
SOFTWARE RELEASE NOTICE

2. Project Title: Structural Deformation & Seismicity
Code Development

Project No. 20-1402-472

5. Summary of Actions

0 Release of new software

Release of modified software:

Enhancements made

4. Originator/Requestor: Joe Bangs

0 Corrections made

Date: 08/07/98

11 0 Change of access software

W

I I
6 . Persons Authorized Access

Name

David Ferrill
John Stamatakos
Larry McKague
Philip Justus (NRC)
Chuck Connor
Britt Hill
Ron Martin

Read Only/Read-Write

RW
RW
RW
RO
RO
RO
RO

Addition/Change/Delete

Enhancements include significant improvements to the user interface, ability to load coverages in
the 2D map and 30 fault viewer, leakage factor calculations, and Mohr Circle displays.

CNWRA Form TOP-6 (0.5198)

SOFTWARE SUMMARY FORM

19. Tape Drives:
Supplied on CD ROM

01. Summary Date:
08/07/98

04. Software Date:
08/06/98

20. Disk Units: 21. Graphics:
6 MB minimum Open GL

06. Software Title:

23. Software Availability: . Available 0 Limited 0 In-House ONLY

3DStress, Version 1.3

24. Documentation Availability: . Available 0 Inadequate 0 In-House ONLY

02. Summary prepared by (Name and phone) I 03. Summary Action:
Bruce Mabrito, (210) 522-5149

New Release
05. Short Title:

3DStress Version 1.3

07. Internal Software ID:
NONE

08. Software Type:

0 Automated Data System . Computer Program

0 SubroutineIModule

09. Processing Mode:

0 Interactive

Batch

Combination

11. Submitting Organization and Address:

CNWRAIS WRI
6220 Culebra Road
SanAntonio TX 18228

I
10. Application Area:

a. General: . ScientifidEngineering 0 Auxiliary Analyses
0 Total System PA
0 Subsystem PA 0 Other

b. Specific:

12. Technical Contact(s) and Phone:

Dave Ferrill, (210) 522-6082

13. Software Application:

3DStress is an interactive tool for analyzing the tendency for faults and fractures to slip or dilate based
on a user specified three dimensional stress state.

14. Computer Platform

Silicon Graphics (SGI)

18. Computer Memory
Requirements:

16 MB minimum

15. Computer Operating
System:

IRIX 5.3 or Higher

16. Programming
Language(s) :

17. Number of Source
Program Statements:

44379 lines
I C + + I

CNWRA Form TOP-4-1 (05/98) Y %54u&

SOUTHWEST RESEARCH INSTITUTETM
INTER-DEPARTMENTAL MEMORANDUM

DATE: June 27,2000

TO: 6 e s Patrick

FROM:

SUBJECT: Certificate of Registration No. TXu 924-657
SDStress, Ver. 1.3

Enclosed you will find a copy of the original Certificate of Copyright Registration 101- the
3DStress, Ver. 1.3 We will retain the original in the legal department.

Please be sure to display the letter “C” enclosed within a circle “0“ followed by the name of the
copyright claimant and the year of creation whenever you are referring to this computer software
program.

Enclosure
cc: David A. Ferrill

Budhi Sagar
Larry McKague

BAKER BOlTS 1.w

May 14, 2000

Louis Rodriguez, Esq.
Deputy General Counsel
Southwest Research Institute
6220 Culebra Road
San Antonio, Texas 78238

Re: U.S. Copyright Registration No. TXu 924-657
Title: 3DStress, Ver. 1.3
Our File: 090936.0366
Author: D. Ferrill

1600 SAN JACINTO CENTER AUSTIN
98 SAN JACINTO BLVD. BAKU
AUSTIN, TEXAS DAMS
7870 1 -4039 HOUSTON
5 12.322.2500 LONDON
FAX 51 2.322.2501 MOSCOW

NEW YORK
WASHINGTON

Ann C. Livingston
51 2.322.2634
FAX 512.322.8325
ann.livingston@bakerbotts.com

Dear Louis:

I am pleased to enclose the above-referenced original Certificate of Copyright Registration
which was issued effective November 29, 1999. This document comprises evidence of valuable
property rights of Southwest Research Institute and should be maintained in a safe place.

Notice of copyright registration should be given by displaying the letter "C" enclosed
within a circle "@" followed by the name of the copyright claimant and the year of creation.

Since the work covered by this registration is in accordance with the Copyright Law that
went into effect on January 1, 1978, as amended by the Berne Convention Implementation Act
that went into effect on March 1, 1989, the term of the registration for the work is seventy-five
years from the date of publication or one hundred years from the year of creation, whichever
expires first. Therefore, assuming that the work remains unpublished, and given that the work
was created in 1999, the copyright in the work will expire on December 31, 2099.

If you have any questions concerning the registration, please do not hesitate to contact me.

Very truly yours,

BAKER BOTTS &.P.

ACL/ss
Enclosure

AUSOl:206564.1

3RMTX

TXU 924-657 REG1

'TxrBe89H6557.

I.- c"''&IG This Certificate issued under the seal of the Copyright
Office in accordance with title 17, United States Code,
attests that registration has been made for the work identi-

h + ~

r 1 A2 fied below.The information on this certiftcate has been EFFECTIVEDATEOF REGIS- . . * .I- ,-_ . - --.

3DSmss. Ver. 1.3

PREVIOUS OR ALTERNATlvE TITLES V

PUBLICATION AS A CONTRlBVFlON
co3:ertive work in which tht contribution &.

If thu work was publirhed u a contribution to a p h d i c s l , serial, or collection, give infomution about the
THic of C o b U v e Wa:k V

Number V If published in a periodical or serial give: Volum~ V Issue Date V

DATES OF BIRTH AND DEATH ~

On P y a V

NAME OF AUTHOR V

JOTE
b

c

YCarBomV YCatDiadV

WAS THIS AUTHOR'S CONTRIBUTION To
Southwest Rescarch Institute
Was this contribution to the work a K$OaR'NATIONALITY OR DOMICILE

OR DMniiiM in ,USA.

"workmade rhire"? THE WORK W o U n W r t O a H) # r

Citizen of b Anonymous? OYCS NO $rwc
Pseudonymous? OYes @No WNCWW.

d Y c l
O N 0

NAME OF AUTHORSHIP Briefly describe nature of material created by thiu author in which copyright is claimed. V
Entire work

DATES OF BIRTH AND DEATH
Y e a r m ' l YcarDiedV

NAME OF AUTHOR V

Was this contribution to the work a "work made r hire"? THE WORK I~aarrettoeithOr ~~O&SICNATIONALITY OR DOMICILE WAS THIS AUTHOR'S CONTRIBUTION TO

Byel Citizen of b Anonymous? OYes ONo $ymzMk
ON0 OR M i c i i a i i n b Pseudonymous? Dyes ON0 insbu&m.

NAME OF AUTHORSHIP Briefly describe nature of material created by thiu author in which copyright is claimed. V

NAME OF AUTHOR V DATES OF BIRTH AND DEATH
Year Born V Year Died V
WAS THIS AUTHOR'S CONTRIBUTION TO Was this contribution to the work a AUTHOR'S NATIONALITY OR DOMICILE "work made r hire"? mdCawry THE WORK uh.wwalodthsr

Citittn of b Anonymous? ~ Y C S O N 0 $rwz
OR bmiciied in b Pseudonymous? aYeJ O N 0 inmdian.

B Y =
O N 0

NAME OF AUTl?OPW!!? BritCy descrik natur;: ofm:erid creded by this author in which copyright is claimed. 'I

ath Mank

LEAR IN WHICH CREATION OF THIS b DATE AND NATION OF FIRST PUBLICATION OF THIS PARTICULAR WORK
WORK WAS COMPLETED fh* infomm(l0n Con@eW th!a kdonnaUon Haw, b h Y b Year b.-

mLYUIhkWor*
4 Nabon

nUstb4glv.n
4Vew InaHuur. hm boon pubIl8h.d.

COPYRIGHT CLAIMANT(S) Name and address must be given even if the claimant i s the same
the author given in spafe 2. V
Southwest Research Institute
P.O. Drawer 285 10
San Antonio, Texas 78228-0510

TRANSFER If the claimant(s) named her in space 4 is (are) different from the authofls) named in
space 2, give a brief statement of how the claimant(s) obtained ownership of the copyright. V

APPL1cAT'oN RECEIVEo

e hslnrcbons
fore cmlellng TWO DEPOSITS RECEIVED
s space

a
NW 2 9 1999

MORE ON BACK b - Complete all epplwcable spaces (numben 6-11) on the reverts side of ulis page
*See detailed instwcbns

00 NOT WRITE HEm

Paw 1 o f a p a s
Sinthe f a n at line 10.

EXAMINED BY n FORM TX

Nawv Ann Liwngston 0909360366
Baker 6 Bob

800 Trammtll ow CerlleI
2001 Ross Avenue

NmberlsVeeVApl V

h

CltyslatelZlP V Dallas. Texas 75201

CHECKED BY

1. Applicabon fm
2. Nonrefundable $20 filing fee

in ehKL or m y order
payable lo Reglsier d CopVnoMs

C O r N C E COPYRIGHT FOR

OFFICE
ONLY USE

DO NOT WRITE ABOVE THIS LINE. IF YOU NEED MORE SPACE, USE A SEPARATE CONTINUATION SHEET

5 aEVIOUS REGISTRATION Has registration for this work, or for an earlier version of this work, already been made in the Copyright Oftice?
1 Yes a o tfyour answer is "Yes," why is another registration being sought? (Check appropriate box) V
0 This is the h t published edition of a work previously registered in unpublished form.

0 This is the fast application submitted by this author as copyright claimant.

0 This is a chmged version of the work, as shown by space 6 on this application.
your answer is Yes," give: Previous Reglrtratloa Number V Year of Registration V

ERlVATlVE WORK OR COMPILATION Complete both space 6a and 6b for a derivative work complete only 6b for a compilation. IL

Prccxhtlng Material Identify any pmxisting work or works that this work is based on or incorpontes. V

-- ____

-space deleted- 7
I

€PRODUCTION FOR USE OF BLIND OR PHYSICALLY HANDICAPPED INDIVIDUALS A signature on this form at space 10 and a check in one
the boxes hm in space 8 constitutes a nowexclusive grant of permission to the Library of Congress to reproduce and distribute solely for the blind and physically
ndicapped and uder the conditions and limitations prescribed by the regulations of the Copyright Office: (I) copies of the work identified in space 1 of this
plication in Braille (or similar tactile symbols); or (2) phonorecords embodying a fixation of a mding of that work, or (3) both. 8

a 0 Copies and Phononcords b 0 Copies Only c 0 Phonoreeords only
see blshaons.

v 9 EPOSlT ACCOUNT If the registration fee is to be charged to a Deposit Account established in the Copyright Oflice, give name md number of Account.
tBy

Acconnt Number V

~ ~~~

ORRESPONDENCE Give name and address to which correspondence about this application should be sent. Name I Addms / Apt / City / State / ZIP V

In Livinnston Besumto
OiMW
daYtmleDhone iker & Botts

0 Trammel1 Crowcenter. 2001 Ross Avenue. Dallas. Texas 75201 4+
Area Code and Telephone Number b (214)95;)-668t

author
0 other copyigh riairiant
0 owner of exclusive right(s)

authorized agent of Southwest Research Institute e Name of authworotlwcowright ciawant, wow181 dexciuslve riahc(s) A

ERTIFICATION* 1. the undersigned, hereby certify that I am the

Check only one b

the work identikd in this application and that the statements made
me in this appliation are correct to the best of my knowledge.

~prd or printed ume and date V Ifthis application gives a date of publication in space 3. do not sign and submit it before that date. . .
I 0

In Livinnston I Date b

Handwritten signature (X) V A
b - " -

AIL
ERTIFI-
&TE TO

ertlficate
ill be
ailed in
lndow I 1lb7aryofCongres-s

Washiglon. D C 205546ooo
iveiope I
7 U S C 5 %(e) Any person who knowrndy makes a false represenlalion of a material fact in Ihe applicabon for copynghl registrailon powded for by w o n 409, or m any wnen slaleirient filed in annedon
h \he applicalm. shall be fined 11001 m e than $2,500
1y 199~3oo.ooo QU S COPMIIGHT OFFICE W FORM 1995

CENTER FOR NUCLEAR WASTE REGULAi'ORY ANALYSE

DESIGN VERIFICATION REPORT FOR CNWRA SOFTWARE: 3DStress Version 1.3

August 7, 1998

3DStress (Scientific and Engineering Software) Version 1.3

NOTE: This version of the 3DStress Software contains changes from the previous 1.2 version released
November 12,1996. Software Change Reports (SCRs) and an electronic scientific notebook have been utilized
as the change documentation method and are being retained in the 3DStress Version 1.3 folder.

1.
Joe Bangs.

This Design Verification Report is prepared by: Bruce Mabrito in conjunction with Joshua Buckner and

Full Title of CNWRA scientific and engineering software: 3DStress Version 1.3.
Demonstration work station: Silicon Graphics Indigo

Graphics Indy (YOSEMITE) in the GIS Room of Building 189.
Operating System: IRIX 6.2 (A UNIX system).

2.

3.

4.

5.

Software Requirements Description and any changes
NO

2 (REDWOOD) in conjunction with the Silicon

thereto approved by Element Manager?
N/A

If no, explain:

(SDP) and any changes have been approved by the Element Manager?
NO N/A

If no, explain:

Design and Development
M o d u l e - l e v e l m u m e n t e d in either scientific notebooks or in Software Change Reports?

Note: Both SCRs and electronic scientific notebook No. 234 contains module level documentation.

NO N/A

Is the CNWRA scientific and engineering software developed in accordance with the conventions
described in the SDP?

NO NIA

If no, explain:

documented internally?
NO

6.
NJA

Does the primary program header contain the following information:

A. Program title, Developed for (Customer), Office/Division/Date/Customer Contact/Telephone
number, Software Developer, Telephone number, titles of Associated Documentation/Designator , and the
Disclaimer Notice? @ NO NIA

B. Source code module header information provides Program Name, Client Name, Contract
Reference, Revision number?

NO N/A

7. Software designed so that individual runs are uniquely identified by Date, Time, Name of software and
version? YES - NIA

Note: There was a conscious decision made when the SCRs were being reviewed to not include this feature
in 3DStress Version 1.3. This decision was made by the Element Manager and the P.I., Dr. David Ferrill, stated
that he saw no value in this feature considering the type of software program 3DStress is.

8. The physical labeling on the software or the referenced list has Program NameITitle,
Module/Name/Title, Module Revision, File Type (i.e. ASCII, OBJ, EXE), Recording Date and Operating
System of the

NO NJA

9. Users’ Manual

Is there a Users’ Manual for the software?
NO NJA

If no, explain:

Are there basic instructions for the use of the software?
NO NJA

If no, explain:

10. Acceptance Testing

Does the acceptance testing demonstrate whether or not requirements in the SDP have been fulfilled?
NO NIA

If no, explain:

Has acceptance testing been conducted for each intended computer platform and operating system?
NO NIA

If no, explain: Note: See note above regarding the Silicon Graphics INDIGO 2 workstation. Summaries are in the
report produced by Joe Bangs and will be incorporated in this Design Verification Report as added documentation.

Have installation tests been performed on the target platform? <-> NO NIA

Note: Tests have been performed on the Silicon Graphics INDY workstation and the REDWOOD server.

11. Configuration Control

Is the Software Summary Form completed and signed?
(T K - NO NIA

If no, explain:

12.
basis?

Is a software technical description prepared, documenting the essential mathematical and numerical

c--Tz> NO NIA

If no, explain: The technical description is given in the Users' Manual for 3DStress Version 1.3.

13. Is the source code available (or, is the executable code available in the case of commercial codes)?
<K- NO NIA

14. Have all the fiies and executable files been submitted to the Software Custodian?
NO NIA

811 1/98

Bruce Mabrito Date

CNWRA 3DStress Software Co-Developer
Attachments/
Original to: Software Folder
cc: CNWRA Software Developer

Cognizant EM L. mc e7&'

CNWRA Software Custodian

/ /

/ / Program Name: 3DStress
/ / Program Version: 1.3
/ / Release Date: 08-07-98
/ / SCR Number: 1 - 13
//---
/ /
/ /
/ / Developed by the Center for Nuclear Waste Regulatory
/ / Analyses (CNWRA), Southwest Research Institute (SwRI),
/ / San Antonio, Texas, USA.
/ / CNWRA Contact: David Ferrill (210) 522-6082
/ /
/ / Copyright 07/20/95 Southwest Research Institute
/ / All rights reserved.
/ /
/ / This software is a trade secret owned by Southwest Research
/ / Institute, with access limited except as required for use by
/ / authorized users.
/ /
/ / This program was developed under sponsorship of the U.S.
/ / Nuclear Regulatory Commission, contract number NRC-02-97-009.
/ / NRC Office of Nuclear Material Safety and Safeguards
/ / NRC Division of Waste Management, Engineering and Geoscience Branch
/ /
/ / This computer code/material was prepared as an account of work
/ / performed by the Center for Nuclear Waste Regulatory Analyses (CNWRA)
/ / for the Division of Waste Management of the Nuclear Regulatory
/ / Commission (NRC), an independent agency of the United States
/ / Goverment. The developer(s) of the code nor any of their sponsors
/ / make any warranty, expressed or implied, or assume any legal
/ / liability or responsibility for the accuracy, completeness, or
/ / usefulness of any information, apparatus, product or process
/ / disclosed, or represent that its use would not infringe on
/ / privately-owned rights.
/ /
/ / IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW WILL THE SPONSORS
/ / OR THOSE WHO HAVE WRITTEN OR MODIFIED THIS CODE, BE LIABLE FOR
/ / DAMAGES, INCLUDING ANY LOST PROFITS, LOST MONIES, OR OTHER SPECIAL,
/ / INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE OR
/ / INABILITY TO USE (INCLUDING BUT NOT LIMITED TO LOSS OF DATA OR DATA
/ / BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY THIRD PARTIES OR A
/ / FAILURE OF THE PROGRAM TO OPERATE WITH OTHER PROGRAMS) THE PROGRAM,
/ / EVEN IF YOU HAVE BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES,
/ / OR FOR ANY CLAIM BY ANY OTHER PARTY.
/ /
/ / Purpose:
/ / Stereo Net Viewing tool.
/ /

............................

. / / / /
/ / Class: MohrClass
/ /
/ / Description:
/ /
/ / This class stores the data for
/ / and draws the Mohr Graph. Much
/ / of the data processing and error
/ / checking is done by simple C
/ / functions in the mohrOptionsCB.c++
/ / file because of Motif and C++
/ / conflicts.
.

Printed by jbuckner from performer

Aug 4 1998 1O:W mohrOptionCB. hh Page 1

..
// Filename: mohr0ptionCB.hh
// Author: Robert BOenau
// Date: 1-8-97
//
// Purpose:
//
//
// $Header: /usr/people/3dstress/3d/src/RCS/mohrOptionCB.hh,v 1.15 1998/07/23 17:
35:Ol jbuckner Exp $
//
// Revision Historv
// $Log: mohrOptioiCB.hh,v $
// Revision 1.15 1998/07/23 17:35:01 jbuckner 55 added tighter text-box error-trapping

i/ Revision 1.14 1998/01/08 17:22:09 jbuckner
// Added Unit Ifo button callback
//
// Revision 1.13 1997/08/01 19:19:27 jbuckner
// Added a new function to take care of the arrowButton
//
// Revision 1.12 1997/07/14 19:08:42 jbuckner
// Removed previous stress changing functions and added one and a function to fi@
d min, mid, and max sigma indecies
//
// Revision 1.11 1997/07/08 21:16:52 jbuckner
// Added a function for the display of raw effective stress ratios
//
// Revision 1.10 1997/07/08 18:38:42 jbuckner
// Added a callback function for the info widget
//
// Revision 1.9 1997/07/02 17:39:42 jbuckner
// Added functions to handle stress ratio text boxes
//
// Revision 1.8 1997/07/01 20:40:40 jbuckner
// Added a fluid scale call back andrenamed the call back for the fluid pressure
text field
//
// Revision 1.7 1997/07/01 15:48:04 jbuckner
// Added three new functions to complexity of the mohrscalechange function when i
n dependent stress mode. Renamed mohrStressScaleChange to mohrs3ToslRatioScaleCha
ge and added mohrs2ToslRatioScaleChange
//
// Revision 1.6 1997/06/25 19:38:54 jbuckner
// Added call back for rock data citation window
//
// Revision 1.5 1997/06/19 18:54:42 jbuckner
// Added mohrStressScale prototype for Poisson’s ratio scale call back
//
// Revision 1.4 1997/06/18 21:22:35 jbuckner
// Call back prototype added for stress dependency radio box
//
// Revision 1.3 1997/02/19 17:45:50 rboenau
// Callbacks for fluid pressure and effective stress added
//
// Revision 1.2 1997/02/18 19:06:07 rboenau
// Normal stress value no longer needed, fixed problem with changing material..sh
ows wrong cValue
//
// Revision 1.1 1997/02/18 16:30:31 rboenau
// Initial revision
//
//
..

#ifndef -MOHROPTIONCB-HH-
#define -MOHROPTIONCB-HH-

void mohrChangeLineWidth(Widget, XtPointer, XtPointer);
void recalcSigmas(int min, int mid, int max, double newMax);

. .

moh rOptionCB. h h Page 2

void mohrScaleChange(Widget, XtPointer, XtPointer);
void findMinMidMax(int min, int * mid, int * max, double values[], int noelts);
void mohrChangeMinMax(Widget, XtPointer, XtPointer);
void mohrToggleButtonChange(Widget, XtPointer, XtPointer);
void mohrToggleRenderMode(Widget, XtPointer, XtPointer);
void mohrToggleStressMode(Widget, XtPointer ClientData, XtPointer);
void mohrChanges3ToslRatioField(Widget, XtPointer, XtPointer);
void mohrChanges2ToslRatioField(Widget, XtPointer, XtPointer);
void mohrs3ToslRatioScaleChange(Widget, XtPointer, XtPointer);
void mohrs2ToslRatioScaleChange(Widget, XtPointer, XtPointer);
void mohrChangeCStr(widget, XtPointer, XtPointer);
void mohrChangeRockType(Widget, XtPointer, XtPointer);
void mohrChangeRockMaterial(Widget, XtPointer, XtPointer);
void mohrChangeValue(Widget, XtPointer, XtPointer);
void mohrCloseButton(Widget, XtPointer, XtPointer);
void mohrApplyButton(Widget, XtPointer, XtPointer);
void mohrRockInfoButton(Widget, XtPointer, XtPointer);
void mohrUnitInfoButton(Widget, XtPointer, XtPointer);
void mohrApplyOKCB(Widget, XtPointer, XtPointer);
void mohrChangeFluidField(Widget, XtPointer, XtPointer);
void mohrChangeFluidScale(Widget, XtPointer, XtPointer);
void updateEffective0;
void updateEffRatios0;
void closeBoundsErrorWin(Widget, XtPointer, XtPointer);
void mohrArrowCB(Widget, XtPointer, XtPointer);
int trapAlpha(char in-str);
#endif

mohrOptionCB.hh 1

Printed by jbuckner from performer

Bug 4 1998 1 O:O7 mohrOptionCB.c++ Page 1

..
// Filename: mohrOptionCB.c++
// Author: Robert Boenau
// Date: 1-8-97
//
// Purpose:
//
//
// $Header: /usr/people/3dstress/3d/src/RCS/mohrOptionCB.ct+,v 1.36 1998/07/28 21
:18:42 jbuckner Exp $
//
// Revision History
// $Log: mohrOptionCB.c++,v $
// Revision 1.36 1998/07/28 21:18:42 jbuckner
// fixed parsing of spaces in text box error checking
//
// Revision 1.35 1998/07/23 17:34:57 jbuckner
// added tighter text-box error-trapping
//
// Revision 1.34 1998/06/19 20:57:48 jbuckner
// fixed the normalization of stresses, Pf, and Tstr
//
// Revision 1.33 1998/01/08 17:22:00 jbuckner
// Added Unit Ifo button callback
//
// Revision 1.32 1997/09/29 21:16:17 jbuckner
// Changed the precision on the displayed variables
//
// Revision 1.31 1997/08/05 15:40:05 jbuckner
// Modified mohrToggleStressMode to unmanage instead of XtSetSensitive(. . . , False
) ;
//
// Revision 1.30 1997/08/04 16:11:37 jbuckner
// In the function mohrToggleStressMode, changed the XtSetSensitive calls to XtMa
nageChild and XtUnmanageChild calls.
//
// Revision 1.29 1997/08/01 19:18:04 jbuckner
// Added a new function to take care of the arrowButton
//
// Revision 1.28 1997/07/21 19:45:02 jbuckner
// Added fluid pressure and tensile strength update in the apply button callback
//
// Revision 1.27 1997/07/15 16:13:24 jbuckner
//
//
// Revision 1.26 1997/07/15 15:18:55 jbuckner
// Fixed long lines, added end-of-function comments, and changed bounds checking
in recalcsigmas
//
// Revision 1.25 1997/07/14 19:10:43 jbuckner
// Completely reworked the way dependent stress works.
ates off strait ratios instead of Mendal’s method.
//
// Revision 1.24 1997/07/09 21:14:20 jbuckner
// Fixed bug in changeMinMax introduced by adding decimal places to the sigma val
ues
//
// Revision 1.23 1997/07/08 21:19:38 jbuckner
// Added a line to updateEffective to update effective ratio text boxes and Added

//
// Revision 1.22 1997/07/08 18:42:30 jbuckner
// Added prototype for destroyFS, Added a callback for info win, modified updateE
ffective to use new callback
//
// Revision 1.21 1997/07/02 20:14:05 jbuckner
// Modified void updateEffective0 to be sure that effective stress is within bou
nds of graph
//
// Revision 1.20 1997/07/02 18:52:13 jbuckner
// Fixed bug in callbacks for stress ratio text fields

Changed fluid text bounds check to avoid running out of bounds on the sigmas

Dependent stress now oper

function to update effective ratio text boxes

Aug 4 1998 10:07 mohrQptionCB.c++ Page 2
//
// Revision 1.19 1997/07/02 17:41:42 jbuckner
// Added callbacks for stress ratio text fields and updated callbacks for stress
ratio scales
//
// Revision 1.18 1997/07/01 20:42:54 jbuckner
//
xt
//
// Revision 1.17 1997/07/01 15:50:30 jbuckner
//
s ratios when stresses are dependent
//
// Revision 1.16 1997/06/27 21:38:17 jbuckner
// Fixed Poisson‘s Ratio problems in several functions
//
// Revision 1.15 1997/06/27 17:48:19 jbuckner
// Made use of new mohr0bj.attributes->effStress in functions
//
// Revision 1.14 1997/06/25 19:37:13 jbuckner
// Added call back for rock data citation window
//
// Revision 1.13 1997/06/20 19:39:30 jbuckner
// Converted sigmas to double values and added functionallity to grey out Poisson
’s B scale when stresses are independent
//
// Revision 1.12 1997/06/19 18:58:21 jbuckner
// Added mohrStressScale callback for the Poisson’s ratio scale and added the var
iable ratio to the mohrScaleChange function
//
// Revision 1.11 1997/06/18 21:34:43 jbuckner
//
//
// Revision 1.10 1997/06/18 21:11:35 jbuckner
//
//
// Revision 1.9 1997/06/16 19:47:43 jbuckner
//
essure

Added function mohrChangeFluidScale and substantialy changed mohrChangeFluidTe

Added three functions to cut complexity of mohrScaleChange and handle to stres

modified mohrScaleChange to handel the stress dependency radio box

Added call back function for the new stress dependency radio box

Major changes to mohrscalechange to fix errors in compensation for internal pr

//
// Revision 1.8 1997/06/16 14:03:00 jbuckner
// Fixed indexing problem in mohrScallChange’s internal pressure compensation
// ,,
// Revision 1.7 1997/06/16 13:27:33 jbuckner
// Fixed an error made in mohrScaleChange‘s last revision
//
// Revision 1.6 1997/06/13 19:20:34 jbuckner
// Modified the mohrScale values to take internal pressures into account in ca
lation of the sigmas
//
// Revision 1.5 1997/04/03 22:15:07 rboenau
// Updates display when fluid pressure is changed
//
// Revision 1.4 1997/02/19 17:45:50 rboenau
// Callbacks for fluid pressure and effective stress added
//
// Revision 1.3 1997/02/18 19:59:40 rboenau
// Added additional rock types
//
// Revision 1.2 1997/02/18 19:06:07 rboenau
//
ows wrong cValue
//
// Revision 1.1 1997/02/18 16:30:25 rboenau
// Initial revision

//
..

