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Abstract

The most important input parameters in a complex probabilistic performance assessment

are identified using a variance-based method and compared with those identified using a

regression-based method. The variance-based method has the advantage of not requiring

assumptions about the functional relationship between input and output parameters. However, it

has the drawback of requiring heuristic assessments of threshold variance ratios above which a

parameter is considered important, and it also requires numerous executions of the computer

program, which may be computationally expensive. Both methods identified the same top 5 and

7 of the top 10 most important parameters for a system having 195 inputs. Although no distinct

advantage for the variance-based approach was identified, the ideas which motivate the new

approach are sound and suggest new avenues for exploring the relationships between the inputs

and the output of a complex system.
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Introduction

A probabilistic risk or performance assessment is often used to evaluate complex systems

such as a nuclear power plant during accident scenarios(l) or a nuclear high-level waste repository

over long time periods(2,3). A computer program is used to predict the response of the system, y,

is dictated by the input parameters, y=y(xl, x2, ... x,). Each input parameter has some uncertainty

or range of plausible values which can be described using a probability distribution function

(PDF). The PDF for each input can be sampled to obtain discrete values for all inputs, and the

output can then be calculated using the computer program. Typically, this process is performed

in a probabilistic manner in which the x's are selected randomly from their PDFs and used to

generate a set of y predictions.

For complex systems, it is rarely obvious which parameters are most important. In many

cases a complex system may require hundreds of input parameters, yet only a relatively small

subset strongly influences the output. It is often the analyst's objective to identify these. There

are many reasons for seeking the most important parameters, including comparing results

between programs modeling the same problem, guiding the design of the system being modeled to

reduce the vulnerability to particular phenomena, and guiding future work in specific areas to

better quantify important yet poorly characterized phenomena.

A distinction is made in this work between uncertainty, sensitivity, and importance. The

uncertainty is the variability or range of an input or output parameter. The sensitivity is the rate

of change in the output as an input changes. Importance is the degree to which the output

changes in response to the uncertainty in one of the inputs. It is helpful to associate input
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uncertainty with a range in the parameter (e.g., Ax, for the ith variable), and sensitivity with the

change in the output per change in an input (e.g., ay/Jxi ). The product of output sensitivity

and input uncertainty is a measure of output uncertainty attributed to a particular input

parameter (e.g., Ayj = (ay/lax) Axi). Importance is a relative term where the output uncertainty

attributed to each input parameter is compared with the overall range of the output (e.g., Ay/Ayj)

For an input parameter to be important, the output needs to be sensitive to the input and the

input parameter needs to have some uncertainty (or range of plausible values if it is a design

controlled parameter).

Overall, there are two main approaches to identifying important parameters-regression-

and variance-based methods. The regression-based methods have been used extensively

throughout the literature(4 5' 6) while variance-based methods are relatively new(7 ). In general, the

regression methods are based on establishing functional relationships between the input and

output parameters. Frequently, linear relationships are sought, yet nonlinear and coupled

relationships can also be used. For linear relationships, the slope between each input and the

output is used to gauge the importance of each input parameter. The slope can be multiplied by

the range, or standard deviation, of the input and divided by the overall output variability, or

standard deviation. This ratio equals the standardized regression coefficient (SRC)(4). An input

parameter is important if it has a large SRC, hence, is responsible for a large variability of the

output.

One drawback of regression-based methods is that an algebraic function relating inputs

and output must be developed. This approach is very successful when couplings and interactions
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between inputs are minimal, and the inputs are independently and linearly related to the output.

As interactions become stronger, it becomes more critical to specify an appropriate functional

form relating inputs and output. In an attempt to relax the need to specify the form of the

relationship, McKay(7) has developed a variance-based importance method which does not

require assumptions about the type of relationship between input and output. In addition, it is

integrated with the Latin Hypercube Sampling (LHS) scheme(8'9) and readily quantifies the effects

of inputs on the output. A potential drawback of the variance-based method, however, is that it

requires numerous executions of the computer program.

