-2	
WELL N	AME & NO	·				J.O NO. 1	3697			· 5	HEET	OF	
BOX.	DEPI	H (FT)	ELEVA	TION	DATE	LOG	SED	TEMPORARY	COF	E REMOV	ED	CORE_R	TURNED_
<u> </u>	<u> </u>	001.			<u>ncu.</u>	UAIE	01	STURAGE LUCATION	UAIE	BT	THILITVAL	DATE	<u> </u>
· · ·													
										, I			
						·							
			[
			[
		· ·											
		· · ·	[
]				}					•	
<u> </u>													
,													
					•								

لمتحجب أحصيت

-- --

·· •

۰.

and the second
·····

•

ł

· · · · · · · · · · · ·

p. same

~

NRC-VII-8 Page 13

APHIC SYMBOL SHEET	STONE B	WEBSTER ENGINEERING (ATTACHMENT-4 CORP. PTP 13697-11-2
ROCK TYPE	GRAPHIC SYMBOL	LETRATONE NO. (OR EQUIVALENT)	REMARKS
CONGLOMERATE		LT 182	
MASSIVE-COARSE GRAINED		LT II	
MASSIVE-FINE GRAINED		LT 8	
CALCAREOUS		LT 8	ADD LINES BY HAND (SIMILARLY FOR
BEDDED		LT 145	DOLOMITIC S.S.)
CROSS BEDDED		LT 89	
W/SHALE PARTINGS		LT 8	ADD LINES BY HAND
SANDSTONE & SHALE (EQUAL)		LT 164	
SILTSTONE .		LT 120	ADD DOTS BY HAND
MUDSTONE OR CLAYSTON		LT 121	
SHALE		LT 169	
OIL SHALE		LT 169	ADD DARK LINES BY HAND
CALCAREOUS SHALE		LT 169	ADD LINES BY HAND
LIMESTONE		LT 123	
DOLOMITIC		LT 242	

4

į

1

1

L

È.

ł

. ..

• •--•

MAGNETIC STICK-ON LETTERS & NUMBERS PERMIAN BASIN PROJECT O.N.W.I. SWEC J.O. No. 13697 DATE WELL NAME & No. CO RUN No. TOP TOP TOP TOP TOP 2563.9 2552.1 2555.1 2558. 2561.1 TOP 2561.1 TOP 2563.9 107 1352J TOP 2558.1 407 1.2565.1 ٠t -2 2 -8 1 7 3 FT. SECTIONS OF ROCK CORE 3 FT. SECTIONS OF ROCK CORE 3 FT. SECTIONS OF ROCK CORE -INDIVIDUAL WOODEN TROUGHS FOR 0 7 BOTTOM 2565.0 -1 2-3-4-5-5-7-THREE FOOT CORE SECTIONS PHOTOGRAPHING TABLE 2558.6 TO 2560.6 -2 -8 -6 -7 -8 -9 2-4-6-7--2 -3 -5 -6 -7 FOR MOUNTING CORE NO RECOVERY COMPLETE COMPLETE COMPLETE 2565.0 TO 2583.0 -£ -3 NO RECOVERY . 2 5 8 -11 2 ٤ 1 3 7 . BOTTON BOTTON BOTTOM 80770N 2555.1 MAGNETIC STICK-ON 2558.1 2561.1 2563.9 COLOR BOTTOM REFERENCE BY 2565.0 SURVEY STADIA ROD CUT INTO 3 FT. LENGTHS. NOTE: TOP & BOTTOM DEPTHS PAINTED ON 3FT. SECTIONS OF ROCK CORE SKETCH FOR SET-UP FOR

PHOTOGRAPHING CORE

STONE & WEBSTER ENGINEERING CORP.