// Unix
#include <stdio.h>

Normal stress value no longer needed, fixed problem with changing material..sh

// 9s
G-

v
2-

.
c

mohrOptionCB.c++ 2

Printed by jbuckner from performer

Aug 4 1998 1 O:O7 m oh rOpt i onCB .c++ Page 3

#include <stdlib.h>
#include <string.h>
#include <math.h>
#include <iostream.h>

// Motif
#include <xm/Xm.h>
#include <Xm/Text.h>
#include <Xm/TextF.h>
#include <Xm/Scale.h>

// Application
#include "mohrObj.hh"
#include "mohrOptionObj.hh"
#include "mohrOptionCB.hh"
#include "infoWidget.hh"
#include "cmd0bj.hh"

// Prototype added to make destroyFs available to closeBoundsErrorWin:
// this function gets rid of the info window
void destroyFS(Widget, XtPointer, XtPointer);

void mohrChangeLineWidth(Widget, XtPointer, XtPointer cal1Data)I
XmScaleCallbackStruct *cbs = (XmScaleCallbackStruct *) callData;
MohrAttributeType *mattr = mohrObj.getAttributes();

mattr->linewidth = (int)(cbs->value);
mohrObj.display();

1 // end of mohrChangeLineWidth

.
// Function: recalcsigmas (not a member function)
//
// File: mohrOptionCB.c++
//
// Arguments: double newMax - - The previous maximum sigma value takes
// this as its new value.
//
// State changes: mohrObj.attributes->sigmas[?], updates the sigmas
//
//
//
// Purpose: This program updates the sigmas according to newMax and
// the dependent stress ratios.
//
// Last Modified: 14 July 1997, Joshua Buckner (jbuckner@cs.trinity.edu)
..
void recalcSigmas(int min, int mid, int max, double newMax)
I

with respect to newMax and the dependent stress
ratios.

MohrAttributeType // mohr graph's attributes

if (newMax > mattr->maxScale) // if the new value is larger than possible

// ratios only work with positive effective stresses
if (newMax - mohr0bj.fluidPressure <= 0) // effstress = sigma - fluidP.
// also, min, mid, and max stresses shouldn't trade places

mattr->sigmas[maxl = newMax; // now, set the new values according to ratios
mattr->sigmas[mid] = newMax * mattr->s2ToslRatio;
mattr->sigmas[min] = newMax * mattr->s3ToslRatio;

* mattr = mohrObj.getAttributes0;

newMax = mattr->maxScale; // scale it down to maximum

newMax = 0.01 + mohr0bj.fluidPressure;

J // end function recalcSigmas

.

//

//

// Function: mohrScaleChange (not a member function)

// File: mohrOptionCB.c++

Aug 4 1998 10:07 mohrOptionCB.c++ Page 4

// Argcnenrs: Widget, XtPoinrer clientcata, Xt?oinrer callData
//
// Staie Changes: mot..rObj.aLtrib~~tes->siqmas[?], updates the sigxa
// thar was changed in the Mohr grapk oprions window
// by rhe user. It calls recalcSigmas ro accorplish
// this. Scales in rhe Oprions windsw are changed.
//
// Purpose: This program updates rhe sigmas according to the seizings
// of the scales in the Mohr graph opti0r.s window devoted to
// the sigmas.
//
// Last Modified: 14 July 5997 , Joshua Buckner (]bucknerCcs.trinity.edu)
/ / - - - + - r r ~ ~ - - T . T r r r ~ ~ ~ ~ - ~ - - - - ~ ~ ~ ~ ~ r r r r ~ ~ ~ ~ ~ r r r - - - - ~ - - ~ - - - ~ - ~ - - - ~ - ~ ~ ~ ~ r ~ ~ ~ -

void mchrScaleChange(Widget, XtPoinrer clientDara, XiPointer call3ata)
I

XmScaleCallbackSrruct
* cbs = (XmScaleCalljackStruct *) callDara;

// The variable below holds the address LO mohrobj's
// artribures private member variable.
XohrArrributerype

// The variable beloh. holds zhe member variables of rhe
// class respocsible for rhe Mohr Graph's Options window
hlohrO?:ionType XoprionsAtrrib = mohrOpcionObj .getAttr ibutes(: ;

// The variable below, whichSig, is the index of the sigia chat
// was changed in the Mohr's options window. Also, newvalue holds
// rhe value thar the xer set to the sigma indicared by whichSig,
// and delta holds rhe change in rhe sigma valde.
int

* mohrObjAi?trib = mot. . rObj .gerArtr ibutes(: ;

whlchSig = (i n) clientData,
max, mid, min; // indecies of largesr, middle, & smallest sigma values

double
newvalue = (double) cbs->value / 100;

if(mohr0ajArtrib->stressMode == 0)
: //stresses should depend on each other

// Search for rhe largesr and smallest sigTas
findMinMidMax(& min, & mid, & max, mohr0b:ArtriS->sigmas, 3) ;

if (whichSig == max)
recalcSicnas(min, mid, max, newvalue);

else if (whichSig == mid) // 3ser changed middle value
recalcSigmas(iin, mid, max, newvalue *

(1 / mshr0b jAt r r ib ->s2Tos1Rar io ;) ;

else // minimum valLe changed
recalcsigmas(nin, mid, max, newvalue *

(1 / mohrObjAttrib->s3ToslRatio));

XmScaleSetValue(optionsAttrib->scale[max:, mohrObjAttrib->sigmas[max] *
X m S c a l e S e t V a l u e (o p t i ~ n ~ A r ~ r i b - > s c a l e [m i d l , mohrOb]ArrriS->sigmas[mia] *

XmScaleSetValue(oprionsAttr~b->scale~minl. mohrObjAtrrib->sigmas:mi~] *

10:) ;

l o o) ;
100);

]// end if(mchr0bjAttrib-7stressMode == 0)

else // scales shocld be inDegendenr
1

mohrObjAttrib->sigmas[whichSigl = newvalue;
1 // end else

updateEffective0;
mohrObj.failure();
mohrObj .display [) ;

I // end of mohrScaleChange

-3

mohrOptionCB.c++ 3

Printed by jbuckner from performer

Aug 4 1998 10:07 mohrOptionCB.c++ Page 5

.
// Function: findMinMidMax (not a member function)
//
// File: mohrOptionCB.c+i
//
// Arguments: int * min, int * mid, int * rnax, - - addresses to store info in
// double values[] - - values to get min, mid, max indecies of
// int noelts - - number of elements in values[]
//
// State changes: min, mid, and max are changed to reflect the indecies of
// minimum, middle, and maximum values in int values[]
//
// Purpose: This function is used to find the indecies of minimum, middle,
// and maximum values in double values[]
//
// Last Modified: 14 July 1997, Joshua Buckner (jbuckner@cs.trinity.edu)
.
void findMinMidMax(int * min, int * mid, int * max, double values[], int noelts)
I

int i; // loop index
*min = *mid = *max = 0; // initialize variables

for(i = 0; i < noelts; i++) // find the rnax and min
I

if (values[i] >= values[(*max)l)

if (values[il <= values[(*min)l)
*max = i; // new max has been found

*min = i; // new min has been found
1

for(i = 0; i < noelts; i++) // find mid
{

1

if((i != *min) & & (i != *max))
*mid = i; // mid has been found

I // end function findMinMidMax

.
// Function: mohrChanges3ToslRatioField (not a member function)
//
// File: mohrOptionCB.c++
//
// Arguments: Widget, XtPointer, XtPointer
//
// State changes: mohrObj.attributes->s3ToslRatio, updates the degree
// to which the stress are dependent when in dependent
// stress mode
//
// Purpose: This program updates the allows the user to change Poisson's
// ratio in the calculation of dependency for dependent stresses
//
// Last Modified: 14 July 1997, Joshua Buckner (jbuckner@cs.trinity.edu)
.

void mohrChanges3ToslRatioField(Widget, XtPointer, XtPointer)
I

MohrOptionType // get option window's stats
* moattr = mohrOptionObj.getAttributes();

MohrAttributeType // get Mohr graph stats
* mattr = mohrObj.getAttributes();

char
strHolder[lOO], // holder for transfer of numbers to ASCII
* val = XmTextFieldGetString(moattr->s3Tos1RatioText); // get new value

double

int
tmpvalue; // holder for new value in numeric form

min, mid, max;

findMinMidMax(& min, & mid, & max, mattr->sigmas, 3) ;

Aug 4 1998 10:07 mohrOptionCB.c++ Page 6

if (strlen(va1) -= 0) // is field is completely blank
(// tell user of mistake

infoWidget(m0attr->mohrDialogForm,'Not allowed to have empty value");,
sprintf(strHolder,"%5.3fn, mattr->s3ToslRatio); // reset field
XmTextFieldSetString(moattr->s3ToslRatioText, strHolder);
return;

1

tmpvalue = atof(va1); // convert new value to numeric form

if (((int) (tmpvalue * 100) > mattr->stressSCaleMax) I I
((int) (tmpvalue * 100) < mattr->stressScaleMin))

(// check that new value is within bounds
infoWidget(m0attr->mohrDialogForm,'Ratio out of bounds");
// dialog box error message
sprintf(strHo1der,"%5.3fn, mattr->s3ToslRatio); // reset field
XmTextFieldSetString(moattr->s3ToslRatioText, strHolder);
return;

1

if (tmpvalue > mattr->s2ToslRatio)
{ // check that new value is within bounds

infoWidget(m0attr->mohrDialogForm,"Ratio violates sigma orders.");
// dialog box error message
sprintf(strHolder,"%5.3f", mattr->s3ToslRatio); // reset field
XmTextFieldSetString(moattr->s3ToslRatioText, strHolder);
return;

1

mattr->s3ToslRatio = tmpvalue; // update variable
// update scale
XmScaleSetValue(moattr-~s3To~lRatioScale, (int) (mattr->s3ToslRatio 100));

recalcSigmas(min, mid, max, mattr->sigmas[maxl);
XmScaleSetValue(moattr->scale[maxI, mattr->sigmas[max] * 100);
XmScaleSetValue(moattr->scale[midl, mattr->sigmas[midl * 100);
XmScaleSetValue(moattr->scale[minl, mattr->sigmas[minl * 100);
updateEffective0;
mohrObj.failure();
mohrObj.display();

1 // end function mohrChanges3ToslRatioField
.
// Function: mohrChanges2ToslRatioField (not a member function)
//
// File: mohrOptionCB.c++
//
// Arguments: Widget, XtPointer, XtPointer
//
// State Changes: mohrObj.attributes->s2ToslRatio, updates the degree
// to which the stress are dependent when in dependent
// stress mode
//
// Purpose: This program updates the allows the user to change Poisson's
// ratio in the calculation of dependency for dependent stresses
//
// Last Modified: 14 July 1997, Joshua Buckner (jbuckner@cs.trinity.edu)
.
void mohrChanges2ToslRatioField(Widget, XtPointer, XtPointer)
I

MohrOptionType // get option window's stats

MohrAttributeType // get Mohr graph stats
* moattr = mohrOptionObj.getAttributes();

* mattr = mohrObj.getAttributes(); -
W char

strHolder[100], // holder for transfer of numbers to ASCII
* val = XmTextFieldGetString (moattr->s2ToslRatioText) ; // get new value -c

mohrOptionCB.c++ 4

Printed by jbuckner from performer

Aug 4 1998 1 o m mohrOptionCB.c++ Page 7

double

int
tmpvalue; // holder for new value in numeric form

min, mid, max;

findMinMidMax(& min, & mid, & max, mattr->sigmas, 3) ;

if (strlen(va1) == O! // is field is completely blank
{ // tell user of mistake

infoWidget(m0attr->mohrDialogForm,"Not allowed to have empty value");
sprintf(strHo1der,"%5.3lfn, mattr->s2ToslRatio); // reset field
XmTextFieldSetString(moattr->s2ToslRatioText, strHolder);
return;

1

tmpValue = atof(va1); // convert new value to numeric form

if (((int) (tmpValue * 100) > mattr->stressScaleMax) 1 1
((int) (tmpvalue * 100) < mattr->stressScaleMin))

i // check that new value is within bounds
infoWidget(m0attr->mohrDialogForm,"Ratio out of bounds");
// dialog box error message
sprintf(strHolder,"%5,31f", mattr->s2ToslRatio); // reset field
XmTextFieldSetString(moattr->s2ToslRatioText, strHolder);
return;

1

if (tmpValue < mattr->s3ToslRatio)
i // check that new value is within bounds

infoWidget(m0attr->mohrDialogForm,"Ratio violates sigma orders.");
// dialog box error message
sprintf(strHolder,"%5.31fn, mattr->s2ToslRatio); // reset field
XmTextFieldSetString(moattr->s2ToslRatioText, strHolder);
return;

>
mattr->s2ToslRatio = tmpValue; // update variable
// update scale
XmScaleSetValue(moattr->s2ToslRatioScale, (int) (mattr->s2ToslRatio * 1000));
recalcSigmas(min, mid, max, mattr->sigmas[max]);
XmScaleSetValue(moattr->scale[maxl, mattr->sigmas[maxl * 100);
XmScaleSetValue(moattr->scale[midl, mattr->sigmas[midl * 100);
XmScaleSetValue(moattr->scale[minl, mattr->sigmas[minl * 100);
updateEffective0;
mohrObj.failure();
mohrObj.display();

} // end function mohrChanges2ToslRatioField

..

// Function: mohrs3ToslRatioScaleChange (not a member function)

;; File: mohrOptionCB. c++
//
// Arguments: Widget, XtPointer, XtPointer callData
//
// State Changes: mohrObj.attributes->s3ToslRatio, updates the degree

to which the stress are dependent when in dependent
stress mode

//
//
//
// Purpose: This program updates the allows the user to change Poisson's
// ratio in the calculation of dependency for dependent stresses
//
// Last Modified: 14 July 1997, Joshua Buckner (jbuckner@cs.trinity.edu)
.
void mohrs3ToslRatioScaleChange(Widget, XtPointer, XtPointer CallData)
i

XmScaleCallbackStruct
* cbs = (XmScaleCallbackStruct *) callData;

Aug 4 1998 10:07 moh rOptionCB.c++ Page 8

MohrOptionType // get option window's stats

// The variable below holds the address to mohrObj's
// attributes private member variable.
MohrAttributeType

* mattr = mohrObj.getAttributes();

* moattr = mohrOptionObj.getAttributes();

char

int
strHolder[1001; // holder for transfer of numbers to ASCII

rnin, mid, max;

findMinMidMax(& min, & mid, & max, mattr->sigmas, 3) ;

// update the ratio
mattr->s3ToslRatio = (double) (cbs->value / 1000.0);

if (mattr->s3ToslRatio > mattr->s2ToslRatio)
I

mattr->s3ToslRatio = mattr->s2ToslRatio - 0.001;
XmScaleSetValue(moattr-~s3ToslRatioScale,

(int) (mattr->s3ToslRatio * 1000));
I

sprintf(strHolder,"%5.31fn, mattr->s3ToslRatio); // reset field
XmTextFieldSetString(moattr->s3ToslRatioText, strHolder);

recalcSigmas(min, mid, max, mattr->sigmas[max]);
XmScaleSetValue(moattr->scale[max], mattr->sigmas[maxl * 100);
XmScaleSetValue(moattr->scale[mid], mattr->sigmas[midl * 100);
XmScaleSetValue(moattr->scale[min], mattr->sigmas[minl * 100);
updateEffective0;
mohrObj.failure();
mohrObj.display();

1 // end of mohrs3ToslRatioScaleChange

.
// Function: mohrs2ToslRatioScaleChange (not a member function)
//
// File: mohrOptionCB.c++
//
// Arguments: Widget, XtPointer, XtPointer callData
//
// State Changes: mohrObj.attributes->s2ToslRatio, updates the degree
// to which the stress are dependent when in dependent
//
//
// Purpose: This program updates the allows the user to change Poisson's
// ratio in the calculation of dependency for dependent stresses
//
// Last Modified: 14 July 1997, Joshua Buckner (jbuckner@cs.trinity.edu)
.
void mohrs2ToslRatioScaleChange(Widget, XtPointer, XtPointer CallData) ' XmScaleCallbackStruct

stress mode

* cbs = (XmScaleCallbackStruct *) callData;

MohrOptionType // get option window's Stats
* moattr = mohrOptionObj.getAttributes();

// The variable below holds the address to mohr0bj's
// attributes private member variable.
MohrAttributeType

* mattr = mohrObj.getAttributes(); -
char v

& strHolder[1001; // holder for transfer of numbers to ASCII

min, mid, max: -c int

mohrOptionCB.c++ 5

Printed by jbuckner from performer

Aug 4 1998 1 O:O7 mohrOptionCB.c++ Page 9

findMinMidMax(& min, & mid, & max, mattr->sigmas, 3) ;

// update the ratio
mattr->s2ToslRatio = (double) (.cbs->value / 1000.0);

if (mattr->s2ToslRatio < mattr->s3ToslRatio)

mattr->S2ToSlRatiO = mattr->s3ToslRatio + 0.001;
XmScaleSetValue(moattr-~s2ToslRatioScale,

(int) (mattr->s2ToslRatio * 1000));
I

sprintf(strHolder,"%5.31fn, mattr->s2ToslRatio); // reset field
XmTe~tF ie ldSe tS t r ing (moa t t r ->S2Tos lRa t ioTex t , straolder);

recalcSigmas(min, mid, max, mattr->sigmas[maxl);
XmScaleSetvalue(moattr->scale[maxl, mattr->sigmas[maxl * 100);
XmScaleSetvalue(moattr->scale[midl, mattr->sigmas[midl * 100);
XmScaleSetvalue(moattr-~scale[minl, mattr->sigrnas[minl * 100);
updateEffective0;
mohrObj.failure();
mohrob j .display () i

] // end of mohrs2ToslRatioScaleChange

void mohrChangeMinMax(Widget, XtPointer ClientData, XtPointer)I
MohrAttributeType *mattr = mohrObj.getAttributes();
MohrOptionType *moattr = mohrOptionObj.getAttributes();
int tmpvalue;
char strHolder[lOOl; // holder for transfer of numbers to ASCII

if ((int)clientData == 1) { // change min
if (XmTextFieldGetString(moattr->minText) != NULL) I

char *Val = XmTextFieldGetString(moattr->minText);
if ((strlen(va1) == 0) I I (!trapAlpha(val)))I

infoWidget(m0attr->mohrDialogForm,

sprintf(strHolder,"%d", mattr-minscale);
XmTextFieldSetString(m0attr->minText, strHolder);
return;

"Not allowed to have empty or alphabetical value");

I
tmpvalue = atoi(va1);
if (tmpvalue < -1000)

mattr->minScale = tmpvalue;
tmpvalue = -1000;

1 // end if
1 // end if

else { // changed max
if (XmTextFieldGetString(m0attr->maxText) != NULL) [

char *Val = XmTextFieldGetString(moattr->maxText);
if ((strlen(va1) == 0) I I (!trapAlpha(val)))I

infoWidget(m0attr->mohrDialogForm,

sprintf(strHolder,"%d", mattr->maxscale);
XmTextFieldSetString(m0attr->maxText, strHolder);
return ;

"Not allowed to have empty or alphabetical value");

I
tmpvalue = atoi(va1);
if (tmpvalue > 1000)

tmpvalue = 1000;
mattr->maxScale = tmpvalue;

1 // end if
I // end else

if (mattr->rninScale >= mattr->maxScale){
infoWidget(m0attr->mohrDialogForm,

return;
"Min Scale must be less than Max Scale");

1

. .

Aug 4 1998 10:07 mohrOptionCB.c++ Page 10

// Change value of the sliders and make sure present values lie
// within the min and max
for (int i = 0; i < 3; i++) {

if (mattr->sigmas[il < mattr->minScale I I
mattr->sigmas[i] > mattr-maxscale) {
mattr->sigmas[il = mattr->minScale;
XmScaleSetValue(moattr->scale[i1, mattr->sigmas[il * 100);

I // end if
X t V a S e t V a l u e s (m o a t t r - > s c a l e [i] ,

XmNmaxirnum, mattr-maxscale * 100,
XmNminimum. mattr-minscale * 100.
NULL) ;

1 // end for int i

mohrObj.display();
I // end of mohrChangeMinMax

void mohrToggleButtonChange(Widget, XtPointer which, XtPointer)[
MohrAttributeType *mattr = mohrObj.getAttributes();

if ((int)which == 0) I

I
else {

1

mohrObj.display();

mattr->showAxis = !mattr->showAxis;

mattr->showInnerCircles = !mattr->showInnerCircles;

1 // end function mohrToggleButtonChange

void mohrToggleRenderMode(Widget, XtPointer ClientData, XtPointer){
MohrAttributeType *mattr = mohrObj.getAttributes();

mattr->render = (int)clientData;
mohrObj.display();

1 // end function mohrToggleRenderMode

.

//

//

// Function: mohrToggleStressMode (not a member function)

// File: mohrOptionCB.c++

// Arguments: Widget, XtPointer ClientData, XtPointer callData
// ClientData is the data that represents the action the
// user took. Ask Robert Boenau what the hell the rest are.
//
// State Changes: mohr0bj.attributes->stressMode, changes the stress
// mode between dependent stresses and independent
// stresses. When stress is set to independent, the stress
// dependency ratio scale is greyed out; when it is set to
// dependent, the stress dependency ratio is activated.
// When stresses are set to dependent, sigmas are recalculated
// to take ratios into account.
//
// Purpose: This function switches between the two stress modes
//
// Last Modified: 14 July 1997, Joshua Buckner (jbuckner@cs.trinity.edu)
.
void mohrToggleStressMode(Widget, XtPointer ClientData, XtPointer)
{

// get the attributes of the current Mohr graph for changing
MohrAttributeType *mohrAttrib = mohrObj.getAttributes();

// get the attributes of the option window (widgets and such)
MohrOptionType *optionAttrib = mohrOptionObj.getAttributes(); u3
// set the stress mode to the appropriate value (0 or 1)
mohrAttrib->stressMode = (int)clientData; -5-

int .s:

0

+
// stressMode will be 0 for dependent stresses and 1 for independent

rnohrOptionCB.c++ 6

Printed by ibuckner from performer

Aug 4 1998 10:07 mohrOptionCB.c++ Page 1 1

min, mid, max;

// if stress is independent, grey out the ratio scale
if (mohrAttrib->stressMode == 1)
{

I
else // if stress is dependent, activate the ratio scale
{

XtUnmanageChild (OptionAttrib-*ZrowStress) ;

findMinMidMax(& min, & mid, & max, mohrAttrib->sigmas, 3) ;
recalcSigmas(min, mid, max, mohrlttrib->sigmas[maxl);

XtManageChild(optionAttrib->colStress2);
XtManageChild(optionAttrib->rowstress);

XmScaleSetValue(optionAttrib->scale[O], mohrAttrib->sigmas[O] * 100
XmScaleSetValue(optionAttrib->scale[1], mohrAttrib->sigmas[ll * 100
XmScaleSetValue(optionAttrib->scale[2], mohrAttrib->sigmas[2] * 100
updateEffective0;
mohrObj.failure();
mohrObj.display();

1
1 // end function mohrToggleStressMode

void mohrChangeRockType(Widget, XtPointer clientData, XtPointer){
// Change has occured in . . . intact, verygood verypoor
// ie quality

MohrAttributeType *mattr = mohrObj.getAttributes();
MohrOptionType *moattr = mohrOptionObj.getAttributes();
char m1201, s[201;

mohr0bj.typeIndex = (int)clientData;

mohrObj.mValue = mohrObj.samplesM~mohrObj.typeIndexltmohrObj.materialIndex1;
mohr0bj.sValue = mohrObj.samplesS[mohrObj.typeIndexl;

sprintf(m,"%.51fn, mohrObj.mValue);
sprintf(s,"%.51fn, mohrObj.sValue);

XmTextSetString(m0attr->mText, m);
XmTextSetString(m0attr-XText, s) ;
mohrObj.calculate();
mohrObj.display();

1 // end function mohrChangeRockType

void mohrChangeRockMaterial(Widget, XtPointer ClientData, XtPointer){
// Change has occured in . . . carbonate . . . etc
// ie material

MohrAttributeType *mattr = mohrObj.getAttributes();
MohrOptionType *moattr = mohrOptionObj.getAttributes();
char m[201, s[201, c[201;

XtunmanageChild(moattr-~rockCStr~mohrObj.materialIndexl);

mohrObj.material1ndex = (int)clientData;

XtManageChild(moattr-~rockCStr[(int)clientDatal);
mohrObj.mValue = mohrObj.sarnplesM[mohrObj.typeIndexl [mohrObj.materialIndexl;
mohr0bj.sValue = mohr0bj.samplesS[mohrObj.typeIndexI;
mohrObj.cValue =

sprintf(m,"%.51fn, mohrObj.mValue);
sprintf(s,"%.5lf", mohr0bj.sValue);
sprintf(c,"%.llf", mohr0bj.cValue);

XmTextSetString(m0attr->mTeXt, m);

mohr0bj.samplesCStr[moattr->rockCStrIndex[(int)clientDatall;

_ _
Aug 4 1998 10:07 mohrOptionCB.c++ Page 12

XmTextSetString(m0attr-XText, s);
XmTextSetString(m0attr->CText, c);

mohrObj.calculate();
mohrObj.display();

1 // end function mohrChangeRockMateria1

void mohrChangeValue(Widget, XtPointer, XtPointer){
char strHolder[1001; // holder for transfer of numbers to ASCII
MohrOptionType *moattr = mohrOptionObj.getAttributes();

char *Val = XrnTextFieldGetString(moattr->mText);
char *va12 = XmTextFieldGetString(moattr->sText);
char *va13 = XmTextFieldGetString(m0attr->cText);

if (strlen(va1) == 0 / I strlen(val2) == 0
I1 strlen(val3) == 0 I1 !trapAlpha(val)
\ I !trapAlpha(val2) 1 1 !trapAlpha(val3))

infoWidget(moattr->mohrDialogForm,

sprintf(strHolder,"%5.21fn, mohrObj.rnValue);
XmTextFieldSetString(moattr->mText, StrHolder);
sprintf(strHo1der,"%5.2lfn, mohrObj.sValue);
XmTextFieldSetString(m0attr->sText, straolder);
sprintf(strHolder,"%5.21f", mohr0bj.cValue);
XmTextFieldSetString(moattr->cText, straolder);
return ;

"Not allowed to have empty or alphabetical value");

I
mohrObj.mValue = atof(va1);
mohrObj.sValue = atof(va12);
mohr0bj.cValue = atof(va13);

free(va1);
free(val2);
free(val3);
mohrObj.calculate();
mohrObj.display();

] // end function mohrChangeValue

void mohrCloseButton(Widget, XtPointer, XtPointer){

1 // end function mohrCloseButton

// Function: mohrRockInfoButton (not a member function)

// File: mohrOptionCB.c++

// Arguments: Widget, XtPointer, XtPointer

// State Changes: A dialog window pops up using Robert's little
infowidget function. The Mohr Option window is sent
as the parent, and char * text is the text that will
appear in the info window.

mohrOptionObj.lower();

.

