SOFTWARE RELEASE NOTICE

1. SRN Number: GLGP-SRN-173

2. Project Title: Structural Deformation & Seismicity
Code Development

Project No. 20-1402-472

3. SRN Title: 3DStress, Version 1.3

4. Originator/Requestor: Joe Bangs

Date: 08/07/98

5. Summary of Actions
O Release of new software
M Release of modified software:
B Enhancements made
O Corrections made

O Change of access software

6. Persons Authorized Access

E/goﬂware Retirement ML‘JX’M NI £K uw,é;
’ J

Name Read Only/Read-Write Addition/Change/Delete
David Ferrill RW
John Stamatakos RW
Larry McKague RW
Philip Justus (NRC) RO
Chuck Connor RO
Britt Hill RO
Ron Martin RO

7. Element Manager Approval: 5:’ \,’(/ 0/ ﬂ /140 //Z/"///z/(.« Date: X/L// G5

777] T
8. Remarks: QO

Enhancements include significant improvements to the user interface, ability to load coverages in
the 2D map and 30 fault viewer, leakage factor calculations, and Mohr Circle displays.

CNWRA Form TOP-6 (05/98)

Serrditie MoTz oo K
H 23«

SOFTWARE SUMMARY FORM

01. Summary Date:
08/07/98

02. Summary prepared by (Name and phone)
Bruce Mabrito, (210) 522-5149

03. Summary Action:

04. Software Date:
08/06/98

05. Short Title:

3DStress Version 1.3

New Release

06. Software Title:

3DStress, Version 1.3

07. Internal Software ID:
NONE

08. Software Type:
O Automated Data System
® Computer Program

O Subroutine/Module

09. Processing Mode:
O Interactive
O Batch

® Combination

10. Application Area:

a. General:

m Scientific/Engineering
O Total System PA

O Subsystem PA

b. Specific:

O Auxiliary Analyses

O Other

CNWRA/SWRI
6220 Culebra Road

San Antonio TX 78228

11. Submitting Organization and Address:

12. Technical Contact(s) and Phone:

Dave Ferrill, (210) 522-6082

13. Software Application:

3DStress is an interactive tool for analyzing the tendency for faults and fractures to slip or dilate based
on a user specified three dimensional stress state.

14. Computer Platform

Silicon Graphics (SGI)

15. Computer Operating
System:
IRTX 5.3 or Higher

16. Programming
Language(s):

C++

17. Number of Source
Program Statements:
44379 lines

18. Computer Memory

19. Tape Drives:

20. Disk Units:

21. Graphics:

Requirements: Supplied on CD ROM 6 MB minimum Open GL
16 MB minimum

22. Other Operational Requirements: NONE

23. Software Availability: 24. Documentation Availability:

® Available O Limited O In-House ONLY ® Available O Inadequate O In-House ONLY

Software Developer:

oz . S-I11- &

CNWRA Form TOP-4-1 (05/98)

Toshun Buclves

2 oz

SOUTHWEST RESEARCH INSTITUTE™

INTER-DEPARTMENTAL MEMORANDUM

DATE: June 27, 2000
TO: "<V es Patrick

FROM: Louis Rodrig;:g%/

SUBJECT: Certificate of Registration No. TXu 924-657
3DStress, Ver. 1.3

Enclosed you will find a copy of the original Certificate of Copyright Registration tor the
3DStress, Ver. 1.3 We will retain the original in the legal department.

Please be sure to display the letter “C” enclosed within a circle “©” followed by the name of the
copyright claimant and the year of creation whenever you are referring to this computer software
program.

Enclosure

cc: David A. Ferrill
Budhi Sagar
Larry McKague

BAKER BOTTS w.e

May 14, 2000

Louis Rodriguez, Esq.
Deputy General Counsel
Southwest Research Institute
6220 Culebra Road

San Antonio, Texas 78238

C}éﬂ)

1600 SAN JACINTO CENTER ~ AUSTIN

98 SAN JACINTO BLVD. BAKU

AUSTIN, TEXAS DALLAS

78701-4039 HOUSTON

512.322.2500 LONDON

FAX 512.322.2501 MOSCOW
NEW YORK
WASHINGTON

Ann C. Livingston
512.322.2634

FAX 512.322.8325
ann.livingston@bakerbotts.com

Re: U.S. Copyright Registration No. TXu 924-657 /-/

Title: 3DStress, Ver. 1.3
Our File: 090936.0366
Author: D. Ferrill

Dear Louis:

1am pleased to enclose the above-referenced original Certificate of Copyright Registration
which was issued effective November 29, 1999. This document comprises evidence of valuable
property rights of Southwest Research Institute and should be maintained in a safe place.

Notice of copyright registration should be given by displaying the letter "C" enclosed
within a circle "©" followed by the name of the copyright claimant and the year of creation.

Since the work covered by this registration is in accordance with the Copyright Law that
went into effect on January 1, 1978, as amended by the Berne Convention Implementation Act
that went into effect on March 1, 1989, the term of the registration for the work is seventy-five
years from the date of publication or one hundred years from the year of creation, whichever
expires first. Therefore, assuming that the work remains unpublished, and given that the work
was created in 1999, the copyright in the work will expire on December 31, 2099.

If you have any questions concerning the registration, please do not hesitate to contact me.

ACL/ss
Enclosure

AUS01:206564.1

(i |

Very truly yours,

BAKER BOTTS

Ann C. Livingstéon T RECEIVED

MAY 1 9 2000

'Legal & Patent Office

LIORMTX 7 4y

CERTIFICATE OF REGISTRATION 5&2;}1*2'32!"32“,\:.“..% OFFICE
?Ses COpP YR{ . Real TXII 92 -

e This Certificate issued under the seal of the Copyright ,

*9,, Office in accordance with title 17, United States Code, I'llllllllll'
Q attests that registration has been made for the work identi-

fied below.The information on this certificate has been

made a part of the Copyright Office records.

%5

vy

—

(@]

[es]

e

& bt
£ G2t
(€

)
®4ry o8 o>

ey st —
EFFECTIVE DATE OF REGISTRARON~

1/ 29 ‘?9

ITE ABOVE THIS LINE. IF YOU NEED RIDRESSEACEUSE R\SBIARIKYE CONTINUATION SHEET
TITLE OF THIS WORK ¥
| 1

3DStress, Ver. 1.3

PREVIOUS OR ALTERNATIVE TITLES ¥

PUBLICATION AS A CONTRIBUTION If this work was published as a contribution to a periodical, serial, or collection, give information about the

collective work in which the conwibution appeared. Tiiie of Coliective Werk ¥
If published in a periodical or serial give: Volume ¥ Number ¥ Issue Date V OnPages ¥V
\ NAME OF AUTHOR V¥ DATES OF BIRTH AND DEATH
) Year Bom ¥ Year Died ¥
a« Southwest Research Institute
— Was this contribution to the work a AUTHOR'S NATIONALITY OR DOMICILE WAS THIS AUTHOR'S CON’I'KIBUTION TO
work madegr hire? Name of Country THE WORK ¥ the answer 10 ekther
o Citizen of P : Anonymous? [JYes BdNo gmwm‘“
[INo Domiciledin PUSA._______________ Pseudonymous? [JVes [RINo instructions.
q OTE NAME OF AUTHORSHIP Briefly describe nature of material created by this author in which copyright is claimed. W
Entire work
er the law, NAME OF AUTHOR V¥ DATES OF BIRTH AND DEATH
m; b YearBom¥ YearDied ¥
e Wastiscontributionto the worka AUTHOR'S NATIONALITY OR DOMICILE ‘WAS THIS AUTHOR'S CONTRIBUTION TO
iployer. not *work made for hire"? Name of Counlry THE WORK ¥ the nswer (0 either
+ employee Yes Citizen of P Anonymous? [JYes [INo ofthesequestionsis
se insinsc- OR o “Yes,* see detalled
n8). For eny [ONe Domiciled in P Pseudonymous? [JYes [INo instuctions.
rl’ko:mm:sms NAME OF AUTHORSHIP Briefly describe nature of material created by this author in which copyright is claimed. ¥
ade.for r:ire'
ppelbiad NAME OF AUTHOR ¥ DATES OF BIRTH AND DEATH
wided, give Year Bom ¥ Year Died ¥
s employer
- other C Was this contribution to the work a AUTHOR'S NATIONALITY OR DOMICILE WAS THIS AUTHOR'S CONTRIBUTION TO
"y‘,""m":" work *work madeﬁr hire"? Name of Country THE WORK the answer o cither
s prepared) Yes OR Citizen of P » Anonymous? [yes OIno ﬁ:"“;‘:am' l "‘
"m‘ ~ [ONo Domiciled in P Pscudonymous? []Yes [INo insinctions.
e tzw ot NAME OF AUTHORSHIP Brisfly describe naturs of materiz] created by this author in which copyright is claimed. ¥
ace 1or es

YEAR IN WHICH CREATION OF THIS b DATE AND NATION OF FIRST PUBLICATION OF THIS PARTICULAR WORK
WORK WAS COMPLETED Thisinformation ~ Complete this information Month P> Day b Year P
a must be given ONLY ¥ this work]
1999 «Vear Inalicases. has been published. « Nation
COPYRIGHT CLAIMANT(S) Name and address must be given even if the claimant is the same as APPLICATION RECEIVED
the author given in space 2. ¥ TN (-
4_ Southwest Research Institute JL P 2 I 1 l‘ 3 J
P.O. Drawer 28510 E% ONE ?Efols” aecslven
¢ instructions San Antonio, Texas 78228-0510 E§ . Y3
fore P 4]
s space. TRANSFER If the claimant(s) named her in space 4 is (are) different from the author(s) named in § 8 TWO DEPOSITS RECEIVED
space 2, give a brief statement of how the claimant(s) obtained ownership of the copyright. ¥ 8%
NDSRECEVED NOV 29 1999
MORE ON BACK > - Compiete all applicable spaces (numbers 5-11) on the reverse side of this page. DO NOT WRITE HERI
© »See detailed instructions. « Sign tha form at line 10.

Page 1 of ,‘,Z_ pag

EXAMINED BY FORM TX

CHECKEDBY

FOR
CORRESPONDENCE COPYRIGHT
Yes OFFICE
USE
ONLY

DO NOT WRITE ABOVE THIS LINE. IF YOU NEED MORE SPACE, USE A SEPARATE CONTINUATION SHEET

REVIOUS REGISTRATION Has registration for this work, or for an earlier version of this work, already been made in the Copyright Office?
] Yes mo If your answer is "Yes,” why is another registration being sought? (Check appropriate box) ¥
[This is the first published edition of a work previously registered in unpublished form.

[This is the first application submitted by this author as copyright claimant.
O thisisa changed version of the work, as shown by space 6 on this application.
your answer is “Yes,” give: Previous Registration Number ¥ Year of Registration ¥V

ERIVATIVE WORK OR COMPILATION Complete both space 6a and 6b for a derivative work; complete only 6b for a compilation.
Preexisting Material Identify any preexisting work or works that this work is based on or incorporates. ¥

Material Added to This Work Givea brief, gencrz! statement of the materia! that has bean added 1o this work and in whick copyright is clzimed. ¥
See instructions
before completing
this space.

—space deleted—

EPRODUCTION FOR USE OF BLIND OR PHYSICALLY HANDICAPPED INDIVIDUALS A signature on this form at space 10 and a check in one

the boxes here i space 8 constitutes a non-exclusive grant of permission to the Library of Congress to reproduce and distribute solely for the blind and physically

ndicapped and under the conditions and limitations prescribed by the regulations of the Copyright Office: (1) copies of the work identified in space 1 of this

plication in Braille (or similar tactile symbols); or (2) phonorecords embodying a fixation of a reading of that work; or (3) both.

20 Copies and Phonorecords v Copies Only ¢ [Phonorecords Only
: See instnuctions.

B S T R R RS e

EPOSIT ACCOUNT If the registration fee is to be charged to a Deposit Account established in the Copyright Office, give name and number of Account.

me

' Account Number ¥ 9

DRRESPONDENCE Give name and address to which correspondence about this application should be sent. Name / Address / Apt / City / State / ZIP W

an Livingston Be sure to

give your
1ker & Botts . daytime phone
0 Trammeli Crow Center, 2001 Ross Avenue, Dallas, Texas 75201 <« number
Area Code and Telephone Number P (214) 953-6681
ERTIFICATION* }, the undersigned, hereby certify that [am the author
Check only one p 3 ciher wopyrigh? claiinant
3 owner of exclusive right(s)
the work identified in this application and that the statements made B authorized agent of Southwest Research Institute
- me in this application are correct to the best of my knowledge. Name of author or other copyright claimant, or owner of exclusive righi(s) &

rped or printed name and date ¥ Ifthis application gives a date of publication in space 3, do not sign and submit it before that date.

n Livingston Date P> q 8 / q al
' Hasdwritten signature (X) V¥

AlL YK

ERTIFI- Name V¥ Ann Livingston 090936.0366 « S Oomplete "mmg sP“”‘o

ATE TO Baker & Batts “ pspace

Number/StreeUApt ¥ 00 Trammell Crow Center iy ag""“, h::amzo Ning o

ertificate 2001 Ross Avenue in check or money order

il be payable to Register of Copyrights
! . 3. Deposit material

ailed in | CiyStateZiP ¥ Dalias, Texas 75201

indow Register of Copyrights

welope Library of Congress

hington, D.C. 20553-6000

N
7 U.S.C. § 506(e): Any person who knowingly makes a false representation of a material fact in the application for copyright registration provided for by section 409, or in any written statement filed in connection
;h the appiication, shall be fined not more than $2,500.

1y 1995--300,000 #U.S. COPYRIGHT OFFICE WWW FORM: 1985

KO
A3¢
CENTER FOR NUCLEAR WASTE REGULA10RY ANALYSE&/ s

DESIGN VERIFICATION REPORT FOR CNWRA SOFTWARE: 3DStress Version 1.3

August 7, 1998

3DStress (Scientific and Engineering Software) Version 1.3

NOTE: This version of the 3DStress Software contains changes from the previous 1.2 version released
November 12, 1996. Software Change Reports (SCRs) and an electronic scientific notebook have been utilized
as the change documentation method and are being retained in the 3DStress Version 1.3 folder.

1. This Design Verification Report is prepared by: Bruce Mabrito in conjunction with Joshua Buckner and
Joe Bangs.

Full Title of CNWRA scientific and engineering software: 3DStress Version 1.3.

Demonstration work station: Silicon Graphics Indigo 2 (REDWOOD) in conjunction with the Silicon
Graphics Indy (YOSEMITE) in the GIS Room of Building 189.

Operating System: IRIX 6.2 (A UNIX system).

2, Software Requirements Description and any changes thereto approved by Element Manager?
NO N/A

If no, explain:

3. Software Development Plan (SDP) and any changes have been approved by the Element Manager?
[¢ j):: > NO N/A

If no, explain:

4. Design and Development

Module-level testing is documented in either scientific notebooks or in Software Change Reports?
(fff) NO N/A

Note: Both SCRs and electronic scientific notebook No. 234 contains module level documentation.

5. Is the CNWRA scientific and engineering software developed in accordance with the conventions
described in the SDP?

€D NO N/A

If no, explain:

6. Is the CNWRA are documented internally?
NO N/A

Does the primary program header contain the following information:

A. Program title, Developed for (Customer), Office/Division/Date/Customer Contact/Telephone
number, Software Developer, Telephone number, titles of Associated Documentation/Designator, and the

Disclaimer Notice?
@ NO N/A

B. Source code module header information provides Program Name, Client Name, Contract
Reference, Revision number?

NO N/A

7. Software designed so that individual runs are uniquely identified by Date, Time, Name of software and
version? YES N/A

Note: There was a conscious decision made when the SCRs were being reviewed to not include this feature
in 3DStress Version 1.3. This decision was made by the Element Manager and the P.I., Dr. David Ferrill, stated
that he saw no value in this feature considering the type of software program 3DStress is.

8. The physical labeling on the software or the referenced list has Program Name/Title,
Module/Name/Title, Module Revision, File Type (i.e. ASCII, OBJ, EXE), Recording Date and Operating

System of the Supporting Hardware?
d@ NO N/A

9. Users' Manual

Is there a Users' Manual for the software?
NO N/A

If no, explain:

Are there basic instructions for the use of the software?
NO N/A

If no, explain:

10. Acceptance Testing

Does the acceptance testing demonstrate whether or not requirements in the SDP have been fulfilled?
NO N/A

If no, explain:

2 9-19*7‘”
Has acceptance testing been conducted for each intended computer piatform and operating system?
NO N/A

If no, explain: Note: See note above regarding the Silicon Graphics INDIGO 2 workstation. Summaries are in the
report produced by Joe Bangs and will be incorporated in this Design Verification Report as added documentation.

Have installation tests been performed on the target platform?
NO N/A

Note: Tests have been performed on the Silicon Graphics INDY workstation and the REDWOOD server.

11. Configuration Control

Is the Software Summary Form completed and signed?
NO N/A

If no, explain:

12. Is a software technical description prepared, documenting the essential mathematical and numerical

basis?
C3¥Es D NO N/A

If no, explain: The technical description is given in the Users' Manual for 3DStress Version 1.3.

13. Is the source code available (or, is the executable code available in the case of commercial codes)?
NO N/A

14. Have all the script/make files and executable files been submitted to the Software Custodian?
(:2_-: > NO N/A

MZ%/%/Q;&H/% O%:72 :5‘; 8/11/98

Joshua Buckner Date Bruce Mabrito Date
CNWRA 3DStress Software Co-Developer CNWRA Software Custodian
Attachments/

Original to: Software Folder
ce: CNWRA Software Developer
Cognizant EM /. /m,z74,<

Program Name: 3DStress
Program Version: 1.3
Release Date: 08-07-98
SCR Number: 1 - 13

Developed by the Center for Nuclear Waste Regulatory
Analyses (CNWRA), Southwest Research Institute (SwRI),
San Antonio, Texas, USA.

CNWRA Contact: David Ferrill (210) 522-6082

Copyright 07/20/95 Southwest Research Institute
All rights reserved.

This software is a trade secret owned by Southwest Research
Institute, with access limited except as required for use by
authorized users.

This program was developed under sponsorship of the U.S.

Nuclear Regulatory Commission, contract number NRC-02-97-009.

NRC Office of Nuclear Material Safety and Safeguards

NRC Division of Waste Management, Engineering and Geoscience Branch

This computer code/material was prepared as an account of work
performed by the Center for Nuclear Waste Regulatory Analyses (CNWRA)
for the Division of Waste Management of the Nuclear Regulatory
Commission (NRC), an independent agency of the United States
Goverment. The developer(s) of the code nor any of their sponsors
make any warranty, expressed or implied, or assume any legal
liability or responsibility for the accuracy, completeness, or
usefulness of any information, apparatus, product or process
disclosed, or represent that its use would not infringe on
privately-owned rights.

IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW WILL THE SPONSORS

OR THOSE WHO HAVE WRITTEN OR MODIFIED THIS CODE, BE LIABLE FOR
DAMAGES, INCLUDING ANY LOST PROFITS, LOST MONIES, OR OTHER SPECIAL,
INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE OR
INABILITY TO USE (INCLUDING BUT NOT LIMITED TO LOSS OF DATA OR DATA
BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY THIRD PARTIES OR A
FAILURE OF THE PROGRAM TO OPERATE WITH OTHER PROGRAMS) THE PROGRAM,
EVEN IF YOU HAVE BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES,
OR FOR ANY CLAIM BY ANY OTHER PARTY.

Purpose:
Stereo Net Viewing tool.

///////////////////////////// /1777
// Class: MohrClass

// ’

// Description:

// This class stores the data for

// and draws the Mohr Graph. Much

// of the data processing and error
// checking is done by simple C

// functions in the mohrOptionsCB.c++
// file because of Motif and C++

// conflicts.

L1107 10770777777777777777777777777777

ad] "

;////(//////////////////////////////////

/ Filename: mohrOptionCB.hh

// Author: Robert Boenau

// Date: 1-8-97

V4 .

// Purpose:

/7

/7

// $Header: /usr/people/3dstress/34/src/RCS/mohrOptionCB.hh,v 1.15 1998/07/23 17:
35:01 jbuckner Exp $

4

// Revision History

// $Log: mohrOptionCB.hh,v $

// Revision 1.15 1998/07/23 17:35:01 jbuckner

// added tighter text-box error-trapping

//

// Revision 1.14 1998/01/08 17:22:09 Jjbuckner

// Added Unit Ifo button callback

4

// Revision 1.13 1887,/08/01 19:19:27 Jjbuckner

// Added a new function to take care of the arrowButton

/7

// Revision 1.12 1997,/07/14 19:08:42 jbuckner

// Removed previous stress changing functions and added one and a function to fin
d min, mid, and max sigma indeciles

//

// Revision 1.11 1997,/07/08 21:16:52 jbuckner

// Added a function for the display of raw effective stress ratios

/7

// Revision 1.10 1997/07/08 18:38:42 jbuckner

// Added a callback function for the info widget

/7

// Revision 1.9 1997/07/02 17:39:42 jbuckner

// Added functions to handle stress ratio text boxes

/7

// Revision 1.8 1997/07,/01 20:40:40 Jjbuckner

// Added a fluid scale call back andrenamed the call back for the fluid pressure
text field

/7

// Revision 1.7 1997/07/01 15:48:04 jbuckner

// Added three new functions to complexity of the mohrScaleChange function when i

n dependent stress mode. Renamed mohrStressScaleChange to mohrs3ToslRatioScaleChan|
ge and added mohrs2ToslRatioScaleChange

/7
L1111 07 7777777707777 777777777777 777/

#ifndef _ MOHROPTIONCB_HH_
#define __MOHROPTIONCB_HH__

void mohrChangelineWidth(Widget, XtPointer, XtPointer);
void recalcSigmas(int min, int mid, int max, double newMax);

Revision 1.6 1997/06/25 19:38:54 jbuckner
Added call back for rock data citation window

Revision 1.5 1997/06/19 18:54:42 jbuckner
Added mohrStressScale prototype for Poisson’s ratio scale call back

Revision 1.4 13897/06,/18 21:22:35 jbuckner
Call back prototype added for stress dependency radio box

Revision 1.3 1997,02/1%8 17:45:50 rboenau
Callbacks for fluid pressure and effective stress added

Revision 1.2 1997,/02/18 19:06:07 xrboenau
Normal stress value no longer needed, fixed problem with changing material..sh
wrong cvValue

Revision 1.1 1997/02/18 16:30:31 rboenau
Initial revision

Printed by jbuckner from performer

void mohrScaleChange(Widget, XtPointer, XtPointer);

void findMinMidMax(int ® min, int * mid, int * max, double values[], int noelts):
void mohrChangeMinMax(Widget, XtPointer, XtPointer);

void mohrToggleButtonChange (Widget, XtPointer, XtPointer):;

void mohrToggleRenderMode(Widget, XtPointer, XtPointery); :
void mohrToggleStressMode(Widget, XtPointer clientData, XtPointer);
void mohrChanges3ToslRatioField(Widget, XtPointer, XtPointer);
void mohrChanges2ToslRatioField(Widget, XtPointer, XtPointer):
void mohrs3ToslRatioScaleChange(Widget, XtPointer, XtPointer);
void mohrs2ToslRatioScaleChange(Widget, XtPointer, XtPointer):

void mohrChangeCStr(Widget, XtPointer, XtPointer);

void mohrChangeRockType(Widget, XtPointer, XtPointer);

void mohrChangeRockMaterial (Widget, XtPointer, XtPointer);

void mohrChangevValue(Widget, XtPointer, XtPointer);

void mohrCloseButton(Widget, XtPointer, XtPointer);

void mohrApplyButton(Widget, XtPointer, XtPointer):

void mohrRockInfoButton(Widget, XtPointer, XtPointer);

void mohrUnitInfoButton(Widget, XtPointer, XtPointer);

void mohrApplyOKCB(Widget, XtPointer, XtPointer);

void mohrChangeFluidField(Widget, XtPointer, XtPointer);

void mohrChangeFluidScale(Widget, XtPointer, XtPointer);

void updateEffective();

void updateEffRatios(};

void closeBoundsBrrorWin(Widget, XtPointer, XtPointer);

void mohrArrowCB(Widget, XtPointer, XtPointer);

int trapAlpha{char ® in_str);

#endif

mohrOptionCB.hh

- @1‘95

;ﬁ//////////////////////////////////////

Filename: mohrOptionCB. c++
// Author: Robert Boenau
// Date: 1-8-97
4 -
// Purpose:
Y
V4

// $Header: /usr/people/3dstress/3d/src/RCS/mohrOptionCB.c++,v 1.36 1998/07/28 21
:18:42 jbuckner Exp $

// Revision History

// $Log: mohrOptionCB.c++,v $

// Revision 1.36 1998/07/28 21:18:42 jbuckner

// fixed parsing of spaces in text box error checking

// Revision 1.35 1998/07/23 17:34:57 jbuckner
// added tighter text-box error-trapping

// Revision 1.34 1998,/06/19 20:57:48 Fjbuckner
// fixed the normalization of stresses, Pf, and Tstr

// Revision 1.33 1998/01,/08 17:22:00 jbuckner
// Added Unit Ifo button callback

// Revision 1.32 1997,/09/29 21:16:17 Jbuckner
// Changed the precision on the displayed variables

V4

// Revision 1.31 1997/08/05 15:40:05 Jjbuckner

// Modified mohrToggleStressMode to unmanage instead of XtSetSensitive(..., False
)i

V4

// Revision 1.30 1997,/08/04 16:11:37 jbuckner
// In the function mohrToggleStressMode, changed the XtSetSensitive calls to XtMa
nageChild and XtUnmanageChild calls.

// Revision 1.29 1997,/08/01 1%:18:04 jbuckner
// Added a new function to take care of the arrowButton

// Revision 1.28 1997/07/21 19:45:02 jbuckner
// Added fluid pressure and tensile strength update in the apply button callback

// Revision 1.27 1997,/07/15 16:13:24 jbuckner
// Changed fluid text bounds check to avoid running out of bounds on the sigmas

// Revision 1.26 1997/07/15 15:18:55 jbuckner
// Fixed long lines, added end-of-function comments, and changed bounds checking
in recalcSigmas

// Revision 1.25 1997,/07/14 19:10:43 Jjbuckner

// Completely reworked the way dependent stress works. Dependent stress now oper

ates off strait ratios instead of Mendal’s method.

//

// Revision 1.24 1997/07/09 21:14:20 jbuckner

// Fixed bug in changeMinMax introduced by adding decimal places to the sigma val

ues

4

// Revision 1.23 1997,/07,/08 21:19:38 Jjbuckner

// Added a line to updateEffective to update effective ratio text boxes and Added
function to update effective ratio text boxes

V4

// Revision 1.22 19897/07,/08 18:42:30 Jjbuckner

// Added prototype for destroyFS, Added a callback for info win, modified updateE
ffective to use new callback

// Revision 1.21 1997,/07,/02 20:14:05 jbuckner
// Modified void updateEffective() to be sure that effective stress is within bou
nds of graph

// Revision 1.20 1997/07,/02 18:52:13 jbuckner
// Fixed bug in callbacks for stress ratio text fields

Printed by jbuckner from performer

//

// Revision 1.19 1997/07/02 17:41:42 jbuckner

// Added callbacks for stress ratio text fields and updated callbacks for stress
ratio scales

//

// Revision 1.18 1997/07/01 20:42:54 jbuckner

// Added function mohrChangeFluidScale and substantialy changed mohrChangeFluidTe
xt

//

// Revision 1.17 1997/07/01 15:50:30 Jbuckner

// Added three functions to cut complexity of mohrScaleChange and handle to stres
s ratios when stresses are dependent

// Revision 1.16 1997/06/27 21:38:17 jbuckner
// Fixed Poisson’s Ratio problems in several functions

// Revision 1.15 1997/06/27 17:48:19 jbuckner
// Made use of new mohrObj.attributes->effStress in functions

// Revision 1.14 1997/06/25 19:37:13 jbuckner
// Added call back for rock data citation window

// Revision 1.13 1997/06/20 19:39:30 jbuckner
// Converted sigmas to double values and added functionallity to grey out Poisson
s % scale when stresses are independent

// Revision 1.12 1997/06/19 18:58:21 Jbuckner
// Added mohrStressScale callback for the Poisson’s ratio scale and added the var
iable ratio to the mohrScaleChange function

// Revision 1.11 1997/06/18 21:34:43 jbuckner
// modified mohrScaleChange to handel the stress dependency radio box

// Revision 1.10 1997/06/18 21:11:35 jbuckner
// Added call back function for the new stress dependency radio box

// Revision 1.9 1997/06/16 19:47:43 Jjbuckner
// Major changes to mohrScaleChange to fix errors in compensation for internal pr
essure

// Revision 1.8 1997/06/16 14:03:00 jbuckner
// Fixed indexing problem in mohrScallChange’s internal pressure compensation

// Revision 1.7 1997/06/16 13:27:33 jbuckner
// Fixed an error made in mohrScaleChange’s last revision

// Revision 1.6 1997/06/13 19:20:34 jbuckner
// Modified the mohrScale values to take internal pressures into account in ca
lation of the sigmas

// Revision 1.5 1997/04/03 22:15:07 rboenau
// Updates display when fluid pressure is changed

// Revision 1.4 1997/02/19 17:45:50 rboenau
// Callbacks for fluid pressure and effective stress added

// Revision 1.3 1997/02/18 19:59:40 rboenau
// Added additional rock types

// Revision 1.2 1997,/02/18 19:06:07 rboenau
// Normal stress value no longer needed, fixed problem with changing material..sh
ows wrong cValue

// Revision 1.1 1997/02/18 16:30:25 rboenau
// Initial revision .

7/ 2

% <

V2222 p i i 74

// Unix

#include <stdio.h> \fza
<

mohrOptionCB.c++ 2

#include <stdlib.h>
#include <string.h>
#include <math.h>
#include <iostream.h>

// Motif

#include <Xm/Xm.h>
#include <Xm/Text.h>
#include <Xm/TextF.h>
#include <Xm/Scale.h>

// Application

#include "mohrObj.hh"
#include "mohrOptionObj.hh"
#include "mohrOptionCB.hh"
#include "infoWidget.hh"
#include "cmdObj.hhT

// Prototype added to make destroyFS available to closeBoundsErrorWin:
// this function gets rid of the info window
void destroyFS(Widget, XtPointer, XtPointer);

void mohrChangeLineWidth(Widget, XtPointer, XtPointer callData){
XmScaleCallbackStruct *cbs = (XmScaleCallbackStruct *) callData;
MohrAttributeType *mattr = mohrObj.getAttributes();

mattr->lineWidth = (int)(cbs->value);
mohrObj.display();

} // end of mohrChangeLineWidth

e A T
// Function: recalcSigmas (not a member fuanction)

/7

// File: mohrOptionCB.c++

//

// Arguments: double newMax -- The previous maximum sigma value takes
// this as its new value.

/7’

// State Changes: mohrObj.attributes->sigmas[?], updates the sigmas

// with respect to newMax and the dependent stress

/7 ratios.