Application Problem

Both the variance-based and regression-based methods are evaluated using a code that

simulates the release and transport of radionuclides from a proposed high-level waste (HLW)

repository at Yucca Mountain, Nevada(3 t0 ). The code uses the LHS scheme with a total of 195

input parameters which are described using PDFs. The output is the summed normalized release

of radionuclides over the next 10,000 yr across a compliance boundary at 5 km. The details of the

code are not of primary interest in this paper and are documented elsewhere(3). The primary

objective of this study is to apply the variance-based method and compare the results with

regression-based results.

Introduction to Variance-Based Method

The main objective of the variance-based approach is to identify a subset of input

parameters which most strongly drive the output. In the top of Figure 1, the spread of the output

is characterized using either the PDF, Cumulative Distribution Function (CDF), or
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Complementary Cumulative Distribution Function (CCDF). The CCDF is used frequently in

this paper. As the range of the output narrows, the slopes of the CDF and CCDF steepen, and

this will be used later to gauge the importance of a parameter. The idea behind variance-based

importance is to identify the parameters that, when held constant, significantly reduce the spread

of the output or steepen the CDF/CCDF curves. In the bottom of Figure 1, a hypothetical

distribution of outputs is shown with smaller variance, hence narrower PDF and steeper CDF

and CCDF. If the variability of an important parameter is reduced, then the variability of the

output will be significantly reduced. If a parameter is identified as being important based on

output variability, then it follows that significant changes in its mean value will lead to significant

changes in the mean of the output. For analysis purposes, it is convenient to focus on output

variability, noting that important parameters strongly affect both the mean and variance of the

output.

Scatter Plots

Scatter plots are a simple and informative tool to investigate visually the relationship

between any one input parameter and the output. Typically, the analysis will have generated a

large set of valid inputs which are used to compute an equal number of outputs. A plot is

constructed of the output y versus a single input parameter xi. Each model evaluation or computer

code run is represented as a single point. Depending on the distribution of points, one may

identify a relationship between the input parameter and the output. If no pattern exists, then the

scatter plot will appear as a cloud of uncorrelated points.

In Figure 2, two scatter plots are shown from this work. The two parameters, infil and
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akr2, are plotted against the output, normalized release. Each scatter plot contains 2,000 points

representing 40 distinct LHS-50 runs. The term LHS-50 describes how each input parameter is

discretized into 50 equal probability bins, and the mean value in each bin is used once and only

once in a LHS run. In total, 50 executions of the computer program (runs) are performed for an

LHS-50, regardless of the number of input parameters. Each run is based on a vector of inputs

(equal in length to the number of input parameters) determined by randomly matching binned

input parameters. In this work, 40 different matchings of input parameters were used, hence, 40

distinct LHS-50 runs. As a result, the scatter plots consist of 40 points along 50 vertical lines.

The first parameter, infil, describes the deep percolation of infiltrating meteoric water at the

repository site. The second parameter, akr2, describes the gaseous fracture permeability of one of

the hydrostratigraphic units at Yucca Mountain. The phenomenon being described by each

parameter is not important for this paper, only that infil has a visual correlation with normalized

release while akr2 does not. One also notices that the normalized release is plotted on a log scale

because it ranges over 5 orders-of-magnitude. A few of the outputs had zero value, and are set

equal to 2xI0 4 in order to be plotted.

Because the output values ranged over 5 orders-of-magnitude and contained a few zero

values, the output was transformed to perform either a variance- or regression-based analysis~' I)*

A linear rank transformation was used in which the outputs from all of the runs are ordered and

replaced by a set of steadily increasing values. In this problem, the 40 LHS-50 generated 2,000

outputs, and the lowest output was transformed to 1/2,000, the second lowest to 2/2,000, and so

forth up to the highest output being transformed to 1. This generated a uniform distribution in
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the output values of y.