//

//

//

//
//
//
//
// Purpose: This function cites the book that the Rock Type data came from

;; Last Modified:
void mohrRockInfoButton(Widget, XtPointer, XtPointer)

25 June 1997, Joshua Buckner (jbuckner@cs. trinity.edu)
.

// Get attributes of option window to pass the dialog form as parent
MohrOptionType *optionAttrib = mohrOptionObj.getAttributes();

// text is what will appear in the middle of the window as text!
char * text = "Rock Type data obtained from:\n\n Hoek, E. & Brown, E. T. (19

80) Underground Excavations in Rock.\n The Institution of Mining and Metallun
y, London.\n Pp. 141, 149, 176.\n\n Hoek, E. & Brown, E. T. (1988) \"The H<
ek-Brown Failure Criterion--\n a 1988 Update.\" 15th Canadian Rock Mechanics
Symposium.\n The Department of Civil Engineering, University of Toronto.\n

Pp. 31-38.\n\n Goodman, Richard E. (1980) Introduction to Rock Mechanics.\n

mohrOptionCB.c++ 7

Printed by ibuckner from performer

Aug 4 1998 10:07 mohrOptionCB.c++ Page 13

John Wiley L Sons, New York. P. 58.\0";

// option window becomes parent of new info window
infoWidget(opti0nAttrib->mohrDialogForm, text);

I // end function mohrRockInfoButton

.
// Function: mohrUnitInfoButton (not a member function)
//
// File: mohrOptionCB.c++
//
// Arguments: Widget, XtPointer, XtPointer
//
// State Changes: A dialog window pops up using Robert's little
// infowidget function. The Mohr Option window is sent
// as the parent, and char * text is the text that will
// appear in the info window.
//
// Purpose: This function informs the user as to the units used in
// Mohr Graph.
//
// Last Modified: 07 January 1998, J. Buckner (jbuckner@cs.trinity.edu)
..
void mohrUnitInfoButton(Widget, XtPointer, XtPointer)
i

// Get attributes of option window to pass the dialog form as parent
MohrOptionType *optionAttrib = mohrOptionObj.getAttributes();

// text is what will appear in the middle of the window as text!
char * text =

"All stresses including fluid pressure are expressed in terms of\n MegaPasca
ls.\O";

// option window becomes parent of new info window
infoWidget(opti0nAttrib->mohrDialogForm, text);

1 // end function mohrUnitInfoButton

void mohrChangeCStr(Widget w, XtPointer ClientData, XtPointer)[
MohrOptionType *moattr = mohrOptionObj.getAttributes();
char c[201;
sprintf(c,"%s",XtName(XtParent(w)));

if (strcmp(c, "rockCStr0") = = O) {
switch ((int)clientData) I

case 0:
moattr->rockCStrIndex[Ol = 5;
mohrobj.cValue = mohrObj.samplesCstr[51;
break;

moattr->rockCStrIndex[Ol = 6;
mohr0bj.cValue = mohrObj.samplesCstr[61;
break;

moattr->rockCStrIndex[Ol = 7 ;
mohr0bj.cValue = mohrObj.~amplesCStr[71;
break;

moattr->rockCStrIndex[OI = 8;
mohrObj.cValue = mohrObj.~amplesCStr[81;
break;

moattr->rockCStrIndex[Ol = 9;
mohr0bj.cValue = mohrObj.~amplesCStr[91;
break;

moattr->rockCStrIndex[Ol = 15;
mohrObj.cValue = mohrObj.samplesCStr[151;
break;

moattr->rockCStrIndex[Ol = 16;
mohrObj.cValue = mohrObj.samplesCStr[161;

case 1:

case 2:

case 3:

case 4:

case 5 :

case 6 :

_ _
Aug 4 1998 10:07 rnoh a p t i onCB .e++ Page 14

break;
1

1
else if (strcmp(c, 'rockCStr1") = = O) {

switch ((int)clientData) {
case 0:

moattr->rockCStrIndex[ll = 3;
mohrObj.cValue = mohrObj.~amplesCStr[31;
break:

case 1:
moattr->rockCStrIndex[ll = 10;
mohrObj.cValue = mohrObj.samplesCStr[lOl;
break;

case 2:
moattr->rockCStrIndex[ll = 11;
mohrObj.cValue = mohrObj.samplesCStr[ll];
break;

1
I
else if (strcmp(c, "rockCStr2") ==O)[

switch ((int)clientData)
case 0:

moattr-~rockCstrIndex[21 = 0;
mohrObj.cValue = mohrObj.samplesCStr[Ol;
break;

moattr->rockCStrIndex[2] = 1;
mohrObj.cValue = mohrObj.samplesCStr[l];
break;

moattr->rockCStrIndex[2] = 2;
mohr0bj.cValue = mohrObj.~amplesCStr[21;
break;

moattr->rockCStrIndex[21 = 14;
mohr0bj.cValue = mohrObj.~amplesCStr[141;
break;

moattr->rockCStrIndex[21 = 4;
mohr0bj.cValue = mohrObj.~amplesCStr[41;
break:

case 1:

case 2:

case 3:

case 4:

I
J
else if (strcmp(c, "rockCStr3") = = O) {

switch I Iint)clientData) f . .
case'o:' '

moattr->rockCStrIndex[31 = 20;
mohr0bj.cValue = mohrObj.samplesCStr[20];
break :

case 1:
moattr->rockCStrlndex[31 = 19;
mohr0bj.cvalue = mohrObj.samplesCStr[l9];
break;

moattr->rockCStrIndex[31 = 21;
mohrObj.cValue = rnohrObj.samplesCStr[21];
break;

moattr->rockCStrIndex[31 = 22;
mohrObj.cValue = mohrObj.samplesCStr[22];
break;

moattr->rockCStrIndex[31 = 23;
mohr0bj.cValue = mohrObj.samplesCStr[23];
break;

case 2:

case 3:

case 4:

1
1
else if (strcmp(c, "rockCStr4") = = O) {

switch ((int)clientData) {
case 0:

moattr->rockCStrIndex141 = 1 7 :

mohrOptionCB.c++ 8

Printed by jbuckner from performer

Aug 4 1998 10:07 mohrOptionCB.c++ Page 15

mohr0bj.cValue = mohrObj.samplesCStr[171;
break;

moattr->rockcstrIndex[41 = 18;
mohrObj.cValue = mohrObj.samplesCStr[181;
break;

moattr->rockCStrIndex[41 = 12;
mohrObj.cValue = mohr0bj.samplesCStr[121;
break;

moattr->rockCstrIndex[41 = 13;
mohr0bj.cValue - mohrObj.samplesCStr[l3];
break;

case 1:

case 2:

case 3 :

sprintf(c,"%.llf", mohr0bj.cValue);

XmTextSetString(moattr->cText, c);

mohrObj.calculate();
mohrObj.display();

1 // end of mohrChangeCStr

void mohrApplyButton(Widget, XtPointer, XtPointer)[
MohrAttributeType *mattr = mohrObj.getAttributes();
MohrOptionType *moattr = mohrOptionObj.getAttributes();

int slidersE31;
int hasneg = 0;
int smallest = 0, largest = 0;

int normalize = FALSE;
double norm-factor = 1.0;

// Get values of the mohr sliders
for (int i = 0; i < 3; i++) [

XmScaleGetValue(moattr->scale[il, &sliders[il);
if (mattr->effStress[il < 0.0)

if (sliders[i] < sliders[smallestl)

if (mattr->effStress[il > mattr->effStress[largestl)

hasneg = 1;

smallest = i;

largest = i;
1 // end for int i

// If there is a negative value, want to shift all numbers by
// subtracting the tensile str. This is only when none of the
// numbers are less than the tensile str

char buf [20001 ;
sprintf(buf,

"warning negative number entered that is\ngreater than computed tensile strength.\
nAssuming tensile strength equal to\nminimum value minus one.");

// test to see if normalization must take place and by what factor
if (mattr->effStress[largestl > 100) [

norm-factor = 100.0 / mattr->effStress[largestl;
normalize = TRUE;

1

if (hasneg == 0) I
cmdObj.setvalues(mattr->effStress[O], mattr->effStress[ll,

mattr->effStress[21, normalize);
cmdObj.setFluidPress(mohrObj.fluidPressure, normalize, norm-factor);
cmdObj.setTensileStr(mohrObj.tensileStr, normalize, norm-factor);

if (mohr0bj.tensileStr < mattr->effStress[smallestl)~

mattr->effStress[Ol - mohrObj.tensileStr,
mattr->effStress[ll - mohrObj.tensileStr,

1 // end if
else if (mohrObj.hasTensileStr)

cmdObj.setValues(

Aug 4 1998 10:07 mohrOptionCB.c++ Page 16

mattr->effStress[2] - mohrObj.tensileStr, normalize);
cmdObj.setFluidPress(mohrObj.fluidPressure, normalize, norm-factor);
cmdObj.setTensileStr(mohrObj.tensileStr, normalize, norm-factor);

1 // end if
else

1 // end else if
else

infoWidget(m0attr->mohrDialogForm, buf, mohrApplyOKCB);

infoWidget(m0attr->mohrDialogForm, buf, mohrApplyOKCB);

1 // end of mohrApplyButton

void mohrApplyOKCB(Widget w, XtPointer, XtPointer)[
MohrAttributeType *mattr = mohrObj.getAttributes();
MohrOptionType *moattr = mohrOptionObj.getAttributes();
int sliders[3];
int min = 0;

for (int i = 0; i < 3 ; i++) [
XmScaleGetValue(m0attr->scale[il, &sliders[il);

if (sliders[i] < sliders[minl)
min = i;

1 // end for int i

double tensile = mattr->effStress[minl - 1.0;
cmd0bj.setvalues(mattr->effStress[0] - tensile,

mattr->effStress[ll - tensile,
mattr->effStress[21 - tensile);

cmdObj.setFluidPress(mohr0bj.fluidPressure);
cmdObj.setTensileStr(mohrObj.tensileStr);

if (w != NULL)
XtDestroyWidget(w);

1 // end of mohrApplyOKCB

void mohrChangeFluidField(Widget, XtPointer, XtPointer)[
MohrOptionType *moattr = mohrOptionObj.getAttributes();
MohrAttributeType * mohrObjAttrib = mohrObj.getAttributes();
char strHolder[lOO]; // holder for transfer of numbers to ASCII
double tmpvalue;

if (XmTextFieldGetString(moattr->fluidText) != NULL) [
char *Val = XmTextFieldGetString(m0attr->fluidText);
if ((strlen(va1) == 0) I I !(trapAlpha(val))){

infowidget(m0attr->mohrDialogForm,

sprintf(strHolder,"%5.2lf", mohr0bj.fluidPressure);
XmTextFieldSetString(moattr->fluidText, strHolder);
return;

"Not allowed to have empty or alphabetical value");

1
tmpvalue = atof(va1);
if (tmpvalue < 0.0) [

infoWidget(moattr->mohrDialogForm,

sprintf(strHolder,"%5.2lf", mohr0bj.fluidPressure);
XmTextFieldSetString(moattr->fluidText, strHolder);
return;

"Fluid Pressure must be a positive number");

1

if (tmpvalue > mohr0bjAttrib->maxScale - l)(
infoWidget(m0attr->mohrDialogForm,"Fluid Pressure is out of bounds");
sprintf(strHo1der,"%5.21fn, mohr0bj.fluidPressure);
XmTextFieldSetString(moattr->fluidText, straolder);
return; QJ

GJ - I
mohr0bj.fluidPressure = tmpvalue; v

mohrOptionCB.c++ 9

Printed by jbuckner from performer

Aug 4 1998 It07 mohrOptionCB.c++ Page 17

XmScaleSetValue(moattr->fluidscale,
(int) (mohrObj.fluidPressure * 100.0));

updateEffective0;
mohrObj.failure();
mohrObj.display();

1 // end if

1 // end of mohrChangeFluidField

..
// Function: mohrChangeFluidScale (not a member function)

{{ File: mohrOptionCB. c++
//
// Arguments: Widget, XtPointer, XtPointer callData
//
// State Changes: mohrObj.fluidPressure, updates the fluidpressure
// also calls updatelffectiveo, mohrObj.failure(),
// mohrObj.display()
//
// Purpose: This program updates the fluid pressure from its scale
// in the options window of the Mohr graph
//
// Last Modified: 1 July 1997 , Joshua Buckner (jbuckner@cs.trinity.edu)
.
void mohrChangeFluidScale(Widget, XtPointer, XtPointer callData)
r

XmScaleCallbackStruct
* cbs = (XmScaleCallbackstruct *) callData;

// The variable below holds the address to mohr0bj's
// attributes private member variable.
MohrAttributeType

MohrOptionType *moattr = mohrOptionObj.getAttributes();

char strHolder[100]; // holder for transfer of numbers to ASCII

// update the ratio
mohr0bj.fluidPressure = (double) ((cbs->value) / 100.0);

s p r i n t f (s t r H o l d e r , " 8 5 . 2 1 f " , mohr0bj.fluidPressure);
XmTextFieldSetString(m0attr->fluidText, strHolder);

updateEffective0;
mohrObj.failure();
mohrObj.display();

* mohrObjAttrib = mohrObj.getAttributes();

I // end of mohrs3ToslRatioScaleChange

.
// Function: updateEffective (not a member function)
//
// File: mohrOptionCB.c++
//
// Arguments: void
//
// State Changes: mohrObj.attributes->effStress are changed and this change
// is displayed on screen in the text fields
//
// Purpose: This function takes care of calculating effective stress
//
// Last Modified: 14 July 1997 , Joshua Buckner (jbuckner@cs.trinity.edu)
.
void updateEffective0
r

MohrOptionType // option window attributes
*moattr = mohrOptionObj.getAttributes();

MohrAttributeType // mohr graph attributes
*mattr = mohrObj.getAttributes();

Aug 4 1998 10:07 mohrOptionCB.c++ Page 18

char strs[31[100]; // holder for transfer of numbers to ASCII

int
i, // loop index
min, mid, max; // hold indeces of smallest, middle, and largest sigmas

if (mattr-XtressMode == 0) // stresses are dependent
r

findMinMidMax(L min, L mid, L max, mattr->sigmas, 3) ;

// we are now ready to set the effective stresses
mattr->effStress[maxl = (doub1e)mattr->sigmas[maxl

mattr->effStress[mid] = (doub1e)mattr->sigmas[midl

mattr->effStress[minl = (doub1e)mattr->sigmas[rninl

- mohr0bj.fluidPressure;

- (mattr->s2ToslRatio * mohr0bj.fluidPressure);
- (mattr->s3ToslRatio * mohr0bj.fluidPressure);

1 // end if (mattr->stressMode == 0)

else // stresses are independent so set them strait
r

mattr->effStress[Ol = (doub1e)mattr->sigmas[Ol - mohrObj.fluidPressure;
mattr->effStress[ll = (doub1e)mattr->sigmas[ll - mohr0bj.fluidPressure;
mattr->effStress[2] = (double)mattr->sigmas[21 - mohr0bj.fluidPressure;

J // end else

for (i = 0; i < 3 ; i++) // set the scales on the screen
I

// check bounds
if (mattr->effStress[i] > mattr->rnaxScale)
I

if(moattr->isInfoWinOpen == FALSE)
{ // if there is no current error win open

moattr->isInfoWinOpen = TRUE;
// open the window and tell the world about it
infoWidget(m0attr->mohrDialogForm,

"Warning: Actual Effective stress Value out of bounds.\nSe

CloseBoundsErrorWin);
tting value to an artifical bound value.",

1
mattr->effStress[i] = mattr-maxscale;

I

if (mattr->effStressli] < mattr->minScale)
r

if(moattr->isInfoWinOpen == FALSE)
{ // if there is no current error win open

moattr->isInfoWinOpen = TRUE;
// open the window and tell the world about it
infoWidget(m0attr->mohrDialogForm,

"Warning: Actual Effective stress Value out of bounds.\nSe

closeBoundsErrorWin);
tting value to an artifical bound value.",

I
mattr->effStress[i] = mattr->minScale;

1
sprintf(strs[i],"85.2lf',mattr->effStress[il);
XmTextFieldsetString(moattr->effText[il, strsCi1);

1 // end for int i

updateEffRatios0; /! update the effective stress ratio text boxes
1 // end of updateEffective

.
// Function: updateEffRatios (not a member function)
//
// File: mohrOptionCB.c+t
//
// ArgUmentS: void
I ,

//
// state Changes: the effective ratio text fields are changed and that v.,

mohrOptionCB.c++ 10

Printed by jbuckner from performer

Bug 4 1998 10:07 m oh rOpti onCB .c++ Page 19

// is all
//
// Purpose: This function takes care of calculating effective stress
// ratios
//
// Last Modified: 14 July 1997, Joshua Buckner (jbuckner@cs.trinity.edu)
.
void updateEffRatios0

MohrOptionType // option window attributes
*moattr = mohrOptionObj.getAttributes();

MohrAttributeType // mohr graph attributes
*mattr = mohrObj.getAttributes();

int
min, mid, max; // hold indeces of smallest, middle, and largest sigma

double holder; // holder for storing ratios
char str[1001; // holder for string that goes in text boxes

findMinMidMax(& min, & mid, & max, mattr->sigmas, 3) ;

if(mattr->effStress[maxl != 0.0) // can't divide by 0.0 '
holder = (double) (mattr->effStress[minl / mattr->effStress[maxl);
sprintf(str, "%5.31fn, holder); // make the number a string

// division by zero is not defined in our system of mathematics
I
else

// update the text box
XmTextFieldSetString(moattr->effs3ToslRatioText, Str);

if(mattr->effStress[max] ! = 0) // can't divide by 0.0 '

sprintf(str, " % s " , "Undefined\O");

holder = (double) (mattr->effStress [mid] / mattr->effstress [maxl) ;
sprintf(str, "%5.31fn, holder); //make the number a string

1
else // division by zero is not defined in our system of mathematics

stxrntffstr. "%s" . "Undefined\O"): . .
// uhdate the text box
XmTextFieldSetString(moattr->effs2ToslRatioText, str);

1 // end function updateEffRatios

.
// Function: closeBoundsErrorWin (not a member function)
//
// File: mohrOptionCB.c++
//
// Arguments: Widget w, XtPointer ClientData, XtPointer callData
// these are only passed along to destroyFS
//
// State Changes: an info dialog box is destroyed
//
// Purpose: This function makes sure that the isInfoWinOpen gets set to
// flase when the info win is closed

;; Last Modified:
.
void closeBoundsErrorWin(Widget w, XtPointer clientData, XtPointer callData)
I

8 July 1997, Joshua Buckner (j b u c k n e r @ c s . t r i n i t y . e d u)

MohrOptionType // option window attributes
* moattr = mohrOptionObj.getAttributes();

moattr->isInfoWinOpen = FALSE; // the info win is about to be closed
destroyFS(w, clientData, CallData); // kill the info win

1 // end function closeBoundsErrorWin

.

//

//

// Function: mohrArrowCB (not a member function)

// File: mohrOptionCB.c++

Aug 4 1998 10:07 mohrOptionCB.c++ Page 20

// Arguments: Widget, XtPointer, XtPointex
//
// state Changes: Makes 1/2 the options window dissappear/reappear
//
// Purpose: To conserve screen space
//
// Last Modified: 1 August 1997, Joshua Buckner (jbuckner@cs.trinity.edu)
..
void mohrArrowCB(Widget, XtPointer, XtPointer)[

MohrOptionType *moattr = mohrOptionObj.getAttributes();

moattr->arrowDir = !(moattr->arrowDir);

if (moattr->arrowDir){
XtManageChild(m0attr->rockRenderRow);
XtVaSetValues(m0attr->arrowButton, XmNarrowDirection, X~ARROW-UP,

NULL) ;
3
else [

XtUnmanageChild(moattr->rockRenderRow);
XtVaSetValues(m0attr->arrowButton, XmNarrowDirection, x~ARROW-DOWN

, NULL); I
1 // end of mohrArrowCB

int trapAlpha(char * in-str)
I
int i;

for(i = 0; i < strlen(in-str); i++)
[
if ((in-str[il < '0') I1 (in-strril > '9'))
I

I
return 1;

1

rnohrOptionCB.c++ 11

SOFTWARE
DEVELOPMENT PLAN

REVISED SOFTWARE DEVELOPMENT
PLAN FOR 3DSTRESS

Prepared for

Nuclear Regulatory Commission
Contract NRC-02-97-809

December 1999

Center for Nuclear Waste Regulatory a- 4k-W

San Antonio, Texas

CONTENTS

Section Page

1 SCOPE . 1-1
1.1 Identification . 1-1
1.2 System Overview . 1-1
1.3 Document Overview . 1-1
1.4 Relationship to Other Plans . 1-1

2 REFERENCED DOCUMENTS . 2-1

3 OVERVIEW OF REQUIRED WORK . 3-1
3.1 General . 3-1
3.2 Software Functionality . 3-1
3.3 Software Design and Development . 3-1
3.4 Hardware Configurations . 3-1

4 PLANS FOR PERFORMING GENERAL SOFTWARE DEVELOPMENT ACTIVITIES 4.1
4.1
4.2

Software Development Process . 4-1
General Plans for Software Development . 4-1
4.2.1 Software Development Methods . 4-1
4.2.2 Standards for Software Products . 4-2

4.2.2.1 Software Design Standards . 4-2
4.2.2.2 Software Coding Standards . 4-2
4.2.2.3 Software Test Standards . 4-3
Reusable Software Products . 4-4
4.2.3.1 Incorporating Reusable Software Products 4-4
4.2.3.2 Developing Reusable Software Products . 4-4
Handling of Critical Requirements . 4-4
4.2.4.1 Safety Assurance . 4-5
4.2.4.2 Security Assurance . 4-5

4.2.4.4 Assurance of Other Critical Requirements 4-5
4.2.5 Computer Hardware Resource Utilization . 4-5
4.2.6 Recording Rationale . 4-5
4.2.7 Access for Acquirer Review . 4-5

4.2.3

4.2.4

4.2.4.3 Privacy Assurance . 4-5

5 PLANS FOR PERFORMING DETAILED SOFTWARE DEVELOPMENT ACTIVITIES 5.1
5.1 Project Planning and Oversight . 5-1

5.1.2 Software Test Planning . 5-1
5.1.3 System Test Planning . 5-1
5.1.4 Software Installation Planning . 5-1
5.1.5 Software Transition Planning . 5-1
5.1.6 Following and Updating Plans, Including the Intervals for Management

Review . 5-2

. 5.1.1 Software Development Planning . 5-1

11

CONTENTS (cont’d)

Section Page

5.2

5.3

5.4
5.5
5.6

5.7

5.8

5.9

5.10
5.11
5.12

Establishing a Software Development Environment . 5-2
5.2.1 Software Engineering Environment . 5-2
5.2.2 Software Test Environment . 5-2
5.2.3 Software Development Library . 5-2
5.2.4 Software Development Files . 5-2
5.2.5 Non-deliverable Software . 5-3
System Requirements Analysis . 5-3
5.3.1 Analysis of User Input . 5-3
5.3.2 Operational Concept . 5-4
5.3.3 System Requirements . 5-4
System Design . 5-4
Software Requirements Analysis . 5-4

5.6.1 CSCI-wide Design Decisions . 5-4
5.6.2 CSCI Architectural Design . 5-4
5.6.3 CSCI Detailed Design . 5-5
Software Implementation and Unit Testing . 5-5
5.7.1 Software Implementation . 5-5
5.7.2 Preparing for Unit Testing . 5-5
5.7.3 Performing Unit Testing . 5-5
5.7.4 Revision and Retesting . 5-5
5.7.5 Analyzing and Recording Unit Test Results . 5-6
Unit Integration and Testing . 5-6
5.8.1 Preparing for Unit Integration and Testing . 5-6
5.8.2 Performing Unit Integration and Testing . 5-6
5.8.3 Revision and Retesting . 5-6
5.8.4 Analyzing and Recording Unit Integration and Test Results 5-6
CSCI Qualification Testing . 5-6
5.9.1 Independence in CSCI Qualification Testing . 5-7
5.9.2 Testing on the Target Computer System . 5-7
5.9.3 Preparing for CSCI Qualification Testing . 5-7
5.9.4 Dry Run of CSCI Qualification Testing . 5-7
5.9.5 Performing CSCI Qualification Testing . 5-7
5.9.6 Revision and Retesting . 5-7
5.9.7 Analyzing and Recording CSCI Qualification Test Results 5-7
CSCUHWCI Integration and Acceptance Testing . 5-8
System Qualification Testing . 5-8
Preparing for Software Use . 5-8
5.12.1 Preparing the Executable Software . 5-8
5.12.2 Preparing Version Descriptions for User Sites . 5-8
5.12.3 Preparing User Manuals . 5-8

5.12.3.1 Software Users Manual . 5-8
5.12.3.2 Software Input/Output Manual 5-8

Software Design . 5-4

111

CONTENTS (cont’d)

Section Page

5.12.3.3 Software Centers Operators Manual 5-9
5.12.3.4 Computer Operation Manuals . 5-9

5.12.4 Installation at User Sites . 5-9
Preparing for Software Transition . 5-9
Software Configuration Management . 5-9
5.14.1 Configuration Identification . 5-9
5.14.2 Configuration Control . 5-10
5.14.3 Configuration Status Accounting . 5-10
5.14.4 Configuration Audits . 5-10
5.14.5 Packaging, Storage, Handling, and Delivery . 5-10

5.15 Software Product Evaluation . 5-10
5.16 Software Quality Assurance . 5-11
5.17 Corrective Action . 5-11

5.17.1 ProbledChange Reports . 5-11
5.17.2 Corrective Action System . 5-11

5.18 Progress Reporting . 5-13
5.19 Other Software Development Activities . 5-13

5.19.1 Risk Management, Including Known Risks and Corresponding Strategies . . 5-13
5.19.2 Software Management Indicators . 5-14
5.19.3 Security and Privacy . 5-14
5.19.4 Subcontractor Management . 5-14
5.19.5 Interface with Software Independent Verification and Validation Agents . . 5-14
5.19.6 Coordination with Associate Developers . 5-14
5.19.7 Improvement of Project Processes . 5-14
5.19.8 Other Activities Not Covered Elsewhere in the Plan 5-15

5.13
5.14

6 SCHEDULES AND ACTIVITY NETWORK . 6-1

7 PROJECT ORGANIZATION AND RESOURCES . 7-1
7.1 Project Organization . 7-1
7.2 Project Resources . 7-2

7.2.1 Personnel . 7-2
7.2.2 Facilities . 7-2
7.2.3 Acquirer Furnished Equipment, Data, and Documentation 7-2

8 NOTES . 8-1
8.1 Acronyms . 8-1
8.2 Definitions . 8-1

iv

FIGURES

Figure Page

5-1 Sample software problem report . 5-12

vi

TABLES

Table Page

6- 1 Schedule of software development activities . 6-1

...
V l l l

1 SCOPE

This document establishes the Software Development Plan (SDP) to be implemented by the Center for
Nuclear Waste Regulatory Analyses (CNWRA) for the development and release of the 3DStress version 1.3
software application.. The software will be provided to the government (acquirer) without proprietary
restrictions.

1.1 Identification

This SDP applies to software modifications and corrections to be made to version 1.2 of the 3DStress
application. The modified code will be identified as 3DStress version 1.3.

1.2 System Overview

The 3DStress application is used by scientists and engineers to study the relationship between static
stress fields and geologic faulting. 3DStress utilizes user defined stress fields to compute the likelihood of
fault displacement based on the fault orientation. 3DStress provides user input, computation, and data
visualization tools to create an interactive environment in which various stress models may be studied and
explored efficiently.

3DStress executes on a Silicon Graphics workstation running the I R K operating system. The
application does not communicate or interface with any other computer system or software application.

1.3 Document Overview

This SDP defines the plan for management, development, and software maintenance for the 3DStress
software application. This document contains the procedures to address the following program management
tasks:

a. Software design practices
b. Software Quality Assurance
C . Software configuration management
d. Software engineering standards
e. Software development process
f. Organizational structure
g. Schedule

These guidelines will ensure the efficient utilization of project resources to deliver a high quality
software product in a timely manner.

1.4 Relationship to Other Plans

This SDP is not related to any other plan.

1-1

2 REFERENCED DOCUMENTS

The following documents provide guidelines for software development and documentation activities. In the
event of conflict between this document and those referenced herein, the contents of this document shall be
considered superseding requirements.

CNWRA-TOP-18 1 MAY 98 Development and Control of Scientific and
Engineering Software

2- 1

3 OVERVIEW OF REQUIRED WORK

3.1 General

CNWRA has modified version 1.2 of 3DStress to enhance software performance, provide additional
capabilities and correct software defects. All functionality provided by the current version will be duplicated
or replaced in the new version. The host hardware platform for 3DStress will be either a Silicon Graphics
workstation running version 6.x or 5.x of the I R E operating system, or a Sun Ultra workstation running
version 2.7 or higher of the Solaris operating system.

CNWRA will perform the software requirements analysis, design, development and testing necessary
to deliver a reliable software and documentation product at the end of the development project.

3.2 Software Functionality

The 3DStress application calculates either the slip tendency or dilation tendency of one or more
geologic faults for a static three dimensional stress field. The application displays various data plots in which
colors and 3D surfaces are rendered to convey the computational results to the software user. 3DStress will
read data files containing fault geometry information and will save copies of the various display windows
for hard copy output or as input to other software applications.

3.3 Software Design and Development

The new version of 3DStress will be designed to meet or exceed the requirements for the existing
application version.

All software will be developed in the C++ programming language unless highly specialized coding
is required for performance beyond the ability of the commercial compiler. A commercial source control
product will be employed to track and coordinate all modifications to the software source code.

Like the existing version, the new 3DStress application will operate in a stand-alone mode requiring
operator control for the execution of all software operations. The application will retain the existing man-
machine-interface based on the X Windows program environment and the Open GL graphics rendering
library.

