

South Texas Project Electric Generating Station P.O. Box 289 Wadsworth, Texas 77483

March 23, 2004 NOC-AE-04001698 10CFR50.90 STI 31715152 File No. G25

U. S. Nuclear Regulatory Commission Attention: Document Control Desk One White Flint North 11555 Rockville Pike Rockville, MD 20852

> South Texas Project Unit 2 Docket No. STN 50-499 Unit 2 Cycle 10 End of Life Moderator Temperature Coefficient Limit Report

Reference: Letter, J. J. Sheppard to U.S. Nuclear Regulatory Commission, "End of Life Moderator Temperature Coefficient," dated October 31, 2002 (NOC-AE-02001425)

As a condition for approval of the conditional elimination of the most negative end of life moderator temperature coefficient measurement technical specification change as stated in the referenced correspondence, STP committed to submit the following information for the first three uses of this methodology at STP:

- 1. A summary of the plant data used to confirm that the Benchmark Criteria of Table 3-2 of WCAP-13749-P-A, Safety Evaluation Supporting the Conditional Elimination of the Most Negative EOL Moderator Temperature Coefficient Measurement, have been met; and,
- 2. The Most Negative EOL Moderator Temperature Coefficient Limit Report (as found in Appendix D of WCAP-13749-P-A).

The information is attached. This transmittal is the second of the three submittals. The results of the Unit 1, Cycle 11 surveillance were transmitted on January 13, 2003. If there are any questions regarding this information, please contact Mr. Duane Gore at (361) 972-8909.

D.C. Leas D.A. Leazar

Manager, Nuclear Fuel and Analysis

Attachments:

- 1. Plant Data Used to Confirm Benchmark Requirements
- 2. Most Negative End of Life Moderator Temperature Coefficient Limit Report for South Texas Unit 2, Cycle 10

NOC-AE-04001698 Page 2

cc: (paper copy)

Bruce S. Mallett Regional Administrator, Region IV U. S. Nuclear Regulatory Commission 611 Ryan Plaza Drive, Suite 400 Arlington, Texas 76011-8064

U. S. Nuclear Regulatory Commission Attention: Document Control Desk One White Flint North 11555 Rockville Pike Rockville, MD 20852

Richard A. Ratliff Bureau of Radiation Control Texas Department of Health 1100 West 49th Street Austin, TX 78756-3189

Jeffrey Cruz U. S. Nuclear Regulatory Commission P. O. Box 289, Mail Code: MN116 Wadsworth, TX 77483

C. M. Canady City of Austin Electric Utility Department 721 Barton Springs Road Austin, TX 78704 (electronic copy)

A. H. Gutterman, Esquire Morgan, Lewis & Bockius LLP

L. D. Blaylock City Public Service

David H. Jaffe U. S. Nuclear Regulatory Commission

R. L. Balcom Texas Genco, LP

A. Ramirez City of Austin

C. A. Johnson AEP Texas Central Company

Jon C. Wood Matthews & Branscomb Attachment 1

•

Plant Data Used to Confirm Benchmark Requirements

•

Plant Data Used to Confirm Benchmark Requirements are Satisfied

This attachment presents a comparison of the South Texas Unit 2 Cycle 10 core characteristics with the requirements for use of the Conditional Exemption of the Most Negative EOL Moderator Temperature Coefficient Measurement Methodology and presents plant data that support that the Benchmark Criteria presented in WCAP-13749-P-A are met.

The Conditional Exemption of the Most Negative EOL Moderator Temperature Coefficient Measurement Methodology is described in WCAP-13749-P-A. This report was approved by the NRC with two requirements:

- only PHOENIX/ANC calculation methods are used for the individual plant analyses relevant to determinations for the EOL MTC plant methodology, and
- the predictive correction is reexamined if changes in core fuel designs or continued MTC calculation/measurement data show significant effect on the predictive correction.

The PHOENIX/ANC calculation methods were used for the South Texas Unit 2, Cycle 10, core design and relevant analyses. Also, the Unit 2, Cycle 10, core design does not represent a major change in core fuel design. Therefore, the Predictive Correction of -3 pcm/°F remains valid for this cycle. The Unit 2, Cycle 10, core meets both of the above requirements.