//

// Purpcse: This program updates the sigmas according to newMax and

/7 the dependent stress ratios.

//

// Last Modified: 14 July 1997, Joshua Buckner (Jjbuckner@cs.trinity.edu)
e e A kS

void recalcSigmas(int min, int mid, int max, double newMax)

MohrAttributeType // mohr graph’s attributes
* mattr = mohrObj.getAttributes();

if (newMax > mattr->maxScale) // if the new value is larger than possible
newMax = mattr->maxScale; // scale it down to maximum

// ratios only work with positive effective stresses

if (newMax - mohrObj.fluidPressure <= 0) // effstress = sigma - fluidp.
newMax = 0.01 + mohrObj.fluidPressure;

// also, min, mid, and max stresses shouldn’t trade places

mattr->sigmas{max] = newMax; // now, set the new values according to ratios
mattr->sigmas[mid] = newMax * mattr->s2ToslRatio;
mattr->sigmas[min] = newMax * mattr->s3ToslRatio;

} // end function recalcSigmas

e e DL

// Function: mohrScaleChange (not a member function)

//
// File: mohrOptionCB.c++
V4

Printed by jbuckner from performer

P

Widget, XtPointer clientData, XtPointer callData

/
// S8tate Changes: mohxObj.attributes->sigmas(?], updates the sigma

// that was changed in the Mohr graph options window
// by the user. It calls recalcSigmas to accomplish
// this. Scales in the Options window are changed.

VA

// Purpose: This program updates the sigmas according to the settings
// of the scales in the Mohr graph options window devoted to
// the sigmas.

//
// Last Modified: 14 July 1997, Joshua Buckner ({jbuckner@cs.trinity.edu)
Y R R R R R R S E s S St S

void mohrScaleChange(Widget, XtPointer clientData, XtPointer callData)

XmScaleCallbackStruct
* cbs = (XmScaleCallbackStruct #*) callData;

// The variable below holds the address to mohrObj’s
// attributes private member variable.
MohrAttributeType

* mohrObjAttrib = mohrObj.getAttributes(});

// The variable below holds the member variables of the
// class responsible for the Mohr Graph’s Options window
MohrOptionType *optionsAttrib = mohrOptionObj.getAttributes():

// The variable below, whichSig, is the index of the sigma that
// was changed in the Mohr’s options window. Also, newValue holds
// the wvalue that the user set to the sigma indicated by whichSig,
// and delta holds the change in the sigma value.

whichSig = (int) clientData,

max, mid, min; // indecies of largest, middle, & smallest sigma values

double
newValue = (double) cbs->value / 100;

if (mohrObjAattrib->stressMode == 0)
{ //stresses should depend on each other
// Search for the largest and smallest sigmas
findMinMidMax(& min, & mid, & max, mohrObjAttrib->sigmas, 3):;

if (whichSig == max)
recalcSigmas(min, mid, max, newValue);

else if (whichSig == mid) // user changed middle value
recalcSigmas(min, mid, max, newValue *
(1 / mohrObjAttrib->s2TosiRatio));

else // minimum value changed
recalcSigmas(min, mid, max, newvalue *
(1 / mohrObjAttrib->s3ToslRatio));

XmScaleSetvValue({optionsAttrib->scaleimax}, mchrObjAttrib->sigmas{max]

100);
XmScaleSetValue(optionsAttrib->scale[mid], mohrObjattrib->sigmas[mid)
100y
XmScaleSetvValue(optionsAttrib->scale{min], mohrObjAttrib->sigmasimin]
100y

}// end if(mohrObjAttrib->stressMode == 0)
else // scales should be inDependent

mohrObjAttrib->sigmas[whichSig] = newValue;
1 // end else

*

*

*

4
updateEffective(); D
mohrObj.failure(); —
mohrObj . display(): ’
} // end of mohrScaleChange Q¥20
<
3

mohrOptionCB.c++

Printed by jbuckner from performer

if (strlen(val) == 0) // is field is completely blank

G e ma s B R A S A U

// Function: findMinMidMax (not a member function) { // tell user of mistake
/7 infowidget (moattr->mohrbDialogForm, "Not allowed to have empty value"); |
// File: mohrOptionCB.c++ . sprintf(strHolder,"%5.3f", mattr->s3ToslRatio); // reset field ’
// XmTextFieldSetString(moattr->s3ToslRatioText, strHolder);
// Arguments: int * min, int * mid, int * max, -- addresses to store info in return;
/7 double values[] -- values to get min, mid, max indecies of 1
/7 int noelts -- number of elements in values(]
/s tmpvalue = atof(val); // convert new value to numeric form
// State changes: mnin, mid, and max are changed to reflect the indecies of
7/ minimum, middle, and maximum values in int values(] if (((int) (tmpvalue * 100) > mattr->stressScaleMax) ||
// ({(int) (tmpvValue * 100) < mattr->stressScaleMin))
// Purpose: This function is used to find the indecies of minimum, middle, { // check that new value is within bounds
// and maximum values in double values{l] infowidget (moattr->mohrbialogForm, "Ratic out of bounds®)
/7 // dialog box error message
// Last Modified: 14 July 1997, Joshua Buckner (jbuckner@cs.trinity.edu) sprintf(strHolder,"%5.3f", mattr->s3ToslRatio); // reset field
e e T T i i XmTextFieldSetString(moattr->s3ToslRatioText, strHolder);
void findMinMidMax(int * min, int * mid, int * max, double values[], int noelts) return;
{ 1

int 1i; // loop index

*min = *mid = *max = 0; // initialize variables if (tmpValue > mattr->s2ToslRatio)

{ // check that new value is within bounds
for(i = 0; 1 < noelts; i++) // find the max and min infowidget (moattr->mohrDialogForm, "Ratio violates sigma orders.");
{ // dialog box error message
if (values[i] >= values[(*max)]) sprintf(strHolder, "$5.3f", mattr->s3ToslRatio); // reset field
*max = 1; // new max has been found XmTextFieldSetString(moattr->s3ToslRatioText, strHolder):
if (values{i] <= values[(*min)]) return;
*min = i; // new min has been found 1
1

mattr->s3ToslRatio = tmpValue; // update variable

for(i = 0; 1 < noelts; it++) // find mid // update scale
{ XmScaleSetvalue(moattr->s3ToslRatioScale, (int) (mattr->s3ToslRatio ® 100))

if((i != *min) && (i != *max))
*mid = i; // mid has been found recalcSigmas(min, mid, max, mattr->sigmas(max]);
1 XmScaleSetValue (moattr->scale{max}, mattr->sigmas[max] * 100);
} // end function findMinMidMax XmScaleSetvalue(moattr->scale(mid], mattr->sigmas[mid] * 100);

XmScaleSetvValue (moattr->scale[min], mattr->sigmas{min} * 100);
G a0 B

// Function: mohrChanges3ToslRatioField (not a member function) updateEffective();

/7 mohrobj.failure();

// File: mohrOptionCB.c++ mohrObj.display():

Vo4 1 // end function mohrChanges3ToslRatioField

// Arguments: Widget, XtPointer, XtPointer

// Y I S S e

// State Changes: mohrObj.attributes->s3ToslRatio, updates the degree // Function: mohrChanges2ToslRatioField (not a member function)

// to which the stress are dependent when in dependent //

/7 stress mode // File: mohrOptionCB.c++

// //

// Purpose: This program updates the allows the user to change Poisson’s // Arguments: Widget, XtPointer, XtPointer

/7 ratio in the calculation of dependency for dependent stresses /7

/7 // State Changes: mohrObj.attributes->s2ToslRatio, updates the degree

// Last Modified: 14 July 1997, Joshua Buckner {jbuckner@cs.trinity.edu) // to which the stress are dependent when in dependent

G g /7 stress mode

void mohrChanges3ToslRatioField({Widget, XtPointer, XtPointer) /7

{ // Purpose: This program updates the allows the user to change Poisson’s

MohrOptionType // get option window’s stats /7 ratio in the calculation of dependency for dependent stresses
* moattr = mohrOptionObj.getAttributes(): //
MohrAttributeType // get Mchr graph stats // Last Modified: 14 July 1997, Joshua Buckner (jbuckner@cs.trinity.edu)

e S

* mattr = mohrObj.getAttributes();
void mohrChanges2ToslRatioField(Widget, XtPointer, XtPointer)

char {

strHolder[100}, // holder for transfer of numbers to ASCII MohrOptionType // get option window’s stats

* val = XmTextFieldGetString(moattr->s3ToslRatioText); // get new value * moattr = mohrOptionObj.getAttributes();

MohrAttributeType // get Mohr graph stats 3>

double * mattr = mohrObj.getAttributes(); o=

tmpvalue; // holder for new value in numeric form
int char

min, mid, max; strHolder[100], // holder for transfer of numbers to ASCII Q\J\

* val = XmTextFieldGetString(moattr->s2ToslRatioText); // get new value 3

findMinMidMax({ & min, & mid, & max, mattr->sigmas, 3); N

K

mohrOptionCB.c++

- Aug 4 1998 10:07

double

tmpvalue; // holder for new value in numeric form
int

min, mid, max;

findMinMidMax(& min, & mid, & max, mattr->sigmas, 3);

if (strlen(val) == Q) // is field is completely blank
{ // tell user of mistake
infoWidget (moattr->mohrDialogForm, "Not allowed to have empty value");

sprintf(strHolder,”%5.31f", mattr->s2ToslRatio); // reset field
XmTextFieldSetString(moattr->s2ToslRatioText, strHolder);
return;

}
tmpValue = atof(val); // convert new value to numeric form

if (((int) (tmpValue * 100) > mattr->stressScaleMax) |}
((int) (tmpvValue * 100) < mattr->stressScaleMin))

{ // check that new value is within bounds
infowidget(moattr->mohrbDialogForm, "Ratio out of bounds”);
// dialog box error message
sprintf(strHolder,"%5.31f", mattr->s2ToslRatioc); // reset field
XmTextFieldSetString(moattr->s2TosiRatioText, strHolder);
return;

1

if { tmpValue < mattr->s3ToslRatio)

{ // check that new value is within bounds
infoWidget(moattr->mohrDialogForm, "Ratio violates sigma orders.");
// dialog box error message
sprintf(strHolder, "%5.31f", mattr->s2ToslRatio); // reset field
XmTextFieldSetString(moattr->s2ToslRatioText, strHolder);
return;

1

mattr->s2ToslRatio = tmpvalue; // update variable
// update scale
XmScaleSetValue(moattr->s2ToslRatioScale, (int) (mattr->s2ToslRatio * 1000));

recalcSigmas(min, mid, max, mattr->sigmas[max]);

XmScaleSetValue(moattr->scale[max), mattr->sigmas[max] * 100);
XmScaleSetValue(moattr->scale{mid]l, mattr->sigmas[mid]l * 100);
XmScaleSetValue(moattr->scale[min], mattr->sigmas{min] * 100):

updateEffective();
mohrObj. failure();
mohrObj.display();
} // end function mohrChanges2ToslRatioField

Y e e Sl ik i
// Function: mohrs3ToslRatioScaleChange (not a member function)

//

// File: mohrOptionCB.c++

/7

// Arguments: Widget, XtPointer, XtPointer callData

4

// State Changes: mohrObj.attributes->s3ToslRatio, updates the degree
/7 to which the stress are dependent when in dependent
/7 stress mode

/7

// Purpose: This program updates the allows the user to change Poisson’s
// ratio in the calculation of dependency for dependent stresses
4

// Last Modified: 14 July 1997, Joshua Buckner (jbuckner@cs.trinity.edu)
e R ARt

void mohrs3ToslRatioScaleChange(Widget, XtPointer, XtPointer callData)

XmScaleCallbackStruct
* cbs = (XmScaleCallbackStruct *) callData;

Printed by jbuckner from performer

MohrOptionType // get option window’s stats
* moattr = mohrOptionObj.getAttributes();

// The variable below holds the address to mohrObj’s
// attributes private member variable.
MohrAttributeType

* mattr = mohrObj.getAttributes();

char

strHolder([100]; // holder for transfer of numbers to ASCII
int

min, mid, max;

findMinMidMax{ & min, & mid, & max, mattr->sigmas, 3);

// update the ratio
mattr->s3ToslRatio = (double) (cbs->value / 1000.0);

if (mattr->s3ToslRatio > mattr->s2ToslRatio)
{
mattr->s3ToslRatio = mattr->s2ToslRatio - 0.001;
XmScaleSetvValue(moattr->s3ToslRatioScale,
(int) (mattr->s3ToslRatio * 1000));
}

sprintf(strHolder,®%5.31f", mattr->s3ToslRatio); // reset field
XmTextFieldSetString(moattr->s3ToslRatioText, strHolder);

recalcSigmas(min, mid, max, mattr->sigmas[max]);

XmScaleSetvValue(moattr->scale[max], mattr->sigmas[max] * 100);
XmScaleSetValue(moattr->scale[mid], mattr->sigmas[mid] * 100);
XmScaleSetvValue(moattr->scale[min], mattr->sigmas[min] * 100);

updateEffective();
mohrObj.failure();
mohrObj.display();

} // end of mohrs3ToslRatioScaleChange

A P
// Function: mohrs2ToslRatioScaleChange (not a member function)

/7

// File: mohrOptionCB.c++

VA

// Arguments: Widget, XtPointer, XtPointer callbata

/7

// State Changes: mohrObj.attributes->s2ToslRatio, updates the degree

// to which the stress are dependent when in dependent

// stress mode

V4

// Purpose: This program updates the allows the user to change Poisson’s
/7 ratio in the calculation of dependency for dependent stresses
/s

// Last Modified: 14 July 1997, Joshua Buckner (jbuckner@cs.trinity.edu)
e

void mohrs2ToslRatioScaleChange(Widget, XtPointer, XtPointer callData)

XmScaleCallbackStruct
* cbs = (XmScaleCallbackStruct *) callData;

MohrOptionType // get option window’s stats
* moattr = mohrOptionObj.getAttributes();

// The variable below holds the address to mohrObj’s

min, mid, max;

mohrOptionCB.c++

// attributes private member variable. Q*)
MohrAttributeType 5
* mattr = mohrObj.getAttributes();
~—~——]
char S
strHolder[100]; // holder for transfer of numbers to ASCII \53
int <
5

1rOption

findMinMidMax(& min, & mid, & max, mattr->sigmas, 3);

// update the ratio
mattr->s2ToslRatio = (double) (cbs->value / 1000.0);

if (mattr->s2ToslRatio < mattr->s3ToslRatio)

mattr->s2ToslRatio = mattr->s3ToslRatio + 0.001;
XmScaleSetValue(moattr->s2ToslRatioScale,
{(int) (mattr->s2ToslRatic * 1000));
}

sprintf(strHolder, "$5.31f", mattr->s2ToslRatio); // reset field
XmTextFieldSetString(moattr->s2ToslRatioText, strHolder);

recalcSigmas(min, mid, max, mattr->sigmas[max]);

XmScaleSetValue(moattr->scale[max], mattr->sigmas([max] * 100);
XmScaleSetValue(moattr->scale[mid], mattr->sigmas[mid] * 100);
XmScaleSetValue(moattr->scale{min], mattr->sigmas[min] * 100);

updateEffective();
mohrObj.failure();
mohrQbyj.display();

} // end of mohrs2ToslRatioScaleChange

void mohrChangeMinMax(Widget, XtPointer clientData, XtPointer){
MohrAttributeType *mattr = mohrObj.getAttributes();
MohrOptionType *moattr = mohrOptionObj.getAttributes();
int tmpValue;
char strHolder([100]; // holder for transfer of numbers to ASCII

if ((intjclientData == 1) { // change min

if (XmTextFieldGetString(moattr->minText) != NULL) {
char *val = XmTextFieldGetString(moattr->minText);
if ((strlen(val) == 0) || (!trapAlpha(val))){

infowWidget (moattr->mohrDialogForm,

"Not allowed to have empty or alphabetical value");
sprintf(strHolder, "%d", mattr->minScale);
XmTextFieldSetString(moattr->minText, strHolder);
return;

}
tmpvalue = atoi(val);
if (tmpvalue < -1000)
tmpValue = -1000;
mattr->minScale = tmpValue;
} // end if
} // end if

else { // changed max
if (¥mTextFieldGetString{moattr->maxText) != NULL) {
char *val = XmTextFieldGetString(moattr->maxText);
if ((strlen(val) == 0) || (!trapAlpha(val))){
infoWidget (moattr->mohrDialogForm,

"Not allowed to have empty or alphabetical value");
sprintf(strHolder, "%d", mattr->maxScale);
XmTextFieldSetString(moattr->maxText, strHolder);
return;

}
tmpvalue = atoi(valy);
if (tmpvalue > 1000)
tmpvValue = 1000;
mattr->maxScale = tmpValue;
} // end if
} // end else

if (mattr->minScale >= mattr->maxScale){
infoWidget(moattr->mohrDialogForm,
"Min Scale must be less than Max Scale");
return;

Opt

// Change value of the sliders and make sure present values lie
// within the min and max
for (int i = 0; 1 < 3; i++) {
if (mattr->sigmas{i] < mattr->minScale ||
mattr->sigmas{i] > mattr->maxScale) {
mattr->sigmas{i] = mattr->minScale;
XmScaleSetValue(moattr->scale[i}, mattr->sigmas[i] * 100);
} // end if
XtvaSetvalues(moattr->scalefi},
XmNmaximum, mattr->maxScale * 100,
XmNminimum, mattr->minScale * 100,
NULL) ;
} // end for int i

mohrObj . display();
} // end of mohrChangeMinMax

void mohrToggleButtonChange (Widget, XtPointer which, XtPointer){
MohrAttributeType *mattr = mohrCbj.getAttributes();

if ((int)which ==

mattr->showAxis = !mattr->showdxis;
else {
mattr->showInnerCircles = !mattr->showlnnerCircles;

}

mohrObj.display();
} // end function mohrToggleButtonChange

void mohrToggleRenderMode(Widget, XtPointer clientData, XtPointer){
MohrAttributeType *mattr = mohrObj.getAttributes();

mattr->render = (int)clientData;
mohrQObj.display();
} // end function mohrToggleRenderMode

Printed by jbuckner from performer

R R R R Tt I R AR
// Function: mohrToggleStressMode (not a member function)

//

// File: mohrOptionCB.c++

//

// Arguments: Widget, XtPointer clientData, XtPointer callData

// clientData is the data that represents the action the

/7 user took. BAsk Robert Boenau what the hell the rest are.

/7

// State Changes: mohrObj.attributes->stressMode, changes the stress

/7 mode between dependent stresses and independent

/7 stresses. When stress is set to independent, the stress

// dependency ratio scale is greyed out; when it is set to

// dependent, the stress dependency ratio is activated.

/7 When stresses are set to dependent, sigmas are recalculated
/7 to take ratios into account.

/7

// Purpose: This function switches between the two stress modes

// Last Modified: 14 July 1997, Joshua Buckner (jbuckneré€cs.trinity.edu)

e o e S
void mohrToggleStressMode(Widget, XtPointer clientData, XtPointer)

{
// get the attributes of the current Mohr graph for changing

MohrAttributeType #*mohrAttrib = mohrObj.getAttributes();

// get the attributes of the option window (widgets and such)

MohrOptionType *optionAttrib = mohrOptionObj.getAttributes(); [N
// set the stress mode to the appropriate value (0 or 1) <
// stressMode will be 0 for dependent stresses and 1 for independent
mohrAttrib->stressMode = (int)clientData; ‘t;37—~
int O
’g‘é
6

mohrOptionCB.c++

min, mid, max;

// 1f stress 1is independent, grey out the ratio scale
if (mohrAttrib->stressMode == 1)

XtUnmanageChild(optionAttrib:>rowStress);
1
else // if stress is dependent, activate the ratio scale

findMinMidMax(& min, & mid, & max, mohrAttrib->sigmas, 3):
recalcSigmas(min, mid, max, mohrAttrib->sigmas[max]);

XtManageChild(optionAttrib->colStress2);
XtManageChild(optionAttrib->rowStress);

XmScaleSetvalue(optionAttrib->scale[0], mohrAttrib->sigmas{0] * 100});
XmScaleSetvValue(optionAttrib->scale[l], mohrAttrib->sigmas{1l] * 100);
XmScaleSetvalue(optionAttrib->scale(2], mohrattrib->sigmas(2] * 100);

updateEffective();
mohrCbhj. failure():;
mohrObj.display();

}
1} // end function mohrToggleStressMode

void mohrChangeRockType(Widget, XtPointer clientData, XtPointer){
// Change has occured in...intact, verygood....verypoor
// ie quality

MohrAttributeType *mattr = mohrObj.getAttributes();
MohrOptionType *moattr = mohrOptionObj.getAttributes();
char m{20], s[20];

mohrObj.typelIndex = (int)clientData;

mohrObj.mvValue = mohrObj.samplesM[{mohrObj. typeIndex] imohrObj.materialIndex];
mohrObj.sValue = mohrObj.samplesS[mohrObj.typeIndex];

sprintf(m,"%$.51f{", mohrObj.mValue);
sprintf(s,"%.51f", mohrObj.sValue):;

XmTextSetString(moattr->mText, m);
XmTextSetString{moattr->sText, s);
mohrObj.calculate();
mohrObj.display():

} // end function mohrChangeRockType

void mohrChangeRockMaterial (Widget, XtPointer clientData, XtPointer){
// Change has occured in...carbonate...etc
// 1le material

MohrAttributeType *mattr = mohrObj.getAttributes():
MohxOpticnType *moattr = mohrOptionObj.getAttributes():;
char m[20], s[20], c[20];

XtUnmanageChild(moattr->rockCStr[mohrObj .materialIndex]);
mohrObj.materialindex = (int)clientData;

XtManageChild(moattr->rockCStr[(int)clientDatal);

mohrObj.mValue = mohrObj.samplesM[mohrObj.typelndex] [mohrObj.materialIndex];

mohrObj.sValue mohrObj . samplesS {mohrObj . typelndex];

mohrObj.cValue
mohrObj.samplesCStr [moattr->rockCStrindex((int)clientDatall:;

on o

sprintf(m,"%.51f", mochrObj.mValue):
sprintf(s,"%.51f", mohrObj.svValue):;
sprintf(c,"%.11f", mohrObj.cValue);

XmTextSetString{moattr->mText, m);

Printed by jbuckner from performer

XmTextSetString(moattr->sText, s);
XmTextSetString(moattr->cText, c);

mohrObj.calculate():
mohrObj.display();
1 // end function mohrChangeRockMaterial

void mohrChangevalue(Widget, XtPointer, XtPointer)({
char strHolder{100]; // holder for transfer of numbers to ASCII
MohrOptionType *moattr = mohrOptionObj.getAttributes();

char *val = XmTextFieldGetString(mocattr->mText});
char *val2 = XmTextFieldGetString(moattr->sText):
char *val3 = XmTextFieldGetString(moattr->cText);

if (strlen(val) == il strlen(val2) ==
|| strlen(val3) == || !trapAlpha(val)
{{ !trapAlpha(val2) || !trapAlpha{val3)) {

infoWwidget (moattr->mohrpialogForm,

"Not allowed to have empty or alphabetical value");
sprintf(strHolder,"%5.21f", mohrObj.mValue);
XmTextFieldSetString(moattr->mText, strHolder);
sprintf(strHolder,"$5.21f", mohrObj.sValue);
XmTextFieldSetString{moattr->sText, strHolder):;
sprintf(strHolder,"%5.21f", mohrObj.cvalue);
XmTextFieldSetString(moattr->cText, strHolder);

return;
1
mohrObj.mvValue = atof(val);
mohrObj.sValue = atof(val2);
mohrObj.cvValue = atof(val3);

free(val);
free(val2);
free(val3);
mohrObj.calculate();
mohrObj.display():

} // end function mchrChangevalue

void mohrCloseButton(Widget, XtPointer, XtPointer){
mohrOptionObj.lower():;
} // end function mohrCloseButton

G i o R
// Function: mohrRockInfoButton (not a member function)

/7

// File: mohrOptionCB.c++

//

// Arguments: Widget, XtPointer, XtPointer

V4

// State Changes: A dialog window pops up using Robert’s little

// infoWidget function. The Mohr Option window is sent
// as the parent, and char * text is the text that will
/7 appear in the info window.

/7

// Purpose: This function cites the book that the Rock Type data came from
//

// Last Modified: 25 June 1997, Joshua Buckner (jbuckner@es.trinity.edu)

B R Rt e
void mohrRockInfoButton(Widget, XtPointer, XtPointer)

{
// Get attributes of option window to pass the dialog form as parent

MohrOptionType *optionAttrib = mohrOptionObj.getAttributes();

// text is what will appear in the middle of the window as text! S

char * text = "Rock Type data obtained from:\n\n Hoek, E. & Brown, E. T. (18Y
80) Underground Excavations in Rock.\n The Institution of Mining and Metallurg]
v, London.\n Pp. 141, 149, 176.\n\n Hoek, E. & Brown, E. T. (1988) \"The Ho

ek~-Brown Failure Criterion--\n
Symposium.\n The Department of Civil Engineering, University of Toronto.\n
Pp. 31-38.\n\n

a 1988 Update.\" 15th Canadian Rock Mechanics

Goodman, Richard E. (1980) Introduction to Rock Mechanics.\n

Av I\

mohrOptionCB.c++

7

mohrOptionCB.c++

John Wiley & Sons, New York. P. 58.\0";

// option window becomes parent of new info window
infoWidget (optionAttrib->mohrbialogForm, text);
} // end function mohrRockInfoButton

it T T
// Function: mohrUnitInfoButton (not a member function)

/7

// File: mohrOptionCB.c++

/7

// Arguments: Widget, XtPointer, XtPointer

/7

// State Changes: A dialog window pops up using Robert’s little

/7 infoWidget function. The Mohr Option window is sent
// as the parent, and char * text is the text that will
// appear in the info window.

4

// Purpose: This function informs the user as to the units used in

V4 Mohr Graph.

/7 _

// Last Modified: 07 January 1998, J. Buckner (jbuckner@cs.trinity.edu)
G B o A R L A
void mohrUnitInfoButton(Widget, XtPointer, XtPointer)

{
// Get attributes of option window to pass the dialog form as parent
MohrOptionType *optionAttrib = mohrOptionObj.getAttributes();

// text is what will appear in the middle of the window as text!
char * text =
"All stresses including fluid pressure are expressed in terms of\n MegaPasca
1s.\0";

// option window becomes parent of new info window
infowWidget(optionAttrib->mohrDialogForm, text);
} // end function mohrUnitInfoButton

void mohrChangeCStr(Widget w, XtPointer clientData, XtPointer){
MohrCptionType *moattr = mohrOptionObj.getAttributes();
char c[20];
sprintf(c,"%$s",XtName(XtParent(w)));

if (strcmp(c, "rockCStr0") ==0){
switch ((int)clientData) {
case 0:

moattr->rockCStrIndex[0] = 5;
mohrObj.cvalue = mohrObj.samplesCStr[5];
break;

case 1:
moattr->rockCStrIndex (0] = 6;
mohroObj.cvalue = mohrObj.samplesCStri6];
break;

case 2:
moattr->rockCStrIndex (0] = 7;
mohrObj.cvValue = mohrObj.samplesCStr{7];
break;

case 3:
moattr->rockCStrindex(0] = 8;
mohrObj.cvalue = mohrObj.samplesCStr[8];
break;

case 4:
moattr->rockCStrIndex[0] = 9;
mohrObj.cValue = mohrObj.samplesCStr{9];
break;

case 5:
moattr->rockCStrIndex[0] = 15;
mohrObj.cvalue = mohrObj.samplesCStr[15];
break;

case 6:
moattr->rockCStrIndex[0] = 16;
mohrObj.cvValue = mohrObj.samplesCStr(16];