All new software development and modifications will be done in accordance with CNWRA TOP-18.
All existing code being reused will not be unnecessarily modified or documented to CNWRA-TOP-18.
Reused code will consist of code used as is or with only minor customization for use with 3DStress
version 1.3.
3.4 Hardware Configurations

The 3DStress software application will operate on a single Silicon Graphics computer platform. The
software will operate on any SGI equipped with a monitor, keyboard, mouse and removable media drive for
software installation. Due to the extensive computational nature of 3DStress, CNWRA recommends the
following hardware configuration for acceptable calculation and display performance:

3-1

200 MHz Iris Processor or better with floating point coprocessor (on Silicon Graphics platform) or

128 Mbytes RAM
High Impact graphics card (on Silicon Graphics platform) or Creater 3D graphics card (on Sun

platform)
9 GB hard drive
19" monitor or larger
8 mm Tape or Digital Audio Tape drive
CDROM
Network connection

440 MHz UltraSPARC-IIi processor or better (on Sun platform)

3-2

4 PLANS FOR PERFORMING GENERAL SOFTWARE
DEVELOPMENT ACTIVITIES

The following sections outline plans for performing general software development activities for the 3DStress
software application.

4.1 Software Development Process

CNWRA will utilize a Grand Design strategy for development of the 3DStress application. The
Grand Design approach results in a single software build and is appropriate for this project because:

a.

b.

C.

The 3DStress software requirements are well known and documented in the existing
3DStress software documentation.
The 3DStress application is not a large development effort and can be accomplished in a
short time frame.
Once the final software requirements are specified the development schedule will be firm
and will not be altered due to changing technical requirements.

4.2 General Plans for Software Development

The following sections define the software development practices and standards to be applied to the
3DStress software development effort.

4.2.1 Software Development Methods

For the same reasons the Grand Design program strategy was selected, the classic life cycle method
of software development will be employed. The classic life cycle method involves requirements analysis,
design, coding, module testing, integration, system level testing and implementation.

All software will be developed in the C++ programming language unless specialized coding is
required for software performance beyond the capability of the C++ compiler. Any deviations from the use
of the C++ compiler will be reviewed by the software development team to determine the impact on related
software modules.

CNWRA will base the C++ software design and implementation of the following development
approaches:

1.

*

2.

Information Hiding - Decomposition of a system into units, such that each is characterized
by its knowledge of a design decision which it hides from all others. The design decision
may relate to either a routine or data. Access to hidden data or routines will be controlled
through well defined interfaces with limited update privileges.
Encapsulation - Related data and data processing/manipulation processes will be organized
or structured as classes reflecting 3DStress component organization, interfaces and
processing. Subclasses will be derived from parent classes until the child class represents
a unit process or interface in enough detail to express the class behavior as data variables
and member functions.

4- 1

4.2.2 Standards for Software Products

The following sections define the standards to be followed in developing the software requirements,
design, coding, test procedures and documenting test results for the 3DStress development project.

4.2.2.1 Software Design Standards

Software design is the process by which requirements are translated into software representations
using structured analysis techniques. A preliminary software design will define modifications to existing or
additional 3DStress computational and/or display capabilities. These capabilities will be mapped to software
classes by functional and data access requirements. A subsequent refinement of the design will lead to
detailed class definitions optimized for efficient software operation.

Throughout the design process, the quality of the evolving design will be reviewed by the software
developer with the software or project manager. The software team will adhere to the following design
quality criteria:

I.

2.
3.
4.
5.

The design will be modular and logically partitioned into components that perform distinct
functions.
The design will contain distinct classes reflecting the modular design of the software.
The design will lead to software modules that exhibit independent functional characteristics
The design will strive to simplify user interfaces.
The design will incorporate the concept of abstraction, enabling the designer to simplify and
reuse software components.

4.2.2.2 Software Coding Standards

Coding will translate the software design into C-t+ language software files and will begin after the detailed
design has been completed and reviewed with the project and element managers. CNWRA will code the
software to have the following characteristics:

1.
2. Maximum compiler efficiency
3.
4. Maintainability

Ease of code to design translation

Maximum use of development tools

CNWRA will employ a coding style that stresses simplicity and clarity. This approach will be
applied to data declaration, statement construction, and data input and output. This coding philosophy will
enhance the software readability while simplifying the test/debug/implement portion of the software
development cycle.

4.2.2.2.1 Headings

Each software unit will begin with a unit header that explains the following:

1.
2. General unit design

Description and purpose of the operation

4-2

3. Initialization
4. Global interactions (if any)
5. Error conditions and handling

4.2.2.2.2 Comments

Source code will be explained with comments. Comments will explain the intended operation, logic
and possible error conditions associated with code sections. General comments will precede code sections
while detailed comments will be interspersed in the code. Comments will be written for readers with
moderate software comprehension.

4.2.2.2.3 Variable Naming

Names of variables and classes will be descriptive and indicative of program activity. Names shall
avoid the use of abbreviations, mnemonics and jargon within the constraint of size limitations. Comments
will be used to explain the role of all non-trivial variables and classes at the time of declaration. Names will
adhere to consistent formats across all code modules. This will include the use of capitalization, under scores
and unique letter combinations to identify specific classes of variables.

4.2.2.2.4 Restrictions

Previous versions of the 3DS tress application software were developed using the C/C++
programming language and incorporated function calls to various operating system, X Windows, and Open
GL libraries bundled with each Silicon Graphics hardware platform. No restrictions will be placed on the
use of additional software libraries except that the use of all third party library products will be documented
in the source code and software version or release description.

Also, the software team will restrict its use of multiple inheritance to only those version 1.2 base
classes already utilizing multiple inheritance. Theuse of multiple inheritance is discouraged and the software
developers will also attempt to avoid mixing traditional C function calls with their equivalent C++
counterparts.

4.2.2.2.5 Com plexi ty

Code aggregates will be limited to the level that a software programmer can understand them without
in-depth study. Individual coding statements will be simple and direct and will not be convoluted for esoteric
or marginal efficiency gains. Individual source code statements will be simplified by avoiding complicated
conditional statements, tests on negative test conditions, and unnecessary nesting in loops or conditions.
Source code statements will use parenthesis to clarify statement content. Related code such as loops, blocks
and cases will be grouped and commented as a functional entity.

4.2.2.3 Software Test Standards

Software testing accounts for a large percentage of technical effort in the software development
process. The objective of software testing is to identify errors. To fulfill this objective, CNWRA will utilize
a series of steps in testing the software first at the unit level, and then progressing to the integration and
system levels.

4-3

Unit level tests will concentrate on functional verification of software modules prior to incorporation
into the program structure. Unit testing makes heavy use of white box testing techniques to exercise specific
paths in a module’s control structure to maximize error detection. After unit testing, modules are assembled
to form the complete software package.

Integration testing addresses reliability issues associated with program verification and construction.
Software modules must work in concert to provide program functionality. Integration testing reveals errors
in module interactions and deficiencies in meeting functional requirements. After successful integration
testing, a set of high order system tests are conducted.

System validation testing will demonstrate traceability to software requirements, and will provide
assurance that software meets functional, behavioral and performance requirements. The validated software
will then be installed in an operational environment to demonstrate system performance.

4.2.3 Reusable Software Products

The following sections outline the approach for incorporating reusable software products and
developing new reusable software for the 3DStress software application.

4.2.3.1 Incorporating Reusable Software Products

CNWRA will investigate several potential sources of reusable software for the 3DStress application.
Version 1.2 of 3DStress is written in the C++ programming language and several software modules will be
incorporated directly into version 1.3. Wherever possible, existing software will be analyzed to determine
if software modifications are necessary to enhance the reusability of the source code in future software
versions.

A second source of reusable software will be in the form of commercial device drivers, function and
class libraries, operating system resources and documentation generators. Wherever possible and advisable,
CNWRA will identify commercial products for incorporation or utilization in the development of the new
version of 3DStress.

4.2.3.2 Developing Reusable Software Products

This development project will apply good software development techniques in developing the new
3DStress version. By combining good software development practices with the use of C++, which lends itself
to reuse through class inheritance, the 3DStress project will result in some software that is reusable.
However, it is not the goal of this project to develop reusable software at the expense of software efficiency
or simplicity.

4.2.4 Handling of Critical Requirements

The following sections outline the approach for handling critical requirements for the 3DStress
project.

4-4

4.2.4.1 Safety Assurance

3DStress software activities do not require safety assurances. This paragraph has been tailored out.

4.2.4.2 Security Assurance

The 3DStress application does not contain any security related procedures or data. This activity is
tailored out.

4.2.4.3 Privacy Assurance

The 3DStress application will not contain any privacy related procedures or data. This activity is
tailored out.

4.2.4.4 Assurance of Other Critical Requirements

Requirements deemed critical by the technical directive will be presented by the acquirer and will
be incorporated into this plan as appropriate.

4.2.5 Computer Hardware Resource Utilization

The 3DStress application will be developed, tested and executed on existing CNWRA Silicon
Graphics and Sun workstations. No additional hardware resources are required for this development effort.

4.2.6 Recording Rationale

Software development activities will be documented in Software Development Files (SDFs)
maintained by individual software developers. These files will contain engineering assumptions as well as
standard software development information. Rationale will be recorded and submitted to the project manager
at the conclusion of the development effort. Key decisions and rationale will be discussed during technical
and management reviews throughout the development project.

4.2.7 Access for Acquirer Review

Throughout the project performance period, the CNWRA project team will be available for telephone
discussions regarding the development effort. All development activities will take place in the CNWRA GIS
laboratory, that is accessible to acquirer personnel.

4-5

5 PLANS FOR PERFORMING DETAILED SOFTWARE
DEVELOPMENT ACTIVITIES

The following sections outline the detailed Software Development Activities for the 3DStress project.

5.1 Project Planning and Oversight

The following sections describe the approach to be employed for project planning and oversight of
the 3DStress development project.

5.1.1 Software Development Planning

This document contains the pertinent information related to software development planning. The
project team through the Project Manager may make recommendations for improvements or changes to the
SDP. The Project Manager will determine the impact on schedule and cost and, if appropriate for the
program, present the SDP modifications to the acquirer for approval and contract modifications.

5.1.2 Software Test Planning

Based on the results of the Software Requirements analysis, a Software Test Plan (STP) will be
developed for qualification testing of the 3DStress application. This plan will describe the software test
environment, the test(s) to be performed, and the test schedule. Test results will be recorded in the SDFs and
will be available for acquirer review.

5.1.3 System Test Planning

The 3DStress application is a single build computer software configuration item (CSCI) that interacts
directly with the software user. System testing is not separable from CSCI testing and will thus be conducted
with CSCI testing. System level tests will be defined in the STP.

5.1.4 Software Installation Planning

The 3DStress application will be delivered on removable media. The installation procedure and
scripts will be designed, documented, and built to simplify the installation procedure. No hardware
modifications are anticipated for the migration from version 1.2 to 1.3. Recipients of version 1.3 will be
responsible for internally coordinating local software installations.

5.1.5 Software Transition Planning

CNWRA will document any version specific requirements associated with the new release of
3DStress. Recipients of the new version will be responsible for internally coordinating any file translations
necessary to support version 1.3.

5-1

5.1.6 Following and Updating Plans, Including the Intervals for Management Review

CNWRA will conduct the development and testing of 3DStress version 1.3 in accordance with the
SDP and STP. The software development team will meet periodically with the Project Manager to verify the
software process is adhering to these plans. At this time, no changes to the plans are anticipated. However,
should a plan need modification, the Project Manager will present the changes to the acquirer for approval
and coordinate their implementation with the development team.

5.2 Establishing a Software Development Environment

The following sections outline the approach for establishing, controlling and maintaining the
software environment for the 3DStress project.

5.2.1 Software Engineering Environment

Silicon Graphics and Sun software development environments will be established for this project
in the CNWRA GIS Laboratory, Bldg. 189 at the CNWRA facility. All printed materials, vendor CD’s,
floppies and tapes will be stored in the GIS Laboratory. Intermediate disk backups will be made to tape and
will also be stored in the GIS Laboratory.

5.2.2 Software Test Environment

CNWRA maintains four SGI and three Sun workstations for software development and GIS
activities. Software development and testing will be conducted on these computers.

5.2.3 Software Development Library

The lead software developer will serve as the software librarian and will have primary control over
the software development library. Because the software development team is small, all team members will
have access to the library in the absence of the librarian. The librarian will establish a working library on the
development Silicon Graphics workstation. Both libraries will be subdivided into a subdirectory structure
designed to contain deliverable documents, software units, SDFs, and commercial software products.

5.2.4 Software Development Files

Informal Software Development Files (SDFs) will be created for the 3DStress software units. The
SDFs will be created prior to the initiation of detailed design and shall be maintained for the duration of the
project. They will be made available to the product evaluation team, quality assurance, and acquirer
representatives as requested. The SDF may reference information in other project documents as necessary.
All schedule and status data will be in other project documents. SDFs will be created and maintained by the
programming staff under the direction of the Project Manager.

The SDFs will be maintained predominantly in electronic form. The electronic form will be a
combination of plain ASCII and word processor files. If necessary paper submissions will be included in a
binder and referenced in the electronic form.

5-2

SDFs will generally include the following information:

1.

2.

3.

4.
5.

6.

7.

8.

9.

10.

Record Sheet - The contents of the SDF are listed by item name and electronic name and
location. The engineer responsible for the SDF is identified with the due date, completion
date, originator sign-off, and reviewer sign-off.
Requirements Specification - All requirements that the CSU must satisfy are listed by
reference to the applicable sections of the Software Requirements Specification.
Interface Description - Global variables/constants, calling sequences, and input/output
formats are defined or referenced.
Preliminary Design - Preliminary design description.
Software Test Information - All test cases and test procedures are defined or referenced.
Concurrent with code walk-through, the reviewer will verify that the test plan fully tests
capabilities, interfaces, and design constraints.
Source Code Organization Description - A description of the location and directory structure
of the CSU source code as well as commercial products used in the CSU.
Test Results - At all levels, records of test results are maintained by test case identifier,
tester, date, and the revision status of test drivers, tools, database, and code tested.
Significant differences between expected and actual results will be explained..
Software Problem Reports - SPR forms shall be used to document problems encountered in
software and software documentation.
Notes - All explanatory materials relevant to the CSU are maintained in the section. Formal
deviation and waivers are also kept in this section.
Reviewers Comments - Reviewers comments on the other sections of the SDF are kept in
this section.

5.2.5 Non-deliverable Software

Where necessary, CNWRA will develop simulators to test software component functionality. The
end item software will not utilize these test fixtures and therefore will not be delivered, controlled or
documented to the software release standards.

5.3 System Requirements Analysis

The following sections describe the approach CNWRA will follow in developing the software system
design for the 3DStress application.

5.3.1 Analysis of User Input

3DStress operates as a stand-alone software application requiring user directives to control
application execution. Additional features planned for version 1.3 will be analyzed to design an optimal user
interface environment. The primary user interface design criteria will be ease of operator control and the
effective display of computational results. At this time, no additional user input devices are anticipated
beyond the traditional input devices (keyboard, mouse) attached to standard SGI workstations.

5-3

5.3.2 Operational Concept

3DStress is designed to be an interactive software application utilized by research and scientific staff
at irregular intervals. The software is not intended to become an integral part of day-to-day operations.
Therefore an operational concept description will not be written for this application. This activity has been
tailored out.

5.3.3 System Requirements

Based on experience with 3DStress version 1.2 and planned modifications for version 1.3, no system
modifications are necessary for this release version.

5.4 System Design

Version 1.3 represents an incremental change to 3DStress version 1.2. The existing version 1.2
system design will be utilized in version 1.3.

5.5 Software Requirements Analysis

This version of 3DStress is intended to be a functional replacement of the current application.
CNWRA will review and analyze the requirements for the new version to determine the operational concepts
and software specific requirements of the new CSCI. Software technology areas needed to implement the
new version will be evaluated with respect to technologies utilized in the current software revision. New
requirements will be categorized as new technology or extensions of existing capabilities. The results of this
analysis will be documented in the Software Requirements Description (SRD) as a reference for testing and
validating the new software version.

5.6 Software Design

The following sections describe the approach CNWRA will follow in preparing the software design
for 3DStress, version 1.3. The results of the software design process will be documented in the software
development files maintained by the development team members.

5.6.1 CSCI-wide Design Decisions

CNWRA will analyze the SRD to refine the existing concept of data and event management within
the current 3DStress application. The software team will prioritize event management and data processing
tasks according to their impact on overall system performance and functionality. From this prioritization, the
team will evaluate various models for allocating hardware and software resources during software execution.
Any modifications to the current CSCI event and data management concepts will be documented in the SDFs.

5.6.2 CSCI Architectural Design

Using the high-level resource allocation model, the software team will design an internal CSCI
architecture to implement the major functional requirements specified in the SRD. This design will define
any new or modified classes of data and functionality necessary to implement the new software capabilities.

5-4

5.6.3 CSCI Detailed Design

CNWRA will refine the architectural design into individual software units by designing algorithmic
approaches for implementing specific software requirements defined in the SRD. Algorithm development
will focus on meeting or exceeding performance and functional specifications while adhering to the
previously defined communication, processing and event management framework.

5.7 Software Implementation and Unit Testing

The following sections describe the approach to be followed for software implementation and unit
testing for the 3DStress application.

5.7.1 Software Implementation

The software will be developed within the coding techniques described above in Section 4.2.1. All
software will be developed in the C++ programming language unless highly specialized coding is required
for performance beyond the ability of the C++ compiler to produce efficient binary executables. Any
deviations from the use of C++ will be approved by the Project Manager.

No relational databases are required for the 3DStress application. All system configuration and
geologic fault information will be maintained in plain ASCII text files or publicly defined binary file formats.
ASCII file formats are generally preferred for all files except very large data files where ASCII storage is
impractical.

5.7.2 Preparing for Unit Testing

Unit testing will be designed to verify the new software meets the detailed software design in the
SDFs. CNWRA will develop test cases using by calculating outputs fromknown or controlled inputs for each
major software unit. Controlled test cases will be computed using independent computations not relying on
the newly developed software. Information regarding the test case computations and results will be
documented in the SDFs.

5.7.3 Performing Unit Testing

As major software units are completed, the developer will conduct unit testing with test cases to
verify the expected results.

5.7.4 Revision and Retesting

As needed, the developer will revise and retest software units to ensure compliance with the
functionality described in the SDFs and SRD.

5-5

5.7.5 Analyzing and Recording Unit Test Results

Each iteration of testing and revision through the successful completion of the test case will be
documented in the applicable SDF. Persistent test failure by a software unit will be analyzed to determine
if failures are derived from an inadequate design, insufficient documentation, or improper coding practices.

5.8 Unit Integration and Testing

The following sections describe the approach to be followed for unit integration and testing for the
3DStress project.

5.8.1 Preparing for Unit Integration and Testing

Unit integration testing will be performed at the major software component level. CNWRA will
develop test cases and data in terms of inputs and expected outputs for the control subsystem. Information
regarding the test cases, procedures and results will be stored in the SDFs.

5.8.2 Performing Unit Integration and Testing

As major software units are ready for testing, the development team will conduct component level
testing with test cases and verify the expected outputs.

5.8.3 Revision and Retesting

As needed, the developer will revise and retest software components to ensure compliance with the
functionality described in the SDD and SRS.

5.8.4 Analyzing and Recording Unit Integration and Test Results

Each iteration of testing and revision through the successful completion of the test case will be
documented in the applicable SDF. Persistent test failure by a software component will be analyzed to
determine if failures are derived from an inadequate design, insufficient documentation, or fundamental
errors in the CSCI architectural design.

5.9 CSCI Qualification Testing

The intent of the CSCI qualification testing for the 3DStress application is to verify that the new
controller is functionally equivalent to the previous version and provides the additional capabilities described
in the SRD.

The following sections describe the approach to be followed for CSCI qualification testing for the
3DStress application.

5-6

5.9.1 Independence in CSCI Qualification Testing

The Project Manager will assign an individual from the CNWRA , CNWRA QA or SwRI staff who
has not participated in the design or development of the 3DStress to conduct formal testing of the CSCI.

5.9.2 Testing on the Target Computer System

All CSCI qualification testing will be performed on Silicon Graphics and Sun workstations available
to the CNWRA.

5.9.3 Preparing for CSCI Qualification Testing

Upon completion of the CSCI software, the software will be entered into the Configuration
Management (CM) system as the 3DStress product baseline.

The Software Test Plan (STP) and Software Test Procedures (STPr) will be given to the independent
software tester in preparation for the dry run CSCI qualification test.

5.9.4 Dry Run of CSCI Qualification Testing

The software developer will dry run the test procedures to ensure that they are complete, accurate
and are ready for witnessed testing. The results of the test will be recorded in the appropriate SDFs.
Software Problem Reports will be prepared for problems uncovered during the testing process.

5.9.5 Performing CSCI Qualification Testing

A witnessed qualification test will be conducted at CNWRA to verify and demonstrate that the
3DStress application meets the system and software requirements stated in the SRD. If additional revision
and retesting is required, the appropriate portions of the CSCI qualification test will be rerun after completion
of the revisions.

5.9.6 Revision and Retesting

Revisions, based on SPR (corrective action) processing, and retesting will be accomplished prior to
final approval of the qualification testing. Where necessary SDFs will be updated to reflect the revisions and
retesting.

5.9.7 Analyzing and Recording CSCI Qualification Test Results

When the CSCI qualification testing is competed, the test results will be recorded in a Software Test
Report. If revisions to the 3DStress application were made during the qualification test process, the qualified
software will be resubmitted to CM as the new baseline version.

5-7

5.10 CSCI/HWCI Integration and Acceptance Testing

The 3DStress application is a single build CSCI designed to run on Silicon Graphics or Sun
workstations. 3DStress will be tested on CNWRA SGI machines that were not used in the software
development process.

CNWRA has prepared a standard installation test case that shall be run after software installation
to verify correct software installation. This acceptance test procedure is documented in the 3DStress on-line
help manual.

5.11 System Qualification Testing

The 3DStress application does not interface other computer hardware or software systems. This
paragraph has been tailored out.

5.12 Preparing for Software Use

The following sections describe the approach to be followed for preparing the 3DStress application
for distribution to existing users.

5.12.1 Preparing the Executable Software

CNWRA will prepare the executable software for delivery to the user community. This preparation
will include script and data files, executables, shared object libraries, configuration files, and any other
software files required to operate the application. These files will be stored on standard removable storage
media such as CDs or tapes.

5.12.2 Preparing Version Descriptions for User Sites

CNWRA will prepare a Software Release Notice for delivery with the 3DStress application to
identify and describe the released software version for tracking and control purposes.

5.12.3 Preparing User Manuals

The following sections outline the preparation of the user manuals for the 3DStress application.

5.12.3.1 Software Users Manual

CNWRA will prepare a Software User Manual (SUM) which describes the installation and operation
of the 3DStress application. The SUM will describe all user input and activities required to control and
review the computational results generated by 3DStress.

5.12.3.2 Software Input/Output Manual

A separate Software Inputloutput manual will not be prepared for this application. This activity has
been tailored out.

5-8

5.12.3.3 Software Centers Operators Manual

A separate Software Centers Operators Manual will not be prepared for this application. This activity
has been tailored out.

5.12.3.4 Computer Operation Manuals

A separate Computer Operation Manuals will not be prepared for this application. This activity has
been tailored out.

5.12.4 Installation at User Sites

CNWRA will support NRC on-site installation of 3DStress as needed. Support for other 3DStress
users will be arranged on a case by case basis.

5.13 Preparing for Software Transition

CNWRA will retain rights to the 3DStress application executable and support files. No software
transitions to another organization are planned at this time. This activity has been tailored out.

5.14 Software Configuration Management

Software configuration management (CM) is the process by which baselined documents and source
code are identified and changes are identified and recorded. All deliverable documents and source code will
be placed under CM.

3DStress CM will be the responsibility of the Project Manager. The Project Manager will determine
when source and documents are to be submitted to CM and will control the release, modification and
resubmission of these materials to CM. The following sections define the CM process that will be followed
by the 3DStress Project Manager.

5.14.1 Configuration Identification

Two software products will be placed under CM for the 3DStress project: software source code and
application executables produced during the project. Each release of 3DStress will have a unique version
number.

5.14.2 Configuration Control

On initial and subsequent release to CM of software products, the Project Manager will follow the
procedure listed below:

1. The Project Manager will prepare a Software Release Notice (SRN) form, refer to CNWRA-
TOP-18 for the appropriate format.

5-9

2.

3.

If this is the final delivery to the acquirer, the Project Manager will make sufficient copies
of the deliverable material as required by the acquirer.
The Project Manager will provide the CNWRA QA group a copy of all products to be
placed in CM

5.14.3 Configuration Status Accounting

The 3DStress Project Manager will prepare and maintain records of the configuration status of all
software documentation and the 3DStress CSCI that have been placed under configuration control. These
records will be maintained for the life of the 3DStress application. The records will contain the current
version/revision/release of each entity, changes to the entity since being placed under CM, and the status of
open SPRs affecting the entity.

5.14.4 Configuration Audits

The 3DStress Project Manager will make configuration management records available on a non-
update basis for audit by the CNWRA or acquirer representatives.

5.14.5 Packaging, Storage, Handling, and Delivery

The software and documentation will be stored in paper and electronic form. Documentation will
be stored on 3.5" floppy disks or CDs in Wordperfect for Windows 8 or later format. End item software will
be delivered on 3.5" floppy disks, CD-ROM or 8mm tape in plain ASCII text file format.

5.15 Software Product Evaluation

The 3DStress application will be demonstrated for potential clients but no plans exist to distribute
evaluation copies of the software. This activity has been tailored out.

5.16 Software Quality Assurance

CNWRA will follow a two-fold approach to building a quality product for the 3DStress application:

Quality Development - define and follow good software development practices throughout
the development effort. For the 3DStress project, CNWRA will use internal development
staff for planning, coding and testing who will adhere to the plans and implementation
procedures outline in this SDP.

Quality Assurance - ongoing verification that the process are being followed by the
development team. CNWRA will utilize the CNWRA QA department for review, evaluation
and recommendations.

,

CNWRA QA (CQA) will monitor the software development process to verify the procedures and
practices identified in this plan are being utilized in the 3DStress development. Evaluations will be informal
and deviations from this development plan will be brought to the attention of the Project Manager.
Continued deviation from the development plan will require notification of CNWRA management to discuss

5-10

corrective actions or initiate an update of the software development plan to reflect changes in the project
scope.

5.17 Corrective Action

The corrective action process is uniform for any software unit requiring correction. The formal
corrective action process becomes effective once the 3DStress control subsystem CSCI enters the CM
system. All corrective actions (CA) are initiated with a Software Problem Report (SPR). The SPR form to
be used for this project is described in Section 5.17.1. Document or software comments from the contracting
agency or IQA are not required to be submitted on the SPR form, other formats are acceptable. Proposed
enhancements to the system may also be initiated through the use of the SPR.

5.17.1 ProbledChange Reports

An example SPR form is shown in Figure 5-1. To accommodate lengthy explanations or supporting
material, attachments to the forms may be referenced in the appropriate fields. All SPRs are maintained in
the project file by the Project Manager for the duration of the project and will be made available to acquirer
representatives upon request.

5.17.2 Corrective Action System

The corrective action system centers around the submission of the SPR. SPR processing will
generally adhere to the following sequence:

1. Problem identification and report submission. An SPR can be generated by any project
member or software user who detects a problem or recognizes a required enhancement to
a baselined document or software program.

5-1 1

Software ProbledChange Report

'roject: Originator: Date: Number:

?roblem/Change Name: Priority

lescription:

Modifications by:

4nalysis:

~-

Date: Version:

Figure 5-1. Sample software problem report

5-12

2. Logging. Following receipt of an SPR (or equivalent), the requested CA is entered into a CA
log sheet. This log sheet facilitates tracking and reporting of all CA’s issued during the life
of the project. The Project Manager will then assign the CA to a software engineer for
analysis.
Analysis. Analysis will be performed by the assigned engineer to determine the category of
the CA: software, documentation, design, user, of requirement problem. The analysis also
needs to determine what priority level should be assigned to the problem. Analysis of
problems that lead to modification of software need further documentation, including test
cases in order to assure that the problem has indeed been resolved.
Approval. After analysis the Project Manager will decide if a software or document change
is necessary. The Project Manager is also responsible for final determination of the category,
priority, and type of action required.
Implementation. During implementation, the affected products are “checked out” from the
appropriate library and corrections made. Appropriate unit tests and integration tests must
be determined and performed.
Release. Once the corrections have been made, they must be verifiedkested at the
appropriate software development level and/or CSCI testing depending on the level and type
of change. The corrected products are reinserted into the baseline, and the products returned
to configuration control. Following this they are ready for release to the acquirer.

3.

4.

5.

6.

5.18 Progress Reporting

During the 3DStress development, brief monthly project reports in the form of the Program
Manager’s Periodic Report will be produced by CNWRA.

5.19 Other Software Development Activities

The following sections describe the approach to be followed for other software development
activities for the 3DStress application development project.

5.19.1 Risk Management, Including Known Risks and Corresponding Strategies

Areas of technical risk will be investigated as early in the development cycle as possible to allow
adjustments in software design if required.