A description of the data collection and calculations required to complete the Table 3 Worksheet of the Most Negative Moderator Temperature Coefficient Limit Report is presented. Then the following data tables are provided:

- Table 1 Benchmark Criteria for Application of the 300 ppm MTC Conditional Exemption Methodology (per WCAP-13749-P-A)
- Table 2 Flux Map Data: Assembly Powers and Core Tilt Criteria
- Table 3 Core Reactivity Balance Data
- Table 4 Low Power Physics Test Data (Beginning of Cycle, Hot Zero Power): Isothermal Temperature Coefficient (ITC)
- Table 5 Low Power Physics Test Data (Beginning of Cycle, Hot Zero Power): Individual Control Bank Worth

Table 1Benchmark Criteria for Application of the 300 ppm MTC ConditionalExemption Methodology (per WCAP-13749-P-A)

Parameter	<u>Criteria</u>
Assembly Power (Measured Normal Reaction Rate)	± 0.1 or 10 %
Measured Incore Quadrant Power Tilt (Low Power)	±4 %
Measured Incore Quadrant Power Tilt (Full Power)	±2%
Core Reactivity (Cb) Difference	± 1000 pcm
BOL HZP ITC	± 2 pcm/°F
Individual Control Bank Worth	± 15 % or ± 100 pcm
Total Control Bank Worth	± 10 %

٠

.

	Assembly Power				Measured Incore Quadrant Power Tilt			
		Benchmark Criteria					Benchmark	Criteria
Flux Map	Measured to		_	Criteria				Criteria
Number			Requirement	Satisfied	Power Tilt		Requirement	Satisfied
210001	% Diff	4.5		Yes	Max	1.00648		Yes
	Meas – Pred	0.053			Min	0.99172		
210002	% Diff	4.1	Yes	Max	1.00507	Yes		
	Meas – Pred	0.052		Min	0.99358			
210003	% Diff	4.0		Yes	Max	1.00572		Yes
	Meas - Pred	0.051			Min	0.99282		
210004	% Diff	3.7		Yes	Max	1.00565		Yes
	Meas - Pred	0.045			Min	0.99430		
210005	% Diff	3.2		Yes	Max	1.00506		Yes
210000	Meas - Pred	0.038		ICS	Min	0.99504	Maps at < 90%	
210006	% Diff	3.2	1	Yes	Max	1.00302	Reactor Power	Yes
210000	Meas - Pred	0.038		res	Min	0.99744	Max Power	
210007	% Diff	3.3	-	Vac	Max	1.00108	Tilt ≤ 1.04 And Min Power Tilt ≥ 0.96	Yes
	Meas - Pred	-0.034		Yes	Min	0.99899		
210008 % Diff Meas - Pred	% Diff	3.3	% Diff within	V	Max	1.00122		Yes
	Meas - Pred	-0.031	± 10%	Yes	Min	0.99873		
210009	% Diff	4.0	OP	Yes	Max	1.00244	ORYeMaps at > 90%YeReactor PowerYeMax PowerYeTilt ≤ 1.02 And	V
210009	Meas - Pred	0.034	OR M-P within ± 0.1		Min	0.99891		res
210010	% Diff	4.6		Yes	Max	1.00394		Vee
210010	Meas - Pred	0.040			Min	0.99846		Yes
210011	% Diff	4.2		Yes -	Max	1.00204		Vee
210011	Meas - Pred	0.036			Min	0.99885		Yes
% Diff	% Diff	4.7		V	Max	1.00282		N
210012	Meas - Pred	0.038		Yes	Min	0.99667	Min Power	Yes
210012	% Diff	4.9		N.	Max	1.00762	Tilt ≥ 0.98	
210013	Meas - Pred	-0.042		Yes	Min	0.99433		Yes
210014	% Diff	5.2		N.	Max	1.00566		Yes Yes
210014	Meas - Pred	0.043		Yes	Min	0.99714		
210015	% Diff	4.7		v	Max	1.00368		
210015	Meas - Pred	0.041		Yes	Min	0.99585		
	% Diff	4.8			Max	1.00571		
210016	Meas - Pred	0.041		Yes	Min	0.99530		Yes
210017	% Diff	5.5		Yes	Max	1.00453		Yes
210017	Meas - Pred	0.045			Min	0.99780		

 Table 2

 Flux Map Data:Assembly Powers and Core Tilt Criteria

•

•

		Core Reactivity Difference (Critical boron)					
	ſ	Reactivity	Benchmark C	iteria			
Surveillance		Deviation					
Date/Time		(pcm)	Requirement	Satisfied			
12/12/02	13:51	143.4		Yes			
04/09/03	15:00	-0.6		Yes			
04/29/03	15:15	-96.1		Yes			
05/06/03	15:53	-110.0		Yes			
05/28/03	09:00	-113.7		Yes			
06/25/03	16:45	-200.3		Yes			
07/25/03	11:25	-293.2		Yes			
08/20/03	15:33	-325.9	Reactivity Deviation within	Yes			
09/17/03	15:32	-329.1	$\pm 1000 \text{ pcm}$	Yes			
10/08/03	16:22	-348.1		Yes			
11/05/03	16:00	-344.5		Yes			
12/09/03	07:56	-323.8		Yes			
12/30/03	14:33	-169.6		Yes			
01/29/04	11:25	-122.1		Yes			
02/18/04	13:55	-103.9		Yes			
03/17/04	14:55	-46.3		Yes			

Table 3Core Reactivity Balance Data

_

٠

.

