SOFTWARE RELEASE NOTICE

01. SRN Number: RDCO-SRN-104		
02. Project Title: FISSP-CLOUD - Fission Product Inventory, Release, Transport, and D	Dose Calculation	Project No. 20-5702-622
03. SRN Title: FISSP-CLOUD		
04. Originator/Requestor: Budhi Sagar	· · · · · · · · · · · · · · · · · · ·	Date: 01/22/96
05. Summary of Actions		
□ Release of new software		
Release of modified software:		
Enhancements made		
□ Corrections made		
□ Change of access software		
Software Retirement		
06. Persons Authorized A	ccess	
Name	RO/RW	A/C/D
N/A		
N/A		
·		
A		
07. Element Manager Approva	7	Date: 1/30/96
08. Remarks:		
Not considered important to regulatory reviews in revised FY	96 OPS Plans.	

CNWRA Form TOP-6 (06/95)

SOFTWARE SUMMARY FORM

01.Summary Date: 06/28/94	02. Summary prepared by(Name and Phon T.J. Ratchford 522-3083	03. Summary Action:							
04. Software Date: 8/28/94	05. Short Title: FISSP-CLOUD	New							
06. Software Title: FISSP-CLOUD -	Fission Product Inventory, Release, Transpor	t, and Dose Calculation.	07. Internal Software ID:						
			NONE						
08. Software Type:	09.Processing Mode:	10. APPLICATION AREA							
Automated Data System	□ Interactive	A. General: Scientific/Engineering	Auxiliary Analyses						
Computer Program	□ Batch	Other							
□ Subroutine/Module	Combination								
11. Submitting Organization and Ad	dress:	12. Technical Contact(s) and Phone	8:						
CNWRA, SwRI, San Antonio, Texa	15	H. Karimi, (210) 522-5253							
 Narrative: FISSP-CLOUD - A system of li released nuclides are allowed to 	nked codes. FISSP calculates the fission prod drift and deffuse in three dimensions as deter	uct inventory in a U^{235} fueled reactor formined by the appropriate coefficients i	or a specified power level. In CLOUD, the n the Sutton diffusion equation.						
14. Computer Platform	15. Computer Operating System:	16. Programming Language(s):	17. Number of Source Program Statements:						
CRAY/XMP	UNIX	FORTRAN 4	19,244 lines of code						
18. Computer Memory Requirements:	19. Tape Drives:	20. Disk/Drum Units:	21. Graphics:						
UNKNOWN	NONE	N/A	UNKNOWN						
22. Other Operational Requirements	·								
23. Software Availability: ■ Available □ Limited	□ In-House ONLY	24. Documentation Availability: ■ Available □ Inadequa	te In-House ONLY						
25. Submission Package Status: Acceptance Criteria: Met ■ N	25. Submission Package Status: Acceptance Criteria: Met ■ Not Met □ Software QA Assessment: Successful ■ Unsuccessful □								
Code Custodian:			Date:						

CLOUD CRAY LISTING

-rw-r	1 tir1	tjr1	1207 J	un 24	14:03	Makefile
-rw-r	1 tir1	tir1	22384 J	un 24	14:03	cloud.F
-rw-r	1 tir1	tjr1	54448 J	un 24	14:03	cloud.SRC
-rw-r	1 tjr1	tjr1	0 J	un 28	13:04	cloud.dir
-rw-r	1 tjr1	tjr1	22384 J	un 24	14:03	cloud.src
-rw-r	1 tjr1	tjr1	32562 J	un 24	14:03	prob.in
-rw-r	1 tirl	tjr1	275 J	un 24	14:03	x.cloud.covr
-rw-r	1 tir1	tjr1	259 J	un 24	14:03	x.cloud.test
		-	Cadare Al	Mn .		
		19	2017979	1C		