Schedule and cost problems are normally identified by use of CNWRA Project Manager data sheets.
This control is currently being used in all projects. In addition, Project Managers hold timely project review
meetings with all key project personnel to discuss, review, and solve schedule, cost, and technical problems.

The initial step in risk mitigation is identification of the risk, its potential impact on the project
performance, and likelihood of developing into a problem. Risks are identified by careful review of all
project aspects by analysis of the WBS. Risks are then tracked through the project until task completion to
monitor their impact on cost, schedule and technical performance.

During each reporting period, work projections are made for the next reporting period, and costs are
estimated. Progress for both performance and cost is evaluated against these projections. When progress does

5-13

not match projections, discussions are initiated within the project staff, and then with division management
to resolve the problems, i.e., mitigate risks.

5.19.2 Software Management Indicators

The Project Manager will monitor the software management indicators listed below on an ongoing
basis against the proposed project schedule and milestones.

1.
2.
3.
4.

5.

Requirements volatility: total number of requirements and requirements changes over time.
Software staffing: planned and actual staffing levels over time.
Software complexity: complexity of each software unit.
Software progress: planned and actual number of software units designed implemented, unit
tested, and integrated over time.
Milestone performance: planned and actual dates of key project milestones.

5.19.3 Security and Privacy

The 3DStress software application does not contain any extraordinary security or privacy issues
(Section 4.2.4.2 & 4.2.4.3). This activity is tailored out.

5.19.4 Subcontractor Management

CNWRA does not plan to utilize subcontractors on the 3DStress development project. This activity
has been tailored out.

5.19.5 Interface with Software Independent Verification and Validation Agents

CNWRA will utilize in-house staff for review of software quality issues and internal staff for
verification and validation. This activity has been tailored out.

5.19.6 Coordination with Associate Developers

The 3DStress application will be developed using only internal staff. No other associated developers
will be used. This activity has been tailored out.

5.19.7 Improvement of Project Processes

The Project Manager will periodically assess the processes used on the project to determine the
suitability and effectiveness. Based on these assessments, the Project Manager will identify any necessary
and beneficial improvements to the process, and identify these changes to the acquirer in the form of
proposed updates to this Software Development Plan. All proposed changes will have acquirer approval prior
to implementation.

5-14

5.19.8 Other Activities Not Covered Elsewhere in the Plan

CNWRA plans to utilize the consulting services of Dr. Alan Morris, University of Texas at San
Antonio during the development of the 3DStress application. Dr. Morris is one of the original developers of
the 3DStress algorithms and will be utilized as a resource for software requirements development and
software validation.

5-15

6 SCHEDULES AND ACTIVITY NETWORK

Software release v. 1.2

Software Requirement Document (v. 1.3)

Software Planning Document (v. 1.3)

Table 6-1 presents an overview of the significant milestones that will be completed during this project.

November 12, 1996

August 5, 1997

July 13, 1998

Table 6-1. Schedule of software development activities

Acceptance Testing

Verification Testing (v.1.3)

Software Test Report

II Activity

~- ~~ ~

July 15,1998

July 15, 1998

July 17,1998

PlannedIActual Completion Date

Software release (v. 1.3)

3DStress v. 1.3 to NRC

II I
-

August 12,1998

August 14, 1998

11 Software release v. I. 1 I August 2, 1996

11 User Guide to NRC (v. 1.3) June 29,1998

6- 1

7 PROJECT ORGANIZATION AND RESOURCES

The following sections describe the project organization and resources to applied to the 3DStress application
development,

7.1 Project Organization

On a functional basis, CNWRA conducts programs under the Project Manager concept. The Project
Manager is delegated authority for overall technical direction and administrative supervision of the project.
The Project Manager reports directly to the Element Manager, who in turn reports directly to the Technical
Director. This structure permits ready access to higher management to quickly resolve any problems which
might arise. The quick access to management allows for close schedule coordination on projects of an
interdivisional nature. Thus, once a project team is formed, the Project Manager has vertical line authority
over team members for the duration of the project.

The support staff of CNWRA, including such functions as accounting, contract administration,
purchasing, computer processing, report reproduction, library, and security, are at the disposal of the Project
Manager. The direct availability of the support staff leads to effective project management and eliminates
delays which might be experienced in a less flexible system.

CNWRA Quality Assurance reports directly to the CNWRAPresident. CNWRA QA performs audits
of the software development process. CNWRA QA ensures conformance to contractual requirements and
determines the adequacy and effectiveness of project activities.

Management controls are imposed by CNWRA to ensure progress and eventual delivery of end items
in accordance with the agreed upon schedule and cost. Scheduling control is maintained by short interval
updating of the approved schedule. As a minimum, bar chart project schedules with clearly defined
milestones are prepared. The charts are divided into appropriate phases, tasks and, if needed, subtasks. These
charts and work breakdown structures (WBS) are entered into a computer to facilitate monitoring and
updating.

Cost status reports are prepared and distributed to project managers every two weeks at the close of
the normal pay period. Labor data for these reports are obtained from individual time sheets which all
employees are required to complete daily. Charges are listed by project number, as well as phase or task
numbers. Itemized labor, materials, travel, reproduction services, and overhead for the preceding two-week
accounting period are given, including commitments made which have not yet resulted in expenditures.
Also, the balance of project funds available is noted. Every four weeks, a computerized summary of the two
preceding biweekly reports is prepared and given to individual project managers.

The Project Manager has full responsibility for all software products created and/or utilized by the
project. The data items, documentation reports, drawings, and manuals constitute project team activity
paralleling the hardware and software development activities. The same team members performing the
hardware and software tasks will also provide direct input and analysis for all data supplied on this contract.

7- 1

7.2 Project Resources

The following sections describe the resources that CNWRA will apply to the 3DStress application
development project.

7.2.1 Personnel

The software development team will be composed of software analysts experienced in the
development of Silicon Graphics Open GL software. Approximately 0.2 FTE’s and one summer employee
will be committed to the software development team. The Project Manager is responsible for coordinating
the activities of the software team project evaluations with the CQA department. Project management tasks
will require approximately 0.2 FTE’s.

7.2.2 Facilities

CNWRA will establish a development and testing environment for this project in the CNWRA GIS
Laboratory, Bldg. 189. The environment will consist of one Silicon Graphics development workstation and
three additional Silicon Graphics systems for testing and evaluation.

7.2.3 Acquirer Furnished Equipment, Data, and Documentation

No acquirer furnished software or equipment is required for this project

7-2

8 NOTES

8.1 Acronyms

CM
CNWRA
CSCI
HWCI
IAW
CQA
SDD
SDF
SPR
SQA
SRD
STP
STPr
SUM
SVD
SwRI
WBS

Configuration Management
Center for Nuclear Waste Regulatory Analyses
Computer Software Configuration Item
Hardware Configuration Item
In accordance with
CNWRA Quality Assurance
Software Design Description
Software Development File
Software Problem Report
Software Quality Assurance
Software Requirements Description
Software Test Plan
Software Test Procedures
Software User’s Manual
Software Version Description
Southwest Research Institute
Work breakdown structure

8.2 Definitions

Acauirer
An organization that procures software products for itself or another organization.

Approval
Written notification by an authorized representative of the acquirer that a developer’s plans, design,

or other aspects of the project appear to be sound and can be used as the basis for further work. Such
approval does not shift responsibility from the developer to meet contractual requirements.

Architecture

a concept of execution among them.
The organizational structure of a system or CSCI, identifying the components, their interfaces, and

Associate Developer

development role on the same or related system or project.
An organization that is neither prime contractor nor subcontractor to the developer, but who has a

Behavioral Design
The design of how an overall system or CSCI will behave, from a user’s point of view, in meeting

its requirements, ignoring the internal implementation of the system or CSCI. This design contrasts with
architectural design, which identifies the internal components of the system or CSCI, and with the detailed
design of those components.

8- 1

Build
(1) A version of software that meets a specified subset of the requirements that the completed

software will meet. (2) The period of time during which such a version is developed. Note: The relationship
of the terms “build” and “version” is up to the developer; for example, it may take several versions to reach
a build, a build may be released in several parallel versions (such as to different sites), or the terms may be
used as synonyms.

Computer Hardware
Devices capable of accepting and storing computer data, executing a systematic sequence of

operations on computer data, or producing control outputs. Such devices can perform substantial
interpretation, computation, communication, control, or other logical functions.

Computer program

perform computational or control functions.
A combination of computer instructions and data definitions that enable computer hardware to

Computer Software Configuration Item CCSCI)
An aggregation of software that satisfies an end use function and is designated for separate

configuration management by the acquirer. CSCIs are selected based on tradeoffs among software function,
size, host or target computers, developer, support concept, plans for reuse, criticality, interface
considerations, need to be separately controlled, and other functions.

Confiwration Item

for separate configuration management by the acquirer.
An aggregation of hardware, software, or both that satisfies an end use function and is designated

Database

by users or computer programs.
A collection of related data stored in one or more computerized files in amanner that can be accessed

Deliverable software product

recipient.
A software product that is required by the contract to be delivered to the acquirer or other designated

Design
Those characteristics if a system or CSCI that are selected by the developer in response to the

requirements. Some will match the requirement; others will be elaborations of requirements, such as
definitions of all error messages in response to a requirement to display error messages; other will be
implementation related, such as decisions about what software units and logic to use to satisfy the
requirements.

Developer
An organization that develops software products (“develops” may include new development,

modification, reuse, reengineering, maintenance, or any other activity that results in software products). The
developer may be a contractor or a Government agency.

8-2

Document/documentation

and can be read by humans or machines.
A collection of data, regardless of the mediumon which it is recorded, that generally has permanence

Evaluation
The process of determining whether an item or activity meets specified criteria,

Firmware

as read-only software on the hardware device.
The combination of a hardware device and computer instructions and/or computer data that reside

Hardware Configuration Item (HWCI)

configuration management by the acquirer.
An aggregation of hardware that satisfies an end use function and is designated for separate

Interface
In software development, a relationship among two or more entities (such as CSCI-CSCI, CSCI-

HWCI, CSCI-user, or software unit-software unit) in which the entities share, provide, or exchange data.
An interface is not a CSCI, software unit, or other system component; it is a relationship among them.

Joint review

project status, software products, and/or project issues are examined and discussed.
A process or meeting involving representatives of both the acquirer and the developer, during which

Non-deliverable software product

designated recipient.
A software product that is not required by the contract to be delivered to the acquirer or other

Process

process.
An organized set of activities performed for a given purpose; for example, the software development

Qualification testing

requirements.
Testing performed to demonstrate to the acquirer that a CSCI or a system meets the specified

Reengineering
The process of examining and altering an existing system to reconstitute it in a new form. May

include reverse engineering (analyzing a system and producing a representation at a higher level of
abstraction, such as design from code), restructuring (transforming a system from one representation to
another at the same level of abstraction), redocumentation (analyzing a system and producing user or support
documentation), forward engineering (using software products derived from an existing system, together with
new requirements, to produce a new system), retargeting (transforming a system to install it on a different
target system), and translation (transforming source code from one language to another or from one version
of a language to another).

8-3

Requirement

(2) A mandatory statement in this standard or another portion of the contract.
(1) A characteristic that a system or CSCI must possess in order to be acceptable to the acquirer.

Reusable software product
A software product developed for one use but having other uses, or one developed specifically to

be usable on multiple projects or in multiple roles on one project. Examples include, but are not limited to,
commercial off-the-shelf software products, acquirer furnished software products, software products in reuse
libraries, and pre-existing developer software products. Each use may include all or part of the software
product and may involve its modification. This term can be applied to software product (for example,
requirements, architectures, etc.), not just to software itself.

Software
Computer programs and database. Note: Although some definitions of software include

documentation, MIL-STD-498 limits the definition to computer programs and databases in accordance with
Defense Federal Acquisition Regulation Supplement 227.401.

Software development
A set of activities that results in software products. Software development may include new

development, modification, reuse, reengineering, maintenance, or any other activities that result in software
products.

Software development file
A repository for material pertinent to the development of a particular body of software. Contents

typically include (either directly or by reference) considerations, rationale, and constraints related to
requirements analysis, design, and implementation; developer-internal test information; and schedule and
status information.

Software development library (SDL)
A controlled collection of software, documentation, other intermediate and final software products,

and associated tools and procedures used to facilitate the orderly development and subsequent support of
software.

Software development process
An organized set of activities performed to translate user needs into software products.

Software engineering
In general usage, a synonym for software development. As used in this standard, a subset of software

development consisting of all activities except qualification testing. The standard makes this distinction for
the sole purpose of giving separate names to the software engineering and software test environments.

Software engineering environment
The facilities, hardware, software, firmware, procedures, and documentation needed to perform

software engineering. Elements may include but are not limited to computer-aided software engineering
(CASE) tools, compilers, assemblers, linkers, loaders, operating systems, debuggers, simulators, emulators,
documentation tools, and database management systems.

8-4

Software product

include plans, requirements, design, code, databases, test information, and manuals.
Software or associated information created, modified, or incorporated to satisfy a contract. Examples

Software qualitv
The ability of software to satisfy its specified requirements.

Software support
The set of activities that takes place to ensure that software installed for operational use continues

to perform as intended and fulfill its intended role in system operation. Software support includes software
maintenance, aid to users, and related activities.

Software svstem

operates.
A system consisting solely of software and possibly the computer equipment on which the software

Software test environment
The facilities, hardware, software, firmware, procedures, and documentation needed to perform

qualification, and possibly other testing of software. Elements may include but are not limited to simulators,
code analyzers, test case generators, and path analyzers, and may also include elements used in the software
engineering environment.

Software transition
The set of activities that enables responsibility for software development to pass from one

organization, usually the organization that performs initial software development, to another, usually the
organization that will perform software support.

Software component/unit
An element in the design of a CSCI; for example, a major subdivision of a CSCI, a component of

that subdivision, a class, object, module, function, routine, or database. Software components may occur at
different levels of a hierarchy and may consist of other software units. Software units in the design may or
may not have a one-to-one relationship with the code and data entities (routines, procedures, databases, data
files, etc.) that implement them or with the computer files containing those entities.

8-5

SOFTWARE
REQUIREMENTS

DESCRIPTION

SOFTWARE REQUIREMENTS DESCRIPTION
3DSTRESS VERSION I .3

Robert T. Boneau

Center for Nuclear Waste Regulatory Analyses
Southwest Research Institute

San Antonio, Texas

August 5, 1997

Approved by:

Geology and Geophysicg

CONTENTS

Section Page

INTRODUCTION . 1-1

SOFTWARE FUNCTIONS . 2-1

TECHNICAL BASIS AND MATHEMATICAL MODEL 3-1

DATA FLOW AND USER INTERFACES . 4-1

PROGRAMMING LANGUAGE . 5-1

HARDWARE PLATFORMS . 6-1

GRAPHICS OUTPUT DEVICES . 7-1

SUMMARY . 8-1

1 INTRODUCTION

3DStress is a software application that computes the tendency for faults and fractures to slip or dilate.
Slip tendency is the ratio of the shear stress to the normal stress on a fault surface. Dilation tendency is
the likelihood for a fault or extension fracture to dilate based on the three-dimensional (3-D) stress
conditions and is computed from the normal stress and the principal stresses. The input 3-D stress
orientations and magnitudes may be interactively modified through a user interface, Faults and fractures
displayed by 3DStress are colored based on the computed slip or dilation tendency. In addition to slip and
dilation tendency, 3DStress computes the expected slip direction by finding the maximum shear stress for
the fault surface.

Paragraphs that begin with the label “Version 1.3” summarize features that will be included in 3DStress
version 1.3. These features were not included in the previous release.

1-1

2 SOFTWARE FUNCTIONS

3DStress performs three primary tasks. First, 3DStress provides a user interface for interactive control
of the input stress orientations and magnitudes. Second, 3DStress computes slip tendency, dilation
tendency, and slip direction from the input stress parameters and fault surface orientation. Third,
3DStress displays 2-D and 3-D representations of faults and fracture surfaces colored by slip or dilation
tendency.

Version 1.3 - The following features will be added to 3DStress version 1.3.

Provide Mohr circle and failure envelope.

Build 2-D and 3-D fault coverages in the map viewer and 3D viewer windows.

Display map of stress azimuths.

Save and load current stress conditions to a file.

Include a leakage factor calculation mode.

2- 1

3 TECHNICAL BASIS AND MATHEMATICAL MODEL

3DStress is founded on the principals of fault kinematics. These principals state that the input principal
stresses can be resolved into a normal stress and shear stress acting on a fault surface. The normal stress
is perpendicular to the fault surface, while the shear stress lies in the plane of the fault surface. The
greater the ratio of the shear stress to the normal stress, the greater the slip tendency. Friction
characteristics and rock material properties are not modeled by 3DStress.

The input principal stresses are labeled as follows:

al = maximum principal stress
a, = intermediate principal stress
0; = minimum principal stress

Where: ol > a2 > a3

The equation for computing slip tendency is given below.

7, Ts = slip tendency = -
all

Where: rs = shearstress
a,, = normal stress

The equation for computing dilation tendency is given below.

(0, - 0,)

(0, - 0 3 1
T, = dilation tendency =

Where: a,, = normal stress
al = maximum principal stress
a, = minimum principal stress

Versions 1.3 - The equation for computing leakage factor is given below.

leakage factor = pf
(On + TI)

Where: at, = normal stress
Pf = fluid pressure
To = tensile strength

3-1

4 DATA FLOW AND USER INTERFACES

In order to compute slip or dilation tendency, two sets of input data are required. First, the input
principal stress orientations and magnitudes are needed. Second, the fault surface orientation is required.
From these inputs, the stresses normal and shear to the fault surface are computed. Finally, slip or
dilation tendency is computed from the principal, normal, and shear stresses.

The user interface enables the user to input the principal stress orientations and magnitudes and to select
a particular fault surface orientation. In addition, the user may select a 2-D or 3-D fault coverage that
is displayed and colored by slip or dilation tendency.

4- 1

5 PROGRAMMING LANGUAGE

3DStress is written in the C-t + programming language using an object oriented design. The program
utilizes the OpenGL graphics and Motif libraries supplied on Silicon Graphics workstations. The OpenGL
libraries provide 2-D and 3-D graphics rendering capabilities. The Motif libraries are used to create the
graphical user interface to the program.

5- 1

6 HARDWARE PLATFORMS

3DStress executes on Silicon Graphics workstations. The program is compatible with the IRIX 5.3
operating system.

Version 1.3 - 3DStress will be ported to the Sun Ultra platform.

7 GRAPHICS OUTPUT DEVICES

Screen displays of 3DStress may be saved and printed using utilities such as scrsave, snapshot, imgworks,
and showcase. These utilities are provided by Silicon Graphics on their workstations. The user may store
the graphics window displays to raster files through a user interface menu.

7- 1

8 SUMMARY

3DStress in an interactive tool for computing and displaying the slip and dilation tendency for faults and
fractures. The input stress orientations and magnitudes are controlled by a user interface. The slip or
dilation tendency and expected slip direction are computed for the fault surface orientation using the input
stress conditions. The 2-D and 3-D fault representations displayed by 3DStress are colored by slip or
dilation tendency. The program executes on Silicon Graphics workstations.

8-1

SOFTWARE REQUIREMENTS DESCRIPTION (SRD)
3DSTRESS VERSION 1.3

APRIL 16, 1997

1 INTRODUCTION

3DStress is a software application that computes the tendency for faults and fractures
to slip or dilate. Slip tendency is the ratio of the shear stress divided by the
normal stress on a fault surface. Dilation tendency is the likelihood for a fault or
extension fracture to dilate based on the three-dimensional (3-D) stress condititons
and is computed from the normal stress and the principal stresses. The input 3-D
stress orientations and magnitudes may be interactively modified through a user
interface. Faults and fractures displayed by 3DStress are colored based on the
computed slip or dilation tendency. In addition, to slip and dilation tendency,
3DStress computed the expected slip direction by finding the maximum shear stress for
the fault surface.

Paragraphs that begin with the label "Version 1.3" summarize features that will be
included in 3DStress version 1.3. These features were not included in the previous
release.

2 SOFTWARE FUNCTIONS

3DStress performs three primary tasks. First, 3DStress provides a user interface for
interactive control of the input stress orientations and magnitudes. Second, 3DStress
computes slip tendency, dilation tendency, and slip direction from the input stress
parameters and fault surface orientation. And third, 3DStress displays 2-D and 3-D
representations of faults and fracture surfaces colored by slip or dilation tendency.

Version 1.3 - The following features wil be added to 3DStress version 1.3.

* Mohr circle and failure envelope.
* Build 2-D and 3-D fault coverages in the map viewer and 3D viewer
windows.

* Display map of stress azmimuths.

* Save and load current stress conditions to a file.
* Leakage Factor calculation mode.

3 TECHNICAL BASIS AND MATHEMATICAL MODEL

3DStress is founded on the principals of fault kinematics. These principals state
that the input principal stresses can be resolved into a normal stress and shear
stress acting on a fault surface. The normal stress is perpendicular to the fault
surface while the shear stress lies in the plane of the fault surface. The greater
the ratio of the sheax stress to the normal stress, the greater the slip tendency.
Friction characteristics and rock material properties are not modeled by 3DStress.

The input principal stress are labeled as follows:

01 = maximum principal stress
02 = intermediate principal stress
03= minimum principal stress

Where: 01 > 02 > 03

The equation for computing slip tendency is given below.

=S -
On

Ts = slip tendency =

Where: ?s = shear stress
on = normal stress

The equation for computing dilation tendency is given below.

(01 - On)
Td = dilation tendency =

(01 - 03)
Where: on = normal stress

01 = maximum principal stress
03 = minimum principal stress

Versions 1.3 - The equation for computing leakage factor is given below.

Pf

(an + To)
leakage factor =

Where: an = normal stress

pf = fluid pressure
T O = tensile strength

4 DATA FLOW AND USER INTERFACES

In order to compute slip or dilation tendency, two sets of input data are required.
First, the input principal stresses orientations and magnitudes are needed. Second,
the fault surface orientation is required. From these inputs, the stresses normal and
shear to the fault surface are computed. Finally, slip or dilation tendency is
computed from the principal, normal, and shear stresses.

The user interface enables the user to input the principal stresses orientations and
magnitudes and to select a particular fault surace orientation. In addition, the user
may select a 2-D or 3-D fault coverage that is displayed and colored by slip or
dilation tendency.

5 PROGRAMMING LANGUAGE

3DStress is written in the C++ programming language using an object oriented design.
The program utilizes the OpenGL graphics and Motif libraries supplied on Silicon
Graphics workstations. The OpenGL libraries provide 2-D and 3-D graphics rendering
capabilities. The Motif libraries are used to create the graphical user interface to
the program.

6 HARDWARE PLATFORMS

3DStress executes on Silicon Graphics workstations. The program is compatible with
the IRIX 5.3 operating system.

Version 1.3 - 3DStress ported to the Sun Ultra platform.

7 GRAPHICS OUTPUT DEVICES

Screen displays of 3DStress may be saved and printed using utilites such as scrsave,
snapshot, imgworks, and showcase. These utilities are provided by Silicon Graphics on
their workstations. The user may store the graphics window displays to raster files
through a user interface menu.

8 SUMMARY

3DStress in an interactive tool for computing and displaying the slip and dilation
tendency for faults and fractures. The input stress orientations and magnitudes are
controled by a user interface. The slip or dilation tendency and expected slip
direction are computed for the fault surface orientation using the input stress
conditions. The 2-D and 3-D fault representations displayed by 3DStress are colored
by slip or dilation tendency. The program executes on Silicon Graphics workstations.

Software Validation Test Report

SOFTWARE TEST REPORT FOR 3DSTRESS

Prepared for

Nuclear Regulatory Commission
Contract NRC-02-97-009

Prepared by

Josh Buckner
Joseph H. Bangs

Center for Nuclear Waste Regulatory Analyses
San Antonio, Texas

Approved by: Date: 8,$/?y

CONTENTS

Section Page

1 SCOPE . 1
1.1 IDENTIFICATION . 1
1.2 SYSTEMOVERVIEW . 1

2 REFERENCED DOCUMENTS . 1

3 TESTING . 1
3.1 RESULTS . 2
3.2 IMPACT OF TEST ENVIRONMENT . 5

4 RECOMMENDED IMPROVEMENTS . 5

APPENDIX A EXECUTED SOFTWARE VALIDATION TEST PLAN
APPENDIX B SOFTWARE PROBLEM REPORTS
APPENDIX C ADDITIONAL MOHR GRAPH VALIDATION TEST PROCEDURES
APPENDIX D SOFTWARE PROBLEM REPORT UPDATE ON 3DSTRESS VERSION 1.3

...
111

TABLES

Table Page

3-1 Software trouble report log for version 1.3 of the 3DStress application 2

V

1 SCOPE

This report documents the results of software validation testing performed on Version 1.3 of the 3DStress
software application. This testing tookplace at the Center for Nuclear Waste Regulatory Analyses (CNWRA)
located at Southwest Research Institute (SwRI) on July 15-16, 1998. The report includes an assessment of
the software testing and lists the defects identified by the test procedures.

1.1 IDENTIFICATION

This Software Test Report (STR) applies to the software modifications applied to version 1.2 of
3DStress, resulting in version 1.3. Software capabilities and functions implemented in version 1.2 and older
were not retested during this qualification test.

1.2 SYSTEM OVERVIEW

3DStress executes on Silicon Graphics workstations (SGI) operating under version 5.3 or later of
the I R E operating system. 3DStress does not communicate with other computer systems or software
applications. 3DStress operates entirely under local user control and does not include facilities for automatic
process scheduling. The user analyzes results of software processing via X windows displays containing
graphical and text-based data displays. Hard copy outputs from the application may be generated from screen
dumps of the display windows. Tabular data files containing 2-D and 3-D fault geometry information are read
by 3DStress to generate base map and 3-D representations of the faults. 3DStress does not output tabular data
files for analysis by other software applications.

2 REFERENCED DOCUMENTS

The following documents are referenced in this test report and provide additional information regarding the
implementation of 3DStress version 1.3.

CNWRA-TOP-18 5 MAY 98 Development and Control of Scientific and Engineering
Software

3DStress-SRD 17 APR 97 3DStress Software Requirements Description

3DStress-SVTP 15 JULY 98 3DStress Software Validation Test Plan

3 TESTING

The software validation test was performed in accordance with the executed SVTP included in Appendix A.
The software testers did not deviate from the test procedures except when mandated by software failures.
Software Problem Reports (SPRs) generated over the course of the test are included in Appendix B. Each
SPR will be tracked until the defect is corrected or the functional capability is removed from the 3DStress
Software Requirements Description.

1

3.1 RESULTS

Priority I Problem Summary

Version 1.3 of 3DStress generally performed as expected. However, two serious errors occurred
during the test. The Software Requirements Description (SRD) specifies that 3DStress will be used to build
2-D and 3-D fault coverages in the map and 3DViewer windows, respectively. Tests on the fault building
capability revealed that no provision for saving 2-D coverages has been included in the Map display. The
3DView software does provide a file saving capability, but other errors in the polygon builder prevent the
user from entering polygon coordinates into the 3DStress application. The requirement to build 2-D and 3-D
fault coverages in 3DStress is not yet completed.

Repair
Time Date

(hours) Closed

The second error, unplanned terminations (crashes) of the 3DStress application, occurred three times
during the software testing. The software crashes were not repeatable and are thus likely to be related to
incorrect memory management operations. One crash required the system super-user to remotely log into the
test machine and reset the console display software.

1 Date 1 SVTP
Opened Section

711 5/98 4.1.1

7/15/98 4.1.3

Other, less significant, errors occurred during the test and are also listed in the Software Problem
Report table below. The significance of the SPR is indicated by the priority level. Priority 1 SPR’s
correspond to software defects that prevent the user from completing a specified task while Priority 5 SPR’s
represent minor user inconveniences. Time estimates are included in the table for the developer to diagnose,
and correct each software defect.

Table 3-1. Software trouble report log for version 1.3 of the 3DStress application

SPR #

1

2

5

4

Incomplete error trapping of
user parameters in the Mohr’s
Circle Options window. Alpha
characters entered in numeric
field were not trapped.
Printing a window in the Mohr
Circle, Map, 3DView and other
windows was not successful if
the display window was
covered by another window or
if the window was not
completely visible on the
monitor. Also the image
captured by the software
excluded the top portion of the
desired display window.

3

40

2

7
Date
Ipened

r/15/9s 4 I 3 I

Repair
Time

[hours)
Date

Closed
SVTP

Section

4.2.2

Problem Summary Priority

16 When adding a new line
segment point in the Map
jisplay, the edit point in the
window does not accurately
track the movements of the
mouse.
After entering several new line
segment points in the Map
window display, the user
attempted to view the new data
with the Browse function.
3DStress crashed when the
Browse function was invoked.
After restarting 3DStress, the
problem could not be
duplicated with the same
EditIl3rowse processing
seauence.