AT TACAMENT 0 PTP 13697-15-0

> NRC-VII-8 Page 15

-			_	_			E-3				
(NW	11	- 6	BAT	TEL	LE	MEMORIAL INSTITUTE - PERMIAN BASIN PROJECT				
۷	rell	. NA	ME	AND	Na	1. 7 7	1emel Ko.1				
L	OCA	TIC	N	447 >	aita	Counc	y, J. Frienel Lasse, Block E-7, Section 3, 2778' from S.L., 221' from E.L.				
E	LEV	ATI	ON+	KEL	LY B	USHI	NG 4024.3 FT. PLATFORM ELEVATION 4024.2 FT.				
				GRC	UND	SUR	FACE 4013.9 FT.				
L	OGG	ED	8Y.			10-	15-62 Allen				
	RILL	. Ri	i i an IG: T	YPE.	Nian. Jak	et en	d Taylor - Rig 718				
-					- Con		· · · · · · · · · · · · · · · · · · ·				
9	DRILLING METHOD Conventional rotary drilling Dismond and attatopax coring										
N	MUD PROGRAM_ Frash base to 1210 fr. salt base from 1210 ft to 4695 ft. frash base from 4695 ft to D (\$283 ft).										
٥	EPT	H T	°0 8	EDRO	DCK_	Ųak	TOTAL DEPTH DRILLED \$283FT.				
H	IOLE	51	ZE _	30"	10.5	9'; 2	0" to 1210'; 14 3/4" to 4698'; 8 3/4" to 8283'.				
	ore Asit	. 5). (G	ZE_ RECO	642 DRD	614. 1' 60	6536	. intervele: 352' to 1210 : 123" to 1804 : 1840' to 4030': 5217' to 0014': .5'; 7698' to 7780'; 8047' to 8283'.				
-				22"	(2D5A	LO) t	o 57 ft: 16"(H-40 65#/ft) to 1210 ft: 10 3/4"(40.5#/ft, J-35) to 4698 ft:				
				3 1	/2"(1	7 6 1	5.50/21, X-33) to 5252 ft.				
۲ د	PEG	IAL See	TES	- 787	G OR	INS: 8301	Stat to 1216', 7492' to 7781', Geophysical Logs: complete suites - 60'-1216'.				
	000'	-464	91,	4695'	-4282	•: •	artial suites - 1201-1450, 1201-2825', 4698'-5908', 5700'-6535', 6300'-7780'.				
Ŗ	ENA	RK	5 <u> </u>	oz su	80425	refe	T to shipment from SWEC, Amerillo, Texas to TBEG, Austin, Texas, where core was				
1	lota:	44. All	ALL box	dapt Eugs	ars f	ton J	d from Kally Bushing. Depths not normalized to geophysical logs.				
•	_										
	1		₹.81	1D1 F	12	19					
TRON	E	ε	0	Q	E X	9					
LEVA (FEI	d d	(FEF	i un	e xo	BOR COVE	HUL	SAMPLE DESCRIPTION				
<u> </u>					ε	5	L				
							······································				
		-					Conventional drilling to 352.0°.				
		-									
							•				
•											
3673	350	L									
		_									
		1		┝┻╌	1		352.0- Lt Brown SAMDSTORE, NO apparent Edg. Soft to V eoft, fine-grained, rounded 353.4 to subrounded grains in calcareous matrix. Bottom half: putty like.				
3670		4					353.4- No tecovery				
		1		112							
		7	1								
	360	-									
		_									
							STONE & WEBSTER ENG. CORP. APPROVED DATE SHEET				

į

Ō

. . 1.... NRC-VII-8 Page 16

NRC-VII-8 Page 17

.....

PROJECT CONTROL DOCUMENTS

PUMP TESTING AND FLUID SAMPLING

AP - 17 PUMP TESTING & FLUID SAMPLING

.....

البيان فالما فالما فالما فالما فالله فستر فالله بعا راكه بعا الله فالما الما

CONTENTS

1.6

		Page	1.9
1.0	INTRODUCTION	1	.1.11
2.0	OBJECTIVES	1	1.13
3.0	PARTICIPANTS	1	1.15
4.0 4.1 4.2 4.3 4.4	TESTING AND FLUID SAMPLING Testing and Fluid Sampling Zones Testing and Fluid Sampling Preparation Testing and Fluid Sampling Distribution of Field Test Data and Samples	2 2 3 5	1.17 1.18 1.19 1.20 1.21
5.0 5.1 5.2	QUALITY ASSURANCE Calibration of Test Equipment Modifications and Changes to Scope	5 6 6	1.23 1.24 1.25
6.0	EVALUATION MEETINGS	6	1.27
7.0 7.1 7.2	REPORTS Progress Reports Well Testing and Sampling Report	7 7 8	1.29 1.30 1.31
8.0	SCHEDULE	8	1.33
9.0	ATTACHMENTS	9	1.35

ESSOW G103L - PUMP TESTING AND FLUID SAMPLING

CONTENTS

The second second from the second sec

11

• .