In Figure 3(a), the scatter plot for the rank transformed output and infil are shown. The

rank transformed data continue to show visually the trend in the data. The mean of the 40 values

for each of the 50 bins is shown in Figure 3(b), as well as the standard deviations about the means

in (c). The bin means show much more clearly the correlation between input and output. Figure 3

is used to introduce the variance-based method.

Variance-Based Importance

The main goal behind the variance-based method is to determine what portion of the total

output variance is explained by a trend through the means or is unexplained due to residual

uncertainty attributed to other parameters. This approach is consistent with the idea of

correlation and regression. A well-known variance identity used in analysis of variance relates the

total variability of y to the variability between the bin means (explained) and variability within

the bins (unexplained)(7'1 2 13"4" 5 ) For this work, the identity is expressed as:

Nrep Nvec 2 Nvec 2 Nvec Nrep _2

E E (Yij-Y..)2 xNrep E Yi..) + E E (Yij-Yi.)(
j=I i=1 i=1 i=1 j=1

where Nvec=number of LHS vectors or bins (=50 in this work), and Nrep=number of repetitions

(=40 in this work). In words, Equation I states that the total variability equals the variability of

bin means plus the mean of bin variabilities.

The average of all outputy's is used in Equation I and defined as:
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Nrep Nvec

E. lYij
- j=1 i=1 (2)

Nrep Nvec

The average of all y's in one LHS bin is used in Equation I and defined as:

Nrep

X Yij
j=1 3

i= Nre (3)*Nrep

This variance identity is used to develop importance indices.

Importance Indices: R2, Ra2, F

If the input parameter has a negligible influence on the output, then the variability of bin

means will be relatively small and the mean bin variability will be relatively large. Conversely, if

the input has a strong influence on the output, then the variability of bin means will be relatively

large. This suggests an importance index which is the ratio of variances:

Nvec
Nrep E (Y. - Y

R2 = i-l (4)
-Nrep Nvec2

E E (Yij -Y..)
j=l i=l

This ratio is analogous to the coefficient of determination which is commonly denoted as

R2, except that Equation 4 is derived from an analysis of variance instead of a continuous

regression-based estimate. The theoretical underpinnings of an analysis of variance can be related

to a regression analysis('6 ); however, it is preferable to distinguish between variance- and

regression-based methods. The primary difference is that the variance-based method is indifferent
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to the ordering of bins, whereas the ordering is important for a regression (or curve-fitting)

approach. In Figure 3(b), a trend is noticeable between the input and output, hence the variability

of bin means will be large. As the trend becomes more pronounced, then R2 will increase in

magnitude, regardless of the shape of the trend.

If no trend exists, then the bin means will uniformly lie about a mean of one-half. A result

of the central limit theorem in statistics '3 ), is that the variance of bin means is equal to the total

variance divided by Nrep, provided each bin contains random samples from the same population

(i.e., no bin-to-bin variation for either the mean or variance). The explained variance is slightly

over-estimated because it is based on a finite number of repetitions. Hence, an improved

importance index, expressed as an alternative variance ratio has been suggested(7 )

NWec Nrep2

Nvec E Y. (yij -Yi.) 2

Nrep E Y y)_i=l j=l
Nrp2- . 2-Nrep

Ra- Nrep Nvec (5)
E E (Yij-y..)2

j=1 i=1

Finally, the F-statistic can be used as an importance index ( 4 , 5 ). The 50 LHS bins act as

distinct levels within which 40 samples are collected. The analysis determines if there is a

statistically significant difference between the means of the distributions in each of the bins. In

statistical terms, a null hypothesis is formed stating that the bin means are equal. If the null

hypothesis is true, then the input has a negligible effect on the output. Alternatively, data may

indicate that all of the bin means are not equal, hence, the null hypothesis is rejected and the

input is identified as being important. The F-statistic for this application is defined as:
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Nvec
Nrep (Yi. -Y)

i=1
F (Nvec - I) 6
Nvec Nrep (6)

E E (Yij -Yi.)
i=1 j=1

Nvec (Nrep-1)

Both the numerator and denominator of the F-statistic are estimates of the total variance of y,

assuming no trend exists between input and output. If a trend exists, then the numerator will

overestimate the variance. Hence, the magnitude of F will increase.

