SOFTWARE SUMMARY FORM

01.Summary Date:
07/25/94

02. Summary prepared by(Name and Phone)

T.J. Ratchford 522-3083

04, Software Date:
7125194

05. Short Title:
SEISMO

03. Summary Action:

New

06. Software Title: SEISMO - Simulation of Seismo-Mechanical Scenarios and Model Description.

07. Internal Software ID:

NONE

08. Software Type:

O Automated Data System

0 Computer Program

B gubroutine/Module

09.Processing Mode:

O Interactive

O Batch

B Combination

10. APPLICATION AREA
A. General:

(] Scientific/Engincering
O Total System PA

n Subsystem PA

b. Specific:

O Auxiliary Analyses

O other

CNWRA, SwRI, San Antonio, Texas

11. Submitting Organization and Address:

12. Technical Contact(s) and Phone:

N. Eisenberg NRC

13. Narrative:

simulations.

SEISMO - SEISMO Module is to provide a computational algorithin for estimating the consequences to the HLW repository due to a seismic event, in the TPA

14, Computer Platform

CRAY/XMP

15. Computer Operating System:

UNIX

16. Progranuning Language(s):

FORTRAN

17. Number of Source Program
Statements:
7,624 lines of code

18. Computer Memory
Requirements:
UNKNOWN

19. Tape Drives:

NONE

20. Disk/Drum Units:

N/A

-

'21. Graphics:

UNKNOWN

22. Other Operational Requirements

NONE

23. Software Availability:
W Available O Limited

O In-House ONLY

24. Documentation Availability:
G Inadequate

M Available

O In-House ONLY

25. Submission Package Status:

Acceptance Criteria: Met I

Not Met O S, are QA Assessment: Successful B Unsuccessful O
Code Custodian: %/’ % WW

o 12 /2K

CNWRA Form TOP-4-1 (08/93)

gemstone.2 ~/tpa/SEISMO/VCS => 1s -1

total 5251

~CWXYWX ==~ 1 tjr1 tjrl 1281 Jul 8 1993 s.Makefile*
~rWXLWX===— 1 tjrl tijrl 1152 Jul 8 1993 s.accel.F*
-“rWXrwx—-—= 1 tjrl tijril 3747 Jul 8 1993 s.analysis.F*
—“rWXYWX——- 1 tjri tijrl 1187 Jul 8 1993 s.casel.F*
~TWXYWX——— 1 tjri tirl 1078 Jul 8 1993 s.case2.F*
~“rWXrwx—--—- 1 tjrl tijrl 1357 Jul 8 1993 s.common.H*
“~rWXELWX=== 1 tijra tjril 3062 Jul 8 1993 s.echol.F*
—~rWXYWX=—— 1 tjri tirl 1240 Jul 8 1993 s.echo2.F#*
~YWXTYWX——= 1 tjril tijrl 344379 Jul 8 1993 s.lhs.out*
—rWXYrwx—-—- 1 tjrl tjrl 88449 Jul 8 1993 s.lhs.out.z*
—rWXYWX=—=— 1 tjri tirl 9502 Jul 8 1993 s.opnfil.F*
~rWXYwx—-—-— 1 tjr1 tijrl 2410 Jul 8 1993 s.rdmor.F*
~LWXEWX=~=— 1 tir1 tirl 2496 Jul 8 1993 s.rdrun.F#*
—“rWXYWX=—— 1 tjr1 tiri 2580 Jul 8 1993 s.rdsot.F*
~EWXTWX= == 1 tjrl tiri 2219 Jul 8 1993 s.seismo.F*
-“rWXrWX==-— 1 tijr1 tirl 36902 Jul 8 1993 s.seismo.cpp*
~TWXLWX= == 1 tjr1 tijrl 818 Jul 8 1993 s.seismo.in¥*
—“LWXELWX=== 1 tjr1 tirl 33982 Jul 8 1993 s.seismo.pre*
“rWXrWX=—-— 1 tjr1 tijrl 1797 Jul 8 1993 s.sotout.F*
~rWXLWX=== 1 tir1 tirl 10459328 Jul 8 1993 s.sotsei.da*
~rWXLWX=== 1 tjril tirl 10459328 Jul 8 1993 s.sotsei.dat*

gemstone.3 ~/tpa/SEISMO/VCS =>

6%%%%2 7%;5ﬂ§§/ 134.20.1.1 09:55:02

SEISMO Fortran Program
Static and Dynamic Analysis

June 29, 1993

Earl S. Marwil
John E. Tolii
Scientific Computing Unit
Idaho National Engineering Laboratory

1. Introduction

This analysis was performed on the Cray version of the software as provided by
Southwest Research Institute (SwRI).

One sample problem was supplied along with the source code. The program was
analyzed using the Craft (Cross Reference Analysis of Fortran) tool, FORWARN, the
Fortran 77 analyzer, and PC-Metric. These tools provide static analysis, coverage
analysis, and complexity analysis.