.

		Page	1.7
1.0	SCOPE	1-1	1.9
2.0	Requirements	2-1	1.11
2.1	Definitions	2-1	1.12
2.2	Pump Testing and Fluid Sampling	2-1	1.13
2.3	Furnished by the Contractor	2-3	1.14
2.4	Furnished by the Purchaser	2-5	1.15
2.5	Documentation by the Contractor	2-6	1.16
2.6	Documentation by the Purchaser	2-8	1.17
2.7	Attachments	2-9	1.18
3.0	QUALITY ASSURANCE	3-1	1.20
3.1	Quality Assurance Program	.3-1	1.21
3.2	Applicable Documents	3-1	1.22
3.3	Tests	3-1	1.23
3.4	Inspection	3-2	1.24
3.5	Performance Audit	3-3	1.25
3.6	Deviations and Nonconformances	3-3	1.26
3.7	Incident Reporting	• 3-4	1.27

• • • •

1.4

1

1

ESSOW G103L - PUMP TESTING AND FLUID SAMPLING

DOCUMENTATION BY CONTRACTOR

;

1.

	Title	Copies	Submit to	6.17
Dai: inc:	ly Progress Report luding:	1	Purchaser's Field Representative	6.20 6.21
(1)	Description of work performed during the day including any incidents			6.24 6.25 6.26 6.27
(2)	Water samples obtained, depth, time and number of containers		•	6.29 6.30 6.31
(3)	Break down of charges as outlined in the Contract and a listing of the personnel working on-site			6.44 6.45 6.46 6.47 6.48
Dis	cs copies	1	Purchaser	6.51
Hard put plot cove of data as	d copy computer out- of data listings and ts of drawdown and re- ery data. A minimum 2 complete sets of a and plots, per day, required.	. 1	Purchaser's Field Representative	6.54 6.55 6.56 6.57 6.58 7.1 7.2
Fina tes	al report describing t results for each zone	10	Purchaser	7.5 7.6
Cal: for tem duc	ibration Reports the pressure/ perature trans- ers flowmeter	1	Purchaser :	7.11 7.12 7.13 7.14
Pro sam of	cedure for downhole pling and transfer fluids.	1	Purchaser	7.16 7.17 7.18
API Cla	Subsurface Pump ssification	1	Purchaser	7.22 7.23

Each document submitted by the Contractor shall be clearly 7.33 identified with the Purchaser's name, well number, the job title, 7.34 the job order number, and a descriptive title.