-- -- ---

Table 4Low Power Physics Test Data(Beginning of Cycle, Hot Zero Power):Isothermal Temperature Coefficient (ITC)

	Measured (pcm/°F)*	Predicted (pcm/°F)*	Error (Measured – Predicted) (pcm/°F)*	Benchmark Cr Requirement	iteria Satisfied
BOC HZP ITC		-3.12	0.69	ITC Error within ±2 pcm/°F	Yes

*Note: 1 pcm = 1 x $10^{-5} \Delta K/K$

		Individ	ual Contro	I Bank Worth	-	
					Benchmark Criteria	
Bank	Measured (pcm)*	Predicted (pcm)*	∆ Error (pcm)*	% Error	Requirement	Satisfied
Shutdown Bank A	241.2	243.9	-2.7	-1.1%	% Error within ±15% OR Δ Error within ±100 pcm	Yes
Shutdown Bank B	690.0	715.7	-25.7	-3.6%		Yes
Shutdown Bank C	381.7	377.3	4.4	1.2%		Yes
Shutdown Bank D	378.1	371.2	6.9	1.9%		Yes
Shutdown Bank E	479.7	472.2	7.5	1.6%		Yes
Control Bank A	903.9	890.5	13.4	1.5%		Yes
Control Bank B	599.8	586.2	13.6	2.3%		Yes
Control Bank C	797.7	792.2	5.5	0.7%		Yes
Control Bank D	494.1	479.3	14.8	3.1%		Yes
Total Control Bank Worth	4966.2	4928.5	37.7	0.8%	% Error within ±10%	Yes

Table 5Low Power Physics Test Data(Beginning of Cycle, Hot Zero Power):Individual Control Bank Worth

*Note: 1 pcm = 1 x $10^{-5} \Delta K/K$

Attachment 2

•

.

Most Negative End of Life Moderator Temperature Coefficient Limit Report for South Texas Unit 2, Cycle 10

Most Negative End of Life Moderator Temperature Coefficient Limit Report for South Texas Unit 2, Cycle 10

(Measured 300 ppm Burnup, as per WCAP-13749-P-A, Appendix D)

PURPOSE:

The purpose of this document is to present cycle-specific best estimate data for use in confirming the most negative end of life moderator temperature coefficient (MTC) limit in Technical Specification 3.1.1.3. This document also summarizes the methodology used for determining if a HFP 300 ppm MTC measurement is required.

PRECAUTIONS AND LIMITATIONS:

The EOL MTC elimination data presented in this document apply to South Texas Unit 2 Cycle 10 only and may not be used for other operating cycles.

The following reference is applicable to this document:

Fetterman, R. J., Slagle, W. H., Safety Evaluation Supporting the Conditional Exemption of the Most Negative EOL Moderator Temperature Coefficient Measurement, WCAP-13749-P-A, March, 1997.

PROCEDURE:

All core performance benchmark criteria listed in Table 1 must be met for the current operating cycle. These criteria are confirmed from startup physics test results and routine HFP boron concentration and flux map surveillance performed during the cycle.

If all core performance benchmark criteria are met, then the Revised Predicted MTC may be calculated per the algorithm given in Table 2. The required cycle specific data are provided in Table 2 and Figure 1. This methodology is also described in Reference 1. If all core performance benchmark criteria are met, and the Revised Predicted MTC is less negative than COLR Limit 2.4.3, then a measurement is not required.

Note that Figure 1 is not entirely linear. However, the deviation is slight enough that linear interpolation between adjacent points from the data at the bottom of the Figure is acceptable.

Table 1Benchmark Criteria for Application of the 300 ppm MTCConditional Exemption Methodology

Parameter	Criteria
Assembly Power (Measured Normal Reaction Rate)	± 0.1 or 10 %
Measured Incore Quadrant Power Tilt (Low Power)	±4%
Measured Incore Quadrant Power Tilt (Full Power)	±2%
Core Reactivity (Cb) Difference	± 1000 pcm
BOL HZP ITC	± 2 pcm/°F
Individual Control Bank Worth	± 15 % or ± 100 pcm
Total Control Bank Worth	± 10 %

.