Comparing Importance Indices

The first step was to complete a set of LHS-50 runs. The number of LHS-50 runs needed

to provide good statistics was determined by increasing the total number of runs from 8 to 16,

24, 32, and finally 40. As more runs were completed, the importance indices were computed

using all of the available data for all of the 195 input parameters. It was determined that enough

data was collected from 40 runs to identify statistically important parameters.

In Figure 4, the importance indices are compared for the top ten parameters. In each of

the three plots, the abscissa represents the quantity of output information and the ordinate

represents the value of the importance index for various input parameters. The importance of a

parameter is judged by a large value of the importance index, typically one exceeding a threshold.

As the amount of output information increases, one expects the magnitude of the importance

index to increase in exceedance of a cutoff, thereby indicating increased statistical confidence that

a parameter is truly important. Only one importance index has this property, the F-statistic.
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Both the R2 and Ra2 decrease with increasing output information, which is not a desirable

attribute of an importance index. Hence, the F-statistic was used as the importance index in this

work.

A heuristic F-statistic cutoff value of 3.0 was adopted in this work primarily because a

natural break was observed in the first set of 40 LHS-50 runs with 5 variables performing

noticeably different than the other 190 variables. Heuristic selection of a cutoff value is suggested

by McKay(7 ). In the traditional one-way analysis of variance(13 14 15), a theoretically derivable

cutoff for a I or 5 percent level of significance can be derived (in this work it would be based on

Nvec- I and Nvec(Nrep- 1) degrees of freedom). Embedded in the significance levels associated

with the F-statistic are assumptions that all measurements are independent, random samples,

drawn from normal distributions that have equal variances. The assumption of independent

random samples is not true for this work. For a independent random sampling, sometimes called

pure Monte Carlo, the y's are independent. However, for an LHS scheme, stratified sampling

without replacement, the set of x's are not independent; hence, the y's are not completely

independent (see Appendix of Reference No. 8). Because we are using the LHS scheme, the data

points are not completely independent and significance levels normally associated with the F-

statistic do not apply.

Top Ten Parameters

Based on the initial 40 LHS-50 runs, five parameters were identified as being important.

These parameters are the top five identified in Figure 4(c). In Figure 5, rank ordered plots show

the F-statistic computed for each parameter. The parameters are sorted by F-statistic so that the
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first has the largest F. The F-statistic is plotted against the sorted (or ranked) order. These plots

help identify individual or groups of important parameters. In Figure 5(a), the infil parameter is

clearly important, as noted by the large F-statistic which confirms the trend observed in the

scatter plots in Figure 3.

After identifying at least one important parameter, an iterative approach is used to

identify additional parameters. The previously identified parameters are set to fixed values. In

general, they can be set to more than one value, but a new set of runs would need to be completed

for each unique set. Because our program requires a long time to complete calculations, it was

prohibitive to explore more than the mean of the previously selected parameters.

In Figure 5(b), the results of the second set of runs indicated that three more parameters

are important. For the last set of runs, eight parameters were set to their mean values and a new

set of runs initiated. Based on our experience, if the F-statistic of a parameter exceeded a cutoff,

then as Nrep increased it would only continue to increase in exceedance of the cutoff [see Figure

4(c)]. Hence, the last set of runs was terminated as soon as two parameters exceeded the cutoff

so that ten parameters were identified as important. These parameters are: infil. forwarI, ecorr6,

ecorr7, rdiffl 1, ecorr3, ecorr2, ecorr8, ecorr5, sol4Am. These parameters are described

elsewhere(3) and only briefly described here: infil = infiltration rate, forwarl=UO2 alteration rate