FISSP CRAY LISTING

		4-4-1	1207	Tum	27	12.26	Makafila
-rw-r	1 tjri	tjri	1207	Jun	21	12:30	Makerire
-rw-r	1 tjr1	tjr1	35316	Jun	27	12:36	f01
-rw-r	1 tjr1	tjr1	324	Jun	27	12:36	f02
-rw-r	1 tjr1	tjr1	85779	Jun	27	12:36	£03
-rw-r	1 tjr1	tjr1	54432	Jun	27	12 : 36	f04
-rw-r	1 tjr1	tjr1	324	Jun	27	12:36	f05
-rw-r	1 tjr1	tjr1	32562	Jun	27	12:36	f06
-rw-r	1 tjr1	tjr1	5265	Jun	27	12:36	f07
-rw-r	1 tjr1	tjr1	1427904	Jun	27	12:36	£08
-rw-r	1 tjr1	tjr1	273226	Jun	27	12 : 36	£09
-rw-r	1 tjr1	tjr1	21250	Jun	27	12:36	fissp.F
-rw-r	1 tjr1	tjr1	35144	Jun	27	12:36	fissp.SRC
-rw-r	1 tjr1	tjr1	0	Jun	28	13:08	fissp.dir
-rw-r	1 tjr1	tjr1	21250	Jun	27	12:36	fissp.src
						A 1 -	

6/28/94 1

\$

June 6, 1994

FISSP Fortran Program Static and Dynamic Analysis

DRAFT

June 6, 1994

Earl S. Marwil John E. Tolli Scientific Computing Unit Idaho National Engineering Laboratory

1. Introduction

This analysis was performed on the Cray version of the software as converted from an IBM/PC version provided by Southwest Research Institute (SwRI).

One sample problem was used along with the source code. The program was analyzed using the Craft (Cross Reference Analysis of Fortran) tool, FORWARN, the Fortran 77 analyzer, and PC-Metric. These tools provide static analysis, coverage analysis, and complexity analysis.

2. References

[1] N.H. Marshall and E.S. Marwil, <u>Cross Reference Analysis of Fortran (CRAFT)</u>, EG&G-CATT-9198, EG&G Idaho, Inc., July 1991.

[2] Fortran 77 Analyzer User's Manual, National Bureau of Standards, NBS GCR 81-359, 1981

[3] FORWARN User's Guide, Quibus Enterprises, Inc., July 1991.

[4] PC-Metric User's Guide, SET Laboratories, Inc., 1987.

3. Functions

The FISSP program contains 1 Fortran routine.

4. Common Block Irregularities

There are no common blocks in the FISSP program.

5. Interface Irregularities

Not applicable.

6. Local Variable Irregularities

No exceptions to report.

7. Fortran Extensions

The FISSP program statement has arguments.

There are "REAL*n" statements in the program.

8. Optimization

The following table summarizes the performance data gathered from execution of the sample problem. Only those routines exercised by the sample problem are shown (see "Coverage Analysis" for a list of routines not exercised by the sample problem. i.e., coverage = 0%). The table lists all program modules in descending order according to CPU time. To optimize code execution time, emphasis should be placed on those modules which appear highest in the listing.

As the performance data show, there is a low percentage of floating point operations which are performed in vector mode (%Vflops is small).

A detailed optimization analysis effort should focus on this area.

- total CPU time (sec)

			PERFORMA	NCE DATA	FOR FISSP			
ROUTIN	E NAME	Time	%ExTime	%AccumT	%Vflops	IFact	MC/MR	IBFR
FISSP		12.032	100.000	100.000	57.17473	0.00	0.818	0.807
Totals	(All Tra	ced Routin 12.032	nes) 100.000	100.000	57.17473	0.00	0.818	0.807
Key:	%AccumT %ExTime %Vflops IBFR IFact MC MR	<pre>= accumula = percenta to vecta = Instruct = Inline l average = number d</pre>	ated per age of t age of f or float tion Buf Factor (time sp of memor	centage c otal CPU loating p ing point fer Fetch total cal ent in ro y conflic y referer	of total CP time point operation: Rate (meg lls to rout putine for o cts	U time tions due s afetches/s ine / each call)	sec)	

9. **Coverage Analysis**

Time

A coverage analysis shows that the sample problem yielded a 87% segment coverage of FISSP. Sample problems provided with simulation programs typically achieve only 35% to 50% coverage. A statement of software quality cannot be made for routines that have low coverage, i.e., large portions of the code are untested.