7/15/98 4.2.2 4 1 40

~

4.2.2 5 1 16 7/15/98 There is no capability to store
fault control points entered in
the Map display. User edits
cannot be saved to disk.
2-D faults added to a map
display are not incorporated in
the calculation of the Rose
diagram.

4.2.6 3 16 7/16/98

71 1 619 8 40 4.2.7 1 Clicking the Map Help caused
3DStress to crash and "locked-
up" the console monitor,
preventing user inputs.
Correction of this problem
required the system root user to
remotely login into the test
machine and restart the
Xwindows window manager
application. The problem was
not duplicated in several
attempts after the software was
restarted.
The Rose plot diagram did not
close when the Map display
was closed.

8 7/16/98 4.2.8 8 5

3

SVTP
Section

4.2.9

4.2.10

4.2.10

4.2.10

SPR #

9

10

11

12

Priority

4

4

1

1

Problem Summary

When adding multiple 3-D
faults to the 3-D fault viewer,
the faults must be generally
within the same region.
Otherwise the 3DViewer
display grid will not plot any
data on the plot grid. This is
confusing to the user but does
not cause the loss of data.
When adding polygons to the
3DView display, the edit point
does not move proportionally
to the distance traveled by the
mouse pointer. This may be an
artifact of the 3-D display, but
it is confusing to the user.
Triangles added to the 3DView
are erased when the End
Triangle button is clicked. By
closing the Options window
without clicking the End
Triangle, the user can save one
polygon to the fault file being
edited. The user cannot
effectively save fault polygon
information in the 3DViewer.
When attempting to save a fault
polygon file, we received an
Alert message (1 154) from the
operating system that the
system swap space had run out.
3DStress then crashed. After
restarting the application, we
able to save the same 3-D fault
file we were processing prior to
the software crash.

Repair
Time

(hours)

40

16

40

40

Date
Closed

4

I Date
Opened

7/16/98

SVTP
Section

4.4.2

SPR #

13

Priority

4

Problem Summary

While testing the Mohr Circle
and Slider capabilities to
save/load stress magnitude
information on disk, we
received a 3DStress error
message that the previously
save stress magnitude file had
an erroneous entry for fluid
pressure. 3DStress is not error
trapping the fluid pressure
value when it is saved to disk,
but is error trapping the fluid
pressure when loading from
disk. The error trapping
routines should be consistent in
both directions.

Repair
Time

(hours)

8

Date
Closed

3.2 IMPACT OF TEST ENVIRONMENT

The validation testing was performed on a SGI Indigo CPU (Yosemite) running under the IRE 6.2
operating system. The errors encountered during the software testing appear to be related to software defects
and not the host operating system configuration. If time allows, this test could be run on an SGI platform
running under I R E 5.3, but this is a low priority since the IRIX 6.x operating systems have been available
for a number of years and usage of IRE 5.3 is not common.

4 RECOMMENDED IMPROVEMENTS

This section does not document software defects, but suggests user interface modifications for future releases
of 3DStress.

3DStress contains a powerful set of stress analysis and visualization tools accessible through sets of window
displays. The user may potentially open numerous windows, cluttering the monitor display area. This creates
a disorganized visual effect that detracts from the overall software presentation. 3DStress would benefit from
incorporating controls to prevent unrelated windows from being displayed simultaneously.

3DStress relies on external software applications (ArdInfo, Earthvision, etc.) to create fault and symbol
coverages.' 3DStress should support vendor specific file formats when possible to simplify the data
importlexport process. Direct data communication with other applications may not be desirable until a
specific workflow methodology is identified by the user community.

Showcase provides an efficient means of displaying Help file information, however, future ports of 3DStress
may preclude the use of this SGI specific application. It is recommended that the Help files be converted to
an HTML or PDF format to enhance portability and simplify maintenance.

5

Wherever possible, the Options windows should be simplified to reduce the amount of information the user
must enterhpdate. If this is not practical, “fly-by” annotations should be used to used to assist the user in
understanding the significance of the parameter. Context sensitive help would be an alternative to the “fly-
by” annotations.

6

APPENDIX A

Software Validation Test Plan

SOFTWARE VALIDATION TEST PLAN FOR 3DSTRESS

Prepared for

Nuclear Regulatory Commission
Contract NRC-02-97-009

Prepared by

Joseph H. Bangs

Center for Nuclear Waste Regulatory Analyses
San Antonio, Texas

A- 1

CONTENTS

Section Page

TABLES .. iv

1 SCOPE .. 1
1.1 IDENTIFICATION ... 1
1.2 SYSTEMOVERVIEW .. 1

2 REFERENCEDDOCUMENTS .. 1

3 TEST ORGANIZATION AND EXECUTION ... 1

4 TESTPROCEDURES .. 2

4.1.1 Mohr’s Circle Options .. 3
4.1.2 Mohr’s Circle Reset .. 6
4.1.3 Mohr’s Circle Print ... 7
4.1.4 Mohr’s Circle Help ... 8
4.1.5 Mohr’s Cicie Close .. 9

4.2 FAULTCOVERAGES ... 10
4.2.1 MapLoad ... 10
4.2.2 Mapoptions ... 11

4.2.4 MapPrint ... 13
4.2.5 Mapcoverage .. 14
4.2.6 MapRoseDiagram .. 15
4.2.7 MapHelp ... 16
4.2.8 MapClose ... 17

4.2.10 3DView Builder .. 19
4.2.11 3DViewReset .. 20
4.2.12 3DView Print .. 21
4.2.13 3DView Coverage ... 22
4.2.14 3DViewHelp .. 23
4.2.15 3DView Close .. 24

4.3 STRESS AZIMUTHMAPDISPLAY 25
4.4 STRESS CONDITION FILE INPUT AND OUTPUT 26

4.4.1 Sliders .. 26
4.4.2 Mohr’s Circle .. 27

4.5 LEAKAGE FACTOR CALCULATIONS 28

4.1 MOHR’SCIRCLE .. 3

4.2.3 MAPRESET ... 12

4.2.9 3DViewLoad .. 18

APPENDIX A . SOFTWARE PROBLEM REPORT FORM
APPENDlX B . mDm0NAL SOFTWARE TEST PROTOCOLS

ii

A-2

TABLES
Table Page

3-1 Software Requirements Description to Software Validation Test Plan cross reference , . . . 2

iv

A-3

1 SCOPE

This document establishes the Software Validation Test Plan (SVTP) for validating the installation
and functionality of the 3DStress (version 1.3) software application developed by Southwest Research
Institute (SwRI).

1.1 IDENTIFICATION

This SVTP applies to the all source code incorporated into the version 1.3 release of the 3DStress
software application (3DStress). This version of 3DStress is an upgrade to a previous release of the
application. This SVTP documents test procedures for validating new software capabilities and verification
that existing capabilities were not adversely affected by the software modificationdadditions.

1.2 SYSTEMOVERVIEW

3DStress executes on Silicon Graphics workstations (SGI) operating under version 5.3 or later of
the IRIX operating system. 3DStress does not communicate with other computer systems or software
applications. 3DStress operates entirely under local user control and does not include facilities for automatic
process scheduling. The user analyzes results of software processing via X windows displays containing
graphical and text-based data displays. Hard copy outputs from the application may be generated from screen
dumps of the display windows. Tabular data files containing 2-D and 3-D fault geometry information are read
by 3DStress to generate base map and 3-D representations of the faults. 3DStress does not output tabular data
files for analysis by other software applications.

-

2 REFERENCED DOCUMENTS

The following documents are referenced or were used as the basis for this SVTP.

CNWRA-TOP- 1 8 5 MAY 98 Development and Control of Scientific and Engineering
Software

3DStress-SRD 17 APR 97 3DStress Software Requirements Description

3DStressSDP 3 JULY 98 3DStress Software Development Plan

3 TEST ORGANIZATION AND EXECUTION

The test procedures to be completed during this software validation process have been designed to
demonstrate the new version of 3DStress satisfies the requirements specified in the Software Requirements
Description (SRD) and has not introduced defects in existing capabilities. Table 3-1 summarizes the software
capabilities required in this release of 3DStress. Each software requirement is cross referenced fromthe SRD
to the corresponding test procedure defined in this SVTP. Each test procedure in this SVTP includes a
synopsis of the software function being tested, user specified parameters and/or input files, and test protocol.

1

A 4

Table 3-1. Software Requirements Description to Software Validation Test Plan cross reference

Mohr's circle and failure envelope

Build 2-D and 3-D fault coverages in the map viewer
and 3D viewer windows.

Display map of stress azimuths

Save and load current stress conditions to a file

Requirement I SRD Section I section 1 ,I
Section 2 4.1

Section 2 4.2

Section 2 4.3

Section 2 4.4

(Leakage Factor calculation mode I Section 2 I 4.5 I
This SVTP is intended to be a self contained document made up of individual test procedures. Each

test procedure wil l address a specific software function requirement. The validation process will address
individual module or component testing first, followed by tests in which data or commands are passed
between processes or display windows.

The executed test procedures will be attached to the test report as an appendix. Software testing
should be conducted by an independent tester not directly involved with the software development tasks.
The software developer should be available to assist the tester with program execution questions. The
software tester shall date and initial all test procedures regardless of the test outcome.

If software defects are identified during the test process, the problem will be noted in this document
and also be fully documented in a software problem report. The extent and significance of the defect will be
analyzed by the testers to determine if software testing should continue or be postponed until the defect has
been corrected.

Software testers are encouraged to exercise software controls beyond the test procedures described
in this document. Unexpected test results encountered in these tests should be carefully documented by
describing the program state in which the error occurred as well as the error condition itself.

4 TEST PROCEDURES

The following sections present the validation test procedures for the 3DS tress application. Unless
noted otherwise, all tests will be conducted on one SGI computer. All testing should be completed in one
continuous session. Software (or system) restarts are discouraged unless specified by the test protocol.

2

A-5

4.1 MOHR'S CIRCLE

The Mohr's Circle display and associated control windows provides a capability for the user to
evaluate the relationship between 3-dimensional stresses and rock properties. This sequence of tests will
validate the accuracy of the stress calculations, interactions with other components of 3DStress, general
parameter entry and support function operations.

4.1.1 Mohr's Circle Options

SRD Traceability: Section 2

Summary: Venfy that parameters entered in the Options parameter window result in accurate Mohr's
Circle plot.

Protocol:
1.
2.
3.

Open the Mohr's Circle display.
Select the Options menu item.
Select the Independent Stresses radio button. Enter a set of stress magnitudes with the slider bars.
Manually verify the resulting Mohr's

Inputs: fb = - I W 9 D = S L L 7
f V = qb ,48

Output Display Verified d 3 & d(d : o = - 0 . 2 7 3
(I

Lf5 465, &o = 0,727

4. Select the Dependent Stresses radio button. Enter a set of stress magnitudes with the slider bars.
Manually verify the resulting Mohr's Circle and material failure point

g k . . 1.61 c3 b< -4 kt a;bc / I 7

Inputs: rv - 3I.4C f6d ; rcl:o S & t # 0.sq
t 8- : 60.37

Output Display Verified: a - 5 ZQremrrPc

G(6 LILT^, i s d d &

5. Modify the Rock Type selection in the Mohr Option window. Manually verify the program output
and material failure point on the Mohr's Circle display.

h k qp ;s A t - e - c x ~ t d d ZAP""'
Inputs:

=-3.03 q-; g o s q ---C$;(uJ-e- cr,
6 9 = 3L4T

Output Display Verified

s = 1.

6. Repeat steps 3,4, & 5 using several variations of input parameters. Manually verify the program
output and material failure point on the Mohr's Circle display.

f i L Cro-
Inputs: 5 =o&l

&=-$7
Output Display Verified: g=imi@

uts:

T. ,-he.

I \
q t p u t Display Verified:

7.

Inputs:

output

Open the Tendency Plot window. Enter a new set of stresses in the Mohr Option window. Click
Apply button and verify the stresses are accurately dis layed in the Tendency Plot window.

ly 6f%-+.
I-

. -

Display Verified:

the

4

A-7

5

A-8

4.1.2 Mohr’s Circle Reset

SRD Traceability: Section 2

Summary: Verify that 3DStress will reset the Mohr’s circle display to the default display when this
option is executed.

Protocol:

1.
2.
3.

Open the Mohr’s Circle display.
Corrupt the Mohr’s Circle display.
Click the Reset button and verify the plot display is reset to the default position.

I(@> Reset verified:

Tested by: e Date:
(Initials)

6

A-9

4.1.3 Mohr’s Circle Print

SRD Traceability: Section 2

Summary:

Protocol:

Verify that 3DStress will create an image of the Mohr’s Circle display suitable for printing.

Tested by: 4 3 Date: ’Lll‘ i/47
(Initials)

7

A-10

4.1.4 Mohr’s Circle Help

SRD Traceability: Section 2

Summary:

Protocol:

Verify that 3DStress will display a context sensitive help file for the Mohr’s Circle display.

1.
2.
3.

Open the Mohr’s Circle display.
Select the Help menu item.
Verify the help file is opened and displays the correct help information.

Tested by: <63 - Date:
(Initials)

8

A-1 1

4.1.5 Mohr’s Circle Close

SRD Traceability: Section 2

Summary: Verify that 3DStress will close all windows associated with the Mohr’s Circle display.

Protocol:

1.
2.
3.
4.

Open the Mohr’s Circle display.
Click the Options menu item.
Click the Close menu item on the Mohr’s Circle display window.
Verify all windows associated with the Mohr’s circle display are closed.

Tested by: 6 Date:
(Initials)

9

A-12

4.2 FAULT COVERAGES

2-D and 3-D fault coverages may be created with 3DStress. 2-D coverages are built in the Map
display while 3-D coverages are assembled in the 3DView display window. The following tests verify the
functionality of the Map and 3DView windows for manipulating fault coverages.

4.2.1 Map Load

SRD Traceability: Section 2

Summary: Verify the capability of 3DStress to load and display 2-D fault map coverages.

Protocol:

1. Open the Map display.
2.
3.
4.

Click the Load menu item and select an existing map file to display.
Verify the map file contents are displayed in the window with the correct scale information.
Repeat step 3 for another map file. Verify the original map is replaced by the map selection.

Tested by: 3 3 Date: 7(,+g
(Initials)

10

A-13

SRD Traceability: Section 2

Summary: Verify the user capability to create new 2-D map coverages.

Protocol:

1. Open the Map display. 6J ,&r
2. Click thesptrons menu item.
3. Add several lines, each containing several control points, to the map display.
4. Save the new map file.
5. Load a different map file to ensure the new map file is purged from memory.
6. Load the newly created map file.
7. Verify the new map file is correctly loaded and displayed.

Tested by: 33 Date: 716 /Td
(Initials)

11

A-14

4.2.3 MAP RESET

SRD Traceability: Section 2

Summary: Verify the user capability to reset a corrupted 2-D map display.

Protocol:

1. Open the Map display.
2.
3.
4.
5.

Click the Load menu item.
Manipulate the map in a manner that corrupts the display.
Click the Reset menu item.
Verify the Map display returns to its default display presentation.

Was the conupted

Y Q 5 ,

Tested by: .s$ Date:
(Initials)

12

A-15

4.2.4 Map Print

SRD Traceability: Section 2

Summary: Verify the user capability to create an image of a 2-D map display suitable for printing.

Protocol:

1. Open the Map display.
2. Select the Print menu item. /psLro/ ~ ~ ~ . c ~ ~ ~ ~ * S S $
3.
4.

Specify an output filename for the image file.
Examine the image file created by 3DStress.

Was the image file created correctly?

P & L - a s A

Tested by: 56 Date:
(Initials)

13

A-16

4.2.5 Map Coverage

SRD Traceability: Section 2

Summary: Verify the user capability to load and display symbol coverages on the 2-D map display.

Protocol:

1. Open the Map display.
2.
3.
4.
5.

Load a 2-D map file into the map display.
Select the Coverage menu item.
Load a symbol file to be displayed as a coverage over the 2-D fault map.
Verify the symbol coverage has been displayed correctly.

Tested by: TI3 Date: 7(ILf?8
(Initials)

14

A-17

4.2.6 Map Rose Diagram

SRD Traceability: Section 2

Summary: Verify the user capability to 2-D fault data and display a Rose diagram.

Protocol:

1. Open the Map display.
2. Load a 2-D map file into the map display. cr;
3.
4.

Select the Rose menu item.
Verify the Rose diagram accurately portrays the faults trace azimuth distributions.

&J t L(e [;@d- - 5 . Repeat steps 2-4 for a different fa% map file

15

A-18

4.2.7 Map Help

SRD Traceability: Section 2

Summary:

Protocol:

Verify that 3DStress will display a context sensitive help file for the Map display.

1. Open the Map display.
2.
3.

Select the Help menu item.
Verify the help file is opened and displays the correct help information.

Tested by: -3-6 Date:
(Initials)

16

A-19

4.2.8 Map Close

SRD Traceability: Section 2

Summary:

Protocol:

Verify that 3DStress will close all windows associated with the Map display.

1. Open the Map display.
2. Click the Options menu item. & 6 F e cD);b&
3.
4.

Click the Close menu item on the Map display window.
Verxfy all windows associated with the Map display are closed.

Tested by: 5 g Date:
(Initials)

17

A-20

4.2.9 3DView Load

SRD Traceability: Section 2

Summary: Verify the capability of 3DStress to load and display 3-D fault map coverages.

Protocol:

1. Open the 3DView display.
2.
3.
4.

Click the Load menu item and select an existing 3-D fault file to display.
Verify the fault file contents are displayed in the window with the correct scale information.
Repeat step 3 for another 3-D fault file. Verify the original fault display is replaced by the new
selection.

Tested by: 56 Date:
(Initials)

18

A-2 1

4.2.10 3DView Builder

SRD Traceabiiity: Section 2

Summary:

Protocol:

Verify the user capability to create new 3-D fault coverages.

1. Open the 3DView display.
2. Click the Builder menu item.
3.
4.
5.
6.

Add several polygons, each containing several control points, to the 3-D display.
Save the new fault file.
Load a different fault file to ensure the new fault file is purged from memory.
Load the new fault file.

7. Venfy the new fault fde is correctly loaded and displayed.

5-13 Date:
(h i tials)

/
Tested by:

19

A-22

4.2.11 3DView Reset

SRD Traceability: Section 2

Summary: Verify the user capability to reset a corrupted 3-D fault display.

Protocol:

1. Open the 3DView display.
2. Click the Load menu item.
3. Manipulate the fault view in a manner that corrupts the display.
4. Click the Reset menu item.
5. Verify the fault view returns to its default display presentation.

Was the corrupted display properly reset?

Tested by: 5 P Date: l (l6 /fa
(Initials)

20

A-23

4.2.12 3DView Print

SRD Traceability: Section 2

Summary: Verify the user capability to create an image of a 3-D fault display suitable for printing.

Protocol:

1. Open the 3DView display.
2. Select the Print menu item.
3. Specify an output filename for the image file.
4. Examine the image file created by 3DStress.

/r J c r o / (/ ; c w . C G p h ~ - 36
/pscpo/ u i t o . ~7Le'- 7'

Was the image file created correctly?

Date:
%

Tested by:
(Initials)

21

A-24

4.2.13 3DView Coverage

SRD Traceability: Section 2

Summary: Verify the user capability to load and display symbol coverages on the 3-D fault display.

Protocol:

1. Open the 3DView display.
2.
3.
4.
5.

Load a 3-D fault file into the 3DView display.
Select the Coverage menu item.
Load a symbol file to be displayed as a coverage on the 3-D fault display.
Verify the symbol coverage has been displayed correctly.

Was the coverage displayed correctly?
7 - L CWlY"3c L d a 3

Tested by: * Date:
(Initials)

22

A-25

4.2.14 3DView Help

SRD Traceability: Section 2

Summary: Verify that 3DStress will display a context sensitive help file for the 3DView display.

Protocol:

1. Open the 3DView display.
2. Select the Help menu item.
3. Verify the help file is opened and displays the correct help information.

Was the help information displayed correctly?

39 fdfw-"

Date:
3rs

Tested by:
(Initials)

23

A-26

4.2.15 3DView Close

SRD Traceability: Section 2

Summary: Verify that 3DStress will close all windows associated with the 3DView display,

Protocol:

1. Open the 3DView display.
2.
3.
4.

Click the Builder menu item.
Click the Close menu item on the 3DView display window.
Venfy ail windows associated with the 3DView display are closed.

Were the windows closed correctly?

Date: 7/1((5 8 Tested by: -76
(Initials)

24

A-27

4.3 STRESS AZIMUTH MAP DISPLAY

The stress azimuth map display is used to plot distributed stress data as a map coverage.

SRD Traceability: Section 2

Summary: Verify the capability to load stress data from a symbol coverage and plot the stress data
against a map backdrop.

Protocol:

1. Open the Map displafloue

d&-
2. Click the -display
3.
4.
5.
6.

Click the Load button and specify a symbol file for loading.
Verify the symbol file is plotted correctly on the map display.
Modify the stress coverage data and plot the modified file.
Verify the modified stress values were plotted correctly.

’ y p s

Tested by: TG Date:
(Initials)

25

A-28

4.4 STRESS CONDITION FILE INPUT AND OUTPUT

The 3DStress user enters stress field data in the Sliders and Mohr's Circle displays. The following
tests will validate the capability to save and load the stress values in a disk data file.

4.4.1 Sliders

SRD Traceability: Section 2

Summary: Verify the capability of the 3DStress Sliders window to perform file input and output with
the stress field data.

Protocol:

1. Open the Sliders display.
2. Modify the stress magnitudes.
3. Save the modified data to disk.
4. Change the stress data a second time to purge the previous values from the program memory.
5. Load the stress values stored in step 3.

- 6. Verify the stress values correspond to the expected values.

Were the stress alues stored and loaded correctly?
5 s d J 06; 250

w t " a
Tested by: y3

(Initials)

26

A-29

4.4.2 Mohr's Circle

SRD Traceability: Section 2

Summary: Verify the capability of the 3DStress Mohr's Circle window to perform file input and output
with the stress field data.

Protocol:

1. Open the Mohr's Circle display.
2. Open the Options menu item.
3. Modify the stress magnitudes.
4. Save the modified data to disk.
5. Change the stress data a second time to purge the previous values from the program memory.
6. Load the stress values stored in step 3.
7. Verify the stress values correspond to the expected values.

Were the stress values stored and
*-fl&=S

CTJ c/o . -

Dud 3-

Tested by: 36
(Initials)

27

A-30

4.5 LEAKAGE FACTOR CALCULATIONS

SRD Traceability: Section 2

Summary: Verify the 3DStress capability to compute Leakage Factors based on a user specified stress
field.

Protocol:

1. Open the Plot display.
2.
3.
4.

Click the Options menu item on the Main menu bar.
Click on the Leakage Factor radio button in the Compute section of the window.
Click the Sliders menu item on the Main menu bar.
Manually compute several data points on the Plot display to verify the Leakage Factor computation. -

Input Stress values: G 6 L 6%T .s Ff/clX-*
0;-57 F P
0;;=74 27,273

27. z 7 /m 2 ? - - 21.03]

3Wl @
sY(4 8.453 --9>

f P = @ . ya77 =

Output Display Verified: q= 57.247 - 7-=7(. 0 3 3 - .
6.

Input stress values: oh: ri
Change the stress data and repeat step 5.

r = ')o

&= sq C7,5$Ltr3 are d-
Output Display Verified r& =&

Were the Leakage Factor calculations performed correctly?

Yd

(Initials)

28

A-3 1

APPENDIX B

?roj ect :
3DStress Ver 1.3

~~ ~

Problem Analysis:

Originator: Date: Problem Number:
T o e &, +[VI

*

?roblem Name:
x@r+A em- +rwpn,,

B- 1

1
Problem Priority

V " 7 lag-3-

Correction Date: Problem Corrector: Version:

Software Problem Report

Project :
3DStress Ver 1.3

Problem Number: Originator: Date: 7 / / r{% z

Problem Analysis:

Problem Name:
@Lr c ; A P r d - Problem Priority

B-2

Correction Date: Problem Corrector: Version:

'roject:
IDStress Ver 1.3

Problem Priority
& c d % i e 3 4 1/cbp fiJ,$cr F ~ Q &id 'roblem Name:

I

Originator: Date: Problem Number:
3 3 7 / r r / 4 Y 3

Ufected Software Element:
F&

Correction Date: I Problem Corrector:

~

Problem Analysis:

Version:

Solution Description:

B-3

Project:

Problem Analysis:

Originator: Date: Problem Number:
3DStress Ver 13 m
Problem Name: 61 t) ~

Fa,, w R w s c

B-4

7 / K / 9 F: 9f

tc :,+ I
Problem Priority

Correction Date: Problem Corrector: Version:

Project :
3DStress Ver 1.3

Fhblem Analysis:

Problem Number:
Date: 71, 8 5

Originator:

Problem Name:
pq 13,\61QJ- DAS,,

B-5

Problem Priority
tc:,l, I

Problem Corrector: Correction Date: Version:

Software Problem Report

Project: Date: Problem I\

Problem Analysis:

3DStress Ver 1.3

Problem Name:
7 / d @ 6

Problem Priority

B-6

Correction Date: Problem Corrector: Version:

Project :
3DStress Ver 1.3

Problem Name: Problem Priority

I

Originator: Date: Problem Number: 36 7 (J6/4t(-

Correction Date: Problem Corrector:

,__ --

Version:

B-7

Software Problem Report

'roblem Name:
&P of=

-~

'roj ec t :
,DStress Ver 1.3

1 originatyb

-r Problem Priority
1 I

Problem Corrector: Correction Date: Version:

Problem Analysis:

B-8

Software Problem Report
i 1

Correction Date: Problem Corrector:

Project: Originator: Date:
3DStress Ver 13 7/16 f fg

Version:

Problem Analysis:

B-9

Software Problem Report

Date:
q / l b / f g

Roject:
3DStress Ver 1.3

Problem Number:
lo

Wetted Software Element:

Correction Date: Problem Corrector:

Problem Analysis:

Version:

B-10

Project:
3DStress Ver 13

Problem Analysis:

Originator: Date: Problem Number:
37$

Problem Name:
3 D O L P &,-[a 6?P/@%?/Q

B-11

7/16/fg (1
Problem Priority

1

Problem Corrector: Correction Date: Version:

Software Problem Report

Originator: I -T6
Project:
3DStress Ver 13

7 / ,b/Cg I Problem Numbe Date:
I2

I . -

I Problem Priority

Problem Corrector: Version: I Correction Date:
I I

Solution Description:

B-12

Project:
3DStress Ver 13

Originator: Date: Problem Number:
n3 7(&/@ G

B-13

Problem Name: &s“>r”5 4sa *? F& 2 Problem Priority

Correction Date: Problem Corrector: Version:

APPENDIX C

Mohr's Circle Options - Additional Tests

SRD Traceability: Section 2

Summary: Verify that parameters entered in the Options parameter window
result in accurate Mohr's Circle plot.

Protocol:
1.
2.
3.

Open the Mohr's Circle display.
Select the Options menu item.
Modify the Rock Type selection in the Mohr Option window. Manually verify
the program output and material failure point on the Mohr's Circle display.

Output Display Verified: * L oe,-&d

c-1

4. Modify the Rock integrity parameter (Intact, very good ... etc) in the Mohr
Option window. Manually verify the program output and material failure
point on the Mohr’s Circle display.

Inputs:

Output Display Verified:

c-2

5. Modify the Rock Type and then select a different Uniaxial Compressive
Strength item in the Mohr Option window. Manually verify the program
output and material failure point on the Mohr Graph display.

p c . 657 e 8' d 2 . r - E /8
s = .ooor7
c = 3r.z

Inputs: L.. fc. A$l[
poor

L

Output

Inputs:

Tested by: fl Date: 7/27/40
(Initials)

c-3

APPENDIX D

Software Problem Report Update on 3DSTRESS Version 1.3

Thirteen SPRs were generated by the validation testing and were documented in this STR. Larry
McKague, David Ferrill and Josh Buckner reviewed the STR and selected five SPRs (1,5,6,11 and 13) for
correction in this release of 3DSTRESS. Four SPRs (3, 8, 9 and 10) were deemed to be either software
features or not requiring correction and were closed. The four remaining SPRs (2,4,7, and 12) related to
printing problems or the periodic abnormal termination of 3DSTRESS. Due to schedule constraints, these
SPRs will remain open and be addressed in a future software release.

Mr. Buckner modified 3DSTRESS to address the five selected SPRs. These SPRs were then retested
and successfully validated on July 29, 1998. The SPR log included in this appendix package reflects the
status of the software retest and the four open SPRs.