2. References

[1] N.H. Marshall and E.S. Marwil, Cross Reference Analysis of Fortran (CRAFT), EG&G-
CATT-9198, EG&G Idaho, Inc., July 1991.

2] EgmnllAnglyzgﬂLsﬂMmal National Bureau of Standards, NBS GCR 81-359,
1981

[3] FORWARN User's Guide, Quibus Enterprises, Inc., July 1991.
[4] PC-Metric User's Guide, SET Laboratories, Inc., 1987.
3. Functions

There are 12 entry points with no alternate entry points. ,

There are no unreferenced subroutines or functions.

4. Common Block Irregularities
There are 3 common blocks. All common block declarations are consistent. Common
block "canth" is declared but unreferenced in "echo2", "rdmor", "rdrun", and

"sotout". Common block "faild" is declared but unreferenced i 1n "echol", "rdmor",
"rdrun”, and "rdsot"

5. Interface Irregularities

Argument usage is consistent.

SEISMO Analysis June 29, 1993

6. Local Variable Irregularities
Parameter usage is consistent.

The local variable "nz" is read from input data in "rdsot", but is not used.

7. Fortran Extensions

All routines except "accel" contain some lower case alphabetic characters in their
active Fortran. Routines "analysis", "casel", "case2", "echol", "echo2", "rdmor",
"rdrun", "rdsot", "seismo", and "sotout" have some entity names which are longer
than 6 characters. All such usage is non-ANSI standard.

8. Optimization

The following table summarizes the performance data gathered from execution of the
sample problem. Only those routines exercised by the sample problem are shown

(see "Coverage Analysis" for a list of routines not exercised by the sample problem,

i.e., coverage = 0%). The table lists all program modules in descending order
according to CPU time. To optimize code execution time, emphasis should be placed on
those modules which appear highest in the listing.

In order to obtain meaningful statistics for performance evaluation, the program
should execute for a reasonable amount of time. Note that the execution time for this
sample problem is short (<< 10 sec) and that the resulting statistics may therefore not
accurately reflect program performance for longer runs.

The performance data show that a high percentage of the overall execution time
(91.815%) is spent in the first 2 routines listed (RDSOT, ECHO1). This is due primarily to
the following:)

1) a low percentage of floating poirit operations which are performed in vector
mode (%Vflops is small)

i

2) a high rate of instruction buffer fetches in ECHO1 (IBFR > 1).

A detailed optimization analysis effort should focus on these 2 areas.

SEISMO Analysis

PERFORMANCE DATA FOR SEISMO

June 29, 1993

ROUTINE NAME Time %ExTime %AccumT %Vflops IFact MC/MR IBFR
RDSOT 0.246 56.226 56.226 0.00000 0.00 0.093 0.938
ECHO1 0.156 35.589 91.815 0.00000 0.00 0.290 1.004
ANALYSIS 0.021 4.709 96.524 0.00000 0.00 0.097 1.209
ACCEL 0.005 1.123 97.647 0.00000 2.42 1.493 0.965
OPNFIL 0.004 0.854 98.501 0.00000 0.00 0.409 0.513
CASE1 0.002 0.452 98.953° 0.00000 6.02 1.159 0.600
CASE2 0.002 0.363 99.316 - 0.00000 7.50 1.656 0.748
ECHO2 0.001 0.201 99.517 0.00000 0.00 0.280 0.891
RDMOR 0.001 0.164 99.681 0.00000 0.00 0.247 0.764
SOTOUT 0.001 0.160 99.841 0.00000 0.00 0.278 1.038
RDRUN 0.001 0.134 99.975 0.00000 0.00 0.116 0.984
SEISMO 0.000 0.025 100.000 0.00000 0.00 0.724 1.118
Totals (A11 Traced Routines)

0.437 100.000 100.000 0.00000 0.25 0.165 0.969

Key:
%»AccumT
%EXTime
%Wflops

IBFR
IFact

MC
MR
Time

accumulated percentage of total CPU time
percentage of total CPU time

percentage of floating point operations due
to vector floating point operations

Instruction Buffer Fetch Rate (megafetches/sec)

Inline Factor (total calls to routine /

average time spent in routine for each call)

number of memory conflicts
number of memory references
total CPU time (sec)

9. Coverage Analysis

One sample problem was supplied. A coverage analysis shows that this problem
yielded a 75% segment coverage of SEISMO. Sample problems provided with
simulation programs typically achieve 35% to 50% coverage. A statement of software
quality cannot be made for routines that have low coverage, i.e., large portions of the
code are untested.

All routines have at least 40% coverage.

One routine achieves 40%-59% coverage, 4 routines achieve 60%-79% coverage, 2
routines achieve 80%-99% coverage, and 5 routines achieve 100% coverage.

The following table shows the percent coverage for each routine.