STONE & WEBSTER ENGINEERING CORPORATION							T.I.D. REPORT							
CLIENT BATTELLE MEMORIAL I	NS	TI	rui	re		ľ	PROJECT ONWI PERMIAN BASIN					J.O. NO. 13697		
Essow/PO TITLE Pump Testing and Fi		d i	Sai		Ing	1	NO. DATE			E	ADDENDA THRU			
CONTRACTOR		<u>u</u>	Jai	-12-			STOTE							
Baker Productions								7.						
						 '	PTP 13697-1	3						
	Γ	Γ.	ľ	1	CENTIFI	to"	649							
TEST, INSPECTION, AND	TEST, INSPECTION, AND					Authi			HORIZATION	•	REMARKS			
DOCUMENTATION RECORD	•	ģ	E	Į	. BY (Signature)		DATE(9)****	TYPE	TYPE NUMBER DAT		E NUMBER DATE		DATE	_
<u>Equipment and Material</u>	μ	L		┦										
at start		1X	L	┡										
ongoing		LX.	┣_	╞					_					
			┢	╋			· · · · · · · · · · · · · · · · · · ·				• • • • •	4		
lesting Procedures	12	+;;	ł	╋					-			-		
	┢	ا ڻ ا	╂─	╋								-		
Ongo1ng		┞^		╋	1		-					-1		
Pump Test Data Records	13		1-	┢			-	-	-			-1		
at start		x		Γ								-		
ongoing		X												
	<u> </u>	<u> </u>	I	⊥	· · · · · · · · · · · · · · · · · · ·									
Recovery Test Data Rec.	4	 	↓_	┢			· · · · · · · · · · · · · · · · · ·		_					
at start		X		-								-1		
	┣—	 X	╂—	┢								-		
Vonting 1 Track Data Day	-		-	┼╴	·									
vertical lest Data Rec.	2		1—	┢								-		
	┢╴	₽		┢	-				-					
		† ^	<u> </u>	Ť								1		
Fluid Sampling	6		x											
Decumentation	12			X										
·····		L												
	 	ļ	 	_			_		_			-		
	<u> </u>	L	<u> </u>	<u>l</u> .	1		<u> </u>	L <u>. </u>]			_L		
"FOR INSTRUCTIONS, SEE THIS NUMBER IN "BY S & W INSPECTOR IF FILLED IN "X"	THE	M3	PECI	nón	PUBSECTION.									
VERIFIED - PERSONAL OBSERVATION OF I		AP		AD	E TO THE WORK.			TID	051		CI (1851	D BY DATE		
PENORMED - PERSONAL PERFORMANCE	OF 1	THE	TAS	411U K.	Metword Ernifume tor 1938.			110			ULVJEI			
"""AS IN CONFORMANCE WITH THE SPECIFICA """"SPECIFIC DATE(9) OR PERIOD OF INSPE	ECT I	N 07 ЮN.	49. 49.	тн ' Арр	THE DEVIATION AUTHORIZATION IN LICABLE.	1010	ATED.					ANSET OF		
												JILE		

.

· · •

the second s

• · · · · · · · · ·

....

• • • • •

.

· · · •

*1

PTP 13 PUMP TESTING & FLUID SAMPLING

PTP 13697-13-1

CONTENTS 1.7 Page 1.10 1.0 SCOPE OF WORK 1 1.12 2.0 APPLICAELE DOCUMENTS 1 1.14 3.0 2 DEFINITIONS 1.16 2 4.0 PROCEDURES 1.18 1.19 4.1 2 Test Preparation 4.2 Tests 4 1.20 4.2.1 Drawdown Test 4 1.21 4.2.2 Recovery Test 5 1.22 5 1.23 4.2.3 Annular Pressure 4.2.4 Field Interpretation of Drawdown and Recovery Data 5 1.24 1.25 4.2.5 5 Tracer Concentration and Fluid Sampling 4.3 1.26 6 Fluid Sampling 4.3.1 8 1.27 Surface Sampling 8 4.3.2 Downhole Sampling 1.28 5.0 QUALITY ASSURANCE 9 1.30 5.1 Quality Assurance Program Requirements 9 1.31 5.2 Documentation Requirements 9 1.32 5.2.1 Documentation by the SWEC Field Representative 9 1.33 5.3 9 1.34 Changes to Procedure 5.4 10 1.35 Control and Disposition of Records 6.0 10 1.37 ATTACHMENTS 1.38 Map of Study Area 1. 1.39 2. Fluid Sample Log 1.40 3. Flowmeter Record 1.41 4. Fluid Sampling Requirements .1.42 5. Fluid Sample Transmittal Letter 1.43 Swabbing Record 6. 7. Daily Report Form 1.44

i

÷....

ł

ţ

ł

į

INE	a web	STER E	NGINEE	RING CORF					1	
L NAME	8 NO.	2	ONE 40.		FORMATION	і маме	SITE	NEP.	PAGE	40.
MPLE NO.	DATE	SAMPL DEPTH TEMP. OF		SAMPLE DATE TEMP. OF PRESS. PSI SHIPPED			······	COMMENTS		
							•			
	<u> </u>									
			· · ·							
		1						<u></u>	· · · · · · · · · · · · · · · · · · ·	·
		1								

~

1-

1

.