The CD-ROM accompanying this report contains both the installation and archive versions of
3DSTRESS version 1.3. The installation file contains all binaries, scripts and help files required to
successfully install and run 3DSTRESS version 1.3. This installation file was successfully transferred to and
executed on CNWRA’s “Redwood” Silicon Graphics workstation on July 3 1,1998, The archive file contains
all source code, header and other related files necessary to recompile or modify 3DSTRESS.

Based on this testing and documentation effort, 3DSTRESS is ready for outside distribution and
entry into the CNWRA configuration management system.

D- 1

3DSTRESS
Software Problem Report and Change Log

SPR

1

SVTP
Section

4.1.1

Date
Opened

7/15/98

ChangeRroblem Summary Status

Incomplete error trapping of user parameters in the Mohr’s
Circle Options window. Alpha characters entered in
numeric field were not tratmed.

Closed
7/29/98
Ver. 1.3

Closed
7/29/98
Ver. 1.3

Closed
7/29/98
Ver. 1.3

7/15/98 4.1.3 2
~

Printing a window in the Mohr Circle, Map, 3DView and
other windows was not successful if the display window
was covered by another window or if the window was not
completely visible on the monitor. Also the image captured
by the software excluded the top portion of the desired
display window.

3
~~

When adding a new line segment point in the Map display,
the edit point in the window does not accurately track the
movements of the mouse.
After entering several new line segment points in the Map
window display, the user attempted to view the new data
with the Browse function. 3DStress crashed when the
Browse function was invoked. After restarting 3DStress,
the problem could not be duplicated with the same
EditIBrowse processing sequence.
There is no capability to store fault control points entered
in the Map display. User edits cannot be saved to disk.

711 5/98

711 5/98

4.2.2

4.2.2 4

4.2.2 7/15/98

7/16/98 4.2.6 2-D faults added to a map display are not incorporated in
the calculation of the Rose diagram.

Closed
7/29/98
Ver. 1.3

~

71 1 619 8

7/16/98

4.2.7 7 Clicking the Map Help caused 3DStress to crash and
“locked-up” the console monitor, preventing user inputs.
Correction of this problem required the system root user to
remotely login into the test machine and restart the
Xwindows window manager application. The problem was
not duplicated in several attempts after the software was
restarted.
The Rose plot diagram did not close when the Map display
was closed.

4.2.8 8 Closed
7/29/98
Ver. 1.3

D-2

7/16/98 4.2.9

7/16/98

7/16/98

7/16/98

7/16/98

4.2.10

4.2.10

4.2.10

4.4.2

SPR

9

10

11

12

13

ChangelProblem Summary

When adding multiple 3-D faults to the 3-D fault viewer,
the faults must be generally within the same region.
Otherwise the 3DViewer display grid will not plot any
data on the plot grid. This is confusing to the user but does
not cause the loss of data.
When adding polygons to the 3DView display, the edit
point does not move proportionally to the distance traveled
by the mouse pointer. This may be an artifact of the 3-D
display, but it is confusing to the user.
Triangles added to the 3DView are erased when the End
Triangle button is clicked. By closing the Options window
without clicking the End Triangle, the user can save one
polygon to the fault file being edited. The user cannot
effectively save fault polygon information in the
3DViewer.
When attempting to save a fault polygon file, we received
an Alert message (1 154) from the operating system that the
system swap space had run out. 3DStress then crashed.
After restarting the application, we able to save the same
3-D fault file we were processing prior to the software
crash.
While testing the Mohr Circle and Slider capabilities to
savelload stress magnitude information on disk, we
received a 3DStress error message that the previously save
stress magnitude file had an erroneous entry for fluid
pressure. 3DStress is not error trapping the fluid pressure
value when it is saved to disk, but is error trapping the
fluid pressure when loading from disk. The error trapping
routines should be consistent in both directions.

Status

Closed
7/29/98
Ver. 1.3

Closed
7/29/98
Ver. 1.3

Closed
7/29/98
Ver. 1.3

Closed
7/29/98
Ver. 1.3

D-3

SOFTWARE
DEVELOPMENT PLAN

SOFTWARE DEVELOPMENT PLAN FOR 3DSTRESS

Prepared for

Nuclear Regulatory Commission
Contract NRC-02-97-809

Prepared by

Joseph H. Bangs

Center for Nuclear Waste Regulatory Analyses
San Antonio, Texas

Approved b ate: 8/7(~jz":

CONTENTS

Section Page

1 SCOPE ... 1-1
1.1 Identification ... 1 . 1
1.2 System Overview .. 1 . 1
1.3 Document Overview ... 1-1
1.4 Relationship to Other Plans .. 1-1

2 REFERENCED DOCUMENTS ... 2-1

3 OVERVIEW OF REQUIRED WORK .. 3-1
3.1 General .. 3-1
3.2 Software Functionality .. 3-1
3.3 Software Design and Development .. 3-1
3.4 Hardware Configurations .. 3-1

4 PLANS FOR PERFORMING GENERAL SOFTWARE DEVELOPMENT ACTIVITIES 4.1
4.1
4.2

Software Development Process ... 4-1
General Plans for Software Development 4-1
4.2.1 Software Development Methods 4-1
4.2.2 Standards for Software Products 4-2

4.2.2.1 Software Design Standards 4-2
4.2.2.2 Software Coding Standards 4-2
4.2.2.3 Software Test Standards 4-3
Reusable Software Products 4-4
4.2.3.1 Incorporating Reusable Software Products 4-4
4.2.3.2 Developing Reusable Software Products 4-4
Handling of Critical Requirements 4-4
4.2.4.1 Safety Assurance ... 4-5
4.2.4.2 Security Assurance 4-5
4.2.4.3 Privacy Assurance .. 4-5
4.2.4.4 Assurance of Other Critical Requirements 4-5

4.2.5 Computer Hardware Resource Utilization 4-5
4.2.6 Recording Rationale ... 4-5
4.2.7 Access for Acquirer Review 4-5

4.2.3

4.2.4

5 PLANS FOR PERFORMING DETAILED SOFTWARE DEVELOPMENT ACTIVITIES 5-1
5.1 Project Planning and Oversight ... 5-1

5.1.1 Software Development Planning 5-1
Software Test Planning ... 5-1
System Test Planning .. 5-1
Software Installation Planning 5-1
Software Transition Planning 5-1

5.1.2
5.1.3
5.1.4
5.1.5
5.1.6 Following and Updating Plans, Including the Intervals for Management

11

Review ... 5-2

CONTENTS (cont’d)
Section Page

5.2

5.3

5.4
5.5
5.6

5.7

5.8

5.9

5.io
5.1 1
5.12

Establishing a Software Development Environment 5-2
Software Engineering Environment 5-2

5.2.2 Software Test Environment 5-2
5.2.3 Software Development Library 5-2

Software Development Files 5-2
5.2.5 Non-deliverable Software ... 5-3
System Requirements Analysis ... 5-3

5.3.2 Operational Concept ... 5-4
5.3.3 System Requirements .. 5-4

Software Requirements Analysis .. 5-4
Software Design ... 5-4

CSCI-wide Design Decisions 5-4
CSCI Architectural Design .. 5-4
CSCI Detailed Design .. 5-5

Software Implementation and Unit Testing 5-5
5.7.1 Software Implementation ... 5-5

Preparing for Unit Testing .. 5-5
Performing Unit Testing .. 5-5
Revision and Retesting ... 5-5

5.7.5 Analyzing and Recording Unit Test Results 5-6
Unit Integration and Testing ... 5-6

Preparing for Unit Integration and Testing 5-6
Performing Unit Integration and Testing 5-6
Revision and Retesting ... 5-6

CSCI Qualification Testing .. 5-6
Independence in CSCI Qualification Testing 5-7
Testing on the Target Computer System 5-7
Preparing for CSCI Qualification Testing 5-7
Dry Run of CSCI Qualification Testing 5-7
Performing CSCI Qualification Testing 5-7
Revision and Retesting ... 5-7

CSCYHWCI Integration and Acceptance Testing 5-8
System Qualification Testing .. 5-8
Preparing for Software Use .. 5-8

Preparing the Executable Software 5-8
Preparing Version Descriptions for User Sites 5-8

5.12.3 Preparing User Manuals .. 5-8

5.2.1

5.2.4

5.3.1 Analysis of User Input ... 5-3

SystemDesign .. 5-4

5.6.1
5.6.2
5.6.3

5.7.2
5.7.3
5.7.4

5.8.1
5.8.2
5.8.3
5.8.4

5.9.1
5.9.2
5.9.3
5.9.4
5.9.5
5.9.6
5.9.7

Analyzing and Recording Unit Integration and Test Results 5-6

Analyzing and Recording CSCI Qualification Test Results 5-7

5.12.1
5.12.2

...
111

Section

5.12.3.1 Software Users Manual 5-8
5.12.3.2 Software Input/Output Manual 5-8

CONTENTS (cont'd)

Page

5.12.3.3 Software Centers Operators Manual 5-9
5.12.3.4 Computer Operation Manuals 5-9

5.12.4 Installation at User Sites .. 5-9
Preparing for Software Transition ... 5-9
Software Configuration Management 5-9
5.14.1 Configuration Identification 5-9
5.14.2 Configuration Control ... 5-10
5.14.3 Configuration Status Accounting 5-10
5.14.4 Configuration Audits ... 5-10
5.14.5 Packaging, Storage, Handling, and Delivery 5-10

5.15 Software Product Evaluation .. 5-10
5.16 Software Quality Assurance .. 5-11
5.17 Corrective Action ... 5-11

5.17.1 ProbledChange Reports .. 5-11
Corrective Action System .. 5-11

5.18 Progress Reporting .. 5-13
Other Software Development Activities 5-13
5.19.1 Risk Management, Including Known Risks and Corresponding Strategies . . 5-13
5.19.2 Software Management Indicators 5-14
5.19.3 Security and Privacy .. 5-14
5.19.4 Subcontractor Management 5-14
5.19.5 Interface with Software Independent Verification and Validation Agents . . 5-14
5.19.6 Coordination with Associate Developers 5-14
5.19.7 Improvement of Project Processes 5-14
5.19.8 Other Activities Not Covered Elsewhere in the Plan 5-15

5.13
5.14

5.17.2

5.19

6 SCHEDULES AND ACTIVITY NETWORK .. 6-1

7 PROJECT ORGANIZATION AND RESOURCES 7. 1
7.1 Project Organization ... 7.1
7.2 Project Resources .. 7-2

7.2.1 Personnel .. 7-2
7.2.2 Facilities .. 7-2

. 7.2.3 Acquirer Furnished Equipment, Data, and Documentation 7-2

8 NOTES ... 8-1
8.1 Acronyms .. 8-1
8.2 Definitions ... 8-1

iv

V

FIGURES

Figure Page

5-1 Sample software problem report .5-12

vi

vii

TABLES

Table Page

6-1 Schedule of software development activities . 6-1

...
V l l l

1 SCOPE

This document establishes the Software Development Plan (SDP) to be implemented by the Center for Nuclear
Waste Regulatory Analyses (CNWRA) for the development and release of the 3DStress version 1.3 software
application.. The software will be provided to the government (acquirer) without proprietary restrictions.

1.1 Identification

This SDP applies to software modifications and corrections to be made to version 1.2 of the 3DStress
application. The modified code will be identified as 3DStress version 1.3.

1.2 System Overview

The 3DStress application is used by scientists and engineers to study the relationship between static
stress fields and geologic faulting. 3DStress utilizes user defined stress fields to compute the likelihood of fault
displacement based on the fault orientation. 3DStress provides user input, computation, and datavisualization
tools to create an interactive environment in which various stress models may be studied and explored
efficiently.

3DStress executes on a Silicon Graphics workstation running the IRIX operating system. The
application does not communicate or interface with any other computer system or software application.

1.3 Document Overview

This SDP defines the plan for management, development, and software maintenance for the 3DStress
software application. This document contains the procedures to address the following program management
tasks:

a. Software design practices
b. Software Quality Assurance
C. Software configuration management
d. Software engineering standards
e. Software development process
f. Organizational structure
g. Schedule

These guidelines will ensure the efficient utilization of project resources to deliver a high quality
software product in a timely manner.

1.4 Relationship to Other Plans

This SDP is not related to any other plan.

1-1

2 REFERENCED DOCUMENTS

The following documents provide guidelines for software development and documentation activities. In the
event of conflict between this document and those referenced herein, the contents of this document shall be
considered superseding requirements.

CNWRA-TOP-18 1 MAY 98 Development and Control of Scientific and
Engineering Software

2- 1

3 OVERVIEW OF REQUIRED WORK

3.1 General

CNWRA has modified version 1.2 of 3DStress to enhance software performance, provide additional
capabilities and correct software defects. All functionality provided by the current version will be duplicated
or replaced in the new version. The host hardware platform for 3DStress will remain a Silicon Graphics
workstation running version 6.x or 5.x of the IRIX operating system.

CNWRA will perform the software requirements analysis, design, development and testingnecessary
to deliver a reliable software and documentation product at the end of the development project.

3.2 Software Functionality

The 3DStress application calculates either the slip tendency or dilation tendency of one or more
geologic faults for a static three dimensional stress field. The application displays various data plots in which
colors and 3D surfaces are rendered to convey the computational results to the software user. 3DStress will
read data files containing fault geometry information and will save copies of the various display windows for
hard copy output or as input to other software applications.

3.3 Software Design and Development

The new version of 3DStress will be designed to meet or exceed the requirements for the existing
application version.

All software will be developed in the C++ programming language unless highly specialized coding is
required for performance beyond the ability of the commercial compiler. A commercial source control product
will be employed to track and coordinate all modifications to the software source code.

Like the existing version, the new 3DStress application will operate in a stand-alone mode requiring
operator control for the execution of all software operations. The application will retain the existing man-
machine-interface based on the X Windows program environment and the Open GL graphics rendering library.

All new software development and modifications will be done in accordance with CNWRATOP-18.
All existing code being reused will not be unnecessarily modified or documented to CNWRA-TOP-18. Reused
code will consist of code used as is or with only minor customization for use with 3DStress version 1.3.
3.4 Hardware Configurations

The 3DStress software application will operate on a single Silicon Graphics computer platform. The
software will operate on any SGI equipped with a monitor, keyboard, mouse and removable media drive for
software installation. Due to the extensive computational nature of 3DStress, CNWRA recommends the
following hardware configuration for acceptable calculation and display performance:

200 MHz Iris Processor or better with floating point coprocessor
128 Mbytes RAM
High Impact graphics board

3- 1

9 GB hard drive
19" monitor or larger
8 rnrn Tape or Digital Audio Tape drive
CDROM
Network connection

3-2

4 PLANS FOR PERFORMING GENERAL SOFTWARE
DEVELOPMENT ACTIVITIES

The following sections outline plans for performing general software development activities for the 3DStress
software application.

4.1 Software Development Process

CNWRA will utilize a Grand Design strategy for development of the 3DStress application. The Grand
Design approach results in a single software build and is appropriate for this project because:

a.

b.

C.

The 3DStress software requirements are well known and documented in the existing 3DStress
software documentation.
The 3DStress application is not alargedevelopment effort and can be accomplished in a short
time frame.
Once the final software requirements are specified the development schedule will be firm and
will not be altered due to changing technical requirements.

4.2 General Plans for Software Development

The following sections define the software development practices and standards to be applied to the
3DStress software development effort.

4.2.1 Software Development Methods

For the same reasons the Grand Design program strategy was selected, the classic life cycle method
of software development will be employed. The classic life cycle method involves requirements analysis, design,
coding, module testing, integration, system level testing and implementation.

All software will be developed in the C++ programming language unless specialized coding is required
for software performance beyond the capability of the C++ compiler. Any deviations from the use of the C++
compiler will be reviewed by the software development team to determine the impact on related software
modules.

CNWRA will base the C++ software design and implementation of the following development
approaches:

1 . Information Hiding - Decomposition of a system into units, such that each is characterized by
its knowledge of a design decision which it hides from all others. The design decision may
relate to either a routine or data. Access to hidden data or routines will be controlled through
well defined interfaces with limited update privileges.
Encapsulation - Related data and data processing/manipulation processes will be organized
or structured as classes reflecting 3DStress component organization, interfaces and
processing. Subclasses will be derived from parent classes until the child class represents a
unit process or interface in enough detail to express the class behavior as data variables and

2.

4- 1

member functions.

4.2.2 Standards for Software Products

The following sections define the standards to be followed in developing the software requirements,
design, coding, test procedures and documenting test results for the 3DStress development project.

4.2.2.1 Software Design Standards

Software design is the process by which requirements are translated into software representations using
structured analysis techniques. A preliminary software design will define modifications to existing or additional
3DStress computational and/or display capabilities. These capabilities will be mapped to software classes by
functional and data access requirements. A subsequent refinement of the design will lead to detailed class
definitions optimized for efficient software operation.

Throughout the design process, the quality of the evolving design will be reviewed by the software
developer with the software or project manager. The software team will adhere to the following design quality
criteria:

1.

2.
3.
4.
5.

The design will be modular and logically partitioned into components that perform distinct
functions.
The design will contain distinct classes reflecting the modular design of the software.
The design will lead to software modules that exhibit independent functional characteristics
The design will strive to simplify user interfaces.
The design will incorporate the concept of abstraction, enabling the designer to simplify and
reuse software components.

4.2.2.2 Software Coding Standards

Coding will translate the software design into C++ language software files and will begin after the detailed
design has been completed and reviewed with the project and element managers. CNWRA will code the
software to have the following characteristics:

1.
2. Maximum compiler efficiency
3.
4. Maintainability

Ease of code to design translation

Maximum use of development tools

CNWRA will employ acoding style that stresses simplicity and clarity. This approach will be applied
to data declaration, statement construction, and data input and output. This coding philosophy will enhance
the software readability while simplifying the test/debug/implement portion of the software development cycle.

4.2.2.2.1 Headings

Each software unit will begin with a unit header that explains the following:

4-2

1.
2. General unit design
3. Initialization
4. Global interactions (if any)
5. Error conditions and handling

Description and purpose of the operation

4.2.2.2.2 Comments

Source code will be explained with comments. Comments will explain the intended operation, logic
and possible error conditions associated with code sections. General comments will precede code sections while
detailed comments will be interspersed in the code. Comments will be written for readers with moderate
software comprehension.

4.2.2.2.3 Variable Naming

Names of variables and classes will be descriptive and indicative of program activity. Names shall
avoid the use of abbreviations, mnemonics and jargon within the constraint of size limitations. Comments will
be used to explain the role of all non-trivial variables and classes at the time of declaration. Names will adhere
to consistent formats across all code modules. This will include the use of capitalization, under scores and
unique letter combinations to identify specific classes of variables.

4.2.2.2.4 Restrictions

Previous versions of the 3DStress application software were developed using the C/C++ programming
language and incorporated function calls to various operating system, X Windows, and Open GL libraries
bundled with each Silicon Graphics hardware platform. No restrictions will be placed on the use of additional
software libraries except that the use of all third party library products will be documented in the source code
and software version or release description.

Also, the software team will restrict its use of multiple inheritance to only those version 1.2 base
classes already utilizing multiple inheritance. The use of multiple inheritance is discouraged and the software
developers will also attempt to avoid mixing traditional C function calls with their equivalent C++ counterparts.

4.2.2.2.5 Complexity

Code aggregates will be limited to the level that a software programmer can understand them without
in-depth study. Individual coding statements will be simple and direct and will not be convoluted for esoteric
or marginal efficiency gains. Individual source code statements will be simplified by avoiding complicated
conditional statements, tests on negative test conditions, and unnecessary nesting in loops or conditions. Source
code statements will use parenthesis to clarify statement content. Related code such as loops, blocks and cases
will be grouped and commented as a functional entity.

4.2.2.3 Software Test Standards

Software testing accounts for a large percentage of technical effort in the software development
process. The objective of software testing is to identify errors. To fulfill this objective, CNWRA will utilize

4-3

a series of steps in testing the software first at the unit level, and then progressing to the integration and system
levels.

Unit level tests will concentrate on functional verification of software modules prior to incorporation
into the program structure. Unit testing makes heavy use of white box testing techniques to exercise specific
paths in a module’s control structure to maximize error detection. After unit testing, modules are assembled
to form the complete software package.

Integration testing addresses reliability issues associated with program verification and construction.
Software modules must work in concert to provide program functionality. Integration testing reveals errors in
module interactions and deficiencies in meeting functional requirements. After successful integration testing,
a set of high order system tests are conducted.

System validation testing will demonstrate traceability to software requirements, and will provide
assurance that software meets functional, behavioral and performance requirements. The validated software
will then be installed in an operational environment to demonstrate system performance.

4.2.3 Reusable Software Products

The following sections outline the approach for incorporating reusable software products and
developing new reusable software for the 3DStress software application.

4.2.3.1 Incorporating Reusable Software Products

CNWRA will investigate several potential sources of reusable software for the 3DStress application.
Version 1.2 of 3DStress is written in the C++ programming language and several software modules will be
incorporated directly into version 1.3. Wherever possible, existing software will be analyzed to determine if
software modifications are necessary to enhance the reusability of the source code in future software versions.

A second source of reusable software will be in the form of commercial device drivers, function and
class libraries, operating system resources and documentation generators. Wherever possible and advisable,
CNWRA will identify commercial products for incorporation or utilization in the development of the new
version of 3DStress.

4.2.3.2 Developing Reusable Software Products

This development project will apply good software development techniques in developing the new
3DStress version. By combining good software development practices with the use of C++, which lends itself
to reuse through class inheritance, the 3DStress project will result in some software that is reusable. However,
it is not the goal of this project to develop reusable software at the expense of software efficiency or simplicity.

4.2.4 Handling of Critical Requirements

The following sections outline the approach for handling critical requirements for the 3DS tress project.

4-4

4.2.4.1 Safety Assurance

3DStress software activities do not require safety assurances. This paragraph has been tailored out.

4.2.4.2 Security Assurance

The 3DStress application does not contain any security related procedures or data. This activity is
tailored out.

4.2.4.3 Privacy Assurance

The 3DStress application will not contain any privacy related procedures or data. This activity is
tailored out.

4.2.4.4 Assurance of Other Critical Requirements

Requirements deemed critical by the technical directive will be presented by the acquirer and will be
incorporated into this plan as appropriate.

4.2.5 Computer Hardware Resource Utilization

The 3DStress application will be developed, tested and executed on existing CNWRA Silicon Graphics
workstations. No additional hardware resources are required for this development effort.

4.2.6 Recording Rationale

Software development activities will be documented in Software Development Files (SDFs) maintained
by individual software developers. These files will contain engineering assumptions as well as standard
software development information. Rationale will be recorded and submitted to the project manager at the
conclusion of the development effort. Key decisions and rationale will be discussed during technical and
management reviews throughout the development project.

4.2.7 Access for Acquirer Review

Throughout the project performance period, the CNWRA project team will be available for telephone
discussions regarding the development effort. All development activities will take place in the CNWRA GIs
laboratory, that is accessible to acquirer personnel.

4-5

5 PLANS FOR PERFORMING DETAILED SOFTWARE
DEVELOPMENT ACTIVITIES

The following sections outline the detailed Software Development Activities for the 3DStress project.

5.1 Project Planning and Oversight

The following sections describe the approach to be employed for project planning and oversight of the
3DStress development project.

5.1.1 Software Development Planning

This document contains the pertinent information related to software development planning. The
project team through the Project Manager may make recommendations for improvements or changes to the
SDP. The Project Manager will determine the impact on schedule and cost and, if appropriate for the program,
present the SDP modifications to the acquirer for approval and contract modifications.

5.1.2 Software Test Planning

Based on the results of the Software Requirements analysis, a Software Test Plan (STP) will be
developed for qualification testing of the 3DStress application. This plan will describe the software test
environment, the test(s) to be performed, and the test schedule. Test results will be recorded in the SDFs and
will be available for acquirer review.

5.1.3 System Test Planning

The 3DStress application is a single build computer software configuration item (CSCI) that interacts
directly with the software user. System testing is not separable from CSCI testing and will thus be conducted
with CSCI testing. System level tests will be defined in the STP.

5.1.4 Software Installation Planning

The 3DStress application will be delivered on removable media. The installation procedure and scripts
will be designed, documented, and built to simplify the installation procedure. No hardware modifications are
anticipated for the migration from version 1.2 to 1.3. Recipients of version 1.3 will be responsible for internally
coordinating local software installations.

5.1.5 Software Transition Planning

CNWRA will document any version specific requirements associated with thenew release of 3DStress.
Recipients of the new version will be responsible for internally coordinating any file translations necessary to
support version 1.3.

5-1

5.1.6 Following and Updating Plans, Including the Intervals for Management Review

CNWRA will conduct the development and testing of 3DStress version 1.3 in accordance with the SDP
and STP. The software development team will meet periodically with the Project Manager to verify the
software process is adhering to these plans. At this time, no changes to the plans are anticipated. However,
should aplan need modification, the Project Manager will present the changes to the acquirer for approval and
coordinate their implementation with the development team.

5.2 Establishing a Software Development Environment

The following sections outline the approach for establishing, controlling and maintaining the software
environment for the 3DStress project.

5.2.1 Software Engineering Environment

A single software development environment will be established for this project in the CNWRA GIS
Laboratory, Bldg. 189 at the CNWRA facility. One Silicon Graphics workstation will be used for all software
development processes. All printed materials, vendor CD's, floppies and tapes will be stored in the GIS
Laboratory. Intermediate disk backups will be made to tape and will also be stored in the GIS Laboratory.

5.2.2 Software Test Environment

CNWRA maintains four SGI workstations for software development and GIS activities. One SGI will
be used for software development while the other SGI machines will be available for software and installation
testing.

5.2.3 Software Development Library

The lead software developer will serve as the software librarian and will have primary control over the
software development library. Because the software development team is small, all team members will have
access to the library in the absence of the librarian. The librarian will establish a working library on the
development Silicon Graphics workstation. Both libraries will be subdivided into a subdirectory structure
designed to contain deliverable documents, software units, SDFs, and commercial software products.

5.2.4 Software Development Files

Informal Software Development Files (SDFs) will be created for the 3DStress software units. The
SDFs will be created prior to the initiation of detailed design and shall be maintained for the duration of the
project. They will be made available to the product evaluation team, quality assurance, and acquirer
representatives as requested. The SDF may reference information in other project documents as necessary. All
schedule and status data will be in other project documents. SDFs will be created and maintained by the
programming staff under the direction of the Project Manager.

The SDFs will be maintained predominantly in electronic form. The electronic form will be a
combination of plain ASCII and word processor files. If necessary paper submissions will be included in a
binder and referenced in the electronic form.

5-2

SDFs will generally include the following information:

1 .

2.

3.

4.
5.

6.

7.

8.

9.

10.

Record Sheet - The contents of the SDF are listed by item name and electronic name and
location. The engineer responsible for the SDF is identified with the due date, completion date,
originator sign-off, and reviewer sign-off.
Requirements Specification - All requirements that the CSU must satisfy are listed by
reference to the applicable sections of the Software Requirements Specification.
Interface Description -Global variableskonstants, calling sequences, and input/output formats
are defined or referenced.
Preliminary Design - Preliminary design description.
Software Test Information - All test cases and test procedures are defined or referenced.
Concurrent with code walk-through, the reviewer will verify that the test plan fully tests
capabilities, interfaces, and design constraints.
Source Code Organization Description -A description of the location anddirectory structure
of the CSU source code as well as commercial products used in the CSU.
Test Results -At all levels, records of test results are maintained by test case identifier, tester,
date, and the revision status of test drivers, tools, database, and code tested. Significant
differences between expected and actual results will be explained..
Software Problem Reports - SPR forms shall be used to document problems encountered in
software and software documentation.
Notes - All explanatory materials relevant to the CSU are maintained in the section. Formal
deviation and waivers are also kept in this section.
Reviewers Comments - Reviewers comments on the other sections of the SDF are kept in this
section.

5.2.5 Non-deliverable Software

Where necessary, CNWRA will develop simulators to test software component functionality. The end
item software will not utilize these test fixtures and therefore will not be delivered, controlled or documented
to the software release standards.

5.3 System Requirements Analysis

The following sections describe the approach CNWRA will follow in developing the software system
design for the 3DStress application.

5.3.1 Analysis of User Input

3DStress operates as a stand-alone software application requiring user directives to control application
execution:Additional features planned for version 1.3 will be analyzed to design an optimal user interface
environment. The primary user interface design criteria will be ease of operator control and the effective display
of computational results. At this time, no additional user input devices are anticipated beyond the traditional
input devices (keyboard, mouse) attached to standard SGI workstations.

