
SOFTWARE RELEASE NOTICE

02. Project Title:
FISSP-CLOUD - Fission Product Inventory, Release, Transport, and Dose Calculation

Project No.
20-5102-622

04. OriginatodRequestor: Budhi Sagar

0 Corrections made

Date: 01/22/96

Name

NIA

h ,

Not considered important to regulatory reviews in revised FY96 OPS Plans.

RO/RW AICID

CNWRA FOIYD TOP-6 (Oa/95)

SOFTWARE SUMMARY FORM

01 .Summary Date: 02. Summary prepared bywame and Phone) 03. Summary Action:

06/28/94 T.J. Ratchford 522-3083

New
01. Software Date: 05. Short Title:

8/28/94 FISSP-CLOUD

07. Internal Software ID: 06. Software Title: FISSP-CLOUD - Fission Product Inventory, Release, Transport, and Dose Calculation.

08. Software Type:

Automated Data System

Computer Program

0 Subroutine/Module

11. Submitting Organization and Address:

CNWRA, SwRI, San Antonio, Texas

13. Narrative:

FISSP-CLOUD - A system of linked codes. FISSP calculates the fission product inventory in a V3s fueled reactor for a specified power level. In CLOUD, the
released nuclides are allowed to drift and deffuse in three dimensions as determined by the appropriate coefficients in the Sutton diffusion equation.

14. Computer Platform 15. Computer Operating System: 16. Programming Language@): 17. Number of Source Program
Statements:

19,244 lines of code
UNIX FORTRAN CRAYiXMP

18. Computer Memory 19. Tape Drives: 20. DisMDrum Units: 21. Graphics:
Requirements:

UNK" NONE NIA UNKNOWN

22. Other Operational Requirements

NONE

23. Software Availability:
Available 0 Limited 0 In-House ONLY Available 0 Inadequate

24. Documentation Availability:
0 In-House ONLY

25. Submission Package Status:

Acceptance Criteria: Met Not Met a Software QA Assessment: Successful Unsuccessful 0

Code Custodian: Date:

-

09.Processing Mode:

0 Interactive

0 Batch

Combination

NONE

10. APPLICATION AREA

A. General

Scientifidhgineering Auxiliary Analyses

~ o t a l system PA

0 Subsystem PA Other

b. Specific:

12. Technical Contact(s) and Phone:

H. Karimi, 010) 522-5253

CLOUD CRAY LISTING

tjrl
tjrl
tjrl
tjrl
tjrl
tjrl
tjrl
tjrl

tjrl 1207 Jun 24 14:03 Makefile
tjrl 22384 Jun 24 14:03 c1oud.F
tjrl 54448 Jun 24 14:03 cloud.SRC
tjrl 0 Jun 28 13:04 c1oud.di.r
tjrl 22384 Jun 24 14:03 cloud.src
tjrl 32562 Jun 24 14:03 prob.in
tjrl 275 Jun 24 14:03 x.cloud.covr
tjrl 259 Juq 24 14:03 x.cloud.test

tjrl
tjrl
tjrl
tjrl
tjrl
tjrl
tjrl
tjrl
tjrl
tjrl
tjrl
tjrl
tjrl
tjrl

FISSP CRAY LISTING

1207 Jun 27 12:36 Makefile
35316 Jun 27 12:36 f01
324 Jun 27 12:36 f02

85779 Jun 27 12:36 f03
54432 Jun 27 12:36 f04
324 Jun 27 12:36 f05

32562 Jun 27 12:36 f06
5265 Jun 27 12:36 f07

1427904 Jun 27 12:36 f08
273226 Jun 27 12:36 f09
21250 Jun 27 12:36 fissp.F
35144 Jun 27 12:36 fissp.SRC

0 Jun 28 13:08 fissp.dir
21250 Jun 27 12:36 fissp.src

FISSP Analysis June 6,1994

FISSP Fortran Program
Static and Dynamic Analysis

June 6,1994

Earl S. Mawil
John E. Tolli

Scientific Computing Unit
Idaho National Engineering Laboratory

1. Introduction

This analysis was performed on the Cray version of the software as converted from
an IBM/PC version provided by Southwest Research Institute (SwRI).

One sample problem was used along with the source code. The program was analyzed
using the Craft (Cross Reference Analysis of Fortran) tool, FORWARN, the Fortran 77
analyzer, and PC-Metric. These tools provide static analysis, coverage analysis, and
complexity analysis.

2. References

[l] N.H. Marshall and E.S. Marwil, Cross Reference Analvsis of Fortran (CRAFT), EG&G-

[2] Fortran 77 Analvzer User's Manual, National Bureau of Standards, NBS GCR 81-359,
1981

CATT-9198, EG&G Idaho, I ~ c . , July 1991.

's Guide, Quibus Enterprises, Inc., July 1991.
ide, SET Laboratories, Inc., 1987.

[31 FORWARN user
141 ~ c - ~ e t r i c user's GU

3. Functions

4. Common Block Irregularities

The FISSP program contains 1 Fortran routine.
I

There are no common blocks in the FISSP program.