1

والمحدين والمحاجي

/ ---- ----. . . .

٦

1

•

.

1----

NRC-VII-9 Page 8

AT	TA	CH	ME	N	ĩ	3
PTI	PI	36	97	- 1	3	-2

..

e. ...

OW METE	R RECORD		PTP 13697-13-2						
TONE & WI	EBSTER ENG	SINEERING CORP	•	CLIENT ON	CLIENT ONWI J.O. No.				
ELL NAME AND N	0.	SITE REP.		PAGE	OF	•			
DATE	TIME	READING		Δ ΤΙΜΕ	Q GAL/MIN				
						<u> </u>			
					· ·				
				<u> </u>					
				_					
·····									

الهار التجم

.....

. •

NRC-VII-9 Page 9

PTP 13697 13-2 Page 1 of 2

		ATTACHMENT 4		1.10				
FLUID SAMPLING REQUIREMENTS								
Sample	Sample	.		1.16				
Туре	Volume	Recipient	Sample Disposition	1.1/				
		.						
Surface,	0.51	Dr. Glenn Thompson	Box and Ship to	1.19				
Tracer			Dept. of Hydrology	1.20				
			and Water Resources	1.21				
			Att. Marc Malcomson	1.22				
			A.E. Douglas Eldg.	1.23				
			University of	1.24				
			Arizona	1.25				
			Tuscon, AZ 85721	1.26				
Downhole	1 1. or	Dr. Glenn Thompson	Crate and Ship to	1.40				
	as required		Dept. of Hydrology	1.41				
	by ONWI		and Water Resources	1.42				
		•	A.E. Douglas Eldg.	1.43				
			University of	1.44				
			Arizona	1.45				
·			Tucson, AZ 85721	1.46				
Doumbole	0 6 1 07	Dr. Inthony Zzikowski	Crate and Shin to	1 48				
DOMITIOTE	se required	DI. Andiony Laikowski	Bendir Field Engrad	1.49				
	as required		2586E 3/4 Poad	1 50				
	Dy UNHI		Grand Junction CO	1.51				
				2192				
Surface	l gal	Dr. Paul Knauth	Crate and Ship to	1.54				
			Dept. of Geology	1.55				
			Arizona State	1.56				
			University	1.57				
			Tempe, AZ 85287	1.58				
Surface	1 gal	Dr. Harold Bentley	Crate and Shin to	2.4				
	- yez		Hydro-Geology Chem.	2.5				
			744 North Country	2.6				
			Club Road	2.7				
			Tucson, AZ 85716	2.8				
			·		(
Surface	l gal	Dr. Jeffrey Means	Crate and Ship to	2.12				
			Battelle Columbus	2.13				
			Laboratories	2.14				
			505 King Avenue	2.15				
			Columbus, OH 43201	2.16				

.-

ţ

Ţ

f* t t t t

(---,

:

Ľ

L

r L

i

PTP 13697-13-2 Page 2 of 2

يعا حاديق

....

Sample <u>Type</u>	Sample Volume	Recipient	Sample Disposition	
Surface	l gal	Dr. Anthony Zaikowski	Crate and Ship to Bendix Field Engineering 2599 B3/4 Road Grand Junction, CO	2.20 2.21 2.22 2.23 2.24
Surface	50 gal or as required by ONWI	Dr. J.C. Laul	To be collected and held at the well site or in the Amarillo field ofc. or as otherwise di- rected by ONWI	2.28 2.29 2.30 2.31 2.32 2.33
Downhole	1.01 or as required by ONWI	TBEG	Crate and Ship to University of Texas at Austin Bureau of Economic Geology University Station, Box X Austin, Texas, 78712-7508 Att. Steve Fisher	2.37 2.38 2.39 2.40 2.41 2.42 2.43 2.44 2.45 2.46

· · · · ·

•

•

•••

•

- • •

.