Printed by jbuckner from performer

break;
}
}
else if (stremp(c, "rockCStrl") ==0){ |
switch ((int)clientData) {
case 0:
moattr->rockCsStrindex[ll = 3;
mohrObj.cvValue = mohrObj.samplesCStr([3];
break;
case 1:
moattr->rockCStrindex[1] = 10;
mohrObj.cvalue = mohrObj.samplesCStr[10];
break;
case 2:
moattr->rockCstrindex(l] = 11;
mohrObj.cvValue = mohrObj.samplesCStr{il];
break;
}
}
else if (strcocmp(c, "rockCStr2m") ==0){
switch ((int)clientData) {

case 0:
moattr->rockCStrindex[2] = 0;
mohrOb3.cvValue = mohrCbj.samplesCStr{0};
break;

case 1:

moattr->rockCStrIndex([2] = 1;
mohrObj.cValue = mohrObj.samplesCStr{ll;
break;
case 2:
moattr->rockCStrindex[2] = 2;
mohrObj.cvValue = mohrObj.samplesCStr[2];
break;
case 3:
moattr->rockCStrindex([2] = 14;
mohrObj.cvValue = mohrObj.samplesCStr{l14];
break;
case 4:
moattr->rockCStrindex(2] = 4;
mohrObj.cValue = mohrObj.samplesCStri4];
break;
H
1
else if (stremp(c, "rockCStr3") ==0){
switch ((int)clientData) f{
case 0:
moattr->rockCStrindex{3] = 20;
mohrObj.cvalue = mohrObj.samplesCStr[20];
break;
case 1:
moattr->rockCStrindex[3] = 19;
mohrObj.cvalue = mohrObj.samplesCStr[19];
break;
case 2:
moattr->rockCStrIndex[3] = 21;
mohrObj.cvalue = mohrObj.samplesCStr(21];
break;
case 3:
moattr->rockCStrindex[3] = 22;
mohrObj.cvValue = mohrObj.samplesCStr[22];
break:;
case 4:
moattr->rockCStrindex[3] = 23;
mohrObj.cvalue = mohrObj.samplesCStr[23];
break;
}
}
else if (stremp(c, "rockCstrd") ==0){
switch ((int)clientData) {
case 0:
moattr->rockCStrIndex([4] = 17;

mohrOptionCB.c++

= et (<*

Printed by jbuckner from performer

mohrObj.cvalue = mohrObj.samplesCStr[17]: mattr->effStress(2]) - mohrObj.tensileStr, normalize):
break: cmdOb . setFluidPress (mohrObj.fluidPressure, normalize, norm_factor);
case 1: cmdObj . setTensileStr (mohrObj. tensileStr, normalize, norm_factor);
moattr->rockCStrIndex(4] = 18; } // end if
mohrObj.cValue = mohrObj.samplesCStr[i8]; else :
break; infowidget (moattr->mohrDialogForm, buf, mohrApplyOKCB};
case 2: 1 // end else if
moattr->rockCStrIndex{4] = 12; else
mohrObj.cvalue = mohrObj.samplesCStr{12}; infoWidget (moattr->mohrDialogForm, buf, mohrApplyOKCB);
break;
case 3:
moattr->rockCStrindex{4] = 13; } // end of mohrApplyButton
mohrObj.cvValue = mohrObj.samplesCStr([13];
break; void mohraApplyOKCB(Widget w, XtPointer, XtPointer){
} MohrAttributeType *mattr = mohrObj.getAttributes();
} MohrOptionType *moattr = mohrOptionObj.getAttributes();
sprintf(c,"%.11f", mohrObj.cValue); int slidersf3]:

int min = 0;
XmTextSetString(moattr->cText, c);
for (int i = 0; i < 3; i++) |

mohxrObj.calculate(); XmScaleGetvalue(moattr->scale(i], &sliders(i]):
mohrCbj.display():
} // end of mohrChangeCStr if (sliders{i] < sliders(min])
min = i;
void mohrApplyButton(Widget, XtPointer, XtPointer){ } // end for int i
MohrAttributeType *mattr = mohrObj.getAttributes():;
MohrOptionType *moattr = mohrOptionObj.getAttributes(); double tensile = mattr->effStress[min] - 1.0;
cmdObj . setvalues(mattr->effStress{0] - tensile,
int sliders({31:; mattr->effsStress(l] - tensile,
int hasneg = 0; mattr->effStress[2] - tensile);
int smallest = 0, largest = 0;
int normalize = FALSE; cmdObj . setFluidPress (mohrObj . fluidPressure);
double norm_factor = 1.0; cmdObj . setTensileStr(mohrObj.tensilestr);
// Get values of the mohr sliders if (w != NULL)
for (int 1 = 0; 1 < 3; i++) | XtDestroyWidget(w):;
XmScaleGetValue (moattr->scale[i], &sliders[i]): } // end of mohrApplyOKCB
if (mattr->effStress(i] < 0.0)
hasneg = 1; void mohrChangeFluidField(Widget, XtPointer, XtPointer){
if (sliders([i] < sliders(smallest]) MohrOptionType *moattr = mohrOptionObj.getAttributes();
smallest = i; MohrAttributeType * mohrObjAttrib = mohrObj.getAttributes();
if (mattr->effStressfil > mattr->effStress(largest]) char strHolder[100]); // holder for transfer of numbers to ASCII
largest = i; double tmpvValue;
} // end for int i
if (XmTextFieldGetString(moattr->fluidText) != NULL) {
// If there is a negative value, want to shift all numbers by char *val = XmTextFieldGetString(moattr->fluidText):
// subtracting the tensile str. This is only when none of the if ((strlen(val) == 0) || !(trapAlpha(val)}){
// numbers are less than the tensile str infoWidget (moattr->mohrbialogForm,
"Not allowed to have empty or alphabetical value");
char buf(2000]; sprintf(strHolder,"$5.21f", mohrObj.fluidPressure);
sprintf (buf, XmTextFieldSetString(moattr->fluidText, strHolder);
"Warning negative number entered that is\ngreater than computed tensile strength.\ return;
nAssuming tensile strength equal to\nminimum value minus one."); 1
tmpValue = atof(valy);
// test to see if normalization must take place and by what factor if (tmpvalue < 0.0)
if (mattr->effStress[largest] > 100) { infowidget (moattr->mohrDialogForm,
norm_factor = 100.0 / mattr->effStress[largest]; "Fluid Pressure must be a positive number");
normalize = TRUE; sprintf(strHolder,"%$5.21f", mohrObj.fluidPressure);
1 XmTextFieldSetString(moattr->fluidText, strHolder);
return;
if (hasneg == 0) { 1
cmdObj . setValues (mattr->effStress{0], mattr->effStress(l1],
mattr->effStress([2], normalize); if (tmpValue > mohrObjAttrib->maxScale - 1){
cmdObj . setFluidPress (mohrObj. fluidPressure, normalize, norm_factor); infowWidget (moattr->mohrDialogForm, "Fluid Pressure is out of bounds®);
cmdObj . setTensileStr (mohrObj.tensileStr, normalize, norm_factor); sprintf(strHolder, "$5.21f", mohrObj.fluidPressure);
} // end if XmTextFieldSetString (moattr->fluidText, strHolder); O3
else if (mohrObj.hasTensileStr) { return;
if (mohrObj.tensileStr < mattr->effStress(smallestl){ } k)l
cmdObj . setvalues(T
mattr->effStress(0] - mohrObj.tensileStr, mohrObj.fluidPressure = tmpvValue; \;
mattr->effStress[1l] - mohrObj.tensileStr, kil
T a
mohrOptionCB.c++ 9

XmScaleSetValue(moattr->fluidScale,
(int) (mohrObj.fluidPressure * 100.0));

updateEffective();
mohrObj.failure();
mohxObi.display();
} // end if

} // end of mohrChangefluidField

A R
// Function: mohrChangeFluidScale (not a member function)

V4

// File: mohrOptionCB.c++

V4

// Arguments: Widget, XtPointer, XtPointer callData

V4

// State Changes: mohrObj.fluidPressure, updates the fluidPressure
// also calls updateEffective(), mohrObj.failure(),
V74 mohrObj.display()

VA

// Purpose: This program updates the fluid pressure from its scale
// in the options window of the Mohr graph

V4

// Last Modified: 1 July 1997, Joshua Buckner (jbuckner@cs.trinity.edu)
e R B e
void mohrChangeFluidScale(Widget, XtPointer, XtPointer callData)

XmScaleCallbackStruct
* cbs = (XmScaleCallbackStruct *) callData;

// The variable below holds the address to mohrObj’s
// attributes private member variable.
MohrAttributeType

* mohrObjAttrib = mohrObj.getAttributes();
MohrOptionType *moattr = mohrOptionObj.getAttributes();

char strHolder[100]; // holder for transfer of numbers toc ASCII

// update the ratio
mohrObj. fluidPressure = (double) ((cbs->value) / 100.0);

sprintf(strHolder, "$5.21f", mohrObj.fluidPressure):
XnTextFieldSetString(moattr->fluidText, strHolder):

updateEffective();
mohrObj.failure();
mohrObj.display();

} // end of mohrs3ToslRatioScaleChange

i Lt
// Function: updateEffective (not a member function)

// File: mohrOptionCB.c++
// Arguments: void

// State Changes: mohrObj.attributes->effStress are changed and this change
/7 is displayed on screen in the text fields

// Purpose: This function takes care of calculating effective stress
// Last Modified: 14 July 1997, Joshua Buckner (jbuckner@cs.trinity.edu)

A A s e A L
void updateEffective()

//)
MohrOptionType // option window attributes // File: mohrOptionCB.c++ o3
*moattr = mohrCptionObj.getadttributes(); // ,5:-
MohrAttributeType // mohr graph attributes // Arguments: void ——
*mattr = mohrObj.getAttributes(); V4 &
// State Changes: the effective ratio text fields are changed and that N

Printed by jbuckner from performer

char strs[3]1[100]; // holder for transfer of numbers to ASCII

int
i, // loop index B
min, mid, max; // hold indeces of smallest, middle, and largest sigmas
if (mattr->stressMode == 0) // stresses are dependent
findMinMidMax(& min, & mid, & max, mattr->sigmas, 3);

// we are now ready to set the effective stresses

mattr->effStress[max] = (double)mattr->sigmas[max]
- mohrObj.fluidPressure;
mattr->effStressimid] = (double)mattr->sigmas{mid]

- (mattr->s2ToslRatio * mchroObj.fluidPressure);
mattr->effStressimin) = (doubleymattr->sigmasimin)
- (mattr->s3ToslRatio * mohrObj.fluidPressure);
} // end if (mattr->stressMode == 0)

else // stresses are independent so set them strait

mattr->effStress{0] = (double)mattr->sigmas[0] - mohrObj.fluidPressure;
mattr->effStress{1l] = (double)mattr->sigmas{l] - mohrObj.fluidPressure;
mattr->effStress[2] = (double)mattr->sigmas([2] - mohrobj.fluidPressure;

} // end else
for (1 = 0; i < 3; i++) // set the scales on the screen

// check bounds
if (mattr->effStress[i] > mattr->maxScale)
{
if(moattr->isInfoWinOpen == FALSE)
// if there is no current error win open
moattr->isInfoWinOpen = TRUE;
// open the window and tell the world about it
infowidget (moattr->mohrDialogForm,
"Warning: Actual Effective Stress value out of bounds.\nSe
tting value to an artifical bound value.",
closeBoundsErrorWin) ;

}
mattr->effStress[i] = mattr->maxScale;
1

if (mattr->effStress{i] < mattr->minScale)

if (moattr->isinfoWinOpen == FALSE)
{ // if there is no current error win open
moattr->isInfoWinOpen = TRUE;
// open the window and tell the world about it
infoWidget (moattr->mohrDialogForm,
"Warning: Actual Effective Stress Value out of bounds.\nSe
tting value to an artifical bound value.",
closeBoundsErrorWin) ;

1
mattr->effStress{i] = mattr->minScale;
}
sprintf(strs([i],"$5.21f" , mattr->effStress(i));
XmTextFieldSetString(moattr->effText (1], strs(i])):;
} // end for int i

updateEffRatios(); // update the effective stress ratio text boxes
} // end of updateEffective

G e e R
// Function: updateEffRatios (not a member function)

mohrOptionCB.c++ 10

Printed by jbuckner from performer

mohrOptionCB.c:

/7 is all // Arguments: Widget, XtPointer, XtPointer
// //
// Purpose: This function takes care of calculating effective stress // State Changes: Makes 1/2 the options window dissappear/reappear
/7 ratios /7
/7 - // Purpose: To conserve screen space
// Last Modified: 14 July 1997, Joshua Buckner (jbuckner@cs.trinity.edu)
A R T S // Last Modified: 1 August 1997, Joshua Buckner (jbuckner@cs.trinity.edu)
void updateEffRatios() VAR a et e E s S RS S R R e R A S b Ll e R e S S e
void mohrArrowCB(Widget, XtPointer, XtPointer){
MohrOptionType // option window attributes MohrOptionType *moattr = mohrOptionObj.getAttributes();
*moattr = mohrOptionObj.getAttributes();
MohrAttributeType // mohr graph attributes moattr->arrowDir = ! (moattr->arrowDir);
*mattr = mohrObj.getAttributes();
int if (moattr->arrowbDir){
min, mid, max; // hold indeces of smallest, middle, and largest sigma XtManageChild(moattr->rockRenderRow) ;
XtvaSetvValues(moattr->arrowButton, XmNarrowDirection, XmARROW_UP,
double holder; // holder for storing ratios NULL) ;
char str(100]; // holder for string that goes in text boxes ¥
else {
findMinMidMax(& min, & mid, & max, mattr->sigmas, 3); XtUnmanageChild(moattr->rockRenderRow) ;
XtvaSetvalues(moattr->arrowButton, XmNarrowDirection, XmARROW_DOWN
if(mattr->effStressimax] != 0.0) // can’t divide by 0.0 , NULL); }

} // end of mohrArrowCB
holder = (double) (mattr->effStressimin] / mattr->effStress[max]);

sprintf(str, "%5.31f", holder); // make the number a string int trapAlpha(char * in_str)
{
else // division by zero is not defined in our system of mathematics int i;
sprintf(str, "%s", "Undefined\0"):;
// update the text box for(i = 0; i < strlen(in_str); i++)
XmTextFieldSetString(moattr->effs3TosliRatioText, str):;
if ((in_str[i] < ‘0’) || (in_stxr[i] > ’9'))
if (mattr->effStress(max] != 0) // can’t divide by 0.0
if ((in_str{i] !'= ’.’) && (in_striil != ’-’) ss&
holder = (double) (mattr->effStressimid] / mattr->effStress([max]); (in_str{i] != ’'+’) && {(in_str{i] 1=’ 7))
sprintf(str, "%5.31f", holder):; // make the number a string return 0;
}
else // division by zero is not defined in our system of mathematics }
sprintf(str, "%s", "Undefined\0"); return 1;
// update the text box 1

XmTextFieldSetString(moattr->effs2ToslRatioText, str);
} // end function updateEffRatios

e
// Function: closeBoundsErrorWin (not a member function)

/7

// File: mohrOptionCB.c++

V4

// Arguments: Widget w, XtPointer clientData, XtPointer callData

// these are only passed along to destroyFS

V4

// State Changes: an info dialog box is destroyed

/7

// Purpose: This function makes sure that the isInfoWinOpen gets set to
// flase when the info win is closed

/7

// Last Modified: 8 July 1997, Joshua Buckner (jbuckner@cs.trinity.edu)

B e I Lt 2
void closeBoundsErrorWin(Widget w, XtPointer clientData, XtPointer callbata)

MohrOptionType // option window attributes
* moattr = mohrOptionObj.getAttributes();

moattr->isInfoWinOpen = FALSE; // the info win is about to be closed
destroyFS(w, clientData, callData); // kill the info win
} // end function closeBoundsErrorWin

QO
Y D R i
// Function: mohrArrowCB (not a member function) '5:;—-5
V4
// File: mohrOptionCB.c++ o
/7 C‘\
S
11

mohrOptionCB.c++

Fault Strike 90.0

Fault Bip

SOFTWARE
DEVELOPMENT PLAN

3'7/9%

REVISED SOFTWARE DEVELOPMENT
PLAN FOR 3DSTRESS

Prepared for

Nuclear Regulatory Commission
Contract NRC-02-97-009

podficAins M3
Prepared by [y 2"1 » 4 é‘w
Joseph H. Bangs Ad Jaetudt Lot

December 1999

7 Have 3DShects
Center for Nuclear Waste Regulatory Analyses ar
San Antonio, Texas Devaamay.

Approved by: / #O%M‘W‘f? M K»W Date: 17,/ 3&/ 9

H. Lawrence McKag
Zos ams g,.,m/ i 1279 75

pllns v Rz FDStness [3.2 code
To bt semi o A Jan Sotanis raeboars,

@MJW @A

12/71/99

CONTENTS

Section Page
0) 2 1-1
1.1 Identification ittt i e e e 1-1
1.2 SyStem OV eTVIeW . L. ottt e e e 1-1
1.3 Document OVerviewttt ittt it e e i 1-1
14 Relationshipto OtherPlans i i i i e 1-1
2 REFERENCED DOCUMENT Sttt et ettt e et ettt 2-1
3 OVERVIEW OF REQUIRED WORK i i i e e i 3-1
3.1 General e e e 3-1
32 Software Functionality i i e e 3-1
33 Software Design and Development i i, 3-1
34 Hardware Configurationsottt it ettt it e e 3-1
4 PLANS FOR PERFORMING GENERAL SOFTWARE DEVELOPMENT ACTIVITIES 4-1
4.1 Software Development Process ittt 4-1
42 General Plans for Software Development i .., 4-1
4.2.1 Software Development Methods 4-1
4.2.2 Standards for Software Products o ... 4-2
4.2.2.1 Software Design Standards i, 4-2
4.2.2.2 Software Coding Standards ciiiiiiin. 4-2
4.2.2.3 Software Test Standards 4-3
423 Reusable Software Products 4-4
4.2.3.1 Incorporating Reusable Software Products 4-4
4.2.3.2 Developing Reusable Software Products 4-4
424 Handling of Critical Requirementscvii.... 4-4
4.2.4.1 Safety ASSUIANCE\ tv ittt et et ee e L. 45
4.2.4.2 Security ASSULANCE ...\ ovvt ettt ettt it i e e 4-5
4243 Privacy ASSUTANCEttt ie it ettt eiaeeenenns 4-5
4.2.4.4 Assurance of Other Critical Requirements 4-5
425 Computer Hardware Resource Utilizationcccvuiu... 4-5
426 RecordingRationale i e, 4-5
427 Accessfor Acquirer Review i i 4-5
5 PLANS FOR PERFORMING DETAILED SOFTWARE DEVELOPMENT ACTIVITIES 5-1
5.1 Project Planning and Oversight i i 5-1
: 5.1.1 Software Development Planning 5-1
5.1.2 Software Test Planning oot i ittt it i e 5-1
5.1.3 System TestPlanning i i i 5-1
5.1.4 Software Installation Planning 5-1
5.1.5 Software Transition Planning iiiiiiiin.. 5-1

5.1.6 Following and Updating Plans, Including the Intervals for Management
ReVIEW .. 5-2

il

Section

52

5.3

54
55
5.6

5.7

5.8

59

5.10
5.1
5.12

CONTENTS (cont’d)

Page

Establishing a Software Development Environment 5-2
5.2.1 Software Engineering Environment i, 5-2
5.2.2 Software Test Environment i, 5-2
5.2.3 Software Development Library i 5-2
5.2.4 Software Development Fileso i i 5-2
5.2.5 Non-deliverable Software it 5-3
System Requirements Analysis i i 5-3
53.1 Analysisof UserInput ... i 53
53.2 Operational Conceptovuuntiini ittt 5-4
5.3.3 SystemRequirementsiiiiii i e 5-4
SystemDesignoii i 5-4
Software Requirements Analysist 5-4
Software DEesigno o e e 5-4
5.6.1 CSCI-wide Design Decisionsvvuiiineniiiniiiannn. 5-4
5.6.2 CSCI Architectural Designovvenvnn it e it 5-4
563 CSCIDetailedDesign...... ..o, L 5-5
Software Implementation and Unit Testing o i, 5-5
5.7.1 Software Implementation oot 5-5
5.7.2 Preparing for Unit Testingcoooiimiii i 5-5
5.7.3 Performing Unit Testingt 5-5
5.74 Revisionand Retestingottt it 5-5
5.7.5 Analyzing and Recording Unit TestResults 5-6
Unit Integration and Testingt i 5-6
5.8.1 Preparing for Unit Integrationand Testing, 5-6
5.8.2 Performing Unit Integration and Testing 5-6
5.83 Revisionand Retestingc.ov i 5-6
5.8.4 Analyzing and Recording Unit Integration and Test Results 5-6
CSCI Qualification Testingottt i e i e 5-6
5.9.1 Independence in CSCI Qualification Testing 5-7
5.9.2 Testing on the Target Computer System, 5-7
5.9.3 Preparing for CSCI Qualification Testing 5-7
5.9.4 DryRun of CSCI Qualification Testingot 5-7
5.9.5 Performing CSCI Qualification Testing 5-7
5.9.6 Revisionand Retesting i 5-7
5.9.7 Analyzing and Recording CSCI Qualification Test Results 5-7
CSCI/HWCI Integration and Acceptance Testingot 5-8
System Qualification Testingooiiii i 5-8
Preparing for Software Use i 5-8
5.12.1 Preparing the Executable Software 5-8
5.12.2 Preparing Version Descriptions for User Sites 5-8
5.12.3 PreparingUser Manuals i, 5-8
5.12.3.1 Software Users Manual, 5-8
51232 Software Input/Output Manual 5-8

il

CONTENTS (cont’d)
Section Page
5.12.33 Software Centers Operators Manual 5-9
51234 Computer Operation Manuals 5-9
5.12.4 Installationat User Sitesottt i, 5-9
5.13 Preparing for Software Transition i 5-9
5.14 Software Configuration Management uiiiinrnriennnaen. 5-9
5.14.1 Configuration Identification i 5-9
5.14.2 Configuration Control it i i e 5-10
5.14.3 Configuration Status Accountingot 5-10
5.14.4 Configuration Audits i e e 5-10
5.14.5 Packaging, Storage, Handling, and Delivery 5-10
5.15 Software Product Evaluation it 5-10
5.16 Software Quality ASSUTANCE .. v vttt ettt ie ettt eeneas 5-11
5.17 Corrective ACHOM . v\ v vttt ettt et e e e e 5-11
5.17.1 Problem/Change Reportsoiiiiiiiiinin i, 5-11
5.17.2 Corrective ACHON SYSIEIM oottt e 5-11
5.18 Progress Reportingttt e 5-13
5.19 Other Software Development Activitiest iiiniiiinnenen.. 5-13
5.19.1 Risk Management, Including Known Risks and Corresponding Strategies . . 5-13
5.19.2 Software Management Indicators i i, 5-14
5.193 Securityand Privacy 5-14
5.19.4 Subcontractor Managementccc.inititin i 5-14
5.19.5 Interface with Software Independent Verification and Validation Agents .. 5-14
5.19.6 Coordination with Associate Developers ovun... 5-14
5.19.7 Improvement of Project Processes i 5-14
5.19.8 Other Activities Not Covered Elsewhere inthe Plan 5-15
6 SCHEDULES AND ACTIVITY NETWORK e 6-1
7 PROJECT ORGANIZATION AND RESOURCES i i 7-1
7.1 Project Organizationiuitnrun ittt 7-1
7.2 Project RESOUICES oottt e e it 72
7.2.1 Personnel i e e 7-2
722 Facilities e e e 7-2
7.2.3 Acquirer Furnished Equipment, Data, and Documentation 7-2
8 NOTES L ottt e e e e e 8-1
8.1 ACTONYINS & ¢ o v vttt e et ettt ettt e ettt e i s 8-1
8.2 DefiNitionS ... v et e e e e 8-1

v

Figure .

5-1

Sample software problem report

FIGURES

vi

Table

6-1

TABLES

Schedule of software development activities

viii

7'3%33&

This document establishes the Software Development Plan (SDP) to be implemented by the Center for
Nuclear Waste Regulatory Analyses (CNWRA) for the development and release of the 3DStress version 1.3

software application.. The software will be provided to the government (acquirer) without proprietary
restrictions.

1 SCOPE

1.1 Identification

This SDP applies to software modifications and corrections to be made to version 1.2 of the 3DStress
application. The modified code will be identified as 3DStress version 1.3.

1.2 System Overview

The 3DStress application is used by scientists and engineers to study the relationship between static
stress fields and geologic faulting. 3DStress utilizes user defined stress fields to compute the likelihood of
fault displacement based on the fault orientation. 3DStress provides user input, computation, and data
visualization tools to create an interactive environment in which various stress models may be studied and
explored efficiently.

3DStress executes on a Silicon Graphics workstation running the IRIX operating system. The
application does not communicate or interface with any other computer system or software application.

1.3 Document Overview

This SDP defines the plan for management, development, and software maintenance for the 3DStress
software application. This document contains the procedures to address the following program management
tasks:

Software design practices

Software Quality Assurance
Software configuration management
Software engineering standards
Software development process
Organizational structure

Schedule

e e o

These guidelines will ensure the efficient utilization of project resources to deliver a high guality
software product in a timely manner.

14 Rélationship to Other Plans

This SDP is not related to any other plan.

1-1

e

The following documents provide guidelines for software development and documentation activities. In the
event of conflict between this document and those referenced herein, the contents of this document shall be
considered superseding requirements.

2 REFERENCED DOCUMENTS

CNWRA-TOP-18 1 MAY 98 Development and Control of Scientific and
Engineering Software

2-1

45 /9 "

3 OVERVIEW OF REQUIRED WORK

3.1 General

CNWRA has modified version 1.2 of 3DStress to enhance software performance, provide additional
capabilities and correct software defects. All functionality provided by the current version will be duplicated
or replaced in the new version. The host hardware platform for 3DStress will be either a Silicon Graphics
workstation running version 6.x or 5.x of the IRIX operating system, or a Sun Ultra workstation running
version 2.7 or higher of the Solaris operating system.

CNWRA will perform the software requirements analysis, design, development and testing necessary
to deliver a reliable software and documentation product at the end of the development project.

3.2 Software Functionality

The 3DStress application calculates either the slip tendency or dilation tendency of one or more
geologic faults for a static three dimensional stress field. The application displays various data plots in which
colors and 3D surfaces are rendered to convey the computational results to the software user. 3DStress will
read data files containing fault geometry information and will save copies of the various display windows
for hard copy output or as input to other software applications.

3.3 Software Design and Development

The new version of 3DStress will be designed to meet or exceed the requirements for the existing
application version.

All software will be developed in the C++ programming language unless highly specialized coding
is required for performance beyond the ability of the commercial compiler. A commercial source control
product will be employed to track and coordinate all modifications to the software source code.

Like the existing version, the new 3DStress application will operate in a stand-alone mode requiring
operator control for the execution of all software operations. The application will retain the existing man-
machine-interface based on the X Windows program environment and the Open GL graphics rendering
library.

All new software development and modifications will be done in accordance with CNWRA TOP-18.
All existing code being reused will not be unnecessarily modified or documented to CNWRA-TOP-18.
Reused code will consist of code used as is or with only minor customization for use with 3DStress
version 1.3.

34 Hardware Configurations

The 3DStress software application will operate on a single Silicon Graphics computer platform. The
software will operate on any SGI equipped with a monitor, keyboard, mouse and removable media drive for
software installation. Due to the extensive computational nature of 3DStress, CNWRA recommends the
following hardware configuration for acceptable calculation and display performance:

3-1

"/‘(;/QW

200 MHz Iris Processor or better with floating point coprocessor (on Silicon Graphics platform) or
440 MHz UltraSPARC-IIi processor or better (on Sun platform)

128 Mbytes RAM

High Impact graphics card (on Silicon Graphics platform) or Creater 3D graphics card (on Sun
platform)

9 GB hard drive

19" monitor or larger

8 mm Tape or Digital Audio Tape drive

CDROM

Network connection

3-2

</7/}’5,L9

4 PLANS FOR PERFORMING GENERAL SOFTWARE
DEVELOPMENT ACTIVITIES

The following sections outline plans for performing general software development activities for the 3DStress
software application.

4.1 Software Development Process

CNWRA will utilize a Grand Design strategy for development of the 3DStress application. The
Grand Design approach results in a single software build and is appropriate for this project because:

a. The 3DStress software requirements are well known and documented in the existing
3DStress software documentation.

b. The 3DStress application is not a large development effort and can be accomplished in a
short time frame.

c. Once the final software requirements are specified the development schedule will be firm

and will not be altered due to changing technical requirements.
4.2 General Plans for Software Development

The following sections define the software development practices and standards to be applied to the
3DStress software development effort.

4.2.1 Software Development Methods

For the same reasons the Grand Design program strategy was selected, the classic life cycle method
of software development will be employed. The classic life cycle method involves requirements analysis,
design, coding, module testing, integration, system level testing and implementation.

All software will be developed in the C++ programming language unless specialized coding is
required for software performance beyond the capability of the C++ compiler. Any deviations from the use
of the C++ compiler will be reviewed by the software development team to determine the impact on related
software modules.

CNWRA will base the C++ software design and implementation of the following development
approaches:

1. Information Hiding - Decomposition of a system into units, such that each is characterized
by its knowledge of a design decision which it hides from all others. The design decision
may relate to either a routine or data. Access to hidden data or routines will be controlled
through well defined interfaces with limited update privileges.

2. Encapsulation - Related data and data processing/manipulation processes will be organized
or structured as classes reflecting 3DStress component organization, interfaces and
processing. Subclasses will be derived from parent classes until the child class represents
a unit process or interface in enough detail to express the class behavior as data variables
and member functions.

4-1

4.2.2 Standards for Software Products

The following sections define the standards to be followed in developing the software requirements,
design, coding, test procedures and documenting test results for the 3DStress development project.

4.2.2.1 Software Design Standards

Software design is the process by which requirements are translated into software representations
using structured analysis techniques. A preliminary software design will define modifications to existing or
additional 3DStress computational and/or display capabilities. These capabilities will be mapped to software
classes by functional and data access requirements. A subsequent refinement of the design will lead to
detailed class definitions optimized for efficient software operation.

Throughout the design process, the quality of the evolving design will be reviewed by the software
developer with the software or project manager. The software team will adhere to the following design
quality criteria:

1. The design will be modular and logically partitioned into components that perform distinct
functions.

The design will contain distinct classes reflecting the modular design of the software.
The design will lead to software modules that exhibit independent functional characteristics
The design will strive to simplify user interfaces.

The design will incorporate the concept of abstraction, enabling the designer to simplify and
reuse software components.

e

4.2.2.2 Software Coding Standards

Coding will translate the software design into C++ language software files and will begin after the detailed
design has been completed and reviewed with the project and element managers. CNWRA will code the
software to have the following characteristics:

1 Ease of code to design translation

2 Maximum compiler efficiency

3. Maximum use of development tools
4 Maintainability

CNWRA will employ a coding style that stresses simplicity and clarity. This approach will be
applied to data declaration, statement construction, and data input and output. This coding philosophy will
enhance the software readability while simplifying the test/debug/implement portion of the software
development cycle.
4.2.2.2.1 Headings

Each software unit will begin with a unit header that explains the following:

1. Description and purpose of the operation
2. General unit design

4-2

'7/3}/;1'50

7(7/;13(/

3. Initialization
4, Global interactions (if any)
5 Error conditions and handling

4.2.2.2.2 Comments

Source code will be explained with comments. Comments will explain the intended operation, logic
and possible error conditions associated with code sections. General comments will precede code sections
while detailed comments will be interspersed in the code. Comments will be written for readers with
moderate software comprehension.

4.2.2.2.3 Variable Naming

Names of variables and classes will be descriptive and indicative of program activity. Names shall
avoid the use of abbreviations, mnemonics and jargon within the constraint of size limitations. Comments
will be used to explain the role of all non-trivial variables and classes at the time of declaration. Names will
adhere to consistent formats across all code modules. This will include the use of capitalization, under scores
and unique letter combinations to identify specific classes of variables.

42224 Restrictions

Previous versions of the 3DStress application software were developed using the C/C++
programming language and incorporated function calls to various operating system, X Windows, and Open
GL libraries bundled with each Silicon Graphics hardware platform. No restrictions will be placed on the
use of additional software libraries except that the use of all third party library products will be documented
in the source code and software version or release description.

Also, the software team will restrict its use of multiple inheritance to only those version 1.2 base
classes already utilizing multiple inheritance. The use of multiple inheritance is discouraged and the software

developers will also attempt to avoid mixing traditional C function calls with their equivalent C++
counterparts.

4.2.2.2.5 Complexity

Code aggregates will be limited to the level that a software programmer can understand them without
in-depth study. Individual coding statements will be simple and direct and will not be convoluted for esoteric
or marginal efficiency gains. Individual source code statements will be simplified by avoiding complicated
conditional statements, tests on negative test conditions, and unnecessary nesting in loops or conditions.
Source code statements will use parenthesis to clarify statement content. Related code such as loops, blocks
and cases will be grouped and commented as a functional entity.

4.2.2.3 S(;ftware Test Standards

Software testing accounts for a large percentage of technical effort in the software development
process. The objective of software testing is to identify errors. To fulfill this objective, CNWRA will utilize
a series of steps in testing the software first at the unit level, and then progressing to the integration and
system levels.

4-3

50 /)%V

Unit level tests will concentrate on functional verification of software modules prior to incorporation
into the program structure. Unit testing makes heavy use of white box testing techniques to exercise specific
paths in a module’s control structure to maximize error detection. After unit testing, modules are assembled
to form the complete software package.

Integration testing addresses reliability issues associated with program verification and construction.
Software modules must work in concert to provide program functionality. Integration testing reveals errors
in module interactions and deficiencies in meeting functional requirements. After successful integration
testing, a set of high order system tests are conducted.

System validation testing will demonstrate traceability to software requirements, and will provide
assurance that software meets functional, behavioral and performance requirements. The validated software
will then be installed in an operational environment to demonstrate system performance.

4.2.3 Reusable Software Products

The following sections outline the approach for incorporating reusable software products and
developing new reusable software for the 3DStress software application.

4.2.3.1 Incorporating Reusable Software Products

CNWRA will investigate several potential sources of reusable software for the 3DStress application.
Version 1.2 of 3DStress is written in the C++ programming language and several software modules will be
incorporated directly into version 1.3. Wherever possible, existing software will be analyzed to determine
if software modifications are necessary to enhance the reusability of the source code in future software
versions.