, ecorr6=crevice corrosion potential, ecorr7=pitting corrosion potential, rdiffl 1 =diffusion

coefficient in the nearfield, ecorr3=temperature effect on ambient corrosion potential,

ecorr2=temperature effect in corrosion model, ecorr8=rate of localized corrosion, ecorr5=decay

rate for gamma emitters, and sol4Am=Americium solubility.
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In Figure 6, conditional CCDFs are plotted where the output has been conditioned by

holding either 0, 5, or 10 input parameters fixed. Each curve represents the output from an

equivalent LHS-400 run. As expected, Figure 6 shows that the variance of the output is reduced

as the important parameters are fixed.

The reduction in output variability can also be quantified. For each set of five equivalent

LHS-400 curves, a single equivalent LHS-2000 curve was constructed. Based on this curve, the

output value was determined for 95 percent of the distribution. Thus the range of output was

measured between the 2.5 and 97.5 percent probabilities. For the case of no fixed parameters, the

CCDF ranged from 0.02 to 18.0 which is a factor of 890. By selecting and fixing the top 5

parameters, the range was decreased so that the output varied from 0.27 to 5.94 which is a factor

of 22.0. Fixing the top ten parameters yielded an output range from 0.29 to 1.86 which is a factor

of 6.5. By fixing the ten most important parameters to their mean values, the output variability

was reduced by over two orders-of-magnitude.

Comparison with Regression Results

A multilinear regression analysis was completed using the original rank transformed 40

LHS-50 runs with no parameters fixed. A stepwise procedure was employed where each

parameter was independently regressed with the output data (17). The parameter with the largest

coefficient of determination, R2, was selected as an important parameter. The next step added one

previously unimportant parameter and regressed. The set of parameters with the largest R2 is

selected as the new set of important parameters. The p-value for each regression coefficient is

checked to determine if it is above a 5 percent threshold. The p-value is the probability of

14



0 0 {215>

observing a nonzero regression coefficient from the finite sample when the true (population)

coefficient is actually zero. If the p-value exceeds a significance level of 5 percent, then the

parameter was excluded from the important set. In each step, one parameter is added to the set of

important parameters. The process is stopped for one of a number of reasons: (i) no additional

statistically significant parameters can be identified, or (ii) the addition of parameters yields a

minimal improvement in R2, thus indicating an overfitting of the output data. In this work, the

stepwise addition of parameters was stopped when the overall R2 changed by less that 0.01.

In Table I, the results of the regression analysis are presented. Fortuitously, the

regression analysis terminated with ten parameters due to small incremental improvements in R2

with the addition of new parameters. The regression results are very similar to the variance-based

results. The top five parameters in both methods are the same, and seven of the parameters are

the same in both sets. This agreement between sets of important parameters significantly

increases confidence in both methods.

A comparison was made to determine why the variance- and regression-based methods

differed in three parameters. It should be noted that the top five parameters control a significant

amount of output variability and that other parameters are progressively less important. Scatter

plots for the three parameters selected by the regression, yet missed by the variance-based

method, are shown in Figure 7. A trend in any of the scatter plots is difficult to detect. One can

detect a trend in the akr3 scatter plot [Figure 7(a)]. After further investigation, it was concluded

that a combination of low akr3 and low infil leads to low outputs.

It is interesting that akr3 was the next most significant parameter identified in the
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variance-based method after the first set of runs [see Figure 5(a)]. If the cutoff value for the F-

statistic were lower, then akr3 would have been selected. In comparison, ecorr8 was also nearly

selected to be important in the variance-based method in the initial set of 40 LHS-50 runs.

Although not selected in the first set of runs, ecorr8 was selected in the second set of runs. An

explanation for why akr3 was not selected is that it is important only at low values of infil. In the

second step of the variance-based method, infil was set to its mean value. Thus, the importance

of akr3 was diminished in subsequent runs. Other than this observation, the distinction between

the parameters selected by the regression- and variance-based methods appears minimal because

both methods selected the same top five parameters.