Table 2 Algorithm for Determining the Revised Predicted Near-EOL 300 ppm MTC

The Revised Predicted MTC = Predicted MTC + AFD Correction $- 3 \text{ pcm/}^{\circ}\text{F}$ where:

Predicted MTC is calculated from Figure 1 at the burnup corresponding to the measurement of 300 ppm at RTP conditions,

AFD Correction is the more negative value of:

{ $0 \text{ pcm/}^{\circ}F$, ($\Delta AFD * AFD$ Sensitivity) }

 \triangle AFD is the measured AFD minus the predicted AFD from an incore flux map taken at or near the burnup corresponding to 300 ppm.

AFD Sensitivity = 0.05 pcm / °F / Δ AFD

Predictive Correction is -3 pcm/°F, as included in the equation for the Revised Predicted MTC.

			Attachment 2 Page 4 of 7
	Table 3		
Worksheet for Calcula	ting the Predicte	d Near-EOL 300	ppm MTC
2, Cycle 10 Date:	03/18/2004	Time:0	027
ce for Cycle-Specific MTC]	Data:		
•	-	Core Managemen	t of the South Texas
Predicted MTC			
-	xenon C _B of 300	14251.0	
ppm.		14251.0	
Predicted HFP ARO MTC	corresponding		
to burnup (A.1)	-35.5	pcm/°F	
AFD Correction			
	, equilibrium		
conditions incore flux map	-	14226.8	MWD/MTU
Measured HFP AFD at hur	nun(B1)		
	• • •		
-		-1.59	% AFD
Dradiated UED AED at hum	(\mathbf{P}, \mathbf{I})	2.62	0/ AED
Predicted HFP AFD at bur	шр (Б.1)	-2.02	70 AFD
MTC Sensitivity to AFD		0.05	pcm/°F/∆AFD
· •		0	
$\{0 \text{ pcm/}^{-}\text{F}, B.4^{+}(B.2 - B)$		0	pcm/°F
Revised Prediction			
Revised Prediction (A.2 + 1	B.5 – 3)	-38.5	pcm/°F
	0.0.0	50 <i>c</i>	
Survemance Limit (COLR	2.3.3)	-53.6	pcm/°F
If C.1 is less negative than	C.2, then the		
HFP 300 ppm MTC measured by the second secon	rement is not		
	2, Cycle 10 Date: ce for Cycle-Specific MTC 1 010-00533UB Rev.C, The Nu 2 Nuclear Power Plant Cycle Predicted MTC Cycle Average Burnup Conthe HFP ARO equilibrium ppm. Predicted HFP ARO mTC to burnup (A.1) AFD Correction Burnup of most recent HFF conditions incore flux map Measured HFP AFD at burn Reference incore flux map: ID: 210017 Date: 0 Predicted HFP AFD at burn MTC Sensitivity to AFD AFD Correction, more negative than Revised Prediction Revised Prediction (A.2 + 1) Surveillance Limit (COLR If C.1 is less negative than	Worksheet for Calculating the Predicter 2, Cycle 10 Date: 03/18/2004 ce for Cycle-Specific MTC Data: 010-00533UB Rev.C, The Nuclear Design and 2 Nuclear Power Plant Cycle 10. Predicted MTC Cycle Average Burnup Corresponding to the HFP ARO equilibrium xenon C _B of 300 ppm. Predicted HFP ARO MTC corresponding to the HFP ARO equilibrium xenon C _B of 300 ppm. Predicted HFP ARO MTC corresponding to oburnup (A.1) AFD Correction Burnup of most recent HFP, equilibrium conditions incore flux map Measured HFP AFD at burnup (B.1) Reference incore flux map: ID: 210017 Date: 03/17/04 Predicted HFP AFD at burnup (B.1) MTC Sensitivity to AFD AFD Correction, more negative of { 0 pcm/°F, B.4 *(B.2 – B.3)}	Worksheet for Calculating the Predicted Near-EOL 3002, Cycle 10Date: $03/18/2004$ Time:02, Cycle 10Date: $03/18/2004$ Time:0ce for Cycle-Specific MTC Data:010-00533UB Rev.C, The Nuclear Design and Core Management22 Nuclear Power Plant Cycle 10.Predicted MTCCycle Average Burnup Corresponding to the HFP ARO equilibrium xenon C _B of 300 ppm.14251.0Predicted HFP ARO MTC corresponding to burnup (A.1)-35.5AFD Correction Burnup of most recent HFP, equilibrium conditions incore flux map14226.8Measured HFP AFD at burnup (B.1) Reference incore flux map: ID:210017 210017 210017 Date:-1.59Predicted HFP AFD at burnup (B.1)-2.62MTC Sensitivity to AFD0.05AFD Correction, more negative of { 0 pcm/°F, B.4 *(B.2 – B.3)}0Revised Prediction Revised Prediction (A.2 + B.5 – 3)-38.5Surveillance Limit (COLR 2.3.3)-53.6If C.1 is less negative than C.2, then the

.......