5. Interface Irregularities

6. Local Variable Irregularities

7. Fortran Extensions

Not applicable.

No exceptions to report.

The FISSP program statement has arguments.

There are "REAL*n" statements in the program.

8. Optimization

FISSP Analysis June 6, 1994

The following table summarizes the performance data gathered from execution of the
sample problem. Only those routines exercised by the sample problem are shown
(see "Coverage Analysis" for a list of routines not exercised by the sample problem,
i.e., coverage = 0%). The table lists all program modules in descending order
according to CPU time. To optimize code execution time, emphasis should be placed on
those modules which appear highest in the listing.

As the performance data show, there is a low percentage of floating point operations
which are performed in vector mode (%Vflops is small).

A detailed optimization analysis effort should focus on this area.

PERFORMANCE DATA FOR FISSP

Key:
%AccumT = accumulated percentage of t o t a l CPU time
%ExTime = percentage of t o t a l CPU time
%Vflops = percentage of f loa t ing point operations due

IBFR
IFact = Inl ine Factor (t o t a l ca l l s t o routine /

MC
MR
Time = t o t a l CPU time (sec)

t o vector f loat ing point operations

average time spent in routine for each c a l l)

= Instruction Buffer Fetch Rate (megafetches/sec)

= number of memory conf l ic t s
= number of memory references

9. Coverage Analysis
A coverage analysis shows that the sample problem yielded a 87% segment coverage
of FISSP. Sample problems provided with simulation programs typically achieve only
35% to 50% coverage. A statement of software quality cannot,be made for routines
that have low coverage, i.e., large portions of the code are untested.

Module Number o f Number of Percent
Name Segments Segments Segment

FISSP 193 167 86.5
in module Executed Cover age

Totals 193 167 86.5

FISSP Analysis June 6,1994

0.85 <= coverage < 0.90 FISSP

Program coverage f o r t h i s run ~ 0 . 8 7

10. Complexity Analysis
Some key metrics are the number of executable statements (sloc), the number of
non-blank comments (ncomt), McCabe's extended cyclomatic complexity (vg2), the
number of branching statements (cgoto, ugoto, bIF, and IIF), and Halstead's predicted
number of errors in (re)writing the code (bhat). Measures are normalized per 100
executable statements for ease of comparison and are listed in the table below.

The branching measures for this code (ugoto/sloc, lif/sloc) indicate moderate/low
values. This code appears to be fairly well structured.

The program shows a fair ratio of non-blank comments to source code.

McCabe's extended cyclomatic complexity (vg2), normalized per 100 lines of source
code, indicates a high value. Generally, the routines with the highest complexity are
those most likely to have defects. As a guideline, normalized measures of 15 or
greater should be considered complex. A software maintenance program should
focus on those routines with the highest measures.

FISSB Analysis June 6,1994

Complexity Report by Subprogram for FISSP

Legend of Metrics i n Report

loc - - lines of code
sloc - - number of executable statements
cmnt - - total number of commnts
ncomt - - number of non-blank COMMENT statements
100*ncomt/sloc - - percent, nonblank comments t o number of executable statements
lOO*vgZ/sloc - - percent, extended complexity of number of executable statements
cgoto - - number o f COMPUTED GO TO statements
100*cgoto/sloc - - percent, computed GOTO's t o number of executable statements
ugoto - - number of UNCONDITIONAL GO TO statements
100*ugoto/sloc - - percent, unconditional GOTO's t o number of executable statements
bIF - - number of BLOCK IF statements
100*bif/sloc - - percent,
1IF - - number of LOGICAL IF statements
lOO*lif/sloc - - percent, logical IF statements t o number of executable statements
Bhat - - Halstead's predicted number of errors in writing code

Block IF statements t o number of executable statements

CLOUD Analysis June 7,1994

CLOUD Fortran Program
Static and Dynamic Analysis

June 7,1994

Earl S. Marwil
John E. Tolli

Scientific Computing Unit
Idaho National Engineering Laboratory

1. Introduction

This analysis was performed on the Cray version of the software converted from an
IBWPC version as provided by Southwest Research Institute (SwRI).

One sample problem was used along with the source code. The program was analyzed
using the Craft (Cross Reference Analysis of Fortran) tool, FORWARN, the Fortran 77
analyzer, and PC-Metric. These tools provide static analysis, coverage analysis, and
complexity analysis.

2. References

[l] N.H. Marshall and E.S. Marwil, Cross Reference Analvsis of Fortran (CRAFT), EG&G-

[21 Fortran 77 Analvzer Use r's Manual, National Bureau of Standards, NBS GCR 81-359,
1981
[31 FORWARN u ser's Guide Quibus Enterprises, Inc., July 1991.
~41 ~ c - ~ e t n 'c User's Gu ide, SET Laboratories, Inc., 1987.

CATT-9198, EG&G Idaho, Inc., July 1991.