A second source of reusable software will be in the form of commercial device drivers, function and
class libraries, operating system resources and documentation generators. Wherever possible and advisable,
CNWRA will identify commercial products for incorporation or utilization in the development of the new
version of 3DStress.

4.2.3.2 Developing Reusable Software Products

This development project will apply good software development techniques in developing the new
3DStress version. By combining good software development practices with the use of C++, which lends itself
to reuse through class inheritance, the 3DStress project will result in some software that is reusable.
However, it is not the goal of this project to develop reusable software at the expense of software efficiency
or simplicity.

4.2.4 Handling of Critical Requirements

The following sections outline the approach for handling critical requirements for the 3DStress
project.

5//(1,7)@,

4.2.4.1 Safety Assurance
3DStress software activities do not require safety assurances. This paragraph has been tailored out.
4.2.4.2 Security Assurance

The 3DStress application does not contain any security related procedures or data. This activity is
tailored out.

4.2.4.3 Privacy Assurance

The 3DStress application will not contain any privacy related procedures or data. This activity is
tailored out.

4.2.4.4 Assurance of Other Critical Requirements

Requirements deemed critical by the technical directive will be presented by the acquirer and will
be incorporated into this plan as appropriate.

4.2.5 Computer Hardware Resource Utilization

The 3DStress application will be developed, tested and executed on existing CNWRA Silicon
Graphics and Sun workstations. No additional hardware resources are required for this development effort.

4.2.6 Recording Rationale

Software development activities will be documented in Software Development Files (SDFs)
maintained by individual software developers. These files will contain engineering assumptions as well as
standard software development information. Rationale will be recorded and submitted to the project manager
at the conclusion of the development effort. Key decisions and rationale will be discussed during technical
and management reviews throughout the development project.

4.2.7 Access for Acquirer Review

Throughout the project performance period, the CNWRA project team will be available for telephone
discussions regarding the development effort. All development activities will take place in the CNWRA GIS
laboratory, that is accessible to acquirer personnel.

45

5’2/90)99

5 PLANS FOR PERFORMING DETAILED SOFTWARE
DEVELOPMENT ACTIVITIES

The following sections outline the detailed Software Development Activities for the 3DStress project.
5.1 Project Planning and Oversight

The following sections describe the approach to be employed for project planning and oversight of
the 3DStress development project.

5.1.1 Software Development Planning

This document contains the pertinent information related to software development planning. The
project team through the Project Manager may make recommendations for improvements or changes to the
SDP. The Project Manager will determine the impact on schedule and cost and, if appropriate for the
program, present the SDP modifications to the acquirer for approval and contract modifications.

5.1.2 Software Test Planning

Based on the results of the Software Requirements analysis, a Software Test Plan (STP) will be
developed for qualification testing of the 3DStress application. This plan will describe the software test
environment, the test(s) to be performed, and the test schedule. Test results will be recorded in the SDFs and
will be available for acquirer review.

5.1.3 System Test Planning

The 3DStress application is a single build computer software configuration item (CSCI) that interacts
directly with the software user. System testing is not separable from CSCI testing and will thus be conducted
with CSCI testing. System level tests will be defined in the STP.

5.1.4 Software Installation Planning
The 3DStress application will be delivered on removable media. The installation procedure and
scripts will be designed, documented, and built to simplify the installation procedure. No hardware

modifications are anticipated for the migration from version 1.2 to 1.3. Recipients of version 1.3 will be
responsible for internally coordinating local software installations.

5.1.5 Software Transition Planning

CNWRA will document any version specific requirements associated with the new release of
3DStress. Recipients of the new version will be responsible for internally coordinating any file translations
necessary to support version 1.3.

5-1

5.1.6 Following and Updating Plans, Including the Intervals for Management Review

CNWRA will conduct the development and testing of 3DStress version 1.3 in accordance with the
SDP and STP. The software development team will meet periodically with the Project Manager to verify the
software process is adhering to these plans. At this time, no changes to the plans are anticipated. However,
should a plan need modification, the Project Manager will present the changes to the acquirer for approval
and coordinate their implementation with the development team.

5.2 Establishing a Software Development Environment

The following sections outline the approach for establishing, controlling and maintaining the
software environment for the 3DStress project.

5.2.1 Software Engineering Environment

Silicon Graphics and Sun software development environments will be established for this project
in the CNWRA GIS Laboratory, Bldg. 189 at the CNWRA facility. All printed materials, vendor CD’s,
floppies and tapes will be stored in the GIS Laboratory. Intermediate disk backups will be made to tape and
will also be stored in the GIS Laboratory.

5.2.2 Software Test Environment

CNWRA maintains four SGI and three Sun workstations for software development and GIS
activities. Software development and testing will be conducted on these computers.

5.2.3 Software Development Library

The lead software developer will serve as the software librarian and will have primary control over
the software development library. Because the software development team is small, all team members will
have access to the library in the absence of the librarian. The librarian will establish a working library on the
development Silicon Graphics workstation. Both libraries will be subdivided into a subdirectory structure
designed to contain deliverable documents, software units, SDFs, and commercial software products.

5.2.4 Software Development Files

Informal Software Development Files (SDFs) will be created for the 3DStress software units, The
SDFs will be created prior to the initiation of detailed design and shall be maintained for the duration of the
project. They will be made available to the product evaluation team, quality assurance, and acquirer
representatives as requested. The SDF may reference information in other project documents as necessary.
All schedule and status data will be in other project documents. SDFs will be created and maintained by the
programming staff under the direction of the Project Manager.

The SDFs will be maintained predominantly in electronic form. The electronic form will be a

combination of plain ASCII and word processor files. If necessary paper submissions will be included in a
binder and referenced in the electronic form.

5-2

535

SDFs will generally include the following information:

1. Record Sheet - The contents of the SDF are listed by item name and electronic name and
location. The engineer responsible for the SDF is identified with the due date, completion
date, originator sign-off, and reviewer sign-off.

2. Requirements Specification - All requirements that the CSU must satisfy are listed by
reference to the applicable sections of the Software Requirements Specification.
3. Interface Description - Global variables/constants, calling sequences, and input/output

formats are defined or referenced.

Preliminary Design - Preliminary design description.

Software Test Information - All test cases and test procedures are defined or referenced.

Concurrent with code walk-through, the reviewer will verify that the test plan fully tests

capabilities, interfaces, and design constraints.

6. Source Code Organization Description - A description of the location and directory structure
of the CSU source code as well as commercial products used in the CSU.

1. Test Results - At all levels, records of test results are maintained by test case identifier,
tester, date, and the revision status of test drivers, tools, database, and code tested.
Significant differences between expected and actual results will be explained..

8. Software Problem Reports - SPR forms shall be used to document problems encountered in
software and software documentation.

9. Notes - All explanatory materials relevant to the CSU are maintained in the section. Formal
deviation and waivers are also kept in this section.

10. Reviewers Comments - Reviewers comments on the other sections of the SDF are kept in
this section.

v

5.2.5 Non-deliverable Software

Where necessary, CNWRA will develop simulators to test software component functionality. The
end item software will not utilize these test fixtures and therefore will not be delivered, controlled or
documented to the software release standards.

5.3 System Requirements Analysis

The following sections describe the approach CNWRA will follow in developing the software system
design for the 3DStress application.

5.3.1 Analysis of User Input

3DStress operates as a stand-alone software application requiring user directives to control
application execution. Additional features planned for version 1.3 will be analyzed to design an optimal user
interface environment. The primary user interface design criteria will be ease of operator control and the
effective display of computational results. At this time, no additional user input devices are anticipated
beyond the traditional input devices (keyboard, mouse) attached to standard SGI workstations.

5-3

Wy

S’S'ég L

5.3.2 Operational Cencept

3DStress is designed to be an interactive software application utilized by research and scientific staff
at irregular intervals. The software is not intended to become an integral part of day-to-day operations.
Therefore an operational concept description will not be written for this application. This activity has been
tailored out.

5.3.3 System Requirements

Based on experience with 3DStress version 1.2 and planned modifications for version 1.3, no system
modifications are necessary for this release version.

5.4 System Design

Version 1.3 represents an incremental change to 3DStress version 1.2. The existing version 1.2
system design will be utilized in version 1.3.

5.5 Software Requirements Analysis

This version of 3DStress is intended to be a functional replacement of the current application.
CNWRA will review and analyze the requirements for the new version to determine the operational concepts
and software specific requirements of the new CSCI. Software technology areas needed to implement the
new version will be evaluated with respect to technologies utilized in the current software revision. New
requirements will be categorized as new technology or extensions of existing capabilities. The results of this
analysis will be documented in the Software Requirements Description (SRD) as a reference for testing and
validating the new software version.

5.6 Software Design

The following sections describe the approach CNWRA will follow in preparing the software design
for 3DStress, version 1.3, The results of the software design process will be documented in the software
development files maintained by the development team members.

5.6.1 CSCI-wide Design Decisions

CNWRA will analyze the SRD to refine the existing concept of data and event management within
the current 3DStress application. The software team will prioritize event management and data processing
tasks according to their impact on overall system performance and functionality. From this prioritization, the
team will evaluate various models for allocating hardware and software resources during software execution.
Any modifications to the current CSClevent and data management concepts will be documented in the SDFs.

5.6.2 CSCI Architectural Design

Using the high-level resource allocation model, the software team will design an internal CSCI
architecture to implement the major functional requirements specified in the SRD. This design will define
any new or modified classes of data and functionality necessary to implement the new software capabilities.

5-4

56

5.6.3 CSCI Detailed Design

CNWRA will refine the architectural design into individual software units by designing algorithmic
approaches for implementing specific software requirements defined in the SRD. Algorithm development
will focus on meeting or exceeding performance and functional specifications while adhering to the
previously defined communication, processing and event management framework.

5.7 Software Implementation and Unit Testing

The following sections describe the approach to be followed for software implementation and unit
testing for the 3DStress application.

5.7.1 Software Implementation

The software will be developed within the coding techniques described above in Section 4.2.1. All
software will be developed in the C++ programming language unless highly specialized coding is required
for performance beyond the ability of the C++ compiler to produce efficient binary executables. Any
deviations from the use of C++ will be approved by the Project Manager.

No relational databases are required for the 3DStress application. All system configuration and
geologic fault information will be maintained in plain ASCII text files or publicly defined binary file formats.
ASCII file formats are generally preferred for all files except very large data files where ASCII storage is
impractical.

5.7.2 Preparing for Unit Testing

Unit testing will be designed to verify the new software meets the detailed software design in the
SDFs. CNWRA will develop test cases using by calculating outputs fromknown or controlled inputs for each
major software unit. Controlled test cases will be computed using independent computations not relying on
the newly developed software. Information regarding the test case computations and results will be
documented in the SDFs.

5.7.3 Performing Unit Testing

As major software units are completed, the developer will conduct unit testing with test cases to
verify the expected results.

5.7.4 Revision and Retesting

As needed, the developer will revise and retest software units to ensure compliance with the
functionality described in the SDFs and SRD.

5-5

5.7.5 Analyzing and Recording Unit Test Results

Each iteration of testing and revision through the successful completion of the test case will be
documented in the applicable SDF. Persistent test failure by a software unit will be analyzed to determine
if failures are derived from an inadequate design, insufficient documentation, or improper coding practices.

5.8 Unit Integration and Testing

The following sections describe the approach to be followed for unit integration and testing for the
3DStress project.

5.8.1 Preparing for Unit Integration and Testing

Unit integration testing will be performed at the major software component level. CNWRA will
develop test cases and data in terms of inputs and expected outputs for the control subsystem. Information
regarding the test cases, procedures and results will be stored in the SDFs.

5.8.2 Performing Unit Integration and Testing

As major software units are ready for testing, the development team will conduct component level
testing with test cases and verify the expected outputs.

5.8.3 Revision and Retesting

As needed, the developer will revise and retest software components to ensure compliance with the
functionality described in the SDD and SRS.

5.8.4 Analyzing and Recording Unit Integration and Test Results

Each iteration of testing and revision through the successful completion of the test case will be
documented in the applicable SDF. Persistent test failure by a software component will be analyzed to
determine if failures are derived from an inadequate design, insufficient documentation, or fundamental
errors in the CSCI architectural design.

5.9 CSCI Qualification Testing

The intent of the CSCI qualification testing for the 3DStress application is to verify that the new
controller is functionally equivalent to the previous version and provides the additional capabilities described
in the SRD.

The following sections describe the approach to be followed for CSCI qualification testing for the
3DStress application.

5-6

57
By

S

5.9.1 Independence in CSCI Qualification Testing

The Project Manager will assign an individual from the CNWRA , CNWRA QA or SwRI staff who
has not participated in the design or development of the 3DStress to conduct formal testing of the CSCI.

5.9.2 Testing on the Target Computer System

All CSCI qualification testing will be performed on Silicon Graphics and Sun workstations available
to the CNWRA.

5.9.3 Preparing for CSCI Qualification Testing

Upon completion of the CSCI software, the software will be entered into the Configuration
Management (CM) system as the 3DStress product baseline.

The Software Test Plan (STP) and Software Test Procedures (STPr) will be given to the independent
software tester in preparation for the dry run CSCI qualification test.

5.9.4 Dry Run of CSCI Qualification Testing

The software developer will dry run the test procedures to ensure that they are complete, accurate
and are ready for witnessed testing. The results of the test will be recorded in the appropriate SDFs.
Software Problem Reports will be prepared for problems uncovered during the testing process.

5.9.5 Performing CSCI Qualification Testing
A witnessed qualification test will be conducted at CNWRA to verify and demonstrate that the
3DStress application meets the system and software requirements stated in the SRD. If additional revision

and retesting is required, the appropriate portions of the CSCI qualification test will be rerun after completion
of the revisions. :

5.9.6 Revision and Retesting

Revisions, based on SPR (corrective action) processing, and retesting will be accomplished prior to
final approval of the qualification testing. Where necessary SDFs will be updated to reflect the revisions and
retesting.

5.9.7 Analyzing and Recording CSCI Qualification Test Results

When the CSCI qualification testing is competed, the test results will be recorded in a Software Test
Report. If revisions to the 3DStress application were made during the qualification test process, the qualified
software will be resubmitted to CM as the new baseline version.

5-7

23

5.10 CSCI/HWCI Integration and Acceptance Testing

The 3DStress application is a single build CSCI designed to run on Silicon Graphics or Sun
workstations. 3DStress will be tested on CNWRA SGI machines that were not used in the software
development process.

CNWRA has prepared a standard installation test case that shall be run after software installation

to verify correct software installation. This acceptance test procedure is documented in the 3DStress on-line
help manual.

5.11 System Qualification Testing

The 3DStress application does not interface other computer hardware or software systems. This
paragraph has been tailored out.

5.12 Preparing for Software Use

The following sections describe the approach to be followed for preparing the 3DStress application
for distribution to existing users.

5.12.1 Preparing the Executable Software
CNWRA will prepare the executable software for delivery to the user community. This preparation
will include script and data files, executables, shared object libraries, configuration files, and any other

software files required to operate the application. These files will be stored on standard removable storage
media such as CDs or tapes.

5.12.2 Preparing Version Descriptions for User Sites

CNWRA will prepare a Software Release Notice for delivery with the 3DStress application to
identify and describe the released software version for tracking and control purposes.

5.12.3 Preparing User Manuals

The following sections outline the preparation of the user manuals for the 3DStress application.
5.12.31 Seftware Users Manual

CNWRA will prepare a Software User Manual (SUM) which describes the installation and operation
of the 3DStress application. The SUM will describe all user input and activities required to control and
review the computational results generated by 3DStress.

5.12.3.2 Software Input/Output Manual

A separate Software Input/Output manual will not be prepared for this application. This activity has
been tailored out.

5-8

%6

5.12.3.3 Software Centers Operators Manual

A separate Software Centers Operators Manual will not be prepared for this application. This activity
has been tailored out,

5.12.34 Computer Operation Manuals

A separate Computer Operation Manuals will not be prepared for this application. This activity has
been tailored out.

5.12.4 Installation at User Sites

CNWRA will support NRC on-site installation of 3DStress as needed. Support for other 3DStress
users will be arranged on a case by case basis.

5.13 Preparing for Software Transition

CNWRA will retain rights to the 3DStress application executable and support files. No software
transitions to another organization are planned at this time. This activity has been tailored out.

5.14 Software Configuration Management

Software configuration management (CM) is the process by which baselined documents and source
code are identified and changes are identified and recorded. All deliverable documents and source code will
be placed under CM.

3DStress CM will be the responsibility of the Project Manager. The Project Manager will determine
when source and documents are to be submitted to CM and will control the release, modification and

resubmission of these materials to CM. The following sections define the CM process that will be followed
by the 3DStress Project Manager.

5.14.1 Configuration Identification

Two software products will be placed under CM for the 3DStress project: software source code and
application executables produced during the project. Each release of 3DStress will have a unique version
number.

5.14.2 Configuration Control

On initial and subsequent release to CM of software products, the Project Manager will follow the
procedure listed below:

1. The Project Manager will prepare a Software Release Notice (SRN) form, refer to CNWRA-
TOP-18 for the appropriate format.

5-9

(Z

2. If this is the final delivery to the acquirer, the Project Manager will make sufficient copies
of the deliverable material as required by the acquirer.

3. The Project Manager will provide the CNWRA QA group a copy of all products to be
placed in CM

5.14.3 Configuration Status Accounting

The 3DStress Project Manager will prepare and maintain records of the configuration status of all
software documentation and the 3DStress CSCI that have been placed under configuration control. These
records will be maintained for the life of the 3DStress application. The records will contain the current
version/revision/release of each entity, changes to the entity since being placed under CM, and the status of
open SPRs affecting the entity.

5.14.4 Configuration Audits

The 3DStress Project Manager will make configuration management records available on a non-
update basis for audit by the CNWRA or acquirer representatives.

5.14.5 Packaging, Storage, Handling, and Delivery

The software and documentation will be stored in paper and electronic form. Documentation will
be stored on 3.5 floppy disks or CDs in WordPerfect for Windows 8 or later format. End item software will
be delivered on 3.5” floppy disks, CD-ROM or 8mm tape in plain ASCII text file format.

5.15 Software Product Evaluation

The 3DStress application will be demonstrated for potential clients but no plans exist to distribute
evaluation copies of the software. This activity has been tailored out.

5.16 Software Quality Assurance

CNWRA will follow a two-fold approach to building a quality product for the 3DStress application:

Quality Development - define and follow good software development practices throughout
the development effort. For the 3DStress project, CNWRA will use internal development
staff for planning, coding and testing who will adhere to the plans and implementation
procedures outline in this SDP.

Quality Assurance - ongoing verification that the process are being followed by the
development team. CNWRA will utilize the CNWRA QA department for review, evaluation
and recommendations.

CNWRA QA (CQA) will monitor the software development process to verify the procedures and
practices identified in this plan are being utilized in the 3DStress development. Evaluations will be informal
and deviations from this development plan will be brought to the attention of the Project Manager.
Continued deviation from the development plan will require notification of CNWR A management to discuss

5-10

tr//,

corrective actions or initiate an update of the software development plan to reflect changes in the project
scope.

5.17 Corrective Action

The corrective action process is uniform for any software unit requiring correction. The formal
corrective action process becomes effective once the 3DStress control subsystem CSCI enters the CM
system. All corrective actions (CA) are initiated with a Software Problem Report (SPR). The SPR form to
be used for this project is described in Section 5.17.1. Document or software comments from the contracting
agency or IQA are not required to be submitted on the SPR form, other formats are acceptable. Proposed
enhancements to the system may also be initiated through the use of the SPR.

5.17.1 Problem/Change Reports

An example SPR form is shown in Figure 5-1. To accommodate lengthy explanations or supporting
material, attachments to the forms may be referenced in the appropriate fields. All SPRs are maintained in
the project file by the Project Manager for the duration of the project and will be made available to acquirer
representatives upon request.

5.17.2 Corrective Action System

The corrective action system centers around the submission of the SPR. SPR processing will
generally adhere to the following sequence:

1. Problem identification and report submission. An SPR can be generated by any project

member or software user who detects a problem or recognizes a required enhancement to
a baselined document or software program.

5-11

é%‘ﬂ

Software Problem/Change Report

Project: Originator:

Date:

Number:

Problem/Change Name:

Priority

Affected Software Element:

Description:

Analysis:

Modifications by:

Date:

Version:

Implementation:

Figure 5-1. Sample software problem report

5-12

G 3

23k

2. Logging. Following receipt of an SPR (or equivalent), the requested CA is entered into a CA
log sheet. This log sheet facilitates tracking and reporting of all CA’s issued during the life
of the project. The Project Manager will then assign the CA to a software engineer for
analysis.

3. Analysis. Analysis will be performed by the assigned engineer to determine the category of
the CA: software, documentation, design, user, of requirement problem. The analysis also
needs to determine what priority level should be assigned to the problem. Analysis of
problems that lead to modification of software need further documentation, including test
cases in order to assure that the problem has indeed been resolved.

4. Approval. After analysis the Project Manager will decide if a software or document change
isnecessary. The Project Manager is also responsible for final determination of the category,
priority, and type of action required.

5. Implementation. During implementation, the affected products are “checked out” from the
appropriate library and corrections made. Appropriate unit tests and integration tests must
be determined and performed.

6. Release. Once the corrections have been made, they must be verified/tested at the
appropriate software development level and/or CSCI testing depending on the level and type
of change. The corrected products are reinserted into the baseline, and the products returned
to configuration control. Following this they are ready for release to the acquirer.

5.18 Progress Reporting

During the 3DStress development, brief monthly project reports in the form of the Program
Manager’s Periodic Report will be produced by CNWRA.

5.19 Other Software Development Activities

The following sections describe the approach to be followed for other software development
activities for the 3DStress application development project.

5.19.1 Risk Management, Including Known Risks and Corresponding Strategies

Areas of technical risk will be investigated as early in the development cycle as possible to allow
adjustments in software design if required.

Schedule and cost problems are normally identified by use of CNWRA Project Manager data sheets.
This control is currently being used in all projects. In addition, Project Managers hold timely project review
meetings with all key project personnel to discuss, review, and solve schedule, cost, and technical problems.

The initial step in risk mitigation is identification of the risk, its potential impact on the project
performance, and likelihood of developing into a problem. Risks are identified by careful review of all
project aspects by analysis of the WBS. Risks are then tracked through the project until task completion to
monitor their impact on cost, schedule and technical performance.

During each reporting period, work projections are made for the next reporting period, and costs are
estimated. Progress for both performance and cost is evaluated against these projections. When progress does

5-13

,/os//ﬁ/,

657 .
/}3

not match projections, discussions are initiated within the project staff, and then with division management
to resolve the problems, i.e., mitigate risks.

5.19.2 Software Management Indicators

The Project Manager will monitor the software management indicators listed below on an ongoing
basis against the proposed project schedule and milestones.

Requirements volatility: total number of requirements and requirements changes over time.
Software staffing: planned and actual staffing levels over time.

Software complexity: complexity of each software unit.

Software progress: planned and actual number of software units designed implemented, unit
tested, and integrated over time.

5. Milestone performance: planned and actual dates of key project milestones.

BN

5.19.3 Security and Privacy

The 3DStress software application does not contain any extraordinary security or privacy issues
(Section 4.2.4.2 & 4.2.4.3). This activity is tailored out.

5.19.4 Subcontractor Management

CNWRA does not plan to utilize subcontractors on the 3DStress development project. This activity
has been tailored out.

5.19.5 Interface with Software Independent Verification and Validation Agents

CNWRA will utilize in-house staff for review of software quality issues and internal staff for
verification and validation. This activity has been tailored out.

5.19.6 Coordination with Associate Developers

The 3DStress application will be developed using only internal staff. No other associated developers
will be used. This activity has been tailored out.

5.19.7 Improvement of Project Processes

The Project Manager will periodically assess the processes used on the project to determine the
suitability and effectiveness. Based on these assessments, the Project Manager will identify any necessary
and beneficial improvements to the process, and identify these changes to the acquirer in the form of
proposed updates to this Software Development Plan. All proposed changes will have acquirer approval prior
to implementation.

ol
o

CNWRA plans to utilize the consulting services of Dr. Alan Morris, University of Texas at San
Antonio during the development of the 3DStress application. Dr. Morris is one of the original developers of
the 3DStress algorithms and will be utilized as a resource for software requirements development and
software validation.

5.19.8 Other Activities Not Covered Elsewhere in the Plan

5-15

6 SCHEDULES AND ACTIVITY NETWORK

Table 6-1 presents an overview of the significant milestones that will be completed during this project.

Table 6-1. Schedule of software development activities

Activity

Planned/Actual Completion Date

Software release v.1.1

August 2, 1996

Software release v.1.2

November 12, 1996

Software Requirement Document (v.1.3)

August 5, 1997

Software Planning Document (v.1.3)

July 13, 1998

Acceptance Testing

July 15,1998

Verification Testing (v.1.3)

Tuly 15, 1998

Software Test Report

July 17,1998

User Guide to NRC (v.1.3)

June 29,1998

Software release (v.1.3)

August 12,1998

3DStress v.1.3 to NRC

August 14, 1998

6-1

67,5

7 PROJECT ORGANIZATION AND RESOURCES

The following sections describe the project organization and resources to applied to the 3DStress application
development.

7.1 Project Organization

On a functional basis, CNWRA conducts programs under the Project Manager concept. The Project
Manager is delegated authority for overall technical direction and administrative supervision of the project.
The Project Manager reports directly to the Element Manager, who in turn reports directly to the Technical
Director. This structure permits ready access to higher management to quickly resolve any problems which
might arise. The quick access to management allows for close schedule coordination on projects of an
interdivisional nature. Thus, once a project team is formed, the Project Manager has vertical line authority
over team members for the duration of the project.

The support staff of CNWRA, including such functions as accounting, contract administration,
purchasing, computer processing, report reproduction, library, and security, are at the disposal of the Project
Manager. The direct availability of the support staff leads to effective project management and eliminates
delays which might be experienced in a less flexible system.

CNWRA Quality Assurance reports directly to the CNWRA President. CNWRA QA performs audits
of the software development process. CNWRA QA ensures conformance to contractual requirements and
determines the adequacy and effectiveness of project activities.

Management controls are imposed by CNWRA to ensure progress and eventual delivery of end items
in accordance with the agreed upon schedule and cost. Scheduling control is maintained by short interval
updating of the approved schedule. As a minimum, bar chart project schedules with clearly defined
milestones are prepared. The charts are divided into appropriate phases, tasks and, if needed, subtasks. These
charts and work breakdown structures (WBS) are entered into a computer to facilitate monitoring and
updating.

Cost status reports are prepared and distributed to project managers every two weeks at the close of
the normal pay period. Labor data for these reports are obtained from individual time sheets which all
employees are required to complete daily. Charges are listed by project number, as well as phase or task
numbers. Itemized labor, materials, travel, reproduction services, and overhead for the preceding two-week
accounting period are given, including commitments made which have not yet resulted in expenditures.
Also, the balance of project funds available is noted. Every four weeks, a computerized summary of the two
preceding biweekly reports is prepared and given to individual project managers.

The Project Manager has full responsibility for all software products created and/or utilized by the
project. The data items, documentation reports, drawings, and manuals constitute project team activity
paralleling the hardware and software development activities. The same team members performing the
hardware and software tasks will also provide direct input and analysis for all data supplied on this contract.

7-1

é%%‘”

7.2 Project Resources

The following sections describe the resources that CNWRA will apply to the 3DStress application
development project.

7.2.1 Personnel

The software development team will be composed of software analysts experienced in the
development of Silicon Graphics Open GL software. Approximately 0.2 FTE’s and one summer employee
will be committed to the software development team. The Project Manager is responsible for coordinating
the activities of the software team project evaluations with the CQA department. Project management tasks
will require approximately 0.2 FTE’s.

7.2.2 Facilities

CNWRA will establish a development and testing environment for this project in the CNWRA GIS
Laboratory, Bldg. 189. The environment will consist of one Silicon Graphics development workstation and
three additional Silicon Graphics systems for testing and evaluation.

7.2.3 Acquirer Furnished Equipment, Data, and Documentation

No acquirer furnished software or equipment is required for this project

é‘/’/gw

470
o

8 NOTES
8.1 Acronyms
M Configuration Management
CNWRA Center for Nuclear Waste Regulatory Analyses
CSCI Computer Software Configuration ltem
HWCI Hardware Configuration Item
IAW In accordance with
CQA CNWRA Quality Assurance
SDD Software Design Description
SDF Software Development File
SPR Software Problem Report
SQA Software Quality Assurance
SRD Software Requirements Description
STP Software Test Plan
STPr Software Test Procedures
SUM Software User’s Manual
SVD Software Version Description
SwRI Southwest Research Institute
WBS Work breakdown structure

8.2 Definitions

Acquirer
An organization that procures software products for itself or another organization.

Approval

Written notification by an authorized representative of the acquirer that a developer’s plans, design,
or other aspects of the project appear to be sound and can be used as the basis for further work. Such
approval does not shift responsibility from the developer to meet contractual requirements.

Architecture

The organizational structure of a system or CSCI, identifying the components, their interfaces, and
a concept of execution among them.

Associate Developer

An organization that is neither prime contractor nor subcontractor to the developer, but who has a
development role on the same or related system or project.

Behavioral Design

The design of how an overall system or CSCI will behave, from a user’s point of view, in meeting
its requirements, ignoring the internal implementation of the system or CSCI. This design contrasts with
architectural design, which identifies the internal components of the system or CSCI, and with the detailed
design of those components.

8-1

Build

(1) A version of software that meets a specified subset of the requirements that the completed
software will meet. (2) The period of time during which such a version is developed. Note: The relationship
of the terms “build” and “version” is up to the developer; for example, it may take several versions to reach
a build, a build may be released in several parallel versions (such as to different sites), or the terms may be
used as synonyms.

Computer Hardware

Devices capable of accepting and storing computer data, executing a systematic sequence of
operations on computer data, or producing control outputs. Such devices can perform substantial
interpretation, computation, communication, control, or other logical functions,

Computer program

A combination of computer instructions and data definitions that enable computer hardware to
perform computational or control functions.

Computer Software Configuration Item (CSCI)

An aggregation of software that satisfies an end use function and is designated for separate
configuration management by the acquirer. CSClIs are selected based on tradeoffs among software function,
size, host or target computers, developer, support concept, plans for reuse, criticality, interface
considerations, need to be separately controlled, and other functions.

Configuration Item

An aggregation of hardware, software, or both that satisfies an end use function and is designated
for separate configuration management by the acquirer.

Database

A collection of related data stored in one or more computerized files in a manner that can be accessed
by users or computer programs.

Deliverable software product

A software product that is required by the contract to be delivered to the acquirer or other designated
recipient.

Design

Those characteristics if a system or CSCI that are selected by the developer in response to the
requirements. Some will match the requirement; others will be elaborations of requirements, such as
definitions of all error messages in response to a requirement to display error messages; other will be
implementation related, such as decisions about what software units and logic to use to satisfy the
requirements.