SEISMO Analysis June 29, 1993

Module Number of Number of Percent
Name = Segments Segments Segment

in module Executed Coverage
SEISMO 3 2 66.7
ACCEL 1 1 100.0
ANALYS 15 14 " 93.3
CASE1 3 3 100.0
CASE2 3 3 100.0
ECHO1 5 5 100.0
ECHO2 3 3 100.0
OPNFIL 28 13 46.4
RDMOR 6 4 66.7
RDRUN 3 2 66.7
RDSOT 16 14 87.5
SOTOUT 5 4 80.0
Totals 91 68 74.7
0.20 0.40 0.60 0.80 1.00
NIRRTl I PRU IPs Sot PRDRL Al RS SRt
SEISMO I*********************************
ACCEL I**
ANALYS I***
CASEl '**
CASEZ I**
ECHOI I**
ECHOZ l**
OPNFIL l*********************** I '
RDMOR I********************************* I I
RDRUN I********************************* I
RDSOT |** l
SOTOUT ' l** |
S Rt Rt S e EEEE e ey EETE S Ry EPPT ey
0.40 <= coverage < 0.60 OPNFIL
0.60 <= coverage < 0.80 SEISMO RDMOR RDRUN SOTOUT
0.85 <= coverage < 0.90 RDSOT
0.90 <= coverage < 0.95 ANALYS

coverage = 1.00 ACCEL CASE1 CASE2 ECHO1 ECHO2

Program coverage for this run =0.75

SEISMO Analysis _ June 29, 1993

10. Complexity Analysis

Some key metrics are the number of executable statements (sloc), the number of
non-blank comments (ncomt), McCabe's extended cyclomatic complexity (vg2), the
number of branching statements (cgoto, ugoto, bIF, and 1IF), and Halstead's predicted
number of errors in (re)writing the code (bhat). Measures are normalized per 100
executable statements for ease of comparison and are listed in the table below.

The branching measures for this code indicate very few unconditional GO TO
statements and logical IFs for most program modules. This code appears to be well
structured.

Except for "analysis", all routines have a good ratio of non-blank comments to source
code.

McCabe's extended cyclomatic complexity (vg2), normalized per 100 lines of source
code, indicates moderate to high values. Generally, the routines with the highest
complexity are those most likely to have defects. As a guideline, normalized measures
of 15 or greater should be considered complex. A software maintenance program
should focus on those routines with the highest measures.

SEISMO Analysis June 29, 1993
Complexity Report by Subprogram for SEISMO
ncomt vg2 cgoto ugoto “bif lif

Name loc sloc cmnt ncomt /sloc /sloc cgoto /sloc ugoto /sloc bDIF /sloc 1IF /sloc Bhat
SEISMO 64 19 45 36 189.5 10.5 0 0.0 0 0.0 1 5.3 0 0.0 0
ACCEL 23 6 17 15 250.0 16.7 0 0.0 0 0.0 0 0.0 0 0.0 0
ANALYSIS 151 7 11 0 0.0114.3 0 0.0 0 0.0 0 0.0 0 0.0 1
CASE1 26 6 21 17 283.3 33.3 0 0.0 0 0.0 0 0.0 1 16.7 0
CASE2 21 5 18 15 300.0 40.0 0 0.0 0 0.0 0 0.0 1 20.0 0
ECHO1 103 29 44 38 131.0 10.3 0 0.0 0 0.0 0 0.0 0 0.0 0
ECHO2 55 9 38 32 355.6 22.2 0 0.0 0 0.0 0 0.0 0 0.0 0
opnfil 211 59 136 123 208.5 27.1 0 0.0 0 0.0 8 13.6 0 0.0 1
RDMOR 104 30 63 51 170.0 10.0 0 0.0 0 0.0 2 6.7 0 0.0 0
RDRUN 92 25 56 49 196.0 8.0 0 0.0 0 0.0 1 4.0 0 0.0 0
RDSOT 110 33 64 55 166.7 18.2 0 0.0 3 9.1 3 9.1 0 0.0 0
SOTOUT 78 18 46 38 211.1 16.7 0 0.0 0 0.0 1 5.6 0 0.0 0

Legend of Metrics in Report

" . loc -- lines of code

sloc -- number of executable statements

cmnt -- total number of commnts

ncomt -- number of non-blank COMMENT statements

100*ncomt/sloc -- percent, nonblank comments to number of executable statements
100*vg2/sloc -- percent, extended complexity of number of executable statements
cgoto -- number of COMPUTED GO TD statements

100*cgoto/sloc -- percent, computed GOTO’s to number of executable statements
ugoto -- number of UNCONDITIONAL GO TO statements

100*ugoto/sloc -- percent, unconditional GOTO’s to number of executable statements
bIF -- number of BLOCK IF statements

100*bif/sloc -- percent, Block IF statements to number of executable statements
1IF -- number of LOGICAL IF statements

100*1if/sloc -- percent, logical IF statements to number of executable statements
Bhat -- Halstead’s predicted number of errors in writing code