5-3

5.3.2 Operational Concept

3DStress is designed to be an interactive software application utilized by research and scientific staff
at irregular intervals. The software is not intended to become an integral part of day-to-day operations.
Therefore an operational concept description will not be written for this application. This activity has been
tailored out.

5.3.3 System Requirements

Based on experience with 3DStress version 1.2 and planned modifications for version 1.3, no system
modifications are necessary for this release version.

5.4 System Design

Version 1.3 represents an incremental change to 3DStress version 1.2. The existing version 1.2 system
design will be utilized in version 1.3.

5.5 Software Requirements Analysis

This version of 3DStress is intended to be a functional replacement of the current application.
CNWRA will review and analyze the requirements for the new version to determine the operational concepts
and software specific requirements of the new CSCI. Software technology areas needed to implement the new
version will be evaluated with respect to technologies utilized in the current software revision. New
requirements will be categorized as new technology or extensions of existing capabilities. The results of this
analysis will be documented in the Software Requirements Description (SRD) as a reference for testing and
validating the new software version.

5.6 Software Design

The following sections describe the approach CNWRA will follow in preparing the software design
for 3DStress, version 1.3. The results of the software design process will be documented in the software
development files maintained by the development team members.

5.6.1 CSCI-wide Design Decisions

CNWRA will analyze the SRD to refine the existing concept of data and event management within the
current 3DStress application. The software team will prioritize event management and data processing tasks
according to their impact on overall system performance and functionality. From this prioritization, the team
will evaluate various models for allocating hardware and software resources during software execution. Any
modifications to the current CSCI event and data management concepts will be documented in the SDFs.

5.6.2 CSCI Architectural Design

Using the high-level resource allocation model, the software team will design an internal CSCI

5-4

architecture to implement the major functional requirements specified in the SRD. This design will define any
new or modified classes of data and functionality necessary to implement the new software capabilities.

5.6.3 CSCI Detailed Design

CNWRA will refine the architectural design into individual software units by designing algorithmic
approaches for implementing specific software requirements defined in the SRD. Algorithm development will
focus on meeting or exceeding performance and functional specifications while adhering to the previously
defined communication, processing and event management framework.

5.7 Software Implementation and Unit Testing

The following sections describe the approach to be followed for software implementation and unit
testing for the 3DStress application.

5.7.1 Software Implementation

The software will be developed within the coding techniques described above in Section 4.2.1. All
software will be developed in the C++ programming language unless highly specialized coding is required for
performance beyond the ability of the C++ compiler to produce efficient binary executables. Any deviations
from the use of C++ will be approved by the Project Manager.

No relational databases are required for the 3DStress application. All system configuration and
geologic fault information will be maintained in plain ASCII text files or publicly defined binary file formats.
ASCII file formats are generally preferred for all files except very large data files where ASCII storage is
impractical.

5.7.2 Preparing for Unit Testing

Unit testing will be designed to verify the new software meets the detailed software design in the SDFs.
CNWRA will develop test cases using by calculating outputs from known or controlled inputs for each major
software unit. Controlled test cases will be computed using independent computations not relying on the newly
developed software. Information regarding the test case computations and results will be documented in the
SDFs.

5.7.3 Performing Unit Testing

As major software units arecompleted, the developer will conduct unit testing with test cases to verify
the expected results.

5.7.4 Revision and Retesting

As needed, the developer will revise and retest software units to ensure compliance with the
functionality described in the SDFs and SRD.

5 -5

5.7.5 Analyzing and Recording Unit Test Results

Each iteration of testing and revision through the successful completion of the test case will be
documented in the applicable SDF. Persistent test failure by a software unit will be analyzed to determine if
failures are derived from an inadequate design, insufficient documentation, or improper coding practices.

5.8 Unit Integration and Testing

The following sections describe the approach to be followed for unit integration and testing for the
3DStress project.

5.8.1 Preparing for Unit Integration and Testing

Unit integration testing will be performed at the major software component level. CNWRA will develop
test cases and data in terms of inputs and expected outputs for the control subsystem. Information regarding
the test cases, procedures and results will be stored in the SDFs.

5.8.2 Performing Unit Integration and Testing

As major software units are ready for testing, the development team will conduct component level
testing with test cases and verify the expected outputs.

5.8.3 Revision and Retesting

As needed, the developer will revise and retest software components to ensure compliance with the
functionality described in the SDD and SRS.

5.8.4 Analyzing and Recording Unit Integration and Test Results

Each iteration of testing and revision through the successful completion of the test case will be
documented in the applicable SDF. Persistent test failure by a software component will be analyzed to
determine if failures are derived from an inadequate design, insufficient documentation, or fundamental errors
in the CSCI architectural design.

5.9 CSCI Qualification Testing

The intent of the CSCI qualification testing for the 3DStress application is to verify that the new
controller is functionally equivalent to the previous version and provides the additional capabilities described
in the SRD.

The following sections describe the approach to be followed for CSCI qualification testing for the
3DStress application.

5-6

5.9.1 Independence in CSCI Qualification Testing

The Project Manager will assign an individual from the CNWRA , CNWRA QA or SwRI staff who
has not participated in the design or development of the 3DStress to conduct formal testing of the CSCI.

5.9.2 Testing on the Target Computer System

All CSCI qualification testing will be performed on Silicon Graphics workstations available to the
CNWRA.

5.9.3 Preparing for CSCI Qualification Testing

Upon completion of the CSCI software, the software will be entered into the Configuration
Management (CM) system as the 3DStress product baseline.

The Software Test Plan (STP) and Software Test Procedures (STPr) will be given to the independent
software tester in preparation for the dry run CSCI qualification test.

5.9.4 Dry Run of CSCI Qualification Testing

The software developer will dry run the test procedures to ensure that they are complete, accurate and
are ready for witnessed testing. The results of the test will be recorded in the appropriate SDFs. Software
Problem Reports will be prepared for problems uncovered during the testing process.

5.9.5 Performing CSCI Qualification Testing

A witnessed qualification test will be conducted at CNWRA to verify and demonstrate that the
3DStress application meets the system and software requirements stated in the SRD. If additional revision and
retesting is required, the appropriate portions of the CSCI qualification test will be rerun after completion of
the revisions.

5.9.6 Revision and Retesting

Revisions, based on SPR (corrective action) processing, and retesting will be accomplished prior to
final approval of the qualification testing. Where necessary SDFs will be updated to reflect the revisions and
retesting.

5.9.7 Analyzing and Recording CSCI Qualification Test Results

When the CSCI qualification testing is competed, the test results will be recorded in a Software Test
Report. If revisions to the 3DStress application were made during the qualification test process, the qualified
software will be resubmitted to CM as the new baseline version.

5-7

5.10 CSCI/HWCI Integration and Acceptance Testing

The 3DStress application is a single build CSCI designed to run on Silicon Graphics workstation.
CNWRA possesses four different Silicon Graphics workstation configurations. 3DStress will be tested on
CNWRA SGI machines that were not used in the software development process.

CNWRA has prepared a standard installation test case that shall be run after software installation to
verify correct software installation. This acceptance test procedure is documented in the 3DStress on-line help
manual.

5.11 System Qualification Testing

The 3DStress application does not interface other computer hardware or software systems. This
paragraph has been tailored out.

5.12 Preparing for Software Use

The following sections describe the approach to be followed for preparing the 3DStress application
for distribution to existing users.

5.12.1 Preparing the Executable Software

CNWFL4 will prepare the executable software for delivery to the user community. This preparation
will include script and data files, executables, shared object libraries, configuration files, and any other
software files required to operate the application. These files will be stored on standard removable storage
media such as CDs or tapes.

5.12.2 Preparing Version Descriptions for User Sites

CNWRA will prepare a Software Release Notice for delivery with the 3DStress application to identify
and describe the released software version for tracking and control purposes.

5.12.3 Preparing User Manuals

The following sections outline the preparation of the user manuals for the 3DStress application.

5.12.3.1 Software Users Manual

CNWRA will prepare a Software User Manual (SUM) which describes the installation and operation
of the 3DStress application. The SUM will describe all user input and activities required to control and review
the computational results generated by 3DStress.

5.12.3.2 Software Input/Output Manual

5-8

A separate Software Input/Output manual will not be prepared for this application. This activity has
been tailored out.

5.12.3.3 Software Centers Operators Manual

A separate Software Centers Operators Manual will not be prepared for this application. This activity
has been tailored out.

5.12.3.4 Computer Operation Manuals

A separate Computer Operation Manuals will not be prepared for this application. This activity has
been tailored out.

5.12.4 Installation at User Sites

CNWRA will support NRC on-site installation of 3DStress as needed. Support for other 3DStress
users will be arranged on a case by case basis.

5.13 Preparing for Software Transition

CNWRA will retain rights to the 3DStress application executable and support files. No software
transitions to another organization are planned at this time. This activity has been tailored out.

5.14 Software Configuration Management

Software configuration management (CM) is the process by which baselined documents and source
code are identified and changes are identified and recorded. All deliverable documents and source code will be
placed under CM.

3DStress CM will be the responsibility of the Project Manager. The Project Manager will determine
when source and documents are to be submitted to CM and will control the release, modification and
resubmission of these materials to CM. The following sections define the CM process that will be followed by
the 3DStress Project Manager.

5.14.1 Configuration Identification

Two software products will be placed under CM for the 3DStress project: software source code and
application executables produced during the project.

The 3DStress application is a single build CSCI and will have a single version number. Any
commercial software products incorporated in the control subsystem software will have vendor version
numbers that will be documented in the Software Release Notice, but these numbers will only be used internally
and will not be reflected in the CNWRA assigned version number. The CNWRA software version numbering
will follow the following format:

12.34

5-9

Where: 12 is a one or two digit version number which identifies the major software version, starting
with the number 1. Changes to basic functionality or major enhancements will cause this
number to be incremented.

.34 is a one character separator (.) and two digit revision number. This number will start with
00 and will be incremented as minor software changes are made in response to Software
Problem Reports (SPRs).

5.14.2 Configuration Control

On initial and subsequent release to CM of software products, the Project Manager will follow the
procedure listed below:

1.

2.

3.

The Project Manager will prepare a Software Release Notice (SRN) form, refer to CNWRA-
TOP-18 for the appropriate format.
If this is the final delivery to the acquirer, the Project Manager will make sufficient copies of
the deliverable material as required by the acquirer.
The Project Manager will provide the CNWRA QA group a copy of all products to be placed
in CM

5.14.3 Configuration Status Accounting

The 3DStress Project Manager will prepare and maintain records of the configuration status of all
software documentation and the 3DStress CSCI that have been placed under configuration control. These
records will be maintained for the life of the 3DStress application. The records will contain the current
versiodrevisiordrelease of each entity, changes to the entity since being placed under CM, and the status of
open SPRs affecting the entity.

5.14.4 Configuration Audits

The 3DS tress Project Manager will make configuration management records available on a non-update
basis for audit by the CNWRA or acquirer representatives.

5.14.5 Packaging, Storage, Handling, and Delivery

The software and documentation will be stored in paper and electronic form. Documentation will be
stored on 3.5” floppy disks or CDs in Wordperfect for Windows 8 or later format. End item software will be
delivered on 3.5” floppy disks, CD-ROM or 8mm tape in plain ASCII text file format.

5.15 Software Product Evaluation

The 3DStress application will be demonstrated for potential clients but no plans exist to distribute
evaluation copies of the software. This activity has been tailored out.

5-10

5.16 Software Quality Assurance

CNWRA will follow a two-fold approach to building a quality product for the 3DStress application:

Quality Development - define and follow good software development practices throughout the
development effort. For the 3DStress project, CNWRA will use internal development staff for
planning, coding and testing who will adhere to the plans and implementation procedures
outline in this SDP.

Quality Assurance - ongoing verification that the process are being followed by the
development team. CNWRA will utilize the CNWRA QA department for review, evaluation
and recommendations.

CNWRA QA (CQA) will monitor the software development process to verify the procedures and
practices identified in this plan are being utilized in the 3DStress development. Evaluations will be informal
and deviations from this development plan will be brought to the attention of the Project Manager. Continued
deviation from the development plan will require notification of CNWRA management to discuss corrective
actions or initiate an update of the software development plan to reflect changes in the project scope.

5.17 Corrective Action

The corrective action process is uniform for any software unit requiring correction. The formal
corrective action process becomes effective once the 3DStress control subsystem CSCI enters the CM system.
All corrective actions (CA) are initiated with a Software Problem Report (SPR). The SPR form to be used for
this project is described in Section 5.17.1. Document or software comments from the contracting agency or
IQA are not required to be submitted on the SPR form, other formats are acceptable. Proposed enhancements
to the system may also be initiated through the use of the SPR.

5.17.1 ProbledChange Reports

An example SPR form is shown in Figure 5-1. To accommodate lengthy explanations or supporting
material, attachments to the forms may be referenced in the appropriate fields. All SPRs are maintained in the
project file by the Project Manager for the duration of the project and will be made available to acquirer
representatives upon request.

5.17.2 Corrective Action System

The corrective action system centers around the submission of the SPR. SPRprocessing will generally
adhere to the following sequence:

1. Problem identification and report submission. An SPR can be generated by any project
member or software user who detects a problem or recognizes a required enhancement to a
baselined document or software program.

5-1 1

5-12

Software ProbledChange Report

Project: Originator: Date: Number:

ProbledChange Name:

Modifications by:

Priority

Date: Version:

Affected Software Element:

Analysis:

Implementation:

Figure 5-1. Sample software problem report

5-13

2.

3.

4.

5.

6.

Logging. Following receipt of an SPR (or equivalent), the requested CA is entered into a CA
log sheet. This log sheet facilitates tracking and reporting of all CA’s issued during the life
of the project. The Project Manager will then assign the CA to a software engineer for
analysis.
Analysis. Analysis will be performed by the assigned engineer to determine the category of
the CA: software, documentation, design, user, of requirement problem. The analysis also
needs to determine what priority level should be assigned to the problem. Analysis of problems
that lead to modification of software need further documentation, including test cases in order
to assure that the problem has indeed been resolved.
Approval. After analysis the Project Manager will decide if a software or document change
is necessary. The Project Manager is also responsible for final determination of thecategory,
priority, and type of action required.
Implementation. During implementation, the affected products are “checked out” from the
appropriate library and corrections made. Appropriate unit tests and integration tests must be
determined and performed.
Release. Once the corrections have been made, they must be verifiedtested at the appropriate
software development level and/or CSCI testing depending on the level and type of change.
The corrected products are reinserted into the baseline, and the products returned to
configuration control. Following this they are ready for release to the acquirer.

5.18 Progress Reporting

During the 3DStress development, brief monthly project reports in the form of the Program Manager’s
Periodic Report will be produced by CNWRA.

5.19 Other Software Development Activities

The following sections describe the approach to be followed for other software development activities
for the 3DStress application development project.

5.19.1 Risk Management, Including Known Risks and Corresponding Strategies

Areas of technical risk will be investigated as early in the development cycle as possible to allow
adjustments in software design if required.

Schedule and cost problems are normally identified by use of CNWRA Project Manager data sheets.
This control is currently being used in all projects. In addition, Project Managers hold timely project review
meetings with all key project personnel to discuss, review, and solve schedule, cost, and technical problems.

The initial step in risk mitigation is identification of the risk, its potential impact on the project
performance, and likelihood of developing into a problem. Risks are identified by careful review of all project
aspects by analysis of the WBS. Risks are then tracked through the project until task completion to monitor
their impact on cost, schedule and technical performance.

During each reporting period, work projections are made for the next reporting period, and costs are
estimated. Progress for both performance and cost is evaluated against these projections. When progress does

5-14

not match projections, discussions are initiated within the project staff, and then with division management to
resolve the problems, i.e., mitigate risks.

5.19.2 Software Management Indicators

The Project Manager will monitor the software management indicators listed below on an ongoing
basis against the proposed project schedule and milestones.

1.
2.
3.
4.

5.

Requirements volatility: total number of requirements and requirements changes over time.
Software staffing: planned and actual staffing levels over time.
Software complexity: complexity of each software unit.
Software progress: planned and actual number of software units designed implemented, unit
tested, and integrated over time.
Milestone performance: planned and actual dates of key project milestones.

5.19.3 Security and Privacy

The 3DStress software application does not contain any extraordinary security or privacy issues
(Section 4.2.4.2 & 4.2.4.3). This activity is tailored out.

5.19.4 Subcontractor Management

CNWRA does not plan to utilize subcontractors on the 3DStress development project. This activity
has been tailored out.

5.19.5 Interface with Software Independent Verification and Validation Agents

CNWRA will utilize in-house staff for review of software quality issues and internal staff for
verification and validation. This activity has been tailored out.

5.19.6 Coordination with Associate Developers

The 3DStress application will be developed using only internal staff. No other associated developers
will be used. This activity has been tailored out.

5.19.7 Improvement of Project Processes

The Project Manager will periodically assess the processes used on the project to determine the
suitability and effectiveness. Based on these assessments, the Project Manager will identify any necessary and
beneficial improvements to the process, and identify these changes to the acquirer in the form of proposed
updates to this Software Development Plan. All proposed changes will have acquirer approval prior to
implementation.

5-15

5.19.8 Other Activities Not Covered Elsewhere in the Plan

CNWRA plans to utilize the consulting services of Dr. Alan Morris, University of Texas at San
Antonio during the development of the 3DStress application. Dr. Morris is one of the original developers of
the 3DStress algorithms and will be utilized as aresource for software requirements development and software
validation.

5-16

6 SCHEDULES AND ACTIVITY NETWORK

Table 6-1 presents an overview of the significant milestones that will be completed during this project.

Table 6-1. Schedule of software development activities

Software release v.l.2

Software Requirement Document (v. 1.3)

II Activity

~~ ~

November 12, 1996

August 5, 1997

PlanneNActual Completion Date

Software Planning Document (v. 1.3)

Acceptance Testing

11 software release v. 1.1

~ ~~~ ~

July 13, 1998

July 15,1998

~~ ~

August 2, 1996

Verification Testing (v. 1.3) July 15, 1998

User Guide to NRC (v.1.3)

Software release (v. 1.3)

June 29,1998

August 12,1998

11 Software Test Report I July 17,1998

I3DStress v.1.3 to NRC I August 14,1998

6- 1

7 PROJECT ORGANIZATION AND RESOURCES

The following sections describe the project organization and resources to applied to the 3DStress application
development.

7.1 Project Organization

On a functional basis, CNWRA conducts programs under the Project Manager concept. The Project
Manager is delegated authority for overall technical direction and administrative supervision of the project.
The Project Manager reports directly to the Element Manager, who in turn reports directly to the Technical
Director. This structure permits ready access to higher management to quickly resolve any problems which
might arise. The quick access to management allows for close schedule coordination on projects of an
interdivisional nature. Thus, once a project team is formed, the Project Manager has vertical line authority over
team members for the duration of the project.

The support staff of CNWRA, including such functions as accounting, contract administration,
purchasing, computer processing, report reproduction, library, and security, are at the disposal of the Project
Manager. The direct availability of the support staff leads to effective project management and eliminates
delays which might be experienced in a less flexible system.

CNWRA Quality Assurance reports directly to the CNWRA President. CNWRA QA performs audits
of the software development process. CNWRA QA ensures conformance to contractual requirements and
determines the adequacy and effectiveness of project activities.

Management controls are imposed by CNWRA to ensure progress and eventual delivery of end items
in accordance with the agreed upon schedule and cost. Scheduling control is maintained by short interval
updating of the approved schedule. As a minimum, bar chart project schedules with clearly defined milestones
are prepared. The charts are divided into appropriate phases, tasks and, if needed, subtasks. These charts and
work breakdown structures (WBS) are entered into a computer to facilitate monitoring and updating.

Cost status reports are prepared and distributed to project managers every two weeks at the close of
the normal pay period. Labor data for these reports are obtained from individual time sheets which all
employees are required to complete daily. Charges are listed by project number, as well as phase or task
numbers. Itemized labor, materials, travel, reproduction services, and overhead for the preceding two-week
accounting period are given, including commitments made which have not yet resulted in expenditures. Also,
the balance of project funds available is noted. Every four weeks, a computerized summary of the two
preceding biweekly reports is prepared and given to individual project managers.

The Project Manager has full responsibility for all software products created and/or utilized by the
project. The data items, documentation reports, drawings, and manuals constitute project team activity
paralleling the hardware and software development activities. The same team members performing the
hardware and software tasks will also provide direct input and analysis for all data supplied on this contract.

7-1

7.2 Project Resources

The following sections describe the resources that CNWRA will apply to the 3DStress application
development project.

7.2.1 Personnel

The software development team will be composed of software analysts experienced in the development
of Silicon Graphics Open GL software. Approximately 0.2 R E ’ S and one summer employee will be
committed to the software development team. The Project Manager is responsible for coordinating the activities
of the software team project evaluations with the CQA department. Project management tasks will require
approximately 0.2 FTE’s.

7.2.2 Facilities

CNWRA will establish a development and testing environment for this project in the CNWRA GIS
Laboratory, Bldg. 189. The environment will consist of one Silicon Graphics development workstation and
three additional Silicon Graphics systems for testing and evaluation.

7.2.3 Acquirer Furnished Equipment, Data, and Documentation

No acquirer furnished software or equipment is required for this project

7-2

8 NOTES

8.1 Acronyms

CM
CNWRA
CSCI
HWCI
IAW
CQA
SDD
SDF
SPR
SQA
SRD
STP
STPr
SUM
SVD
SWRI
WBS

Configuration Management
Center for Nuclear Waste Regulatory Analyses
Computer Software Configuration Item
Hardware Configuration Item
In accordance with
CNWRA Quality Assurance
Software Design Description
Software Development File
Software Problem Report
Software Quality Assurance
Software Requirements Description
Software Test Plan
Software Test Procedures
Software User’s Manual
Software Version Description
Southwest Research Institute
Work breakdown structure

8.2 Definitions

Acquirer
An organization that procures software products for itself or another organization.

Approval
Written notification by an authorized representative of the acquirer that a developer’s plans, design,

or other aspects of the project appear to be sound and can be used as the basis for further work. Such approval
does not shift responsibility from the developer to meet contractual requirements.

Architecture

concept of execution among them.
The organizational structure of a system or CSCI, identifying the components, their interfaces, and a

Associate Developer

development role on the same or related system or project.
An organization that is neither prime contractor nor subcontractor to the developer, but who has a

Behavioral Design
The design of how an overall system or CSCI will behave, from a user’s point of view, in meeting its

requirements, ignoring the internal implementation of the system or CSCI. This design contrasts with
architectural design, which identifies the internal components of the system or CSCI, and with the detailed
design of those components.

8-1

Build
(1) A version of software that meets a specified subset of the requirements that the completed software

will meet. (2) The period of time during which such aversion is developed. Note: Therelationship of the terms
“build” and “version” is up to the developer; for example, it may take several versions to reach a build, a build
may be released in several parallel versions (such as to different sites), or the terms may be used as synonyms.

Computer Hardware
Devices capable of accepting and storing computer data, executing a systematic sequence of operations

on computer data, or producing control outputs. Such devices can perform substantial interpretation,
computation, communication, control, or other logical functions.

Computer program

computational or control functions.
A combination of computer instructions and data definitions that enable computer hardware to perform

Computer Software Configuration Item CCSCI)
An aggregation of software that satisfies an end use function and is designated for separate

configuration management by the acquirer. CSCIs are selected based on tradeoffs among software function,
size, host or target computers, developer, support concept, plans for reuse, criticality, interface considerations,
need to be separately controlled, and other functions.

Configuration Item

separate configuration management by the acquirer.
An aggregation of hardware, software, or both that satisfies an end use function and is designated for

Database

by users or computer programs.
A collection of related data stored in one or more computerized files in a manner that can be accessed

Deliverable software product

recipient.
A software product that is required by the contract to be delivered to the acquirer or other designated

Design
Those characteristics if a system or CSCI that are selected by the developer in response to the

requirements. Some will match the requirement; others will be elaborations of requirements, such as definitions
of all error messages in response to a requirement to display error messages; other will be implementation
related, such as decisions about what software units and logic to use to satisfy the requirements.

Developer
& organization that develops software products (“develops” may include new development,

modification, reuse, reengineering, maintenance, or any other activity that results in software products). The
developer may be a contractor or a Government agency.

8-2

Document/documentation

and can be read by humans or machines.
A collection of data, regardless of the medium on which it is recorded, that generally has permanence

Evaluation
The process of determining whether an item or activity meets specified criteria.

Firmware

read-only software on the hardware device.
The combination of a hardware device and computer instructions and/or computer data that reside as

Hardware Configuration Item (HWCI)

configuration management by the acquirer.
An aggregation of hardware that satisfies an end use function and is designated for separate

Interface
In software development, a relationship among two or more entities (such as CSCI-CSCI, CSCI-

HWCI, CSCI-user, or software unit-software unit) in which the entities share, provide, or exchange data. An
interface is not a CSCI, software unit, or other system component; it is a relationship among them.

Joint review

project status, software products, and/or project issues are examined and discussed.
A process or meeting involving representatives of both the acquirer and the developer, during which

Non-deliverable software product

designated recipient.
A software product that is not required by the contract to be delivered to the acquirer or other

Process

process.
An organized set of activities performed for a given purpose; for example, the software development

Qualification testing

requirements.
Testing performed to demonstrate to the acquirer that a CSCI or a system meets the specified

Reengineering
The process of examining and altering an existing system to reconstitute it in anew form. May include

reverse engineering (analyzing a system and producing a representation at a higher level of abstraction, such
as design from code), restructuring (transforming a system from one representation to another at the same level
of abstraction), redocumentation (analyzing a system and producing user or support documentation), forward
engineering (using software products derived from an existing system, together with new requirements, to
produce a new system), retargeting (transforming a system to install it on a different target system), and
translation (transforming source code from one language to another or from one version of a language to
another).

8-3

Requirement

mandatory statement in this standard or another portion of the contract.
(1) A characteristic that a system or CSCI must possess in order to be acceptable to the acquirer. (2) A

Reusable software product
A software product developed for one use but having other uses, or one developed specifically to be

usable on multiple projects or in multiple roles on one project. Examples include, but are not limited to,
commercial off-the-shelf software products, acquirer furnished software products, software products in reuse
libraries, and pre-existing developer software products. Each use may include all or part of the software
product and may involve its modification. This term can be applied to software product (for example,
requirements, architectures, etc.), not just to software itself.

Software
Computer programs and database. Note: Although some definitions of software include documentation,

MIL-STD-498 limits the definition to computer programs and databases in accordance with Defense Federal
Acquisition Regulation Supplement 227.401.

Software development
A set of activities that results in software products. Software development may include new

development, modification, reuse, reengineering, maintenance, or any other activities that result in software
products.

Software development file
A repository for material pertinent to the development of a particular body of software. Contents

typically include (either directly or by reference) considerations, rationale, and constraints related to
requirements analysis, design, and implementation; developer-internal test information; and schedule and status
information.

Software development library (SDL)
A controlled collection of software, documentation, other intermediate and final software products, and

associated tools and procedures used to facilitate the orderly development and subsequent support of software.

Software development process
An organized set of activities performed to translate user needs into software products.

Software enpineering
In general usage, a synonym for software development. As used in this standard, a subset of software

development consisting of all activities except qualification testing. The standard makes this distinction for the
sole purpose of giving separate names to the software engineering and software test environments.

Software engineering environment
The facilities, hardware, software, firmware, procedures, and documentation needed to perform

software engineering. Elements may include but are not limited to computer-aided software engineering (CASE)
tools, compilers, assemblers, linkers, loaders, operating systems, debuggers, simulators, emulators,
documentation tools, and database management systems.

8-4

Software product

include plans, requirements, design, code, databases, test information, and manuals.
Software or associated information created, modified, or incorporated to satisfy a contract. Examples

Software quality
The ability of software to satisfy its specified requirements.

Software support
The set of activities that takes place to ensure that software installed for operational use continues to

perform as intended and fulfill its intended role in system operation. Software support includes software
maintenance, aid to users, and related activities.

Software system

operates.
A system consisting solely of software and possibly the computer equipment on which the software

Software test environment
The facilities, hardware, software, firmware, procedures, and documentation needed to perform

qualification, and possibly other testing of software. Elements may include but are not limited to simulators,
code analyzers, test case generators, and path analyzers, and may also include elements used in the software
engineering environment.

Software transition
The set of activities that enables responsibility for software development to pass from one organization,

usually the organization that performs initial software development, to another, usually the organization that
will perform software support.

Software componenthnit
An element in the design of a CSCI; for example, a major subdivision of a CSCI, a component of that

subdivision, a class, object, module, function, routine, or database. Software components may occur at different
levels of a hierarchy and may consist of other software units. Software units in the design may or may not have
a one-to-one relationship with the code and data entities (routines, procedures, databases, data files, etc.) that
implement them or with the computer files containing those entities.

8-5