Module Name	Number of Segments in module	Number of Segments Executed	Percent Segment Coverage	9		
FISSP	193	167	86.5			
Totals	193	167	86.5			
		0.20	0.40	0.60	0.80	1.00
FIS	SP *** 	***************	**********	******** ·	**************************************	*******

0.85 <= coverage < 0.90 FISSP

Program coverage for this run =0.87

10. Complexity Analysis

Some key metrics are the number of executable statements (sloc), the number of non-blank comments (ncomt), McCabe's extended cyclomatic complexity (vg2), the number of branching statements (cgoto, ugoto, bIF, and IIF), and Halstead's predicted number of errors in (re)writing the code (bhat). Measures are normalized per 100 executable statements for ease of comparison and are listed in the table below.

The branching measures for this code (ugoto/sloc, lif/sloc) indicate moderate/low values. This code appears to be fairly well structured.

The program shows a fair ratio of non-blank comments to source code.

McCabe's extended cyclomatic complexity (vg2), normalized per 100 lines of source code, indicates a high value. Generally, the routines with the highest complexity are those most likely to have defects. As a guideline, normalized measures of 15 or greater should be considered complex. A software maintenance program should focus on those routines with the highest measures.

Complexity Report by Subprogram for FISSP

	Name	loc	sloc	cmnt	ncomt	ncomt /sloc	vg2 ∕sloc	cgoto	cgoto /sloc	ugoto	ugoto /sloc	bIF	bif /sloc	11F	lif /sloc	Bhat
FI	SSP	436	234	170	142	60.7	25.6	0	0.0	22	9.4	0	0.0	8	3.4	5
Le	egend of	Metri	cs in	Repor	t											
1c s1 cm nc 10 10 cg 10 10 b1 10 11 10 Bh	oc 1i loc n nnt t comt 00*ncomt 00*vg2/s goto 00*cgoto goto 00*ugoto 00*ugoto 00*ugoto 00*bif/s F nu 00*lif/s nat H	nes of number cotal n number sloc number o/sloc number o sloc mber o sloc lalstea	code of exe of exe of no per of CC per of UN per of BLOC perce d's pr	ecutab of con on-bla rcent, e MPUTE rcent, VCONDI rcent, CK IF ent, l ICAL I redict	le sta mmnts nk COM nonbl xtende D GO T compu TIONAL uncon statem Block F stat ogical ed num	tement MENT s ank co d comp 0 stat ted GO GO TO dition ents IF sta ements IF sta Der of	s tateme mments lexity ements TO's t state al GOT tement atemen error	nts to nu of nu o numb ments O's to s to n ts to n s in w	mber o mber o er of numbe umber number riting	f exec f exec execut r of e of exe of ex code	utable utable able st xecutat cutable ecutabl	stater stater atemer ble state e state	nents nents nts atements ements tements	S		

June 7, 1994

CLOUD Fortran Program Static and Dynamic Analysis

DRAFT

June 7, 1994

Earl S. Marwil John E. Tolli Scientific Computing Unit Idaho National Engineering Laboratory

1. Introduction

This analysis was performed on the Cray version of the software converted from an IBM/PC version as provided by Southwest Research Institute (SwRI).

One sample problem was used along with the source code. The program was analyzed using the Craft (Cross Reference Analysis of Fortran) tool, FORWARN, the Fortran 77 analyzer, and PC-Metric. These tools provide static analysis, coverage analysis, and complexity analysis.

2. References

[1] N.H. Marshall and E.S. Marwil, <u>Cross Reference Analysis of Fortran (CRAFT)</u>, EG&G-CATT-9198, EG&G Idaho, Inc., July 1991.

[2] Fortran 77 Analyzer User's Manual, National Bureau of Standards, NBS GCR 81-359, 1981

[3] FORWARN User's Guide, Quibus Enterprises, Inc., July 1991.

[4] PC-Metric User's Guide, SET Laboratories, Inc., 1987.

3. Functions

The CLOUD program contains 1 Fortran routine.

4. Common Block Irregularities

There are no common blocks in the CLOUD program.

5. Interface Irregularities

Not applicable.

6. Local Variable Irregularities

Local variable exceptions are noted as follows:

Module Variable Exception cloud term2 Defined, Unused

7. Fortran Extensions

The CLOUD program statement has arguments.

There are "REAL*n" statements in the program.