÷

ATTACHMENT 5 FLUID SAMPLE TRANSMITTAL LETTER PTP -13 - PUMP TESTING AND FLUID SAMPLING STONE & WEBSTER ENGINEERING CORPORATION

245 SUMMER STREET, BOSTON, MASSACHUSETTS

ADDRESS ALL CORRESPONDENCE TO P.O. BOX 2325, BOSTON, MASS, 02107 W U TELEX 84-0001 84-0977

BOSTON NEW YORK CHERRY HILL, N.J. DENVER CHICAGO HOUSTON PORTLAND. OREGON WASHINGTON. D.C.

DESIGN CONSTRUCTION REPORTS EXAMINATIONS CONSULTING ENGINEERING

Name and Address of Recipient

Please be aware that <u>No., (Size)</u> container(s) of (surface or downhole) formation fluid sampled from the <u>(No.)</u> production zone at <u>(Name)</u> Well No. _____. will be shipped to your office. The production zone was perforated between depths of ______ and _____ feet. This fluid sample was collected <u>on (Date)</u> at <u>(Time)</u>. Following receipt of this shipment, please notify:

Mr. T. Annaratone 245/12 STONE & WEBSTER ENGINEERING CORPORATION P. O. Box 2325 Boston, MA 02107

at you earliest convenience.

Very truly yours,

1

ŧ.

(SWEC Site Representative)

Date

NRC-VII-9 Page 13

DAILY REPORT FORM

ł

ļ

ł

.

•

TONE & W	EBSTER ENGIN	EERING C	ORP			REPORT NO.
LIENT ONWI-BATT				J.C. NO.	697	CATE
ELL NAME & NO.		ZONE		FORMATION	NAME	SITE REPRESENTATIVE
EST TYPE		TEST NO.		TEST SAMPI	LING	
TIME LOG			DETAI		PERATIONS	
		····			·	
					····	
						•
	· · · · · · · · · · · · · · · · · · ·	۰ 			<u> </u>	
					•	
,	· ·					· · · · · · · · · · · · · · · · · · ·
		•				
					·····	· · · · · · · · · · · · · · · · · · ·
MEASUR	EMENTS	N	TIME	DATE	······································	COMMENTS
TEST STAP	RT				•	<u> </u>
TEST STO						
TEST ZONE	PRESSURE					
ANNULAR I	PRESSURE					
TEST ZON	E TEMP				· · · · · ·	· · · ·
DISCHARGE	RATE					
DISCHARGE	RATE CHECK					
TOTAL ZONE	PRODUCTION	<u> </u>				· · · · · · · · · · · · · · · · · · ·
PUMP STR	OKE RATE	<u> </u>	· · · · · · · · · · · · · · · · · · ·			
TRACER CO	NCENTRATION					
TRACER CU		 	<u> </u>			·

NRC-VII-9 Page-14

٢:

NRC-VII-9 Page 15

BAKER PRODUCTION SERVICES

PAGE 10

.

n r

COMPANY: Stone & Webster by DAKER Engineer: B.H. REAGAN TEST DATE : 6/26/83 DISC: 404 FILE:

.

r · · · - -

r...