Attachment 2

required per Specification 4.1.1.3.

٠

٠

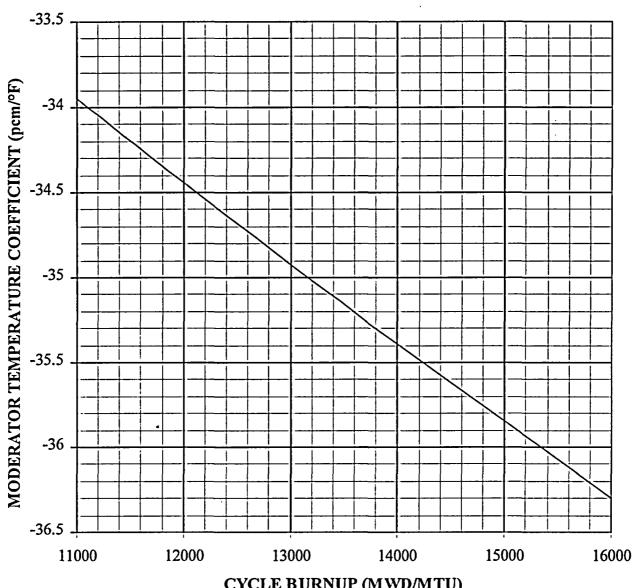


Figure 1 Predicted HFP FOP 300 ppm MTC vs. Cycle 10 Burnup

CYCLE BURNUP (MWD/MTU)

Table 4

Data Collection and Calculations Required to Complete the Table 3 Worksheet of the Most Negative Moderator Temperature Coefficient Limit Report

Data at the 300 ppm Boron Point

- RCS Boron at 300 ppm at 00:27 on 03/18/04.
- Burnup at 300 ppm: 14251.0 MWD/MTU (A.1)
- Predicted MTC: -35.5 pcm/°F (A.2)

Data from Last Flux Map:

- Flux Map Number: 210017 (B.2)
- Reactor Power 100% RTP Note: The monthly flux map was performed at about the same time the unit reached the 300 ppm concentration value. Data from this flux map was used for the AFD Correction.
- Burnup 14226.8 MWD/MTU (B.1)
- Measured Axial Offset (MAO): -1.59% (B.2) Note: The Westinghouse BEACON computer code (similar to the Westinghouse INCORE code) determines Axial Offset (AO), not Axial Flux Difference (AFD). Therefore, the AO must be converted to AFD before use. The relationship between AO and AFD is

AFD = Axial Offset * Fractional Power

Axial Flux Difference

Lower Predicted AO (LPAO): -2.58% at 14000 MWD/MTU Higher Predicted AO (HPAO): -2.89% at 16000 MWD/MTU Predicted AO (PAO) =

 $PAO = \frac{B/U_{@Measured AO} - B/U_{@LowerPredicted AO}}{B/U_{@HigherPredicted AO} - B/U_{@LowerPredicted AO}} \times (HPAO - LPAO) + LPAO$

PAO = (14251.0 - 14000)/(16000 - 14000) * (-2.89% + 2.58%) - 2.58% = -2.62% (B.3)

 $\Delta AFD = (MAO-PAO) * 100\%$ = (-1.59% + 2.62%) * 100% = 1.03%

Table 4 (cont.) Data Collection and Calculations Required to Complete the Table 3 Worksheet of the Most Negative Moderator Temperature Coefficient Limit Report

Determination of the Revised Predicted Moderator Temperature Coefficient (MTC)AFD Sensitivity: 0.05 pcm/°F/ Δ AFDAFD Correction: 0 pcm/°F (B.5)where: AFD Correction is the more negative of the following:0 pcm/°F or (Δ AFD * AFD Sensitivity)0 pcm/°F or (Δ AFD * AFD Sensitivity)0 pcm/°F or (1.03% * 0.05 pcm/°F/ Δ AFD)0 pcm/°F or 0.052 pcm/°F/ Δ AFD)0 pcm/°F or 0.052 pcm/°F/ Δ AFD)0 pcm/°F or 0.052 pcm/°F..0 pcm/°F..0 pcm/°F= -35.5 pcm/°F + 0.0 pcm/°F - 3 pcm/°F= -38.5 pcm/°F (C.1)

2