Verification Runs

In Figures 12 and 13, conditional CCDFs are shown which serve as a check on selected

important parameters. The verification runs are performed to determine if the set of ten

parameters truly control the output. If the most important parameters control the output, then

one would expect that fixing them to high or low values would strongly affect the location of the

outputs yet the range of outputs remains narrow for any single run. Alternatively, fixing the less

important parameters to different values would not be expected to affect significantly the range

or distribution of the output.

In Figure 8(a), a coarse LHS-5 was applied to the most important parameters and a fine

LHS-400 was applied to the less important parameters. The LHS-400 was accomplished by

combining eight independent LHS-50 runs. The conditional CCDFs (dashed lines) are compared

with the original CCDF (solid line). The original CCDF is a based on a combination of the original
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40 LHS-50 runs. We note that the conditional CCDFs are rather steep, indicating a narrow range

of output values. This is because only the less important parameters are being varied. The

locations of the conditional CCDFs are dictated by the specific values and combinations of the

most important parameters. The most important parameters are noted to significantly affect the

location where the conditional CCDFs break.

In Figure 8(b), similar calculations are presented. Here, the important parameters are

varied while the less important parameters are fixed. A fine LHS-400 is used for the most

important parameters and a coarse LHS-5 is used for the less important parameters. The

conditional CCDFs lie near the original CCDF, indicating that the range and distribution of the

output is being controlled by the most important parameters. One of the conditional CCDFs,

however, does vary significantly from the cluster of other curves. The main deviation is due to a

number of very low outputs, where 15 percent of the outputs had values smaller than 0.01. After

reviewing the input, we attributed this to the parameter akr3 being small. Because our interests

are more for higher values of the output, this effect at the low values was not explored further.

Overall, the conditional CCDFs enhance confidence that the dominant parameters were identified

in the variance-based method.

Conclusions

Both a variance- and regression-based method were applied to identify ten important

parameters from a total of 195 input parameters for a complex system. Both methods agreed on

five of the top five, and seven of the top ten parameters. After reviewing scatter plots, an

explanation was developed for why the variance-based method missed one apparently important

17



parameter. This was attributed more to the application of the method than to a deficiency of the

method.

The variance-based method has the potential benefit of not requiring any assumptions

about the functional relationship between input parameters and the output. Two significant

drawbacks of the method are the need to heuristically select critical (cutoff) values of an

importance measure and the potentially prohibitive costs associated with the repetitive execution

of the computer program.

The choice between variance- and regression-based methods is most probably influenced

by the cost associated with computing time. The variance-based method requires many more

computer runs than a regression-based method, hence this may prohibit its use in certain cases.

Overall, the ideas which motivate the variance-based approach are sound and suggest new

avenues for exploring the relationship between the input parameters and output for complex

systems.
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Stepwise multilinear regression analysis results using the original 40 LHS-50

� 3�

Table 1.
runs.

Parameter [ SRC R2

infil 0.527 0.28

forwari 0.283 0.35

rdiffl 1 0.260 0.42

ecorr7 -0.239 0.48

ecorr6 -0.236 0.54

akr3 0.173 0.57

ecorr8 0.150 0.59

retard3 -0.124 0.61

retardl -0.111 0.62

ecorr2 0.098 0.63

SRC = standardized regression coefficient based on final stepwise multilinear regression.

R2= coefficient of determination based on regression with all previous parameters.
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Figure 1: Due to input variability, the output has a distribution described using either a PDF, CDF, or CCDF (top). As the most important
input variables are fixed, the range of output decreases (bottom).
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Figure 3: Scatter plot using (a) rank transformed output, (b) means, and (c) standard devations within each of the 50 LHS bins.
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Figure 4: Comparison of convergence properties of R 2 , Ra2 , and F importance indices.
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Figure 5: Ranked order plots used to select top ten variables.
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Figure 7: Scatter plots for parameters identified in the stepwise multilinear regression, yet missed in the variance-based method.
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