1

WELL: J. Frienel #1 CONMENTS: WIEDCAT

1

		********	***** TURING	*******	***	***********	** ANNULUS	****	****	
REAL TIME	ELAPSED TIME	PRESSURE	drressire	TENP	diche	PRESSURE	dPRESSURE	TE.MP	611.PP	RŦ
 10.21.20	47.70.23		<u> </u>	1.10 1				193 0		
10:23:20	47.49.99	G/7[:[C 3784 TA	6 33	1.30,1	0.0	3009.17		170 0		
10:33120	47,80,31	5701:37	-1 19	178 1	0.0	3407.07	-8 21	176 8	4 1	7
18190167	49.89.91	2/71.CC 9784 A/	-0.10	478 4	0.0	3009,90	-0.61	130.0		3
10:03127	40107161 40.40.21	C/71.10	0.69	130.1	0.0	3009.00	U, LC 	170.0	0.0	
19103127	40117121	6/71.9/	0.01	130.1	0.0	3069.29	-0.36	130.0	0.0	J
19113127	40129121	2791.38	-0.09	130.1	0.0	3864.17	-0.07	130.0	0.0	6
19123127	40137121	2791.46	0.04	130.1	0.0	3864.26	0.09	155.5	-0.1	-
19133127	48:47:21	2791.64	0.18	130.1	0.0	3064.62	0,36	129.9	0.0	e e
19143127	48:57:21	2791.86	0.22	130.1	0.0	3064.50	-0.12	129.9	. 8.8	9
19:53:27	49:07:21	2791.05	-0.01	130.1	0.0	3064.41	-0.09	127.7	a.a	10
20:03:27	49:19:21	2791.49	0.44	130.1	0.0	3964.58	0.17	130.0	D.1	11
20:13:27	49129121	2791.44	-0.05	130.1	0.0	3063.95	-0.63	129.9	0.1	12
28:23:27	49:39:21	2791.54	0.10	130.1	0.0	3064.27	0.32	130.0	8.1	13
20:33:27	47:47:21	2791,28	-0.26	130.1	0.0	3864.84	-0.23	130.0	0.0	14
28:43:27	47157121	2791.61	0.33	130.1	0.0	3064.25	0.21	129.9	- 0 .1	15
20153127	50:07:21	2791.45	-8.16	130.1	0.0	3064.61	0.36	130.0	0.1	16
21:03:26	50:17:20	2791.71	0.26	130.1	0.0	3864.82	-0.59	129.9	-0.1	17
21:13:26	50:27:20	2792.13	0.42	130.1	0.0	3864.65	0.63	127.7	0.0	18
21:23:26	50139120	2791.90	-0.23	130.1	9.0	3864.15	-0.58	129.9	8.8	19
21:33:26	50149120	2791.71	-0.19	130.1	0.0	3863.92	-0.23	129.9	8.8	20
21:43:26	50:57:20	2791.91	0.20	130.1	0.0	3863.97	0.05	130.0	0.1	21
21153126	51:07:20	2791.90	-8.01	130.1	0.0	3063.64	-0.33	129.9	-0.1	22
22:03:26	51:19:20	2791.78	-0.20	138.1	0.0	3864.22	8.50	129.9	0.0	23
22113126	51.29.24	2791.79	6.69	130.1	0.0	3863.72	-0.50	138.0	6.1	24
22:23:26	51:39:20	2791.93	0.14	130.1	5.5	3063.82	0.10	129.9	-8.1	25
22.11.24	51.40.36	3791 44	_6.29	138.1		3841.97	8 15	129.9	8.8	26
22:33:20	51,50,98	2721 48	-0.27	176 1		3864 81	8 84	150.9	0.0	27
22:73:60	53,83,38	2701 48	6 69	136.1		3863.93	-8.18	138.8	0.1	28
22133120	53.49.30	2701 01	8 25	170 0	5 1	3843.04	8 81	129.9	-8.1	20
23103120	52117160	6/71173	78	478 4		784.4 40	6 14	174 4		28
23113120	52129120	2/71.03	-0.30		V.I	3867.10	0,34	130.0		30
23123126	02139120	2/72.09	. 0,41	130.0	U.1	3003.30		430.0	0.0	31
23133125	52149119	2792.23	0.21	130.1	0.1	3063.27	-0.27	127.7	-0.1	36
23:43125	52:59:19	2792.26	0.01	130.1	0.0	3483.00	0,07	127.7	0.0	33
23153125	53:09:19	2791.77	-0.49	130.1	0.0	3083.47	-0.39	130.0	0.1	37
0103125	53:19:19	2791.89	0.12	1.50.1	0.0	3763.31	-0.10	130.0	0.0	30
6:13:25	53129119	2792.22	0.33	130.1	0.0	3063,43	0.12	129.9	-0.1	36
0123125	53139119	2791.83	-0.39	130.0	-0.1	3963.60	0.17	129.9	0.0	37
0:33:25	53:49:19	2791.69	-8.14	130.1	8.1	3063.63	0.03	129.9	0.0	38
0:43:25	53159119	2792.04	0.35	130.1	5.0	3063.53	-0.40	129.9	0.0	39
0:53:25	54109119	2792.09	0.05	130.1	0.0	3063.44	0.21	129.9	0.0	48
1:03:25	54:19:19	2792.35	8.26	130.1	0.0	3063.54	0.10	129.7	0.0	41
1:13:25	54:29:19	2792.20	-0.15	130.1	0.0	30n3.31	-0.23	129.9	0.0	42
1:23:25	54:39:19	2792.05	-0.15	130.1	tı. fi	3863.32	8.81	129.9	8.0	43
1:33:25	54:49:19	2792.19	8.14	130.1	8.0	3063.30	-0,02	127.7	0.0	44
1:43:25	54:57:19	2791.73	-0.46	130.1	b .0	3063.04	8.54	129.9	8.0	45
1153124	55:87:10	2792.16	0.43	130.0	-0.1	3063.54	-0,30	129.9	6.9	46
2:03:24	55:19:18	2792.23	0.07	1.30.0	8.8	3963.06	-0,48	130,0	0.1	47
2:13:24	55:29:18	2792.20	-0.03	130.1	0.1	3063.54	6.48	130.0	0.0	48
2:23:21	55:39:18	2792.33	0.13	130.1	Ð. H	3463.24	-0.30	129.9	-0.1	49
2:33:24	55:49:18	2792.22	-0.11	139.1	0.6	3063.09	-0.15	129.9	8.6	51
2:43:24	55:59:19	2792.49	B. 44	139.1	9.0	3162.93	-0.16	129.7	0.0	51
2:53:24	56189119	2792.30	- 6,30	130.1	9.6	3063.16	0.23	127.9	0.0	52
			w (** * ***			