Developer

An organization that develops software products (“develops” may include new development,
modification, reuse, reengineering, maintenance, or any other activity that results in software products). The
developer may be a contractor or a Government agency.

Document/documentation

A collection of data, regardless of the medium on which it is recorded, that generally has permanence
and can be read by humans or machines.

Evaluation
The process of determining whether an item or activity meets specified criteria.

Firmware

The combination of a hardware device and computer instructions and/or computer data that reside
as read-only software on the hardware device.

Hardware Configuration Item (HWCI)

An aggregation of hardware that satisfies an end use function and is designated for separate
configuration management by the acquirer.

Interface

In software development, a relationship among two or more entities (such as CSCI-CSCI, CSCI-
HWCI, CSCl-user, or software unit-software unit) in which the entities share, provide, or exchange data.
An interface is not a CSCI, software unit, or other system component; it is a relationship among them.

Joint review
A process or meeting involving representatives of both the acquirer and the developer, during which
project status, software products, and/or project issues are examined and discussed.

Non-deliverable software product

A software product that is not required by the contract to be delivered to the acquirer or other
designated recipient.

Process

An organized set of activities performed for a given purpose; for example, the software development
process.

Qualification testing

Testing performed to demonstrate to the acquirer that a CSCI or a system meets the specified
requirements.

Reengineering

The process of examining and altering an existing system to reconstitute it in a new form. May
include reverse engineering (analyzing a system and producing a representation at a higher level of
abstraction, such as design from code), restructuring (transforming a system from one representation to
another at the same level of abstraction), redocumentation (analyzing a system and producing user or support
documentation), forward engineering (using software products derived from an existing system, together with
new requirements, to produce a new system), retargeting (transforming a system to install it on a different
target system), and translation (transforming source code from one language to another or from one version
of a language to another).

A

Requirement
(1) A characteristic that a system or CSCI must possess in order to be acceptable to the acquirer.
(2) A mandatory statement in this standard or another portion of the contract.

Reusable software product

A software product developed for one use but having other uses, or one developed specifically to
be usable on multiple projects or in multiple roles on one project. Examples include, but are not limited to,
commercial off-the-shelf software products, acquirer furnished software products, software products in reuse
libraries, and pre-existing developer software products. Each use may include all or part of the software
product and may involve its modification. This term can be applied to software product (for example,
requirements, architectures, etc.), not just to software itself.

Software

Computer programs and database. Note: Although some definitions of software include
documentation, MIL-STD-498 limits the definition to computer programs and databases in accordance with
Defense Federal Acquisition Regulation Supplement 227.401.

Software development
A set of activities that results in software products. Software development may include new

development, modification, reuse, reengineering, maintenance, or any other activities that result in software
products.

Software development file

A repository for material pertinent to the development of a particular body of software. Contents
typically include (either directly or by reference) considerations, rationale, and constraints related to
requirements analysis, design, and implementation; developer-internal test information; and schedule and
status information.

Software development library (SDL)
A controlled collection of software, documentation, other intermediate and final software products,

and associated tools and procedures used to facilitate the orderly development and subsequent support of
software.

Software development process
An organized set of activities performed to translate user needs into software products.

Software engineering

In general usage, a synonym for software development. As used in this standard, a subset of software
development consisting of all activities except qualification testing. The standard makes this distinction for
the sole purpose of giving separate names to the software engineering and software test environments.

Software engineering environment

The facilities, hardware, software, firmware, procedures, and documentation needed to perform
software engineering. Elements may include but are not limited to computer-aided software engineering
(CASE) tools, compilers, assemblers, linkers, loaders, operating systems, debuggers, simulators, emulators,
documentation tools, and database management systems.

73/?3(0

7Y

Software product
Software or associated information created, modified, or incorporated to satisfy a contract. Examples
include plans, requirements, design, code, databases, test information, and manuals.

Software quality
The ability of software to satisfy its specified requirements.

Software support

The set of activities that takes place to ensure that software installed for operational use continues
to perform as intended and fulfill its intended role in system operation. Software support includes software
maintenance, aid to users, and related activities.

Software system

A system consisting solely of software and possibly the computer equipment on which the software
operates.

Software test environment
The facilities, hardware, software, firmware, procedures, and documentation needed to perform
qualification, and possibly other testing of software. Elements may include but are not limited to simulators,

code analyzers, test case generators, and path analyzers, and may also include elements used in the software
engineering environment.

Software transition

The set of activities that enables responsibility for software development to pass from one
organization, usually the organization that performs initial software development, to another, usually the
organization that will perform software support.

Software component/unit

An element in the design of a CSCI; for example, a major subdivision of a CSCI, a component of
that subdivision, a class, object, module, function, routine, or database. Software components may occur at
different levels of a hierarchy and may consist of other software units. Software units in the design may or
may not have a one-to-one relationship with the code and data entities (routines, procedures, databases, data
files, etc.) that implement them or with the computer files containing those entities.

8-5

SOFTWARE
REQUIREMENTS
DESCRIPTION

SOFTWARE REQUIREMENTS DESCRIPTION
3DSTRESS VERSION 1.3

by

Robert T. Boneau

Center for Nuclear Waste Regulatory Analyses
Southwest Research Institute
San Antonio, Texas

August 5, 1997

Approved by:

/ﬂofwﬂ//w/w g/12(37

M. Lawrence McKague, Element Manager
Geology and Geophysics

%/ﬂp

Section

1

CONTENTS

Page
INTRODUCTION . . . s i 1-1
SOFTWARE FUNCTIONS e e it 2-1
TECHNICAL BASIS AND MATHEMATICAL MODEL 3-1
DATA FLOW AND USER INTERFACES o . 4-1
PROGRAMMING LANGUAGE 5-1
HARDWARE PLATFORMS it 6-1
GRAPHICS OUTPUT DEVICES e i 7-1

73/9@

1 INTRODUCTION

3DStress is a software application that computes the tendency for faults and fractures to slip or dilate.
Slip tendency is the ratio of the shear stress to the normal stress on a fault surface. Dilation tendency is
the likelihood for a fault or extension fracture to dilate based on the three-dimensional (3-D) stress
conditions and is computed from the normal stress and the principal stresses. The input 3-D stress
orientations and magnitudes may be interactively modified through a user interface. Faults and fractures
displayed by 3DStress are colored based on the computed slip or dilation tendency. In addition to slip and
dilation tendency, 3DStress computes the expected slip direction by finding the maximum shear stress for
the fault surface.

Paragraphs that begin with the label “Version 1.3” summarize features that will be included in 3DStress
version 1.3. These features were not included in the previous release.

1-1

7%3(,

3DStress performs three primary tasks. First, 3DStress provides a user interface for interactive control
of the input stress orientations and magnitudes. Second, 3DStress computes slip tendency, dilation
tendency, and slip direction from the input stress parameters and fault surface orientation. Third,
3DStress displays 2-D and 3-D representations of faults and fracture surfaces colored by slip or dilation
tendency.

2 SOFTWARE FUNCTIONS

Version 1.3 - The following features will be added to 3DStress version 1.3.
e Provide Mohr circle and failure envelope.
¢ Build 2-D and 3-D fault coverages in the map viewer and 3D viewer windows.
¢ Display map of stress azimuths.
¢ Save and load current stress conditions to a file.

¢ Include a leakage factor calculation mode.

2-1

LKD /936

3 TECHNICAL BASIS AND MATHEMATICAL MODEL

3DStress is founded on the principals of fault kinematics. These principals state that the input principal
stresses can be resolved into a normal stress and shear stress acting on a fault surface. The normal stress
is perpendicular to the fault surface, while the shear stress lies in the plane of the fault surface. The
greater the ratio of the shear stress to the normal stress, the greater the slip tendency. Friction
characteristics and rock material properties are not modeled by 3DStress.

The input principal stresses are labeled as follows:
6, = maximum principal stress

= [ntermediate principal stress
o; = minimum principal stress

S
!

Where: 61 > 02 > o3

The equation for computing slip tendency is given below.

T, = slip tendency = s

n

Where: 1, = shear stress
g, = normal stress

The equation for computing dilation tendency is given below.

. . (g, ~- 0,)
T, = dilation tendency = —— " _
(o, -0,)

Where: o, = normal stress
0, = maximum principal stress

o, = minimum principal stress

Versions 1.3 - The equation for computing leakage factor is given below.

P
leakage factor = —— 1
(o, +T,)
Where: ¢, = normal stress
P, = fluid pressure

T, = tensile strength

3-1

3])93u
4 DATA FLOW AND USER INTERFACES

In order to compute slip or dilation tendency, two sets of input data are required. First, the input
principal stress orientations and magnitudes are needed. Second, the fault surface orientation is required.
From these inputs, the stresses normal and shear to the fault surface are computed. Finally, slip or
dilation tendency is computed from the principal, normal, and shear stresses.

The user interface enables the user to input the principal stress orientations and magnitudes and to select

a particular fault surface orientation. In addition, the user may select a 2-D or 3-D fault coverage that
is displayed and colored by slip or dilation tendency.

4-1

3/2//93“’

S PROGRAMMING LANGUAGE

3DStress is written in the C+ + programming language using an object oriented design. The program
utilizes the OpenGL graphics and Motif libraries supplied on Silicon Graphics workstations. The OpenGL
libraries provide 2-D and 3-D graphics rendering capabilities. The Motif libraries are used to create the
graphical user interface to the program.

5-1

%7)/97, L

6 HARDWARE PLATFORMS

3DStress executes on Silicon Graphics workstations. The program is compatible with the IRIX 5.3
operating system.

Version 1.3 - 3DStress will be ported to the Sun Ultra platform.

6-1

%(///93(9

7 GRAPHICS OUTPUT DEVICES

Screen displays of 3DStress may be saved and printed using utilities such as scrsave, snapshot, imgworks,
and showcase. These utilities are provided by Silicon Graphics on their workstations. The user may store
the graphics window displays to raster files through a user interface menu.

7-1

8 SUMMARY

3DStress in an interactive tool for computing and displaying the slip and dilation tendency for faults and
fractures. The input stress orientations and magnitudes are controlled by a user interface. The slip or
dilation tendency and expected slip direction are computed for the fault surface orientation using the input
stress conditions. The 2-D and 3-D fault representations displayed by 3DStress are colored by slip or
dilation tendency. The program executes on Silicon Graphics workstations.

8-1

J?O/W

SOFTWARE REQUIREMENTS DESCRIPTION (SRD)
3DSTRESS VERSION 1.3

APRIL 16, 1997

1 INTRODUCTION

3DStress is a software application that computes the tendency for faults and fractures
to slip or dilate. Slip tendency is the ratio of the shear stress divided by the
normal stress on a fault surface. Dilation tendency is the likelihood for a fault or
extension fracture to dilate based on the three-dimensional (3-D) stress condititons
and is computed from the normal stress and the principal stresses. The input 3-D
stress orientations and magnitudes may be interactively modified through a user
interface. Faults and fractures displayed by 3DStress are colored based on the
computed slip or dilation tendency. In addition, to slip and dilation tendency,
3DStress computed the expected slip direction by finding the maximum shear stress for
the fault surface.

Paragraphs that begin with the label "Version 1.3" summarize features that will be

included in 3DStress version 1.3. These features were not included in the previous
release.

2 SOFTWARE FUNCTIONS

3DStress performs three primary tasks. First, 3DStress provides a user interface for
interactive control of the input stress orientations and magnitudes. Second, 3DStress
computes slip tendency, dilation tendency, and slip direction from the input stress
parameters and fault surface orientation. And third, 3DStress displays 2-D and 3-D
representations of faults and fracture surfaces colored by slip or dilation tendency.
Version 1.3 - The following features wil be added to 3DStress version 1.3.

* Mohr circle and failure envelope.

* Build 2-D and 3-D fault coverages in the map viewer and 3D viewer
windows.

* Display map of stress azmimuths.
* Save and load current stress conditions to a file.

* Leakage Factor calculation mode.

/M/pa@

3DStress is founded on the principals of fault kinematics. These principals state
that the input principal stresses can be resolved into a normal stress and shear
stress acting on a fault surface. The normal stress is perpendicular to the fault
surface while the shear stress lies in the plane of the fault surface. The greater
the ratio of the shear stress to the normal stress, the greater the slip tendency.
Friction characteristics and rock material properties are not modeled by 3DStress.

3 TECHNICAL BASIS AND MATHEMATICAL MODEL

The input principal stress are labeled as follows:

01= maximum principal stress
0o = Iintermediate principal stress
03= minimum principal stress

Where: 01 > 09 > O3
The equation for computing slip tendency is given below.

Ts

Ty = slip tendency =
On

Where: Tg - ghear stress
On = normal stress

The equation for computing dilation tendency is given below.

(01 - Gn)
Tq = dilation tendency =
(o1 - 03)

normal stress

I

Where: op
01 = maximum principal stress

03 = minimum principal stress

Versions 1.3 — The equation for computing leakage factor is given below.
Pg
leakage factor =

(Cp + To)

normal stress

Where: op

I

Pf - fluid pressure
To

I

tensile strength

0O
7 A&;u
4 DATA FLOW AND USER INTERFACES

In order to compute slip or dilation tendency, two sets of input data are required.

First, the input principal stresses orientations and magnitudes are needed. Second,
the fault surface orientation is required. From these inputs, the stresses normal and
shear to the fault surface are computed. Finally, slip or dilation tendency is

computed from the principal, normal, and shear stresses.

The user interface enables the user to input the principal stresses orientations and
magnitudes and to select a particular fault surace orientation. In addition, the user
may select a 2-D or 3-D fault coverage that is displayed and colored by slip or
dilation tendency.

5 PROGRAMMING LANGUAGE

3DStress is written in the C++ programming language using an object oriented design.
The program utilizes the OpenGL graphics and Motif 1libraries supplied on Silicon
Graphics workstations. The OpenGL libraries provide 2-D and 3-D graphics rendering
capabilities. The Motif libraries are used to create the graphical user interface to
the program.

6 HARDWARE PLATFORMS

3DStress executes on Silicon Graphics workstations. The program is compatible with
the TRIX 5.3 operating system.

Version 1.3 — 3DStress ported to the Sun Ultra platform.
7 GRAPHICS OUTPUT DEVICES

Screen displays of 3DStress may be saved and printed using utilites such as scrsave,
snapshot, imgworks, and showcase. These utilities are provided by Silicon Graphics on
their workstations. The user may store the graphics window displays to raster files
through a user interface menu.

8 SUMMARY
3DStress in an interactive tool for computing and displaying the slip and dilation
tendency for faults and fractures. The input stress orientations and magnitudes are
controled by a user interface. The slip or dilation tendency and expected slip
direction are computed for the fault surface orientation wusing the input stress
conditions. The 2-D and 3-D fault representations displayed by 3DStress are colored

by slip or dilation tendency. The program executes on Silicon Graphics workstations.

Software Validation Test Report

SOFTWARE TEST REPORT FOR 3DSTRESS

Prepared for

Nuclear Regulatory Commission
Contract NRC-02-97-009
Prepared by

Josh Buckner
Joseph H. Bangs

Center for Nuclear Waste Regulatory Analyses
San Antonio, Texas

Approved bsz Date:_S / 7/j rd
H. Lawrence Mc ﬂngu? trf

q &5— (202002
July 1988

L P

CONTENTS
Section Page
1 SCOPE . . e 1
1.1 IDENTIFICATION e e e e e 1
1.2 SYSTEM OVERVIEW .. e e 1
2 REFERENCED DOCUMENTS e e e e 1
3 TESTING ..t e e e e e 1
3.1 RESULTS o e 2
32 IMPACT OF TEST ENVIRONMENT 5
4 RECOMMENDED IMPROVEMENTS i i e e 5

APPENDIX A EXECUTED SOFTWARE VALIDATION TEST PLAN

APPENDIX B SOFTWARE PROBLEM REPORTS

APPENDIX C ADDITIONAL MOHR GRAPH VALIDATION TEST PROCEDURES
APPENDIX D SOFTWARE PROBLEM REPORT UPDATE ON 3DSTRESS VERSION 1.3

il

Table

3-1

TABLES

Software trouble report log for version 1.3 of the 3DStress application

1 SCOPE

This report documents the results of software validation testing performed on Version 1.3 of the 3DStress
software application. This testing took place at the Center for Nuclear Waste Regulatory Analyses (CNWRA)
located at Southwest Research Institute (SWRI) on July 15-16, 1998. The report includes an assessment of
the software testing and lists the defects identified by the test procedures.

1.1 IDENTIFICATION

This Software Test Report (STR) applies to the software modifications applied to version 1.2 of
3DStress, resulting in version 1.3. Software capabilities and functions implemented in version 1.2 and older
were not retested during this qualification test.

1.2 SYSTEM OVERVIEW

3DStress executes on Silicon Graphics workstations (SGI) operating under version 5.3 or later of
the IRIX operating system. 3DStress does not communicate with other computer systems or software
applications. 3DStress operates entirely under local user control and does not include facilities for automatic
process scheduling. The user analyzes results of software processing via X windows displays containing
graphical and text-based data displays. Hard copy outputs from the application may be generated from screen
dumps of the display windows. Tabular data files containing 2-D and 3-D fault geometry information are read
by 3DStress to generate base map and 3-D representations of the faults. 3DStress does not output tabular data
files for analysis by other software applications.

2 REFERENCED DOCUMENTS

The following documents are referenced in this test report and provide additional information regarding the
implementation of 3DStress version 1.3.

CNWRA-TOP-18 SMAY 98 Development and Control of Scientific and Engineering

Software
3DStress-SRD 17 APR 97 3DStress Software Requirements Description
3DStress-SVTP 1SJULY 98 3DStress Software Validation Test Plan
3 TESTING

The software validation test was performed in accordance with the executed SVTP included in Appendix A.
The software testers did not deviate from the test procedures except when mandated by software failures.
Software Problem Reports (SPRs) generated over the course of the test are included in Appendix B. Each
SPR will be tracked until the defect is corrected or the functional capability is removed from the 3DStress
Software Requirements Description.

4| e

3.1 RESULTS

Version 1.3 of 3DStress generally performed as expected. However, two serious errors occurred
during the test. The Software Requirements Description (SRD) specifies that 3DStress will be used to build
2-D and 3-D fault coverages in the map and 3DViewer windows, respectively. Tests on the fault building
capability revealed that no provision for saving 2-D coverages has been included in the Map display. The
3DView software does provide a file saving capability, but other errors in the polygon builder prevent the
user from entering polygon coordinates into the 3DStress application. The requirement to build 2-D and 3-D
fault coverages in 3DStress is not yet completed.

The second error, unplanned terminations (crashes) of the 3DStress application, occurred three times
during the software testing. The software crashes were not repeatable and are thus likely to be related to
incorrect memory management operations. One crash required the system super-user to remotely log into the
test machine and reset the console display software.

Other, less significant, errors occurred during the test and are also listed in the Software Problem
Report table below. The significance of the SPR is indicated by the priority level. Priority 1 SPR’s
correspond to software defects that prevent the user from completing a specified task while Priority 5 SPR’s
represent minor user inconveniences. Time estimates are included in the table for the developer to diagnose,
and correct each software defect.

Table 3-1. Software trouble report log for version 1.3 of the 3DStress application

Circle, Map, 3DView and other
windows was not successful if
the display window was
covered by another window or
if the window was not
completely visible on the
monitor. Also the image
captured by the software
excluded the top portion of the
desired display window.

Repair
Date SVTP Time Date

Opened | Section | SPR# | Priority Problem Summary (hours) Closed
7/15/98 4.1.1 1 5 Incomplete error trapping of 3

user parameters in the Mohr’s

Circle Options window. Alpha

characters entered in numeric

field were not trapped.
7/15/98 4.13 2 4 Printing a window in the Mohr 40

Date
Opened

SVTP
Section

SPR #

Priority

Problem Summary

Repair
Time
(hours)

Date
Closed

7/15/98

422

4

When adding a new line
segment point in the Map
display, the edit point in the
window does not accurately
track the movements of the
mouse.

16

7/15/98

422

After entering several new line
segment points in the Map
window display, the user
attempted to view the new data
with the Browse function.
3DStress crashed when the
Browse function was invoked.
After restarting 3DStress, the
problem could not be
duplicated with the same
Edit/Browse processing
sequence.

40

7/15/98

422

There is no capability to store
fault control points entered in
the Map display. User edits
cannot be saved to disk.

16

7/16/98

4.2.6

2-D faults added to a map
display are not incorporated in
the calculation of the Rose
diagram.

16

7/16/98

427

Clicking the Map Help caused
3DStress to crash and “locked-
up” the console monitor,
preventing user inputs.
Correction of this problem
required the system root user to
remotely login into the test
machine and restart the
Xwindows window manager
application. The problem was
not duplicated in several
attempts after the software was
restarted.

40

7/16/98

4.2.8

The Rose plot diagram did not
close when the Map display
was closed.

[ol |42

Date
Opened

SVTP
Section

SPR #

Priority

Problem Summary

Repair
Time
(hours)

Date
Closed

7/16/98

429

4

When adding multiple 3-D
faults to the 3-D fault viewer,
the faults must be generally
within the same region.
Otherwise the 3DViewer
display grid will not plot any
data on the plot grid. This is
confusing to the user but does
not cause the loss of data.

40

7/16/98

4.2.10

10

When adding polygons to the
3DView display, the edit point
does not move proportionally
to the distance traveled by the
mouse pointer. This may be an
artifact of the 3-D display, but
it is confusing to the user.

16

7/16/98

4.2.10

11

Triangles added to the 3DView
are erased when the End
Triangle button is clicked. By
closing the Options window
without clicking the End
Triangle, the user can save one
polygon to the fault file being
edited. The user cannot
effectively save fault polygon
information in the 3DViewer.

40

7/16/98

4.2.10

12

When attempting to save a fault
polygon file, we received an
Alert message (1154) from the
operating system that the
system swap space had run out.
3DStress then crashed. After
restarting the application, we
able to save the same 3-D fault
file we were processing prior to
the software crash.

40

Date
Opened

SVTP
Section

SPR #

Priority

Problem Summary

Repair
Time
(hours)

Date
Closed

7/16/98

442

13

4

While testing the Mohr Circle

8

and Slider capabilities to
save/load stress magnitude
information on disk, we
received a 3DStress error
message that the previously
save stress magnitude file had
an erroneous entry for fluid
pressure. 3DStress is not error
trapping the fluid pressure
value when it is saved to disk,
but is error trapping the fluid
pressure when loading from
disk. The error trapping
routines should be consistent in

both directions.

3.2 IMPACT OF TEST ENVIRONMENT

The validation testing was performed on a SGI Indigo CPU (Y osemite) running under the IRIX 6.2
operating system. The errors encountered during the software testing appear to be related to software defects
and not the host operating system configuration. If time allows, this test could be run on an SGI platform
running under IRIX 5.3, but this is a low priority since the IRIX 6.x operating systems have been available
for a number of years and usage of IRIX 5.3 is not common.

4 RECOMMENDED IMPROVEMENTS

This section does not document software defects, but suggests user interface modifications for future releases
of 3DStress.

3DStress contains a powerful set of stress analysis and visualization tools accessible through sets of window
displays. The user may potentially open numerous windows, cluttering the monitor display area. This creates
adisorganized visual effect that detracts from the overall software presentation. 3DStress would benefit from
incorporating controls to prevent unrelated windows from being displayed simultaneously.

3DStress relies on external software applications (Arc/Info, EarthVision, etc.) to create fault and symbol
coverages. 3DStress should support vendor specific file formats when possible to simplify the data
import/export process. Direct data communication with other applications may not be desirable until a
specific workflow methodology is identified by the user community.

Showcase provides an efficient means of displaying Help file information, however, future ports of 3DStress

may preclude the use of this SGI specific application. It is recommended that the Help files be converted to
an HTML or PDF format to enhance portability and simplify maintenance.

5

B i?f’”b

Wherever possible, the Options windows should be simplified to reduce the amount of information the user
must enter/update. If this is not practical, “fly-by” annotations should be used to used to assist the user in
understanding the significance of the parameter. Context sensitive help would be an alternative to the “fly-
by” annotations.

l b{ 9{/5\9

APPENDIX A

Software Validation Test Plan

}DV 93u7

SOFTWARE VALIDATION TEST PLAN FOR 3DSTRESS

Prepared for

Nuclear Regulatory Commission
Contract NRC-02-97-009

Prepared by

Joseph H. Bangs

Center for Nuclear Waste Regulatory Analyses
San Antonio, Texas

CONTENTS
Section
TABLES it i it ittt et e
) I 0) =
1.1 IDENTIFICATIONcoiii et i i,
1.2 SYSTEM OVERVIEW

4.1
4.1.1 Mohr’s Circle Options
4.12 Mohr’s Circle Reset
4.1.3 Mohr’s Circle Print

4.14 Mohr’s Circle Help

4.1.5 Mohr’s Circle Close
FAULT COVERAGES
42.1 MapLoad
422 Map Options

423 MAPRESET
424 Map Print
42.5 Map Coverage
42.6 Map Rose Diagram
42.7 Map Help

4.2.8 Map Close
429 3DView Load
42.10
42.11
42.12
42.13
42.14
42.15

42

3DView Reset
3DView Print

3DView Coverage
3DView Help

3DView Close
43
4.4 STRESS CONDITION FILE INPUT AND OUTPUT
44.1 Sliders

4.5

APPENDIX A — SOFTWARE PROBLEM REPORT FORM
APPENDIX B — ADDITIONAL SOFTWARE TEST PROTOCOLS

A-2

..........................

........................

............................

....................................
............................
..................

....................
.....................
.....................

....................
...

...

...
..........................
............................
.........................
..
............................
............................

..
.......................
.........................
.........................
...
.........................

.........................

...............................

.........................

.........................

.........................

.........................

.........................

.........................

.........................

.........................

.........................

.........................

TABLES

Table

3-1 Software Requirements Description to Software Validation Test Plan cross reference

iv

A-3

1 SCOPE

This document establishes the Software Validation Test Plan (SVTP) for validating the installation

and functionality of the 3DStress (version 1.3) software application developed by Southwest Research
Institute (SwRI).

1.1 IDENTIFICATION

This SVTP applies to the all source code incorporated into the version 1.3 release of the 3DStress
software application (3DStress). This version of 3DStress is an upgrade to a previous release of the
application. This SVTP documents test procedures for validating new software capabilities and verification
that existing capabilities were not adversely affected by the software modifications/additions.

1.2 SYSTEM OVERVIEW

3DStress executes on Silicon Graphics workstations (SGI) operating under version 5.3 or later of
the IRIX operating system. 3DStress does not communicate with other computer systems or software
applications. 3DStress operates entirely under local user control and does not include facilities for automatic
process scheduling. The user analyzes resuits of software processing via X windows displays containing
graphical and text-based data displays. Hard copy outputs from the application may be generated from screen
dumps of the display windows. Tabular data files containing 2-D and 3-D fault geometry information are read

by 3DStress to generate base map and 3-D representations of the faults. 3DStress does not output tabular data
files for analysis by other software applications. '

2 REFERENCED DOCUMENTS

The following documents are referenced or were used as the basis for this SVTP.

CNWRA-TOP-18 SMAY 98 Development and Control of Scientific and Engineering

Software
3DStress-SRD 17 APR 97 3DStress Software Requirements Description
3DStress-SDP 3JULY 98 3DStress Software Development Plan

3 TEST ORGANIZATION AND EXECUTION

The test procedures to be completed during this software validation process have been designed to
demonstrate the new version of 3DStress satisfies the requirements specified in the Software Requirements
Description (SRD) and has not introduced defects in existing capabilities. Table 3-1 summarizes the software
capabilities required in this release of 3DStress. Each software requirement is cross referenced from the SRD
to the corresponding test procedure defined in this SVTP. Each test procedure in this SVTP includes a
synopsis of the software function being tested, user specified parameters and/or input files, and test protocol.

A4

Table 3-1. Software Requirements Description to Software Validation Test Plan cross reference

Requirement SRD Section SVTP Section

Mohr’s circle and failure envelope Section 2 4.1
Build 2-D and 3-D fault coverages in the map viewer Section 2 42
and 3D viewer windows.

Display map of stress azimuths Section 2 43
Save and load current stress conditions to a file Section 2 4.4
Leakage Factor calculation mode Section 2 45

This SVTP is intended to be a self contained document made up of individual test procedures. Each
test procedure will address a specific software function requirement. The validation process will address

individual module or component testing first, followed by tests in which data or commands are passed
between processes or display windows.

The executed test procedures will be attached to the test report as an appendix. Software testing
should be conducted by an independent tester not directly involved with the software development tasks.
The software developer should be available to assist the tester with program execution questions. The
software tester shall date and initial all test procedures regardless of the test outcome.

If software defects are identified during the test process, the problem will be noted in this document
and also be fully documented in a software problem report. The extent and significance of the defect will be

analyzed by the testers to determine if software testing should continue or be postponed until the defect has
been corrected.

Software testers are encouraged to exercise software controls beyond the test procedures described
in this document. Unexpected test results encountered in these tests should be carefully documented by
describing the program state in which the error occurred as well as the error condition itself.

4 TEST PROCEDURES

The following sections present the validation test procedures for the 3DStress application. Unless
noted otherwise, all tests will be conducted on one SGI computer. All testing should be completed in one
continuous session. Software (or system) restarts are discouraged unless specified by the test protocol.

A-S

(| 5/93‘*

e
iy
41 MOHR’S CIRCLE

The Mohr’s Circle display and associated control windows provides a capability for the user to
evaluate the relationship between 3-dimensional stresses and rock properties. This sequence of tests will

validate the accuracy of the stress calculations, interactions with other components of 3DStress, general
parameter entry and support function operations.

4.1.1 Mohr’s Circle Options

SRD Traceability: Section 2

Summary: Verify that parameters entered in the Options parameter window result in accurate Mohr’s

Circle plot.
Protocol:
1. Open the Mohr’s Circle display.
2. Select the Options menu item.
3. Select the Independent Stresses radio button. Enter a set of stress magnitudes with the slider bars.

Manually verify the resulting Mohr's Circle and material failure point computed by 3DStress.

mpus: o= /% O W=g6.7 (M%’;" s Ow R0
v = 4848 RockTipe | Wi, s oy RAH -
Output Display Verified: o3 Al fa,};a < -0.273 i g, s O w % et 007‘f) ‘7

L\}€> O~ 4661 ro'g‘-o = 0.727 Plo

(
corc/

4, Select the Dependent Stresses radio button. Enter a set of stress magnitudes with the slider bars.

Manually verify the resuiting Mohr’s Circle and material failure point computed by 3DStress.
In ouw= 191 O +o0; Rdas set oA 117 P(D{' was &:,Plﬁgd

t : ~
puts oy - 36'1-(; 05 .hO" ra:l-m set + 0.§'l'7 Carr‘edhl;
0:) = 60.
Output Display Verified: K,;szs Lere w'rac\’
“((.5 ‘ZpJLT\'p'- s car‘ovw-Q(

5. Modify the Rock Type selection in the Mohr Option window. Manually verify the program output

and material failure point on the Mohr’s Circle display.