8. Optimization

The following table summarizes the performance data gathered from execution of the sample problem. Only those routines exercised by the sample problem are shown (see "Coverage Analysis" for a list of routines not exercised by the sample problem, i.e., coverage = 0%). The table lists all program modules in descending order according to CPU time. To optimize code execution time, emphasis should be placed on those modules which appear highest in the listing.

In order to obtain meaningful statistics for performance evaluation, the program should execute for a reasonable amount of time. Note that the execution time for this sample problem is short (< 10 sec) and that the resulting statistics may therefore not accurately reflect program performance for more typical (possibly longer) runs.

As the performance data show, there is a low percentage of floating point operations which are performed in vector mode (%Vflops is small).

A detailed optimization analysis effort should focus on this area.

PERFORMANCE DATA FOR CLOUD

ROUTIN	E NAME	Time	%ExTime	%AccumT	%Vflops	IFact	MC/MR	IBFR
CLOUD		7.596	100.000	100.000	1.18914	0.00	0.201	0.609
Totals	(All Tra	ced Routi 7.596	nes) 100.000	100.000	1.18914	0.00	0.201	0.609
Key:	%AccumT %ExTime %Vflops IBFR IFact MC MR	<pre>= accumul = percent = percent to vect = Instruc = Inline average = number = number</pre>	ated per age of t or float tion Buf Factor (time sp of memor of memor	centage c otal CPU loating p ing point fer Fetch total ca ent in ro y conflic y referer	of total CP time point operation Rate (meg Ils to rout putine for cts	U time tions due s afetches/s ine / each call)	sec)	

Time = total CPU time (sec)

9. Coverage Analysis

A coverage analysis shows that the sample problem yielded a 91% segment coverage of CLOUD. Sample problems provided with simulation programs typically achieve only 35% to 50% coverage. A statement of software quality cannot be made for routines that have low coverage, i.e., large portions of the code are untested.

Module	Number of	Number of	Percent
Name	Segments	Segments	Segment
	in module	Executed	Coverage
CLOUD	282	256	90.8

Totals 282 256 90.8

0.90 <= coverage < 0.95 CLOUD

Program coverage for this run =0.91

10. Complexity Analysis

Some key metrics are the number of executable statements (sloc), the number of non-blank comments (ncomt), McCabe's extended cyclomatic complexity (vg2), the number of branching statements (cgoto, ugoto, bIF, and lIF), and Halstead's predicted number of errors in (re)writing the code (bhat). Measures are normalized per 100 executable statements for ease of comparison and are listed in the table below.

The branching measures for this code (ugoto/sloc, lif/sloc) indicate moderate/low values. This code appears to be fairly well structured.

The program shows a low ratio of non-blank comments to source code. This code may benefit from more internal documentation.

McCabe's extended cyclomatic complexity (vg2), normalized per 100 lines of source code, indicates a high value. Generally, the routines with the highest complexity are those most likely to have defects. As a guideline, normalized measures of 15 or greater should be considered complex. A software maintenance program should focus on those routines with the highest measures.

CLOUD Analysis

June 7, 1994

Complexity Report by Subprogram for CLOUD

Name	loc	sloc	cmnt	ncomt	ncomt /sloc	vg2 /sloc	cgoto	cgoto /sloc	ugoto	ugoto /sloc	bIF	bif /sloc	1IF	lif /sloc	Bhat
CLOUD	436	234	170	142	60.7	25.6	0	0.0	22	9.4	0	0.0	8	3.4	5

Legend of Metrics in Report

loc -- lines of code sloc -- number of executable statements cmnt -- total number of commnts ncomt -- number of non-blank COMMENT statements 100*ncomt/sloc -- percent, nonblank comments to number of executable statements 100*vg2/sloc -- percent, extended complexity of number of executable statements cgoto -- number of COMPUTED GO TO statements 100*cgoto/sloc -- percent, computed GOTO's to number of executable statements ugoto -- number of UNCONDITIONAL GO TO statements 100*ugoto/sloc -- percent, unconditional GOTO's to number of executable statements bIF -- number of BLOCK IF statements 100*bif/sloc -- percent, Block IF statements to number of executable statements 100*bif/sloc -- percent, logical IF statements to number of executable statements 100*lif/sloc -- percent, logical IF statements to number of executable statements Bhat -- Halstead's predicted number of errors in writing code