20

> NRC-VII-9 Page 16

3500 3250 3000 275 PSIA 25 i'' PRESSURE 22 i .20 0 H 11 i.h _17 . 0 . 149 _1500 H• 44A dt in Hours 9 5 BAKER Production Services - 4185 Hwy. 521, Fresno, Tx., 77545, (713) 431-2514 COMPANY: Stone & Webster WELL: J. Friemel #1 PLOT INTERVAL: START: 0 / 14 / 03 ~ 10 : 42 : 10 by BAKER Engineer: B.H. REAGAN STOP: 7 / 10 / 03 - 10: 54: 48 PROGRAM SERIAL NUMBER: TXP80003CU343F1 GAUGE SERIAL NUMBER: 3.1077 COMMENTS: HISTORY - ZONE #1 ZONE #1 8188-8204

NRC-VII-9 Page 17

Pw vs dt

Pw vs dt 3000 2900 2800 2700 PSIA 2800 12 PRESSURE 2500 2400 2300 5500 dt in Minutes 2100 GBE 287**0** 3280 2050 2 AED 9 222 22 d 2000 BAKER Production Services - 4185 Hwy. 521, Freeno, Tx., 77545, (713) 491-2514 WELL: J. Friemel #1 PLOT INTERVAL: CDMPANY: Stone & Webster by BAKER Engineer: B.H. REAGAN START: 7 / 1 / 83 - 14 : 15 : 52 PROGRAM SERIAL NUMBER: TXP80883CU343F1 STOP: 7 / 4 / 83 - 10: 13: 4 GAUGE SERIAL NUMBER: 3.1077 ZONE #1 8188-8204" COMMENTS: SHUT-IN RECOVERY #4 Page 18

NRC-VII-9

1

Ø

Þ Т

М J

> IJ J

Ш 0

0 C J M

ᅱ Ш ()

-| Η

Ζ 0

Ø

()

-

М

Σ

1......

· ·

FLUID SAMPLING AND TRACER PROGRAM

NRC-VII-9 Page 19
QA 5/12/82

1

PROCEDURE 11 · REVISION 7

DATE 10/4/82

Page 7 of 8 Attachment=5 SwEC J.O. #13697

FORM 4F

LOG OF SAMPLES AND FIELD MEASUREMENTS OF TRACER CONCENTRATIONS IN DRILLING FLUID - J. FRIEMAL #1

· · · · · · · · · · · · · · · · · · ·
· · · · · · · · · · · · · · · · · · ·
· .
<u> </u>

**This form can be applied to other future wells which require a tracer metering system as approved by Glenn Thompson

Log reviewed by Program Director