QOCK 7—7/36 5 Ar«»aaavé Iw[,’pwdkﬂ" SHresses J

foputs: T < 303 0; = 6O g? -z 'C;‘; l:ﬁ;fl’v‘i;j;. .;Djf’(‘ji‘)cd‘};w
Gy = 345 ws wo«({_? g
Output Display Verified: =(0%
wert veri QCJ U:i? 553 Dt~ o (« és—|. (B.Q
E‘C)““’Q"@M Ao Bo d= mras Jes Sy - A 19%% u\,odo}e O - 3
(s~ Tl s Fatlire GrFETE7 b <19 45
“ Tl ((OJ"K . |
& Toror™ chﬁ“)" - me 5
aio- S = I
ot ol b 5 s

Sl e very teden [Bl

By . e o

h)f‘l ConPp < {l— P""@’*\b“j’ff’“

welrrenre 0&0€0‘"

1 ”/fy)’\“

6. Repeat steps 3, 4, & 5 using several variations of input parameters. Manuaily verify the program
output and material failure point on the Mohr’s Circle display.

Tost Uslues felien Cron.

Inputs: Sf'O*(\e
3.5 !
Output Display Verified: (3 *T" = D5
o7 @
= »n*

Outpiit Display Verified:
T cynige
Vupat bisplay Verified:
Inp};ts:

/ _
Optput Display Verified:

7. Open the Tendency Plot window. Enter a new set of stresses in the Mohr Option window. Click the
Apply button and verify the stresses are accurately dis;i ayed in the Tendency Plot window.

= (€197 prep OPtres PRLE
Inputs: O = 24 2% O rop () ‘J"% E(/r//

3
ov =< fgjﬁiﬁ MC;%?-#‘
Output Display Verified: W 0%
-, dauy Pl Dy ov =1
Y _ 3.
g 0w
0(»‘ ¢ JMP\K
PO { s
b/ - 19 q] |
w 071
QL Ow 5t

24

AT

| '%/gi‘”

8. Enter erroneous values in the parameter boxes. Verify correct error trapping by the application.

uis: S - L-(’\
et 5 V\Aaf‘”(j;_&u&w&s (e H“’L T fel& ety

o (G
W‘vgﬂeim'j:;‘, Di,::fhaf) cad‘ﬁﬁ E

Errors Trapped Correctly:]«rfﬂ nn

Tested by: & Date: .1/ & /i%

)(Slx(xsitials) 7/,4 / 1% Faﬁ‘%’@ S-6

A-8

(| “(on%u

4.1.2 Mohr’s Circle Reset

SRD Traceability: Section 2

Summary: Verify that 3DStress will reset the Mohr’s circle display to the default display when this
option is executed.

Protocol:

1. Open the Mohr’s Circle display.

2. Corrupt the Mohr’s Circle display.

3. Click the Reset button and verify the plot display is reset to the default position.

Inputs used to corrupt the plot and parameters:

P[ﬁ‘k s IMWJ O'P‘Q‘JKPZ‘—I) CouMka‘k" eCove P(0+ east
Ty PO g rmons< ¢ el

Y

Reset verified: l(e S

Tested by: 6% Date: 1 (lfhg

(Tnitials)

4.1.3 Mohr’s Circle Print

SRD Traceability: Section 2

Summary: Verify that 3DStress will create an image of the Mohr’s Circle display suitable for printing.

Protocol:

1. Open the Mohr’s Circle display.

2. Select the Print menu item. b

3. Specify an output filename for the image file. / scfO/ mohr. Cdf)lr‘('”e : /V &
4. Examine the image file created by 3DStress. /)

SQ@
Was the image file created correctly? L. /Uo ; 0}\(7 O o,_,hc_\ A,Qﬁuz_ S/CNfAz WT;
(e phiced aﬂﬁzm‘l"f"v_ WLP/SUFCI;@:&M

'_; Lﬁ/"Cte—\M-"’ copbere L,(e-~& -

2. Re P‘ZM '{’e* *’;"k'\ W—\'—u ow e,g(,ageo(o prowital
: Mllﬁl‘, (e el . L,
//‘)SC"O/ F 3 X a‘va F[o" suwghwnﬂp@

4 (,.)w(l{ Lrest s} u}t»&oc SiB dm_?eb
' P"P /WS“‘O/NL"- CL{)J'WE' rﬂ
Tested by: /& Date: 1{ P/kqi
(Initials)
7

A-10

4.1.4 Mohr’s Circle Help

SRD Traceability: Section 2

Summary: Verify that 3DStress will display a context sensitive help file for the Mohr’s Circle display.

Protocol:
1. Open the Mohr’s Circle display.
2. Select the Help menu item.
3. Verify the help file is opened and displays the correct help information.
Was the help information displayed correctly?
' s> 7L CJ
. raf L&A\(’ ‘@u)wyw s e
(os | Aba I o 7
Carr\‘—CH‘r
3(
Tested by: ~B Date:/‘ /' 1%

(Initials)

A-11

o

]m ,0;5‘“

4.1.5 Mohr’s Circle Close

SRD Traceability: Section 2

Summary: Verify that 3DStress will close all windows associated with the Mohr’s Circle display.

Protocol:

1. Open the Mohr’s Circle display.

2. Click the Options menu item.

3. Click the Close menu item on the Mohr’s Circle display window.
4.

Verify all windows associated with the Mohr’s circle display are closed.

Were the windows closed correctly?

(lose ¢ ased all mdar cirde MMNQO |
o P,\/ K\&, Mrl) wm&a& c.)t.caud{ ‘(‘LA-Q« RQ\P w w i3
e 5 by
ag\s"){wl eae (az a_ S'ellﬂ.ra&(_, a.f)ﬂ(; e(,)!-%a.\ - SL-owCo, <2) "TL.} + |

' 6I"H '\Jv[-eu.j <(-° o’t{*‘»f‘ Pls—'\‘-cef‘”") '(L‘l}_{-w" [4

Tested by: Kﬁ Date: 7/ '51/45

(Initials)

A-12

42 FAULT COVERAGES

2-D and 3-D fault coverages may be created with 3DStress. 2-D coverages are built in the Map
display while 3-D coverages are assembled in the 3DView display window. The following tests verify the
functionality of the Map and 3DView windows for manipulating fauit coverages.

4.2.1 Map Load

SRD Traceability: Section 2

Summary: Verify the capability of 3DStress to load and display 2-D fauit map coverages.

Protocol:

L. Open the Map display.

2. Click the Load menu item and select an existing map file to display.

3. Verify the map file contents are displayed in the window with the correct scale information.
4.

Repeat step 3 for another map file. Verify the original map is replaced by the map selection.

Were the map files displayed correctly?

L@ao&ﬂ{ Frr#l W‘f fle —Grs‘{’ - Success"pwU7

. e errord
e Cow \e o~ .ltt'\ -C»(-es == (e 63"% 4
Lﬂa.&‘-&g o P n were_ h@/)y)e/ Co/‘l‘ecH7

Tested by: ’Wg Date: 7/ ‘g/ g
(Initials)

10

A-13

4.2.2 Map QDptiohs__ %\i\\ Af

SRD Traceability: Section 2

Summary: Verify the user capability to create new 2-D map coverages.

Protocol:

1. Open the Map display. EN\ ,:Xer'

2. Click the Optioms menu item.

3. Add several lines, each containing several control points, to the map display.
4, Save the new map file.

S. Load a different map file to ensure the new map file is purged from memory.
6. Load the newly created map file.

7. Verify the new map file is correctly loaded and displayed.

Was the new map file created, saved, loaded and displayed correctly?

M“W’:‘j /Ikc- C'a»P\'F‘l ﬂﬂ'*g M po:&dw 2 LFCQV\Adeﬁ SaQQ
C@rr‘éﬁfHY + ‘(’ﬁ\MMe /)65;-(—T;.~ J /./{

A»{ko,#’eﬁl 'é‘ ’%r'ans-q Jg.;pu TA“'LL Orrh-u»\$ Al — Pro\jm\ l\ @

Py odded o e phop O(T‘I’LA/ Camnat e o0l

Tested by: (YB Date: 'ZI & } T
(Initials)

11

A-14

4.2.3 MAP RESET

SRD Traceability: Section 2

Summary: Verify the user capability to reset a corrupted 2-D map display.

Protocol:

1. Open the Map display.

2. Click the Load menu item.

3. Manipulate the map in a manner that corrupts the display.
4, Click the Reset menu item.

5.

Verify the Map display returns to its default display presentation.

Was the corrupted map display properly reset?

oo MP* (oA reset coreectly

Tested by: 5y @ . Date: -7/ '6/ 14
(Initials)

12

A-15

D ,
|+ W’b“’

| ?.()9”‘“’. |

4.2.4 Map Print

SRD Traceability: Section 2

Summary: Verify the user capability to create an image of a 2-D map display suitable for printing.

Protocol:

1. Open the Map display. L
2. Select the Print menu item. [DSC rO/ /w&(-' . ¢ ‘“A'W‘ef . \’7
3. Specify an output filename for the image file. P

4, Examine the image file created by 3DStress.

Was the image file created correctly?

. #7
ND/ SA—F' [7"047[6% oS ,\@(—ca() SPK

Tested by: ’S(S Date: 7/ ¢ (18

(Initials)

13

A-16

4.2.5 Map Coverage

SRD Traceability: Section 2

Summary: Verify the user capability to load and display symbol coverages on the 2-D map display.

Protocol:

Open the Map display.

Load a 2-D map file into the map display.

Select the Coverage menu item.

Load a symbol file to be displayed as a coverage over the 2-D fault map.
Verify the symbol coverage has been displayed correctly.

bl ol ol o

Was the coverage displayed correctly?

(ped woptl Stress veclprs =4 ool 3:03@7 ccm—acH;

Tested by: ‘3/6 Date: 7/ 16 / 78
(Initials)

14

A-17

'}9/ \,ﬂif

Vi
‘c) /{}3\9

4.2.6 Map Rose Diagram

SRD Traceability: Section 2

Summary: Verify the user capability to 2-D fault data and display a Rose diagram.
Protocol:

Open the Map display. ‘ﬁﬂl{j _ (ﬁ
Load a 2-D map file into the map display. gm’ l «7 e e Q"‘Q“’ C‘

Select the Rose menu item.
Verify the Rose diagram accurately portrays the faults trace azimuth distributions.

Repeat steps 24 for a different fault map ﬁze;. Direom -C« WQ.'_ &(e

A o

Were the Rose diagrams displayed correctly?
t’és KL 0(5/747 Lo 6§ ﬂ/o%pz C’or—rCGH/"
(;{_‘ W‘f” Hud- when we adoleA Seue/\a/

e’ A0+ WD&:;{ Mfﬂ. Cose. Ha ag o=

Tested by: -56 Date: 7/ lé/ ‘(3

(Initials)

15

A-18

4.2.7 Map Help
SRD Traceability: Section 2

Summary: Verify that 3DStress will display a context sensitive help file for the Map display.

Protocol:

1. Open the Map display.

2. Select the Help menu item.

3. Verify the help file is opened and displays the correct help information.

Was the help information displayed correctly? E 0
ol o LoiBaw wemnager wha~ tr Mof 1‘(6([) wés ue

.ﬂ*ﬂ ‘(o (th« —PNM au\t?«ﬂf MC(A‘L“* ’bbgs m@{—' “+v Kal/(@*ﬂ NSW%J'YL —(L“L’
w%u&ag Mwadﬂ‘ ""(1«0_ fes‘f‘u'{—' ﬂo\Per(ew\d Qou,eﬂ M\L’be

I‘QCNM' §PK“7"

Tested by: {ﬂg Date: 7//6 / 7 7
(Initials)

16

A-19

4.2.8 Map Close

SRD Traceability: Section 2

Summary: Verify that 3DStress will close all windows associated with the Map display.

Protocol:

1. Open the Map display.

2. Click the Options menu item. a«J (LC& EO’F& LL)Tt»OQG’vJ
3. Click the Close menu item on the Map display window.

4. Verify all windows associated with the Map display are closed.

Were the windows closed correctly?

NU ‘TC& ﬁa;é_ \7(0’(’ ()J;uéeow qujwavl' Céare L,uéquz\ ﬁ«k

MF (oiedow Lt c(ssecl spR =6

Tested by: 'fg Date: 7(((/ 79

(Initials)

17

A-20

. / i

| Py 9”5Q

EAPE

4.2.9 3DView Load
SRD Traceability: Section 2

Summary: Verify the capability of 3DStress to load and display 3-D fault map coverages.

Protocol:

1. Open the 3DView display.

2. Click the Load menu item and select an existing 3-D fault file to display.

3. Verify the fault file contents are displayed in the window with the correct scale information.
4.

Repeat step 3 for another 3-D fauit file. Verify the original fault display is replaced by the new
selection.

Were the fault files displayed correctly? éé s tla ,ﬁkwg%; & CL/ (SJUQOO ‘e

MW‘F (ﬂ“‘—— are / 1‘{ /*éwot/é&%,/y\ ﬂé o 11‘5,_; w,JﬁlD
ﬁ&zo(#uho\aﬁuj.‘, M@?) 7(_&30/-00%10- S,ZILQ/\S‘
(e wnusl plofs wlere nope ma/'t‘_ gy u.)ﬂée_ :/)/7

spe)

Tested by: ’5% Date: 7(© (Cﬁ)/

(Initials)

18

A-21

e

4.2.10 3DView Builder
SRD Traceability: Section 2

Summary: Verify the user capability to create new 3-D fault coverages.

Protocol:

Open the 3DView display.
Click the Builder menu item.

Add several polygons, each containing several control points, to the 3-D display.
Save the new fault file.

Load a different fault file to ensure the new fauit file is purged from memory.
Load the new fauit file.

Verify the new fault file is correctly loaded and displayed.

Nowhkwih=

Was the new fault file created, saved, loaded and displayed correctly?

‘(7“ Cow /\()l Obé-'-‘(‘ﬁa,j{g CanJ&'M{ /)a}x,d)'F W:f’ ’\0{’ S(a»[ZOQ
Co’f"‘eca‘{ t 'ﬂxa.. -OUS€ Wouewu\}{". K 10

U)(Au»'t&'-' E.A Trf"—-}[-e, Aa,#,« is el ” ‘('r;wglo
A_rloald [u(ﬁ«.. ser cre €/“z7vseol <PR j g
oy belwson occorred & aod Foud < Ludit £ bey A pler

Tested by: 36 Date: 7/ 1498

(Initials)

; C{oqu chile
Ver /‘; O{’T”\ W5U6[bw (5 e d:!/ |
\> H:::ii; {1\1_ /Tj:?ﬂ?d\": '(’(A._ () d{ 7{ [E i~ P{d?y J[\as('};:i;z‘ ?/ZIZ
oL a‘é"‘w—'\tﬁﬂ 4 Seve (C -F[(e, . /ﬂsacé

o 0“’#0'@
ad received an alect tud (Lo syt 85'//\50?

G el with -
e 4—44 &
foaicaﬁ Cwo‘-() SP‘CQ' The ij 5PR412>

Ttﬁt&?«z Lvds N"’L 5”“’€A'

19

A-22

4.2.11 3DView Reset
SRD Traceability: Section 2

Summary: Verify the user capability to reset a corrupted 3-D fault display.

Protocol:

1. Open the 3DView display.

2. Click the Load menu item.

3. Manipulate the fault view in a manner that corrupts the display.
4. Click the Reset menu item.

5. Verify the fault view returns to its default display presentation.

Was the corrupted display properly reset?

(I/ab o b@sP[a7 Lyas /\cse(” C@rrﬁ‘/'Hy

Tested by: 56 Date: 1/ (6 / 1%

(Initials)

20

A-23

4.2.12 3DView Print
SRD Traceability: Section 2

Summary: Verify the user capability to create an image of a 3-D fault display suitable for printing.

Protocol:

1. Open the 3DView display.

2. Select the Print menu item.

3. Specify an output filename for the image file. / pscro / s ew . ce /).H re reb
4, Examine the image file created by 3DStress. ﬂ P Jd

/P sc:»O/ Uietw, 6‘7’{111"6 Z. /273
Was the image file created correctly?

gﬁ& [Jro[/{tws edpmt ot wrvdow captare fled bas Geen
MOC 4?0[(I~ S’P/Z “C

Tested by: {6 Date: K /lé / 7g

(Initials)

21

A-24

3 /@‘3("

4.2.13 3DView Coverage

SRD Traceability: Section 2

Summary: Verify the user capability to load and display symbol coverages on the 3-D fault display.

Protocol:

1. Open the 3DView display.

2. Load a 3-D fault file into the 3DView display.

3. Select the Coverage menu item.

4. Load a symbol file to be displayed as a coverage on the 3-D fault display.
5. Verify the symbol coverage has been displayed correctly.

Was the coverage displayed correctly?

The Coveraye 02 dsﬁ/ﬁ e conzq['(y

Tested by: (S‘s Date: 7/ & / 1§

(Initials)

A-25

4.2.14 3DView Help

SRD Traceability: Section 2

Summary: Verify that 3DStress will display a context sensitive help file for the 3DView display.
Protocol:

1. Open the 3DView display.

2. Select the Help menu item.
3. Verify the help file is opened and displays the correct help information.

Was the help information displayed correctly?

20 Frdtviae~ belp File wms Al el m—»ecw‘{;

S‘/§ Date: 7/ ((/ q 4

(Initials)

Tested by:

23

A-26

e

4.2.15 3DView Close
SRD Traceability: Section 2

Summary: Verify that 3DStress will close all windows associated with the 3DView display.

Protocol:

1. Open the 3DView display.

2. Click the Builder menu item.

3. Click the Close menu item on the 3DView display window.
4,

Verify ail windows associated with the 3DView display are closed.

Were the windows closed correctly?

Al Lo o3 wsere d‘ﬁ@Qcawﬁl

Tested by: 76 Date: 7(][¢ / R

(Initials)

A-27

4.3 STRESS AZIMUTH MAP DISPLAY

The stress azimuth map display is used to plot distributed stress data as a map coverage.

SRD Traceability: Section 2

Summary: Verify the capability to load stress data from a symbol coverage and plot the stress data

against a map backdrop.
Protocol:
L. Open the Map display. - pyecws| %
2. Click the Qptiens display menu item. wu_b
3. Click the Load button and specify a symbol file for loading. Se (Q& Sa(/t\ Rodse b ~
4. Verify the symboil file is plotted correctly on the map display.
S. Modify the stress coverage data and plot the modified file.
6.

Verify the modified stress values were plotted correctly.

Were the stress coverage values loaded and plotted correctly?

az5, L.)ujq/ Ue,-7 Slw.ﬁQ 57Még(5 p[a‘H‘éa‘L erra)l'"ﬂa%
d{ctéﬁ fla grreea Ma(wé-hrm

Tested by: ’S(é Date: 7/ K (R

(Initials)

A-28

M /9:’)“”

44 STRESS CONDITION FILE INPUT AND OUTPUT

The 3DStress user enters stress field data in the Sliders and Mohr’s Circle displays. The following
tests will validate the capability to save and load the stress values in a disk data file.

4.4.1 Sliders

SRD Traceability: Section 2

Summary: Verify the capability of the 3DStress Sliders window to perform file input and output with

the stress field data.
Protocol:
1. Open the Sliders display.
2. Modify the stress magnitudes.
3. Save the modified data to disk.
4, Change the stress data a second time to purge the previous values from the program memory.
5. Load the stress values stored in step 3.
6.

Verify the stress values correspond to the expected values.

Were the stress yalues stored and loaded correctly?
&gJ Y

07 =50 /Psc"O/streS‘ Lwag
0\’/ = (O ! aeJ
00 ’Zi!) 77250
Clong odv=12
0(: = Po)
% “ 36, O
0., °
Testt;)l by: 56 Date: 7((6 / 9§
(Initials) '
26

A-29

4.4.2 Mohr’s Circle

SRD Traceability: Section 2

\%4)93(‘

Summary: Verify the capability of the 3DStress Mohr’s Circle window to perform file input and output

with the stress field data.

Protocol:

1. Open the Mohr’s Circle display.

2. Open the Options menu item.

3. Modify the stress magnitudes.

4. Save the modified data to disk.

5.

6. Load the stress values stored in step 3.
7.

Were the stress values stored and loaded correctly?

et T =S <_0;,_/oa0°
O =0 Ov=50.0

&
Tested by: J G Date: 7/(1, {7

Change the stress data a second time to purge the previous values from the program memory.

Verify the stress values correspond to the expected values.

/Pscm/g-Hessl . /"*:7

L oo
ray 617! N ¢
Rue;' :Jj V"YV,\:M& {’MQS-
mﬁw e fecanse lare Fuwss

o Afmne=s

(Initials)

27

A-30

0.0 ulAuU"“ te fluid Press*™
SPR* (3

\
|) ﬁ};ﬂ{"

45 LEAKAGE FACTOR CALCULATIONS

SRD Traceability: Section 2

Summary: Verify the 3DStress capability to compute Leakage Factors based on a user specified stress

field.
Protocol:
L. Open the Plot display.
2. Click the Options menu item on the Main menu bar.
3. Click on the Leakage Factor radio button in the Compute section of the window.
4, Click the Sliders menu item on the Main menu bar.
7 Manuaily compute several data points on the Plot display to verify the Leakage Factor computation.
4—,. Sty 2
Input Stress values: 0“4[;7 0.3%¥ = FF/ (O~- ™
v= =P
W 7 - 1.053
Output Display Verified: Ox = $7.2%% z7.27 / (57297 7
T=-2(.053 = *3%%/ @
6. Change the stress data and repeat step 5. >
=S50 - Y2) $ - 30
Input Stress values: 0(1: s F,rlg___ =5 .$677 = / (6 8.4
Oy= ¢
Vo T=ge 4v% Correct
Output Display Verified: ~

Were the Leakage Factor calculations performed correctly?

Ves

~d by: K Date: 1[“ /72{

(Initials)

28

A-31

APPENDIX B

Software Problem Report

Project: Originator: Date: Problem Number:
3DStress Ver 1.3 Koe Z\-IV ’l/ 2 [@ l :
Problem Name: Problem Priority

T,\Cgrr"ﬁ{_ errom 4’rb.ppw\ very lov) -3
Affected Software Element:

g T MaD Cibior Loindens

Problem Description:

OiPlV'\ elovacters ja Apamaric Lol
- »\
@C«Or‘/‘ f:i:u_sz P‘”, . Howe\lel‘ M h‘zjrw\ ﬁ(0(AB&‘ M

Problem Analysis:

Problem Corrector: Correction Date: Version:

Solution Description:

15D /9«3(0

Software Problem Report

Project: Originator: Date: Problem Number:
3DStress Ver 1.3 <3 7/ 1519
Problem Name: Problem Priority
Wl Cirele Pos [0 -
Affected Software Element:

Pr‘-‘J\—*‘j

Problem Description: T Lo o Q.e::j)onﬂ'ea? I's Coauered L

« « . "“\ "A
gmolloe coindlos Hla inege Cle ol iwe
uwwu«Q-eﬂL /)or'('TM o & tha {7/«1 Lo -

,\, M%m arer~ 19 V\o]r bC‘\S co{’\((’ 'l—b ta ;"ﬁcﬁke‘
1 +‘f & Ha g % d@(J

Problem Analysis:

Problem Corrector: Correction Date: Version:

Solution Description:

R

Software Problem Report

Project: Originator: Date: Problem Number:
3DStress Ver 1.3 1B 7/ 5 /1% 3
Problem Name:) (’a& i Problem Priority
pp Bleler proce Gt fedm==5 4
Affected Software Element:
Mep [Builder/pdl Line Feahure-
Problem Description:

Fex Wen oAy & pew Po."&’ t o lne, fLo_ghn Pord'&es
edited Aoes M‘t’o{'ro.ck Ao mmouse ﬂo;")(eﬁ /]

Problem Analysis:

Problem Corrector: Correction Date: Version:

Solution Description:

Gl e
\k{ /}5&

Software Problem Report

Project: Originator: Date: Problem Number:

3DStress Ver 1.3 T3 7/ 5/1% sd

Problem Name: 0/) ha«\s

Problem Priority
Mep Brabder Do Bravse Ko |

Affected Software, Element:

M m/ qf,{:w / Browse

Problem Description:) -
Seuemp A OQa;Q'a po?»&s 1A {ta [Ma}/l/fu.uer

Abber enkeri
Usff'au%)("j +” Rrovse (’L‘-k Ao . '3075{?655 Q\:\L;Dt
oM problem ¢t colo wat e Hupl

l‘.aé(.
T

Problem Analysis:

Problem Corrector: Correction Date: Version:

Solution Description:

B-4

ANF

Software Problem Report

Project: Originator: Date: _ / 1§ Problem Number:
3DStress Ver 1.3 "3 7/ (S s
Problem Name: Problem Priority
Map Bulder DA Sae thgh |
Affected Software Element:
Mep [(Bulder
Problem Description:

There IS o Capelil\ity o swe foe Aado pods edered

Problem Analysis:

Problem Corrector: Correction Date: Version:

Solution Description:

| qq//fﬂb

Seftware Problem Report

Project: Originator: Date: Problem Number:
3DStress Ver 1.3 ¢ 7/ 4B
Problem Name; Problem Priority
‘205‘- D"‘im o 'F A’(QM‘CN»Q? 3
Affected Software Element:

Mep /Rose/Builder

Pmblergjnzziow are. dﬂ&u 1y a n;Z &((s/)[47 o

ot wsed e T cafededas o Rose " digjran.
n

Problem Analysis:

Problem Corrector: Correction Date: Version:

Solution Description:

Software Problem Report

Project: Originator: Date: Problem Number:
3DStress Ver 1.3 +(7(1/78 i
Problem Name: Problem Priority 4
- My Hel p Cras L @ 1
Affected Software Element:
MAc.f HQ t?
Problem Description:

Al plyiy @ To tmep Fnchens, 1t Help budfon

(s C_(.}_KeoL 'l/LiS c.c{—uv\ (acgd wp t‘(«_ CGAS’@QQQJ

reiu.fpcd f,\%erudfox -Prow\ Mo'ﬁ«tf Msclone hk“f'(.q__
LQDOA’ S'u-?er—CLSQF’. #‘{'&P t(“"COmSo(C w0 refw

‘({"i V"\Of? MP Luqﬂou(',ajﬂﬂ»i{“ée Mq‘z /ecr&J‘-

(\’Lw [4&{7'

Problem Analysis:

Problem Corrector: Correction Date: Version:

Solution Description:

l L{ L%%(é'

Software Problem Report

Project: Originator: Date: Problem Number:
3DStress Ver 1.3 J 7/ 6 / 4%
Problem Name: Problem Priority
Mop (lese 5
Affected Software Element:
/l/\a)o
Problem Description:

Ml Rose Pt wicdsw Aid ot clese e T

W (o Jow Lers C(ogq;a'

Problem Analysis:

Problem Corrector: Correction Date:

Version:

Solution Description:

B-8

Software Problem Report

Project: Originator: Date: Problem Number:
3DStress Ver 1.3 ')’6 7/ le / 7% %m
Problem Name: Problem Priori

NV:eo erpQwﬂeS}sM Y @ 3
Affected Software Element:

<D VUew F«w&{' Urewer

Problem Description:

Ad fudls b fw“/"
poges leeds o o

L,,J.@—L
Ll

Or

Fq_,é&Qla#&lL 2bo S

dre M(mjef" VB

bew 1
' \/*étfp"‘/wt

PI‘Q uv 0A$

Lflret @ prd, S}«ﬂw—

H e wser

.:P(OZJ Latts

Problem Analysis:

Problem Corrector:

Correction Date:

Version:

Solution Description:

4

Software Problem Report

Project: Originator: Date: Problem Number:
3DStress Ver 1.3 B 7 / Ww[9% (D
Problem Name: Problem Priority
ZOVien Builde AP Trogle 24
Affected Software Element: b
NS
Problem Description:

T Wien addi or modiy trio=gle. coutrd poids, tla_
(_o»-&f‘d(Po.ﬁq‘ i@; IA,O'(' MU‘L fi~ 4{0:-0’04‘#&% S’<a:/¢¢9

Cmon WET . ponse paotion,

Problem Analysis:

Problem Corrector: Correction Date: Version:

Solution Description:

B-10

Software Problem Report

Project: Originator: Date: Problem Number:

3DStress Ver 1.3 1P 7/1/7% (

Problem Name: Problem Priority

302 Usew K@Me,..AMTAMJIQ '

Affected Software Element:

ZDVreas Ruilde—

Problem Description:

) - d ohan
T' (e’aaUzX ‘pD‘f{'\kng\&OéLf_ oS)
;iv Pl Triogle (oo i& ddicked, Wo user dw‘s
Co— e smueld,

Problem Analysis:

Problem Corrector: Correction Date: Version:

Solution Description:

B-11

H%/,W

Software Problem Report

Project: Originator: Date: Y Problem Number:
3DStress Ver 1.3 7 S 2
Problem Name: Problem Priority
SDVrawer \Eu\a‘qr / Sepe J
Affected Software Element:
@ @ D U Ve 0\)

PmblemDes/cagﬁzn:O—{_{mﬂpM —éo Savl a_ @J’{" Pal‘/‘?""\g(@-
Qgce.“vea\ se Wt (IS4 From 4 05 HF swep spes

U M~ %:""PT“ 3@?—(—»«; "L’\ eracbed .
:)\aﬂe‘:\l‘&réd e Yomq/\u\— wd saved M%ﬁmcdsﬁ”“y .
'\)0(1 w¢ were alle 6 &M o @(7‘70'\ (=~ t(" Sa.ueo(LSle Au/{'/

1. g4 Tremle (Mo crnsed & when Rutlde~aoas sherfes
N

Problem Analysis:

. <L Pry‘,(cm-s L(_ ILTL Pﬂgwu—o'g N'(' 'Freerb Mgy AT
&D_Y{C:'a P‘?ojm Mcm = Ca._.,QJl e reason 4,>17 progre-c Crestes
dre V\ﬂ(”é&" reptpt'but

Problem Corrector: Correction Date: Version:

Solution Description:

B-12

Software Problem Report

Project: Originator: Date: Problem Number:
3DStress Ver 1.3 7M1/ 73 (3
Problem Name: Problem Priority
e
o Sav; ZL&EA WQLF (Z
Affected Software Element:
Plot Clss
Problem Description:

Llumepel~ %

P\.”L b(ﬂ/aaﬂeag é? - Pre réw—,

0.0 Flud preswes sawed, - culd

Problem Analysis:

'TL“"‘C A€€0'~5 'b [06 ANETTOT '{Vdﬂlhb N..."’.‘ug, Ve Scur He
AL F[U:a(//-QSSWQ o~

L,e_.“O Saved i~ el poegn’ Lz ﬁ(<

Mrasnbde £les 1o prevart £

Problem Corrector:

Correction Date:

Version:

Solution Description:

B-13

APPENDIX C

|9 7//99‘“

Mohr’s Circle Options - Additional Tests
SRD Traceability: Section 2

Summary: Verify that parameters entered in the Options parameter window
result in accurate Mohr’s Circle plot.

Protocol:

1. - Open the Mohr’s Circle display.