3. Functions

4. Common Block Irregularities

The CLOUD program contains 1 Fortran routine.
4

There are no common blocks in the CLOUD program.

5. Interface I rreg u lari t ies
Not applicable.

6. Local Variable Irregularities
Local variable exceptions are noted as follows:

Module Variable Exception

c 1 oud term2 Defined, Unused
- - - - _ _ - - - - - - - - - - - - - - - - - - - - - - - - - - - _

7. Fortran Extensions
The CLOUD program statement has arguments.

CLOUD Analysis June 7,1994

There are "RFAL*n" statements in the program.

8. Optimization
The following table summarizes the performance data gathered from execution of the
sample problem. Only those routines exercised by the sample problem are shown
(see "Coverage Analysis" for a list of routines not exercised by the sample problem,
i.e., coverage = 0%). The table lists all program modules in descending order
according to CPU time. To optimize code execution time, emphasis should be placed on
those modules which appear highest in the listing.

In order to obtain meaningful statistics for performance evaluation, the program
should execute for a reasonable amount of time. Note that the execution time for this
sample problem is short (c 10 sec) and that the resulting statistics may therefore not
accurately reflect program performance for more typical (possibly longer) runs.

As the performance data show, there is a low percentage of floating point operations
which are performed in vector mode (%Vflops is small).

A detailed optimization analysis effort should focus on this area.

PERFORMANCE DATA FOR CLOUD

Key:
%AccumT = accumulated percentage of t o t a l CPU time
%ExTime = percentage of t o t a l CPU time
%Vflops = percentage of f loa t ing p o i n t operations due

IBFR
IFact

MC
MR
Time = t o t a l CPU time (sec)

t o vector f 1 oa t i ng .point operati ons

average time spent in routine for each c a l l)

= Instruction Buffer Fetch Rate (megafetches/sec)
= Inl ine Factor (t o t a l c a l l s t o routine /

= number of memory conf l ic t s
= number of memory references

9. Coverage Analysis
A coverage analysis shows that the sample problem yielded a 91% segment coverage
of CLOUD. Sample problems provided with simulation programs typically achieve
only 35% to 50% coverage. A statement of software quality cannot be made for
routines that have low coverage, i.e., large portions of the code are untested.

Module Number of Number of Percent
Name Segments Segments Segment

CLOUD 282 256 90.8
in module Executed Coverage

CLOUD Analysis

T o t a l s 282 256 90.8

June 7, 1994

0.20 0.40 0.60 0.80 1 .oo
I - - - -+---- - - - -+---- ----+---- I - - - -+---+---+---- I I .
I ----+---- ----+---- - - - -+---- I - - - -+- - -+- - -+- - - - I I

CLOUD

0.90 <= coverage < 0.95 CLOUD

Program coverage f o r t h i s run =0.91

10. Complexity Analysis
Some key metrics are the number of executable statements (sloc), the number of
non-blank comments (ncomt), McCabe's extended cyclomatic complexity (vg2), the
number of branching statements (cgoto, ugoto, bIF, and lIF), and Halstead's predicted
number of errors in (re)writing the code (bhat). Measures are normalized per 100
executable statements for ease of comparison and are listed in the table below.

The branching measures for this code (ugoto/sloc, lif/sloc) indicate moderate/low
values. This code appears to be fairly well structured.

The program shows a low ratio of non-blank comments to source code. This code may
benefit from more internal documentation.

McCabe's extended cyclomatic complexity (vg2), normalized per 100 lines of source
code, indicates a high value. Generally, the routines with the highest complexity are
those most likely to have defects. As a guideline, normalized measures of 15 or
greater should be considered complex. A software maintenance program should
focus on those routines with the highest measures.

CLOUD Analysis June 7,1994

Complexity Report by Subprogram for CLOUD

ncomt vg2 cgoto ugoto bi f l i f
Name loc sloc cmnt ncomt /sloc /sloc cgoto /sloc ugoto /sloc bIF /sloc 1IF /sloc Bhat

CLOUD 436 234 170 142 60.7 25.6 0 0.0 22 9.4 0 0 .0 8 3.4 5
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

Legend of Metrics i n Report

loc - - lines of code
sloc - - number of executable statements
cmnt - - total number of commnts
ncomt - - number of non-blank COMMENT statements
100*ncomt/sloc - - percent, nonblank comments t o number of executable statements
10O*vg2/sloc - - percent, extended complexity of number o f executable statements
cgoto - - number of COMPUTED GO TO statements
100*cgoto/sloc - - percent, computed GOTO’s t o number of executable statements
ugoto - - number of UNCONDITIONAL GO TO statements
100*ugoto/sloc - - percent, unconditional GOTO’s t o number of executable statements
bIF - - number of BLOCK IF statements
100*bif/sloc - - percent,
1IF - - number of LOGICAL IF statements
lOO*lif/sloc - - percent, logical IF statements t o number of executable statements
B h a t - - Halstead’s predicted number o f errors i n writing code

Block IF statements t o number o f executable statements