2. Select the Options menu item.

3. Modify the Rock Type selection in the Mohr Option window. Manually verify
the program output and material failure point on the Mohr’s Circle display.

Inputs: K-(n’pe = Acecceass m= IS s=(0o 73,5

(4
Ou = 303 Ousso 0,210 (g =41 12 pb oelecs
b(,zue[‘-'&

Output Display Verified:
K oer &t

Inputs: Kﬂ pe= Cobbacte ;*M(" 0"'.. 2.22 T~z Z4
L‘,(,k(”((' 06[0»—2‘{’3 C =973

Oz 222 = .
Output Display Verified:. Ov=7® 0ot @
(jl r M{

Inputs: [/ 4. M A? (\oceon> P = ;o & - -3‘3—%
. -y S A
lencs Stolbee 2 Gen e,
Output Display Verified: = Ov=S° 0= /lo°

\)QHC:QJ

C-1

4. Modify the Rock integrity parameter (Intact, very good...etc) in the Mohr
Option window. Manually verify the program output and material failure
point on the Mohr’s Circle display.

Inputs: Ltk Arj.’t(aceoiﬂj
Hed. Stk

Goed
Output Display Verified:

(e e f”{

Inputs: l_fh_A— :[kcwu»)
e Ha.b-nhra Sclfste~=-

()oa -
Output Display Verified:

e ~Ged
Inputs:
ot

Output Display Verified:

= s ’
m= 2.9% - o= /8"17
$ z0.02 ~¥ z2
C-L(ZZ~7

M= .G-S?' 0": 4(2.3{

00011z
(zz .7 L

f rs

S
C

C-2

/6"/})%“

5. Modify the Rock Type and then select a different Uniaxial Compressive
Strength item in the Mohr Option window. Manually verify the program
output and material failure point on the Mohr Graph display.

. < 2. 43 ¢
o L ngl gy oo
W‘_ﬂéorﬁe’ C =z 5.2 T = (8
Output Display Verified:
dk;.gt M(
Inputs: mz.é%? o = sCa™
S<,000l 1 = IlY

- = & wser podfred velue
Output Display Verified: =536

Jer

Tested by: jG Date: / Z)} / 7§

(Initials)

C3

APPENDIX D

157 /}39

Software Problem Report Update on 3DSTRESS Version 1.3

Thirteen SPRs were generated by the validation testing and were documented in this STR. Larry
McKague, David Ferrill and Josh Buckner reviewed the STR and selected five SPRs (1, 5, 6, 11 and 13) for
correction in this release of 3ADSTRESS. Four SPRs (3, 8, 9 and 10) were deemed to be either software
features or not requiring correction and were closed. The four remaining SPRs (2, 4, 7, and 12) related to
printing problems or the periodic abnormal termination of 3DSTRESS. Due to schedule constraints, these
SPRs will remain open and be addressed in a future software release.

Mr. Buckner modified 3DSTRESS to address the five selected SPRs. These SPRs were then retested
and successfully validated on July 29, 1998. The SPR log included in this appendix package reflects the
status of the software retest and the four open SPRs.

The CD-ROM accompanying this report contains both the installation and archive versions of
3DSTRESS version 1.3. The installation file contains all binaries, scripts and help files required to
successfully install and run 3DSTRESS version 1.3. This installation file was successfully transferred to and
executed on CNWRA'’s “Redwood” Silicon Graphics workstation on July 31, 1998. The archive file contains
all source code, header and other related files necessary to recompile or modify 3DSTRESS.

Based on this testing and documentation effort, 3DSTRESS is ready for outside distribution and
entry into the CNWRA configuration management system.

D-1

(50/}3(«:

3DSTRESS
Software Problem Report and Change Log
Date SVTP SPR
Opened | Section # Change/Problem Summary Status
7/15/98 4.1.1 1 Incomplete error trapping of user parameters in the Mohr’s | Closed
Circle Options window. Alpha characters entered in 7/29/98
numeric field were not trapped. Ver. 1.3
7/15/98 4.1.3 2 Printing a window in the Mohr Circle, Map, 3DView and
other windows was not successful if the display window
was covered by another window or if the window was not
completely visible on the monitor. Also the image captured
by the software excluded the top portion of the desired
display window.
7/15/98 422 3 When adding a new line segment point in the Map display, | Closed
the edit point in the window does not accurately track the 7/29/98
movements of the mouse. Ver. 1.3
7/15/98 422 4 After entering several new line segment points in the Map
window display, the user attempted to view the new data
with the Browse function. 3DStress crashed when the
Browse function was invoked. After restarting 3DStress,
the problem could not be duplicated with the same
Edit/Browse processing sequence.
7/15/98 422 5 There is no capability to store fault control points entered Closed
in the Map display. User edits cannot be saved to disk. 7/29/98
Ver. 1.3
7/16/98 4.2.6 6 2-D faults added to a map display are not incorporated in Closed
the calculation of the Rose diagram. 7/29/98
Ver. 1.3
7/16/98 427 7 Clicking the Map Help caused 3DStress to crash and
“locked-up” the console monitor, preventing user inputs.
Correction of this problem required the system root user to
remotely login into the test machine and restart the
Xwindows window manager application. The problem was
not duplicated in several attempts after the software was
restarted.
7/16/98 428 8 The Rose plot diagram did not close when the Map display | Closed
was closed. 7/29/98
Ver. 1.3

5"

Date SVTP | SPR

Opened | Section # Change/Problem Summary Status

7/16/98 429 9 When adding multiple 3-D faults to the 3-D fault viewer, Closed
the faults must be generally within the same region. 7/29/98
Otherwise the 3DViewer display grid will not plot any Ver. 1.3
data on the plot grid. This is confusing to the user but does
not cause the loss of data.

7/16/98 4.2.10 10 When adding polygons to the 3DView display, the edit Closed
point does not move proportionally to the distance traveled | 7/29/98
by the mouse pointer. This may be an artifact of the 3-D Ver. 1.3
display, but it is confusing to the user.

7/16/98 4.2.10 11 Triangles added to the 3DView are erased when the End Closed
Triangle button is clicked. By closing the Options window | 7/29/98
without clicking the End Triangle, the user can save one Ver. 1.3
polygon to the fault file being edited. The user cannot
effectively save fault polygon information in the
3DViewer.

7/16/98 42.10 12 When attempting to save a fault polygon file, we received
an Alert message (1154) from the operating system that the
system swap space had run out. 3DStress then crashed.
After restarting the application, we able to save the same
3-D fault file we were processing prior to the software
crash.

7/16/98 4.4.2 13 While testing the Mohr Circle and Slider capabilities to Closed
save/load stress magnitude information on disk, we 7/29/98
received a 3DStress error message that the previously save | Ver. 1.3

stress magnitude file had an erroneous entry for fluid
pressure. 3DStress is not error trapping the fluid pressure
value when it is saved to disk, but is error trapping the
fluid pressure when loading from disk. The error trapping

routines_shoul consistent in both directions,

D-3

SOFTWARE
DEVELOPMENT PLAN

SOFTWARE DEVELOPMENT PLAN FOR 3DSTRESS

Prepared for

Nuclear Regulatory Commission
Contract NRC-02-97-009

Prepared by

Joseph H. Bangs

Center for Nuclear Waste Regulatory Analyses
San Antonio, Texas

(99

h30

CONTENTS
Section Page
10) 5 P 1-1
1.1 Identificationttt it i i 1-1
1.2 SYStEM OVEIVIEW . vt vi ittt ittt it it iia i iiain it anannns 1-1
1.3 Document OVEIVIEWttt ettt ittt ennernaannns 1-1
1.4 Relationshipto Other Plans o it 1-1
2 REFERENCED DOCUMENTSttt ittt ittt it it it it eiaaiaaanans 2-1
3 OVERVIEW OF REQUIRED WORK ittt it it it 3-1
3.1 Generalt e e e e e e 3-1
3.2 Software Functionalityo oot it it i i e i e e e 3-1
33 Software Design and Developmentttt 3-1
34 Hardware Configurationsovuiiin ittt it eiiaeaes 3-1
4 PLANS FOR PERFORMING GENERAL SOFTWARE DEVELOPMENT ACTIVITIES 4-1
4.1 Software Development Processcoviniiii it 4-1
42 General Plans for Software Development o it 4-1
42.1 Software Development Methods i, 4-1
4.2.2 Standards for Software Products i i i, 4-2
4221 Software Design Standards i, 4-2
4.2.2.2 Software Coding Standards i, 4-2
42.2.3 Software TestStandards, 4-3
42.3 Reusable Software Products it 4-4
4.2.3.1 Incorporating Reusable Software Products 4-4
4.2.3.2 Developing Reusable Software Products 4-4
42.4 Handling of Critical Requirementso iiiiiii ... 4-4
4.2.4.1 Safety ASSUTANCEottt ittt inniaannnnns 4-5
42,42 Security ASSUIANCEutnen e tnenenrnoneannnsensnens 4-5
42,43 Privacy ASSUIANCE .. oottt i it et nenenannennnns 4-5
4.2.4.4 Assurance of Other Critical Requirements 4-5
4.2.5 Computer Hardware Resource Utilizationt 4-5
42.6 RecordingRationaleo i e 4-5
427 Accessfor Acquirer Reviewt 4-5
5 PLANS FOR PERFORMING DETAILED SOFTWARE DEVELOPMENT ACTIVITIES 5-1
5.1 Project Planning and Oversight i i 5-1
5.1.1 Software Development Planning i, 5-1
5.1.2 Software Test Planningo ittt iniiannnnn. 5-1
5.1.3 System TestPlanningo ittt i, 5-1
5.1.4 Software Installation Planningc it enen .. 5-1
5.1.5 Software Transition Planning i, 5-1

5.1.6 Following and Updating Plans, Including the Intervals for Management

ii

) %Z/ﬂ,@

Section

5.2

5.3

5.4
5.5
5.6

5.7

5.8

59

5.10
5.11
5.12

Review ... e 52
CONTENTS (cont’d)

Page

Establishing a Software Development Environment 5-2
5.2.1 Software Engineering Environment 0.0t 5-2
522 Software Test Environmentcouviiiiineerinrenninneennnn. 52
523 Software Development Libraryo iiiiiiiineiennn.. 5-2
5.2.4 Software Development Files i i, 5-2
5.2.5 Non-deliverable Software i 5-3
System Requirements Analysisoiueiuiiiinenennrnirninneneennns 5-3
5.3.1 Analysisof UserInputcoiiuiiiiiiiiiin i iiniieenannn. 5-3
5.32 Operational Conceptoviiniiiiiii i it e 5-4
533 SystemRequirementso i i i 5-4
System Designt i i i e e e e 5-4
Software Requirements Analysisutetnirinn e inneennnneennns 5-4
Software Designo e e e 5-4
5.6.1 CSCl-wide Design Decisionsot iiniiiiiineinenennnn. 5-4
5.6.2 CSCI Architectural Design oo ittt ieiineeneennnns 5-4
5.6.3 CSCIDetailed Designcovvininiin ittt iieeieenenn, 5-5
Software Implementation and Unit Testing 0 viiiiinrnennn..n. 5-5
5.77.1 Software Implementation e, 5-5
5.7.2 Preparing for Unit Testingciiiiiiiiiiiiiiiiniiinennnnnnns 5-5
573 Performing Unit Testinguvernnnnne i iiiie e, 5-5
5774 Revisionand Retestingottt 5-5
5.7.5 Analyzing and Recording Unit TestResults 5-6
Unit Integration and Testingcunttiiiiiiiiir ittt it iieiianernnnns 5-6
5.8.1 Preparing for Unit Integrationand Testingccccunn.. 5-6
5.8.2 Performing Unit Integrationand Testingc..cuvee..n. 5-6
583 Revisionand Retestingt e 5-6
5.8.4 Analyzing and Recording Unit Integration and Test Results 5-6
CSCI Qualification Testing ittt iie e eiineennnns 5-6
5.9.1 Independence in CSCI Qualification Testingc..cu.... 5-7
592 Testing on the Target Computer Systemccivevenn... 5-7
5.9.3 Preparing for CSCI Qualification Testingciiiennnen 5-7
5.9.4 Dry Run of CSCI Qualification Testingccceunn.. 5-7
5.9.5 Performing CSCI Qualification Testingc..iiiieieeiennnn. 5-7
59.6 RevisionandRetesting oo e 5-7
5.9.7 Analyzing and Recording CSCI Qualification Test Results 5-7
CSCVHWCI Integration and Acceptance Testingoovernvneennn.. 5-8
System Qualification TeStingouitnrtiin ettt iie e, 5-8
Preparing for Software Useo i i 5-8
5.12.1 Preparing the Executable Software i it 5-8
5.12.2 Preparing Version Descriptions for User Sites 5-8
5.12.3 Preparing UserManuals oo iiieiiiiiiinnnennn.. 5-8

iii

o
Jo

5.12.3.1 Software Users Manual oovuut, 5-8
5.12.3.2 Software Input/Output Manual 5-8
CONTENTS (cont’d)
Section Page
5.1233 Software Centers Operators Manual 5-9
5.12.3.4 Computer Operation Manuals 5-9
5.12.4 Installation at User SIeSo vtr ittt i iieie e eia e 59
5.13 Preparing for Software Transitiono it iiinniineenann. 59
5.14 Software Configuration Managementc.coiituiiininennneennnnn. 5-9
5.14.1 Configuration Identificationottt rnnnn.. 59
5.142 Configuration Controlottt et it it 5-10
5.14.3 Configuration Status Accountingc.cutiriniiirrennnenennn 5-10
5.14.4 Configuration Auditsottt it 5-10
5.14.5 Packaging, Storage, Handling, and Delivery 5-10
5.15 Software Product Evaluationo iiiiiiiiniiniiiieiianenann 5-10
5.16 Software Quality ASSUIANCEvvvvirinen et ie e ereneenaennnnnnnn 5-11
5.17 Corrective ACHON . ..« o vttt ittt i it ie t et e et e 5-11
5.17.1 Problem/Change Reportscceiiiniinniiiinenennnnnnenns 5-11
5.17.2 Corrective Action SYSteIM . .. c o vttt ittt e i teeannernennnns 5-11
5.18 Progress Reportingooii ittt i e e 5-13
5.19 Other Software Development Activities viiiiiiineennenn.n. 5-13
5.19.1 Risk Management, Including Known Risks and Corresponding Strategies . . 5-13
5.19.2 Software Management Indicators i 5-14
5.19.3 Security and Privacyooiuiiiiiiin i i i 5-14
5.19.4 Subcontractor Managementc.eueeernnenannnannaanns 5-14
5.19.5 Interface with Software Independent Verification and Validation Agents .. 5-14
5.19.6 Coordination with Associate Developers 5-14
5.19.7 Improvement of Project Processesc.euiiiieeineinenen.n 5-14
5.19.8 Other Activities Not Covered Elsewhere inthe Plan 5-15
6 SCHEDULES AND ACTIVITY NETWORK i i e i i 6-1
7 PROJECT ORGANIZATION AND RESOURCESttt ittt i e e 7-1
7.1 Project Organizationuuiiuuiiiiuneineiineenneennanennann 7-1
7.2 PrOJeCt ReSOUICES . o vttt e i i e it e e et it et et et 7-2
T2.1 Personmel e e s 72
722 Facilitiesttt i i i e e e s 7-2
7.2.3 Acquirer Furnished Equipment, Data, and Documentation 72
B N TS .o e e e e e 8-1
8.1 A CTOIYINS . .ttt i e e e e e e e e e 8-1
8.2 Definitions e e 8-1

v

?b \/9?7("

Figure

5-1

Sample software problem report

FIGURES

..

vi

vii

Table

6-1

TABLES

Schedule of software development activitiesc...ceiiirnrn e rnenaennn

viii

1 SCOPE

This document establishes the Software Development Plan (SDP) to be implemented by the Center for Nuclear
Waste Regulatory Analyses (CNWRA) for the development and release of the 3DStress version 1.3 software
application.. The software will be provided to the government (acquirer) without proprietary restrictions.

1.1 Identification

This SDP applies to software modifications and corrections to be made to version 1.2 of the 3DStress
application. The modified code will be identified as 3DStress version 1.3.

1.2 System Overview

The 3DStress application is used by scientists and engineers to study the relationship between static
stress fields and geologic faulting. 3DStress utilizes user defined stress fields to compute the likelthood of fault
displacement based on the fault orientation. 3DStress provides user input, computation, and data visualization
tools to create an interactive environment in which various stress models may be studied and explored
efficiently.

3DStress executes on a Silicon Graphics workstation running the IRIX operating system. The
application does not communicate or interface with any other computer system or software application.

1.3 Document Overview

This SDP defines the plan for management, development, and software maintenance for the 3DStress
software application. This document contains the procedures to address the following program management
tasks:

Software design practices

Software Quality Assurance
Software configuration management
Software engineering standards
Software development process
Organizational structure

Schedule

@ ae T

These guidelines will ensure the efficient utilization of project resources to deliver a high quality
software product in a timely manner.

1.4 Relationship to Other Plans

This SDP is not related to any other plan.

1-1

.
2 REFERENCED DOCUMENTS

The following documents provide guidelines for software development and documentation activities. In the
event of conflict between this document and those referenced herein, the contents of this document shall be
considered superseding requirements.

CNWRA-TOP-18 1 MAY 98 Development and Control of Scientific and
Engineering Software

2-1

3 OVERVIEW OF REQUIRED WORK

3.1 General

CNWRA has modified version 1.2 of 3DStress to enhance software performance, provide additional
capabilities and correct software defects. All functionality provided by the current version will be duplicated
or replaced in the new version. The host hardware platform for 3DStress will remain a Silicon Graphics
workstation running version 6.x or 5.x of the IRIX operating system.

CNWRA will perform the software requirements analysis, design, development and testing necessary
to deliver a reliable software and documentation product at the end of the development project.

3.2 Software Functionality

The 3DStress application calculates either the slip tendency or dilation tendency of one or more
geologic faults for a static three dimensional stress field. The application displays various data plots in which
colors and 3D surfaces are rendered to convey the computational results to the software user. 3DStress will
read data files containing fault geometry information and will save copies of the various display windows for
hard copy output or as input to other software applications.

3.3 Software Design and Development

The new version of 3DStress will be designed to meet or exceed the requirements for the existing
application version.

All software will be developed in the C++ programming language unless highly specialized coding is
required for performance beyond the ability of the commercial compiler. A commercial source control product
will be employed to track and coordinate all modifications to the software source code.

Like the existing version, the new 3DStress application will operate in a stand-alone mode requiring
operator control for the execution of all software operations. The application will retain the existing man-
machine-interface based on the X Windows program environment and the Open GL graphics rendering library.

All new software development and modifications will be done in accordance with CNWRA TOP-18.
All existing code being reused will not be unnecessarily modified or documented to CNWRA-TOP-18. Reused
code will consist of code used as is or with only minor customization for use with 3DStress version 1.3.

3.4 Hardware Configurations

The 3DStress software application will operate on a single Silicon Graphics computer platform. The
software will operate on any SGI equipped with a monitor, keyboard, mouse and removable media drive for
software installation. Due to the extensive computational nature of 3DStress, CNWRA recommends the
following hardware configuration for acceptable calculation and display performance:

200 MHz Iris Processor or better with floating point coprocessor
128 Mbytes RAM
High Impact graphics board

3-1

R biggg,

9 GB hard drive

19" monitor or larger

8 mm Tape or Digital Audio Tape drive
CDROM

Network connection

3-2

9(’\%30

4 PLANS FOR PERFORMING GENERAL SOFTWARE
DEVELOPMENT ACTIVITIES

The following sections outline plans for performing general software development activities for the 3DStress
software application.

4.1 Software Development Process

CNWRA will utilize a Grand Design strategy for development of the 3DStress application. The Grand
Design approach results in a single software build and is appropriate for this project because:

a. The 3DStress software requirements are well known and documented in the existing 3DStress
software documentation.

b. The 3DStress application is not a large development effort and can be accomplished in a short
time frame.

c. Once the final software requirements are specified the development schedule will be firm and

will not be altered due to changing technical requirements.
4.2 General Plans for Software Development

The following sections define the software development practices and standards to be applied to the
3DStress software development effort.

4.2.1 Software Development Methods

For the same reasons the Grand Design program strategy was selected, the classic life cycle method
of software development will be employed. The classic life cycle method involves requirements analysis, design,
coding, module testing, integration, system level testing and implementation.

All software will be developed in the C++ programming language unless specialized coding is required
for software performance beyond the capability of the C++ compiler. Any deviations from the use of the C++
compiler will be reviewed by the software development team to determine the impact on related software
modules.

CNWRA will base the C++ software design and implementation of the following development
approaches:

1. Information Hiding - Decomposition of a system into units, such that each is characterized by
its knowledge of a design decision which it hides from all others. The design decision may
relate to either a routine or data. Access to hidden data or routines will be controlled through
well defined interfaces with limited update privileges.

2. Encapsulation - Related data and data processing/manipulation processes will be organized
or structured as classes reflecting 3DStress component organization, interfaces and
processing. Subclasses will be derived from parent classes until the child class represents a
unit process or interface in enough detail to express the class behavior as data variables and

4-1

2

member functions.
4.2.2 Standards for Software Products

The following sections define the standards to be followed in developing the software requirements,
design, coding, test procedures and documenting test results for the 3DStress development project.

4.2.2.1 Software Design Standards

Software design is the process by which requirements are translated into software representations using
structured analysis techniques. A preliminary software design will define modifications to existing or additional
3DStress computational and/or display capabilities. These capabilities will be mapped to software classes by
functional and data access requirements. A subsequent refinement of the design will lead to detailed class
definitions optimized for efficient software operation.

Throughout the design process, the quality of the evolving design will be reviewed by the software
developer with the software or project manager. The software team will adhere to the following design quality
criteria:

1. The design will be modular and logically partitioned into components that perform distinct
functions.

The design will contain distinct classes reflecting the modular design of the software.
The design will lead to software modules that exhibit independent functional characteristics
The design will strive to simplify user interfaces.

The design will incorporate the concept of abstraction, enabling the designer to simplify and
reuse software components.

SRR

4.2.2.2 Software Coding Standards

Coding will translate the software design into C++ language software files and will begin after the detailed
design has been completed and reviewed with the project and element managers. CNWRA will code the
software to have the following characteristics:

Ease of code to design translation
Maximum compiler efficiency
Maximum use of development tools
Maintainability

Ealb el M

CNWRA will employ a coding style that stresses simplicity and clarity. This approach will be applied
to data declaration, statement construction, and data input and output. This coding philosophy will enhance
the software readability while simplifying the test/debug/implement portion of the software development cycle.

4.2.2.2.1 Headings

Each software unit will begin with a unit header that explains the following:

42

2

Description and purpose of the operation
General unit design

Initialization

Global interactions (if any)

Error conditions and handling

AN o e

4.2.2.2.2 Comments

Source code will be explained with comments. Comments will explain the intended operation, logic
and possible error conditions associated with code sections. General comments will precede code sections while
detailed comments will be interspersed in the code. Comments will be written for readers with moderate
software comprehension.

42,223 Variable Naming

Names of variables and classes will be descriptive and indicative of program activity. Names shall
avoid the use of abbreviations, mnemonics and jargon within the constraint of size limitations. Comments will
be used to explain the role of all non-trivial variables and classes at the time of declaration. Names will adhere
to consistent formats across all code modules. This will include the use of capitalization, under scores and
unique letter combinations to identify specific classes of variables.

4.2.2.2.4 Restrictions

Previous versions of the 3DStress application software were developed using the C/C++ programming
language and incorporated function calls to various operating system, X Windows, and Open GL libraries
bundled with each Silicon Graphics hardware platform. No restrictions will be placed on the use of additional
software libraries except that the use of all third party library products will be documented in the source code
and software version or release description.

Also, the software team will restrict its use of multiple inheritance to only those version 1.2 base
classes already utilizing multiple inheritance. The use of multiple inheritance is discouraged and the software
developers will also attempt to avoid mixing traditional C function calls with their equivalent C++ counterparts.

4.2.2.2.5 Complexity

Code aggregates will be limited to the level that a software programmer can understand them without
in-depth study. Individual coding statements will be simple and direct and will not be convoluted for esoteric
or marginal efficiency gains. Individual source code statements will be simplified by avoiding complicated
conditional statements, tests on negative test conditions, and unnecessary nesting in loops or conditions. Source
code statements will use parenthesis to clarify statement content. Related code such as loops, blocks and cases
will be grouped and commented as a functional entity.

4.2.2.3 Software Test Standards

Software testing accounts for a large percentage of technical effort in the software development
process. The objective of software testing is to identify errors. To fulfill this objective, CNWRA will utilize

4-3

aseries of steps in testing the software first at the unit level, and then progressing to the integration and system
levels.

Unit level tests will concentrate on functional verification of software modules prior to incorporation
into the program structure. Unit testing makes heavy use of white box testing techniques to exercise specific
paths in a module’s control structure to maximize error detection. After unit testing, modules are assembled
to form the complete software package.

Integration testing addresses reliability issues associated with program verification and construction.
Software modules must work in concert to provide program functionality. Integration testing reveals errors in
module interactions and deficiencies in meeting functional requirements. After successful integration testing,
a set of high order system tests are conducted.

System validation testing will demonstrate traceability to software requirements, and will provide
assurance that software meets functional, behavioral and performance requirements. The validated software
will then be installed in an operational environment to demonstrate system performance.

4.2.3 Reusable Software Products

The following sections outline the approach for incorporating reusable software products and
developing new reusable software for the 3DStress software application.

4.2.3.1 Incorporating Reusable Software Products

CNWRA will investigate several potential sources of reusable software for the 3DStress application.
Version 1.2 of 3DStress is written in the C++ programming language and several software modules will be
incorporated directly into version 1.3. Wherever possible, existing software will be analyzed to determine if
software modifications are necessary to enhance the reusability of the source code in future software versions.

A second source of reusable software will be in the form of commercial device drivers, function and
class libraries, operating system resources and documentation generators. Wherever possible and advisable,
CNWRA will identify commercial products for incorporation or utilization in the development of the new
version of 3DStress.

4.2.3.2 Developing Reusable Software Products

This development project will apply good software development techniques in developing the new
3DStress version. By combining good software development practices with the use of C++, which lends itself
to reuse through class inheritance, the 3DStress project will result in some software that is reusable. However,
itis not the goal of this project to develop reusable software at the expense of software efficiency or simplicity.

4.2.4 Handling of Critical Requirements

The following sections outline the approach for handling critical requirements for the 3DStress project.

oy

4.2.4.1 Safety Assurance
3DStress software activities do not require safety assurances. This paragraph has been tailored out.
4.2.4.2 Security Assurance

The 3DStress application does not contain any security related procedures or data. This activity is
tailored out.

4.2.4.3 Privacy Assurance

The 3DStress application will not contain any privacy related procedures or data. This activity is
tailored out.

4.2.4.4 Assurance of Other Critical Requirements

Requirements deemed critical by the technical directive will be presented by the acquirer and will be
incorporated into this plan as appropriate.

4.2.5 Computer Hardware Resource Utilization

The 3DStress application will be developed, tested and executed on existing CNWRA Silicon Graphics
workstations. No additional hardware resources are required for this development effort.

4.2.6 Recording Rationale

Software development activities will be documented in Software Development Files (SDFs) maintained
by individual software developers. These files will contain engineering assumptions as well as standard
software development information. Rationale will be recorded and submitted to the project manager at the
conclusion of the development effort. Key decisions and rationale will be discussed during technical and
management reviews throughout the development project.

4.2.7 Access for Acquirer Review

Throughout the project performance period, the CNWRA project team will be available for telephone
discussions regarding the development effort. All development activities will take place in the CNWRA GIS
laboratory, that is accessible to acquirer personnel.

45

2l 3/;599

5 PLANS FOR PERFORMING DETAILED SOFTWARE
DEVELOPMENT ACTIVITIES

The following sections outline the detailed Software Development Activities for the 3DStress project.
5.1 Project Planning and Oversight

The following sections describe the approach to be employed for project planning and oversight of the
3DStress development project.

5.1.1 Software Development Planning

This document contains the pertinent information related to software development planning. The
project team through the Project Manager may make recommendations for improvements or changes to the
SDP. The Project Manager will determine the impact on schedule and cost and, if appropriate for the program,
present the SDP modifications to the acquirer for approval and contract modifications.

5.1.2 Software Test Planning

Based on the results of the Software Requirements analysis, a Software Test Plan (STP) will be
developed for qualification testing of the 3DStress application. This plan will describe the software test
environment, the test(s) to be performed, and the test schedule. Test results will be recorded in the SDFs and
will be available for acquirer review.

5.1.3 System Test Planning

The 3DStress application is a single build computer software configuration item (CSCI) that interacts
directly with the software user. System testing is not separable from CSCI testing and will thus be conducted
with CSCI testing. System level tests will be defined in the STP.

5.1.4 Software Installation Planning
The 3DStress application will be delivered on removable media. The installation procedure and scripts
will be designed, documented, and built to simplify the installation procedure. No hardware modifications are

anticipated for the migration from version 1.2 to 1.3. Recipients of version 1.3 will be responsible for internally
coordinating local software installations.

5.1.5 Software Transition Planning

CNWRA will document any version specific requirements associated with the new release of 3DStress.
Recipients of the new version will be responsible for internally coordinating any file translations necessary to
support version 1.3.

5-1

22/%3(0

5.1.6 Following and Updating Plans, Including the Intervals for Management Review

CNWRA will conduct the development and testing of 3DStress version 1.3 in accordance with the SDP
and STP. The software development team will meet periodically with the Project Manager to verify the
software process is adhering to these plans. At this time, no changes to the plans are anticipated. However,
should a plan need modification, the Project Manager will present the changes to the acquirer for approval and
coordinate their implementation with the development team.

5.2 Establishing a Software Development Environment

The following sections outline the approach for establishing, controlling and maintaining the software
environment for the 3DStress project.

5.2.1 Software Engineering Environment

A single software development environment will be established for this project in the CNWRA GIS
Laboratory, Bldg. 189 at the CNWRA facility. One Silicon Graphics workstation will be used for all software
development processes. All printed materials, vendor CD’s, floppies and tapes will be stored in the GIS
Laboratory. Intermediate disk backups will be made to tape and will also be stored in the GIS Laboratory.

5.2.2 Software Test Environment

CNWRA maintains four SGI workstations for software development and GIS activities. One SGI will
be used for software development while the other SGI machines will be available for software and installation
testing.

5.2.3 Software Development Library

Thelead software developer will serve as the software librarian and will have primary control over the
software development library. Because the software development team is small, all team members will have
access to the library in the absence of the librarian. The librarian will establish a working library on the
development Silicon Graphics workstation. Both libraries will be subdivided into a subdirectory structure
designed to contain deliverable documents, software units, SDFs, and commercial software products.

5.2.4 Software Development Files

Informal Software Development Files (SDFs) will be created for the 3DStress software units. The
SDFs will be created prior to the initiation of detailed design and shall be maintained for the duration of the
project. They will be made available to the product evaluation team, quality assurance, and acquirer
representatives as requested. The SDF may reference information in other project documents as necessary. All
schedule and status data will be in other project documents. SDFs will be created and maintained by the
programming staff under the direction of the Project Manager.

The SDFs will be maintained predominantly in electronic form. The electronic form will be a
combination of plain ASCII and word processor files. If necessary paper submissions will be included in a
binder and referenced in the electronic form.

5-2

2
M 43(‘9

alb

SDFs will generally include the following information:

1. Record Sheet - The contents of the SDF are listed by item name and electronic name and
location. The engineer responsible for the SDF is identified with the due date, completion date,
originator sign-off, and reviewer sign-off.

2. Requirements Specification - All requirements that the CSU must satisfy are listed by
reference to the applicable sections of the Software Requirements Specification.

3. Interface Description - Global variables/constants, calling sequences, and input/output formats
are defined or referenced.

4. Preliminary Design - Preliminary design description.

5. Software Test Information - All test cases and test procedures are defined or referenced.

Concurrent with code walk-through, the reviewer will verify that the test plan fully tests
capabilities, interfaces, and design constraints.

6. Source Code Organization Description - A description of the location and directory structure
of the CSU source code as well as commercial products used in the CSU.
7. Test Results - At all levels, records of test results are maintained by test case identifier, tester,

date, and the revision status of test drivers, tools, database, and code tested. Significant
differences between expected and actual results will be explained..

8. Software Problem Reports - SPR forms shall be used to document problems encountered in
software and software documentation.

9. Notes - All explanatory materials relevant to the CSU are maintained in the section. Formal
deviation and waivers are also kept in this section.

10. Reviewers Comments - Reviewers comments on the other sections of the SDF are kept in this
section.

5.2.5 Non-deliverable Software

Where necessary, CNWRA will develop simulators to test software component functionality. The end
item software will not utilize these test fixtures and therefore will not be delivered, controlled or documented
to the software release standards.

5.3 System Requirements Analysis

The following sections describe the approach CNWRA will follow in developing the software system
design for the 3DStress application.

5.3.1 Analysis of User Input

3DStress operates as a stand-alone software application requiring user directives to control application
execution.- Additional features planned for version 1.3 will be analyzed to design an optimal user interface
environment. The primary user interface design criteria will be ease of operator control and the effective display
of computational results. At this time, no additional user input devices are anticipated beyond the traditional
input devices (keyboard, mouse) attached to standard SGI workstations.

5-3

5.3.2 Operational Concept

3DStress is designed to be an interactive software application utilized by research and scientific staff
at irregular intervals. The software is not intended to become an integral part of day-to-day operations.
Therefore an operational concept description will not be written for this application. This activity has been
tailored out.

5.3.3 System Requirements

Based on experience with 3DStress version 1.2 and planned modifications for version 1.3, no system
modifications are necessary for this release version.

5.4 System Design

Version 1.3 represents an incremental change to 3DStress version 1.2. The existing version 1.2 system
design will be utilized in version 1.3.

5.5 Software Requirements Analysis

This version of 3DStress is intended to be a functional replacement of the current application.
CNWRA will review and analyze the requirements for the new version to determine the operational concepts
and software specific requirements of the new CSCI. Software technology areas needed to implement the new
version will be evaluated with respect to technologies utilized in the current software revision. New
requirements will be categorized as new technology or extensions of existing capabilities. The results of this
analysis will be documented in the Software Requirements Description (SRD) as a reference for testing and
validating the new software version.

5.6 Software Design

The following sections describe the approach CNWRA will follow in preparing the software design
for 3DStress, version 1.3. The results of the software design process will be documented in the software
development files maintained by the development team members.

5.6.1 CSCI-wide Design Decisions

CNWRA will analyze the SRD to refine the existing concept of data and event management within the
current 3DStress application. The software team will prioritize event management and data processing tasks
according to their impact on overall system performance and functionality. From this prioritization, the team
will evaluate various models for allocating hardware and software resources during software execution. Any
modifications to the current CSCI event and data management concepts will be documented in the SDFs.

5.6.2 CSCI Architectural Design

Using the high-level resource allocation model, the software team will design an internal CSCI

NN
2l Zﬂ“"’

architecture to implement the major functional requirements specified in the SRD. This design will define any
new or modified classes of data and functionality necessary to implement the new software capabilities.

5.6.3 CSCI Detailed Design

CNWRA will refine the architectural design into individual software units by designing algorithmic
approaches for implementing specific software requirements defined in the SRD. Algorithm development will
focus on meeting or exceeding performance and functional specifications while adhering to the previously
defined communication, processing and event management framework.

5.7 Software Implementation and Unit Testing

The following sections describe the approach to be followed for software implementation and unit
testing for the 3DStress application.

5.7.1 Software Implementation

The software will be developed within the coding techniques described above in Section 4.2.1. All
software will be developed in the C++ programming language unless highly specialized coding is required for
performance beyond the ability of the C++ compiler to produce efficient binary executables. Any deviations
from the use of C++ will be approved by the Project Manager.

No relational databases are required for the 3DStress application. All system configuration and
geologic fault information will be maintained in plain ASCII text files or publicly defined binary file formats.
ASCII file formats are generally preferred for all files except very large data files where ASCII storage is
impractical.

5.7.2 Preparing for Unit Testing

Unit testing will be designed to verify the new software meets the detailed software design in the SDFs.
CNWRA will develop test cases using by calculating outputs from known or controlled inputs for each major
software unit. Controlled test cases will be computed using independent computations not relying on the newly

developed software. Information regarding the test case computations and results will be documented in the
SDFs.

5.7.3 Performing Unit Testing

As major software units are completed, the developer will conduct unit testing with test cases to verify
the expected results.

5.7.4 Revision and Retesting

As needed, the developer will revise and retest software units to ensure compliance with the
functionality described in the SDFs and SRD.

5-5

9’/) /939:

5.7.5 Analyzing and Recording Unit Test Results

Each iteration of testing and revision through the successful completion of the test case will be
documented in the applicable SDF. Persistent test failure by a software unit will be analyzed to determine if
failures are derived from an inadequate design, insufficient documentation, or improper coding practices.

5.8 Unit Integration and Testing

The following sections describe the approach to be followed for unit integration and testing for the
3DStress project.

5.8.1 Preparing for Unit Integration and Testing

Unit integration testing will be performed at the major software component level. CNWRA will develop
test cases and data in terms of inputs and expected outputs for the control subsystem. Information regarding
the test cases, procedures and results will be stored in the SDFs.

5.8.2 Performing Unit Integration and Testing

As major software units are ready for testing, the development team will conduct component level
testing with test cases and verify the expected outputs.

5.8.3 Revision and Retesting

As needed, the developer will revise and retest software components to ensure compliance with the
functionality described in the SDD and SRS.

5.8.4 Analyzing and Recording Unit Integration and Test Results

Each iteration of testing and revision through the successful completion of the test case will be
documented in the applicable SDF. Persistent test failure by a software component will be analyzed to
determine if failures are derived from an inadequate design, insufficient documentation, or fundamental errors
in the CSCI architectural design.

5.9 CSCI Qualification Testing

The intent of the CSCI qualification testing for the 3DStress application is to verify that the new
controller is functionally equivalent to the previous version and provides the additional capabilities described
in the SRD.

The following sections describe the approach to be followed for CSCI qualification testing for the
3DStress application.

5-6

5.9.1 Independence in CSCI Qualification Testing

The Project Manager will assign an individual from the CNWRA , CNWRA QA or SwRI staff who
has not participated in the design or development of the 3DStress to conduct formal testing of the CSCI.

5.9.2 Testing on the Target Computer System

All CSCI qualification testing will be performed on Silicon Graphics workstations available to the
CNWRA.

5.9.3 Preparing for CSCI Qualification Testing

Upon completion of the CSCI software, the software will be entered into the Configuration
Management (CM) system as the 3DStress product baseline.

The Software Test Plan (STP) and Software Test Procedures (STPr) will be given to the independent
software tester in preparation for the dry run CSCI qualification test.

5.9.4 Dry Run of CSCI Qualification Testing

The software developer will dry run the test procedures to ensure that they are complete, accurate and
are ready for witnessed testing. The results of the test will be recorded in the appropriate SDFs. Software
Problem Reports will be prepared for problems uncovered during the testing process.

5.9.5 Performing CSCI Qualification Testing

A witnessed qualification test will be conducted at CNWRA to verify and demonstrate that the
3DStress application meets the system and software requirements stated in the SRD. If additional revision and
retesting is required, the appropriate portions of the CSCI qualification test will be rerun after completion of
the revisions.

5.9.6 Revision and Retesting

Revisions, based on SPR (corrective action) processing, and retesting will be accomplished prior to
final approval of the qualification testing. Where necessary SDFs will be updated to reflect the revisions and
retesting.

5.9.7 Analyzing and Recording CSCI Qualification Test Results

When the CSCI qualification testing is competed, the test results will be recorded in a Software Test
Report. If revisions to the 3DStress application were made during the qualification test process, the qualified
software will be resubmitted to CM as the new baseline version.

5-7

Al 9 /Qg\a

5.10 CSCI/HWCI Integration and Acceptance Testing

The 3DStress application is a single build CSCI designed to run on Silicon Graphics workstation.
CNWRA possesses four different Silicon Graphics workstation configurations. 3DStress will be tested on
CNWRA SGI machines that were not used in the software development process.

CNWRA has prepared a standard installation test case that shall be run after software installation to

verify correct software installation. This acceptance test procedure is documented in the 3DStress on-line help
manual.

5.11 System Qualification Testing

The 3DStress application does not interface other computer hardware or software systems. This
paragraph has been tailored out.

5.12 Preparing for Software Use

The following sections describe the approach to be followed for preparing the 3DStress application
for distribution to existing users.

5.12.1 Preparing the Executable Software
CNWRA will prepare the executable software for delivery to the user community. This preparation
will include script and data files, executables, shared object libraries, configuration files, and any other

software files required to operate the application. These files will be stored on standard removable storage
media such as CDs or tapes.

5.12.2 Preparing Version Descriptions for User Sites

CNWRA will prepare a Software Release Notice for delivery with the 3DStress application to identify
and describe the released software version for tracking and control purposes.

5.12.3 Preparing User Manuals
The following sections outline the preparation of the user manuals for the 3DStress application.
5.12.3.1 Software Users Manual

CNWRA will prepare a Software User Manual (SUM) which describes the installation and operation
of the 3DStress application. The SUM will describe all user input and activities required to control and review
the computational results generated by 3DStress.

5.12.3.2 Software Input/QOutput Manual

5-8

20/
2 éﬁb

A separate Software Input/Output manual will not be prepared for this application. This activity has
been tailored out.

5.12.3.3 Software Centers Operators Manual

A separate Software Centers Operators Manual will not be prepared for this application. This activity
has been tailored out.

5.12.3.4 Computer Operation Manuals

A separate Computer Operation Manuals will not be prepared for this application. This activity has
been tailored out.

5.12.4 Installation at User Sites

CNWRA will support NRC on-site installation of 3DStress as needed. Support for other 3DStress
users will be arranged on a case by case basis.

5.13 Preparing for Software Transition

CNWRA will retain rights to the 3DStress application executable and support files. No software
transitions to another organization are planned at this time. This activity has been tailored out.

5.14 Software Configuration Management

Software configuration management (CM) is the process by which baselined documents and source
code are identified and changes are identified and recorded. All deliverable documents and source code will be
placed under CM.

3DStress CM will be the responsibility of the Project Manager. The Project Manager will determine
when source and documents are to be submitted to CM and will control the release, modification and
resubmission of these materials to CM. The following sections define the CM process that will be followed by
the 3DStress Project Manager.

5.14.1 Configuration Identification

Two software products will be placed under CM for the 3DStress project: software source code and
application executables produced during the project.

The 3DStress application is a single build CSCI and will have a single version number. Any
commercial software products incorporated in the control subsystem software will have vendor version
numbers that will be documented in the Software Release Notice, but these numbers will only be used internally
and will not be reflected in the CNWRA assigned version number. The CNWRA software version numbering
will follow the following format:

12.34

Where: 12 is a one or two digit version number which identifies the major software version, starting
with the number 1. Changes to basic functionality or major enhancements will cause this
number to be incremented.

.34 1is aone character separator (.) and two digit revision number. This number will start with

00 and will be incremented as minor software changes are made in response to Software
Problem Reports (SPRs).

5.14.2 Configuration Control

On initial and subsequent release to CM of software products, the Project Manager will follow the
procedure listed below:

1. The Project Manager will prepare a Software Release Notice (SRN) form, refer to CNWRA-
TOP-18 for the appropriate format.

2. If this is the final delivery to the acquirer, the Project Manager will make sufficient copies of
the deliverable material as required by the acquirer.

3. The Project Manager will provide the CNWRA QA group a copy of all products to be placed
in CM

5.14.3 Configuration Status Accounting

The 3DStress Project Manager will prepare and maintain records of the configuration status of all
software documentation and the 3DStress CSCI that have been placed under configuration control. These
records will be maintained for the life of the 3DStress application. The records will contain the current

version/revision/release of each entity, changes to the entity since being placed under CM, and the status of
open SPRs affecting the entity.

5.14.4 Configuration Audits

The 3DStress Project Manager will make configuration management records available on a non-update
basis for audit by the CNWRA or acquirer representatives.

5.14.5 Packaging, Storage, Handling, and Delivery

The software and documentation will be stored in paper and electronic form. Documentation will be
stored on 3.5” floppy disks or CDs in WordPerfect for Windows 8 or later format. End item software will be
delivered on 3.5” floppy disks, CD-ROM or 8mm tape in plain ASCII text file format.

5.15 Software Product Evaluation

The 3DStress application will be demonstrated for potential clients but no plans exist to distribute
evaluation copies of the software. This activity has been tailored out.

5-10

5.16 Software Quality Assurance
CNWRA will follow a two-fold approach to building a quality product for the 3DStress application:

Quality Development - define and follow good software development practices throughout the
development effort. For the 3DStress project, CNWRA will use internal development staff for
planning, coding and testing who will adhere to the plans and implementation procedures
outline in this SDP.

Quality Assurance - ongoing verification that the process are being followed by the
development team. CNWRA will utilize the CNWRA QA department for review, evaluation
and recommendations.

CNWRA QA (CQA) will monitor the software development process to verify the procedures and
practices identified in this plan are being utilized in the 3DStress development. Evaluations will be informal
and deviations from this development plan will be brought to the attention of the Project Manager. Continued
deviation from the development plan will require notification of CNWRA management to discuss corrective
actions or initiate an update of the software development plan to reflect changes in the project scope.

5.17 Corrective Action

The corrective action process is uniform for any software unit requiring correction. The formal
corrective action process becomes effective once the 3DStress control subsystem CSCl enters the CM system.
All corrective actions (CA) are initiated with a Software Problem Report (SPR). The SPR form to be used for
this project is described in Section 5.17.1. Document or software comments from the contracting agency or
IQA are not required to be submitted on the SPR form, other formats are acceptable. Proposed enhancements
to the system may also be initiated through the use of the SPR.

5.17.1 Problem/Change Reports

An example SPR form is shown in Figure 5-1. To accommodate lengthy explanations or supporting
material, attachments to the forms may be referenced in the appropriate fields. All SPRs are maintained in the
project file by the Project Manager for the duration of the project and will be made available to acquirer
representatives upon request.

5.17.2 Corrective Action System

The corrective action system centers around the submission of the SPR. SPR processing will generally
adhere to the following sequence:

1. Problem identification and report submission. An SPR can be generated by any project
member or software user who detects a problem or recognizes a required enhancement to a
baselined document or software program.

7

)

P \en K ¥ N

5-12

Software Problem/Change Report

Project:

Originator:

Date:

Number:

Problem/Change Name:

Priority

Affected Software Element:

Description:

Analysis:

Modifications by:

Date:

Version:

Implementation:

Figure 5-1. Sample softw

are problem report

5-13

2. Logging. Following receipt of an SPR (or equivalent), the requested CA is entered into a CA
log sheet. This log sheet facilitates tracking and reporting of all CA’s issued during the life
of the project. The Project Manager will then assign the CA to a software engineer for
analysis.

3. Analysis. Analysis will be performed by the assigned engineer to determine the category of
the CA: software, documentation, design, user, of requirement problem. The analysis also
needs to determine what priority level should be assigned to the problem. Analysis of problems
thatlead to modification of software need further documentation, including test cases in order
to assure that the problem has indeed been resolved.

4, Approval. After analysis the Project Manager will decide if a software or document change
is necessary. The Project Manager is also responsible for final determination of the category,
priority, and type of action required.

5. Implementation. During implementation, the affected products are “checked out” from the
appropriate library and corrections made. Appropriate unit tests and integration tests mustbe
determined and performed.

6. Release. Once the corrections have been made, they must be verified/tested at the appropriate
software development level and/or CSCI testing depending on the level and type of change.
The corrected products are reinserted into the baseline, and the products returned to
configuration control. Following this they are ready for release to the acquirer.

5.18 Progress Reporting

During the 3DStress development, brief monthly project reports in the form of the Program Manager’s
Periodic Report will be produced by CNWRA.

5.19 Other Software Development Activities

The following sections describe the approach to be followed for other software development activities
for the 3DStress application development project.

5.19.1 Risk Management, Including Known Risks and Corresponding Strategies

Areas of technical risk will be investigated as early in the development cycle as possible to allow
adjustments in software design if required.

Schedule and cost problems are normally identified by use of CNWRA Project Manager data sheets.
This control is currently being used in all projects. In addition, Project Managers hold timely project review

meetings with all key project personnel to discuss, review, and solve schedule, cost, and technical problems.

The initial step in risk mitigation is identification of the risk, its potential impact on the project
performance, and likelihood of developing into a problem. Risks are identified by careful review of all project
aspects by analysis of the WBS. Risks are then tracked through the project until task completion to monitor
their impact on cost, schedule and technical performance.

During each reporting period, work projections are made for the next reporting period, and costs are
estimated. Progress for both performance and cost is evaluated against these projections. When progress does

5-14

&}”‘/

hik

not match projections, discussions are initiated within the project staff, and then with division management to
resolve the problems, i.e., mitigate risks.

5.19.2 Software Management Indicators

The Project Manager will monitor the software management indicators listed below on an ongoing
basis against the proposed project schedule and milestones.

Requirements volatility: total number of requirements and requirements changes over time.
Software staffing: planned and actual staffing levels over time.

Software complexity: complexity of each software unit.

Software progress: planned and actual number of software units designed implemented, unit
tested, and integrated over time.

5. Milestone performance: planned and actual dates of key project milestones.

R

5.19.3 Security and Privacy

The 3DStress software application does not contain any extraordinary security or privacy issues
(Section 4.2.4.2 & 4.2.4.3). This activity is tailored out.

5.19.4 Subcontractor Management

CNWRA does not plan to utilize subcontractors on the 3DStress development project. This activity
has been tailored out.

5.19.5 Interface with Software Independent Verification and Validation Agents

CNWRA will utilize in-house staff for review of software quality issues and internal staff for
verification and validation. This activity has been tailored out.

5.19.6 Coordination with Associate Developers

The 3DStress application will be developed using only internal staff. No other associated developers
will be used. This activity has been tailored out.

5.19.7 Improvement of Project Processes

The Project Manager will periodically assess the processes used on the project to determine the
suitability and effectiveness. Based on these assessments, the Project Manager will identify any necessary and
beneficial improvements to the process, and identify these changes to the acquirer in the form of proposed
updates to this Software Development Plan. All proposed changes will have acquirer approval prior to
implementation.

5-15

> %ge

5.19.8 Other Activities Not Covered Elsewhere in the Plan

CNWRA plans to utilize the consulting services of Dr. Alan Morris, University of Texas at San
Antonio during the development of the 3DStress application. Dr. Morris is one of the original developers of
the 3DStress algorithms and will be utilized as a resource for software requirements development and software
validation.

5-16

6 SCHEDULES AND ACTIVITY NETWORK

Table 6-1 presents an overview of the significant milestones that will be completed during this project.

Table 6-1. Schedule of software development activities

Activity

Planned/Actual Completion Date

Software release v.1.1

August 2, 1996

Software release v.1.2

November 12, 1996

Software Requirement Document (v.1.3)

August 5, 1997

Software Planning Document (v.1.3)

July 13, 1998

Acceptance Testing

July 15,1998

Verification Testing (v.1.3)

July 15, 1998

Software Test Report

Tuly 17,1998

User Guide to NRC (v.1.3)

June 29,1998

Software release (v.1.3)

August 12,1998

3DStress v.1.3 to NRC

August 14, 1998

6-1

.7

7 PROJECT ORGANIZATION AND RESOURCES

The following sections describe the project organization and resources to applied to the 3DStress application
development.

7.1 Project Organization

On a functional basis, CNWRA conducts programs under the Project Manager concept. The Project
Manager is delegated authority for overall technical direction and administrative supervision of the project.
The Project Manager reports directly to the Element Manager, who in turn reports directly to the Technical
Director. This structure permits ready access to higher management to quickly resolve any problems which
might arise. The quick access to management allows for close schedule coordination on projects of an
interdivisional nature. Thus, once a project team is formed, the Project Manager has vertical line authority over
team members for the duration of the project.

The support staff of CNWRA, including such functions as accounting, contract administration,
purchasing, computer processing, report reproduction, library, and security, are at the disposal of the Project
Manager. The direct availability of the support staff leads to effective project management and eliminates
delays which might be experienced in a less flexible system.

CNWRA Quality Assurance reports directly to the CNWRA President. CNWRA QA performs audits
of the software development process. CNWRA QA ensures conformance to contractual requirements and
determines the adequacy and effectiveness of project activities.

Management controls are imposed by CNWRA to ensure progress and eventual delivery of end items
in accordance with the agreed upon schedule and cost. Scheduling control is maintained by short interval
updating of the approved schedule. As a minimum, bar chart project schedules with clearly defined milestones
are prepared. The charts are divided into appropriate phases, tasks and, if needed, subtasks. These charts and
work breakdown structures (WBS) are entered into a computer to facilitate monitoring and updating.

Cost status reports are prepared and distributed to project managers every two weeks at the close of
the normal pay period. Labor data for these reports are obtained from individual time sheets which all
employees are required to complete daily. Charges are listed by project number, as well as phase or task
numbers. Itemized labor, materials, travel, reproduction services, and overhead for the preceding two-week
accounting period are given, including commitments made which have not yet resulted in expenditures. Also,
the balance of project funds available is noted. Every four weeks, a computerized summary of the two
preceding biweekly reports is prepared and given to individual project managers.

The Project Manager has full responsibility for all software products created and/or utilized by the
project. The data items, documentation reports, drawings, and manuals constitute project team activity
paralleling the hardware and software development activities. The same team members performing the
hardware and software tasks will also provide direct input and analysis for all data supplied on this contract.

93’79»

7.2 Project Resources

The following sections describe the resources that CNWRA will apply to the 3DStress application
development project.

7.2.1 Personnel

The software development team will be composed of software analysts experienced in the development
of Silicon Graphics Open GL software. Approximately 0.2 FTE’s and one summer employee will be
committed to the software development team. The Project Manager is responsible for coordinating the activities
of the software team project evaluations with the CQA department. Project management tasks will require
approximately 0.2 FTE’s.
7.2.2 Facilities

CNWRA will establish a development and testing environment for this project in the CNWRA GIS
Laboratory, Bldg. 189. The environment will consist of one Silicon Graphics development workstation and

three additional Silicon Graphics systems for testing and evaluation.

7.2.3 Acquirer Furnished Equipment, Data, and Documentation

No acquirer furnished software or equipment is required for this project

7-2

8 NOTES
8.1 Acronyms
CM Configuration Management
CNWRA Center for Nuclear Waste Regulatory Analyses
CSdl Computer Software Configuration Item
HWCI Hardware Configuration Item
IAW In accordance with
CQA CNWRA Quality Assurance
SDD Software Design Description
SDF Software Development File
SPR Software Problem Report
SQA Software Quality Assurance
SRD Software Requirements Description
STP Software Test Plan
STPr Software Test Procedures
SUM Software User’s Manual
SVD Software Version Description
SwRI Southwest Research Institute
WBS Work breakdown structure

8.2 Definitions

Acquirer
An organization that procures software products for itself or another organization.

Approval

Written notification by an authorized representative of the acquirer that a developer’s plans, design,
or other aspects of the project appear to be sound and can be used as the basis for further work. Such approval
does not shift responsibility from the developer to meet contractual requirements.

Architecture

The organizational structure of a system or CSCI, identifying the components, their interfaces, and a
concept of execution among them.

Associate Developer

An organization that is neither prime contractor nor subcontractor to the developer, but who has a
development role on the same or related system or project.

Behavioral Design

The design of how an overall system or CSCI will behave, from a user’s point of view, in meeting its
requirements, ignoring the internal implementation of the system or CSCL This design contrasts with
architectural design, which identifies the internal components of the system or CSCI, and with the detailed
design of those components.

8-1

Build

(1) A version of software that meets a specified subset of the requirements that the completed software
will meet. (2) The period of time during which such a version is developed. Note: The relationship of the terms
“build” and “version” is up to the developer; for example, it may take several versions to reach a build, a build
may be released in several parallel versions (such as to different sites), or the terms may be used as synonyms.

Computer Hardware

Devices capable of accepting and storing computer data, executing a systematic sequence of operations
on computer data, or producing control outputs. Such devices can perform substantial interpretation,
computation, communication, control, or other logical functions.

Computer program
A combination of computer instructions and data definitions that enable computer hardware to perform
computational or control functions.

Computer Software Configuration Item (CSCI)

An aggregation of software that satisfies an end use function and is designated for separate
configuration management by the acquirer. CSClIs are selected based on tradeoffs among software function,
size, host or target computers, developer, support concept, plans for reuse, criticality, interface considerations,
need to be separately controlled, and other functions.

Configuration Item

An aggregation of hardware, software, or both that satisfies an end use function and is designated for
separate configuration management by the acquirer.

Database
A collection of related data stored in one or more computerized files in a manner that can be accessed
by users or computer programs.

Deliverable software product

A software product that is required by the contract to be delivered to the acquirer or other designated
recipient.

Design

Those characteristics if a system or CSCI that are selected by the developer in response to the
requirements. Some will match the requirement; others will be elaborations of requirements, such as definitions
of all error messages in response to a requirement to display error messages; other will be implementation
related, such as decisions about what software units and logic to use to satisfy the requirements.

Developer
An organization that develops software products (“develops” may include new development,

modification, reuse, reengineering, maintenance, or any other activity that results in software products). The
developer may be a contractor or a Government agency.

? { {/" .
) 5

A collection of data, regardless of the medium on which it is recorded, that generally has permanence
and can be read by humans or machines.

Evaluation
The process of determining whether an item or activity meets specified criteria.

Firmware
The combination of a hardware device and computer instructions and/or computer data that reside as
read-only software on the hardware device.

Hardware Configuration Item (HWCI)
An aggregation of hardware that satisfies an end use function and is designated for separate
configuration management by the acquirer.

Interface

In software development, a relationship among two or more entities (such as CSCI-CSCI, CSCI-
HW(CI, CSCl-user, or software unit-software unit) in which the entities share, provide, or exchange data. An
interface is not a CSCI, software unit, or other system component; it is a relationship among them.

Joint review
A process or meeting involving representatives of both the acquirer and the developer, during which
project status, software products, and/or project issues are examined and discussed.

~ Non-deliverable software product
A software product that is not required by the contract to be delivered to the acquirer or other
designated recipient.

Process

An organized set of activities performed for a given purpose; for example, the software development
process.

Qualification testing
Testing performed to demonstrate to the acquirer that a CSCI or a system meets the specified
requirements.

Reengineering
The process of examining and altering an existing system to reconstitute it in anew form. May include

reverse engineering (analyzing a system and producing a representation at a higher level of abstraction, such
as design from code), restructuring (transforming a system from one representation to another at the same level
of abstraction), redocumentation (analyzing a system and producing user or support documentation), forward
engineering (using software products derived from an existing system, together with new requirements, to
produce a new system), retargeting (transforming a system to install it on a different target system), and
translation (transforming source code from one language to another or from one version of a language to
another).

Requirement
(1) A characteristic that a system or CSCI must possess in order to be acceptable to the acquirer. (2) A

mandatory statement in this standard or another portion of the contract.

Reusable software product

A software product developed for one use but having other uses, or one developed specifically to be
usable on multiple projects or in multiple roles on one project. Examples include, but are not limited to,
commercial off-the-shelf software products, acquirer furnished software products, software products in reuse
libraries, and pre-existing developer software products. Each use may include all or part of the software
product and may involve its modification. This term can be applied to software product (for example,
requirements, architectures, etc.), not just to software itself.

Software

Computer programs and database. Note: Although some definitions of software include documentation,
MIL-STD-498 limits the definition to computer programs and databases in accordance with Defense Federal
Acquisition Regulation Supplement 227.401.

Software development

A set of activities that results in software products. Software development may include new
development, modification, reuse, reengineering, maintenance, or any other activities that result in software
products.

Software development file

A repository for material pertinent to the development of a particular body of software. Contents
typically include (either directly or by reference) considerations, rationale, and constraints related to
requirements analysis, design, and implementation; developer-internal test information; and schedule and status
information.

Software development library (SDL)
A controlled collection of software, documentation, other intermediate and final software products, and
associated tools and procedures used to facilitate the orderly development and subsequent support of software.

Software development process
An organized set of activities performed to translate user needs into software products.

Software engineering

In general usage, a synonym for software development. As used in this standard, a subset of software
development consisting of all activities except qualification testing. The standard makes this distinction for the
sole purpose of giving separate names to the software engineering and software test environments.

Software engineering environment

The facilities, hardware, software, firmware, procedures, and documentation needed to perform
software engineering. Elements may include but are not limited to computer-aided software engineering (CASE)
tools, compilers, assemblers, linkers, loaders, operating systems, debuggers, simulators, emulators,
documentation tools, and database management systems.

Software product
Software or associated information created, modified, or incorporated to satisfy a contract. Examples
include plans, requirements, design, code, databases, test information, and manuals.

Software quality
The ability of software to satisfy its specified requirements.

Software support

The set of activities that takes place to ensure that software installed for operational use continues to
perform as intended and fulfill its intended role in system operation. Software support includes software
maintenance, aid to users, and related activities.

Software system

A system consisting solely of software and possibly the computer equipment on which the software
operates.

Software test environment

The facilities, hardware, software, firmware, procedures, and documentation needed to perform
qualification, and possibly other testing of software. Elements may include but are not limited to simulators,
code analyzers, test case generators, and path analyzers, and may also include elements used in the software
engineering environment.

Software transition

The set of activities that enables responsibility for software development to pass from one organization,
usually the organization that performs initial software development, to another, usually the organization that
will perform software support.

Software component/unit

An element in the design of a CSCI; for example, a major subdivision of a CSCI, a component of that
subdivision, a class, object, module, function, routine, or database. Software components may occur at different
levels of a hierarchy and may consist of other software units. Software units in the design may or may nothave
a one-to-one relationship with the code and data entities (routines, procedures, databases, data files, etc.) that
implement them or with the computer files containing those entities.

8-5

